VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/SELM.cpp@ 62869

Last change on this file since 62869 was 62644, checked in by vboxsync, 8 years ago

VMMR3: warnings

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 107.0 KB
Line 
1/* $Id: SELM.cpp 62644 2016-07-28 21:40:25Z vboxsync $ */
2/** @file
3 * SELM - The Selector Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_selm SELM - The Selector Manager
19 *
20 * SELM takes care of GDT, LDT and TSS shadowing in raw-mode, and the injection
21 * of a few hyper selector for the raw-mode context. In the hardware assisted
22 * virtualization mode its only task is to decode entries in the guest GDT or
23 * LDT once in a while.
24 *
25 * @see grp_selm
26 *
27 *
28 * @section seg_selm_shadowing Shadowing
29 *
30 * SELMR3UpdateFromCPUM() and SELMR3SyncTSS() does the bulk synchronization
31 * work. The three structures (GDT, LDT, TSS) are all shadowed wholesale atm.
32 * The idea is to do it in a more on-demand fashion when we get time. There
33 * also a whole bunch of issues with the current synchronization of all three
34 * tables, see notes and todos in the code.
35 *
36 * When the guest makes changes to the GDT we will try update the shadow copy
37 * without involving SELMR3UpdateFromCPUM(), see selmGCSyncGDTEntry().
38 *
39 * When the guest make LDT changes we'll trigger a full resync of the LDT
40 * (SELMR3UpdateFromCPUM()), which, needless to say, isn't optimal.
41 *
42 * The TSS shadowing is limited to the fields we need to care about, namely SS0
43 * and ESP0. The Patch Manager makes use of these. We monitor updates to the
44 * guest TSS and will try keep our SS0 and ESP0 copies up to date this way
45 * rather than go the SELMR3SyncTSS() route.
46 *
47 * When in raw-mode SELM also injects a few extra GDT selectors which are used
48 * by the raw-mode (hyper) context. These start their life at the high end of
49 * the table and will be relocated when the guest tries to make use of them...
50 * Well, that was that idea at least, only the code isn't quite there yet which
51 * is why we have trouble with guests which actually have a full sized GDT.
52 *
53 * So, the summary of the current GDT, LDT and TSS shadowing is that there is a
54 * lot of relatively simple and enjoyable work to be done, see @bugref{3267}.
55 *
56 */
57
58
59/*********************************************************************************************************************************
60* Header Files *
61*********************************************************************************************************************************/
62#define LOG_GROUP LOG_GROUP_SELM
63#include <VBox/vmm/selm.h>
64#include <VBox/vmm/cpum.h>
65#include <VBox/vmm/stam.h>
66#include <VBox/vmm/em.h>
67#include <VBox/vmm/hm.h>
68#include <VBox/vmm/mm.h>
69#include <VBox/vmm/ssm.h>
70#include <VBox/vmm/pgm.h>
71#include <VBox/vmm/trpm.h>
72#include <VBox/vmm/dbgf.h>
73#include "SELMInternal.h"
74#include <VBox/vmm/vm.h>
75#include <VBox/err.h>
76#include <VBox/param.h>
77
78#include <iprt/assert.h>
79#include <VBox/log.h>
80#include <iprt/asm.h>
81#include <iprt/string.h>
82#include <iprt/thread.h>
83#include <iprt/string.h>
84
85#include "SELMInline.h"
86
87
88/** SELM saved state version. */
89#define SELM_SAVED_STATE_VERSION 5
90
91
92/*********************************************************************************************************************************
93* Internal Functions *
94*********************************************************************************************************************************/
95static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM);
96static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
97static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
98static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
99static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
100static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
101static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
102//static DECLCALLBACK(void) selmR3InfoTss(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
103//static DECLCALLBACK(void) selmR3InfoTssGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
104
105
106/*********************************************************************************************************************************
107* Global Variables *
108*********************************************************************************************************************************/
109#ifdef LOG_ENABLED
110/** Segment register names. */
111static char const g_aszSRegNms[X86_SREG_COUNT][4] = { "ES", "CS", "SS", "DS", "FS", "GS" };
112#endif
113
114
115/**
116 * Initializes the SELM.
117 *
118 * @returns VBox status code.
119 * @param pVM The cross context VM structure.
120 */
121VMMR3DECL(int) SELMR3Init(PVM pVM)
122{
123 int rc;
124 LogFlow(("SELMR3Init\n"));
125
126 /*
127 * Assert alignment and sizes.
128 * (The TSS block requires contiguous back.)
129 */
130 AssertCompile(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding)); AssertRelease(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding));
131 AssertCompileMemberAlignment(VM, selm.s, 32); AssertRelease(!(RT_OFFSETOF(VM, selm.s) & 31));
132#if 0 /* doesn't work */
133 AssertCompile((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
134 AssertCompile((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
135#endif
136 AssertRelease((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
137 AssertRelease((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
138 AssertRelease(sizeof(pVM->selm.s.Tss.IntRedirBitmap) == 0x20);
139
140 /*
141 * Init the structure.
142 */
143 pVM->selm.s.offVM = RT_OFFSETOF(VM, selm);
144 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = (SELM_GDT_ELEMENTS - 0x1) << 3;
145 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = (SELM_GDT_ELEMENTS - 0x2) << 3;
146 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = (SELM_GDT_ELEMENTS - 0x3) << 3;
147 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = (SELM_GDT_ELEMENTS - 0x4) << 3;
148 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = (SELM_GDT_ELEMENTS - 0x5) << 3;
149
150 if (HMIsRawModeCtxNeeded(pVM))
151 {
152 /*
153 * Allocate GDT table.
154 */
155 rc = MMR3HyperAllocOnceNoRel(pVM, sizeof(pVM->selm.s.paGdtR3[0]) * SELM_GDT_ELEMENTS,
156 PAGE_SIZE, MM_TAG_SELM, (void **)&pVM->selm.s.paGdtR3);
157 AssertRCReturn(rc, rc);
158
159 /*
160 * Allocate LDT area.
161 */
162 rc = MMR3HyperAllocOnceNoRel(pVM, _64K + PAGE_SIZE, PAGE_SIZE, MM_TAG_SELM, &pVM->selm.s.pvLdtR3);
163 AssertRCReturn(rc, rc);
164 }
165
166 /*
167 * Init Guest's and Shadow GDT, LDT, TSS changes control variables.
168 */
169 pVM->selm.s.cbEffGuestGdtLimit = 0;
170 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
171 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
172 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
173
174 pVM->selm.s.paGdtRC = NIL_RTRCPTR; /* Must be set in SELMR3Relocate because of monitoring. */
175 pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
176 pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
177 pVM->selm.s.GCSelTss = RTSEL_MAX;
178
179 pVM->selm.s.fSyncTSSRing0Stack = false;
180
181 /* The I/O bitmap starts right after the virtual interrupt redirection
182 bitmap. Outside the TSS on purpose; the CPU will not check it for
183 I/O operations. */
184 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
185 /* bit set to 1 means no redirection */
186 memset(pVM->selm.s.Tss.IntRedirBitmap, 0xff, sizeof(pVM->selm.s.Tss.IntRedirBitmap));
187
188 /*
189 * Register the virtual access handlers.
190 */
191 pVM->selm.s.hShadowGdtWriteHandlerType = NIL_PGMVIRTHANDLERTYPE;
192 pVM->selm.s.hShadowLdtWriteHandlerType = NIL_PGMVIRTHANDLERTYPE;
193 pVM->selm.s.hShadowTssWriteHandlerType = NIL_PGMVIRTHANDLERTYPE;
194 pVM->selm.s.hGuestGdtWriteHandlerType = NIL_PGMVIRTHANDLERTYPE;
195 pVM->selm.s.hGuestLdtWriteHandlerType = NIL_PGMVIRTHANDLERTYPE;
196 pVM->selm.s.hGuestTssWriteHandlerType = NIL_PGMVIRTHANDLERTYPE;
197#ifdef VBOX_WITH_RAW_MODE
198 if (!HMIsEnabled(pVM))
199 {
200# ifdef SELM_TRACK_SHADOW_GDT_CHANGES
201 rc = PGMR3HandlerVirtualTypeRegister(pVM, PGMVIRTHANDLERKIND_HYPERVISOR, false /*fRelocUserRC*/,
202 NULL /*pfnInvalidateR3*/, NULL /*pfnHandlerR3*/,
203 NULL /*pszHandlerRC*/, "selmRCShadowGDTWritePfHandler",
204 "Shadow GDT write access handler", &pVM->selm.s.hShadowGdtWriteHandlerType);
205 AssertRCReturn(rc, rc);
206# endif
207# ifdef SELM_TRACK_SHADOW_TSS_CHANGES
208 rc = PGMR3HandlerVirtualTypeRegister(pVM, PGMVIRTHANDLERKIND_HYPERVISOR, false /*fRelocUserRC*/,
209 NULL /*pfnInvalidateR3*/, NULL /*pfnHandlerR3*/,
210 NULL /*pszHandlerRC*/, "selmRCShadowTSSWritePfHandler",
211 "Shadow TSS write access handler", &pVM->selm.s.hShadowTssWriteHandlerType);
212 AssertRCReturn(rc, rc);
213# endif
214# ifdef SELM_TRACK_SHADOW_LDT_CHANGES
215 rc = PGMR3HandlerVirtualTypeRegister(pVM, PGMVIRTHANDLERKIND_HYPERVISOR, false /*fRelocUserRC*/,
216 NULL /*pfnInvalidateR3*/, NULL /*pfnHandlerR3*/,
217 NULL /*pszHandlerRC*/, "selmRCShadowLDTWritePfHandler",
218 "Shadow LDT write access handler", &pVM->selm.s.hShadowLdtWriteHandlerType);
219 AssertRCReturn(rc, rc);
220# endif
221 rc = PGMR3HandlerVirtualTypeRegister(pVM, PGMVIRTHANDLERKIND_WRITE, false /*fRelocUserRC*/,
222 NULL /*pfnInvalidateR3*/, selmGuestGDTWriteHandler,
223 "selmGuestGDTWriteHandler", "selmRCGuestGDTWritePfHandler",
224 "Guest GDT write access handler", &pVM->selm.s.hGuestGdtWriteHandlerType);
225 AssertRCReturn(rc, rc);
226 rc = PGMR3HandlerVirtualTypeRegister(pVM, PGMVIRTHANDLERKIND_WRITE, false /*fRelocUserRC*/,
227 NULL /*pfnInvalidateR3*/, selmGuestLDTWriteHandler,
228 "selmGuestLDTWriteHandler", "selmRCGuestLDTWritePfHandler",
229 "Guest LDT write access handler", &pVM->selm.s.hGuestLdtWriteHandlerType);
230 AssertRCReturn(rc, rc);
231 rc = PGMR3HandlerVirtualTypeRegister(pVM, PGMVIRTHANDLERKIND_WRITE, false /*fRelocUserRC*/,
232 NULL /*pfnInvalidateR3*/, selmGuestTSSWriteHandler,
233 "selmGuestTSSWriteHandler", "selmRCGuestTSSWritePfHandler",
234 "Guest TSS write access handler", &pVM->selm.s.hGuestTssWriteHandlerType);
235 AssertRCReturn(rc, rc);
236 }
237#endif /* VBOX_WITH_RAW_MODE */
238
239 /*
240 * Register the saved state data unit.
241 */
242 rc = SSMR3RegisterInternal(pVM, "selm", 1, SELM_SAVED_STATE_VERSION, sizeof(SELM),
243 NULL, NULL, NULL,
244 NULL, selmR3Save, NULL,
245 NULL, selmR3Load, selmR3LoadDone);
246 if (RT_FAILURE(rc))
247 return rc;
248
249 /*
250 * Statistics.
251 */
252 if (!HMIsEnabled(pVM))
253 {
254 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest GDT.");
255 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest GDT.");
256 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestLDT, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/LDT", STAMUNIT_OCCURENCES, "The number of writes to the Guest LDT was detected.");
257 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS.");
258 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSRedir, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSRedir",STAMUNIT_OCCURENCES, "The number of handled redir bitmap writes to the Guest TSS.");
259 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandledChanged,STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSIntChg", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS where the R0 stack changed.");
260 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest TSS.");
261 STAM_REG(pVM, &pVM->selm.s.StatTSSSync, STAMTYPE_PROFILE, "/PROF/SELM/TSSSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3SyncTSS() body.");
262 STAM_REG(pVM, &pVM->selm.s.StatUpdateFromCPUM, STAMTYPE_PROFILE, "/PROF/SELM/UpdateFromCPUM", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3UpdateFromCPUM() body.");
263
264 STAM_REL_REG(pVM, &pVM->selm.s.StatHyperSelsChanged, STAMTYPE_COUNTER, "/SELM/HyperSels/Changed", STAMUNIT_OCCURENCES, "The number of times we had to relocate our hypervisor selectors.");
265 STAM_REL_REG(pVM, &pVM->selm.s.StatScanForHyperSels, STAMTYPE_COUNTER, "/SELM/HyperSels/Scan", STAMUNIT_OCCURENCES, "The number of times we had find free hypervisor selectors.");
266
267 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleES", STAMUNIT_OCCURENCES, "Stale ES was detected in UpdateFromCPUM.");
268 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleCS", STAMUNIT_OCCURENCES, "Stale CS was detected in UpdateFromCPUM.");
269 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleSS", STAMUNIT_OCCURENCES, "Stale SS was detected in UpdateFromCPUM.");
270 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleDS", STAMUNIT_OCCURENCES, "Stale DS was detected in UpdateFromCPUM.");
271 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleFS", STAMUNIT_OCCURENCES, "Stale FS was detected in UpdateFromCPUM.");
272 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleGS", STAMUNIT_OCCURENCES, "Stale GS was detected in UpdateFromCPUM.");
273
274 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleES", STAMUNIT_OCCURENCES, "Already stale ES in UpdateFromCPUM.");
275 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleCS", STAMUNIT_OCCURENCES, "Already stale CS in UpdateFromCPUM.");
276 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleSS", STAMUNIT_OCCURENCES, "Already stale SS in UpdateFromCPUM.");
277 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleDS", STAMUNIT_OCCURENCES, "Already stale DS in UpdateFromCPUM.");
278 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleFS", STAMUNIT_OCCURENCES, "Already stale FS in UpdateFromCPUM.");
279 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleGS", STAMUNIT_OCCURENCES, "Already stale GS in UpdateFromCPUM.");
280
281 STAM_REL_REG(pVM, &pVM->selm.s.StatStaleToUnstaleSReg, STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/StaleToUnstale", STAMUNIT_OCCURENCES, "Transitions from stale to unstale UpdateFromCPUM.");
282
283 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedES", STAMUNIT_OCCURENCES, "Updated hidden ES values in UpdateFromCPUM.");
284 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedCS", STAMUNIT_OCCURENCES, "Updated hidden CS values in UpdateFromCPUM.");
285 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedSS", STAMUNIT_OCCURENCES, "Updated hidden SS values in UpdateFromCPUM.");
286 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedDS", STAMUNIT_OCCURENCES, "Updated hidden DS values in UpdateFromCPUM.");
287 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedFS", STAMUNIT_OCCURENCES, "Updated hidden FS values in UpdateFromCPUM.");
288 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedGS", STAMUNIT_OCCURENCES, "Updated hidden GS values in UpdateFromCPUM.");
289 }
290
291 STAM_REG( pVM, &pVM->selm.s.StatLoadHidSelGst, STAMTYPE_COUNTER, "/SELM/LoadHidSel/LoadedGuest", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Loaded from guest tables.");
292 STAM_REG( pVM, &pVM->selm.s.StatLoadHidSelShw, STAMTYPE_COUNTER, "/SELM/LoadHidSel/LoadedShadow", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Loaded from shadow tables.");
293 STAM_REL_REG(pVM, &pVM->selm.s.StatLoadHidSelReadErrors, STAMTYPE_COUNTER, "/SELM/LoadHidSel/GstReadErrors", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Guest table read errors.");
294 STAM_REL_REG(pVM, &pVM->selm.s.StatLoadHidSelGstNoGood, STAMTYPE_COUNTER, "/SELM/LoadHidSel/NoGoodGuest", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: No good guest table entry.");
295
296#ifdef VBOX_WITH_RAW_MODE
297 /*
298 * Default action when entering raw mode for the first time
299 */
300 if (!HMIsEnabled(pVM))
301 {
302 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
303 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
304 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
305 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
306 }
307#endif
308
309 /*
310 * Register info handlers.
311 */
312 if (HMIsRawModeCtxNeeded(pVM))
313 {
314 DBGFR3InfoRegisterInternal(pVM, "gdt", "Displays the shadow GDT. No arguments.", &selmR3InfoGdt);
315 DBGFR3InfoRegisterInternal(pVM, "ldt", "Displays the shadow LDT. No arguments.", &selmR3InfoLdt);
316 //DBGFR3InfoRegisterInternal(pVM, "tss", "Displays the shadow TSS. No arguments.", &selmR3InfoTss);
317 }
318 DBGFR3InfoRegisterInternal(pVM, "gdtguest", "Displays the guest GDT. No arguments.", &selmR3InfoGdtGuest);
319 DBGFR3InfoRegisterInternal(pVM, "ldtguest", "Displays the guest LDT. No arguments.", &selmR3InfoLdtGuest);
320 //DBGFR3InfoRegisterInternal(pVM, "tssguest", "Displays the guest TSS. No arguments.", &selmR3InfoTssGuest);
321
322 return rc;
323}
324
325
326/**
327 * Finalizes HMA page attributes.
328 *
329 * @returns VBox status code.
330 * @param pVM The cross context VM structure.
331 */
332VMMR3DECL(int) SELMR3InitFinalize(PVM pVM)
333{
334#ifdef VBOX_WITH_RAW_MODE
335 /** @cfgm{/DoubleFault,bool,false}
336 * Enables catching of double faults in the raw-mode context VMM code. This can
337 * be used when the triple faults or hangs occur and one suspect an unhandled
338 * double fault. This is not enabled by default because it means making the
339 * hyper selectors writeable for all supervisor code, including the guest's.
340 * The double fault is a task switch and thus requires write access to the GDT
341 * of the TSS (to set it busy), to the old TSS (to store state), and to the Trap
342 * 8 TSS for the back link.
343 */
344 bool f;
345# if defined(DEBUG_bird)
346 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, true);
347# else
348 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, false);
349# endif
350 AssertLogRelRCReturn(rc, rc);
351 if (f && HMIsRawModeCtxNeeded(pVM))
352 {
353 PX86DESC paGdt = pVM->selm.s.paGdtR3;
354 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3]), sizeof(paGdt[0]),
355 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
356 AssertRC(rc);
357 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3]), sizeof(paGdt[0]),
358 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
359 AssertRC(rc);
360 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]),
361 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
362 AssertRC(rc);
363 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]),
364 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
365 AssertRC(rc);
366 }
367#endif /* VBOX_WITH_RAW_MODE */
368 return VINF_SUCCESS;
369}
370
371
372/**
373 * Setup the hypervisor GDT selectors in our shadow table
374 *
375 * @param pVM The cross context VM structure.
376 */
377static void selmR3SetupHyperGDTSelectors(PVM pVM)
378{
379 PX86DESC paGdt = pVM->selm.s.paGdtR3;
380
381 /*
382 * Set up global code and data descriptors for use in the guest context.
383 * Both are wide open (base 0, limit 4GB)
384 */
385 PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> 3];
386 pDesc->Gen.u16LimitLow = 0xffff;
387 pDesc->Gen.u4LimitHigh = 0xf;
388 pDesc->Gen.u16BaseLow = 0;
389 pDesc->Gen.u8BaseHigh1 = 0;
390 pDesc->Gen.u8BaseHigh2 = 0;
391 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
392 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
393 pDesc->Gen.u2Dpl = 0; /* supervisor */
394 pDesc->Gen.u1Present = 1;
395 pDesc->Gen.u1Available = 0;
396 pDesc->Gen.u1Long = 0;
397 pDesc->Gen.u1DefBig = 1; /* def 32 bit */
398 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
399
400 /* data */
401 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> 3];
402 pDesc->Gen.u16LimitLow = 0xffff;
403 pDesc->Gen.u4LimitHigh = 0xf;
404 pDesc->Gen.u16BaseLow = 0;
405 pDesc->Gen.u8BaseHigh1 = 0;
406 pDesc->Gen.u8BaseHigh2 = 0;
407 pDesc->Gen.u4Type = X86_SEL_TYPE_RW_ACC;
408 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
409 pDesc->Gen.u2Dpl = 0; /* supervisor */
410 pDesc->Gen.u1Present = 1;
411 pDesc->Gen.u1Available = 0;
412 pDesc->Gen.u1Long = 0;
413 pDesc->Gen.u1DefBig = 1; /* big */
414 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
415
416 /* 64-bit mode code (& data?) */
417 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> 3];
418 pDesc->Gen.u16LimitLow = 0xffff;
419 pDesc->Gen.u4LimitHigh = 0xf;
420 pDesc->Gen.u16BaseLow = 0;
421 pDesc->Gen.u8BaseHigh1 = 0;
422 pDesc->Gen.u8BaseHigh2 = 0;
423 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
424 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
425 pDesc->Gen.u2Dpl = 0; /* supervisor */
426 pDesc->Gen.u1Present = 1;
427 pDesc->Gen.u1Available = 0;
428 pDesc->Gen.u1Long = 1; /* The Long (L) attribute bit. */
429 pDesc->Gen.u1DefBig = 0; /* With L=1 this must be 0. */
430 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
431
432 /*
433 * TSS descriptor
434 */
435 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
436 RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
437 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
438 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
439 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
440 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
441 pDesc->Gen.u4LimitHigh = 0;
442 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
443 pDesc->Gen.u1DescType = 0; /* system */
444 pDesc->Gen.u2Dpl = 0; /* supervisor */
445 pDesc->Gen.u1Present = 1;
446 pDesc->Gen.u1Available = 0;
447 pDesc->Gen.u1Long = 0;
448 pDesc->Gen.u1DefBig = 0;
449 pDesc->Gen.u1Granularity = 0; /* byte limit */
450
451 /*
452 * TSS descriptor for trap 08
453 */
454 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3];
455 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
456 pDesc->Gen.u4LimitHigh = 0;
457 RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.TssTrap08);
458 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
459 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
460 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
461 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
462 pDesc->Gen.u1DescType = 0; /* system */
463 pDesc->Gen.u2Dpl = 0; /* supervisor */
464 pDesc->Gen.u1Present = 1;
465 pDesc->Gen.u1Available = 0;
466 pDesc->Gen.u1Long = 0;
467 pDesc->Gen.u1DefBig = 0;
468 pDesc->Gen.u1Granularity = 0; /* byte limit */
469}
470
471/**
472 * Applies relocations to data and code managed by this
473 * component. This function will be called at init and
474 * whenever the VMM need to relocate it self inside the GC.
475 *
476 * @param pVM The cross context VM structure.
477 */
478VMMR3DECL(void) SELMR3Relocate(PVM pVM)
479{
480 PX86DESC paGdt = pVM->selm.s.paGdtR3;
481 LogFlow(("SELMR3Relocate\n"));
482
483 if (HMIsRawModeCtxNeeded(pVM))
484 {
485 for (VMCPUID i = 0; i < pVM->cCpus; i++)
486 {
487 PVMCPU pVCpu = &pVM->aCpus[i];
488
489 /*
490 * Update GDTR and selector.
491 */
492 CPUMSetHyperGDTR(pVCpu, MMHyperR3ToRC(pVM, paGdt), SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1);
493
494 /** @todo selector relocations should be a separate operation? */
495 CPUMSetHyperCS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]);
496 CPUMSetHyperDS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
497 CPUMSetHyperES(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
498 CPUMSetHyperSS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
499 CPUMSetHyperTR(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]);
500 }
501
502 selmR3SetupHyperGDTSelectors(pVM);
503
504/** @todo SELM must be called when any of the CR3s changes during a cpu mode change. */
505/** @todo PGM knows the proper CR3 values these days, not CPUM. */
506 /*
507 * Update the TSSes.
508 */
509 /* Only applies to raw mode which supports only 1 VCPU */
510 PVMCPU pVCpu = &pVM->aCpus[0];
511
512 /* Current TSS */
513 pVM->selm.s.Tss.cr3 = PGMGetHyperCR3(pVCpu);
514 pVM->selm.s.Tss.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
515 pVM->selm.s.Tss.esp0 = VMMGetStackRC(pVCpu);
516 pVM->selm.s.Tss.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
517 pVM->selm.s.Tss.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
518 pVM->selm.s.Tss.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
519 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
520
521 /* trap 08 */
522 pVM->selm.s.TssTrap08.cr3 = PGMGetInterRCCR3(pVM, pVCpu); /* this should give use better survival chances. */
523 pVM->selm.s.TssTrap08.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
524 pVM->selm.s.TssTrap08.ss = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
525 pVM->selm.s.TssTrap08.esp0 = VMMGetStackRC(pVCpu) - PAGE_SIZE / 2; /* upper half can be analysed this way. */
526 pVM->selm.s.TssTrap08.esp = pVM->selm.s.TssTrap08.esp0;
527 pVM->selm.s.TssTrap08.ebp = pVM->selm.s.TssTrap08.esp0;
528 pVM->selm.s.TssTrap08.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
529 pVM->selm.s.TssTrap08.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
530 pVM->selm.s.TssTrap08.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
531 pVM->selm.s.TssTrap08.fs = 0;
532 pVM->selm.s.TssTrap08.gs = 0;
533 pVM->selm.s.TssTrap08.selLdt = 0;
534 pVM->selm.s.TssTrap08.eflags = 0x2; /* all cleared */
535 pVM->selm.s.TssTrap08.ecx = VM_RC_ADDR(pVM, &pVM->selm.s.Tss); /* setup ecx to normal Hypervisor TSS address. */
536 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.ecx;
537 pVM->selm.s.TssTrap08.eax = pVM->selm.s.TssTrap08.ecx;
538 pVM->selm.s.TssTrap08.edx = VM_RC_ADDR(pVM, pVM); /* setup edx VM address. */
539 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.edx;
540 pVM->selm.s.TssTrap08.ebx = pVM->selm.s.TssTrap08.edx;
541 pVM->selm.s.TssTrap08.offIoBitmap = sizeof(VBOXTSS);
542 /* TRPM will be updating the eip */
543 }
544
545 if (!HMIsEnabled(pVM))
546 {
547 /*
548 * Update shadow GDT/LDT/TSS write access handlers.
549 */
550 PVMCPU pVCpu = VMMGetCpu(pVM); NOREF(pVCpu);
551 int rc; NOREF(rc);
552#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
553 if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
554 {
555 rc = PGMHandlerVirtualDeregister(pVM, pVCpu, pVM->selm.s.paGdtRC, true /*fHypervisor*/);
556 AssertRC(rc);
557 }
558 pVM->selm.s.paGdtRC = MMHyperR3ToRC(pVM, paGdt);
559 rc = PGMR3HandlerVirtualRegister(pVM, pVCpu, pVM->selm.s.hShadowGdtWriteHandlerType,
560 pVM->selm.s.paGdtRC,
561 pVM->selm.s.paGdtRC + SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1,
562 NULL /*pvUserR3*/, NIL_RTR0PTR /*pvUserRC*/, NULL /*pszDesc*/);
563 AssertRC(rc);
564#endif
565#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
566 if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
567 {
568 rc = PGMHandlerVirtualDeregister(pVM, pVCpu, pVM->selm.s.pvMonShwTssRC, true /*fHypervisor*/);
569 AssertRC(rc);
570 }
571 pVM->selm.s.pvMonShwTssRC = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
572 rc = PGMR3HandlerVirtualRegister(pVM, pVCpu, pVM->selm.s.hShadowTssWriteHandlerType,
573 pVM->selm.s.pvMonShwTssRC,
574 pVM->selm.s.pvMonShwTssRC + sizeof(pVM->selm.s.Tss) - 1,
575 NULL /*pvUserR3*/, NIL_RTR0PTR /*pvUserRC*/, NULL /*pszDesc*/);
576 AssertRC(rc);
577#endif
578
579 /*
580 * Update the GC LDT region handler and address.
581 */
582#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
583 if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
584 {
585 rc = PGMHandlerVirtualDeregister(pVM, pVCpu, pVM->selm.s.pvLdtRC, true /*fHypervisor*/);
586 AssertRC(rc);
587 }
588#endif
589 pVM->selm.s.pvLdtRC = MMHyperR3ToRC(pVM, pVM->selm.s.pvLdtR3);
590#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
591 rc = PGMR3HandlerVirtualRegister(pVM, pVCpu, pVM->selm.s.hShadowLdtWriteHandlerType,
592 pVM->selm.s.pvLdtRC,
593 pVM->selm.s.pvLdtRC + _64K + PAGE_SIZE - 1,
594 NULL /*pvUserR3*/, NIL_RTR0PTR /*pvUserRC*/, NULL /*pszDesc*/);
595 AssertRC(rc);
596#endif
597 }
598}
599
600
601/**
602 * Terminates the SELM.
603 *
604 * Termination means cleaning up and freeing all resources,
605 * the VM it self is at this point powered off or suspended.
606 *
607 * @returns VBox status code.
608 * @param pVM The cross context VM structure.
609 */
610VMMR3DECL(int) SELMR3Term(PVM pVM)
611{
612 NOREF(pVM);
613 return VINF_SUCCESS;
614}
615
616
617/**
618 * The VM is being reset.
619 *
620 * For the SELM component this means that any GDT/LDT/TSS monitors
621 * needs to be removed.
622 *
623 * @param pVM The cross context VM structure.
624 */
625VMMR3DECL(void) SELMR3Reset(PVM pVM)
626{
627 LogFlow(("SELMR3Reset:\n"));
628 VM_ASSERT_EMT(pVM);
629
630 /*
631 * Uninstall guest GDT/LDT/TSS write access handlers.
632 */
633 PVMCPU pVCpu = VMMGetCpu(pVM); NOREF(pVCpu);
634 int rc = VINF_SUCCESS;
635 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
636 {
637#ifdef SELM_TRACK_GUEST_GDT_CHANGES
638 rc = PGMHandlerVirtualDeregister(pVM, pVCpu, pVM->selm.s.GuestGdtr.pGdt, false /*fHypervisor*/);
639 AssertRC(rc);
640#endif
641 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
642 pVM->selm.s.GuestGdtr.cbGdt = 0;
643 }
644 pVM->selm.s.fGDTRangeRegistered = false;
645 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
646 {
647#ifdef SELM_TRACK_GUEST_LDT_CHANGES
648 rc = PGMHandlerVirtualDeregister(pVM, pVCpu, pVM->selm.s.GCPtrGuestLdt, false /*fHypervisor*/);
649 AssertRC(rc);
650#endif
651 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
652 }
653 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
654 {
655#ifdef SELM_TRACK_GUEST_TSS_CHANGES
656 rc = PGMHandlerVirtualDeregister(pVM, pVCpu, pVM->selm.s.GCPtrGuestTss, false /*fHypervisor*/);
657 AssertRC(rc);
658#endif
659 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
660 pVM->selm.s.GCSelTss = RTSEL_MAX;
661 }
662
663 /*
664 * Re-initialize other members.
665 */
666 pVM->selm.s.cbLdtLimit = 0;
667 pVM->selm.s.offLdtHyper = 0;
668 pVM->selm.s.cbMonitoredGuestTss = 0;
669
670 pVM->selm.s.fSyncTSSRing0Stack = false;
671
672#ifdef VBOX_WITH_RAW_MODE
673 if (!HMIsEnabled(pVM))
674 {
675 /*
676 * Default action when entering raw mode for the first time
677 */
678 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
679 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
680 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
681 }
682#endif
683}
684
685
686/**
687 * Execute state save operation.
688 *
689 * @returns VBox status code.
690 * @param pVM The cross context VM structure.
691 * @param pSSM SSM operation handle.
692 */
693static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM)
694{
695 LogFlow(("selmR3Save:\n"));
696
697 /*
698 * Save the basic bits - fortunately all the other things can be resynced on load.
699 */
700 PSELM pSelm = &pVM->selm.s;
701
702 SSMR3PutBool(pSSM, HMIsEnabled(pVM));
703 SSMR3PutBool(pSSM, pSelm->fSyncTSSRing0Stack);
704 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS]);
705 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_DS]);
706 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]);
707 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]); /* reserved for DS64. */
708 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS]);
709 return SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]);
710}
711
712
713/**
714 * Execute state load operation.
715 *
716 * @returns VBox status code.
717 * @param pVM The cross context VM structure.
718 * @param pSSM SSM operation handle.
719 * @param uVersion Data layout version.
720 * @param uPass The data pass.
721 */
722static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
723{
724 LogFlow(("selmR3Load:\n"));
725 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
726
727 /*
728 * Validate version.
729 */
730 if (uVersion != SELM_SAVED_STATE_VERSION)
731 {
732 AssertMsgFailed(("selmR3Load: Invalid version uVersion=%d!\n", uVersion));
733 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
734 }
735
736 /*
737 * Do a reset.
738 */
739 SELMR3Reset(pVM);
740
741 /* Get the monitoring flag. */
742 bool fIgnored;
743 SSMR3GetBool(pSSM, &fIgnored);
744
745 /* Get the TSS state flag. */
746 SSMR3GetBool(pSSM, &pVM->selm.s.fSyncTSSRing0Stack);
747
748 /*
749 * Get the selectors.
750 */
751 RTSEL SelCS;
752 SSMR3GetSel(pSSM, &SelCS);
753 RTSEL SelDS;
754 SSMR3GetSel(pSSM, &SelDS);
755 RTSEL SelCS64;
756 SSMR3GetSel(pSSM, &SelCS64);
757 RTSEL SelDS64;
758 SSMR3GetSel(pSSM, &SelDS64);
759 RTSEL SelTSS;
760 SSMR3GetSel(pSSM, &SelTSS);
761 RTSEL SelTSSTrap08;
762 SSMR3GetSel(pSSM, &SelTSSTrap08);
763
764 /* Copy the selectors; they will be checked during relocation. */
765 PSELM pSelm = &pVM->selm.s;
766 pSelm->aHyperSel[SELM_HYPER_SEL_CS] = SelCS;
767 pSelm->aHyperSel[SELM_HYPER_SEL_DS] = SelDS;
768 pSelm->aHyperSel[SELM_HYPER_SEL_CS64] = SelCS64;
769 pSelm->aHyperSel[SELM_HYPER_SEL_TSS] = SelTSS;
770 pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SelTSSTrap08;
771
772 return VINF_SUCCESS;
773}
774
775
776/**
777 * Sync the GDT, LDT and TSS after loading the state.
778 *
779 * Just to play save, we set the FFs to force syncing before
780 * executing GC code.
781 *
782 * @returns VBox status code.
783 * @param pVM The cross context VM structure.
784 * @param pSSM SSM operation handle.
785 */
786static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
787{
788#ifdef VBOX_WITH_RAW_MODE
789 if (!HMIsEnabled(pVM))
790 {
791 PVMCPU pVCpu = VMMGetCpu(pVM);
792
793 LogFlow(("selmR3LoadDone:\n"));
794
795 /*
796 * Don't do anything if it's a load failure.
797 */
798 int rc = SSMR3HandleGetStatus(pSSM);
799 if (RT_FAILURE(rc))
800 return VINF_SUCCESS;
801
802 /*
803 * Do the syncing if we're in protected mode and using raw-mode.
804 */
805 if (PGMGetGuestMode(pVCpu) != PGMMODE_REAL)
806 {
807 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
808 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
809 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
810 SELMR3UpdateFromCPUM(pVM, pVCpu);
811 }
812
813 /*
814 * Flag everything for resync on next raw mode entry.
815 */
816 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
817 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
818 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
819 }
820#endif /*VBOX_WITH_RAW_MODE*/
821 return VINF_SUCCESS;
822}
823
824#ifdef VBOX_WITH_RAW_MODE
825
826/**
827 * Updates (syncs) the shadow GDT.
828 *
829 * @returns VBox status code.
830 * @param pVM The cross context VM structure.
831 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
832 */
833static int selmR3UpdateShadowGdt(PVM pVM, PVMCPU pVCpu)
834{
835 LogFlow(("selmR3UpdateShadowGdt\n"));
836 Assert(!HMIsEnabled(pVM));
837
838 /*
839 * Always assume the best...
840 */
841 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
842
843 /* If the GDT was changed, then make sure the LDT is checked too */
844 /** @todo only do this if the actual ldtr selector was changed; this is a bit excessive */
845 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
846 /* Same goes for the TSS selector */
847 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
848
849 /*
850 * Get the GDTR and check if there is anything to do (there usually is).
851 */
852 VBOXGDTR GDTR;
853 CPUMGetGuestGDTR(pVCpu, &GDTR);
854 if (GDTR.cbGdt < sizeof(X86DESC))
855 {
856 Log(("No GDT entries...\n"));
857 return VINF_SUCCESS;
858 }
859
860 /*
861 * Read the Guest GDT.
862 * ASSUMES that the entire GDT is in memory.
863 */
864 RTUINT cbEffLimit = GDTR.cbGdt;
865 PX86DESC pGDTE = &pVM->selm.s.paGdtR3[1];
866 int rc = PGMPhysSimpleReadGCPtr(pVCpu, pGDTE, GDTR.pGdt + sizeof(X86DESC), cbEffLimit + 1 - sizeof(X86DESC));
867 if (RT_FAILURE(rc))
868 {
869 /*
870 * Read it page by page.
871 *
872 * Keep track of the last valid page and delay memsets and
873 * adjust cbEffLimit to reflect the effective size. The latter
874 * is something we do in the belief that the guest will probably
875 * never actually commit the last page, thus allowing us to keep
876 * our selectors in the high end of the GDT.
877 */
878 RTUINT cbLeft = cbEffLimit + 1 - sizeof(X86DESC);
879 RTGCPTR GCPtrSrc = (RTGCPTR)GDTR.pGdt + sizeof(X86DESC);
880 uint8_t *pu8Dst = (uint8_t *)&pVM->selm.s.paGdtR3[1];
881 uint8_t *pu8DstInvalid = pu8Dst;
882
883 while (cbLeft)
884 {
885 RTUINT cb = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
886 cb = RT_MIN(cb, cbLeft);
887 rc = PGMPhysSimpleReadGCPtr(pVCpu, pu8Dst, GCPtrSrc, cb);
888 if (RT_SUCCESS(rc))
889 {
890 if (pu8DstInvalid != pu8Dst)
891 RT_BZERO(pu8DstInvalid, pu8Dst - pu8DstInvalid);
892 GCPtrSrc += cb;
893 pu8Dst += cb;
894 pu8DstInvalid = pu8Dst;
895 }
896 else if ( rc == VERR_PAGE_NOT_PRESENT
897 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
898 {
899 GCPtrSrc += cb;
900 pu8Dst += cb;
901 }
902 else
903 {
904 AssertLogRelMsgFailed(("Couldn't read GDT at %016RX64, rc=%Rrc!\n", GDTR.pGdt, rc));
905 return VERR_SELM_GDT_READ_ERROR;
906 }
907 cbLeft -= cb;
908 }
909
910 /* any invalid pages at the end? */
911 if (pu8DstInvalid != pu8Dst)
912 {
913 cbEffLimit = pu8DstInvalid - (uint8_t *)pVM->selm.s.paGdtR3 - 1;
914 /* If any GDTEs was invalidated, zero them. */
915 if (cbEffLimit < pVM->selm.s.cbEffGuestGdtLimit)
916 RT_BZERO(pu8DstInvalid + cbEffLimit + 1, pVM->selm.s.cbEffGuestGdtLimit - cbEffLimit);
917 }
918
919 /* keep track of the effective limit. */
920 if (cbEffLimit != pVM->selm.s.cbEffGuestGdtLimit)
921 {
922 Log(("SELMR3UpdateFromCPUM: cbEffGuestGdtLimit=%#x -> %#x (actual %#x)\n",
923 pVM->selm.s.cbEffGuestGdtLimit, cbEffLimit, GDTR.cbGdt));
924 pVM->selm.s.cbEffGuestGdtLimit = cbEffLimit;
925 }
926 }
927
928 /*
929 * Check if the Guest GDT intrudes on our GDT entries.
930 */
931 /** @todo we should try to minimize relocations by making sure our current selectors can be reused. */
932 RTSEL aHyperSel[SELM_HYPER_SEL_MAX];
933 if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
934 {
935 PX86DESC pGDTEStart = pVM->selm.s.paGdtR3;
936 PX86DESC pGDTECur = (PX86DESC)((char *)pGDTEStart + GDTR.cbGdt + 1 - sizeof(X86DESC));
937 int iGDT = 0;
938
939 Log(("Internal SELM GDT conflict: use non-present entries\n"));
940 STAM_REL_COUNTER_INC(&pVM->selm.s.StatScanForHyperSels);
941 while ((uintptr_t)pGDTECur > (uintptr_t)pGDTEStart)
942 {
943 /* We can reuse non-present entries */
944 if (!pGDTECur->Gen.u1Present)
945 {
946 aHyperSel[iGDT] = ((uintptr_t)pGDTECur - (uintptr_t)pVM->selm.s.paGdtR3) / sizeof(X86DESC);
947 aHyperSel[iGDT] = aHyperSel[iGDT] << X86_SEL_SHIFT;
948 Log(("SELM: Found unused GDT %04X\n", aHyperSel[iGDT]));
949 iGDT++;
950 if (iGDT >= SELM_HYPER_SEL_MAX)
951 break;
952 }
953
954 pGDTECur--;
955 }
956 if (iGDT != SELM_HYPER_SEL_MAX)
957 {
958 AssertLogRelMsgFailed(("Internal SELM GDT conflict.\n"));
959 return VERR_SELM_GDT_TOO_FULL;
960 }
961 }
962 else
963 {
964 aHyperSel[SELM_HYPER_SEL_CS] = SELM_HYPER_DEFAULT_SEL_CS;
965 aHyperSel[SELM_HYPER_SEL_DS] = SELM_HYPER_DEFAULT_SEL_DS;
966 aHyperSel[SELM_HYPER_SEL_CS64] = SELM_HYPER_DEFAULT_SEL_CS64;
967 aHyperSel[SELM_HYPER_SEL_TSS] = SELM_HYPER_DEFAULT_SEL_TSS;
968 aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SELM_HYPER_DEFAULT_SEL_TSS_TRAP08;
969 }
970
971# ifdef VBOX_WITH_SAFE_STR
972 /* Use the guest's TR selector to plug the str virtualization hole. */
973 if (CPUMGetGuestTR(pVCpu, NULL) != 0)
974 {
975 Log(("SELM: Use guest TSS selector %x\n", CPUMGetGuestTR(pVCpu, NULL)));
976 aHyperSel[SELM_HYPER_SEL_TSS] = CPUMGetGuestTR(pVCpu, NULL);
977 }
978# endif
979
980 /*
981 * Work thru the copied GDT entries adjusting them for correct virtualization.
982 */
983 PX86DESC pGDTEEnd = (PX86DESC)((char *)pGDTE + cbEffLimit + 1 - sizeof(X86DESC));
984 while (pGDTE < pGDTEEnd)
985 {
986 if (pGDTE->Gen.u1Present)
987 selmGuestToShadowDesc(pVM, pGDTE);
988
989 /* Next GDT entry. */
990 pGDTE++;
991 }
992
993 /*
994 * Check if our hypervisor selectors were changed.
995 */
996 if ( aHyperSel[SELM_HYPER_SEL_CS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]
997 || aHyperSel[SELM_HYPER_SEL_DS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]
998 || aHyperSel[SELM_HYPER_SEL_CS64] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64]
999 || aHyperSel[SELM_HYPER_SEL_TSS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]
1000 || aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08])
1001 {
1002 /* Reinitialize our hypervisor GDTs */
1003 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = aHyperSel[SELM_HYPER_SEL_CS];
1004 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = aHyperSel[SELM_HYPER_SEL_DS];
1005 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = aHyperSel[SELM_HYPER_SEL_CS64];
1006 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = aHyperSel[SELM_HYPER_SEL_TSS];
1007 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = aHyperSel[SELM_HYPER_SEL_TSS_TRAP08];
1008
1009 STAM_REL_COUNTER_INC(&pVM->selm.s.StatHyperSelsChanged);
1010
1011 /*
1012 * Do the relocation callbacks to let everyone update their hyper selector dependencies.
1013 * (SELMR3Relocate will call selmR3SetupHyperGDTSelectors() for us.)
1014 */
1015 VMR3Relocate(pVM, 0);
1016 }
1017# ifdef VBOX_WITH_SAFE_STR
1018 else if ( cbEffLimit >= SELM_HYPER_DEFAULT_BASE
1019 || CPUMGetGuestTR(pVCpu, NULL) != 0) /* Our shadow TR entry was overwritten when we synced the guest's GDT. */
1020# else
1021 else if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
1022# endif
1023 /* We overwrote all entries above, so we have to save them again. */
1024 selmR3SetupHyperGDTSelectors(pVM);
1025
1026 /*
1027 * Adjust the cached GDT limit.
1028 * Any GDT entries which have been removed must be cleared.
1029 */
1030 if (pVM->selm.s.GuestGdtr.cbGdt != GDTR.cbGdt)
1031 {
1032 if (pVM->selm.s.GuestGdtr.cbGdt > GDTR.cbGdt)
1033 RT_BZERO(pGDTE, pVM->selm.s.GuestGdtr.cbGdt - GDTR.cbGdt);
1034 }
1035
1036 /*
1037 * Check if Guest's GDTR is changed.
1038 */
1039 if ( GDTR.pGdt != pVM->selm.s.GuestGdtr.pGdt
1040 || GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1041 {
1042 Log(("SELMR3UpdateFromCPUM: Guest's GDT is changed to pGdt=%016RX64 cbGdt=%08X\n", GDTR.pGdt, GDTR.cbGdt));
1043
1044# ifdef SELM_TRACK_GUEST_GDT_CHANGES
1045 /*
1046 * [Re]Register write virtual handler for guest's GDT.
1047 */
1048 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
1049 {
1050 rc = PGMHandlerVirtualDeregister(pVM, pVCpu, pVM->selm.s.GuestGdtr.pGdt, false /*fHypervisor*/);
1051 AssertRC(rc);
1052 }
1053 rc = PGMR3HandlerVirtualRegister(pVM, pVCpu, pVM->selm.s.hGuestGdtWriteHandlerType,
1054 GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
1055 NULL /*pvUserR3*/, NIL_RTR0PTR /*pvUserRC*/, NULL /*pszDesc*/);
1056# ifdef VBOX_WITH_RAW_RING1
1057 /** @todo !HACK ALERT!
1058 * Some guest OSes (QNX) share code and the GDT on the same page;
1059 * PGMR3HandlerVirtualRegister doesn't support more than one handler,
1060 * so we kick out the PATM handler as this one is more important. Fix this
1061 * properly in PGMR3HandlerVirtualRegister?
1062 */
1063 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1064 {
1065 LogRel(("selmR3UpdateShadowGdt: Virtual handler conflict %RGv -> kick out PATM handler for the higher priority GDT page monitor\n", GDTR.pGdt));
1066 rc = PGMHandlerVirtualDeregister(pVM, pVCpu, GDTR.pGdt & PAGE_BASE_GC_MASK, false /*fHypervisor*/);
1067 AssertRC(rc);
1068 rc = PGMR3HandlerVirtualRegister(pVM, pVCpu, pVM->selm.s.hGuestGdtWriteHandlerType,
1069 GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
1070 NULL /*pvUserR3*/, NIL_RTR0PTR /*pvUserRC*/, NULL /*pszDesc*/);
1071 }
1072# endif
1073 if (RT_FAILURE(rc))
1074 return rc;
1075# endif /* SELM_TRACK_GUEST_GDT_CHANGES */
1076
1077 /* Update saved Guest GDTR. */
1078 pVM->selm.s.GuestGdtr = GDTR;
1079 pVM->selm.s.fGDTRangeRegistered = true;
1080 }
1081
1082 return VINF_SUCCESS;
1083}
1084
1085
1086/**
1087 * Updates (syncs) the shadow LDT.
1088 *
1089 * @returns VBox status code.
1090 * @param pVM The cross context VM structure.
1091 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1092 */
1093static int selmR3UpdateShadowLdt(PVM pVM, PVMCPU pVCpu)
1094{
1095 LogFlow(("selmR3UpdateShadowLdt\n"));
1096 int rc = VINF_SUCCESS;
1097 Assert(!HMIsEnabled(pVM));
1098
1099 /*
1100 * Always assume the best...
1101 */
1102 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
1103
1104 /*
1105 * LDT handling is done similarly to the GDT handling with a shadow
1106 * array. However, since the LDT is expected to be swappable (at least
1107 * some ancient OSes makes it swappable) it must be floating and
1108 * synced on a per-page basis.
1109 *
1110 * Eventually we will change this to be fully on demand. Meaning that
1111 * we will only sync pages containing LDT selectors actually used and
1112 * let the #PF handler lazily sync pages as they are used.
1113 * (This applies to GDT too, when we start making OS/2 fast.)
1114 */
1115
1116 /*
1117 * First, determine the current LDT selector.
1118 */
1119 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1120 if (!(SelLdt & X86_SEL_MASK_OFF_RPL))
1121 {
1122 /* ldtr = 0 - update hyper LDTR and deregister any active handler. */
1123 CPUMSetHyperLDTR(pVCpu, 0);
1124 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1125 {
1126 rc = PGMHandlerVirtualDeregister(pVM, pVCpu, pVM->selm.s.GCPtrGuestLdt, false /*fHypervisor*/);
1127 AssertRC(rc);
1128 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1129 }
1130 pVM->selm.s.cbLdtLimit = 0;
1131 return VINF_SUCCESS;
1132 }
1133
1134 /*
1135 * Get the LDT selector.
1136 */
1137/** @todo this is wrong, use CPUMGetGuestLdtrEx */
1138 PX86DESC pDesc = &pVM->selm.s.paGdtR3[SelLdt >> X86_SEL_SHIFT];
1139 RTGCPTR GCPtrLdt = X86DESC_BASE(pDesc);
1140 uint32_t cbLdt = X86DESC_LIMIT_G(pDesc);
1141
1142 /*
1143 * Validate it.
1144 */
1145 if ( !cbLdt
1146 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt
1147 || pDesc->Gen.u1DescType
1148 || pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1149 {
1150 AssertMsg(!cbLdt, ("Invalid LDT %04x!\n", SelLdt));
1151
1152 /* cbLdt > 0:
1153 * This is quite impossible, so we do as most people do when faced with
1154 * the impossible, we simply ignore it.
1155 */
1156 CPUMSetHyperLDTR(pVCpu, 0);
1157 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1158 {
1159 rc = PGMHandlerVirtualDeregister(pVM, pVCpu, pVM->selm.s.GCPtrGuestLdt, false /*fHypervisor*/);
1160 AssertRC(rc);
1161 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1162 }
1163 return VINF_SUCCESS;
1164 }
1165 /** @todo check what intel does about odd limits. */
1166 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1167
1168 /*
1169 * Use the cached guest ldt address if the descriptor has already been modified (see below)
1170 * (this is necessary due to redundant LDT updates; see todo above at GDT sync)
1171 */
1172 if (MMHyperIsInsideArea(pVM, GCPtrLdt))
1173 GCPtrLdt = pVM->selm.s.GCPtrGuestLdt; /* use the old one */
1174
1175
1176 /** @todo Handle only present LDT segments. */
1177// if (pDesc->Gen.u1Present)
1178 {
1179 /*
1180 * Check if Guest's LDT address/limit is changed.
1181 */
1182 if ( GCPtrLdt != pVM->selm.s.GCPtrGuestLdt
1183 || cbLdt != pVM->selm.s.cbLdtLimit)
1184 {
1185 Log(("SELMR3UpdateFromCPUM: Guest LDT changed to from %RGv:%04x to %RGv:%04x. (GDTR=%016RX64:%04x)\n",
1186 pVM->selm.s.GCPtrGuestLdt, pVM->selm.s.cbLdtLimit, GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1187
1188# ifdef SELM_TRACK_GUEST_LDT_CHANGES
1189 /*
1190 * [Re]Register write virtual handler for guest's GDT.
1191 * In the event of LDT overlapping something, don't install it just assume it's being updated.
1192 */
1193 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1194 {
1195 rc = PGMHandlerVirtualDeregister(pVM, pVCpu, pVM->selm.s.GCPtrGuestLdt, false /*fHypervisor*/);
1196 AssertRC(rc);
1197 }
1198# ifdef LOG_ENABLED
1199 if (pDesc->Gen.u1Present)
1200 Log(("LDT selector marked not present!!\n"));
1201# endif
1202 rc = PGMR3HandlerVirtualRegister(pVM, pVCpu, pVM->selm.s.hGuestLdtWriteHandlerType,
1203 GCPtrLdt, GCPtrLdt + cbLdt /* already inclusive */,
1204 NULL /*pvUserR3*/, NIL_RTR0PTR /*pvUserRC*/, NULL /*pszDesc*/);
1205 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1206 {
1207 /** @todo investigate the various cases where conflicts happen and try avoid them by enh. the instruction emulation. */
1208 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1209 Log(("WARNING: Guest LDT (%RGv:%04x) conflicted with existing access range!! Assumes LDT is begin updated. (GDTR=%016RX64:%04x)\n",
1210 GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1211 }
1212 else if (RT_SUCCESS(rc))
1213 pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
1214 else
1215 {
1216 CPUMSetHyperLDTR(pVCpu, 0);
1217 return rc;
1218 }
1219# else
1220 pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
1221# endif
1222 pVM->selm.s.cbLdtLimit = cbLdt;
1223 }
1224 }
1225
1226 /*
1227 * Calc Shadow LDT base.
1228 */
1229 unsigned off;
1230 pVM->selm.s.offLdtHyper = off = (GCPtrLdt & PAGE_OFFSET_MASK);
1231 RTGCPTR GCPtrShadowLDT = (RTGCPTR)((RTGCUINTPTR)pVM->selm.s.pvLdtRC + off);
1232 PX86DESC pShadowLDT = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1233
1234 /*
1235 * Enable the LDT selector in the shadow GDT.
1236 */
1237 pDesc->Gen.u1Present = 1;
1238 pDesc->Gen.u16BaseLow = RT_LOWORD(GCPtrShadowLDT);
1239 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(GCPtrShadowLDT);
1240 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(GCPtrShadowLDT);
1241 pDesc->Gen.u1Available = 0;
1242 pDesc->Gen.u1Long = 0;
1243 if (cbLdt > 0xffff)
1244 {
1245 cbLdt = 0xffff;
1246 pDesc->Gen.u4LimitHigh = 0;
1247 pDesc->Gen.u16LimitLow = pDesc->Gen.u1Granularity ? 0xf : 0xffff;
1248 }
1249
1250 /*
1251 * Set Hyper LDTR and notify TRPM.
1252 */
1253 CPUMSetHyperLDTR(pVCpu, SelLdt);
1254 LogFlow(("selmR3UpdateShadowLdt: Hyper LDTR %#x\n", SelLdt));
1255
1256 /*
1257 * Loop synchronising the LDT page by page.
1258 */
1259 /** @todo investigate how intel handle various operations on half present cross page entries. */
1260 off = GCPtrLdt & (sizeof(X86DESC) - 1);
1261 AssertMsg(!off, ("LDT is not aligned on entry size! GCPtrLdt=%08x\n", GCPtrLdt));
1262
1263 /* Note: Do not skip the first selector; unlike the GDT, a zero LDT selector is perfectly valid. */
1264 unsigned cbLeft = cbLdt + 1;
1265 PX86DESC pLDTE = pShadowLDT;
1266 while (cbLeft)
1267 {
1268 /*
1269 * Read a chunk.
1270 */
1271 unsigned cbChunk = PAGE_SIZE - ((RTGCUINTPTR)GCPtrLdt & PAGE_OFFSET_MASK);
1272 if (cbChunk > cbLeft)
1273 cbChunk = cbLeft;
1274 rc = PGMPhysSimpleReadGCPtr(pVCpu, pShadowLDT, GCPtrLdt, cbChunk);
1275 if (RT_SUCCESS(rc))
1276 {
1277 /*
1278 * Mark page
1279 */
1280 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D);
1281 AssertRC(rc);
1282
1283 /*
1284 * Loop thru the available LDT entries.
1285 * Figure out where to start and end and the potential cross pageness of
1286 * things adds a little complexity. pLDTE is updated there and not in the
1287 * 'next' part of the loop. The pLDTEEnd is inclusive.
1288 */
1289 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pShadowLDT + cbChunk) - 1;
1290 if (pLDTE + 1 < pShadowLDT)
1291 pLDTE = (PX86DESC)((uintptr_t)pShadowLDT + off);
1292 while (pLDTE <= pLDTEEnd)
1293 {
1294 if (pLDTE->Gen.u1Present)
1295 selmGuestToShadowDesc(pVM, pLDTE);
1296
1297 /* Next LDT entry. */
1298 pLDTE++;
1299 }
1300 }
1301 else
1302 {
1303 RT_BZERO(pShadowLDT, cbChunk);
1304 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("rc=%Rrc\n", rc));
1305 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, 0);
1306 AssertRC(rc);
1307 }
1308
1309 /*
1310 * Advance to the next page.
1311 */
1312 cbLeft -= cbChunk;
1313 GCPtrShadowLDT += cbChunk;
1314 pShadowLDT = (PX86DESC)((char *)pShadowLDT + cbChunk);
1315 GCPtrLdt += cbChunk;
1316 }
1317
1318 return VINF_SUCCESS;
1319}
1320
1321
1322/**
1323 * Checks and updates segment selector registers.
1324 *
1325 * @returns VBox strict status code.
1326 * @retval VINF_EM_RESCHEDULE_REM if a stale register was found.
1327 *
1328 * @param pVM The cross context VM structure.
1329 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1330 */
1331static VBOXSTRICTRC selmR3UpdateSegmentRegisters(PVM pVM, PVMCPU pVCpu)
1332{
1333 Assert(CPUMIsGuestInProtectedMode(pVCpu));
1334 Assert(!HMIsEnabled(pVM));
1335
1336 /*
1337 * No stale selectors in V8086 mode.
1338 */
1339 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1340 if (pCtx->eflags.Bits.u1VM)
1341 return VINF_SUCCESS;
1342
1343 /*
1344 * Check for stale selectors and load hidden register bits where they
1345 * are missing.
1346 */
1347 uint32_t uCpl = CPUMGetGuestCPL(pVCpu);
1348 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1349 PCPUMSELREG paSReg = CPUMCTX_FIRST_SREG(pCtx);
1350 for (uint32_t iSReg = 0; iSReg < X86_SREG_COUNT; iSReg++)
1351 {
1352 RTSEL const Sel = paSReg[iSReg].Sel;
1353 if (Sel & X86_SEL_MASK_OFF_RPL)
1354 {
1355 /* Get the shadow descriptor entry corresponding to this. */
1356 static X86DESC const s_NotPresentDesc = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } };
1357 PCX86DESC pDesc;
1358 if (!(Sel & X86_SEL_LDT))
1359 {
1360 if ((Sel | (sizeof(*pDesc) - 1)) <= pCtx->gdtr.cbGdt)
1361 pDesc = &pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
1362 else
1363 pDesc = &s_NotPresentDesc;
1364 }
1365 else
1366 {
1367 if ((Sel | (sizeof(*pDesc) - 1)) <= pVM->selm.s.cbLdtLimit)
1368 pDesc = &((PCX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper))[Sel >> X86_SEL_SHIFT];
1369 else
1370 pDesc = &s_NotPresentDesc;
1371 }
1372
1373 /* Check the segment register. */
1374 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &paSReg[iSReg]))
1375 {
1376 if (!(paSReg[iSReg].fFlags & CPUMSELREG_FLAGS_STALE))
1377 {
1378 /* Did it go stale? */
1379 if (selmIsSRegStale32(&paSReg[iSReg], pDesc, iSReg))
1380 {
1381 Log2(("SELM: Detected stale %s=%#x (was valid)\n", g_aszSRegNms[iSReg], Sel));
1382 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatDetectedStaleSReg[iSReg]);
1383 paSReg[iSReg].fFlags |= CPUMSELREG_FLAGS_STALE;
1384 rcStrict = VINF_EM_RESCHEDULE_REM;
1385 }
1386 }
1387 else
1388 {
1389 /* Did it stop being stale? I.e. did the guest change it things
1390 back to the way they were? */
1391 if (!selmIsSRegStale32(&paSReg[iSReg], pDesc, iSReg))
1392 {
1393 STAM_REL_COUNTER_INC(&pVM->selm.s.StatStaleToUnstaleSReg);
1394 paSReg[iSReg].fFlags &= CPUMSELREG_FLAGS_STALE;
1395 }
1396 else
1397 {
1398 Log2(("SELM: Already stale %s=%#x\n", g_aszSRegNms[iSReg], Sel));
1399 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatAlreadyStaleSReg[iSReg]);
1400 rcStrict = VINF_EM_RESCHEDULE_REM;
1401 }
1402 }
1403 }
1404 /* Load the hidden registers if it's a valid descriptor for the
1405 current segment register. */
1406 else if (selmIsShwDescGoodForSReg(&paSReg[iSReg], pDesc, iSReg, uCpl))
1407 {
1408 selmLoadHiddenSRegFromShadowDesc(&paSReg[iSReg], pDesc);
1409 STAM_COUNTER_INC(&pVM->selm.s.aStatUpdatedSReg[iSReg]);
1410 }
1411 /* It's stale. */
1412 else
1413 {
1414 Log2(("SELM: Detected stale %s=%#x (wasn't valid)\n", g_aszSRegNms[iSReg], Sel));
1415 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatDetectedStaleSReg[iSReg]);
1416 paSReg[iSReg].fFlags = CPUMSELREG_FLAGS_STALE;
1417 rcStrict = VINF_EM_RESCHEDULE_REM;
1418 }
1419 }
1420 /* else: 0 selector, ignore. */
1421 }
1422
1423 return rcStrict;
1424}
1425
1426
1427/**
1428 * Updates the Guest GDT & LDT virtualization based on current CPU state.
1429 *
1430 * @returns VBox status code.
1431 * @param pVM The cross context VM structure.
1432 * @param pVCpu The cross context virtual CPU structure.
1433 */
1434VMMR3DECL(VBOXSTRICTRC) SELMR3UpdateFromCPUM(PVM pVM, PVMCPU pVCpu)
1435{
1436 STAM_PROFILE_START(&pVM->selm.s.StatUpdateFromCPUM, a);
1437 AssertReturn(!HMIsEnabled(pVM), VERR_SELM_HM_IPE);
1438
1439 /*
1440 * GDT sync
1441 */
1442 int rc;
1443 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT))
1444 {
1445 rc = selmR3UpdateShadowGdt(pVM, pVCpu);
1446 if (RT_FAILURE(rc))
1447 return rc; /* We're toast, so forget the profiling. */
1448 AssertRCSuccess(rc);
1449 }
1450
1451 /*
1452 * TSS sync
1453 */
1454 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1455 {
1456 rc = SELMR3SyncTSS(pVM, pVCpu);
1457 if (RT_FAILURE(rc))
1458 return rc;
1459 AssertRCSuccess(rc);
1460 }
1461
1462 /*
1463 * LDT sync
1464 */
1465 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT))
1466 {
1467 rc = selmR3UpdateShadowLdt(pVM, pVCpu);
1468 if (RT_FAILURE(rc))
1469 return rc;
1470 AssertRCSuccess(rc);
1471 }
1472
1473 /*
1474 * Check selector registers.
1475 */
1476 VBOXSTRICTRC rcStrict = selmR3UpdateSegmentRegisters(pVM, pVCpu);
1477
1478 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1479 return rcStrict;
1480}
1481
1482
1483/**
1484 * Synchronize the shadowed fields in the TSS.
1485 *
1486 * At present we're shadowing the ring-0 stack selector & pointer, and the
1487 * interrupt redirection bitmap (if present). We take the lazy approach wrt to
1488 * REM and this function is called both if REM made any changes to the TSS or
1489 * loaded TR.
1490 *
1491 * @returns VBox status code.
1492 * @param pVM The cross context VM structure.
1493 * @param pVCpu The cross context virtual CPU structure.
1494 */
1495VMMR3DECL(int) SELMR3SyncTSS(PVM pVM, PVMCPU pVCpu)
1496{
1497 LogFlow(("SELMR3SyncTSS\n"));
1498 int rc;
1499 AssertReturnStmt(!HMIsEnabled(pVM), VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS), VINF_SUCCESS);
1500
1501 STAM_PROFILE_START(&pVM->selm.s.StatTSSSync, a);
1502 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS));
1503
1504 /*
1505 * Get TR and extract and store the basic info.
1506 *
1507 * Note! The TSS limit is not checked by the LTR code, so we
1508 * have to be a bit careful with it. We make sure cbTss
1509 * won't be zero if TR is valid and if it's NULL we'll
1510 * make sure cbTss is 0.
1511 */
1512/** @todo use the hidden bits, not shadow GDT. */
1513 CPUMSELREGHID trHid;
1514 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1515 RTGCPTR GCPtrTss = trHid.u64Base;
1516 uint32_t cbTss = trHid.u32Limit;
1517 Assert( (SelTss & X86_SEL_MASK_OFF_RPL)
1518 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1519 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1520 if (SelTss & X86_SEL_MASK_OFF_RPL)
1521 {
1522 Assert(!(SelTss & X86_SEL_LDT));
1523 Assert(trHid.Attr.n.u1DescType == 0);
1524 Assert( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1525 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY);
1526 if (!++cbTss)
1527 cbTss = UINT32_MAX;
1528 }
1529 else
1530 {
1531 Assert( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1532 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1533 cbTss = 0; /* the reset case. */
1534 }
1535 pVM->selm.s.cbGuestTss = cbTss;
1536 pVM->selm.s.fGuestTss32Bit = trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1537 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY;
1538
1539 /*
1540 * Figure out the size of what need to monitor.
1541 */
1542 /* We're not interested in any 16-bit TSSes. */
1543 uint32_t cbMonitoredTss = cbTss;
1544 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1545 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1546 cbMonitoredTss = 0;
1547
1548 pVM->selm.s.offGuestIoBitmap = 0;
1549 bool fNoRing1Stack = true;
1550 if (cbMonitoredTss)
1551 {
1552 /*
1553 * 32-bit TSS. What we're really keen on is the SS0 and ESP0 fields.
1554 * If VME is enabled we also want to keep an eye on the interrupt
1555 * redirection bitmap.
1556 */
1557 VBOXTSS Tss;
1558 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
1559 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1560 if ( !(cr4 & X86_CR4_VME)
1561 || ( RT_SUCCESS(rc)
1562 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1563 && Tss.offIoBitmap > cbTss) /* beyond the end */ /** @todo not sure how the partial case is handled; probably not allowed. */
1564 )
1565 /* No interrupt redirection bitmap, just ESP0 and SS0. */
1566 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1567 else if (RT_SUCCESS(rc))
1568 {
1569 /*
1570 * Everything up to and including the interrupt redirection bitmap. Unfortunately
1571 * this can be quite a large chunk. We use to skip it earlier and just hope it
1572 * was kind of static...
1573 *
1574 * Update the virtual interrupt redirection bitmap while we're here.
1575 * (It is located in the 32 bytes before TR:offIoBitmap.)
1576 */
1577 cbMonitoredTss = Tss.offIoBitmap;
1578 pVM->selm.s.offGuestIoBitmap = Tss.offIoBitmap;
1579
1580 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1581 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pVM->selm.s.Tss.IntRedirBitmap,
1582 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1583 AssertRC(rc);
1584 /** @todo memset the bitmap on failure? */
1585 Log2(("Redirection bitmap:\n"));
1586 Log2(("%.*Rhxd\n", sizeof(Tss.IntRedirBitmap), &pVM->selm.s.Tss.IntRedirBitmap));
1587 }
1588 else
1589 {
1590 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
1591 pVM->selm.s.offGuestIoBitmap = 0;
1592 /** @todo memset the bitmap? */
1593 }
1594
1595 /*
1596 * Update the ring 0 stack selector and base address.
1597 */
1598 if (RT_SUCCESS(rc))
1599 {
1600# ifdef LOG_ENABLED
1601 if (LogIsEnabled())
1602 {
1603 uint32_t ssr0, espr0;
1604 SELMGetRing1Stack(pVM, &ssr0, &espr0);
1605 if ((ssr0 & ~1) != Tss.ss0 || espr0 != Tss.esp0)
1606 {
1607 RTGCPHYS GCPhys = NIL_RTGCPHYS;
1608 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
1609 Log(("SELMR3SyncTSS: Updating TSS ring 0 stack to %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1610 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1611 AssertMsg(ssr0 != Tss.ss0,
1612 ("ring-1 leak into TSS.SS0! %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1613 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1614 }
1615 Log(("offIoBitmap=%#x\n", Tss.offIoBitmap));
1616 }
1617# endif /* LOG_ENABLED */
1618 AssertMsg(!(Tss.ss0 & 3), ("ring-1 leak into TSS.SS0? %04X:%08X\n", Tss.ss0, Tss.esp0));
1619
1620 /* Update our TSS structure for the guest's ring 1 stack */
1621 selmSetRing1Stack(pVM, Tss.ss0 | 1, Tss.esp0);
1622 pVM->selm.s.fSyncTSSRing0Stack = fNoRing1Stack = false;
1623
1624# ifdef VBOX_WITH_RAW_RING1
1625 /* Update our TSS structure for the guest's ring 2 stack */
1626 if (EMIsRawRing1Enabled(pVM))
1627 {
1628 if ( (pVM->selm.s.Tss.ss2 != ((Tss.ss1 & ~2) | 1))
1629 || pVM->selm.s.Tss.esp2 != Tss.esp1)
1630 Log(("SELMR3SyncTSS: Updating TSS ring 1 stack to %04X:%08X from %04X:%08X\n", Tss.ss1, Tss.esp1, (pVM->selm.s.Tss.ss2 & ~2) | 1, pVM->selm.s.Tss.esp2));
1631 selmSetRing2Stack(pVM, (Tss.ss1 & ~1) | 2, Tss.esp1);
1632 }
1633# endif
1634 }
1635 }
1636
1637 /*
1638 * Flush the ring-1 stack and the direct syscall dispatching if we
1639 * cannot obtain SS0:ESP0.
1640 */
1641 if (fNoRing1Stack)
1642 {
1643 selmSetRing1Stack(pVM, 0 /* invalid SS */, 0);
1644 pVM->selm.s.fSyncTSSRing0Stack = cbMonitoredTss != 0;
1645
1646 /** @todo handle these dependencies better! */
1647 TRPMR3SetGuestTrapHandler(pVM, 0x2E, TRPM_INVALID_HANDLER);
1648 TRPMR3SetGuestTrapHandler(pVM, 0x80, TRPM_INVALID_HANDLER);
1649 }
1650
1651 /*
1652 * Check for monitor changes and apply them.
1653 */
1654 if ( GCPtrTss != pVM->selm.s.GCPtrGuestTss
1655 || cbMonitoredTss != pVM->selm.s.cbMonitoredGuestTss)
1656 {
1657 Log(("SELMR3SyncTSS: Guest's TSS is changed to pTss=%RGv cbMonitoredTss=%08X cbGuestTss=%#08x\n",
1658 GCPtrTss, cbMonitoredTss, pVM->selm.s.cbGuestTss));
1659
1660 /* Release the old range first. */
1661 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
1662 {
1663 rc = PGMHandlerVirtualDeregister(pVM, pVCpu, pVM->selm.s.GCPtrGuestTss, false /*fHypervisor*/);
1664 AssertRC(rc);
1665 }
1666
1667 /* Register the write handler if TS != 0. */
1668 if (cbMonitoredTss != 0)
1669 {
1670# ifdef SELM_TRACK_GUEST_TSS_CHANGES
1671 rc = PGMR3HandlerVirtualRegister(pVM, pVCpu, pVM->selm.s.hGuestTssWriteHandlerType,
1672 GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
1673 NULL /*pvUserR3*/, NIL_RTR0PTR /*pvUserRC*/, NULL /*pszDesc*/);
1674 if (RT_FAILURE(rc))
1675 {
1676# ifdef VBOX_WITH_RAW_RING1
1677 /** @todo !HACK ALERT!
1678 * Some guest OSes (QNX) share code and the TSS on the same page;
1679 * PGMR3HandlerVirtualRegister doesn't support more than one
1680 * handler, so we kick out the PATM handler as this one is more
1681 * important. Fix this properly in PGMR3HandlerVirtualRegister?
1682 */
1683 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1684 {
1685 LogRel(("SELMR3SyncTSS: Virtual handler conflict %RGv -> kick out PATM handler for the higher priority TSS page monitor\n", GCPtrTss));
1686 rc = PGMHandlerVirtualDeregister(pVM, pVCpu, GCPtrTss & PAGE_BASE_GC_MASK, false /*fHypervisor*/);
1687 AssertRC(rc);
1688
1689 rc = PGMR3HandlerVirtualRegister(pVM, pVCpu, pVM->selm.s.hGuestTssWriteHandlerType,
1690 GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
1691 NULL /*pvUserR3*/, NIL_RTR0PTR /*pvUserRC*/, NULL /*pszDesc*/);
1692 if (RT_FAILURE(rc))
1693 {
1694 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1695 return rc;
1696 }
1697 }
1698# else
1699 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1700 return rc;
1701# endif
1702 }
1703# endif /* SELM_TRACK_GUEST_TSS_CHANGES */
1704
1705 /* Update saved Guest TSS info. */
1706 pVM->selm.s.GCPtrGuestTss = GCPtrTss;
1707 pVM->selm.s.cbMonitoredGuestTss = cbMonitoredTss;
1708 pVM->selm.s.GCSelTss = SelTss;
1709 }
1710 else
1711 {
1712 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
1713 pVM->selm.s.cbMonitoredGuestTss = 0;
1714 pVM->selm.s.GCSelTss = 0;
1715 }
1716 }
1717
1718 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1719
1720 STAM_PROFILE_STOP(&pVM->selm.s.StatTSSSync, a);
1721 return VINF_SUCCESS;
1722}
1723
1724
1725/**
1726 * Compares the Guest GDT and LDT with the shadow tables.
1727 * This is a VBOX_STRICT only function.
1728 *
1729 * @returns VBox status code.
1730 * @param pVM The cross context VM structure.
1731 */
1732VMMR3DECL(int) SELMR3DebugCheck(PVM pVM)
1733{
1734# ifdef VBOX_STRICT
1735 PVMCPU pVCpu = VMMGetCpu(pVM);
1736 AssertReturn(!HMIsEnabled(pVM), VERR_SELM_HM_IPE);
1737
1738 /*
1739 * Get GDTR and check for conflict.
1740 */
1741 VBOXGDTR GDTR;
1742 CPUMGetGuestGDTR(pVCpu, &GDTR);
1743 if (GDTR.cbGdt == 0)
1744 return VINF_SUCCESS;
1745
1746 if (GDTR.cbGdt >= (unsigned)(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
1747 Log(("SELMR3DebugCheck: guest GDT size forced us to look for unused selectors.\n"));
1748
1749 if (GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1750 Log(("SELMR3DebugCheck: limits have changed! new=%d old=%d\n", GDTR.cbGdt, pVM->selm.s.GuestGdtr.cbGdt));
1751
1752 /*
1753 * Loop thru the GDT checking each entry.
1754 */
1755 RTGCPTR GCPtrGDTEGuest = GDTR.pGdt;
1756 PX86DESC pGDTE = pVM->selm.s.paGdtR3;
1757 PX86DESC pGDTEEnd = (PX86DESC)((uintptr_t)pGDTE + GDTR.cbGdt);
1758 while (pGDTE < pGDTEEnd)
1759 {
1760 X86DESC GDTEGuest;
1761 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTEGuest, GCPtrGDTEGuest, sizeof(GDTEGuest));
1762 if (RT_SUCCESS(rc))
1763 {
1764 if (pGDTE->Gen.u1DescType || pGDTE->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1765 {
1766 if ( pGDTE->Gen.u16LimitLow != GDTEGuest.Gen.u16LimitLow
1767 || pGDTE->Gen.u4LimitHigh != GDTEGuest.Gen.u4LimitHigh
1768 || pGDTE->Gen.u16BaseLow != GDTEGuest.Gen.u16BaseLow
1769 || pGDTE->Gen.u8BaseHigh1 != GDTEGuest.Gen.u8BaseHigh1
1770 || pGDTE->Gen.u8BaseHigh2 != GDTEGuest.Gen.u8BaseHigh2
1771 || pGDTE->Gen.u1DefBig != GDTEGuest.Gen.u1DefBig
1772 || pGDTE->Gen.u1DescType != GDTEGuest.Gen.u1DescType)
1773 {
1774 unsigned iGDT = pGDTE - pVM->selm.s.paGdtR3;
1775 SELMR3DumpDescriptor(*pGDTE, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, shadow");
1776 SELMR3DumpDescriptor(GDTEGuest, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, guest");
1777 }
1778 }
1779 }
1780
1781 /* Advance to the next descriptor. */
1782 GCPtrGDTEGuest += sizeof(X86DESC);
1783 pGDTE++;
1784 }
1785
1786
1787 /*
1788 * LDT?
1789 */
1790 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1791 if ((SelLdt & X86_SEL_MASK_OFF_RPL) == 0)
1792 return VINF_SUCCESS;
1793 Assert(!(SelLdt & X86_SEL_LDT));
1794 if (SelLdt > GDTR.cbGdt)
1795 {
1796 Log(("SELMR3DebugCheck: ldt is out of bound SelLdt=%#x\n", SelLdt));
1797 return VERR_SELM_LDT_OUT_OF_BOUNDS;
1798 }
1799 X86DESC LDTDesc;
1800 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTDesc, GDTR.pGdt + (SelLdt & X86_SEL_MASK), sizeof(LDTDesc));
1801 if (RT_FAILURE(rc))
1802 {
1803 Log(("SELMR3DebugCheck: Failed to read LDT descriptor. rc=%d\n", rc));
1804 return rc;
1805 }
1806 RTGCPTR GCPtrLDTEGuest = X86DESC_BASE(&LDTDesc);
1807 uint32_t cbLdt = X86DESC_LIMIT_G(&LDTDesc);
1808
1809 /*
1810 * Validate it.
1811 */
1812 if (!cbLdt)
1813 return VINF_SUCCESS;
1814 /** @todo check what intel does about odd limits. */
1815 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1816 if ( LDTDesc.Gen.u1DescType
1817 || LDTDesc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT
1818 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt)
1819 {
1820 Log(("SELmR3DebugCheck: Invalid LDT %04x!\n", SelLdt));
1821 return VERR_SELM_INVALID_LDT;
1822 }
1823
1824 /*
1825 * Loop thru the LDT checking each entry.
1826 */
1827 unsigned off = (GCPtrLDTEGuest & PAGE_OFFSET_MASK);
1828 PX86DESC pLDTE = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1829 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pGDTE + cbLdt);
1830 while (pLDTE < pLDTEEnd)
1831 {
1832 X86DESC LDTEGuest;
1833 rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTEGuest, GCPtrLDTEGuest, sizeof(LDTEGuest));
1834 if (RT_SUCCESS(rc))
1835 {
1836 if ( pLDTE->Gen.u16LimitLow != LDTEGuest.Gen.u16LimitLow
1837 || pLDTE->Gen.u4LimitHigh != LDTEGuest.Gen.u4LimitHigh
1838 || pLDTE->Gen.u16BaseLow != LDTEGuest.Gen.u16BaseLow
1839 || pLDTE->Gen.u8BaseHigh1 != LDTEGuest.Gen.u8BaseHigh1
1840 || pLDTE->Gen.u8BaseHigh2 != LDTEGuest.Gen.u8BaseHigh2
1841 || pLDTE->Gen.u1DefBig != LDTEGuest.Gen.u1DefBig
1842 || pLDTE->Gen.u1DescType != LDTEGuest.Gen.u1DescType)
1843 {
1844 unsigned iLDT = pLDTE - (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1845 SELMR3DumpDescriptor(*pLDTE, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, shadow");
1846 SELMR3DumpDescriptor(LDTEGuest, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, guest");
1847 }
1848 }
1849
1850 /* Advance to the next descriptor. */
1851 GCPtrLDTEGuest += sizeof(X86DESC);
1852 pLDTE++;
1853 }
1854
1855# else /* !VBOX_STRICT */
1856 NOREF(pVM);
1857# endif /* !VBOX_STRICT */
1858
1859 return VINF_SUCCESS;
1860}
1861
1862
1863/**
1864 * Validates the RawR0 TSS values against the one in the Guest TSS.
1865 *
1866 * @returns true if it matches.
1867 * @returns false and assertions on mismatch..
1868 * @param pVM The cross context VM structure.
1869 */
1870VMMR3DECL(bool) SELMR3CheckTSS(PVM pVM)
1871{
1872# if defined(VBOX_STRICT) && defined(SELM_TRACK_GUEST_TSS_CHANGES)
1873 PVMCPU pVCpu = VMMGetCpu(pVM);
1874
1875 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1876 return true;
1877
1878 /*
1879 * Get TR and extract the basic info.
1880 */
1881 CPUMSELREGHID trHid;
1882 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1883 RTGCPTR GCPtrTss = trHid.u64Base;
1884 uint32_t cbTss = trHid.u32Limit;
1885 Assert( (SelTss & X86_SEL_MASK_OFF_RPL)
1886 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1887 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1888 if (SelTss & X86_SEL_MASK_OFF_RPL)
1889 {
1890 AssertReturn(!(SelTss & X86_SEL_LDT), false);
1891 AssertReturn(trHid.Attr.n.u1DescType == 0, false);
1892 AssertReturn( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1893 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY,
1894 false);
1895 if (!++cbTss)
1896 cbTss = UINT32_MAX;
1897 }
1898 else
1899 {
1900 AssertReturn( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1901 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */),
1902 false);
1903 cbTss = 0; /* the reset case. */
1904 }
1905 AssertMsgReturn(pVM->selm.s.cbGuestTss == cbTss, ("%#x %#x\n", pVM->selm.s.cbGuestTss, cbTss), false);
1906 AssertMsgReturn(pVM->selm.s.fGuestTss32Bit == ( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1907 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY),
1908 ("%RTbool u4Type=%d\n", pVM->selm.s.fGuestTss32Bit, trHid.Attr.n.u4Type),
1909 false);
1910 AssertMsgReturn( pVM->selm.s.GCSelTss == SelTss
1911 || (!pVM->selm.s.GCSelTss && !(SelTss & X86_SEL_LDT)),
1912 ("%#x %#x\n", pVM->selm.s.GCSelTss, SelTss),
1913 false);
1914 AssertMsgReturn( pVM->selm.s.GCPtrGuestTss == GCPtrTss
1915 || (pVM->selm.s.GCPtrGuestTss == RTRCPTR_MAX && !GCPtrTss),
1916 ("%#RGv %#RGv\n", pVM->selm.s.GCPtrGuestTss, GCPtrTss),
1917 false);
1918
1919
1920 /*
1921 * Figure out the size of what need to monitor.
1922 */
1923 /* We're not interested in any 16-bit TSSes. */
1924 uint32_t cbMonitoredTss = cbTss;
1925 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1926 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1927 cbMonitoredTss = 0;
1928 if (cbMonitoredTss)
1929 {
1930 VBOXTSS Tss;
1931 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
1932 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1933 AssertReturn( rc == VINF_SUCCESS
1934 /* Happens early in XP boot during page table switching. */
1935 || ( (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
1936 && !(CPUMGetGuestEFlags(pVCpu) & X86_EFL_IF)),
1937 false);
1938 if ( !(cr4 & X86_CR4_VME)
1939 || ( RT_SUCCESS(rc)
1940 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1941 && Tss.offIoBitmap > cbTss)
1942 )
1943 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1944 else if (RT_SUCCESS(rc))
1945 {
1946 cbMonitoredTss = Tss.offIoBitmap;
1947 AssertMsgReturn(pVM->selm.s.offGuestIoBitmap == Tss.offIoBitmap,
1948 ("%#x %#x\n", pVM->selm.s.offGuestIoBitmap, Tss.offIoBitmap),
1949 false);
1950
1951 /* check the bitmap */
1952 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1953 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss.IntRedirBitmap,
1954 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1955 AssertRCReturn(rc, false);
1956 AssertMsgReturn(!memcmp(&Tss.IntRedirBitmap[0], &pVM->selm.s.Tss.IntRedirBitmap[0], sizeof(Tss.IntRedirBitmap)),
1957 ("offIoBitmap=%#x cbTss=%#x\n"
1958 " Guest: %.32Rhxs\n"
1959 "Shadow: %.32Rhxs\n",
1960 Tss.offIoBitmap, cbTss,
1961 &Tss.IntRedirBitmap[0],
1962 &pVM->selm.s.Tss.IntRedirBitmap[0]),
1963 false);
1964 }
1965 else
1966 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
1967
1968 /*
1969 * Check SS0 and ESP0.
1970 */
1971 if ( !pVM->selm.s.fSyncTSSRing0Stack
1972 && RT_SUCCESS(rc))
1973 {
1974 if ( Tss.esp0 != pVM->selm.s.Tss.esp1
1975 || Tss.ss0 != (pVM->selm.s.Tss.ss1 & ~1))
1976 {
1977 RTGCPHYS GCPhys;
1978 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
1979 AssertMsgFailed(("TSS out of sync!! (%04X:%08X vs %04X:%08X (guest)) Tss=%RGv Phys=%RGp\n",
1980 (pVM->selm.s.Tss.ss1 & ~1), pVM->selm.s.Tss.esp1,
1981 Tss.ss1, Tss.esp1, GCPtrTss, GCPhys));
1982 return false;
1983 }
1984 }
1985 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
1986 }
1987 else
1988 {
1989 AssertMsgReturn(pVM->selm.s.Tss.ss1 == 0 && pVM->selm.s.Tss.esp1 == 0, ("%04x:%08x\n", pVM->selm.s.Tss.ss1, pVM->selm.s.Tss.esp1), false);
1990 AssertReturn(!pVM->selm.s.fSyncTSSRing0Stack, false);
1991 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
1992 }
1993
1994
1995
1996 return true;
1997
1998# else /* !VBOX_STRICT */
1999 NOREF(pVM);
2000 return true;
2001# endif /* !VBOX_STRICT */
2002}
2003
2004
2005# ifdef VBOX_WITH_SAFE_STR
2006/**
2007 * Validates the RawR0 TR shadow GDT entry.
2008 *
2009 * @returns true if it matches.
2010 * @returns false and assertions on mismatch..
2011 * @param pVM The cross context VM structure.
2012 */
2013VMMR3DECL(bool) SELMR3CheckShadowTR(PVM pVM)
2014{
2015# ifdef VBOX_STRICT
2016 PX86DESC paGdt = pVM->selm.s.paGdtR3;
2017
2018 /*
2019 * TSS descriptor
2020 */
2021 PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
2022 RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
2023
2024 if ( pDesc->Gen.u16BaseLow != RT_LOWORD(RCPtrTSS)
2025 || pDesc->Gen.u8BaseHigh1 != RT_BYTE3(RCPtrTSS)
2026 || pDesc->Gen.u8BaseHigh2 != RT_BYTE4(RCPtrTSS)
2027 || pDesc->Gen.u16LimitLow != sizeof(VBOXTSS) - 1
2028 || pDesc->Gen.u4LimitHigh != 0
2029 || (pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL && pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2030 || pDesc->Gen.u1DescType != 0 /* system */
2031 || pDesc->Gen.u2Dpl != 0 /* supervisor */
2032 || pDesc->Gen.u1Present != 1
2033 || pDesc->Gen.u1Available != 0
2034 || pDesc->Gen.u1Long != 0
2035 || pDesc->Gen.u1DefBig != 0
2036 || pDesc->Gen.u1Granularity != 0 /* byte limit */
2037 )
2038 {
2039 AssertFailed();
2040 return false;
2041 }
2042# else
2043 RT_NOREF_PV(pVM);
2044# endif
2045 return true;
2046}
2047# endif /* VBOX_WITH_SAFE_STR */
2048
2049#endif /* VBOX_WITH_RAW_MODE */
2050
2051/**
2052 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
2053 *
2054 * See SELMR3GetSelectorInfo for details.
2055 *
2056 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
2057 *
2058 * @param pVCpu The cross context virtual CPU structure.
2059 * @param Sel The selector to get info about.
2060 * @param pSelInfo Where to store the information.
2061 */
2062static int selmR3GetSelectorInfo64(PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2063{
2064 /*
2065 * Read it from the guest descriptor table.
2066 */
2067/** @todo this is bogus wrt the LDT/GDT limit on long selectors. */
2068 X86DESC64 Desc;
2069 RTGCPTR GCPtrDesc;
2070 if (!(Sel & X86_SEL_LDT))
2071 {
2072 /* GDT */
2073 VBOXGDTR Gdtr;
2074 CPUMGetGuestGDTR(pVCpu, &Gdtr);
2075 if ((Sel | X86_SEL_RPL_LDT) > Gdtr.cbGdt)
2076 return VERR_INVALID_SELECTOR;
2077 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2078 }
2079 else
2080 {
2081 /* LDT */
2082 uint64_t GCPtrBase;
2083 uint32_t cbLimit;
2084 CPUMGetGuestLdtrEx(pVCpu, &GCPtrBase, &cbLimit);
2085 if ((Sel | X86_SEL_RPL_LDT) > cbLimit)
2086 return VERR_INVALID_SELECTOR;
2087
2088 /* calc the descriptor location. */
2089 GCPtrDesc = GCPtrBase + (Sel & X86_SEL_MASK);
2090 }
2091
2092 /* read the descriptor. */
2093 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2094 if (RT_FAILURE(rc))
2095 {
2096 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(X86DESC));
2097 if (RT_FAILURE(rc))
2098 return rc;
2099 Desc.au64[1] = 0;
2100 }
2101
2102 /*
2103 * Extract the base and limit
2104 * (We ignore the present bit here, which is probably a bit silly...)
2105 */
2106 pSelInfo->Sel = Sel;
2107 pSelInfo->fFlags = DBGFSELINFO_FLAGS_LONG_MODE;
2108 pSelInfo->u.Raw64 = Desc;
2109 if (Desc.Gen.u1DescType)
2110 {
2111 /*
2112 * 64-bit code selectors are wide open, it's not possible to detect
2113 * 64-bit data or stack selectors without also dragging in assumptions
2114 * about current CS (i.e. that's we're executing in 64-bit mode). So,
2115 * the selinfo user needs to deal with this in the context the info is
2116 * used unfortunately.
2117 */
2118 if ( Desc.Gen.u1Long
2119 && !Desc.Gen.u1DefBig
2120 && (Desc.Gen.u4Type & X86_SEL_TYPE_CODE))
2121 {
2122 /* Note! We ignore the segment limit hacks that was added by AMD. */
2123 pSelInfo->GCPtrBase = 0;
2124 pSelInfo->cbLimit = ~(RTGCUINTPTR)0;
2125 }
2126 else
2127 {
2128 pSelInfo->cbLimit = X86DESC_LIMIT_G(&Desc);
2129 pSelInfo->GCPtrBase = X86DESC_BASE(&Desc);
2130 }
2131 pSelInfo->SelGate = 0;
2132 }
2133 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_LDT
2134 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_AVAIL
2135 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY)
2136 {
2137 /* Note. LDT descriptors are weird in long mode, we ignore the footnote
2138 in the AMD manual here as a simplification. */
2139 pSelInfo->GCPtrBase = X86DESC64_BASE(&Desc);
2140 pSelInfo->cbLimit = X86DESC_LIMIT_G(&Desc);
2141 pSelInfo->SelGate = 0;
2142 }
2143 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE
2144 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TRAP_GATE
2145 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_INT_GATE)
2146 {
2147 pSelInfo->cbLimit = X86DESC64_BASE(&Desc);
2148 pSelInfo->GCPtrBase = Desc.Gate.u16OffsetLow
2149 | ((uint32_t)Desc.Gate.u16OffsetHigh << 16)
2150 | ((uint64_t)Desc.Gate.u32OffsetTop << 32);
2151 pSelInfo->SelGate = Desc.Gate.u16Sel;
2152 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2153 }
2154 else
2155 {
2156 pSelInfo->cbLimit = 0;
2157 pSelInfo->GCPtrBase = 0;
2158 pSelInfo->SelGate = 0;
2159 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2160 }
2161 if (!Desc.Gen.u1Present)
2162 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2163
2164 return VINF_SUCCESS;
2165}
2166
2167
2168/**
2169 * Worker for selmR3GetSelectorInfo32 and SELMR3GetShadowSelectorInfo that
2170 * interprets a legacy descriptor table entry and fills in the selector info
2171 * structure from it.
2172 *
2173 * @param pSelInfo Where to store the selector info. Only the fFlags and
2174 * Sel members have been initialized.
2175 * @param pDesc The legacy descriptor to parse.
2176 */
2177DECLINLINE(void) selmR3SelInfoFromDesc32(PDBGFSELINFO pSelInfo, PCX86DESC pDesc)
2178{
2179 pSelInfo->u.Raw64.au64[1] = 0;
2180 pSelInfo->u.Raw = *pDesc;
2181 if ( pDesc->Gen.u1DescType
2182 || !(pDesc->Gen.u4Type & 4))
2183 {
2184 pSelInfo->cbLimit = X86DESC_LIMIT_G(pDesc);
2185 pSelInfo->GCPtrBase = X86DESC_BASE(pDesc);
2186 pSelInfo->SelGate = 0;
2187 }
2188 else if (pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_UNDEFINED4)
2189 {
2190 pSelInfo->cbLimit = 0;
2191 if (pDesc->Gen.u4Type == X86_SEL_TYPE_SYS_TASK_GATE)
2192 pSelInfo->GCPtrBase = 0;
2193 else
2194 pSelInfo->GCPtrBase = pDesc->Gate.u16OffsetLow
2195 | (uint32_t)pDesc->Gate.u16OffsetHigh << 16;
2196 pSelInfo->SelGate = pDesc->Gate.u16Sel;
2197 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2198 }
2199 else
2200 {
2201 pSelInfo->cbLimit = 0;
2202 pSelInfo->GCPtrBase = 0;
2203 pSelInfo->SelGate = 0;
2204 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2205 }
2206 if (!pDesc->Gen.u1Present)
2207 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2208}
2209
2210
2211/**
2212 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
2213 *
2214 * See SELMR3GetSelectorInfo for details.
2215 *
2216 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
2217 *
2218 * @param pVM The cross context VM structure.
2219 * @param pVCpu The cross context virtual CPU structure.
2220 * @param Sel The selector to get info about.
2221 * @param pSelInfo Where to store the information.
2222 */
2223static int selmR3GetSelectorInfo32(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2224{
2225 /*
2226 * Read the descriptor entry
2227 */
2228 pSelInfo->fFlags = 0;
2229 X86DESC Desc;
2230 if ( !(Sel & X86_SEL_LDT)
2231 && ( pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_RPL_LDT)
2232 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_RPL_LDT)
2233 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_RPL_LDT)
2234 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_RPL_LDT)
2235 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_RPL_LDT))
2236 )
2237 {
2238 /*
2239 * Hypervisor descriptor.
2240 */
2241 pSelInfo->fFlags = DBGFSELINFO_FLAGS_HYPER;
2242 if (CPUMIsGuestInProtectedMode(pVCpu))
2243 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2244 else
2245 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2246
2247 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2248 }
2249 else if (CPUMIsGuestInProtectedMode(pVCpu))
2250 {
2251 /*
2252 * Read it from the guest descriptor table.
2253 */
2254 pSelInfo->fFlags = DBGFSELINFO_FLAGS_PROT_MODE;
2255
2256 RTGCPTR GCPtrDesc;
2257 if (!(Sel & X86_SEL_LDT))
2258 {
2259 /* GDT */
2260 VBOXGDTR Gdtr;
2261 CPUMGetGuestGDTR(pVCpu, &Gdtr);
2262 if ((Sel | X86_SEL_RPL_LDT) > Gdtr.cbGdt)
2263 return VERR_INVALID_SELECTOR;
2264 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2265 }
2266 else
2267 {
2268 /* LDT */
2269 uint64_t GCPtrBase;
2270 uint32_t cbLimit;
2271 CPUMGetGuestLdtrEx(pVCpu, &GCPtrBase, &cbLimit);
2272 if ((Sel | X86_SEL_RPL_LDT) > cbLimit)
2273 return VERR_INVALID_SELECTOR;
2274
2275 /* calc the descriptor location. */
2276 GCPtrDesc = GCPtrBase + (Sel & X86_SEL_MASK);
2277 }
2278
2279 /* read the descriptor. */
2280 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2281 if (RT_FAILURE(rc))
2282 return rc;
2283 }
2284 else
2285 {
2286 /*
2287 * We're in real mode.
2288 */
2289 pSelInfo->Sel = Sel;
2290 pSelInfo->GCPtrBase = Sel << 4;
2291 pSelInfo->cbLimit = 0xffff;
2292 pSelInfo->fFlags = DBGFSELINFO_FLAGS_REAL_MODE;
2293 pSelInfo->u.Raw64.au64[0] = 0;
2294 pSelInfo->u.Raw64.au64[1] = 0;
2295 pSelInfo->SelGate = 0;
2296 return VINF_SUCCESS;
2297 }
2298
2299 /*
2300 * Extract the base and limit or sel:offset for gates.
2301 */
2302 pSelInfo->Sel = Sel;
2303 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2304
2305 return VINF_SUCCESS;
2306}
2307
2308
2309/**
2310 * Gets information about a selector.
2311 *
2312 * Intended for the debugger mostly and will prefer the guest descriptor tables
2313 * over the shadow ones.
2314 *
2315 * @retval VINF_SUCCESS on success.
2316 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2317 * descriptor table.
2318 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2319 * is not returned if the selector itself isn't present, you have to
2320 * check that for yourself (see DBGFSELINFO::fFlags).
2321 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2322 * pagetable or page backing the selector table wasn't present.
2323 * @returns Other VBox status code on other errors.
2324 *
2325 * @param pVM The cross context VM structure.
2326 * @param pVCpu The cross context virtual CPU structure.
2327 * @param Sel The selector to get info about.
2328 * @param pSelInfo Where to store the information.
2329 */
2330VMMR3DECL(int) SELMR3GetSelectorInfo(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2331{
2332 AssertPtr(pSelInfo);
2333 if (CPUMIsGuestInLongMode(pVCpu))
2334 return selmR3GetSelectorInfo64(pVCpu, Sel, pSelInfo);
2335 return selmR3GetSelectorInfo32(pVM, pVCpu, Sel, pSelInfo);
2336}
2337
2338
2339/**
2340 * Gets information about a selector from the shadow tables.
2341 *
2342 * This is intended to be faster than the SELMR3GetSelectorInfo() method, but
2343 * requires that the caller ensures that the shadow tables are up to date.
2344 *
2345 * @retval VINF_SUCCESS on success.
2346 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2347 * descriptor table.
2348 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2349 * is not returned if the selector itself isn't present, you have to
2350 * check that for yourself (see DBGFSELINFO::fFlags).
2351 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2352 * pagetable or page backing the selector table wasn't present.
2353 * @returns Other VBox status code on other errors.
2354 *
2355 * @param pVM The cross context VM structure.
2356 * @param Sel The selector to get info about.
2357 * @param pSelInfo Where to store the information.
2358 *
2359 * @remarks Don't use this when in hardware assisted virtualization mode.
2360 */
2361VMMR3DECL(int) SELMR3GetShadowSelectorInfo(PVM pVM, RTSEL Sel, PDBGFSELINFO pSelInfo)
2362{
2363 Assert(pSelInfo);
2364
2365 /*
2366 * Read the descriptor entry
2367 */
2368 X86DESC Desc;
2369 if (!(Sel & X86_SEL_LDT))
2370 {
2371 /*
2372 * Global descriptor.
2373 */
2374 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2375 pSelInfo->fFlags = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_MASK_OFF_RPL)
2376 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_MASK_OFF_RPL)
2377 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_MASK_OFF_RPL)
2378 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_MASK_OFF_RPL)
2379 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_MASK_OFF_RPL)
2380 ? DBGFSELINFO_FLAGS_HYPER
2381 : 0;
2382 /** @todo check that the GDT offset is valid. */
2383 }
2384 else
2385 {
2386 /*
2387 * Local Descriptor.
2388 */
2389 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2390 Desc = paLDT[Sel >> X86_SEL_SHIFT];
2391 /** @todo check if the LDT page is actually available. */
2392 /** @todo check that the LDT offset is valid. */
2393 pSelInfo->fFlags = 0;
2394 }
2395 if (CPUMIsGuestInProtectedMode(VMMGetCpu0(pVM)))
2396 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2397 else
2398 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2399
2400 /*
2401 * Extract the base and limit or sel:offset for gates.
2402 */
2403 pSelInfo->Sel = Sel;
2404 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2405
2406 return VINF_SUCCESS;
2407}
2408
2409
2410/**
2411 * Formats a descriptor.
2412 *
2413 * @param Desc Descriptor to format.
2414 * @param Sel Selector number.
2415 * @param pszOutput Output buffer.
2416 * @param cchOutput Size of output buffer.
2417 */
2418static void selmR3FormatDescriptor(X86DESC Desc, RTSEL Sel, char *pszOutput, size_t cchOutput)
2419{
2420 /*
2421 * Make variable description string.
2422 */
2423 static struct
2424 {
2425 unsigned cch;
2426 const char *psz;
2427 } const aTypes[32] =
2428 {
2429#define STRENTRY(str) { sizeof(str) - 1, str }
2430 /* system */
2431 STRENTRY("Reserved0 "), /* 0x00 */
2432 STRENTRY("TSS16Avail "), /* 0x01 */
2433 STRENTRY("LDT "), /* 0x02 */
2434 STRENTRY("TSS16Busy "), /* 0x03 */
2435 STRENTRY("Call16 "), /* 0x04 */
2436 STRENTRY("Task "), /* 0x05 */
2437 STRENTRY("Int16 "), /* 0x06 */
2438 STRENTRY("Trap16 "), /* 0x07 */
2439 STRENTRY("Reserved8 "), /* 0x08 */
2440 STRENTRY("TSS32Avail "), /* 0x09 */
2441 STRENTRY("ReservedA "), /* 0x0a */
2442 STRENTRY("TSS32Busy "), /* 0x0b */
2443 STRENTRY("Call32 "), /* 0x0c */
2444 STRENTRY("ReservedD "), /* 0x0d */
2445 STRENTRY("Int32 "), /* 0x0e */
2446 STRENTRY("Trap32 "), /* 0x0f */
2447 /* non system */
2448 STRENTRY("DataRO "), /* 0x10 */
2449 STRENTRY("DataRO Accessed "), /* 0x11 */
2450 STRENTRY("DataRW "), /* 0x12 */
2451 STRENTRY("DataRW Accessed "), /* 0x13 */
2452 STRENTRY("DataDownRO "), /* 0x14 */
2453 STRENTRY("DataDownRO Accessed "), /* 0x15 */
2454 STRENTRY("DataDownRW "), /* 0x16 */
2455 STRENTRY("DataDownRW Accessed "), /* 0x17 */
2456 STRENTRY("CodeEO "), /* 0x18 */
2457 STRENTRY("CodeEO Accessed "), /* 0x19 */
2458 STRENTRY("CodeER "), /* 0x1a */
2459 STRENTRY("CodeER Accessed "), /* 0x1b */
2460 STRENTRY("CodeConfEO "), /* 0x1c */
2461 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
2462 STRENTRY("CodeConfER "), /* 0x1e */
2463 STRENTRY("CodeConfER Accessed ") /* 0x1f */
2464#undef SYSENTRY
2465 };
2466#define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
2467 char szMsg[128];
2468 char *psz = &szMsg[0];
2469 unsigned i = Desc.Gen.u1DescType << 4 | Desc.Gen.u4Type;
2470 memcpy(psz, aTypes[i].psz, aTypes[i].cch);
2471 psz += aTypes[i].cch;
2472
2473 if (Desc.Gen.u1Present)
2474 ADD_STR(psz, "Present ");
2475 else
2476 ADD_STR(psz, "Not-Present ");
2477 if (Desc.Gen.u1Granularity)
2478 ADD_STR(psz, "Page ");
2479 if (Desc.Gen.u1DefBig)
2480 ADD_STR(psz, "32-bit ");
2481 else
2482 ADD_STR(psz, "16-bit ");
2483#undef ADD_STR
2484 *psz = '\0';
2485
2486 /*
2487 * Limit and Base and format the output.
2488 */
2489 uint32_t u32Limit = X86DESC_LIMIT_G(&Desc);
2490 uint32_t u32Base = X86DESC_BASE(&Desc);
2491
2492 RTStrPrintf(pszOutput, cchOutput, "%04x - %08x %08x - base=%08x limit=%08x dpl=%d %s",
2493 Sel, Desc.au32[0], Desc.au32[1], u32Base, u32Limit, Desc.Gen.u2Dpl, szMsg);
2494}
2495
2496
2497/**
2498 * Dumps a descriptor.
2499 *
2500 * @param Desc Descriptor to dump.
2501 * @param Sel Selector number.
2502 * @param pszMsg Message to prepend the log entry with.
2503 */
2504VMMR3DECL(void) SELMR3DumpDescriptor(X86DESC Desc, RTSEL Sel, const char *pszMsg)
2505{
2506#ifdef LOG_ENABLED
2507 if (LogIsEnabled())
2508 {
2509 char szOutput[128];
2510 selmR3FormatDescriptor(Desc, Sel, &szOutput[0], sizeof(szOutput));
2511 Log(("%s: %s\n", pszMsg, szOutput));
2512 }
2513#else
2514 RT_NOREF3(Desc, Sel, pszMsg);
2515#endif
2516}
2517
2518
2519/**
2520 * Display the shadow gdt.
2521 *
2522 * @param pVM The cross context VM structure.
2523 * @param pHlp The info helpers.
2524 * @param pszArgs Arguments, ignored.
2525 */
2526static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2527{
2528 NOREF(pszArgs);
2529 pHlp->pfnPrintf(pHlp, "Shadow GDT (GCAddr=%RRv):\n", MMHyperR3ToRC(pVM, pVM->selm.s.paGdtR3));
2530 for (unsigned iGDT = 0; iGDT < SELM_GDT_ELEMENTS; iGDT++)
2531 {
2532 if (pVM->selm.s.paGdtR3[iGDT].Gen.u1Present)
2533 {
2534 char szOutput[128];
2535 selmR3FormatDescriptor(pVM->selm.s.paGdtR3[iGDT], iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2536 const char *psz = "";
2537 if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> X86_SEL_SHIFT))
2538 psz = " HyperCS";
2539 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> X86_SEL_SHIFT))
2540 psz = " HyperDS";
2541 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> X86_SEL_SHIFT))
2542 psz = " HyperCS64";
2543 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> X86_SEL_SHIFT))
2544 psz = " HyperTSS";
2545 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
2546 psz = " HyperTSSTrap08";
2547 pHlp->pfnPrintf(pHlp, "%s%s\n", szOutput, psz);
2548 }
2549 }
2550}
2551
2552
2553/**
2554 * Display the guest gdt.
2555 *
2556 * @param pVM The cross context VM structure.
2557 * @param pHlp The info helpers.
2558 * @param pszArgs Arguments, ignored.
2559 */
2560static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2561{
2562 /** @todo SMP support! */
2563 PVMCPU pVCpu = &pVM->aCpus[0];
2564
2565 VBOXGDTR GDTR;
2566 CPUMGetGuestGDTR(pVCpu, &GDTR);
2567 RTGCPTR GCPtrGDT = GDTR.pGdt;
2568 unsigned cGDTs = ((unsigned)GDTR.cbGdt + 1) / sizeof(X86DESC);
2569
2570 pHlp->pfnPrintf(pHlp, "Guest GDT (GCAddr=%RGv limit=%x):\n", GCPtrGDT, GDTR.cbGdt);
2571 for (unsigned iGDT = 0; iGDT < cGDTs; iGDT++, GCPtrGDT += sizeof(X86DESC))
2572 {
2573 X86DESC GDTE;
2574 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTE, GCPtrGDT, sizeof(GDTE));
2575 if (RT_SUCCESS(rc))
2576 {
2577 if (GDTE.Gen.u1Present)
2578 {
2579 char szOutput[128];
2580 selmR3FormatDescriptor(GDTE, iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2581 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2582 }
2583 }
2584 else if (rc == VERR_PAGE_NOT_PRESENT)
2585 {
2586 if ((GCPtrGDT & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2587 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", iGDT << X86_SEL_SHIFT, GCPtrGDT);
2588 }
2589 else
2590 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", iGDT << X86_SEL_SHIFT, rc, GCPtrGDT);
2591 }
2592 NOREF(pszArgs);
2593}
2594
2595
2596/**
2597 * Display the shadow ldt.
2598 *
2599 * @param pVM The cross context VM structure.
2600 * @param pHlp The info helpers.
2601 * @param pszArgs Arguments, ignored.
2602 */
2603static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2604{
2605 unsigned cLDTs = ((unsigned)pVM->selm.s.cbLdtLimit + 1) >> X86_SEL_SHIFT;
2606 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2607 pHlp->pfnPrintf(pHlp, "Shadow LDT (GCAddr=%RRv limit=%#x):\n", pVM->selm.s.pvLdtRC + pVM->selm.s.offLdtHyper, pVM->selm.s.cbLdtLimit);
2608 for (unsigned iLDT = 0; iLDT < cLDTs; iLDT++)
2609 {
2610 if (paLDT[iLDT].Gen.u1Present)
2611 {
2612 char szOutput[128];
2613 selmR3FormatDescriptor(paLDT[iLDT], (iLDT << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2614 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2615 }
2616 }
2617 NOREF(pszArgs);
2618}
2619
2620
2621/**
2622 * Display the guest ldt.
2623 *
2624 * @param pVM The cross context VM structure.
2625 * @param pHlp The info helpers.
2626 * @param pszArgs Arguments, ignored.
2627 */
2628static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2629{
2630 /** @todo SMP support! */
2631 PVMCPU pVCpu = &pVM->aCpus[0];
2632
2633 uint64_t GCPtrLdt;
2634 uint32_t cbLdt;
2635 RTSEL SelLdt = CPUMGetGuestLdtrEx(pVCpu, &GCPtrLdt, &cbLdt);
2636 if (!(SelLdt & X86_SEL_MASK_OFF_RPL))
2637 {
2638 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x): Null-Selector\n", SelLdt);
2639 return;
2640 }
2641
2642 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x GCAddr=%RX64 limit=%x):\n", SelLdt, GCPtrLdt, cbLdt);
2643 unsigned cLdts = (cbLdt + 1) >> X86_SEL_SHIFT;
2644 for (unsigned iLdt = 0; iLdt < cLdts; iLdt++, GCPtrLdt += sizeof(X86DESC))
2645 {
2646 X86DESC LdtE;
2647 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &LdtE, GCPtrLdt, sizeof(LdtE));
2648 if (RT_SUCCESS(rc))
2649 {
2650 if (LdtE.Gen.u1Present)
2651 {
2652 char szOutput[128];
2653 selmR3FormatDescriptor(LdtE, (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2654 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2655 }
2656 }
2657 else if (rc == VERR_PAGE_NOT_PRESENT)
2658 {
2659 if ((GCPtrLdt & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2660 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, GCPtrLdt);
2661 }
2662 else
2663 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, rc, GCPtrLdt);
2664 }
2665 NOREF(pszArgs);
2666}
2667
2668
2669/**
2670 * Dumps the hypervisor GDT
2671 *
2672 * @param pVM The cross context VM structure.
2673 */
2674VMMR3DECL(void) SELMR3DumpHyperGDT(PVM pVM)
2675{
2676 DBGFR3Info(pVM->pUVM, "gdt", NULL, NULL);
2677}
2678
2679
2680/**
2681 * Dumps the hypervisor LDT
2682 *
2683 * @param pVM The cross context VM structure.
2684 */
2685VMMR3DECL(void) SELMR3DumpHyperLDT(PVM pVM)
2686{
2687 DBGFR3Info(pVM->pUVM, "ldt", NULL, NULL);
2688}
2689
2690
2691/**
2692 * Dumps the guest GDT
2693 *
2694 * @param pVM The cross context VM structure.
2695 */
2696VMMR3DECL(void) SELMR3DumpGuestGDT(PVM pVM)
2697{
2698 DBGFR3Info(pVM->pUVM, "gdtguest", NULL, NULL);
2699}
2700
2701
2702/**
2703 * Dumps the guest LDT
2704 *
2705 * @param pVM The cross context VM structure.
2706 */
2707VMMR3DECL(void) SELMR3DumpGuestLDT(PVM pVM)
2708{
2709 DBGFR3Info(pVM->pUVM, "ldtguest", NULL, NULL);
2710}
2711
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette