VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 42640

Last change on this file since 42640 was 41976, checked in by vboxsync, 12 years ago

VMM: Switcher and TRPM fixes wrt hypervisor traps and tstVMM.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 86.2 KB
Line 
1/* $Id: VMM.cpp 41976 2012-07-01 14:16:40Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually.
27 *
28 * @see grp_vmm, grp_vm
29 *
30 *
31 * @section sec_vmmstate VMM State
32 *
33 * @image html VM_Statechart_Diagram.gif
34 *
35 * To be written.
36 *
37 *
38 * @subsection subsec_vmm_init VMM Initialization
39 *
40 * To be written.
41 *
42 *
43 * @subsection subsec_vmm_term VMM Termination
44 *
45 * To be written.
46 *
47 *
48 * @sections sec_vmm_limits VMM Limits
49 *
50 * There are various resource limits imposed by the VMM and it's
51 * sub-components. We'll list some of them here.
52 *
53 * On 64-bit hosts:
54 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
55 * can be increased up to 64K - 1.
56 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
57 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
58 * - A VM can be assigned all the memory we can use (16TB), however, the
59 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
60 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
61 *
62 * On 32-bit hosts:
63 * - Max 127 VMs. Imposed by GMM's per page structure.
64 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
65 * ROM pages. The limit is imposed by the 28-bit page ID used
66 * internally in GMM. It is also limited by PAE.
67 * - A VM can be assigned all the memory GMM can allocate, however, the
68 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
69 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
70 *
71 */
72
73/*******************************************************************************
74* Header Files *
75*******************************************************************************/
76#define LOG_GROUP LOG_GROUP_VMM
77#include <VBox/vmm/vmm.h>
78#include <VBox/vmm/vmapi.h>
79#include <VBox/vmm/pgm.h>
80#include <VBox/vmm/cfgm.h>
81#include <VBox/vmm/pdmqueue.h>
82#include <VBox/vmm/pdmcritsect.h>
83#include <VBox/vmm/pdmapi.h>
84#include <VBox/vmm/cpum.h>
85#include <VBox/vmm/mm.h>
86#include <VBox/vmm/iom.h>
87#include <VBox/vmm/trpm.h>
88#include <VBox/vmm/selm.h>
89#include <VBox/vmm/em.h>
90#include <VBox/sup.h>
91#include <VBox/vmm/dbgf.h>
92#include <VBox/vmm/csam.h>
93#include <VBox/vmm/patm.h>
94#ifdef VBOX_WITH_REM
95# include <VBox/vmm/rem.h>
96#endif
97#include <VBox/vmm/ssm.h>
98#include <VBox/vmm/tm.h>
99#include "VMMInternal.h"
100#include "VMMSwitcher.h"
101#include <VBox/vmm/vm.h>
102#include <VBox/vmm/ftm.h>
103
104#include <VBox/err.h>
105#include <VBox/param.h>
106#include <VBox/version.h>
107#include <VBox/vmm/hwaccm.h>
108#include <iprt/assert.h>
109#include <iprt/alloc.h>
110#include <iprt/asm.h>
111#include <iprt/time.h>
112#include <iprt/semaphore.h>
113#include <iprt/stream.h>
114#include <iprt/string.h>
115#include <iprt/stdarg.h>
116#include <iprt/ctype.h>
117#include <iprt/x86.h>
118
119
120
121/*******************************************************************************
122* Defined Constants And Macros *
123*******************************************************************************/
124/** The saved state version. */
125#define VMM_SAVED_STATE_VERSION 4
126/** The saved state version used by v3.0 and earlier. (Teleportation) */
127#define VMM_SAVED_STATE_VERSION_3_0 3
128
129
130/*******************************************************************************
131* Internal Functions *
132*******************************************************************************/
133static int vmmR3InitStacks(PVM pVM);
134static int vmmR3InitLoggers(PVM pVM);
135static void vmmR3InitRegisterStats(PVM pVM);
136static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
137static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
138static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
139static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
140static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
141
142
143/**
144 * Initializes the VMM.
145 *
146 * @returns VBox status code.
147 * @param pVM Pointer to the VM.
148 */
149VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
150{
151 LogFlow(("VMMR3Init\n"));
152
153 /*
154 * Assert alignment, sizes and order.
155 */
156 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
157 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
158 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
159
160 /*
161 * Init basic VM VMM members.
162 */
163 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
164 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
165 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
166 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
167 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
168 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
169
170 /** @cfgm{YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
171 * The EMT yield interval. The EMT yielding is a hack we employ to play a
172 * bit nicer with the rest of the system (like for instance the GUI).
173 */
174 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
175 23 /* Value arrived at after experimenting with the grub boot prompt. */);
176 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
177
178
179 /** @cfgm{VMM/UsePeriodicPreemptionTimers, boolean, true}
180 * Controls whether we employ per-cpu preemption timers to limit the time
181 * spent executing guest code. This option is not available on all
182 * platforms and we will silently ignore this setting then. If we are
183 * running in VT-x mode, we will use the VMX-preemption timer instead of
184 * this one when possible.
185 */
186 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
187 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
188 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
189
190 /*
191 * Initialize the VMM rendezvous semaphores.
192 */
193 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
194 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
195 return VERR_NO_MEMORY;
196 for (VMCPUID i = 0; i < pVM->cCpus; i++)
197 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
198 for (VMCPUID i = 0; i < pVM->cCpus; i++)
199 {
200 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
201 AssertRCReturn(rc, rc);
202 }
203 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
204 AssertRCReturn(rc, rc);
205 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
206 AssertRCReturn(rc, rc);
207 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
208 AssertRCReturn(rc, rc);
209 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
210 AssertRCReturn(rc, rc);
211
212 /* GC switchers are enabled by default. Turned off by HWACCM. */
213 pVM->vmm.s.fSwitcherDisabled = false;
214
215 /*
216 * Register the saved state data unit.
217 */
218 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
219 NULL, NULL, NULL,
220 NULL, vmmR3Save, NULL,
221 NULL, vmmR3Load, NULL);
222 if (RT_FAILURE(rc))
223 return rc;
224
225 /*
226 * Register the Ring-0 VM handle with the session for fast ioctl calls.
227 */
228 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
229 if (RT_FAILURE(rc))
230 return rc;
231
232 /*
233 * Init various sub-components.
234 */
235 rc = vmmR3SwitcherInit(pVM);
236 if (RT_SUCCESS(rc))
237 {
238 rc = vmmR3InitStacks(pVM);
239 if (RT_SUCCESS(rc))
240 {
241 rc = vmmR3InitLoggers(pVM);
242
243#ifdef VBOX_WITH_NMI
244 /*
245 * Allocate mapping for the host APIC.
246 */
247 if (RT_SUCCESS(rc))
248 {
249 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
250 AssertRC(rc);
251 }
252#endif
253 if (RT_SUCCESS(rc))
254 {
255 /*
256 * Debug info and statistics.
257 */
258 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
259 vmmR3InitRegisterStats(pVM);
260 vmmInitFormatTypes();
261
262 return VINF_SUCCESS;
263 }
264 }
265 /** @todo: Need failure cleanup. */
266
267 //more todo in here?
268 //if (RT_SUCCESS(rc))
269 //{
270 //}
271 //int rc2 = vmmR3TermCoreCode(pVM);
272 //AssertRC(rc2));
273 }
274
275 return rc;
276}
277
278
279/**
280 * Allocate & setup the VMM RC stack(s) (for EMTs).
281 *
282 * The stacks are also used for long jumps in Ring-0.
283 *
284 * @returns VBox status code.
285 * @param pVM Pointer to the VM.
286 *
287 * @remarks The optional guard page gets it protection setup up during R3 init
288 * completion because of init order issues.
289 */
290static int vmmR3InitStacks(PVM pVM)
291{
292 int rc = VINF_SUCCESS;
293#ifdef VMM_R0_SWITCH_STACK
294 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
295#else
296 uint32_t fFlags = 0;
297#endif
298
299 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
300 {
301 PVMCPU pVCpu = &pVM->aCpus[idCpu];
302
303#ifdef VBOX_STRICT_VMM_STACK
304 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
305#else
306 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
307#endif
308 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
309 if (RT_SUCCESS(rc))
310 {
311#ifdef VBOX_STRICT_VMM_STACK
312 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
313#endif
314#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
315 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
316 if (!VMMIsHwVirtExtForced(pVM))
317 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
318 else
319#endif
320 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
321 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
322 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
323 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
324
325 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
326 }
327 }
328
329 return rc;
330}
331
332
333/**
334 * Initialize the loggers.
335 *
336 * @returns VBox status code.
337 * @param pVM Pointer to the VM.
338 */
339static int vmmR3InitLoggers(PVM pVM)
340{
341 int rc;
342#define RTLogCalcSizeForR0(cGroups, fFlags) (RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[cGroups]) + PAGE_SIZE)
343
344 /*
345 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
346 */
347#ifdef LOG_ENABLED
348 PRTLOGGER pLogger = RTLogDefaultInstance();
349 if (pLogger)
350 {
351 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
352 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
353 if (RT_FAILURE(rc))
354 return rc;
355 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
356
357# ifdef VBOX_WITH_R0_LOGGING
358 size_t const cbLogger = RTLogCalcSizeForR0(pLogger->cGroups, 0);
359 for (VMCPUID i = 0; i < pVM->cCpus; i++)
360 {
361 PVMCPU pVCpu = &pVM->aCpus[i];
362 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbLogger, PAGE_SIZE, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
363 (void **)&pVCpu->vmm.s.pR0LoggerR3);
364 if (RT_FAILURE(rc))
365 return rc;
366 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
367 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
368 pVCpu->vmm.s.pR0LoggerR3->cbLogger = (uint32_t)cbLogger;
369 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
370 }
371# endif
372 }
373#endif /* LOG_ENABLED */
374
375#ifdef VBOX_WITH_RC_RELEASE_LOGGING
376 /*
377 * Allocate RC release logger instances (finalized in the relocator).
378 */
379 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
380 if (pRelLogger)
381 {
382 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
383 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
384 if (RT_FAILURE(rc))
385 return rc;
386 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
387 }
388#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
389 return VINF_SUCCESS;
390}
391
392
393/**
394 * VMMR3Init worker that register the statistics with STAM.
395 *
396 * @param pVM The shared VM structure.
397 */
398static void vmmR3InitRegisterStats(PVM pVM)
399{
400 /*
401 * Statistics.
402 */
403 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
404 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
405 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
406 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
407 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
408 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
409 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
417 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
418 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
419 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
420 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
421 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
422 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
423 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
424 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
425 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
426 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
427 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
428 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
429 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
430 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
431 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
432 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
433 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
434 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
435 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
436 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
437 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
438 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
439 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
440 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
441 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
442 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
443 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
444 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
445 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
446 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
447 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
448 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
449 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
450 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HWACCM_PATCH_TPR_INSTR returns.");
451 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
452 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
453 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMCritSectEnter, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMCritSectEnter", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_CRITSECT_ENTER calls.");
454 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
455 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
456 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
457 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
458 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
459 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
460 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
461 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
462
463#ifdef VBOX_WITH_STATISTICS
464 for (VMCPUID i = 0; i < pVM->cCpus; i++)
465 {
466 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
467 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
468 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
469 }
470#endif
471}
472
473
474/**
475 * Initializes the R0 VMM.
476 *
477 * @returns VBox status code.
478 * @param pVM Pointer to the VM.
479 */
480VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
481{
482 int rc;
483 PVMCPU pVCpu = VMMGetCpu(pVM);
484 Assert(pVCpu && pVCpu->idCpu == 0);
485
486#ifdef LOG_ENABLED
487 /*
488 * Initialize the ring-0 logger if we haven't done so yet.
489 */
490 if ( pVCpu->vmm.s.pR0LoggerR3
491 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
492 {
493 rc = VMMR3UpdateLoggers(pVM);
494 if (RT_FAILURE(rc))
495 return rc;
496 }
497#endif
498
499 /*
500 * Call Ring-0 entry with init code.
501 */
502 for (;;)
503 {
504#ifdef NO_SUPCALLR0VMM
505 //rc = VERR_GENERAL_FAILURE;
506 rc = VINF_SUCCESS;
507#else
508 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
509#endif
510 /*
511 * Flush the logs.
512 */
513#ifdef LOG_ENABLED
514 if ( pVCpu->vmm.s.pR0LoggerR3
515 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
516 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
517#endif
518 if (rc != VINF_VMM_CALL_HOST)
519 break;
520 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
521 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
522 break;
523 /* Resume R0 */
524 }
525
526 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
527 {
528 LogRel(("R0 init failed, rc=%Rra\n", rc));
529 if (RT_SUCCESS(rc))
530 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
531 }
532 return rc;
533}
534
535
536/**
537 * Initializes the RC VMM.
538 *
539 * @returns VBox status code.
540 * @param pVM Pointer to the VM.
541 */
542VMMR3_INT_DECL(int) VMMR3InitRC(PVM pVM)
543{
544 PVMCPU pVCpu = VMMGetCpu(pVM);
545 Assert(pVCpu && pVCpu->idCpu == 0);
546
547 /* In VMX mode, there's no need to init RC. */
548 if (pVM->vmm.s.fSwitcherDisabled)
549 return VINF_SUCCESS;
550
551 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
552
553 /*
554 * Call VMMGCInit():
555 * -# resolve the address.
556 * -# setup stackframe and EIP to use the trampoline.
557 * -# do a generic hypervisor call.
558 */
559 RTRCPTR RCPtrEP;
560 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
561 if (RT_SUCCESS(rc))
562 {
563 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
564 uint64_t u64TS = RTTimeProgramStartNanoTS();
565 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
566 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
567 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
568 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
569 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
570 CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
571 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
572 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
573 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
574
575 for (;;)
576 {
577#ifdef NO_SUPCALLR0VMM
578 //rc = VERR_GENERAL_FAILURE;
579 rc = VINF_SUCCESS;
580#else
581 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
582#endif
583#ifdef LOG_ENABLED
584 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
585 if ( pLogger
586 && pLogger->offScratch > 0)
587 RTLogFlushRC(NULL, pLogger);
588#endif
589#ifdef VBOX_WITH_RC_RELEASE_LOGGING
590 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
591 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
592 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
593#endif
594 if (rc != VINF_VMM_CALL_HOST)
595 break;
596 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
597 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
598 break;
599 }
600
601 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
602 {
603 VMMR3FatalDump(pVM, pVCpu, rc);
604 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
605 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
606 }
607 AssertRC(rc);
608 }
609 return rc;
610}
611
612
613/**
614 * Called when an init phase completes.
615 *
616 * @returns VBox status code.
617 * @param pVM Pointer to the VM.
618 * @param enmWhat Which init phase.
619 */
620VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
621{
622 int rc = VINF_SUCCESS;
623
624 switch (enmWhat)
625 {
626 case VMINITCOMPLETED_RING3:
627 {
628 /*
629 * Set page attributes to r/w for stack pages.
630 */
631 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
632 {
633 rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE,
634 X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
635 AssertRCReturn(rc, rc);
636 }
637
638 /*
639 * Create the EMT yield timer.
640 */
641 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
642 AssertRCReturn(rc, rc);
643
644 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
645 AssertRCReturn(rc, rc);
646
647#ifdef VBOX_WITH_NMI
648 /*
649 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
650 */
651 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
652 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
653 AssertRCReturn(rc, rc);
654#endif
655
656#ifdef VBOX_STRICT_VMM_STACK
657 /*
658 * Setup the stack guard pages: Two inaccessible pages at each sides of the
659 * stack to catch over/under-flows.
660 */
661 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
662 {
663 uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3;
664
665 memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
666 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
667
668 memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
669 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
670 }
671 pVM->vmm.s.fStackGuardsStationed = true;
672#endif
673 break;
674 }
675
676 case VMINITCOMPLETED_RING0:
677 {
678 /*
679 * Disable the periodic preemption timers if we can use the
680 * VMX-preemption timer instead.
681 */
682 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
683 && HWACCMR3IsVmxPreemptionTimerUsed(pVM))
684 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
685 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
686 break;
687 }
688
689 default: /* shuts up gcc */
690 break;
691 }
692
693 return rc;
694}
695
696
697/**
698 * Terminate the VMM bits.
699 *
700 * @returns VINF_SUCCESS.
701 * @param pVM Pointer to the VM.
702 */
703VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
704{
705 PVMCPU pVCpu = VMMGetCpu(pVM);
706 Assert(pVCpu && pVCpu->idCpu == 0);
707
708 /*
709 * Call Ring-0 entry with termination code.
710 */
711 int rc;
712 for (;;)
713 {
714#ifdef NO_SUPCALLR0VMM
715 //rc = VERR_GENERAL_FAILURE;
716 rc = VINF_SUCCESS;
717#else
718 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
719#endif
720 /*
721 * Flush the logs.
722 */
723#ifdef LOG_ENABLED
724 if ( pVCpu->vmm.s.pR0LoggerR3
725 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
726 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
727#endif
728 if (rc != VINF_VMM_CALL_HOST)
729 break;
730 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
731 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
732 break;
733 /* Resume R0 */
734 }
735 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
736 {
737 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
738 if (RT_SUCCESS(rc))
739 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
740 }
741
742 for (VMCPUID i = 0; i < pVM->cCpus; i++)
743 {
744 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
745 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
746 }
747 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
748 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
749 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
750 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
751 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
752 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
753 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
754 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
755
756#ifdef VBOX_STRICT_VMM_STACK
757 /*
758 * Make the two stack guard pages present again.
759 */
760 if (pVM->vmm.s.fStackGuardsStationed)
761 {
762 for (VMCPUID i = 0; i < pVM->cCpus; i++)
763 {
764 uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3;
765 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
766 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
767 }
768 pVM->vmm.s.fStackGuardsStationed = false;
769 }
770#endif
771
772 vmmTermFormatTypes();
773 return rc;
774}
775
776
777/**
778 * Applies relocations to data and code managed by this
779 * component. This function will be called at init and
780 * whenever the VMM need to relocate it self inside the GC.
781 *
782 * The VMM will need to apply relocations to the core code.
783 *
784 * @param pVM Pointer to the VM.
785 * @param offDelta The relocation delta.
786 */
787VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
788{
789 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
790
791 /*
792 * Recalc the RC address.
793 */
794#ifdef VBOX_WITH_RAW_MODE
795 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
796#endif
797
798 /*
799 * The stack.
800 */
801 for (VMCPUID i = 0; i < pVM->cCpus; i++)
802 {
803 PVMCPU pVCpu = &pVM->aCpus[i];
804
805 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
806
807 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
808 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
809 }
810
811 /*
812 * All the switchers.
813 */
814 vmmR3SwitcherRelocate(pVM, offDelta);
815
816 /*
817 * Get other RC entry points.
818 */
819 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
820 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
821
822 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
823 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
824
825 /*
826 * Update the logger.
827 */
828 VMMR3UpdateLoggers(pVM);
829}
830
831
832/**
833 * Updates the settings for the RC and R0 loggers.
834 *
835 * @returns VBox status code.
836 * @param pVM Pointer to the VM.
837 */
838VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
839{
840 /*
841 * Simply clone the logger instance (for RC).
842 */
843 int rc = VINF_SUCCESS;
844 RTRCPTR RCPtrLoggerFlush = 0;
845
846 if (pVM->vmm.s.pRCLoggerR3
847#ifdef VBOX_WITH_RC_RELEASE_LOGGING
848 || pVM->vmm.s.pRCRelLoggerR3
849#endif
850 )
851 {
852 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
853 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
854 }
855
856 if (pVM->vmm.s.pRCLoggerR3)
857 {
858 RTRCPTR RCPtrLoggerWrapper = 0;
859 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
860 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
861
862 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
863 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
864 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
865 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
866 }
867
868#ifdef VBOX_WITH_RC_RELEASE_LOGGING
869 if (pVM->vmm.s.pRCRelLoggerR3)
870 {
871 RTRCPTR RCPtrLoggerWrapper = 0;
872 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
873 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
874
875 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
876 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
877 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
878 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
879 }
880#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
881
882#ifdef LOG_ENABLED
883 /*
884 * For the ring-0 EMT logger, we use a per-thread logger instance
885 * in ring-0. Only initialize it once.
886 */
887 PRTLOGGER const pDefault = RTLogDefaultInstance();
888 for (VMCPUID i = 0; i < pVM->cCpus; i++)
889 {
890 PVMCPU pVCpu = &pVM->aCpus[i];
891 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
892 if (pR0LoggerR3)
893 {
894 if (!pR0LoggerR3->fCreated)
895 {
896 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
897 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
898 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
899
900 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
901 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
902 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
903
904 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger),
905 pfnLoggerWrapper, pfnLoggerFlush,
906 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
907 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
908
909 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
910 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
911 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
912 rc = RTLogSetCustomPrefixCallbackForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger), pfnLoggerPrefix, NIL_RTR0PTR);
913 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
914
915 pR0LoggerR3->idCpu = i;
916 pR0LoggerR3->fCreated = true;
917 pR0LoggerR3->fFlushingDisabled = false;
918
919 }
920
921 rc = RTLogCopyGroupsAndFlagsForR0(&pR0LoggerR3->Logger, pVCpu->vmm.s.pR0LoggerR0 + RT_OFFSETOF(VMMR0LOGGER, Logger), pDefault,
922 RTLOGFLAGS_BUFFERED, UINT32_MAX);
923 AssertRC(rc);
924 }
925 }
926#endif
927 return rc;
928}
929
930
931/**
932 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
933 *
934 * @returns Pointer to the buffer.
935 * @param pVM Pointer to the VM.
936 */
937VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
938{
939 if (HWACCMIsEnabled(pVM))
940 return pVM->vmm.s.szRing0AssertMsg1;
941
942 RTRCPTR RCPtr;
943 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
944 if (RT_SUCCESS(rc))
945 return (const char *)MMHyperRCToR3(pVM, RCPtr);
946
947 return NULL;
948}
949
950
951/**
952 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
953 *
954 * @returns Pointer to the buffer.
955 * @param pVM Pointer to the VM.
956 */
957VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
958{
959 if (HWACCMIsEnabled(pVM))
960 return pVM->vmm.s.szRing0AssertMsg2;
961
962 RTRCPTR RCPtr;
963 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
964 if (RT_SUCCESS(rc))
965 return (const char *)MMHyperRCToR3(pVM, RCPtr);
966
967 return NULL;
968}
969
970
971/**
972 * Execute state save operation.
973 *
974 * @returns VBox status code.
975 * @param pVM Pointer to the VM.
976 * @param pSSM SSM operation handle.
977 */
978static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
979{
980 LogFlow(("vmmR3Save:\n"));
981
982 /*
983 * Save the started/stopped state of all CPUs except 0 as it will always
984 * be running. This avoids breaking the saved state version. :-)
985 */
986 for (VMCPUID i = 1; i < pVM->cCpus; i++)
987 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
988
989 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
990}
991
992
993/**
994 * Execute state load operation.
995 *
996 * @returns VBox status code.
997 * @param pVM Pointer to the VM.
998 * @param pSSM SSM operation handle.
999 * @param uVersion Data layout version.
1000 * @param uPass The data pass.
1001 */
1002static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1003{
1004 LogFlow(("vmmR3Load:\n"));
1005 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1006
1007 /*
1008 * Validate version.
1009 */
1010 if ( uVersion != VMM_SAVED_STATE_VERSION
1011 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1012 {
1013 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1014 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1015 }
1016
1017 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1018 {
1019 /* Ignore the stack bottom, stack pointer and stack bits. */
1020 RTRCPTR RCPtrIgnored;
1021 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1022 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1023#ifdef RT_OS_DARWIN
1024 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1025 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1026 && SSMR3HandleRevision(pSSM) >= 48858
1027 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1028 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1029 )
1030 SSMR3Skip(pSSM, 16384);
1031 else
1032 SSMR3Skip(pSSM, 8192);
1033#else
1034 SSMR3Skip(pSSM, 8192);
1035#endif
1036 }
1037
1038 /*
1039 * Restore the VMCPU states. VCPU 0 is always started.
1040 */
1041 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
1042 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1043 {
1044 bool fStarted;
1045 int rc = SSMR3GetBool(pSSM, &fStarted);
1046 if (RT_FAILURE(rc))
1047 return rc;
1048 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1049 }
1050
1051 /* terminator */
1052 uint32_t u32;
1053 int rc = SSMR3GetU32(pSSM, &u32);
1054 if (RT_FAILURE(rc))
1055 return rc;
1056 if (u32 != UINT32_MAX)
1057 {
1058 AssertMsgFailed(("u32=%#x\n", u32));
1059 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1060 }
1061 return VINF_SUCCESS;
1062}
1063
1064
1065/**
1066 * Resolve a builtin RC symbol.
1067 *
1068 * Called by PDM when loading or relocating RC modules.
1069 *
1070 * @returns VBox status
1071 * @param pVM Pointer to the VM.
1072 * @param pszSymbol Symbol to resolv
1073 * @param pRCPtrValue Where to store the symbol value.
1074 *
1075 * @remark This has to work before VMMR3Relocate() is called.
1076 */
1077VMMR3_INT_DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1078{
1079 if (!strcmp(pszSymbol, "g_Logger"))
1080 {
1081 if (pVM->vmm.s.pRCLoggerR3)
1082 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1083 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1084 }
1085 else if (!strcmp(pszSymbol, "g_RelLogger"))
1086 {
1087#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1088 if (pVM->vmm.s.pRCRelLoggerR3)
1089 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1090 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1091#else
1092 *pRCPtrValue = NIL_RTRCPTR;
1093#endif
1094 }
1095 else
1096 return VERR_SYMBOL_NOT_FOUND;
1097 return VINF_SUCCESS;
1098}
1099
1100
1101/**
1102 * Suspends the CPU yielder.
1103 *
1104 * @param pVM Pointer to the VM.
1105 */
1106VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1107{
1108 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1109 if (!pVM->vmm.s.cYieldResumeMillies)
1110 {
1111 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1112 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1113 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1114 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1115 else
1116 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1117 TMTimerStop(pVM->vmm.s.pYieldTimer);
1118 }
1119 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1120}
1121
1122
1123/**
1124 * Stops the CPU yielder.
1125 *
1126 * @param pVM Pointer to the VM.
1127 */
1128VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1129{
1130 if (!pVM->vmm.s.cYieldResumeMillies)
1131 TMTimerStop(pVM->vmm.s.pYieldTimer);
1132 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1133 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1134}
1135
1136
1137/**
1138 * Resumes the CPU yielder when it has been a suspended or stopped.
1139 *
1140 * @param pVM Pointer to the VM.
1141 */
1142VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1143{
1144 if (pVM->vmm.s.cYieldResumeMillies)
1145 {
1146 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1147 pVM->vmm.s.cYieldResumeMillies = 0;
1148 }
1149}
1150
1151
1152/**
1153 * Internal timer callback function.
1154 *
1155 * @param pVM The VM.
1156 * @param pTimer The timer handle.
1157 * @param pvUser User argument specified upon timer creation.
1158 */
1159static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1160{
1161 NOREF(pvUser);
1162
1163 /*
1164 * This really needs some careful tuning. While we shouldn't be too greedy since
1165 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1166 * because that'll cause us to stop up.
1167 *
1168 * The current logic is to use the default interval when there is no lag worth
1169 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1170 *
1171 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1172 * so the lag is up to date.)
1173 */
1174 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1175 if ( u64Lag < 50000000 /* 50ms */
1176 || ( u64Lag < 1000000000 /* 1s */
1177 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1178 )
1179 {
1180 uint64_t u64Elapsed = RTTimeNanoTS();
1181 pVM->vmm.s.u64LastYield = u64Elapsed;
1182
1183 RTThreadYield();
1184
1185#ifdef LOG_ENABLED
1186 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1187 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1188#endif
1189 }
1190 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1191}
1192
1193
1194/**
1195 * Executes guest code in the raw-mode context.
1196 *
1197 * @param pVM Pointer to the VM.
1198 * @param pVCpu Pointer to the VMCPU.
1199 */
1200VMMR3_INT_DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1201{
1202 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1203
1204 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1205
1206 /*
1207 * Set the hypervisor to resume executing a CPUM resume function
1208 * in CPUMRCA.asm.
1209 */
1210 CPUMSetHyperState(pVCpu,
1211 CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1212 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1213 : pVM->vmm.s.pfnCPUMRCResumeGuest, /* eip */
1214 pVCpu->vmm.s.pbEMTStackBottomRC, /* esp */
1215 0, /* eax */
1216 VM_RC_ADDR(pVM, &pVCpu->cpum) /* edx */);
1217
1218 /*
1219 * We hide log flushes (outer) and hypervisor interrupts (inner).
1220 */
1221 for (;;)
1222 {
1223#ifdef VBOX_STRICT
1224 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1225 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1226 PGMMapCheck(pVM);
1227#endif
1228 int rc;
1229 do
1230 {
1231#ifdef NO_SUPCALLR0VMM
1232 rc = VERR_GENERAL_FAILURE;
1233#else
1234 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1235 if (RT_LIKELY(rc == VINF_SUCCESS))
1236 rc = pVCpu->vmm.s.iLastGZRc;
1237#endif
1238 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1239
1240 /*
1241 * Flush the logs.
1242 */
1243#ifdef LOG_ENABLED
1244 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1245 if ( pLogger
1246 && pLogger->offScratch > 0)
1247 RTLogFlushRC(NULL, pLogger);
1248#endif
1249#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1250 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1251 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1252 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1253#endif
1254 if (rc != VINF_VMM_CALL_HOST)
1255 {
1256 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1257 return rc;
1258 }
1259 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1260 if (RT_FAILURE(rc))
1261 return rc;
1262 /* Resume GC */
1263 }
1264}
1265
1266
1267/**
1268 * Executes guest code (Intel VT-x and AMD-V).
1269 *
1270 * @param pVM Pointer to the VM.
1271 * @param pVCpu Pointer to the VMCPU.
1272 */
1273VMMR3_INT_DECL(int) VMMR3HwAccRunGC(PVM pVM, PVMCPU pVCpu)
1274{
1275 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1276
1277 for (;;)
1278 {
1279 int rc;
1280 do
1281 {
1282#ifdef NO_SUPCALLR0VMM
1283 rc = VERR_GENERAL_FAILURE;
1284#else
1285 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN, pVCpu->idCpu);
1286 if (RT_LIKELY(rc == VINF_SUCCESS))
1287 rc = pVCpu->vmm.s.iLastGZRc;
1288#endif
1289 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1290
1291#if 0 /* todo triggers too often */
1292 Assert(!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TO_R3));
1293#endif
1294
1295#ifdef LOG_ENABLED
1296 /*
1297 * Flush the log
1298 */
1299 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1300 if ( pR0LoggerR3
1301 && pR0LoggerR3->Logger.offScratch > 0)
1302 RTLogFlushR0(NULL, &pR0LoggerR3->Logger);
1303#endif /* !LOG_ENABLED */
1304 if (rc != VINF_VMM_CALL_HOST)
1305 {
1306 Log2(("VMMR3HwAccRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1307 return rc;
1308 }
1309 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1310 if (RT_FAILURE(rc))
1311 return rc;
1312 /* Resume R0 */
1313 }
1314}
1315
1316/**
1317 * VCPU worker for VMMSendSipi.
1318 *
1319 * @param pVM Pointer to the VM.
1320 * @param idCpu Virtual CPU to perform SIPI on
1321 * @param uVector SIPI vector
1322 */
1323DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1324{
1325 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1326 VMCPU_ASSERT_EMT(pVCpu);
1327
1328 /** @todo what are we supposed to do if the processor is already running? */
1329 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1330 return VERR_ACCESS_DENIED;
1331
1332
1333 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1334
1335 pCtx->cs.Sel = uVector << 8;
1336 pCtx->cs.ValidSel = uVector << 8;
1337 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1338 pCtx->cs.u64Base = uVector << 12;
1339 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1340 pCtx->rip = 0;
1341
1342 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", uVector));
1343
1344# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1345 EMSetState(pVCpu, EMSTATE_HALTED);
1346 return VINF_EM_RESCHEDULE;
1347# else /* And if we go the VMCPU::enmState way it can stay here. */
1348 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1349 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1350 return VINF_SUCCESS;
1351# endif
1352}
1353
1354DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1355{
1356 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1357 VMCPU_ASSERT_EMT(pVCpu);
1358
1359 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1360 CPUMR3ResetCpu(pVCpu);
1361 return VINF_EM_WAIT_SIPI;
1362}
1363
1364/**
1365 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1366 * and unhalting processor
1367 *
1368 * @param pVM Pointer to the VM.
1369 * @param idCpu Virtual CPU to perform SIPI on
1370 * @param uVector SIPI vector
1371 */
1372VMMR3_INT_DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1373{
1374 AssertReturnVoid(idCpu < pVM->cCpus);
1375
1376 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1377 AssertRC(rc);
1378}
1379
1380/**
1381 * Sends init IPI to the virtual CPU.
1382 *
1383 * @param pVM Pointer to the VM.
1384 * @param idCpu Virtual CPU to perform int IPI on
1385 */
1386VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1387{
1388 AssertReturnVoid(idCpu < pVM->cCpus);
1389
1390 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1391 AssertRC(rc);
1392}
1393
1394/**
1395 * Registers the guest memory range that can be used for patching
1396 *
1397 * @returns VBox status code.
1398 * @param pVM Pointer to the VM.
1399 * @param pPatchMem Patch memory range
1400 * @param cbPatchMem Size of the memory range
1401 */
1402VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1403{
1404 VM_ASSERT_EMT(pVM);
1405 if (HWACCMIsEnabled(pVM))
1406 return HWACMMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1407
1408 return VERR_NOT_SUPPORTED;
1409}
1410
1411/**
1412 * Deregisters the guest memory range that can be used for patching
1413 *
1414 * @returns VBox status code.
1415 * @param pVM Pointer to the VM.
1416 * @param pPatchMem Patch memory range
1417 * @param cbPatchMem Size of the memory range
1418 */
1419VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1420{
1421 if (HWACCMIsEnabled(pVM))
1422 return HWACMMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1423
1424 return VINF_SUCCESS;
1425}
1426
1427
1428/**
1429 * Count returns and have the last non-caller EMT wake up the caller.
1430 *
1431 * @returns VBox strict informational status code for EM scheduling. No failures
1432 * will be returned here, those are for the caller only.
1433 *
1434 * @param pVM Pointer to the VM.
1435 */
1436DECL_FORCE_INLINE(int) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1437{
1438 int rcRet = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1439 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1440 if (cReturned == pVM->cCpus - 1U)
1441 {
1442 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1443 AssertLogRelRC(rc);
1444 }
1445
1446 AssertLogRelMsgReturn( rcRet <= VINF_SUCCESS
1447 || (rcRet >= VINF_EM_FIRST && rcRet <= VINF_EM_LAST),
1448 ("%Rrc\n", rcRet),
1449 VERR_IPE_UNEXPECTED_INFO_STATUS);
1450 return RT_SUCCESS(rcRet) ? rcRet : VINF_SUCCESS;
1451}
1452
1453
1454/**
1455 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1456 *
1457 * @returns VBox strict informational status code for EM scheduling. No failures
1458 * will be returned here, those are for the caller only. When
1459 * fIsCaller is set, VINF_SUCCESS is always returned.
1460 *
1461 * @param pVM Pointer to the VM.
1462 * @param pVCpu The VMCPU structure for the calling EMT.
1463 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1464 * not.
1465 * @param fFlags The flags.
1466 * @param pfnRendezvous The callback.
1467 * @param pvUser The user argument for the callback.
1468 */
1469static int vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1470 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1471{
1472 int rc;
1473
1474 /*
1475 * Enter, the last EMT triggers the next callback phase.
1476 */
1477 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1478 if (cEntered != pVM->cCpus)
1479 {
1480 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1481 {
1482 /* Wait for our turn. */
1483 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1484 AssertLogRelRC(rc);
1485 }
1486 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1487 {
1488 /* Wait for the last EMT to arrive and wake everyone up. */
1489 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1490 AssertLogRelRC(rc);
1491 }
1492 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1493 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1494 {
1495 /* Wait for our turn. */
1496 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1497 AssertLogRelRC(rc);
1498 }
1499 else
1500 {
1501 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1502
1503 /*
1504 * The execute once is handled specially to optimize the code flow.
1505 *
1506 * The last EMT to arrive will perform the callback and the other
1507 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1508 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1509 * returns, that EMT will initiate the normal return sequence.
1510 */
1511 if (!fIsCaller)
1512 {
1513 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1514 AssertLogRelRC(rc);
1515
1516 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1517 }
1518 return VINF_SUCCESS;
1519 }
1520 }
1521 else
1522 {
1523 /*
1524 * All EMTs are waiting, clear the FF and take action according to the
1525 * execution method.
1526 */
1527 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1528
1529 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1530 {
1531 /* Wake up everyone. */
1532 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1533 AssertLogRelRC(rc);
1534 }
1535 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1536 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1537 {
1538 /* Figure out who to wake up and wake it up. If it's ourself, then
1539 it's easy otherwise wait for our turn. */
1540 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1541 ? 0
1542 : pVM->cCpus - 1U;
1543 if (pVCpu->idCpu != iFirst)
1544 {
1545 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1546 AssertLogRelRC(rc);
1547 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1548 AssertLogRelRC(rc);
1549 }
1550 }
1551 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1552 }
1553
1554
1555 /*
1556 * Do the callback and update the status if necessary.
1557 */
1558 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1559 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1560 {
1561 VBOXSTRICTRC rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1562 if (rcStrict != VINF_SUCCESS)
1563 {
1564 AssertLogRelMsg( rcStrict <= VINF_SUCCESS
1565 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1566 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1567 int32_t i32RendezvousStatus;
1568 do
1569 {
1570 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1571 if ( rcStrict == i32RendezvousStatus
1572 || RT_FAILURE(i32RendezvousStatus)
1573 || ( i32RendezvousStatus != VINF_SUCCESS
1574 && rcStrict > i32RendezvousStatus))
1575 break;
1576 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict), i32RendezvousStatus));
1577 }
1578 }
1579
1580 /*
1581 * Increment the done counter and take action depending on whether we're
1582 * the last to finish callback execution.
1583 */
1584 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1585 if ( cDone != pVM->cCpus
1586 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1587 {
1588 /* Signal the next EMT? */
1589 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1590 {
1591 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1592 AssertLogRelRC(rc);
1593 }
1594 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1595 {
1596 Assert(cDone == pVCpu->idCpu + 1U);
1597 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1598 AssertLogRelRC(rc);
1599 }
1600 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1601 {
1602 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1603 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1604 AssertLogRelRC(rc);
1605 }
1606
1607 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1608 if (!fIsCaller)
1609 {
1610 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1611 AssertLogRelRC(rc);
1612 }
1613 }
1614 else
1615 {
1616 /* Callback execution is all done, tell the rest to return. */
1617 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1618 AssertLogRelRC(rc);
1619 }
1620
1621 if (!fIsCaller)
1622 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1623 return VINF_SUCCESS;
1624}
1625
1626
1627/**
1628 * Called in response to VM_FF_EMT_RENDEZVOUS.
1629 *
1630 * @returns VBox strict status code - EM scheduling. No errors will be returned
1631 * here, nor will any non-EM scheduling status codes be returned.
1632 *
1633 * @param pVM Pointer to the VM.
1634 * @param pVCpu The handle of the calling EMT.
1635 *
1636 * @thread EMT
1637 */
1638VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1639{
1640 Assert(!pVCpu->vmm.s.fInRendezvous);
1641 pVCpu->vmm.s.fInRendezvous = true;
1642 int rc = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1643 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1644 pVCpu->vmm.s.fInRendezvous = false;
1645 return rc;
1646}
1647
1648
1649/**
1650 * EMT rendezvous.
1651 *
1652 * Gathers all the EMTs and execute some code on each of them, either in a one
1653 * by one fashion or all at once.
1654 *
1655 * @returns VBox strict status code. This will be the first error,
1656 * VINF_SUCCESS, or an EM scheduling status code.
1657 *
1658 * @param pVM Pointer to the VM.
1659 * @param fFlags Flags indicating execution methods. See
1660 * grp_VMMR3EmtRendezvous_fFlags.
1661 * @param pfnRendezvous The callback.
1662 * @param pvUser User argument for the callback.
1663 *
1664 * @thread Any.
1665 */
1666VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1667{
1668 /*
1669 * Validate input.
1670 */
1671 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1672 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1673 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1674 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1675 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1676 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1677 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1678
1679 VBOXSTRICTRC rcStrict;
1680 PVMCPU pVCpu = VMMGetCpu(pVM);
1681 if (!pVCpu)
1682 /*
1683 * Forward the request to an EMT thread.
1684 */
1685 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY,
1686 (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1687 else if (pVM->cCpus == 1)
1688 {
1689 /*
1690 * Shortcut for the single EMT case.
1691 */
1692 AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK);
1693 pVCpu->vmm.s.fInRendezvous = true;
1694 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1695 pVCpu->vmm.s.fInRendezvous = false;
1696 }
1697 else
1698 {
1699 /*
1700 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1701 * lookout of the RENDEZVOUS FF.
1702 */
1703 int rc;
1704 rcStrict = VINF_SUCCESS;
1705 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1706 {
1707 AssertLogRelReturn(!pVCpu->vmm.s.fInRendezvous, VERR_DEADLOCK);
1708
1709 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1710 {
1711 if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1712 {
1713 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
1714 if ( rc != VINF_SUCCESS
1715 && ( rcStrict == VINF_SUCCESS
1716 || rcStrict > rc))
1717 rcStrict = rc;
1718 /** @todo Perhaps deal with termination here? */
1719 }
1720 ASMNopPause();
1721 }
1722 }
1723 Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1724 Assert(!pVCpu->vmm.s.fInRendezvous);
1725 pVCpu->vmm.s.fInRendezvous = true;
1726
1727 /*
1728 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1729 */
1730 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1731 {
1732 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
1733 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1734 }
1735 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1736 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1737 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1738 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1739 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1740 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1741 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1742 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1743 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1744 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1745 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1746
1747 /*
1748 * Set the FF and poke the other EMTs.
1749 */
1750 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1751 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1752
1753 /*
1754 * Do the same ourselves.
1755 */
1756 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1757
1758 /*
1759 * The caller waits for the other EMTs to be done and return before doing
1760 * the cleanup. This makes away with wakeup / reset races we would otherwise
1761 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1762 */
1763 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1764 AssertLogRelRC(rc);
1765
1766 /*
1767 * Get the return code and clean up a little bit.
1768 */
1769 int rcMy = pVM->vmm.s.i32RendezvousStatus;
1770 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
1771
1772 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1773 pVCpu->vmm.s.fInRendezvous = false;
1774
1775 /*
1776 * Merge rcStrict and rcMy.
1777 */
1778 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
1779 if ( rcMy != VINF_SUCCESS
1780 && ( rcStrict == VINF_SUCCESS
1781 || rcStrict > rcMy))
1782 rcStrict = rcMy;
1783 }
1784
1785 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
1786 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1787 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
1788 VERR_IPE_UNEXPECTED_INFO_STATUS);
1789 return VBOXSTRICTRC_VAL(rcStrict);
1790}
1791
1792
1793/**
1794 * Disables/enables EMT rendezvous.
1795 *
1796 * This is used to make sure EMT rendezvous does not take place while
1797 * processing a priority request.
1798 *
1799 * @returns Old rendezvous-disabled state.
1800 * @param pVCpu The handle of the calling EMT.
1801 * @param fDisabled True if disabled, false if enabled.
1802 */
1803VMMR3_INT_DECL(bool) VMMR3EmtRendezvousSetDisabled(PVMCPU pVCpu, bool fDisabled)
1804{
1805 VMCPU_ASSERT_EMT(pVCpu);
1806 bool fOld = pVCpu->vmm.s.fInRendezvous;
1807 pVCpu->vmm.s.fInRendezvous = fDisabled;
1808 return fOld;
1809}
1810
1811
1812/**
1813 * Read from the ring 0 jump buffer stack
1814 *
1815 * @returns VBox status code.
1816 *
1817 * @param pVM Pointer to the VM.
1818 * @param idCpu The ID of the source CPU context (for the address).
1819 * @param R0Addr Where to start reading.
1820 * @param pvBuf Where to store the data we've read.
1821 * @param cbRead The number of bytes to read.
1822 */
1823VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
1824{
1825 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1826 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1827
1828#ifdef VMM_R0_SWITCH_STACK
1829 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
1830#else
1831 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
1832#endif
1833 if ( off > VMM_STACK_SIZE
1834 || off + cbRead >= VMM_STACK_SIZE)
1835 return VERR_INVALID_POINTER;
1836
1837 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
1838 return VINF_SUCCESS;
1839}
1840
1841
1842/**
1843 * Calls a RC function.
1844 *
1845 * @param pVM Pointer to the VM.
1846 * @param RCPtrEntry The address of the RC function.
1847 * @param cArgs The number of arguments in the ....
1848 * @param ... Arguments to the function.
1849 */
1850VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1851{
1852 va_list args;
1853 va_start(args, cArgs);
1854 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1855 va_end(args);
1856 return rc;
1857}
1858
1859
1860/**
1861 * Calls a RC function.
1862 *
1863 * @param pVM Pointer to the VM.
1864 * @param RCPtrEntry The address of the RC function.
1865 * @param cArgs The number of arguments in the ....
1866 * @param args Arguments to the function.
1867 */
1868VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1869{
1870 /* Raw mode implies 1 VCPU. */
1871 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1872 PVMCPU pVCpu = &pVM->aCpus[0];
1873
1874 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1875
1876 /*
1877 * Setup the call frame using the trampoline.
1878 */
1879 CPUMSetHyperState(pVCpu,
1880 pVM->vmm.s.pfnCallTrampolineRC, /* eip */
1881 pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32), /* esp */
1882 RCPtrEntry, /* eax */
1883 cArgs /* edx */
1884 );
1885
1886 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1887 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1888 int i = cArgs;
1889 while (i-- > 0)
1890 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1891
1892 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1893 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1894
1895 /*
1896 * We hide log flushes (outer) and hypervisor interrupts (inner).
1897 */
1898 for (;;)
1899 {
1900 int rc;
1901 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1902 do
1903 {
1904#ifdef NO_SUPCALLR0VMM
1905 rc = VERR_GENERAL_FAILURE;
1906#else
1907 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1908 if (RT_LIKELY(rc == VINF_SUCCESS))
1909 rc = pVCpu->vmm.s.iLastGZRc;
1910#endif
1911 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1912
1913 /*
1914 * Flush the loggers.
1915 */
1916#ifdef LOG_ENABLED
1917 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1918 if ( pLogger
1919 && pLogger->offScratch > 0)
1920 RTLogFlushRC(NULL, pLogger);
1921#endif
1922#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1923 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1924 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1925 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1926#endif
1927 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1928 VMMR3FatalDump(pVM, pVCpu, rc);
1929 if (rc != VINF_VMM_CALL_HOST)
1930 {
1931 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1932 return rc;
1933 }
1934 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1935 if (RT_FAILURE(rc))
1936 return rc;
1937 }
1938}
1939
1940
1941/**
1942 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
1943 *
1944 * @returns VBox status code.
1945 * @param pVM Pointer to the VM.
1946 * @param uOperation Operation to execute.
1947 * @param u64Arg Constant argument.
1948 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
1949 * details.
1950 */
1951VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
1952{
1953 PVMCPU pVCpu = VMMGetCpu(pVM);
1954 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1955
1956 /*
1957 * Call Ring-0 entry with init code.
1958 */
1959 int rc;
1960 for (;;)
1961 {
1962#ifdef NO_SUPCALLR0VMM
1963 rc = VERR_GENERAL_FAILURE;
1964#else
1965 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
1966#endif
1967 /*
1968 * Flush the logs.
1969 */
1970#ifdef LOG_ENABLED
1971 if ( pVCpu->vmm.s.pR0LoggerR3
1972 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
1973 RTLogFlushR0(NULL, &pVCpu->vmm.s.pR0LoggerR3->Logger);
1974#endif
1975 if (rc != VINF_VMM_CALL_HOST)
1976 break;
1977 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1978 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
1979 break;
1980 /* Resume R0 */
1981 }
1982
1983 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
1984 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
1985 VERR_IPE_UNEXPECTED_INFO_STATUS);
1986 return rc;
1987}
1988
1989
1990/**
1991 * Resumes executing hypervisor code when interrupted by a queue flush or a
1992 * debug event.
1993 *
1994 * @returns VBox status code.
1995 * @param pVM Pointer to the VM.
1996 * @param pVCpu Pointer to the VMCPU.
1997 */
1998VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
1999{
2000 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
2001 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
2002
2003 /*
2004 * We hide log flushes (outer) and hypervisor interrupts (inner).
2005 */
2006 for (;;)
2007 {
2008 int rc;
2009 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
2010 do
2011 {
2012#ifdef NO_SUPCALLR0VMM
2013 rc = VERR_GENERAL_FAILURE;
2014#else
2015 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2016 if (RT_LIKELY(rc == VINF_SUCCESS))
2017 rc = pVCpu->vmm.s.iLastGZRc;
2018#endif
2019 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2020
2021 /*
2022 * Flush the loggers.
2023 */
2024#ifdef LOG_ENABLED
2025 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2026 if ( pLogger
2027 && pLogger->offScratch > 0)
2028 RTLogFlushRC(NULL, pLogger);
2029#endif
2030#ifdef VBOX_WITH_RC_RELEASE_LOGGING
2031 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2032 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2033 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
2034#endif
2035 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2036 VMMR3FatalDump(pVM, pVCpu, rc);
2037 if (rc != VINF_VMM_CALL_HOST)
2038 {
2039 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
2040 return rc;
2041 }
2042 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2043 if (RT_FAILURE(rc))
2044 return rc;
2045 }
2046}
2047
2048
2049/**
2050 * Service a call to the ring-3 host code.
2051 *
2052 * @returns VBox status code.
2053 * @param pVM Pointer to the VM.
2054 * @param pVCpu Pointer to the VMCPU.
2055 * @remark Careful with critsects.
2056 */
2057static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2058{
2059 /*
2060 * We must also check for pending critsect exits or else we can deadlock
2061 * when entering other critsects here.
2062 */
2063 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
2064 PDMCritSectFF(pVCpu);
2065
2066 switch (pVCpu->vmm.s.enmCallRing3Operation)
2067 {
2068 /*
2069 * Acquire a critical section.
2070 */
2071 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
2072 {
2073 pVCpu->vmm.s.rcCallRing3 = PDMR3CritSectEnterEx((PPDMCRITSECT)(uintptr_t)pVCpu->vmm.s.u64CallRing3Arg,
2074 true /*fCallRing3*/);
2075 break;
2076 }
2077
2078 /*
2079 * Acquire the PDM lock.
2080 */
2081 case VMMCALLRING3_PDM_LOCK:
2082 {
2083 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2084 break;
2085 }
2086
2087 /*
2088 * Grow the PGM pool.
2089 */
2090 case VMMCALLRING3_PGM_POOL_GROW:
2091 {
2092 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2093 break;
2094 }
2095
2096 /*
2097 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2098 */
2099 case VMMCALLRING3_PGM_MAP_CHUNK:
2100 {
2101 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2102 break;
2103 }
2104
2105 /*
2106 * Allocates more handy pages.
2107 */
2108 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2109 {
2110 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2111 break;
2112 }
2113
2114 /*
2115 * Allocates a large page.
2116 */
2117 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2118 {
2119 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2120 break;
2121 }
2122
2123 /*
2124 * Acquire the PGM lock.
2125 */
2126 case VMMCALLRING3_PGM_LOCK:
2127 {
2128 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2129 break;
2130 }
2131
2132 /*
2133 * Acquire the MM hypervisor heap lock.
2134 */
2135 case VMMCALLRING3_MMHYPER_LOCK:
2136 {
2137 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2138 break;
2139 }
2140
2141#ifdef VBOX_WITH_REM
2142 /*
2143 * Flush REM handler notifications.
2144 */
2145 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2146 {
2147 REMR3ReplayHandlerNotifications(pVM);
2148 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2149 break;
2150 }
2151#endif
2152
2153 /*
2154 * This is a noop. We just take this route to avoid unnecessary
2155 * tests in the loops.
2156 */
2157 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2158 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2159 LogAlways(("*FLUSH*\n"));
2160 break;
2161
2162 /*
2163 * Set the VM error message.
2164 */
2165 case VMMCALLRING3_VM_SET_ERROR:
2166 VMR3SetErrorWorker(pVM);
2167 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2168 break;
2169
2170 /*
2171 * Set the VM runtime error message.
2172 */
2173 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2174 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2175 break;
2176
2177 /*
2178 * Signal a ring 0 hypervisor assertion.
2179 * Cancel the longjmp operation that's in progress.
2180 */
2181 case VMMCALLRING3_VM_R0_ASSERTION:
2182 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2183 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2184#ifdef RT_ARCH_X86
2185 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2186#else
2187 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2188#endif
2189#ifdef VMM_R0_SWITCH_STACK
2190 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2191#endif
2192 LogRel((pVM->vmm.s.szRing0AssertMsg1));
2193 LogRel((pVM->vmm.s.szRing0AssertMsg2));
2194 return VERR_VMM_RING0_ASSERTION;
2195
2196 /*
2197 * A forced switch to ring 0 for preemption purposes.
2198 */
2199 case VMMCALLRING3_VM_R0_PREEMPT:
2200 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2201 break;
2202
2203 case VMMCALLRING3_FTM_SET_CHECKPOINT:
2204 pVCpu->vmm.s.rcCallRing3 = FTMR3SetCheckpoint(pVM, (FTMCHECKPOINTTYPE)pVCpu->vmm.s.u64CallRing3Arg);
2205 break;
2206
2207 default:
2208 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2209 return VERR_VMM_UNKNOWN_RING3_CALL;
2210 }
2211
2212 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2213 return VINF_SUCCESS;
2214}
2215
2216
2217/**
2218 * Displays the Force action Flags.
2219 *
2220 * @param pVM Pointer to the VM.
2221 * @param pHlp The output helpers.
2222 * @param pszArgs The additional arguments (ignored).
2223 */
2224static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2225{
2226 int c;
2227 uint32_t f;
2228 NOREF(pszArgs);
2229
2230#define PRINT_FLAG(prf,flag) do { \
2231 if (f & (prf##flag)) \
2232 { \
2233 static const char *s_psz = #flag; \
2234 if (!(c % 6)) \
2235 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2236 else \
2237 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2238 c++; \
2239 f &= ~(prf##flag); \
2240 } \
2241 } while (0)
2242
2243#define PRINT_GROUP(prf,grp,sfx) do { \
2244 if (f & (prf##grp##sfx)) \
2245 { \
2246 static const char *s_psz = #grp; \
2247 if (!(c % 5)) \
2248 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2249 else \
2250 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2251 c++; \
2252 } \
2253 } while (0)
2254
2255 /*
2256 * The global flags.
2257 */
2258 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2259 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2260
2261 /* show the flag mnemonics */
2262 c = 0;
2263 f = fGlobalForcedActions;
2264 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2265 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2266 PRINT_FLAG(VM_FF_,PDM_DMA);
2267 PRINT_FLAG(VM_FF_,DBGF);
2268 PRINT_FLAG(VM_FF_,REQUEST);
2269 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2270 PRINT_FLAG(VM_FF_,RESET);
2271 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2272 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2273 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2274 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2275 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2276 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2277 if (f)
2278 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2279 else
2280 pHlp->pfnPrintf(pHlp, "\n");
2281
2282 /* the groups */
2283 c = 0;
2284 f = fGlobalForcedActions;
2285 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2286 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2287 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2288 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2289 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2290 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2291 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2292 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2293 if (c)
2294 pHlp->pfnPrintf(pHlp, "\n");
2295
2296 /*
2297 * Per CPU flags.
2298 */
2299 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2300 {
2301 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2302 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2303
2304 /* show the flag mnemonics */
2305 c = 0;
2306 f = fLocalForcedActions;
2307 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2308 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2309 PRINT_FLAG(VMCPU_FF_,TIMER);
2310 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2311 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2312 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2313 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2314 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2315 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2316 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2317 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2318 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2319 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2320 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2321 PRINT_FLAG(VMCPU_FF_,TO_R3);
2322 if (f)
2323 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2324 else
2325 pHlp->pfnPrintf(pHlp, "\n");
2326
2327 if (fLocalForcedActions & VMCPU_FF_INHIBIT_INTERRUPTS)
2328 pHlp->pfnPrintf(pHlp, " intr inhibit RIP: %RGp\n", EMGetInhibitInterruptsPC(&pVM->aCpus[i]));
2329
2330 /* the groups */
2331 c = 0;
2332 f = fLocalForcedActions;
2333 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2334 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2335 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2336 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2337 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2338 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2339 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2340 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2341 PRINT_GROUP(VMCPU_FF_,HWACCM_TO_R3,_MASK);
2342 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2343 if (c)
2344 pHlp->pfnPrintf(pHlp, "\n");
2345 }
2346
2347#undef PRINT_FLAG
2348#undef PRINT_GROUP
2349}
2350
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette