VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/TM.cpp@ 87626

Last change on this file since 87626 was 87626, checked in by vboxsync, 4 years ago

IPRT/time,VMM/TM: Added extra parameter to the RTTimeNanoTS GIP workers for returning the TSC value.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 172.6 KB
Line 
1/* $Id: TM.cpp 87626 2021-02-05 12:58:54Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_tm TM - The Time Manager
19 *
20 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
21 * device and drivers.
22 *
23 * @see grp_tm
24 *
25 *
26 * @section sec_tm_clocks Clocks
27 *
28 * There are currently 4 clocks:
29 * - Virtual (guest).
30 * - Synchronous virtual (guest).
31 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
32 * function of the virtual clock.
33 * - Real (host). This is only used for display updates atm.
34 *
35 * The most important clocks are the three first ones and of these the second is
36 * the most interesting.
37 *
38 *
39 * The synchronous virtual clock is tied to the virtual clock except that it
40 * will take into account timer delivery lag caused by host scheduling. It will
41 * normally never advance beyond the head timer, and when lagging too far behind
42 * it will gradually speed up to catch up with the virtual clock. All devices
43 * implementing time sources accessible to and used by the guest is using this
44 * clock (for timers and other things). This ensures consistency between the
45 * time sources.
46 *
47 * The virtual clock is implemented as an offset to a monotonic, high
48 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
49 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
50 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
51 * a fairly high res clock that works in all contexts and on all hosts. The
52 * virtual clock is paused when the VM isn't in the running state.
53 *
54 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
55 * virtual clock, where the frequency defaults to the host cpu frequency (as we
56 * measure it). In this mode it is possible to configure the frequency. Another
57 * (non-default) option is to use the raw unmodified host TSC values. And yet
58 * another, to tie it to time spent executing guest code. All these things are
59 * configurable should non-default behavior be desirable.
60 *
61 * The real clock is a monotonic clock (when available) with relatively low
62 * resolution, though this a bit host specific. Note that we're currently not
63 * servicing timers using the real clock when the VM is not running, this is
64 * simply because it has not been needed yet therefore not implemented.
65 *
66 *
67 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
68 *
69 * Guest time syncing is primarily taken care of by the VMM device. The
70 * principle is very simple, the guest additions periodically asks the VMM
71 * device what the current UTC time is and makes adjustments accordingly.
72 *
73 * A complicating factor is that the synchronous virtual clock might be doing
74 * catchups and the guest perception is currently a little bit behind the world
75 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
76 * at a slightly higher rate. Adjusting the guest clock to the current wall
77 * time in the real world would be a bad idea then because the guest will be
78 * advancing too fast and run ahead of world time (if the catchup works out).
79 * To solve this problem TM provides the VMM device with an UTC time source that
80 * gets adjusted with the current lag, so that when the guest eventually catches
81 * up the lag it will be showing correct real world time.
82 *
83 *
84 * @section sec_tm_timers Timers
85 *
86 * The timers can use any of the TM clocks described in the previous section.
87 * Each clock has its own scheduling facility, or timer queue if you like.
88 * There are a few factors which makes it a bit complex. First, there is the
89 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
90 * is the timer thread that periodically checks whether any timers has expired
91 * without EMT noticing. On the API level, all but the create and save APIs
92 * must be multithreaded. EMT will always run the timers.
93 *
94 * The design is using a doubly linked list of active timers which is ordered
95 * by expire date. This list is only modified by the EMT thread. Updates to
96 * the list are batched in a singly linked list, which is then processed by the
97 * EMT thread at the first opportunity (immediately, next time EMT modifies a
98 * timer on that clock, or next timer timeout). Both lists are offset based and
99 * all the elements are therefore allocated from the hyper heap.
100 *
101 * For figuring out when there is need to schedule and run timers TM will:
102 * - Poll whenever somebody queries the virtual clock.
103 * - Poll the virtual clocks from the EM and REM loops.
104 * - Poll the virtual clocks from trap exit path.
105 * - Poll the virtual clocks and calculate first timeout from the halt loop.
106 * - Employ a thread which periodically (100Hz) polls all the timer queues.
107 *
108 *
109 * @image html TMTIMER-Statechart-Diagram.gif
110 *
111 * @section sec_tm_timer Logging
112 *
113 * Level 2: Logs a most of the timer state transitions and queue servicing.
114 * Level 3: Logs a few oddments.
115 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
116 *
117 */
118
119
120/*********************************************************************************************************************************
121* Header Files *
122*********************************************************************************************************************************/
123#define LOG_GROUP LOG_GROUP_TM
124#ifdef DEBUG_bird
125# define DBGFTRACE_DISABLED /* annoying */
126#endif
127#include <VBox/vmm/tm.h>
128#include <iprt/asm-amd64-x86.h> /* for SUPGetCpuHzFromGip from sup.h */
129#include <VBox/vmm/vmm.h>
130#include <VBox/vmm/mm.h>
131#include <VBox/vmm/hm.h>
132#include <VBox/vmm/nem.h>
133#include <VBox/vmm/gim.h>
134#include <VBox/vmm/ssm.h>
135#include <VBox/vmm/dbgf.h>
136#include <VBox/vmm/dbgftrace.h>
137#include <VBox/vmm/pdmapi.h>
138#include <VBox/vmm/iom.h>
139#include "TMInternal.h"
140#include <VBox/vmm/vm.h>
141#include <VBox/vmm/uvm.h>
142
143#include <VBox/vmm/pdmdev.h>
144#include <VBox/log.h>
145#include <VBox/param.h>
146#include <VBox/err.h>
147
148#include <iprt/asm.h>
149#include <iprt/asm-math.h>
150#include <iprt/assert.h>
151#include <iprt/env.h>
152#include <iprt/file.h>
153#include <iprt/getopt.h>
154#include <iprt/semaphore.h>
155#include <iprt/string.h>
156#include <iprt/thread.h>
157#include <iprt/time.h>
158#include <iprt/timer.h>
159
160#include "TMInline.h"
161
162
163/*********************************************************************************************************************************
164* Defined Constants And Macros *
165*********************************************************************************************************************************/
166/** The current saved state version.*/
167#define TM_SAVED_STATE_VERSION 3
168
169
170/*********************************************************************************************************************************
171* Internal Functions *
172*********************************************************************************************************************************/
173static bool tmR3HasFixedTSC(PVM pVM);
174static uint64_t tmR3CalibrateTSC(void);
175static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
176static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
177static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
178static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
179static void tmR3TimerQueueRunVirtualSync(PVM pVM);
180static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent);
181#ifndef VBOX_WITHOUT_NS_ACCOUNTING
182static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser);
183#endif
184static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
185static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
186static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
187static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs);
188static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData);
189static const char * tmR3GetTSCModeName(PVM pVM);
190static const char * tmR3GetTSCModeNameEx(TMTSCMODE enmMode);
191
192
193/**
194 * Initializes the TM.
195 *
196 * @returns VBox status code.
197 * @param pVM The cross context VM structure.
198 */
199VMM_INT_DECL(int) TMR3Init(PVM pVM)
200{
201 LogFlow(("TMR3Init:\n"));
202
203 /*
204 * Assert alignment and sizes.
205 */
206 AssertCompileMemberAlignment(VM, tm.s, 32);
207 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
208 AssertCompileMemberAlignment(TM, TimerCritSect, 8);
209 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
210
211 /*
212 * Init the structure.
213 */
214 void *pv;
215 int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
216 AssertRCReturn(rc, rc);
217 pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
218 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pv);
219 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pv);
220
221 pVM->tm.s.offVM = RT_UOFFSETOF(VM, tm.s);
222 pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
223 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
224 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
225 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
226 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
227 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
228 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
229 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
230 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
231
232 /*
233 * We directly use the GIP to calculate the virtual time. We map the
234 * the GIP into the guest context so we can do this calculation there
235 * as well and save costly world switches.
236 */
237 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
238 pVM->tm.s.pvGIPR3 = (void *)pGip;
239 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED);
240 AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16),
241 ("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION),
242 VERR_TM_GIP_VERSION);
243
244 RTHCPHYS HCPhysGIP;
245 rc = SUPR3GipGetPhys(&HCPhysGIP);
246 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
247
248#ifndef PGM_WITHOUT_MAPPINGS
249 RTGCPTR GCPtr;
250# ifdef SUP_WITH_LOTS_OF_CPUS
251 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, (size_t)pGip->cPages * PAGE_SIZE,
252 "GIP", &GCPtr);
253# else
254 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, PAGE_SIZE, "GIP", &GCPtr);
255# endif
256 if (RT_FAILURE(rc))
257 {
258 AssertMsgFailed(("Failed to map GIP into GC, rc=%Rrc!\n", rc));
259 return rc;
260 }
261 pVM->tm.s.pvGIPRC = GCPtr;
262 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %RRv\n", HCPhysGIP, pVM->tm.s.pvGIPRC));
263 MMR3HyperReserveFence(pVM);
264#endif
265
266
267 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
268 if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
269 && pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
270 return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS,
271 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
272 pGip->u32UpdateIntervalNS, pGip->u32UpdateHz);
273
274 /* Log GIP info that may come in handy. */
275 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d (%s) fGetGipCpu=%#x cCpus=%d\n",
276 pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS,
277 pGip->enmUseTscDelta, SUPGetGIPTscDeltaModeName(pGip), pGip->fGetGipCpu, pGip->cCpus));
278 LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n",
279 pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip)));
280 for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++)
281 {
282 uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
283 if (iGipCpu != UINT16_MAX)
284 LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n",
285 iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta,
286 pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors));
287 }
288
289 /*
290 * Setup the VirtualGetRaw backend.
291 */
292 pVM->tm.s.pfnVirtualGetRawR3 = tmVirtualNanoTSRediscover;
293 pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
294 pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBad;
295 pVM->tm.s.VirtualGetRawDataR3.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex;
296 pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
297 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
298 pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
299 AssertRelease(pVM->tm.s.VirtualGetRawDataR0.pu64Prev);
300 /* The rest is done in TMR3InitFinalize() since it's too early to call PDM. */
301
302 /*
303 * Init the locks.
304 */
305 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.TimerCritSect, RT_SRC_POS, "TM Timer Lock");
306 if (RT_FAILURE(rc))
307 return rc;
308 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
309 if (RT_FAILURE(rc))
310 return rc;
311
312 /*
313 * Get our CFGM node, create it if necessary.
314 */
315 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
316 if (!pCfgHandle)
317 {
318 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
319 AssertRCReturn(rc, rc);
320 }
321
322 /*
323 * Specific errors about some obsolete TM settings (remove after 2015-12-03).
324 */
325 if (CFGMR3Exists(pCfgHandle, "TSCVirtualized"))
326 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
327 N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"TSCMode\" setting instead."));
328 if (CFGMR3Exists(pCfgHandle, "UseRealTSC"))
329 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
330 N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
331
332 if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC"))
333 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
334 N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
335
336 /*
337 * Validate the rest of the TM settings.
338 */
339 rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/",
340 "TSCMode|"
341 "TSCModeSwitchAllowed|"
342 "TSCTicksPerSecond|"
343 "TSCTiedToExecution|"
344 "TSCNotTiedToHalt|"
345 "ScheduleSlack|"
346 "CatchUpStopThreshold|"
347 "CatchUpGiveUpThreshold|"
348 "CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|"
349 "CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|"
350 "CatchUpStartThreshold8|CatchUpStartThreshold9|"
351 "CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|"
352 "CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|"
353 "CatchUpPrecentage8|CatchUpPrecentage9|"
354 "UTCOffset|"
355 "UTCTouchFileOnJump|"
356 "WarpDrivePercentage|"
357 "HostHzMax|"
358 "HostHzFudgeFactorTimerCpu|"
359 "HostHzFudgeFactorOtherCpu|"
360 "HostHzFudgeFactorCatchUp100|"
361 "HostHzFudgeFactorCatchUp200|"
362 "HostHzFudgeFactorCatchUp400|"
363 "TimerMillies"
364 ,
365 "",
366 "TM", 0);
367 if (RT_FAILURE(rc))
368 return rc;
369
370 /*
371 * Determine the TSC configuration and frequency.
372 */
373 /** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config}
374 * The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic.
375 * The default depends on the VM configuration and the capabilities of the
376 * host CPU. Other config options or runtime changes may override the TSC
377 * mode specified here.
378 */
379 char szTSCMode[32];
380 rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode));
381 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
382 {
383 /** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so
384 * fall back on the more expensive emulated mode. With the current TSC handling
385 * (frequent switching between offsetted mode and taking VM exits, on all VCPUs
386 * without any kind of coordination) will lead to inconsistent TSC behavior with
387 * guest SMP, including TSC going backwards. */
388 pVM->tm.s.enmTSCMode = NEMR3NeedSpecialTscMode(pVM) ? TMTSCMODE_NATIVE_API
389 : pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED;
390 }
391 else if (RT_FAILURE(rc))
392 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\""));
393 else
394 {
395 if (!RTStrCmp(szTSCMode, "VirtTSCEmulated"))
396 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
397 else if (!RTStrCmp(szTSCMode, "RealTSCOffset"))
398 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
399 else if (!RTStrCmp(szTSCMode, "Dynamic"))
400 pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC;
401 else
402 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode);
403 if (NEMR3NeedSpecialTscMode(pVM))
404 {
405 LogRel(("TM: NEM overrides the /TM/TSCMode=%s settings.\n", szTSCMode));
406 pVM->tm.s.enmTSCMode = TMTSCMODE_NATIVE_API;
407 }
408 }
409
410 /**
411 * @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed
412 * at runtime}
413 * When using paravirtualized guests, we dynamically switch TSC modes to a more
414 * optimal one for performance. This setting allows overriding this behaviour.
415 */
416 rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed);
417 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
418 {
419 /* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */
420 pVM->tm.s.fTSCModeSwitchAllowed = true;
421 }
422 else if (RT_FAILURE(rc))
423 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\""));
424 if (pVM->tm.s.fTSCModeSwitchAllowed && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
425 {
426 LogRel(("TM: NEM overrides the /TM/TSCModeSwitchAllowed setting.\n"));
427 pVM->tm.s.fTSCModeSwitchAllowed = false;
428 }
429
430 /** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
431 * The number of TSC ticks per second (i.e. the TSC frequency). This will
432 * override enmTSCMode.
433 */
434 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
435 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
436 {
437 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC();
438 if ( ( pVM->tm.s.enmTSCMode == TMTSCMODE_DYNAMIC
439 || pVM->tm.s.enmTSCMode == TMTSCMODE_VIRT_TSC_EMULATED)
440 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
441 {
442 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
443 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
444 }
445 }
446 else if (RT_FAILURE(rc))
447 return VMSetError(pVM, rc, RT_SRC_POS,
448 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
449 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
450 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
451 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
452 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
453 pVM->tm.s.cTSCTicksPerSecond);
454 else if (pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API)
455 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
456 else
457 {
458 LogRel(("TM: NEM overrides the /TM/TSCTicksPerSecond=%RU64 setting.\n", pVM->tm.s.cTSCTicksPerSecond));
459 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC();
460 }
461
462 /** @cfgm{/TM/TSCTiedToExecution, bool, false}
463 * Whether the TSC should be tied to execution. This will exclude most of the
464 * virtualization overhead, but will by default include the time spent in the
465 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
466 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
467 * be used avoided or used with great care. Note that this will only work right
468 * together with VT-x or AMD-V, and with a single virtual CPU. */
469 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
470 if (RT_FAILURE(rc))
471 return VMSetError(pVM, rc, RT_SRC_POS,
472 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
473 if (pVM->tm.s.fTSCTiedToExecution && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
474 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("/TM/TSCTiedToExecution is not supported in NEM mode!"));
475 if (pVM->tm.s.fTSCTiedToExecution)
476 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
477
478
479 /** @cfgm{/TM/TSCNotTiedToHalt, bool, false}
480 * This is used with /TM/TSCTiedToExecution to control how TSC operates
481 * accross HLT instructions. When true HLT is considered execution time and
482 * TSC continues to run, while when false (default) TSC stops during halt. */
483 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
484 if (RT_FAILURE(rc))
485 return VMSetError(pVM, rc, RT_SRC_POS,
486 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
487
488 /*
489 * Configure the timer synchronous virtual time.
490 */
491 /** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
492 * Scheduling slack when processing timers. */
493 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
494 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
495 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
496 else if (RT_FAILURE(rc))
497 return VMSetError(pVM, rc, RT_SRC_POS,
498 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
499
500 /** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
501 * When to stop a catch-up, considering it successful. */
502 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
503 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
504 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
505 else if (RT_FAILURE(rc))
506 return VMSetError(pVM, rc, RT_SRC_POS,
507 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
508
509 /** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
510 * When to give up a catch-up attempt. */
511 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
512 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
513 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
514 else if (RT_FAILURE(rc))
515 return VMSetError(pVM, rc, RT_SRC_POS,
516 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
517
518
519 /** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
520 * The catch-up percent for a given period. */
521 /** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX}
522 * The catch-up period threshold, or if you like, when a period starts. */
523#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
524 do \
525 { \
526 uint64_t u64; \
527 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
528 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
529 u64 = UINT64_C(DefStart); \
530 else if (RT_FAILURE(rc)) \
531 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
532 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
533 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
534 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
535 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
536 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
537 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
538 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
539 else if (RT_FAILURE(rc)) \
540 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
541 } while (0)
542 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
543 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
544 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
545 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
546 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
547 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
548 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
549 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
550 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
551 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
552 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
553 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
554#undef TM_CFG_PERIOD
555
556 /*
557 * Configure real world time (UTC).
558 */
559 /** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
560 * The UTC offset. This is used to put the guest back or forwards in time. */
561 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
562 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
563 pVM->tm.s.offUTC = 0; /* ns */
564 else if (RT_FAILURE(rc))
565 return VMSetError(pVM, rc, RT_SRC_POS,
566 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
567
568 /** @cfgm{/TM/UTCTouchFileOnJump, string, none}
569 * File to be written to everytime the host time jumps. */
570 rc = CFGMR3QueryStringAlloc(pCfgHandle, "UTCTouchFileOnJump", &pVM->tm.s.pszUtcTouchFileOnJump);
571 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
572 pVM->tm.s.pszUtcTouchFileOnJump = NULL;
573 else if (RT_FAILURE(rc))
574 return VMSetError(pVM, rc, RT_SRC_POS,
575 N_("Configuration error: Failed to querying string value \"UTCTouchFileOnJump\""));
576
577 /*
578 * Setup the warp drive.
579 */
580 /** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
581 * The warp drive percentage, 100% is normal speed. This is used to speed up
582 * or slow down the virtual clock, which can be useful for fast forwarding
583 * borring periods during tests. */
584 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
585 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
586 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
587 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
588 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
589 else if (RT_FAILURE(rc))
590 return VMSetError(pVM, rc, RT_SRC_POS,
591 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
592 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
593 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
594 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
595 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
596 pVM->tm.s.u32VirtualWarpDrivePercentage);
597 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
598 if (pVM->tm.s.fVirtualWarpDrive)
599 {
600 if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
601 LogRel(("TM: Warp-drive active, escept for TSC which is in NEM mode. u32VirtualWarpDrivePercentage=%RI32\n",
602 pVM->tm.s.u32VirtualWarpDrivePercentage));
603 else
604 {
605 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
606 LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
607 }
608 }
609
610 /*
611 * Gather the Host Hz configuration values.
612 */
613 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000);
614 if (RT_FAILURE(rc))
615 return VMSetError(pVM, rc, RT_SRC_POS,
616 N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\""));
617
618 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111);
619 if (RT_FAILURE(rc))
620 return VMSetError(pVM, rc, RT_SRC_POS,
621 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\""));
622
623 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110);
624 if (RT_FAILURE(rc))
625 return VMSetError(pVM, rc, RT_SRC_POS,
626 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\""));
627
628 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300);
629 if (RT_FAILURE(rc))
630 return VMSetError(pVM, rc, RT_SRC_POS,
631 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\""));
632
633 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250);
634 if (RT_FAILURE(rc))
635 return VMSetError(pVM, rc, RT_SRC_POS,
636 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\""));
637
638 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200);
639 if (RT_FAILURE(rc))
640 return VMSetError(pVM, rc, RT_SRC_POS,
641 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\""));
642
643 /*
644 * Finally, setup and report.
645 */
646 pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode;
647 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
648 LogRel(("TM: cTSCTicksPerSecond=%'RU64 (%#RX64) enmTSCMode=%d (%s)\n"
649 "TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
650 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM),
651 pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
652
653 /*
654 * Start the timer (guard against REM not yielding).
655 */
656 /** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
657 * The watchdog timer interval. */
658 uint32_t u32Millies;
659 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
660 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
661 u32Millies = VM_IS_HM_ENABLED(pVM) ? 1000 : 10;
662 else if (RT_FAILURE(rc))
663 return VMSetError(pVM, rc, RT_SRC_POS,
664 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
665 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
666 if (RT_FAILURE(rc))
667 {
668 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
669 return rc;
670 }
671 Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies));
672 pVM->tm.s.u32TimerMillies = u32Millies;
673
674 /*
675 * Register saved state.
676 */
677 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
678 NULL, NULL, NULL,
679 NULL, tmR3Save, NULL,
680 NULL, tmR3Load, NULL);
681 if (RT_FAILURE(rc))
682 return rc;
683
684 /*
685 * Register statistics.
686 */
687 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
688 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
689 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
690 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
691 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.c1nsSteps,STAMTYPE_U32, "/TM/RC/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
692 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.cBadPrev, STAMTYPE_U32, "/TM/RC/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
693 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
694 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with.");
695 STAM_REL_REG( pVM,(void*)&pVM->tm.s.uMaxHzHint, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint.");
696
697#ifdef VBOX_WITH_STATISTICS
698 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
699 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
700 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
701 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
702 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cExpired, STAMTYPE_U32, "/TM/RC/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
703 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cUpdateRaces,STAMTYPE_U32, "/TM/RC/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
704 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
705 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
706 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
707 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
708
709 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
710 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
711 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
712 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
713 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
714 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
715 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
716 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
717
718 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
719 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
720
721 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
722 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
723 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
724
725 STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
726 STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
727 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
728 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
729 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
730 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
731 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
732 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
733 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
734 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
735 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
736 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
737
738 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers");
739 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers.");
740 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers.");
741 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
742 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
743 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
744
745 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
746 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
747 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync).");
748 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync).");
749 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
750 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
751 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
752 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
753 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
754 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
755 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
756 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
757
758 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers");
759 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers.");
760 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers.");
761 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
762 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
763 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
764
765 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
766 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
767
768 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
769 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
770 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
771 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp .");
772 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
773 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
774 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
775 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
776 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
777 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
778 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
779
780 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
781 STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked.");
782
783 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
784 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
785 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
786 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
787 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
788 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
789 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
790 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
791 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
792 STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
793 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused.");
794 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed.");
795#endif /* VBOX_WITH_STATISTICS */
796
797 for (VMCPUID i = 0; i < pVM->cCpus; i++)
798 {
799 PVMCPU pVCpu = pVM->apCpusR3[i];
800 STAMR3RegisterF(pVM, &pVCpu->tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
801#ifndef VBOX_WITHOUT_NS_ACCOUNTING
802# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
803 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
804 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
805 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i);
806 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i);
807 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i);
808 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
809 STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
810# endif
811 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
812 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
813 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
814 STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsOther, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
815 STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
816 STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
817 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
818 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
819 STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
820#endif
821 }
822#ifndef VBOX_WITHOUT_NS_ACCOUNTING
823 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
824 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
825 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
826#endif
827
828#ifdef VBOX_WITH_STATISTICS
829 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
830 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
831 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
832 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
833 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
834 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
835 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
836 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
837 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
838 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
839 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
840 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
841 {
842 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
843 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
844 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
845 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
846 }
847#endif /* VBOX_WITH_STATISTICS */
848
849 /*
850 * Register info handlers.
851 */
852 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
853 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
854 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
855 DBGFR3InfoRegisterInternalArgv(pVM, "cpuload", "Display the CPU load stats (--help for details).", tmR3InfoCpuLoad, 0);
856
857 return VINF_SUCCESS;
858}
859
860
861/**
862 * Checks if the host CPU has a fixed TSC frequency.
863 *
864 * @returns true if it has, false if it hasn't.
865 *
866 * @remarks This test doesn't bother with very old CPUs that don't do power
867 * management or any other stuff that might influence the TSC rate.
868 * This isn't currently relevant.
869 */
870static bool tmR3HasFixedTSC(PVM pVM)
871{
872 /*
873 * ASSUME that if the GIP is in invariant TSC mode, it's because the CPU
874 * actually has invariant TSC.
875 */
876 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
877 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
878 return true;
879
880 /*
881 * Go by features and model info from the CPUID instruction.
882 */
883 if (ASMHasCpuId())
884 {
885 uint32_t uEAX, uEBX, uECX, uEDX;
886
887 /*
888 * By feature. (Used to be AMD specific, intel seems to have picked it up.)
889 */
890 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
891 if (uEAX >= 0x80000007 && ASMIsValidExtRange(uEAX))
892 {
893 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
894 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
895 && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */
896 return true;
897 }
898
899 /*
900 * By model.
901 */
902 if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
903 {
904 /*
905 * AuthenticAMD - Check for APM support and that TscInvariant is set.
906 *
907 * This test isn't correct with respect to fixed/non-fixed TSC and
908 * older models, but this isn't relevant since the result is currently
909 * only used for making a decision on AMD-V models.
910 */
911#if 0 /* Promoted to generic */
912 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
913 if (uEAX >= 0x80000007)
914 {
915 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
916 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
917 && ( pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */
918 || pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC))
919 return true;
920 }
921#endif
922 }
923 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
924 {
925 /*
926 * GenuineIntel - Check the model number.
927 *
928 * This test is lacking in the same way and for the same reasons
929 * as the AMD test above.
930 */
931 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
932 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
933 unsigned uModel = (uEAX >> 4) & 0x0f;
934 unsigned uFamily = (uEAX >> 8) & 0x0f;
935 if (uFamily == 0x0f)
936 uFamily += (uEAX >> 20) & 0xff;
937 if (uFamily >= 0x06)
938 uModel += ((uEAX >> 16) & 0x0f) << 4;
939 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
940 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
941 return true;
942 }
943 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA)
944 {
945 /*
946 * CentaurHauls - Check the model, family and stepping.
947 *
948 * This only checks for VIA CPU models Nano X2, Nano X3,
949 * Eden X2 and QuadCore.
950 */
951 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
952 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
953 unsigned uStepping = (uEAX & 0x0f);
954 unsigned uModel = (uEAX >> 4) & 0x0f;
955 unsigned uFamily = (uEAX >> 8) & 0x0f;
956 if ( uFamily == 0x06
957 && uModel == 0x0f
958 && uStepping >= 0x0c
959 && uStepping <= 0x0f)
960 return true;
961 }
962 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_SHANGHAI)
963 {
964 /*
965 * Shanghai - Check the model, family and stepping.
966 */
967 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
968 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
969 unsigned uFamily = (uEAX >> 8) & 0x0f;
970 if ( uFamily == 0x06
971 || uFamily == 0x07)
972 {
973 return true;
974 }
975 }
976 }
977 return false;
978}
979
980
981/**
982 * Calibrate the CPU tick.
983 *
984 * @returns Number of ticks per second.
985 */
986static uint64_t tmR3CalibrateTSC(void)
987{
988 uint64_t u64Hz;
989
990 /*
991 * Use GIP when available. Prefere the nominal one, no need to wait for it.
992 */
993 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
994 if (pGip)
995 {
996 u64Hz = pGip->u64CpuHz;
997 if (u64Hz < _1T && u64Hz > _1M)
998 return u64Hz;
999 AssertFailed(); /* This shouldn't happen. */
1000
1001 u64Hz = SUPGetCpuHzFromGip(pGip);
1002 if (u64Hz < _1T && u64Hz > _1M)
1003 return u64Hz;
1004
1005 AssertFailed(); /* This shouldn't happen. */
1006 }
1007 /* else: This should only happen in fake SUPLib mode, which we don't really support any more... */
1008
1009 /* Call this once first to make sure it's initialized. */
1010 RTTimeNanoTS();
1011
1012 /*
1013 * Yield the CPU to increase our chances of getting
1014 * a correct value.
1015 */
1016 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
1017 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
1018 uint64_t au64Samples[5];
1019 unsigned i;
1020 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
1021 {
1022 RTMSINTERVAL cMillies;
1023 int cTries = 5;
1024 uint64_t u64Start = ASMReadTSC();
1025 uint64_t u64End;
1026 uint64_t StartTS = RTTimeNanoTS();
1027 uint64_t EndTS;
1028 do
1029 {
1030 RTThreadSleep(s_auSleep[i]);
1031 u64End = ASMReadTSC();
1032 EndTS = RTTimeNanoTS();
1033 cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
1034 } while ( cMillies == 0 /* the sleep may be interrupted... */
1035 || (cMillies < 20 && --cTries > 0));
1036 uint64_t u64Diff = u64End - u64Start;
1037
1038 au64Samples[i] = (u64Diff * 1000) / cMillies;
1039 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
1040 }
1041
1042 /*
1043 * Discard the highest and lowest results and calculate the average.
1044 */
1045 unsigned iHigh = 0;
1046 unsigned iLow = 0;
1047 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
1048 {
1049 if (au64Samples[i] < au64Samples[iLow])
1050 iLow = i;
1051 if (au64Samples[i] > au64Samples[iHigh])
1052 iHigh = i;
1053 }
1054 au64Samples[iLow] = 0;
1055 au64Samples[iHigh] = 0;
1056
1057 u64Hz = au64Samples[0];
1058 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
1059 u64Hz += au64Samples[i];
1060 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
1061
1062 return u64Hz;
1063}
1064
1065
1066/**
1067 * Finalizes the TM initialization.
1068 *
1069 * @returns VBox status code.
1070 * @param pVM The cross context VM structure.
1071 */
1072VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
1073{
1074 int rc;
1075
1076 /*
1077 * Resolve symbols.
1078 */
1079 if (VM_IS_RAW_MODE_ENABLED(pVM))
1080 {
1081 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
1082 AssertRCReturn(rc, rc);
1083 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex);
1084 AssertRCReturn(rc, rc);
1085 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
1086 AssertRCReturn(rc, rc);
1087 pVM->tm.s.pfnVirtualGetRawRC = pVM->tm.s.VirtualGetRawDataRC.pfnRediscover;
1088 }
1089
1090 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
1091 AssertRCReturn(rc, rc);
1092 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataR0.pfnBadCpuIndex);
1093 AssertRCReturn(rc, rc);
1094 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
1095 AssertRCReturn(rc, rc);
1096 pVM->tm.s.pfnVirtualGetRawR0 = pVM->tm.s.VirtualGetRawDataR0.pfnRediscover;
1097
1098#ifndef VBOX_WITHOUT_NS_ACCOUNTING
1099 /*
1100 * Create a timer for refreshing the CPU load stats.
1101 */
1102 PTMTIMER pTimer;
1103 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, "CPU Load Timer", &pTimer);
1104 if (RT_SUCCESS(rc))
1105 rc = TMTimerSetMillies(pTimer, 1000);
1106#endif
1107
1108 /*
1109 * GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override).
1110 */
1111 pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM) && !VM_IS_RAW_MODE_ENABLED(pVM);
1112 LogRel(("TM: TMR3InitFinalize: fTSCModeSwitchAllowed=%RTbool\n", pVM->tm.s.fTSCModeSwitchAllowed));
1113 return rc;
1114}
1115
1116
1117/**
1118 * Applies relocations to data and code managed by this
1119 * component. This function will be called at init and
1120 * whenever the VMM need to relocate it self inside the GC.
1121 *
1122 * @param pVM The cross context VM structure.
1123 * @param offDelta Relocation delta relative to old location.
1124 */
1125VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1126{
1127 LogFlow(("TMR3Relocate\n"));
1128
1129 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
1130
1131 if (VM_IS_RAW_MODE_ENABLED(pVM))
1132 {
1133 pVM->tm.s.pvGIPRC = MMHyperR3ToRC(pVM, pVM->tm.s.pvGIPR3);
1134 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pVM->tm.s.paTimerQueuesR3);
1135 pVM->tm.s.VirtualGetRawDataRC.pu64Prev += offDelta;
1136 pVM->tm.s.VirtualGetRawDataRC.pfnBad += offDelta;
1137 pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex += offDelta;
1138 pVM->tm.s.VirtualGetRawDataRC.pfnRediscover += offDelta;
1139 pVM->tm.s.pfnVirtualGetRawRC += offDelta;
1140 }
1141
1142 /*
1143 * Iterate the timers updating the pVMRC pointers.
1144 */
1145 for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
1146 {
1147 pTimer->pVMRC = pVM->pVMRC;
1148 pTimer->pVMR0 = pVM->pVMR0ForCall; /** @todo fix properly */
1149 }
1150}
1151
1152
1153/**
1154 * Terminates the TM.
1155 *
1156 * Termination means cleaning up and freeing all resources,
1157 * the VM it self is at this point powered off or suspended.
1158 *
1159 * @returns VBox status code.
1160 * @param pVM The cross context VM structure.
1161 */
1162VMM_INT_DECL(int) TMR3Term(PVM pVM)
1163{
1164 AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
1165 if (pVM->tm.s.pTimer)
1166 {
1167 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
1168 AssertRC(rc);
1169 pVM->tm.s.pTimer = NULL;
1170 }
1171
1172 return VINF_SUCCESS;
1173}
1174
1175
1176/**
1177 * The VM is being reset.
1178 *
1179 * For the TM component this means that a rescheduling is preformed,
1180 * the FF is cleared and but without running the queues. We'll have to
1181 * check if this makes sense or not, but it seems like a good idea now....
1182 *
1183 * @param pVM The cross context VM structure.
1184 */
1185VMM_INT_DECL(void) TMR3Reset(PVM pVM)
1186{
1187 LogFlow(("TMR3Reset:\n"));
1188 VM_ASSERT_EMT(pVM);
1189 TM_LOCK_TIMERS(pVM);
1190
1191 /*
1192 * Abort any pending catch up.
1193 * This isn't perfect...
1194 */
1195 if (pVM->tm.s.fVirtualSyncCatchUp)
1196 {
1197 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
1198 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
1199 if (pVM->tm.s.fVirtualSyncCatchUp)
1200 {
1201 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1202
1203 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
1204 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
1205 Assert(offOld <= offNew);
1206 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1207 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
1208 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1209 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
1210 }
1211 }
1212
1213 /*
1214 * Process the queues.
1215 */
1216 for (int i = 0; i < TMCLOCK_MAX; i++)
1217 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
1218#ifdef VBOX_STRICT
1219 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1220#endif
1221
1222 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
1223 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1224
1225 /*
1226 * Switch TM TSC mode back to the original mode after a reset for
1227 * paravirtualized guests that alter the TM TSC mode during operation.
1228 */
1229 if ( pVM->tm.s.fTSCModeSwitchAllowed
1230 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
1231 {
1232 VM_ASSERT_EMT0(pVM);
1233 tmR3CpuTickParavirtDisable(pVM, pVM->apCpusR3[0], NULL /* pvData */);
1234 }
1235 Assert(!GIMIsParavirtTscEnabled(pVM));
1236 pVM->tm.s.fParavirtTscEnabled = false;
1237
1238 /*
1239 * Reset TSC to avoid a Windows 8+ bug (see @bugref{8926}). If Windows
1240 * sees TSC value beyond 0x40000000000 at startup, it will reset the
1241 * TSC on boot-up CPU only, causing confusion and mayhem with SMP.
1242 */
1243 VM_ASSERT_EMT0(pVM);
1244 uint64_t offTscRawSrc;
1245 switch (pVM->tm.s.enmTSCMode)
1246 {
1247 case TMTSCMODE_REAL_TSC_OFFSET:
1248 offTscRawSrc = SUPReadTsc();
1249 break;
1250 case TMTSCMODE_DYNAMIC:
1251 case TMTSCMODE_VIRT_TSC_EMULATED:
1252 offTscRawSrc = TMVirtualSyncGetNoCheck(pVM);
1253 offTscRawSrc = ASMMultU64ByU32DivByU32(offTscRawSrc, pVM->tm.s.cTSCTicksPerSecond, TMCLOCK_FREQ_VIRTUAL);
1254 break;
1255 case TMTSCMODE_NATIVE_API:
1256 /** @todo NEM TSC reset on reset for Windows8+ bug workaround. */
1257 offTscRawSrc = 0;
1258 break;
1259 default:
1260 AssertFailedBreakStmt(offTscRawSrc = 0);
1261 }
1262 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1263 {
1264 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1265 pVCpu->tm.s.offTSCRawSrc = offTscRawSrc;
1266 pVCpu->tm.s.u64TSC = 0;
1267 pVCpu->tm.s.u64TSCLastSeen = 0;
1268 }
1269
1270 TM_UNLOCK_TIMERS(pVM);
1271}
1272
1273
1274/**
1275 * Resolve a builtin RC symbol.
1276 * Called by PDM when loading or relocating GC modules.
1277 *
1278 * @returns VBox status
1279 * @param pVM The cross context VM structure.
1280 * @param pszSymbol Symbol to resolve.
1281 * @param pRCPtrValue Where to store the symbol value.
1282 * @remark This has to work before TMR3Relocate() is called.
1283 */
1284VMM_INT_DECL(int) TMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1285{
1286 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
1287 *pRCPtrValue = MMHyperR3ToRC(pVM, &pVM->tm.s.pvGIPRC);
1288 //else if (..)
1289 else
1290 return VERR_SYMBOL_NOT_FOUND;
1291 return VINF_SUCCESS;
1292}
1293
1294
1295/**
1296 * Execute state save operation.
1297 *
1298 * @returns VBox status code.
1299 * @param pVM The cross context VM structure.
1300 * @param pSSM SSM operation handle.
1301 */
1302static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1303{
1304 LogFlow(("tmR3Save:\n"));
1305#ifdef VBOX_STRICT
1306 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1307 {
1308 PVMCPU pVCpu = pVM->apCpusR3[i];
1309 Assert(!pVCpu->tm.s.fTSCTicking);
1310 }
1311 Assert(!pVM->tm.s.cVirtualTicking);
1312 Assert(!pVM->tm.s.fVirtualSyncTicking);
1313 Assert(!pVM->tm.s.cTSCsTicking);
1314#endif
1315
1316 /*
1317 * Save the virtual clocks.
1318 */
1319 /* the virtual clock. */
1320 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1321 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1322
1323 /* the virtual timer synchronous clock. */
1324 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1325 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1326 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1327 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1328 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1329
1330 /* real time clock */
1331 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1332
1333 /* the cpu tick clock. */
1334 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1335 {
1336 PVMCPU pVCpu = pVM->apCpusR3[i];
1337 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1338 }
1339 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1340}
1341
1342
1343/**
1344 * Execute state load operation.
1345 *
1346 * @returns VBox status code.
1347 * @param pVM The cross context VM structure.
1348 * @param pSSM SSM operation handle.
1349 * @param uVersion Data layout version.
1350 * @param uPass The data pass.
1351 */
1352static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1353{
1354 LogFlow(("tmR3Load:\n"));
1355
1356 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1357#ifdef VBOX_STRICT
1358 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1359 {
1360 PVMCPU pVCpu = pVM->apCpusR3[i];
1361 Assert(!pVCpu->tm.s.fTSCTicking);
1362 }
1363 Assert(!pVM->tm.s.cVirtualTicking);
1364 Assert(!pVM->tm.s.fVirtualSyncTicking);
1365 Assert(!pVM->tm.s.cTSCsTicking);
1366#endif
1367
1368 /*
1369 * Validate version.
1370 */
1371 if (uVersion != TM_SAVED_STATE_VERSION)
1372 {
1373 AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
1374 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1375 }
1376
1377 /*
1378 * Load the virtual clock.
1379 */
1380 pVM->tm.s.cVirtualTicking = 0;
1381 /* the virtual clock. */
1382 uint64_t u64Hz;
1383 int rc = SSMR3GetU64(pSSM, &u64Hz);
1384 if (RT_FAILURE(rc))
1385 return rc;
1386 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1387 {
1388 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1389 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1390 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1391 }
1392 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1393 pVM->tm.s.u64VirtualOffset = 0;
1394
1395 /* the virtual timer synchronous clock. */
1396 pVM->tm.s.fVirtualSyncTicking = false;
1397 uint64_t u64;
1398 SSMR3GetU64(pSSM, &u64);
1399 pVM->tm.s.u64VirtualSync = u64;
1400 SSMR3GetU64(pSSM, &u64);
1401 pVM->tm.s.offVirtualSync = u64;
1402 SSMR3GetU64(pSSM, &u64);
1403 pVM->tm.s.offVirtualSyncGivenUp = u64;
1404 SSMR3GetU64(pSSM, &u64);
1405 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1406 bool f;
1407 SSMR3GetBool(pSSM, &f);
1408 pVM->tm.s.fVirtualSyncCatchUp = f;
1409
1410 /* the real clock */
1411 rc = SSMR3GetU64(pSSM, &u64Hz);
1412 if (RT_FAILURE(rc))
1413 return rc;
1414 if (u64Hz != TMCLOCK_FREQ_REAL)
1415 {
1416 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1417 u64Hz, TMCLOCK_FREQ_REAL));
1418 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */
1419 }
1420
1421 /* the cpu tick clock. */
1422 pVM->tm.s.cTSCsTicking = 0;
1423 pVM->tm.s.offTSCPause = 0;
1424 pVM->tm.s.u64LastPausedTSC = 0;
1425 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1426 {
1427 PVMCPU pVCpu = pVM->apCpusR3[i];
1428
1429 pVCpu->tm.s.fTSCTicking = false;
1430 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1431 if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC)
1432 pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC;
1433
1434 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1435 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1436 }
1437
1438 rc = SSMR3GetU64(pSSM, &u64Hz);
1439 if (RT_FAILURE(rc))
1440 return rc;
1441 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
1442 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1443
1444 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n",
1445 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
1446
1447 /* Disabled as this isn't tested, also should this apply only if GIM is enabled etc. */
1448#if 0
1449 /*
1450 * If the current host TSC frequency is incompatible with what is in the
1451 * saved state of the VM, fall back to emulating TSC and disallow TSC mode
1452 * switches during VM runtime (e.g. by GIM).
1453 */
1454 if ( GIMIsEnabled(pVM)
1455 || pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1456 {
1457 uint64_t uGipCpuHz;
1458 bool fRelax = RTSystemIsInsideVM();
1459 bool fCompat = SUPIsTscFreqCompatible(pVM->tm.s.cTSCTicksPerSecond, &uGipCpuHz, fRelax);
1460 if (!fCompat)
1461 {
1462 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
1463 pVM->tm.s.fTSCModeSwitchAllowed = false;
1464 if (g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC)
1465 {
1466 LogRel(("TM: TSC frequency incompatible! uGipCpuHz=%#RX64 (%'RU64) enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1467 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1468 }
1469 else
1470 {
1471 LogRel(("TM: GIP is async, enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1472 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1473 }
1474 }
1475 }
1476#endif
1477
1478 /*
1479 * Make sure timers get rescheduled immediately.
1480 */
1481 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
1482 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1483
1484 return VINF_SUCCESS;
1485}
1486
1487#ifdef VBOX_WITH_STATISTICS
1488/** Names the clock of the timer. */
1489static const char *tmR3TimerClockName(PTMTIMERR3 pTimer)
1490{
1491 switch (pTimer->enmClock)
1492 {
1493 case TMCLOCK_VIRTUAL: return "virtual";
1494 case TMCLOCK_VIRTUAL_SYNC: return "virtual-sync";
1495 case TMCLOCK_REAL: return "real";
1496 case TMCLOCK_TSC: return "tsc";
1497 case TMCLOCK_MAX: break;
1498 }
1499 return "corrupt clock value";
1500}
1501#endif
1502
1503
1504/**
1505 * Internal TMR3TimerCreate worker.
1506 *
1507 * @returns VBox status code.
1508 * @param pVM The cross context VM structure.
1509 * @param enmClock The timer clock.
1510 * @param pszDesc The timer description.
1511 * @param ppTimer Where to store the timer pointer on success.
1512 */
1513static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
1514{
1515 VM_ASSERT_EMT(pVM);
1516
1517 /*
1518 * Allocate the timer.
1519 */
1520 PTMTIMERR3 pTimer = NULL;
1521 if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
1522 {
1523 pTimer = pVM->tm.s.pFree;
1524 pVM->tm.s.pFree = pTimer->pBigNext;
1525 Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
1526 }
1527
1528 if (!pTimer)
1529 {
1530 int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
1531 if (RT_FAILURE(rc))
1532 return rc;
1533 Log3(("TM: Allocated new timer %p\n", pTimer));
1534 }
1535
1536 /*
1537 * Initialize it.
1538 */
1539 pTimer->u64Expire = 0;
1540 pTimer->enmClock = enmClock;
1541 pTimer->pVMR3 = pVM;
1542 pTimer->pVMR0 = pVM->pVMR0ForCall; /** @todo fix properly */
1543 pTimer->pVMRC = pVM->pVMRC;
1544 pTimer->enmState = TMTIMERSTATE_STOPPED;
1545 pTimer->offScheduleNext = 0;
1546 pTimer->offNext = 0;
1547 pTimer->offPrev = 0;
1548 pTimer->pvUser = NULL;
1549 pTimer->pCritSect = NULL;
1550 pTimer->pszDesc = pszDesc;
1551
1552 /* insert into the list of created timers. */
1553 TM_LOCK_TIMERS(pVM);
1554 pTimer->pBigPrev = NULL;
1555 pTimer->pBigNext = pVM->tm.s.pCreated;
1556 pVM->tm.s.pCreated = pTimer;
1557 if (pTimer->pBigNext)
1558 pTimer->pBigNext->pBigPrev = pTimer;
1559#ifdef VBOX_STRICT
1560 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1561#endif
1562 TM_UNLOCK_TIMERS(pVM);
1563
1564 /*
1565 * Register statistics.
1566 */
1567#ifdef VBOX_WITH_STATISTICS
1568
1569 STAMR3RegisterF(pVM, &pTimer->StatTimer, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
1570 tmR3TimerClockName(pTimer), "/TM/Timers/%s", pszDesc);
1571 STAMR3RegisterF(pVM, &pTimer->StatCritSectEnter, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL,
1572 "", "/TM/Timers/%s/CritSectEnter", pszDesc);
1573 STAMR3RegisterF(pVM, &pTimer->StatGet, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1574 "", "/TM/Timers/%s/Get", pszDesc);
1575 STAMR3RegisterF(pVM, &pTimer->StatSetAbsolute, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1576 "", "/TM/Timers/%s/SetAbsolute", pszDesc);
1577 STAMR3RegisterF(pVM, &pTimer->StatSetRelative, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1578 "", "/TM/Timers/%s/SetRelative", pszDesc);
1579 STAMR3RegisterF(pVM, &pTimer->StatStop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS,
1580 "", "/TM/Timers/%s/Stop", pszDesc);
1581#endif
1582
1583 *ppTimer = pTimer;
1584 return VINF_SUCCESS;
1585}
1586
1587
1588/**
1589 * Creates a device timer.
1590 *
1591 * @returns VBox status code.
1592 * @param pVM The cross context VM structure.
1593 * @param pDevIns Device instance.
1594 * @param enmClock The clock to use on this timer.
1595 * @param pfnCallback Callback function.
1596 * @param pvUser The user argument to the callback.
1597 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1598 * @param pszDesc Pointer to description string which must stay around
1599 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1600 * @param ppTimer Where to store the timer on success.
1601 */
1602VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock,
1603 PFNTMTIMERDEV pfnCallback, void *pvUser,
1604 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1605{
1606 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1607
1608 /*
1609 * Allocate and init stuff.
1610 */
1611 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1612 if (RT_SUCCESS(rc))
1613 {
1614 (*ppTimer)->enmType = TMTIMERTYPE_DEV;
1615 (*ppTimer)->u.Dev.pfnTimer = pfnCallback;
1616 (*ppTimer)->u.Dev.pDevIns = pDevIns;
1617 (*ppTimer)->pvUser = pvUser;
1618 if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1619 (*ppTimer)->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns);
1620 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1621 }
1622
1623 return rc;
1624}
1625
1626
1627
1628
1629/**
1630 * Creates a USB device timer.
1631 *
1632 * @returns VBox status code.
1633 * @param pVM The cross context VM structure.
1634 * @param pUsbIns The USB device instance.
1635 * @param enmClock The clock to use on this timer.
1636 * @param pfnCallback Callback function.
1637 * @param pvUser The user argument to the callback.
1638 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1639 * @param pszDesc Pointer to description string which must stay around
1640 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1641 * @param ppTimer Where to store the timer on success.
1642 */
1643VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock,
1644 PFNTMTIMERUSB pfnCallback, void *pvUser,
1645 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1646{
1647 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1648
1649 /*
1650 * Allocate and init stuff.
1651 */
1652 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1653 if (RT_SUCCESS(rc))
1654 {
1655 (*ppTimer)->enmType = TMTIMERTYPE_USB;
1656 (*ppTimer)->u.Usb.pfnTimer = pfnCallback;
1657 (*ppTimer)->u.Usb.pUsbIns = pUsbIns;
1658 (*ppTimer)->pvUser = pvUser;
1659 //if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1660 //{
1661 // if (pDevIns->pCritSectR3)
1662 // (*ppTimer)->pCritSect = pUsbIns->pCritSectR3;
1663 // else
1664 // (*ppTimer)->pCritSect = IOMR3GetCritSect(pVM);
1665 //}
1666 Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1667 }
1668
1669 return rc;
1670}
1671
1672
1673/**
1674 * Creates a driver timer.
1675 *
1676 * @returns VBox status code.
1677 * @param pVM The cross context VM structure.
1678 * @param pDrvIns Driver instance.
1679 * @param enmClock The clock to use on this timer.
1680 * @param pfnCallback Callback function.
1681 * @param pvUser The user argument to the callback.
1682 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1683 * @param pszDesc Pointer to description string which must stay around
1684 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1685 * @param ppTimer Where to store the timer on success.
1686 */
1687VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1688 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1689{
1690 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1691
1692 /*
1693 * Allocate and init stuff.
1694 */
1695 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1696 if (RT_SUCCESS(rc))
1697 {
1698 (*ppTimer)->enmType = TMTIMERTYPE_DRV;
1699 (*ppTimer)->u.Drv.pfnTimer = pfnCallback;
1700 (*ppTimer)->u.Drv.pDrvIns = pDrvIns;
1701 (*ppTimer)->pvUser = pvUser;
1702 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1703 }
1704
1705 return rc;
1706}
1707
1708
1709/**
1710 * Creates an internal timer.
1711 *
1712 * @returns VBox status code.
1713 * @param pVM The cross context VM structure.
1714 * @param enmClock The clock to use on this timer.
1715 * @param pfnCallback Callback function.
1716 * @param pvUser User argument to be passed to the callback.
1717 * @param pszDesc Pointer to description string which must stay around
1718 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1719 * @param ppTimer Where to store the timer on success.
1720 */
1721VMMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERR3 ppTimer)
1722{
1723 /*
1724 * Allocate and init stuff.
1725 */
1726 PTMTIMER pTimer;
1727 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1728 if (RT_SUCCESS(rc))
1729 {
1730 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1731 pTimer->u.Internal.pfnTimer = pfnCallback;
1732 pTimer->pvUser = pvUser;
1733 *ppTimer = pTimer;
1734 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1735 }
1736
1737 return rc;
1738}
1739
1740/**
1741 * Creates an external timer.
1742 *
1743 * @returns Timer handle on success.
1744 * @returns NULL on failure.
1745 * @param pVM The cross context VM structure.
1746 * @param enmClock The clock to use on this timer.
1747 * @param pfnCallback Callback function.
1748 * @param pvUser User argument.
1749 * @param pszDesc Pointer to description string which must stay around
1750 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1751 */
1752VMMR3DECL(PTMTIMERR3) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
1753{
1754 /*
1755 * Allocate and init stuff.
1756 */
1757 PTMTIMERR3 pTimer;
1758 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1759 if (RT_SUCCESS(rc))
1760 {
1761 pTimer->enmType = TMTIMERTYPE_EXTERNAL;
1762 pTimer->u.External.pfnTimer = pfnCallback;
1763 pTimer->pvUser = pvUser;
1764 Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1765 return pTimer;
1766 }
1767
1768 return NULL;
1769}
1770
1771
1772/**
1773 * Destroy a timer
1774 *
1775 * @returns VBox status code.
1776 * @param pTimer Timer handle as returned by one of the create functions.
1777 */
1778VMMR3DECL(int) TMR3TimerDestroy(PTMTIMER pTimer)
1779{
1780 /*
1781 * Be extra careful here.
1782 */
1783 if (!pTimer)
1784 return VINF_SUCCESS;
1785 AssertPtr(pTimer);
1786 Assert((unsigned)pTimer->enmClock < (unsigned)TMCLOCK_MAX);
1787
1788 PVM pVM = pTimer->CTX_SUFF(pVM);
1789 PTMTIMERQUEUE pQueue = &pVM->tm.s.CTX_SUFF(paTimerQueues)[pTimer->enmClock];
1790 bool fActive = false;
1791 bool fPending = false;
1792
1793 AssertMsg( !pTimer->pCritSect
1794 || VMR3GetState(pVM) != VMSTATE_RUNNING
1795 || PDMCritSectIsOwner(pTimer->pCritSect), ("%s\n", pTimer->pszDesc));
1796
1797 /*
1798 * The rest of the game happens behind the lock, just
1799 * like create does. All the work is done here.
1800 */
1801 TM_LOCK_TIMERS(pVM);
1802 for (int cRetries = 1000;; cRetries--)
1803 {
1804 /*
1805 * Change to the DESTROY state.
1806 */
1807 TMTIMERSTATE const enmState = pTimer->enmState;
1808 Log2(("TMTimerDestroy: %p:{.enmState=%s, .pszDesc='%s'} cRetries=%d\n",
1809 pTimer, tmTimerState(enmState), R3STRING(pTimer->pszDesc), cRetries));
1810 switch (enmState)
1811 {
1812 case TMTIMERSTATE_STOPPED:
1813 case TMTIMERSTATE_EXPIRED_DELIVER:
1814 break;
1815
1816 case TMTIMERSTATE_ACTIVE:
1817 fActive = true;
1818 break;
1819
1820 case TMTIMERSTATE_PENDING_STOP:
1821 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1822 case TMTIMERSTATE_PENDING_RESCHEDULE:
1823 fActive = true;
1824 fPending = true;
1825 break;
1826
1827 case TMTIMERSTATE_PENDING_SCHEDULE:
1828 fPending = true;
1829 break;
1830
1831 /*
1832 * This shouldn't happen as the caller should make sure there are no races.
1833 */
1834 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1835 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1836 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1837 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1838 TM_UNLOCK_TIMERS(pVM);
1839 if (!RTThreadYield())
1840 RTThreadSleep(1);
1841 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1842 VERR_TM_UNSTABLE_STATE);
1843 TM_LOCK_TIMERS(pVM);
1844 continue;
1845
1846 /*
1847 * Invalid states.
1848 */
1849 case TMTIMERSTATE_FREE:
1850 case TMTIMERSTATE_DESTROY:
1851 TM_UNLOCK_TIMERS(pVM);
1852 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1853
1854 default:
1855 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, R3STRING(pTimer->pszDesc)));
1856 TM_UNLOCK_TIMERS(pVM);
1857 return VERR_TM_UNKNOWN_STATE;
1858 }
1859
1860 /*
1861 * Try switch to the destroy state.
1862 * This should always succeed as the caller should make sure there are no race.
1863 */
1864 bool fRc;
1865 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1866 if (fRc)
1867 break;
1868 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1869 TM_UNLOCK_TIMERS(pVM);
1870 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1871 VERR_TM_UNSTABLE_STATE);
1872 TM_LOCK_TIMERS(pVM);
1873 }
1874
1875 /*
1876 * Unlink from the active list.
1877 */
1878 if (fActive)
1879 {
1880 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1881 const PTMTIMER pNext = TMTIMER_GET_NEXT(pTimer);
1882 if (pPrev)
1883 TMTIMER_SET_NEXT(pPrev, pNext);
1884 else
1885 {
1886 TMTIMER_SET_HEAD(pQueue, pNext);
1887 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1888 }
1889 if (pNext)
1890 TMTIMER_SET_PREV(pNext, pPrev);
1891 pTimer->offNext = 0;
1892 pTimer->offPrev = 0;
1893 }
1894
1895 /*
1896 * Unlink from the schedule list by running it.
1897 */
1898 if (fPending)
1899 {
1900 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
1901 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1902 Assert(pQueue->offSchedule);
1903 tmTimerQueueSchedule(pVM, pQueue);
1904 STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1905 }
1906
1907 /*
1908 * Deregister statistics.
1909 */
1910#ifdef VBOX_WITH_STATISTICS
1911 char szPrefix[128];
1912 RTStrPrintf(szPrefix, sizeof(szPrefix), "/TM/Timers/%s", pTimer->pszDesc);
1913 STAMR3DeregisterByPrefix(pVM->pUVM, szPrefix);
1914#endif
1915
1916 /*
1917 * Ready to move the timer from the created list and onto the free list.
1918 */
1919 Assert(!pTimer->offNext); Assert(!pTimer->offPrev); Assert(!pTimer->offScheduleNext);
1920
1921 /* unlink from created list */
1922 if (pTimer->pBigPrev)
1923 pTimer->pBigPrev->pBigNext = pTimer->pBigNext;
1924 else
1925 pVM->tm.s.pCreated = pTimer->pBigNext;
1926 if (pTimer->pBigNext)
1927 pTimer->pBigNext->pBigPrev = pTimer->pBigPrev;
1928 pTimer->pBigNext = 0;
1929 pTimer->pBigPrev = 0;
1930
1931 /* free */
1932 Log2(("TM: Inserting %p into the free list ahead of %p!\n", pTimer, pVM->tm.s.pFree));
1933 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
1934 pTimer->pBigNext = pVM->tm.s.pFree;
1935 pVM->tm.s.pFree = pTimer;
1936
1937#ifdef VBOX_STRICT
1938 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
1939#endif
1940 TM_UNLOCK_TIMERS(pVM);
1941 return VINF_SUCCESS;
1942}
1943
1944
1945/**
1946 * Destroy all timers owned by a device.
1947 *
1948 * @returns VBox status code.
1949 * @param pVM The cross context VM structure.
1950 * @param pDevIns Device which timers should be destroyed.
1951 */
1952VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
1953{
1954 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
1955 if (!pDevIns)
1956 return VERR_INVALID_PARAMETER;
1957
1958 TM_LOCK_TIMERS(pVM);
1959 PTMTIMER pCur = pVM->tm.s.pCreated;
1960 while (pCur)
1961 {
1962 PTMTIMER pDestroy = pCur;
1963 pCur = pDestroy->pBigNext;
1964 if ( pDestroy->enmType == TMTIMERTYPE_DEV
1965 && pDestroy->u.Dev.pDevIns == pDevIns)
1966 {
1967 int rc = TMR3TimerDestroy(pDestroy);
1968 AssertRC(rc);
1969 }
1970 }
1971 TM_UNLOCK_TIMERS(pVM);
1972
1973 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
1974 return VINF_SUCCESS;
1975}
1976
1977
1978/**
1979 * Destroy all timers owned by a USB device.
1980 *
1981 * @returns VBox status code.
1982 * @param pVM The cross context VM structure.
1983 * @param pUsbIns USB device which timers should be destroyed.
1984 */
1985VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns)
1986{
1987 LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns));
1988 if (!pUsbIns)
1989 return VERR_INVALID_PARAMETER;
1990
1991 TM_LOCK_TIMERS(pVM);
1992 PTMTIMER pCur = pVM->tm.s.pCreated;
1993 while (pCur)
1994 {
1995 PTMTIMER pDestroy = pCur;
1996 pCur = pDestroy->pBigNext;
1997 if ( pDestroy->enmType == TMTIMERTYPE_USB
1998 && pDestroy->u.Usb.pUsbIns == pUsbIns)
1999 {
2000 int rc = TMR3TimerDestroy(pDestroy);
2001 AssertRC(rc);
2002 }
2003 }
2004 TM_UNLOCK_TIMERS(pVM);
2005
2006 LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n"));
2007 return VINF_SUCCESS;
2008}
2009
2010
2011/**
2012 * Destroy all timers owned by a driver.
2013 *
2014 * @returns VBox status code.
2015 * @param pVM The cross context VM structure.
2016 * @param pDrvIns Driver which timers should be destroyed.
2017 */
2018VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
2019{
2020 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
2021 if (!pDrvIns)
2022 return VERR_INVALID_PARAMETER;
2023
2024 TM_LOCK_TIMERS(pVM);
2025 PTMTIMER pCur = pVM->tm.s.pCreated;
2026 while (pCur)
2027 {
2028 PTMTIMER pDestroy = pCur;
2029 pCur = pDestroy->pBigNext;
2030 if ( pDestroy->enmType == TMTIMERTYPE_DRV
2031 && pDestroy->u.Drv.pDrvIns == pDrvIns)
2032 {
2033 int rc = TMR3TimerDestroy(pDestroy);
2034 AssertRC(rc);
2035 }
2036 }
2037 TM_UNLOCK_TIMERS(pVM);
2038
2039 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
2040 return VINF_SUCCESS;
2041}
2042
2043
2044/**
2045 * Internal function for getting the clock time.
2046 *
2047 * @returns clock time.
2048 * @param pVM The cross context VM structure.
2049 * @param enmClock The clock.
2050 */
2051DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
2052{
2053 switch (enmClock)
2054 {
2055 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
2056 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
2057 case TMCLOCK_REAL: return TMRealGet(pVM);
2058 case TMCLOCK_TSC: return TMCpuTickGet(pVM->apCpusR3[0] /* just take VCPU 0 */);
2059 default:
2060 AssertMsgFailed(("enmClock=%d\n", enmClock));
2061 return ~(uint64_t)0;
2062 }
2063}
2064
2065
2066/**
2067 * Checks if the sync queue has one or more expired timers.
2068 *
2069 * @returns true / false.
2070 *
2071 * @param pVM The cross context VM structure.
2072 * @param enmClock The queue.
2073 */
2074DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
2075{
2076 const uint64_t u64Expire = pVM->tm.s.CTX_SUFF(paTimerQueues)[enmClock].u64Expire;
2077 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
2078}
2079
2080
2081/**
2082 * Checks for expired timers in all the queues.
2083 *
2084 * @returns true / false.
2085 * @param pVM The cross context VM structure.
2086 */
2087DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
2088{
2089 /*
2090 * Combine the time calculation for the first two since we're not on EMT
2091 * TMVirtualSyncGet only permits EMT.
2092 */
2093 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
2094 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
2095 return true;
2096 u64Now = pVM->tm.s.fVirtualSyncTicking
2097 ? u64Now - pVM->tm.s.offVirtualSync
2098 : pVM->tm.s.u64VirtualSync;
2099 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
2100 return true;
2101
2102 /*
2103 * The remaining timers.
2104 */
2105 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
2106 return true;
2107 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
2108 return true;
2109 return false;
2110}
2111
2112
2113/**
2114 * Schedule timer callback.
2115 *
2116 * @param pTimer Timer handle.
2117 * @param pvUser Pointer to the VM.
2118 * @thread Timer thread.
2119 *
2120 * @remark We cannot do the scheduling and queues running from a timer handler
2121 * since it's not executing in EMT, and even if it was it would be async
2122 * and we wouldn't know the state of the affairs.
2123 * So, we'll just raise the timer FF and force any REM execution to exit.
2124 */
2125static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
2126{
2127 PVM pVM = (PVM)pvUser;
2128 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
2129 NOREF(pTimer);
2130
2131 AssertCompile(TMCLOCK_MAX == 4);
2132 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback);
2133
2134#ifdef DEBUG_Sander /* very annoying, keep it private. */
2135 if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
2136 Log(("tmR3TimerCallback: timer event still pending!!\n"));
2137#endif
2138 if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2139 && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
2140 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
2141 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
2142 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
2143 || tmR3AnyExpiredTimers(pVM)
2144 )
2145 && !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2146 && !pVM->tm.s.fRunningQueues
2147 )
2148 {
2149 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
2150 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
2151 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE);
2152 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
2153 }
2154}
2155
2156
2157/**
2158 * Schedules and runs any pending timers.
2159 *
2160 * This is normally called from a forced action handler in EMT.
2161 *
2162 * @param pVM The cross context VM structure.
2163 *
2164 * @thread EMT (actually EMT0, but we fend off the others)
2165 */
2166VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
2167{
2168 /*
2169 * Only the dedicated timer EMT should do stuff here.
2170 * (fRunningQueues is only used as an indicator.)
2171 */
2172 Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
2173 PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu];
2174 if (VMMGetCpu(pVM) != pVCpuDst)
2175 {
2176 Assert(pVM->cCpus > 1);
2177 return;
2178 }
2179 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
2180 Log2(("TMR3TimerQueuesDo:\n"));
2181 Assert(!pVM->tm.s.fRunningQueues);
2182 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
2183 TM_LOCK_TIMERS(pVM);
2184
2185 /*
2186 * Process the queues.
2187 */
2188 AssertCompile(TMCLOCK_MAX == 4);
2189
2190 /* TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) */
2191 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
2192 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2193 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2194 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
2195
2196 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule);
2197 tmR3TimerQueueRunVirtualSync(pVM);
2198 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2199 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2200
2201 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2202 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2203 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
2204
2205 /* TMCLOCK_VIRTUAL */
2206 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
2207 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule)
2208 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
2209 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
2210 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
2211
2212 /* TMCLOCK_TSC */
2213 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offActive); /* not used */
2214
2215 /* TMCLOCK_REAL */
2216 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
2217 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule)
2218 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
2219 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
2220 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
2221
2222#ifdef VBOX_STRICT
2223 /* check that we didn't screw up. */
2224 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
2225#endif
2226
2227 /* done */
2228 Log2(("TMR3TimerQueuesDo: returns void\n"));
2229 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
2230 TM_UNLOCK_TIMERS(pVM);
2231 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
2232}
2233
2234//RT_C_DECLS_BEGIN
2235//int iomLock(PVM pVM);
2236//void iomUnlock(PVM pVM);
2237//RT_C_DECLS_END
2238
2239
2240/**
2241 * Schedules and runs any pending times in the specified queue.
2242 *
2243 * This is normally called from a forced action handler in EMT.
2244 *
2245 * @param pVM The cross context VM structure.
2246 * @param pQueue The queue to run.
2247 */
2248static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
2249{
2250 VM_ASSERT_EMT(pVM);
2251
2252 /*
2253 * Run timers.
2254 *
2255 * We check the clock once and run all timers which are ACTIVE
2256 * and have an expire time less or equal to the time we read.
2257 *
2258 * N.B. A generic unlink must be applied since other threads
2259 * are allowed to mess with any active timer at any time.
2260 * However, we only allow EMT to handle EXPIRED_PENDING
2261 * timers, thus enabling the timer handler function to
2262 * arm the timer again.
2263 */
2264 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
2265 if (!pNext)
2266 return;
2267 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
2268 while (pNext && pNext->u64Expire <= u64Now)
2269 {
2270 PTMTIMER pTimer = pNext;
2271 pNext = TMTIMER_GET_NEXT(pTimer);
2272 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2273 if (pCritSect)
2274 {
2275 STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
2276 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2277 STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
2278 }
2279 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2280 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2281 bool fRc;
2282 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2283 if (fRc)
2284 {
2285 Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
2286
2287 /* unlink */
2288 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
2289 if (pPrev)
2290 TMTIMER_SET_NEXT(pPrev, pNext);
2291 else
2292 {
2293 TMTIMER_SET_HEAD(pQueue, pNext);
2294 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2295 }
2296 if (pNext)
2297 TMTIMER_SET_PREV(pNext, pPrev);
2298 pTimer->offNext = 0;
2299 pTimer->offPrev = 0;
2300
2301 /* fire */
2302 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2303 STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
2304 switch (pTimer->enmType)
2305 {
2306 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2307 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer, pTimer->pvUser); break;
2308 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2309 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2310 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2311 default:
2312 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2313 break;
2314 }
2315 STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
2316
2317 /* change the state if it wasn't changed already in the handler. */
2318 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2319 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2320 }
2321 if (pCritSect)
2322 PDMCritSectLeave(pCritSect);
2323 } /* run loop */
2324}
2325
2326
2327/**
2328 * Schedules and runs any pending times in the timer queue for the
2329 * synchronous virtual clock.
2330 *
2331 * This scheduling is a bit different from the other queues as it need
2332 * to implement the special requirements of the timer synchronous virtual
2333 * clock, thus this 2nd queue run function.
2334 *
2335 * @param pVM The cross context VM structure.
2336 *
2337 * @remarks The caller must the Virtual Sync lock. Owning the TM lock is no
2338 * longer important.
2339 */
2340static void tmR3TimerQueueRunVirtualSync(PVM pVM)
2341{
2342 PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
2343 VM_ASSERT_EMT(pVM);
2344 Assert(PDMCritSectIsOwner(&pVM->tm.s.VirtualSyncLock));
2345
2346 /*
2347 * Any timers?
2348 */
2349 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
2350 if (RT_UNLIKELY(!pNext))
2351 {
2352 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
2353 return;
2354 }
2355 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
2356
2357 /*
2358 * Calculate the time frame for which we will dispatch timers.
2359 *
2360 * We use a time frame ranging from the current sync time (which is most likely the
2361 * same as the head timer) and some configurable period (100000ns) up towards the
2362 * current virtual time. This period might also need to be restricted by the catch-up
2363 * rate so frequent calls to this function won't accelerate the time too much, however
2364 * this will be implemented at a later point if necessary.
2365 *
2366 * Without this frame we would 1) having to run timers much more frequently
2367 * and 2) lag behind at a steady rate.
2368 */
2369 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
2370 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
2371 uint64_t u64Now;
2372 if (!pVM->tm.s.fVirtualSyncTicking)
2373 {
2374 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
2375 u64Now = pVM->tm.s.u64VirtualSync;
2376 Assert(u64Now <= pNext->u64Expire);
2377 }
2378 else
2379 {
2380 /* Calc 'now'. */
2381 bool fStopCatchup = false;
2382 bool fUpdateStuff = false;
2383 uint64_t off = pVM->tm.s.offVirtualSync;
2384 if (pVM->tm.s.fVirtualSyncCatchUp)
2385 {
2386 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
2387 if (RT_LIKELY(!(u64Delta >> 32)))
2388 {
2389 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
2390 if (off > u64Sub + offSyncGivenUp)
2391 {
2392 off -= u64Sub;
2393 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
2394 }
2395 else
2396 {
2397 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2398 fStopCatchup = true;
2399 off = offSyncGivenUp;
2400 }
2401 fUpdateStuff = true;
2402 }
2403 }
2404 u64Now = u64VirtualNow - off;
2405
2406 /* Adjust against last returned time. */
2407 uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
2408 if (u64Last > u64Now)
2409 {
2410 u64Now = u64Last + 1;
2411 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
2412 }
2413
2414 /* Check if stopped by expired timer. */
2415 uint64_t const u64Expire = pNext->u64Expire;
2416 if (u64Now >= u64Expire)
2417 {
2418 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
2419 u64Now = u64Expire;
2420 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2421 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2422 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
2423 }
2424 else
2425 {
2426 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2427 if (fUpdateStuff)
2428 {
2429 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
2430 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
2431 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2432 if (fStopCatchup)
2433 {
2434 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2435 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
2436 }
2437 }
2438 }
2439 }
2440
2441 /* calc end of frame. */
2442 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
2443 if (u64Max > u64VirtualNow - offSyncGivenUp)
2444 u64Max = u64VirtualNow - offSyncGivenUp;
2445
2446 /* assert sanity */
2447 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
2448 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
2449 Assert(u64Now <= u64Max);
2450 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
2451
2452 /*
2453 * Process the expired timers moving the clock along as we progress.
2454 */
2455#ifdef VBOX_STRICT
2456 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2457#endif
2458 while (pNext && pNext->u64Expire <= u64Max)
2459 {
2460 /* Advance */
2461 PTMTIMER pTimer = pNext;
2462 pNext = TMTIMER_GET_NEXT(pTimer);
2463
2464 /* Take the associated lock. */
2465 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2466 if (pCritSect)
2467 {
2468 STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking);
2469 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2470 STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking);
2471 }
2472
2473 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2474 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2475
2476 /* Advance the clock - don't permit timers to be out of order or armed
2477 in the 'past'. */
2478#ifdef VBOX_STRICT
2479 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
2480 u64Prev = pTimer->u64Expire;
2481#endif
2482 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2483 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2484
2485 /* Unlink it, change the state and do the callout. */
2486 tmTimerQueueUnlinkActive(pQueue, pTimer);
2487 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2488 STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer);
2489 switch (pTimer->enmType)
2490 {
2491 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2492 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer, pTimer->pvUser); break;
2493 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2494 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2495 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2496 default:
2497 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2498 break;
2499 }
2500 STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer);
2501
2502 /* Change the state if it wasn't changed already in the handler.
2503 Reset the Hz hint too since this is the same as TMTimerStop. */
2504 bool fRc;
2505 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2506 if (fRc && pTimer->uHzHint)
2507 {
2508 if (pTimer->uHzHint >= pVM->tm.s.uMaxHzHint)
2509 ASMAtomicWriteBool(&pVM->tm.s.fHzHintNeedsUpdating, true);
2510 pTimer->uHzHint = 0;
2511 }
2512 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2513
2514 /* Leave the associated lock. */
2515 if (pCritSect)
2516 PDMCritSectLeave(pCritSect);
2517 } /* run loop */
2518
2519
2520 /*
2521 * Restart the clock if it was stopped to serve any timers,
2522 * and start/adjust catch-up if necessary.
2523 */
2524 if ( !pVM->tm.s.fVirtualSyncTicking
2525 && pVM->tm.s.cVirtualTicking)
2526 {
2527 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2528
2529 /* calc the slack we've handed out. */
2530 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2531 Assert(u64VirtualNow2 >= u64VirtualNow);
2532 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2533 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2534 STAM_STATS({
2535 if (offSlack)
2536 {
2537 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2538 p->cPeriods++;
2539 p->cTicks += offSlack;
2540 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2541 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2542 }
2543 });
2544
2545 /* Let the time run a little bit while we were busy running timers(?). */
2546 uint64_t u64Elapsed;
2547#define MAX_ELAPSED 30000U /* ns */
2548 if (offSlack > MAX_ELAPSED)
2549 u64Elapsed = 0;
2550 else
2551 {
2552 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2553 if (u64Elapsed > MAX_ELAPSED)
2554 u64Elapsed = MAX_ELAPSED;
2555 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2556 }
2557#undef MAX_ELAPSED
2558
2559 /* Calc the current offset. */
2560 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2561 Assert(!(offNew & RT_BIT_64(63)));
2562 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2563 Assert(!(offLag & RT_BIT_64(63)));
2564
2565 /*
2566 * Deal with starting, adjusting and stopping catchup.
2567 */
2568 if (pVM->tm.s.fVirtualSyncCatchUp)
2569 {
2570 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2571 {
2572 /* stop */
2573 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2574 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2575 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2576 }
2577 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2578 {
2579 /* adjust */
2580 unsigned i = 0;
2581 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2582 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2583 i++;
2584 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2585 {
2586 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2587 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2588 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2589 }
2590 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2591 }
2592 else
2593 {
2594 /* give up */
2595 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2596 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2597 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2598 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2599 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2600 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2601 }
2602 }
2603 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2604 {
2605 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2606 {
2607 /* start */
2608 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2609 unsigned i = 0;
2610 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2611 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2612 i++;
2613 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2614 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2615 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2616 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2617 }
2618 else
2619 {
2620 /* don't bother */
2621 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2622 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2623 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2624 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2625 }
2626 }
2627
2628 /*
2629 * Update the offset and restart the clock.
2630 */
2631 Assert(!(offNew & RT_BIT_64(63)));
2632 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2633 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2634 }
2635}
2636
2637
2638/**
2639 * Deals with stopped Virtual Sync clock.
2640 *
2641 * This is called by the forced action flag handling code in EM when it
2642 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2643 * will block on the VirtualSyncLock until the pending timers has been executed
2644 * and the clock restarted.
2645 *
2646 * @param pVM The cross context VM structure.
2647 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2648 *
2649 * @thread EMTs
2650 */
2651VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2652{
2653 Log2(("TMR3VirtualSyncFF:\n"));
2654
2655 /*
2656 * The EMT doing the timers is diverted to them.
2657 */
2658 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2659 TMR3TimerQueuesDo(pVM);
2660 /*
2661 * The other EMTs will block on the virtual sync lock and the first owner
2662 * will run the queue and thus restarting the clock.
2663 *
2664 * Note! This is very suboptimal code wrt to resuming execution when there
2665 * are more than two Virtual CPUs, since they will all have to enter
2666 * the critical section one by one. But it's a very simple solution
2667 * which will have to do the job for now.
2668 */
2669 else
2670 {
2671 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2672 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2673 if (pVM->tm.s.fVirtualSyncTicking)
2674 {
2675 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2676 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2677 Log2(("TMR3VirtualSyncFF: ticking\n"));
2678 }
2679 else
2680 {
2681 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2682
2683 /* try run it. */
2684 TM_LOCK_TIMERS(pVM);
2685 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2686 if (pVM->tm.s.fVirtualSyncTicking)
2687 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2688 else
2689 {
2690 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2691 Log2(("TMR3VirtualSyncFF: running queue\n"));
2692
2693 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule);
2694 tmR3TimerQueueRunVirtualSync(pVM);
2695 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2696 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2697
2698 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2699 }
2700 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2701 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2702 TM_UNLOCK_TIMERS(pVM);
2703 }
2704 }
2705}
2706
2707
2708/** @name Saved state values
2709 * @{ */
2710#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2711#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2712/** @} */
2713
2714
2715/**
2716 * Saves the state of a timer to a saved state.
2717 *
2718 * @returns VBox status code.
2719 * @param pTimer Timer to save.
2720 * @param pSSM Save State Manager handle.
2721 */
2722VMMR3DECL(int) TMR3TimerSave(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2723{
2724 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2725 switch (pTimer->enmState)
2726 {
2727 case TMTIMERSTATE_STOPPED:
2728 case TMTIMERSTATE_PENDING_STOP:
2729 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2730 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2731
2732 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2733 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2734 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
2735 if (!RTThreadYield())
2736 RTThreadSleep(1);
2737 RT_FALL_THRU();
2738 case TMTIMERSTATE_ACTIVE:
2739 case TMTIMERSTATE_PENDING_SCHEDULE:
2740 case TMTIMERSTATE_PENDING_RESCHEDULE:
2741 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2742 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2743
2744 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2745 case TMTIMERSTATE_EXPIRED_DELIVER:
2746 case TMTIMERSTATE_DESTROY:
2747 case TMTIMERSTATE_FREE:
2748 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
2749 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2750 }
2751
2752 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
2753 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2754}
2755
2756
2757/**
2758 * Loads the state of a timer from a saved state.
2759 *
2760 * @returns VBox status code.
2761 * @param pTimer Timer to restore.
2762 * @param pSSM Save State Manager handle.
2763 */
2764VMMR3DECL(int) TMR3TimerLoad(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2765{
2766 Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
2767 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2768
2769 /*
2770 * Load the state and validate it.
2771 */
2772 uint8_t u8State;
2773 int rc = SSMR3GetU8(pSSM, &u8State);
2774 if (RT_FAILURE(rc))
2775 return rc;
2776
2777 /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
2778 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2779 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2780 u8State--;
2781
2782 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2783 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2784 {
2785 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2786 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2787 }
2788
2789 /* Enter the critical sections to make TMTimerSet/Stop happy. */
2790 if (pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC)
2791 PDMCritSectEnter(&pTimer->pVMR3->tm.s.VirtualSyncLock, VERR_IGNORED);
2792 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2793 if (pCritSect)
2794 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2795
2796 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2797 {
2798 /*
2799 * Load the expire time.
2800 */
2801 uint64_t u64Expire;
2802 rc = SSMR3GetU64(pSSM, &u64Expire);
2803 if (RT_FAILURE(rc))
2804 return rc;
2805
2806 /*
2807 * Set it.
2808 */
2809 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
2810 rc = TMTimerSet(pTimer, u64Expire);
2811 }
2812 else
2813 {
2814 /*
2815 * Stop it.
2816 */
2817 Log(("u8State=%d\n", u8State));
2818 rc = TMTimerStop(pTimer);
2819 }
2820
2821 if (pCritSect)
2822 PDMCritSectLeave(pCritSect);
2823 if (pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC)
2824 PDMCritSectLeave(&pTimer->pVMR3->tm.s.VirtualSyncLock);
2825
2826 /*
2827 * On failure set SSM status.
2828 */
2829 if (RT_FAILURE(rc))
2830 rc = SSMR3HandleSetStatus(pSSM, rc);
2831 return rc;
2832}
2833
2834
2835/**
2836 * Skips the state of a timer in a given saved state.
2837 *
2838 * @returns VBox status.
2839 * @param pSSM Save State Manager handle.
2840 * @param pfActive Where to store whether the timer was active
2841 * when the state was saved.
2842 */
2843VMMR3DECL(int) TMR3TimerSkip(PSSMHANDLE pSSM, bool *pfActive)
2844{
2845 Assert(pSSM); AssertPtr(pfActive);
2846 LogFlow(("TMR3TimerSkip: pSSM=%p pfActive=%p\n", pSSM, pfActive));
2847
2848 /*
2849 * Load the state and validate it.
2850 */
2851 uint8_t u8State;
2852 int rc = SSMR3GetU8(pSSM, &u8State);
2853 if (RT_FAILURE(rc))
2854 return rc;
2855
2856 /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */
2857 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2858 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2859 u8State--;
2860
2861 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2862 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2863 {
2864 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2865 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2866 }
2867
2868 *pfActive = (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2869 if (*pfActive)
2870 {
2871 /*
2872 * Load the expire time.
2873 */
2874 uint64_t u64Expire;
2875 rc = SSMR3GetU64(pSSM, &u64Expire);
2876 }
2877
2878 return rc;
2879}
2880
2881
2882/**
2883 * Associates a critical section with a timer.
2884 *
2885 * The critical section will be entered prior to doing the timer call back, thus
2886 * avoiding potential races between the timer thread and other threads trying to
2887 * stop or adjust the timer expiration while it's being delivered. The timer
2888 * thread will leave the critical section when the timer callback returns.
2889 *
2890 * In strict builds, ownership of the critical section will be asserted by
2891 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
2892 * runtime).
2893 *
2894 * @retval VINF_SUCCESS on success.
2895 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
2896 * (asserted).
2897 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
2898 * (asserted).
2899 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
2900 * with the timer (asserted).
2901 * @retval VERR_INVALID_STATE if the timer isn't stopped.
2902 *
2903 * @param pTimer The timer handle.
2904 * @param pCritSect The critical section. The caller must make sure this
2905 * is around for the life time of the timer.
2906 *
2907 * @thread Any, but the caller is responsible for making sure the timer is not
2908 * active.
2909 */
2910VMMR3DECL(int) TMR3TimerSetCritSect(PTMTIMERR3 pTimer, PPDMCRITSECT pCritSect)
2911{
2912 AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
2913 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
2914 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
2915 AssertReturn(pszName, VERR_INVALID_PARAMETER);
2916 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
2917 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
2918 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->pszDesc, pCritSect, pszName));
2919
2920 pTimer->pCritSect = pCritSect;
2921 return VINF_SUCCESS;
2922}
2923
2924
2925/**
2926 * Get the real world UTC time adjusted for VM lag.
2927 *
2928 * @returns pTime.
2929 * @param pVM The cross context VM structure.
2930 * @param pTime Where to store the time.
2931 */
2932VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
2933{
2934 /*
2935 * Get a stable set of VirtualSync parameters and calc the lag.
2936 */
2937 uint64_t offVirtualSync;
2938 uint64_t offVirtualSyncGivenUp;
2939 do
2940 {
2941 offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
2942 offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp);
2943 } while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync);
2944
2945 Assert(offVirtualSync >= offVirtualSyncGivenUp);
2946 uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp;
2947
2948 /*
2949 * Get current time and adjust for virtual sync lag and do time displacement.
2950 */
2951 RTTimeNow(pTime);
2952 RTTimeSpecSubNano(pTime, offLag);
2953 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
2954
2955 /*
2956 * Log details if the time changed radically (also triggers on first call).
2957 */
2958 int64_t nsPrev = ASMAtomicXchgS64(&pVM->tm.s.nsLastUtcNow, RTTimeSpecGetNano(pTime));
2959 int64_t cNsDelta = RTTimeSpecGetNano(pTime) - nsPrev;
2960 if ((uint64_t)RT_ABS(cNsDelta) > RT_NS_1HOUR / 2)
2961 {
2962 RTTIMESPEC NowAgain;
2963 RTTimeNow(&NowAgain);
2964 LogRel(("TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
2965 RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain)));
2966 if (pVM->tm.s.pszUtcTouchFileOnJump && nsPrev != 0)
2967 {
2968 RTFILE hFile;
2969 int rc = RTFileOpen(&hFile, pVM->tm.s.pszUtcTouchFileOnJump,
2970 RTFILE_O_WRITE | RTFILE_O_APPEND | RTFILE_O_OPEN_CREATE | RTFILE_O_DENY_NONE);
2971 if (RT_SUCCESS(rc))
2972 {
2973 char szMsg[256];
2974 size_t cch;
2975 cch = RTStrPrintf(szMsg, sizeof(szMsg),
2976 "TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n",
2977 RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain));
2978 RTFileWrite(hFile, szMsg, cch, NULL);
2979 RTFileClose(hFile);
2980 }
2981 }
2982 }
2983
2984 return pTime;
2985}
2986
2987
2988/**
2989 * Pauses all clocks except TMCLOCK_REAL.
2990 *
2991 * @returns VBox status code, all errors are asserted.
2992 * @param pVM The cross context VM structure.
2993 * @param pVCpu The cross context virtual CPU structure.
2994 * @thread EMT corresponding to Pointer to the VMCPU.
2995 */
2996VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
2997{
2998 VMCPU_ASSERT_EMT(pVCpu);
2999
3000 /*
3001 * The shared virtual clock (includes virtual sync which is tied to it).
3002 */
3003 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
3004 int rc = tmVirtualPauseLocked(pVM);
3005 TM_UNLOCK_TIMERS(pVM);
3006 if (RT_FAILURE(rc))
3007 return rc;
3008
3009 /*
3010 * Pause the TSC last since it is normally linked to the virtual
3011 * sync clock, so the above code may actually stop both clocks.
3012 */
3013 if (!pVM->tm.s.fTSCTiedToExecution)
3014 {
3015 TM_LOCK_TIMERS(pVM); /* Exploit the timer lock for synchronization. */
3016 rc = tmCpuTickPauseLocked(pVM, pVCpu);
3017 TM_UNLOCK_TIMERS(pVM);
3018 if (RT_FAILURE(rc))
3019 return rc;
3020 }
3021
3022#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3023 /*
3024 * Update cNsTotal.
3025 */
3026 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
3027 pVCpu->tm.s.cNsTotal = RTTimeNanoTS() - pVCpu->tm.s.u64NsTsStartTotal;
3028 pVCpu->tm.s.cNsOther = pVCpu->tm.s.cNsTotal - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
3029 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
3030#endif
3031
3032 return VINF_SUCCESS;
3033}
3034
3035
3036/**
3037 * Resumes all clocks except TMCLOCK_REAL.
3038 *
3039 * @returns VBox status code, all errors are asserted.
3040 * @param pVM The cross context VM structure.
3041 * @param pVCpu The cross context virtual CPU structure.
3042 * @thread EMT corresponding to Pointer to the VMCPU.
3043 */
3044VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
3045{
3046 VMCPU_ASSERT_EMT(pVCpu);
3047 int rc;
3048
3049#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3050 /*
3051 * Set u64NsTsStartTotal. There is no need to back this out if either of
3052 * the two calls below fail.
3053 */
3054 pVCpu->tm.s.u64NsTsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.cNsTotal;
3055#endif
3056
3057 /*
3058 * Resume the TSC first since it is normally linked to the virtual sync
3059 * clock, so it may actually not be resumed until we've executed the code
3060 * below.
3061 */
3062 if (!pVM->tm.s.fTSCTiedToExecution)
3063 {
3064 TM_LOCK_TIMERS(pVM); /* Exploit the timer lock for synchronization. */
3065 rc = tmCpuTickResumeLocked(pVM, pVCpu);
3066 TM_UNLOCK_TIMERS(pVM);
3067 if (RT_FAILURE(rc))
3068 return rc;
3069 }
3070
3071 /*
3072 * The shared virtual clock (includes virtual sync which is tied to it).
3073 */
3074 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
3075 rc = tmVirtualResumeLocked(pVM);
3076 TM_UNLOCK_TIMERS(pVM);
3077
3078 return rc;
3079}
3080
3081
3082/**
3083 * Sets the warp drive percent of the virtual time.
3084 *
3085 * @returns VBox status code.
3086 * @param pUVM The user mode VM structure.
3087 * @param u32Percent The new percentage. 100 means normal operation.
3088 */
3089VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
3090{
3091 return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent);
3092}
3093
3094
3095/**
3096 * EMT worker for TMR3SetWarpDrive.
3097 *
3098 * @returns VBox status code.
3099 * @param pUVM The user mode VM handle.
3100 * @param u32Percent See TMR3SetWarpDrive().
3101 * @internal
3102 */
3103static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
3104{
3105 PVM pVM = pUVM->pVM;
3106 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3107 PVMCPU pVCpu = VMMGetCpu(pVM);
3108
3109 /*
3110 * Validate it.
3111 */
3112 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
3113 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
3114 VERR_INVALID_PARAMETER);
3115
3116/** @todo This isn't a feature specific to virtual time, move the variables to
3117 * TM level and make it affect TMR3UTCNow as well! */
3118
3119 /*
3120 * If the time is running we'll have to pause it before we can change
3121 * the warp drive settings.
3122 */
3123 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
3124 bool fPaused = !!pVM->tm.s.cVirtualTicking;
3125 if (fPaused) /** @todo this isn't really working, but wtf. */
3126 TMR3NotifySuspend(pVM, pVCpu);
3127
3128 /** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */
3129 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
3130 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
3131 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
3132 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
3133
3134 if (fPaused)
3135 TMR3NotifyResume(pVM, pVCpu);
3136 TM_UNLOCK_TIMERS(pVM);
3137 return VINF_SUCCESS;
3138}
3139
3140
3141/**
3142 * Gets the current TMCLOCK_VIRTUAL time without checking
3143 * timers or anything.
3144 *
3145 * @returns The timestamp.
3146 * @param pUVM The user mode VM structure.
3147 *
3148 * @remarks See TMVirtualGetNoCheck.
3149 */
3150VMMR3DECL(uint64_t) TMR3TimeVirtGet(PUVM pUVM)
3151{
3152 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3153 PVM pVM = pUVM->pVM;
3154 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3155 return TMVirtualGetNoCheck(pVM);
3156}
3157
3158
3159/**
3160 * Gets the current TMCLOCK_VIRTUAL time in milliseconds without checking
3161 * timers or anything.
3162 *
3163 * @returns The timestamp in milliseconds.
3164 * @param pUVM The user mode VM structure.
3165 *
3166 * @remarks See TMVirtualGetNoCheck.
3167 */
3168VMMR3DECL(uint64_t) TMR3TimeVirtGetMilli(PUVM pUVM)
3169{
3170 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3171 PVM pVM = pUVM->pVM;
3172 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3173 return TMVirtualToMilli(pVM, TMVirtualGetNoCheck(pVM));
3174}
3175
3176
3177/**
3178 * Gets the current TMCLOCK_VIRTUAL time in microseconds without checking
3179 * timers or anything.
3180 *
3181 * @returns The timestamp in microseconds.
3182 * @param pUVM The user mode VM structure.
3183 *
3184 * @remarks See TMVirtualGetNoCheck.
3185 */
3186VMMR3DECL(uint64_t) TMR3TimeVirtGetMicro(PUVM pUVM)
3187{
3188 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3189 PVM pVM = pUVM->pVM;
3190 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3191 return TMVirtualToMicro(pVM, TMVirtualGetNoCheck(pVM));
3192}
3193
3194
3195/**
3196 * Gets the current TMCLOCK_VIRTUAL time in nanoseconds without checking
3197 * timers or anything.
3198 *
3199 * @returns The timestamp in nanoseconds.
3200 * @param pUVM The user mode VM structure.
3201 *
3202 * @remarks See TMVirtualGetNoCheck.
3203 */
3204VMMR3DECL(uint64_t) TMR3TimeVirtGetNano(PUVM pUVM)
3205{
3206 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX);
3207 PVM pVM = pUVM->pVM;
3208 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX);
3209 return TMVirtualToNano(pVM, TMVirtualGetNoCheck(pVM));
3210}
3211
3212
3213/**
3214 * Gets the current warp drive percent.
3215 *
3216 * @returns The warp drive percent.
3217 * @param pUVM The user mode VM structure.
3218 */
3219VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM)
3220{
3221 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX);
3222 PVM pVM = pUVM->pVM;
3223 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
3224 return pVM->tm.s.u32VirtualWarpDrivePercentage;
3225}
3226
3227
3228/**
3229 * Gets the performance information for one virtual CPU as seen by the VMM.
3230 *
3231 * The returned times covers the period where the VM is running and will be
3232 * reset when restoring a previous VM state (at least for the time being).
3233 *
3234 * @retval VINF_SUCCESS on success.
3235 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
3236 * @retval VERR_INVALID_STATE if the VM handle is bad.
3237 * @retval VERR_INVALID_CPU_ID if idCpu is out of range.
3238 *
3239 * @param pVM The cross context VM structure.
3240 * @param idCpu The ID of the virtual CPU which times to get.
3241 * @param pcNsTotal Where to store the total run time (nano seconds) of
3242 * the CPU, i.e. the sum of the three other returns.
3243 * Optional.
3244 * @param pcNsExecuting Where to store the time (nano seconds) spent
3245 * executing guest code. Optional.
3246 * @param pcNsHalted Where to store the time (nano seconds) spent
3247 * halted. Optional
3248 * @param pcNsOther Where to store the time (nano seconds) spent
3249 * preempted by the host scheduler, on virtualization
3250 * overhead and on other tasks.
3251 */
3252VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
3253 uint64_t *pcNsHalted, uint64_t *pcNsOther)
3254{
3255 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
3256 AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
3257
3258#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3259 /*
3260 * Get a stable result set.
3261 * This should be way quicker than an EMT request.
3262 */
3263 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3264 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3265 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
3266 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3267 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3268 uint64_t cNsOther = pVCpu->tm.s.cNsOther;
3269 while ( (uTimesGen & 1) /* update in progress */
3270 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
3271 {
3272 RTThreadYield();
3273 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3274 cNsTotal = pVCpu->tm.s.cNsTotal;
3275 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3276 cNsHalted = pVCpu->tm.s.cNsHalted;
3277 cNsOther = pVCpu->tm.s.cNsOther;
3278 }
3279
3280 /*
3281 * Fill in the return values.
3282 */
3283 if (pcNsTotal)
3284 *pcNsTotal = cNsTotal;
3285 if (pcNsExecuting)
3286 *pcNsExecuting = cNsExecuting;
3287 if (pcNsHalted)
3288 *pcNsHalted = cNsHalted;
3289 if (pcNsOther)
3290 *pcNsOther = cNsOther;
3291
3292 return VINF_SUCCESS;
3293
3294#else
3295 return VERR_NOT_IMPLEMENTED;
3296#endif
3297}
3298
3299
3300/**
3301 * Gets the performance information for one virtual CPU as seen by the VMM in
3302 * percents.
3303 *
3304 * The returned times covers the period where the VM is running and will be
3305 * reset when restoring a previous VM state (at least for the time being).
3306 *
3307 * @retval VINF_SUCCESS on success.
3308 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
3309 * @retval VERR_INVALID_VM_HANDLE if the VM handle is bad.
3310 * @retval VERR_INVALID_CPU_ID if idCpu is out of range.
3311 *
3312 * @param pUVM The usermode VM structure.
3313 * @param idCpu The ID of the virtual CPU which times to get.
3314 * @param pcMsInterval Where to store the interval of the percentages in
3315 * milliseconds. Optional.
3316 * @param pcPctExecuting Where to return the percentage of time spent
3317 * executing guest code. Optional.
3318 * @param pcPctHalted Where to return the percentage of time spent halted.
3319 * Optional
3320 * @param pcPctOther Where to return the percentage of time spent
3321 * preempted by the host scheduler, on virtualization
3322 * overhead and on other tasks.
3323 */
3324VMMR3DECL(int) TMR3GetCpuLoadPercents(PUVM pUVM, VMCPUID idCpu, uint64_t *pcMsInterval, uint8_t *pcPctExecuting,
3325 uint8_t *pcPctHalted, uint8_t *pcPctOther)
3326{
3327 UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE);
3328 PVM pVM = pUVM->pVM;
3329 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3330 AssertReturn(idCpu == VMCPUID_ALL || idCpu < pVM->cCpus, VERR_INVALID_CPU_ID);
3331
3332#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3333 TMCPULOADSTATE volatile *pState;
3334 if (idCpu == VMCPUID_ALL)
3335 pState = &pVM->tm.s.CpuLoad;
3336 else
3337 pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
3338
3339 if (pcMsInterval)
3340 *pcMsInterval = RT_MS_1SEC;
3341 if (pcPctExecuting)
3342 *pcPctExecuting = pState->cPctExecuting;
3343 if (pcPctHalted)
3344 *pcPctHalted = pState->cPctHalted;
3345 if (pcPctOther)
3346 *pcPctOther = pState->cPctOther;
3347
3348 return VINF_SUCCESS;
3349
3350#else
3351 RT_NOREF(pcMsInterval, pcPctExecuting, pcPctHalted, pcPctOther);
3352 return VERR_NOT_IMPLEMENTED;
3353#endif
3354}
3355
3356#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3357
3358/**
3359 * Helper for tmR3CpuLoadTimer.
3360 * @returns
3361 * @param pState The state to update.
3362 * @param cNsTotal Total time.
3363 * @param cNsExecuting Time executing.
3364 * @param cNsHalted Time halted.
3365 */
3366DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState, uint64_t cNsTotal, uint64_t cNsExecuting, uint64_t cNsHalted)
3367{
3368 /* Calc & update deltas */
3369 uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
3370 pState->cNsPrevTotal = cNsTotal;
3371
3372 uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
3373 pState->cNsPrevExecuting = cNsExecuting;
3374
3375 uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
3376 pState->cNsPrevHalted = cNsHalted;
3377
3378 /* Calc pcts. */
3379 uint8_t cPctExecuting, cPctHalted, cPctOther;
3380 if (!cNsTotalDelta)
3381 {
3382 cPctExecuting = 0;
3383 cPctHalted = 100;
3384 cPctOther = 0;
3385 }
3386 else if (cNsTotalDelta < UINT64_MAX / 4)
3387 {
3388 cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
3389 cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
3390 cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
3391 }
3392 else
3393 {
3394 cPctExecuting = 0;
3395 cPctHalted = 100;
3396 cPctOther = 0;
3397 }
3398
3399 /* Update percentages: */
3400 size_t idxHistory = pState->idxHistory + 1;
3401 if (idxHistory >= RT_ELEMENTS(pState->aHistory))
3402 idxHistory = 0;
3403
3404 pState->cPctExecuting = cPctExecuting;
3405 pState->cPctHalted = cPctHalted;
3406 pState->cPctOther = cPctOther;
3407
3408 pState->aHistory[idxHistory].cPctExecuting = cPctExecuting;
3409 pState->aHistory[idxHistory].cPctHalted = cPctHalted;
3410 pState->aHistory[idxHistory].cPctOther = cPctOther;
3411
3412 pState->idxHistory = (uint16_t)idxHistory;
3413 if (pState->cHistoryEntries < RT_ELEMENTS(pState->aHistory))
3414 pState->cHistoryEntries++;
3415}
3416
3417
3418/**
3419 * Timer callback that calculates the CPU load since the last time it was
3420 * called.
3421 *
3422 * @param pVM The cross context VM structure.
3423 * @param pTimer The timer.
3424 * @param pvUser NULL, unused.
3425 */
3426static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser)
3427{
3428 /*
3429 * Re-arm the timer first.
3430 */
3431 int rc = TMTimerSetMillies(pTimer, 1000);
3432 AssertLogRelRC(rc);
3433 NOREF(pvUser);
3434
3435 /*
3436 * Update the values for each CPU.
3437 */
3438 uint64_t cNsTotalAll = 0;
3439 uint64_t cNsExecutingAll = 0;
3440 uint64_t cNsHaltedAll = 0;
3441 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3442 {
3443 PVMCPU pVCpu = pVM->apCpusR3[iCpu];
3444
3445 /* Try get a stable data set. */
3446 uint32_t cTries = 3;
3447 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3448 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
3449 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3450 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3451 while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
3452 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
3453 {
3454 if (!--cTries)
3455 break;
3456 ASMNopPause();
3457 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3458 cNsTotal = pVCpu->tm.s.cNsTotal;
3459 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3460 cNsHalted = pVCpu->tm.s.cNsHalted;
3461 }
3462
3463 /* Totals */
3464 cNsTotalAll += cNsTotal;
3465 cNsExecutingAll += cNsExecuting;
3466 cNsHaltedAll += cNsHalted;
3467
3468 /* Calc the PCTs and update the state. */
3469 tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
3470 }
3471
3472 /*
3473 * Update the value for all the CPUs.
3474 */
3475 tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
3476
3477}
3478
3479#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
3480
3481
3482/**
3483 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3484 * Worker for TMR3CpuTickParavirtEnable}
3485 */
3486static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3487{
3488 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData);
3489 Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET);
3490 Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API); /** @todo figure out NEM/win and paravirt */
3491 Assert(tmR3HasFixedTSC(pVM));
3492
3493 /*
3494 * The return value of TMCpuTickGet() and the guest's TSC value for each
3495 * CPU must remain constant across the TM TSC mode-switch. Thus we have
3496 * the following equation (new/old signifies the new/old tsc modes):
3497 * uNewTsc = uOldTsc
3498 *
3499 * Where (see tmCpuTickGetInternal):
3500 * uOldTsc = uRawOldTsc - offTscRawSrcOld
3501 * uNewTsc = uRawNewTsc - offTscRawSrcNew
3502 *
3503 * Solve it for offTscRawSrcNew without replacing uOldTsc:
3504 * uRawNewTsc - offTscRawSrcNew = uOldTsc
3505 * => -offTscRawSrcNew = uOldTsc - uRawNewTsc
3506 * => offTscRawSrcNew = uRawNewTsc - uOldTsc
3507 */
3508 uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3509 uint64_t uRawNewTsc = SUPReadTsc();
3510 uint32_t cCpus = pVM->cCpus;
3511 for (uint32_t i = 0; i < cCpus; i++)
3512 {
3513 PVMCPU pVCpu = pVM->apCpusR3[i];
3514 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3515 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3516 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3517 }
3518
3519 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3520 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3521 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
3522 return VINF_SUCCESS;
3523}
3524
3525
3526/**
3527 * Notify TM that the guest has enabled usage of a paravirtualized TSC.
3528 *
3529 * This may perform a EMT rendezvous and change the TSC virtualization mode.
3530 *
3531 * @returns VBox status code.
3532 * @param pVM The cross context VM structure.
3533 */
3534VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM)
3535{
3536 int rc = VINF_SUCCESS;
3537 if (pVM->tm.s.fTSCModeSwitchAllowed)
3538 {
3539 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
3540 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL);
3541 }
3542 else
3543 LogRel(("TM: Host/VM is not suitable for using TSC mode '%s', request to change TSC mode ignored\n",
3544 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3545 pVM->tm.s.fParavirtTscEnabled = true;
3546 return rc;
3547}
3548
3549
3550/**
3551 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3552 * Worker for TMR3CpuTickParavirtDisable}
3553 */
3554static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3555{
3556 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt);
3557 Assert( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3558 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode);
3559 RT_NOREF1(pvData);
3560
3561 /*
3562 * See tmR3CpuTickParavirtEnable for an explanation of the conversion math.
3563 */
3564 uint64_t uRawOldTsc = SUPReadTsc();
3565 uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3566 uint32_t cCpus = pVM->cCpus;
3567 for (uint32_t i = 0; i < cCpus; i++)
3568 {
3569 PVMCPU pVCpu = pVM->apCpusR3[i];
3570 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3571 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3572 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3573
3574 /* Update the last-seen tick here as we havent't been updating it (as we don't
3575 need it) while in pure TSC-offsetting mode. */
3576 pVCpu->tm.s.u64TSCLastSeen = uOldTsc;
3577 }
3578
3579 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3580 tmR3GetTSCModeNameEx(pVM->tm.s.enmOriginalTSCMode)));
3581 pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode;
3582 return VINF_SUCCESS;
3583}
3584
3585
3586/**
3587 * Notify TM that the guest has disabled usage of a paravirtualized TSC.
3588 *
3589 * If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will
3590 * perform an EMT rendezvous to revert those changes.
3591 *
3592 * @returns VBox status code.
3593 * @param pVM The cross context VM structure.
3594 */
3595VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM)
3596{
3597 int rc = VINF_SUCCESS;
3598 if ( pVM->tm.s.fTSCModeSwitchAllowed
3599 && pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3600 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
3601 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL);
3602 pVM->tm.s.fParavirtTscEnabled = false;
3603 return rc;
3604}
3605
3606
3607/**
3608 * Check whether the guest can be presented a fixed rate & monotonic TSC.
3609 *
3610 * @returns true if TSC is stable, false otherwise.
3611 * @param pVM The cross context VM structure.
3612 * @param fWithParavirtEnabled Whether it's fixed & monotonic when
3613 * paravirt. TSC is enabled or not.
3614 *
3615 * @remarks Must be called only after TMR3InitFinalize().
3616 */
3617VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled)
3618{
3619 /** @todo figure out what exactly we want here later. */
3620 NOREF(fWithParavirtEnabled);
3621 return ( tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */
3622 && g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC); /* GIP thinks it's monotonic. */
3623}
3624
3625
3626/**
3627 * Gets the 5 char clock name for the info tables.
3628 *
3629 * @returns The name.
3630 * @param enmClock The clock.
3631 */
3632DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock)
3633{
3634 switch (enmClock)
3635 {
3636 case TMCLOCK_REAL: return "Real ";
3637 case TMCLOCK_VIRTUAL: return "Virt ";
3638 case TMCLOCK_VIRTUAL_SYNC: return "VrSy ";
3639 case TMCLOCK_TSC: return "TSC ";
3640 default: return "Bad ";
3641 }
3642}
3643
3644
3645/**
3646 * Display all timers.
3647 *
3648 * @param pVM The cross context VM structure.
3649 * @param pHlp The info helpers.
3650 * @param pszArgs Arguments, ignored.
3651 */
3652static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3653{
3654 NOREF(pszArgs);
3655 pHlp->pfnPrintf(pHlp,
3656 "Timers (pVM=%p)\n"
3657 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3658 pVM,
3659 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3660 sizeof(int32_t) * 2, "offNext ",
3661 sizeof(int32_t) * 2, "offPrev ",
3662 sizeof(int32_t) * 2, "offSched ",
3663 "Time",
3664 "Expire",
3665 "HzHint",
3666 "State");
3667 TM_LOCK_TIMERS(pVM);
3668 for (PTMTIMERR3 pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
3669 {
3670 pHlp->pfnPrintf(pHlp,
3671 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3672 pTimer,
3673 pTimer->offNext,
3674 pTimer->offPrev,
3675 pTimer->offScheduleNext,
3676 tmR3Get5CharClockName(pTimer->enmClock),
3677 TMTimerGet(pTimer),
3678 pTimer->u64Expire,
3679 pTimer->uHzHint,
3680 tmTimerState(pTimer->enmState),
3681 pTimer->pszDesc);
3682 }
3683 TM_UNLOCK_TIMERS(pVM);
3684}
3685
3686
3687/**
3688 * Display all active timers.
3689 *
3690 * @param pVM The cross context VM structure.
3691 * @param pHlp The info helpers.
3692 * @param pszArgs Arguments, ignored.
3693 */
3694static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3695{
3696 NOREF(pszArgs);
3697 pHlp->pfnPrintf(pHlp,
3698 "Active Timers (pVM=%p)\n"
3699 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3700 pVM,
3701 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3702 sizeof(int32_t) * 2, "offNext ",
3703 sizeof(int32_t) * 2, "offPrev ",
3704 sizeof(int32_t) * 2, "offSched ",
3705 "Time",
3706 "Expire",
3707 "HzHint",
3708 "State");
3709 for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
3710 {
3711 TM_LOCK_TIMERS(pVM);
3712 for (PTMTIMERR3 pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
3713 pTimer;
3714 pTimer = TMTIMER_GET_NEXT(pTimer))
3715 {
3716 pHlp->pfnPrintf(pHlp,
3717 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3718 pTimer,
3719 pTimer->offNext,
3720 pTimer->offPrev,
3721 pTimer->offScheduleNext,
3722 tmR3Get5CharClockName(pTimer->enmClock),
3723 TMTimerGet(pTimer),
3724 pTimer->u64Expire,
3725 pTimer->uHzHint,
3726 tmTimerState(pTimer->enmState),
3727 pTimer->pszDesc);
3728 }
3729 TM_UNLOCK_TIMERS(pVM);
3730 }
3731}
3732
3733
3734/**
3735 * Display all clocks.
3736 *
3737 * @param pVM The cross context VM structure.
3738 * @param pHlp The info helpers.
3739 * @param pszArgs Arguments, ignored.
3740 */
3741static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3742{
3743 NOREF(pszArgs);
3744
3745 /*
3746 * Read the times first to avoid more than necessary time variation.
3747 */
3748 const uint64_t u64Virtual = TMVirtualGet(pVM);
3749 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
3750 const uint64_t u64Real = TMRealGet(pVM);
3751
3752 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3753 {
3754 PVMCPU pVCpu = pVM->apCpusR3[i];
3755 uint64_t u64TSC = TMCpuTickGet(pVCpu);
3756
3757 /*
3758 * TSC
3759 */
3760 pHlp->pfnPrintf(pHlp,
3761 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized",
3762 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
3763 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused");
3764 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
3765 {
3766 pHlp->pfnPrintf(pHlp, " - real tsc offset");
3767 if (pVCpu->tm.s.offTSCRawSrc)
3768 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
3769 }
3770 else if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API)
3771 pHlp->pfnPrintf(pHlp, " - native api");
3772 else
3773 pHlp->pfnPrintf(pHlp, " - virtual clock");
3774 pHlp->pfnPrintf(pHlp, "\n");
3775 }
3776
3777 /*
3778 * virtual
3779 */
3780 pHlp->pfnPrintf(pHlp,
3781 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
3782 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
3783 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
3784 if (pVM->tm.s.fVirtualWarpDrive)
3785 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
3786 pHlp->pfnPrintf(pHlp, "\n");
3787
3788 /*
3789 * virtual sync
3790 */
3791 pHlp->pfnPrintf(pHlp,
3792 "VirtSync: %18RU64 (%#016RX64) %s%s",
3793 u64VirtualSync, u64VirtualSync,
3794 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
3795 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
3796 if (pVM->tm.s.offVirtualSync)
3797 {
3798 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
3799 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
3800 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
3801 }
3802 pHlp->pfnPrintf(pHlp, "\n");
3803
3804 /*
3805 * real
3806 */
3807 pHlp->pfnPrintf(pHlp,
3808 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
3809 u64Real, u64Real, TMRealGetFreq(pVM));
3810}
3811
3812
3813/**
3814 * Helper for tmR3InfoCpuLoad that adjust @a uPct to the given graph width.
3815 */
3816DECLINLINE(size_t) tmR3InfoCpuLoadAdjustWidth(size_t uPct, size_t cchWidth)
3817{
3818 if (cchWidth != 100)
3819 uPct = (uPct + 0.5) * (cchWidth / 100.0);
3820 return uPct;
3821}
3822
3823
3824/**
3825 * @callback_method_impl{FNDBGFINFOARGVINT}
3826 */
3827static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs)
3828{
3829 char szTmp[1024];
3830
3831 /*
3832 * Parse arguments.
3833 */
3834 PTMCPULOADSTATE pState = &pVM->tm.s.CpuLoad;
3835 VMCPUID idCpu = 0;
3836 bool fAllCpus = true;
3837 bool fExpGraph = true;
3838 uint32_t cchWidth = 80;
3839 uint32_t cPeriods = RT_ELEMENTS(pState->aHistory);
3840 uint32_t cRows = 60;
3841
3842 static const RTGETOPTDEF s_aOptions[] =
3843 {
3844 { "all", 'a', RTGETOPT_REQ_NOTHING },
3845 { "cpu", 'c', RTGETOPT_REQ_UINT32 },
3846 { "periods", 'p', RTGETOPT_REQ_UINT32 },
3847 { "rows", 'r', RTGETOPT_REQ_UINT32 },
3848 { "uni", 'u', RTGETOPT_REQ_NOTHING },
3849 { "uniform", 'u', RTGETOPT_REQ_NOTHING },
3850 { "width", 'w', RTGETOPT_REQ_UINT32 },
3851 { "exp", 'x', RTGETOPT_REQ_NOTHING },
3852 { "exponential", 'x', RTGETOPT_REQ_NOTHING },
3853 };
3854
3855 RTGETOPTSTATE State;
3856 int rc = RTGetOptInit(&State, cArgs, papszArgs, s_aOptions, RT_ELEMENTS(s_aOptions), 0, 0 /*fFlags*/);
3857 AssertRC(rc);
3858
3859 RTGETOPTUNION ValueUnion;
3860 while ((rc = RTGetOpt(&State, &ValueUnion)) != 0)
3861 {
3862 switch (rc)
3863 {
3864 case 'a':
3865 pState = &pVM->apCpusR3[0]->tm.s.CpuLoad;
3866 idCpu = 0;
3867 fAllCpus = true;
3868 break;
3869 case 'c':
3870 if (ValueUnion.u32 < pVM->cCpus)
3871 {
3872 pState = &pVM->apCpusR3[ValueUnion.u32]->tm.s.CpuLoad;
3873 idCpu = ValueUnion.u32;
3874 }
3875 else
3876 {
3877 pState = &pVM->tm.s.CpuLoad;
3878 idCpu = VMCPUID_ALL;
3879 }
3880 fAllCpus = false;
3881 break;
3882 case 'p':
3883 cPeriods = RT_MIN(RT_MAX(ValueUnion.u32, 1), RT_ELEMENTS(pState->aHistory));
3884 break;
3885 case 'r':
3886 cRows = RT_MIN(RT_MAX(ValueUnion.u32, 5), RT_ELEMENTS(pState->aHistory));
3887 break;
3888 case 'w':
3889 cchWidth = RT_MIN(RT_MAX(ValueUnion.u32, 10), sizeof(szTmp) - 32);
3890 break;
3891 case 'x':
3892 fExpGraph = true;
3893 break;
3894 case 'u':
3895 fExpGraph = false;
3896 break;
3897 case 'h':
3898 pHlp->pfnPrintf(pHlp,
3899 "Usage: cpuload [parameters]\n"
3900 " all, -a\n"
3901 " Show statistics for all CPUs. (default)\n"
3902 " cpu=id, -c id\n"
3903 " Show statistics for the specified CPU ID. Show combined stats if out of range.\n"
3904 " periods=count, -p count\n"
3905 " Number of periods to show. Default: all\n"
3906 " rows=count, -r count\n"
3907 " Number of rows in the graphs. Default: 60\n"
3908 " width=count, -w count\n"
3909 " Core graph width in characters. Default: 80\n"
3910 " exp, exponential, -e\n"
3911 " Do 1:1 for more recent half / 30 seconds of the graph, combine the\n"
3912 " rest into increasinly larger chunks. Default.\n"
3913 " uniform, uni, -u\n"
3914 " Combine periods into rows in a uniform manner for the whole graph.\n");
3915 return;
3916 default:
3917 pHlp->pfnGetOptError(pHlp, rc, &ValueUnion, &State);
3918 return;
3919 }
3920 }
3921
3922 /*
3923 * Do the job.
3924 */
3925 for (;;)
3926 {
3927 uint32_t const cMaxPeriods = pState->cHistoryEntries;
3928 if (cPeriods > cMaxPeriods)
3929 cPeriods = cMaxPeriods;
3930 if (cPeriods > 0)
3931 {
3932 if (fAllCpus)
3933 {
3934 if (idCpu > 0)
3935 pHlp->pfnPrintf(pHlp, "\n");
3936 pHlp->pfnPrintf(pHlp, " CPU load for virtual CPU %#04x\n"
3937 " -------------------------------\n", idCpu);
3938 }
3939
3940 /*
3941 * Figure number of periods per chunk. We can either do this in a linear
3942 * fashion or a exponential fashion that compresses old history more.
3943 */
3944 size_t cPerRowDecrement = 0;
3945 size_t cPeriodsPerRow = 1;
3946 if (cRows < cPeriods)
3947 {
3948 if (!fExpGraph)
3949 cPeriodsPerRow = (cPeriods + cRows / 2) / cRows;
3950 else
3951 {
3952 /* The last 30 seconds or half of the rows are 1:1, the other part
3953 is in increasing period counts. Code is a little simple but seems
3954 to do the job most of the time, which is all I have time now. */
3955 size_t cPeriodsOneToOne = RT_MIN(30, cRows / 2);
3956 size_t cRestRows = cRows - cPeriodsOneToOne;
3957 size_t cRestPeriods = cPeriods - cPeriodsOneToOne;
3958
3959 size_t cPeriodsInWindow = 0;
3960 for (cPeriodsPerRow = 0; cPeriodsPerRow <= cRestRows && cPeriodsInWindow < cRestPeriods; cPeriodsPerRow++)
3961 cPeriodsInWindow += cPeriodsPerRow + 1;
3962
3963 size_t iLower = 1;
3964 while (cPeriodsInWindow < cRestPeriods)
3965 {
3966 cPeriodsPerRow++;
3967 cPeriodsInWindow += cPeriodsPerRow;
3968 cPeriodsInWindow -= iLower;
3969 iLower++;
3970 }
3971
3972 cPerRowDecrement = 1;
3973 }
3974 }
3975
3976 /*
3977 * Do the work.
3978 */
3979 size_t cPctExecuting = 0;
3980 size_t cPctOther = 0;
3981 size_t cPeriodsAccumulated = 0;
3982
3983 size_t cRowsLeft = cRows;
3984 size_t iHistory = (pState->idxHistory - cPeriods) % RT_ELEMENTS(pState->aHistory);
3985 while (cPeriods-- > 0)
3986 {
3987 iHistory++;
3988 if (iHistory >= RT_ELEMENTS(pState->aHistory))
3989 iHistory = 0;
3990
3991 cPctExecuting += pState->aHistory[iHistory].cPctExecuting;
3992 cPctOther += pState->aHistory[iHistory].cPctOther;
3993 cPeriodsAccumulated += 1;
3994 if ( cPeriodsAccumulated >= cPeriodsPerRow
3995 || cPeriods < cRowsLeft)
3996 {
3997 /*
3998 * Format and output the line.
3999 */
4000 size_t offTmp = 0;
4001 size_t i = tmR3InfoCpuLoadAdjustWidth(cPctExecuting / cPeriodsAccumulated, cchWidth);
4002 while (i-- > 0)
4003 szTmp[offTmp++] = '#';
4004 i = tmR3InfoCpuLoadAdjustWidth(cPctOther / cPeriodsAccumulated, cchWidth);
4005 while (i-- > 0)
4006 szTmp[offTmp++] = 'O';
4007 szTmp[offTmp] = '\0';
4008
4009 cRowsLeft--;
4010 pHlp->pfnPrintf(pHlp, "%3zus: %s\n", cPeriods + cPeriodsAccumulated / 2, szTmp);
4011
4012 /* Reset the state: */
4013 cPctExecuting = 0;
4014 cPctOther = 0;
4015 cPeriodsAccumulated = 0;
4016 if (cPeriodsPerRow > cPerRowDecrement)
4017 cPeriodsPerRow -= cPerRowDecrement;
4018 }
4019 }
4020 pHlp->pfnPrintf(pHlp, " (#=guest, O=VMM overhead) idCpu=%#x\n", idCpu);
4021
4022 }
4023 else
4024 pHlp->pfnPrintf(pHlp, "No load data.\n");
4025
4026 /*
4027 * Next CPU if we're display all.
4028 */
4029 if (!fAllCpus)
4030 break;
4031 idCpu++;
4032 if (idCpu >= pVM->cCpus)
4033 break;
4034 pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad;
4035 }
4036
4037}
4038
4039
4040/**
4041 * Gets the descriptive TM TSC mode name given the enum value.
4042 *
4043 * @returns The name.
4044 * @param enmMode The mode to name.
4045 */
4046static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode)
4047{
4048 switch (enmMode)
4049 {
4050 case TMTSCMODE_REAL_TSC_OFFSET: return "RealTscOffset";
4051 case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTscEmulated";
4052 case TMTSCMODE_DYNAMIC: return "Dynamic";
4053 case TMTSCMODE_NATIVE_API: return "NativeApi";
4054 default: return "???";
4055 }
4056}
4057
4058
4059/**
4060 * Gets the descriptive TM TSC mode name.
4061 *
4062 * @returns The name.
4063 * @param pVM The cross context VM structure.
4064 */
4065static const char *tmR3GetTSCModeName(PVM pVM)
4066{
4067 Assert(pVM);
4068 return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode);
4069}
4070
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette