VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/TM.cpp@ 98045

Last change on this file since 98045 was 96407, checked in by vboxsync, 2 years ago

scm copyright and license note update

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 183.1 KB
Line 
1/* $Id: TM.cpp 96407 2022-08-22 17:43:14Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28/** @page pg_tm TM - The Time Manager
29 *
30 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
31 * device and drivers.
32 *
33 * @see grp_tm
34 *
35 *
36 * @section sec_tm_clocks Clocks
37 *
38 * There are currently 4 clocks:
39 * - Virtual (guest).
40 * - Synchronous virtual (guest).
41 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
42 * function of the virtual clock.
43 * - Real (host). This is only used for display updates atm.
44 *
45 * The most important clocks are the three first ones and of these the second is
46 * the most interesting.
47 *
48 *
49 * The synchronous virtual clock is tied to the virtual clock except that it
50 * will take into account timer delivery lag caused by host scheduling. It will
51 * normally never advance beyond the head timer, and when lagging too far behind
52 * it will gradually speed up to catch up with the virtual clock. All devices
53 * implementing time sources accessible to and used by the guest is using this
54 * clock (for timers and other things). This ensures consistency between the
55 * time sources.
56 *
57 * The virtual clock is implemented as an offset to a monotonic, high
58 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
59 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
60 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
61 * a fairly high res clock that works in all contexts and on all hosts. The
62 * virtual clock is paused when the VM isn't in the running state.
63 *
64 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
65 * virtual clock, where the frequency defaults to the host cpu frequency (as we
66 * measure it). In this mode it is possible to configure the frequency. Another
67 * (non-default) option is to use the raw unmodified host TSC values. And yet
68 * another, to tie it to time spent executing guest code. All these things are
69 * configurable should non-default behavior be desirable.
70 *
71 * The real clock is a monotonic clock (when available) with relatively low
72 * resolution, though this a bit host specific. Note that we're currently not
73 * servicing timers using the real clock when the VM is not running, this is
74 * simply because it has not been needed yet therefore not implemented.
75 *
76 *
77 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
78 *
79 * Guest time syncing is primarily taken care of by the VMM device. The
80 * principle is very simple, the guest additions periodically asks the VMM
81 * device what the current UTC time is and makes adjustments accordingly.
82 *
83 * A complicating factor is that the synchronous virtual clock might be doing
84 * catchups and the guest perception is currently a little bit behind the world
85 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
86 * at a slightly higher rate. Adjusting the guest clock to the current wall
87 * time in the real world would be a bad idea then because the guest will be
88 * advancing too fast and run ahead of world time (if the catchup works out).
89 * To solve this problem TM provides the VMM device with an UTC time source that
90 * gets adjusted with the current lag, so that when the guest eventually catches
91 * up the lag it will be showing correct real world time.
92 *
93 *
94 * @section sec_tm_timers Timers
95 *
96 * The timers can use any of the TM clocks described in the previous section.
97 * Each clock has its own scheduling facility, or timer queue if you like.
98 * There are a few factors which makes it a bit complex. First, there is the
99 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
100 * is the timer thread that periodically checks whether any timers has expired
101 * without EMT noticing. On the API level, all but the create and save APIs
102 * must be multithreaded. EMT will always run the timers.
103 *
104 * The design is using a doubly linked list of active timers which is ordered
105 * by expire date. This list is only modified by the EMT thread. Updates to
106 * the list are batched in a singly linked list, which is then processed by the
107 * EMT thread at the first opportunity (immediately, next time EMT modifies a
108 * timer on that clock, or next timer timeout). Both lists are offset based and
109 * all the elements are therefore allocated from the hyper heap.
110 *
111 * For figuring out when there is need to schedule and run timers TM will:
112 * - Poll whenever somebody queries the virtual clock.
113 * - Poll the virtual clocks from the EM and REM loops.
114 * - Poll the virtual clocks from trap exit path.
115 * - Poll the virtual clocks and calculate first timeout from the halt loop.
116 * - Employ a thread which periodically (100Hz) polls all the timer queues.
117 *
118 *
119 * @image html TMTIMER-Statechart-Diagram.gif
120 *
121 * @section sec_tm_timer Logging
122 *
123 * Level 2: Logs a most of the timer state transitions and queue servicing.
124 * Level 3: Logs a few oddments.
125 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
126 *
127 */
128
129
130/*********************************************************************************************************************************
131* Header Files *
132*********************************************************************************************************************************/
133#define LOG_GROUP LOG_GROUP_TM
134#ifdef DEBUG_bird
135# define DBGFTRACE_DISABLED /* annoying */
136#endif
137#include <VBox/vmm/tm.h>
138#include <VBox/vmm/vmm.h>
139#include <VBox/vmm/mm.h>
140#include <VBox/vmm/hm.h>
141#include <VBox/vmm/nem.h>
142#include <VBox/vmm/gim.h>
143#include <VBox/vmm/ssm.h>
144#include <VBox/vmm/dbgf.h>
145#include <VBox/vmm/dbgftrace.h>
146#include <VBox/vmm/pdmapi.h>
147#include <VBox/vmm/iom.h>
148#include "TMInternal.h"
149#include <VBox/vmm/vm.h>
150#include <VBox/vmm/uvm.h>
151
152#include <VBox/vmm/pdmdev.h>
153#include <VBox/log.h>
154#include <VBox/param.h>
155#include <VBox/err.h>
156
157#include <iprt/asm.h>
158#include <iprt/asm-math.h>
159#include <iprt/assert.h>
160#include <iprt/env.h>
161#include <iprt/file.h>
162#include <iprt/getopt.h>
163#include <iprt/mem.h>
164#include <iprt/rand.h>
165#include <iprt/semaphore.h>
166#include <iprt/string.h>
167#include <iprt/thread.h>
168#include <iprt/time.h>
169#include <iprt/timer.h>
170
171#include "TMInline.h"
172
173
174/*********************************************************************************************************************************
175* Defined Constants And Macros *
176*********************************************************************************************************************************/
177/** The current saved state version.*/
178#define TM_SAVED_STATE_VERSION 3
179
180
181/*********************************************************************************************************************************
182* Internal Functions *
183*********************************************************************************************************************************/
184static bool tmR3HasFixedTSC(PVM pVM);
185static uint64_t tmR3CalibrateTSC(void);
186static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
187static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
188#ifdef VBOX_WITH_STATISTICS
189static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers);
190#endif
191static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
192static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent);
193#ifndef VBOX_WITHOUT_NS_ACCOUNTING
194static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
195#endif
196static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
197static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
198static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
199static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs);
200static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData);
201static const char *tmR3GetTSCModeName(PVM pVM);
202static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode);
203static int tmR3TimerQueueGrow(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cNewTimers);
204
205
206/**
207 * Initializes the TM.
208 *
209 * @returns VBox status code.
210 * @param pVM The cross context VM structure.
211 */
212VMM_INT_DECL(int) TMR3Init(PVM pVM)
213{
214 LogFlow(("TMR3Init:\n"));
215
216 /*
217 * Assert alignment and sizes.
218 */
219 AssertCompileMemberAlignment(VM, tm.s, 32);
220 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
221 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
222
223 /*
224 * Init the structure.
225 */
226 pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
227
228 int rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
229 AssertLogRelRCReturn(rc, rc);
230
231 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].szName, "virtual");
232 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].szName, "virtual_sync"); /* Underscore is for STAM ordering issue. */
233 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_REAL].szName, "real");
234 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].szName, "tsc");
235
236 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++)
237 {
238 Assert(pVM->tm.s.aTimerQueues[i].szName[0] != '\0');
239 pVM->tm.s.aTimerQueues[i].enmClock = (TMCLOCK)i;
240 pVM->tm.s.aTimerQueues[i].u64Expire = INT64_MAX;
241 pVM->tm.s.aTimerQueues[i].idxActive = UINT32_MAX;
242 pVM->tm.s.aTimerQueues[i].idxSchedule = UINT32_MAX;
243 pVM->tm.s.aTimerQueues[i].idxFreeHint = 1;
244 pVM->tm.s.aTimerQueues[i].fBeingProcessed = false;
245 pVM->tm.s.aTimerQueues[i].fCannotGrow = false;
246 pVM->tm.s.aTimerQueues[i].hThread = NIL_RTTHREAD;
247 pVM->tm.s.aTimerQueues[i].hWorkerEvt = NIL_SUPSEMEVENT;
248
249 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.aTimerQueues[i].TimerLock, RT_SRC_POS,
250 "TM %s queue timer lock", pVM->tm.s.aTimerQueues[i].szName);
251 AssertLogRelRCReturn(rc, rc);
252
253 rc = PDMR3CritSectRwInit(pVM, &pVM->tm.s.aTimerQueues[i].AllocLock, RT_SRC_POS,
254 "TM %s queue alloc lock", pVM->tm.s.aTimerQueues[i].szName);
255 AssertLogRelRCReturn(rc, rc);
256 }
257
258 /*
259 * We directly use the GIP to calculate the virtual time. We map the
260 * the GIP into the guest context so we can do this calculation there
261 * as well and save costly world switches.
262 */
263 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
264 if (pGip || !SUPR3IsDriverless())
265 {
266 pVM->tm.s.pvGIPR3 = (void *)pGip;
267 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED);
268 AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16),
269 ("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION),
270 VERR_TM_GIP_VERSION);
271
272 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
273 if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
274 && pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
275 return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS,
276 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
277 pGip->u32UpdateIntervalNS, pGip->u32UpdateHz);
278
279 /* Log GIP info that may come in handy. */
280 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d (%s) fGetGipCpu=%#x cCpus=%d\n",
281 pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS,
282 pGip->enmUseTscDelta, SUPGetGIPTscDeltaModeName(pGip), pGip->fGetGipCpu, pGip->cCpus));
283 LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n",
284 pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip)));
285 for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++)
286 {
287 uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
288 if (iGipCpu != UINT16_MAX)
289 LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n",
290 iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta,
291 pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors));
292 }
293 }
294
295 /*
296 * Setup the VirtualGetRaw backend.
297 */
298 pVM->tm.s.pfnVirtualGetRaw = tmVirtualNanoTSRediscover;
299 pVM->tm.s.VirtualGetRawData.pfnRediscover = tmVirtualNanoTSRediscover;
300 pVM->tm.s.VirtualGetRawData.pfnBad = tmVirtualNanoTSBad;
301 pVM->tm.s.VirtualGetRawData.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex;
302 pVM->tm.s.VirtualGetRawData.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
303
304 /*
305 * Get our CFGM node, create it if necessary.
306 */
307 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
308 if (!pCfgHandle)
309 {
310 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
311 AssertRCReturn(rc, rc);
312 }
313
314 /*
315 * Specific errors about some obsolete TM settings (remove after 2015-12-03).
316 */
317 if (CFGMR3Exists(pCfgHandle, "TSCVirtualized"))
318 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
319 N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"TSCMode\" setting instead."));
320 if (CFGMR3Exists(pCfgHandle, "UseRealTSC"))
321 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
322 N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
323
324 if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC"))
325 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
326 N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
327
328 /*
329 * Validate the rest of the TM settings.
330 */
331 rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/",
332 "TSCMode|"
333 "TSCModeSwitchAllowed|"
334 "TSCTicksPerSecond|"
335 "TSCTiedToExecution|"
336 "TSCNotTiedToHalt|"
337 "ScheduleSlack|"
338 "CatchUpStopThreshold|"
339 "CatchUpGiveUpThreshold|"
340 "CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|"
341 "CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|"
342 "CatchUpStartThreshold8|CatchUpStartThreshold9|"
343 "CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|"
344 "CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|"
345 "CatchUpPrecentage8|CatchUpPrecentage9|"
346 "UTCOffset|"
347 "UTCTouchFileOnJump|"
348 "WarpDrivePercentage|"
349 "HostHzMax|"
350 "HostHzFudgeFactorTimerCpu|"
351 "HostHzFudgeFactorOtherCpu|"
352 "HostHzFudgeFactorCatchUp100|"
353 "HostHzFudgeFactorCatchUp200|"
354 "HostHzFudgeFactorCatchUp400|"
355 "TimerMillies"
356 ,
357 "",
358 "TM", 0);
359 if (RT_FAILURE(rc))
360 return rc;
361
362 /*
363 * Determine the TSC configuration and frequency.
364 */
365 /** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config}
366 * The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic.
367 * The default depends on the VM configuration and the capabilities of the
368 * host CPU. Other config options or runtime changes may override the TSC
369 * mode specified here.
370 */
371 char szTSCMode[32];
372 rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode));
373 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
374 {
375 /** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so
376 * fall back on the more expensive emulated mode. With the current TSC handling
377 * (frequent switching between offsetted mode and taking VM exits, on all VCPUs
378 * without any kind of coordination) will lead to inconsistent TSC behavior with
379 * guest SMP, including TSC going backwards. */
380 pVM->tm.s.enmTSCMode = NEMR3NeedSpecialTscMode(pVM) ? TMTSCMODE_NATIVE_API
381 : pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED;
382 }
383 else if (RT_FAILURE(rc))
384 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\""));
385 else
386 {
387 if (!RTStrCmp(szTSCMode, "VirtTSCEmulated"))
388 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
389 else if (!RTStrCmp(szTSCMode, "RealTSCOffset"))
390 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
391 else if (!RTStrCmp(szTSCMode, "Dynamic"))
392 pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC;
393 else
394 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode);
395 if (NEMR3NeedSpecialTscMode(pVM))
396 {
397 LogRel(("TM: NEM overrides the /TM/TSCMode=%s settings.\n", szTSCMode));
398 pVM->tm.s.enmTSCMode = TMTSCMODE_NATIVE_API;
399 }
400 }
401
402 /**
403 * @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed
404 * at runtime}
405 * When using paravirtualized guests, we dynamically switch TSC modes to a more
406 * optimal one for performance. This setting allows overriding this behaviour.
407 */
408 rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed);
409 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
410 {
411 /* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */
412 pVM->tm.s.fTSCModeSwitchAllowed = true;
413 }
414 else if (RT_FAILURE(rc))
415 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\""));
416 if (pVM->tm.s.fTSCModeSwitchAllowed && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
417 {
418 LogRel(("TM: NEM overrides the /TM/TSCModeSwitchAllowed setting.\n"));
419 pVM->tm.s.fTSCModeSwitchAllowed = false;
420 }
421
422 /** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
423 * The number of TSC ticks per second (i.e. the TSC frequency). This will
424 * override enmTSCMode.
425 */
426 pVM->tm.s.cTSCTicksPerSecondHost = tmR3CalibrateTSC();
427 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
428 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
429 {
430 pVM->tm.s.cTSCTicksPerSecond = pVM->tm.s.cTSCTicksPerSecondHost;
431 if ( ( pVM->tm.s.enmTSCMode == TMTSCMODE_DYNAMIC
432 || pVM->tm.s.enmTSCMode == TMTSCMODE_VIRT_TSC_EMULATED)
433 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
434 {
435 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
436 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
437 }
438 }
439 else if (RT_FAILURE(rc))
440 return VMSetError(pVM, rc, RT_SRC_POS,
441 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
442 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
443 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
444 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
445 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
446 pVM->tm.s.cTSCTicksPerSecond);
447 else if (pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API)
448 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
449 else
450 {
451 LogRel(("TM: NEM overrides the /TM/TSCTicksPerSecond=%RU64 setting.\n", pVM->tm.s.cTSCTicksPerSecond));
452 pVM->tm.s.cTSCTicksPerSecond = pVM->tm.s.cTSCTicksPerSecondHost;
453 }
454
455 /** @cfgm{/TM/TSCTiedToExecution, bool, false}
456 * Whether the TSC should be tied to execution. This will exclude most of the
457 * virtualization overhead, but will by default include the time spent in the
458 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
459 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
460 * be used avoided or used with great care. Note that this will only work right
461 * together with VT-x or AMD-V, and with a single virtual CPU. */
462 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
463 if (RT_FAILURE(rc))
464 return VMSetError(pVM, rc, RT_SRC_POS,
465 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
466 if (pVM->tm.s.fTSCTiedToExecution && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
467 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("/TM/TSCTiedToExecution is not supported in NEM mode!"));
468 if (pVM->tm.s.fTSCTiedToExecution)
469 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
470
471
472 /** @cfgm{/TM/TSCNotTiedToHalt, bool, false}
473 * This is used with /TM/TSCTiedToExecution to control how TSC operates
474 * accross HLT instructions. When true HLT is considered execution time and
475 * TSC continues to run, while when false (default) TSC stops during halt. */
476 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
477 if (RT_FAILURE(rc))
478 return VMSetError(pVM, rc, RT_SRC_POS,
479 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
480
481 /*
482 * Configure the timer synchronous virtual time.
483 */
484 /** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
485 * Scheduling slack when processing timers. */
486 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
487 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
488 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
489 else if (RT_FAILURE(rc))
490 return VMSetError(pVM, rc, RT_SRC_POS,
491 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
492
493 /** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
494 * When to stop a catch-up, considering it successful. */
495 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
496 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
497 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
498 else if (RT_FAILURE(rc))
499 return VMSetError(pVM, rc, RT_SRC_POS,
500 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
501
502 /** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
503 * When to give up a catch-up attempt. */
504 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
505 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
506 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
507 else if (RT_FAILURE(rc))
508 return VMSetError(pVM, rc, RT_SRC_POS,
509 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
510
511
512 /** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
513 * The catch-up percent for a given period. */
514 /** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX}
515 * The catch-up period threshold, or if you like, when a period starts. */
516#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
517 do \
518 { \
519 uint64_t u64; \
520 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
521 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
522 u64 = UINT64_C(DefStart); \
523 else if (RT_FAILURE(rc)) \
524 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
525 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
526 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
527 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
528 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
529 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
530 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
531 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
532 else if (RT_FAILURE(rc)) \
533 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
534 } while (0)
535 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
536 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
537 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
538 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
539 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
540 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
541 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
542 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
543 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
544 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
545 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
546 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
547#undef TM_CFG_PERIOD
548
549 /*
550 * Configure real world time (UTC).
551 */
552 /** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
553 * The UTC offset. This is used to put the guest back or forwards in time. */
554 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
555 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
556 pVM->tm.s.offUTC = 0; /* ns */
557 else if (RT_FAILURE(rc))
558 return VMSetError(pVM, rc, RT_SRC_POS,
559 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
560
561 /** @cfgm{/TM/UTCTouchFileOnJump, string, none}
562 * File to be written to everytime the host time jumps. */
563 rc = CFGMR3QueryStringAlloc(pCfgHandle, "UTCTouchFileOnJump", &pVM->tm.s.pszUtcTouchFileOnJump);
564 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
565 pVM->tm.s.pszUtcTouchFileOnJump = NULL;
566 else if (RT_FAILURE(rc))
567 return VMSetError(pVM, rc, RT_SRC_POS,
568 N_("Configuration error: Failed to querying string value \"UTCTouchFileOnJump\""));
569
570 /*
571 * Setup the warp drive.
572 */
573 /** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
574 * The warp drive percentage, 100% is normal speed. This is used to speed up
575 * or slow down the virtual clock, which can be useful for fast forwarding
576 * borring periods during tests. */
577 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
578 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
579 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
580 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
581 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
582 else if (RT_FAILURE(rc))
583 return VMSetError(pVM, rc, RT_SRC_POS,
584 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
585 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
586 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
587 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
588 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
589 pVM->tm.s.u32VirtualWarpDrivePercentage);
590 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
591 if (pVM->tm.s.fVirtualWarpDrive)
592 {
593 if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
594 LogRel(("TM: Warp-drive active, escept for TSC which is in NEM mode. u32VirtualWarpDrivePercentage=%RI32\n",
595 pVM->tm.s.u32VirtualWarpDrivePercentage));
596 else
597 {
598 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
599 LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
600 }
601 }
602
603 /*
604 * Gather the Host Hz configuration values.
605 */
606 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000);
607 if (RT_FAILURE(rc))
608 return VMSetError(pVM, rc, RT_SRC_POS,
609 N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\""));
610
611 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111);
612 if (RT_FAILURE(rc))
613 return VMSetError(pVM, rc, RT_SRC_POS,
614 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\""));
615
616 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110);
617 if (RT_FAILURE(rc))
618 return VMSetError(pVM, rc, RT_SRC_POS,
619 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\""));
620
621 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300);
622 if (RT_FAILURE(rc))
623 return VMSetError(pVM, rc, RT_SRC_POS,
624 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\""));
625
626 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250);
627 if (RT_FAILURE(rc))
628 return VMSetError(pVM, rc, RT_SRC_POS,
629 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\""));
630
631 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200);
632 if (RT_FAILURE(rc))
633 return VMSetError(pVM, rc, RT_SRC_POS,
634 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\""));
635
636 /*
637 * Finally, setup and report.
638 */
639 pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode;
640 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
641 LogRel(("TM: cTSCTicksPerSecond=%'RU64 (%#RX64) enmTSCMode=%d (%s)\n"
642 "TM: cTSCTicksPerSecondHost=%'RU64 (%#RX64)\n"
643 "TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
644 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM),
645 pVM->tm.s.cTSCTicksPerSecondHost, pVM->tm.s.cTSCTicksPerSecondHost,
646 pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
647
648 /*
649 * Start the timer (guard against REM not yielding).
650 */
651 /** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
652 * The watchdog timer interval. */
653 uint32_t u32Millies;
654 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
655 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
656 u32Millies = VM_IS_HM_ENABLED(pVM) ? 1000 : 10;
657 else if (RT_FAILURE(rc))
658 return VMSetError(pVM, rc, RT_SRC_POS,
659 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
660 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
661 if (RT_FAILURE(rc))
662 {
663 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
664 return rc;
665 }
666 Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies));
667 pVM->tm.s.u32TimerMillies = u32Millies;
668
669 /*
670 * Register saved state.
671 */
672 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
673 NULL, NULL, NULL,
674 NULL, tmR3Save, NULL,
675 NULL, tmR3Load, NULL);
676 if (RT_FAILURE(rc))
677 return rc;
678
679 /*
680 * Register statistics.
681 */
682 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawData.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
683 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawData.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
684#if 0 /** @todo retreive from ring-0 */
685 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
686 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
687#endif
688 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
689 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with.");
690 STAM_REL_REG( pVM,(void*)&pVM->tm.s.HzHint.s.uMax, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint.");
691 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++)
692 {
693 rc = STAMR3RegisterF(pVM, (void *)&pVM->tm.s.aTimerQueues[i].uMaxHzHint, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_HZ,
694 "", "/TM/MaxHzHint/%s", pVM->tm.s.aTimerQueues[i].szName);
695 AssertRC(rc);
696 }
697
698#ifdef VBOX_WITH_STATISTICS
699 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawData.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
700 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawData.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
701# if 0 /** @todo retreive from ring-0 */
702 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
703 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
704# endif
705 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
706 STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
707 STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].StatDo,STAMTYPE_PROFILE,"/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
708 STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
709
710 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
711 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
712 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
713 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
714 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
715 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
716 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
717 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
718
719 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
720 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
721
722 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
723 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
724 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
725
726 STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
727 STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
728 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
729 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
730 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
731 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
732 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
733 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
734 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
735 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
736 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
737 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
738
739 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers");
740 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers.");
741 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers.");
742 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
743 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
744 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
745
746 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
747 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
748 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync).");
749 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync).");
750 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
751 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
752 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
753 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
754 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
755 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
756 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
757 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
758
759 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers");
760 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers.");
761 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers.");
762 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
763 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
764 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
765
766 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
767 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
768
769 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
770 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
771 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
772 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp .");
773 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
774 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
775 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
776 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
777 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
778 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
779 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
780
781 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
782 STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked.");
783
784 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
785 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
786 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
787 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
788 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
789 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
790 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
791 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
792 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
793 STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
794 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused.");
795 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed.");
796#endif /* VBOX_WITH_STATISTICS */
797
798 for (VMCPUID i = 0; i < pVM->cCpus; i++)
799 {
800 PVMCPU pVCpu = pVM->apCpusR3[i];
801 STAMR3RegisterF(pVM, &pVCpu->tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
802#ifndef VBOX_WITHOUT_NS_ACCOUNTING
803# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
804 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
805 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
806 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i);
807 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i);
808 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i);
809 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
810 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
811# endif
812 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsTotalStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
813 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
814 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
815 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsOtherStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
816 STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
817 STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
818 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
819 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
820 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
821#endif
822 }
823#ifndef VBOX_WITHOUT_NS_ACCOUNTING
824 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
825 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
826 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
827#endif
828
829#ifdef VBOX_WITH_STATISTICS
830 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
831 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
832 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
833 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
834 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
835 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
836 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
837 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
838 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
839 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
840 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
841 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
842 {
843 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
844 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
845 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
846 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
847 }
848#endif /* VBOX_WITH_STATISTICS */
849
850 /*
851 * Register info handlers.
852 */
853 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
854 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
855 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
856 DBGFR3InfoRegisterInternalArgv(pVM, "cpuload", "Display the CPU load stats (--help for details).", tmR3InfoCpuLoad, 0);
857
858 return VINF_SUCCESS;
859}
860
861
862/**
863 * Checks if the host CPU has a fixed TSC frequency.
864 *
865 * @returns true if it has, false if it hasn't.
866 *
867 * @remarks This test doesn't bother with very old CPUs that don't do power
868 * management or any other stuff that might influence the TSC rate.
869 * This isn't currently relevant.
870 */
871static bool tmR3HasFixedTSC(PVM pVM)
872{
873 /*
874 * ASSUME that if the GIP is in invariant TSC mode, it's because the CPU
875 * actually has invariant TSC.
876 *
877 * In driverless mode we just assume sync TSC for now regardless of what
878 * the case actually is.
879 */
880 PSUPGLOBALINFOPAGE const pGip = g_pSUPGlobalInfoPage;
881 SUPGIPMODE const enmGipMode = pGip ? (SUPGIPMODE)pGip->u32Mode : SUPGIPMODE_INVARIANT_TSC;
882 if (enmGipMode == SUPGIPMODE_INVARIANT_TSC)
883 return true;
884
885#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
886 /*
887 * Go by features and model info from the CPUID instruction.
888 */
889 if (ASMHasCpuId())
890 {
891 uint32_t uEAX, uEBX, uECX, uEDX;
892
893 /*
894 * By feature. (Used to be AMD specific, intel seems to have picked it up.)
895 */
896 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
897 if (uEAX >= 0x80000007 && RTX86IsValidExtRange(uEAX))
898 {
899 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
900 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
901 && enmGipMode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */
902 return true;
903 }
904
905 /*
906 * By model.
907 */
908 if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
909 {
910 /*
911 * AuthenticAMD - Check for APM support and that TscInvariant is set.
912 *
913 * This test isn't correct with respect to fixed/non-fixed TSC and
914 * older models, but this isn't relevant since the result is currently
915 * only used for making a decision on AMD-V models.
916 */
917# if 0 /* Promoted to generic */
918 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
919 if (uEAX >= 0x80000007)
920 {
921 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
922 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
923 && ( enmGipMode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */
924 || enmGipMode == SUPGIPMODE_INVARIANT_TSC))
925 return true;
926 }
927# endif
928 }
929 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
930 {
931 /*
932 * GenuineIntel - Check the model number.
933 *
934 * This test is lacking in the same way and for the same reasons
935 * as the AMD test above.
936 */
937 /** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */
938 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
939 unsigned uModel = (uEAX >> 4) & 0x0f;
940 unsigned uFamily = (uEAX >> 8) & 0x0f;
941 if (uFamily == 0x0f)
942 uFamily += (uEAX >> 20) & 0xff;
943 if (uFamily >= 0x06)
944 uModel += ((uEAX >> 16) & 0x0f) << 4;
945 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
946 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
947 return true;
948 }
949 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA)
950 {
951 /*
952 * CentaurHauls - Check the model, family and stepping.
953 *
954 * This only checks for VIA CPU models Nano X2, Nano X3,
955 * Eden X2 and QuadCore.
956 */
957 /** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */
958 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
959 unsigned uStepping = (uEAX & 0x0f);
960 unsigned uModel = (uEAX >> 4) & 0x0f;
961 unsigned uFamily = (uEAX >> 8) & 0x0f;
962 if ( uFamily == 0x06
963 && uModel == 0x0f
964 && uStepping >= 0x0c
965 && uStepping <= 0x0f)
966 return true;
967 }
968 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_SHANGHAI)
969 {
970 /*
971 * Shanghai - Check the model, family and stepping.
972 */
973 /** @todo use RTX86GetCpuFamily() and RTX86GetCpuModel() here. */
974 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
975 unsigned uFamily = (uEAX >> 8) & 0x0f;
976 if ( uFamily == 0x06
977 || uFamily == 0x07)
978 {
979 return true;
980 }
981 }
982 }
983
984# else /* !X86 && !AMD64 */
985 RT_NOREF_PV(pVM);
986# endif /* !X86 && !AMD64 */
987 return false;
988}
989
990
991/**
992 * Calibrate the CPU tick.
993 *
994 * @returns Number of ticks per second.
995 */
996static uint64_t tmR3CalibrateTSC(void)
997{
998 uint64_t u64Hz;
999
1000 /*
1001 * Use GIP when available. Prefere the nominal one, no need to wait for it.
1002 */
1003 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
1004 if (pGip)
1005 {
1006 u64Hz = pGip->u64CpuHz;
1007 if (u64Hz < _1T && u64Hz > _1M)
1008 return u64Hz;
1009 AssertFailed(); /* This shouldn't happen. */
1010
1011 u64Hz = SUPGetCpuHzFromGip(pGip);
1012 if (u64Hz < _1T && u64Hz > _1M)
1013 return u64Hz;
1014
1015 AssertFailed(); /* This shouldn't happen. */
1016 }
1017 else
1018 Assert(SUPR3IsDriverless());
1019
1020 /* Call this once first to make sure it's initialized. */
1021 RTTimeNanoTS();
1022
1023 /*
1024 * Yield the CPU to increase our chances of getting a correct value.
1025 */
1026 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
1027 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
1028 uint64_t au64Samples[5];
1029 unsigned i;
1030 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
1031 {
1032 RTMSINTERVAL cMillies;
1033 int cTries = 5;
1034 uint64_t u64Start = ASMReadTSC();
1035 uint64_t u64End;
1036 uint64_t StartTS = RTTimeNanoTS();
1037 uint64_t EndTS;
1038 do
1039 {
1040 RTThreadSleep(s_auSleep[i]);
1041 u64End = ASMReadTSC();
1042 EndTS = RTTimeNanoTS();
1043 cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
1044 } while ( cMillies == 0 /* the sleep may be interrupted... */
1045 || (cMillies < 20 && --cTries > 0));
1046 uint64_t u64Diff = u64End - u64Start;
1047
1048 au64Samples[i] = (u64Diff * 1000) / cMillies;
1049 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
1050 }
1051
1052 /*
1053 * Discard the highest and lowest results and calculate the average.
1054 */
1055 unsigned iHigh = 0;
1056 unsigned iLow = 0;
1057 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
1058 {
1059 if (au64Samples[i] < au64Samples[iLow])
1060 iLow = i;
1061 if (au64Samples[i] > au64Samples[iHigh])
1062 iHigh = i;
1063 }
1064 au64Samples[iLow] = 0;
1065 au64Samples[iHigh] = 0;
1066
1067 u64Hz = au64Samples[0];
1068 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
1069 u64Hz += au64Samples[i];
1070 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
1071
1072 return u64Hz;
1073}
1074
1075
1076/**
1077 * Finalizes the TM initialization.
1078 *
1079 * @returns VBox status code.
1080 * @param pVM The cross context VM structure.
1081 */
1082VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
1083{
1084 int rc;
1085
1086#ifndef VBOX_WITHOUT_NS_ACCOUNTING
1087 /*
1088 * Create a timer for refreshing the CPU load stats.
1089 */
1090 TMTIMERHANDLE hTimer;
1091 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, TMTIMER_FLAGS_NO_RING0, "CPU Load Timer", &hTimer);
1092 if (RT_SUCCESS(rc))
1093 rc = TMTimerSetMillies(pVM, hTimer, 1000);
1094#endif
1095
1096 /*
1097 * GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override).
1098 */
1099 pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM);
1100 LogRel(("TM: TMR3InitFinalize: fTSCModeSwitchAllowed=%RTbool\n", pVM->tm.s.fTSCModeSwitchAllowed));
1101
1102 /*
1103 * Grow the virtual & real timer tables so we've got sufficient
1104 * space for dynamically created timers. We cannot allocate more
1105 * after ring-0 init completes.
1106 */
1107 static struct { uint32_t idxQueue, cExtra; } s_aExtra[] = { {TMCLOCK_VIRTUAL, 128}, {TMCLOCK_REAL, 32} };
1108 for (uint32_t i = 0; i < RT_ELEMENTS(s_aExtra); i++)
1109 {
1110 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[s_aExtra[i].idxQueue];
1111 PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1112 if (s_aExtra[i].cExtra > pQueue->cTimersFree)
1113 {
1114 uint32_t cTimersAlloc = pQueue->cTimersAlloc + s_aExtra[i].cExtra - pQueue->cTimersFree;
1115 rc = tmR3TimerQueueGrow(pVM, pQueue, cTimersAlloc);
1116 AssertLogRelMsgReturn(RT_SUCCESS(rc), ("rc=%Rrc cTimersAlloc=%u %s\n", rc, cTimersAlloc, pQueue->szName), rc);
1117 }
1118 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1119 }
1120
1121#ifdef VBOX_WITH_STATISTICS
1122 /*
1123 * Register timer statistics now that we've fixed the timer table sizes.
1124 */
1125 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
1126 {
1127 pVM->tm.s.aTimerQueues[idxQueue].fCannotGrow = true;
1128 tmR3TimerQueueRegisterStats(pVM, &pVM->tm.s.aTimerQueues[idxQueue], UINT32_MAX);
1129 }
1130#endif
1131
1132 return rc;
1133}
1134
1135
1136/**
1137 * Applies relocations to data and code managed by this
1138 * component. This function will be called at init and
1139 * whenever the VMM need to relocate it self inside the GC.
1140 *
1141 * @param pVM The cross context VM structure.
1142 * @param offDelta Relocation delta relative to old location.
1143 */
1144VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1145{
1146 LogFlow(("TMR3Relocate\n"));
1147 RT_NOREF(pVM, offDelta);
1148}
1149
1150
1151/**
1152 * Terminates the TM.
1153 *
1154 * Termination means cleaning up and freeing all resources,
1155 * the VM it self is at this point powered off or suspended.
1156 *
1157 * @returns VBox status code.
1158 * @param pVM The cross context VM structure.
1159 */
1160VMM_INT_DECL(int) TMR3Term(PVM pVM)
1161{
1162 if (pVM->tm.s.pTimer)
1163 {
1164 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
1165 AssertRC(rc);
1166 pVM->tm.s.pTimer = NULL;
1167 }
1168
1169 return VINF_SUCCESS;
1170}
1171
1172
1173/**
1174 * The VM is being reset.
1175 *
1176 * For the TM component this means that a rescheduling is preformed,
1177 * the FF is cleared and but without running the queues. We'll have to
1178 * check if this makes sense or not, but it seems like a good idea now....
1179 *
1180 * @param pVM The cross context VM structure.
1181 */
1182VMM_INT_DECL(void) TMR3Reset(PVM pVM)
1183{
1184 LogFlow(("TMR3Reset:\n"));
1185 VM_ASSERT_EMT(pVM);
1186
1187 /*
1188 * Abort any pending catch up.
1189 * This isn't perfect...
1190 */
1191 if (pVM->tm.s.fVirtualSyncCatchUp)
1192 {
1193 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
1194 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
1195 if (pVM->tm.s.fVirtualSyncCatchUp)
1196 {
1197 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1198
1199 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
1200 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
1201 Assert(offOld <= offNew);
1202 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1203 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
1204 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1205 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
1206 }
1207 }
1208
1209 /*
1210 * Process the queues.
1211 */
1212 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
1213 {
1214 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
1215 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
1216 tmTimerQueueSchedule(pVM, pQueue, pQueue);
1217 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1218 }
1219#ifdef VBOX_STRICT
1220 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1221#endif
1222
1223 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
1224 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1225
1226 /*
1227 * Switch TM TSC mode back to the original mode after a reset for
1228 * paravirtualized guests that alter the TM TSC mode during operation.
1229 * We're already in an EMT rendezvous at this point.
1230 */
1231 if ( pVM->tm.s.fTSCModeSwitchAllowed
1232 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
1233 {
1234 VM_ASSERT_EMT0(pVM);
1235 tmR3CpuTickParavirtDisable(pVM, pVM->apCpusR3[0], NULL /* pvData */);
1236 }
1237 Assert(!GIMIsParavirtTscEnabled(pVM));
1238 pVM->tm.s.fParavirtTscEnabled = false;
1239
1240 /*
1241 * Reset TSC to avoid a Windows 8+ bug (see @bugref{8926}). If Windows
1242 * sees TSC value beyond 0x40000000000 at startup, it will reset the
1243 * TSC on boot-up CPU only, causing confusion and mayhem with SMP.
1244 */
1245 VM_ASSERT_EMT0(pVM);
1246 uint64_t offTscRawSrc;
1247 switch (pVM->tm.s.enmTSCMode)
1248 {
1249 case TMTSCMODE_REAL_TSC_OFFSET:
1250 offTscRawSrc = SUPReadTsc();
1251 break;
1252 case TMTSCMODE_DYNAMIC:
1253 case TMTSCMODE_VIRT_TSC_EMULATED:
1254 offTscRawSrc = TMVirtualSyncGetNoCheck(pVM);
1255 offTscRawSrc = ASMMultU64ByU32DivByU32(offTscRawSrc, pVM->tm.s.cTSCTicksPerSecond, TMCLOCK_FREQ_VIRTUAL);
1256 break;
1257 case TMTSCMODE_NATIVE_API:
1258 /** @todo NEM TSC reset on reset for Windows8+ bug workaround. */
1259 offTscRawSrc = 0;
1260 break;
1261 default:
1262 AssertFailedBreakStmt(offTscRawSrc = 0);
1263 }
1264 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1265 {
1266 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1267 pVCpu->tm.s.offTSCRawSrc = offTscRawSrc;
1268 pVCpu->tm.s.u64TSC = 0;
1269 pVCpu->tm.s.u64TSCLastSeen = 0;
1270 }
1271}
1272
1273
1274/**
1275 * Execute state save operation.
1276 *
1277 * @returns VBox status code.
1278 * @param pVM The cross context VM structure.
1279 * @param pSSM SSM operation handle.
1280 */
1281static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1282{
1283 LogFlow(("tmR3Save:\n"));
1284#ifdef VBOX_STRICT
1285 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1286 {
1287 PVMCPU pVCpu = pVM->apCpusR3[i];
1288 Assert(!pVCpu->tm.s.fTSCTicking);
1289 }
1290 Assert(!pVM->tm.s.cVirtualTicking);
1291 Assert(!pVM->tm.s.fVirtualSyncTicking);
1292 Assert(!pVM->tm.s.cTSCsTicking);
1293#endif
1294
1295 /*
1296 * Save the virtual clocks.
1297 */
1298 /* the virtual clock. */
1299 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1300 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1301
1302 /* the virtual timer synchronous clock. */
1303 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1304 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1305 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1306 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1307 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1308
1309 /* real time clock */
1310 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1311
1312 /* the cpu tick clock. */
1313 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1314 {
1315 PVMCPU pVCpu = pVM->apCpusR3[i];
1316 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1317 }
1318 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1319}
1320
1321
1322/**
1323 * Execute state load operation.
1324 *
1325 * @returns VBox status code.
1326 * @param pVM The cross context VM structure.
1327 * @param pSSM SSM operation handle.
1328 * @param uVersion Data layout version.
1329 * @param uPass The data pass.
1330 */
1331static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1332{
1333 LogFlow(("tmR3Load:\n"));
1334
1335 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1336#ifdef VBOX_STRICT
1337 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1338 {
1339 PVMCPU pVCpu = pVM->apCpusR3[i];
1340 Assert(!pVCpu->tm.s.fTSCTicking);
1341 }
1342 Assert(!pVM->tm.s.cVirtualTicking);
1343 Assert(!pVM->tm.s.fVirtualSyncTicking);
1344 Assert(!pVM->tm.s.cTSCsTicking);
1345#endif
1346
1347 /*
1348 * Validate version.
1349 */
1350 if (uVersion != TM_SAVED_STATE_VERSION)
1351 {
1352 AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
1353 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1354 }
1355
1356 /*
1357 * Load the virtual clock.
1358 */
1359 pVM->tm.s.cVirtualTicking = 0;
1360 /* the virtual clock. */
1361 uint64_t u64Hz;
1362 int rc = SSMR3GetU64(pSSM, &u64Hz);
1363 if (RT_FAILURE(rc))
1364 return rc;
1365 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1366 {
1367 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1368 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1369 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1370 }
1371 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1372 pVM->tm.s.u64VirtualOffset = 0;
1373
1374 /* the virtual timer synchronous clock. */
1375 pVM->tm.s.fVirtualSyncTicking = false;
1376 uint64_t u64;
1377 SSMR3GetU64(pSSM, &u64);
1378 pVM->tm.s.u64VirtualSync = u64;
1379 SSMR3GetU64(pSSM, &u64);
1380 pVM->tm.s.offVirtualSync = u64;
1381 SSMR3GetU64(pSSM, &u64);
1382 pVM->tm.s.offVirtualSyncGivenUp = u64;
1383 SSMR3GetU64(pSSM, &u64);
1384 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1385 bool f;
1386 SSMR3GetBool(pSSM, &f);
1387 pVM->tm.s.fVirtualSyncCatchUp = f;
1388
1389 /* the real clock */
1390 rc = SSMR3GetU64(pSSM, &u64Hz);
1391 if (RT_FAILURE(rc))
1392 return rc;
1393 if (u64Hz != TMCLOCK_FREQ_REAL)
1394 {
1395 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1396 u64Hz, TMCLOCK_FREQ_REAL));
1397 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */
1398 }
1399
1400 /* the cpu tick clock. */
1401 pVM->tm.s.cTSCsTicking = 0;
1402 pVM->tm.s.offTSCPause = 0;
1403 pVM->tm.s.u64LastPausedTSC = 0;
1404 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1405 {
1406 PVMCPU pVCpu = pVM->apCpusR3[i];
1407
1408 pVCpu->tm.s.fTSCTicking = false;
1409 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1410 if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC)
1411 pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC;
1412
1413 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1414 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1415 }
1416
1417 rc = SSMR3GetU64(pSSM, &u64Hz);
1418 if (RT_FAILURE(rc))
1419 return rc;
1420 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
1421 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1422
1423 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n",
1424 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
1425
1426 /* Disabled as this isn't tested, also should this apply only if GIM is enabled etc. */
1427#if 0
1428 /*
1429 * If the current host TSC frequency is incompatible with what is in the
1430 * saved state of the VM, fall back to emulating TSC and disallow TSC mode
1431 * switches during VM runtime (e.g. by GIM).
1432 */
1433 if ( GIMIsEnabled(pVM)
1434 || pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1435 {
1436 uint64_t uGipCpuHz;
1437 bool fRelax = RTSystemIsInsideVM();
1438 bool fCompat = SUPIsTscFreqCompatible(pVM->tm.s.cTSCTicksPerSecond, &uGipCpuHz, fRelax);
1439 if (!fCompat)
1440 {
1441 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
1442 pVM->tm.s.fTSCModeSwitchAllowed = false;
1443 if (g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC)
1444 {
1445 LogRel(("TM: TSC frequency incompatible! uGipCpuHz=%#RX64 (%'RU64) enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1446 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1447 }
1448 else
1449 {
1450 LogRel(("TM: GIP is async, enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1451 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1452 }
1453 }
1454 }
1455#endif
1456
1457 /*
1458 * Make sure timers get rescheduled immediately.
1459 */
1460 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
1461 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1462
1463 return VINF_SUCCESS;
1464}
1465
1466#ifdef VBOX_WITH_STATISTICS
1467
1468/**
1469 * Register statistics for a timer.
1470 *
1471 * @param pVM The cross context VM structure.
1472 * @param pQueue The queue the timer belongs to.
1473 * @param pTimer The timer to register statistics for.
1474 */
1475static void tmR3TimerRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
1476{
1477 STAMR3RegisterF(pVM, &pTimer->StatTimer, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
1478 pQueue->szName, "/TM/Timers/%s", pTimer->szName);
1479 STAMR3RegisterF(pVM, &pTimer->StatCritSectEnter, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
1480 "", "/TM/Timers/%s/CritSectEnter", pTimer->szName);
1481 STAMR3RegisterF(pVM, &pTimer->StatGet, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1482 "", "/TM/Timers/%s/Get", pTimer->szName);
1483 STAMR3RegisterF(pVM, &pTimer->StatSetAbsolute, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1484 "", "/TM/Timers/%s/SetAbsolute", pTimer->szName);
1485 STAMR3RegisterF(pVM, &pTimer->StatSetRelative, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1486 "", "/TM/Timers/%s/SetRelative", pTimer->szName);
1487 STAMR3RegisterF(pVM, &pTimer->StatStop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1488 "", "/TM/Timers/%s/Stop", pTimer->szName);
1489}
1490
1491
1492/**
1493 * Deregister the statistics for a timer.
1494 */
1495static void tmR3TimerDeregisterStats(PVM pVM, PTMTIMER pTimer)
1496{
1497 char szPrefix[128];
1498 size_t cchPrefix = RTStrPrintf(szPrefix, sizeof(szPrefix), "/TM/Timers/%s/", pTimer->szName);
1499 STAMR3DeregisterByPrefix(pVM->pUVM, szPrefix);
1500 szPrefix[cchPrefix - 1] = '\0';
1501 STAMR3Deregister(pVM->pUVM, szPrefix);
1502}
1503
1504
1505/**
1506 * Register statistics for all allocated timers in a queue.
1507 *
1508 * @param pVM The cross context VM structure.
1509 * @param pQueue The queue to register statistics for.
1510 * @param cTimers Number of timers to consider (in growth scenario).
1511 */
1512static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers)
1513{
1514 uint32_t idxTimer = RT_MIN(cTimers, pQueue->cTimersAlloc);
1515 while (idxTimer-- > 0)
1516 {
1517 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
1518 TMTIMERSTATE enmState = pTimer->enmState;
1519 if (enmState > TMTIMERSTATE_INVALID && enmState < TMTIMERSTATE_DESTROY)
1520 tmR3TimerRegisterStats(pVM, pQueue, pTimer);
1521 }
1522}
1523
1524#endif /* VBOX_WITH_STATISTICS */
1525
1526
1527/**
1528 * Grows a timer queue.
1529 *
1530 * @returns VBox status code (errors are LogRel'ed already).
1531 * @param pVM The cross context VM structure.
1532 * @param pQueue The timer queue to grow.
1533 * @param cNewTimers The minimum number of timers after growing.
1534 * @note Caller owns the queue's allocation lock.
1535 */
1536static int tmR3TimerQueueGrow(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cNewTimers)
1537{
1538 /*
1539 * Validate input and state.
1540 */
1541 VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1542 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE); /** @todo must do better than this! */
1543 AssertReturn(!pQueue->fCannotGrow, VERR_TM_TIMER_QUEUE_CANNOT_GROW);
1544
1545 uint32_t const cOldEntries = pQueue->cTimersAlloc;
1546 AssertReturn(cNewTimers > cOldEntries, VERR_TM_IPE_1);
1547 AssertReturn(cNewTimers < _32K, VERR_TM_IPE_1);
1548
1549 /*
1550 * Do the growing.
1551 */
1552 int rc;
1553 if (!SUPR3IsDriverless())
1554 {
1555 rc = VMMR3CallR0Emt(pVM, VMMGetCpu(pVM), VMMR0_DO_TM_GROW_TIMER_QUEUE,
1556 RT_MAKE_U64(cNewTimers, (uint64_t)(pQueue - &pVM->tm.s.aTimerQueues[0])), NULL);
1557 AssertLogRelRCReturn(rc, rc);
1558 AssertReturn(pQueue->cTimersAlloc >= cNewTimers, VERR_TM_IPE_3);
1559 }
1560 else
1561 {
1562 AssertReturn(cNewTimers <= _32K && cOldEntries <= _32K, VERR_TM_TOO_MANY_TIMERS);
1563 ASMCompilerBarrier();
1564
1565 /*
1566 * Round up the request to the nearest page and do the allocation.
1567 */
1568 size_t cbNew = sizeof(TMTIMER) * cNewTimers;
1569 cbNew = RT_ALIGN_Z(cbNew, HOST_PAGE_SIZE);
1570 cNewTimers = (uint32_t)(cbNew / sizeof(TMTIMER));
1571
1572 PTMTIMER paTimers = (PTMTIMER)RTMemPageAllocZ(cbNew);
1573 if (paTimers)
1574 {
1575 /*
1576 * Copy over the old timer, init the new free ones, then switch over
1577 * and free the old ones.
1578 */
1579 PTMTIMER const paOldTimers = pQueue->paTimers;
1580 tmHCTimerQueueGrowInit(paTimers, paOldTimers, cNewTimers, cOldEntries);
1581
1582 pQueue->paTimers = paTimers;
1583 pQueue->cTimersAlloc = cNewTimers;
1584 pQueue->cTimersFree += cNewTimers - (cOldEntries ? cOldEntries : 1);
1585
1586 RTMemPageFree(paOldTimers, RT_ALIGN_Z(sizeof(TMTIMER) * cOldEntries, HOST_PAGE_SIZE));
1587 rc = VINF_SUCCESS;
1588 }
1589 else
1590 rc = VERR_NO_PAGE_MEMORY;
1591 }
1592 return rc;
1593}
1594
1595
1596/**
1597 * Internal TMR3TimerCreate worker.
1598 *
1599 * @returns VBox status code.
1600 * @param pVM The cross context VM structure.
1601 * @param enmClock The timer clock.
1602 * @param fFlags TMTIMER_FLAGS_XXX.
1603 * @param pszName The timer name.
1604 * @param ppTimer Where to store the timer pointer on success.
1605 */
1606static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, uint32_t fFlags, const char *pszName, PPTMTIMERR3 ppTimer)
1607{
1608 PTMTIMER pTimer;
1609
1610 /*
1611 * Validate input.
1612 */
1613 VM_ASSERT_EMT(pVM);
1614
1615 AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0),
1616 VERR_INVALID_FLAGS);
1617
1618 AssertPtrReturn(pszName, VERR_INVALID_POINTER);
1619 size_t const cchName = strlen(pszName);
1620 AssertMsgReturn(cchName < sizeof(pTimer->szName), ("timer name too long: %s\n", pszName), VERR_INVALID_NAME);
1621 AssertMsgReturn(cchName > 2, ("Too short timer name: %s\n", pszName), VERR_INVALID_NAME);
1622
1623 AssertMsgReturn(enmClock >= TMCLOCK_REAL && enmClock < TMCLOCK_MAX,
1624 ("%d\n", enmClock), VERR_INVALID_PARAMETER);
1625 AssertReturn(enmClock != TMCLOCK_TSC, VERR_NOT_SUPPORTED);
1626 if (enmClock == TMCLOCK_VIRTUAL_SYNC)
1627 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_WRONG_ORDER);
1628
1629 /*
1630 * Exclusively lock the queue.
1631 *
1632 * Note! This means that it is not possible to allocate timers from a timer callback.
1633 */
1634 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[enmClock];
1635 int rc = PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1636 AssertRCReturn(rc, rc);
1637
1638 /*
1639 * Allocate the timer.
1640 */
1641 if (!pQueue->cTimersFree)
1642 {
1643 rc = tmR3TimerQueueGrow(pVM, pQueue, pQueue->cTimersAlloc + 64);
1644 AssertRCReturnStmt(rc, PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), rc);
1645 }
1646
1647 /* Scan the array for free timers. */
1648 pTimer = NULL;
1649 PTMTIMER const paTimers = pQueue->paTimers;
1650 uint32_t const cTimersAlloc = pQueue->cTimersAlloc;
1651 uint32_t idxTimer = pQueue->idxFreeHint;
1652 for (uint32_t iScan = 0; iScan < 2; iScan++)
1653 {
1654 while (idxTimer < cTimersAlloc)
1655 {
1656 if (paTimers[idxTimer].enmState == TMTIMERSTATE_FREE)
1657 {
1658 pTimer = &paTimers[idxTimer];
1659 pQueue->idxFreeHint = idxTimer + 1;
1660 break;
1661 }
1662 idxTimer++;
1663 }
1664 if (pTimer != NULL)
1665 break;
1666 idxTimer = 1;
1667 }
1668 AssertLogRelMsgReturnStmt(pTimer != NULL, ("cTimersFree=%u cTimersAlloc=%u enmClock=%s\n", pQueue->cTimersFree,
1669 pQueue->cTimersAlloc, pQueue->szName),
1670 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), VERR_INTERNAL_ERROR_3);
1671 pQueue->cTimersFree -= 1;
1672
1673 /*
1674 * Initialize it.
1675 */
1676 Assert(idxTimer != 0);
1677 Assert(idxTimer <= TMTIMERHANDLE_TIMER_IDX_MASK);
1678 pTimer->hSelf = idxTimer
1679 | ((uintptr_t)(pQueue - &pVM->tm.s.aTimerQueues[0]) << TMTIMERHANDLE_QUEUE_IDX_SHIFT);
1680 Assert(!(pTimer->hSelf & TMTIMERHANDLE_RANDOM_MASK));
1681 pTimer->hSelf |= (RTRandU64() & TMTIMERHANDLE_RANDOM_MASK);
1682
1683 pTimer->u64Expire = 0;
1684 pTimer->enmState = TMTIMERSTATE_STOPPED;
1685 pTimer->idxScheduleNext = UINT32_MAX;
1686 pTimer->idxNext = UINT32_MAX;
1687 pTimer->idxPrev = UINT32_MAX;
1688 pTimer->fFlags = fFlags;
1689 pTimer->uHzHint = 0;
1690 pTimer->pvUser = NULL;
1691 pTimer->pCritSect = NULL;
1692 memcpy(pTimer->szName, pszName, cchName);
1693 pTimer->szName[cchName] = '\0';
1694
1695#ifdef VBOX_STRICT
1696 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1697#endif
1698
1699 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1700
1701#ifdef VBOX_WITH_STATISTICS
1702 /*
1703 * Only register statistics if we're passed the no-realloc point.
1704 */
1705 if (pQueue->fCannotGrow)
1706 tmR3TimerRegisterStats(pVM, pQueue, pTimer);
1707#endif
1708
1709 *ppTimer = pTimer;
1710 return VINF_SUCCESS;
1711}
1712
1713
1714/**
1715 * Creates a device timer.
1716 *
1717 * @returns VBox status code.
1718 * @param pVM The cross context VM structure.
1719 * @param pDevIns Device instance.
1720 * @param enmClock The clock to use on this timer.
1721 * @param pfnCallback Callback function.
1722 * @param pvUser The user argument to the callback.
1723 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1724 * @param pszName Timer name (will be copied). Max 31 chars.
1725 * @param phTimer Where to store the timer handle on success.
1726 */
1727VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock,
1728 PFNTMTIMERDEV pfnCallback, void *pvUser,
1729 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1730{
1731 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)),
1732 VERR_INVALID_FLAGS);
1733
1734 /*
1735 * Allocate and init stuff.
1736 */
1737 PTMTIMER pTimer;
1738 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1739 if (RT_SUCCESS(rc))
1740 {
1741 pTimer->enmType = TMTIMERTYPE_DEV;
1742 pTimer->u.Dev.pfnTimer = pfnCallback;
1743 pTimer->u.Dev.pDevIns = pDevIns;
1744 pTimer->pvUser = pvUser;
1745 if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1746 pTimer->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns);
1747 *phTimer = pTimer->hSelf;
1748 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", phTimer, enmClock, pfnCallback, pszName));
1749 }
1750
1751 return rc;
1752}
1753
1754
1755
1756
1757/**
1758 * Creates a USB device timer.
1759 *
1760 * @returns VBox status code.
1761 * @param pVM The cross context VM structure.
1762 * @param pUsbIns The USB device instance.
1763 * @param enmClock The clock to use on this timer.
1764 * @param pfnCallback Callback function.
1765 * @param pvUser The user argument to the callback.
1766 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1767 * @param pszName Timer name (will be copied). Max 31 chars.
1768 * @param phTimer Where to store the timer handle on success.
1769 */
1770VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock,
1771 PFNTMTIMERUSB pfnCallback, void *pvUser,
1772 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1773{
1774 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_NO_RING0)), VERR_INVALID_PARAMETER);
1775
1776 /*
1777 * Allocate and init stuff.
1778 */
1779 PTMTIMER pTimer;
1780 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1781 if (RT_SUCCESS(rc))
1782 {
1783 pTimer->enmType = TMTIMERTYPE_USB;
1784 pTimer->u.Usb.pfnTimer = pfnCallback;
1785 pTimer->u.Usb.pUsbIns = pUsbIns;
1786 pTimer->pvUser = pvUser;
1787 //if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1788 //{
1789 // if (pDevIns->pCritSectR3)
1790 // pTimer->pCritSect = pUsbIns->pCritSectR3;
1791 // else
1792 // pTimer->pCritSect = IOMR3GetCritSect(pVM);
1793 //}
1794 *phTimer = pTimer->hSelf;
1795 Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName));
1796 }
1797
1798 return rc;
1799}
1800
1801
1802/**
1803 * Creates a driver timer.
1804 *
1805 * @returns VBox status code.
1806 * @param pVM The cross context VM structure.
1807 * @param pDrvIns Driver instance.
1808 * @param enmClock The clock to use on this timer.
1809 * @param pfnCallback Callback function.
1810 * @param pvUser The user argument to the callback.
1811 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1812 * @param pszName Timer name (will be copied). Max 31 chars.
1813 * @param phTimer Where to store the timer handle on success.
1814 */
1815VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1816 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1817{
1818 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)),
1819 VERR_INVALID_FLAGS);
1820
1821 /*
1822 * Allocate and init stuff.
1823 */
1824 PTMTIMER pTimer;
1825 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1826 if (RT_SUCCESS(rc))
1827 {
1828 pTimer->enmType = TMTIMERTYPE_DRV;
1829 pTimer->u.Drv.pfnTimer = pfnCallback;
1830 pTimer->u.Drv.pDrvIns = pDrvIns;
1831 pTimer->pvUser = pvUser;
1832 *phTimer = pTimer->hSelf;
1833 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName));
1834 }
1835
1836 return rc;
1837}
1838
1839
1840/**
1841 * Creates an internal timer.
1842 *
1843 * @returns VBox status code.
1844 * @param pVM The cross context VM structure.
1845 * @param enmClock The clock to use on this timer.
1846 * @param pfnCallback Callback function.
1847 * @param pvUser User argument to be passed to the callback.
1848 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1849 * @param pszName Timer name (will be copied). Max 31 chars.
1850 * @param phTimer Where to store the timer handle on success.
1851 */
1852VMMR3DECL(int) TMR3TimerCreate(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser,
1853 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1854{
1855 AssertReturn(fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0), VERR_INVALID_FLAGS);
1856 AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0),
1857 VERR_INVALID_FLAGS);
1858
1859 /*
1860 * Allocate and init stuff.
1861 */
1862 PTMTIMER pTimer;
1863 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1864 if (RT_SUCCESS(rc))
1865 {
1866 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1867 pTimer->u.Internal.pfnTimer = pfnCallback;
1868 pTimer->pvUser = pvUser;
1869 *phTimer = pTimer->hSelf;
1870 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszName));
1871 }
1872
1873 return rc;
1874}
1875
1876
1877/**
1878 * Destroy a timer
1879 *
1880 * @returns VBox status code.
1881 * @param pVM The cross context VM structure.
1882 * @param pQueue The queue the timer is on.
1883 * @param pTimer Timer handle as returned by one of the create functions.
1884 */
1885static int tmR3TimerDestroy(PVMCC pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
1886{
1887 bool fActive = false;
1888 bool fPending = false;
1889
1890 AssertMsg( !pTimer->pCritSect
1891 || VMR3GetState(pVM) != VMSTATE_RUNNING
1892 || PDMCritSectIsOwner(pVM, pTimer->pCritSect), ("%s\n", pTimer->szName));
1893
1894 /*
1895 * The rest of the game happens behind the lock, just
1896 * like create does. All the work is done here.
1897 */
1898 PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1899 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
1900
1901 for (int cRetries = 1000;; cRetries--)
1902 {
1903 /*
1904 * Change to the DESTROY state.
1905 */
1906 TMTIMERSTATE const enmState = pTimer->enmState;
1907 Log2(("TMTimerDestroy: %p:{.enmState=%s, .szName='%s'} cRetries=%d\n",
1908 pTimer, tmTimerState(enmState), pTimer->szName, cRetries));
1909 switch (enmState)
1910 {
1911 case TMTIMERSTATE_STOPPED:
1912 case TMTIMERSTATE_EXPIRED_DELIVER:
1913 break;
1914
1915 case TMTIMERSTATE_ACTIVE:
1916 fActive = true;
1917 break;
1918
1919 case TMTIMERSTATE_PENDING_STOP:
1920 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1921 case TMTIMERSTATE_PENDING_RESCHEDULE:
1922 fActive = true;
1923 fPending = true;
1924 break;
1925
1926 case TMTIMERSTATE_PENDING_SCHEDULE:
1927 fPending = true;
1928 break;
1929
1930 /*
1931 * This shouldn't happen as the caller should make sure there are no races.
1932 */
1933 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1934 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1935 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1936 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName));
1937 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1938 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1939
1940 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName),
1941 VERR_TM_UNSTABLE_STATE);
1942 if (!RTThreadYield())
1943 RTThreadSleep(1);
1944
1945 PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1946 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
1947 continue;
1948
1949 /*
1950 * Invalid states.
1951 */
1952 case TMTIMERSTATE_FREE:
1953 case TMTIMERSTATE_DESTROY:
1954 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1955 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1956 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1957
1958 default:
1959 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, pTimer->szName));
1960 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1961 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1962 return VERR_TM_UNKNOWN_STATE;
1963 }
1964
1965 /*
1966 * Try switch to the destroy state.
1967 * This should always succeed as the caller should make sure there are no race.
1968 */
1969 bool fRc;
1970 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1971 if (fRc)
1972 break;
1973 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName));
1974 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1975 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1976
1977 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName),
1978 VERR_TM_UNSTABLE_STATE);
1979
1980 PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1981 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
1982 }
1983
1984 /*
1985 * Unlink from the active list.
1986 */
1987 if (fActive)
1988 {
1989 const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer);
1990 const PTMTIMER pNext = tmTimerGetNext(pQueue, pTimer);
1991 if (pPrev)
1992 tmTimerSetNext(pQueue, pPrev, pNext);
1993 else
1994 {
1995 tmTimerQueueSetHead(pQueue, pQueue, pNext);
1996 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1997 }
1998 if (pNext)
1999 tmTimerSetPrev(pQueue, pNext, pPrev);
2000 pTimer->idxNext = UINT32_MAX;
2001 pTimer->idxPrev = UINT32_MAX;
2002 }
2003
2004 /*
2005 * Unlink from the schedule list by running it.
2006 */
2007 if (fPending)
2008 {
2009 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
2010 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
2011 Assert(pQueue->idxSchedule < pQueue->cTimersAlloc);
2012 tmTimerQueueSchedule(pVM, pQueue, pQueue);
2013 STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
2014 }
2015
2016#ifdef VBOX_WITH_STATISTICS
2017 /*
2018 * Deregister statistics.
2019 */
2020 tmR3TimerDeregisterStats(pVM, pTimer);
2021#endif
2022
2023 /*
2024 * Change it to free state and update the queue accordingly.
2025 */
2026 Assert(pTimer->idxNext == UINT32_MAX); Assert(pTimer->idxPrev == UINT32_MAX); Assert(pTimer->idxScheduleNext == UINT32_MAX);
2027
2028 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
2029
2030 pQueue->cTimersFree += 1;
2031 uint32_t idxTimer = (uint32_t)(pTimer - pQueue->paTimers);
2032 if (idxTimer < pQueue->idxFreeHint)
2033 pQueue->idxFreeHint = idxTimer;
2034
2035#ifdef VBOX_STRICT
2036 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
2037#endif
2038 PDMCritSectLeave(pVM, &pQueue->TimerLock);
2039 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
2040 return VINF_SUCCESS;
2041}
2042
2043
2044/**
2045 * Destroy a timer
2046 *
2047 * @returns VBox status code.
2048 * @param pVM The cross context VM structure.
2049 * @param hTimer Timer handle as returned by one of the create functions.
2050 */
2051VMMR3DECL(int) TMR3TimerDestroy(PVM pVM, TMTIMERHANDLE hTimer)
2052{
2053 /* We ignore NILs here. */
2054 if (hTimer == NIL_TMTIMERHANDLE)
2055 return VINF_SUCCESS;
2056 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
2057 return tmR3TimerDestroy(pVM, pQueue, pTimer);
2058}
2059
2060
2061/**
2062 * Destroy all timers owned by a device.
2063 *
2064 * @returns VBox status code.
2065 * @param pVM The cross context VM structure.
2066 * @param pDevIns Device which timers should be destroyed.
2067 */
2068VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
2069{
2070 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
2071 if (!pDevIns)
2072 return VERR_INVALID_PARAMETER;
2073
2074 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
2075 {
2076 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
2077 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2078 uint32_t idxTimer = pQueue->cTimersAlloc;
2079 while (idxTimer-- > 0)
2080 {
2081 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
2082 if ( pTimer->enmType == TMTIMERTYPE_DEV
2083 && pTimer->u.Dev.pDevIns == pDevIns
2084 && pTimer->enmState < TMTIMERSTATE_DESTROY)
2085 {
2086 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2087
2088 int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
2089 AssertRC(rc);
2090
2091 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2092 }
2093 }
2094 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2095 }
2096
2097 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
2098 return VINF_SUCCESS;
2099}
2100
2101
2102/**
2103 * Destroy all timers owned by a USB device.
2104 *
2105 * @returns VBox status code.
2106 * @param pVM The cross context VM structure.
2107 * @param pUsbIns USB device which timers should be destroyed.
2108 */
2109VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns)
2110{
2111 LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns));
2112 if (!pUsbIns)
2113 return VERR_INVALID_PARAMETER;
2114
2115 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
2116 {
2117 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
2118 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2119 uint32_t idxTimer = pQueue->cTimersAlloc;
2120 while (idxTimer-- > 0)
2121 {
2122 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
2123 if ( pTimer->enmType == TMTIMERTYPE_USB
2124 && pTimer->u.Usb.pUsbIns == pUsbIns
2125 && pTimer->enmState < TMTIMERSTATE_DESTROY)
2126 {
2127 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2128
2129 int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
2130 AssertRC(rc);
2131
2132 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2133 }
2134 }
2135 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2136 }
2137
2138 LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n"));
2139 return VINF_SUCCESS;
2140}
2141
2142
2143/**
2144 * Destroy all timers owned by a driver.
2145 *
2146 * @returns VBox status code.
2147 * @param pVM The cross context VM structure.
2148 * @param pDrvIns Driver which timers should be destroyed.
2149 */
2150VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
2151{
2152 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
2153 if (!pDrvIns)
2154 return VERR_INVALID_PARAMETER;
2155
2156 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
2157 {
2158 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
2159 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2160 uint32_t idxTimer = pQueue->cTimersAlloc;
2161 while (idxTimer-- > 0)
2162 {
2163 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
2164 if ( pTimer->enmType == TMTIMERTYPE_DRV
2165 && pTimer->u.Drv.pDrvIns == pDrvIns
2166 && pTimer->enmState < TMTIMERSTATE_DESTROY)
2167 {
2168 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2169
2170 int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
2171 AssertRC(rc);
2172
2173 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2174 }
2175 }
2176 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2177 }
2178
2179 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
2180 return VINF_SUCCESS;
2181}
2182
2183
2184/**
2185 * Internal function for getting the clock time.
2186 *
2187 * @returns clock time.
2188 * @param pVM The cross context VM structure.
2189 * @param enmClock The clock.
2190 */
2191DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
2192{
2193 switch (enmClock)
2194 {
2195 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
2196 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
2197 case TMCLOCK_REAL: return TMRealGet(pVM);
2198 case TMCLOCK_TSC: return TMCpuTickGet(pVM->apCpusR3[0] /* just take VCPU 0 */);
2199 default:
2200 AssertMsgFailed(("enmClock=%d\n", enmClock));
2201 return ~(uint64_t)0;
2202 }
2203}
2204
2205
2206/**
2207 * Checks if the sync queue has one or more expired timers.
2208 *
2209 * @returns true / false.
2210 *
2211 * @param pVM The cross context VM structure.
2212 * @param enmClock The queue.
2213 */
2214DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
2215{
2216 const uint64_t u64Expire = pVM->tm.s.aTimerQueues[enmClock].u64Expire;
2217 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
2218}
2219
2220
2221/**
2222 * Checks for expired timers in all the queues.
2223 *
2224 * @returns true / false.
2225 * @param pVM The cross context VM structure.
2226 */
2227DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
2228{
2229 /*
2230 * Combine the time calculation for the first two since we're not on EMT
2231 * TMVirtualSyncGet only permits EMT.
2232 */
2233 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
2234 if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
2235 return true;
2236 u64Now = pVM->tm.s.fVirtualSyncTicking
2237 ? u64Now - pVM->tm.s.offVirtualSync
2238 : pVM->tm.s.u64VirtualSync;
2239 if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
2240 return true;
2241
2242 /*
2243 * The remaining timers.
2244 */
2245 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
2246 return true;
2247 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
2248 return true;
2249 return false;
2250}
2251
2252
2253/**
2254 * Schedule timer callback.
2255 *
2256 * @param pTimer Timer handle.
2257 * @param pvUser Pointer to the VM.
2258 * @thread Timer thread.
2259 *
2260 * @remark We cannot do the scheduling and queues running from a timer handler
2261 * since it's not executing in EMT, and even if it was it would be async
2262 * and we wouldn't know the state of the affairs.
2263 * So, we'll just raise the timer FF and force any REM execution to exit.
2264 */
2265static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
2266{
2267 PVM pVM = (PVM)pvUser;
2268 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
2269 NOREF(pTimer);
2270
2271 AssertCompile(TMCLOCK_MAX == 4);
2272 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback);
2273
2274#ifdef DEBUG_Sander /* very annoying, keep it private. */
2275 if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
2276 Log(("tmR3TimerCallback: timer event still pending!!\n"));
2277#endif
2278 if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2279 && ( pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule != UINT32_MAX /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
2280 || pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].idxSchedule != UINT32_MAX
2281 || pVM->tm.s.aTimerQueues[TMCLOCK_REAL].idxSchedule != UINT32_MAX
2282 || pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxSchedule != UINT32_MAX
2283 || tmR3AnyExpiredTimers(pVM)
2284 )
2285 && !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2286 && !pVM->tm.s.fRunningQueues
2287 )
2288 {
2289 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
2290 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
2291 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE);
2292 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
2293 }
2294}
2295
2296
2297/**
2298 * Worker for tmR3TimerQueueDoOne that runs pending timers on the specified
2299 * non-empty timer queue.
2300 *
2301 * @param pVM The cross context VM structure.
2302 * @param pQueue The queue to run.
2303 * @param pTimer The head timer. Caller already check that this is
2304 * not NULL.
2305 */
2306static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
2307{
2308 VM_ASSERT_EMT(pVM); /** @todo relax this */
2309
2310 /*
2311 * Run timers.
2312 *
2313 * We check the clock once and run all timers which are ACTIVE
2314 * and have an expire time less or equal to the time we read.
2315 *
2316 * N.B. A generic unlink must be applied since other threads
2317 * are allowed to mess with any active timer at any time.
2318 *
2319 * However, we only allow EMT to handle EXPIRED_PENDING
2320 * timers, thus enabling the timer handler function to
2321 * arm the timer again.
2322 */
2323/** @todo the above 'however' is outdated. */
2324 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
2325 while (pTimer->u64Expire <= u64Now)
2326 {
2327 PTMTIMER const pNext = tmTimerGetNext(pQueue, pTimer);
2328 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2329 if (pCritSect)
2330 {
2331 STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
2332 PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
2333 STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
2334 }
2335 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n",
2336 pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName));
2337 bool fRc;
2338 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2339 if (fRc)
2340 {
2341 Assert(pTimer->idxScheduleNext == UINT32_MAX); /* this can trigger falsely */
2342
2343 /* unlink */
2344 const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer);
2345 if (pPrev)
2346 tmTimerSetNext(pQueue, pPrev, pNext);
2347 else
2348 {
2349 tmTimerQueueSetHead(pQueue, pQueue, pNext);
2350 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2351 }
2352 if (pNext)
2353 tmTimerSetPrev(pQueue, pNext, pPrev);
2354 pTimer->idxNext = UINT32_MAX;
2355 pTimer->idxPrev = UINT32_MAX;
2356
2357 /* fire */
2358 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2359 STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
2360 switch (pTimer->enmType)
2361 {
2362 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break;
2363 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break;
2364 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break;
2365 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break;
2366 default:
2367 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName));
2368 break;
2369 }
2370 STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
2371
2372 /* change the state if it wasn't changed already in the handler. */
2373 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2374 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2375 }
2376 if (pCritSect)
2377 PDMCritSectLeave(pVM, pCritSect);
2378
2379 /* Advance? */
2380 pTimer = pNext;
2381 if (!pTimer)
2382 break;
2383 } /* run loop */
2384}
2385
2386
2387/**
2388 * Service one regular timer queue.
2389 *
2390 * @param pVM The cross context VM structure.
2391 * @param pQueue The queue.
2392 */
2393static void tmR3TimerQueueDoOne(PVM pVM, PTMTIMERQUEUE pQueue)
2394{
2395 Assert(pQueue->enmClock != TMCLOCK_VIRTUAL_SYNC);
2396
2397 /*
2398 * Only one thread should be "doing" the queue.
2399 */
2400 if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false))
2401 {
2402 STAM_PROFILE_START(&pQueue->StatDo, s);
2403 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
2404
2405 if (pQueue->idxSchedule != UINT32_MAX)
2406 tmTimerQueueSchedule(pVM, pQueue, pQueue);
2407
2408 PTMTIMER pHead = tmTimerQueueGetHead(pQueue, pQueue);
2409 if (pHead)
2410 tmR3TimerQueueRun(pVM, pQueue, pHead);
2411
2412 PDMCritSectLeave(pVM, &pQueue->TimerLock);
2413 STAM_PROFILE_STOP(&pQueue->StatDo, s);
2414 ASMAtomicWriteBool(&pQueue->fBeingProcessed, false);
2415 }
2416}
2417
2418
2419/**
2420 * Schedules and runs any pending times in the timer queue for the
2421 * synchronous virtual clock.
2422 *
2423 * This scheduling is a bit different from the other queues as it need
2424 * to implement the special requirements of the timer synchronous virtual
2425 * clock, thus this 2nd queue run function.
2426 *
2427 * @param pVM The cross context VM structure.
2428 *
2429 * @remarks The caller must the Virtual Sync lock. Owning the TM lock is no
2430 * longer important.
2431 */
2432static void tmR3TimerQueueRunVirtualSync(PVM pVM)
2433{
2434 PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC];
2435 VM_ASSERT_EMT(pVM);
2436 Assert(PDMCritSectIsOwner(pVM, &pVM->tm.s.VirtualSyncLock));
2437
2438 /*
2439 * Any timers?
2440 */
2441 PTMTIMER pNext = tmTimerQueueGetHead(pQueue, pQueue);
2442 if (RT_UNLIKELY(!pNext))
2443 {
2444 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
2445 return;
2446 }
2447 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
2448
2449 /*
2450 * Calculate the time frame for which we will dispatch timers.
2451 *
2452 * We use a time frame ranging from the current sync time (which is most likely the
2453 * same as the head timer) and some configurable period (100000ns) up towards the
2454 * current virtual time. This period might also need to be restricted by the catch-up
2455 * rate so frequent calls to this function won't accelerate the time too much, however
2456 * this will be implemented at a later point if necessary.
2457 *
2458 * Without this frame we would 1) having to run timers much more frequently
2459 * and 2) lag behind at a steady rate.
2460 */
2461 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
2462 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
2463 uint64_t u64Now;
2464 if (!pVM->tm.s.fVirtualSyncTicking)
2465 {
2466 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
2467 u64Now = pVM->tm.s.u64VirtualSync;
2468 Assert(u64Now <= pNext->u64Expire);
2469 }
2470 else
2471 {
2472 /* Calc 'now'. */
2473 bool fStopCatchup = false;
2474 bool fUpdateStuff = false;
2475 uint64_t off = pVM->tm.s.offVirtualSync;
2476 if (pVM->tm.s.fVirtualSyncCatchUp)
2477 {
2478 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
2479 if (RT_LIKELY(!(u64Delta >> 32)))
2480 {
2481 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
2482 if (off > u64Sub + offSyncGivenUp)
2483 {
2484 off -= u64Sub;
2485 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
2486 }
2487 else
2488 {
2489 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2490 fStopCatchup = true;
2491 off = offSyncGivenUp;
2492 }
2493 fUpdateStuff = true;
2494 }
2495 }
2496 u64Now = u64VirtualNow - off;
2497
2498 /* Adjust against last returned time. */
2499 uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
2500 if (u64Last > u64Now)
2501 {
2502 u64Now = u64Last + 1;
2503 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
2504 }
2505
2506 /* Check if stopped by expired timer. */
2507 uint64_t const u64Expire = pNext->u64Expire;
2508 if (u64Now >= u64Expire)
2509 {
2510 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
2511 u64Now = u64Expire;
2512 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2513 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2514 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
2515 }
2516 else
2517 {
2518 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2519 if (fUpdateStuff)
2520 {
2521 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
2522 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
2523 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2524 if (fStopCatchup)
2525 {
2526 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2527 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
2528 }
2529 }
2530 }
2531 }
2532
2533 /* calc end of frame. */
2534 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
2535 if (u64Max > u64VirtualNow - offSyncGivenUp)
2536 u64Max = u64VirtualNow - offSyncGivenUp;
2537
2538 /* assert sanity */
2539 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
2540 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
2541 Assert(u64Now <= u64Max);
2542 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
2543
2544 /*
2545 * Process the expired timers moving the clock along as we progress.
2546 */
2547#ifdef VBOX_STRICT
2548 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2549#endif
2550 while (pNext && pNext->u64Expire <= u64Max)
2551 {
2552 /* Advance */
2553 PTMTIMER pTimer = pNext;
2554 pNext = tmTimerGetNext(pQueue, pTimer);
2555
2556 /* Take the associated lock. */
2557 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2558 if (pCritSect)
2559 {
2560 STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
2561 PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
2562 STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
2563 }
2564
2565 Log2(("tmR3TimerQueueRunVirtualSync: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n",
2566 pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName));
2567
2568 /* Advance the clock - don't permit timers to be out of order or armed
2569 in the 'past'. */
2570#ifdef VBOX_STRICT
2571 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->szName));
2572 u64Prev = pTimer->u64Expire;
2573#endif
2574 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2575 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2576
2577 /* Unlink it, change the state and do the callout. */
2578 tmTimerQueueUnlinkActive(pVM, pQueue, pQueue, pTimer);
2579 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2580 STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
2581 switch (pTimer->enmType)
2582 {
2583 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break;
2584 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break;
2585 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break;
2586 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break;
2587 default:
2588 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName));
2589 break;
2590 }
2591 STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
2592
2593 /* Change the state if it wasn't changed already in the handler.
2594 Reset the Hz hint too since this is the same as TMTimerStop. */
2595 bool fRc;
2596 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2597 if (fRc && pTimer->uHzHint)
2598 {
2599 if (pTimer->uHzHint >= pQueue->uMaxHzHint)
2600 ASMAtomicOrU64(&pVM->tm.s.HzHint.u64Combined, RT_BIT_32(TMCLOCK_VIRTUAL_SYNC) | RT_BIT_32(TMCLOCK_VIRTUAL_SYNC + 16));
2601 pTimer->uHzHint = 0;
2602 }
2603 Log2(("tmR3TimerQueueRunVirtualSync: new state %s\n", tmTimerState(pTimer->enmState)));
2604
2605 /* Leave the associated lock. */
2606 if (pCritSect)
2607 PDMCritSectLeave(pVM, pCritSect);
2608 } /* run loop */
2609
2610
2611 /*
2612 * Restart the clock if it was stopped to serve any timers,
2613 * and start/adjust catch-up if necessary.
2614 */
2615 if ( !pVM->tm.s.fVirtualSyncTicking
2616 && pVM->tm.s.cVirtualTicking)
2617 {
2618 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2619
2620 /* calc the slack we've handed out. */
2621 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2622 Assert(u64VirtualNow2 >= u64VirtualNow);
2623 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2624 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2625 STAM_STATS({
2626 if (offSlack)
2627 {
2628 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2629 p->cPeriods++;
2630 p->cTicks += offSlack;
2631 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2632 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2633 }
2634 });
2635
2636 /* Let the time run a little bit while we were busy running timers(?). */
2637 uint64_t u64Elapsed;
2638#define MAX_ELAPSED 30000U /* ns */
2639 if (offSlack > MAX_ELAPSED)
2640 u64Elapsed = 0;
2641 else
2642 {
2643 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2644 if (u64Elapsed > MAX_ELAPSED)
2645 u64Elapsed = MAX_ELAPSED;
2646 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2647 }
2648#undef MAX_ELAPSED
2649
2650 /* Calc the current offset. */
2651 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2652 Assert(!(offNew & RT_BIT_64(63)));
2653 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2654 Assert(!(offLag & RT_BIT_64(63)));
2655
2656 /*
2657 * Deal with starting, adjusting and stopping catchup.
2658 */
2659 if (pVM->tm.s.fVirtualSyncCatchUp)
2660 {
2661 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2662 {
2663 /* stop */
2664 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2665 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2666 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2667 }
2668 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2669 {
2670 /* adjust */
2671 unsigned i = 0;
2672 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2673 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2674 i++;
2675 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2676 {
2677 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2678 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2679 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2680 }
2681 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2682 }
2683 else
2684 {
2685 /* give up */
2686 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2687 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2688 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2689 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2690 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2691 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2692 }
2693 }
2694 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2695 {
2696 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2697 {
2698 /* start */
2699 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2700 unsigned i = 0;
2701 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2702 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2703 i++;
2704 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2705 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2706 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2707 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2708 }
2709 else
2710 {
2711 /* don't bother */
2712 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2713 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2714 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2715 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2716 }
2717 }
2718
2719 /*
2720 * Update the offset and restart the clock.
2721 */
2722 Assert(!(offNew & RT_BIT_64(63)));
2723 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2724 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2725 }
2726}
2727
2728
2729/**
2730 * Deals with stopped Virtual Sync clock.
2731 *
2732 * This is called by the forced action flag handling code in EM when it
2733 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2734 * will block on the VirtualSyncLock until the pending timers has been executed
2735 * and the clock restarted.
2736 *
2737 * @param pVM The cross context VM structure.
2738 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2739 *
2740 * @thread EMTs
2741 */
2742VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2743{
2744 Log2(("TMR3VirtualSyncFF:\n"));
2745
2746 /*
2747 * The EMT doing the timers is diverted to them.
2748 */
2749 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2750 TMR3TimerQueuesDo(pVM);
2751 /*
2752 * The other EMTs will block on the virtual sync lock and the first owner
2753 * will run the queue and thus restarting the clock.
2754 *
2755 * Note! This is very suboptimal code wrt to resuming execution when there
2756 * are more than two Virtual CPUs, since they will all have to enter
2757 * the critical section one by one. But it's a very simple solution
2758 * which will have to do the job for now.
2759 */
2760 else
2761 {
2762/** @todo Optimize for SMP */
2763 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2764 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2765 if (pVM->tm.s.fVirtualSyncTicking)
2766 {
2767 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2768 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
2769 Log2(("TMR3VirtualSyncFF: ticking\n"));
2770 }
2771 else
2772 {
2773 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
2774
2775 /* try run it. */
2776 PDMCritSectEnter(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock, VERR_IGNORED);
2777 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2778 if (pVM->tm.s.fVirtualSyncTicking)
2779 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2780 else
2781 {
2782 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2783 Log2(("TMR3VirtualSyncFF: running queue\n"));
2784
2785 Assert(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule == UINT32_MAX);
2786 tmR3TimerQueueRunVirtualSync(pVM);
2787 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2788 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2789
2790 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2791 }
2792 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
2793 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2794 PDMCritSectLeave(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock);
2795 }
2796 }
2797}
2798
2799
2800/**
2801 * Service the special virtual sync timer queue.
2802 *
2803 * @param pVM The cross context VM structure.
2804 * @param pVCpuDst The destination VCpu.
2805 */
2806static void tmR3TimerQueueDoVirtualSync(PVM pVM, PVMCPU pVCpuDst)
2807{
2808 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC];
2809 if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false))
2810 {
2811 STAM_PROFILE_START(&pQueue->StatDo, s1);
2812 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
2813 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2814 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2815 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
2816
2817 Assert(pQueue->idxSchedule == UINT32_MAX);
2818 tmR3TimerQueueRunVirtualSync(pVM);
2819 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2820 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2821
2822 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2823 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
2824 PDMCritSectLeave(pVM, &pQueue->TimerLock);
2825 STAM_PROFILE_STOP(&pQueue->StatDo, s1);
2826 ASMAtomicWriteBool(&pQueue->fBeingProcessed, false);
2827 }
2828}
2829
2830
2831/**
2832 * Schedules and runs any pending timers.
2833 *
2834 * This is normally called from a forced action handler in EMT.
2835 *
2836 * @param pVM The cross context VM structure.
2837 *
2838 * @thread EMT (actually EMT0, but we fend off the others)
2839 */
2840VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
2841{
2842 /*
2843 * Only the dedicated timer EMT should do stuff here.
2844 * (fRunningQueues is only used as an indicator.)
2845 */
2846 Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
2847 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
2848 if (VMMGetCpu(pVM) != pVCpuDst)
2849 {
2850 Assert(pVM->cCpus > 1);
2851 return;
2852 }
2853 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
2854 Log2(("TMR3TimerQueuesDo:\n"));
2855 Assert(!pVM->tm.s.fRunningQueues);
2856 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
2857
2858 /*
2859 * Process the queues.
2860 */
2861 AssertCompile(TMCLOCK_MAX == 4);
2862
2863 /*
2864 * TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF)
2865 */
2866 tmR3TimerQueueDoVirtualSync(pVM, pVCpuDst);
2867
2868 /*
2869 * TMCLOCK_VIRTUAL
2870 */
2871 tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL]);
2872
2873 /*
2874 * TMCLOCK_TSC
2875 */
2876 Assert(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxActive == UINT32_MAX); /* not used */
2877
2878 /*
2879 * TMCLOCK_REAL
2880 */
2881 tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL]);
2882
2883#ifdef VBOX_STRICT
2884 /* check that we didn't screw up. */
2885 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
2886#endif
2887
2888 /* done */
2889 Log2(("TMR3TimerQueuesDo: returns void\n"));
2890 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
2891 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
2892}
2893
2894
2895
2896/** @name Saved state values
2897 * @{ */
2898#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2899#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2900/** @} */
2901
2902
2903/**
2904 * Saves the state of a timer to a saved state.
2905 *
2906 * @returns VBox status code.
2907 * @param pVM The cross context VM structure.
2908 * @param hTimer Timer to save.
2909 * @param pSSM Save State Manager handle.
2910 */
2911VMMR3DECL(int) TMR3TimerSave(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM)
2912{
2913 VM_ASSERT_EMT(pVM);
2914 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
2915 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM));
2916
2917 switch (pTimer->enmState)
2918 {
2919 case TMTIMERSTATE_STOPPED:
2920 case TMTIMERSTATE_PENDING_STOP:
2921 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2922 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2923
2924 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2925 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2926 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->szName));
2927 if (!RTThreadYield())
2928 RTThreadSleep(1);
2929 RT_FALL_THRU();
2930 case TMTIMERSTATE_ACTIVE:
2931 case TMTIMERSTATE_PENDING_SCHEDULE:
2932 case TMTIMERSTATE_PENDING_RESCHEDULE:
2933 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2934 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2935
2936 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2937 case TMTIMERSTATE_EXPIRED_DELIVER:
2938 case TMTIMERSTATE_DESTROY:
2939 case TMTIMERSTATE_FREE:
2940 case TMTIMERSTATE_INVALID:
2941 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->szName));
2942 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2943 }
2944
2945 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->szName));
2946 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2947}
2948
2949
2950/**
2951 * Loads the state of a timer from a saved state.
2952 *
2953 * @returns VBox status code.
2954 * @param pVM The cross context VM structure.
2955 * @param hTimer Handle of Timer to restore.
2956 * @param pSSM Save State Manager handle.
2957 */
2958VMMR3DECL(int) TMR3TimerLoad(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM)
2959{
2960 VM_ASSERT_EMT(pVM);
2961 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
2962 Assert(pSSM);
2963 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM));
2964
2965 /*
2966 * Load the state and validate it.
2967 */
2968 uint8_t u8State;
2969 int rc = SSMR3GetU8(pSSM, &u8State);
2970 if (RT_FAILURE(rc))
2971 return rc;
2972
2973 /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
2974 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2975 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2976 u8State--;
2977
2978 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2979 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2980 {
2981 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2982 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2983 }
2984
2985 /* Enter the critical sections to make TMTimerSet/Stop happy. */
2986 if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC)
2987 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2988 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2989 if (pCritSect)
2990 PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
2991
2992 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2993 {
2994 /*
2995 * Load the expire time.
2996 */
2997 uint64_t u64Expire;
2998 rc = SSMR3GetU64(pSSM, &u64Expire);
2999 if (RT_FAILURE(rc))
3000 return rc;
3001
3002 /*
3003 * Set it.
3004 */
3005 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
3006 rc = TMTimerSet(pVM, hTimer, u64Expire);
3007 }
3008 else
3009 {
3010 /*
3011 * Stop it.
3012 */
3013 Log(("u8State=%d\n", u8State));
3014 rc = TMTimerStop(pVM, hTimer);
3015 }
3016
3017 if (pCritSect)
3018 PDMCritSectLeave(pVM, pCritSect);
3019 if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC)
3020 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
3021
3022 /*
3023 * On failure set SSM status.
3024 */
3025 if (RT_FAILURE(rc))
3026 rc = SSMR3HandleSetStatus(pSSM, rc);
3027 return rc;
3028}
3029
3030
3031/**
3032 * Skips the state of a timer in a given saved state.
3033 *
3034 * @returns VBox status.
3035 * @param pSSM Save State Manager handle.
3036 * @param pfActive Where to store whether the timer was active
3037 * when the state was saved.
3038 */
3039VMMR3DECL(int) TMR3TimerSkip(PSSMHANDLE pSSM, bool *pfActive)
3040{
3041 Assert(pSSM); AssertPtr(pfActive);
3042 LogFlow(("TMR3TimerSkip: pSSM=%p pfActive=%p\n", pSSM, pfActive));
3043
3044 /*
3045 * Load the state and validate it.
3046 */
3047 uint8_t u8State;
3048 int rc = SSMR3GetU8(pSSM, &u8State);
3049 if (RT_FAILURE(rc))
3050 return rc;
3051
3052 /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
3053 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
3054 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
3055 u8State--;
3056
3057 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
3058 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
3059 {
3060 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
3061 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
3062 }
3063
3064 *pfActive = (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
3065 if (*pfActive)
3066 {
3067 /*
3068 * Load the expire time.
3069 */
3070 uint64_t u64Expire;
3071 rc = SSMR3GetU64(pSSM, &u64Expire);
3072 }
3073
3074 return rc;
3075}
3076
3077
3078/**
3079 * Associates a critical section with a timer.
3080 *
3081 * The critical section will be entered prior to doing the timer call back, thus
3082 * avoiding potential races between the timer thread and other threads trying to
3083 * stop or adjust the timer expiration while it's being delivered. The timer
3084 * thread will leave the critical section when the timer callback returns.
3085 *
3086 * In strict builds, ownership of the critical section will be asserted by
3087 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
3088 * runtime).
3089 *
3090 * @retval VINF_SUCCESS on success.
3091 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
3092 * (asserted).
3093 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
3094 * (asserted).
3095 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
3096 * with the timer (asserted).
3097 * @retval VERR_INVALID_STATE if the timer isn't stopped.
3098 *
3099 * @param pVM The cross context VM structure.
3100 * @param hTimer The timer handle.
3101 * @param pCritSect The critical section. The caller must make sure this
3102 * is around for the life time of the timer.
3103 *
3104 * @thread Any, but the caller is responsible for making sure the timer is not
3105 * active.
3106 */
3107VMMR3DECL(int) TMR3TimerSetCritSect(PVM pVM, TMTIMERHANDLE hTimer, PPDMCRITSECT pCritSect)
3108{
3109 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
3110 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
3111 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
3112 AssertReturn(pszName, VERR_INVALID_PARAMETER);
3113 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
3114 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
3115 AssertReturn( pTimer->enmType == TMTIMERTYPE_DEV
3116 || pTimer->enmType == TMTIMERTYPE_DRV
3117 || pTimer->enmType == TMTIMERTYPE_USB,
3118 VERR_NOT_SUPPORTED); /* Not supported on internal timers, see tmRZTimerGetCritSect. */
3119 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->szName, pCritSect, pszName));
3120
3121 pTimer->pCritSect = pCritSect;
3122 return VINF_SUCCESS;
3123}
3124
3125
3126/**
3127 * Get the real world UTC time adjusted for VM lag.
3128 *
3129 * @returns pTime.
3130 * @param pVM The cross context VM structure.
3131 * @param pTime Where to store the time.
3132 */
3133VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
3134{
3135 /*
3136 * Get a stable set of VirtualSync parameters and calc the lag.
3137 */
3138 uint64_t offVirtualSync;
3139 uint64_t offVirtualSyncGivenUp;
3140 do
3141 {
3142 offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
3143 offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp);
3144 } while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync);
3145
3146 Assert(offVirtualSync >= offVirtualSyncGivenUp);
3147 uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp;
3148
3149 /*
3150 * Get current time and adjust for virtual sync lag and do time displacement.
3151 */
3152 RTTimeNow(pTime);
3153 RTTimeSpecSubNano(pTime, offLag);
3154 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
3155
3156 /*
3157 * Log details if the time changed radically (also triggers on first call).
3158 */
3159 int64_t nsPrev = ASMAtomicXchgS64(&pVM->tm.s.nsLastUtcNow, RTTimeSpecGetNano(pTime));
3160 int64_t cNsDelta = RTTimeSpecGetNano(pTime) - nsPrev;
3161 if ((uint64_t)RT_ABS(cNsDelta) > RT_NS_1HOUR / 2)
3162 {
3163 RTTIMESPEC NowAgain;
3164 RTTimeNow(&NowAgain);
3165 LogRel(("TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
3166 RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain)));
3167 if (pVM->tm.s.pszUtcTouchFileOnJump && nsPrev != 0)
3168 {
3169 RTFILE hFile;
3170 int rc = RTFileOpen(&hFile, pVM->tm.s.pszUtcTouchFileOnJump,
3171 RTFILE_O_WRITE | RTFILE_O_APPEND | RTFILE_O_OPEN_CREATE | RTFILE_O_DENY_NONE);
3172 if (RT_SUCCESS(rc))
3173 {
3174 char szMsg[256];
3175 size_t cch;
3176 cch = RTStrPrintf(szMsg, sizeof(szMsg),
3177 "TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
3178 RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain));
3179 RTFileWrite(hFile, szMsg, cch, NULL);
3180 RTFileClose(hFile);
3181 }
3182 }
3183 }
3184
3185 return pTime;
3186}
3187
3188
3189/**
3190 * Pauses all clocks except TMCLOCK_REAL.
3191 *
3192 * @returns VBox status code, all errors are asserted.
3193 * @param pVM The cross context VM structure.
3194 * @param pVCpu The cross context virtual CPU structure.
3195 * @thread EMT corresponding to Pointer to the VMCPU.
3196 */
3197VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
3198{
3199 VMCPU_ASSERT_EMT(pVCpu);
3200 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
3201
3202 /*
3203 * The shared virtual clock (includes virtual sync which is tied to it).
3204 */
3205 int rc = tmVirtualPauseLocked(pVM);
3206 AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
3207
3208 /*
3209 * Pause the TSC last since it is normally linked to the virtual
3210 * sync clock, so the above code may actually stop both clocks.
3211 */
3212 if (!pVM->tm.s.fTSCTiedToExecution)
3213 {
3214 rc = tmCpuTickPauseLocked(pVM, pVCpu);
3215 AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
3216 }
3217
3218#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3219 /*
3220 * Update cNsTotal and stats.
3221 */
3222 Assert(!pVCpu->tm.s.fSuspended);
3223 uint64_t const cNsTotalNew = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal;
3224 uint64_t const cNsOtherNew = cNsTotalNew - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
3225
3226# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
3227 STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsTotal, cNsTotalNew - pVCpu->tm.s.cNsTotalStat);
3228 int64_t const cNsOtherNewDelta = cNsOtherNew - pVCpu->tm.s.cNsOtherStat;
3229 if (cNsOtherNewDelta > 0)
3230 STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsOther, (uint64_t)cNsOtherNewDelta);
3231# endif
3232
3233 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
3234 pVCpu->tm.s.nsStartTotal = cNsTotalNew;
3235 pVCpu->tm.s.fSuspended = true;
3236 pVCpu->tm.s.cNsTotalStat = cNsTotalNew;
3237 pVCpu->tm.s.cNsOtherStat = cNsOtherNew;
3238 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
3239#endif
3240
3241 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
3242 return VINF_SUCCESS;
3243}
3244
3245
3246/**
3247 * Resumes all clocks except TMCLOCK_REAL.
3248 *
3249 * @returns VBox status code, all errors are asserted.
3250 * @param pVM The cross context VM structure.
3251 * @param pVCpu The cross context virtual CPU structure.
3252 * @thread EMT corresponding to Pointer to the VMCPU.
3253 */
3254VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
3255{
3256 VMCPU_ASSERT_EMT(pVCpu);
3257 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
3258
3259#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3260 /*
3261 * Set u64NsTsStartTotal. There is no need to back this out if either of
3262 * the two calls below fail.
3263 */
3264 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
3265 pVCpu->tm.s.nsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal;
3266 pVCpu->tm.s.fSuspended = false;
3267 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
3268#endif
3269
3270 /*
3271 * Resume the TSC first since it is normally linked to the virtual sync
3272 * clock, so it may actually not be resumed until we've executed the code
3273 * below.
3274 */
3275 if (!pVM->tm.s.fTSCTiedToExecution)
3276 {
3277 int rc = tmCpuTickResumeLocked(pVM, pVCpu);
3278 AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
3279 }
3280
3281 /*
3282 * The shared virtual clock (includes virtual sync which is tied to it).
3283 */
3284 int rc = tmVirtualResumeLocked(pVM);
3285
3286 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
3287 return rc;
3288}
3289
3290
3291/**
3292 * Sets the warp drive percent of the virtual time.
3293 *
3294 * @returns VBox status code.
3295 * @param pUVM The user mode VM structure.
3296 * @param u32Percent The new percentage. 100 means normal operation.
3297 */
3298VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
3299{
3300 return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent);
3301}
3302
3303
3304/**
3305 * EMT worker for TMR3SetWarpDrive.
3306 *
3307 * @returns VBox status code.
3308 * @param pUVM The user mode VM handle.
3309 * @param u32Percent See TMR3SetWarpDrive().
3310 * @internal
3311 */
3312static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
3313{
3314 PVM pVM = pUVM->pVM;
3315 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3316 PVMCPU pVCpu = VMMGetCpu(pVM);
3317
3318 /*
3319 * Validate it.
3320 */
3321 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
3322 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
3323 VERR_INVALID_PARAMETER);
3324
3325/** @todo This isn't a feature specific to virtual time, move the variables to
3326 * TM level and make it affect TMR3UTCNow as well! */
3327
3328 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
3329
3330 /*
3331 * If the time is running we'll have to pause it before we can change
3332 * the warp drive settings.
3333 */
3334 bool fPaused = !!pVM->tm.s.cVirtualTicking;
3335 if (fPaused) /** @todo this isn't really working, but wtf. */
3336 TMR3NotifySuspend(pVM, pVCpu);
3337
3338 /** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */
3339 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
3340 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
3341 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
3342 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
3343
3344 if (fPaused)
3345 TMR3NotifyResume(pVM, pVCpu);
3346
3347 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
3348 return VINF_SUCCESS;
3349}
3350
3351
3352/**
3353 * Gets the current TMCLOCK_VIRTUAL time without checking
3354 * timers or anything.
3355 *
3356 * @returns The timestamp.
3357 * @param pUVM The user mode VM structure.
3358 *
3359 * @remarks See TMVirtualGetNoCheck.
3360 */
3361VMMR3DECL(uint64_t) TMR3TimeVirtGet(PUVM pUVM)
3362{
3363 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3364 PVM pVM = pUVM->pVM;
3365 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3366 return TMVirtualGetNoCheck(pVM);
3367}
3368
3369
3370/**
3371 * Gets the current TMCLOCK_VIRTUAL time in milliseconds without checking
3372 * timers or anything.
3373 *
3374 * @returns The timestamp in milliseconds.
3375 * @param pUVM The user mode VM structure.
3376 *
3377 * @remarks See TMVirtualGetNoCheck.
3378 */
3379VMMR3DECL(uint64_t) TMR3TimeVirtGetMilli(PUVM pUVM)
3380{
3381 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3382 PVM pVM = pUVM->pVM;
3383 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3384 return TMVirtualToMilli(pVM, TMVirtualGetNoCheck(pVM));
3385}
3386
3387
3388/**
3389 * Gets the current TMCLOCK_VIRTUAL time in microseconds without checking
3390 * timers or anything.
3391 *
3392 * @returns The timestamp in microseconds.
3393 * @param pUVM The user mode VM structure.
3394 *
3395 * @remarks See TMVirtualGetNoCheck.
3396 */
3397VMMR3DECL(uint64_t) TMR3TimeVirtGetMicro(PUVM pUVM)
3398{
3399 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3400 PVM pVM = pUVM->pVM;
3401 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3402 return TMVirtualToMicro(pVM, TMVirtualGetNoCheck(pVM));
3403}
3404
3405
3406/**
3407 * Gets the current TMCLOCK_VIRTUAL time in nanoseconds without checking
3408 * timers or anything.
3409 *
3410 * @returns The timestamp in nanoseconds.
3411 * @param pUVM The user mode VM structure.
3412 *
3413 * @remarks See TMVirtualGetNoCheck.
3414 */
3415VMMR3DECL(uint64_t) TMR3TimeVirtGetNano(PUVM pUVM)
3416{
3417 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3418 PVM pVM = pUVM->pVM;
3419 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3420 return TMVirtualToNano(pVM, TMVirtualGetNoCheck(pVM));
3421}
3422
3423
3424/**
3425 * Gets the current warp drive percent.
3426 *
3427 * @returns The warp drive percent.
3428 * @param pUVM The user mode VM structure.
3429 */
3430VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM)
3431{
3432 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX);
3433 PVM pVM = pUVM->pVM;
3434 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
3435 return pVM->tm.s.u32VirtualWarpDrivePercentage;
3436}
3437
3438
3439#if 0 /* unused - needs a little updating after @bugref{9941}*/
3440/**
3441 * Gets the performance information for one virtual CPU as seen by the VMM.
3442 *
3443 * The returned times covers the period where the VM is running and will be
3444 * reset when restoring a previous VM state (at least for the time being).
3445 *
3446 * @retval VINF_SUCCESS on success.
3447 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
3448 * @retval VERR_INVALID_STATE if the VM handle is bad.
3449 * @retval VERR_INVALID_CPU_ID if idCpu is out of range.
3450 *
3451 * @param pVM The cross context VM structure.
3452 * @param idCpu The ID of the virtual CPU which times to get.
3453 * @param pcNsTotal Where to store the total run time (nano seconds) of
3454 * the CPU, i.e. the sum of the three other returns.
3455 * Optional.
3456 * @param pcNsExecuting Where to store the time (nano seconds) spent
3457 * executing guest code. Optional.
3458 * @param pcNsHalted Where to store the time (nano seconds) spent
3459 * halted. Optional
3460 * @param pcNsOther Where to store the time (nano seconds) spent
3461 * preempted by the host scheduler, on virtualization
3462 * overhead and on other tasks.
3463 */
3464VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
3465 uint64_t *pcNsHalted, uint64_t *pcNsOther)
3466{
3467 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
3468 AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
3469
3470#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3471 /*
3472 * Get a stable result set.
3473 * This should be way quicker than an EMT request.
3474 */
3475 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3476 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3477 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
3478 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3479 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3480 uint64_t cNsOther = pVCpu->tm.s.cNsOther;
3481 while ( (uTimesGen & 1) /* update in progress */
3482 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
3483 {
3484 RTThreadYield();
3485 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3486 cNsTotal = pVCpu->tm.s.cNsTotal;
3487 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3488 cNsHalted = pVCpu->tm.s.cNsHalted;
3489 cNsOther = pVCpu->tm.s.cNsOther;
3490 }
3491
3492 /*
3493 * Fill in the return values.
3494 */
3495 if (pcNsTotal)
3496 *pcNsTotal = cNsTotal;
3497 if (pcNsExecuting)
3498 *pcNsExecuting = cNsExecuting;
3499 if (pcNsHalted)
3500 *pcNsHalted = cNsHalted;
3501 if (pcNsOther)
3502 *pcNsOther = cNsOther;
3503
3504 return VINF_SUCCESS;
3505
3506#else
3507 return VERR_NOT_IMPLEMENTED;
3508#endif
3509}
3510#endif /* unused */
3511
3512
3513/**
3514 * Gets the performance information for one virtual CPU as seen by the VMM in
3515 * percents.
3516 *
3517 * The returned times covers the period where the VM is running and will be
3518 * reset when restoring a previous VM state (at least for the time being).
3519 *
3520 * @retval VINF_SUCCESS on success.
3521 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
3522 * @retval VERR_INVALID_VM_HANDLE if the VM handle is bad.
3523 * @retval VERR_INVALID_CPU_ID if idCpu is out of range.
3524 *
3525 * @param pUVM The usermode VM structure.
3526 * @param idCpu The ID of the virtual CPU which times to get.
3527 * @param pcMsInterval Where to store the interval of the percentages in
3528 * milliseconds. Optional.
3529 * @param pcPctExecuting Where to return the percentage of time spent
3530 * executing guest code. Optional.
3531 * @param pcPctHalted Where to return the percentage of time spent halted.
3532 * Optional
3533 * @param pcPctOther Where to return the percentage of time spent
3534 * preempted by the host scheduler, on virtualization
3535 * overhead and on other tasks.
3536 */
3537VMMR3DECL(int) TMR3GetCpuLoadPercents(PUVM pUVM, VMCPUID idCpu, uint64_t *pcMsInterval, uint8_t *pcPctExecuting,
3538 uint8_t *pcPctHalted, uint8_t *pcPctOther)
3539{
3540 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
3541 PVM pVM = pUVM->pVM;
3542 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3543 AssertReturn(idCpu == VMCPUID_ALL || idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
3544
3545#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3546 TMCPULOADSTATE volatile *pState;
3547 if (idCpu == VMCPUID_ALL)
3548 pState = &pVM->tm.s.CpuLoad;
3549 else
3550 pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
3551
3552 if (pcMsInterval)
3553 *pcMsInterval = RT_MS_1SEC;
3554 if (pcPctExecuting)
3555 *pcPctExecuting = pState->cPctExecuting;
3556 if (pcPctHalted)
3557 *pcPctHalted = pState->cPctHalted;
3558 if (pcPctOther)
3559 *pcPctOther = pState->cPctOther;
3560
3561 return VINF_SUCCESS;
3562
3563#else
3564 RT_NOREF(pcMsInterval, pcPctExecuting, pcPctHalted, pcPctOther);
3565 return VERR_NOT_IMPLEMENTED;
3566#endif
3567}
3568
3569#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3570
3571/**
3572 * Helper for tmR3CpuLoadTimer.
3573 * @returns
3574 * @param pState The state to update.
3575 * @param cNsTotal Total time.
3576 * @param cNsExecuting Time executing.
3577 * @param cNsHalted Time halted.
3578 */
3579DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState, uint64_t cNsTotal, uint64_t cNsExecuting, uint64_t cNsHalted)
3580{
3581 /* Calc & update deltas */
3582 uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
3583 uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
3584 uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
3585
3586 if (cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta)
3587 { /* likely */ }
3588 else
3589 {
3590 /* Just adjust the executing and halted values down to match the total delta. */
3591 uint64_t const cNsExecAndHalted = cNsExecutingDelta + cNsHaltedDelta;
3592 uint64_t const cNsAdjust = cNsExecAndHalted - cNsTotalDelta + cNsTotalDelta / 64;
3593 cNsExecutingDelta -= (cNsAdjust * cNsExecutingDelta + cNsExecAndHalted - 1) / cNsExecAndHalted;
3594 cNsHaltedDelta -= (cNsAdjust * cNsHaltedDelta + cNsExecAndHalted - 1) / cNsExecAndHalted;
3595 /*Assert(cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta); - annoying when debugging */
3596 }
3597
3598 pState->cNsPrevExecuting = cNsExecuting;
3599 pState->cNsPrevHalted = cNsHalted;
3600 pState->cNsPrevTotal = cNsTotal;
3601
3602 /* Calc pcts. */
3603 uint8_t cPctExecuting, cPctHalted, cPctOther;
3604 if (!cNsTotalDelta)
3605 {
3606 cPctExecuting = 0;
3607 cPctHalted = 100;
3608 cPctOther = 0;
3609 }
3610 else if (cNsTotalDelta < UINT64_MAX / 4)
3611 {
3612 cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
3613 cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
3614 cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
3615 }
3616 else
3617 {
3618 cPctExecuting = 0;
3619 cPctHalted = 100;
3620 cPctOther = 0;
3621 }
3622
3623 /* Update percentages: */
3624 size_t idxHistory = pState->idxHistory + 1;
3625 if (idxHistory >= RT_ELEMENTS(pState->aHistory))
3626 idxHistory = 0;
3627
3628 pState->cPctExecuting = cPctExecuting;
3629 pState->cPctHalted = cPctHalted;
3630 pState->cPctOther = cPctOther;
3631
3632 pState->aHistory[idxHistory].cPctExecuting = cPctExecuting;
3633 pState->aHistory[idxHistory].cPctHalted = cPctHalted;
3634 pState->aHistory[idxHistory].cPctOther = cPctOther;
3635
3636 pState->idxHistory = (uint16_t)idxHistory;
3637 if (pState->cHistoryEntries < RT_ELEMENTS(pState->aHistory))
3638 pState->cHistoryEntries++;
3639}
3640
3641
3642/**
3643 * @callback_method_impl{FNTMTIMERINT,
3644 * Timer callback that calculates the CPU load since the last
3645 * time it was called.}
3646 */
3647static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
3648{
3649 /*
3650 * Re-arm the timer first.
3651 */
3652 int rc = TMTimerSetMillies(pVM, hTimer, 1000);
3653 AssertLogRelRC(rc);
3654 NOREF(pvUser);
3655
3656 /*
3657 * Update the values for each CPU.
3658 */
3659 uint64_t cNsTotalAll = 0;
3660 uint64_t cNsExecutingAll = 0;
3661 uint64_t cNsHaltedAll = 0;
3662 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3663 {
3664 PVMCPU pVCpu = pVM->apCpusR3[iCpu];
3665
3666 /* Try get a stable data set. */
3667 uint32_t cTries = 3;
3668 uint64_t nsNow = RTTimeNanoTS();
3669 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3670 bool fSuspended = pVCpu->tm.s.fSuspended;
3671 uint64_t nsStartTotal = pVCpu->tm.s.nsStartTotal;
3672 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3673 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3674 while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
3675 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
3676 {
3677 if (!--cTries)
3678 break;
3679 ASMNopPause();
3680 nsNow = RTTimeNanoTS();
3681 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3682 fSuspended = pVCpu->tm.s.fSuspended;
3683 nsStartTotal = pVCpu->tm.s.nsStartTotal;
3684 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3685 cNsHalted = pVCpu->tm.s.cNsHalted;
3686 }
3687
3688 /* Totals */
3689 uint64_t cNsTotal = fSuspended ? nsStartTotal : nsNow - nsStartTotal;
3690 cNsTotalAll += cNsTotal;
3691 cNsExecutingAll += cNsExecuting;
3692 cNsHaltedAll += cNsHalted;
3693
3694 /* Calc the PCTs and update the state. */
3695 tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
3696
3697 /* Tell the VCpu to update the other and total stat members. */
3698 ASMAtomicWriteBool(&pVCpu->tm.s.fUpdateStats, true);
3699 }
3700
3701 /*
3702 * Update the value for all the CPUs.
3703 */
3704 tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
3705
3706}
3707
3708#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
3709
3710
3711/**
3712 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3713 * Worker for TMR3CpuTickParavirtEnable}
3714 */
3715static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3716{
3717 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData);
3718 Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API); /** @todo figure out NEM/win and paravirt */
3719 Assert(tmR3HasFixedTSC(pVM));
3720
3721 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
3722 {
3723 /*
3724 * The return value of TMCpuTickGet() and the guest's TSC value for each
3725 * CPU must remain constant across the TM TSC mode-switch. Thus we have
3726 * the following equation (new/old signifies the new/old tsc modes):
3727 * uNewTsc = uOldTsc
3728 *
3729 * Where (see tmCpuTickGetInternal):
3730 * uOldTsc = uRawOldTsc - offTscRawSrcOld
3731 * uNewTsc = uRawNewTsc - offTscRawSrcNew
3732 *
3733 * Solve it for offTscRawSrcNew without replacing uOldTsc:
3734 * uRawNewTsc - offTscRawSrcNew = uOldTsc
3735 * => -offTscRawSrcNew = uOldTsc - uRawNewTsc
3736 * => offTscRawSrcNew = uRawNewTsc - uOldTsc
3737 */
3738 uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3739 uint64_t uRawNewTsc = SUPReadTsc();
3740 uint32_t cCpus = pVM->cCpus;
3741 for (uint32_t i = 0; i < cCpus; i++)
3742 {
3743 PVMCPU pVCpu = pVM->apCpusR3[i];
3744 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3745 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3746 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3747 }
3748
3749 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3750 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3751 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
3752 }
3753 return VINF_SUCCESS;
3754}
3755
3756
3757/**
3758 * Notify TM that the guest has enabled usage of a paravirtualized TSC.
3759 *
3760 * This may perform a EMT rendezvous and change the TSC virtualization mode.
3761 *
3762 * @returns VBox status code.
3763 * @param pVM The cross context VM structure.
3764 */
3765VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM)
3766{
3767 int rc = VINF_SUCCESS;
3768 if (pVM->tm.s.fTSCModeSwitchAllowed)
3769 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL);
3770 else
3771 LogRel(("TM: Host/VM is not suitable for using TSC mode '%s', request to change TSC mode ignored\n",
3772 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3773 pVM->tm.s.fParavirtTscEnabled = true;
3774 return rc;
3775}
3776
3777
3778/**
3779 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3780 * Worker for TMR3CpuTickParavirtDisable}
3781 */
3782static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3783{
3784 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt);
3785 RT_NOREF1(pvData);
3786
3787 if ( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3788 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
3789 {
3790 /*
3791 * See tmR3CpuTickParavirtEnable for an explanation of the conversion math.
3792 */
3793 uint64_t uRawOldTsc = SUPReadTsc();
3794 uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3795 uint32_t cCpus = pVM->cCpus;
3796 for (uint32_t i = 0; i < cCpus; i++)
3797 {
3798 PVMCPU pVCpu = pVM->apCpusR3[i];
3799 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3800 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3801 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3802
3803 /* Update the last-seen tick here as we havent't been updating it (as we don't
3804 need it) while in pure TSC-offsetting mode. */
3805 pVCpu->tm.s.u64TSCLastSeen = uOldTsc;
3806 }
3807
3808 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3809 tmR3GetTSCModeNameEx(pVM->tm.s.enmOriginalTSCMode)));
3810 pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode;
3811 }
3812 return VINF_SUCCESS;
3813}
3814
3815
3816/**
3817 * Notify TM that the guest has disabled usage of a paravirtualized TSC.
3818 *
3819 * If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will
3820 * perform an EMT rendezvous to revert those changes.
3821 *
3822 * @returns VBox status code.
3823 * @param pVM The cross context VM structure.
3824 */
3825VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM)
3826{
3827 int rc = VINF_SUCCESS;
3828 if (pVM->tm.s.fTSCModeSwitchAllowed)
3829 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL);
3830 pVM->tm.s.fParavirtTscEnabled = false;
3831 return rc;
3832}
3833
3834
3835/**
3836 * Check whether the guest can be presented a fixed rate & monotonic TSC.
3837 *
3838 * @returns true if TSC is stable, false otherwise.
3839 * @param pVM The cross context VM structure.
3840 * @param fWithParavirtEnabled Whether it's fixed & monotonic when
3841 * paravirt. TSC is enabled or not.
3842 *
3843 * @remarks Must be called only after TMR3InitFinalize().
3844 */
3845VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled)
3846{
3847 /** @todo figure out what exactly we want here later. */
3848 NOREF(fWithParavirtEnabled);
3849 PSUPGLOBALINFOPAGE pGip;
3850 return tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */
3851 && ( (pGip = g_pSUPGlobalInfoPage) == NULL /* Can be NULL in driverless mode. */
3852 || (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)); /* GIP thinks it's monotonic. */
3853}
3854
3855
3856/**
3857 * Gets the 5 char clock name for the info tables.
3858 *
3859 * @returns The name.
3860 * @param enmClock The clock.
3861 */
3862DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock)
3863{
3864 switch (enmClock)
3865 {
3866 case TMCLOCK_REAL: return "Real ";
3867 case TMCLOCK_VIRTUAL: return "Virt ";
3868 case TMCLOCK_VIRTUAL_SYNC: return "VrSy ";
3869 case TMCLOCK_TSC: return "TSC ";
3870 default: return "Bad ";
3871 }
3872}
3873
3874
3875/**
3876 * Display all timers.
3877 *
3878 * @param pVM The cross context VM structure.
3879 * @param pHlp The info helpers.
3880 * @param pszArgs Arguments, ignored.
3881 */
3882static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3883{
3884 NOREF(pszArgs);
3885 pHlp->pfnPrintf(pHlp,
3886 "Timers (pVM=%p)\n"
3887 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3888 pVM,
3889 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3890 sizeof(int32_t) * 2, "offNext ",
3891 sizeof(int32_t) * 2, "offPrev ",
3892 sizeof(int32_t) * 2, "offSched ",
3893 "Time",
3894 "Expire",
3895 "HzHint",
3896 "State");
3897 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
3898 {
3899 PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
3900 const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock);
3901 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
3902 for (uint32_t idxTimer = 0; idxTimer < pQueue->cTimersAlloc; idxTimer++)
3903 {
3904 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
3905 TMTIMERSTATE enmState = pTimer->enmState;
3906 if (enmState < TMTIMERSTATE_DESTROY && enmState > TMTIMERSTATE_INVALID)
3907 pHlp->pfnPrintf(pHlp,
3908 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3909 pTimer,
3910 pTimer->idxNext,
3911 pTimer->idxPrev,
3912 pTimer->idxScheduleNext,
3913 pszClock,
3914 TMTimerGet(pVM, pTimer->hSelf),
3915 pTimer->u64Expire,
3916 pTimer->uHzHint,
3917 tmTimerState(enmState),
3918 pTimer->szName);
3919 }
3920 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
3921 }
3922}
3923
3924
3925/**
3926 * Display all active timers.
3927 *
3928 * @param pVM The cross context VM structure.
3929 * @param pHlp The info helpers.
3930 * @param pszArgs Arguments, ignored.
3931 */
3932static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3933{
3934 NOREF(pszArgs);
3935 pHlp->pfnPrintf(pHlp,
3936 "Active Timers (pVM=%p)\n"
3937 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3938 pVM,
3939 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3940 sizeof(int32_t) * 2, "offNext ",
3941 sizeof(int32_t) * 2, "offPrev ",
3942 sizeof(int32_t) * 2, "offSched ",
3943 "Time",
3944 "Expire",
3945 "HzHint",
3946 "State");
3947 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
3948 {
3949 PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
3950 const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock);
3951 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
3952 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
3953
3954 for (PTMTIMERR3 pTimer = tmTimerQueueGetHead(pQueue, pQueue);
3955 pTimer;
3956 pTimer = tmTimerGetNext(pQueue, pTimer))
3957 {
3958 pHlp->pfnPrintf(pHlp,
3959 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3960 pTimer,
3961 pTimer->idxNext,
3962 pTimer->idxPrev,
3963 pTimer->idxScheduleNext,
3964 pszClock,
3965 TMTimerGet(pVM, pTimer->hSelf),
3966 pTimer->u64Expire,
3967 pTimer->uHzHint,
3968 tmTimerState(pTimer->enmState),
3969 pTimer->szName);
3970 }
3971
3972 PDMCritSectLeave(pVM, &pQueue->TimerLock);
3973 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
3974 }
3975}
3976
3977
3978/**
3979 * Display all clocks.
3980 *
3981 * @param pVM The cross context VM structure.
3982 * @param pHlp The info helpers.
3983 * @param pszArgs Arguments, ignored.
3984 */
3985static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3986{
3987 NOREF(pszArgs);
3988
3989 /*
3990 * Read the times first to avoid more than necessary time variation.
3991 */
3992 const uint64_t u64Virtual = TMVirtualGet(pVM);
3993 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
3994 const uint64_t u64Real = TMRealGet(pVM);
3995
3996 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3997 {
3998 PVMCPU pVCpu = pVM->apCpusR3[i];
3999 uint64_t u64TSC = TMCpuTickGet(pVCpu);
4000
4001 /*
4002 * TSC
4003 */
4004 pHlp->pfnPrintf(pHlp,
4005 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized",
4006 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
4007 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused");
4008 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
4009 {
4010 pHlp->pfnPrintf(pHlp, " - real tsc offset");
4011 if (pVCpu->tm.s.offTSCRawSrc)
4012 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
4013 }
4014 else if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
4015 pHlp->pfnPrintf(pHlp, " - native api");
4016 else
4017 pHlp->pfnPrintf(pHlp, " - virtual clock");
4018 pHlp->pfnPrintf(pHlp, "\n");
4019 }
4020
4021 /*
4022 * virtual
4023 */
4024 pHlp->pfnPrintf(pHlp,
4025 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
4026 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
4027 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
4028 if (pVM->tm.s.fVirtualWarpDrive)
4029 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
4030 pHlp->pfnPrintf(pHlp, "\n");
4031
4032 /*
4033 * virtual sync
4034 */
4035 pHlp->pfnPrintf(pHlp,
4036 "VirtSync: %18RU64 (%#016RX64) %s%s",
4037 u64VirtualSync, u64VirtualSync,
4038 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
4039 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
4040 if (pVM->tm.s.offVirtualSync)
4041 {
4042 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
4043 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
4044 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
4045 }
4046 pHlp->pfnPrintf(pHlp, "\n");
4047
4048 /*
4049 * real
4050 */
4051 pHlp->pfnPrintf(pHlp,
4052 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
4053 u64Real, u64Real, TMRealGetFreq(pVM));
4054}
4055
4056
4057/**
4058 * Helper for tmR3InfoCpuLoad that adjust @a uPct to the given graph width.
4059 */
4060DECLINLINE(size_t) tmR3InfoCpuLoadAdjustWidth(size_t uPct, size_t cchWidth)
4061{
4062 if (cchWidth != 100)
4063 uPct = (size_t)(((double)uPct + 0.5) * ((double)cchWidth / 100.0));
4064 return uPct;
4065}
4066
4067
4068/**
4069 * @callback_method_impl{FNDBGFINFOARGVINT}
4070 */
4071static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs)
4072{
4073 char szTmp[1024];
4074
4075 /*
4076 * Parse arguments.
4077 */
4078 PTMCPULOADSTATE pState = &pVM->tm.s.CpuLoad;
4079 VMCPUID idCpu = 0;
4080 bool fAllCpus = true;
4081 bool fExpGraph = true;
4082 uint32_t cchWidth = 80;
4083 uint32_t cPeriods = RT_ELEMENTS(pState->aHistory);
4084 uint32_t cRows = 60;
4085
4086 static const RTGETOPTDEF s_aOptions[] =
4087 {
4088 { "all", 'a', RTGETOPT_REQ_NOTHING },
4089 { "cpu", 'c', RTGETOPT_REQ_UINT32 },
4090 { "periods", 'p', RTGETOPT_REQ_UINT32 },
4091 { "rows", 'r', RTGETOPT_REQ_UINT32 },
4092 { "uni", 'u', RTGETOPT_REQ_NOTHING },
4093 { "uniform", 'u', RTGETOPT_REQ_NOTHING },
4094 { "width", 'w', RTGETOPT_REQ_UINT32 },
4095 { "exp", 'x', RTGETOPT_REQ_NOTHING },
4096 { "exponential", 'x', RTGETOPT_REQ_NOTHING },
4097 };
4098
4099 RTGETOPTSTATE State;
4100 int rc = RTGetOptInit(&State, cArgs, papszArgs, s_aOptions, RT_ELEMENTS(s_aOptions), 0, 0 /*fFlags*/);
4101 AssertRC(rc);
4102
4103 RTGETOPTUNION ValueUnion;
4104 while ((rc = RTGetOpt(&State, &ValueUnion)) != 0)
4105 {
4106 switch (rc)
4107 {
4108 case 'a':
4109 pState = &pVM->apCpusR3[0]->tm.s.CpuLoad;
4110 idCpu = 0;
4111 fAllCpus = true;
4112 break;
4113 case 'c':
4114 if (ValueUnion.u32 < pVM->cCpus)
4115 {
4116 pState = &pVM->apCpusR3[ValueUnion.u32]->tm.s.CpuLoad;
4117 idCpu = ValueUnion.u32;
4118 }
4119 else
4120 {
4121 pState = &pVM->tm.s.CpuLoad;
4122 idCpu = VMCPUID_ALL;
4123 }
4124 fAllCpus = false;
4125 break;
4126 case 'p':
4127 cPeriods = RT_MIN(RT_MAX(ValueUnion.u32, 1), RT_ELEMENTS(pState->aHistory));
4128 break;
4129 case 'r':
4130 cRows = RT_MIN(RT_MAX(ValueUnion.u32, 5), RT_ELEMENTS(pState->aHistory));
4131 break;
4132 case 'w':
4133 cchWidth = RT_MIN(RT_MAX(ValueUnion.u32, 10), sizeof(szTmp) - 32);
4134 break;
4135 case 'x':
4136 fExpGraph = true;
4137 break;
4138 case 'u':
4139 fExpGraph = false;
4140 break;
4141 case 'h':
4142 pHlp->pfnPrintf(pHlp,
4143 "Usage: cpuload [parameters]\n"
4144 " all, -a\n"
4145 " Show statistics for all CPUs. (default)\n"
4146 " cpu=id, -c id\n"
4147 " Show statistics for the specified CPU ID. Show combined stats if out of range.\n"
4148 " periods=count, -p count\n"
4149 " Number of periods to show. Default: all\n"
4150 " rows=count, -r count\n"
4151 " Number of rows in the graphs. Default: 60\n"
4152 " width=count, -w count\n"
4153 " Core graph width in characters. Default: 80\n"
4154 " exp, exponential, -e\n"
4155 " Do 1:1 for more recent half / 30 seconds of the graph, combine the\n"
4156 " rest into increasinly larger chunks. Default.\n"
4157 " uniform, uni, -u\n"
4158 " Combine periods into rows in a uniform manner for the whole graph.\n");
4159 return;
4160 default:
4161 pHlp->pfnGetOptError(pHlp, rc, &ValueUnion, &State);
4162 return;
4163 }
4164 }
4165
4166 /*
4167 * Do the job.
4168 */
4169 for (;;)
4170 {
4171 uint32_t const cMaxPeriods = pState->cHistoryEntries;
4172 if (cPeriods > cMaxPeriods)
4173 cPeriods = cMaxPeriods;
4174 if (cPeriods > 0)
4175 {
4176 if (fAllCpus)
4177 {
4178 if (idCpu > 0)
4179 pHlp->pfnPrintf(pHlp, "\n");
4180 pHlp->pfnPrintf(pHlp, " CPU load for virtual CPU %#04x\n"
4181 " -------------------------------\n", idCpu);
4182 }
4183
4184 /*
4185 * Figure number of periods per chunk. We can either do this in a linear
4186 * fashion or a exponential fashion that compresses old history more.
4187 */
4188 size_t cPerRowDecrement = 0;
4189 size_t cPeriodsPerRow = 1;
4190 if (cRows < cPeriods)
4191 {
4192 if (!fExpGraph)
4193 cPeriodsPerRow = (cPeriods + cRows / 2) / cRows;
4194 else
4195 {
4196 /* The last 30 seconds or half of the rows are 1:1, the other part
4197 is in increasing period counts. Code is a little simple but seems
4198 to do the job most of the time, which is all I have time now. */
4199 size_t cPeriodsOneToOne = RT_MIN(30, cRows / 2);
4200 size_t cRestRows = cRows - cPeriodsOneToOne;
4201 size_t cRestPeriods = cPeriods - cPeriodsOneToOne;
4202
4203 size_t cPeriodsInWindow = 0;
4204 for (cPeriodsPerRow = 0; cPeriodsPerRow <= cRestRows && cPeriodsInWindow < cRestPeriods; cPeriodsPerRow++)
4205 cPeriodsInWindow += cPeriodsPerRow + 1;
4206
4207 size_t iLower = 1;
4208 while (cPeriodsInWindow < cRestPeriods)
4209 {
4210 cPeriodsPerRow++;
4211 cPeriodsInWindow += cPeriodsPerRow;
4212 cPeriodsInWindow -= iLower;
4213 iLower++;
4214 }
4215
4216 cPerRowDecrement = 1;
4217 }
4218 }
4219
4220 /*
4221 * Do the work.
4222 */
4223 size_t cPctExecuting = 0;
4224 size_t cPctOther = 0;
4225 size_t cPeriodsAccumulated = 0;
4226
4227 size_t cRowsLeft = cRows;
4228 size_t iHistory = (pState->idxHistory - cPeriods) % RT_ELEMENTS(pState->aHistory);
4229 while (cPeriods-- > 0)
4230 {
4231 iHistory++;
4232 if (iHistory >= RT_ELEMENTS(pState->aHistory))
4233 iHistory = 0;
4234
4235 cPctExecuting += pState->aHistory[iHistory].cPctExecuting;
4236 cPctOther += pState->aHistory[iHistory].cPctOther;
4237 cPeriodsAccumulated += 1;
4238 if ( cPeriodsAccumulated >= cPeriodsPerRow
4239 || cPeriods < cRowsLeft)
4240 {
4241 /*
4242 * Format and output the line.
4243 */
4244 size_t offTmp = 0;
4245 size_t i = tmR3InfoCpuLoadAdjustWidth(cPctExecuting / cPeriodsAccumulated, cchWidth);
4246 while (i-- > 0)
4247 szTmp[offTmp++] = '#';
4248 i = tmR3InfoCpuLoadAdjustWidth(cPctOther / cPeriodsAccumulated, cchWidth);
4249 while (i-- > 0)
4250 szTmp[offTmp++] = 'O';
4251 szTmp[offTmp] = '\0';
4252
4253 cRowsLeft--;
4254 pHlp->pfnPrintf(pHlp, "%3zus: %s\n", cPeriods + cPeriodsAccumulated / 2, szTmp);
4255
4256 /* Reset the state: */
4257 cPctExecuting = 0;
4258 cPctOther = 0;
4259 cPeriodsAccumulated = 0;
4260 if (cPeriodsPerRow > cPerRowDecrement)
4261 cPeriodsPerRow -= cPerRowDecrement;
4262 }
4263 }
4264 pHlp->pfnPrintf(pHlp, " (#=guest, O=VMM overhead) idCpu=%#x\n", idCpu);
4265
4266 }
4267 else
4268 pHlp->pfnPrintf(pHlp, "No load data.\n");
4269
4270 /*
4271 * Next CPU if we're display all.
4272 */
4273 if (!fAllCpus)
4274 break;
4275 idCpu++;
4276 if (idCpu >= pVM->cCpus)
4277 break;
4278 pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
4279 }
4280
4281}
4282
4283
4284/**
4285 * Gets the descriptive TM TSC mode name given the enum value.
4286 *
4287 * @returns The name.
4288 * @param enmMode The mode to name.
4289 */
4290static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode)
4291{
4292 switch (enmMode)
4293 {
4294 case TMTSCMODE_REAL_TSC_OFFSET: return "RealTSCOffset";
4295 case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTSCEmulated";
4296 case TMTSCMODE_DYNAMIC: return "Dynamic";
4297 case TMTSCMODE_NATIVE_API: return "NativeApi";
4298 default: return "???";
4299 }
4300}
4301
4302
4303/**
4304 * Gets the descriptive TM TSC mode name.
4305 *
4306 * @returns The name.
4307 * @param pVM The cross context VM structure.
4308 */
4309static const char *tmR3GetTSCModeName(PVM pVM)
4310{
4311 Assert(pVM);
4312 return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode);
4313}
4314
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette