VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/TM.cpp@ 62490

Last change on this file since 62490 was 62478, checked in by vboxsync, 8 years ago

(C) 2016

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 150.1 KB
Line 
1/* $Id: TM.cpp 62478 2016-07-22 18:29:06Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_tm TM - The Time Manager
19 *
20 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
21 * device and drivers.
22 *
23 * @see grp_tm
24 *
25 *
26 * @section sec_tm_clocks Clocks
27 *
28 * There are currently 4 clocks:
29 * - Virtual (guest).
30 * - Synchronous virtual (guest).
31 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
32 * function of the virtual clock.
33 * - Real (host). This is only used for display updates atm.
34 *
35 * The most important clocks are the three first ones and of these the second is
36 * the most interesting.
37 *
38 *
39 * The synchronous virtual clock is tied to the virtual clock except that it
40 * will take into account timer delivery lag caused by host scheduling. It will
41 * normally never advance beyond the head timer, and when lagging too far behind
42 * it will gradually speed up to catch up with the virtual clock. All devices
43 * implementing time sources accessible to and used by the guest is using this
44 * clock (for timers and other things). This ensures consistency between the
45 * time sources.
46 *
47 * The virtual clock is implemented as an offset to a monotonic, high
48 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
49 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
50 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
51 * a fairly high res clock that works in all contexts and on all hosts. The
52 * virtual clock is paused when the VM isn't in the running state.
53 *
54 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
55 * virtual clock, where the frequency defaults to the host cpu frequency (as we
56 * measure it). In this mode it is possible to configure the frequency. Another
57 * (non-default) option is to use the raw unmodified host TSC values. And yet
58 * another, to tie it to time spent executing guest code. All these things are
59 * configurable should non-default behavior be desirable.
60 *
61 * The real clock is a monotonic clock (when available) with relatively low
62 * resolution, though this a bit host specific. Note that we're currently not
63 * servicing timers using the real clock when the VM is not running, this is
64 * simply because it has not been needed yet therefore not implemented.
65 *
66 *
67 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
68 *
69 * Guest time syncing is primarily taken care of by the VMM device. The
70 * principle is very simple, the guest additions periodically asks the VMM
71 * device what the current UTC time is and makes adjustments accordingly.
72 *
73 * A complicating factor is that the synchronous virtual clock might be doing
74 * catchups and the guest perception is currently a little bit behind the world
75 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
76 * at a slightly higher rate. Adjusting the guest clock to the current wall
77 * time in the real world would be a bad idea then because the guest will be
78 * advancing too fast and run ahead of world time (if the catchup works out).
79 * To solve this problem TM provides the VMM device with an UTC time source that
80 * gets adjusted with the current lag, so that when the guest eventually catches
81 * up the lag it will be showing correct real world time.
82 *
83 *
84 * @section sec_tm_timers Timers
85 *
86 * The timers can use any of the TM clocks described in the previous section.
87 * Each clock has its own scheduling facility, or timer queue if you like.
88 * There are a few factors which makes it a bit complex. First, there is the
89 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
90 * is the timer thread that periodically checks whether any timers has expired
91 * without EMT noticing. On the API level, all but the create and save APIs
92 * must be multithreaded. EMT will always run the timers.
93 *
94 * The design is using a doubly linked list of active timers which is ordered
95 * by expire date. This list is only modified by the EMT thread. Updates to
96 * the list are batched in a singly linked list, which is then processed by the
97 * EMT thread at the first opportunity (immediately, next time EMT modifies a
98 * timer on that clock, or next timer timeout). Both lists are offset based and
99 * all the elements are therefore allocated from the hyper heap.
100 *
101 * For figuring out when there is need to schedule and run timers TM will:
102 * - Poll whenever somebody queries the virtual clock.
103 * - Poll the virtual clocks from the EM and REM loops.
104 * - Poll the virtual clocks from trap exit path.
105 * - Poll the virtual clocks and calculate first timeout from the halt loop.
106 * - Employ a thread which periodically (100Hz) polls all the timer queues.
107 *
108 *
109 * @image html TMTIMER-Statechart-Diagram.gif
110 *
111 * @section sec_tm_timer Logging
112 *
113 * Level 2: Logs a most of the timer state transitions and queue servicing.
114 * Level 3: Logs a few oddments.
115 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
116 *
117 */
118
119
120/*********************************************************************************************************************************
121* Header Files *
122*********************************************************************************************************************************/
123#define LOG_GROUP LOG_GROUP_TM
124#include <VBox/vmm/tm.h>
125#include <iprt/asm-amd64-x86.h> /* for SUPGetCpuHzFromGip from sup.h */
126#include <VBox/vmm/vmm.h>
127#include <VBox/vmm/mm.h>
128#include <VBox/vmm/hm.h>
129#include <VBox/vmm/gim.h>
130#include <VBox/vmm/ssm.h>
131#include <VBox/vmm/dbgf.h>
132#include <VBox/vmm/dbgftrace.h>
133#ifdef VBOX_WITH_REM
134# include <VBox/vmm/rem.h>
135#endif
136#include <VBox/vmm/pdmapi.h>
137#include <VBox/vmm/iom.h>
138#include "TMInternal.h"
139#include <VBox/vmm/vm.h>
140#include <VBox/vmm/uvm.h>
141
142#include <VBox/vmm/pdmdev.h>
143#include <VBox/param.h>
144#include <VBox/err.h>
145
146#include <VBox/log.h>
147#include <iprt/asm.h>
148#include <iprt/asm-math.h>
149#include <iprt/assert.h>
150#include <iprt/thread.h>
151#include <iprt/time.h>
152#include <iprt/timer.h>
153#include <iprt/semaphore.h>
154#include <iprt/string.h>
155#include <iprt/env.h>
156
157#include "TMInline.h"
158
159
160/*********************************************************************************************************************************
161* Defined Constants And Macros *
162*********************************************************************************************************************************/
163/** The current saved state version.*/
164#define TM_SAVED_STATE_VERSION 3
165
166
167/*********************************************************************************************************************************
168* Internal Functions *
169*********************************************************************************************************************************/
170static bool tmR3HasFixedTSC(PVM pVM);
171static const char * tmR3GetTSCModeName(PVM pVM);
172static uint64_t tmR3CalibrateTSC(PVM pVM);
173static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
175static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
176static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
177static void tmR3TimerQueueRunVirtualSync(PVM pVM);
178static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent);
179#ifndef VBOX_WITHOUT_NS_ACCOUNTING
180static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser);
181#endif
182static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
183static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
184static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
185static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpu, void *pvData);
186
187
188/**
189 * Initializes the TM.
190 *
191 * @returns VBox status code.
192 * @param pVM The cross context VM structure.
193 */
194VMM_INT_DECL(int) TMR3Init(PVM pVM)
195{
196 LogFlow(("TMR3Init:\n"));
197
198 /*
199 * Assert alignment and sizes.
200 */
201 AssertCompileMemberAlignment(VM, tm.s, 32);
202 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
203 AssertCompileMemberAlignment(TM, TimerCritSect, 8);
204 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
205
206 /*
207 * Init the structure.
208 */
209 void *pv;
210 int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
211 AssertRCReturn(rc, rc);
212 pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
213 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pv);
214 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pv);
215
216 pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
217 pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
218 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
219 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
220 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
221 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
222 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
223 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
224 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
225 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
226
227
228 /*
229 * We directly use the GIP to calculate the virtual time. We map the
230 * the GIP into the guest context so we can do this calculation there
231 * as well and save costly world switches.
232 */
233 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
234 pVM->tm.s.pvGIPR3 = (void *)pGip;
235 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_TM_GIP_REQUIRED);
236 AssertMsgReturn((pGip->u32Version >> 16) == (SUPGLOBALINFOPAGE_VERSION >> 16),
237 ("Unsupported GIP version %#x! (expected=%#x)\n", pGip->u32Version, SUPGLOBALINFOPAGE_VERSION),
238 VERR_TM_GIP_VERSION);
239
240 RTHCPHYS HCPhysGIP;
241 rc = SUPR3GipGetPhys(&HCPhysGIP);
242 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
243
244 RTGCPTR GCPtr;
245#ifdef SUP_WITH_LOTS_OF_CPUS
246 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, (size_t)pGip->cPages * PAGE_SIZE,
247 "GIP", &GCPtr);
248#else
249 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, PAGE_SIZE, "GIP", &GCPtr);
250#endif
251 if (RT_FAILURE(rc))
252 {
253 AssertMsgFailed(("Failed to map GIP into GC, rc=%Rrc!\n", rc));
254 return rc;
255 }
256 pVM->tm.s.pvGIPRC = GCPtr;
257 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %RRv\n", HCPhysGIP, pVM->tm.s.pvGIPRC));
258 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
259
260 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
261 if ( pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
262 && pGip->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
263 return VMSetError(pVM, VERR_TM_GIP_UPDATE_INTERVAL_TOO_BIG, RT_SRC_POS,
264 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
265 pGip->u32UpdateIntervalNS, pGip->u32UpdateHz);
266
267 /* Log GIP info that may come in handy. */
268 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u u32UpdateIntervalNS=%u enmUseTscDelta=%d (%s) fGetGipCpu=%#x cCpus=%d\n",
269 pGip->u32Mode, SUPGetGIPModeName(pGip), pGip->u32UpdateHz, pGip->u32UpdateIntervalNS,
270 pGip->enmUseTscDelta, SUPGetGIPTscDeltaModeName(pGip), pGip->fGetGipCpu, pGip->cCpus));
271 LogRel(("TM: GIP - u64CpuHz=%'RU64 (%#RX64) SUPGetCpuHzFromGip => %'RU64\n",
272 pGip->u64CpuHz, pGip->u64CpuHz, SUPGetCpuHzFromGip(pGip)));
273 for (uint32_t iCpuSet = 0; iCpuSet < RT_ELEMENTS(pGip->aiCpuFromCpuSetIdx); iCpuSet++)
274 {
275 uint16_t iGipCpu = pGip->aiCpuFromCpuSetIdx[iCpuSet];
276 if (iGipCpu != UINT16_MAX)
277 LogRel(("TM: GIP - CPU: iCpuSet=%#x idCpu=%#x idApic=%#x iGipCpu=%#x i64TSCDelta=%RI64 enmState=%d u64CpuHz=%RU64(*) cErrors=%u\n",
278 iCpuSet, pGip->aCPUs[iGipCpu].idCpu, pGip->aCPUs[iGipCpu].idApic, iGipCpu, pGip->aCPUs[iGipCpu].i64TSCDelta,
279 pGip->aCPUs[iGipCpu].enmState, pGip->aCPUs[iGipCpu].u64CpuHz, pGip->aCPUs[iGipCpu].cErrors));
280 }
281
282 /*
283 * Setup the VirtualGetRaw backend.
284 */
285 pVM->tm.s.pfnVirtualGetRawR3 = tmVirtualNanoTSRediscover;
286 pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
287 pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBad;
288 pVM->tm.s.VirtualGetRawDataR3.pfnBadCpuIndex = tmVirtualNanoTSBadCpuIndex;
289 pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
290 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
291 pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
292 AssertRelease(pVM->tm.s.VirtualGetRawDataR0.pu64Prev);
293 /* The rest is done in TMR3InitFinalize() since it's too early to call PDM. */
294
295 /*
296 * Init the locks.
297 */
298 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.TimerCritSect, RT_SRC_POS, "TM Timer Lock");
299 if (RT_FAILURE(rc))
300 return rc;
301 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
302 if (RT_FAILURE(rc))
303 return rc;
304
305 /*
306 * Get our CFGM node, create it if necessary.
307 */
308 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
309 if (!pCfgHandle)
310 {
311 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
312 AssertRCReturn(rc, rc);
313 }
314
315 /*
316 * Specific errors about some obsolete TM settings (remove after 2015-12-03).
317 */
318 if (CFGMR3Exists(pCfgHandle, "TSCVirtualized"))
319 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
320 N_("Configuration error: TM setting \"TSCVirtualized\" is no longer supported. Use the \"TSCMode\" setting instead."));
321 if (CFGMR3Exists(pCfgHandle, "UseRealTSC"))
322 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
323 N_("Configuration error: TM setting \"UseRealTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
324
325 if (CFGMR3Exists(pCfgHandle, "MaybeUseOffsettedHostTSC"))
326 return VMSetError(pVM, VERR_CFGM_CONFIG_UNKNOWN_VALUE, RT_SRC_POS,
327 N_("Configuration error: TM setting \"MaybeUseOffsettedHostTSC\" is no longer supported. Use the \"TSCMode\" setting instead."));
328
329 /*
330 * Validate the rest of the TM settings.
331 */
332 rc = CFGMR3ValidateConfig(pCfgHandle, "/TM/",
333 "TSCMode|"
334 "TSCModeSwitchAllowed|"
335 "TSCTicksPerSecond|"
336 "TSCTiedToExecution|"
337 "TSCNotTiedToHalt|"
338 "ScheduleSlack|"
339 "CatchUpStopThreshold|"
340 "CatchUpGiveUpThreshold|"
341 "CatchUpStartThreshold0|CatchUpStartThreshold1|CatchUpStartThreshold2|CatchUpStartThreshold3|"
342 "CatchUpStartThreshold4|CatchUpStartThreshold5|CatchUpStartThreshold6|CatchUpStartThreshold7|"
343 "CatchUpStartThreshold8|CatchUpStartThreshold9|"
344 "CatchUpPrecentage0|CatchUpPrecentage1|CatchUpPrecentage2|CatchUpPrecentage3|"
345 "CatchUpPrecentage4|CatchUpPrecentage5|CatchUpPrecentage6|CatchUpPrecentage7|"
346 "CatchUpPrecentage8|CatchUpPrecentage9|"
347 "UTCOffset|"
348 "WarpDrivePercentage|"
349 "HostHzMax|"
350 "HostHzFudgeFactorTimerCpu|"
351 "HostHzFudgeFactorOtherCpu|"
352 "HostHzFudgeFactorCatchUp100|"
353 "HostHzFudgeFactorCatchUp200|"
354 "HostHzFudgeFactorCatchUp400|"
355 "TimerMillies",
356 "",
357 "TM", 0);
358 if (RT_FAILURE(rc))
359 return rc;
360
361 /*
362 * Determine the TSC configuration and frequency.
363 */
364 /** @cfgm{/TM/TSCMode, string, Depends on the CPU and VM config}
365 * The name of the TSC mode to use: VirtTSCEmulated, RealTSCOffset or Dynamic.
366 * The default depends on the VM configuration and the capabilities of the
367 * host CPU. Other config options or runtime changes may override the TSC
368 * mode specified here.
369 */
370 char szTSCMode[32];
371 rc = CFGMR3QueryString(pCfgHandle, "TSCMode", szTSCMode, sizeof(szTSCMode));
372 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
373 {
374 /** @todo Rainy-day/never: Dynamic mode isn't currently suitable for SMP VMs, so
375 * fall back on the more expensive emulated mode. With the current TSC handling
376 * (frequent switching between offsetted mode and taking VM exits, on all VCPUs
377 * without any kind of coordination) will lead to inconsistent TSC behavior with
378 * guest SMP, including TSC going backwards. */
379 pVM->tm.s.enmTSCMode = pVM->cCpus == 1 && tmR3HasFixedTSC(pVM) ? TMTSCMODE_DYNAMIC : TMTSCMODE_VIRT_TSC_EMULATED;
380 }
381 else if (RT_FAILURE(rc))
382 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying string value \"TSCMode\""));
383 else
384 {
385 if (!RTStrCmp(szTSCMode, "VirtTSCEmulated"))
386 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
387 else if (!RTStrCmp(szTSCMode, "RealTSCOffset"))
388 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
389 else if (!RTStrCmp(szTSCMode, "Dynamic"))
390 pVM->tm.s.enmTSCMode = TMTSCMODE_DYNAMIC;
391 else
392 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Unrecognized TM TSC mode value \"%s\""), szTSCMode);
393 }
394
395 /**
396 * @cfgm{/TM/TSCModeSwitchAllowed, bool, Whether TM TSC mode switch is allowed
397 * at runtime}
398 * When using paravirtualized guests, we dynamically switch TSC modes to a more
399 * optimal one for performance. This setting allows overriding this behaviour.
400 */
401 rc = CFGMR3QueryBool(pCfgHandle, "TSCModeSwitchAllowed", &pVM->tm.s.fTSCModeSwitchAllowed);
402 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
403 {
404 /* This is finally determined in TMR3InitFinalize() as GIM isn't initialized yet. */
405 pVM->tm.s.fTSCModeSwitchAllowed = true;
406 }
407 else if (RT_FAILURE(rc))
408 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"TSCModeSwitchAllowed\""));
409
410 /** @cfgm{/TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
411 * The number of TSC ticks per second (i.e. the TSC frequency). This will
412 * override enmTSCMode.
413 */
414 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
415 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
416 {
417 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC(pVM);
418 if ( pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET
419 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
420 {
421 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
422 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
423 }
424 }
425 else if (RT_FAILURE(rc))
426 return VMSetError(pVM, rc, RT_SRC_POS,
427 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
428 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
429 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
430 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
431 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
432 pVM->tm.s.cTSCTicksPerSecond);
433 else
434 {
435 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
436 }
437
438 /** @cfgm{/TM/TSCTiedToExecution, bool, false}
439 * Whether the TSC should be tied to execution. This will exclude most of the
440 * virtualization overhead, but will by default include the time spent in the
441 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
442 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
443 * be used avoided or used with great care. Note that this will only work right
444 * together with VT-x or AMD-V, and with a single virtual CPU. */
445 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
446 if (RT_FAILURE(rc))
447 return VMSetError(pVM, rc, RT_SRC_POS,
448 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
449 if (pVM->tm.s.fTSCTiedToExecution)
450 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
451
452 /** @cfgm{/TM/TSCNotTiedToHalt, bool, true}
453 * For overriding the default of TM/TSCTiedToExecution, i.e. set this to false
454 * to make the TSC freeze during HLT. */
455 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
456 if (RT_FAILURE(rc))
457 return VMSetError(pVM, rc, RT_SRC_POS,
458 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
459
460 /*
461 * Configure the timer synchronous virtual time.
462 */
463 /** @cfgm{/TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
464 * Scheduling slack when processing timers. */
465 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
466 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
467 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
468 else if (RT_FAILURE(rc))
469 return VMSetError(pVM, rc, RT_SRC_POS,
470 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
471
472 /** @cfgm{/TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
473 * When to stop a catch-up, considering it successful. */
474 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
475 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
476 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
477 else if (RT_FAILURE(rc))
478 return VMSetError(pVM, rc, RT_SRC_POS,
479 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
480
481 /** @cfgm{/TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
482 * When to give up a catch-up attempt. */
483 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
484 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
485 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
486 else if (RT_FAILURE(rc))
487 return VMSetError(pVM, rc, RT_SRC_POS,
488 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
489
490
491 /** @cfgm{/TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
492 * The catch-up percent for a given period. */
493 /** @cfgm{/TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX}
494 * The catch-up period threshold, or if you like, when a period starts. */
495#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
496 do \
497 { \
498 uint64_t u64; \
499 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
500 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
501 u64 = UINT64_C(DefStart); \
502 else if (RT_FAILURE(rc)) \
503 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
504 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
505 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
506 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
507 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
508 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
509 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
510 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
511 else if (RT_FAILURE(rc)) \
512 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
513 } while (0)
514 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
515 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
516 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
517 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
518 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
519 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
520 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
521 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
522 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
523 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
524 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
525 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
526#undef TM_CFG_PERIOD
527
528 /*
529 * Configure real world time (UTC).
530 */
531 /** @cfgm{/TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
532 * The UTC offset. This is used to put the guest back or forwards in time. */
533 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
534 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
535 pVM->tm.s.offUTC = 0; /* ns */
536 else if (RT_FAILURE(rc))
537 return VMSetError(pVM, rc, RT_SRC_POS,
538 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
539
540 /*
541 * Setup the warp drive.
542 */
543 /** @cfgm{/TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
544 * The warp drive percentage, 100% is normal speed. This is used to speed up
545 * or slow down the virtual clock, which can be useful for fast forwarding
546 * borring periods during tests. */
547 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
548 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
549 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
550 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
551 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
552 else if (RT_FAILURE(rc))
553 return VMSetError(pVM, rc, RT_SRC_POS,
554 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
555 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
556 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
557 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
558 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
559 pVM->tm.s.u32VirtualWarpDrivePercentage);
560 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
561 if (pVM->tm.s.fVirtualWarpDrive)
562 {
563 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
564 LogRel(("TM: Warp-drive active. u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
565 }
566
567 /*
568 * Gather the Host Hz configuration values.
569 */
570 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzMax", &pVM->tm.s.cHostHzMax, 20000);
571 if (RT_FAILURE(rc))
572 return VMSetError(pVM, rc, RT_SRC_POS,
573 N_("Configuration error: Failed to querying uint32_t value \"HostHzMax\""));
574
575 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorTimerCpu", &pVM->tm.s.cPctHostHzFudgeFactorTimerCpu, 111);
576 if (RT_FAILURE(rc))
577 return VMSetError(pVM, rc, RT_SRC_POS,
578 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorTimerCpu\""));
579
580 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorOtherCpu", &pVM->tm.s.cPctHostHzFudgeFactorOtherCpu, 110);
581 if (RT_FAILURE(rc))
582 return VMSetError(pVM, rc, RT_SRC_POS,
583 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorOtherCpu\""));
584
585 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp100", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp100, 300);
586 if (RT_FAILURE(rc))
587 return VMSetError(pVM, rc, RT_SRC_POS,
588 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp100\""));
589
590 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp200", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp200, 250);
591 if (RT_FAILURE(rc))
592 return VMSetError(pVM, rc, RT_SRC_POS,
593 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp200\""));
594
595 rc = CFGMR3QueryU32Def(pCfgHandle, "HostHzFudgeFactorCatchUp400", &pVM->tm.s.cPctHostHzFudgeFactorCatchUp400, 200);
596 if (RT_FAILURE(rc))
597 return VMSetError(pVM, rc, RT_SRC_POS,
598 N_("Configuration error: Failed to querying uint32_t value \"HostHzFudgeFactorCatchUp400\""));
599
600 /*
601 * Finally, setup and report.
602 */
603 pVM->tm.s.enmOriginalTSCMode = pVM->tm.s.enmTSCMode;
604 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
605 LogRel(("TM: cTSCTicksPerSecond=%'RU64 (%#RX64) enmTSCMode=%d (%s)\n"
606 "TM: TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
607 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM),
608 pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
609
610 /*
611 * Start the timer (guard against REM not yielding).
612 */
613 /** @cfgm{/TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
614 * The watchdog timer interval. */
615 uint32_t u32Millies;
616 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
617 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
618 u32Millies = 10;
619 else if (RT_FAILURE(rc))
620 return VMSetError(pVM, rc, RT_SRC_POS,
621 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
622 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
623 if (RT_FAILURE(rc))
624 {
625 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
626 return rc;
627 }
628 Log(("TM: Created timer %p firing every %d milliseconds\n", pVM->tm.s.pTimer, u32Millies));
629 pVM->tm.s.u32TimerMillies = u32Millies;
630
631 /*
632 * Register saved state.
633 */
634 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
635 NULL, NULL, NULL,
636 NULL, tmR3Save, NULL,
637 NULL, tmR3Load, NULL);
638 if (RT_FAILURE(rc))
639 return rc;
640
641 /*
642 * Register statistics.
643 */
644 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
645 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
646 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
647 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
648 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.c1nsSteps,STAMTYPE_U32, "/TM/RC/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
649 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.cBadPrev, STAMTYPE_U32, "/TM/RC/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
650 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
651 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attempted caught up with.");
652 STAM_REL_REG( pVM,(void*)&pVM->tm.s.uMaxHzHint, STAMTYPE_U32, "/TM/MaxHzHint", STAMUNIT_HZ, "Max guest timer frequency hint.");
653
654#ifdef VBOX_WITH_STATISTICS
655 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
656 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
657 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
658 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
659 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cExpired, STAMTYPE_U32, "/TM/RC/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
660 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cUpdateRaces,STAMTYPE_U32, "/TM/RC/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
661 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
662 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
663 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
664 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
665
666 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
667 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
668 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
669 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
670 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
671 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
672 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
673 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
674
675 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
676 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
677
678 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
679 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
680 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
681
682 STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
683 STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
684 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
685 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
686 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
687 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
688 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
689 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
690 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
691 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
692 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
693 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
694
695 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVs, STAMTYPE_COUNTER, "/TM/TimerSetVs", STAMUNIT_OCCURENCES, "TMTimerSet calls on virtual sync timers");
696 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsR3, STAMTYPE_PROFILE, "/TM/TimerSetVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3 on virtual sync timers.");
697 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC on virtual sync timers.");
698 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
699 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
700 STAM_REG(pVM, &pVM->tm.s.StatTimerSetVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
701
702 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls, except virtual sync timers");
703 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
704 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 (sans virtual sync).");
705 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC (sans virtual sync).");
706 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
707 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
708 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
709 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
710 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
711 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
712 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
713 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
714
715 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVs, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs", STAMUNIT_OCCURENCES, "TMTimerSetRelative calls on virtual sync timers");
716 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsR3, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3 on virtual sync timers.");
717 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelativeVs/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC on virtual sync timers.");
718 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
719 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
720 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeVsStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelativeVs/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
721
722 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
723 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
724
725 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
726 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
727 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
728 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetAdjLast, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/AdjLast", STAMUNIT_OCCURENCES, "Times we've adjusted against the last returned time stamp .");
729 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
730 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
731 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
732 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
733 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
734 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
735 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
736
737 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
738 STAM_REG(pVM, &pVM->tm.s.StatTimerCallback, STAMTYPE_COUNTER, "/TM/Callback", STAMUNIT_OCCURENCES, "The number of times the timer callback is invoked.");
739
740 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
741 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
742 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
743 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
744 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
745 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
746 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
747 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
748 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
749 STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
750 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/TSC/Pause", STAMUNIT_OCCURENCES, "The number of times the TSC was paused.");
751 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/TSC/Resume", STAMUNIT_OCCURENCES, "The number of times the TSC was resumed.");
752#endif /* VBOX_WITH_STATISTICS */
753
754 for (VMCPUID i = 0; i < pVM->cCpus; i++)
755 {
756 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
757#ifndef VBOX_WITHOUT_NS_ACCOUNTING
758# if defined(VBOX_WITH_STATISTICS) || defined(VBOX_WITH_NS_ACCOUNTING_STATS)
759 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
760 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
761 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecLong, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - long hauls.", "/TM/CPU/%02u/PrfExecLong", i);
762 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecShort, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - short stretches.", "/TM/CPU/%02u/PrfExecShort", i);
763 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecTiny, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code - tiny bits.", "/TM/CPU/%02u/PrfExecTiny", i);
764 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
765 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
766# endif
767 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
768 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
769 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
770 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsOther, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
771 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
772 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
773 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
774 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
775 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
776#endif
777 }
778#ifndef VBOX_WITHOUT_NS_ACCOUNTING
779 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
780 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
781 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
782#endif
783
784#ifdef VBOX_WITH_STATISTICS
785 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
786 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
787 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
788 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
789 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
790 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
791 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
792 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
793 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
794 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
795 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
796 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
797 {
798 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
799 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
800 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
801 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
802 }
803#endif /* VBOX_WITH_STATISTICS */
804
805 /*
806 * Register info handlers.
807 */
808 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
809 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
810 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
811
812 return VINF_SUCCESS;
813}
814
815
816/**
817 * Checks if the host CPU has a fixed TSC frequency.
818 *
819 * @returns true if it has, false if it hasn't.
820 *
821 * @remarks This test doesn't bother with very old CPUs that don't do power
822 * management or any other stuff that might influence the TSC rate.
823 * This isn't currently relevant.
824 */
825static bool tmR3HasFixedTSC(PVM pVM)
826{
827 /*
828 * ASSUME that if the GIP is in invariant TSC mode, it's because the CPU
829 * actually has invariant TSC.
830 */
831 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
832 if (pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC)
833 return true;
834
835 /*
836 * Go by features and model info from the CPUID instruction.
837 */
838 if (ASMHasCpuId())
839 {
840 uint32_t uEAX, uEBX, uECX, uEDX;
841
842 /*
843 * By feature. (Used to be AMD specific, intel seems to have picked it up.)
844 */
845 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
846 if (uEAX >= 0x80000007 && ASMIsValidExtRange(uEAX))
847 {
848 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
849 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
850 && pGip->u32Mode != SUPGIPMODE_ASYNC_TSC) /* No fixed tsc if the gip timer is in async mode. */
851 return true;
852 }
853
854 /*
855 * By model.
856 */
857 if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
858 {
859 /*
860 * AuthenticAMD - Check for APM support and that TscInvariant is set.
861 *
862 * This test isn't correct with respect to fixed/non-fixed TSC and
863 * older models, but this isn't relevant since the result is currently
864 * only used for making a decision on AMD-V models.
865 */
866#if 0 /* Promoted to generic */
867 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
868 if (uEAX >= 0x80000007)
869 {
870 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
871 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
872 && ( pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* No fixed tsc if the gip timer is in async mode. */
873 || pGip->u32Mode == SUPGIPMODE_INVARIANT_TSC))
874 return true;
875 }
876#endif
877 }
878 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
879 {
880 /*
881 * GenuineIntel - Check the model number.
882 *
883 * This test is lacking in the same way and for the same reasons
884 * as the AMD test above.
885 */
886 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
887 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
888 unsigned uModel = (uEAX >> 4) & 0x0f;
889 unsigned uFamily = (uEAX >> 8) & 0x0f;
890 if (uFamily == 0x0f)
891 uFamily += (uEAX >> 20) & 0xff;
892 if (uFamily >= 0x06)
893 uModel += ((uEAX >> 16) & 0x0f) << 4;
894 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
895 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
896 return true;
897 }
898 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_VIA)
899 {
900 /*
901 * CentaurHauls - Check the model, family and stepping.
902 *
903 * This only checks for VIA CPU models Nano X2, Nano X3,
904 * Eden X2 and QuadCore.
905 */
906 /** @todo use ASMGetCpuFamily() and ASMGetCpuModel() here. */
907 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
908 unsigned uStepping = (uEAX & 0x0f);
909 unsigned uModel = (uEAX >> 4) & 0x0f;
910 unsigned uFamily = (uEAX >> 8) & 0x0f;
911 if ( uFamily == 0x06
912 && uModel == 0x0f
913 && uStepping >= 0x0c
914 && uStepping <= 0x0f)
915 return true;
916 }
917 }
918 return false;
919}
920
921
922/**
923 * Calibrate the CPU tick.
924 *
925 * @returns Number of ticks per second.
926 */
927static uint64_t tmR3CalibrateTSC(PVM pVM)
928{
929 uint64_t u64Hz;
930
931 /*
932 * Use GIP when available. Prefere the nominal one, no need to wait for it.
933 */
934 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
935 if (pGip)
936 {
937 u64Hz = pGip->u64CpuHz;
938 if (u64Hz < _1T && u64Hz > _1M)
939 return u64Hz;
940 AssertFailed(); /* This shouldn't happen. */
941
942 u64Hz = SUPGetCpuHzFromGip(pGip);
943 if (u64Hz < _1T && u64Hz > _1M)
944 return u64Hz;
945
946 AssertFailed(); /* This shouldn't happen. */
947 }
948 /* else: This should only happen in fake SUPLib mode, which we don't really support any more... */
949
950 /* Call this once first to make sure it's initialized. */
951 RTTimeNanoTS();
952
953 /*
954 * Yield the CPU to increase our chances of getting
955 * a correct value.
956 */
957 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
958 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
959 uint64_t au64Samples[5];
960 unsigned i;
961 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
962 {
963 RTMSINTERVAL cMillies;
964 int cTries = 5;
965 uint64_t u64Start = ASMReadTSC();
966 uint64_t u64End;
967 uint64_t StartTS = RTTimeNanoTS();
968 uint64_t EndTS;
969 do
970 {
971 RTThreadSleep(s_auSleep[i]);
972 u64End = ASMReadTSC();
973 EndTS = RTTimeNanoTS();
974 cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
975 } while ( cMillies == 0 /* the sleep may be interrupted... */
976 || (cMillies < 20 && --cTries > 0));
977 uint64_t u64Diff = u64End - u64Start;
978
979 au64Samples[i] = (u64Diff * 1000) / cMillies;
980 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
981 }
982
983 /*
984 * Discard the highest and lowest results and calculate the average.
985 */
986 unsigned iHigh = 0;
987 unsigned iLow = 0;
988 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
989 {
990 if (au64Samples[i] < au64Samples[iLow])
991 iLow = i;
992 if (au64Samples[i] > au64Samples[iHigh])
993 iHigh = i;
994 }
995 au64Samples[iLow] = 0;
996 au64Samples[iHigh] = 0;
997
998 u64Hz = au64Samples[0];
999 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
1000 u64Hz += au64Samples[i];
1001 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
1002
1003 return u64Hz;
1004}
1005
1006
1007/**
1008 * Finalizes the TM initialization.
1009 *
1010 * @returns VBox status code.
1011 * @param pVM The cross context VM structure.
1012 */
1013VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
1014{
1015 int rc;
1016
1017 /*
1018 * Resolve symbols.
1019 */
1020 if (!HMIsEnabled(pVM))
1021 {
1022 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
1023 AssertRCReturn(rc, rc);
1024 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex);
1025 AssertRCReturn(rc, rc);
1026 rc = PDMR3LdrGetSymbolRC(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
1027 AssertRCReturn(rc, rc);
1028 pVM->tm.s.pfnVirtualGetRawRC = pVM->tm.s.VirtualGetRawDataRC.pfnRediscover;
1029 }
1030
1031 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
1032 AssertRCReturn(rc, rc);
1033 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSBadCpuIndex", &pVM->tm.s.VirtualGetRawDataR0.pfnBadCpuIndex);
1034 AssertRCReturn(rc, rc);
1035 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
1036 AssertRCReturn(rc, rc);
1037 pVM->tm.s.pfnVirtualGetRawR0 = pVM->tm.s.VirtualGetRawDataR0.pfnRediscover;
1038
1039#ifndef VBOX_WITHOUT_NS_ACCOUNTING
1040 /*
1041 * Create a timer for refreshing the CPU load stats.
1042 */
1043 PTMTIMER pTimer;
1044 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, "CPU Load Timer", &pTimer);
1045 if (RT_SUCCESS(rc))
1046 rc = TMTimerSetMillies(pTimer, 1000);
1047#endif
1048
1049 /*
1050 * GIM is now initialized. Determine if TSC mode switching is allowed (respecting CFGM override).
1051 */
1052 pVM->tm.s.fTSCModeSwitchAllowed &= tmR3HasFixedTSC(pVM) && GIMIsEnabled(pVM) && HMIsEnabled(pVM);
1053 LogRel(("TM: TMR3InitFinalize: fTSCModeSwitchAllowed=%RTbool\n", pVM->tm.s.fTSCModeSwitchAllowed));
1054 return rc;
1055}
1056
1057
1058/**
1059 * Applies relocations to data and code managed by this
1060 * component. This function will be called at init and
1061 * whenever the VMM need to relocate it self inside the GC.
1062 *
1063 * @param pVM The cross context VM structure.
1064 * @param offDelta Relocation delta relative to old location.
1065 */
1066VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1067{
1068 LogFlow(("TMR3Relocate\n"));
1069
1070 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
1071
1072 if (!HMIsEnabled(pVM))
1073 {
1074 pVM->tm.s.pvGIPRC = MMHyperR3ToRC(pVM, pVM->tm.s.pvGIPR3);
1075 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pVM->tm.s.paTimerQueuesR3);
1076 pVM->tm.s.VirtualGetRawDataRC.pu64Prev += offDelta;
1077 pVM->tm.s.VirtualGetRawDataRC.pfnBad += offDelta;
1078 pVM->tm.s.VirtualGetRawDataRC.pfnBadCpuIndex += offDelta;
1079 pVM->tm.s.VirtualGetRawDataRC.pfnRediscover += offDelta;
1080 pVM->tm.s.pfnVirtualGetRawRC += offDelta;
1081 }
1082
1083 /*
1084 * Iterate the timers updating the pVMRC pointers.
1085 */
1086 for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
1087 {
1088 pTimer->pVMRC = pVM->pVMRC;
1089 pTimer->pVMR0 = pVM->pVMR0;
1090 }
1091}
1092
1093
1094/**
1095 * Terminates the TM.
1096 *
1097 * Termination means cleaning up and freeing all resources,
1098 * the VM it self is at this point powered off or suspended.
1099 *
1100 * @returns VBox status code.
1101 * @param pVM The cross context VM structure.
1102 */
1103VMM_INT_DECL(int) TMR3Term(PVM pVM)
1104{
1105 AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
1106 if (pVM->tm.s.pTimer)
1107 {
1108 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
1109 AssertRC(rc);
1110 pVM->tm.s.pTimer = NULL;
1111 }
1112
1113 return VINF_SUCCESS;
1114}
1115
1116
1117/**
1118 * The VM is being reset.
1119 *
1120 * For the TM component this means that a rescheduling is preformed,
1121 * the FF is cleared and but without running the queues. We'll have to
1122 * check if this makes sense or not, but it seems like a good idea now....
1123 *
1124 * @param pVM The cross context VM structure.
1125 */
1126VMM_INT_DECL(void) TMR3Reset(PVM pVM)
1127{
1128 LogFlow(("TMR3Reset:\n"));
1129 VM_ASSERT_EMT(pVM);
1130 TM_LOCK_TIMERS(pVM);
1131
1132 /*
1133 * Abort any pending catch up.
1134 * This isn't perfect...
1135 */
1136 if (pVM->tm.s.fVirtualSyncCatchUp)
1137 {
1138 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
1139 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
1140 if (pVM->tm.s.fVirtualSyncCatchUp)
1141 {
1142 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1143
1144 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
1145 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
1146 Assert(offOld <= offNew);
1147 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1148 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
1149 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1150 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
1151 }
1152 }
1153
1154 /*
1155 * Process the queues.
1156 */
1157 for (int i = 0; i < TMCLOCK_MAX; i++)
1158 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
1159#ifdef VBOX_STRICT
1160 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1161#endif
1162
1163 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1164 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1165
1166 /*
1167 * Switch TM TSC mode back to the original mode after a reset for
1168 * paravirtualized guests that alter the TM TSC mode during operation.
1169 */
1170 if ( pVM->tm.s.fTSCModeSwitchAllowed
1171 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
1172 {
1173 VM_ASSERT_EMT0(pVM);
1174 tmR3CpuTickParavirtDisable(pVM, &pVM->aCpus[0], NULL /* pvData */);
1175 }
1176 Assert(!GIMIsParavirtTscEnabled(pVM));
1177 pVM->tm.s.fParavirtTscEnabled = false;
1178
1179 TM_UNLOCK_TIMERS(pVM);
1180}
1181
1182
1183/**
1184 * Resolve a builtin RC symbol.
1185 * Called by PDM when loading or relocating GC modules.
1186 *
1187 * @returns VBox status
1188 * @param pVM The cross context VM structure.
1189 * @param pszSymbol Symbol to resolve.
1190 * @param pRCPtrValue Where to store the symbol value.
1191 * @remark This has to work before TMR3Relocate() is called.
1192 */
1193VMM_INT_DECL(int) TMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1194{
1195 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
1196 *pRCPtrValue = MMHyperR3ToRC(pVM, &pVM->tm.s.pvGIPRC);
1197 //else if (..)
1198 else
1199 return VERR_SYMBOL_NOT_FOUND;
1200 return VINF_SUCCESS;
1201}
1202
1203
1204/**
1205 * Execute state save operation.
1206 *
1207 * @returns VBox status code.
1208 * @param pVM The cross context VM structure.
1209 * @param pSSM SSM operation handle.
1210 */
1211static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1212{
1213 LogFlow(("tmR3Save:\n"));
1214#ifdef VBOX_STRICT
1215 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1216 {
1217 PVMCPU pVCpu = &pVM->aCpus[i];
1218 Assert(!pVCpu->tm.s.fTSCTicking);
1219 }
1220 Assert(!pVM->tm.s.cVirtualTicking);
1221 Assert(!pVM->tm.s.fVirtualSyncTicking);
1222 Assert(!pVM->tm.s.cTSCsTicking);
1223#endif
1224
1225 /*
1226 * Save the virtual clocks.
1227 */
1228 /* the virtual clock. */
1229 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1230 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1231
1232 /* the virtual timer synchronous clock. */
1233 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1234 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1235 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1236 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1237 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1238
1239 /* real time clock */
1240 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1241
1242 /* the cpu tick clock. */
1243 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1244 {
1245 PVMCPU pVCpu = &pVM->aCpus[i];
1246 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1247 }
1248 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1249}
1250
1251
1252/**
1253 * Execute state load operation.
1254 *
1255 * @returns VBox status code.
1256 * @param pVM The cross context VM structure.
1257 * @param pSSM SSM operation handle.
1258 * @param uVersion Data layout version.
1259 * @param uPass The data pass.
1260 */
1261static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1262{
1263 LogFlow(("tmR3Load:\n"));
1264
1265 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1266#ifdef VBOX_STRICT
1267 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1268 {
1269 PVMCPU pVCpu = &pVM->aCpus[i];
1270 Assert(!pVCpu->tm.s.fTSCTicking);
1271 }
1272 Assert(!pVM->tm.s.cVirtualTicking);
1273 Assert(!pVM->tm.s.fVirtualSyncTicking);
1274 Assert(!pVM->tm.s.cTSCsTicking);
1275#endif
1276
1277 /*
1278 * Validate version.
1279 */
1280 if (uVersion != TM_SAVED_STATE_VERSION)
1281 {
1282 AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
1283 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1284 }
1285
1286 /*
1287 * Load the virtual clock.
1288 */
1289 pVM->tm.s.cVirtualTicking = 0;
1290 /* the virtual clock. */
1291 uint64_t u64Hz;
1292 int rc = SSMR3GetU64(pSSM, &u64Hz);
1293 if (RT_FAILURE(rc))
1294 return rc;
1295 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1296 {
1297 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1298 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1299 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1300 }
1301 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1302 pVM->tm.s.u64VirtualOffset = 0;
1303
1304 /* the virtual timer synchronous clock. */
1305 pVM->tm.s.fVirtualSyncTicking = false;
1306 uint64_t u64;
1307 SSMR3GetU64(pSSM, &u64);
1308 pVM->tm.s.u64VirtualSync = u64;
1309 SSMR3GetU64(pSSM, &u64);
1310 pVM->tm.s.offVirtualSync = u64;
1311 SSMR3GetU64(pSSM, &u64);
1312 pVM->tm.s.offVirtualSyncGivenUp = u64;
1313 SSMR3GetU64(pSSM, &u64);
1314 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1315 bool f;
1316 SSMR3GetBool(pSSM, &f);
1317 pVM->tm.s.fVirtualSyncCatchUp = f;
1318
1319 /* the real clock */
1320 rc = SSMR3GetU64(pSSM, &u64Hz);
1321 if (RT_FAILURE(rc))
1322 return rc;
1323 if (u64Hz != TMCLOCK_FREQ_REAL)
1324 {
1325 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1326 u64Hz, TMCLOCK_FREQ_REAL));
1327 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* misleading... */
1328 }
1329
1330 /* the cpu tick clock. */
1331 pVM->tm.s.cTSCsTicking = 0;
1332 pVM->tm.s.offTSCPause = 0;
1333 pVM->tm.s.u64LastPausedTSC = 0;
1334 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1335 {
1336 PVMCPU pVCpu = &pVM->aCpus[i];
1337
1338 pVCpu->tm.s.fTSCTicking = false;
1339 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1340 if (pVM->tm.s.u64LastPausedTSC < pVCpu->tm.s.u64TSC)
1341 pVM->tm.s.u64LastPausedTSC = pVCpu->tm.s.u64TSC;
1342
1343 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1344 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1345 }
1346
1347 rc = SSMR3GetU64(pSSM, &u64Hz);
1348 if (RT_FAILURE(rc))
1349 return rc;
1350 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
1351 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1352
1353 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) enmTSCMode=%d (%s) (state load)\n",
1354 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM)));
1355
1356 /* Disabled as this isn't tested, also should this apply only if GIM is enabled etc. */
1357#if 0
1358 /*
1359 * If the current host TSC frequency is incompatible with what is in the
1360 * saved state of the VM, fall back to emulating TSC and disallow TSC mode
1361 * switches during VM runtime (e.g. by GIM).
1362 */
1363 if ( GIMIsEnabled(pVM)
1364 || pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
1365 {
1366 uint64_t uGipCpuHz;
1367 bool fRelax = RTSystemIsInsideVM();
1368 bool fCompat = SUPIsTscFreqCompatible(pVM->tm.s.cTSCTicksPerSecond, &uGipCpuHz, fRelax);
1369 if (!fCompat)
1370 {
1371 pVM->tm.s.enmTSCMode = TMTSCMODE_VIRT_TSC_EMULATED;
1372 pVM->tm.s.fTSCModeSwitchAllowed = false;
1373 if (g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC)
1374 {
1375 LogRel(("TM: TSC frequency incompatible! uGipCpuHz=%#RX64 (%'RU64) enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1376 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1377 }
1378 else
1379 {
1380 LogRel(("TM: GIP is async, enmTSCMode=%d (%s) fTSCModeSwitchAllowed=%RTbool (state load)\n",
1381 uGipCpuHz, uGipCpuHz, pVM->tm.s.enmTSCMode, tmR3GetTSCModeName(pVM), pVM->tm.s.fTSCModeSwitchAllowed));
1382 }
1383 }
1384 }
1385#endif
1386
1387 /*
1388 * Make sure timers get rescheduled immediately.
1389 */
1390 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1391 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1392
1393 return VINF_SUCCESS;
1394}
1395
1396
1397/**
1398 * Internal TMR3TimerCreate worker.
1399 *
1400 * @returns VBox status code.
1401 * @param pVM The cross context VM structure.
1402 * @param enmClock The timer clock.
1403 * @param pszDesc The timer description.
1404 * @param ppTimer Where to store the timer pointer on success.
1405 */
1406static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
1407{
1408 VM_ASSERT_EMT(pVM);
1409
1410 /*
1411 * Allocate the timer.
1412 */
1413 PTMTIMERR3 pTimer = NULL;
1414 if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
1415 {
1416 pTimer = pVM->tm.s.pFree;
1417 pVM->tm.s.pFree = pTimer->pBigNext;
1418 Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
1419 }
1420
1421 if (!pTimer)
1422 {
1423 int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
1424 if (RT_FAILURE(rc))
1425 return rc;
1426 Log3(("TM: Allocated new timer %p\n", pTimer));
1427 }
1428
1429 /*
1430 * Initialize it.
1431 */
1432 pTimer->u64Expire = 0;
1433 pTimer->enmClock = enmClock;
1434 pTimer->pVMR3 = pVM;
1435 pTimer->pVMR0 = pVM->pVMR0;
1436 pTimer->pVMRC = pVM->pVMRC;
1437 pTimer->enmState = TMTIMERSTATE_STOPPED;
1438 pTimer->offScheduleNext = 0;
1439 pTimer->offNext = 0;
1440 pTimer->offPrev = 0;
1441 pTimer->pvUser = NULL;
1442 pTimer->pCritSect = NULL;
1443 pTimer->pszDesc = pszDesc;
1444
1445 /* insert into the list of created timers. */
1446 TM_LOCK_TIMERS(pVM);
1447 pTimer->pBigPrev = NULL;
1448 pTimer->pBigNext = pVM->tm.s.pCreated;
1449 pVM->tm.s.pCreated = pTimer;
1450 if (pTimer->pBigNext)
1451 pTimer->pBigNext->pBigPrev = pTimer;
1452#ifdef VBOX_STRICT
1453 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1454#endif
1455 TM_UNLOCK_TIMERS(pVM);
1456
1457 *ppTimer = pTimer;
1458 return VINF_SUCCESS;
1459}
1460
1461
1462/**
1463 * Creates a device timer.
1464 *
1465 * @returns VBox status code.
1466 * @param pVM The cross context VM structure.
1467 * @param pDevIns Device instance.
1468 * @param enmClock The clock to use on this timer.
1469 * @param pfnCallback Callback function.
1470 * @param pvUser The user argument to the callback.
1471 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1472 * @param pszDesc Pointer to description string which must stay around
1473 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1474 * @param ppTimer Where to store the timer on success.
1475 */
1476VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock,
1477 PFNTMTIMERDEV pfnCallback, void *pvUser,
1478 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1479{
1480 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1481
1482 /*
1483 * Allocate and init stuff.
1484 */
1485 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1486 if (RT_SUCCESS(rc))
1487 {
1488 (*ppTimer)->enmType = TMTIMERTYPE_DEV;
1489 (*ppTimer)->u.Dev.pfnTimer = pfnCallback;
1490 (*ppTimer)->u.Dev.pDevIns = pDevIns;
1491 (*ppTimer)->pvUser = pvUser;
1492 if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1493 (*ppTimer)->pCritSect = PDMR3DevGetCritSect(pVM, pDevIns);
1494 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1495 }
1496
1497 return rc;
1498}
1499
1500
1501
1502
1503/**
1504 * Creates a USB device timer.
1505 *
1506 * @returns VBox status code.
1507 * @param pVM The cross context VM structure.
1508 * @param pUsbIns The USB device instance.
1509 * @param enmClock The clock to use on this timer.
1510 * @param pfnCallback Callback function.
1511 * @param pvUser The user argument to the callback.
1512 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1513 * @param pszDesc Pointer to description string which must stay around
1514 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1515 * @param ppTimer Where to store the timer on success.
1516 */
1517VMM_INT_DECL(int) TMR3TimerCreateUsb(PVM pVM, PPDMUSBINS pUsbIns, TMCLOCK enmClock,
1518 PFNTMTIMERUSB pfnCallback, void *pvUser,
1519 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1520{
1521 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1522
1523 /*
1524 * Allocate and init stuff.
1525 */
1526 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1527 if (RT_SUCCESS(rc))
1528 {
1529 (*ppTimer)->enmType = TMTIMERTYPE_USB;
1530 (*ppTimer)->u.Usb.pfnTimer = pfnCallback;
1531 (*ppTimer)->u.Usb.pUsbIns = pUsbIns;
1532 (*ppTimer)->pvUser = pvUser;
1533 //if (!(fFlags & TMTIMER_FLAGS_NO_CRIT_SECT))
1534 //{
1535 // if (pDevIns->pCritSectR3)
1536 // (*ppTimer)->pCritSect = pUsbIns->pCritSectR3;
1537 // else
1538 // (*ppTimer)->pCritSect = IOMR3GetCritSect(pVM);
1539 //}
1540 Log(("TM: Created USB device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1541 }
1542
1543 return rc;
1544}
1545
1546
1547/**
1548 * Creates a driver timer.
1549 *
1550 * @returns VBox status code.
1551 * @param pVM The cross context VM structure.
1552 * @param pDrvIns Driver instance.
1553 * @param enmClock The clock to use on this timer.
1554 * @param pfnCallback Callback function.
1555 * @param pvUser The user argument to the callback.
1556 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1557 * @param pszDesc Pointer to description string which must stay around
1558 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1559 * @param ppTimer Where to store the timer on success.
1560 */
1561VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1562 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1563{
1564 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1565
1566 /*
1567 * Allocate and init stuff.
1568 */
1569 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1570 if (RT_SUCCESS(rc))
1571 {
1572 (*ppTimer)->enmType = TMTIMERTYPE_DRV;
1573 (*ppTimer)->u.Drv.pfnTimer = pfnCallback;
1574 (*ppTimer)->u.Drv.pDrvIns = pDrvIns;
1575 (*ppTimer)->pvUser = pvUser;
1576 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1577 }
1578
1579 return rc;
1580}
1581
1582
1583/**
1584 * Creates an internal timer.
1585 *
1586 * @returns VBox status code.
1587 * @param pVM The cross context VM structure.
1588 * @param enmClock The clock to use on this timer.
1589 * @param pfnCallback Callback function.
1590 * @param pvUser User argument to be passed to the callback.
1591 * @param pszDesc Pointer to description string which must stay around
1592 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1593 * @param ppTimer Where to store the timer on success.
1594 */
1595VMMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERR3 ppTimer)
1596{
1597 /*
1598 * Allocate and init stuff.
1599 */
1600 PTMTIMER pTimer;
1601 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1602 if (RT_SUCCESS(rc))
1603 {
1604 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1605 pTimer->u.Internal.pfnTimer = pfnCallback;
1606 pTimer->pvUser = pvUser;
1607 *ppTimer = pTimer;
1608 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1609 }
1610
1611 return rc;
1612}
1613
1614/**
1615 * Creates an external timer.
1616 *
1617 * @returns Timer handle on success.
1618 * @returns NULL on failure.
1619 * @param pVM The cross context VM structure.
1620 * @param enmClock The clock to use on this timer.
1621 * @param pfnCallback Callback function.
1622 * @param pvUser User argument.
1623 * @param pszDesc Pointer to description string which must stay around
1624 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1625 */
1626VMMR3DECL(PTMTIMERR3) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
1627{
1628 /*
1629 * Allocate and init stuff.
1630 */
1631 PTMTIMERR3 pTimer;
1632 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1633 if (RT_SUCCESS(rc))
1634 {
1635 pTimer->enmType = TMTIMERTYPE_EXTERNAL;
1636 pTimer->u.External.pfnTimer = pfnCallback;
1637 pTimer->pvUser = pvUser;
1638 Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1639 return pTimer;
1640 }
1641
1642 return NULL;
1643}
1644
1645
1646/**
1647 * Destroy a timer
1648 *
1649 * @returns VBox status code.
1650 * @param pTimer Timer handle as returned by one of the create functions.
1651 */
1652VMMR3DECL(int) TMR3TimerDestroy(PTMTIMER pTimer)
1653{
1654 /*
1655 * Be extra careful here.
1656 */
1657 if (!pTimer)
1658 return VINF_SUCCESS;
1659 AssertPtr(pTimer);
1660 Assert((unsigned)pTimer->enmClock < (unsigned)TMCLOCK_MAX);
1661
1662 PVM pVM = pTimer->CTX_SUFF(pVM);
1663 PTMTIMERQUEUE pQueue = &pVM->tm.s.CTX_SUFF(paTimerQueues)[pTimer->enmClock];
1664 bool fActive = false;
1665 bool fPending = false;
1666
1667 AssertMsg( !pTimer->pCritSect
1668 || VMR3GetState(pVM) != VMSTATE_RUNNING
1669 || PDMCritSectIsOwner(pTimer->pCritSect), ("%s\n", pTimer->pszDesc));
1670
1671 /*
1672 * The rest of the game happens behind the lock, just
1673 * like create does. All the work is done here.
1674 */
1675 TM_LOCK_TIMERS(pVM);
1676 for (int cRetries = 1000;; cRetries--)
1677 {
1678 /*
1679 * Change to the DESTROY state.
1680 */
1681 TMTIMERSTATE const enmState = pTimer->enmState;
1682 Log2(("TMTimerDestroy: %p:{.enmState=%s, .pszDesc='%s'} cRetries=%d\n",
1683 pTimer, tmTimerState(enmState), R3STRING(pTimer->pszDesc), cRetries));
1684 switch (enmState)
1685 {
1686 case TMTIMERSTATE_STOPPED:
1687 case TMTIMERSTATE_EXPIRED_DELIVER:
1688 break;
1689
1690 case TMTIMERSTATE_ACTIVE:
1691 fActive = true;
1692 break;
1693
1694 case TMTIMERSTATE_PENDING_STOP:
1695 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1696 case TMTIMERSTATE_PENDING_RESCHEDULE:
1697 fActive = true;
1698 fPending = true;
1699 break;
1700
1701 case TMTIMERSTATE_PENDING_SCHEDULE:
1702 fPending = true;
1703 break;
1704
1705 /*
1706 * This shouldn't happen as the caller should make sure there are no races.
1707 */
1708 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1709 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1710 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1711 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1712 TM_UNLOCK_TIMERS(pVM);
1713 if (!RTThreadYield())
1714 RTThreadSleep(1);
1715 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1716 VERR_TM_UNSTABLE_STATE);
1717 TM_LOCK_TIMERS(pVM);
1718 continue;
1719
1720 /*
1721 * Invalid states.
1722 */
1723 case TMTIMERSTATE_FREE:
1724 case TMTIMERSTATE_DESTROY:
1725 TM_UNLOCK_TIMERS(pVM);
1726 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1727
1728 default:
1729 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, R3STRING(pTimer->pszDesc)));
1730 TM_UNLOCK_TIMERS(pVM);
1731 return VERR_TM_UNKNOWN_STATE;
1732 }
1733
1734 /*
1735 * Try switch to the destroy state.
1736 * This should always succeed as the caller should make sure there are no race.
1737 */
1738 bool fRc;
1739 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1740 if (fRc)
1741 break;
1742 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1743 TM_UNLOCK_TIMERS(pVM);
1744 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1745 VERR_TM_UNSTABLE_STATE);
1746 TM_LOCK_TIMERS(pVM);
1747 }
1748
1749 /*
1750 * Unlink from the active list.
1751 */
1752 if (fActive)
1753 {
1754 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1755 const PTMTIMER pNext = TMTIMER_GET_NEXT(pTimer);
1756 if (pPrev)
1757 TMTIMER_SET_NEXT(pPrev, pNext);
1758 else
1759 {
1760 TMTIMER_SET_HEAD(pQueue, pNext);
1761 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1762 }
1763 if (pNext)
1764 TMTIMER_SET_PREV(pNext, pPrev);
1765 pTimer->offNext = 0;
1766 pTimer->offPrev = 0;
1767 }
1768
1769 /*
1770 * Unlink from the schedule list by running it.
1771 */
1772 if (fPending)
1773 {
1774 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
1775 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1776 Assert(pQueue->offSchedule);
1777 tmTimerQueueSchedule(pVM, pQueue);
1778 STAM_PROFILE_STOP(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1779 }
1780
1781 /*
1782 * Read to move the timer from the created list and onto the free list.
1783 */
1784 Assert(!pTimer->offNext); Assert(!pTimer->offPrev); Assert(!pTimer->offScheduleNext);
1785
1786 /* unlink from created list */
1787 if (pTimer->pBigPrev)
1788 pTimer->pBigPrev->pBigNext = pTimer->pBigNext;
1789 else
1790 pVM->tm.s.pCreated = pTimer->pBigNext;
1791 if (pTimer->pBigNext)
1792 pTimer->pBigNext->pBigPrev = pTimer->pBigPrev;
1793 pTimer->pBigNext = 0;
1794 pTimer->pBigPrev = 0;
1795
1796 /* free */
1797 Log2(("TM: Inserting %p into the free list ahead of %p!\n", pTimer, pVM->tm.s.pFree));
1798 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
1799 pTimer->pBigNext = pVM->tm.s.pFree;
1800 pVM->tm.s.pFree = pTimer;
1801
1802#ifdef VBOX_STRICT
1803 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
1804#endif
1805 TM_UNLOCK_TIMERS(pVM);
1806 return VINF_SUCCESS;
1807}
1808
1809
1810/**
1811 * Destroy all timers owned by a device.
1812 *
1813 * @returns VBox status code.
1814 * @param pVM The cross context VM structure.
1815 * @param pDevIns Device which timers should be destroyed.
1816 */
1817VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
1818{
1819 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
1820 if (!pDevIns)
1821 return VERR_INVALID_PARAMETER;
1822
1823 TM_LOCK_TIMERS(pVM);
1824 PTMTIMER pCur = pVM->tm.s.pCreated;
1825 while (pCur)
1826 {
1827 PTMTIMER pDestroy = pCur;
1828 pCur = pDestroy->pBigNext;
1829 if ( pDestroy->enmType == TMTIMERTYPE_DEV
1830 && pDestroy->u.Dev.pDevIns == pDevIns)
1831 {
1832 int rc = TMR3TimerDestroy(pDestroy);
1833 AssertRC(rc);
1834 }
1835 }
1836 TM_UNLOCK_TIMERS(pVM);
1837
1838 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
1839 return VINF_SUCCESS;
1840}
1841
1842
1843/**
1844 * Destroy all timers owned by a USB device.
1845 *
1846 * @returns VBox status code.
1847 * @param pVM The cross context VM structure.
1848 * @param pUsbIns USB device which timers should be destroyed.
1849 */
1850VMM_INT_DECL(int) TMR3TimerDestroyUsb(PVM pVM, PPDMUSBINS pUsbIns)
1851{
1852 LogFlow(("TMR3TimerDestroyUsb: pUsbIns=%p\n", pUsbIns));
1853 if (!pUsbIns)
1854 return VERR_INVALID_PARAMETER;
1855
1856 TM_LOCK_TIMERS(pVM);
1857 PTMTIMER pCur = pVM->tm.s.pCreated;
1858 while (pCur)
1859 {
1860 PTMTIMER pDestroy = pCur;
1861 pCur = pDestroy->pBigNext;
1862 if ( pDestroy->enmType == TMTIMERTYPE_USB
1863 && pDestroy->u.Usb.pUsbIns == pUsbIns)
1864 {
1865 int rc = TMR3TimerDestroy(pDestroy);
1866 AssertRC(rc);
1867 }
1868 }
1869 TM_UNLOCK_TIMERS(pVM);
1870
1871 LogFlow(("TMR3TimerDestroyUsb: returns VINF_SUCCESS\n"));
1872 return VINF_SUCCESS;
1873}
1874
1875
1876/**
1877 * Destroy all timers owned by a driver.
1878 *
1879 * @returns VBox status code.
1880 * @param pVM The cross context VM structure.
1881 * @param pDrvIns Driver which timers should be destroyed.
1882 */
1883VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
1884{
1885 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
1886 if (!pDrvIns)
1887 return VERR_INVALID_PARAMETER;
1888
1889 TM_LOCK_TIMERS(pVM);
1890 PTMTIMER pCur = pVM->tm.s.pCreated;
1891 while (pCur)
1892 {
1893 PTMTIMER pDestroy = pCur;
1894 pCur = pDestroy->pBigNext;
1895 if ( pDestroy->enmType == TMTIMERTYPE_DRV
1896 && pDestroy->u.Drv.pDrvIns == pDrvIns)
1897 {
1898 int rc = TMR3TimerDestroy(pDestroy);
1899 AssertRC(rc);
1900 }
1901 }
1902 TM_UNLOCK_TIMERS(pVM);
1903
1904 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
1905 return VINF_SUCCESS;
1906}
1907
1908
1909/**
1910 * Internal function for getting the clock time.
1911 *
1912 * @returns clock time.
1913 * @param pVM The cross context VM structure.
1914 * @param enmClock The clock.
1915 */
1916DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
1917{
1918 switch (enmClock)
1919 {
1920 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
1921 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
1922 case TMCLOCK_REAL: return TMRealGet(pVM);
1923 case TMCLOCK_TSC: return TMCpuTickGet(&pVM->aCpus[0] /* just take VCPU 0 */);
1924 default:
1925 AssertMsgFailed(("enmClock=%d\n", enmClock));
1926 return ~(uint64_t)0;
1927 }
1928}
1929
1930
1931/**
1932 * Checks if the sync queue has one or more expired timers.
1933 *
1934 * @returns true / false.
1935 *
1936 * @param pVM The cross context VM structure.
1937 * @param enmClock The queue.
1938 */
1939DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
1940{
1941 const uint64_t u64Expire = pVM->tm.s.CTX_SUFF(paTimerQueues)[enmClock].u64Expire;
1942 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
1943}
1944
1945
1946/**
1947 * Checks for expired timers in all the queues.
1948 *
1949 * @returns true / false.
1950 * @param pVM The cross context VM structure.
1951 */
1952DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
1953{
1954 /*
1955 * Combine the time calculation for the first two since we're not on EMT
1956 * TMVirtualSyncGet only permits EMT.
1957 */
1958 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
1959 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
1960 return true;
1961 u64Now = pVM->tm.s.fVirtualSyncTicking
1962 ? u64Now - pVM->tm.s.offVirtualSync
1963 : pVM->tm.s.u64VirtualSync;
1964 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
1965 return true;
1966
1967 /*
1968 * The remaining timers.
1969 */
1970 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
1971 return true;
1972 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
1973 return true;
1974 return false;
1975}
1976
1977
1978/**
1979 * Schedule timer callback.
1980 *
1981 * @param pTimer Timer handle.
1982 * @param pvUser Pointer to the VM.
1983 * @thread Timer thread.
1984 *
1985 * @remark We cannot do the scheduling and queues running from a timer handler
1986 * since it's not executing in EMT, and even if it was it would be async
1987 * and we wouldn't know the state of the affairs.
1988 * So, we'll just raise the timer FF and force any REM execution to exit.
1989 */
1990static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
1991{
1992 PVM pVM = (PVM)pvUser;
1993 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1994 NOREF(pTimer);
1995
1996 AssertCompile(TMCLOCK_MAX == 4);
1997 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallback);
1998
1999#ifdef DEBUG_Sander /* very annoying, keep it private. */
2000 if (VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
2001 Log(("tmR3TimerCallback: timer event still pending!!\n"));
2002#endif
2003 if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2004 && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
2005 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
2006 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
2007 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
2008 || tmR3AnyExpiredTimers(pVM)
2009 )
2010 && !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
2011 && !pVM->tm.s.fRunningQueues
2012 )
2013 {
2014 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
2015 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
2016#ifdef VBOX_WITH_REM
2017 REMR3NotifyTimerPending(pVM, pVCpuDst);
2018#endif
2019 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE);
2020 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
2021 }
2022}
2023
2024
2025/**
2026 * Schedules and runs any pending timers.
2027 *
2028 * This is normally called from a forced action handler in EMT.
2029 *
2030 * @param pVM The cross context VM structure.
2031 *
2032 * @thread EMT (actually EMT0, but we fend off the others)
2033 */
2034VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
2035{
2036 /*
2037 * Only the dedicated timer EMT should do stuff here.
2038 * (fRunningQueues is only used as an indicator.)
2039 */
2040 Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
2041 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
2042 if (VMMGetCpu(pVM) != pVCpuDst)
2043 {
2044 Assert(pVM->cCpus > 1);
2045 return;
2046 }
2047 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
2048 Log2(("TMR3TimerQueuesDo:\n"));
2049 Assert(!pVM->tm.s.fRunningQueues);
2050 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
2051 TM_LOCK_TIMERS(pVM);
2052
2053 /*
2054 * Process the queues.
2055 */
2056 AssertCompile(TMCLOCK_MAX == 4);
2057
2058 /* TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) */
2059 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
2060 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2061 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2062 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
2063
2064 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule);
2065 tmR3TimerQueueRunVirtualSync(pVM);
2066 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2067 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2068
2069 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2070 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2071 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
2072
2073 /* TMCLOCK_VIRTUAL */
2074 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
2075 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule)
2076 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
2077 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
2078 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
2079
2080 /* TMCLOCK_TSC */
2081 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offActive); /* not used */
2082
2083 /* TMCLOCK_REAL */
2084 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
2085 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule)
2086 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
2087 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
2088 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
2089
2090#ifdef VBOX_STRICT
2091 /* check that we didn't screw up. */
2092 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
2093#endif
2094
2095 /* done */
2096 Log2(("TMR3TimerQueuesDo: returns void\n"));
2097 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
2098 TM_UNLOCK_TIMERS(pVM);
2099 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
2100}
2101
2102//RT_C_DECLS_BEGIN
2103//int iomLock(PVM pVM);
2104//void iomUnlock(PVM pVM);
2105//RT_C_DECLS_END
2106
2107
2108/**
2109 * Schedules and runs any pending times in the specified queue.
2110 *
2111 * This is normally called from a forced action handler in EMT.
2112 *
2113 * @param pVM The cross context VM structure.
2114 * @param pQueue The queue to run.
2115 */
2116static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
2117{
2118 VM_ASSERT_EMT(pVM);
2119
2120 /*
2121 * Run timers.
2122 *
2123 * We check the clock once and run all timers which are ACTIVE
2124 * and have an expire time less or equal to the time we read.
2125 *
2126 * N.B. A generic unlink must be applied since other threads
2127 * are allowed to mess with any active timer at any time.
2128 * However, we only allow EMT to handle EXPIRED_PENDING
2129 * timers, thus enabling the timer handler function to
2130 * arm the timer again.
2131 */
2132 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
2133 if (!pNext)
2134 return;
2135 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
2136 while (pNext && pNext->u64Expire <= u64Now)
2137 {
2138 PTMTIMER pTimer = pNext;
2139 pNext = TMTIMER_GET_NEXT(pTimer);
2140 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2141 if (pCritSect)
2142 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2143 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2144 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2145 bool fRc;
2146 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2147 if (fRc)
2148 {
2149 Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
2150
2151 /* unlink */
2152 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
2153 if (pPrev)
2154 TMTIMER_SET_NEXT(pPrev, pNext);
2155 else
2156 {
2157 TMTIMER_SET_HEAD(pQueue, pNext);
2158 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2159 }
2160 if (pNext)
2161 TMTIMER_SET_PREV(pNext, pPrev);
2162 pTimer->offNext = 0;
2163 pTimer->offPrev = 0;
2164
2165 /* fire */
2166 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2167 switch (pTimer->enmType)
2168 {
2169 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2170 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer, pTimer->pvUser); break;
2171 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2172 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2173 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2174 default:
2175 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2176 break;
2177 }
2178
2179 /* change the state if it wasn't changed already in the handler. */
2180 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2181 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2182 }
2183 if (pCritSect)
2184 PDMCritSectLeave(pCritSect);
2185 } /* run loop */
2186}
2187
2188
2189/**
2190 * Schedules and runs any pending times in the timer queue for the
2191 * synchronous virtual clock.
2192 *
2193 * This scheduling is a bit different from the other queues as it need
2194 * to implement the special requirements of the timer synchronous virtual
2195 * clock, thus this 2nd queue run function.
2196 *
2197 * @param pVM The cross context VM structure.
2198 *
2199 * @remarks The caller must the Virtual Sync lock. Owning the TM lock is no
2200 * longer important.
2201 */
2202static void tmR3TimerQueueRunVirtualSync(PVM pVM)
2203{
2204 PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
2205 VM_ASSERT_EMT(pVM);
2206 Assert(PDMCritSectIsOwner(&pVM->tm.s.VirtualSyncLock));
2207
2208 /*
2209 * Any timers?
2210 */
2211 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
2212 if (RT_UNLIKELY(!pNext))
2213 {
2214 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
2215 return;
2216 }
2217 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
2218
2219 /*
2220 * Calculate the time frame for which we will dispatch timers.
2221 *
2222 * We use a time frame ranging from the current sync time (which is most likely the
2223 * same as the head timer) and some configurable period (100000ns) up towards the
2224 * current virtual time. This period might also need to be restricted by the catch-up
2225 * rate so frequent calls to this function won't accelerate the time too much, however
2226 * this will be implemented at a later point if necessary.
2227 *
2228 * Without this frame we would 1) having to run timers much more frequently
2229 * and 2) lag behind at a steady rate.
2230 */
2231 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
2232 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
2233 uint64_t u64Now;
2234 if (!pVM->tm.s.fVirtualSyncTicking)
2235 {
2236 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
2237 u64Now = pVM->tm.s.u64VirtualSync;
2238 Assert(u64Now <= pNext->u64Expire);
2239 }
2240 else
2241 {
2242 /* Calc 'now'. */
2243 bool fStopCatchup = false;
2244 bool fUpdateStuff = false;
2245 uint64_t off = pVM->tm.s.offVirtualSync;
2246 if (pVM->tm.s.fVirtualSyncCatchUp)
2247 {
2248 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
2249 if (RT_LIKELY(!(u64Delta >> 32)))
2250 {
2251 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
2252 if (off > u64Sub + offSyncGivenUp)
2253 {
2254 off -= u64Sub;
2255 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
2256 }
2257 else
2258 {
2259 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2260 fStopCatchup = true;
2261 off = offSyncGivenUp;
2262 }
2263 fUpdateStuff = true;
2264 }
2265 }
2266 u64Now = u64VirtualNow - off;
2267
2268 /* Adjust against last returned time. */
2269 uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
2270 if (u64Last > u64Now)
2271 {
2272 u64Now = u64Last + 1;
2273 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
2274 }
2275
2276 /* Check if stopped by expired timer. */
2277 uint64_t const u64Expire = pNext->u64Expire;
2278 if (u64Now >= u64Expire)
2279 {
2280 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
2281 u64Now = u64Expire;
2282 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2283 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2284 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
2285 }
2286 else
2287 {
2288 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2289 if (fUpdateStuff)
2290 {
2291 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
2292 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
2293 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2294 if (fStopCatchup)
2295 {
2296 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2297 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
2298 }
2299 }
2300 }
2301 }
2302
2303 /* calc end of frame. */
2304 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
2305 if (u64Max > u64VirtualNow - offSyncGivenUp)
2306 u64Max = u64VirtualNow - offSyncGivenUp;
2307
2308 /* assert sanity */
2309 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
2310 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
2311 Assert(u64Now <= u64Max);
2312 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
2313
2314 /*
2315 * Process the expired timers moving the clock along as we progress.
2316 */
2317#ifdef VBOX_STRICT
2318 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2319#endif
2320 while (pNext && pNext->u64Expire <= u64Max)
2321 {
2322 /* Advance */
2323 PTMTIMER pTimer = pNext;
2324 pNext = TMTIMER_GET_NEXT(pTimer);
2325
2326 /* Take the associated lock. */
2327 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2328 if (pCritSect)
2329 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2330
2331 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2332 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2333
2334 /* Advance the clock - don't permit timers to be out of order or armed
2335 in the 'past'. */
2336#ifdef VBOX_STRICT
2337 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
2338 u64Prev = pTimer->u64Expire;
2339#endif
2340 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2341 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2342
2343 /* Unlink it, change the state and do the callout. */
2344 tmTimerQueueUnlinkActive(pQueue, pTimer);
2345 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2346 switch (pTimer->enmType)
2347 {
2348 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2349 case TMTIMERTYPE_USB: pTimer->u.Usb.pfnTimer(pTimer->u.Usb.pUsbIns, pTimer, pTimer->pvUser); break;
2350 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2351 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2352 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2353 default:
2354 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2355 break;
2356 }
2357
2358 /* Change the state if it wasn't changed already in the handler.
2359 Reset the Hz hint too since this is the same as TMTimerStop. */
2360 bool fRc;
2361 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2362 if (fRc && pTimer->uHzHint)
2363 {
2364 if (pTimer->uHzHint >= pVM->tm.s.uMaxHzHint)
2365 ASMAtomicWriteBool(&pVM->tm.s.fHzHintNeedsUpdating, true);
2366 pTimer->uHzHint = 0;
2367 }
2368 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2369
2370 /* Leave the associated lock. */
2371 if (pCritSect)
2372 PDMCritSectLeave(pCritSect);
2373 } /* run loop */
2374
2375
2376 /*
2377 * Restart the clock if it was stopped to serve any timers,
2378 * and start/adjust catch-up if necessary.
2379 */
2380 if ( !pVM->tm.s.fVirtualSyncTicking
2381 && pVM->tm.s.cVirtualTicking)
2382 {
2383 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2384
2385 /* calc the slack we've handed out. */
2386 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2387 Assert(u64VirtualNow2 >= u64VirtualNow);
2388 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2389 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2390 STAM_STATS({
2391 if (offSlack)
2392 {
2393 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2394 p->cPeriods++;
2395 p->cTicks += offSlack;
2396 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2397 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2398 }
2399 });
2400
2401 /* Let the time run a little bit while we were busy running timers(?). */
2402 uint64_t u64Elapsed;
2403#define MAX_ELAPSED 30000U /* ns */
2404 if (offSlack > MAX_ELAPSED)
2405 u64Elapsed = 0;
2406 else
2407 {
2408 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2409 if (u64Elapsed > MAX_ELAPSED)
2410 u64Elapsed = MAX_ELAPSED;
2411 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2412 }
2413#undef MAX_ELAPSED
2414
2415 /* Calc the current offset. */
2416 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2417 Assert(!(offNew & RT_BIT_64(63)));
2418 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2419 Assert(!(offLag & RT_BIT_64(63)));
2420
2421 /*
2422 * Deal with starting, adjusting and stopping catchup.
2423 */
2424 if (pVM->tm.s.fVirtualSyncCatchUp)
2425 {
2426 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2427 {
2428 /* stop */
2429 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2430 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2431 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2432 }
2433 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2434 {
2435 /* adjust */
2436 unsigned i = 0;
2437 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2438 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2439 i++;
2440 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2441 {
2442 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2443 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2444 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2445 }
2446 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2447 }
2448 else
2449 {
2450 /* give up */
2451 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2452 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2453 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2454 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2455 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2456 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2457 }
2458 }
2459 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2460 {
2461 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2462 {
2463 /* start */
2464 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2465 unsigned i = 0;
2466 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2467 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2468 i++;
2469 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2470 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2471 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2472 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2473 }
2474 else
2475 {
2476 /* don't bother */
2477 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2478 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2479 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2480 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2481 }
2482 }
2483
2484 /*
2485 * Update the offset and restart the clock.
2486 */
2487 Assert(!(offNew & RT_BIT_64(63)));
2488 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2489 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2490 }
2491}
2492
2493
2494/**
2495 * Deals with stopped Virtual Sync clock.
2496 *
2497 * This is called by the forced action flag handling code in EM when it
2498 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2499 * will block on the VirtualSyncLock until the pending timers has been executed
2500 * and the clock restarted.
2501 *
2502 * @param pVM The cross context VM structure.
2503 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2504 *
2505 * @thread EMTs
2506 */
2507VMMR3_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2508{
2509 Log2(("TMR3VirtualSyncFF:\n"));
2510
2511 /*
2512 * The EMT doing the timers is diverted to them.
2513 */
2514 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2515 TMR3TimerQueuesDo(pVM);
2516 /*
2517 * The other EMTs will block on the virtual sync lock and the first owner
2518 * will run the queue and thus restarting the clock.
2519 *
2520 * Note! This is very suboptimal code wrt to resuming execution when there
2521 * are more than two Virtual CPUs, since they will all have to enter
2522 * the critical section one by one. But it's a very simple solution
2523 * which will have to do the job for now.
2524 */
2525 else
2526 {
2527 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2528 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2529 if (pVM->tm.s.fVirtualSyncTicking)
2530 {
2531 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2532 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2533 Log2(("TMR3VirtualSyncFF: ticking\n"));
2534 }
2535 else
2536 {
2537 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2538
2539 /* try run it. */
2540 TM_LOCK_TIMERS(pVM);
2541 PDMCritSectEnter(&pVM->tm.s.VirtualSyncLock, VERR_IGNORED);
2542 if (pVM->tm.s.fVirtualSyncTicking)
2543 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2544 else
2545 {
2546 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2547 Log2(("TMR3VirtualSyncFF: running queue\n"));
2548
2549 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule);
2550 tmR3TimerQueueRunVirtualSync(pVM);
2551 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2552 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2553
2554 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2555 }
2556 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2557 PDMCritSectLeave(&pVM->tm.s.VirtualSyncLock);
2558 TM_UNLOCK_TIMERS(pVM);
2559 }
2560 }
2561}
2562
2563
2564/** @name Saved state values
2565 * @{ */
2566#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2567#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2568/** @} */
2569
2570
2571/**
2572 * Saves the state of a timer to a saved state.
2573 *
2574 * @returns VBox status code.
2575 * @param pTimer Timer to save.
2576 * @param pSSM Save State Manager handle.
2577 */
2578VMMR3DECL(int) TMR3TimerSave(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2579{
2580 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2581 switch (pTimer->enmState)
2582 {
2583 case TMTIMERSTATE_STOPPED:
2584 case TMTIMERSTATE_PENDING_STOP:
2585 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2586 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2587
2588 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2589 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2590 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
2591 if (!RTThreadYield())
2592 RTThreadSleep(1);
2593 /* fall thru */
2594 case TMTIMERSTATE_ACTIVE:
2595 case TMTIMERSTATE_PENDING_SCHEDULE:
2596 case TMTIMERSTATE_PENDING_RESCHEDULE:
2597 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2598 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2599
2600 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2601 case TMTIMERSTATE_EXPIRED_DELIVER:
2602 case TMTIMERSTATE_DESTROY:
2603 case TMTIMERSTATE_FREE:
2604 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
2605 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2606 }
2607
2608 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
2609 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2610}
2611
2612
2613/**
2614 * Loads the state of a timer from a saved state.
2615 *
2616 * @returns VBox status code.
2617 * @param pTimer Timer to restore.
2618 * @param pSSM Save State Manager handle.
2619 */
2620VMMR3DECL(int) TMR3TimerLoad(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2621{
2622 Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
2623 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2624
2625 /*
2626 * Load the state and validate it.
2627 */
2628 uint8_t u8State;
2629 int rc = SSMR3GetU8(pSSM, &u8State);
2630 if (RT_FAILURE(rc))
2631 return rc;
2632#if 1 /* Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */ /** @todo remove this in a few weeks! */
2633 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2634 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2635 u8State--;
2636#endif
2637 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2638 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2639 {
2640 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2641 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2642 }
2643
2644 /* Enter the critical sections to make TMTimerSet/Stop happy. */
2645 if (pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC)
2646 PDMCritSectEnter(&pTimer->pVMR3->tm.s.VirtualSyncLock, VERR_IGNORED);
2647 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2648 if (pCritSect)
2649 PDMCritSectEnter(pCritSect, VERR_IGNORED);
2650
2651 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2652 {
2653 /*
2654 * Load the expire time.
2655 */
2656 uint64_t u64Expire;
2657 rc = SSMR3GetU64(pSSM, &u64Expire);
2658 if (RT_FAILURE(rc))
2659 return rc;
2660
2661 /*
2662 * Set it.
2663 */
2664 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
2665 rc = TMTimerSet(pTimer, u64Expire);
2666 }
2667 else
2668 {
2669 /*
2670 * Stop it.
2671 */
2672 Log(("u8State=%d\n", u8State));
2673 rc = TMTimerStop(pTimer);
2674 }
2675
2676 if (pCritSect)
2677 PDMCritSectLeave(pCritSect);
2678 if (pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC)
2679 PDMCritSectLeave(&pTimer->pVMR3->tm.s.VirtualSyncLock);
2680
2681 /*
2682 * On failure set SSM status.
2683 */
2684 if (RT_FAILURE(rc))
2685 rc = SSMR3HandleSetStatus(pSSM, rc);
2686 return rc;
2687}
2688
2689
2690/**
2691 * Associates a critical section with a timer.
2692 *
2693 * The critical section will be entered prior to doing the timer call back, thus
2694 * avoiding potential races between the timer thread and other threads trying to
2695 * stop or adjust the timer expiration while it's being delivered. The timer
2696 * thread will leave the critical section when the timer callback returns.
2697 *
2698 * In strict builds, ownership of the critical section will be asserted by
2699 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
2700 * runtime).
2701 *
2702 * @retval VINF_SUCCESS on success.
2703 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
2704 * (asserted).
2705 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
2706 * (asserted).
2707 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
2708 * with the timer (asserted).
2709 * @retval VERR_INVALID_STATE if the timer isn't stopped.
2710 *
2711 * @param pTimer The timer handle.
2712 * @param pCritSect The critical section. The caller must make sure this
2713 * is around for the life time of the timer.
2714 *
2715 * @thread Any, but the caller is responsible for making sure the timer is not
2716 * active.
2717 */
2718VMMR3DECL(int) TMR3TimerSetCritSect(PTMTIMERR3 pTimer, PPDMCRITSECT pCritSect)
2719{
2720 AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
2721 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
2722 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
2723 AssertReturn(pszName, VERR_INVALID_PARAMETER);
2724 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
2725 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
2726 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->pszDesc, pCritSect, pszName));
2727
2728 pTimer->pCritSect = pCritSect;
2729 return VINF_SUCCESS;
2730}
2731
2732
2733/**
2734 * Get the real world UTC time adjusted for VM lag.
2735 *
2736 * @returns pTime.
2737 * @param pVM The cross context VM structure.
2738 * @param pTime Where to store the time.
2739 */
2740VMMR3_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
2741{
2742 /* Get a stable set of VirtualSync parameters before querying UTC. */
2743 uint64_t offVirtualSync;
2744 uint64_t offVirtualSyncGivenUp;
2745 do
2746 {
2747 offVirtualSync = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
2748 offVirtualSyncGivenUp = ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp);
2749 } while (ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) != offVirtualSync);
2750
2751 Assert(offVirtualSync >= offVirtualSyncGivenUp);
2752 uint64_t const offLag = offVirtualSync - offVirtualSyncGivenUp;
2753
2754 RTTimeNow(pTime);
2755 RTTimeSpecSubNano(pTime, offLag);
2756 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
2757 return pTime;
2758}
2759
2760
2761/**
2762 * Pauses all clocks except TMCLOCK_REAL.
2763 *
2764 * @returns VBox status code, all errors are asserted.
2765 * @param pVM The cross context VM structure.
2766 * @param pVCpu The cross context virtual CPU structure.
2767 * @thread EMT corresponding to Pointer to the VMCPU.
2768 */
2769VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
2770{
2771 VMCPU_ASSERT_EMT(pVCpu);
2772
2773 /*
2774 * The shared virtual clock (includes virtual sync which is tied to it).
2775 */
2776 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
2777 int rc = tmVirtualPauseLocked(pVM);
2778 TM_UNLOCK_TIMERS(pVM);
2779 if (RT_FAILURE(rc))
2780 return rc;
2781
2782 /*
2783 * Pause the TSC last since it is normally linked to the virtual
2784 * sync clock, so the above code may actually stop both clocks.
2785 */
2786 if (!pVM->tm.s.fTSCTiedToExecution)
2787 {
2788 TM_LOCK_TIMERS(pVM); /* Exploit the timer lock for synchronization. */
2789 rc = tmCpuTickPauseLocked(pVM, pVCpu);
2790 TM_UNLOCK_TIMERS(pVM);
2791 if (RT_FAILURE(rc))
2792 return rc;
2793 }
2794
2795#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2796 /*
2797 * Update cNsTotal.
2798 */
2799 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
2800 pVCpu->tm.s.cNsTotal = RTTimeNanoTS() - pVCpu->tm.s.u64NsTsStartTotal;
2801 pVCpu->tm.s.cNsOther = pVCpu->tm.s.cNsTotal - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
2802 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
2803#endif
2804
2805 return VINF_SUCCESS;
2806}
2807
2808
2809/**
2810 * Resumes all clocks except TMCLOCK_REAL.
2811 *
2812 * @returns VBox status code, all errors are asserted.
2813 * @param pVM The cross context VM structure.
2814 * @param pVCpu The cross context virtual CPU structure.
2815 * @thread EMT corresponding to Pointer to the VMCPU.
2816 */
2817VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
2818{
2819 VMCPU_ASSERT_EMT(pVCpu);
2820 int rc;
2821
2822#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2823 /*
2824 * Set u64NsTsStartTotal. There is no need to back this out if either of
2825 * the two calls below fail.
2826 */
2827 pVCpu->tm.s.u64NsTsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.cNsTotal;
2828#endif
2829
2830 /*
2831 * Resume the TSC first since it is normally linked to the virtual sync
2832 * clock, so it may actually not be resumed until we've executed the code
2833 * below.
2834 */
2835 if (!pVM->tm.s.fTSCTiedToExecution)
2836 {
2837 TM_LOCK_TIMERS(pVM); /* Exploit the timer lock for synchronization. */
2838 rc = tmCpuTickResumeLocked(pVM, pVCpu);
2839 TM_UNLOCK_TIMERS(pVM);
2840 if (RT_FAILURE(rc))
2841 return rc;
2842 }
2843
2844 /*
2845 * The shared virtual clock (includes virtual sync which is tied to it).
2846 */
2847 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
2848 rc = tmVirtualResumeLocked(pVM);
2849 TM_UNLOCK_TIMERS(pVM);
2850
2851 return rc;
2852}
2853
2854
2855/**
2856 * Sets the warp drive percent of the virtual time.
2857 *
2858 * @returns VBox status code.
2859 * @param pUVM The user mode VM structure.
2860 * @param u32Percent The new percentage. 100 means normal operation.
2861 */
2862VMMDECL(int) TMR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
2863{
2864 return VMR3ReqPriorityCallWaitU(pUVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pUVM, u32Percent);
2865}
2866
2867
2868/**
2869 * EMT worker for TMR3SetWarpDrive.
2870 *
2871 * @returns VBox status code.
2872 * @param pUVM The user mode VM handle.
2873 * @param u32Percent See TMR3SetWarpDrive().
2874 * @internal
2875 */
2876static DECLCALLBACK(int) tmR3SetWarpDrive(PUVM pUVM, uint32_t u32Percent)
2877{
2878 PVM pVM = pUVM->pVM;
2879 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
2880 PVMCPU pVCpu = VMMGetCpu(pVM);
2881
2882 /*
2883 * Validate it.
2884 */
2885 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
2886 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
2887 VERR_INVALID_PARAMETER);
2888
2889/** @todo This isn't a feature specific to virtual time, move the variables to
2890 * TM level and make it affect TMR3UTCNow as well! */
2891
2892 /*
2893 * If the time is running we'll have to pause it before we can change
2894 * the warp drive settings.
2895 */
2896 TM_LOCK_TIMERS(pVM); /* Paranoia: Exploiting the timer lock here. */
2897 bool fPaused = !!pVM->tm.s.cVirtualTicking;
2898 if (fPaused) /** @todo this isn't really working, but wtf. */
2899 TMR3NotifySuspend(pVM, pVCpu);
2900
2901 /** @todo Should switch TM mode to virt-tsc-emulated if it isn't already! */
2902 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
2903 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
2904 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
2905 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
2906
2907 if (fPaused)
2908 TMR3NotifyResume(pVM, pVCpu);
2909 TM_UNLOCK_TIMERS(pVM);
2910 return VINF_SUCCESS;
2911}
2912
2913
2914/**
2915 * Gets the current warp drive percent.
2916 *
2917 * @returns The warp drive percent.
2918 * @param pUVM The user mode VM structure.
2919 */
2920VMMR3DECL(uint32_t) TMR3GetWarpDrive(PUVM pUVM)
2921{
2922 UVM_ASSERT_VALID_EXT_RETURN(pUVM, UINT32_MAX);
2923 PVM pVM = pUVM->pVM;
2924 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
2925 return pVM->tm.s.u32VirtualWarpDrivePercentage;
2926}
2927
2928
2929/**
2930 * Gets the performance information for one virtual CPU as seen by the VMM.
2931 *
2932 * The returned times covers the period where the VM is running and will be
2933 * reset when restoring a previous VM state (at least for the time being).
2934 *
2935 * @retval VINF_SUCCESS on success.
2936 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
2937 * @retval VERR_INVALID_STATE if the VM handle is bad.
2938 * @retval VERR_INVALID_PARAMETER if idCpu is out of range.
2939 *
2940 * @param pVM The cross context VM structure.
2941 * @param idCpu The ID of the virtual CPU which times to get.
2942 * @param pcNsTotal Where to store the total run time (nano seconds) of
2943 * the CPU, i.e. the sum of the three other returns.
2944 * Optional.
2945 * @param pcNsExecuting Where to store the time (nano seconds) spent
2946 * executing guest code. Optional.
2947 * @param pcNsHalted Where to store the time (nano seconds) spent
2948 * halted. Optional
2949 * @param pcNsOther Where to store the time (nano seconds) spent
2950 * preempted by the host scheduler, on virtualization
2951 * overhead and on other tasks.
2952 */
2953VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
2954 uint64_t *pcNsHalted, uint64_t *pcNsOther)
2955{
2956 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
2957 AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_PARAMETER);
2958
2959#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2960 /*
2961 * Get a stable result set.
2962 * This should be way quicker than an EMT request.
2963 */
2964 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2965 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2966 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
2967 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
2968 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
2969 uint64_t cNsOther = pVCpu->tm.s.cNsOther;
2970 while ( (uTimesGen & 1) /* update in progress */
2971 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
2972 {
2973 RTThreadYield();
2974 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2975 cNsTotal = pVCpu->tm.s.cNsTotal;
2976 cNsExecuting = pVCpu->tm.s.cNsExecuting;
2977 cNsHalted = pVCpu->tm.s.cNsHalted;
2978 cNsOther = pVCpu->tm.s.cNsOther;
2979 }
2980
2981 /*
2982 * Fill in the return values.
2983 */
2984 if (pcNsTotal)
2985 *pcNsTotal = cNsTotal;
2986 if (pcNsExecuting)
2987 *pcNsExecuting = cNsExecuting;
2988 if (pcNsHalted)
2989 *pcNsHalted = cNsHalted;
2990 if (pcNsOther)
2991 *pcNsOther = cNsOther;
2992
2993 return VINF_SUCCESS;
2994
2995#else
2996 return VERR_NOT_IMPLEMENTED;
2997#endif
2998}
2999
3000#ifndef VBOX_WITHOUT_NS_ACCOUNTING
3001
3002/**
3003 * Helper for tmR3CpuLoadTimer.
3004 * @returns
3005 * @param pState The state to update.
3006 * @param cNsTotal Total time.
3007 * @param cNsExecuting Time executing.
3008 * @param cNsHalted Time halted.
3009 */
3010DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState, uint64_t cNsTotal, uint64_t cNsExecuting, uint64_t cNsHalted)
3011{
3012 /* Calc deltas */
3013 uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
3014 pState->cNsPrevTotal = cNsTotal;
3015
3016 uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
3017 pState->cNsPrevExecuting = cNsExecuting;
3018
3019 uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
3020 pState->cNsPrevHalted = cNsHalted;
3021
3022 /* Calc pcts. */
3023 if (!cNsTotalDelta)
3024 {
3025 pState->cPctExecuting = 0;
3026 pState->cPctHalted = 100;
3027 pState->cPctOther = 0;
3028 }
3029 else if (cNsTotalDelta < UINT64_MAX / 4)
3030 {
3031 pState->cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
3032 pState->cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
3033 pState->cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
3034 }
3035 else
3036 {
3037 pState->cPctExecuting = 0;
3038 pState->cPctHalted = 100;
3039 pState->cPctOther = 0;
3040 }
3041}
3042
3043
3044/**
3045 * Timer callback that calculates the CPU load since the last time it was
3046 * called.
3047 *
3048 * @param pVM The cross context VM structure.
3049 * @param pTimer The timer.
3050 * @param pvUser NULL, unused.
3051 */
3052static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser)
3053{
3054 /*
3055 * Re-arm the timer first.
3056 */
3057 int rc = TMTimerSetMillies(pTimer, 1000);
3058 AssertLogRelRC(rc);
3059 NOREF(pvUser);
3060
3061 /*
3062 * Update the values for each CPU.
3063 */
3064 uint64_t cNsTotalAll = 0;
3065 uint64_t cNsExecutingAll = 0;
3066 uint64_t cNsHaltedAll = 0;
3067 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
3068 {
3069 PVMCPU pVCpu = &pVM->aCpus[iCpu];
3070
3071 /* Try get a stable data set. */
3072 uint32_t cTries = 3;
3073 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3074 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
3075 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
3076 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
3077 while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
3078 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
3079 {
3080 if (!--cTries)
3081 break;
3082 ASMNopPause();
3083 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
3084 cNsTotal = pVCpu->tm.s.cNsTotal;
3085 cNsExecuting = pVCpu->tm.s.cNsExecuting;
3086 cNsHalted = pVCpu->tm.s.cNsHalted;
3087 }
3088
3089 /* Totals */
3090 cNsTotalAll += cNsTotal;
3091 cNsExecutingAll += cNsExecuting;
3092 cNsHaltedAll += cNsHalted;
3093
3094 /* Calc the PCTs and update the state. */
3095 tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
3096 }
3097
3098 /*
3099 * Update the value for all the CPUs.
3100 */
3101 tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
3102
3103 /** @todo Try add 1, 5 and 15 min load stats. */
3104
3105}
3106
3107#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
3108
3109
3110/**
3111 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3112 * Worker for TMR3CpuTickParavirtEnable}
3113 */
3114static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtEnable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3115{
3116 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt); NOREF(pvData);
3117 Assert(pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET);
3118 Assert(tmR3HasFixedTSC(pVM));
3119
3120 /*
3121 * The return value of TMCpuTickGet() and the guest's TSC value for each
3122 * CPU must remain constant across the TM TSC mode-switch. Thus we have
3123 * the following equation (new/old signifies the new/old tsc modes):
3124 * uNewTsc = uOldTsc
3125 *
3126 * Where (see tmCpuTickGetInternal):
3127 * uOldTsc = uRawOldTsc - offTscRawSrcOld
3128 * uNewTsc = uRawNewTsc - offTscRawSrcNew
3129 *
3130 * Solve it for offTscRawSrcNew without replacing uOldTsc:
3131 * uRawNewTsc - offTscRawSrcNew = uOldTsc
3132 * => -offTscRawSrcNew = uOldTsc - uRawNewTsc
3133 * => offTscRawSrcNew = uRawNewTsc - uOldTsc
3134 */
3135 uint64_t uRawOldTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3136 uint64_t uRawNewTsc = SUPReadTsc();
3137 uint32_t cCpus = pVM->cCpus;
3138 for (uint32_t i = 0; i < cCpus; i++)
3139 {
3140 PVMCPU pVCpu = &pVM->aCpus[i];
3141 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3142 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3143 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3144 }
3145
3146 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3147 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3148 pVM->tm.s.enmTSCMode = TMTSCMODE_REAL_TSC_OFFSET;
3149 return VINF_SUCCESS;
3150}
3151
3152
3153/**
3154 * Notify TM that the guest has enabled usage of a paravirtualized TSC.
3155 *
3156 * This may perform a EMT rendezvous and change the TSC virtualization mode.
3157 *
3158 * @returns VBox status code.
3159 * @param pVM The cross context VM structure.
3160 */
3161VMMR3_INT_DECL(int) TMR3CpuTickParavirtEnable(PVM pVM)
3162{
3163 int rc = VINF_SUCCESS;
3164 if (pVM->tm.s.fTSCModeSwitchAllowed)
3165 {
3166 if (pVM->tm.s.enmTSCMode != TMTSCMODE_REAL_TSC_OFFSET)
3167 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtEnable, NULL);
3168 }
3169 else
3170 LogRel(("TM: Host/VM is not suitable for using TSC mode '%s', request to change TSC mode ignored\n",
3171 tmR3GetTSCModeNameEx(TMTSCMODE_REAL_TSC_OFFSET)));
3172 pVM->tm.s.fParavirtTscEnabled = true;
3173 return rc;
3174}
3175
3176
3177/**
3178 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
3179 * Worker for TMR3CpuTickParavirtDisable}
3180 */
3181static DECLCALLBACK(VBOXSTRICTRC) tmR3CpuTickParavirtDisable(PVM pVM, PVMCPU pVCpuEmt, void *pvData)
3182{
3183 AssertPtr(pVM); Assert(pVM->tm.s.fTSCModeSwitchAllowed); NOREF(pVCpuEmt);
3184 Assert( pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3185 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode);
3186
3187 /*
3188 * See tmR3CpuTickParavirtEnable for an explanation of the conversion math.
3189 */
3190 uint64_t uRawOldTsc = SUPReadTsc();
3191 uint64_t uRawNewTsc = tmR3CpuTickGetRawVirtualNoCheck(pVM);
3192 uint32_t cCpus = pVM->cCpus;
3193 for (uint32_t i = 0; i < cCpus; i++)
3194 {
3195 PVMCPU pVCpu = &pVM->aCpus[i];
3196 uint64_t uOldTsc = uRawOldTsc - pVCpu->tm.s.offTSCRawSrc;
3197 pVCpu->tm.s.offTSCRawSrc = uRawNewTsc - uOldTsc;
3198 Assert(uRawNewTsc - pVCpu->tm.s.offTSCRawSrc >= uOldTsc); /* paranoia^256 */
3199
3200 /* Update the last-seen tick here as we havent't been updating it (as we don't
3201 need it) while in pure TSC-offsetting mode. */
3202 pVCpu->tm.s.u64TSCLastSeen = uOldTsc;
3203 }
3204
3205 LogRel(("TM: Switching TSC mode from '%s' to '%s'\n", tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode),
3206 tmR3GetTSCModeNameEx(pVM->tm.s.enmOriginalTSCMode)));
3207 pVM->tm.s.enmTSCMode = pVM->tm.s.enmOriginalTSCMode;
3208 return VINF_SUCCESS;
3209}
3210
3211
3212/**
3213 * Notify TM that the guest has disabled usage of a paravirtualized TSC.
3214 *
3215 * If TMR3CpuTickParavirtEnable() changed the TSC virtualization mode, this will
3216 * perform an EMT rendezvous to revert those changes.
3217 *
3218 * @returns VBox status code.
3219 * @param pVM The cross context VM structure.
3220 */
3221VMMR3_INT_DECL(int) TMR3CpuTickParavirtDisable(PVM pVM)
3222{
3223 int rc = VINF_SUCCESS;
3224 if ( pVM->tm.s.fTSCModeSwitchAllowed
3225 && pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET
3226 && pVM->tm.s.enmTSCMode != pVM->tm.s.enmOriginalTSCMode)
3227 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, tmR3CpuTickParavirtDisable, NULL);
3228 pVM->tm.s.fParavirtTscEnabled = false;
3229 return rc;
3230}
3231
3232
3233/**
3234 * Check whether the guest can be presented a fixed rate & monotonic TSC.
3235 *
3236 * @returns true if TSC is stable, false otherwise.
3237 * @param pVM The cross context VM structure.
3238 * @param fWithParavirtEnabled Whether it's fixed & monotonic when
3239 * paravirt. TSC is enabled or not.
3240 *
3241 * @remarks Must be called only after TMR3InitFinalize().
3242 */
3243VMMR3_INT_DECL(bool) TMR3CpuTickIsFixedRateMonotonic(PVM pVM, bool fWithParavirtEnabled)
3244{
3245 /** @todo figure out what exactly we want here later. */
3246 NOREF(fWithParavirtEnabled);
3247 return ( tmR3HasFixedTSC(pVM) /* Host has fixed-rate TSC. */
3248 && g_pSUPGlobalInfoPage->u32Mode != SUPGIPMODE_ASYNC_TSC); /* GIP thinks it's monotonic. */
3249}
3250
3251
3252/**
3253 * Gets the 5 char clock name for the info tables.
3254 *
3255 * @returns The name.
3256 * @param enmClock The clock.
3257 */
3258DECLINLINE(const char *) tmR3Get5CharClockName(TMCLOCK enmClock)
3259{
3260 switch (enmClock)
3261 {
3262 case TMCLOCK_REAL: return "Real ";
3263 case TMCLOCK_VIRTUAL: return "Virt ";
3264 case TMCLOCK_VIRTUAL_SYNC: return "VrSy ";
3265 case TMCLOCK_TSC: return "TSC ";
3266 default: return "Bad ";
3267 }
3268}
3269
3270
3271/**
3272 * Display all timers.
3273 *
3274 * @param pVM The cross context VM structure.
3275 * @param pHlp The info helpers.
3276 * @param pszArgs Arguments, ignored.
3277 */
3278static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3279{
3280 NOREF(pszArgs);
3281 pHlp->pfnPrintf(pHlp,
3282 "Timers (pVM=%p)\n"
3283 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3284 pVM,
3285 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3286 sizeof(int32_t) * 2, "offNext ",
3287 sizeof(int32_t) * 2, "offPrev ",
3288 sizeof(int32_t) * 2, "offSched ",
3289 "Time",
3290 "Expire",
3291 "HzHint",
3292 "State");
3293 TM_LOCK_TIMERS(pVM);
3294 for (PTMTIMERR3 pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
3295 {
3296 pHlp->pfnPrintf(pHlp,
3297 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3298 pTimer,
3299 pTimer->offNext,
3300 pTimer->offPrev,
3301 pTimer->offScheduleNext,
3302 tmR3Get5CharClockName(pTimer->enmClock),
3303 TMTimerGet(pTimer),
3304 pTimer->u64Expire,
3305 pTimer->uHzHint,
3306 tmTimerState(pTimer->enmState),
3307 pTimer->pszDesc);
3308 }
3309 TM_UNLOCK_TIMERS(pVM);
3310}
3311
3312
3313/**
3314 * Display all active timers.
3315 *
3316 * @param pVM The cross context VM structure.
3317 * @param pHlp The info helpers.
3318 * @param pszArgs Arguments, ignored.
3319 */
3320static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3321{
3322 NOREF(pszArgs);
3323 pHlp->pfnPrintf(pHlp,
3324 "Active Timers (pVM=%p)\n"
3325 "%.*s %.*s %.*s %.*s Clock %18s %18s %6s %-25s Description\n",
3326 pVM,
3327 sizeof(RTR3PTR) * 2, "pTimerR3 ",
3328 sizeof(int32_t) * 2, "offNext ",
3329 sizeof(int32_t) * 2, "offPrev ",
3330 sizeof(int32_t) * 2, "offSched ",
3331 "Time",
3332 "Expire",
3333 "HzHint",
3334 "State");
3335 for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
3336 {
3337 TM_LOCK_TIMERS(pVM);
3338 for (PTMTIMERR3 pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
3339 pTimer;
3340 pTimer = TMTIMER_GET_NEXT(pTimer))
3341 {
3342 pHlp->pfnPrintf(pHlp,
3343 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %6RU32 %-25s %s\n",
3344 pTimer,
3345 pTimer->offNext,
3346 pTimer->offPrev,
3347 pTimer->offScheduleNext,
3348 tmR3Get5CharClockName(pTimer->enmClock),
3349 TMTimerGet(pTimer),
3350 pTimer->u64Expire,
3351 pTimer->uHzHint,
3352 tmTimerState(pTimer->enmState),
3353 pTimer->pszDesc);
3354 }
3355 TM_UNLOCK_TIMERS(pVM);
3356 }
3357}
3358
3359
3360/**
3361 * Display all clocks.
3362 *
3363 * @param pVM The cross context VM structure.
3364 * @param pHlp The info helpers.
3365 * @param pszArgs Arguments, ignored.
3366 */
3367static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3368{
3369 NOREF(pszArgs);
3370
3371 /*
3372 * Read the times first to avoid more than necessary time variation.
3373 */
3374 const uint64_t u64Virtual = TMVirtualGet(pVM);
3375 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
3376 const uint64_t u64Real = TMRealGet(pVM);
3377
3378 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3379 {
3380 PVMCPU pVCpu = &pVM->aCpus[i];
3381 uint64_t u64TSC = TMCpuTickGet(pVCpu);
3382
3383 /*
3384 * TSC
3385 */
3386 pHlp->pfnPrintf(pHlp,
3387 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s - virtualized",
3388 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
3389 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused");
3390 if (pVM->tm.s.enmTSCMode == TMTSCMODE_REAL_TSC_OFFSET)
3391 {
3392 pHlp->pfnPrintf(pHlp, " - real tsc offset");
3393 if (pVCpu->tm.s.offTSCRawSrc)
3394 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
3395 }
3396 else
3397 pHlp->pfnPrintf(pHlp, " - virtual clock");
3398 pHlp->pfnPrintf(pHlp, "\n");
3399 }
3400
3401 /*
3402 * virtual
3403 */
3404 pHlp->pfnPrintf(pHlp,
3405 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
3406 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
3407 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
3408 if (pVM->tm.s.fVirtualWarpDrive)
3409 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
3410 pHlp->pfnPrintf(pHlp, "\n");
3411
3412 /*
3413 * virtual sync
3414 */
3415 pHlp->pfnPrintf(pHlp,
3416 "VirtSync: %18RU64 (%#016RX64) %s%s",
3417 u64VirtualSync, u64VirtualSync,
3418 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
3419 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
3420 if (pVM->tm.s.offVirtualSync)
3421 {
3422 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
3423 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
3424 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
3425 }
3426 pHlp->pfnPrintf(pHlp, "\n");
3427
3428 /*
3429 * real
3430 */
3431 pHlp->pfnPrintf(pHlp,
3432 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
3433 u64Real, u64Real, TMRealGetFreq(pVM));
3434}
3435
3436
3437/**
3438 * Gets the descriptive TM TSC mode name given the enum value.
3439 *
3440 * @returns The name.
3441 * @param enmMode The mode to name.
3442 */
3443static const char *tmR3GetTSCModeNameEx(TMTSCMODE enmMode)
3444{
3445 switch (enmMode)
3446 {
3447 case TMTSCMODE_REAL_TSC_OFFSET: return "RealTscOffset";
3448 case TMTSCMODE_VIRT_TSC_EMULATED: return "VirtTscEmulated";
3449 case TMTSCMODE_DYNAMIC: return "Dynamic";
3450 default: return "???";
3451 }
3452}
3453
3454
3455/**
3456 * Gets the descriptive TM TSC mode name.
3457 *
3458 * @returns The name.
3459 * @param pVM The cross context VM structure.
3460 */
3461static const char *tmR3GetTSCModeName(PVM pVM)
3462{
3463 Assert(pVM);
3464 return tmR3GetTSCModeNameEx(pVM->tm.s.enmTSCMode);
3465}
3466
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette