VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/TM.cpp@ 36054

Last change on this file since 36054 was 35346, checked in by vboxsync, 14 years ago

VMM reorg: Moving the public include files from include/VBox to include/VBox/vmm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 129.8 KB
Line 
1/* $Id: TM.cpp 35346 2010-12-27 16:13:13Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_tm TM - The Time Manager
19 *
20 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
21 * device and drivers.
22 *
23 * @see grp_tm
24 *
25 *
26 * @section sec_tm_clocks Clocks
27 *
28 * There are currently 4 clocks:
29 * - Virtual (guest).
30 * - Synchronous virtual (guest).
31 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
32 * function of the virtual clock.
33 * - Real (host). This is only used for display updates atm.
34 *
35 * The most important clocks are the three first ones and of these the second is
36 * the most interesting.
37 *
38 *
39 * The synchronous virtual clock is tied to the virtual clock except that it
40 * will take into account timer delivery lag caused by host scheduling. It will
41 * normally never advance beyond the head timer, and when lagging too far behind
42 * it will gradually speed up to catch up with the virtual clock. All devices
43 * implementing time sources accessible to and used by the guest is using this
44 * clock (for timers and other things). This ensures consistency between the
45 * time sources.
46 *
47 * The virtual clock is implemented as an offset to a monotonic, high
48 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
49 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
50 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
51 * a fairly high res clock that works in all contexts and on all hosts. The
52 * virtual clock is paused when the VM isn't in the running state.
53 *
54 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
55 * virtual clock, where the frequency defaults to the host cpu frequency (as we
56 * measure it). In this mode it is possible to configure the frequency. Another
57 * (non-default) option is to use the raw unmodified host TSC values. And yet
58 * another, to tie it to time spent executing guest code. All these things are
59 * configurable should non-default behavior be desirable.
60 *
61 * The real clock is a monotonic clock (when available) with relatively low
62 * resolution, though this a bit host specific. Note that we're currently not
63 * servicing timers using the real clock when the VM is not running, this is
64 * simply because it has not been needed yet therefore not implemented.
65 *
66 *
67 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
68 *
69 * Guest time syncing is primarily taken care of by the VMM device. The
70 * principle is very simple, the guest additions periodically asks the VMM
71 * device what the current UTC time is and makes adjustments accordingly.
72 *
73 * A complicating factor is that the synchronous virtual clock might be doing
74 * catchups and the guest perception is currently a little bit behind the world
75 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
76 * at a slightly higher rate. Adjusting the guest clock to the current wall
77 * time in the real world would be a bad idea then because the guest will be
78 * advancing too fast and run ahead of world time (if the catchup works out).
79 * To solve this problem TM provides the VMM device with an UTC time source that
80 * gets adjusted with the current lag, so that when the guest eventually catches
81 * up the lag it will be showing correct real world time.
82 *
83 *
84 * @section sec_tm_timers Timers
85 *
86 * The timers can use any of the TM clocks described in the previous section.
87 * Each clock has its own scheduling facility, or timer queue if you like.
88 * There are a few factors which makes it a bit complex. First, there is the
89 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
90 * is the timer thread that periodically checks whether any timers has expired
91 * without EMT noticing. On the API level, all but the create and save APIs
92 * must be multithreaded. EMT will always run the timers.
93 *
94 * The design is using a doubly linked list of active timers which is ordered
95 * by expire date. This list is only modified by the EMT thread. Updates to
96 * the list are batched in a singly linked list, which is then processed by the
97 * EMT thread at the first opportunity (immediately, next time EMT modifies a
98 * timer on that clock, or next timer timeout). Both lists are offset based and
99 * all the elements are therefore allocated from the hyper heap.
100 *
101 * For figuring out when there is need to schedule and run timers TM will:
102 * - Poll whenever somebody queries the virtual clock.
103 * - Poll the virtual clocks from the EM and REM loops.
104 * - Poll the virtual clocks from trap exit path.
105 * - Poll the virtual clocks and calculate first timeout from the halt loop.
106 * - Employ a thread which periodically (100Hz) polls all the timer queues.
107 *
108 *
109 * @image html TMTIMER-Statechart-Diagram.gif
110 *
111 * @section sec_tm_timer Logging
112 *
113 * Level 2: Logs a most of the timer state transitions and queue servicing.
114 * Level 3: Logs a few oddments.
115 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
116 *
117 */
118
119/*******************************************************************************
120* Header Files *
121*******************************************************************************/
122#define LOG_GROUP LOG_GROUP_TM
123#include <VBox/vmm/tm.h>
124#include <VBox/vmm/vmm.h>
125#include <VBox/vmm/mm.h>
126#include <VBox/vmm/ssm.h>
127#include <VBox/vmm/dbgf.h>
128#include <VBox/vmm/rem.h>
129#include <VBox/vmm/pdmapi.h>
130#include <VBox/vmm/iom.h>
131#include "TMInternal.h"
132#include <VBox/vmm/vm.h>
133
134#include <VBox/vmm/pdmdev.h>
135#include <VBox/param.h>
136#include <VBox/err.h>
137
138#include <VBox/log.h>
139#include <iprt/asm.h>
140#include <iprt/asm-math.h>
141#include <iprt/asm-amd64-x86.h>
142#include <iprt/assert.h>
143#include <iprt/thread.h>
144#include <iprt/time.h>
145#include <iprt/timer.h>
146#include <iprt/semaphore.h>
147#include <iprt/string.h>
148#include <iprt/env.h>
149
150
151/*******************************************************************************
152* Defined Constants And Macros *
153*******************************************************************************/
154/** The current saved state version.*/
155#define TM_SAVED_STATE_VERSION 3
156
157
158/*******************************************************************************
159* Internal Functions *
160*******************************************************************************/
161static bool tmR3HasFixedTSC(PVM pVM);
162static uint64_t tmR3CalibrateTSC(PVM pVM);
163static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
164static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
165static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
166static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
167static void tmR3TimerQueueRunVirtualSync(PVM pVM);
168static DECLCALLBACK(int) tmR3SetWarpDrive(PVM pVM, uint32_t u32Percent);
169#ifndef VBOX_WITHOUT_NS_ACCOUNTING
170static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser);
171#endif
172static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
173static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
174static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175
176
177/**
178 * Initializes the TM.
179 *
180 * @returns VBox status code.
181 * @param pVM The VM to operate on.
182 */
183VMM_INT_DECL(int) TMR3Init(PVM pVM)
184{
185 LogFlow(("TMR3Init:\n"));
186
187 /*
188 * Assert alignment and sizes.
189 */
190 AssertCompileMemberAlignment(VM, tm.s, 32);
191 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
192 AssertCompileMemberAlignment(TM, TimerCritSect, 8);
193 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
194
195 /*
196 * Init the structure.
197 */
198 void *pv;
199 int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
200 AssertRCReturn(rc, rc);
201 pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
202 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pv);
203 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pv);
204
205 pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
206 pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
207 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
208 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
209 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
210 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
211 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
212 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
213 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
214 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
215
216
217 /*
218 * We directly use the GIP to calculate the virtual time. We map the
219 * the GIP into the guest context so we can do this calculation there
220 * as well and save costly world switches.
221 */
222 pVM->tm.s.pvGIPR3 = (void *)g_pSUPGlobalInfoPage;
223 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_INTERNAL_ERROR);
224 RTHCPHYS HCPhysGIP;
225 rc = SUPR3GipGetPhys(&HCPhysGIP);
226 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
227
228 RTGCPTR GCPtr;
229 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, PAGE_SIZE, "GIP", &GCPtr);
230 if (RT_FAILURE(rc))
231 {
232 AssertMsgFailed(("Failed to map GIP into GC, rc=%Rrc!\n", rc));
233 return rc;
234 }
235 pVM->tm.s.pvGIPRC = GCPtr;
236 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %RRv\n", HCPhysGIP, pVM->tm.s.pvGIPRC));
237 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
238
239 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
240 if ( g_pSUPGlobalInfoPage->u32Magic == SUPGLOBALINFOPAGE_MAGIC
241 && g_pSUPGlobalInfoPage->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
242 return VMSetError(pVM, VERR_INTERNAL_ERROR, RT_SRC_POS,
243 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
244 g_pSUPGlobalInfoPage->u32UpdateIntervalNS, g_pSUPGlobalInfoPage->u32UpdateHz);
245 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u\n", g_pSUPGlobalInfoPage->u32Mode,
246 g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC ? "SyncTSC"
247 : g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_ASYNC_TSC ? "AsyncTSC" : "Unknown",
248 g_pSUPGlobalInfoPage->u32UpdateHz));
249
250 /*
251 * Setup the VirtualGetRaw backend.
252 */
253 pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
254 pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBad;
255 pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
256 if (ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SSE2)
257 {
258 if (g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC)
259 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLFenceSync;
260 else
261 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLFenceAsync;
262 }
263 else
264 {
265 if (g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC)
266 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLegacySync;
267 else
268 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLegacyAsync;
269 }
270
271 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
272 pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
273 AssertReturn(pVM->tm.s.VirtualGetRawDataR0.pu64Prev, VERR_INTERNAL_ERROR);
274 /* The rest is done in TMR3InitFinalize since it's too early to call PDM. */
275
276 /*
277 * Init the locks.
278 */
279 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.TimerCritSect, RT_SRC_POS, "TM Timer Lock");
280 if (RT_FAILURE(rc))
281 return rc;
282 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
283 if (RT_FAILURE(rc))
284 return rc;
285
286 /*
287 * Get our CFGM node, create it if necessary.
288 */
289 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
290 if (!pCfgHandle)
291 {
292 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
293 AssertRCReturn(rc, rc);
294 }
295
296 /*
297 * Determine the TSC configuration and frequency.
298 */
299 /* mode */
300 /** @cfgm{/TM/TSCVirtualized,bool,true}
301 * Use a virtualize TSC, i.e. trap all TSC access. */
302 rc = CFGMR3QueryBool(pCfgHandle, "TSCVirtualized", &pVM->tm.s.fTSCVirtualized);
303 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
304 pVM->tm.s.fTSCVirtualized = true; /* trap rdtsc */
305 else if (RT_FAILURE(rc))
306 return VMSetError(pVM, rc, RT_SRC_POS,
307 N_("Configuration error: Failed to querying bool value \"UseRealTSC\""));
308
309 /* source */
310 /** @cfgm{/TM/UseRealTSC,bool,false}
311 * Use the real TSC as time source for the TSC instead of the synchronous
312 * virtual clock (false, default). */
313 rc = CFGMR3QueryBool(pCfgHandle, "UseRealTSC", &pVM->tm.s.fTSCUseRealTSC);
314 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
315 pVM->tm.s.fTSCUseRealTSC = false; /* use virtual time */
316 else if (RT_FAILURE(rc))
317 return VMSetError(pVM, rc, RT_SRC_POS,
318 N_("Configuration error: Failed to querying bool value \"UseRealTSC\""));
319 if (!pVM->tm.s.fTSCUseRealTSC)
320 pVM->tm.s.fTSCVirtualized = true;
321
322 /* TSC reliability */
323 /** @cfgm{/TM/MaybeUseOffsettedHostTSC,bool,detect}
324 * Whether the CPU has a fixed TSC rate and may be used in offsetted mode with
325 * VT-x/AMD-V execution. This is autodetected in a very restrictive way by
326 * default. */
327 rc = CFGMR3QueryBool(pCfgHandle, "MaybeUseOffsettedHostTSC", &pVM->tm.s.fMaybeUseOffsettedHostTSC);
328 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
329 {
330 if (!pVM->tm.s.fTSCUseRealTSC)
331 pVM->tm.s.fMaybeUseOffsettedHostTSC = tmR3HasFixedTSC(pVM);
332 else
333 pVM->tm.s.fMaybeUseOffsettedHostTSC = true;
334 }
335
336 /** @cfgm{TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
337 * The number of TSC ticks per second (i.e. the TSC frequency). This will
338 * override TSCUseRealTSC, TSCVirtualized and MaybeUseOffsettedHostTSC.
339 */
340 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
341 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
342 {
343 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC(pVM);
344 if ( !pVM->tm.s.fTSCUseRealTSC
345 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
346 {
347 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
348 pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
349 }
350 }
351 else if (RT_FAILURE(rc))
352 return VMSetError(pVM, rc, RT_SRC_POS,
353 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
354 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
355 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
356 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
357 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
358 pVM->tm.s.cTSCTicksPerSecond);
359 else
360 {
361 pVM->tm.s.fTSCUseRealTSC = pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
362 pVM->tm.s.fTSCVirtualized = true;
363 }
364
365 /** @cfgm{TM/TSCTiedToExecution, bool, false}
366 * Whether the TSC should be tied to execution. This will exclude most of the
367 * virtualization overhead, but will by default include the time spent in the
368 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
369 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
370 * be used avoided or used with great care. Note that this will only work right
371 * together with VT-x or AMD-V, and with a single virtual CPU. */
372 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
373 if (RT_FAILURE(rc))
374 return VMSetError(pVM, rc, RT_SRC_POS,
375 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
376 if (pVM->tm.s.fTSCTiedToExecution)
377 {
378 /* tied to execution, override all other settings. */
379 pVM->tm.s.fTSCVirtualized = true;
380 pVM->tm.s.fTSCUseRealTSC = true;
381 pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
382 }
383
384 /** @cfgm{TM/TSCNotTiedToHalt, bool, true}
385 * For overriding the default of TM/TSCTiedToExecution, i.e. set this to false
386 * to make the TSC freeze during HLT. */
387 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
388 if (RT_FAILURE(rc))
389 return VMSetError(pVM, rc, RT_SRC_POS,
390 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
391
392 /* setup and report */
393 if (pVM->tm.s.fTSCVirtualized)
394 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
395 else
396 CPUMR3SetCR4Feature(pVM, 0, ~X86_CR4_TSD);
397 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool\n"
398 "TM: fMaybeUseOffsettedHostTSC=%RTbool TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
399 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC,
400 pVM->tm.s.fMaybeUseOffsettedHostTSC, pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
401
402 /*
403 * Configure the timer synchronous virtual time.
404 */
405 /** @cfgm{TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
406 * Scheduling slack when processing timers. */
407 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
408 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
409 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
410 else if (RT_FAILURE(rc))
411 return VMSetError(pVM, rc, RT_SRC_POS,
412 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
413
414 /** @cfgm{TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
415 * When to stop a catch-up, considering it successful. */
416 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
417 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
418 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
419 else if (RT_FAILURE(rc))
420 return VMSetError(pVM, rc, RT_SRC_POS,
421 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
422
423 /** @cfgm{TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
424 * When to give up a catch-up attempt. */
425 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
426 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
427 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
428 else if (RT_FAILURE(rc))
429 return VMSetError(pVM, rc, RT_SRC_POS,
430 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
431
432
433 /** @cfgm{TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
434 * The catch-up percent for a given period. */
435 /** @cfgm{TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX,
436 * The catch-up period threshold, or if you like, when a period starts. */
437#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
438 do \
439 { \
440 uint64_t u64; \
441 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
442 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
443 u64 = UINT64_C(DefStart); \
444 else if (RT_FAILURE(rc)) \
445 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
446 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
447 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
448 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
449 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
450 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
451 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
452 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
453 else if (RT_FAILURE(rc)) \
454 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
455 } while (0)
456 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
457 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
458 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
459 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
460 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
461 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
462 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
463 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
464 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
465 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
466 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
467 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
468#undef TM_CFG_PERIOD
469
470 /*
471 * Configure real world time (UTC).
472 */
473 /** @cfgm{TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
474 * The UTC offset. This is used to put the guest back or forwards in time. */
475 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
476 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
477 pVM->tm.s.offUTC = 0; /* ns */
478 else if (RT_FAILURE(rc))
479 return VMSetError(pVM, rc, RT_SRC_POS,
480 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
481
482 /*
483 * Setup the warp drive.
484 */
485 /** @cfgm{TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
486 * The warp drive percentage, 100% is normal speed. This is used to speed up
487 * or slow down the virtual clock, which can be useful for fast forwarding
488 * borring periods during tests. */
489 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
490 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
491 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
492 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
493 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
494 else if (RT_FAILURE(rc))
495 return VMSetError(pVM, rc, RT_SRC_POS,
496 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
497 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
498 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
499 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
500 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
501 pVM->tm.s.u32VirtualWarpDrivePercentage);
502 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
503 if (pVM->tm.s.fVirtualWarpDrive)
504 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
505
506 /*
507 * Gather the Host Hz configuration values.
508 */
509 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000);
510 if (RT_FAILURE(rc))
511 return VMSetError(pVM, rc, RT_SRC_POS,
512 N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\""));
513
514 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111);
515 if (RT_FAILURE(rc))
516 return VMSetError(pVM, rc, RT_SRC_POS,
517 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\""));
518
519 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110);
520 if (RT_FAILURE(rc))
521 return VMSetError(pVM, rc, RT_SRC_POS,
522 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\""));
523
524 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300);
525 if (RT_FAILURE(rc))
526 return VMSetError(pVM, rc, RT_SRC_POS,
527 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\""));
528
529 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250);
530 if (RT_FAILURE(rc))
531 return VMSetError(pVM, rc, RT_SRC_POS,
532 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\""));
533
534 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200);
535 if (RT_FAILURE(rc))
536 return VMSetError(pVM, rc, RT_SRC_POS,
537 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\""));
538
539 /*
540 * Start the timer (guard against REM not yielding).
541 */
542 /** @cfgm{TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
543 * The watchdog timer interval. */
544 uint32_t u32Millies;
545 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
546 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
547 u32Millies = 10;
548 else if (RT_FAILURE(rc))
549 return VMSetError(pVM, rc, RT_SRC_POS,
550 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
551 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
552 if (RT_FAILURE(rc))
553 {
554 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
555 return rc;
556 }
557 Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies));
558 pVM->tm.s.u32TimerMillies = u32Millies;
559
560 /*
561 * Register saved state.
562 */
563 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
564 NULL, NULL, NULL,
565 NULL, tmR3Save, NULL,
566 NULL, tmR3Load, NULL);
567 if (RT_FAILURE(rc))
568 return rc;
569
570 /*
571 * Register statistics.
572 */
573 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
574 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
575 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
576 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
577 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.c1nsSteps,STAMTYPE_U32, "/TM/RC/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
578 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.cBadPrev, STAMTYPE_U32, "/TM/RC/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
579 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
580 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with.");
581 STAM_REL_REG( pVM,(void*)&pVM->tm.s.uMaxHzHint, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint.");
582
583#ifdef VBOX_WITH_STATISTICS
584 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
585 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
586 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
587 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
588 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cExpired, STAMTYPE_U32, "/TM/RC/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
589 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cUpdateRaces,STAMTYPE_U32, "/TM/RC/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
590 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
591 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
592 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
593 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
594
595 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
596 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
597 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
598 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
599 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
600 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
601 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
602 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
603
604 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
605 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
606
607 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
608 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
609 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
610
611 STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls");
612 STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
613 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
614 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
615 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
616 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
617 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
618 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
619 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
620 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
621 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
622 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
623
624 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls");
625 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
626 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3.");
627 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC.");
628 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRacyVirtSync, STAMTYPE_COUNTER, "/TM/TimerSetRelative/RacyVirtSync", STAMUNIT_OCCURENCES, "Potentially racy virtual sync timer update.");
629 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
630 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
631 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
632 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
633 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
634 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
635 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
636 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
637
638 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
639 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
640
641 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
642 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
643 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
644 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
645 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
646 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
647 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
648 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
649 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
650 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
651
652 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
653
654 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
655 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
656 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
657 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
658 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
659 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
660 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
661 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
662 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
663 STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
664#endif /* VBOX_WITH_STATISTICS */
665
666 for (VMCPUID i = 0; i < pVM->cCpus; i++)
667 {
668 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
669#ifndef VBOX_WITHOUT_NS_ACCOUNTING
670# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
671 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
672 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
673 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i);
674 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i);
675 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i);
676 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
677 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
678# endif
679 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
680 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
681 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
682 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsOther, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
683 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
684 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
685 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
686 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
687 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
688#endif
689 }
690#ifndef VBOX_WITHOUT_NS_ACCOUNTING
691 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
692 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
693 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
694#endif
695
696#ifdef VBOX_WITH_STATISTICS
697 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
698 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
699 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
700 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
701 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
702 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
703 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
704 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
705 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
706 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
707 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
708 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
709 {
710 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
711 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
712 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
713 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
714 }
715#endif /* VBOX_WITH_STATISTICS */
716
717 /*
718 * Register info handlers.
719 */
720 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
721 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
722 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
723
724 return VINF_SUCCESS;
725}
726
727
728/**
729 * Checks if the host CPU has a fixed TSC frequency.
730 *
731 * @returns true if it has, false if it hasn't.
732 *
733 * @remark This test doesn't bother with very old CPUs that don't do power
734 * management or any other stuff that might influence the TSC rate.
735 * This isn't currently relevant.
736 */
737static bool tmR3HasFixedTSC(PVM pVM)
738{
739 if (ASMHasCpuId())
740 {
741 uint32_t uEAX, uEBX, uECX, uEDX;
742
743 if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
744 {
745 /*
746 * AuthenticAMD - Check for APM support and that TscInvariant is set.
747 *
748 * This test isn't correct with respect to fixed/non-fixed TSC and
749 * older models, but this isn't relevant since the result is currently
750 * only used for making a decision on AMD-V models.
751 */
752 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
753 if (uEAX >= 0x80000007)
754 {
755 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
756
757 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
758 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
759 && pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* no fixed tsc if the gip timer is in async mode */)
760 return true;
761 }
762 }
763 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
764 {
765 /*
766 * GenuineIntel - Check the model number.
767 *
768 * This test is lacking in the same way and for the same reasons
769 * as the AMD test above.
770 */
771 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
772 unsigned uModel = (uEAX >> 4) & 0x0f;
773 unsigned uFamily = (uEAX >> 8) & 0x0f;
774 if (uFamily == 0x0f)
775 uFamily += (uEAX >> 20) & 0xff;
776 if (uFamily >= 0x06)
777 uModel += ((uEAX >> 16) & 0x0f) << 4;
778 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
779 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
780 return true;
781 }
782 }
783 return false;
784}
785
786
787/**
788 * Calibrate the CPU tick.
789 *
790 * @returns Number of ticks per second.
791 */
792static uint64_t tmR3CalibrateTSC(PVM pVM)
793{
794 /*
795 * Use GIP when available present.
796 */
797 uint64_t u64Hz;
798 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
799 if ( pGip
800 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC)
801 {
802 unsigned iCpu = pGip->u32Mode != SUPGIPMODE_ASYNC_TSC ? 0 : ASMGetApicId();
803 if (iCpu >= RT_ELEMENTS(pGip->aCPUs))
804 AssertReleaseMsgFailed(("iCpu=%d - the ApicId is too high. send VBox.log and hardware specs!\n", iCpu));
805 else
806 {
807 if (tmR3HasFixedTSC(pVM))
808 /* Sleep a bit to get a more reliable CpuHz value. */
809 RTThreadSleep(32);
810 else
811 {
812 /* Spin for 40ms to try push up the CPU frequency and get a more reliable CpuHz value. */
813 const uint64_t u64 = RTTimeMilliTS();
814 while ((RTTimeMilliTS() - u64) < 40 /*ms*/)
815 /* nothing */;
816 }
817
818 pGip = g_pSUPGlobalInfoPage;
819 if ( pGip
820 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
821 && (u64Hz = pGip->aCPUs[iCpu].u64CpuHz)
822 && u64Hz != ~(uint64_t)0)
823 return u64Hz;
824 }
825 }
826
827 /* call this once first to make sure it's initialized. */
828 RTTimeNanoTS();
829
830 /*
831 * Yield the CPU to increase our chances of getting
832 * a correct value.
833 */
834 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
835 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
836 uint64_t au64Samples[5];
837 unsigned i;
838 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
839 {
840 RTMSINTERVAL cMillies;
841 int cTries = 5;
842 uint64_t u64Start = ASMReadTSC();
843 uint64_t u64End;
844 uint64_t StartTS = RTTimeNanoTS();
845 uint64_t EndTS;
846 do
847 {
848 RTThreadSleep(s_auSleep[i]);
849 u64End = ASMReadTSC();
850 EndTS = RTTimeNanoTS();
851 cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
852 } while ( cMillies == 0 /* the sleep may be interrupted... */
853 || (cMillies < 20 && --cTries > 0));
854 uint64_t u64Diff = u64End - u64Start;
855
856 au64Samples[i] = (u64Diff * 1000) / cMillies;
857 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
858 }
859
860 /*
861 * Discard the highest and lowest results and calculate the average.
862 */
863 unsigned iHigh = 0;
864 unsigned iLow = 0;
865 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
866 {
867 if (au64Samples[i] < au64Samples[iLow])
868 iLow = i;
869 if (au64Samples[i] > au64Samples[iHigh])
870 iHigh = i;
871 }
872 au64Samples[iLow] = 0;
873 au64Samples[iHigh] = 0;
874
875 u64Hz = au64Samples[0];
876 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
877 u64Hz += au64Samples[i];
878 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
879
880 return u64Hz;
881}
882
883
884/**
885 * Finalizes the TM initialization.
886 *
887 * @returns VBox status code.
888 * @param pVM The VM to operate on.
889 */
890VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
891{
892 int rc;
893
894 /*
895 * Resolve symbols.
896 */
897 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
898 AssertRCReturn(rc, rc);
899 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
900 AssertRCReturn(rc, rc);
901 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
902 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawRC);
903 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
904 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawRC);
905 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
906 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawRC);
907 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
908 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawRC);
909 else
910 AssertFatalFailed();
911 AssertRCReturn(rc, rc);
912
913 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
914 AssertRCReturn(rc, rc);
915 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
916 AssertRCReturn(rc, rc);
917 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
918 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawR0);
919 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
920 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawR0);
921 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
922 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawR0);
923 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
924 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawR0);
925 else
926 AssertFatalFailed();
927 AssertRCReturn(rc, rc);
928
929#ifndef VBOX_WITHOUT_NS_ACCOUNTING
930 /*
931 * Create a timer for refreshing the CPU load stats.
932 */
933 PTMTIMER pTimer;
934 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, "CPU Load Timer", &pTimer);
935 if (RT_SUCCESS(rc))
936 rc = TMTimerSetMillies(pTimer, 1000);
937#endif
938
939 return rc;
940}
941
942
943/**
944 * Applies relocations to data and code managed by this
945 * component. This function will be called at init and
946 * whenever the VMM need to relocate it self inside the GC.
947 *
948 * @param pVM The VM.
949 * @param offDelta Relocation delta relative to old location.
950 */
951VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
952{
953 int rc;
954 LogFlow(("TMR3Relocate\n"));
955
956 pVM->tm.s.pvGIPRC = MMHyperR3ToRC(pVM, pVM->tm.s.pvGIPR3);
957 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pVM->tm.s.paTimerQueuesR3);
958 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
959
960 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
961 AssertFatal(pVM->tm.s.VirtualGetRawDataRC.pu64Prev);
962 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
963 AssertFatalRC(rc);
964 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
965 AssertFatalRC(rc);
966
967 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
968 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawRC);
969 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
970 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawRC);
971 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
972 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawRC);
973 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
974 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawRC);
975 else
976 AssertFatalFailed();
977 AssertFatalRC(rc);
978
979 /*
980 * Iterate the timers updating the pVMRC pointers.
981 */
982 for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
983 {
984 pTimer->pVMRC = pVM->pVMRC;
985 pTimer->pVMR0 = pVM->pVMR0;
986 }
987}
988
989
990/**
991 * Terminates the TM.
992 *
993 * Termination means cleaning up and freeing all resources,
994 * the VM it self is at this point powered off or suspended.
995 *
996 * @returns VBox status code.
997 * @param pVM The VM to operate on.
998 */
999VMM_INT_DECL(int) TMR3Term(PVM pVM)
1000{
1001 AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
1002 if (pVM->tm.s.pTimer)
1003 {
1004 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
1005 AssertRC(rc);
1006 pVM->tm.s.pTimer = NULL;
1007 }
1008
1009 return VINF_SUCCESS;
1010}
1011
1012
1013/**
1014 * The VM is being reset.
1015 *
1016 * For the TM component this means that a rescheduling is preformed,
1017 * the FF is cleared and but without running the queues. We'll have to
1018 * check if this makes sense or not, but it seems like a good idea now....
1019 *
1020 * @param pVM VM handle.
1021 */
1022VMM_INT_DECL(void) TMR3Reset(PVM pVM)
1023{
1024 LogFlow(("TMR3Reset:\n"));
1025 VM_ASSERT_EMT(pVM);
1026 tmTimerLock(pVM);
1027
1028 /*
1029 * Abort any pending catch up.
1030 * This isn't perfect...
1031 */
1032 if (pVM->tm.s.fVirtualSyncCatchUp)
1033 {
1034 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
1035 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
1036 if (pVM->tm.s.fVirtualSyncCatchUp)
1037 {
1038 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1039
1040 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
1041 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
1042 Assert(offOld <= offNew);
1043 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1044 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
1045 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1046 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
1047 }
1048 }
1049
1050 /*
1051 * Process the queues.
1052 */
1053 for (int i = 0; i < TMCLOCK_MAX; i++)
1054 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
1055#ifdef VBOX_STRICT
1056 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1057#endif
1058
1059 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1060 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1061 tmTimerUnlock(pVM);
1062}
1063
1064
1065/**
1066 * Resolve a builtin RC symbol.
1067 * Called by PDM when loading or relocating GC modules.
1068 *
1069 * @returns VBox status
1070 * @param pVM VM Handle.
1071 * @param pszSymbol Symbol to resolve.
1072 * @param pRCPtrValue Where to store the symbol value.
1073 * @remark This has to work before TMR3Relocate() is called.
1074 */
1075VMM_INT_DECL(int) TMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1076{
1077 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
1078 *pRCPtrValue = MMHyperR3ToRC(pVM, &pVM->tm.s.pvGIPRC);
1079 //else if (..)
1080 else
1081 return VERR_SYMBOL_NOT_FOUND;
1082 return VINF_SUCCESS;
1083}
1084
1085
1086/**
1087 * Execute state save operation.
1088 *
1089 * @returns VBox status code.
1090 * @param pVM VM Handle.
1091 * @param pSSM SSM operation handle.
1092 */
1093static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1094{
1095 LogFlow(("tmR3Save:\n"));
1096#ifdef VBOX_STRICT
1097 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1098 {
1099 PVMCPU pVCpu = &pVM->aCpus[i];
1100 Assert(!pVCpu->tm.s.fTSCTicking);
1101 }
1102 Assert(!pVM->tm.s.cVirtualTicking);
1103 Assert(!pVM->tm.s.fVirtualSyncTicking);
1104#endif
1105
1106 /*
1107 * Save the virtual clocks.
1108 */
1109 /* the virtual clock. */
1110 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1111 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1112
1113 /* the virtual timer synchronous clock. */
1114 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1115 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1116 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1117 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1118 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1119
1120 /* real time clock */
1121 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1122
1123 /* the cpu tick clock. */
1124 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1125 {
1126 PVMCPU pVCpu = &pVM->aCpus[i];
1127 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1128 }
1129 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1130}
1131
1132
1133/**
1134 * Execute state load operation.
1135 *
1136 * @returns VBox status code.
1137 * @param pVM VM Handle.
1138 * @param pSSM SSM operation handle.
1139 * @param uVersion Data layout version.
1140 * @param uPass The data pass.
1141 */
1142static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1143{
1144 LogFlow(("tmR3Load:\n"));
1145
1146 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1147#ifdef VBOX_STRICT
1148 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1149 {
1150 PVMCPU pVCpu = &pVM->aCpus[i];
1151 Assert(!pVCpu->tm.s.fTSCTicking);
1152 }
1153 Assert(!pVM->tm.s.cVirtualTicking);
1154 Assert(!pVM->tm.s.fVirtualSyncTicking);
1155#endif
1156
1157 /*
1158 * Validate version.
1159 */
1160 if (uVersion != TM_SAVED_STATE_VERSION)
1161 {
1162 AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
1163 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1164 }
1165
1166 /*
1167 * Load the virtual clock.
1168 */
1169 pVM->tm.s.cVirtualTicking = 0;
1170 /* the virtual clock. */
1171 uint64_t u64Hz;
1172 int rc = SSMR3GetU64(pSSM, &u64Hz);
1173 if (RT_FAILURE(rc))
1174 return rc;
1175 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1176 {
1177 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1178 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1179 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1180 }
1181 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1182 pVM->tm.s.u64VirtualOffset = 0;
1183
1184 /* the virtual timer synchronous clock. */
1185 pVM->tm.s.fVirtualSyncTicking = false;
1186 uint64_t u64;
1187 SSMR3GetU64(pSSM, &u64);
1188 pVM->tm.s.u64VirtualSync = u64;
1189 SSMR3GetU64(pSSM, &u64);
1190 pVM->tm.s.offVirtualSync = u64;
1191 SSMR3GetU64(pSSM, &u64);
1192 pVM->tm.s.offVirtualSyncGivenUp = u64;
1193 SSMR3GetU64(pSSM, &u64);
1194 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1195 bool f;
1196 SSMR3GetBool(pSSM, &f);
1197 pVM->tm.s.fVirtualSyncCatchUp = f;
1198
1199 /* the real clock */
1200 rc = SSMR3GetU64(pSSM, &u64Hz);
1201 if (RT_FAILURE(rc))
1202 return rc;
1203 if (u64Hz != TMCLOCK_FREQ_REAL)
1204 {
1205 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1206 u64Hz, TMCLOCK_FREQ_REAL));
1207 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */
1208 }
1209
1210 /* the cpu tick clock. */
1211 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1212 {
1213 PVMCPU pVCpu = &pVM->aCpus[i];
1214
1215 pVCpu->tm.s.fTSCTicking = false;
1216 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1217
1218 if (pVM->tm.s.fTSCUseRealTSC)
1219 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1220 }
1221
1222 rc = SSMR3GetU64(pSSM, &u64Hz);
1223 if (RT_FAILURE(rc))
1224 return rc;
1225 if (!pVM->tm.s.fTSCUseRealTSC)
1226 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1227
1228 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool (state load)\n",
1229 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC));
1230
1231 /*
1232 * Make sure timers get rescheduled immediately.
1233 */
1234 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1235 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1236
1237 return VINF_SUCCESS;
1238}
1239
1240
1241/**
1242 * Internal TMR3TimerCreate worker.
1243 *
1244 * @returns VBox status code.
1245 * @param pVM The VM handle.
1246 * @param enmClock The timer clock.
1247 * @param pszDesc The timer description.
1248 * @param ppTimer Where to store the timer pointer on success.
1249 */
1250static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
1251{
1252 VM_ASSERT_EMT(pVM);
1253
1254 /*
1255 * Allocate the timer.
1256 */
1257 PTMTIMERR3 pTimer = NULL;
1258 if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
1259 {
1260 pTimer = pVM->tm.s.pFree;
1261 pVM->tm.s.pFree = pTimer->pBigNext;
1262 Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
1263 }
1264
1265 if (!pTimer)
1266 {
1267 int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
1268 if (RT_FAILURE(rc))
1269 return rc;
1270 Log3(("TM: Allocated new timer %p\n", pTimer));
1271 }
1272
1273 /*
1274 * Initialize it.
1275 */
1276 pTimer->u64Expire = 0;
1277 pTimer->enmClock = enmClock;
1278 pTimer->pVMR3 = pVM;
1279 pTimer->pVMR0 = pVM->pVMR0;
1280 pTimer->pVMRC = pVM->pVMRC;
1281 pTimer->enmState = TMTIMERSTATE_STOPPED;
1282 pTimer->offScheduleNext = 0;
1283 pTimer->offNext = 0;
1284 pTimer->offPrev = 0;
1285 pTimer->pvUser = NULL;
1286 pTimer->pCritSect = NULL;
1287 pTimer->pszDesc = pszDesc;
1288
1289 /* insert into the list of created timers. */
1290 tmTimerLock(pVM);
1291 pTimer->pBigPrev = NULL;
1292 pTimer->pBigNext = pVM->tm.s.pCreated;
1293 pVM->tm.s.pCreated = pTimer;
1294 if (pTimer->pBigNext)
1295 pTimer->pBigNext->pBigPrev = pTimer;
1296#ifdef VBOX_STRICT
1297 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1298#endif
1299 tmTimerUnlock(pVM);
1300
1301 *ppTimer = pTimer;
1302 return VINF_SUCCESS;
1303}
1304
1305
1306/**
1307 * Creates a device timer.
1308 *
1309 * @returns VBox status.
1310 * @param pVM The VM to create the timer in.
1311 * @param pDevIns Device instance.
1312 * @param enmClock The clock to use on this timer.
1313 * @param pfnCallback Callback function.
1314 * @param pvUser The user argument to the callback.
1315 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1316 * @param pszDesc Pointer to description string which must stay around
1317 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1318 * @param ppTimer Where to store the timer on success.
1319 */
1320VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock, PFNTMTIMERDEV pfnCallback, void *pvUser, uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1321{
1322 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1323
1324 /*
1325 * Allocate and init stuff.
1326 */
1327 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1328 if (RT_SUCCESS(rc))
1329 {
1330 (*ppTimer)->enmType = TMTIMERTYPE_DEV;
1331 (*ppTimer)->u.Dev.pfnTimer = pfnCallback;
1332 (*ppTimer)->u.Dev.pDevIns = pDevIns;
1333 (*ppTimer)->pvUser = pvUser;
1334 if (fFlags & TMTIMER_FLAGS_DEFAULT_CRIT_SECT)
1335 {
1336 if (pDevIns->pCritSectR3)
1337 (*ppTimer)->pCritSect = pDevIns->pCritSectR3;
1338 else
1339 (*ppTimer)->pCritSect = IOMR3GetCritSect(pVM);
1340 }
1341 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1342 }
1343
1344 return rc;
1345}
1346
1347
1348/**
1349 * Creates a driver timer.
1350 *
1351 * @returns VBox status.
1352 * @param pVM The VM to create the timer in.
1353 * @param pDrvIns Driver instance.
1354 * @param enmClock The clock to use on this timer.
1355 * @param pfnCallback Callback function.
1356 * @param pvUser The user argument to the callback.
1357 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1358 * @param pszDesc Pointer to description string which must stay around
1359 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1360 * @param ppTimer Where to store the timer on success.
1361 */
1362VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1363 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1364{
1365 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1366
1367 /*
1368 * Allocate and init stuff.
1369 */
1370 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1371 if (RT_SUCCESS(rc))
1372 {
1373 (*ppTimer)->enmType = TMTIMERTYPE_DRV;
1374 (*ppTimer)->u.Drv.pfnTimer = pfnCallback;
1375 (*ppTimer)->u.Drv.pDrvIns = pDrvIns;
1376 (*ppTimer)->pvUser = pvUser;
1377 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1378 }
1379
1380 return rc;
1381}
1382
1383
1384/**
1385 * Creates an internal timer.
1386 *
1387 * @returns VBox status.
1388 * @param pVM The VM to create the timer in.
1389 * @param enmClock The clock to use on this timer.
1390 * @param pfnCallback Callback function.
1391 * @param pvUser User argument to be passed to the callback.
1392 * @param pszDesc Pointer to description string which must stay around
1393 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1394 * @param ppTimer Where to store the timer on success.
1395 */
1396VMMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERR3 ppTimer)
1397{
1398 /*
1399 * Allocate and init stuff.
1400 */
1401 PTMTIMER pTimer;
1402 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1403 if (RT_SUCCESS(rc))
1404 {
1405 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1406 pTimer->u.Internal.pfnTimer = pfnCallback;
1407 pTimer->pvUser = pvUser;
1408 *ppTimer = pTimer;
1409 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1410 }
1411
1412 return rc;
1413}
1414
1415/**
1416 * Creates an external timer.
1417 *
1418 * @returns Timer handle on success.
1419 * @returns NULL on failure.
1420 * @param pVM The VM to create the timer in.
1421 * @param enmClock The clock to use on this timer.
1422 * @param pfnCallback Callback function.
1423 * @param pvUser User argument.
1424 * @param pszDesc Pointer to description string which must stay around
1425 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1426 */
1427VMMR3DECL(PTMTIMERR3) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
1428{
1429 /*
1430 * Allocate and init stuff.
1431 */
1432 PTMTIMERR3 pTimer;
1433 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1434 if (RT_SUCCESS(rc))
1435 {
1436 pTimer->enmType = TMTIMERTYPE_EXTERNAL;
1437 pTimer->u.External.pfnTimer = pfnCallback;
1438 pTimer->pvUser = pvUser;
1439 Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1440 return pTimer;
1441 }
1442
1443 return NULL;
1444}
1445
1446
1447/**
1448 * Destroy a timer
1449 *
1450 * @returns VBox status.
1451 * @param pTimer Timer handle as returned by one of the create functions.
1452 */
1453VMMR3DECL(int) TMR3TimerDestroy(PTMTIMER pTimer)
1454{
1455 /*
1456 * Be extra careful here.
1457 */
1458 if (!pTimer)
1459 return VINF_SUCCESS;
1460 AssertPtr(pTimer);
1461 Assert((unsigned)pTimer->enmClock < (unsigned)TMCLOCK_MAX);
1462
1463 PVM pVM = pTimer->CTX_SUFF(pVM);
1464 PTMTIMERQUEUE pQueue = &pVM->tm.s.CTX_SUFF(paTimerQueues)[pTimer->enmClock];
1465 bool fActive = false;
1466 bool fPending = false;
1467
1468 AssertMsg( !pTimer->pCritSect
1469 || VMR3GetState(pVM) != VMSTATE_RUNNING
1470 || PDMCritSectIsOwner(pTimer->pCritSect), ("%s\n", pTimer->pszDesc));
1471
1472 /*
1473 * The rest of the game happens behind the lock, just
1474 * like create does. All the work is done here.
1475 */
1476 tmTimerLock(pVM);
1477 for (int cRetries = 1000;; cRetries--)
1478 {
1479 /*
1480 * Change to the DESTROY state.
1481 */
1482 TMTIMERSTATE enmState = pTimer->enmState;
1483 TMTIMERSTATE enmNewState = enmState;
1484 Log2(("TMTimerDestroy: %p:{.enmState=%s, .pszDesc='%s'} cRetries=%d\n",
1485 pTimer, tmTimerState(enmState), R3STRING(pTimer->pszDesc), cRetries));
1486 switch (enmState)
1487 {
1488 case TMTIMERSTATE_STOPPED:
1489 case TMTIMERSTATE_EXPIRED_DELIVER:
1490 break;
1491
1492 case TMTIMERSTATE_ACTIVE:
1493 fActive = true;
1494 break;
1495
1496 case TMTIMERSTATE_PENDING_STOP:
1497 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1498 case TMTIMERSTATE_PENDING_RESCHEDULE:
1499 fActive = true;
1500 fPending = true;
1501 break;
1502
1503 case TMTIMERSTATE_PENDING_SCHEDULE:
1504 fPending = true;
1505 break;
1506
1507 /*
1508 * This shouldn't happen as the caller should make sure there are no races.
1509 */
1510 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1511 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1512 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1513 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1514 tmTimerUnlock(pVM);
1515 if (!RTThreadYield())
1516 RTThreadSleep(1);
1517 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1518 VERR_TM_UNSTABLE_STATE);
1519 tmTimerLock(pVM);
1520 continue;
1521
1522 /*
1523 * Invalid states.
1524 */
1525 case TMTIMERSTATE_FREE:
1526 case TMTIMERSTATE_DESTROY:
1527 tmTimerUnlock(pVM);
1528 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1529
1530 default:
1531 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, R3STRING(pTimer->pszDesc)));
1532 tmTimerUnlock(pVM);
1533 return VERR_TM_UNKNOWN_STATE;
1534 }
1535
1536 /*
1537 * Try switch to the destroy state.
1538 * This should always succeed as the caller should make sure there are no race.
1539 */
1540 bool fRc;
1541 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1542 if (fRc)
1543 break;
1544 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1545 tmTimerUnlock(pVM);
1546 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1547 VERR_TM_UNSTABLE_STATE);
1548 tmTimerLock(pVM);
1549 }
1550
1551 /*
1552 * Unlink from the active list.
1553 */
1554 if (fActive)
1555 {
1556 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1557 const PTMTIMER pNext = TMTIMER_GET_NEXT(pTimer);
1558 if (pPrev)
1559 TMTIMER_SET_NEXT(pPrev, pNext);
1560 else
1561 {
1562 TMTIMER_SET_HEAD(pQueue, pNext);
1563 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1564 }
1565 if (pNext)
1566 TMTIMER_SET_PREV(pNext, pPrev);
1567 pTimer->offNext = 0;
1568 pTimer->offPrev = 0;
1569 }
1570
1571 /*
1572 * Unlink from the schedule list by running it.
1573 */
1574 if (fPending)
1575 {
1576 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
1577 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1578 Assert(pQueue->offSchedule);
1579 tmTimerQueueSchedule(pVM, pQueue);
1580 }
1581
1582 /*
1583 * Read to move the timer from the created list and onto the free list.
1584 */
1585 Assert(!pTimer->offNext); Assert(!pTimer->offPrev); Assert(!pTimer->offScheduleNext);
1586
1587 /* unlink from created list */
1588 if (pTimer->pBigPrev)
1589 pTimer->pBigPrev->pBigNext = pTimer->pBigNext;
1590 else
1591 pVM->tm.s.pCreated = pTimer->pBigNext;
1592 if (pTimer->pBigNext)
1593 pTimer->pBigNext->pBigPrev = pTimer->pBigPrev;
1594 pTimer->pBigNext = 0;
1595 pTimer->pBigPrev = 0;
1596
1597 /* free */
1598 Log2(("TM: Inserting %p into the free list ahead of %p!\n", pTimer, pVM->tm.s.pFree));
1599 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
1600 pTimer->pBigNext = pVM->tm.s.pFree;
1601 pVM->tm.s.pFree = pTimer;
1602
1603#ifdef VBOX_STRICT
1604 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
1605#endif
1606 tmTimerUnlock(pVM);
1607 return VINF_SUCCESS;
1608}
1609
1610
1611/**
1612 * Destroy all timers owned by a device.
1613 *
1614 * @returns VBox status.
1615 * @param pVM VM handle.
1616 * @param pDevIns Device which timers should be destroyed.
1617 */
1618VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
1619{
1620 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
1621 if (!pDevIns)
1622 return VERR_INVALID_PARAMETER;
1623
1624 tmTimerLock(pVM);
1625 PTMTIMER pCur = pVM->tm.s.pCreated;
1626 while (pCur)
1627 {
1628 PTMTIMER pDestroy = pCur;
1629 pCur = pDestroy->pBigNext;
1630 if ( pDestroy->enmType == TMTIMERTYPE_DEV
1631 && pDestroy->u.Dev.pDevIns == pDevIns)
1632 {
1633 int rc = TMR3TimerDestroy(pDestroy);
1634 AssertRC(rc);
1635 }
1636 }
1637 tmTimerUnlock(pVM);
1638
1639 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
1640 return VINF_SUCCESS;
1641}
1642
1643
1644/**
1645 * Destroy all timers owned by a driver.
1646 *
1647 * @returns VBox status.
1648 * @param pVM VM handle.
1649 * @param pDrvIns Driver which timers should be destroyed.
1650 */
1651VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
1652{
1653 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
1654 if (!pDrvIns)
1655 return VERR_INVALID_PARAMETER;
1656
1657 tmTimerLock(pVM);
1658 PTMTIMER pCur = pVM->tm.s.pCreated;
1659 while (pCur)
1660 {
1661 PTMTIMER pDestroy = pCur;
1662 pCur = pDestroy->pBigNext;
1663 if ( pDestroy->enmType == TMTIMERTYPE_DRV
1664 && pDestroy->u.Drv.pDrvIns == pDrvIns)
1665 {
1666 int rc = TMR3TimerDestroy(pDestroy);
1667 AssertRC(rc);
1668 }
1669 }
1670 tmTimerUnlock(pVM);
1671
1672 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
1673 return VINF_SUCCESS;
1674}
1675
1676
1677/**
1678 * Internal function for getting the clock time.
1679 *
1680 * @returns clock time.
1681 * @param pVM The VM handle.
1682 * @param enmClock The clock.
1683 */
1684DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
1685{
1686 switch (enmClock)
1687 {
1688 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
1689 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
1690 case TMCLOCK_REAL: return TMRealGet(pVM);
1691 case TMCLOCK_TSC: return TMCpuTickGet(&pVM->aCpus[0] /* just take VCPU 0 */);
1692 default:
1693 AssertMsgFailed(("enmClock=%d\n", enmClock));
1694 return ~(uint64_t)0;
1695 }
1696}
1697
1698
1699/**
1700 * Checks if the sync queue has one or more expired timers.
1701 *
1702 * @returns true / false.
1703 *
1704 * @param pVM The VM handle.
1705 * @param enmClock The queue.
1706 */
1707DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
1708{
1709 const uint64_t u64Expire = pVM->tm.s.CTX_SUFF(paTimerQueues)[enmClock].u64Expire;
1710 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
1711}
1712
1713
1714/**
1715 * Checks for expired timers in all the queues.
1716 *
1717 * @returns true / false.
1718 * @param pVM The VM handle.
1719 */
1720DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
1721{
1722 /*
1723 * Combine the time calculation for the first two since we're not on EMT
1724 * TMVirtualSyncGet only permits EMT.
1725 */
1726 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
1727 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
1728 return true;
1729 u64Now = pVM->tm.s.fVirtualSyncTicking
1730 ? u64Now - pVM->tm.s.offVirtualSync
1731 : pVM->tm.s.u64VirtualSync;
1732 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
1733 return true;
1734
1735 /*
1736 * The remaining timers.
1737 */
1738 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
1739 return true;
1740 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
1741 return true;
1742 return false;
1743}
1744
1745
1746/**
1747 * Schedule timer callback.
1748 *
1749 * @param pTimer Timer handle.
1750 * @param pvUser VM handle.
1751 * @thread Timer thread.
1752 *
1753 * @remark We cannot do the scheduling and queues running from a timer handler
1754 * since it's not executing in EMT, and even if it was it would be async
1755 * and we wouldn't know the state of the affairs.
1756 * So, we'll just raise the timer FF and force any REM execution to exit.
1757 */
1758static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
1759{
1760 PVM pVM = (PVM)pvUser;
1761 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1762
1763 AssertCompile(TMCLOCK_MAX == 4);
1764#ifdef DEBUG_Sander /* very annoying, keep it private. */
1765 if (VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER))
1766 Log(("tmR3TimerCallback: timer event still pending!!\n"));
1767#endif
1768 if ( !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
1769 && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
1770 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
1771 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
1772 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
1773 || tmR3AnyExpiredTimers(pVM)
1774 )
1775 && !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
1776 && !pVM->tm.s.fRunningQueues
1777 )
1778 {
1779 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
1780 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1781 REMR3NotifyTimerPending(pVM, pVCpuDst);
1782 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM /** @todo | VMNOTIFYFF_FLAGS_POKE ?*/);
1783 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
1784 }
1785}
1786
1787
1788/**
1789 * Schedules and runs any pending timers.
1790 *
1791 * This is normally called from a forced action handler in EMT.
1792 *
1793 * @param pVM The VM to run the timers for.
1794 *
1795 * @thread EMT (actually EMT0, but we fend off the others)
1796 */
1797VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
1798{
1799 /*
1800 * Only the dedicated timer EMT should do stuff here.
1801 * (fRunningQueues is only used as an indicator.)
1802 */
1803 Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
1804 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1805 if (VMMGetCpu(pVM) != pVCpuDst)
1806 {
1807 Assert(pVM->cCpus > 1);
1808 return;
1809 }
1810 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
1811 Log2(("TMR3TimerQueuesDo:\n"));
1812 Assert(!pVM->tm.s.fRunningQueues);
1813 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
1814 tmTimerLock(pVM);
1815
1816 /*
1817 * Process the queues.
1818 */
1819 AssertCompile(TMCLOCK_MAX == 4);
1820
1821 /* TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) */
1822 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
1823 tmVirtualSyncLock(pVM);
1824 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
1825 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
1826
1827 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule)
1828 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
1829 tmR3TimerQueueRunVirtualSync(pVM);
1830 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
1831 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
1832
1833 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
1834 tmVirtualSyncUnlock(pVM);
1835 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
1836
1837 /* TMCLOCK_VIRTUAL */
1838 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
1839 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule)
1840 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1841 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1842 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
1843
1844 /* TMCLOCK_TSC */
1845 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offActive); /* not used */
1846
1847 /* TMCLOCK_REAL */
1848 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
1849 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule)
1850 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1851 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1852 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
1853
1854#ifdef VBOX_STRICT
1855 /* check that we didn't screw up. */
1856 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
1857#endif
1858
1859 /* done */
1860 Log2(("TMR3TimerQueuesDo: returns void\n"));
1861 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
1862 tmTimerUnlock(pVM);
1863 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
1864}
1865
1866//RT_C_DECLS_BEGIN
1867//int iomLock(PVM pVM);
1868//void iomUnlock(PVM pVM);
1869//RT_C_DECLS_END
1870
1871
1872/**
1873 * Schedules and runs any pending times in the specified queue.
1874 *
1875 * This is normally called from a forced action handler in EMT.
1876 *
1877 * @param pVM The VM to run the timers for.
1878 * @param pQueue The queue to run.
1879 */
1880static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
1881{
1882 VM_ASSERT_EMT(pVM);
1883
1884 /*
1885 * Run timers.
1886 *
1887 * We check the clock once and run all timers which are ACTIVE
1888 * and have an expire time less or equal to the time we read.
1889 *
1890 * N.B. A generic unlink must be applied since other threads
1891 * are allowed to mess with any active timer at any time.
1892 * However, we only allow EMT to handle EXPIRED_PENDING
1893 * timers, thus enabling the timer handler function to
1894 * arm the timer again.
1895 */
1896 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1897 if (!pNext)
1898 return;
1899 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
1900 while (pNext && pNext->u64Expire <= u64Now)
1901 {
1902 PTMTIMER pTimer = pNext;
1903 pNext = TMTIMER_GET_NEXT(pTimer);
1904 PPDMCRITSECT pCritSect = pTimer->pCritSect;
1905 if (pCritSect)
1906 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
1907 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
1908 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
1909 bool fRc;
1910 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
1911 if (fRc)
1912 {
1913 Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
1914
1915 /* unlink */
1916 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1917 if (pPrev)
1918 TMTIMER_SET_NEXT(pPrev, pNext);
1919 else
1920 {
1921 TMTIMER_SET_HEAD(pQueue, pNext);
1922 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1923 }
1924 if (pNext)
1925 TMTIMER_SET_PREV(pNext, pPrev);
1926 pTimer->offNext = 0;
1927 pTimer->offPrev = 0;
1928
1929 /* fire */
1930 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
1931 switch (pTimer->enmType)
1932 {
1933 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
1934 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
1935 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
1936 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
1937 default:
1938 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
1939 break;
1940 }
1941
1942 /* change the state if it wasn't changed already in the handler. */
1943 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
1944 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
1945 }
1946 if (pCritSect)
1947 PDMCritSectLeave(pCritSect);
1948 } /* run loop */
1949}
1950
1951
1952/**
1953 * Schedules and runs any pending times in the timer queue for the
1954 * synchronous virtual clock.
1955 *
1956 * This scheduling is a bit different from the other queues as it need
1957 * to implement the special requirements of the timer synchronous virtual
1958 * clock, thus this 2nd queue run function.
1959 *
1960 * @param pVM The VM to run the timers for.
1961 *
1962 * @remarks The caller must own both the TM/EMT and the Virtual Sync locks.
1963 */
1964static void tmR3TimerQueueRunVirtualSync(PVM pVM)
1965{
1966 PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
1967 VM_ASSERT_EMT(pVM);
1968
1969 /*
1970 * Any timers?
1971 */
1972 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1973 if (RT_UNLIKELY(!pNext))
1974 {
1975 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
1976 return;
1977 }
1978 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
1979
1980 /*
1981 * Calculate the time frame for which we will dispatch timers.
1982 *
1983 * We use a time frame ranging from the current sync time (which is most likely the
1984 * same as the head timer) and some configurable period (100000ns) up towards the
1985 * current virtual time. This period might also need to be restricted by the catch-up
1986 * rate so frequent calls to this function won't accelerate the time too much, however
1987 * this will be implemented at a later point if necessary.
1988 *
1989 * Without this frame we would 1) having to run timers much more frequently
1990 * and 2) lag behind at a steady rate.
1991 */
1992 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
1993 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
1994 uint64_t u64Now;
1995 if (!pVM->tm.s.fVirtualSyncTicking)
1996 {
1997 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
1998 u64Now = pVM->tm.s.u64VirtualSync;
1999#ifdef DEBUG_bird
2000 Assert(u64Now <= pNext->u64Expire);
2001#endif
2002 }
2003 else
2004 {
2005 /* Calc 'now'. */
2006 bool fStopCatchup = false;
2007 bool fUpdateStuff = false;
2008 uint64_t off = pVM->tm.s.offVirtualSync;
2009 if (pVM->tm.s.fVirtualSyncCatchUp)
2010 {
2011 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
2012 if (RT_LIKELY(!(u64Delta >> 32)))
2013 {
2014 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
2015 if (off > u64Sub + offSyncGivenUp)
2016 {
2017 off -= u64Sub;
2018 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
2019 }
2020 else
2021 {
2022 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2023 fStopCatchup = true;
2024 off = offSyncGivenUp;
2025 }
2026 fUpdateStuff = true;
2027 }
2028 }
2029 u64Now = u64VirtualNow - off;
2030
2031 /* Check if stopped by expired timer. */
2032 uint64_t u64Expire = pNext->u64Expire;
2033 if (u64Now >= pNext->u64Expire)
2034 {
2035 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
2036 u64Now = pNext->u64Expire;
2037 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2038 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2039 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
2040 }
2041 else if (fUpdateStuff)
2042 {
2043 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
2044 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
2045 if (fStopCatchup)
2046 {
2047 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2048 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
2049 }
2050 }
2051 }
2052
2053 /* calc end of frame. */
2054 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
2055 if (u64Max > u64VirtualNow - offSyncGivenUp)
2056 u64Max = u64VirtualNow - offSyncGivenUp;
2057
2058 /* assert sanity */
2059#ifdef DEBUG_bird
2060 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
2061 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
2062 Assert(u64Now <= u64Max);
2063 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
2064#endif
2065
2066 /*
2067 * Process the expired timers moving the clock along as we progress.
2068 */
2069#ifdef DEBUG_bird
2070#ifdef VBOX_STRICT
2071 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2072#endif
2073#endif
2074 while (pNext && pNext->u64Expire <= u64Max)
2075 {
2076 PTMTIMER pTimer = pNext;
2077 pNext = TMTIMER_GET_NEXT(pTimer);
2078 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2079 if (pCritSect)
2080 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
2081 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2082 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2083 bool fRc;
2084 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2085 if (fRc)
2086 {
2087 /* unlink */
2088 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
2089 if (pPrev)
2090 TMTIMER_SET_NEXT(pPrev, pNext);
2091 else
2092 {
2093 TMTIMER_SET_HEAD(pQueue, pNext);
2094 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2095 }
2096 if (pNext)
2097 TMTIMER_SET_PREV(pNext, pPrev);
2098 pTimer->offNext = 0;
2099 pTimer->offPrev = 0;
2100
2101 /* advance the clock - don't permit timers to be out of order or armed in the 'past'. */
2102#ifdef DEBUG_bird
2103#ifdef VBOX_STRICT
2104 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
2105 u64Prev = pTimer->u64Expire;
2106#endif
2107#endif
2108 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2109 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2110
2111 /* fire */
2112 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2113 switch (pTimer->enmType)
2114 {
2115 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2116 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2117 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2118 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2119 default:
2120 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2121 break;
2122 }
2123
2124 /* Change the state if it wasn't changed already in the handler.
2125 Reset the Hz hint too since this is the same as TMTimerStop. */
2126 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2127 if (fRc && pTimer->uHzHint)
2128 {
2129 if (pTimer->uHzHint >= pVM->tm.s.uMaxHzHint)
2130 ASMAtomicWriteBool(&pVM->tm.s.fHzHintNeedsUpdating, true);
2131 pTimer->uHzHint = 0;
2132 }
2133 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2134 }
2135 if (pCritSect)
2136 PDMCritSectLeave(pCritSect);
2137 } /* run loop */
2138
2139 /*
2140 * Restart the clock if it was stopped to serve any timers,
2141 * and start/adjust catch-up if necessary.
2142 */
2143 if ( !pVM->tm.s.fVirtualSyncTicking
2144 && pVM->tm.s.cVirtualTicking)
2145 {
2146 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2147
2148 /* calc the slack we've handed out. */
2149 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2150 Assert(u64VirtualNow2 >= u64VirtualNow);
2151#ifdef DEBUG_bird
2152 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2153#endif
2154 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2155 STAM_STATS({
2156 if (offSlack)
2157 {
2158 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2159 p->cPeriods++;
2160 p->cTicks += offSlack;
2161 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2162 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2163 }
2164 });
2165
2166 /* Let the time run a little bit while we were busy running timers(?). */
2167 uint64_t u64Elapsed;
2168#define MAX_ELAPSED 30000U /* ns */
2169 if (offSlack > MAX_ELAPSED)
2170 u64Elapsed = 0;
2171 else
2172 {
2173 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2174 if (u64Elapsed > MAX_ELAPSED)
2175 u64Elapsed = MAX_ELAPSED;
2176 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2177 }
2178#undef MAX_ELAPSED
2179
2180 /* Calc the current offset. */
2181 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2182 Assert(!(offNew & RT_BIT_64(63)));
2183 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2184 Assert(!(offLag & RT_BIT_64(63)));
2185
2186 /*
2187 * Deal with starting, adjusting and stopping catchup.
2188 */
2189 if (pVM->tm.s.fVirtualSyncCatchUp)
2190 {
2191 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2192 {
2193 /* stop */
2194 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2195 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2196 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2197 }
2198 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2199 {
2200 /* adjust */
2201 unsigned i = 0;
2202 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2203 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2204 i++;
2205 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2206 {
2207 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2208 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2209 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2210 }
2211 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2212 }
2213 else
2214 {
2215 /* give up */
2216 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2217 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2218 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2219 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2220 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2221 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2222 }
2223 }
2224 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2225 {
2226 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2227 {
2228 /* start */
2229 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2230 unsigned i = 0;
2231 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2232 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2233 i++;
2234 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2235 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2236 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2237 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2238 }
2239 else
2240 {
2241 /* don't bother */
2242 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2243 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2244 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2245 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2246 }
2247 }
2248
2249 /*
2250 * Update the offset and restart the clock.
2251 */
2252 Assert(!(offNew & RT_BIT_64(63)));
2253 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2254 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2255 }
2256}
2257
2258
2259/**
2260 * Deals with stopped Virtual Sync clock.
2261 *
2262 * This is called by the forced action flag handling code in EM when it
2263 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2264 * will block on the VirtualSyncLock until the pending timers has been executed
2265 * and the clock restarted.
2266 *
2267 * @param pVM The VM to run the timers for.
2268 * @param pVCpu The virtual CPU we're running at.
2269 *
2270 * @thread EMTs
2271 */
2272VMM_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2273{
2274 Log2(("TMR3VirtualSyncFF:\n"));
2275
2276 /*
2277 * The EMT doing the timers is diverted to them.
2278 */
2279 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2280 TMR3TimerQueuesDo(pVM);
2281 /*
2282 * The other EMTs will block on the virtual sync lock and the first owner
2283 * will run the queue and thus restarting the clock.
2284 *
2285 * Note! This is very suboptimal code wrt to resuming execution when there
2286 * are more than two Virtual CPUs, since they will all have to enter
2287 * the critical section one by one. But it's a very simple solution
2288 * which will have to do the job for now.
2289 */
2290 else
2291 {
2292 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2293 tmVirtualSyncLock(pVM);
2294 if (pVM->tm.s.fVirtualSyncTicking)
2295 {
2296 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2297 tmVirtualSyncUnlock(pVM);
2298 Log2(("TMR3VirtualSyncFF: ticking\n"));
2299 }
2300 else
2301 {
2302 tmVirtualSyncUnlock(pVM);
2303
2304 /* try run it. */
2305 tmTimerLock(pVM);
2306 tmVirtualSyncLock(pVM);
2307 if (pVM->tm.s.fVirtualSyncTicking)
2308 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2309 else
2310 {
2311 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2312 Log2(("TMR3VirtualSyncFF: running queue\n"));
2313
2314 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule)
2315 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
2316 tmR3TimerQueueRunVirtualSync(pVM);
2317 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2318 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2319
2320 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2321 }
2322 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2323 tmVirtualSyncUnlock(pVM);
2324 tmTimerUnlock(pVM);
2325 }
2326 }
2327}
2328
2329
2330/** @name Saved state values
2331 * @{ */
2332#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2333#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2334/** @} */
2335
2336
2337/**
2338 * Saves the state of a timer to a saved state.
2339 *
2340 * @returns VBox status.
2341 * @param pTimer Timer to save.
2342 * @param pSSM Save State Manager handle.
2343 */
2344VMMR3DECL(int) TMR3TimerSave(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2345{
2346 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2347 switch (pTimer->enmState)
2348 {
2349 case TMTIMERSTATE_STOPPED:
2350 case TMTIMERSTATE_PENDING_STOP:
2351 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2352 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2353
2354 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2355 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2356 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
2357 if (!RTThreadYield())
2358 RTThreadSleep(1);
2359 /* fall thru */
2360 case TMTIMERSTATE_ACTIVE:
2361 case TMTIMERSTATE_PENDING_SCHEDULE:
2362 case TMTIMERSTATE_PENDING_RESCHEDULE:
2363 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2364 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2365
2366 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2367 case TMTIMERSTATE_EXPIRED_DELIVER:
2368 case TMTIMERSTATE_DESTROY:
2369 case TMTIMERSTATE_FREE:
2370 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
2371 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2372 }
2373
2374 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
2375 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2376}
2377
2378
2379/**
2380 * Loads the state of a timer from a saved state.
2381 *
2382 * @returns VBox status.
2383 * @param pTimer Timer to restore.
2384 * @param pSSM Save State Manager handle.
2385 */
2386VMMR3DECL(int) TMR3TimerLoad(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2387{
2388 Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
2389 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2390
2391 /*
2392 * Load the state and validate it.
2393 */
2394 uint8_t u8State;
2395 int rc = SSMR3GetU8(pSSM, &u8State);
2396 if (RT_FAILURE(rc))
2397 return rc;
2398#if 1 /* Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */ /** @todo remove this in a few weeks! */
2399 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2400 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2401 u8State--;
2402#endif
2403 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2404 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2405 {
2406 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2407 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2408 }
2409
2410 /* Enter the critical section to make TMTimerSet/Stop happy. */
2411 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2412 if (pCritSect)
2413 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
2414
2415 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2416 {
2417 /*
2418 * Load the expire time.
2419 */
2420 uint64_t u64Expire;
2421 rc = SSMR3GetU64(pSSM, &u64Expire);
2422 if (RT_FAILURE(rc))
2423 return rc;
2424
2425 /*
2426 * Set it.
2427 */
2428 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
2429 rc = TMTimerSet(pTimer, u64Expire);
2430 }
2431 else
2432 {
2433 /*
2434 * Stop it.
2435 */
2436 Log(("u8State=%d\n", u8State));
2437 rc = TMTimerStop(pTimer);
2438 }
2439
2440 if (pCritSect)
2441 PDMCritSectLeave(pCritSect);
2442
2443 /*
2444 * On failure set SSM status.
2445 */
2446 if (RT_FAILURE(rc))
2447 rc = SSMR3HandleSetStatus(pSSM, rc);
2448 return rc;
2449}
2450
2451
2452/**
2453 * Associates a critical section with a timer.
2454 *
2455 * The critical section will be entered prior to doing the timer call back, thus
2456 * avoiding potential races between the timer thread and other threads trying to
2457 * stop or adjust the timer expiration while it's being delivered. The timer
2458 * thread will leave the critical section when the timer callback returns.
2459 *
2460 * In strict builds, ownership of the critical section will be asserted by
2461 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
2462 * runtime).
2463 *
2464 * @retval VINF_SUCCESS on success.
2465 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
2466 * (asserted).
2467 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
2468 * (asserted).
2469 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
2470 * with the timer (asserted).
2471 * @retval VERR_INVALID_STATE if the timer isn't stopped.
2472 *
2473 * @param pTimer The timer handle.
2474 * @param pCritSect The critical section. The caller must make sure this
2475 * is around for the life time of the timer.
2476 *
2477 * @thread Any, but the caller is responsible for making sure the timer is not
2478 * active.
2479 */
2480VMMR3DECL(int) TMR3TimerSetCritSect(PTMTIMERR3 pTimer, PPDMCRITSECT pCritSect)
2481{
2482 AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
2483 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
2484 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
2485 AssertReturn(pszName, VERR_INVALID_PARAMETER);
2486 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
2487 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
2488 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->pszDesc, pCritSect, pszName));
2489
2490 pTimer->pCritSect = pCritSect;
2491 return VINF_SUCCESS;
2492}
2493
2494
2495/**
2496 * Get the real world UTC time adjusted for VM lag.
2497 *
2498 * @returns pTime.
2499 * @param pVM The VM instance.
2500 * @param pTime Where to store the time.
2501 */
2502VMM_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
2503{
2504 RTTimeNow(pTime);
2505 RTTimeSpecSubNano(pTime, ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) - ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp));
2506 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
2507 return pTime;
2508}
2509
2510
2511/**
2512 * Pauses all clocks except TMCLOCK_REAL.
2513 *
2514 * @returns VBox status code, all errors are asserted.
2515 * @param pVM The VM handle.
2516 * @param pVCpu The virtual CPU handle.
2517 * @thread EMT corresponding to the virtual CPU handle.
2518 */
2519VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
2520{
2521 VMCPU_ASSERT_EMT(pVCpu);
2522
2523 /*
2524 * The shared virtual clock (includes virtual sync which is tied to it).
2525 */
2526 tmTimerLock(pVM); /* Paranoia: Exploiting the timer lock here. */
2527 int rc = tmVirtualPauseLocked(pVM);
2528 tmTimerUnlock(pVM);
2529 if (RT_FAILURE(rc))
2530 return rc;
2531
2532 /*
2533 * Pause the TSC last since it is normally linked to the virtual
2534 * sync clock, so the above code may actually stop both clock.
2535 */
2536 rc = tmCpuTickPause(pVM, pVCpu);
2537 if (RT_FAILURE(rc))
2538 return rc;
2539
2540#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2541 /*
2542 * Update cNsTotal.
2543 */
2544 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
2545 pVCpu->tm.s.cNsTotal = RTTimeNanoTS() - pVCpu->tm.s.u64NsTsStartTotal;
2546 pVCpu->tm.s.cNsOther = pVCpu->tm.s.cNsTotal - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
2547 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
2548#endif
2549
2550 return VINF_SUCCESS;
2551}
2552
2553
2554/**
2555 * Resumes all clocks except TMCLOCK_REAL.
2556 *
2557 * @returns VBox status code, all errors are asserted.
2558 * @param pVM The VM handle.
2559 * @param pVCpu The virtual CPU handle.
2560 * @thread EMT corresponding to the virtual CPU handle.
2561 */
2562VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
2563{
2564 VMCPU_ASSERT_EMT(pVCpu);
2565 int rc;
2566
2567#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2568 /*
2569 * Set u64NsTsStartTotal. There is no need to back this out if either of
2570 * the two calls below fail.
2571 */
2572 pVCpu->tm.s.u64NsTsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.cNsTotal;
2573#endif
2574
2575 /*
2576 * Resume the TSC first since it is normally linked to the virtual sync
2577 * clock, so it may actually not be resumed until we've executed the code
2578 * below.
2579 */
2580 if (!pVM->tm.s.fTSCTiedToExecution)
2581 {
2582 rc = tmCpuTickResume(pVM, pVCpu);
2583 if (RT_FAILURE(rc))
2584 return rc;
2585 }
2586
2587 /*
2588 * The shared virtual clock (includes virtual sync which is tied to it).
2589 */
2590 tmTimerLock(pVM); /* Paranoia: Exploiting the timer lock here. */
2591 rc = tmVirtualResumeLocked(pVM);
2592 tmTimerUnlock(pVM);
2593
2594 return rc;
2595}
2596
2597
2598/**
2599 * Sets the warp drive percent of the virtual time.
2600 *
2601 * @returns VBox status code.
2602 * @param pVM The VM handle.
2603 * @param u32Percent The new percentage. 100 means normal operation.
2604 */
2605VMMDECL(int) TMR3SetWarpDrive(PVM pVM, uint32_t u32Percent)
2606{
2607 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pVM, u32Percent);
2608}
2609
2610
2611/**
2612 * EMT worker for TMR3SetWarpDrive.
2613 *
2614 * @returns VBox status code.
2615 * @param pVM The VM handle.
2616 * @param u32Percent See TMR3SetWarpDrive().
2617 * @internal
2618 */
2619static DECLCALLBACK(int) tmR3SetWarpDrive(PVM pVM, uint32_t u32Percent)
2620{
2621 PVMCPU pVCpu = VMMGetCpu(pVM);
2622
2623 /*
2624 * Validate it.
2625 */
2626 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
2627 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
2628 VERR_INVALID_PARAMETER);
2629
2630/** @todo This isn't a feature specific to virtual time, move the variables to
2631 * TM level and make it affect TMR3UTCNow as well! */
2632
2633 /*
2634 * If the time is running we'll have to pause it before we can change
2635 * the warp drive settings.
2636 */
2637 tmTimerLock(pVM); /* Paranoia: Exploiting the timer lock here. */
2638 bool fPaused = !!pVM->tm.s.cVirtualTicking;
2639 if (fPaused) /** @todo this isn't really working, but wtf. */
2640 TMR3NotifySuspend(pVM, pVCpu);
2641
2642 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
2643 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
2644 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
2645 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
2646
2647 if (fPaused)
2648 TMR3NotifyResume(pVM, pVCpu);
2649 tmTimerUnlock(pVM);
2650 return VINF_SUCCESS;
2651}
2652
2653
2654/**
2655 * Gets the performance information for one virtual CPU as seen by the VMM.
2656 *
2657 * The returned times covers the period where the VM is running and will be
2658 * reset when restoring a previous VM state (at least for the time being).
2659 *
2660 * @retval VINF_SUCCESS on success.
2661 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
2662 * @retval VERR_INVALID_STATE if the VM handle is bad.
2663 * @retval VERR_INVALID_PARAMETER if idCpu is out of range.
2664 *
2665 * @param pVM The VM handle.
2666 * @param idCpu The ID of the virtual CPU which times to get.
2667 * @param pcNsTotal Where to store the total run time (nano seconds) of
2668 * the CPU, i.e. the sum of the three other returns.
2669 * Optional.
2670 * @param pcNsExecuting Where to store the time (nano seconds) spent
2671 * executing guest code. Optional.
2672 * @param pcNsHalted Where to store the time (nano seconds) spent
2673 * halted. Optional
2674 * @param pcNsOther Where to store the time (nano seconds) spent
2675 * preempted by the host scheduler, on virtualization
2676 * overhead and on other tasks.
2677 */
2678VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
2679 uint64_t *pcNsHalted, uint64_t *pcNsOther)
2680{
2681 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
2682 AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_PARAMETER);
2683
2684#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2685 /*
2686 * Get a stable result set.
2687 * This should be way quicker than an EMT request.
2688 */
2689 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2690 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2691 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
2692 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
2693 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
2694 uint64_t cNsOther = pVCpu->tm.s.cNsOther;
2695 while ( (uTimesGen & 1) /* update in progress */
2696 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
2697 {
2698 RTThreadYield();
2699 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2700 cNsTotal = pVCpu->tm.s.cNsTotal;
2701 cNsExecuting = pVCpu->tm.s.cNsExecuting;
2702 cNsHalted = pVCpu->tm.s.cNsHalted;
2703 cNsOther = pVCpu->tm.s.cNsOther;
2704 }
2705
2706 /*
2707 * Fill in the return values.
2708 */
2709 if (pcNsTotal)
2710 *pcNsTotal = cNsTotal;
2711 if (pcNsExecuting)
2712 *pcNsExecuting = cNsExecuting;
2713 if (pcNsHalted)
2714 *pcNsHalted = cNsHalted;
2715 if (pcNsOther)
2716 *pcNsOther = cNsOther;
2717
2718 return VINF_SUCCESS;
2719
2720#else
2721 return VERR_NOT_IMPLEMENTED;
2722#endif
2723}
2724
2725#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2726
2727/**
2728 * Helper for tmR3CpuLoadTimer.
2729 * @returns
2730 * @param pState The state to update.
2731 * @param cNsTotalDelta Total time.
2732 * @param cNsExecutingDelta Time executing.
2733 * @param cNsHaltedDelta Time halted.
2734 */
2735DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState,
2736 uint64_t cNsTotal,
2737 uint64_t cNsExecuting,
2738 uint64_t cNsHalted)
2739{
2740 /* Calc deltas */
2741 uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
2742 pState->cNsPrevTotal = cNsTotal;
2743
2744 uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
2745 pState->cNsPrevExecuting = cNsExecuting;
2746
2747 uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
2748 pState->cNsPrevHalted = cNsHalted;
2749
2750 /* Calc pcts. */
2751 if (!cNsTotalDelta)
2752 {
2753 pState->cPctExecuting = 0;
2754 pState->cPctHalted = 100;
2755 pState->cPctOther = 0;
2756 }
2757 else if (cNsTotalDelta < UINT64_MAX / 4)
2758 {
2759 pState->cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
2760 pState->cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
2761 pState->cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
2762 }
2763 else
2764 {
2765 pState->cPctExecuting = 0;
2766 pState->cPctHalted = 100;
2767 pState->cPctOther = 0;
2768 }
2769}
2770
2771
2772/**
2773 * Timer callback that calculates the CPU load since the last time it was
2774 * called.
2775 *
2776 * @param pVM The VM handle.
2777 * @param pTimer The timer.
2778 * @param pvUser NULL, unused.
2779 */
2780static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser)
2781{
2782 /*
2783 * Re-arm the timer first.
2784 */
2785 int rc = TMTimerSetMillies(pTimer, 1000);
2786 AssertLogRelRC(rc);
2787 NOREF(pvUser);
2788
2789 /*
2790 * Update the values for each CPU.
2791 */
2792 uint64_t cNsTotalAll = 0;
2793 uint64_t cNsExecutingAll = 0;
2794 uint64_t cNsHaltedAll = 0;
2795 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2796 {
2797 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2798
2799 /* Try get a stable data set. */
2800 uint32_t cTries = 3;
2801 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2802 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
2803 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
2804 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
2805 while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
2806 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
2807 {
2808 if (!--cTries)
2809 break;
2810 ASMNopPause();
2811 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2812 cNsTotal = pVCpu->tm.s.cNsTotal;
2813 cNsExecuting = pVCpu->tm.s.cNsExecuting;
2814 cNsHalted = pVCpu->tm.s.cNsHalted;
2815 }
2816
2817 /* Totals */
2818 cNsTotalAll += cNsTotal;
2819 cNsExecutingAll += cNsExecuting;
2820 cNsHaltedAll += cNsHalted;
2821
2822 /* Calc the PCTs and update the state. */
2823 tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
2824 }
2825
2826 /*
2827 * Update the value for all the CPUs.
2828 */
2829 tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
2830
2831 /** @todo Try add 1, 5 and 15 min load stats. */
2832
2833}
2834
2835#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
2836
2837/**
2838 * Gets the 5 char clock name for the info tables.
2839 *
2840 * @returns The name.
2841 * @param enmClock The clock.
2842 */
2843DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock)
2844{
2845 switch (enmClock)
2846 {
2847 case TMCLOCK_REAL: return "Real ";
2848 case TMCLOCK_VIRTUAL: return "Virt ";
2849 case TMCLOCK_VIRTUAL_SYNC: return "VrSy ";
2850 case TMCLOCK_TSC: return "TSC ";
2851 default: return "Bad ";
2852 }
2853}
2854
2855
2856/**
2857 * Display all timers.
2858 *
2859 * @param pVM VM Handle.
2860 * @param pHlp The info helpers.
2861 * @param pszArgs Arguments, ignored.
2862 */
2863static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2864{
2865 NOREF(pszArgs);
2866 pHlp->pfnPrintf(pHlp,
2867 "Timers (pVM=%p)\n"
2868 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
2869 pVM,
2870 sizeof(RTR3PTR) * 2, "pTimerR3 ",
2871 sizeof(int32_t) * 2, "offNext ",
2872 sizeof(int32_t) * 2, "offPrev ",
2873 sizeof(int32_t) * 2, "offSched ",
2874 "Time",
2875 "Expire",
2876 "HzHint",
2877 "State");
2878 tmTimerLock(pVM);
2879 for (PTMTIMERR3 pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
2880 {
2881 pHlp->pfnPrintf(pHlp,
2882 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
2883 pTimer,
2884 pTimer->offNext,
2885 pTimer->offPrev,
2886 pTimer->offScheduleNext,
2887 tmR3Get5CharClockName(pTimer->enmClock),
2888 TMTimerGet(pTimer),
2889 pTimer->u64Expire,
2890 pTimer->uHzHint,
2891 tmTimerState(pTimer->enmState),
2892 pTimer->pszDesc);
2893 }
2894 tmTimerUnlock(pVM);
2895}
2896
2897
2898/**
2899 * Display all active timers.
2900 *
2901 * @param pVM VM Handle.
2902 * @param pHlp The info helpers.
2903 * @param pszArgs Arguments, ignored.
2904 */
2905static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2906{
2907 NOREF(pszArgs);
2908 pHlp->pfnPrintf(pHlp,
2909 "Active Timers (pVM=%p)\n"
2910 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
2911 pVM,
2912 sizeof(RTR3PTR) * 2, "pTimerR3 ",
2913 sizeof(int32_t) * 2, "offNext ",
2914 sizeof(int32_t) * 2, "offPrev ",
2915 sizeof(int32_t) * 2, "offSched ",
2916 "Time",
2917 "Expire",
2918 "HzHint",
2919 "State");
2920 for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
2921 {
2922 tmTimerLock(pVM);
2923 for (PTMTIMERR3 pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
2924 pTimer;
2925 pTimer = TMTIMER_GET_NEXT(pTimer))
2926 {
2927 pHlp->pfnPrintf(pHlp,
2928 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
2929 pTimer,
2930 pTimer->offNext,
2931 pTimer->offPrev,
2932 pTimer->offScheduleNext,
2933 tmR3Get5CharClockName(pTimer->enmClock),
2934 TMTimerGet(pTimer),
2935 pTimer->u64Expire,
2936 pTimer->uHzHint,
2937 tmTimerState(pTimer->enmState),
2938 pTimer->pszDesc);
2939 }
2940 tmTimerUnlock(pVM);
2941 }
2942}
2943
2944
2945/**
2946 * Display all clocks.
2947 *
2948 * @param pVM VM Handle.
2949 * @param pHlp The info helpers.
2950 * @param pszArgs Arguments, ignored.
2951 */
2952static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2953{
2954 NOREF(pszArgs);
2955
2956 /*
2957 * Read the times first to avoid more than necessary time variation.
2958 */
2959 const uint64_t u64Virtual = TMVirtualGet(pVM);
2960 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
2961 const uint64_t u64Real = TMRealGet(pVM);
2962
2963 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2964 {
2965 PVMCPU pVCpu = &pVM->aCpus[i];
2966 uint64_t u64TSC = TMCpuTickGet(pVCpu);
2967
2968 /*
2969 * TSC
2970 */
2971 pHlp->pfnPrintf(pHlp,
2972 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s%s",
2973 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
2974 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused",
2975 pVM->tm.s.fTSCVirtualized ? " - virtualized" : "");
2976 if (pVM->tm.s.fTSCUseRealTSC)
2977 {
2978 pHlp->pfnPrintf(pHlp, " - real tsc");
2979 if (pVCpu->tm.s.offTSCRawSrc)
2980 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
2981 }
2982 else
2983 pHlp->pfnPrintf(pHlp, " - virtual clock");
2984 pHlp->pfnPrintf(pHlp, "\n");
2985 }
2986
2987 /*
2988 * virtual
2989 */
2990 pHlp->pfnPrintf(pHlp,
2991 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
2992 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
2993 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
2994 if (pVM->tm.s.fVirtualWarpDrive)
2995 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
2996 pHlp->pfnPrintf(pHlp, "\n");
2997
2998 /*
2999 * virtual sync
3000 */
3001 pHlp->pfnPrintf(pHlp,
3002 "VirtSync: %18RU64 (%#016RX64) %s%s",
3003 u64VirtualSync, u64VirtualSync,
3004 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
3005 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
3006 if (pVM->tm.s.offVirtualSync)
3007 {
3008 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
3009 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
3010 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
3011 }
3012 pHlp->pfnPrintf(pHlp, "\n");
3013
3014 /*
3015 * real
3016 */
3017 pHlp->pfnPrintf(pHlp,
3018 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
3019 u64Real, u64Real, TMRealGetFreq(pVM));
3020}
3021
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette