/* $Id: TM.cpp 91988 2021-10-22 03:23:54Z vboxsync $ */ /** @file * TM - Time Manager. */ /* * Copyright (C) 2006-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /** @page pg_tm TM - The Time Manager * * The Time Manager abstracts the CPU clocks and manages timers used by the VMM, * device and drivers. * * @see grp_tm * * * @section sec_tm_clocks Clocks * * There are currently 4 clocks: * - Virtual (guest). * - Synchronous virtual (guest). * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a * function of the virtual clock. * - Real (host). This is only used for display updates atm. * * The most important clocks are the three first ones and of these the second is * the most interesting. * * * The synchronous virtual clock is tied to the virtual clock except that it * will take into account timer delivery lag caused by host scheduling. It will * normally never advance beyond the head timer, and when lagging too far behind * it will gradually speed up to catch up with the virtual clock. All devices * implementing time sources accessible to and used by the guest is using this * clock (for timers and other things). This ensures consistency between the * time sources. * * The virtual clock is implemented as an offset to a monotonic, high * resolution, wall clock. The current time source is using the RTTimeNanoTS() * machinery based upon the Global Info Pages (GIP), that is, we're using TSC * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is * a fairly high res clock that works in all contexts and on all hosts. The * virtual clock is paused when the VM isn't in the running state. * * The CPU tick (TSC) is normally virtualized as a function of the synchronous * virtual clock, where the frequency defaults to the host cpu frequency (as we * measure it). In this mode it is possible to configure the frequency. Another * (non-default) option is to use the raw unmodified host TSC values. And yet * another, to tie it to time spent executing guest code. All these things are * configurable should non-default behavior be desirable. * * The real clock is a monotonic clock (when available) with relatively low * resolution, though this a bit host specific. Note that we're currently not * servicing timers using the real clock when the VM is not running, this is * simply because it has not been needed yet therefore not implemented. * * * @subsection subsec_tm_timesync Guest Time Sync / UTC time * * Guest time syncing is primarily taken care of by the VMM device. The * principle is very simple, the guest additions periodically asks the VMM * device what the current UTC time is and makes adjustments accordingly. * * A complicating factor is that the synchronous virtual clock might be doing * catchups and the guest perception is currently a little bit behind the world * but it will (hopefully) be catching up soon as we're feeding timer interrupts * at a slightly higher rate. Adjusting the guest clock to the current wall * time in the real world would be a bad idea then because the guest will be * advancing too fast and run ahead of world time (if the catchup works out). * To solve this problem TM provides the VMM device with an UTC time source that * gets adjusted with the current lag, so that when the guest eventually catches * up the lag it will be showing correct real world time. * * * @section sec_tm_timers Timers * * The timers can use any of the TM clocks described in the previous section. * Each clock has its own scheduling facility, or timer queue if you like. * There are a few factors which makes it a bit complex. First, there is the * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there * is the timer thread that periodically checks whether any timers has expired * without EMT noticing. On the API level, all but the create and save APIs * must be multithreaded. EMT will always run the timers. * * The design is using a doubly linked list of active timers which is ordered * by expire date. This list is only modified by the EMT thread. Updates to * the list are batched in a singly linked list, which is then processed by the * EMT thread at the first opportunity (immediately, next time EMT modifies a * timer on that clock, or next timer timeout). Both lists are offset based and * all the elements are therefore allocated from the hyper heap. * * For figuring out when there is need to schedule and run timers TM will: * - Poll whenever somebody queries the virtual clock. * - Poll the virtual clocks from the EM and REM loops. * - Poll the virtual clocks from trap exit path. * - Poll the virtual clocks and calculate first timeout from the halt loop. * - Employ a thread which periodically (100Hz) polls all the timer queues. * * * @image html TMTIMER-Statechart-Diagram.gif * * @section sec_tm_timer Logging * * Level 2: Logs a most of the timer state transitions and queue servicing. * Level 3: Logs a few oddments. * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events. * */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_TM #ifdef DEBUG_bird # define DBGFTRACE_DISABLED /* annoying */ #endif #include #include /* for SUPGetCpuHzFromGip from sup.h */ #include #include #include #include #include #include #include #include #include #include #include "TMInternal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "TMInline.h" /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** The current saved state version.*/ #define TM_SAVED_STATE_VERSION 3 /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static bool tmR3HasFixedTSC(PVM pVM); static uint64_t tmR3CalibrateTSC(void); static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM); static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass); #ifdef VBOX_WITH_STATISTICS static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers); #endif static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick); static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent); #ifndef VBOX_WITHOUT_NS_ACCOUNTING static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser); #endif static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs); static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData); static const char *tmR3GetTSCModeName(PVM pVM); static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode); /** * Initializes the TM. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMM_INT_DECL(int) TMR3Init(PVM pVM) { LogFlow(("TMR3Init:\n")); /* * Assert alignment and sizes. */ AssertCompileMemberAlignment(VM, tm.s, 32); AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding)); AssertCompileMemberAlignment(TM, VirtualSyncLock, 8); /* * Init the structure. */ pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */ int rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock"); AssertLogRelRCReturn(rc, rc); strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].szName, "virtual"); strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].szName, "virtual_sync"); /* Underscore is for STAM ordering issue. */ strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_REAL].szName, "real"); strcpy(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].szName, "tsc"); for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++) { Assert(pVM->tm.s.aTimerQueues[i].szName[0] != '\0'); pVM->tm.s.aTimerQueues[i].enmClock = (TMCLOCK)i; pVM->tm.s.aTimerQueues[i].u64Expire = INT64_MAX; pVM->tm.s.aTimerQueues[i].idxActive = UINT32_MAX; pVM->tm.s.aTimerQueues[i].idxSchedule = UINT32_MAX; pVM->tm.s.aTimerQueues[i].idxFreeHint = 1; pVM->tm.s.aTimerQueues[i].fBeingProcessed = false; pVM->tm.s.aTimerQueues[i].fCannotGrow = false; pVM->tm.s.aTimerQueues[i].hThread = NIL_RTTHREAD; pVM->tm.s.aTimerQueues[i].hWorkerEvt = NIL_SUPSEMEVENT; rc = PDMR3CritSectInit(pVM, &pVM->tm.s.aTimerQueues[i].TimerLock, RT_SRC_POS, "TM %s queue timer lock", pVM->tm.s.aTimerQueues[i].szName); AssertLogRelRCReturn(rc, rc); rc = PDMR3CritSectRwInit(pVM, &pVM->tm.s.aTimerQueues[i].AllocLock, RT_SRC_POS, "TM %s queue alloc lock", pVM->tm.s.aTimerQueues[i].szName); AssertLogRelRCReturn(rc, rc); } /* * We directly use the GIP to calculate the virtual time. We map the * the GIP into the guest context so we can do this calculation there * as well and save costly world switches. */ PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage; pVM->tm.s.pvGIPR3 = (void *)pGip; AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED); AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16), ("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION), VERR_TM_GIP_VERSION); RTHCPHYS HCPhysGIP; rc = SUPR3GipGetPhys(&HCPhysGIP); AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc); /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */ if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC && pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */) return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS, N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"), pGip->u32UpdateIntervalNS, pGip->u32UpdateHz); /* Log GIP info that may come in handy. */ LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d (%s) fGetGipCpu=%#x cCpus=%d\n", pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS, pGip->enmUseTscDelta, SUPGetGIPTscDeltaModeName(pGip), pGip->fGetGipCpu, pGip->cCpus)); LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n", pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip))); for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++) { uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet]; if (iGipCpu != UINT16_MAX) LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n", iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta, pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors)); } /* * Setup the VirtualGetRaw backend. */ pVM->tm.s.pfnVirtualGetRawR3 = tmVirtualNanoTSRediscover; pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover; pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBad; pVM->tm.s.VirtualGetRawDataR3.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex; pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev; pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev); AssertRelease(pVM->tm.s.VirtualGetRawDataR0.pu64Prev); /* The rest is done in TMR3InitFinalize() since it's too early to call PDM. */ /* * Get our CFGM node, create it if necessary. */ PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM"); if (!pCfgHandle) { rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle); AssertRCReturn(rc, rc); } /* * Specific errors about some obsolete TM settings (remove after 2015-12-03). */ if (CFGMR3Exists(pCfgHandle, "TSCVirtualized")) return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS, N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"TSCMode\" setting instead.")); if (CFGMR3Exists(pCfgHandle, "UseRealTSC")) return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS, N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"TSCMode\" setting instead.")); if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC")) return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS, N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"TSCMode\" setting instead.")); /* * Validate the rest of the TM settings. */ rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/", "TSCMode|" "TSCModeSwitchAllowed|" "TSCTicksPerSecond|" "TSCTiedToExecution|" "TSCNotTiedToHalt|" "ScheduleSlack|" "CatchUpStopThreshold|" "CatchUpGiveUpThreshold|" "CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|" "CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|" "CatchUpStartThreshold8|CatchUpStartThreshold9|" "CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|" "CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|" "CatchUpPrecentage8|CatchUpPrecentage9|" "UTCOffset|" "UTCTouchFileOnJump|" "WarpDrivePercentage|" "HostHzMax|" "HostHzFudgeFactorTimerCpu|" "HostHzFudgeFactorOtherCpu|" "HostHzFudgeFactorCatchUp100|" "HostHzFudgeFactorCatchUp200|" "HostHzFudgeFactorCatchUp400|" "TimerMillies" , "", "TM", 0); if (RT_FAILURE(rc)) return rc; /* * Determine the TSC configuration and frequency. */ /** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config} * The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic. * The default depends on the VM configuration and the capabilities of the * host CPU. Other config options or runtime changes may override the TSC * mode specified here. */ char szTSCMode[32]; rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode)); if (rc == VERR_CFGM_VALUE_NOT_FOUND) { /** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so * fall back on the more expensive emulated mode. With the current TSC handling * (frequent switching between offsetted mode and taking VM exits, on all VCPUs * without any kind of coordination) will lead to inconsistent TSC behavior with * guest SMP, including TSC going backwards. */ pVM->tm.s.enmTSCMode = NEMR3NeedSpecialTscMode(pVM) ? TMTSCMODE_NATIVE_API : pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED; } else if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\"")); else { if (!RTStrCmp(szTSCMode, "VirtTSCEmulated")) pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED; else if (!RTStrCmp(szTSCMode, "RealTSCOffset")) pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET; else if (!RTStrCmp(szTSCMode, "Dynamic")) pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC; else return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode); if (NEMR3NeedSpecialTscMode(pVM)) { LogRel(("TM: NEM overrides the /TM/TSCMode=%s settings.\n", szTSCMode)); pVM->tm.s.enmTSCMode = TMTSCMODE_NATIVE_API; } } /** * @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed * at runtime} * When using paravirtualized guests, we dynamically switch TSC modes to a more * optimal one for performance. This setting allows overriding this behaviour. */ rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed); if (rc == VERR_CFGM_VALUE_NOT_FOUND) { /* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */ pVM->tm.s.fTSCModeSwitchAllowed = true; } else if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\"")); if (pVM->tm.s.fTSCModeSwitchAllowed && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API) { LogRel(("TM: NEM overrides the /TM/TSCModeSwitchAllowed setting.\n")); pVM->tm.s.fTSCModeSwitchAllowed = false; } /** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP} * The number of TSC ticks per second (i.e. the TSC frequency). This will * override enmTSCMode. */ rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond); if (rc == VERR_CFGM_VALUE_NOT_FOUND) { pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC(); if ( ( pVM->tm.s.enmTSCMode == TMTSCMODE_DYNAMIC || pVM->tm.s.enmTSCMode == TMTSCMODE_VIRT_TSC_EMULATED) && pVM->tm.s.cTSCTicksPerSecond >= _4G) { pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */ pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED; } } else if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\"")); else if ( pVM->tm.s.cTSCTicksPerSecond < _1M || pVM->tm.s.cTSCTicksPerSecond >= _4G) return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"), pVM->tm.s.cTSCTicksPerSecond); else if (pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API) pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED; else { LogRel(("TM: NEM overrides the /TM/TSCTicksPerSecond=%RU64 setting.\n", pVM->tm.s.cTSCTicksPerSecond)); pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC(); } /** @cfgm{/TM/TSCTiedToExecution, bool, false} * Whether the TSC should be tied to execution. This will exclude most of the * virtualization overhead, but will by default include the time spent in the * halt state (see TM/TSCNotTiedToHalt). This setting will override all other * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should * be used avoided or used with great care. Note that this will only work right * together with VT-x or AMD-V, and with a single virtual CPU. */ rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false); if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\"")); if (pVM->tm.s.fTSCTiedToExecution && pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API) return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("/TM/TSCTiedToExecution is not supported in NEM mode!")); if (pVM->tm.s.fTSCTiedToExecution) pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED; /** @cfgm{/TM/TSCNotTiedToHalt, bool, false} * This is used with /TM/TSCTiedToExecution to control how TSC operates * accross HLT instructions. When true HLT is considered execution time and * TSC continues to run, while when false (default) TSC stops during halt. */ rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false); if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\"")); /* * Configure the timer synchronous virtual time. */ /** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000} * Scheduling slack when processing timers. */ rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack); if (rc == VERR_CFGM_VALUE_NOT_FOUND) pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */ else if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\"")); /** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000} * When to stop a catch-up, considering it successful. */ rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold); if (rc == VERR_CFGM_VALUE_NOT_FOUND) pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */ else if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\"")); /** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000} * When to give up a catch-up attempt. */ rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold); if (rc == VERR_CFGM_VALUE_NOT_FOUND) pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */ else if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\"")); /** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various} * The catch-up percent for a given period. */ /** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX} * The catch-up period threshold, or if you like, when a period starts. */ #define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \ do \ { \ uint64_t u64; \ rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \ if (rc == VERR_CFGM_VALUE_NOT_FOUND) \ u64 = UINT64_C(DefStart); \ else if (RT_FAILURE(rc)) \ return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \ if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \ || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \ return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \ pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \ rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \ if (rc == VERR_CFGM_VALUE_NOT_FOUND) \ pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \ else if (RT_FAILURE(rc)) \ return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \ } while (0) /* This needs more tuning. Not sure if we really need so many period and be so gentle. */ TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */ TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */ TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */ TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */ TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */ TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */ TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */ TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */ TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */ TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */ AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10); #undef TM_CFG_PERIOD /* * Configure real world time (UTC). */ /** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0} * The UTC offset. This is used to put the guest back or forwards in time. */ rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC); if (rc == VERR_CFGM_VALUE_NOT_FOUND) pVM->tm.s.offUTC = 0; /* ns */ else if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\"")); /** @cfgm{/TM/UTCTouchFileOnJump, string, none} * File to be written to everytime the host time jumps. */ rc = CFGMR3QueryStringAlloc(pCfgHandle, "UTCTouchFileOnJump", &pVM->tm.s.pszUtcTouchFileOnJump); if (rc == VERR_CFGM_VALUE_NOT_FOUND) pVM->tm.s.pszUtcTouchFileOnJump = NULL; else if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"UTCTouchFileOnJump\"")); /* * Setup the warp drive. */ /** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100} * The warp drive percentage, 100% is normal speed. This is used to speed up * or slow down the virtual clock, which can be useful for fast forwarding * borring periods during tests. */ rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); if (rc == VERR_CFGM_VALUE_NOT_FOUND) rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */ if (rc == VERR_CFGM_VALUE_NOT_FOUND) pVM->tm.s.u32VirtualWarpDrivePercentage = 100; else if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\"")); else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000) return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"), pVM->tm.s.u32VirtualWarpDrivePercentage); pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100; if (pVM->tm.s.fVirtualWarpDrive) { if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API) LogRel(("TM: Warp-drive active, escept for TSC which is in NEM mode. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage)); else { pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED; LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage)); } } /* * Gather the Host Hz configuration values. */ rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000); if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\"")); rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111); if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\"")); rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110); if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\"")); rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300); if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\"")); rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250); if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\"")); rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200); if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\"")); /* * Finally, setup and report. */ pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode; CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD); LogRel(("TM: cTSCTicksPerSecond=%'RU64 (%#RX64) enmTSCMode=%d (%s)\n" "TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n", pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt)); /* * Start the timer (guard against REM not yielding). */ /** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10} * The watchdog timer interval. */ uint32_t u32Millies; rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies); if (rc == VERR_CFGM_VALUE_NOT_FOUND) u32Millies = VM_IS_HM_ENABLED(pVM) ? 1000 : 10; else if (RT_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to query uint32_t value \"TimerMillies\"")); rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM); if (RT_FAILURE(rc)) { AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc)); return rc; } Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies)); pVM->tm.s.u32TimerMillies = u32Millies; /* * Register saved state. */ rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8, NULL, NULL, NULL, NULL, tmR3Save, NULL, NULL, tmR3Load, NULL); if (RT_FAILURE(rc)) return rc; /* * Register statistics. */ STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations)."); STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen)."); STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations)."); STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen)."); STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)"); STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with."); STAM_REL_REG( pVM,(void*)&pVM->tm.s.HzHint.s.uMax, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint."); for (uint32_t i = 0; i < RT_ELEMENTS(pVM->tm.s.aTimerQueues); i++) { rc = STAMR3RegisterF(pVM, (void *)&pVM->tm.s.aTimerQueues[i].uMaxHzHint, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_HZ, "", "/TM/MaxHzHint/%s", pVM->tm.s.aTimerQueues[i].szName); AssertRC(rc); } #ifdef VBOX_WITH_STATISTICS STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps)."); STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp."); STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps)."); STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp."); STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo."); STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue."); STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].StatDo,STAMTYPE_PROFILE,"/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue."); STAM_REG(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL].StatDo, STAMTYPE_PROFILE, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue."); STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls."); STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set."); STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set."); STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired."); STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run."); STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path."); STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue."); STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue."); STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3."); STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC."); STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT."); STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT."); STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling."); STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken."); STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3."); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC."); STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers."); STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers."); STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken."); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync)."); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync)."); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers."); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers."); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER"); STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED"); STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3."); STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC."); STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running."); STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet."); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called."); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp ."); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set."); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock."); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx."); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock."); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx."); STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called."); STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called."); STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF."); STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked."); STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower."); STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%."); STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%."); STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%."); STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed."); STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking."); STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking."); STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active."); STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet."); STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value ."); STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused."); STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed."); #endif /* VBOX_WITH_STATISTICS */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; STAMR3RegisterF(pVM, &pVCpu->tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i); #ifndef VBOX_WITHOUT_NS_ACCOUNTING # if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS) STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i); # endif STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsTotalStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.cNsOtherStat, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i); STAMR3RegisterF(pVM, &pVCpu->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i); #endif } #ifndef VBOX_WITHOUT_NS_ACCOUNTING STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting"); STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted"); STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther"); #endif #ifdef VBOX_WITH_STATISTICS STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up."); STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator."); STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)"); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT."); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned."); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)"); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered."); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run."); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers."); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet)."); STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)"); for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++) { STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i); STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i); STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i); STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i); } #endif /* VBOX_WITH_STATISTICS */ /* * Register info handlers. */ DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT); DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT); DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT); DBGFR3InfoRegisterInternalArgv(pVM, "cpuload", "Display the CPU load stats (--help for details).", tmR3InfoCpuLoad, 0); return VINF_SUCCESS; } /** * Checks if the host CPU has a fixed TSC frequency. * * @returns true if it has, false if it hasn't. * * @remarks This test doesn't bother with very old CPUs that don't do power * management or any other stuff that might influence the TSC rate. * This isn't currently relevant. */ static bool tmR3HasFixedTSC(PVM pVM) { /* * ASSUME that if the GIP is in invariant TSC mode, it's because the CPU * actually has invariant TSC. */ PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage; if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC) return true; /* * Go by features and model info from the CPUID instruction. */ if (ASMHasCpuId()) { uint32_t uEAX, uEBX, uECX, uEDX; /* * By feature. (Used to be AMD specific, intel seems to have picked it up.) */ ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX); if (uEAX >= 0x80000007 && ASMIsValidExtRange(uEAX)) { ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX); if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */ && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */ return true; } /* * By model. */ if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD) { /* * AuthenticAMD - Check for APM support and that TscInvariant is set. * * This test isn't correct with respect to fixed/non-fixed TSC and * older models, but this isn't relevant since the result is currently * only used for making a decision on AMD-V models. */ #if 0 /* Promoted to generic */ ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX); if (uEAX >= 0x80000007) { ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX); if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */ && ( pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */ || pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)) return true; } #endif } else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL) { /* * GenuineIntel - Check the model number. * * This test is lacking in the same way and for the same reasons * as the AMD test above. */ /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */ ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX); unsigned uModel = (uEAX >> 4) & 0x0f; unsigned uFamily = (uEAX >> 8) & 0x0f; if (uFamily == 0x0f) uFamily += (uEAX >> 20) & 0xff; if (uFamily >= 0x06) uModel += ((uEAX >> 16) & 0x0f) << 4; if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03) || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e)) return true; } else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA) { /* * CentaurHauls - Check the model, family and stepping. * * This only checks for VIA CPU models Nano X2, Nano X3, * Eden X2 and QuadCore. */ /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */ ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX); unsigned uStepping = (uEAX & 0x0f); unsigned uModel = (uEAX >> 4) & 0x0f; unsigned uFamily = (uEAX >> 8) & 0x0f; if ( uFamily == 0x06 && uModel == 0x0f && uStepping >= 0x0c && uStepping <= 0x0f) return true; } else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_SHANGHAI) { /* * Shanghai - Check the model, family and stepping. */ /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */ ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX); unsigned uFamily = (uEAX >> 8) & 0x0f; if ( uFamily == 0x06 || uFamily == 0x07) { return true; } } } return false; } /** * Calibrate the CPU tick. * * @returns Number of ticks per second. */ static uint64_t tmR3CalibrateTSC(void) { uint64_t u64Hz; /* * Use GIP when available. Prefere the nominal one, no need to wait for it. */ PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage; if (pGip) { u64Hz = pGip->u64CpuHz; if (u64Hz < _1T && u64Hz > _1M) return u64Hz; AssertFailed(); /* This shouldn't happen. */ u64Hz = SUPGetCpuHzFromGip(pGip); if (u64Hz < _1T && u64Hz > _1M) return u64Hz; AssertFailed(); /* This shouldn't happen. */ } /* else: This should only happen in fake SUPLib mode, which we don't really support any more... */ /* Call this once first to make sure it's initialized. */ RTTimeNanoTS(); /* * Yield the CPU to increase our chances of getting * a correct value. */ RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */ static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 }; uint64_t au64Samples[5]; unsigned i; for (i = 0; i < RT_ELEMENTS(au64Samples); i++) { RTMSINTERVAL cMillies; int cTries = 5; uint64_t u64Start = ASMReadTSC(); uint64_t u64End; uint64_t StartTS = RTTimeNanoTS(); uint64_t EndTS; do { RTThreadSleep(s_auSleep[i]); u64End = ASMReadTSC(); EndTS = RTTimeNanoTS(); cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000); } while ( cMillies == 0 /* the sleep may be interrupted... */ || (cMillies < 20 && --cTries > 0)); uint64_t u64Diff = u64End - u64Start; au64Samples[i] = (u64Diff * 1000) / cMillies; AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i)); } /* * Discard the highest and lowest results and calculate the average. */ unsigned iHigh = 0; unsigned iLow = 0; for (i = 1; i < RT_ELEMENTS(au64Samples); i++) { if (au64Samples[i] < au64Samples[iLow]) iLow = i; if (au64Samples[i] > au64Samples[iHigh]) iHigh = i; } au64Samples[iLow] = 0; au64Samples[iHigh] = 0; u64Hz = au64Samples[0]; for (i = 1; i < RT_ELEMENTS(au64Samples); i++) u64Hz += au64Samples[i]; u64Hz /= RT_ELEMENTS(au64Samples) - 2; return u64Hz; } /** * Finalizes the TM initialization. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM) { int rc; /* * Resolve symbols. */ rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataR0.pfnBad); AssertRCReturn(rc, rc); rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataR0.pfnBadCpuIndex); AssertRCReturn(rc, rc); rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover); AssertRCReturn(rc, rc); pVM->tm.s.pfnVirtualGetRawR0 = pVM->tm.s.VirtualGetRawDataR0.pfnRediscover; #ifndef VBOX_WITHOUT_NS_ACCOUNTING /* * Create a timer for refreshing the CPU load stats. */ TMTIMERHANDLE hTimer; rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, TMTIMER_FLAGS_NO_RING0, "CPU Load Timer", &hTimer); if (RT_SUCCESS(rc)) rc = TMTimerSetMillies(pVM, hTimer, 1000); #endif /* * GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override). */ pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM) && !VM_IS_RAW_MODE_ENABLED(pVM); LogRel(("TM: TMR3InitFinalize: fTSCModeSwitchAllowed=%RTbool\n", pVM->tm.s.fTSCModeSwitchAllowed)); /* * Grow the virtual & real timer tables so we've got sufficient * space for dynamically created timers. We cannot allocate more * after ring-0 init completes. */ static struct { uint32_t idxQueue, cExtra; } s_aExtra[] = { {TMCLOCK_VIRTUAL, 128}, {TMCLOCK_REAL, 32} }; for (uint32_t i = 0; i < RT_ELEMENTS(s_aExtra); i++) { PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[s_aExtra[i].idxQueue]; if (s_aExtra[i].cExtra > pQueue->cTimersFree) { PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED); uint32_t cTimersAlloc = pQueue->cTimersAlloc + s_aExtra[i].cExtra - pQueue->cTimersFree; rc = VMMR3CallR0Emt(pVM, VMMGetCpu(pVM), VMMR0_DO_TM_GROW_TIMER_QUEUE, RT_MAKE_U64(cTimersAlloc, s_aExtra[i].idxQueue), NULL); AssertLogRelMsgReturn(RT_SUCCESS(rc), ("rc=%Rrc cTimersAlloc=%u %s\n", rc, cTimersAlloc, pQueue->szName), rc); PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); } } #ifdef VBOX_WITH_STATISTICS /* * Register timer statistics now that we've fixed the timer table sizes. */ for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) { pVM->tm.s.aTimerQueues[idxQueue].fCannotGrow = true; tmR3TimerQueueRegisterStats(pVM, &pVM->tm.s.aTimerQueues[idxQueue], UINT32_MAX); } #endif return rc; } /** * Applies relocations to data and code managed by this * component. This function will be called at init and * whenever the VMM need to relocate it self inside the GC. * * @param pVM The cross context VM structure. * @param offDelta Relocation delta relative to old location. */ VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta) { LogFlow(("TMR3Relocate\n")); RT_NOREF(pVM, offDelta); } /** * Terminates the TM. * * Termination means cleaning up and freeing all resources, * the VM it self is at this point powered off or suspended. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMM_INT_DECL(int) TMR3Term(PVM pVM) { if (pVM->tm.s.pTimer) { int rc = RTTimerDestroy(pVM->tm.s.pTimer); AssertRC(rc); pVM->tm.s.pTimer = NULL; } return VINF_SUCCESS; } /** * The VM is being reset. * * For the TM component this means that a rescheduling is preformed, * the FF is cleared and but without running the queues. We'll have to * check if this makes sense or not, but it seems like a good idea now.... * * @param pVM The cross context VM structure. */ VMM_INT_DECL(void) TMR3Reset(PVM pVM) { LogFlow(("TMR3Reset:\n")); VM_ASSERT_EMT(pVM); /* * Abort any pending catch up. * This isn't perfect... */ if (pVM->tm.s.fVirtualSyncCatchUp) { const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM); const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM); if (pVM->tm.s.fVirtualSyncCatchUp) { STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c); const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp; const uint64_t offNew = offVirtualNow - offVirtualSyncNow; Assert(offOld <= offNew); ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew); ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew); ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false); LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew)); } } /* * Process the queues. */ for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) { PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue]; PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); tmTimerQueueSchedule(pVM, pQueue, pQueue); PDMCritSectLeave(pVM, &pQueue->TimerLock); } #ifdef VBOX_STRICT tmTimerQueuesSanityChecks(pVM, "TMR3Reset"); #endif PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu]; VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */ /* * Switch TM TSC mode back to the original mode after a reset for * paravirtualized guests that alter the TM TSC mode during operation. * We're already in an EMT rendezvous at this point. */ if ( pVM->tm.s.fTSCModeSwitchAllowed && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode) { VM_ASSERT_EMT0(pVM); tmR3CpuTickParavirtDisable(pVM, pVM->apCpusR3[0], NULL /* pvData */); } Assert(!GIMIsParavirtTscEnabled(pVM)); pVM->tm.s.fParavirtTscEnabled = false; /* * Reset TSC to avoid a Windows 8+ bug (see @bugref{8926}). If Windows * sees TSC value beyond 0x40000000000 at startup, it will reset the * TSC on boot-up CPU only, causing confusion and mayhem with SMP. */ VM_ASSERT_EMT0(pVM); uint64_t offTscRawSrc; switch (pVM->tm.s.enmTSCMode) { case TMTSCMODE_REAL_TSC_OFFSET: offTscRawSrc = SUPReadTsc(); break; case TMTSCMODE_DYNAMIC: case TMTSCMODE_VIRT_TSC_EMULATED: offTscRawSrc = TMVirtualSyncGetNoCheck(pVM); offTscRawSrc = ASMMultU64ByU32DivByU32(offTscRawSrc, pVM->tm.s.cTSCTicksPerSecond, TMCLOCK_FREQ_VIRTUAL); break; case TMTSCMODE_NATIVE_API: /** @todo NEM TSC reset on reset for Windows8+ bug workaround. */ offTscRawSrc = 0; break; default: AssertFailedBreakStmt(offTscRawSrc = 0); } for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; pVCpu->tm.s.offTSCRawSrc = offTscRawSrc; pVCpu->tm.s.u64TSC = 0; pVCpu->tm.s.u64TSCLastSeen = 0; } } /** * Execute state save operation. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pSSM SSM operation handle. */ static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM) { LogFlow(("tmR3Save:\n")); #ifdef VBOX_STRICT for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; Assert(!pVCpu->tm.s.fTSCTicking); } Assert(!pVM->tm.s.cVirtualTicking); Assert(!pVM->tm.s.fVirtualSyncTicking); Assert(!pVM->tm.s.cTSCsTicking); #endif /* * Save the virtual clocks. */ /* the virtual clock. */ SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL); SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual); /* the virtual timer synchronous clock. */ SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync); SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync); SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp); SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev); SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp); /* real time clock */ SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL); /* the cpu tick clock. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu)); } return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond); } /** * Execute state load operation. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pSSM SSM operation handle. * @param uVersion Data layout version. * @param uPass The data pass. */ static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { LogFlow(("tmR3Load:\n")); Assert(uPass == SSM_PASS_FINAL); NOREF(uPass); #ifdef VBOX_STRICT for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; Assert(!pVCpu->tm.s.fTSCTicking); } Assert(!pVM->tm.s.cVirtualTicking); Assert(!pVM->tm.s.fVirtualSyncTicking); Assert(!pVM->tm.s.cTSCsTicking); #endif /* * Validate version. */ if (uVersion != TM_SAVED_STATE_VERSION) { AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion)); return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } /* * Load the virtual clock. */ pVM->tm.s.cVirtualTicking = 0; /* the virtual clock. */ uint64_t u64Hz; int rc = SSMR3GetU64(pSSM, &u64Hz); if (RT_FAILURE(rc)) return rc; if (u64Hz != TMCLOCK_FREQ_VIRTUAL) { AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n", u64Hz, TMCLOCK_FREQ_VIRTUAL)); return VERR_SSM_VIRTUAL_CLOCK_HZ; } SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual); pVM->tm.s.u64VirtualOffset = 0; /* the virtual timer synchronous clock. */ pVM->tm.s.fVirtualSyncTicking = false; uint64_t u64; SSMR3GetU64(pSSM, &u64); pVM->tm.s.u64VirtualSync = u64; SSMR3GetU64(pSSM, &u64); pVM->tm.s.offVirtualSync = u64; SSMR3GetU64(pSSM, &u64); pVM->tm.s.offVirtualSyncGivenUp = u64; SSMR3GetU64(pSSM, &u64); pVM->tm.s.u64VirtualSyncCatchUpPrev = u64; bool f; SSMR3GetBool(pSSM, &f); pVM->tm.s.fVirtualSyncCatchUp = f; /* the real clock */ rc = SSMR3GetU64(pSSM, &u64Hz); if (RT_FAILURE(rc)) return rc; if (u64Hz != TMCLOCK_FREQ_REAL) { AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n", u64Hz, TMCLOCK_FREQ_REAL)); return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */ } /* the cpu tick clock. */ pVM->tm.s.cTSCsTicking = 0; pVM->tm.s.offTSCPause = 0; pVM->tm.s.u64LastPausedTSC = 0; for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; pVCpu->tm.s.fTSCTicking = false; SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC); if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC) pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC; if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET) pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */ } rc = SSMR3GetU64(pSSM, &u64Hz); if (RT_FAILURE(rc)) return rc; if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET) pVM->tm.s.cTSCTicksPerSecond = u64Hz; LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n", pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM))); /* Disabled as this isn't tested, also should this apply only if GIM is enabled etc. */ #if 0 /* * If the current host TSC frequency is incompatible with what is in the * saved state of the VM, fall back to emulating TSC and disallow TSC mode * switches during VM runtime (e.g. by GIM). */ if ( GIMIsEnabled(pVM) || pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET) { uint64_t uGipCpuHz; bool fRelax = RTSystemIsInsideVM(); bool fCompat = SUPIsTscFreqCompatible(pVM->tm.s.cTSCTicksPerSecond, &uGipCpuHz, fRelax); if (!fCompat) { pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED; pVM->tm.s.fTSCModeSwitchAllowed = false; if (g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC) { LogRel(("TM: TSC frequency incompatible! uGipCpuHz=%#RX64 (%'RU64) enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n", uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed)); } else { LogRel(("TM: GIP is async, enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n", uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed)); } } } #endif /* * Make sure timers get rescheduled immediately. */ PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu]; VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER); return VINF_SUCCESS; } #ifdef VBOX_WITH_STATISTICS /** * Register statistics for a timer. * * @param pVM The cross context VM structure. * @param pQueue The queue the timer belongs to. * @param pTimer The timer to register statistics for. */ static void tmR3TimerRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer) { STAMR3RegisterF(pVM, &pTimer->StatTimer, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, pQueue->szName, "/TM/Timers/%s", pTimer->szName); STAMR3RegisterF(pVM, &pTimer->StatCritSectEnter, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, "", "/TM/Timers/%s/CritSectEnter", pTimer->szName); STAMR3RegisterF(pVM, &pTimer->StatGet, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS, "", "/TM/Timers/%s/Get", pTimer->szName); STAMR3RegisterF(pVM, &pTimer->StatSetAbsolute, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS, "", "/TM/Timers/%s/SetAbsolute", pTimer->szName); STAMR3RegisterF(pVM, &pTimer->StatSetRelative, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS, "", "/TM/Timers/%s/SetRelative", pTimer->szName); STAMR3RegisterF(pVM, &pTimer->StatStop, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_CALLS, "", "/TM/Timers/%s/Stop", pTimer->szName); } /** * Deregister the statistics for a timer. */ static void tmR3TimerDeregisterStats(PVM pVM, PTMTIMER pTimer) { char szPrefix[128]; size_t cchPrefix = RTStrPrintf(szPrefix, sizeof(szPrefix), "/TM/Timers/%s/", pTimer->szName); STAMR3DeregisterByPrefix(pVM->pUVM, szPrefix); szPrefix[cchPrefix - 1] = '\0'; STAMR3Deregister(pVM->pUVM, szPrefix); } /** * Register statistics for all allocated timers in a queue. * * @param pVM The cross context VM structure. * @param pQueue The queue to register statistics for. * @param cTimers Number of timers to consider (in growth scenario). */ static void tmR3TimerQueueRegisterStats(PVM pVM, PTMTIMERQUEUE pQueue, uint32_t cTimers) { uint32_t idxTimer = RT_MIN(cTimers, pQueue->cTimersAlloc); while (idxTimer-- > 0) { PTMTIMER pTimer = &pQueue->paTimers[idxTimer]; TMTIMERSTATE enmState = pTimer->enmState; if (enmState > TMTIMERSTATE_INVALID && enmState < TMTIMERSTATE_DESTROY) tmR3TimerRegisterStats(pVM, pQueue, pTimer); } } #endif /* VBOX_WITH_STATISTICS */ /** * Internal TMR3TimerCreate worker. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param enmClock The timer clock. * @param fFlags TMTIMER_FLAGS_XXX. * @param pszName The timer name. * @param ppTimer Where to store the timer pointer on success. */ static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, uint32_t fFlags, const char *pszName, PPTMTIMERR3 ppTimer) { PTMTIMER pTimer; /* * Validate input. */ VM_ASSERT_EMT(pVM); AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0), VERR_INVALID_FLAGS); AssertPtrReturn(pszName, VERR_INVALID_POINTER); size_t const cchName = strlen(pszName); AssertMsgReturn(cchName < sizeof(pTimer->szName), ("timer name too long: %s\n", pszName), VERR_INVALID_NAME); AssertMsgReturn(cchName > 2, ("Too short timer name: %s\n", pszName), VERR_INVALID_NAME); AssertMsgReturn(enmClock >= TMCLOCK_REAL && enmClock < TMCLOCK_MAX, ("%d\n", enmClock), VERR_INVALID_PARAMETER); AssertReturn(enmClock != TMCLOCK_TSC, VERR_NOT_SUPPORTED); if (enmClock == TMCLOCK_VIRTUAL_SYNC) VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_WRONG_ORDER); /* * Exclusively lock the queue. * * Note! This means that it is not possible to allocate timers from a timer callback. */ PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[enmClock]; int rc = PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED); AssertRCReturn(rc, rc); /* * Allocate the timer. */ if (!pQueue->cTimersFree) { AssertReturn(!pQueue->fCannotGrow, VERR_TM_TIMER_QUEUE_CANNOT_GROW); uint32_t cTimersAlloc = pQueue->cTimersAlloc + 64; Assert(cTimersAlloc < _32K); rc = VMMR3CallR0Emt(pVM, VMMGetCpu(pVM), VMMR0_DO_TM_GROW_TIMER_QUEUE, RT_MAKE_U64(cTimersAlloc, (uint64_t)(pQueue - &pVM->tm.s.aTimerQueues[0])), NULL); AssertLogRelRCReturnStmt(rc, PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), rc); AssertReturnStmt(pQueue->cTimersAlloc >= cTimersAlloc, PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), VERR_TM_IPE_3); } /* Scan the array for free timers. */ pTimer = NULL; PTMTIMER const paTimers = pQueue->paTimers; uint32_t const cTimersAlloc = pQueue->cTimersAlloc; uint32_t idxTimer = pQueue->idxFreeHint; for (uint32_t iScan = 0; iScan < 2; iScan++) { while (idxTimer < cTimersAlloc) { if (paTimers[idxTimer].enmState == TMTIMERSTATE_FREE) { pTimer = &paTimers[idxTimer]; pQueue->idxFreeHint = idxTimer + 1; break; } idxTimer++; } if (pTimer != NULL) break; idxTimer = 1; } AssertLogRelMsgReturnStmt(pTimer != NULL, ("cTimersFree=%u cTimersAlloc=%u enmClock=%s\n", pQueue->cTimersFree, pQueue->cTimersAlloc, pQueue->szName), PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock), VERR_INTERNAL_ERROR_3); pQueue->cTimersFree -= 1; /* * Initialize it. */ Assert(idxTimer != 0); Assert(idxTimer <= TMTIMERHANDLE_TIMER_IDX_MASK); pTimer->hSelf = idxTimer | ((uintptr_t)(pQueue - &pVM->tm.s.aTimerQueues[0]) << TMTIMERHANDLE_QUEUE_IDX_SHIFT); Assert(!(pTimer->hSelf & TMTIMERHANDLE_RANDOM_MASK)); pTimer->hSelf |= (RTRandU64() & TMTIMERHANDLE_RANDOM_MASK); pTimer->u64Expire = 0; pTimer->enmState = TMTIMERSTATE_STOPPED; pTimer->idxScheduleNext = UINT32_MAX; pTimer->idxNext = UINT32_MAX; pTimer->idxPrev = UINT32_MAX; pTimer->fFlags = fFlags; pTimer->uHzHint = 0; pTimer->pvUser = NULL; pTimer->pCritSect = NULL; memcpy(pTimer->szName, pszName, cchName); pTimer->szName[cchName] = '\0'; #ifdef VBOX_STRICT tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate"); #endif PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); #ifdef VBOX_WITH_STATISTICS /* * Only register statistics if we're passed the no-realloc point. */ if (pQueue->fCannotGrow) tmR3TimerRegisterStats(pVM, pQueue, pTimer); #endif *ppTimer = pTimer; return VINF_SUCCESS; } /** * Creates a device timer. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns Device instance. * @param enmClock The clock to use on this timer. * @param pfnCallback Callback function. * @param pvUser The user argument to the callback. * @param fFlags Timer creation flags, see grp_tm_timer_flags. * @param pszName Timer name (will be copied). Max 31 chars. * @param phTimer Where to store the timer handle on success. */ VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock, PFNTMTIMERDEV pfnCallback, void *pvUser, uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer) { AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)), VERR_INVALID_FLAGS); /* * Allocate and init stuff. */ PTMTIMER pTimer; int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer); if (RT_SUCCESS(rc)) { pTimer->enmType = TMTIMERTYPE_DEV; pTimer->u.Dev.pfnTimer = pfnCallback; pTimer->u.Dev.pDevIns = pDevIns; pTimer->pvUser = pvUser; if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT)) pTimer->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns); *phTimer = pTimer->hSelf; Log(("TM: Created device timer %p clock %d callback %p '%s'\n", phTimer, enmClock, pfnCallback, pszName)); } return rc; } /** * Creates a USB device timer. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pUsbIns The USB device instance. * @param enmClock The clock to use on this timer. * @param pfnCallback Callback function. * @param pvUser The user argument to the callback. * @param fFlags Timer creation flags, see grp_tm_timer_flags. * @param pszName Timer name (will be copied). Max 31 chars. * @param phTimer Where to store the timer handle on success. */ VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock, PFNTMTIMERUSB pfnCallback, void *pvUser, uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer) { AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_NO_RING0)), VERR_INVALID_PARAMETER); /* * Allocate and init stuff. */ PTMTIMER pTimer; int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer); if (RT_SUCCESS(rc)) { pTimer->enmType = TMTIMERTYPE_USB; pTimer->u.Usb.pfnTimer = pfnCallback; pTimer->u.Usb.pUsbIns = pUsbIns; pTimer->pvUser = pvUser; //if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT)) //{ // if (pDevIns->pCritSectR3) // pTimer->pCritSect = pUsbIns->pCritSectR3; // else // pTimer->pCritSect = IOMR3GetCritSect(pVM); //} *phTimer = pTimer->hSelf; Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName)); } return rc; } /** * Creates a driver timer. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDrvIns Driver instance. * @param enmClock The clock to use on this timer. * @param pfnCallback Callback function. * @param pvUser The user argument to the callback. * @param fFlags Timer creation flags, see grp_tm_timer_flags. * @param pszName Timer name (will be copied). Max 31 chars. * @param phTimer Where to store the timer handle on success. */ VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser, uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer) { AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT | TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)), VERR_INVALID_FLAGS); /* * Allocate and init stuff. */ PTMTIMER pTimer; int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer); if (RT_SUCCESS(rc)) { pTimer->enmType = TMTIMERTYPE_DRV; pTimer->u.Drv.pfnTimer = pfnCallback; pTimer->u.Drv.pDrvIns = pDrvIns; pTimer->pvUser = pvUser; *phTimer = pTimer->hSelf; Log(("TM: Created device timer %p clock %d callback %p '%s'\n", *phTimer, enmClock, pfnCallback, pszName)); } return rc; } /** * Creates an internal timer. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param enmClock The clock to use on this timer. * @param pfnCallback Callback function. * @param pvUser User argument to be passed to the callback. * @param fFlags Timer creation flags, see grp_tm_timer_flags. * @param pszName Timer name (will be copied). Max 31 chars. * @param phTimer Where to store the timer handle on success. */ VMMR3DECL(int) TMR3TimerCreate(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, uint32_t fFlags, const char *pszName, PTMTIMERHANDLE phTimer) { AssertReturn(fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0), VERR_INVALID_FLAGS); AssertReturn((fFlags & (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0)) != (TMTIMER_FLAGS_RING0 | TMTIMER_FLAGS_NO_RING0), VERR_INVALID_FLAGS); /* * Allocate and init stuff. */ PTMTIMER pTimer; int rc = tmr3TimerCreate(pVM, enmClock, fFlags, pszName, &pTimer); if (RT_SUCCESS(rc)) { pTimer->enmType = TMTIMERTYPE_INTERNAL; pTimer->u.Internal.pfnTimer = pfnCallback; pTimer->pvUser = pvUser; *phTimer = pTimer->hSelf; Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszName)); } return rc; } /** * Destroy a timer * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pQueue The queue the timer is on. * @param pTimer Timer handle as returned by one of the create functions. */ static int tmR3TimerDestroy(PVMCC pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer) { bool fActive = false; bool fPending = false; AssertMsg( !pTimer->pCritSect || VMR3GetState(pVM) != VMSTATE_RUNNING || PDMCritSectIsOwner(pVM, pTimer->pCritSect), ("%s\n", pTimer->szName)); /* * The rest of the game happens behind the lock, just * like create does. All the work is done here. */ PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED); PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); for (int cRetries = 1000;; cRetries--) { /* * Change to the DESTROY state. */ TMTIMERSTATE const enmState = pTimer->enmState; Log2(("TMTimerDestroy: %p:{.enmState=%s, .szName='%s'} cRetries=%d\n", pTimer, tmTimerState(enmState), pTimer->szName, cRetries)); switch (enmState) { case TMTIMERSTATE_STOPPED: case TMTIMERSTATE_EXPIRED_DELIVER: break; case TMTIMERSTATE_ACTIVE: fActive = true; break; case TMTIMERSTATE_PENDING_STOP: case TMTIMERSTATE_PENDING_STOP_SCHEDULE: case TMTIMERSTATE_PENDING_RESCHEDULE: fActive = true; fPending = true; break; case TMTIMERSTATE_PENDING_SCHEDULE: fPending = true; break; /* * This shouldn't happen as the caller should make sure there are no races. */ case TMTIMERSTATE_EXPIRED_GET_UNLINK: case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE: case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE: AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName)); PDMCritSectLeave(pVM, &pQueue->TimerLock); PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName), VERR_TM_UNSTABLE_STATE); if (!RTThreadYield()) RTThreadSleep(1); PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED); PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); continue; /* * Invalid states. */ case TMTIMERSTATE_FREE: case TMTIMERSTATE_DESTROY: PDMCritSectLeave(pVM, &pQueue->TimerLock); PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE); default: AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, pTimer->szName)); PDMCritSectLeave(pVM, &pQueue->TimerLock); PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); return VERR_TM_UNKNOWN_STATE; } /* * Try switch to the destroy state. * This should always succeed as the caller should make sure there are no race. */ bool fRc; TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc); if (fRc) break; AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->szName)); PDMCritSectLeave(pVM, &pQueue->TimerLock); PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->szName), VERR_TM_UNSTABLE_STATE); PDMCritSectRwEnterExcl(pVM, &pQueue->AllocLock, VERR_IGNORED); PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); } /* * Unlink from the active list. */ if (fActive) { const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer); const PTMTIMER pNext = tmTimerGetNext(pQueue, pTimer); if (pPrev) tmTimerSetNext(pQueue, pPrev, pNext); else { tmTimerQueueSetHead(pQueue, pQueue, pNext); pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX; } if (pNext) tmTimerSetPrev(pQueue, pNext, pPrev); pTimer->idxNext = UINT32_MAX; pTimer->idxPrev = UINT32_MAX; } /* * Unlink from the schedule list by running it. */ if (fPending) { Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n")); STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a); Assert(pQueue->idxSchedule < pQueue->cTimersAlloc); tmTimerQueueSchedule(pVM, pQueue, pQueue); STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a); } #ifdef VBOX_WITH_STATISTICS /* * Deregister statistics. */ tmR3TimerDeregisterStats(pVM, pTimer); #endif /* * Change it to free state and update the queue accordingly. */ Assert(pTimer->idxNext == UINT32_MAX); Assert(pTimer->idxPrev == UINT32_MAX); Assert(pTimer->idxScheduleNext == UINT32_MAX); TM_SET_STATE(pTimer, TMTIMERSTATE_FREE); pQueue->cTimersFree += 1; uint32_t idxTimer = (uint32_t)(pTimer - pQueue->paTimers); if (idxTimer < pQueue->idxFreeHint) pQueue->idxFreeHint = idxTimer; #ifdef VBOX_STRICT tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy"); #endif PDMCritSectLeave(pVM, &pQueue->TimerLock); PDMCritSectRwLeaveExcl(pVM, &pQueue->AllocLock); return VINF_SUCCESS; } /** * Destroy a timer * * @returns VBox status code. * @param pVM The cross context VM structure. * @param hTimer Timer handle as returned by one of the create functions. */ VMMR3DECL(int) TMR3TimerDestroy(PVM pVM, TMTIMERHANDLE hTimer) { /* We ignore NILs here. */ if (hTimer == NIL_TMTIMERHANDLE) return VINF_SUCCESS; TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */ return tmR3TimerDestroy(pVM, pQueue, pTimer); } /** * Destroy all timers owned by a device. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDevIns Device which timers should be destroyed. */ VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns) { LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns)); if (!pDevIns) return VERR_INVALID_PARAMETER; for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) { PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue]; PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); uint32_t idxTimer = pQueue->cTimersAlloc; while (idxTimer-- > 0) { PTMTIMER pTimer = &pQueue->paTimers[idxTimer]; if ( pTimer->enmType == TMTIMERTYPE_DEV && pTimer->u.Dev.pDevIns == pDevIns && pTimer->enmState < TMTIMERSTATE_DESTROY) { PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); int rc = tmR3TimerDestroy(pVM, pQueue, pTimer); AssertRC(rc); PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); } } PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); } LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n")); return VINF_SUCCESS; } /** * Destroy all timers owned by a USB device. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pUsbIns USB device which timers should be destroyed. */ VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns) { LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns)); if (!pUsbIns) return VERR_INVALID_PARAMETER; for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) { PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue]; PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); uint32_t idxTimer = pQueue->cTimersAlloc; while (idxTimer-- > 0) { PTMTIMER pTimer = &pQueue->paTimers[idxTimer]; if ( pTimer->enmType == TMTIMERTYPE_USB && pTimer->u.Usb.pUsbIns == pUsbIns && pTimer->enmState < TMTIMERSTATE_DESTROY) { PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); int rc = tmR3TimerDestroy(pVM, pQueue, pTimer); AssertRC(rc); PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); } } PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); } LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n")); return VINF_SUCCESS; } /** * Destroy all timers owned by a driver. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pDrvIns Driver which timers should be destroyed. */ VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns) { LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns)); if (!pDrvIns) return VERR_INVALID_PARAMETER; for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) { PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[idxQueue]; PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); uint32_t idxTimer = pQueue->cTimersAlloc; while (idxTimer-- > 0) { PTMTIMER pTimer = &pQueue->paTimers[idxTimer]; if ( pTimer->enmType == TMTIMERTYPE_DRV && pTimer->u.Drv.pDrvIns == pDrvIns && pTimer->enmState < TMTIMERSTATE_DESTROY) { PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); int rc = tmR3TimerDestroy(pVM, pQueue, pTimer); AssertRC(rc); PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); } } PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); } LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n")); return VINF_SUCCESS; } /** * Internal function for getting the clock time. * * @returns clock time. * @param pVM The cross context VM structure. * @param enmClock The clock. */ DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock) { switch (enmClock) { case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM); case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM); case TMCLOCK_REAL: return TMRealGet(pVM); case TMCLOCK_TSC: return TMCpuTickGet(pVM->apCpusR3[0] /* just take VCPU 0 */); default: AssertMsgFailed(("enmClock=%d\n", enmClock)); return ~(uint64_t)0; } } /** * Checks if the sync queue has one or more expired timers. * * @returns true / false. * * @param pVM The cross context VM structure. * @param enmClock The queue. */ DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock) { const uint64_t u64Expire = pVM->tm.s.aTimerQueues[enmClock].u64Expire; return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock); } /** * Checks for expired timers in all the queues. * * @returns true / false. * @param pVM The cross context VM structure. */ DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM) { /* * Combine the time calculation for the first two since we're not on EMT * TMVirtualSyncGet only permits EMT. */ uint64_t u64Now = TMVirtualGetNoCheck(pVM); if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].u64Expire <= u64Now) return true; u64Now = pVM->tm.s.fVirtualSyncTicking ? u64Now - pVM->tm.s.offVirtualSync : pVM->tm.s.u64VirtualSync; if (pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now) return true; /* * The remaining timers. */ if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL)) return true; if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC)) return true; return false; } /** * Schedule timer callback. * * @param pTimer Timer handle. * @param pvUser Pointer to the VM. * @thread Timer thread. * * @remark We cannot do the scheduling and queues running from a timer handler * since it's not executing in EMT, and even if it was it would be async * and we wouldn't know the state of the affairs. * So, we'll just raise the timer FF and force any REM execution to exit. */ static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/) { PVM pVM = (PVM)pvUser; PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu]; NOREF(pTimer); AssertCompile(TMCLOCK_MAX == 4); STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback); #ifdef DEBUG_Sander /* very annoying, keep it private. */ if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)) Log(("tmR3TimerCallback: timer event still pending!!\n")); #endif if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER) && ( pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule != UINT32_MAX /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */ || pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].idxSchedule != UINT32_MAX || pVM->tm.s.aTimerQueues[TMCLOCK_REAL].idxSchedule != UINT32_MAX || pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxSchedule != UINT32_MAX || tmR3AnyExpiredTimers(pVM) ) && !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER) && !pVM->tm.s.fRunningQueues ) { Log5(("TM(%u): FF: 0 -> 1\n", __LINE__)); VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER); VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE); STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF); } } /** * Worker for tmR3TimerQueueDoOne that runs pending timers on the specified * non-empty timer queue. * * @param pVM The cross context VM structure. * @param pQueue The queue to run. * @param pTimer The head timer. Caller already check that this is * not NULL. */ static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue, PTMTIMER pTimer) { VM_ASSERT_EMT(pVM); /** @todo relax this */ /* * Run timers. * * We check the clock once and run all timers which are ACTIVE * and have an expire time less or equal to the time we read. * * N.B. A generic unlink must be applied since other threads * are allowed to mess with any active timer at any time. * * However, we only allow EMT to handle EXPIRED_PENDING * timers, thus enabling the timer handler function to * arm the timer again. */ /** @todo the above 'however' is outdated. */ const uint64_t u64Now = tmClock(pVM, pQueue->enmClock); while (pTimer->u64Expire <= u64Now) { PTMTIMER const pNext = tmTimerGetNext(pQueue, pTimer); PPDMCRITSECT pCritSect = pTimer->pCritSect; if (pCritSect) { STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking); PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED); STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking); } Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n", pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName)); bool fRc; TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc); if (fRc) { Assert(pTimer->idxScheduleNext == UINT32_MAX); /* this can trigger falsely */ /* unlink */ const PTMTIMER pPrev = tmTimerGetPrev(pQueue, pTimer); if (pPrev) tmTimerSetNext(pQueue, pPrev, pNext); else { tmTimerQueueSetHead(pQueue, pQueue, pNext); pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX; } if (pNext) tmTimerSetPrev(pQueue, pNext, pPrev); pTimer->idxNext = UINT32_MAX; pTimer->idxPrev = UINT32_MAX; /* fire */ TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER); STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer); switch (pTimer->enmType) { case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break; case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break; case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break; case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break; default: AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName)); break; } STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer); /* change the state if it wasn't changed already in the handler. */ TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc); Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState))); } if (pCritSect) PDMCritSectLeave(pVM, pCritSect); /* Advance? */ pTimer = pNext; if (!pTimer) break; } /* run loop */ } /** * Service one regular timer queue. * * @param pVM The cross context VM structure. * @param pQueue The queue. */ static void tmR3TimerQueueDoOne(PVM pVM, PTMTIMERQUEUE pQueue) { Assert(pQueue->enmClock != TMCLOCK_VIRTUAL_SYNC); /* * Only one thread should be "doing" the queue. */ if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false)) { STAM_PROFILE_START(&pQueue->StatDo, s); PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); if (pQueue->idxSchedule != UINT32_MAX) tmTimerQueueSchedule(pVM, pQueue, pQueue); PTMTIMER pHead = tmTimerQueueGetHead(pQueue, pQueue); if (pHead) tmR3TimerQueueRun(pVM, pQueue, pHead); PDMCritSectLeave(pVM, &pQueue->TimerLock); STAM_PROFILE_STOP(&pQueue->StatDo, s); ASMAtomicWriteBool(&pQueue->fBeingProcessed, false); } } /** * Schedules and runs any pending times in the timer queue for the * synchronous virtual clock. * * This scheduling is a bit different from the other queues as it need * to implement the special requirements of the timer synchronous virtual * clock, thus this 2nd queue run function. * * @param pVM The cross context VM structure. * * @remarks The caller must the Virtual Sync lock. Owning the TM lock is no * longer important. */ static void tmR3TimerQueueRunVirtualSync(PVM pVM) { PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC]; VM_ASSERT_EMT(pVM); Assert(PDMCritSectIsOwner(pVM, &pVM->tm.s.VirtualSyncLock)); /* * Any timers? */ PTMTIMER pNext = tmTimerQueueGetHead(pQueue, pQueue); if (RT_UNLIKELY(!pNext)) { Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking); return; } STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun); /* * Calculate the time frame for which we will dispatch timers. * * We use a time frame ranging from the current sync time (which is most likely the * same as the head timer) and some configurable period (100000ns) up towards the * current virtual time. This period might also need to be restricted by the catch-up * rate so frequent calls to this function won't accelerate the time too much, however * this will be implemented at a later point if necessary. * * Without this frame we would 1) having to run timers much more frequently * and 2) lag behind at a steady rate. */ const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM); uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp; uint64_t u64Now; if (!pVM->tm.s.fVirtualSyncTicking) { STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready); u64Now = pVM->tm.s.u64VirtualSync; Assert(u64Now <= pNext->u64Expire); } else { /* Calc 'now'. */ bool fStopCatchup = false; bool fUpdateStuff = false; uint64_t off = pVM->tm.s.offVirtualSync; if (pVM->tm.s.fVirtualSyncCatchUp) { uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev; if (RT_LIKELY(!(u64Delta >> 32))) { uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100); if (off > u64Sub + offSyncGivenUp) { off -= u64Sub; Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub)); } else { STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c); fStopCatchup = true; off = offSyncGivenUp; } fUpdateStuff = true; } } u64Now = u64VirtualNow - off; /* Adjust against last returned time. */ uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync); if (u64Last > u64Now) { u64Now = u64Last + 1; STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast); } /* Check if stopped by expired timer. */ uint64_t const u64Expire = pNext->u64Expire; if (u64Now >= u64Expire) { STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop); u64Now = u64Expire; ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now); ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false); Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp)); } else { ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now); if (fUpdateStuff) { ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off); ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow); ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now); if (fStopCatchup) { ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false); Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow)); } } } } /* calc end of frame. */ uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack; if (u64Max > u64VirtualNow - offSyncGivenUp) u64Max = u64VirtualNow - offSyncGivenUp; /* assert sanity */ Assert(u64Now <= u64VirtualNow - offSyncGivenUp); Assert(u64Max <= u64VirtualNow - offSyncGivenUp); Assert(u64Now <= u64Max); Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp); /* * Process the expired timers moving the clock along as we progress. */ #ifdef VBOX_STRICT uint64_t u64Prev = u64Now; NOREF(u64Prev); #endif while (pNext && pNext->u64Expire <= u64Max) { /* Advance */ PTMTIMER pTimer = pNext; pNext = tmTimerGetNext(pQueue, pTimer); /* Take the associated lock. */ PPDMCRITSECT pCritSect = pTimer->pCritSect; if (pCritSect) { STAM_PROFILE_START(&pTimer->StatCritSectEnter, Locking); PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED); STAM_PROFILE_STOP(&pTimer->StatCritSectEnter, Locking); } Log2(("tmR3TimerQueueRunVirtualSync: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .szName='%s'}\n", pTimer, tmTimerState(pTimer->enmState), pQueue->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->szName)); /* Advance the clock - don't permit timers to be out of order or armed in the 'past'. */ #ifdef VBOX_STRICT AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->szName)); u64Prev = pTimer->u64Expire; #endif ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire); ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false); /* Unlink it, change the state and do the callout. */ tmTimerQueueUnlinkActive(pVM, pQueue, pQueue, pTimer); TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER); STAM_PROFILE_START(&pTimer->StatTimer, PrfTimer); switch (pTimer->enmType) { case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer->hSelf, pTimer->pvUser); break; case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer->hSelf, pTimer->pvUser); break; case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer->hSelf, pTimer->pvUser); break; case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer->hSelf, pTimer->pvUser); break; default: AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->szName)); break; } STAM_PROFILE_STOP(&pTimer->StatTimer, PrfTimer); /* Change the state if it wasn't changed already in the handler. Reset the Hz hint too since this is the same as TMTimerStop. */ bool fRc; TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc); if (fRc && pTimer->uHzHint) { if (pTimer->uHzHint >= pQueue->uMaxHzHint) ASMAtomicOrU64(&pVM->tm.s.HzHint.u64Combined, RT_BIT_32(TMCLOCK_VIRTUAL_SYNC) | RT_BIT_32(TMCLOCK_VIRTUAL_SYNC + 16)); pTimer->uHzHint = 0; } Log2(("tmR3TimerQueueRunVirtualSync: new state %s\n", tmTimerState(pTimer->enmState))); /* Leave the associated lock. */ if (pCritSect) PDMCritSectLeave(pVM, pCritSect); } /* run loop */ /* * Restart the clock if it was stopped to serve any timers, * and start/adjust catch-up if necessary. */ if ( !pVM->tm.s.fVirtualSyncTicking && pVM->tm.s.cVirtualTicking) { STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart); /* calc the slack we've handed out. */ const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM); Assert(u64VirtualNow2 >= u64VirtualNow); AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now)); const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now; STAM_STATS({ if (offSlack) { PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack; p->cPeriods++; p->cTicks += offSlack; if (p->cTicksMax < offSlack) p->cTicksMax = offSlack; if (p->cTicksMin > offSlack) p->cTicksMin = offSlack; } }); /* Let the time run a little bit while we were busy running timers(?). */ uint64_t u64Elapsed; #define MAX_ELAPSED 30000U /* ns */ if (offSlack > MAX_ELAPSED) u64Elapsed = 0; else { u64Elapsed = u64VirtualNow2 - u64VirtualNow; if (u64Elapsed > MAX_ELAPSED) u64Elapsed = MAX_ELAPSED; u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0; } #undef MAX_ELAPSED /* Calc the current offset. */ uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed; Assert(!(offNew & RT_BIT_64(63))); uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp; Assert(!(offLag & RT_BIT_64(63))); /* * Deal with starting, adjusting and stopping catchup. */ if (pVM->tm.s.fVirtualSyncCatchUp) { if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold) { /* stop */ STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c); ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false); Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag)); } else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) { /* adjust */ unsigned i = 0; while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start) i++; if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage) { STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]); ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage); Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage)); } pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2; } else { /* give up */ STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp); STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c); ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew); ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false); Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage)); LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew)); } } else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start) { if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) { /* start */ STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c); unsigned i = 0; while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start) i++; STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]); ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage); ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true); Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage)); } else { /* don't bother */ STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting); ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew); Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag)); LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew)); } } /* * Update the offset and restart the clock. */ Assert(!(offNew & RT_BIT_64(63))); ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew); ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true); } } /** * Deals with stopped Virtual Sync clock. * * This is called by the forced action flag handling code in EM when it * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they * will block on the VirtualSyncLock until the pending timers has been executed * and the clock restarted. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * * @thread EMTs */ VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu) { Log2(("TMR3VirtualSyncFF:\n")); /* * The EMT doing the timers is diverted to them. */ if (pVCpu->idCpu == pVM->tm.s.idTimerCpu) TMR3TimerQueuesDo(pVM); /* * The other EMTs will block on the virtual sync lock and the first owner * will run the queue and thus restarting the clock. * * Note! This is very suboptimal code wrt to resuming execution when there * are more than two Virtual CPUs, since they will all have to enter * the critical section one by one. But it's a very simple solution * which will have to do the job for now. */ else { /** @todo Optimize for SMP */ STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a); PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); if (pVM->tm.s.fVirtualSyncTicking) { STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */ PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); Log2(("TMR3VirtualSyncFF: ticking\n")); } else { PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); /* try run it. */ PDMCritSectEnter(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock, VERR_IGNORED); PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); if (pVM->tm.s.fVirtualSyncTicking) Log2(("TMR3VirtualSyncFF: ticking (2)\n")); else { ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true); Log2(("TMR3VirtualSyncFF: running queue\n")); Assert(pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].idxSchedule == UINT32_MAX); tmR3TimerQueueRunVirtualSync(pVM); if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */ VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC); ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false); } PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */ PDMCritSectLeave(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].TimerLock); } } } /** * Service the special virtual sync timer queue. * * @param pVM The cross context VM structure. * @param pVCpuDst The destination VCpu. */ static void tmR3TimerQueueDoVirtualSync(PVM pVM, PVMCPU pVCpuDst) { PTMTIMERQUEUE pQueue = &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC]; if (ASMAtomicCmpXchgBool(&pQueue->fBeingProcessed, true, false)) { STAM_PROFILE_START(&pQueue->StatDo, s1); PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true); VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */ Assert(pQueue->idxSchedule == UINT32_MAX); tmR3TimerQueueRunVirtualSync(pVM); if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */ VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC); ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false); PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); PDMCritSectLeave(pVM, &pQueue->TimerLock); STAM_PROFILE_STOP(&pQueue->StatDo, s1); ASMAtomicWriteBool(&pQueue->fBeingProcessed, false); } } /** * Schedules and runs any pending timers. * * This is normally called from a forced action handler in EMT. * * @param pVM The cross context VM structure. * * @thread EMT (actually EMT0, but we fend off the others) */ VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM) { /* * Only the dedicated timer EMT should do stuff here. * (fRunningQueues is only used as an indicator.) */ Assert(pVM->tm.s.idTimerCpu < pVM->cCpus); PVMCPU pVCpuDst = pVM->apCpusR3[pVM->tm.s.idTimerCpu]; if (VMMGetCpu(pVM) != pVCpuDst) { Assert(pVM->cCpus > 1); return; } STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a); Log2(("TMR3TimerQueuesDo:\n")); Assert(!pVM->tm.s.fRunningQueues); ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true); /* * Process the queues. */ AssertCompile(TMCLOCK_MAX == 4); /* * TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) */ tmR3TimerQueueDoVirtualSync(pVM, pVCpuDst); /* * TMCLOCK_VIRTUAL */ tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL]); /* * TMCLOCK_TSC */ Assert(pVM->tm.s.aTimerQueues[TMCLOCK_TSC].idxActive == UINT32_MAX); /* not used */ /* * TMCLOCK_REAL */ tmR3TimerQueueDoOne(pVM, &pVM->tm.s.aTimerQueues[TMCLOCK_REAL]); #ifdef VBOX_STRICT /* check that we didn't screw up. */ tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo"); #endif /* done */ Log2(("TMR3TimerQueuesDo: returns void\n")); ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false); STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a); } /** @name Saved state values * @{ */ #define TMTIMERSTATE_SAVED_PENDING_STOP 4 #define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7 /** @} */ /** * Saves the state of a timer to a saved state. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param hTimer Timer to save. * @param pSSM Save State Manager handle. */ VMMR3DECL(int) TMR3TimerSave(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM) { VM_ASSERT_EMT(pVM); TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */ LogFlow(("TMR3TimerSave: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM)); switch (pTimer->enmState) { case TMTIMERSTATE_STOPPED: case TMTIMERSTATE_PENDING_STOP: case TMTIMERSTATE_PENDING_STOP_SCHEDULE: return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP); case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE: case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE: AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->szName)); if (!RTThreadYield()) RTThreadSleep(1); RT_FALL_THRU(); case TMTIMERSTATE_ACTIVE: case TMTIMERSTATE_PENDING_SCHEDULE: case TMTIMERSTATE_PENDING_RESCHEDULE: SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE); return SSMR3PutU64(pSSM, pTimer->u64Expire); case TMTIMERSTATE_EXPIRED_GET_UNLINK: case TMTIMERSTATE_EXPIRED_DELIVER: case TMTIMERSTATE_DESTROY: case TMTIMERSTATE_FREE: case TMTIMERSTATE_INVALID: AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->szName)); return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE); } AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->szName)); return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE); } /** * Loads the state of a timer from a saved state. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param hTimer Handle of Timer to restore. * @param pSSM Save State Manager handle. */ VMMR3DECL(int) TMR3TimerLoad(PVM pVM, TMTIMERHANDLE hTimer, PSSMHANDLE pSSM) { VM_ASSERT_EMT(pVM); TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */ Assert(pSSM); LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .szName='%s'} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->szName, pSSM)); /* * Load the state and validate it. */ uint8_t u8State; int rc = SSMR3GetU8(pSSM, &u8State); if (RT_FAILURE(rc)) return rc; /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */ if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1) u8State--; if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE) { AssertLogRelMsgFailed(("u8State=%d\n", u8State)); return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE); } /* Enter the critical sections to make TMTimerSet/Stop happy. */ if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC) PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); PPDMCRITSECT pCritSect = pTimer->pCritSect; if (pCritSect) PDMCritSectEnter(pVM, pCritSect, VERR_IGNORED); if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE) { /* * Load the expire time. */ uint64_t u64Expire; rc = SSMR3GetU64(pSSM, &u64Expire); if (RT_FAILURE(rc)) return rc; /* * Set it. */ Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire)); rc = TMTimerSet(pVM, hTimer, u64Expire); } else { /* * Stop it. */ Log(("u8State=%d\n", u8State)); rc = TMTimerStop(pVM, hTimer); } if (pCritSect) PDMCritSectLeave(pVM, pCritSect); if (pQueue->enmClock == TMCLOCK_VIRTUAL_SYNC) PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); /* * On failure set SSM status. */ if (RT_FAILURE(rc)) rc = SSMR3HandleSetStatus(pSSM, rc); return rc; } /** * Skips the state of a timer in a given saved state. * * @returns VBox status. * @param pSSM Save State Manager handle. * @param pfActive Where to store whether the timer was active * when the state was saved. */ VMMR3DECL(int) TMR3TimerSkip(PSSMHANDLE pSSM, bool *pfActive) { Assert(pSSM); AssertPtr(pfActive); LogFlow(("TMR3TimerSkip: pSSM=%p pfActive=%p\n", pSSM, pfActive)); /* * Load the state and validate it. */ uint8_t u8State; int rc = SSMR3GetU8(pSSM, &u8State); if (RT_FAILURE(rc)) return rc; /* TMTIMERSTATE_SAVED_XXX: Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */ if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1) u8State--; if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE) { AssertLogRelMsgFailed(("u8State=%d\n", u8State)); return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE); } *pfActive = (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE); if (*pfActive) { /* * Load the expire time. */ uint64_t u64Expire; rc = SSMR3GetU64(pSSM, &u64Expire); } return rc; } /** * Associates a critical section with a timer. * * The critical section will be entered prior to doing the timer call back, thus * avoiding potential races between the timer thread and other threads trying to * stop or adjust the timer expiration while it's being delivered. The timer * thread will leave the critical section when the timer callback returns. * * In strict builds, ownership of the critical section will be asserted by * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at * runtime). * * @retval VINF_SUCCESS on success. * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid * (asserted). * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic * (asserted). * @retval VERR_ALREADY_EXISTS if a critical section was already associated * with the timer (asserted). * @retval VERR_INVALID_STATE if the timer isn't stopped. * * @param pVM The cross context VM structure. * @param hTimer The timer handle. * @param pCritSect The critical section. The caller must make sure this * is around for the life time of the timer. * * @thread Any, but the caller is responsible for making sure the timer is not * active. */ VMMR3DECL(int) TMR3TimerSetCritSect(PVM pVM, TMTIMERHANDLE hTimer, PPDMCRITSECT pCritSect) { TMTIMER_HANDLE_TO_VARS_RETURN(pVM, hTimer); /* => pTimer, pQueueCC, pQueue, idxTimer, idxQueue */ AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER); const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */ AssertReturn(pszName, VERR_INVALID_PARAMETER); AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS); AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE); LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->szName, pCritSect, pszName)); pTimer->pCritSect = pCritSect; return VINF_SUCCESS; } /** * Get the real world UTC time adjusted for VM lag. * * @returns pTime. * @param pVM The cross context VM structure. * @param pTime Where to store the time. */ VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime) { /* * Get a stable set of VirtualSync parameters and calc the lag. */ uint64_t offVirtualSync; uint64_t offVirtualSyncGivenUp; do { offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync); offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp); } while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync); Assert(offVirtualSync >= offVirtualSyncGivenUp); uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp; /* * Get current time and adjust for virtual sync lag and do time displacement. */ RTTimeNow(pTime); RTTimeSpecSubNano(pTime, offLag); RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC); /* * Log details if the time changed radically (also triggers on first call). */ int64_t nsPrev = ASMAtomicXchgS64(&pVM->tm.s.nsLastUtcNow, RTTimeSpecGetNano(pTime)); int64_t cNsDelta = RTTimeSpecGetNano(pTime) - nsPrev; if ((uint64_t)RT_ABS(cNsDelta) > RT_NS_1HOUR / 2) { RTTIMESPEC NowAgain; RTTimeNow(&NowAgain); LogRel(("TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n", RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain))); if (pVM->tm.s.pszUtcTouchFileOnJump && nsPrev != 0) { RTFILE hFile; int rc = RTFileOpen(&hFile, pVM->tm.s.pszUtcTouchFileOnJump, RTFILE_O_WRITE | RTFILE_O_APPEND | RTFILE_O_OPEN_CREATE | RTFILE_O_DENY_NONE); if (RT_SUCCESS(rc)) { char szMsg[256]; size_t cch; cch = RTStrPrintf(szMsg, sizeof(szMsg), "TMR3UtcNow: nsNow=%'RI64 nsPrev=%'RI64 -> cNsDelta=%'RI64 (offLag=%'RI64 offVirtualSync=%'RU64 offVirtualSyncGivenUp=%'RU64, NowAgain=%'RI64)\n", RTTimeSpecGetNano(pTime), nsPrev, cNsDelta, offLag, offVirtualSync, offVirtualSyncGivenUp, RTTimeSpecGetNano(&NowAgain)); RTFileWrite(hFile, szMsg, cch, NULL); RTFileClose(hFile); } } } return pTime; } /** * Pauses all clocks except TMCLOCK_REAL. * * @returns VBox status code, all errors are asserted. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @thread EMT corresponding to Pointer to the VMCPU. */ VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu) { VMCPU_ASSERT_EMT(pVCpu); PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */ /* * The shared virtual clock (includes virtual sync which is tied to it). */ int rc = tmVirtualPauseLocked(pVM); AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc); /* * Pause the TSC last since it is normally linked to the virtual * sync clock, so the above code may actually stop both clocks. */ if (!pVM->tm.s.fTSCTiedToExecution) { rc = tmCpuTickPauseLocked(pVM, pVCpu); AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc); } #ifndef VBOX_WITHOUT_NS_ACCOUNTING /* * Update cNsTotal and stats. */ Assert(!pVCpu->tm.s.fSuspended); uint64_t const cNsTotalNew = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal; uint64_t const cNsOtherNew = cNsTotalNew - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted; # if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS) STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsTotal, cNsTotalNew - pVCpu->tm.s.cNsTotalStat); int64_t const cNsOtherNewDelta = cNsOtherNew - pVCpu->tm.s.cNsOtherStat; if (cNsOtherNewDelta > 0) STAM_REL_COUNTER_ADD(&pVCpu->tm.s.StatNsOther, (uint64_t)cNsOtherNewDelta); # endif uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1); pVCpu->tm.s.nsStartTotal = cNsTotalNew; pVCpu->tm.s.fSuspended = true; pVCpu->tm.s.cNsTotalStat = cNsTotalNew; pVCpu->tm.s.cNsOtherStat = cNsOtherNew; ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1); #endif PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); return VINF_SUCCESS; } /** * Resumes all clocks except TMCLOCK_REAL. * * @returns VBox status code, all errors are asserted. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @thread EMT corresponding to Pointer to the VMCPU. */ VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu) { VMCPU_ASSERT_EMT(pVCpu); PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */ #ifndef VBOX_WITHOUT_NS_ACCOUNTING /* * Set u64NsTsStartTotal. There is no need to back this out if either of * the two calls below fail. */ uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1); pVCpu->tm.s.nsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.nsStartTotal; pVCpu->tm.s.fSuspended = false; ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1); #endif /* * Resume the TSC first since it is normally linked to the virtual sync * clock, so it may actually not be resumed until we've executed the code * below. */ if (!pVM->tm.s.fTSCTiedToExecution) { int rc = tmCpuTickResumeLocked(pVM, pVCpu); AssertRCReturnStmt(rc, PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock), rc); } /* * The shared virtual clock (includes virtual sync which is tied to it). */ int rc = tmVirtualResumeLocked(pVM); PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); return rc; } /** * Sets the warp drive percent of the virtual time. * * @returns VBox status code. * @param pUVM The user mode VM structure. * @param u32Percent The new percentage. 100 means normal operation. */ VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent) { return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent); } /** * EMT worker for TMR3SetWarpDrive. * * @returns VBox status code. * @param pUVM The user mode VM handle. * @param u32Percent See TMR3SetWarpDrive(). * @internal */ static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent) { PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); PVMCPU pVCpu = VMMGetCpu(pVM); /* * Validate it. */ AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000, ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent), VERR_INVALID_PARAMETER); /** @todo This isn't a feature specific to virtual time, move the variables to * TM level and make it affect TMR3UTCNow as well! */ PDMCritSectEnter(pVM, &pVM->tm.s.VirtualSyncLock, VERR_IGNORED); /* Paranoia: Exploiting the virtual sync lock here. */ /* * If the time is running we'll have to pause it before we can change * the warp drive settings. */ bool fPaused = !!pVM->tm.s.cVirtualTicking; if (fPaused) /** @todo this isn't really working, but wtf. */ TMR3NotifySuspend(pVM, pVCpu); /** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */ pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent; pVM->tm.s.fVirtualWarpDrive = u32Percent != 100; LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n", pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive)); if (fPaused) TMR3NotifyResume(pVM, pVCpu); PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock); return VINF_SUCCESS; } /** * Gets the current TMCLOCK_VIRTUAL time without checking * timers or anything. * * @returns The timestamp. * @param pUVM The user mode VM structure. * * @remarks See TMVirtualGetNoCheck. */ VMMR3DECL(uint64_t) TMR3TimeVirtGet(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX); return TMVirtualGetNoCheck(pVM); } /** * Gets the current TMCLOCK_VIRTUAL time in milliseconds without checking * timers or anything. * * @returns The timestamp in milliseconds. * @param pUVM The user mode VM structure. * * @remarks See TMVirtualGetNoCheck. */ VMMR3DECL(uint64_t) TMR3TimeVirtGetMilli(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX); return TMVirtualToMilli(pVM, TMVirtualGetNoCheck(pVM)); } /** * Gets the current TMCLOCK_VIRTUAL time in microseconds without checking * timers or anything. * * @returns The timestamp in microseconds. * @param pUVM The user mode VM structure. * * @remarks See TMVirtualGetNoCheck. */ VMMR3DECL(uint64_t) TMR3TimeVirtGetMicro(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX); return TMVirtualToMicro(pVM, TMVirtualGetNoCheck(pVM)); } /** * Gets the current TMCLOCK_VIRTUAL time in nanoseconds without checking * timers or anything. * * @returns The timestamp in nanoseconds. * @param pUVM The user mode VM structure. * * @remarks See TMVirtualGetNoCheck. */ VMMR3DECL(uint64_t) TMR3TimeVirtGetNano(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT64_MAX); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, UINT64_MAX); return TMVirtualToNano(pVM, TMVirtualGetNoCheck(pVM)); } /** * Gets the current warp drive percent. * * @returns The warp drive percent. * @param pUVM The user mode VM structure. */ VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX); return pVM->tm.s.u32VirtualWarpDrivePercentage; } #if 0 /* unused - needs a little updating after @bugref{9941}*/ /** * Gets the performance information for one virtual CPU as seen by the VMM. * * The returned times covers the period where the VM is running and will be * reset when restoring a previous VM state (at least for the time being). * * @retval VINF_SUCCESS on success. * @retval VERR_NOT_IMPLEMENTED if not compiled in. * @retval VERR_INVALID_STATE if the VM handle is bad. * @retval VERR_INVALID_CPU_ID if idCpu is out of range. * * @param pVM The cross context VM structure. * @param idCpu The ID of the virtual CPU which times to get. * @param pcNsTotal Where to store the total run time (nano seconds) of * the CPU, i.e. the sum of the three other returns. * Optional. * @param pcNsExecuting Where to store the time (nano seconds) spent * executing guest code. Optional. * @param pcNsHalted Where to store the time (nano seconds) spent * halted. Optional * @param pcNsOther Where to store the time (nano seconds) spent * preempted by the host scheduler, on virtualization * overhead and on other tasks. */ VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting, uint64_t *pcNsHalted, uint64_t *pcNsOther) { VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE); AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_CPU_ID); #ifndef VBOX_WITHOUT_NS_ACCOUNTING /* * Get a stable result set. * This should be way quicker than an EMT request. */ PVMCPU pVCpu = pVM->apCpusR3[idCpu]; uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen); uint64_t cNsTotal = pVCpu->tm.s.cNsTotal; uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting; uint64_t cNsHalted = pVCpu->tm.s.cNsHalted; uint64_t cNsOther = pVCpu->tm.s.cNsOther; while ( (uTimesGen & 1) /* update in progress */ || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)) { RTThreadYield(); uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen); cNsTotal = pVCpu->tm.s.cNsTotal; cNsExecuting = pVCpu->tm.s.cNsExecuting; cNsHalted = pVCpu->tm.s.cNsHalted; cNsOther = pVCpu->tm.s.cNsOther; } /* * Fill in the return values. */ if (pcNsTotal) *pcNsTotal = cNsTotal; if (pcNsExecuting) *pcNsExecuting = cNsExecuting; if (pcNsHalted) *pcNsHalted = cNsHalted; if (pcNsOther) *pcNsOther = cNsOther; return VINF_SUCCESS; #else return VERR_NOT_IMPLEMENTED; #endif } #endif /* unused */ /** * Gets the performance information for one virtual CPU as seen by the VMM in * percents. * * The returned times covers the period where the VM is running and will be * reset when restoring a previous VM state (at least for the time being). * * @retval VINF_SUCCESS on success. * @retval VERR_NOT_IMPLEMENTED if not compiled in. * @retval VERR_INVALID_VM_HANDLE if the VM handle is bad. * @retval VERR_INVALID_CPU_ID if idCpu is out of range. * * @param pUVM The usermode VM structure. * @param idCpu The ID of the virtual CPU which times to get. * @param pcMsInterval Where to store the interval of the percentages in * milliseconds. Optional. * @param pcPctExecuting Where to return the percentage of time spent * executing guest code. Optional. * @param pcPctHalted Where to return the percentage of time spent halted. * Optional * @param pcPctOther Where to return the percentage of time spent * preempted by the host scheduler, on virtualization * overhead and on other tasks. */ VMMR3DECL(int) TMR3GetCpuLoadPercents(PUVM pUVM, VMCPUID idCpu, uint64_t *pcMsInterval, uint8_t *pcPctExecuting, uint8_t *pcPctHalted, uint8_t *pcPctOther) { UVM_ASSERT_VALID_EXT_RETURN(pUVM, VERR_INVALID_VM_HANDLE); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); AssertReturn(idCpu == VMCPUID_ALL || idCpu < pVM->cCpus, VERR_INVALID_CPU_ID); #ifndef VBOX_WITHOUT_NS_ACCOUNTING TMCPULOADSTATE volatile *pState; if (idCpu == VMCPUID_ALL) pState = &pVM->tm.s.CpuLoad; else pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad; if (pcMsInterval) *pcMsInterval = RT_MS_1SEC; if (pcPctExecuting) *pcPctExecuting = pState->cPctExecuting; if (pcPctHalted) *pcPctHalted = pState->cPctHalted; if (pcPctOther) *pcPctOther = pState->cPctOther; return VINF_SUCCESS; #else RT_NOREF(pcMsInterval, pcPctExecuting, pcPctHalted, pcPctOther); return VERR_NOT_IMPLEMENTED; #endif } #ifndef VBOX_WITHOUT_NS_ACCOUNTING /** * Helper for tmR3CpuLoadTimer. * @returns * @param pState The state to update. * @param cNsTotal Total time. * @param cNsExecuting Time executing. * @param cNsHalted Time halted. */ DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState, uint64_t cNsTotal, uint64_t cNsExecuting, uint64_t cNsHalted) { /* Calc & update deltas */ uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal; uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting; uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted; if (cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta) { /* likely */ } else { /* Just adjust the executing and halted values down to match the total delta. */ uint64_t const cNsExecAndHalted = cNsExecutingDelta + cNsHaltedDelta; uint64_t const cNsAdjust = cNsExecAndHalted - cNsTotalDelta + cNsTotalDelta / 64; cNsExecutingDelta -= (cNsAdjust * cNsExecutingDelta + cNsExecAndHalted - 1) / cNsExecAndHalted; cNsHaltedDelta -= (cNsAdjust * cNsHaltedDelta + cNsExecAndHalted - 1) / cNsExecAndHalted; /*Assert(cNsExecutingDelta + cNsHaltedDelta <= cNsTotalDelta); - annoying when debugging */ } pState->cNsPrevExecuting = cNsExecuting; pState->cNsPrevHalted = cNsHalted; pState->cNsPrevTotal = cNsTotal; /* Calc pcts. */ uint8_t cPctExecuting, cPctHalted, cPctOther; if (!cNsTotalDelta) { cPctExecuting = 0; cPctHalted = 100; cPctOther = 0; } else if (cNsTotalDelta < UINT64_MAX / 4) { cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta); cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta); cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta); } else { cPctExecuting = 0; cPctHalted = 100; cPctOther = 0; } /* Update percentages: */ size_t idxHistory = pState->idxHistory + 1; if (idxHistory >= RT_ELEMENTS(pState->aHistory)) idxHistory = 0; pState->cPctExecuting = cPctExecuting; pState->cPctHalted = cPctHalted; pState->cPctOther = cPctOther; pState->aHistory[idxHistory].cPctExecuting = cPctExecuting; pState->aHistory[idxHistory].cPctHalted = cPctHalted; pState->aHistory[idxHistory].cPctOther = cPctOther; pState->idxHistory = (uint16_t)idxHistory; if (pState->cHistoryEntries < RT_ELEMENTS(pState->aHistory)) pState->cHistoryEntries++; } /** * @callback_method_impl{FNTMTIMERINT, * Timer callback that calculates the CPU load since the last * time it was called.} */ static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser) { /* * Re-arm the timer first. */ int rc = TMTimerSetMillies(pVM, hTimer, 1000); AssertLogRelRC(rc); NOREF(pvUser); /* * Update the values for each CPU. */ uint64_t cNsTotalAll = 0; uint64_t cNsExecutingAll = 0; uint64_t cNsHaltedAll = 0; for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++) { PVMCPU pVCpu = pVM->apCpusR3[iCpu]; /* Try get a stable data set. */ uint32_t cTries = 3; uint64_t nsNow = RTTimeNanoTS(); uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen); bool fSuspended = pVCpu->tm.s.fSuspended; uint64_t nsStartTotal = pVCpu->tm.s.nsStartTotal; uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting; uint64_t cNsHalted = pVCpu->tm.s.cNsHalted; while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */ || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))) { if (!--cTries) break; ASMNopPause(); nsNow = RTTimeNanoTS(); uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen); fSuspended = pVCpu->tm.s.fSuspended; nsStartTotal = pVCpu->tm.s.nsStartTotal; cNsExecuting = pVCpu->tm.s.cNsExecuting; cNsHalted = pVCpu->tm.s.cNsHalted; } /* Totals */ uint64_t cNsTotal = fSuspended ? nsStartTotal : nsNow - nsStartTotal; cNsTotalAll += cNsTotal; cNsExecutingAll += cNsExecuting; cNsHaltedAll += cNsHalted; /* Calc the PCTs and update the state. */ tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted); /* Tell the VCpu to update the other and total stat members. */ ASMAtomicWriteBool(&pVCpu->tm.s.fUpdateStats, true); } /* * Update the value for all the CPUs. */ tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll); } #endif /* !VBOX_WITHOUT_NS_ACCOUNTING */ /** * @callback_method_impl{PFNVMMEMTRENDEZVOUS, * Worker for TMR3CpuTickParavirtEnable} */ static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData) { AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData); Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_NATIVE_API); /** @todo figure out NEM/win and paravirt */ Assert(tmR3HasFixedTSC(pVM)); if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET) { /* * The return value of TMCpuTickGet() and the guest's TSC value for each * CPU must remain constant across the TM TSC mode-switch. Thus we have * the following equation (new/old signifies the new/old tsc modes): * uNewTsc = uOldTsc * * Where (see tmCpuTickGetInternal): * uOldTsc = uRawOldTsc - offTscRawSrcOld * uNewTsc = uRawNewTsc - offTscRawSrcNew * * Solve it for offTscRawSrcNew without replacing uOldTsc: * uRawNewTsc - offTscRawSrcNew = uOldTsc * => -offTscRawSrcNew = uOldTsc - uRawNewTsc * => offTscRawSrcNew = uRawNewTsc - uOldTsc */ uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM); uint64_t uRawNewTsc = SUPReadTsc(); uint32_t cCpus = pVM->cCpus; for (uint32_t i = 0; i < cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc; pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc; Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */ } LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode), tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET))); pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET; } return VINF_SUCCESS; } /** * Notify TM that the guest has enabled usage of a paravirtualized TSC. * * This may perform a EMT rendezvous and change the TSC virtualization mode. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM) { int rc = VINF_SUCCESS; if (pVM->tm.s.fTSCModeSwitchAllowed) rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL); else LogRel(("TM: Host/VM is not suitable for using TSC mode '%s', request to change TSC mode ignored\n", tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET))); pVM->tm.s.fParavirtTscEnabled = true; return rc; } /** * @callback_method_impl{PFNVMMEMTRENDEZVOUS, * Worker for TMR3CpuTickParavirtDisable} */ static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData) { AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); RT_NOREF1(pvData); if ( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode) { /* * See tmR3CpuTickParavirtEnable for an explanation of the conversion math. */ uint64_t uRawOldTsc = SUPReadTsc(); uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM); uint32_t cCpus = pVM->cCpus; for (uint32_t i = 0; i < cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc; pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc; Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */ /* Update the last-seen tick here as we havent't been updating it (as we don't need it) while in pure TSC-offsetting mode. */ pVCpu->tm.s.u64TSCLastSeen = uOldTsc; } LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode), tmR3GetTSCModeNameEx(pVM->tm.s.enmOriginalTSCMode))); pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode; } return VINF_SUCCESS; } /** * Notify TM that the guest has disabled usage of a paravirtualized TSC. * * If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will * perform an EMT rendezvous to revert those changes. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM) { int rc = VINF_SUCCESS; if (pVM->tm.s.fTSCModeSwitchAllowed) rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL); pVM->tm.s.fParavirtTscEnabled = false; return rc; } /** * Check whether the guest can be presented a fixed rate & monotonic TSC. * * @returns true if TSC is stable, false otherwise. * @param pVM The cross context VM structure. * @param fWithParavirtEnabled Whether it's fixed & monotonic when * paravirt. TSC is enabled or not. * * @remarks Must be called only after TMR3InitFinalize(). */ VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled) { /** @todo figure out what exactly we want here later. */ NOREF(fWithParavirtEnabled); return ( tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */ && g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC); /* GIP thinks it's monotonic. */ } /** * Gets the 5 char clock name for the info tables. * * @returns The name. * @param enmClock The clock. */ DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock) { switch (enmClock) { case TMCLOCK_REAL: return "Real "; case TMCLOCK_VIRTUAL: return "Virt "; case TMCLOCK_VIRTUAL_SYNC: return "VrSy "; case TMCLOCK_TSC: return "TSC "; default: return "Bad "; } } /** * Display all timers. * * @param pVM The cross context VM structure. * @param pHlp The info helpers. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { NOREF(pszArgs); pHlp->pfnPrintf(pHlp, "Timers (pVM=%p)\n" "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n", pVM, sizeof(RTR3PTR) * 2, "pTimerR3 ", sizeof(int32_t) * 2, "offNext ", sizeof(int32_t) * 2, "offPrev ", sizeof(int32_t) * 2, "offSched ", "Time", "Expire", "HzHint", "State"); for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) { PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue]; const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock); PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); for (uint32_t idxTimer = 0; idxTimer < pQueue->cTimersAlloc; idxTimer++) { PTMTIMER pTimer = &pQueue->paTimers[idxTimer]; TMTIMERSTATE enmState = pTimer->enmState; if (enmState < TMTIMERSTATE_DESTROY && enmState > TMTIMERSTATE_INVALID) pHlp->pfnPrintf(pHlp, "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n", pTimer, pTimer->idxNext, pTimer->idxPrev, pTimer->idxScheduleNext, pszClock, TMTimerGet(pVM, pTimer->hSelf), pTimer->u64Expire, pTimer->uHzHint, tmTimerState(enmState), pTimer->szName); } PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); } } /** * Display all active timers. * * @param pVM The cross context VM structure. * @param pHlp The info helpers. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { NOREF(pszArgs); pHlp->pfnPrintf(pHlp, "Active Timers (pVM=%p)\n" "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n", pVM, sizeof(RTR3PTR) * 2, "pTimerR3 ", sizeof(int32_t) * 2, "offNext ", sizeof(int32_t) * 2, "offPrev ", sizeof(int32_t) * 2, "offSched ", "Time", "Expire", "HzHint", "State"); for (uint32_t idxQueue = 0; idxQueue < RT_ELEMENTS(pVM->tm.s.aTimerQueues); idxQueue++) { PTMTIMERQUEUE const pQueue = &pVM->tm.s.aTimerQueues[idxQueue]; const char * const pszClock = tmR3Get5CharClockName(pQueue->enmClock); PDMCritSectRwEnterShared(pVM, &pQueue->AllocLock, VERR_IGNORED); PDMCritSectEnter(pVM, &pQueue->TimerLock, VERR_IGNORED); for (PTMTIMERR3 pTimer = tmTimerQueueGetHead(pQueue, pQueue); pTimer; pTimer = tmTimerGetNext(pQueue, pTimer)) { pHlp->pfnPrintf(pHlp, "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n", pTimer, pTimer->idxNext, pTimer->idxPrev, pTimer->idxScheduleNext, pszClock, TMTimerGet(pVM, pTimer->hSelf), pTimer->u64Expire, pTimer->uHzHint, tmTimerState(pTimer->enmState), pTimer->szName); } PDMCritSectLeave(pVM, &pQueue->TimerLock); PDMCritSectRwLeaveShared(pVM, &pQueue->AllocLock); } } /** * Display all clocks. * * @param pVM The cross context VM structure. * @param pHlp The info helpers. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { NOREF(pszArgs); /* * Read the times first to avoid more than necessary time variation. */ const uint64_t u64Virtual = TMVirtualGet(pVM); const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM); const uint64_t u64Real = TMRealGet(pVM); for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; uint64_t u64TSC = TMCpuTickGet(pVCpu); /* * TSC */ pHlp->pfnPrintf(pHlp, "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized", u64TSC, u64TSC, TMCpuTicksPerSecond(pVM), pVCpu->tm.s.fTSCTicking ? "ticking" : "paused"); if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET) { pHlp->pfnPrintf(pHlp, " - real tsc offset"); if (pVCpu->tm.s.offTSCRawSrc) pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc); } else if (pVM->tm.s.enmTSCMode == TMTSCMODE_NATIVE_API) pHlp->pfnPrintf(pHlp, " - native api"); else pHlp->pfnPrintf(pHlp, " - virtual clock"); pHlp->pfnPrintf(pHlp, "\n"); } /* * virtual */ pHlp->pfnPrintf(pHlp, " Virtual: %18RU64 (%#016RX64) %RU64Hz %s", u64Virtual, u64Virtual, TMVirtualGetFreq(pVM), pVM->tm.s.cVirtualTicking ? "ticking" : "paused"); if (pVM->tm.s.fVirtualWarpDrive) pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage); pHlp->pfnPrintf(pHlp, "\n"); /* * virtual sync */ pHlp->pfnPrintf(pHlp, "VirtSync: %18RU64 (%#016RX64) %s%s", u64VirtualSync, u64VirtualSync, pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused", pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : ""); if (pVM->tm.s.offVirtualSync) { pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync); if (pVM->tm.s.u32VirtualSyncCatchUpPercentage) pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage); } pHlp->pfnPrintf(pHlp, "\n"); /* * real */ pHlp->pfnPrintf(pHlp, " Real: %18RU64 (%#016RX64) %RU64Hz\n", u64Real, u64Real, TMRealGetFreq(pVM)); } /** * Helper for tmR3InfoCpuLoad that adjust @a uPct to the given graph width. */ DECLINLINE(size_t) tmR3InfoCpuLoadAdjustWidth(size_t uPct, size_t cchWidth) { if (cchWidth != 100) uPct = (uPct + 0.5) * (cchWidth / 100.0); return uPct; } /** * @callback_method_impl{FNDBGFINFOARGVINT} */ static DECLCALLBACK(void) tmR3InfoCpuLoad(PVM pVM, PCDBGFINFOHLP pHlp, int cArgs, char **papszArgs) { char szTmp[1024]; /* * Parse arguments. */ PTMCPULOADSTATE pState = &pVM->tm.s.CpuLoad; VMCPUID idCpu = 0; bool fAllCpus = true; bool fExpGraph = true; uint32_t cchWidth = 80; uint32_t cPeriods = RT_ELEMENTS(pState->aHistory); uint32_t cRows = 60; static const RTGETOPTDEF s_aOptions[] = { { "all", 'a', RTGETOPT_REQ_NOTHING }, { "cpu", 'c', RTGETOPT_REQ_UINT32 }, { "periods", 'p', RTGETOPT_REQ_UINT32 }, { "rows", 'r', RTGETOPT_REQ_UINT32 }, { "uni", 'u', RTGETOPT_REQ_NOTHING }, { "uniform", 'u', RTGETOPT_REQ_NOTHING }, { "width", 'w', RTGETOPT_REQ_UINT32 }, { "exp", 'x', RTGETOPT_REQ_NOTHING }, { "exponential", 'x', RTGETOPT_REQ_NOTHING }, }; RTGETOPTSTATE State; int rc = RTGetOptInit(&State, cArgs, papszArgs, s_aOptions, RT_ELEMENTS(s_aOptions), 0, 0 /*fFlags*/); AssertRC(rc); RTGETOPTUNION ValueUnion; while ((rc = RTGetOpt(&State, &ValueUnion)) != 0) { switch (rc) { case 'a': pState = &pVM->apCpusR3[0]->tm.s.CpuLoad; idCpu = 0; fAllCpus = true; break; case 'c': if (ValueUnion.u32 < pVM->cCpus) { pState = &pVM->apCpusR3[ValueUnion.u32]->tm.s.CpuLoad; idCpu = ValueUnion.u32; } else { pState = &pVM->tm.s.CpuLoad; idCpu = VMCPUID_ALL; } fAllCpus = false; break; case 'p': cPeriods = RT_MIN(RT_MAX(ValueUnion.u32, 1), RT_ELEMENTS(pState->aHistory)); break; case 'r': cRows = RT_MIN(RT_MAX(ValueUnion.u32, 5), RT_ELEMENTS(pState->aHistory)); break; case 'w': cchWidth = RT_MIN(RT_MAX(ValueUnion.u32, 10), sizeof(szTmp) - 32); break; case 'x': fExpGraph = true; break; case 'u': fExpGraph = false; break; case 'h': pHlp->pfnPrintf(pHlp, "Usage: cpuload [parameters]\n" " all, -a\n" " Show statistics for all CPUs. (default)\n" " cpu=id, -c id\n" " Show statistics for the specified CPU ID. Show combined stats if out of range.\n" " periods=count, -p count\n" " Number of periods to show. Default: all\n" " rows=count, -r count\n" " Number of rows in the graphs. Default: 60\n" " width=count, -w count\n" " Core graph width in characters. Default: 80\n" " exp, exponential, -e\n" " Do 1:1 for more recent half / 30 seconds of the graph, combine the\n" " rest into increasinly larger chunks. Default.\n" " uniform, uni, -u\n" " Combine periods into rows in a uniform manner for the whole graph.\n"); return; default: pHlp->pfnGetOptError(pHlp, rc, &ValueUnion, &State); return; } } /* * Do the job. */ for (;;) { uint32_t const cMaxPeriods = pState->cHistoryEntries; if (cPeriods > cMaxPeriods) cPeriods = cMaxPeriods; if (cPeriods > 0) { if (fAllCpus) { if (idCpu > 0) pHlp->pfnPrintf(pHlp, "\n"); pHlp->pfnPrintf(pHlp, " CPU load for virtual CPU %#04x\n" " -------------------------------\n", idCpu); } /* * Figure number of periods per chunk. We can either do this in a linear * fashion or a exponential fashion that compresses old history more. */ size_t cPerRowDecrement = 0; size_t cPeriodsPerRow = 1; if (cRows < cPeriods) { if (!fExpGraph) cPeriodsPerRow = (cPeriods + cRows / 2) / cRows; else { /* The last 30 seconds or half of the rows are 1:1, the other part is in increasing period counts. Code is a little simple but seems to do the job most of the time, which is all I have time now. */ size_t cPeriodsOneToOne = RT_MIN(30, cRows / 2); size_t cRestRows = cRows - cPeriodsOneToOne; size_t cRestPeriods = cPeriods - cPeriodsOneToOne; size_t cPeriodsInWindow = 0; for (cPeriodsPerRow = 0; cPeriodsPerRow <= cRestRows && cPeriodsInWindow < cRestPeriods; cPeriodsPerRow++) cPeriodsInWindow += cPeriodsPerRow + 1; size_t iLower = 1; while (cPeriodsInWindow < cRestPeriods) { cPeriodsPerRow++; cPeriodsInWindow += cPeriodsPerRow; cPeriodsInWindow -= iLower; iLower++; } cPerRowDecrement = 1; } } /* * Do the work. */ size_t cPctExecuting = 0; size_t cPctOther = 0; size_t cPeriodsAccumulated = 0; size_t cRowsLeft = cRows; size_t iHistory = (pState->idxHistory - cPeriods) % RT_ELEMENTS(pState->aHistory); while (cPeriods-- > 0) { iHistory++; if (iHistory >= RT_ELEMENTS(pState->aHistory)) iHistory = 0; cPctExecuting += pState->aHistory[iHistory].cPctExecuting; cPctOther += pState->aHistory[iHistory].cPctOther; cPeriodsAccumulated += 1; if ( cPeriodsAccumulated >= cPeriodsPerRow || cPeriods < cRowsLeft) { /* * Format and output the line. */ size_t offTmp = 0; size_t i = tmR3InfoCpuLoadAdjustWidth(cPctExecuting / cPeriodsAccumulated, cchWidth); while (i-- > 0) szTmp[offTmp++] = '#'; i = tmR3InfoCpuLoadAdjustWidth(cPctOther / cPeriodsAccumulated, cchWidth); while (i-- > 0) szTmp[offTmp++] = 'O'; szTmp[offTmp] = '\0'; cRowsLeft--; pHlp->pfnPrintf(pHlp, "%3zus: %s\n", cPeriods + cPeriodsAccumulated / 2, szTmp); /* Reset the state: */ cPctExecuting = 0; cPctOther = 0; cPeriodsAccumulated = 0; if (cPeriodsPerRow > cPerRowDecrement) cPeriodsPerRow -= cPerRowDecrement; } } pHlp->pfnPrintf(pHlp, " (#=guest, O=VMM overhead) idCpu=%#x\n", idCpu); } else pHlp->pfnPrintf(pHlp, "No load data.\n"); /* * Next CPU if we're display all. */ if (!fAllCpus) break; idCpu++; if (idCpu >= pVM->cCpus) break; pState = &pVM->apCpusR3[idCpu]->tm.s.CpuLoad; } } /** * Gets the descriptive TM TSC mode name given the enum value. * * @returns The name. * @param enmMode The mode to name. */ static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode) { switch (enmMode) { case TMTSCMODE_REAL_TSC_OFFSET: return "RealTSCOffset"; case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTSCEmulated"; case TMTSCMODE_DYNAMIC: return "Dynamic"; case TMTSCMODE_NATIVE_API: return "NativeApi"; default: return "???"; } } /** * Gets the descriptive TM TSC mode name. * * @returns The name. * @param pVM The cross context VM structure. */ static const char *tmR3GetTSCModeName(PVM pVM) { Assert(pVM); return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode); }