VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/TM.cpp@ 93015

Last change on this file since 93015 was 92720, checked in by vboxsync, 3 years ago

VMM/TM: Driverless adjustments for init complete code. bugref:10138

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 183.3 KB
Line 
1/* $Id: TM.cpp 92720 2021-12-02 22:41:09Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_tm TM - The Time Manager
19 *
20 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
21 * device and drivers.
22 *
23 * @see grp_tm
24 *
25 *
26 * @section sec_tm_clocks Clocks
27 *
28 * There are currently 4 clocks:
29 * - Virtual (guest).
30 * - Synchronous virtual (guest).
31 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
32 * function of the virtual clock.
33 * - Real (host). This is only used for display updates atm.
34 *
35 * The most important clocks are the three first ones and of these the second is
36 * the most interesting.
37 *
38 *
39 * The synchronous virtual clock is tied to the virtual clock except that it
40 * will take into account timer delivery lag caused by host scheduling. It will
41 * normally never advance beyond the head timer, and when lagging too far behind
42 * it will gradually speed up to catch up with the virtual clock. All devices
43 * implementing time sources accessible to and used by the guest is using this
44 * clock (for timers and other things). This ensures consistency between the
45 * time sources.
46 *
47 * The virtual clock is implemented as an offset to a monotonic, high
48 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
49 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
50 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
51 * a fairly high res clock that works in all contexts and on all hosts. The
52 * virtual clock is paused when the VM isn't in the running state.
53 *
54 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
55 * virtual clock, where the frequency defaults to the host cpu frequency (as we
56 * measure it). In this mode it is possible to configure the frequency. Another
57 * (non-default) option is to use the raw unmodified host TSC values. And yet
58 * another, to tie it to time spent executing guest code. All these things are
59 * configurable should non-default behavior be desirable.
60 *
61 * The real clock is a monotonic clock (when available) with relatively low
62 * resolution, though this a bit host specific. Note that we're currently not
63 * servicing timers using the real clock when the VM is not running, this is
64 * simply because it has not been needed yet therefore not implemented.
65 *
66 *
67 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
68 *
69 * Guest time syncing is primarily taken care of by the VMM device. The
70 * principle is very simple, the guest additions periodically asks the VMM
71 * device what the current UTC time is and makes adjustments accordingly.
72 *
73 * A complicating factor is that the synchronous virtual clock might be doing
74 * catchups and the guest perception is currently a little bit behind the world
75 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
76 * at a slightly higher rate. Adjusting the guest clock to the current wall
77 * time in the real world would be a bad idea then because the guest will be
78 * advancing too fast and run ahead of world time (if the catchup works out).
79 * To solve this problem TM provides the VMM device with an UTC time source that
80 * gets adjusted with the current lag, so that when the guest eventually catches
81 * up the lag it will be showing correct real world time.
82 *
83 *
84 * @section sec_tm_timers Timers
85 *
86 * The timers can use any of the TM clocks described in the previous section.
87 * Each clock has its own scheduling facility, or timer queue if you like.
88 * There are a few factors which makes it a bit complex. First, there is the
89 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
90 * is the timer thread that periodically checks whether any timers has expired
91 * without EMT noticing. On the API level, all but the create and save APIs
92 * must be multithreaded. EMT will always run the timers.
93 *
94 * The design is using a doubly linked list of active timers which is ordered
95 * by expire date. This list is only modified by the EMT thread. Updates to
96 * the list are batched in a singly linked list, which is then processed by the
97 * EMT thread at the first opportunity (immediately, next time EMT modifies a
98 * timer on that clock, or next timer timeout). Both lists are offset based and
99 * all the elements are therefore allocated from the hyper heap.
100 *
101 * For figuring out when there is need to schedule and run timers TM will:
102 * - Poll whenever somebody queries the virtual clock.
103 * - Poll the virtual clocks from the EM and REM loops.
104 * - Poll the virtual clocks from trap exit path.
105 * - Poll the virtual clocks and calculate first timeout from the halt loop.
106 * - Employ a thread which periodically (100Hz) polls all the timer queues.
107 *
108 *
109 * @image html TMTIMER-Statechart-Diagram.gif
110 *
111 * @section sec_tm_timer Logging
112 *
113 * Level 2: Logs a most of the timer state transitions and queue servicing.
114 * Level 3: Logs a few oddments.
115 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
116 *
117 */
118
119
120/*********************************************************************************************************************************
121* Header Files *
122*********************************************************************************************************************************/
123#define LOG_GROUP LOG_GROUP_TM
124#ifdef DEBUG_bird
125# define DBGFTRACE_DISABLED /* annoying */
126#endif
127#include <VBox/vmm/tm.h>
128#include <iprt/asm-amd64-x86.h> /* for SUPGetCpuHzFromGip from sup.h */
129#include <VBox/vmm/vmm.h>
130#include <VBox/vmm/mm.h>
131#include <VBox/vmm/hm.h>
132#include <VBox/vmm/nem.h>
133#include <VBox/vmm/gim.h>
134#include <VBox/vmm/ssm.h>
135#include <VBox/vmm/dbgf.h>
136#include <VBox/vmm/dbgftrace.h>
137#include <VBox/vmm/pdmapi.h>
138#include <VBox/vmm/iom.h>
139#include "TMInternal.h"
140#include <VBox/vmm/vm.h>
141#include <VBox/vmm/uvm.h>
142
143#include <VBox/vmm/pdmdev.h>
144#include <VBox/log.h>
145#include <VBox/param.h>
146#include <VBox/err.h>
147
148#include <iprt/asm.h>
149#include <iprt/asm-math.h>
150#include <iprt/assert.h>
151#include <iprt/env.h>
152#include <iprt/file.h>
153#include <iprt/getopt.h>
154#include <iprt/mem.h>
155#include <iprt/rand.h>
156#include <iprt/semaphore.h>
157#include <iprt/string.h>
158#include <iprt/thread.h>
159#include <iprt/time.h>
160#include <iprt/timer.h>
161
162#include "TMInline.h"
163
164
165/*********************************************************************************************************************************
166* Defined Constants And Macros *
167*********************************************************************************************************************************/
168/** The current saved state version.*/
169#define TM_SAVED_STATE_VERSION 3
170
171
172/*********************************************************************************************************************************
173* Internal Functions *
174*********************************************************************************************************************************/
175static bool tmR3HasFixedTSC(PVM pVM);
176static uint64_t tmR3CalibrateTSC(void);
177static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
178static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
179#ifdef VBOX_WITH_STATISTICS
180static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers);
181#endif
182static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
183static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent);
184#ifndef VBOX_WITHOUT_NS_ACCOUNTING
185static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
186#endif
187static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
188static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
189static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
190static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs);
191static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData);
192static const char *tmR3GetTSCModeName(PVM pVM);
193static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode);
194static int tmR3TimerQueueGrow(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cNewTimers);
195
196
197/**
198 * Initializes the TM.
199 *
200 * @returns VBox status code.
201 * @param pVM The cross context VM structure.
202 */
203VMM_INT_DECL(int) TMR3Init(PVM pVM)
204{
205 LogFlow(("TMR3Init:\n"));
206
207 /*
208 * Assert alignment and sizes.
209 */
210 AssertCompileMemberAlignment(VM, tm.s, 32);
211 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
212 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
213
214 /*
215 * Init the structure.
216 */
217 pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
218
219 int rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
220 AssertLogRelRCReturn(rc, rc);
221
222 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].szName, "virtual");
223 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].szName, "virtual_sync"); /* Underscore is for STAM ordering issue. */
224 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_REAL].szName, "real");
225 strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].szName, "tsc");
226
227 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++)
228 {
229 Assert(pVM->tm.s.aTimerQueues[i].szName[0] != '\0');
230 pVM->tm.s.aTimerQueues[i].enmClock = (TMCLOCK)i;
231 pVM->tm.s.aTimerQueues[i].u64Expire = INT64_MAX;
232 pVM->tm.s.aTimerQueues[i].idxActive = UINT32_MAX;
233 pVM->tm.s.aTimerQueues[i].idxSchedule = UINT32_MAX;
234 pVM->tm.s.aTimerQueues[i].idxFreeHint = 1;
235 pVM->tm.s.aTimerQueues[i].fBeingProcessed = false;
236 pVM->tm.s.aTimerQueues[i].fCannotGrow = false;
237 pVM->tm.s.aTimerQueues[i].hThread = NIL_RTTHREAD;
238 pVM->tm.s.aTimerQueues[i].hWorkerEvt = NIL_SUPSEMEVENT;
239
240 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.aTimerQueues[i].TimerLock, RT_SRC_POS,
241 "TM %s queue timer lock", pVM->tm.s.aTimerQueues[i].szName);
242 AssertLogRelRCReturn(rc, rc);
243
244 rc = PDMR3CritSectRwInit(pVM, &pVM->tm.s.aTimerQueues[i].AllocLock, RT_SRC_POS,
245 "TM %s queue alloc lock", pVM->tm.s.aTimerQueues[i].szName);
246 AssertLogRelRCReturn(rc, rc);
247 }
248
249 /*
250 * We directly use the GIP to calculate the virtual time. We map the
251 * the GIP into the guest context so we can do this calculation there
252 * as well and save costly world switches.
253 */
254 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
255 if (pGip || !SUPR3IsDriverless())
256 {
257 pVM->tm.s.pvGIPR3 = (void *)pGip;
258 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED);
259 AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16),
260 ("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION),
261 VERR_TM_GIP_VERSION);
262
263 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
264 if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
265 && pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
266 return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS,
267 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
268 pGip->u32UpdateIntervalNS, pGip->u32UpdateHz);
269
270 /* Log GIP info that may come in handy. */
271 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d (%s) fGetGipCpu=%#x cCpus=%d\n",
272 pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS,
273 pGip->enmUseTscDelta, SUPGetGIPTscDeltaModeName(pGip), pGip->fGetGipCpu, pGip->cCpus));
274 LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n",
275 pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip)));
276 for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++)
277 {
278 uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
279 if (iGipCpu != UINT16_MAX)
280 LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n",
281 iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta,
282 pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors));
283 }
284 }
285
286 /*
287 * Setup the VirtualGetRaw backend.
288 */
289 pVM->tm.s.pfnVirtualGetRawR3 = tmVirtualNanoTSRediscover;
290 pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
291 pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBad;
292 pVM->tm.s.VirtualGetRawDataR3.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex;
293 pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
294 if (!SUPR3IsDriverless())
295 {
296 pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
297 AssertRelease(pVM->tm.s.VirtualGetRawDataR0.pu64Prev);
298 }
299 /* The rest is done in TMR3InitFinalize() since it's too early to call PDM. */
300
301 /*
302 * Get our CFGM node, create it if necessary.
303 */
304 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
305 if (!pCfgHandle)
306 {
307 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
308 AssertRCReturn(rc, rc);
309 }
310
311 /*
312 * Specific errors about some obsolete TM settings (remove after 2015-12-03).
313 */
314 if (CFGMR3Exists(pCfgHandle, "TSCVirtualized"))
315 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
316 N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"TSCMode\" setting instead."));
317 if (CFGMR3Exists(pCfgHandle, "UseRealTSC"))
318 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
319 N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
320
321 if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC"))
322 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
323 N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
324
325 /*
326 * Validate the rest of the TM settings.
327 */
328 rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/",
329 "TSCMode|"
330 "TSCModeSwitchAllowed|"
331 "TSCTicksPerSecond|"
332 "TSCTiedToExecution|"
333 "TSCNotTiedToHalt|"
334 "ScheduleSlack|"
335 "CatchUpStopThreshold|"
336 "CatchUpGiveUpThreshold|"
337 "CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|"
338 "CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|"
339 "CatchUpStartThreshold8|CatchUpStartThreshold9|"
340 "CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|"
341 "CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|"
342 "CatchUpPrecentage8|CatchUpPrecentage9|"
343 "UTCOffset|"
344 "UTCTouchFileOnJump|"
345 "WarpDrivePercentage|"
346 "HostHzMax|"
347 "HostHzFudgeFactorTimerCpu|"
348 "HostHzFudgeFactorOtherCpu|"
349 "HostHzFudgeFactorCatchUp100|"
350 "HostHzFudgeFactorCatchUp200|"
351 "HostHzFudgeFactorCatchUp400|"
352 "TimerMillies"
353 ,
354 "",
355 "TM", 0);
356 if (RT_FAILURE(rc))
357 return rc;
358
359 /*
360 * Determine the TSC configuration and frequency.
361 */
362 /** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config}
363 * The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic.
364 * The default depends on the VM configuration and the capabilities of the
365 * host CPU. Other config options or runtime changes may override the TSC
366 * mode specified here.
367 */
368 char szTSCMode[32];
369 rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode));
370 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
371 {
372 /** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so
373 * fall back on the more expensive emulated mode. With the current TSC handling
374 * (frequent switching between offsetted mode and taking VM exits, on all VCPUs
375 * without any kind of coordination) will lead to inconsistent TSC behavior with
376 * guest SMP, including TSC going backwards. */
377 pVM->tm.s.enmTSCMode = NEMR3NeedSpecialTscMode(pVM) ? TMTSCMODE_NATIVE_API
378 : pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED;
379 }
380 else if (RT_FAILURE(rc))
381 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\""));
382 else
383 {
384 if (!RTStrCmp(szTSCMode, "VirtTSCEmulated"))
385 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
386 else if (!RTStrCmp(szTSCMode, "RealTSCOffset"))
387 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
388 else if (!RTStrCmp(szTSCMode, "Dynamic"))
389 pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC;
390 else
391 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode);
392 if (NEMR3NeedSpecialTscMode(pVM))
393 {
394 LogRel(("TM: NEM overrides the /TM/TSCMode=%s settings.\n", szTSCMode));
395 pVM->tm.s.enmTSCMode = TMTSCMODE_NATIVE_API;
396 }
397 }
398
399 /**
400 * @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed
401 * at runtime}
402 * When using paravirtualized guests, we dynamically switch TSC modes to a more
403 * optimal one for performance. This setting allows overriding this behaviour.
404 */
405 rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed);
406 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
407 {
408 /* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */
409 pVM->tm.s.fTSCModeSwitchAllowed = true;
410 }
411 else if (RT_FAILURE(rc))
412 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\""));
413 if (pVM->tm.s.fTSCModeSwitchAllowed && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
414 {
415 LogRel(("TM: NEM overrides the /TM/TSCModeSwitchAllowed setting.\n"));
416 pVM->tm.s.fTSCModeSwitchAllowed = false;
417 }
418
419 /** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
420 * The number of TSC ticks per second (i.e. the TSC frequency). This will
421 * override enmTSCMode.
422 */
423 pVM->tm.s.cTSCTicksPerSecondHost = tmR3CalibrateTSC();
424 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
425 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
426 {
427 pVM->tm.s.cTSCTicksPerSecond = pVM->tm.s.cTSCTicksPerSecondHost;
428 if ( ( pVM->tm.s.enmTSCMode == TMTSCMODE_DYNAMIC
429 || pVM->tm.s.enmTSCMode == TMTSCMODE_VIRT_TSC_EMULATED)
430 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
431 {
432 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
433 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
434 }
435 }
436 else if (RT_FAILURE(rc))
437 return VMSetError(pVM, rc, RT_SRC_POS,
438 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
439 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
440 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
441 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
442 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
443 pVM->tm.s.cTSCTicksPerSecond);
444 else if (pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API)
445 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
446 else
447 {
448 LogRel(("TM: NEM overrides the /TM/TSCTicksPerSecond=%RU64 setting.\n", pVM->tm.s.cTSCTicksPerSecond));
449 pVM->tm.s.cTSCTicksPerSecond = pVM->tm.s.cTSCTicksPerSecondHost;
450 }
451
452 /** @cfgm{/TM/TSCTiedToExecution, bool, false}
453 * Whether the TSC should be tied to execution. This will exclude most of the
454 * virtualization overhead, but will by default include the time spent in the
455 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
456 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
457 * be used avoided or used with great care. Note that this will only work right
458 * together with VT-x or AMD-V, and with a single virtual CPU. */
459 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
460 if (RT_FAILURE(rc))
461 return VMSetError(pVM, rc, RT_SRC_POS,
462 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
463 if (pVM->tm.s.fTSCTiedToExecution && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
464 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("/TM/TSCTiedToExecution is not supported in NEM mode!"));
465 if (pVM->tm.s.fTSCTiedToExecution)
466 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
467
468
469 /** @cfgm{/TM/TSCNotTiedToHalt, bool, false}
470 * This is used with /TM/TSCTiedToExecution to control how TSC operates
471 * accross HLT instructions. When true HLT is considered execution time and
472 * TSC continues to run, while when false (default) TSC stops during halt. */
473 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
474 if (RT_FAILURE(rc))
475 return VMSetError(pVM, rc, RT_SRC_POS,
476 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
477
478 /*
479 * Configure the timer synchronous virtual time.
480 */
481 /** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
482 * Scheduling slack when processing timers. */
483 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
484 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
485 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
486 else if (RT_FAILURE(rc))
487 return VMSetError(pVM, rc, RT_SRC_POS,
488 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
489
490 /** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
491 * When to stop a catch-up, considering it successful. */
492 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
493 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
494 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
495 else if (RT_FAILURE(rc))
496 return VMSetError(pVM, rc, RT_SRC_POS,
497 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
498
499 /** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
500 * When to give up a catch-up attempt. */
501 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
502 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
503 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
504 else if (RT_FAILURE(rc))
505 return VMSetError(pVM, rc, RT_SRC_POS,
506 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
507
508
509 /** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
510 * The catch-up percent for a given period. */
511 /** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX}
512 * The catch-up period threshold, or if you like, when a period starts. */
513#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
514 do \
515 { \
516 uint64_t u64; \
517 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
518 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
519 u64 = UINT64_C(DefStart); \
520 else if (RT_FAILURE(rc)) \
521 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
522 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
523 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
524 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
525 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
526 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
527 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
528 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
529 else if (RT_FAILURE(rc)) \
530 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
531 } while (0)
532 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
533 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
534 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
535 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
536 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
537 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
538 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
539 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
540 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
541 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
542 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
543 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
544#undef TM_CFG_PERIOD
545
546 /*
547 * Configure real world time (UTC).
548 */
549 /** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
550 * The UTC offset. This is used to put the guest back or forwards in time. */
551 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
552 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
553 pVM->tm.s.offUTC = 0; /* ns */
554 else if (RT_FAILURE(rc))
555 return VMSetError(pVM, rc, RT_SRC_POS,
556 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
557
558 /** @cfgm{/TM/UTCTouchFileOnJump, string, none}
559 * File to be written to everytime the host time jumps. */
560 rc = CFGMR3QueryStringAlloc(pCfgHandle, "UTCTouchFileOnJump", &pVM->tm.s.pszUtcTouchFileOnJump);
561 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
562 pVM->tm.s.pszUtcTouchFileOnJump = NULL;
563 else if (RT_FAILURE(rc))
564 return VMSetError(pVM, rc, RT_SRC_POS,
565 N_("Configuration error: Failed to querying string value \"UTCTouchFileOnJump\""));
566
567 /*
568 * Setup the warp drive.
569 */
570 /** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
571 * The warp drive percentage, 100% is normal speed. This is used to speed up
572 * or slow down the virtual clock, which can be useful for fast forwarding
573 * borring periods during tests. */
574 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
575 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
576 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
577 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
578 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
579 else if (RT_FAILURE(rc))
580 return VMSetError(pVM, rc, RT_SRC_POS,
581 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
582 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
583 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
584 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
585 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
586 pVM->tm.s.u32VirtualWarpDrivePercentage);
587 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
588 if (pVM->tm.s.fVirtualWarpDrive)
589 {
590 if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
591 LogRel(("TM: Warp-drive active, escept for TSC which is in NEM mode. u32VirtualWarpDrivePercentage=%RI32\n",
592 pVM->tm.s.u32VirtualWarpDrivePercentage));
593 else
594 {
595 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
596 LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
597 }
598 }
599
600 /*
601 * Gather the Host Hz configuration values.
602 */
603 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000);
604 if (RT_FAILURE(rc))
605 return VMSetError(pVM, rc, RT_SRC_POS,
606 N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\""));
607
608 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111);
609 if (RT_FAILURE(rc))
610 return VMSetError(pVM, rc, RT_SRC_POS,
611 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\""));
612
613 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110);
614 if (RT_FAILURE(rc))
615 return VMSetError(pVM, rc, RT_SRC_POS,
616 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\""));
617
618 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300);
619 if (RT_FAILURE(rc))
620 return VMSetError(pVM, rc, RT_SRC_POS,
621 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\""));
622
623 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250);
624 if (RT_FAILURE(rc))
625 return VMSetError(pVM, rc, RT_SRC_POS,
626 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\""));
627
628 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200);
629 if (RT_FAILURE(rc))
630 return VMSetError(pVM, rc, RT_SRC_POS,
631 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\""));
632
633 /*
634 * Finally, setup and report.
635 */
636 pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode;
637 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
638 LogRel(("TM: cTSCTicksPerSecond=%'RU64 (%#RX64) enmTSCMode=%d (%s)\n"
639 "TM: cTSCTicksPerSecondHost=%'RU64 (%#RX64)\n"
640 "TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
641 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM),
642 pVM->tm.s.cTSCTicksPerSecondHost, pVM->tm.s.cTSCTicksPerSecondHost,
643 pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
644
645 /*
646 * Start the timer (guard against REM not yielding).
647 */
648 /** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
649 * The watchdog timer interval. */
650 uint32_t u32Millies;
651 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
652 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
653 u32Millies = VM_IS_HM_ENABLED(pVM) ? 1000 : 10;
654 else if (RT_FAILURE(rc))
655 return VMSetError(pVM, rc, RT_SRC_POS,
656 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
657 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
658 if (RT_FAILURE(rc))
659 {
660 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
661 return rc;
662 }
663 Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies));
664 pVM->tm.s.u32TimerMillies = u32Millies;
665
666 /*
667 * Register saved state.
668 */
669 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
670 NULL, NULL, NULL,
671 NULL, tmR3Save, NULL,
672 NULL, tmR3Load, NULL);
673 if (RT_FAILURE(rc))
674 return rc;
675
676 /*
677 * Register statistics.
678 */
679 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
680 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
681 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
682 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
683 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
684 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with.");
685 STAM_REL_REG( pVM,(void*)&pVM->tm.s.HzHint.s.uMax, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint.");
686 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++)
687 {
688 rc = STAMR3RegisterF(pVM, (void *)&pVM->tm.s.aTimerQueues[i].uMaxHzHint, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_HZ,
689 "", "/TM/MaxHzHint/%s", pVM->tm.s.aTimerQueues[i].szName);
690 AssertRC(rc);
691 }
692
693#ifdef VBOX_WITH_STATISTICS
694 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
695 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
696 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
697 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
698 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
699 STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
700 STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].StatDo,STAMTYPE_PROFILE,"/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
701 STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
702
703 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
704 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
705 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
706 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
707 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
708 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
709 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
710 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
711
712 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
713 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
714
715 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
716 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
717 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
718
719 STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
720 STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
721 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
722 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
723 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
724 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
725 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
726 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
727 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
728 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
729 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
730 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
731
732 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers");
733 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers.");
734 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers.");
735 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
736 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
737 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
738
739 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
740 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
741 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync).");
742 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync).");
743 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
744 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
745 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
746 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
747 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
748 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
749 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
750 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
751
752 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers");
753 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers.");
754 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers.");
755 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
756 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
757 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
758
759 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
760 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
761
762 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
763 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
764 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
765 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp .");
766 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
767 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
768 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
769 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
770 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
771 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
772 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
773
774 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
775 STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked.");
776
777 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
778 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
779 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
780 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
781 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
782 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
783 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
784 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
785 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
786 STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
787 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused.");
788 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed.");
789#endif /* VBOX_WITH_STATISTICS */
790
791 for (VMCPUID i = 0; i < pVM->cCpus; i++)
792 {
793 PVMCPU pVCpu = pVM->apCpusR3[i];
794 STAMR3RegisterF(pVM, &pVCpu->tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
795#ifndef VBOX_WITHOUT_NS_ACCOUNTING
796# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
797 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
798 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
799 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i);
800 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i);
801 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i);
802 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
803 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
804# endif
805 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsTotalStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
806 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
807 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
808 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsOtherStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
809 STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
810 STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
811 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
812 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
813 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
814#endif
815 }
816#ifndef VBOX_WITHOUT_NS_ACCOUNTING
817 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
818 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
819 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
820#endif
821
822#ifdef VBOX_WITH_STATISTICS
823 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
824 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
825 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
826 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
827 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
828 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
829 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
830 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
831 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
832 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
833 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
834 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
835 {
836 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
837 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
838 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
839 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
840 }
841#endif /* VBOX_WITH_STATISTICS */
842
843 /*
844 * Register info handlers.
845 */
846 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
847 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
848 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
849 DBGFR3InfoRegisterInternalArgv(pVM, "cpuload", "Display the CPU load stats (--help for details).", tmR3InfoCpuLoad, 0);
850
851 return VINF_SUCCESS;
852}
853
854
855/**
856 * Checks if the host CPU has a fixed TSC frequency.
857 *
858 * @returns true if it has, false if it hasn't.
859 *
860 * @remarks This test doesn't bother with very old CPUs that don't do power
861 * management or any other stuff that might influence the TSC rate.
862 * This isn't currently relevant.
863 */
864static bool tmR3HasFixedTSC(PVM pVM)
865{
866 /*
867 * ASSUME that if the GIP is in invariant TSC mode, it's because the CPU
868 * actually has invariant TSC.
869 *
870 * In driverless mode we just assume sync TSC for now regardless of what
871 * the case actually is.
872 */
873 PSUPGLOBALINFOPAGE const pGip = g_pSUPGlobalInfoPage;
874 SUPGIPMODE const enmGipMode = pGip ? (SUPGIPMODE)pGip->u32Mode : SUPGIPMODE_INVARIANT_TSC;
875 if (enmGipMode == SUPGIPMODE_INVARIANT_TSC)
876 return true;
877
878 /*
879 * Go by features and model info from the CPUID instruction.
880 */
881 if (ASMHasCpuId())
882 {
883 uint32_t uEAX, uEBX, uECX, uEDX;
884
885 /*
886 * By feature. (Used to be AMD specific, intel seems to have picked it up.)
887 */
888 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
889 if (uEAX >= 0x80000007 && ASMIsValidExtRange(uEAX))
890 {
891 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
892 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
893 && enmGipMode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */
894 return true;
895 }
896
897 /*
898 * By model.
899 */
900 if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
901 {
902 /*
903 * AuthenticAMD - Check for APM support and that TscInvariant is set.
904 *
905 * This test isn't correct with respect to fixed/non-fixed TSC and
906 * older models, but this isn't relevant since the result is currently
907 * only used for making a decision on AMD-V models.
908 */
909#if 0 /* Promoted to generic */
910 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
911 if (uEAX >= 0x80000007)
912 {
913 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
914 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
915 && ( enmGipMode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */
916 || enmGipMode == SUPGIPMODE_INVARIANT_TSC))
917 return true;
918 }
919#endif
920 }
921 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
922 {
923 /*
924 * GenuineIntel - Check the model number.
925 *
926 * This test is lacking in the same way and for the same reasons
927 * as the AMD test above.
928 */
929 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
930 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
931 unsigned uModel = (uEAX >> 4) & 0x0f;
932 unsigned uFamily = (uEAX >> 8) & 0x0f;
933 if (uFamily == 0x0f)
934 uFamily += (uEAX >> 20) & 0xff;
935 if (uFamily >= 0x06)
936 uModel += ((uEAX >> 16) & 0x0f) << 4;
937 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
938 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
939 return true;
940 }
941 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA)
942 {
943 /*
944 * CentaurHauls - Check the model, family and stepping.
945 *
946 * This only checks for VIA CPU models Nano X2, Nano X3,
947 * Eden X2 and QuadCore.
948 */
949 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
950 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
951 unsigned uStepping = (uEAX & 0x0f);
952 unsigned uModel = (uEAX >> 4) & 0x0f;
953 unsigned uFamily = (uEAX >> 8) & 0x0f;
954 if ( uFamily == 0x06
955 && uModel == 0x0f
956 && uStepping >= 0x0c
957 && uStepping <= 0x0f)
958 return true;
959 }
960 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_SHANGHAI)
961 {
962 /*
963 * Shanghai - Check the model, family and stepping.
964 */
965 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
966 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
967 unsigned uFamily = (uEAX >> 8) & 0x0f;
968 if ( uFamily == 0x06
969 || uFamily == 0x07)
970 {
971 return true;
972 }
973 }
974 }
975 return false;
976}
977
978
979/**
980 * Calibrate the CPU tick.
981 *
982 * @returns Number of ticks per second.
983 */
984static uint64_t tmR3CalibrateTSC(void)
985{
986 uint64_t u64Hz;
987
988 /*
989 * Use GIP when available. Prefere the nominal one, no need to wait for it.
990 */
991 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
992 if (pGip)
993 {
994 u64Hz = pGip->u64CpuHz;
995 if (u64Hz < _1T && u64Hz > _1M)
996 return u64Hz;
997 AssertFailed(); /* This shouldn't happen. */
998
999 u64Hz = SUPGetCpuHzFromGip(pGip);
1000 if (u64Hz < _1T && u64Hz > _1M)
1001 return u64Hz;
1002
1003 AssertFailed(); /* This shouldn't happen. */
1004 }
1005 else
1006 Assert(SUPR3IsDriverless());
1007
1008 /* Call this once first to make sure it's initialized. */
1009 RTTimeNanoTS();
1010
1011 /*
1012 * Yield the CPU to increase our chances of getting a correct value.
1013 */
1014 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
1015 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
1016 uint64_t au64Samples[5];
1017 unsigned i;
1018 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
1019 {
1020 RTMSINTERVAL cMillies;
1021 int cTries = 5;
1022 uint64_t u64Start = ASMReadTSC();
1023 uint64_t u64End;
1024 uint64_t StartTS = RTTimeNanoTS();
1025 uint64_t EndTS;
1026 do
1027 {
1028 RTThreadSleep(s_auSleep[i]);
1029 u64End = ASMReadTSC();
1030 EndTS = RTTimeNanoTS();
1031 cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
1032 } while ( cMillies == 0 /* the sleep may be interrupted... */
1033 || (cMillies < 20 && --cTries > 0));
1034 uint64_t u64Diff = u64End - u64Start;
1035
1036 au64Samples[i] = (u64Diff * 1000) / cMillies;
1037 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
1038 }
1039
1040 /*
1041 * Discard the highest and lowest results and calculate the average.
1042 */
1043 unsigned iHigh = 0;
1044 unsigned iLow = 0;
1045 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
1046 {
1047 if (au64Samples[i] < au64Samples[iLow])
1048 iLow = i;
1049 if (au64Samples[i] > au64Samples[iHigh])
1050 iHigh = i;
1051 }
1052 au64Samples[iLow] = 0;
1053 au64Samples[iHigh] = 0;
1054
1055 u64Hz = au64Samples[0];
1056 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
1057 u64Hz += au64Samples[i];
1058 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
1059
1060 return u64Hz;
1061}
1062
1063
1064/**
1065 * Finalizes the TM initialization.
1066 *
1067 * @returns VBox status code.
1068 * @param pVM The cross context VM structure.
1069 */
1070VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
1071{
1072 int rc;
1073
1074 /*
1075 * Resolve symbols, unless we're in driverless mode.
1076 */
1077 if (!SUPR3IsDriverless())
1078 {
1079 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
1080 AssertRCReturn(rc, rc);
1081 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataR0.pfnBadCpuIndex);
1082 AssertRCReturn(rc, rc);
1083 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
1084 AssertRCReturn(rc, rc);
1085 pVM->tm.s.pfnVirtualGetRawR0 = pVM->tm.s.VirtualGetRawDataR0.pfnRediscover;
1086 }
1087
1088#ifndef VBOX_WITHOUT_NS_ACCOUNTING
1089 /*
1090 * Create a timer for refreshing the CPU load stats.
1091 */
1092 TMTIMERHANDLE hTimer;
1093 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, TMTIMER_FLAGS_NO_RING0, "CPU Load Timer", &hTimer);
1094 if (RT_SUCCESS(rc))
1095 rc = TMTimerSetMillies(pVM, hTimer, 1000);
1096#endif
1097
1098 /*
1099 * GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override).
1100 */
1101 pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM) && !VM_IS_RAW_MODE_ENABLED(pVM);
1102 LogRel(("TM: TMR3InitFinalize: fTSCModeSwitchAllowed=%RTbool\n", pVM->tm.s.fTSCModeSwitchAllowed));
1103
1104 /*
1105 * Grow the virtual & real timer tables so we've got sufficient
1106 * space for dynamically created timers. We cannot allocate more
1107 * after ring-0 init completes.
1108 */
1109 static struct { uint32_t idxQueue, cExtra; } s_aExtra[] = { {TMCLOCK_VIRTUAL, 128}, {TMCLOCK_REAL, 32} };
1110 for (uint32_t i = 0; i < RT_ELEMENTS(s_aExtra); i++)
1111 {
1112 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[s_aExtra[i].idxQueue];
1113 PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1114 if (s_aExtra[i].cExtra > pQueue->cTimersFree)
1115 {
1116 uint32_t cTimersAlloc = pQueue->cTimersAlloc + s_aExtra[i].cExtra - pQueue->cTimersFree;
1117 rc = tmR3TimerQueueGrow(pVM, pQueue, cTimersAlloc);
1118 AssertLogRelMsgReturn(RT_SUCCESS(rc), ("rc=%Rrc cTimersAlloc=%u %s\n", rc, cTimersAlloc, pQueue->szName), rc);
1119 }
1120 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1121 }
1122
1123#ifdef VBOX_WITH_STATISTICS
1124 /*
1125 * Register timer statistics now that we've fixed the timer table sizes.
1126 */
1127 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
1128 {
1129 pVM->tm.s.aTimerQueues[idxQueue].fCannotGrow = true;
1130 tmR3TimerQueueRegisterStats(pVM, &pVM->tm.s.aTimerQueues[idxQueue], UINT32_MAX);
1131 }
1132#endif
1133
1134 return rc;
1135}
1136
1137
1138/**
1139 * Applies relocations to data and code managed by this
1140 * component. This function will be called at init and
1141 * whenever the VMM need to relocate it self inside the GC.
1142 *
1143 * @param pVM The cross context VM structure.
1144 * @param offDelta Relocation delta relative to old location.
1145 */
1146VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1147{
1148 LogFlow(("TMR3Relocate\n"));
1149 RT_NOREF(pVM, offDelta);
1150}
1151
1152
1153/**
1154 * Terminates the TM.
1155 *
1156 * Termination means cleaning up and freeing all resources,
1157 * the VM it self is at this point powered off or suspended.
1158 *
1159 * @returns VBox status code.
1160 * @param pVM The cross context VM structure.
1161 */
1162VMM_INT_DECL(int) TMR3Term(PVM pVM)
1163{
1164 if (pVM->tm.s.pTimer)
1165 {
1166 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
1167 AssertRC(rc);
1168 pVM->tm.s.pTimer = NULL;
1169 }
1170
1171 return VINF_SUCCESS;
1172}
1173
1174
1175/**
1176 * The VM is being reset.
1177 *
1178 * For the TM component this means that a rescheduling is preformed,
1179 * the FF is cleared and but without running the queues. We'll have to
1180 * check if this makes sense or not, but it seems like a good idea now....
1181 *
1182 * @param pVM The cross context VM structure.
1183 */
1184VMM_INT_DECL(void) TMR3Reset(PVM pVM)
1185{
1186 LogFlow(("TMR3Reset:\n"));
1187 VM_ASSERT_EMT(pVM);
1188
1189 /*
1190 * Abort any pending catch up.
1191 * This isn't perfect...
1192 */
1193 if (pVM->tm.s.fVirtualSyncCatchUp)
1194 {
1195 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
1196 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
1197 if (pVM->tm.s.fVirtualSyncCatchUp)
1198 {
1199 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1200
1201 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
1202 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
1203 Assert(offOld <= offNew);
1204 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1205 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
1206 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1207 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
1208 }
1209 }
1210
1211 /*
1212 * Process the queues.
1213 */
1214 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
1215 {
1216 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
1217 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
1218 tmTimerQueueSchedule(pVM, pQueue, pQueue);
1219 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1220 }
1221#ifdef VBOX_STRICT
1222 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1223#endif
1224
1225 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
1226 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1227
1228 /*
1229 * Switch TM TSC mode back to the original mode after a reset for
1230 * paravirtualized guests that alter the TM TSC mode during operation.
1231 * We're already in an EMT rendezvous at this point.
1232 */
1233 if ( pVM->tm.s.fTSCModeSwitchAllowed
1234 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
1235 {
1236 VM_ASSERT_EMT0(pVM);
1237 tmR3CpuTickParavirtDisable(pVM, pVM->apCpusR3[0], NULL /* pvData */);
1238 }
1239 Assert(!GIMIsParavirtTscEnabled(pVM));
1240 pVM->tm.s.fParavirtTscEnabled = false;
1241
1242 /*
1243 * Reset TSC to avoid a Windows 8+ bug (see @bugref{8926}). If Windows
1244 * sees TSC value beyond 0x40000000000 at startup, it will reset the
1245 * TSC on boot-up CPU only, causing confusion and mayhem with SMP.
1246 */
1247 VM_ASSERT_EMT0(pVM);
1248 uint64_t offTscRawSrc;
1249 switch (pVM->tm.s.enmTSCMode)
1250 {
1251 case TMTSCMODE_REAL_TSC_OFFSET:
1252 offTscRawSrc = SUPReadTsc();
1253 break;
1254 case TMTSCMODE_DYNAMIC:
1255 case TMTSCMODE_VIRT_TSC_EMULATED:
1256 offTscRawSrc = TMVirtualSyncGetNoCheck(pVM);
1257 offTscRawSrc = ASMMultU64ByU32DivByU32(offTscRawSrc, pVM->tm.s.cTSCTicksPerSecond, TMCLOCK_FREQ_VIRTUAL);
1258 break;
1259 case TMTSCMODE_NATIVE_API:
1260 /** @todo NEM TSC reset on reset for Windows8+ bug workaround. */
1261 offTscRawSrc = 0;
1262 break;
1263 default:
1264 AssertFailedBreakStmt(offTscRawSrc = 0);
1265 }
1266 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1267 {
1268 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1269 pVCpu->tm.s.offTSCRawSrc = offTscRawSrc;
1270 pVCpu->tm.s.u64TSC = 0;
1271 pVCpu->tm.s.u64TSCLastSeen = 0;
1272 }
1273}
1274
1275
1276/**
1277 * Execute state save operation.
1278 *
1279 * @returns VBox status code.
1280 * @param pVM The cross context VM structure.
1281 * @param pSSM SSM operation handle.
1282 */
1283static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1284{
1285 LogFlow(("tmR3Save:\n"));
1286#ifdef VBOX_STRICT
1287 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1288 {
1289 PVMCPU pVCpu = pVM->apCpusR3[i];
1290 Assert(!pVCpu->tm.s.fTSCTicking);
1291 }
1292 Assert(!pVM->tm.s.cVirtualTicking);
1293 Assert(!pVM->tm.s.fVirtualSyncTicking);
1294 Assert(!pVM->tm.s.cTSCsTicking);
1295#endif
1296
1297 /*
1298 * Save the virtual clocks.
1299 */
1300 /* the virtual clock. */
1301 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1302 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1303
1304 /* the virtual timer synchronous clock. */
1305 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1306 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1307 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1308 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1309 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1310
1311 /* real time clock */
1312 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1313
1314 /* the cpu tick clock. */
1315 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1316 {
1317 PVMCPU pVCpu = pVM->apCpusR3[i];
1318 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1319 }
1320 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1321}
1322
1323
1324/**
1325 * Execute state load operation.
1326 *
1327 * @returns VBox status code.
1328 * @param pVM The cross context VM structure.
1329 * @param pSSM SSM operation handle.
1330 * @param uVersion Data layout version.
1331 * @param uPass The data pass.
1332 */
1333static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1334{
1335 LogFlow(("tmR3Load:\n"));
1336
1337 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1338#ifdef VBOX_STRICT
1339 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1340 {
1341 PVMCPU pVCpu = pVM->apCpusR3[i];
1342 Assert(!pVCpu->tm.s.fTSCTicking);
1343 }
1344 Assert(!pVM->tm.s.cVirtualTicking);
1345 Assert(!pVM->tm.s.fVirtualSyncTicking);
1346 Assert(!pVM->tm.s.cTSCsTicking);
1347#endif
1348
1349 /*
1350 * Validate version.
1351 */
1352 if (uVersion != TM_SAVED_STATE_VERSION)
1353 {
1354 AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
1355 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1356 }
1357
1358 /*
1359 * Load the virtual clock.
1360 */
1361 pVM->tm.s.cVirtualTicking = 0;
1362 /* the virtual clock. */
1363 uint64_t u64Hz;
1364 int rc = SSMR3GetU64(pSSM, &u64Hz);
1365 if (RT_FAILURE(rc))
1366 return rc;
1367 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1368 {
1369 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1370 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1371 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1372 }
1373 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1374 pVM->tm.s.u64VirtualOffset = 0;
1375
1376 /* the virtual timer synchronous clock. */
1377 pVM->tm.s.fVirtualSyncTicking = false;
1378 uint64_t u64;
1379 SSMR3GetU64(pSSM, &u64);
1380 pVM->tm.s.u64VirtualSync = u64;
1381 SSMR3GetU64(pSSM, &u64);
1382 pVM->tm.s.offVirtualSync = u64;
1383 SSMR3GetU64(pSSM, &u64);
1384 pVM->tm.s.offVirtualSyncGivenUp = u64;
1385 SSMR3GetU64(pSSM, &u64);
1386 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1387 bool f;
1388 SSMR3GetBool(pSSM, &f);
1389 pVM->tm.s.fVirtualSyncCatchUp = f;
1390
1391 /* the real clock */
1392 rc = SSMR3GetU64(pSSM, &u64Hz);
1393 if (RT_FAILURE(rc))
1394 return rc;
1395 if (u64Hz != TMCLOCK_FREQ_REAL)
1396 {
1397 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1398 u64Hz, TMCLOCK_FREQ_REAL));
1399 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */
1400 }
1401
1402 /* the cpu tick clock. */
1403 pVM->tm.s.cTSCsTicking = 0;
1404 pVM->tm.s.offTSCPause = 0;
1405 pVM->tm.s.u64LastPausedTSC = 0;
1406 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1407 {
1408 PVMCPU pVCpu = pVM->apCpusR3[i];
1409
1410 pVCpu->tm.s.fTSCTicking = false;
1411 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1412 if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC)
1413 pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC;
1414
1415 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1416 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1417 }
1418
1419 rc = SSMR3GetU64(pSSM, &u64Hz);
1420 if (RT_FAILURE(rc))
1421 return rc;
1422 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
1423 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1424
1425 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n",
1426 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
1427
1428 /* Disabled as this isn't tested, also should this apply only if GIM is enabled etc. */
1429#if 0
1430 /*
1431 * If the current host TSC frequency is incompatible with what is in the
1432 * saved state of the VM, fall back to emulating TSC and disallow TSC mode
1433 * switches during VM runtime (e.g. by GIM).
1434 */
1435 if ( GIMIsEnabled(pVM)
1436 || pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1437 {
1438 uint64_t uGipCpuHz;
1439 bool fRelax = RTSystemIsInsideVM();
1440 bool fCompat = SUPIsTscFreqCompatible(pVM->tm.s.cTSCTicksPerSecond, &uGipCpuHz, fRelax);
1441 if (!fCompat)
1442 {
1443 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
1444 pVM->tm.s.fTSCModeSwitchAllowed = false;
1445 if (g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC)
1446 {
1447 LogRel(("TM: TSC frequency incompatible! uGipCpuHz=%#RX64 (%'RU64) enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1448 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1449 }
1450 else
1451 {
1452 LogRel(("TM: GIP is async, enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1453 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1454 }
1455 }
1456 }
1457#endif
1458
1459 /*
1460 * Make sure timers get rescheduled immediately.
1461 */
1462 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
1463 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1464
1465 return VINF_SUCCESS;
1466}
1467
1468#ifdef VBOX_WITH_STATISTICS
1469
1470/**
1471 * Register statistics for a timer.
1472 *
1473 * @param pVM The cross context VM structure.
1474 * @param pQueue The queue the timer belongs to.
1475 * @param pTimer The timer to register statistics for.
1476 */
1477static void tmR3TimerRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
1478{
1479 STAMR3RegisterF(pVM, &pTimer->StatTimer, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
1480 pQueue->szName, "/TM/Timers/%s", pTimer->szName);
1481 STAMR3RegisterF(pVM, &pTimer->StatCritSectEnter, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
1482 "", "/TM/Timers/%s/CritSectEnter", pTimer->szName);
1483 STAMR3RegisterF(pVM, &pTimer->StatGet, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1484 "", "/TM/Timers/%s/Get", pTimer->szName);
1485 STAMR3RegisterF(pVM, &pTimer->StatSetAbsolute, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1486 "", "/TM/Timers/%s/SetAbsolute", pTimer->szName);
1487 STAMR3RegisterF(pVM, &pTimer->StatSetRelative, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1488 "", "/TM/Timers/%s/SetRelative", pTimer->szName);
1489 STAMR3RegisterF(pVM, &pTimer->StatStop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1490 "", "/TM/Timers/%s/Stop", pTimer->szName);
1491}
1492
1493
1494/**
1495 * Deregister the statistics for a timer.
1496 */
1497static void tmR3TimerDeregisterStats(PVM pVM, PTMTIMER pTimer)
1498{
1499 char szPrefix[128];
1500 size_t cchPrefix = RTStrPrintf(szPrefix, sizeof(szPrefix), "/TM/Timers/%s/", pTimer->szName);
1501 STAMR3DeregisterByPrefix(pVM->pUVM, szPrefix);
1502 szPrefix[cchPrefix - 1] = '\0';
1503 STAMR3Deregister(pVM->pUVM, szPrefix);
1504}
1505
1506
1507/**
1508 * Register statistics for all allocated timers in a queue.
1509 *
1510 * @param pVM The cross context VM structure.
1511 * @param pQueue The queue to register statistics for.
1512 * @param cTimers Number of timers to consider (in growth scenario).
1513 */
1514static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers)
1515{
1516 uint32_t idxTimer = RT_MIN(cTimers, pQueue->cTimersAlloc);
1517 while (idxTimer-- > 0)
1518 {
1519 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
1520 TMTIMERSTATE enmState = pTimer->enmState;
1521 if (enmState > TMTIMERSTATE_INVALID && enmState < TMTIMERSTATE_DESTROY)
1522 tmR3TimerRegisterStats(pVM, pQueue, pTimer);
1523 }
1524}
1525
1526#endif /* VBOX_WITH_STATISTICS */
1527
1528
1529/**
1530 * Grows a timer queue.
1531 *
1532 * @returns VBox status code (errors are LogRel'ed already).
1533 * @param pVM The cross context VM structure.
1534 * @param pQueue The timer queue to grow.
1535 * @param cNewTimers The minimum number of timers after growing.
1536 * @note Caller owns the queue's allocation lock.
1537 */
1538static int tmR3TimerQueueGrow(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cNewTimers)
1539{
1540 /*
1541 * Validate input and state.
1542 */
1543 VM_ASSERT_EMT0_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1544 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE); /** @todo must do better than this! */
1545 AssertReturn(!pQueue->fCannotGrow, VERR_TM_TIMER_QUEUE_CANNOT_GROW);
1546
1547 uint32_t const cOldEntries = pQueue->cTimersAlloc;
1548 AssertReturn(cNewTimers > cOldEntries, VERR_TM_IPE_1);
1549 AssertReturn(cNewTimers < _32K, VERR_TM_IPE_1);
1550
1551 /*
1552 * Do the growing.
1553 */
1554 int rc;
1555 if (!SUPR3IsDriverless())
1556 {
1557 rc = VMMR3CallR0Emt(pVM, VMMGetCpu(pVM), VMMR0_DO_TM_GROW_TIMER_QUEUE,
1558 RT_MAKE_U64(cNewTimers, (uint64_t)(pQueue - &pVM->tm.s.aTimerQueues[0])), NULL);
1559 AssertLogRelRCReturn(rc, rc);
1560 AssertReturn(pQueue->cTimersAlloc >= cNewTimers, VERR_TM_IPE_3);
1561 }
1562 else
1563 {
1564 AssertReturn(cNewTimers <= _32K && cOldEntries <= _32K, VERR_TM_TOO_MANY_TIMERS);
1565 ASMCompilerBarrier();
1566
1567 /*
1568 * Round up the request to the nearest page and do the allocation.
1569 */
1570 size_t cbNew = sizeof(TMTIMER) * cNewTimers;
1571 cbNew = RT_ALIGN_Z(cbNew, PAGE_SIZE);
1572 cNewTimers = (uint32_t)(cbNew / sizeof(TMTIMER));
1573
1574 PTMTIMER paTimers = (PTMTIMER)RTMemPageAllocZ(cbNew);
1575 if (paTimers)
1576 {
1577 /*
1578 * Copy over the old timer, init the new free ones, then switch over
1579 * and free the old ones.
1580 */
1581 PTMTIMER const paOldTimers = pQueue->paTimers;
1582 tmHCTimerQueueGrowInit(paTimers, paOldTimers, cNewTimers, cOldEntries);
1583
1584 pQueue->paTimers = paTimers;
1585 pQueue->cTimersAlloc = cNewTimers;
1586 pQueue->cTimersFree += cNewTimers - (cOldEntries ? cOldEntries : 1);
1587
1588 RTMemPageFree(paOldTimers, RT_ALIGN_Z(sizeof(TMTIMER) * cOldEntries, PAGE_SIZE));
1589 rc = VINF_SUCCESS;
1590 }
1591 else
1592 rc = VERR_NO_PAGE_MEMORY;
1593 }
1594 return rc;
1595}
1596
1597
1598/**
1599 * Internal TMR3TimerCreate worker.
1600 *
1601 * @returns VBox status code.
1602 * @param pVM The cross context VM structure.
1603 * @param enmClock The timer clock.
1604 * @param fFlags TMTIMER_FLAGS_XXX.
1605 * @param pszName The timer name.
1606 * @param ppTimer Where to store the timer pointer on success.
1607 */
1608static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, uint32_t fFlags, const char *pszName, PPTMTIMERR3 ppTimer)
1609{
1610 PTMTIMER pTimer;
1611
1612 /*
1613 * Validate input.
1614 */
1615 VM_ASSERT_EMT(pVM);
1616
1617 AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0),
1618 VERR_INVALID_FLAGS);
1619
1620 AssertPtrReturn(pszName, VERR_INVALID_POINTER);
1621 size_t const cchName = strlen(pszName);
1622 AssertMsgReturn(cchName < sizeof(pTimer->szName), ("timer name too long: %s\n", pszName), VERR_INVALID_NAME);
1623 AssertMsgReturn(cchName > 2, ("Too short timer name: %s\n", pszName), VERR_INVALID_NAME);
1624
1625 AssertMsgReturn(enmClock >= TMCLOCK_REAL && enmClock < TMCLOCK_MAX,
1626 ("%d\n", enmClock), VERR_INVALID_PARAMETER);
1627 AssertReturn(enmClock != TMCLOCK_TSC, VERR_NOT_SUPPORTED);
1628 if (enmClock == TMCLOCK_VIRTUAL_SYNC)
1629 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_WRONG_ORDER);
1630
1631 /*
1632 * Exclusively lock the queue.
1633 *
1634 * Note! This means that it is not possible to allocate timers from a timer callback.
1635 */
1636 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[enmClock];
1637 int rc = PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1638 AssertRCReturn(rc, rc);
1639
1640 /*
1641 * Allocate the timer.
1642 */
1643 if (!pQueue->cTimersFree)
1644 {
1645 rc = tmR3TimerQueueGrow(pVM, pQueue, pQueue->cTimersAlloc + 64);
1646 AssertRCReturnStmt(rc, PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), rc);
1647 }
1648
1649 /* Scan the array for free timers. */
1650 pTimer = NULL;
1651 PTMTIMER const paTimers = pQueue->paTimers;
1652 uint32_t const cTimersAlloc = pQueue->cTimersAlloc;
1653 uint32_t idxTimer = pQueue->idxFreeHint;
1654 for (uint32_t iScan = 0; iScan < 2; iScan++)
1655 {
1656 while (idxTimer < cTimersAlloc)
1657 {
1658 if (paTimers[idxTimer].enmState == TMTIMERSTATE_FREE)
1659 {
1660 pTimer = &paTimers[idxTimer];
1661 pQueue->idxFreeHint = idxTimer + 1;
1662 break;
1663 }
1664 idxTimer++;
1665 }
1666 if (pTimer != NULL)
1667 break;
1668 idxTimer = 1;
1669 }
1670 AssertLogRelMsgReturnStmt(pTimer != NULL, ("cTimersFree=%u cTimersAlloc=%u enmClock=%s\n", pQueue->cTimersFree,
1671 pQueue->cTimersAlloc, pQueue->szName),
1672 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), VERR_INTERNAL_ERROR_3);
1673 pQueue->cTimersFree -= 1;
1674
1675 /*
1676 * Initialize it.
1677 */
1678 Assert(idxTimer != 0);
1679 Assert(idxTimer <= TMTIMERHANDLE_TIMER_IDX_MASK);
1680 pTimer->hSelf = idxTimer
1681 | ((uintptr_t)(pQueue - &pVM->tm.s.aTimerQueues[0]) << TMTIMERHANDLE_QUEUE_IDX_SHIFT);
1682 Assert(!(pTimer->hSelf & TMTIMERHANDLE_RANDOM_MASK));
1683 pTimer->hSelf |= (RTRandU64() & TMTIMERHANDLE_RANDOM_MASK);
1684
1685 pTimer->u64Expire = 0;
1686 pTimer->enmState = TMTIMERSTATE_STOPPED;
1687 pTimer->idxScheduleNext = UINT32_MAX;
1688 pTimer->idxNext = UINT32_MAX;
1689 pTimer->idxPrev = UINT32_MAX;
1690 pTimer->fFlags = fFlags;
1691 pTimer->uHzHint = 0;
1692 pTimer->pvUser = NULL;
1693 pTimer->pCritSect = NULL;
1694 memcpy(pTimer->szName, pszName, cchName);
1695 pTimer->szName[cchName] = '\0';
1696
1697#ifdef VBOX_STRICT
1698 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1699#endif
1700
1701 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1702
1703#ifdef VBOX_WITH_STATISTICS
1704 /*
1705 * Only register statistics if we're passed the no-realloc point.
1706 */
1707 if (pQueue->fCannotGrow)
1708 tmR3TimerRegisterStats(pVM, pQueue, pTimer);
1709#endif
1710
1711 *ppTimer = pTimer;
1712 return VINF_SUCCESS;
1713}
1714
1715
1716/**
1717 * Creates a device timer.
1718 *
1719 * @returns VBox status code.
1720 * @param pVM The cross context VM structure.
1721 * @param pDevIns Device instance.
1722 * @param enmClock The clock to use on this timer.
1723 * @param pfnCallback Callback function.
1724 * @param pvUser The user argument to the callback.
1725 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1726 * @param pszName Timer name (will be copied). Max 31 chars.
1727 * @param phTimer Where to store the timer handle on success.
1728 */
1729VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock,
1730 PFNTMTIMERDEV pfnCallback, void *pvUser,
1731 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1732{
1733 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)),
1734 VERR_INVALID_FLAGS);
1735
1736 /*
1737 * Allocate and init stuff.
1738 */
1739 PTMTIMER pTimer;
1740 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1741 if (RT_SUCCESS(rc))
1742 {
1743 pTimer->enmType = TMTIMERTYPE_DEV;
1744 pTimer->u.Dev.pfnTimer = pfnCallback;
1745 pTimer->u.Dev.pDevIns = pDevIns;
1746 pTimer->pvUser = pvUser;
1747 if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1748 pTimer->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns);
1749 *phTimer = pTimer->hSelf;
1750 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", phTimer, enmClock, pfnCallback, pszName));
1751 }
1752
1753 return rc;
1754}
1755
1756
1757
1758
1759/**
1760 * Creates a USB device timer.
1761 *
1762 * @returns VBox status code.
1763 * @param pVM The cross context VM structure.
1764 * @param pUsbIns The USB device instance.
1765 * @param enmClock The clock to use on this timer.
1766 * @param pfnCallback Callback function.
1767 * @param pvUser The user argument to the callback.
1768 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1769 * @param pszName Timer name (will be copied). Max 31 chars.
1770 * @param phTimer Where to store the timer handle on success.
1771 */
1772VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock,
1773 PFNTMTIMERUSB pfnCallback, void *pvUser,
1774 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1775{
1776 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_NO_RING0)), VERR_INVALID_PARAMETER);
1777
1778 /*
1779 * Allocate and init stuff.
1780 */
1781 PTMTIMER pTimer;
1782 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1783 if (RT_SUCCESS(rc))
1784 {
1785 pTimer->enmType = TMTIMERTYPE_USB;
1786 pTimer->u.Usb.pfnTimer = pfnCallback;
1787 pTimer->u.Usb.pUsbIns = pUsbIns;
1788 pTimer->pvUser = pvUser;
1789 //if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1790 //{
1791 // if (pDevIns->pCritSectR3)
1792 // pTimer->pCritSect = pUsbIns->pCritSectR3;
1793 // else
1794 // pTimer->pCritSect = IOMR3GetCritSect(pVM);
1795 //}
1796 *phTimer = pTimer->hSelf;
1797 Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName));
1798 }
1799
1800 return rc;
1801}
1802
1803
1804/**
1805 * Creates a driver timer.
1806 *
1807 * @returns VBox status code.
1808 * @param pVM The cross context VM structure.
1809 * @param pDrvIns Driver instance.
1810 * @param enmClock The clock to use on this timer.
1811 * @param pfnCallback Callback function.
1812 * @param pvUser The user argument to the callback.
1813 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1814 * @param pszName Timer name (will be copied). Max 31 chars.
1815 * @param phTimer Where to store the timer handle on success.
1816 */
1817VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1818 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1819{
1820 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)),
1821 VERR_INVALID_FLAGS);
1822
1823 /*
1824 * Allocate and init stuff.
1825 */
1826 PTMTIMER pTimer;
1827 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1828 if (RT_SUCCESS(rc))
1829 {
1830 pTimer->enmType = TMTIMERTYPE_DRV;
1831 pTimer->u.Drv.pfnTimer = pfnCallback;
1832 pTimer->u.Drv.pDrvIns = pDrvIns;
1833 pTimer->pvUser = pvUser;
1834 *phTimer = pTimer->hSelf;
1835 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName));
1836 }
1837
1838 return rc;
1839}
1840
1841
1842/**
1843 * Creates an internal timer.
1844 *
1845 * @returns VBox status code.
1846 * @param pVM The cross context VM structure.
1847 * @param enmClock The clock to use on this timer.
1848 * @param pfnCallback Callback function.
1849 * @param pvUser User argument to be passed to the callback.
1850 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1851 * @param pszName Timer name (will be copied). Max 31 chars.
1852 * @param phTimer Where to store the timer handle on success.
1853 */
1854VMMR3DECL(int) TMR3TimerCreate(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser,
1855 uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer)
1856{
1857 AssertReturn(fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0), VERR_INVALID_FLAGS);
1858 AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0),
1859 VERR_INVALID_FLAGS);
1860
1861 /*
1862 * Allocate and init stuff.
1863 */
1864 PTMTIMER pTimer;
1865 int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer);
1866 if (RT_SUCCESS(rc))
1867 {
1868 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1869 pTimer->u.Internal.pfnTimer = pfnCallback;
1870 pTimer->pvUser = pvUser;
1871 *phTimer = pTimer->hSelf;
1872 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszName));
1873 }
1874
1875 return rc;
1876}
1877
1878
1879/**
1880 * Destroy a timer
1881 *
1882 * @returns VBox status code.
1883 * @param pVM The cross context VM structure.
1884 * @param pQueue The queue the timer is on.
1885 * @param pTimer Timer handle as returned by one of the create functions.
1886 */
1887static int tmR3TimerDestroy(PVMCC pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
1888{
1889 bool fActive = false;
1890 bool fPending = false;
1891
1892 AssertMsg( !pTimer->pCritSect
1893 || VMR3GetState(pVM) != VMSTATE_RUNNING
1894 || PDMCritSectIsOwner(pVM, pTimer->pCritSect), ("%s\n", pTimer->szName));
1895
1896 /*
1897 * The rest of the game happens behind the lock, just
1898 * like create does. All the work is done here.
1899 */
1900 PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1901 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
1902
1903 for (int cRetries = 1000;; cRetries--)
1904 {
1905 /*
1906 * Change to the DESTROY state.
1907 */
1908 TMTIMERSTATE const enmState = pTimer->enmState;
1909 Log2(("TMTimerDestroy: %p:{.enmState=%s, .szName='%s'} cRetries=%d\n",
1910 pTimer, tmTimerState(enmState), pTimer->szName, cRetries));
1911 switch (enmState)
1912 {
1913 case TMTIMERSTATE_STOPPED:
1914 case TMTIMERSTATE_EXPIRED_DELIVER:
1915 break;
1916
1917 case TMTIMERSTATE_ACTIVE:
1918 fActive = true;
1919 break;
1920
1921 case TMTIMERSTATE_PENDING_STOP:
1922 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1923 case TMTIMERSTATE_PENDING_RESCHEDULE:
1924 fActive = true;
1925 fPending = true;
1926 break;
1927
1928 case TMTIMERSTATE_PENDING_SCHEDULE:
1929 fPending = true;
1930 break;
1931
1932 /*
1933 * This shouldn't happen as the caller should make sure there are no races.
1934 */
1935 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1936 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1937 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1938 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName));
1939 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1940 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1941
1942 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName),
1943 VERR_TM_UNSTABLE_STATE);
1944 if (!RTThreadYield())
1945 RTThreadSleep(1);
1946
1947 PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1948 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
1949 continue;
1950
1951 /*
1952 * Invalid states.
1953 */
1954 case TMTIMERSTATE_FREE:
1955 case TMTIMERSTATE_DESTROY:
1956 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1957 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1958 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1959
1960 default:
1961 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, pTimer->szName));
1962 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1963 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1964 return VERR_TM_UNKNOWN_STATE;
1965 }
1966
1967 /*
1968 * Try switch to the destroy state.
1969 * This should always succeed as the caller should make sure there are no race.
1970 */
1971 bool fRc;
1972 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1973 if (fRc)
1974 break;
1975 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName));
1976 PDMCritSectLeave(pVM, &pQueue->TimerLock);
1977 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
1978
1979 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName),
1980 VERR_TM_UNSTABLE_STATE);
1981
1982 PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED);
1983 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
1984 }
1985
1986 /*
1987 * Unlink from the active list.
1988 */
1989 if (fActive)
1990 {
1991 const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer);
1992 const PTMTIMER pNext = tmTimerGetNext(pQueue, pTimer);
1993 if (pPrev)
1994 tmTimerSetNext(pQueue, pPrev, pNext);
1995 else
1996 {
1997 tmTimerQueueSetHead(pQueue, pQueue, pNext);
1998 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1999 }
2000 if (pNext)
2001 tmTimerSetPrev(pQueue, pNext, pPrev);
2002 pTimer->idxNext = UINT32_MAX;
2003 pTimer->idxPrev = UINT32_MAX;
2004 }
2005
2006 /*
2007 * Unlink from the schedule list by running it.
2008 */
2009 if (fPending)
2010 {
2011 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
2012 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
2013 Assert(pQueue->idxSchedule < pQueue->cTimersAlloc);
2014 tmTimerQueueSchedule(pVM, pQueue, pQueue);
2015 STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
2016 }
2017
2018#ifdef VBOX_WITH_STATISTICS
2019 /*
2020 * Deregister statistics.
2021 */
2022 tmR3TimerDeregisterStats(pVM, pTimer);
2023#endif
2024
2025 /*
2026 * Change it to free state and update the queue accordingly.
2027 */
2028 Assert(pTimer->idxNext == UINT32_MAX); Assert(pTimer->idxPrev == UINT32_MAX); Assert(pTimer->idxScheduleNext == UINT32_MAX);
2029
2030 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
2031
2032 pQueue->cTimersFree += 1;
2033 uint32_t idxTimer = (uint32_t)(pTimer - pQueue->paTimers);
2034 if (idxTimer < pQueue->idxFreeHint)
2035 pQueue->idxFreeHint = idxTimer;
2036
2037#ifdef VBOX_STRICT
2038 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
2039#endif
2040 PDMCritSectLeave(pVM, &pQueue->TimerLock);
2041 PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock);
2042 return VINF_SUCCESS;
2043}
2044
2045
2046/**
2047 * Destroy a timer
2048 *
2049 * @returns VBox status code.
2050 * @param pVM The cross context VM structure.
2051 * @param hTimer Timer handle as returned by one of the create functions.
2052 */
2053VMMR3DECL(int) TMR3TimerDestroy(PVM pVM, TMTIMERHANDLE hTimer)
2054{
2055 /* We ignore NILs here. */
2056 if (hTimer == NIL_TMTIMERHANDLE)
2057 return VINF_SUCCESS;
2058 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
2059 return tmR3TimerDestroy(pVM, pQueue, pTimer);
2060}
2061
2062
2063/**
2064 * Destroy all timers owned by a device.
2065 *
2066 * @returns VBox status code.
2067 * @param pVM The cross context VM structure.
2068 * @param pDevIns Device which timers should be destroyed.
2069 */
2070VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
2071{
2072 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
2073 if (!pDevIns)
2074 return VERR_INVALID_PARAMETER;
2075
2076 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
2077 {
2078 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
2079 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2080 uint32_t idxTimer = pQueue->cTimersAlloc;
2081 while (idxTimer-- > 0)
2082 {
2083 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
2084 if ( pTimer->enmType == TMTIMERTYPE_DEV
2085 && pTimer->u.Dev.pDevIns == pDevIns
2086 && pTimer->enmState < TMTIMERSTATE_DESTROY)
2087 {
2088 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2089
2090 int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
2091 AssertRC(rc);
2092
2093 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2094 }
2095 }
2096 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2097 }
2098
2099 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
2100 return VINF_SUCCESS;
2101}
2102
2103
2104/**
2105 * Destroy all timers owned by a USB device.
2106 *
2107 * @returns VBox status code.
2108 * @param pVM The cross context VM structure.
2109 * @param pUsbIns USB device which timers should be destroyed.
2110 */
2111VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns)
2112{
2113 LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns));
2114 if (!pUsbIns)
2115 return VERR_INVALID_PARAMETER;
2116
2117 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
2118 {
2119 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
2120 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2121 uint32_t idxTimer = pQueue->cTimersAlloc;
2122 while (idxTimer-- > 0)
2123 {
2124 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
2125 if ( pTimer->enmType == TMTIMERTYPE_USB
2126 && pTimer->u.Usb.pUsbIns == pUsbIns
2127 && pTimer->enmState < TMTIMERSTATE_DESTROY)
2128 {
2129 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2130
2131 int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
2132 AssertRC(rc);
2133
2134 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2135 }
2136 }
2137 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2138 }
2139
2140 LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n"));
2141 return VINF_SUCCESS;
2142}
2143
2144
2145/**
2146 * Destroy all timers owned by a driver.
2147 *
2148 * @returns VBox status code.
2149 * @param pVM The cross context VM structure.
2150 * @param pDrvIns Driver which timers should be destroyed.
2151 */
2152VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
2153{
2154 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
2155 if (!pDrvIns)
2156 return VERR_INVALID_PARAMETER;
2157
2158 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
2159 {
2160 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
2161 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2162 uint32_t idxTimer = pQueue->cTimersAlloc;
2163 while (idxTimer-- > 0)
2164 {
2165 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
2166 if ( pTimer->enmType == TMTIMERTYPE_DRV
2167 && pTimer->u.Drv.pDrvIns == pDrvIns
2168 && pTimer->enmState < TMTIMERSTATE_DESTROY)
2169 {
2170 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2171
2172 int rc = tmR3TimerDestroy(pVM, pQueue, pTimer);
2173 AssertRC(rc);
2174
2175 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
2176 }
2177 }
2178 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
2179 }
2180
2181 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
2182 return VINF_SUCCESS;
2183}
2184
2185
2186/**
2187 * Internal function for getting the clock time.
2188 *
2189 * @returns clock time.
2190 * @param pVM The cross context VM structure.
2191 * @param enmClock The clock.
2192 */
2193DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
2194{
2195 switch (enmClock)
2196 {
2197 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
2198 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
2199 case TMCLOCK_REAL: return TMRealGet(pVM);
2200 case TMCLOCK_TSC: return TMCpuTickGet(pVM->apCpusR3[0] /* just take VCPU 0 */);
2201 default:
2202 AssertMsgFailed(("enmClock=%d\n", enmClock));
2203 return ~(uint64_t)0;
2204 }
2205}
2206
2207
2208/**
2209 * Checks if the sync queue has one or more expired timers.
2210 *
2211 * @returns true / false.
2212 *
2213 * @param pVM The cross context VM structure.
2214 * @param enmClock The queue.
2215 */
2216DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
2217{
2218 const uint64_t u64Expire = pVM->tm.s.aTimerQueues[enmClock].u64Expire;
2219 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
2220}
2221
2222
2223/**
2224 * Checks for expired timers in all the queues.
2225 *
2226 * @returns true / false.
2227 * @param pVM The cross context VM structure.
2228 */
2229DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
2230{
2231 /*
2232 * Combine the time calculation for the first two since we're not on EMT
2233 * TMVirtualSyncGet only permits EMT.
2234 */
2235 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
2236 if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
2237 return true;
2238 u64Now = pVM->tm.s.fVirtualSyncTicking
2239 ? u64Now - pVM->tm.s.offVirtualSync
2240 : pVM->tm.s.u64VirtualSync;
2241 if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
2242 return true;
2243
2244 /*
2245 * The remaining timers.
2246 */
2247 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
2248 return true;
2249 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
2250 return true;
2251 return false;
2252}
2253
2254
2255/**
2256 * Schedule timer callback.
2257 *
2258 * @param pTimer Timer handle.
2259 * @param pvUser Pointer to the VM.
2260 * @thread Timer thread.
2261 *
2262 * @remark We cannot do the scheduling and queues running from a timer handler
2263 * since it's not executing in EMT, and even if it was it would be async
2264 * and we wouldn't know the state of the affairs.
2265 * So, we'll just raise the timer FF and force any REM execution to exit.
2266 */
2267static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
2268{
2269 PVM pVM = (PVM)pvUser;
2270 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
2271 NOREF(pTimer);
2272
2273 AssertCompile(TMCLOCK_MAX == 4);
2274 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback);
2275
2276#ifdef DEBUG_Sander /* very annoying, keep it private. */
2277 if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
2278 Log(("tmR3TimerCallback: timer event still pending!!\n"));
2279#endif
2280 if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2281 && ( pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule != UINT32_MAX /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
2282 || pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].idxSchedule != UINT32_MAX
2283 || pVM->tm.s.aTimerQueues[TMCLOCK_REAL].idxSchedule != UINT32_MAX
2284 || pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxSchedule != UINT32_MAX
2285 || tmR3AnyExpiredTimers(pVM)
2286 )
2287 && !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2288 && !pVM->tm.s.fRunningQueues
2289 )
2290 {
2291 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
2292 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
2293 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE);
2294 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
2295 }
2296}
2297
2298
2299/**
2300 * Worker for tmR3TimerQueueDoOne that runs pending timers on the specified
2301 * non-empty timer queue.
2302 *
2303 * @param pVM The cross context VM structure.
2304 * @param pQueue The queue to run.
2305 * @param pTimer The head timer. Caller already check that this is
2306 * not NULL.
2307 */
2308static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer)
2309{
2310 VM_ASSERT_EMT(pVM); /** @todo relax this */
2311
2312 /*
2313 * Run timers.
2314 *
2315 * We check the clock once and run all timers which are ACTIVE
2316 * and have an expire time less or equal to the time we read.
2317 *
2318 * N.B. A generic unlink must be applied since other threads
2319 * are allowed to mess with any active timer at any time.
2320 *
2321 * However, we only allow EMT to handle EXPIRED_PENDING
2322 * timers, thus enabling the timer handler function to
2323 * arm the timer again.
2324 */
2325/** @todo the above 'however' is outdated. */
2326 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
2327 while (pTimer->u64Expire <= u64Now)
2328 {
2329 PTMTIMER const pNext = tmTimerGetNext(pQueue, pTimer);
2330 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2331 if (pCritSect)
2332 {
2333 STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
2334 PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
2335 STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
2336 }
2337 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n",
2338 pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName));
2339 bool fRc;
2340 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2341 if (fRc)
2342 {
2343 Assert(pTimer->idxScheduleNext == UINT32_MAX); /* this can trigger falsely */
2344
2345 /* unlink */
2346 const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer);
2347 if (pPrev)
2348 tmTimerSetNext(pQueue, pPrev, pNext);
2349 else
2350 {
2351 tmTimerQueueSetHead(pQueue, pQueue, pNext);
2352 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2353 }
2354 if (pNext)
2355 tmTimerSetPrev(pQueue, pNext, pPrev);
2356 pTimer->idxNext = UINT32_MAX;
2357 pTimer->idxPrev = UINT32_MAX;
2358
2359 /* fire */
2360 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2361 STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
2362 switch (pTimer->enmType)
2363 {
2364 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break;
2365 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break;
2366 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break;
2367 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break;
2368 default:
2369 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName));
2370 break;
2371 }
2372 STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
2373
2374 /* change the state if it wasn't changed already in the handler. */
2375 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2376 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2377 }
2378 if (pCritSect)
2379 PDMCritSectLeave(pVM, pCritSect);
2380
2381 /* Advance? */
2382 pTimer = pNext;
2383 if (!pTimer)
2384 break;
2385 } /* run loop */
2386}
2387
2388
2389/**
2390 * Service one regular timer queue.
2391 *
2392 * @param pVM The cross context VM structure.
2393 * @param pQueue The queue.
2394 */
2395static void tmR3TimerQueueDoOne(PVM pVM, PTMTIMERQUEUE pQueue)
2396{
2397 Assert(pQueue->enmClock != TMCLOCK_VIRTUAL_SYNC);
2398
2399 /*
2400 * Only one thread should be "doing" the queue.
2401 */
2402 if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false))
2403 {
2404 STAM_PROFILE_START(&pQueue->StatDo, s);
2405 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
2406
2407 if (pQueue->idxSchedule != UINT32_MAX)
2408 tmTimerQueueSchedule(pVM, pQueue, pQueue);
2409
2410 PTMTIMER pHead = tmTimerQueueGetHead(pQueue, pQueue);
2411 if (pHead)
2412 tmR3TimerQueueRun(pVM, pQueue, pHead);
2413
2414 PDMCritSectLeave(pVM, &pQueue->TimerLock);
2415 STAM_PROFILE_STOP(&pQueue->StatDo, s);
2416 ASMAtomicWriteBool(&pQueue->fBeingProcessed, false);
2417 }
2418}
2419
2420
2421/**
2422 * Schedules and runs any pending times in the timer queue for the
2423 * synchronous virtual clock.
2424 *
2425 * This scheduling is a bit different from the other queues as it need
2426 * to implement the special requirements of the timer synchronous virtual
2427 * clock, thus this 2nd queue run function.
2428 *
2429 * @param pVM The cross context VM structure.
2430 *
2431 * @remarks The caller must the Virtual Sync lock. Owning the TM lock is no
2432 * longer important.
2433 */
2434static void tmR3TimerQueueRunVirtualSync(PVM pVM)
2435{
2436 PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC];
2437 VM_ASSERT_EMT(pVM);
2438 Assert(PDMCritSectIsOwner(pVM, &pVM->tm.s.VirtualSyncLock));
2439
2440 /*
2441 * Any timers?
2442 */
2443 PTMTIMER pNext = tmTimerQueueGetHead(pQueue, pQueue);
2444 if (RT_UNLIKELY(!pNext))
2445 {
2446 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
2447 return;
2448 }
2449 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
2450
2451 /*
2452 * Calculate the time frame for which we will dispatch timers.
2453 *
2454 * We use a time frame ranging from the current sync time (which is most likely the
2455 * same as the head timer) and some configurable period (100000ns) up towards the
2456 * current virtual time. This period might also need to be restricted by the catch-up
2457 * rate so frequent calls to this function won't accelerate the time too much, however
2458 * this will be implemented at a later point if necessary.
2459 *
2460 * Without this frame we would 1) having to run timers much more frequently
2461 * and 2) lag behind at a steady rate.
2462 */
2463 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
2464 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
2465 uint64_t u64Now;
2466 if (!pVM->tm.s.fVirtualSyncTicking)
2467 {
2468 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
2469 u64Now = pVM->tm.s.u64VirtualSync;
2470 Assert(u64Now <= pNext->u64Expire);
2471 }
2472 else
2473 {
2474 /* Calc 'now'. */
2475 bool fStopCatchup = false;
2476 bool fUpdateStuff = false;
2477 uint64_t off = pVM->tm.s.offVirtualSync;
2478 if (pVM->tm.s.fVirtualSyncCatchUp)
2479 {
2480 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
2481 if (RT_LIKELY(!(u64Delta >> 32)))
2482 {
2483 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
2484 if (off > u64Sub + offSyncGivenUp)
2485 {
2486 off -= u64Sub;
2487 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
2488 }
2489 else
2490 {
2491 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2492 fStopCatchup = true;
2493 off = offSyncGivenUp;
2494 }
2495 fUpdateStuff = true;
2496 }
2497 }
2498 u64Now = u64VirtualNow - off;
2499
2500 /* Adjust against last returned time. */
2501 uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
2502 if (u64Last > u64Now)
2503 {
2504 u64Now = u64Last + 1;
2505 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
2506 }
2507
2508 /* Check if stopped by expired timer. */
2509 uint64_t const u64Expire = pNext->u64Expire;
2510 if (u64Now >= u64Expire)
2511 {
2512 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
2513 u64Now = u64Expire;
2514 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2515 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2516 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
2517 }
2518 else
2519 {
2520 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2521 if (fUpdateStuff)
2522 {
2523 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
2524 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
2525 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2526 if (fStopCatchup)
2527 {
2528 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2529 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
2530 }
2531 }
2532 }
2533 }
2534
2535 /* calc end of frame. */
2536 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
2537 if (u64Max > u64VirtualNow - offSyncGivenUp)
2538 u64Max = u64VirtualNow - offSyncGivenUp;
2539
2540 /* assert sanity */
2541 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
2542 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
2543 Assert(u64Now <= u64Max);
2544 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
2545
2546 /*
2547 * Process the expired timers moving the clock along as we progress.
2548 */
2549#ifdef VBOX_STRICT
2550 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2551#endif
2552 while (pNext && pNext->u64Expire <= u64Max)
2553 {
2554 /* Advance */
2555 PTMTIMER pTimer = pNext;
2556 pNext = tmTimerGetNext(pQueue, pTimer);
2557
2558 /* Take the associated lock. */
2559 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2560 if (pCritSect)
2561 {
2562 STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
2563 PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
2564 STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
2565 }
2566
2567 Log2(("tmR3TimerQueueRunVirtualSync: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n",
2568 pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName));
2569
2570 /* Advance the clock - don't permit timers to be out of order or armed
2571 in the 'past'. */
2572#ifdef VBOX_STRICT
2573 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->szName));
2574 u64Prev = pTimer->u64Expire;
2575#endif
2576 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2577 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2578
2579 /* Unlink it, change the state and do the callout. */
2580 tmTimerQueueUnlinkActive(pVM, pQueue, pQueue, pTimer);
2581 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2582 STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
2583 switch (pTimer->enmType)
2584 {
2585 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break;
2586 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break;
2587 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break;
2588 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break;
2589 default:
2590 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName));
2591 break;
2592 }
2593 STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
2594
2595 /* Change the state if it wasn't changed already in the handler.
2596 Reset the Hz hint too since this is the same as TMTimerStop. */
2597 bool fRc;
2598 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2599 if (fRc && pTimer->uHzHint)
2600 {
2601 if (pTimer->uHzHint >= pQueue->uMaxHzHint)
2602 ASMAtomicOrU64(&pVM->tm.s.HzHint.u64Combined, RT_BIT_32(TMCLOCK_VIRTUAL_SYNC) | RT_BIT_32(TMCLOCK_VIRTUAL_SYNC + 16));
2603 pTimer->uHzHint = 0;
2604 }
2605 Log2(("tmR3TimerQueueRunVirtualSync: new state %s\n", tmTimerState(pTimer->enmState)));
2606
2607 /* Leave the associated lock. */
2608 if (pCritSect)
2609 PDMCritSectLeave(pVM, pCritSect);
2610 } /* run loop */
2611
2612
2613 /*
2614 * Restart the clock if it was stopped to serve any timers,
2615 * and start/adjust catch-up if necessary.
2616 */
2617 if ( !pVM->tm.s.fVirtualSyncTicking
2618 && pVM->tm.s.cVirtualTicking)
2619 {
2620 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2621
2622 /* calc the slack we've handed out. */
2623 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2624 Assert(u64VirtualNow2 >= u64VirtualNow);
2625 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2626 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2627 STAM_STATS({
2628 if (offSlack)
2629 {
2630 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2631 p->cPeriods++;
2632 p->cTicks += offSlack;
2633 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2634 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2635 }
2636 });
2637
2638 /* Let the time run a little bit while we were busy running timers(?). */
2639 uint64_t u64Elapsed;
2640#define MAX_ELAPSED 30000U /* ns */
2641 if (offSlack > MAX_ELAPSED)
2642 u64Elapsed = 0;
2643 else
2644 {
2645 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2646 if (u64Elapsed > MAX_ELAPSED)
2647 u64Elapsed = MAX_ELAPSED;
2648 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2649 }
2650#undef MAX_ELAPSED
2651
2652 /* Calc the current offset. */
2653 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2654 Assert(!(offNew & RT_BIT_64(63)));
2655 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2656 Assert(!(offLag & RT_BIT_64(63)));
2657
2658 /*
2659 * Deal with starting, adjusting and stopping catchup.
2660 */
2661 if (pVM->tm.s.fVirtualSyncCatchUp)
2662 {
2663 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2664 {
2665 /* stop */
2666 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2667 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2668 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2669 }
2670 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2671 {
2672 /* adjust */
2673 unsigned i = 0;
2674 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2675 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2676 i++;
2677 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2678 {
2679 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2680 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2681 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2682 }
2683 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2684 }
2685 else
2686 {
2687 /* give up */
2688 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2689 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2690 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2691 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2692 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2693 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2694 }
2695 }
2696 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2697 {
2698 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2699 {
2700 /* start */
2701 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2702 unsigned i = 0;
2703 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2704 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2705 i++;
2706 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2707 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2708 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2709 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2710 }
2711 else
2712 {
2713 /* don't bother */
2714 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2715 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2716 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2717 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2718 }
2719 }
2720
2721 /*
2722 * Update the offset and restart the clock.
2723 */
2724 Assert(!(offNew & RT_BIT_64(63)));
2725 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2726 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2727 }
2728}
2729
2730
2731/**
2732 * Deals with stopped Virtual Sync clock.
2733 *
2734 * This is called by the forced action flag handling code in EM when it
2735 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2736 * will block on the VirtualSyncLock until the pending timers has been executed
2737 * and the clock restarted.
2738 *
2739 * @param pVM The cross context VM structure.
2740 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2741 *
2742 * @thread EMTs
2743 */
2744VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2745{
2746 Log2(("TMR3VirtualSyncFF:\n"));
2747
2748 /*
2749 * The EMT doing the timers is diverted to them.
2750 */
2751 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2752 TMR3TimerQueuesDo(pVM);
2753 /*
2754 * The other EMTs will block on the virtual sync lock and the first owner
2755 * will run the queue and thus restarting the clock.
2756 *
2757 * Note! This is very suboptimal code wrt to resuming execution when there
2758 * are more than two Virtual CPUs, since they will all have to enter
2759 * the critical section one by one. But it's a very simple solution
2760 * which will have to do the job for now.
2761 */
2762 else
2763 {
2764/** @todo Optimize for SMP */
2765 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2766 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2767 if (pVM->tm.s.fVirtualSyncTicking)
2768 {
2769 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2770 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
2771 Log2(("TMR3VirtualSyncFF: ticking\n"));
2772 }
2773 else
2774 {
2775 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
2776
2777 /* try run it. */
2778 PDMCritSectEnter(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock, VERR_IGNORED);
2779 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2780 if (pVM->tm.s.fVirtualSyncTicking)
2781 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2782 else
2783 {
2784 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2785 Log2(("TMR3VirtualSyncFF: running queue\n"));
2786
2787 Assert(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule == UINT32_MAX);
2788 tmR3TimerQueueRunVirtualSync(pVM);
2789 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2790 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2791
2792 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2793 }
2794 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
2795 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2796 PDMCritSectLeave(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock);
2797 }
2798 }
2799}
2800
2801
2802/**
2803 * Service the special virtual sync timer queue.
2804 *
2805 * @param pVM The cross context VM structure.
2806 * @param pVCpuDst The destination VCpu.
2807 */
2808static void tmR3TimerQueueDoVirtualSync(PVM pVM, PVMCPU pVCpuDst)
2809{
2810 PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC];
2811 if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false))
2812 {
2813 STAM_PROFILE_START(&pQueue->StatDo, s1);
2814 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
2815 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2816 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2817 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
2818
2819 Assert(pQueue->idxSchedule == UINT32_MAX);
2820 tmR3TimerQueueRunVirtualSync(pVM);
2821 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2822 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2823
2824 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2825 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
2826 PDMCritSectLeave(pVM, &pQueue->TimerLock);
2827 STAM_PROFILE_STOP(&pQueue->StatDo, s1);
2828 ASMAtomicWriteBool(&pQueue->fBeingProcessed, false);
2829 }
2830}
2831
2832
2833/**
2834 * Schedules and runs any pending timers.
2835 *
2836 * This is normally called from a forced action handler in EMT.
2837 *
2838 * @param pVM The cross context VM structure.
2839 *
2840 * @thread EMT (actually EMT0, but we fend off the others)
2841 */
2842VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
2843{
2844 /*
2845 * Only the dedicated timer EMT should do stuff here.
2846 * (fRunningQueues is only used as an indicator.)
2847 */
2848 Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
2849 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
2850 if (VMMGetCpu(pVM) != pVCpuDst)
2851 {
2852 Assert(pVM->cCpus > 1);
2853 return;
2854 }
2855 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
2856 Log2(("TMR3TimerQueuesDo:\n"));
2857 Assert(!pVM->tm.s.fRunningQueues);
2858 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
2859
2860 /*
2861 * Process the queues.
2862 */
2863 AssertCompile(TMCLOCK_MAX == 4);
2864
2865 /*
2866 * TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF)
2867 */
2868 tmR3TimerQueueDoVirtualSync(pVM, pVCpuDst);
2869
2870 /*
2871 * TMCLOCK_VIRTUAL
2872 */
2873 tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL]);
2874
2875 /*
2876 * TMCLOCK_TSC
2877 */
2878 Assert(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxActive == UINT32_MAX); /* not used */
2879
2880 /*
2881 * TMCLOCK_REAL
2882 */
2883 tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL]);
2884
2885#ifdef VBOX_STRICT
2886 /* check that we didn't screw up. */
2887 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
2888#endif
2889
2890 /* done */
2891 Log2(("TMR3TimerQueuesDo: returns void\n"));
2892 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
2893 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
2894}
2895
2896
2897
2898/** @name Saved state values
2899 * @{ */
2900#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2901#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2902/** @} */
2903
2904
2905/**
2906 * Saves the state of a timer to a saved state.
2907 *
2908 * @returns VBox status code.
2909 * @param pVM The cross context VM structure.
2910 * @param hTimer Timer to save.
2911 * @param pSSM Save State Manager handle.
2912 */
2913VMMR3DECL(int) TMR3TimerSave(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM)
2914{
2915 VM_ASSERT_EMT(pVM);
2916 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
2917 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM));
2918
2919 switch (pTimer->enmState)
2920 {
2921 case TMTIMERSTATE_STOPPED:
2922 case TMTIMERSTATE_PENDING_STOP:
2923 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2924 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2925
2926 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2927 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2928 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->szName));
2929 if (!RTThreadYield())
2930 RTThreadSleep(1);
2931 RT_FALL_THRU();
2932 case TMTIMERSTATE_ACTIVE:
2933 case TMTIMERSTATE_PENDING_SCHEDULE:
2934 case TMTIMERSTATE_PENDING_RESCHEDULE:
2935 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2936 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2937
2938 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2939 case TMTIMERSTATE_EXPIRED_DELIVER:
2940 case TMTIMERSTATE_DESTROY:
2941 case TMTIMERSTATE_FREE:
2942 case TMTIMERSTATE_INVALID:
2943 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->szName));
2944 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2945 }
2946
2947 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->szName));
2948 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2949}
2950
2951
2952/**
2953 * Loads the state of a timer from a saved state.
2954 *
2955 * @returns VBox status code.
2956 * @param pVM The cross context VM structure.
2957 * @param hTimer Handle of Timer to restore.
2958 * @param pSSM Save State Manager handle.
2959 */
2960VMMR3DECL(int) TMR3TimerLoad(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM)
2961{
2962 VM_ASSERT_EMT(pVM);
2963 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
2964 Assert(pSSM);
2965 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM));
2966
2967 /*
2968 * Load the state and validate it.
2969 */
2970 uint8_t u8State;
2971 int rc = SSMR3GetU8(pSSM, &u8State);
2972 if (RT_FAILURE(rc))
2973 return rc;
2974
2975 /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
2976 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2977 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2978 u8State--;
2979
2980 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2981 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2982 {
2983 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2984 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2985 }
2986
2987 /* Enter the critical sections to make TMTimerSet/Stop happy. */
2988 if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC)
2989 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2990 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2991 if (pCritSect)
2992 PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED);
2993
2994 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2995 {
2996 /*
2997 * Load the expire time.
2998 */
2999 uint64_t u64Expire;
3000 rc = SSMR3GetU64(pSSM, &u64Expire);
3001 if (RT_FAILURE(rc))
3002 return rc;
3003
3004 /*
3005 * Set it.
3006 */
3007 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
3008 rc = TMTimerSet(pVM, hTimer, u64Expire);
3009 }
3010 else
3011 {
3012 /*
3013 * Stop it.
3014 */
3015 Log(("u8State=%d\n", u8State));
3016 rc = TMTimerStop(pVM, hTimer);
3017 }
3018
3019 if (pCritSect)
3020 PDMCritSectLeave(pVM, pCritSect);
3021 if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC)
3022 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
3023
3024 /*
3025 * On failure set SSM status.
3026 */
3027 if (RT_FAILURE(rc))
3028 rc = SSMR3HandleSetStatus(pSSM, rc);
3029 return rc;
3030}
3031
3032
3033/**
3034 * Skips the state of a timer in a given saved state.
3035 *
3036 * @returns VBox status.
3037 * @param pSSM Save State Manager handle.
3038 * @param pfActive Where to store whether the timer was active
3039 * when the state was saved.
3040 */
3041VMMR3DECL(int) TMR3TimerSkip(PSSMHANDLE pSSM, bool *pfActive)
3042{
3043 Assert(pSSM); AssertPtr(pfActive);
3044 LogFlow(("TMR3TimerSkip: pSSM=%p pfActive=%p\n", pSSM, pfActive));
3045
3046 /*
3047 * Load the state and validate it.
3048 */
3049 uint8_t u8State;
3050 int rc = SSMR3GetU8(pSSM, &u8State);
3051 if (RT_FAILURE(rc))
3052 return rc;
3053
3054 /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
3055 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
3056 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
3057 u8State--;
3058
3059 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
3060 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
3061 {
3062 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
3063 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
3064 }
3065
3066 *pfActive = (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
3067 if (*pfActive)
3068 {
3069 /*
3070 * Load the expire time.
3071 */
3072 uint64_t u64Expire;
3073 rc = SSMR3GetU64(pSSM, &u64Expire);
3074 }
3075
3076 return rc;
3077}
3078
3079
3080/**
3081 * Associates a critical section with a timer.
3082 *
3083 * The critical section will be entered prior to doing the timer call back, thus
3084 * avoiding potential races between the timer thread and other threads trying to
3085 * stop or adjust the timer expiration while it's being delivered. The timer
3086 * thread will leave the critical section when the timer callback returns.
3087 *
3088 * In strict builds, ownership of the critical section will be asserted by
3089 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
3090 * runtime).
3091 *
3092 * @retval VINF_SUCCESS on success.
3093 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
3094 * (asserted).
3095 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
3096 * (asserted).
3097 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
3098 * with the timer (asserted).
3099 * @retval VERR_INVALID_STATE if the timer isn't stopped.
3100 *
3101 * @param pVM The cross context VM structure.
3102 * @param hTimer The timer handle.
3103 * @param pCritSect The critical section. The caller must make sure this
3104 * is around for the life time of the timer.
3105 *
3106 * @thread Any, but the caller is responsible for making sure the timer is not
3107 * active.
3108 */
3109VMMR3DECL(int) TMR3TimerSetCritSect(PVM pVM, TMTIMERHANDLE hTimer, PPDMCRITSECT pCritSect)
3110{
3111 TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */
3112 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
3113 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
3114 AssertReturn(pszName, VERR_INVALID_PARAMETER);
3115 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
3116 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
3117 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->szName, pCritSect, pszName));
3118
3119 pTimer->pCritSect = pCritSect;
3120 return VINF_SUCCESS;
3121}
3122
3123
3124/**
3125 * Get the real world UTC time adjusted for VM lag.
3126 *
3127 * @returns pTime.
3128 * @param pVM The cross context VM structure.
3129 * @param pTime Where to store the time.
3130 */
3131VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
3132{
3133 /*
3134 * Get a stable set of VirtualSync parameters and calc the lag.
3135 */
3136 uint64_t offVirtualSync;
3137 uint64_t offVirtualSyncGivenUp;
3138 do
3139 {
3140 offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
3141 offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp);
3142 } while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync);
3143
3144 Assert(offVirtualSync >= offVirtualSyncGivenUp);
3145 uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp;
3146
3147 /*
3148 * Get current time and adjust for virtual sync lag and do time displacement.
3149 */
3150 RTTimeNow(pTime);
3151 RTTimeSpecSubNano(pTime, offLag);
3152 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
3153
3154 /*
3155 * Log details if the time changed radically (also triggers on first call).
3156 */
3157 int64_t nsPrev = ASMAtomicXchgS64(&pVM->tm.s.nsLastUtcNow, RTTimeSpecGetNano(pTime));
3158 int64_t cNsDelta = RTTimeSpecGetNano(pTime) - nsPrev;
3159 if ((uint64_t)RT_ABS(cNsDelta) > RT_NS_1HOUR / 2)
3160 {
3161 RTTIMESPEC NowAgain;
3162 RTTimeNow(&NowAgain);
3163 LogRel(("TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
3164 RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain)));
3165 if (pVM->tm.s.pszUtcTouchFileOnJump && nsPrev != 0)
3166 {
3167 RTFILE hFile;
3168 int rc = RTFileOpen(&hFile, pVM->tm.s.pszUtcTouchFileOnJump,
3169 RTFILE_O_WRITE | RTFILE_O_APPEND | RTFILE_O_OPEN_CREATE | RTFILE_O_DENY_NONE);
3170 if (RT_SUCCESS(rc))
3171 {
3172 char szMsg[256];
3173 size_t cch;
3174 cch = RTStrPrintf(szMsg, sizeof(szMsg),
3175 "TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
3176 RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain));
3177 RTFileWrite(hFile, szMsg, cch, NULL);
3178 RTFileClose(hFile);
3179 }
3180 }
3181 }
3182
3183 return pTime;
3184}
3185
3186
3187/**
3188 * Pauses all clocks except TMCLOCK_REAL.
3189 *
3190 * @returns VBox status code, all errors are asserted.
3191 * @param pVM The cross context VM structure.
3192 * @param pVCpu The cross context virtual CPU structure.
3193 * @thread EMT corresponding to Pointer to the VMCPU.
3194 */
3195VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
3196{
3197 VMCPU_ASSERT_EMT(pVCpu);
3198 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
3199
3200 /*
3201 * The shared virtual clock (includes virtual sync which is tied to it).
3202 */
3203 int rc = tmVirtualPauseLocked(pVM);
3204 AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
3205
3206 /*
3207 * Pause the TSC last since it is normally linked to the virtual
3208 * sync clock, so the above code may actually stop both clocks.
3209 */
3210 if (!pVM->tm.s.fTSCTiedToExecution)
3211 {
3212 rc = tmCpuTickPauseLocked(pVM, pVCpu);
3213 AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
3214 }
3215
3216#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3217 /*
3218 * Update cNsTotal and stats.
3219 */
3220 Assert(!pVCpu->tm.s.fSuspended);
3221 uint64_t const cNsTotalNew = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal;
3222 uint64_t const cNsOtherNew = cNsTotalNew - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
3223
3224# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
3225 STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsTotal, cNsTotalNew - pVCpu->tm.s.cNsTotalStat);
3226 int64_t const cNsOtherNewDelta = cNsOtherNew - pVCpu->tm.s.cNsOtherStat;
3227 if (cNsOtherNewDelta > 0)
3228 STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsOther, (uint64_t)cNsOtherNewDelta);
3229# endif
3230
3231 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
3232 pVCpu->tm.s.nsStartTotal = cNsTotalNew;
3233 pVCpu->tm.s.fSuspended = true;
3234 pVCpu->tm.s.cNsTotalStat = cNsTotalNew;
3235 pVCpu->tm.s.cNsOtherStat = cNsOtherNew;
3236 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
3237#endif
3238
3239 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
3240 return VINF_SUCCESS;
3241}
3242
3243
3244/**
3245 * Resumes all clocks except TMCLOCK_REAL.
3246 *
3247 * @returns VBox status code, all errors are asserted.
3248 * @param pVM The cross context VM structure.
3249 * @param pVCpu The cross context virtual CPU structure.
3250 * @thread EMT corresponding to Pointer to the VMCPU.
3251 */
3252VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
3253{
3254 VMCPU_ASSERT_EMT(pVCpu);
3255 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
3256
3257#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3258 /*
3259 * Set u64NsTsStartTotal. There is no need to back this out if either of
3260 * the two calls below fail.
3261 */
3262 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
3263 pVCpu->tm.s.nsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal;
3264 pVCpu->tm.s.fSuspended = false;
3265 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
3266#endif
3267
3268 /*
3269 * Resume the TSC first since it is normally linked to the virtual sync
3270 * clock, so it may actually not be resumed until we've executed the code
3271 * below.
3272 */
3273 if (!pVM->tm.s.fTSCTiedToExecution)
3274 {
3275 int rc = tmCpuTickResumeLocked(pVM, pVCpu);
3276 AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc);
3277 }
3278
3279 /*
3280 * The shared virtual clock (includes virtual sync which is tied to it).
3281 */
3282 int rc = tmVirtualResumeLocked(pVM);
3283
3284 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
3285 return rc;
3286}
3287
3288
3289/**
3290 * Sets the warp drive percent of the virtual time.
3291 *
3292 * @returns VBox status code.
3293 * @param pUVM The user mode VM structure.
3294 * @param u32Percent The new percentage. 100 means normal operation.
3295 */
3296VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
3297{
3298 return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent);
3299}
3300
3301
3302/**
3303 * EMT worker for TMR3SetWarpDrive.
3304 *
3305 * @returns VBox status code.
3306 * @param pUVM The user mode VM handle.
3307 * @param u32Percent See TMR3SetWarpDrive().
3308 * @internal
3309 */
3310static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
3311{
3312 PVM pVM = pUVM->pVM;
3313 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3314 PVMCPU pVCpu = VMMGetCpu(pVM);
3315
3316 /*
3317 * Validate it.
3318 */
3319 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
3320 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
3321 VERR_INVALID_PARAMETER);
3322
3323/** @todo This isn't a feature specific to virtual time, move the variables to
3324 * TM level and make it affect TMR3UTCNow as well! */
3325
3326 PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */
3327
3328 /*
3329 * If the time is running we'll have to pause it before we can change
3330 * the warp drive settings.
3331 */
3332 bool fPaused = !!pVM->tm.s.cVirtualTicking;
3333 if (fPaused) /** @todo this isn't really working, but wtf. */
3334 TMR3NotifySuspend(pVM, pVCpu);
3335
3336 /** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */
3337 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
3338 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
3339 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
3340 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
3341
3342 if (fPaused)
3343 TMR3NotifyResume(pVM, pVCpu);
3344
3345 PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
3346 return VINF_SUCCESS;
3347}
3348
3349
3350/**
3351 * Gets the current TMCLOCK_VIRTUAL time without checking
3352 * timers or anything.
3353 *
3354 * @returns The timestamp.
3355 * @param pUVM The user mode VM structure.
3356 *
3357 * @remarks See TMVirtualGetNoCheck.
3358 */
3359VMMR3DECL(uint64_t) TMR3TimeVirtGet(PUVM pUVM)
3360{
3361 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3362 PVM pVM = pUVM->pVM;
3363 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3364 return TMVirtualGetNoCheck(pVM);
3365}
3366
3367
3368/**
3369 * Gets the current TMCLOCK_VIRTUAL time in milliseconds without checking
3370 * timers or anything.
3371 *
3372 * @returns The timestamp in milliseconds.
3373 * @param pUVM The user mode VM structure.
3374 *
3375 * @remarks See TMVirtualGetNoCheck.
3376 */
3377VMMR3DECL(uint64_t) TMR3TimeVirtGetMilli(PUVM pUVM)
3378{
3379 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3380 PVM pVM = pUVM->pVM;
3381 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3382 return TMVirtualToMilli(pVM, TMVirtualGetNoCheck(pVM));
3383}
3384
3385
3386/**
3387 * Gets the current TMCLOCK_VIRTUAL time in microseconds without checking
3388 * timers or anything.
3389 *
3390 * @returns The timestamp in microseconds.
3391 * @param pUVM The user mode VM structure.
3392 *
3393 * @remarks See TMVirtualGetNoCheck.
3394 */
3395VMMR3DECL(uint64_t) TMR3TimeVirtGetMicro(PUVM pUVM)
3396{
3397 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3398 PVM pVM = pUVM->pVM;
3399 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3400 return TMVirtualToMicro(pVM, TMVirtualGetNoCheck(pVM));
3401}
3402
3403
3404/**
3405 * Gets the current TMCLOCK_VIRTUAL time in nanoseconds without checking
3406 * timers or anything.
3407 *
3408 * @returns The timestamp in nanoseconds.
3409 * @param pUVM The user mode VM structure.
3410 *
3411 * @remarks See TMVirtualGetNoCheck.
3412 */
3413VMMR3DECL(uint64_t) TMR3TimeVirtGetNano(PUVM pUVM)
3414{
3415 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3416 PVM pVM = pUVM->pVM;
3417 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3418 return TMVirtualToNano(pVM, TMVirtualGetNoCheck(pVM));
3419}
3420
3421
3422/**
3423 * Gets the current warp drive percent.
3424 *
3425 * @returns The warp drive percent.
3426 * @param pUVM The user mode VM structure.
3427 */
3428VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM)
3429{
3430 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX);
3431 PVM pVM = pUVM->pVM;
3432 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
3433 return pVM->tm.s.u32VirtualWarpDrivePercentage;
3434}
3435
3436
3437#if 0 /* unused - needs a little updating after @bugref{9941}*/
3438/**
3439 * Gets the performance information for one virtual CPU as seen by the VMM.
3440 *
3441 * The returned times covers the period where the VM is running and will be
3442 * reset when restoring a previous VM state (at least for the time being).
3443 *
3444 * @retval VINF_SUCCESS on success.
3445 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
3446 * @retval VERR_INVALID_STATE if the VM handle is bad.
3447 * @retval VERR_INVALID_CPU_ID if idCpu is out of range.
3448 *
3449 * @param pVM The cross context VM structure.
3450 * @param idCpu The ID of the virtual CPU which times to get.
3451 * @param pcNsTotal Where to store the total run time (nano seconds) of
3452 * the CPU, i.e. the sum of the three other returns.
3453 * Optional.
3454 * @param pcNsExecuting Where to store the time (nano seconds) spent
3455 * executing guest code. Optional.
3456 * @param pcNsHalted Where to store the time (nano seconds) spent
3457 * halted. Optional
3458 * @param pcNsOther Where to store the time (nano seconds) spent
3459 * preempted by the host scheduler, on virtualization
3460 * overhead and on other tasks.
3461 */
3462VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
3463 uint64_t *pcNsHalted, uint64_t *pcNsOther)
3464{
3465 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
3466 AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
3467
3468#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3469 /*
3470 * Get a stable result set.
3471 * This should be way quicker than an EMT request.
3472 */
3473 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3474 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3475 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
3476 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3477 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3478 uint64_t cNsOther = pVCpu->tm.s.cNsOther;
3479 while ( (uTimesGen & 1) /* update in progress */
3480 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
3481 {
3482 RTThreadYield();
3483 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3484 cNsTotal = pVCpu->tm.s.cNsTotal;
3485 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3486 cNsHalted = pVCpu->tm.s.cNsHalted;
3487 cNsOther = pVCpu->tm.s.cNsOther;
3488 }
3489
3490 /*
3491 * Fill in the return values.
3492 */
3493 if (pcNsTotal)
3494 *pcNsTotal = cNsTotal;
3495 if (pcNsExecuting)
3496 *pcNsExecuting = cNsExecuting;
3497 if (pcNsHalted)
3498 *pcNsHalted = cNsHalted;
3499 if (pcNsOther)
3500 *pcNsOther = cNsOther;
3501
3502 return VINF_SUCCESS;
3503
3504#else
3505 return VERR_NOT_IMPLEMENTED;
3506#endif
3507}
3508#endif /* unused */
3509
3510
3511/**
3512 * Gets the performance information for one virtual CPU as seen by the VMM in
3513 * percents.
3514 *
3515 * The returned times covers the period where the VM is running and will be
3516 * reset when restoring a previous VM state (at least for the time being).
3517 *
3518 * @retval VINF_SUCCESS on success.
3519 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
3520 * @retval VERR_INVALID_VM_HANDLE if the VM handle is bad.
3521 * @retval VERR_INVALID_CPU_ID if idCpu is out of range.
3522 *
3523 * @param pUVM The usermode VM structure.
3524 * @param idCpu The ID of the virtual CPU which times to get.
3525 * @param pcMsInterval Where to store the interval of the percentages in
3526 * milliseconds. Optional.
3527 * @param pcPctExecuting Where to return the percentage of time spent
3528 * executing guest code. Optional.
3529 * @param pcPctHalted Where to return the percentage of time spent halted.
3530 * Optional
3531 * @param pcPctOther Where to return the percentage of time spent
3532 * preempted by the host scheduler, on virtualization
3533 * overhead and on other tasks.
3534 */
3535VMMR3DECL(int) TMR3GetCpuLoadPercents(PUVM pUVM, VMCPUID idCpu, uint64_t *pcMsInterval, uint8_t *pcPctExecuting,
3536 uint8_t *pcPctHalted, uint8_t *pcPctOther)
3537{
3538 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
3539 PVM pVM = pUVM->pVM;
3540 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3541 AssertReturn(idCpu == VMCPUID_ALL || idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
3542
3543#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3544 TMCPULOADSTATE volatile *pState;
3545 if (idCpu == VMCPUID_ALL)
3546 pState = &pVM->tm.s.CpuLoad;
3547 else
3548 pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
3549
3550 if (pcMsInterval)
3551 *pcMsInterval = RT_MS_1SEC;
3552 if (pcPctExecuting)
3553 *pcPctExecuting = pState->cPctExecuting;
3554 if (pcPctHalted)
3555 *pcPctHalted = pState->cPctHalted;
3556 if (pcPctOther)
3557 *pcPctOther = pState->cPctOther;
3558
3559 return VINF_SUCCESS;
3560
3561#else
3562 RT_NOREF(pcMsInterval, pcPctExecuting, pcPctHalted, pcPctOther);
3563 return VERR_NOT_IMPLEMENTED;
3564#endif
3565}
3566
3567#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3568
3569/**
3570 * Helper for tmR3CpuLoadTimer.
3571 * @returns
3572 * @param pState The state to update.
3573 * @param cNsTotal Total time.
3574 * @param cNsExecuting Time executing.
3575 * @param cNsHalted Time halted.
3576 */
3577DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState, uint64_t cNsTotal, uint64_t cNsExecuting, uint64_t cNsHalted)
3578{
3579 /* Calc & update deltas */
3580 uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
3581 uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
3582 uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
3583
3584 if (cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta)
3585 { /* likely */ }
3586 else
3587 {
3588 /* Just adjust the executing and halted values down to match the total delta. */
3589 uint64_t const cNsExecAndHalted = cNsExecutingDelta + cNsHaltedDelta;
3590 uint64_t const cNsAdjust = cNsExecAndHalted - cNsTotalDelta + cNsTotalDelta / 64;
3591 cNsExecutingDelta -= (cNsAdjust * cNsExecutingDelta + cNsExecAndHalted - 1) / cNsExecAndHalted;
3592 cNsHaltedDelta -= (cNsAdjust * cNsHaltedDelta + cNsExecAndHalted - 1) / cNsExecAndHalted;
3593 /*Assert(cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta); - annoying when debugging */
3594 }
3595
3596 pState->cNsPrevExecuting = cNsExecuting;
3597 pState->cNsPrevHalted = cNsHalted;
3598 pState->cNsPrevTotal = cNsTotal;
3599
3600 /* Calc pcts. */
3601 uint8_t cPctExecuting, cPctHalted, cPctOther;
3602 if (!cNsTotalDelta)
3603 {
3604 cPctExecuting = 0;
3605 cPctHalted = 100;
3606 cPctOther = 0;
3607 }
3608 else if (cNsTotalDelta < UINT64_MAX / 4)
3609 {
3610 cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
3611 cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
3612 cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
3613 }
3614 else
3615 {
3616 cPctExecuting = 0;
3617 cPctHalted = 100;
3618 cPctOther = 0;
3619 }
3620
3621 /* Update percentages: */
3622 size_t idxHistory = pState->idxHistory + 1;
3623 if (idxHistory >= RT_ELEMENTS(pState->aHistory))
3624 idxHistory = 0;
3625
3626 pState->cPctExecuting = cPctExecuting;
3627 pState->cPctHalted = cPctHalted;
3628 pState->cPctOther = cPctOther;
3629
3630 pState->aHistory[idxHistory].cPctExecuting = cPctExecuting;
3631 pState->aHistory[idxHistory].cPctHalted = cPctHalted;
3632 pState->aHistory[idxHistory].cPctOther = cPctOther;
3633
3634 pState->idxHistory = (uint16_t)idxHistory;
3635 if (pState->cHistoryEntries < RT_ELEMENTS(pState->aHistory))
3636 pState->cHistoryEntries++;
3637}
3638
3639
3640/**
3641 * @callback_method_impl{FNTMTIMERINT,
3642 * Timer callback that calculates the CPU load since the last
3643 * time it was called.}
3644 */
3645static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
3646{
3647 /*
3648 * Re-arm the timer first.
3649 */
3650 int rc = TMTimerSetMillies(pVM, hTimer, 1000);
3651 AssertLogRelRC(rc);
3652 NOREF(pvUser);
3653
3654 /*
3655 * Update the values for each CPU.
3656 */
3657 uint64_t cNsTotalAll = 0;
3658 uint64_t cNsExecutingAll = 0;
3659 uint64_t cNsHaltedAll = 0;
3660 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3661 {
3662 PVMCPU pVCpu = pVM->apCpusR3[iCpu];
3663
3664 /* Try get a stable data set. */
3665 uint32_t cTries = 3;
3666 uint64_t nsNow = RTTimeNanoTS();
3667 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3668 bool fSuspended = pVCpu->tm.s.fSuspended;
3669 uint64_t nsStartTotal = pVCpu->tm.s.nsStartTotal;
3670 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3671 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3672 while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
3673 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
3674 {
3675 if (!--cTries)
3676 break;
3677 ASMNopPause();
3678 nsNow = RTTimeNanoTS();
3679 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3680 fSuspended = pVCpu->tm.s.fSuspended;
3681 nsStartTotal = pVCpu->tm.s.nsStartTotal;
3682 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3683 cNsHalted = pVCpu->tm.s.cNsHalted;
3684 }
3685
3686 /* Totals */
3687 uint64_t cNsTotal = fSuspended ? nsStartTotal : nsNow - nsStartTotal;
3688 cNsTotalAll += cNsTotal;
3689 cNsExecutingAll += cNsExecuting;
3690 cNsHaltedAll += cNsHalted;
3691
3692 /* Calc the PCTs and update the state. */
3693 tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
3694
3695 /* Tell the VCpu to update the other and total stat members. */
3696 ASMAtomicWriteBool(&pVCpu->tm.s.fUpdateStats, true);
3697 }
3698
3699 /*
3700 * Update the value for all the CPUs.
3701 */
3702 tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
3703
3704}
3705
3706#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
3707
3708
3709/**
3710 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3711 * Worker for TMR3CpuTickParavirtEnable}
3712 */
3713static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3714{
3715 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData);
3716 Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API); /** @todo figure out NEM/win and paravirt */
3717 Assert(tmR3HasFixedTSC(pVM));
3718
3719 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
3720 {
3721 /*
3722 * The return value of TMCpuTickGet() and the guest's TSC value for each
3723 * CPU must remain constant across the TM TSC mode-switch. Thus we have
3724 * the following equation (new/old signifies the new/old tsc modes):
3725 * uNewTsc = uOldTsc
3726 *
3727 * Where (see tmCpuTickGetInternal):
3728 * uOldTsc = uRawOldTsc - offTscRawSrcOld
3729 * uNewTsc = uRawNewTsc - offTscRawSrcNew
3730 *
3731 * Solve it for offTscRawSrcNew without replacing uOldTsc:
3732 * uRawNewTsc - offTscRawSrcNew = uOldTsc
3733 * => -offTscRawSrcNew = uOldTsc - uRawNewTsc
3734 * => offTscRawSrcNew = uRawNewTsc - uOldTsc
3735 */
3736 uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3737 uint64_t uRawNewTsc = SUPReadTsc();
3738 uint32_t cCpus = pVM->cCpus;
3739 for (uint32_t i = 0; i < cCpus; i++)
3740 {
3741 PVMCPU pVCpu = pVM->apCpusR3[i];
3742 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3743 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3744 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3745 }
3746
3747 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3748 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3749 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
3750 }
3751 return VINF_SUCCESS;
3752}
3753
3754
3755/**
3756 * Notify TM that the guest has enabled usage of a paravirtualized TSC.
3757 *
3758 * This may perform a EMT rendezvous and change the TSC virtualization mode.
3759 *
3760 * @returns VBox status code.
3761 * @param pVM The cross context VM structure.
3762 */
3763VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM)
3764{
3765 int rc = VINF_SUCCESS;
3766 if (pVM->tm.s.fTSCModeSwitchAllowed)
3767 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL);
3768 else
3769 LogRel(("TM: Host/VM is not suitable for using TSC mode '%s', request to change TSC mode ignored\n",
3770 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3771 pVM->tm.s.fParavirtTscEnabled = true;
3772 return rc;
3773}
3774
3775
3776/**
3777 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3778 * Worker for TMR3CpuTickParavirtDisable}
3779 */
3780static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3781{
3782 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt);
3783 RT_NOREF1(pvData);
3784
3785 if ( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3786 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
3787 {
3788 /*
3789 * See tmR3CpuTickParavirtEnable for an explanation of the conversion math.
3790 */
3791 uint64_t uRawOldTsc = SUPReadTsc();
3792 uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3793 uint32_t cCpus = pVM->cCpus;
3794 for (uint32_t i = 0; i < cCpus; i++)
3795 {
3796 PVMCPU pVCpu = pVM->apCpusR3[i];
3797 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3798 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3799 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3800
3801 /* Update the last-seen tick here as we havent't been updating it (as we don't
3802 need it) while in pure TSC-offsetting mode. */
3803 pVCpu->tm.s.u64TSCLastSeen = uOldTsc;
3804 }
3805
3806 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3807 tmR3GetTSCModeNameEx(pVM->tm.s.enmOriginalTSCMode)));
3808 pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode;
3809 }
3810 return VINF_SUCCESS;
3811}
3812
3813
3814/**
3815 * Notify TM that the guest has disabled usage of a paravirtualized TSC.
3816 *
3817 * If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will
3818 * perform an EMT rendezvous to revert those changes.
3819 *
3820 * @returns VBox status code.
3821 * @param pVM The cross context VM structure.
3822 */
3823VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM)
3824{
3825 int rc = VINF_SUCCESS;
3826 if (pVM->tm.s.fTSCModeSwitchAllowed)
3827 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL);
3828 pVM->tm.s.fParavirtTscEnabled = false;
3829 return rc;
3830}
3831
3832
3833/**
3834 * Check whether the guest can be presented a fixed rate & monotonic TSC.
3835 *
3836 * @returns true if TSC is stable, false otherwise.
3837 * @param pVM The cross context VM structure.
3838 * @param fWithParavirtEnabled Whether it's fixed & monotonic when
3839 * paravirt. TSC is enabled or not.
3840 *
3841 * @remarks Must be called only after TMR3InitFinalize().
3842 */
3843VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled)
3844{
3845 /** @todo figure out what exactly we want here later. */
3846 NOREF(fWithParavirtEnabled);
3847 PSUPGLOBALINFOPAGE pGip;
3848 return tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */
3849 && ( (pGip = g_pSUPGlobalInfoPage) == NULL /* Can be NULL in driverless mode. */
3850 || (pGip->u32Mode != SUPGIPMODE_ASYNC_TSC)); /* GIP thinks it's monotonic. */
3851}
3852
3853
3854/**
3855 * Gets the 5 char clock name for the info tables.
3856 *
3857 * @returns The name.
3858 * @param enmClock The clock.
3859 */
3860DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock)
3861{
3862 switch (enmClock)
3863 {
3864 case TMCLOCK_REAL: return "Real ";
3865 case TMCLOCK_VIRTUAL: return "Virt ";
3866 case TMCLOCK_VIRTUAL_SYNC: return "VrSy ";
3867 case TMCLOCK_TSC: return "TSC ";
3868 default: return "Bad ";
3869 }
3870}
3871
3872
3873/**
3874 * Display all timers.
3875 *
3876 * @param pVM The cross context VM structure.
3877 * @param pHlp The info helpers.
3878 * @param pszArgs Arguments, ignored.
3879 */
3880static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3881{
3882 NOREF(pszArgs);
3883 pHlp->pfnPrintf(pHlp,
3884 "Timers (pVM=%p)\n"
3885 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3886 pVM,
3887 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3888 sizeof(int32_t) * 2, "offNext ",
3889 sizeof(int32_t) * 2, "offPrev ",
3890 sizeof(int32_t) * 2, "offSched ",
3891 "Time",
3892 "Expire",
3893 "HzHint",
3894 "State");
3895 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
3896 {
3897 PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
3898 const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock);
3899 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
3900 for (uint32_t idxTimer = 0; idxTimer < pQueue->cTimersAlloc; idxTimer++)
3901 {
3902 PTMTIMER pTimer = &pQueue->paTimers[idxTimer];
3903 TMTIMERSTATE enmState = pTimer->enmState;
3904 if (enmState < TMTIMERSTATE_DESTROY && enmState > TMTIMERSTATE_INVALID)
3905 pHlp->pfnPrintf(pHlp,
3906 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3907 pTimer,
3908 pTimer->idxNext,
3909 pTimer->idxPrev,
3910 pTimer->idxScheduleNext,
3911 pszClock,
3912 TMTimerGet(pVM, pTimer->hSelf),
3913 pTimer->u64Expire,
3914 pTimer->uHzHint,
3915 tmTimerState(enmState),
3916 pTimer->szName);
3917 }
3918 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
3919 }
3920}
3921
3922
3923/**
3924 * Display all active timers.
3925 *
3926 * @param pVM The cross context VM structure.
3927 * @param pHlp The info helpers.
3928 * @param pszArgs Arguments, ignored.
3929 */
3930static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3931{
3932 NOREF(pszArgs);
3933 pHlp->pfnPrintf(pHlp,
3934 "Active Timers (pVM=%p)\n"
3935 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3936 pVM,
3937 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3938 sizeof(int32_t) * 2, "offNext ",
3939 sizeof(int32_t) * 2, "offPrev ",
3940 sizeof(int32_t) * 2, "offSched ",
3941 "Time",
3942 "Expire",
3943 "HzHint",
3944 "State");
3945 for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++)
3946 {
3947 PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue];
3948 const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock);
3949 PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED);
3950 PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED);
3951
3952 for (PTMTIMERR3 pTimer = tmTimerQueueGetHead(pQueue, pQueue);
3953 pTimer;
3954 pTimer = tmTimerGetNext(pQueue, pTimer))
3955 {
3956 pHlp->pfnPrintf(pHlp,
3957 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3958 pTimer,
3959 pTimer->idxNext,
3960 pTimer->idxPrev,
3961 pTimer->idxScheduleNext,
3962 pszClock,
3963 TMTimerGet(pVM, pTimer->hSelf),
3964 pTimer->u64Expire,
3965 pTimer->uHzHint,
3966 tmTimerState(pTimer->enmState),
3967 pTimer->szName);
3968 }
3969
3970 PDMCritSectLeave(pVM, &pQueue->TimerLock);
3971 PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock);
3972 }
3973}
3974
3975
3976/**
3977 * Display all clocks.
3978 *
3979 * @param pVM The cross context VM structure.
3980 * @param pHlp The info helpers.
3981 * @param pszArgs Arguments, ignored.
3982 */
3983static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3984{
3985 NOREF(pszArgs);
3986
3987 /*
3988 * Read the times first to avoid more than necessary time variation.
3989 */
3990 const uint64_t u64Virtual = TMVirtualGet(pVM);
3991 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
3992 const uint64_t u64Real = TMRealGet(pVM);
3993
3994 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3995 {
3996 PVMCPU pVCpu = pVM->apCpusR3[i];
3997 uint64_t u64TSC = TMCpuTickGet(pVCpu);
3998
3999 /*
4000 * TSC
4001 */
4002 pHlp->pfnPrintf(pHlp,
4003 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized",
4004 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
4005 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused");
4006 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
4007 {
4008 pHlp->pfnPrintf(pHlp, " - real tsc offset");
4009 if (pVCpu->tm.s.offTSCRawSrc)
4010 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
4011 }
4012 else if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
4013 pHlp->pfnPrintf(pHlp, " - native api");
4014 else
4015 pHlp->pfnPrintf(pHlp, " - virtual clock");
4016 pHlp->pfnPrintf(pHlp, "\n");
4017 }
4018
4019 /*
4020 * virtual
4021 */
4022 pHlp->pfnPrintf(pHlp,
4023 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
4024 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
4025 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
4026 if (pVM->tm.s.fVirtualWarpDrive)
4027 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
4028 pHlp->pfnPrintf(pHlp, "\n");
4029
4030 /*
4031 * virtual sync
4032 */
4033 pHlp->pfnPrintf(pHlp,
4034 "VirtSync: %18RU64 (%#016RX64) %s%s",
4035 u64VirtualSync, u64VirtualSync,
4036 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
4037 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
4038 if (pVM->tm.s.offVirtualSync)
4039 {
4040 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
4041 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
4042 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
4043 }
4044 pHlp->pfnPrintf(pHlp, "\n");
4045
4046 /*
4047 * real
4048 */
4049 pHlp->pfnPrintf(pHlp,
4050 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
4051 u64Real, u64Real, TMRealGetFreq(pVM));
4052}
4053
4054
4055/**
4056 * Helper for tmR3InfoCpuLoad that adjust @a uPct to the given graph width.
4057 */
4058DECLINLINE(size_t) tmR3InfoCpuLoadAdjustWidth(size_t uPct, size_t cchWidth)
4059{
4060 if (cchWidth != 100)
4061 uPct = (uPct + 0.5) * (cchWidth / 100.0);
4062 return uPct;
4063}
4064
4065
4066/**
4067 * @callback_method_impl{FNDBGFINFOARGVINT}
4068 */
4069static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs)
4070{
4071 char szTmp[1024];
4072
4073 /*
4074 * Parse arguments.
4075 */
4076 PTMCPULOADSTATE pState = &pVM->tm.s.CpuLoad;
4077 VMCPUID idCpu = 0;
4078 bool fAllCpus = true;
4079 bool fExpGraph = true;
4080 uint32_t cchWidth = 80;
4081 uint32_t cPeriods = RT_ELEMENTS(pState->aHistory);
4082 uint32_t cRows = 60;
4083
4084 static const RTGETOPTDEF s_aOptions[] =
4085 {
4086 { "all", 'a', RTGETOPT_REQ_NOTHING },
4087 { "cpu", 'c', RTGETOPT_REQ_UINT32 },
4088 { "periods", 'p', RTGETOPT_REQ_UINT32 },
4089 { "rows", 'r', RTGETOPT_REQ_UINT32 },
4090 { "uni", 'u', RTGETOPT_REQ_NOTHING },
4091 { "uniform", 'u', RTGETOPT_REQ_NOTHING },
4092 { "width", 'w', RTGETOPT_REQ_UINT32 },
4093 { "exp", 'x', RTGETOPT_REQ_NOTHING },
4094 { "exponential", 'x', RTGETOPT_REQ_NOTHING },
4095 };
4096
4097 RTGETOPTSTATE State;
4098 int rc = RTGetOptInit(&State, cArgs, papszArgs, s_aOptions, RT_ELEMENTS(s_aOptions), 0, 0 /*fFlags*/);
4099 AssertRC(rc);
4100
4101 RTGETOPTUNION ValueUnion;
4102 while ((rc = RTGetOpt(&State, &ValueUnion)) != 0)
4103 {
4104 switch (rc)
4105 {
4106 case 'a':
4107 pState = &pVM->apCpusR3[0]->tm.s.CpuLoad;
4108 idCpu = 0;
4109 fAllCpus = true;
4110 break;
4111 case 'c':
4112 if (ValueUnion.u32 < pVM->cCpus)
4113 {
4114 pState = &pVM->apCpusR3[ValueUnion.u32]->tm.s.CpuLoad;
4115 idCpu = ValueUnion.u32;
4116 }
4117 else
4118 {
4119 pState = &pVM->tm.s.CpuLoad;
4120 idCpu = VMCPUID_ALL;
4121 }
4122 fAllCpus = false;
4123 break;
4124 case 'p':
4125 cPeriods = RT_MIN(RT_MAX(ValueUnion.u32, 1), RT_ELEMENTS(pState->aHistory));
4126 break;
4127 case 'r':
4128 cRows = RT_MIN(RT_MAX(ValueUnion.u32, 5), RT_ELEMENTS(pState->aHistory));
4129 break;
4130 case 'w':
4131 cchWidth = RT_MIN(RT_MAX(ValueUnion.u32, 10), sizeof(szTmp) - 32);
4132 break;
4133 case 'x':
4134 fExpGraph = true;
4135 break;
4136 case 'u':
4137 fExpGraph = false;
4138 break;
4139 case 'h':
4140 pHlp->pfnPrintf(pHlp,
4141 "Usage: cpuload [parameters]\n"
4142 " all, -a\n"
4143 " Show statistics for all CPUs. (default)\n"
4144 " cpu=id, -c id\n"
4145 " Show statistics for the specified CPU ID. Show combined stats if out of range.\n"
4146 " periods=count, -p count\n"
4147 " Number of periods to show. Default: all\n"
4148 " rows=count, -r count\n"
4149 " Number of rows in the graphs. Default: 60\n"
4150 " width=count, -w count\n"
4151 " Core graph width in characters. Default: 80\n"
4152 " exp, exponential, -e\n"
4153 " Do 1:1 for more recent half / 30 seconds of the graph, combine the\n"
4154 " rest into increasinly larger chunks. Default.\n"
4155 " uniform, uni, -u\n"
4156 " Combine periods into rows in a uniform manner for the whole graph.\n");
4157 return;
4158 default:
4159 pHlp->pfnGetOptError(pHlp, rc, &ValueUnion, &State);
4160 return;
4161 }
4162 }
4163
4164 /*
4165 * Do the job.
4166 */
4167 for (;;)
4168 {
4169 uint32_t const cMaxPeriods = pState->cHistoryEntries;
4170 if (cPeriods > cMaxPeriods)
4171 cPeriods = cMaxPeriods;
4172 if (cPeriods > 0)
4173 {
4174 if (fAllCpus)
4175 {
4176 if (idCpu > 0)
4177 pHlp->pfnPrintf(pHlp, "\n");
4178 pHlp->pfnPrintf(pHlp, " CPU load for virtual CPU %#04x\n"
4179 " -------------------------------\n", idCpu);
4180 }
4181
4182 /*
4183 * Figure number of periods per chunk. We can either do this in a linear
4184 * fashion or a exponential fashion that compresses old history more.
4185 */
4186 size_t cPerRowDecrement = 0;
4187 size_t cPeriodsPerRow = 1;
4188 if (cRows < cPeriods)
4189 {
4190 if (!fExpGraph)
4191 cPeriodsPerRow = (cPeriods + cRows / 2) / cRows;
4192 else
4193 {
4194 /* The last 30 seconds or half of the rows are 1:1, the other part
4195 is in increasing period counts. Code is a little simple but seems
4196 to do the job most of the time, which is all I have time now. */
4197 size_t cPeriodsOneToOne = RT_MIN(30, cRows / 2);
4198 size_t cRestRows = cRows - cPeriodsOneToOne;
4199 size_t cRestPeriods = cPeriods - cPeriodsOneToOne;
4200
4201 size_t cPeriodsInWindow = 0;
4202 for (cPeriodsPerRow = 0; cPeriodsPerRow <= cRestRows && cPeriodsInWindow < cRestPeriods; cPeriodsPerRow++)
4203 cPeriodsInWindow += cPeriodsPerRow + 1;
4204
4205 size_t iLower = 1;
4206 while (cPeriodsInWindow < cRestPeriods)
4207 {
4208 cPeriodsPerRow++;
4209 cPeriodsInWindow += cPeriodsPerRow;
4210 cPeriodsInWindow -= iLower;
4211 iLower++;
4212 }
4213
4214 cPerRowDecrement = 1;
4215 }
4216 }
4217
4218 /*
4219 * Do the work.
4220 */
4221 size_t cPctExecuting = 0;
4222 size_t cPctOther = 0;
4223 size_t cPeriodsAccumulated = 0;
4224
4225 size_t cRowsLeft = cRows;
4226 size_t iHistory = (pState->idxHistory - cPeriods) % RT_ELEMENTS(pState->aHistory);
4227 while (cPeriods-- > 0)
4228 {
4229 iHistory++;
4230 if (iHistory >= RT_ELEMENTS(pState->aHistory))
4231 iHistory = 0;
4232
4233 cPctExecuting += pState->aHistory[iHistory].cPctExecuting;
4234 cPctOther += pState->aHistory[iHistory].cPctOther;
4235 cPeriodsAccumulated += 1;
4236 if ( cPeriodsAccumulated >= cPeriodsPerRow
4237 || cPeriods < cRowsLeft)
4238 {
4239 /*
4240 * Format and output the line.
4241 */
4242 size_t offTmp = 0;
4243 size_t i = tmR3InfoCpuLoadAdjustWidth(cPctExecuting / cPeriodsAccumulated, cchWidth);
4244 while (i-- > 0)
4245 szTmp[offTmp++] = '#';
4246 i = tmR3InfoCpuLoadAdjustWidth(cPctOther / cPeriodsAccumulated, cchWidth);
4247 while (i-- > 0)
4248 szTmp[offTmp++] = 'O';
4249 szTmp[offTmp] = '\0';
4250
4251 cRowsLeft--;
4252 pHlp->pfnPrintf(pHlp, "%3zus: %s\n", cPeriods + cPeriodsAccumulated / 2, szTmp);
4253
4254 /* Reset the state: */
4255 cPctExecuting = 0;
4256 cPctOther = 0;
4257 cPeriodsAccumulated = 0;
4258 if (cPeriodsPerRow > cPerRowDecrement)
4259 cPeriodsPerRow -= cPerRowDecrement;
4260 }
4261 }
4262 pHlp->pfnPrintf(pHlp, " (#=guest, O=VMM overhead) idCpu=%#x\n", idCpu);
4263
4264 }
4265 else
4266 pHlp->pfnPrintf(pHlp, "No load data.\n");
4267
4268 /*
4269 * Next CPU if we're display all.
4270 */
4271 if (!fAllCpus)
4272 break;
4273 idCpu++;
4274 if (idCpu >= pVM->cCpus)
4275 break;
4276 pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
4277 }
4278
4279}
4280
4281
4282/**
4283 * Gets the descriptive TM TSC mode name given the enum value.
4284 *
4285 * @returns The name.
4286 * @param enmMode The mode to name.
4287 */
4288static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode)
4289{
4290 switch (enmMode)
4291 {
4292 case TMTSCMODE_REAL_TSC_OFFSET: return "RealTSCOffset";
4293 case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTSCEmulated";
4294 case TMTSCMODE_DYNAMIC: return "Dynamic";
4295 case TMTSCMODE_NATIVE_API: return "NativeApi";
4296 default: return "???";
4297 }
4298}
4299
4300
4301/**
4302 * Gets the descriptive TM TSC mode name.
4303 *
4304 * @returns The name.
4305 * @param pVM The cross context VM structure.
4306 */
4307static const char *tmR3GetTSCModeName(PVM pVM)
4308{
4309 Assert(pVM);
4310 return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode);
4311}
4312
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette