VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/SELM.cpp@ 47682

Last change on this file since 47682 was 46420, checked in by vboxsync, 12 years ago

VMM, recompiler: Purge deprecated macros.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 106.8 KB
Line 
1/* $Id: SELM.cpp 46420 2013-06-06 16:27:25Z vboxsync $ */
2/** @file
3 * SELM - The Selector Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_selm SELM - The Selector Manager
19 *
20 * SELM takes care of GDT, LDT and TSS shadowing in raw-mode, and the injection
21 * of a few hyper selector for the raw-mode context. In the hardware assisted
22 * virtualization mode its only task is to decode entries in the guest GDT or
23 * LDT once in a while.
24 *
25 * @see grp_selm
26 *
27 *
28 * @section seg_selm_shadowing Shadowing
29 *
30 * SELMR3UpdateFromCPUM() and SELMR3SyncTSS() does the bulk synchronization
31 * work. The three structures (GDT, LDT, TSS) are all shadowed wholesale atm.
32 * The idea is to do it in a more on-demand fashion when we get time. There
33 * also a whole bunch of issues with the current synchronization of all three
34 * tables, see notes and todos in the code.
35 *
36 * When the guest makes changes to the GDT we will try update the shadow copy
37 * without involving SELMR3UpdateFromCPUM(), see selmGCSyncGDTEntry().
38 *
39 * When the guest make LDT changes we'll trigger a full resync of the LDT
40 * (SELMR3UpdateFromCPUM()), which, needless to say, isn't optimal.
41 *
42 * The TSS shadowing is limited to the fields we need to care about, namely SS0
43 * and ESP0. The Patch Manager makes use of these. We monitor updates to the
44 * guest TSS and will try keep our SS0 and ESP0 copies up to date this way
45 * rather than go the SELMR3SyncTSS() route.
46 *
47 * When in raw-mode SELM also injects a few extra GDT selectors which are used
48 * by the raw-mode (hyper) context. These start their life at the high end of
49 * the table and will be relocated when the guest tries to make use of them...
50 * Well, that was that idea at least, only the code isn't quite there yet which
51 * is why we have trouble with guests which actually have a full sized GDT.
52 *
53 * So, the summary of the current GDT, LDT and TSS shadowing is that there is a
54 * lot of relatively simple and enjoyable work to be done, see @bugref{3267}.
55 *
56 */
57
58/*******************************************************************************
59* Header Files *
60*******************************************************************************/
61#define LOG_GROUP LOG_GROUP_SELM
62#include <VBox/vmm/selm.h>
63#include <VBox/vmm/cpum.h>
64#include <VBox/vmm/stam.h>
65#include <VBox/vmm/em.h>
66#include <VBox/vmm/hm.h>
67#include <VBox/vmm/mm.h>
68#include <VBox/vmm/ssm.h>
69#include <VBox/vmm/pgm.h>
70#include <VBox/vmm/trpm.h>
71#include <VBox/vmm/dbgf.h>
72#include "SELMInternal.h"
73#include <VBox/vmm/vm.h>
74#include <VBox/err.h>
75#include <VBox/param.h>
76
77#include <iprt/assert.h>
78#include <VBox/log.h>
79#include <iprt/asm.h>
80#include <iprt/string.h>
81#include <iprt/thread.h>
82#include <iprt/string.h>
83
84#include "SELMInline.h"
85
86
87/** SELM saved state version. */
88#define SELM_SAVED_STATE_VERSION 5
89
90
91/*******************************************************************************
92* Internal Functions *
93*******************************************************************************/
94static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM);
95static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
96static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
97static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
98static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
99static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
100static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
101static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
102static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
103static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
104//static DECLCALLBACK(void) selmR3InfoTss(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
105//static DECLCALLBACK(void) selmR3InfoTssGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
106
107
108/*******************************************************************************
109* Global Variables *
110*******************************************************************************/
111#ifdef LOG_ENABLED
112/** Segment register names. */
113static char const g_aszSRegNms[X86_SREG_COUNT][4] = { "ES", "CS", "SS", "DS", "FS", "GS" };
114#endif
115
116
117/**
118 * Initializes the SELM.
119 *
120 * @returns VBox status code.
121 * @param pVM Pointer to the VM.
122 */
123VMMR3DECL(int) SELMR3Init(PVM pVM)
124{
125 int rc;
126 LogFlow(("SELMR3Init\n"));
127
128 /*
129 * Assert alignment and sizes.
130 * (The TSS block requires contiguous back.)
131 */
132 AssertCompile(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding)); AssertRelease(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding));
133 AssertCompileMemberAlignment(VM, selm.s, 32); AssertRelease(!(RT_OFFSETOF(VM, selm.s) & 31));
134#if 0 /* doesn't work */
135 AssertCompile((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
136 AssertCompile((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
137#endif
138 AssertRelease((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
139 AssertRelease((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
140 AssertRelease(sizeof(pVM->selm.s.Tss.IntRedirBitmap) == 0x20);
141
142 /*
143 * Init the structure.
144 */
145 pVM->selm.s.offVM = RT_OFFSETOF(VM, selm);
146 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = (SELM_GDT_ELEMENTS - 0x1) << 3;
147 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = (SELM_GDT_ELEMENTS - 0x2) << 3;
148 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = (SELM_GDT_ELEMENTS - 0x3) << 3;
149 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = (SELM_GDT_ELEMENTS - 0x4) << 3;
150 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = (SELM_GDT_ELEMENTS - 0x5) << 3;
151
152 if (HMIsRawModeCtxNeeded(pVM))
153 {
154 /*
155 * Allocate GDT table.
156 */
157 rc = MMR3HyperAllocOnceNoRel(pVM, sizeof(pVM->selm.s.paGdtR3[0]) * SELM_GDT_ELEMENTS,
158 PAGE_SIZE, MM_TAG_SELM, (void **)&pVM->selm.s.paGdtR3);
159 AssertRCReturn(rc, rc);
160
161 /*
162 * Allocate LDT area.
163 */
164 rc = MMR3HyperAllocOnceNoRel(pVM, _64K + PAGE_SIZE, PAGE_SIZE, MM_TAG_SELM, &pVM->selm.s.pvLdtR3);
165 AssertRCReturn(rc, rc);
166 }
167
168 /*
169 * Init Guest's and Shadow GDT, LDT, TSS changes control variables.
170 */
171 pVM->selm.s.cbEffGuestGdtLimit = 0;
172 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
173 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
174 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
175
176 pVM->selm.s.paGdtRC = NIL_RTRCPTR; /* Must be set in SELMR3Relocate because of monitoring. */
177 pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
178 pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
179 pVM->selm.s.GCSelTss = RTSEL_MAX;
180
181 pVM->selm.s.fSyncTSSRing0Stack = false;
182
183 /* The I/O bitmap starts right after the virtual interrupt redirection
184 bitmap. Outside the TSS on purpose; the CPU will not check it for
185 I/O operations. */
186 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
187 /* bit set to 1 means no redirection */
188 memset(pVM->selm.s.Tss.IntRedirBitmap, 0xff, sizeof(pVM->selm.s.Tss.IntRedirBitmap));
189
190 /*
191 * Register the saved state data unit.
192 */
193 rc = SSMR3RegisterInternal(pVM, "selm", 1, SELM_SAVED_STATE_VERSION, sizeof(SELM),
194 NULL, NULL, NULL,
195 NULL, selmR3Save, NULL,
196 NULL, selmR3Load, selmR3LoadDone);
197 if (RT_FAILURE(rc))
198 return rc;
199
200 /*
201 * Statistics.
202 */
203 if (!HMIsEnabled(pVM))
204 {
205 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest GDT.");
206 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest GDT.");
207 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestLDT, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/LDT", STAMUNIT_OCCURENCES, "The number of writes to the Guest LDT was detected.");
208 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS.");
209 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSRedir, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSRedir",STAMUNIT_OCCURENCES, "The number of handled redir bitmap writes to the Guest TSS.");
210 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandledChanged,STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSIntChg", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS where the R0 stack changed.");
211 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest TSS.");
212 STAM_REG(pVM, &pVM->selm.s.StatTSSSync, STAMTYPE_PROFILE, "/PROF/SELM/TSSSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3SyncTSS() body.");
213 STAM_REG(pVM, &pVM->selm.s.StatUpdateFromCPUM, STAMTYPE_PROFILE, "/PROF/SELM/UpdateFromCPUM", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3UpdateFromCPUM() body.");
214
215 STAM_REL_REG(pVM, &pVM->selm.s.StatHyperSelsChanged, STAMTYPE_COUNTER, "/SELM/HyperSels/Changed", STAMUNIT_OCCURENCES, "The number of times we had to relocate our hypervisor selectors.");
216 STAM_REL_REG(pVM, &pVM->selm.s.StatScanForHyperSels, STAMTYPE_COUNTER, "/SELM/HyperSels/Scan", STAMUNIT_OCCURENCES, "The number of times we had find free hypervisor selectors.");
217
218 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleES", STAMUNIT_OCCURENCES, "Stale ES was detected in UpdateFromCPUM.");
219 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleCS", STAMUNIT_OCCURENCES, "Stale CS was detected in UpdateFromCPUM.");
220 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleSS", STAMUNIT_OCCURENCES, "Stale SS was detected in UpdateFromCPUM.");
221 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleDS", STAMUNIT_OCCURENCES, "Stale DS was detected in UpdateFromCPUM.");
222 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleFS", STAMUNIT_OCCURENCES, "Stale FS was detected in UpdateFromCPUM.");
223 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleGS", STAMUNIT_OCCURENCES, "Stale GS was detected in UpdateFromCPUM.");
224
225 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleES", STAMUNIT_OCCURENCES, "Already stale ES in UpdateFromCPUM.");
226 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleCS", STAMUNIT_OCCURENCES, "Already stale CS in UpdateFromCPUM.");
227 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleSS", STAMUNIT_OCCURENCES, "Already stale SS in UpdateFromCPUM.");
228 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleDS", STAMUNIT_OCCURENCES, "Already stale DS in UpdateFromCPUM.");
229 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleFS", STAMUNIT_OCCURENCES, "Already stale FS in UpdateFromCPUM.");
230 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleGS", STAMUNIT_OCCURENCES, "Already stale GS in UpdateFromCPUM.");
231
232 STAM_REL_REG(pVM, &pVM->selm.s.StatStaleToUnstaleSReg, STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/StaleToUnstale", STAMUNIT_OCCURENCES, "Transitions from stale to unstale UpdateFromCPUM.");
233
234 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedES", STAMUNIT_OCCURENCES, "Updated hidden ES values in UpdateFromCPUM.");
235 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedCS", STAMUNIT_OCCURENCES, "Updated hidden CS values in UpdateFromCPUM.");
236 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedSS", STAMUNIT_OCCURENCES, "Updated hidden SS values in UpdateFromCPUM.");
237 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedDS", STAMUNIT_OCCURENCES, "Updated hidden DS values in UpdateFromCPUM.");
238 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedFS", STAMUNIT_OCCURENCES, "Updated hidden FS values in UpdateFromCPUM.");
239 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedGS", STAMUNIT_OCCURENCES, "Updated hidden GS values in UpdateFromCPUM.");
240 }
241
242 STAM_REG( pVM, &pVM->selm.s.StatLoadHidSelGst, STAMTYPE_COUNTER, "/SELM/LoadHidSel/LoadedGuest", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Loaded from guest tables.");
243 STAM_REG( pVM, &pVM->selm.s.StatLoadHidSelShw, STAMTYPE_COUNTER, "/SELM/LoadHidSel/LoadedShadow", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Loaded from shadow tables.");
244 STAM_REL_REG(pVM, &pVM->selm.s.StatLoadHidSelReadErrors, STAMTYPE_COUNTER, "/SELM/LoadHidSel/GstReadErrors", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Guest table read errors.");
245 STAM_REL_REG(pVM, &pVM->selm.s.StatLoadHidSelGstNoGood, STAMTYPE_COUNTER, "/SELM/LoadHidSel/NoGoodGuest", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: No good guest table entry.");
246
247#ifdef VBOX_WITH_RAW_MODE
248 /*
249 * Default action when entering raw mode for the first time
250 */
251 if (!HMIsEnabled(pVM))
252 {
253 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
254 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
255 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
256 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
257 }
258#endif
259
260 /*
261 * Register info handlers.
262 */
263 if (HMIsRawModeCtxNeeded(pVM))
264 {
265 DBGFR3InfoRegisterInternal(pVM, "gdt", "Displays the shadow GDT. No arguments.", &selmR3InfoGdt);
266 DBGFR3InfoRegisterInternal(pVM, "ldt", "Displays the shadow LDT. No arguments.", &selmR3InfoLdt);
267 //DBGFR3InfoRegisterInternal(pVM, "tss", "Displays the shadow TSS. No arguments.", &selmR3InfoTss);
268 }
269 DBGFR3InfoRegisterInternal(pVM, "gdtguest", "Displays the guest GDT. No arguments.", &selmR3InfoGdtGuest);
270 DBGFR3InfoRegisterInternal(pVM, "ldtguest", "Displays the guest LDT. No arguments.", &selmR3InfoLdtGuest);
271 //DBGFR3InfoRegisterInternal(pVM, "tssguest", "Displays the guest TSS. No arguments.", &selmR3InfoTssGuest);
272
273 return rc;
274}
275
276
277/**
278 * Finalizes HMA page attributes.
279 *
280 * @returns VBox status code.
281 * @param pVM Pointer to the VM.
282 */
283VMMR3DECL(int) SELMR3InitFinalize(PVM pVM)
284{
285#ifdef VBOX_WITH_RAW_MODE
286 /** @cfgm{/DoubleFault,bool,false}
287 * Enables catching of double faults in the raw-mode context VMM code. This can
288 * be used when the triple faults or hangs occur and one suspect an unhandled
289 * double fault. This is not enabled by default because it means making the
290 * hyper selectors writeable for all supervisor code, including the guest's.
291 * The double fault is a task switch and thus requires write access to the GDT
292 * of the TSS (to set it busy), to the old TSS (to store state), and to the Trap
293 * 8 TSS for the back link.
294 */
295 bool f;
296# if defined(DEBUG_bird)
297 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, true);
298# else
299 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, false);
300# endif
301 AssertLogRelRCReturn(rc, rc);
302 if (f && HMIsRawModeCtxNeeded(pVM))
303 {
304 PX86DESC paGdt = pVM->selm.s.paGdtR3;
305 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3]), sizeof(paGdt[0]),
306 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
307 AssertRC(rc);
308 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3]), sizeof(paGdt[0]),
309 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
310 AssertRC(rc);
311 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]),
312 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
313 AssertRC(rc);
314 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]),
315 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
316 AssertRC(rc);
317 }
318#endif /* VBOX_WITH_RAW_MODE */
319 return VINF_SUCCESS;
320}
321
322
323/**
324 * Setup the hypervisor GDT selectors in our shadow table
325 *
326 * @param pVM Pointer to the VM.
327 */
328static void selmR3SetupHyperGDTSelectors(PVM pVM)
329{
330 PX86DESC paGdt = pVM->selm.s.paGdtR3;
331
332 /*
333 * Set up global code and data descriptors for use in the guest context.
334 * Both are wide open (base 0, limit 4GB)
335 */
336 PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> 3];
337 pDesc->Gen.u16LimitLow = 0xffff;
338 pDesc->Gen.u4LimitHigh = 0xf;
339 pDesc->Gen.u16BaseLow = 0;
340 pDesc->Gen.u8BaseHigh1 = 0;
341 pDesc->Gen.u8BaseHigh2 = 0;
342 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
343 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
344 pDesc->Gen.u2Dpl = 0; /* supervisor */
345 pDesc->Gen.u1Present = 1;
346 pDesc->Gen.u1Available = 0;
347 pDesc->Gen.u1Long = 0;
348 pDesc->Gen.u1DefBig = 1; /* def 32 bit */
349 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
350
351 /* data */
352 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> 3];
353 pDesc->Gen.u16LimitLow = 0xffff;
354 pDesc->Gen.u4LimitHigh = 0xf;
355 pDesc->Gen.u16BaseLow = 0;
356 pDesc->Gen.u8BaseHigh1 = 0;
357 pDesc->Gen.u8BaseHigh2 = 0;
358 pDesc->Gen.u4Type = X86_SEL_TYPE_RW_ACC;
359 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
360 pDesc->Gen.u2Dpl = 0; /* supervisor */
361 pDesc->Gen.u1Present = 1;
362 pDesc->Gen.u1Available = 0;
363 pDesc->Gen.u1Long = 0;
364 pDesc->Gen.u1DefBig = 1; /* big */
365 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
366
367 /* 64-bit mode code (& data?) */
368 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> 3];
369 pDesc->Gen.u16LimitLow = 0xffff;
370 pDesc->Gen.u4LimitHigh = 0xf;
371 pDesc->Gen.u16BaseLow = 0;
372 pDesc->Gen.u8BaseHigh1 = 0;
373 pDesc->Gen.u8BaseHigh2 = 0;
374 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
375 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
376 pDesc->Gen.u2Dpl = 0; /* supervisor */
377 pDesc->Gen.u1Present = 1;
378 pDesc->Gen.u1Available = 0;
379 pDesc->Gen.u1Long = 1; /* The Long (L) attribute bit. */
380 pDesc->Gen.u1DefBig = 0; /* With L=1 this must be 0. */
381 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
382
383 /*
384 * TSS descriptor
385 */
386 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
387 RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
388 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
389 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
390 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
391 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
392 pDesc->Gen.u4LimitHigh = 0;
393 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
394 pDesc->Gen.u1DescType = 0; /* system */
395 pDesc->Gen.u2Dpl = 0; /* supervisor */
396 pDesc->Gen.u1Present = 1;
397 pDesc->Gen.u1Available = 0;
398 pDesc->Gen.u1Long = 0;
399 pDesc->Gen.u1DefBig = 0;
400 pDesc->Gen.u1Granularity = 0; /* byte limit */
401
402 /*
403 * TSS descriptor for trap 08
404 */
405 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3];
406 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
407 pDesc->Gen.u4LimitHigh = 0;
408 RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.TssTrap08);
409 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
410 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
411 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
412 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
413 pDesc->Gen.u1DescType = 0; /* system */
414 pDesc->Gen.u2Dpl = 0; /* supervisor */
415 pDesc->Gen.u1Present = 1;
416 pDesc->Gen.u1Available = 0;
417 pDesc->Gen.u1Long = 0;
418 pDesc->Gen.u1DefBig = 0;
419 pDesc->Gen.u1Granularity = 0; /* byte limit */
420}
421
422/**
423 * Applies relocations to data and code managed by this
424 * component. This function will be called at init and
425 * whenever the VMM need to relocate it self inside the GC.
426 *
427 * @param pVM The VM.
428 */
429VMMR3DECL(void) SELMR3Relocate(PVM pVM)
430{
431 PX86DESC paGdt = pVM->selm.s.paGdtR3;
432 LogFlow(("SELMR3Relocate\n"));
433
434 if (HMIsRawModeCtxNeeded(pVM))
435 {
436 for (VMCPUID i = 0; i < pVM->cCpus; i++)
437 {
438 PVMCPU pVCpu = &pVM->aCpus[i];
439
440 /*
441 * Update GDTR and selector.
442 */
443 CPUMSetHyperGDTR(pVCpu, MMHyperR3ToRC(pVM, paGdt), SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1);
444
445 /** @todo selector relocations should be a separate operation? */
446 CPUMSetHyperCS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]);
447 CPUMSetHyperDS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
448 CPUMSetHyperES(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
449 CPUMSetHyperSS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
450 CPUMSetHyperTR(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]);
451 }
452
453 selmR3SetupHyperGDTSelectors(pVM);
454
455/** @todo SELM must be called when any of the CR3s changes during a cpu mode change. */
456/** @todo PGM knows the proper CR3 values these days, not CPUM. */
457 /*
458 * Update the TSSes.
459 */
460 /* Only applies to raw mode which supports only 1 VCPU */
461 PVMCPU pVCpu = &pVM->aCpus[0];
462
463 /* Current TSS */
464 pVM->selm.s.Tss.cr3 = PGMGetHyperCR3(pVCpu);
465 pVM->selm.s.Tss.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
466 pVM->selm.s.Tss.esp0 = VMMGetStackRC(pVCpu);
467 pVM->selm.s.Tss.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
468 pVM->selm.s.Tss.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
469 pVM->selm.s.Tss.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
470 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
471
472 /* trap 08 */
473 pVM->selm.s.TssTrap08.cr3 = PGMGetInterRCCR3(pVM, pVCpu); /* this should give use better survival chances. */
474 pVM->selm.s.TssTrap08.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
475 pVM->selm.s.TssTrap08.ss = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
476 pVM->selm.s.TssTrap08.esp0 = VMMGetStackRC(pVCpu) - PAGE_SIZE / 2; /* upper half can be analysed this way. */
477 pVM->selm.s.TssTrap08.esp = pVM->selm.s.TssTrap08.esp0;
478 pVM->selm.s.TssTrap08.ebp = pVM->selm.s.TssTrap08.esp0;
479 pVM->selm.s.TssTrap08.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
480 pVM->selm.s.TssTrap08.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
481 pVM->selm.s.TssTrap08.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
482 pVM->selm.s.TssTrap08.fs = 0;
483 pVM->selm.s.TssTrap08.gs = 0;
484 pVM->selm.s.TssTrap08.selLdt = 0;
485 pVM->selm.s.TssTrap08.eflags = 0x2; /* all cleared */
486 pVM->selm.s.TssTrap08.ecx = VM_RC_ADDR(pVM, &pVM->selm.s.Tss); /* setup ecx to normal Hypervisor TSS address. */
487 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.ecx;
488 pVM->selm.s.TssTrap08.eax = pVM->selm.s.TssTrap08.ecx;
489 pVM->selm.s.TssTrap08.edx = VM_RC_ADDR(pVM, pVM); /* setup edx VM address. */
490 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.edx;
491 pVM->selm.s.TssTrap08.ebx = pVM->selm.s.TssTrap08.edx;
492 pVM->selm.s.TssTrap08.offIoBitmap = sizeof(VBOXTSS);
493 /* TRPM will be updating the eip */
494 }
495
496 if (!HMIsEnabled(pVM))
497 {
498 /*
499 * Update shadow GDT/LDT/TSS write access handlers.
500 */
501 int rc; NOREF(rc);
502#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
503 if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
504 {
505 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.paGdtRC);
506 AssertRC(rc);
507 }
508 pVM->selm.s.paGdtRC = MMHyperR3ToRC(pVM, paGdt);
509 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.paGdtRC,
510 pVM->selm.s.paGdtRC + SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1,
511 0, 0, "selmRCShadowGDTWriteHandler", 0, "Shadow GDT write access handler");
512 AssertRC(rc);
513#endif
514#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
515 if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
516 {
517 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvMonShwTssRC);
518 AssertRC(rc);
519 }
520 pVM->selm.s.pvMonShwTssRC = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
521 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvMonShwTssRC,
522 pVM->selm.s.pvMonShwTssRC + sizeof(pVM->selm.s.Tss) - 1,
523 0, 0, "selmRCShadowTSSWriteHandler", 0, "Shadow TSS write access handler");
524 AssertRC(rc);
525#endif
526
527 /*
528 * Update the GC LDT region handler and address.
529 */
530#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
531 if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
532 {
533 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvLdtRC);
534 AssertRC(rc);
535 }
536#endif
537 pVM->selm.s.pvLdtRC = MMHyperR3ToRC(pVM, pVM->selm.s.pvLdtR3);
538#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
539 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvLdtRC,
540 pVM->selm.s.pvLdtRC + _64K + PAGE_SIZE - 1,
541 0, 0, "selmRCShadowLDTWriteHandler", 0, "Shadow LDT write access handler");
542 AssertRC(rc);
543#endif
544 }
545}
546
547
548/**
549 * Terminates the SELM.
550 *
551 * Termination means cleaning up and freeing all resources,
552 * the VM it self is at this point powered off or suspended.
553 *
554 * @returns VBox status code.
555 * @param pVM Pointer to the VM.
556 */
557VMMR3DECL(int) SELMR3Term(PVM pVM)
558{
559 NOREF(pVM);
560 return VINF_SUCCESS;
561}
562
563
564/**
565 * The VM is being reset.
566 *
567 * For the SELM component this means that any GDT/LDT/TSS monitors
568 * needs to be removed.
569 *
570 * @param pVM Pointer to the VM.
571 */
572VMMR3DECL(void) SELMR3Reset(PVM pVM)
573{
574 LogFlow(("SELMR3Reset:\n"));
575 VM_ASSERT_EMT(pVM);
576
577 /*
578 * Uninstall guest GDT/LDT/TSS write access handlers.
579 */
580 int rc = VINF_SUCCESS;
581 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
582 {
583#ifdef SELM_TRACK_GUEST_GDT_CHANGES
584 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
585 AssertRC(rc);
586#endif
587 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
588 pVM->selm.s.GuestGdtr.cbGdt = 0;
589 }
590 pVM->selm.s.fGDTRangeRegistered = false;
591 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
592 {
593#ifdef SELM_TRACK_GUEST_LDT_CHANGES
594 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
595 AssertRC(rc);
596#endif
597 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
598 }
599 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
600 {
601#ifdef SELM_TRACK_GUEST_TSS_CHANGES
602 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
603 AssertRC(rc);
604#endif
605 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
606 pVM->selm.s.GCSelTss = RTSEL_MAX;
607 }
608
609 /*
610 * Re-initialize other members.
611 */
612 pVM->selm.s.cbLdtLimit = 0;
613 pVM->selm.s.offLdtHyper = 0;
614 pVM->selm.s.cbMonitoredGuestTss = 0;
615
616 pVM->selm.s.fSyncTSSRing0Stack = false;
617
618#ifdef VBOX_WITH_RAW_MODE
619 if (!HMIsEnabled(pVM))
620 {
621 /*
622 * Default action when entering raw mode for the first time
623 */
624 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
625 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
626 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
627 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
628 }
629#endif
630}
631
632
633/**
634 * Execute state save operation.
635 *
636 * @returns VBox status code.
637 * @param pVM Pointer to the VM.
638 * @param pSSM SSM operation handle.
639 */
640static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM)
641{
642 LogFlow(("selmR3Save:\n"));
643
644 /*
645 * Save the basic bits - fortunately all the other things can be resynced on load.
646 */
647 PSELM pSelm = &pVM->selm.s;
648
649 SSMR3PutBool(pSSM, HMIsEnabled(pVM));
650 SSMR3PutBool(pSSM, pSelm->fSyncTSSRing0Stack);
651 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS]);
652 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_DS]);
653 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]);
654 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]); /* reserved for DS64. */
655 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS]);
656 return SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]);
657}
658
659
660/**
661 * Execute state load operation.
662 *
663 * @returns VBox status code.
664 * @param pVM Pointer to the VM.
665 * @param pSSM SSM operation handle.
666 * @param uVersion Data layout version.
667 * @param uPass The data pass.
668 */
669static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
670{
671 LogFlow(("selmR3Load:\n"));
672 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
673
674 /*
675 * Validate version.
676 */
677 if (uVersion != SELM_SAVED_STATE_VERSION)
678 {
679 AssertMsgFailed(("selmR3Load: Invalid version uVersion=%d!\n", uVersion));
680 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
681 }
682
683 /*
684 * Do a reset.
685 */
686 SELMR3Reset(pVM);
687
688 /* Get the monitoring flag. */
689 bool fIgnored;
690 SSMR3GetBool(pSSM, &fIgnored);
691
692 /* Get the TSS state flag. */
693 SSMR3GetBool(pSSM, &pVM->selm.s.fSyncTSSRing0Stack);
694
695 /*
696 * Get the selectors.
697 */
698 RTSEL SelCS;
699 SSMR3GetSel(pSSM, &SelCS);
700 RTSEL SelDS;
701 SSMR3GetSel(pSSM, &SelDS);
702 RTSEL SelCS64;
703 SSMR3GetSel(pSSM, &SelCS64);
704 RTSEL SelDS64;
705 SSMR3GetSel(pSSM, &SelDS64);
706 RTSEL SelTSS;
707 SSMR3GetSel(pSSM, &SelTSS);
708 RTSEL SelTSSTrap08;
709 SSMR3GetSel(pSSM, &SelTSSTrap08);
710
711 /* Copy the selectors; they will be checked during relocation. */
712 PSELM pSelm = &pVM->selm.s;
713 pSelm->aHyperSel[SELM_HYPER_SEL_CS] = SelCS;
714 pSelm->aHyperSel[SELM_HYPER_SEL_DS] = SelDS;
715 pSelm->aHyperSel[SELM_HYPER_SEL_CS64] = SelCS64;
716 pSelm->aHyperSel[SELM_HYPER_SEL_TSS] = SelTSS;
717 pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SelTSSTrap08;
718
719 return VINF_SUCCESS;
720}
721
722
723/**
724 * Sync the GDT, LDT and TSS after loading the state.
725 *
726 * Just to play save, we set the FFs to force syncing before
727 * executing GC code.
728 *
729 * @returns VBox status code.
730 * @param pVM Pointer to the VM.
731 * @param pSSM SSM operation handle.
732 */
733static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
734{
735#ifdef VBOX_WITH_RAW_MODE
736 if (!HMIsEnabled(pVM))
737 {
738 PVMCPU pVCpu = VMMGetCpu(pVM);
739
740 LogFlow(("selmR3LoadDone:\n"));
741
742 /*
743 * Don't do anything if it's a load failure.
744 */
745 int rc = SSMR3HandleGetStatus(pSSM);
746 if (RT_FAILURE(rc))
747 return VINF_SUCCESS;
748
749 /*
750 * Do the syncing if we're in protected mode and using raw-mode.
751 */
752 if (PGMGetGuestMode(pVCpu) != PGMMODE_REAL)
753 {
754 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
755 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
756 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
757 SELMR3UpdateFromCPUM(pVM, pVCpu);
758 }
759
760 /*
761 * Flag everything for resync on next raw mode entry.
762 */
763 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
764 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
765 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
766 }
767#endif /*VBOX_WITH_RAW_MODE*/
768 return VINF_SUCCESS;
769}
770
771#ifdef VBOX_WITH_RAW_MODE
772
773/**
774 * Updates (syncs) the shadow GDT.
775 *
776 * @returns VBox status code.
777 * @param pVM The VM handle.
778 * @param pVCpu The current virtual CPU.
779 */
780static int selmR3UpdateShadowGdt(PVM pVM, PVMCPU pVCpu)
781{
782 Assert(!HMIsEnabled(pVM));
783
784 /*
785 * Always assume the best...
786 */
787 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
788
789 /* If the GDT was changed, then make sure the LDT is checked too */
790 /** @todo only do this if the actual ldtr selector was changed; this is a bit excessive */
791 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
792 /* Same goes for the TSS selector */
793 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
794
795 /*
796 * Get the GDTR and check if there is anything to do (there usually is).
797 */
798 VBOXGDTR GDTR;
799 CPUMGetGuestGDTR(pVCpu, &GDTR);
800 if (GDTR.cbGdt < sizeof(X86DESC))
801 {
802 Log(("No GDT entries...\n"));
803 return VINF_SUCCESS;
804 }
805
806 /*
807 * Read the Guest GDT.
808 * ASSUMES that the entire GDT is in memory.
809 */
810 RTUINT cbEffLimit = GDTR.cbGdt;
811 PX86DESC pGDTE = &pVM->selm.s.paGdtR3[1];
812 int rc = PGMPhysSimpleReadGCPtr(pVCpu, pGDTE, GDTR.pGdt + sizeof(X86DESC), cbEffLimit + 1 - sizeof(X86DESC));
813 if (RT_FAILURE(rc))
814 {
815 /*
816 * Read it page by page.
817 *
818 * Keep track of the last valid page and delay memsets and
819 * adjust cbEffLimit to reflect the effective size. The latter
820 * is something we do in the belief that the guest will probably
821 * never actually commit the last page, thus allowing us to keep
822 * our selectors in the high end of the GDT.
823 */
824 RTUINT cbLeft = cbEffLimit + 1 - sizeof(X86DESC);
825 RTGCPTR GCPtrSrc = (RTGCPTR)GDTR.pGdt + sizeof(X86DESC);
826 uint8_t *pu8Dst = (uint8_t *)&pVM->selm.s.paGdtR3[1];
827 uint8_t *pu8DstInvalid = pu8Dst;
828
829 while (cbLeft)
830 {
831 RTUINT cb = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
832 cb = RT_MIN(cb, cbLeft);
833 rc = PGMPhysSimpleReadGCPtr(pVCpu, pu8Dst, GCPtrSrc, cb);
834 if (RT_SUCCESS(rc))
835 {
836 if (pu8DstInvalid != pu8Dst)
837 RT_BZERO(pu8DstInvalid, pu8Dst - pu8DstInvalid);
838 GCPtrSrc += cb;
839 pu8Dst += cb;
840 pu8DstInvalid = pu8Dst;
841 }
842 else if ( rc == VERR_PAGE_NOT_PRESENT
843 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
844 {
845 GCPtrSrc += cb;
846 pu8Dst += cb;
847 }
848 else
849 {
850 AssertLogRelMsgFailed(("Couldn't read GDT at %016RX64, rc=%Rrc!\n", GDTR.pGdt, rc));
851 return VERR_SELM_GDT_READ_ERROR;
852 }
853 cbLeft -= cb;
854 }
855
856 /* any invalid pages at the end? */
857 if (pu8DstInvalid != pu8Dst)
858 {
859 cbEffLimit = pu8DstInvalid - (uint8_t *)pVM->selm.s.paGdtR3 - 1;
860 /* If any GDTEs was invalidated, zero them. */
861 if (cbEffLimit < pVM->selm.s.cbEffGuestGdtLimit)
862 RT_BZERO(pu8DstInvalid + cbEffLimit + 1, pVM->selm.s.cbEffGuestGdtLimit - cbEffLimit);
863 }
864
865 /* keep track of the effective limit. */
866 if (cbEffLimit != pVM->selm.s.cbEffGuestGdtLimit)
867 {
868 Log(("SELMR3UpdateFromCPUM: cbEffGuestGdtLimit=%#x -> %#x (actual %#x)\n",
869 pVM->selm.s.cbEffGuestGdtLimit, cbEffLimit, GDTR.cbGdt));
870 pVM->selm.s.cbEffGuestGdtLimit = cbEffLimit;
871 }
872 }
873
874 /*
875 * Check if the Guest GDT intrudes on our GDT entries.
876 */
877 /** @todo we should try to minimize relocations by making sure our current selectors can be reused. */
878 RTSEL aHyperSel[SELM_HYPER_SEL_MAX];
879 if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
880 {
881 PX86DESC pGDTEStart = pVM->selm.s.paGdtR3;
882 PX86DESC pGDTECur = (PX86DESC)((char *)pGDTEStart + GDTR.cbGdt + 1 - sizeof(X86DESC));
883 int iGDT = 0;
884
885 Log(("Internal SELM GDT conflict: use non-present entries\n"));
886 STAM_REL_COUNTER_INC(&pVM->selm.s.StatScanForHyperSels);
887 while ((uintptr_t)pGDTECur > (uintptr_t)pGDTEStart)
888 {
889 /* We can reuse non-present entries */
890 if (!pGDTECur->Gen.u1Present)
891 {
892 aHyperSel[iGDT] = ((uintptr_t)pGDTECur - (uintptr_t)pVM->selm.s.paGdtR3) / sizeof(X86DESC);
893 aHyperSel[iGDT] = aHyperSel[iGDT] << X86_SEL_SHIFT;
894 Log(("SELM: Found unused GDT %04X\n", aHyperSel[iGDT]));
895 iGDT++;
896 if (iGDT >= SELM_HYPER_SEL_MAX)
897 break;
898 }
899
900 pGDTECur--;
901 }
902 if (iGDT != SELM_HYPER_SEL_MAX)
903 {
904 AssertLogRelMsgFailed(("Internal SELM GDT conflict.\n"));
905 return VERR_SELM_GDT_TOO_FULL;
906 }
907 }
908 else
909 {
910 aHyperSel[SELM_HYPER_SEL_CS] = SELM_HYPER_DEFAULT_SEL_CS;
911 aHyperSel[SELM_HYPER_SEL_DS] = SELM_HYPER_DEFAULT_SEL_DS;
912 aHyperSel[SELM_HYPER_SEL_CS64] = SELM_HYPER_DEFAULT_SEL_CS64;
913 aHyperSel[SELM_HYPER_SEL_TSS] = SELM_HYPER_DEFAULT_SEL_TSS;
914 aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SELM_HYPER_DEFAULT_SEL_TSS_TRAP08;
915 }
916
917# ifdef VBOX_WITH_SAFE_STR
918 /* Use the guest's TR selector to plug the str virtualization hole. */
919 if (CPUMGetGuestTR(pVCpu, NULL) != 0)
920 {
921 Log(("SELM: Use guest TSS selector %x\n", CPUMGetGuestTR(pVCpu, NULL)));
922 aHyperSel[SELM_HYPER_SEL_TSS] = CPUMGetGuestTR(pVCpu, NULL);
923 }
924# endif
925
926 /*
927 * Work thru the copied GDT entries adjusting them for correct virtualization.
928 */
929 PX86DESC pGDTEEnd = (PX86DESC)((char *)pGDTE + cbEffLimit + 1 - sizeof(X86DESC));
930 while (pGDTE < pGDTEEnd)
931 {
932 if (pGDTE->Gen.u1Present)
933 selmGuestToShadowDesc(pVM, pGDTE);
934
935 /* Next GDT entry. */
936 pGDTE++;
937 }
938
939 /*
940 * Check if our hypervisor selectors were changed.
941 */
942 if ( aHyperSel[SELM_HYPER_SEL_CS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]
943 || aHyperSel[SELM_HYPER_SEL_DS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]
944 || aHyperSel[SELM_HYPER_SEL_CS64] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64]
945 || aHyperSel[SELM_HYPER_SEL_TSS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]
946 || aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08])
947 {
948 /* Reinitialize our hypervisor GDTs */
949 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = aHyperSel[SELM_HYPER_SEL_CS];
950 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = aHyperSel[SELM_HYPER_SEL_DS];
951 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = aHyperSel[SELM_HYPER_SEL_CS64];
952 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = aHyperSel[SELM_HYPER_SEL_TSS];
953 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = aHyperSel[SELM_HYPER_SEL_TSS_TRAP08];
954
955 STAM_REL_COUNTER_INC(&pVM->selm.s.StatHyperSelsChanged);
956
957 /*
958 * Do the relocation callbacks to let everyone update their hyper selector dependencies.
959 * (SELMR3Relocate will call selmR3SetupHyperGDTSelectors() for us.)
960 */
961 VMR3Relocate(pVM, 0);
962 }
963# ifdef VBOX_WITH_SAFE_STR
964 else if ( cbEffLimit >= SELM_HYPER_DEFAULT_BASE
965 || CPUMGetGuestTR(pVCpu, NULL) != 0) /* Our shadow TR entry was overwritten when we synced the guest's GDT. */
966# else
967 else if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
968# endif
969 /* We overwrote all entries above, so we have to save them again. */
970 selmR3SetupHyperGDTSelectors(pVM);
971
972 /*
973 * Adjust the cached GDT limit.
974 * Any GDT entries which have been removed must be cleared.
975 */
976 if (pVM->selm.s.GuestGdtr.cbGdt != GDTR.cbGdt)
977 {
978 if (pVM->selm.s.GuestGdtr.cbGdt > GDTR.cbGdt)
979 RT_BZERO(pGDTE, pVM->selm.s.GuestGdtr.cbGdt - GDTR.cbGdt);
980 }
981
982 /*
983 * Check if Guest's GDTR is changed.
984 */
985 if ( GDTR.pGdt != pVM->selm.s.GuestGdtr.pGdt
986 || GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
987 {
988 Log(("SELMR3UpdateFromCPUM: Guest's GDT is changed to pGdt=%016RX64 cbGdt=%08X\n", GDTR.pGdt, GDTR.cbGdt));
989
990# ifdef SELM_TRACK_GUEST_GDT_CHANGES
991 /*
992 * [Re]Register write virtual handler for guest's GDT.
993 */
994 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
995 {
996 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
997 AssertRC(rc);
998 }
999
1000 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE,
1001 GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
1002 0, selmR3GuestGDTWriteHandler, "selmRCGuestGDTWriteHandler", 0,
1003 "Guest GDT write access handler");
1004# ifdef VBOX_WITH_RAW_RING1
1005 /** @todo !HACK ALERT!
1006 * Some guest OSes (QNX) share code and the GDT on the same page;
1007 * PGMR3HandlerVirtualRegister doesn't support more than one handler,
1008 * so we kick out the PATM handler as this one is more important.
1009 * Fix this properly in PGMR3HandlerVirtualRegister?
1010 */
1011 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1012 {
1013 LogRel(("selmR3UpdateShadowGdt: Virtual handler conflict %RGv -> kick out PATM handler for the higher priority GDT page monitor\n", GDTR.pGdt));
1014 rc = PGMHandlerVirtualDeregister(pVM, GDTR.pGdt & PAGE_BASE_GC_MASK);
1015 AssertRC(rc);
1016
1017 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE,
1018 GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
1019 0, selmR3GuestGDTWriteHandler, "selmRCGuestGDTWriteHandler", 0,
1020 "Guest GDT write access handler");
1021 }
1022# endif
1023 if (RT_FAILURE(rc))
1024 return rc;
1025# endif /* SELM_TRACK_GUEST_GDT_CHANGES */
1026
1027 /* Update saved Guest GDTR. */
1028 pVM->selm.s.GuestGdtr = GDTR;
1029 pVM->selm.s.fGDTRangeRegistered = true;
1030 }
1031
1032 return VINF_SUCCESS;
1033}
1034
1035
1036/**
1037 * Updates (syncs) the shadow LDT.
1038 *
1039 * @returns VBox status code.
1040 * @param pVM The VM handle.
1041 * @param pVCpu The current virtual CPU.
1042 */
1043static int selmR3UpdateShadowLdt(PVM pVM, PVMCPU pVCpu)
1044{
1045 int rc = VINF_SUCCESS;
1046 Assert(!HMIsEnabled(pVM));
1047
1048 /*
1049 * Always assume the best...
1050 */
1051 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
1052
1053 /*
1054 * LDT handling is done similarly to the GDT handling with a shadow
1055 * array. However, since the LDT is expected to be swappable (at least
1056 * some ancient OSes makes it swappable) it must be floating and
1057 * synced on a per-page basis.
1058 *
1059 * Eventually we will change this to be fully on demand. Meaning that
1060 * we will only sync pages containing LDT selectors actually used and
1061 * let the #PF handler lazily sync pages as they are used.
1062 * (This applies to GDT too, when we start making OS/2 fast.)
1063 */
1064
1065 /*
1066 * First, determine the current LDT selector.
1067 */
1068 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1069 if (!(SelLdt & X86_SEL_MASK_OFF_RPL))
1070 {
1071 /* ldtr = 0 - update hyper LDTR and deregister any active handler. */
1072 CPUMSetHyperLDTR(pVCpu, 0);
1073 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1074 {
1075 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1076 AssertRC(rc);
1077 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1078 }
1079 pVM->selm.s.cbLdtLimit = 0;
1080 return VINF_SUCCESS;
1081 }
1082
1083 /*
1084 * Get the LDT selector.
1085 */
1086/** @todo this is wrong, use CPUMGetGuestLdtrEx */
1087 PX86DESC pDesc = &pVM->selm.s.paGdtR3[SelLdt >> X86_SEL_SHIFT];
1088 RTGCPTR GCPtrLdt = X86DESC_BASE(pDesc);
1089 uint32_t cbLdt = X86DESC_LIMIT_G(pDesc);
1090
1091 /*
1092 * Validate it.
1093 */
1094 if ( !cbLdt
1095 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt
1096 || pDesc->Gen.u1DescType
1097 || pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1098 {
1099 AssertMsg(!cbLdt, ("Invalid LDT %04x!\n", SelLdt));
1100
1101 /* cbLdt > 0:
1102 * This is quite impossible, so we do as most people do when faced with
1103 * the impossible, we simply ignore it.
1104 */
1105 CPUMSetHyperLDTR(pVCpu, 0);
1106 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1107 {
1108 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1109 AssertRC(rc);
1110 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1111 }
1112 return VINF_SUCCESS;
1113 }
1114 /** @todo check what intel does about odd limits. */
1115 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1116
1117 /*
1118 * Use the cached guest ldt address if the descriptor has already been modified (see below)
1119 * (this is necessary due to redundant LDT updates; see todo above at GDT sync)
1120 */
1121 if (MMHyperIsInsideArea(pVM, GCPtrLdt))
1122 GCPtrLdt = pVM->selm.s.GCPtrGuestLdt; /* use the old one */
1123
1124
1125 /** @todo Handle only present LDT segments. */
1126// if (pDesc->Gen.u1Present)
1127 {
1128 /*
1129 * Check if Guest's LDT address/limit is changed.
1130 */
1131 if ( GCPtrLdt != pVM->selm.s.GCPtrGuestLdt
1132 || cbLdt != pVM->selm.s.cbLdtLimit)
1133 {
1134 Log(("SELMR3UpdateFromCPUM: Guest LDT changed to from %RGv:%04x to %RGv:%04x. (GDTR=%016RX64:%04x)\n",
1135 pVM->selm.s.GCPtrGuestLdt, pVM->selm.s.cbLdtLimit, GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1136
1137# ifdef SELM_TRACK_GUEST_LDT_CHANGES
1138 /*
1139 * [Re]Register write virtual handler for guest's GDT.
1140 * In the event of LDT overlapping something, don't install it just assume it's being updated.
1141 */
1142 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1143 {
1144 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1145 AssertRC(rc);
1146 }
1147# ifdef LOG_ENABLED
1148 if (pDesc->Gen.u1Present)
1149 Log(("LDT selector marked not present!!\n"));
1150# endif
1151 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrLdt, GCPtrLdt + cbLdt /* already inclusive */,
1152 0, selmR3GuestLDTWriteHandler, "selmRCGuestLDTWriteHandler", 0, "Guest LDT write access handler");
1153 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1154 {
1155 /** @todo investigate the various cases where conflicts happen and try avoid them by enh. the instruction emulation. */
1156 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1157 Log(("WARNING: Guest LDT (%RGv:%04x) conflicted with existing access range!! Assumes LDT is begin updated. (GDTR=%016RX64:%04x)\n",
1158 GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1159 }
1160 else if (RT_SUCCESS(rc))
1161 pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
1162 else
1163 {
1164 CPUMSetHyperLDTR(pVCpu, 0);
1165 return rc;
1166 }
1167# else
1168 pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
1169# endif
1170 pVM->selm.s.cbLdtLimit = cbLdt;
1171 }
1172 }
1173
1174 /*
1175 * Calc Shadow LDT base.
1176 */
1177 unsigned off;
1178 pVM->selm.s.offLdtHyper = off = (GCPtrLdt & PAGE_OFFSET_MASK);
1179 RTGCPTR GCPtrShadowLDT = (RTGCPTR)((RTGCUINTPTR)pVM->selm.s.pvLdtRC + off);
1180 PX86DESC pShadowLDT = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1181
1182 /*
1183 * Enable the LDT selector in the shadow GDT.
1184 */
1185 pDesc->Gen.u1Present = 1;
1186 pDesc->Gen.u16BaseLow = RT_LOWORD(GCPtrShadowLDT);
1187 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(GCPtrShadowLDT);
1188 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(GCPtrShadowLDT);
1189 pDesc->Gen.u1Available = 0;
1190 pDesc->Gen.u1Long = 0;
1191 if (cbLdt > 0xffff)
1192 {
1193 cbLdt = 0xffff;
1194 pDesc->Gen.u4LimitHigh = 0;
1195 pDesc->Gen.u16LimitLow = pDesc->Gen.u1Granularity ? 0xf : 0xffff;
1196 }
1197
1198 /*
1199 * Set Hyper LDTR and notify TRPM.
1200 */
1201 CPUMSetHyperLDTR(pVCpu, SelLdt);
1202
1203 /*
1204 * Loop synchronising the LDT page by page.
1205 */
1206 /** @todo investigate how intel handle various operations on half present cross page entries. */
1207 off = GCPtrLdt & (sizeof(X86DESC) - 1);
1208 AssertMsg(!off, ("LDT is not aligned on entry size! GCPtrLdt=%08x\n", GCPtrLdt));
1209
1210 /* Note: Do not skip the first selector; unlike the GDT, a zero LDT selector is perfectly valid. */
1211 unsigned cbLeft = cbLdt + 1;
1212 PX86DESC pLDTE = pShadowLDT;
1213 while (cbLeft)
1214 {
1215 /*
1216 * Read a chunk.
1217 */
1218 unsigned cbChunk = PAGE_SIZE - ((RTGCUINTPTR)GCPtrLdt & PAGE_OFFSET_MASK);
1219 if (cbChunk > cbLeft)
1220 cbChunk = cbLeft;
1221 rc = PGMPhysSimpleReadGCPtr(pVCpu, pShadowLDT, GCPtrLdt, cbChunk);
1222 if (RT_SUCCESS(rc))
1223 {
1224 /*
1225 * Mark page
1226 */
1227 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D);
1228 AssertRC(rc);
1229
1230 /*
1231 * Loop thru the available LDT entries.
1232 * Figure out where to start and end and the potential cross pageness of
1233 * things adds a little complexity. pLDTE is updated there and not in the
1234 * 'next' part of the loop. The pLDTEEnd is inclusive.
1235 */
1236 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pShadowLDT + cbChunk) - 1;
1237 if (pLDTE + 1 < pShadowLDT)
1238 pLDTE = (PX86DESC)((uintptr_t)pShadowLDT + off);
1239 while (pLDTE <= pLDTEEnd)
1240 {
1241 if (pLDTE->Gen.u1Present)
1242 selmGuestToShadowDesc(pVM, pLDTE);
1243
1244 /* Next LDT entry. */
1245 pLDTE++;
1246 }
1247 }
1248 else
1249 {
1250 RT_BZERO(pShadowLDT, cbChunk);
1251 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("rc=%Rrc\n", rc));
1252 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, 0);
1253 AssertRC(rc);
1254 }
1255
1256 /*
1257 * Advance to the next page.
1258 */
1259 cbLeft -= cbChunk;
1260 GCPtrShadowLDT += cbChunk;
1261 pShadowLDT = (PX86DESC)((char *)pShadowLDT + cbChunk);
1262 GCPtrLdt += cbChunk;
1263 }
1264
1265 return VINF_SUCCESS;
1266}
1267
1268
1269/**
1270 * Checks and updates segment selector registers.
1271 *
1272 * @returns VBox strict status code.
1273 * @retval VINF_EM_RESCHEDULE_REM if a stale register was found.
1274 *
1275 * @param pVM The VM handle.
1276 * @param pVCpu The current virtual CPU.
1277 */
1278static VBOXSTRICTRC selmR3UpdateSegmentRegisters(PVM pVM, PVMCPU pVCpu)
1279{
1280 Assert(CPUMIsGuestInProtectedMode(pVCpu));
1281 Assert(!HMIsEnabled(pVM));
1282
1283 /*
1284 * No stale selectors in V8086 mode.
1285 */
1286 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1287 if (pCtx->eflags.Bits.u1VM)
1288 return VINF_SUCCESS;
1289
1290 /*
1291 * Check for stale selectors and load hidden register bits where they
1292 * are missing.
1293 */
1294 uint32_t uCpl = CPUMGetGuestCPL(pVCpu);
1295 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1296 PCPUMSELREG paSReg = CPUMCTX_FIRST_SREG(pCtx);
1297 for (uint32_t iSReg = 0; iSReg < X86_SREG_COUNT; iSReg++)
1298 {
1299 RTSEL const Sel = paSReg[iSReg].Sel;
1300 if (Sel & X86_SEL_MASK_OFF_RPL)
1301 {
1302 /* Get the shadow descriptor entry corresponding to this. */
1303 static X86DESC const s_NotPresentDesc = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } };
1304 PCX86DESC pDesc;
1305 if (!(Sel & X86_SEL_LDT))
1306 {
1307 if ((Sel | (sizeof(*pDesc) - 1)) <= pCtx->gdtr.cbGdt)
1308 pDesc = &pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
1309 else
1310 pDesc = &s_NotPresentDesc;
1311 }
1312 else
1313 {
1314 if ((Sel | (sizeof(*pDesc) - 1)) <= pVM->selm.s.cbLdtLimit)
1315 pDesc = &((PCX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper))[Sel >> X86_SEL_SHIFT];
1316 else
1317 pDesc = &s_NotPresentDesc;
1318 }
1319
1320 /* Check the segment register. */
1321 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &paSReg[iSReg]))
1322 {
1323 if (!(paSReg[iSReg].fFlags & CPUMSELREG_FLAGS_STALE))
1324 {
1325 /* Did it go stale? */
1326 if (selmIsSRegStale32(&paSReg[iSReg], pDesc, iSReg))
1327 {
1328 Log2(("SELM: Detected stale %s=%#x (was valid)\n", g_aszSRegNms[iSReg], Sel));
1329 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatDetectedStaleSReg[iSReg]);
1330 paSReg[iSReg].fFlags |= CPUMSELREG_FLAGS_STALE;
1331 rcStrict = VINF_EM_RESCHEDULE_REM;
1332 }
1333 }
1334 else
1335 {
1336 /* Did it stop being stale? I.e. did the guest change it things
1337 back to the way they were? */
1338 if (!selmIsSRegStale32(&paSReg[iSReg], pDesc, iSReg))
1339 {
1340 STAM_REL_COUNTER_INC(&pVM->selm.s.StatStaleToUnstaleSReg);
1341 paSReg[iSReg].fFlags &= CPUMSELREG_FLAGS_STALE;
1342 }
1343 else
1344 {
1345 Log2(("SELM: Already stale %s=%#x\n", g_aszSRegNms[iSReg], Sel));
1346 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatAlreadyStaleSReg[iSReg]);
1347 rcStrict = VINF_EM_RESCHEDULE_REM;
1348 }
1349 }
1350 }
1351 /* Load the hidden registers if it's a valid descriptor for the
1352 current segment register. */
1353 else if (selmIsShwDescGoodForSReg(&paSReg[iSReg], pDesc, iSReg, uCpl))
1354 {
1355 selmLoadHiddenSRegFromShadowDesc(&paSReg[iSReg], pDesc);
1356 STAM_COUNTER_INC(&pVM->selm.s.aStatUpdatedSReg[iSReg]);
1357 }
1358 /* It's stale. */
1359 else
1360 {
1361 Log2(("SELM: Detected stale %s=%#x (wasn't valid)\n", g_aszSRegNms[iSReg], Sel));
1362 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatDetectedStaleSReg[iSReg]);
1363 paSReg[iSReg].fFlags = CPUMSELREG_FLAGS_STALE;
1364 rcStrict = VINF_EM_RESCHEDULE_REM;
1365 }
1366 }
1367 /* else: 0 selector, ignore. */
1368 }
1369
1370 return rcStrict;
1371}
1372
1373
1374/**
1375 * Updates the Guest GDT & LDT virtualization based on current CPU state.
1376 *
1377 * @returns VBox status code.
1378 * @param pVM Pointer to the VM.
1379 * @param pVCpu Pointer to the VMCPU.
1380 */
1381VMMR3DECL(VBOXSTRICTRC) SELMR3UpdateFromCPUM(PVM pVM, PVMCPU pVCpu)
1382{
1383 STAM_PROFILE_START(&pVM->selm.s.StatUpdateFromCPUM, a);
1384 AssertReturn(!HMIsEnabled(pVM), VERR_SELM_HM_IPE);
1385
1386 /*
1387 * GDT sync
1388 */
1389 int rc;
1390 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT))
1391 {
1392 rc = selmR3UpdateShadowGdt(pVM, pVCpu);
1393 if (RT_FAILURE(rc))
1394 return rc; /* We're toast, so forget the profiling. */
1395 AssertRCSuccess(rc);
1396 }
1397
1398 /*
1399 * TSS sync
1400 */
1401 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1402 {
1403 rc = SELMR3SyncTSS(pVM, pVCpu);
1404 if (RT_FAILURE(rc))
1405 return rc;
1406 AssertRCSuccess(rc);
1407 }
1408
1409 /*
1410 * LDT sync
1411 */
1412 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT))
1413 {
1414 rc = selmR3UpdateShadowLdt(pVM, pVCpu);
1415 if (RT_FAILURE(rc))
1416 return rc;
1417 AssertRCSuccess(rc);
1418 }
1419
1420 /*
1421 * Check selector registers.
1422 */
1423 VBOXSTRICTRC rcStrict = selmR3UpdateSegmentRegisters(pVM, pVCpu);
1424
1425 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1426 return rcStrict;
1427}
1428
1429#endif /*VBOX_WITH_RAW_MODE*/
1430
1431#ifdef SELM_TRACK_GUEST_GDT_CHANGES
1432/**
1433 * \#PF Handler callback for virtual access handler ranges.
1434 *
1435 * Important to realize that a physical page in a range can have aliases, and
1436 * for ALL and WRITE handlers these will also trigger.
1437 *
1438 * @returns VINF_SUCCESS if the handler have carried out the operation.
1439 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1440 * @param pVM Pointer to the VM.
1441 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1442 * @param pvPtr The HC mapping of that address.
1443 * @param pvBuf What the guest is reading/writing.
1444 * @param cbBuf How much it's reading/writing.
1445 * @param enmAccessType The access type.
1446 * @param pvUser User argument.
1447 */
1448static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1449 PGMACCESSTYPE enmAccessType, void *pvUser)
1450{
1451 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1452 Log(("selmR3GuestGDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
1453 NOREF(pvPtr); NOREF(pvBuf); NOREF(pvUser);
1454
1455 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_GDT);
1456 return VINF_PGM_HANDLER_DO_DEFAULT;
1457}
1458#endif
1459
1460#ifdef SELM_TRACK_GUEST_LDT_CHANGES
1461/**
1462 * \#PF Handler callback for virtual access handler ranges.
1463 *
1464 * Important to realize that a physical page in a range can have aliases, and
1465 * for ALL and WRITE handlers these will also trigger.
1466 *
1467 * @returns VINF_SUCCESS if the handler have carried out the operation.
1468 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1469 * @param pVM Pointer to the VM.
1470 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1471 * @param pvPtr The HC mapping of that address.
1472 * @param pvBuf What the guest is reading/writing.
1473 * @param cbBuf How much it's reading/writing.
1474 * @param enmAccessType The access type.
1475 * @param pvUser User argument.
1476 */
1477static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1478 PGMACCESSTYPE enmAccessType, void *pvUser)
1479{
1480 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1481 Log(("selmR3GuestLDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
1482 NOREF(pvPtr); NOREF(pvBuf); NOREF(pvUser);
1483
1484 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_LDT);
1485 return VINF_PGM_HANDLER_DO_DEFAULT;
1486}
1487#endif
1488
1489
1490#ifdef SELM_TRACK_GUEST_TSS_CHANGES
1491/**
1492 * \#PF Handler callback for virtual access handler ranges.
1493 *
1494 * Important to realize that a physical page in a range can have aliases, and
1495 * for ALL and WRITE handlers these will also trigger.
1496 *
1497 * @returns VINF_SUCCESS if the handler have carried out the operation.
1498 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1499 * @param pVM Pointer to the VM.
1500 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1501 * @param pvPtr The HC mapping of that address.
1502 * @param pvBuf What the guest is reading/writing.
1503 * @param cbBuf How much it's reading/writing.
1504 * @param enmAccessType The access type.
1505 * @param pvUser User argument.
1506 */
1507static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1508 PGMACCESSTYPE enmAccessType, void *pvUser)
1509{
1510 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1511 Log(("selmR3GuestTSSWriteHandler: write %.*Rhxs to %RGv size %d\n", RT_MIN(8, cbBuf), pvBuf, GCPtr, cbBuf));
1512 NOREF(pvBuf); NOREF(GCPtr); NOREF(cbBuf); NOREF(pvUser);NOREF(pvPtr);
1513
1514 /** @todo This can be optimized by checking for the ESP0 offset and tracking TR
1515 * reloads in REM (setting VM_FF_SELM_SYNC_TSS if TR is reloaded). We
1516 * should probably also deregister the virtual handler if TR.base/size
1517 * changes while we're in REM. */
1518
1519 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_TSS);
1520 return VINF_PGM_HANDLER_DO_DEFAULT;
1521}
1522#endif
1523
1524#ifdef VBOX_WITH_RAW_MODE
1525
1526/**
1527 * Synchronize the shadowed fields in the TSS.
1528 *
1529 * At present we're shadowing the ring-0 stack selector & pointer, and the
1530 * interrupt redirection bitmap (if present). We take the lazy approach wrt to
1531 * REM and this function is called both if REM made any changes to the TSS or
1532 * loaded TR.
1533 *
1534 * @returns VBox status code.
1535 * @param pVM Pointer to the VM.
1536 * @param pVCpu Pointer to the VMCPU.
1537 */
1538VMMR3DECL(int) SELMR3SyncTSS(PVM pVM, PVMCPU pVCpu)
1539{
1540 int rc;
1541 AssertReturnStmt(!HMIsEnabled(pVM), VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS), VINF_SUCCESS);
1542
1543 STAM_PROFILE_START(&pVM->selm.s.StatTSSSync, a);
1544 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS));
1545
1546 /*
1547 * Get TR and extract and store the basic info.
1548 *
1549 * Note! The TSS limit is not checked by the LTR code, so we
1550 * have to be a bit careful with it. We make sure cbTss
1551 * won't be zero if TR is valid and if it's NULL we'll
1552 * make sure cbTss is 0.
1553 */
1554/** @todo use the hidden bits, not shadow GDT. */
1555 CPUMSELREGHID trHid;
1556 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1557 RTGCPTR GCPtrTss = trHid.u64Base;
1558 uint32_t cbTss = trHid.u32Limit;
1559 Assert( (SelTss & X86_SEL_MASK_OFF_RPL)
1560 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1561 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1562 if (SelTss & X86_SEL_MASK_OFF_RPL)
1563 {
1564 Assert(!(SelTss & X86_SEL_LDT));
1565 Assert(trHid.Attr.n.u1DescType == 0);
1566 Assert( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1567 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY);
1568 if (!++cbTss)
1569 cbTss = UINT32_MAX;
1570 }
1571 else
1572 {
1573 Assert( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1574 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1575 cbTss = 0; /* the reset case. */
1576 }
1577 pVM->selm.s.cbGuestTss = cbTss;
1578 pVM->selm.s.fGuestTss32Bit = trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1579 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY;
1580
1581 /*
1582 * Figure out the size of what need to monitor.
1583 */
1584 /* We're not interested in any 16-bit TSSes. */
1585 uint32_t cbMonitoredTss = cbTss;
1586 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1587 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1588 cbMonitoredTss = 0;
1589
1590 pVM->selm.s.offGuestIoBitmap = 0;
1591 bool fNoRing1Stack = true;
1592 if (cbMonitoredTss)
1593 {
1594 /*
1595 * 32-bit TSS. What we're really keen on is the SS0 and ESP0 fields.
1596 * If VME is enabled we also want to keep an eye on the interrupt
1597 * redirection bitmap.
1598 */
1599 VBOXTSS Tss;
1600 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
1601 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1602 if ( !(cr4 & X86_CR4_VME)
1603 || ( RT_SUCCESS(rc)
1604 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1605 && Tss.offIoBitmap > cbTss) /* beyond the end */ /** @todo not sure how the partial case is handled; probably not allowed. */
1606 )
1607 /* No interrupt redirection bitmap, just ESP0 and SS0. */
1608 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1609 else if (RT_SUCCESS(rc))
1610 {
1611 /*
1612 * Everything up to and including the interrupt redirection bitmap. Unfortunately
1613 * this can be quite a large chunk. We use to skip it earlier and just hope it
1614 * was kind of static...
1615 *
1616 * Update the virtual interrupt redirection bitmap while we're here.
1617 * (It is located in the 32 bytes before TR:offIoBitmap.)
1618 */
1619 cbMonitoredTss = Tss.offIoBitmap;
1620 pVM->selm.s.offGuestIoBitmap = Tss.offIoBitmap;
1621
1622 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1623 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pVM->selm.s.Tss.IntRedirBitmap,
1624 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1625 AssertRC(rc);
1626 /** @todo memset the bitmap on failure? */
1627 Log2(("Redirection bitmap:\n"));
1628 Log2(("%.*Rhxd\n", sizeof(Tss.IntRedirBitmap), &pVM->selm.s.Tss.IntRedirBitmap));
1629 }
1630 else
1631 {
1632 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
1633 pVM->selm.s.offGuestIoBitmap = 0;
1634 /** @todo memset the bitmap? */
1635 }
1636
1637 /*
1638 * Update the ring 0 stack selector and base address.
1639 */
1640 if (RT_SUCCESS(rc))
1641 {
1642# ifdef LOG_ENABLED
1643 if (LogIsEnabled())
1644 {
1645 uint32_t ssr0, espr0;
1646 SELMGetRing1Stack(pVM, &ssr0, &espr0);
1647 if ((ssr0 & ~1) != Tss.ss0 || espr0 != Tss.esp0)
1648 {
1649 RTGCPHYS GCPhys = NIL_RTGCPHYS;
1650 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
1651 Log(("SELMR3SyncTSS: Updating TSS ring 0 stack to %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1652 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1653 AssertMsg(ssr0 != Tss.ss0,
1654 ("ring-1 leak into TSS.SS0! %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1655 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1656 }
1657 Log(("offIoBitmap=%#x\n", Tss.offIoBitmap));
1658 }
1659# endif /* LOG_ENABLED */
1660 AssertMsg(!(Tss.ss0 & 3), ("ring-1 leak into TSS.SS0? %04X:%08X\n", Tss.ss0, Tss.esp0));
1661
1662 /* Update our TSS structure for the guest's ring 1 stack */
1663 selmSetRing1Stack(pVM, Tss.ss0 | 1, Tss.esp0);
1664 pVM->selm.s.fSyncTSSRing0Stack = fNoRing1Stack = false;
1665
1666# ifdef VBOX_WITH_RAW_RING1
1667 /* Update our TSS structure for the guest's ring 2 stack */
1668 if (EMIsRawRing1Enabled(pVM))
1669 {
1670 if ( (pVM->selm.s.Tss.ss2 != ((Tss.ss1 & ~2) | 1))
1671 || pVM->selm.s.Tss.esp2 != Tss.esp1)
1672 Log(("SELMR3SyncTSS: Updating TSS ring 1 stack to %04X:%08X from %04X:%08X\n", Tss.ss1, Tss.esp1, (pVM->selm.s.Tss.ss2 & ~2) | 1, pVM->selm.s.Tss.esp2));
1673 selmSetRing2Stack(pVM, (Tss.ss1 & ~1) | 2, Tss.esp1);
1674 }
1675# endif
1676 }
1677 }
1678
1679 /*
1680 * Flush the ring-1 stack and the direct syscall dispatching if we
1681 * cannot obtain SS0:ESP0.
1682 */
1683 if (fNoRing1Stack)
1684 {
1685 selmSetRing1Stack(pVM, 0 /* invalid SS */, 0);
1686 pVM->selm.s.fSyncTSSRing0Stack = cbMonitoredTss != 0;
1687
1688 /** @todo handle these dependencies better! */
1689 TRPMR3SetGuestTrapHandler(pVM, 0x2E, TRPM_INVALID_HANDLER);
1690 TRPMR3SetGuestTrapHandler(pVM, 0x80, TRPM_INVALID_HANDLER);
1691 }
1692
1693 /*
1694 * Check for monitor changes and apply them.
1695 */
1696 if ( GCPtrTss != pVM->selm.s.GCPtrGuestTss
1697 || cbMonitoredTss != pVM->selm.s.cbMonitoredGuestTss)
1698 {
1699 Log(("SELMR3SyncTSS: Guest's TSS is changed to pTss=%RGv cbMonitoredTss=%08X cbGuestTss=%#08x\n",
1700 GCPtrTss, cbMonitoredTss, pVM->selm.s.cbGuestTss));
1701
1702 /* Release the old range first. */
1703 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
1704 {
1705 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
1706 AssertRC(rc);
1707 }
1708
1709 /* Register the write handler if TS != 0. */
1710 if (cbMonitoredTss != 0)
1711 {
1712# ifdef SELM_TRACK_GUEST_TSS_CHANGES
1713 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
1714 0, selmR3GuestTSSWriteHandler,
1715 "selmRCGuestTSSWriteHandler", 0, "Guest TSS write access handler");
1716 if (RT_FAILURE(rc))
1717 {
1718# ifdef VBOX_WITH_RAW_RING1
1719 /** @todo !HACK ALERT!
1720 * Some guest OSes (QNX) share code and the TSS on the same page;
1721 * PGMR3HandlerVirtualRegister doesn't support more than one
1722 * handler, so we kick out the PATM handler as this one is more
1723 * important. Fix this properly in PGMR3HandlerVirtualRegister?
1724 */
1725 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1726 {
1727 LogRel(("SELMR3SyncTSS: Virtual handler conflict %RGv -> kick out PATM handler for the higher priority TSS page monitor\n", GCPtrTss));
1728 rc = PGMHandlerVirtualDeregister(pVM, GCPtrTss & PAGE_BASE_GC_MASK);
1729 AssertRC(rc);
1730
1731 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
1732 0, selmR3GuestTSSWriteHandler,
1733 "selmRCGuestTSSWriteHandler", 0, "Guest TSS write access handler");
1734 if (RT_FAILURE(rc))
1735 {
1736 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1737 return rc;
1738 }
1739 }
1740# else
1741 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1742 return rc;
1743# endif
1744 }
1745# endif /* SELM_TRACK_GUEST_TSS_CHANGES */
1746
1747 /* Update saved Guest TSS info. */
1748 pVM->selm.s.GCPtrGuestTss = GCPtrTss;
1749 pVM->selm.s.cbMonitoredGuestTss = cbMonitoredTss;
1750 pVM->selm.s.GCSelTss = SelTss;
1751 }
1752 else
1753 {
1754 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
1755 pVM->selm.s.cbMonitoredGuestTss = 0;
1756 pVM->selm.s.GCSelTss = 0;
1757 }
1758 }
1759
1760 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1761
1762 STAM_PROFILE_STOP(&pVM->selm.s.StatTSSSync, a);
1763 return VINF_SUCCESS;
1764}
1765
1766
1767/**
1768 * Compares the Guest GDT and LDT with the shadow tables.
1769 * This is a VBOX_STRICT only function.
1770 *
1771 * @returns VBox status code.
1772 * @param pVM Pointer to the VM.
1773 */
1774VMMR3DECL(int) SELMR3DebugCheck(PVM pVM)
1775{
1776#ifdef VBOX_STRICT
1777 PVMCPU pVCpu = VMMGetCpu(pVM);
1778 AssertReturn(!HMIsEnabled(pVM), VERR_SELM_HM_IPE);
1779
1780 /*
1781 * Get GDTR and check for conflict.
1782 */
1783 VBOXGDTR GDTR;
1784 CPUMGetGuestGDTR(pVCpu, &GDTR);
1785 if (GDTR.cbGdt == 0)
1786 return VINF_SUCCESS;
1787
1788 if (GDTR.cbGdt >= (unsigned)(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
1789 Log(("SELMR3DebugCheck: guest GDT size forced us to look for unused selectors.\n"));
1790
1791 if (GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1792 Log(("SELMR3DebugCheck: limits have changed! new=%d old=%d\n", GDTR.cbGdt, pVM->selm.s.GuestGdtr.cbGdt));
1793
1794 /*
1795 * Loop thru the GDT checking each entry.
1796 */
1797 RTGCPTR GCPtrGDTEGuest = GDTR.pGdt;
1798 PX86DESC pGDTE = pVM->selm.s.paGdtR3;
1799 PX86DESC pGDTEEnd = (PX86DESC)((uintptr_t)pGDTE + GDTR.cbGdt);
1800 while (pGDTE < pGDTEEnd)
1801 {
1802 X86DESC GDTEGuest;
1803 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTEGuest, GCPtrGDTEGuest, sizeof(GDTEGuest));
1804 if (RT_SUCCESS(rc))
1805 {
1806 if (pGDTE->Gen.u1DescType || pGDTE->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1807 {
1808 if ( pGDTE->Gen.u16LimitLow != GDTEGuest.Gen.u16LimitLow
1809 || pGDTE->Gen.u4LimitHigh != GDTEGuest.Gen.u4LimitHigh
1810 || pGDTE->Gen.u16BaseLow != GDTEGuest.Gen.u16BaseLow
1811 || pGDTE->Gen.u8BaseHigh1 != GDTEGuest.Gen.u8BaseHigh1
1812 || pGDTE->Gen.u8BaseHigh2 != GDTEGuest.Gen.u8BaseHigh2
1813 || pGDTE->Gen.u1DefBig != GDTEGuest.Gen.u1DefBig
1814 || pGDTE->Gen.u1DescType != GDTEGuest.Gen.u1DescType)
1815 {
1816 unsigned iGDT = pGDTE - pVM->selm.s.paGdtR3;
1817 SELMR3DumpDescriptor(*pGDTE, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, shadow");
1818 SELMR3DumpDescriptor(GDTEGuest, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, guest");
1819 }
1820 }
1821 }
1822
1823 /* Advance to the next descriptor. */
1824 GCPtrGDTEGuest += sizeof(X86DESC);
1825 pGDTE++;
1826 }
1827
1828
1829 /*
1830 * LDT?
1831 */
1832 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1833 if ((SelLdt & X86_SEL_MASK_OFF_RPL) == 0)
1834 return VINF_SUCCESS;
1835 Assert(!(SelLdt & X86_SEL_LDT));
1836 if (SelLdt > GDTR.cbGdt)
1837 {
1838 Log(("SELMR3DebugCheck: ldt is out of bound SelLdt=%#x\n", SelLdt));
1839 return VERR_SELM_LDT_OUT_OF_BOUNDS;
1840 }
1841 X86DESC LDTDesc;
1842 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTDesc, GDTR.pGdt + (SelLdt & X86_SEL_MASK), sizeof(LDTDesc));
1843 if (RT_FAILURE(rc))
1844 {
1845 Log(("SELMR3DebugCheck: Failed to read LDT descriptor. rc=%d\n", rc));
1846 return rc;
1847 }
1848 RTGCPTR GCPtrLDTEGuest = X86DESC_BASE(&LDTDesc);
1849 uint32_t cbLdt = X86DESC_LIMIT_G(&LDTDesc);
1850
1851 /*
1852 * Validate it.
1853 */
1854 if (!cbLdt)
1855 return VINF_SUCCESS;
1856 /** @todo check what intel does about odd limits. */
1857 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1858 if ( LDTDesc.Gen.u1DescType
1859 || LDTDesc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT
1860 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt)
1861 {
1862 Log(("SELmR3DebugCheck: Invalid LDT %04x!\n", SelLdt));
1863 return VERR_SELM_INVALID_LDT;
1864 }
1865
1866 /*
1867 * Loop thru the LDT checking each entry.
1868 */
1869 unsigned off = (GCPtrLDTEGuest & PAGE_OFFSET_MASK);
1870 PX86DESC pLDTE = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1871 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pGDTE + cbLdt);
1872 while (pLDTE < pLDTEEnd)
1873 {
1874 X86DESC LDTEGuest;
1875 rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTEGuest, GCPtrLDTEGuest, sizeof(LDTEGuest));
1876 if (RT_SUCCESS(rc))
1877 {
1878 if ( pLDTE->Gen.u16LimitLow != LDTEGuest.Gen.u16LimitLow
1879 || pLDTE->Gen.u4LimitHigh != LDTEGuest.Gen.u4LimitHigh
1880 || pLDTE->Gen.u16BaseLow != LDTEGuest.Gen.u16BaseLow
1881 || pLDTE->Gen.u8BaseHigh1 != LDTEGuest.Gen.u8BaseHigh1
1882 || pLDTE->Gen.u8BaseHigh2 != LDTEGuest.Gen.u8BaseHigh2
1883 || pLDTE->Gen.u1DefBig != LDTEGuest.Gen.u1DefBig
1884 || pLDTE->Gen.u1DescType != LDTEGuest.Gen.u1DescType)
1885 {
1886 unsigned iLDT = pLDTE - (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1887 SELMR3DumpDescriptor(*pLDTE, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, shadow");
1888 SELMR3DumpDescriptor(LDTEGuest, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, guest");
1889 }
1890 }
1891
1892 /* Advance to the next descriptor. */
1893 GCPtrLDTEGuest += sizeof(X86DESC);
1894 pLDTE++;
1895 }
1896
1897#else /* !VBOX_STRICT */
1898 NOREF(pVM);
1899#endif /* !VBOX_STRICT */
1900
1901 return VINF_SUCCESS;
1902}
1903
1904
1905/**
1906 * Validates the RawR0 TSS values against the one in the Guest TSS.
1907 *
1908 * @returns true if it matches.
1909 * @returns false and assertions on mismatch..
1910 * @param pVM Pointer to the VM.
1911 */
1912VMMR3DECL(bool) SELMR3CheckTSS(PVM pVM)
1913{
1914#if defined(VBOX_STRICT) && defined(SELM_TRACK_GUEST_TSS_CHANGES)
1915 PVMCPU pVCpu = VMMGetCpu(pVM);
1916
1917 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1918 return true;
1919
1920 /*
1921 * Get TR and extract the basic info.
1922 */
1923 CPUMSELREGHID trHid;
1924 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1925 RTGCPTR GCPtrTss = trHid.u64Base;
1926 uint32_t cbTss = trHid.u32Limit;
1927 Assert( (SelTss & X86_SEL_MASK_OFF_RPL)
1928 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1929 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1930 if (SelTss & X86_SEL_MASK_OFF_RPL)
1931 {
1932 AssertReturn(!(SelTss & X86_SEL_LDT), false);
1933 AssertReturn(trHid.Attr.n.u1DescType == 0, false);
1934 AssertReturn( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1935 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY,
1936 false);
1937 if (!++cbTss)
1938 cbTss = UINT32_MAX;
1939 }
1940 else
1941 {
1942 AssertReturn( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1943 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */),
1944 false);
1945 cbTss = 0; /* the reset case. */
1946 }
1947 AssertMsgReturn(pVM->selm.s.cbGuestTss == cbTss, ("%#x %#x\n", pVM->selm.s.cbGuestTss, cbTss), false);
1948 AssertMsgReturn(pVM->selm.s.fGuestTss32Bit == ( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1949 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY),
1950 ("%RTbool u4Type=%d\n", pVM->selm.s.fGuestTss32Bit, trHid.Attr.n.u4Type),
1951 false);
1952 AssertMsgReturn( pVM->selm.s.GCSelTss == SelTss
1953 || (!pVM->selm.s.GCSelTss && !(SelTss & X86_SEL_LDT)),
1954 ("%#x %#x\n", pVM->selm.s.GCSelTss, SelTss),
1955 false);
1956 AssertMsgReturn( pVM->selm.s.GCPtrGuestTss == GCPtrTss
1957 || (pVM->selm.s.GCPtrGuestTss == RTRCPTR_MAX && !GCPtrTss),
1958 ("%#RGv %#RGv\n", pVM->selm.s.GCPtrGuestTss, GCPtrTss),
1959 false);
1960
1961
1962 /*
1963 * Figure out the size of what need to monitor.
1964 */
1965 /* We're not interested in any 16-bit TSSes. */
1966 uint32_t cbMonitoredTss = cbTss;
1967 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1968 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1969 cbMonitoredTss = 0;
1970 if (cbMonitoredTss)
1971 {
1972 VBOXTSS Tss;
1973 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
1974 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1975 AssertReturn( rc == VINF_SUCCESS
1976 /* Happens early in XP boot during page table switching. */
1977 || ( (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
1978 && !(CPUMGetGuestEFlags(pVCpu) & X86_EFL_IF)),
1979 false);
1980 if ( !(cr4 & X86_CR4_VME)
1981 || ( RT_SUCCESS(rc)
1982 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1983 && Tss.offIoBitmap > cbTss)
1984 )
1985 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1986 else if (RT_SUCCESS(rc))
1987 {
1988 cbMonitoredTss = Tss.offIoBitmap;
1989 AssertMsgReturn(pVM->selm.s.offGuestIoBitmap == Tss.offIoBitmap,
1990 ("#x %#x\n", pVM->selm.s.offGuestIoBitmap, Tss.offIoBitmap),
1991 false);
1992
1993 /* check the bitmap */
1994 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1995 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss.IntRedirBitmap,
1996 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1997 AssertRCReturn(rc, false);
1998 AssertMsgReturn(!memcmp(&Tss.IntRedirBitmap[0], &pVM->selm.s.Tss.IntRedirBitmap[0], sizeof(Tss.IntRedirBitmap)),
1999 ("offIoBitmap=%#x cbTss=%#x\n"
2000 " Guest: %.32Rhxs\n"
2001 "Shadow: %.32Rhxs\n",
2002 Tss.offIoBitmap, cbTss,
2003 &Tss.IntRedirBitmap[0],
2004 &pVM->selm.s.Tss.IntRedirBitmap[0]),
2005 false);
2006 }
2007 else
2008 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
2009
2010 /*
2011 * Check SS0 and ESP0.
2012 */
2013 if ( !pVM->selm.s.fSyncTSSRing0Stack
2014 && RT_SUCCESS(rc))
2015 {
2016 if ( Tss.esp0 != pVM->selm.s.Tss.esp1
2017 || Tss.ss0 != (pVM->selm.s.Tss.ss1 & ~1))
2018 {
2019 RTGCPHYS GCPhys;
2020 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
2021 AssertMsgFailed(("TSS out of sync!! (%04X:%08X vs %04X:%08X (guest)) Tss=%RGv Phys=%RGp\n",
2022 (pVM->selm.s.Tss.ss1 & ~1), pVM->selm.s.Tss.esp1,
2023 Tss.ss1, Tss.esp1, GCPtrTss, GCPhys));
2024 return false;
2025 }
2026 }
2027 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
2028 }
2029 else
2030 {
2031 AssertMsgReturn(pVM->selm.s.Tss.ss1 == 0 && pVM->selm.s.Tss.esp1 == 0, ("%04x:%08x\n", pVM->selm.s.Tss.ss1, pVM->selm.s.Tss.esp1), false);
2032 AssertReturn(!pVM->selm.s.fSyncTSSRing0Stack, false);
2033 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
2034 }
2035
2036
2037
2038 return true;
2039
2040#else /* !VBOX_STRICT */
2041 NOREF(pVM);
2042 return true;
2043#endif /* !VBOX_STRICT */
2044}
2045
2046
2047# ifdef VBOX_WITH_SAFE_STR
2048/**
2049 * Validates the RawR0 TR shadow GDT entry.
2050 *
2051 * @returns true if it matches.
2052 * @returns false and assertions on mismatch..
2053 * @param pVM Pointer to the VM.
2054 */
2055VMMR3DECL(bool) SELMR3CheckShadowTR(PVM pVM)
2056{
2057# ifdef VBOX_STRICT
2058 PX86DESC paGdt = pVM->selm.s.paGdtR3;
2059
2060 /*
2061 * TSS descriptor
2062 */
2063 PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
2064 RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
2065
2066 if ( pDesc->Gen.u16BaseLow != RT_LOWORD(RCPtrTSS)
2067 || pDesc->Gen.u8BaseHigh1 != RT_BYTE3(RCPtrTSS)
2068 || pDesc->Gen.u8BaseHigh2 != RT_BYTE4(RCPtrTSS)
2069 || pDesc->Gen.u16LimitLow != sizeof(VBOXTSS) - 1
2070 || pDesc->Gen.u4LimitHigh != 0
2071 || (pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL && pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2072 || pDesc->Gen.u1DescType != 0 /* system */
2073 || pDesc->Gen.u2Dpl != 0 /* supervisor */
2074 || pDesc->Gen.u1Present != 1
2075 || pDesc->Gen.u1Available != 0
2076 || pDesc->Gen.u1Long != 0
2077 || pDesc->Gen.u1DefBig != 0
2078 || pDesc->Gen.u1Granularity != 0 /* byte limit */
2079 )
2080 {
2081 AssertFailed();
2082 return false;
2083 }
2084# endif
2085 return true;
2086}
2087# endif /* VBOX_WITH_SAFE_STR */
2088
2089#endif /* VBOX_WITH_RAW_MODE */
2090
2091/**
2092 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
2093 *
2094 * See SELMR3GetSelectorInfo for details.
2095 *
2096 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
2097 *
2098 * @param pVCpu Pointer to the VMCPU.
2099 * @param Sel The selector to get info about.
2100 * @param pSelInfo Where to store the information.
2101 */
2102static int selmR3GetSelectorInfo64(PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2103{
2104 /*
2105 * Read it from the guest descriptor table.
2106 */
2107/** @todo this is bogus wrt the LDT/GDT limit on long selectors. */
2108 X86DESC64 Desc;
2109 RTGCPTR GCPtrDesc;
2110 if (!(Sel & X86_SEL_LDT))
2111 {
2112 /* GDT */
2113 VBOXGDTR Gdtr;
2114 CPUMGetGuestGDTR(pVCpu, &Gdtr);
2115 if ((Sel | X86_SEL_RPL_LDT) > Gdtr.cbGdt)
2116 return VERR_INVALID_SELECTOR;
2117 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2118 }
2119 else
2120 {
2121 /* LDT */
2122 uint64_t GCPtrBase;
2123 uint32_t cbLimit;
2124 CPUMGetGuestLdtrEx(pVCpu, &GCPtrBase, &cbLimit);
2125 if ((Sel | X86_SEL_RPL_LDT) > cbLimit)
2126 return VERR_INVALID_SELECTOR;
2127
2128 /* calc the descriptor location. */
2129 GCPtrDesc = GCPtrBase + (Sel & X86_SEL_MASK);
2130 }
2131
2132 /* read the descriptor. */
2133 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2134 if (RT_FAILURE(rc))
2135 {
2136 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(X86DESC));
2137 if (RT_FAILURE(rc))
2138 return rc;
2139 Desc.au64[1] = 0;
2140 }
2141
2142 /*
2143 * Extract the base and limit
2144 * (We ignore the present bit here, which is probably a bit silly...)
2145 */
2146 pSelInfo->Sel = Sel;
2147 pSelInfo->fFlags = DBGFSELINFO_FLAGS_LONG_MODE;
2148 pSelInfo->u.Raw64 = Desc;
2149 if (Desc.Gen.u1DescType)
2150 {
2151 /*
2152 * 64-bit code selectors are wide open, it's not possible to detect
2153 * 64-bit data or stack selectors without also dragging in assumptions
2154 * about current CS (i.e. that's we're executing in 64-bit mode). So,
2155 * the selinfo user needs to deal with this in the context the info is
2156 * used unfortunately.
2157 */
2158 if ( Desc.Gen.u1Long
2159 && !Desc.Gen.u1DefBig
2160 && (Desc.Gen.u4Type & X86_SEL_TYPE_CODE))
2161 {
2162 /* Note! We ignore the segment limit hacks that was added by AMD. */
2163 pSelInfo->GCPtrBase = 0;
2164 pSelInfo->cbLimit = ~(RTGCUINTPTR)0;
2165 }
2166 else
2167 {
2168 pSelInfo->cbLimit = X86DESC_LIMIT_G(&Desc);
2169 pSelInfo->GCPtrBase = X86DESC_BASE(&Desc);
2170 }
2171 pSelInfo->SelGate = 0;
2172 }
2173 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_LDT
2174 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_AVAIL
2175 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY)
2176 {
2177 /* Note. LDT descriptors are weird in long mode, we ignore the footnote
2178 in the AMD manual here as a simplification. */
2179 pSelInfo->GCPtrBase = X86DESC64_BASE(&Desc);
2180 pSelInfo->cbLimit = X86DESC_LIMIT_G(&Desc);
2181 pSelInfo->SelGate = 0;
2182 }
2183 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE
2184 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TRAP_GATE
2185 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_INT_GATE)
2186 {
2187 pSelInfo->cbLimit = X86DESC64_BASE(&Desc);
2188 pSelInfo->GCPtrBase = Desc.Gate.u16OffsetLow
2189 | ((uint32_t)Desc.Gate.u16OffsetHigh << 16)
2190 | ((uint64_t)Desc.Gate.u32OffsetTop << 32);
2191 pSelInfo->SelGate = Desc.Gate.u16Sel;
2192 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2193 }
2194 else
2195 {
2196 pSelInfo->cbLimit = 0;
2197 pSelInfo->GCPtrBase = 0;
2198 pSelInfo->SelGate = 0;
2199 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2200 }
2201 if (!Desc.Gen.u1Present)
2202 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2203
2204 return VINF_SUCCESS;
2205}
2206
2207
2208/**
2209 * Worker for selmR3GetSelectorInfo32 and SELMR3GetShadowSelectorInfo that
2210 * interprets a legacy descriptor table entry and fills in the selector info
2211 * structure from it.
2212 *
2213 * @param pSelInfo Where to store the selector info. Only the fFlags and
2214 * Sel members have been initialized.
2215 * @param pDesc The legacy descriptor to parse.
2216 */
2217DECLINLINE(void) selmR3SelInfoFromDesc32(PDBGFSELINFO pSelInfo, PCX86DESC pDesc)
2218{
2219 pSelInfo->u.Raw64.au64[1] = 0;
2220 pSelInfo->u.Raw = *pDesc;
2221 if ( pDesc->Gen.u1DescType
2222 || !(pDesc->Gen.u4Type & 4))
2223 {
2224 pSelInfo->cbLimit = X86DESC_LIMIT_G(pDesc);
2225 pSelInfo->GCPtrBase = X86DESC_BASE(pDesc);
2226 pSelInfo->SelGate = 0;
2227 }
2228 else if (pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_UNDEFINED4)
2229 {
2230 pSelInfo->cbLimit = 0;
2231 if (pDesc->Gen.u4Type == X86_SEL_TYPE_SYS_TASK_GATE)
2232 pSelInfo->GCPtrBase = 0;
2233 else
2234 pSelInfo->GCPtrBase = pDesc->Gate.u16OffsetLow
2235 | (uint32_t)pDesc->Gate.u16OffsetHigh << 16;
2236 pSelInfo->SelGate = pDesc->Gate.u16Sel;
2237 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2238 }
2239 else
2240 {
2241 pSelInfo->cbLimit = 0;
2242 pSelInfo->GCPtrBase = 0;
2243 pSelInfo->SelGate = 0;
2244 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2245 }
2246 if (!pDesc->Gen.u1Present)
2247 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2248}
2249
2250
2251/**
2252 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
2253 *
2254 * See SELMR3GetSelectorInfo for details.
2255 *
2256 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
2257 *
2258 * @param pVM Pointer to the VM.
2259 * @param pVCpu Pointer to the VMCPU.
2260 * @param Sel The selector to get info about.
2261 * @param pSelInfo Where to store the information.
2262 */
2263static int selmR3GetSelectorInfo32(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2264{
2265 /*
2266 * Read the descriptor entry
2267 */
2268 pSelInfo->fFlags = 0;
2269 X86DESC Desc;
2270 if ( !(Sel & X86_SEL_LDT)
2271 && ( pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_RPL_LDT)
2272 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_RPL_LDT)
2273 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_RPL_LDT)
2274 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_RPL_LDT)
2275 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_RPL_LDT))
2276 )
2277 {
2278 /*
2279 * Hypervisor descriptor.
2280 */
2281 pSelInfo->fFlags = DBGFSELINFO_FLAGS_HYPER;
2282 if (CPUMIsGuestInProtectedMode(pVCpu))
2283 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2284 else
2285 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2286
2287 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2288 }
2289 else if (CPUMIsGuestInProtectedMode(pVCpu))
2290 {
2291 /*
2292 * Read it from the guest descriptor table.
2293 */
2294 pSelInfo->fFlags = DBGFSELINFO_FLAGS_PROT_MODE;
2295
2296 RTGCPTR GCPtrDesc;
2297 if (!(Sel & X86_SEL_LDT))
2298 {
2299 /* GDT */
2300 VBOXGDTR Gdtr;
2301 CPUMGetGuestGDTR(pVCpu, &Gdtr);
2302 if ((Sel | X86_SEL_RPL_LDT) > Gdtr.cbGdt)
2303 return VERR_INVALID_SELECTOR;
2304 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2305 }
2306 else
2307 {
2308 /* LDT */
2309 uint64_t GCPtrBase;
2310 uint32_t cbLimit;
2311 CPUMGetGuestLdtrEx(pVCpu, &GCPtrBase, &cbLimit);
2312 if ((Sel | X86_SEL_RPL_LDT) > cbLimit)
2313 return VERR_INVALID_SELECTOR;
2314
2315 /* calc the descriptor location. */
2316 GCPtrDesc = GCPtrBase + (Sel & X86_SEL_MASK);
2317 }
2318
2319 /* read the descriptor. */
2320 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2321 if (RT_FAILURE(rc))
2322 return rc;
2323 }
2324 else
2325 {
2326 /*
2327 * We're in real mode.
2328 */
2329 pSelInfo->Sel = Sel;
2330 pSelInfo->GCPtrBase = Sel << 4;
2331 pSelInfo->cbLimit = 0xffff;
2332 pSelInfo->fFlags = DBGFSELINFO_FLAGS_REAL_MODE;
2333 pSelInfo->u.Raw64.au64[0] = 0;
2334 pSelInfo->u.Raw64.au64[1] = 0;
2335 pSelInfo->SelGate = 0;
2336 return VINF_SUCCESS;
2337 }
2338
2339 /*
2340 * Extract the base and limit or sel:offset for gates.
2341 */
2342 pSelInfo->Sel = Sel;
2343 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2344
2345 return VINF_SUCCESS;
2346}
2347
2348
2349/**
2350 * Gets information about a selector.
2351 *
2352 * Intended for the debugger mostly and will prefer the guest descriptor tables
2353 * over the shadow ones.
2354 *
2355 * @retval VINF_SUCCESS on success.
2356 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2357 * descriptor table.
2358 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2359 * is not returned if the selector itself isn't present, you have to
2360 * check that for yourself (see DBGFSELINFO::fFlags).
2361 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2362 * pagetable or page backing the selector table wasn't present.
2363 * @returns Other VBox status code on other errors.
2364 *
2365 * @param pVM Pointer to the VM.
2366 * @param pVCpu Pointer to the VMCPU.
2367 * @param Sel The selector to get info about.
2368 * @param pSelInfo Where to store the information.
2369 */
2370VMMR3DECL(int) SELMR3GetSelectorInfo(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2371{
2372 AssertPtr(pSelInfo);
2373 if (CPUMIsGuestInLongMode(pVCpu))
2374 return selmR3GetSelectorInfo64(pVCpu, Sel, pSelInfo);
2375 return selmR3GetSelectorInfo32(pVM, pVCpu, Sel, pSelInfo);
2376}
2377
2378
2379/**
2380 * Gets information about a selector from the shadow tables.
2381 *
2382 * This is intended to be faster than the SELMR3GetSelectorInfo() method, but
2383 * requires that the caller ensures that the shadow tables are up to date.
2384 *
2385 * @retval VINF_SUCCESS on success.
2386 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2387 * descriptor table.
2388 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2389 * is not returned if the selector itself isn't present, you have to
2390 * check that for yourself (see DBGFSELINFO::fFlags).
2391 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2392 * pagetable or page backing the selector table wasn't present.
2393 * @returns Other VBox status code on other errors.
2394 *
2395 * @param pVM Pointer to the VM.
2396 * @param Sel The selector to get info about.
2397 * @param pSelInfo Where to store the information.
2398 *
2399 * @remarks Don't use this when in hardware assisted virtualization mode.
2400 */
2401VMMR3DECL(int) SELMR3GetShadowSelectorInfo(PVM pVM, RTSEL Sel, PDBGFSELINFO pSelInfo)
2402{
2403 Assert(pSelInfo);
2404
2405 /*
2406 * Read the descriptor entry
2407 */
2408 X86DESC Desc;
2409 if (!(Sel & X86_SEL_LDT))
2410 {
2411 /*
2412 * Global descriptor.
2413 */
2414 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2415 pSelInfo->fFlags = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_MASK_OFF_RPL)
2416 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_MASK_OFF_RPL)
2417 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_MASK_OFF_RPL)
2418 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_MASK_OFF_RPL)
2419 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_MASK_OFF_RPL)
2420 ? DBGFSELINFO_FLAGS_HYPER
2421 : 0;
2422 /** @todo check that the GDT offset is valid. */
2423 }
2424 else
2425 {
2426 /*
2427 * Local Descriptor.
2428 */
2429 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2430 Desc = paLDT[Sel >> X86_SEL_SHIFT];
2431 /** @todo check if the LDT page is actually available. */
2432 /** @todo check that the LDT offset is valid. */
2433 pSelInfo->fFlags = 0;
2434 }
2435 if (CPUMIsGuestInProtectedMode(VMMGetCpu0(pVM)))
2436 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2437 else
2438 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2439
2440 /*
2441 * Extract the base and limit or sel:offset for gates.
2442 */
2443 pSelInfo->Sel = Sel;
2444 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2445
2446 return VINF_SUCCESS;
2447}
2448
2449
2450/**
2451 * Formats a descriptor.
2452 *
2453 * @param Desc Descriptor to format.
2454 * @param Sel Selector number.
2455 * @param pszOutput Output buffer.
2456 * @param cchOutput Size of output buffer.
2457 */
2458static void selmR3FormatDescriptor(X86DESC Desc, RTSEL Sel, char *pszOutput, size_t cchOutput)
2459{
2460 /*
2461 * Make variable description string.
2462 */
2463 static struct
2464 {
2465 unsigned cch;
2466 const char *psz;
2467 } const aTypes[32] =
2468 {
2469#define STRENTRY(str) { sizeof(str) - 1, str }
2470 /* system */
2471 STRENTRY("Reserved0 "), /* 0x00 */
2472 STRENTRY("TSS16Avail "), /* 0x01 */
2473 STRENTRY("LDT "), /* 0x02 */
2474 STRENTRY("TSS16Busy "), /* 0x03 */
2475 STRENTRY("Call16 "), /* 0x04 */
2476 STRENTRY("Task "), /* 0x05 */
2477 STRENTRY("Int16 "), /* 0x06 */
2478 STRENTRY("Trap16 "), /* 0x07 */
2479 STRENTRY("Reserved8 "), /* 0x08 */
2480 STRENTRY("TSS32Avail "), /* 0x09 */
2481 STRENTRY("ReservedA "), /* 0x0a */
2482 STRENTRY("TSS32Busy "), /* 0x0b */
2483 STRENTRY("Call32 "), /* 0x0c */
2484 STRENTRY("ReservedD "), /* 0x0d */
2485 STRENTRY("Int32 "), /* 0x0e */
2486 STRENTRY("Trap32 "), /* 0x0f */
2487 /* non system */
2488 STRENTRY("DataRO "), /* 0x10 */
2489 STRENTRY("DataRO Accessed "), /* 0x11 */
2490 STRENTRY("DataRW "), /* 0x12 */
2491 STRENTRY("DataRW Accessed "), /* 0x13 */
2492 STRENTRY("DataDownRO "), /* 0x14 */
2493 STRENTRY("DataDownRO Accessed "), /* 0x15 */
2494 STRENTRY("DataDownRW "), /* 0x16 */
2495 STRENTRY("DataDownRW Accessed "), /* 0x17 */
2496 STRENTRY("CodeEO "), /* 0x18 */
2497 STRENTRY("CodeEO Accessed "), /* 0x19 */
2498 STRENTRY("CodeER "), /* 0x1a */
2499 STRENTRY("CodeER Accessed "), /* 0x1b */
2500 STRENTRY("CodeConfEO "), /* 0x1c */
2501 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
2502 STRENTRY("CodeConfER "), /* 0x1e */
2503 STRENTRY("CodeConfER Accessed ") /* 0x1f */
2504#undef SYSENTRY
2505 };
2506#define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
2507 char szMsg[128];
2508 char *psz = &szMsg[0];
2509 unsigned i = Desc.Gen.u1DescType << 4 | Desc.Gen.u4Type;
2510 memcpy(psz, aTypes[i].psz, aTypes[i].cch);
2511 psz += aTypes[i].cch;
2512
2513 if (Desc.Gen.u1Present)
2514 ADD_STR(psz, "Present ");
2515 else
2516 ADD_STR(psz, "Not-Present ");
2517 if (Desc.Gen.u1Granularity)
2518 ADD_STR(psz, "Page ");
2519 if (Desc.Gen.u1DefBig)
2520 ADD_STR(psz, "32-bit ");
2521 else
2522 ADD_STR(psz, "16-bit ");
2523#undef ADD_STR
2524 *psz = '\0';
2525
2526 /*
2527 * Limit and Base and format the output.
2528 */
2529 uint32_t u32Limit = X86DESC_LIMIT_G(&Desc);
2530 uint32_t u32Base = X86DESC_BASE(&Desc);
2531
2532 RTStrPrintf(pszOutput, cchOutput, "%04x - %08x %08x - base=%08x limit=%08x dpl=%d %s",
2533 Sel, Desc.au32[0], Desc.au32[1], u32Base, u32Limit, Desc.Gen.u2Dpl, szMsg);
2534}
2535
2536
2537/**
2538 * Dumps a descriptor.
2539 *
2540 * @param Desc Descriptor to dump.
2541 * @param Sel Selector number.
2542 * @param pszMsg Message to prepend the log entry with.
2543 */
2544VMMR3DECL(void) SELMR3DumpDescriptor(X86DESC Desc, RTSEL Sel, const char *pszMsg)
2545{
2546 char szOutput[128];
2547 selmR3FormatDescriptor(Desc, Sel, &szOutput[0], sizeof(szOutput));
2548 Log(("%s: %s\n", pszMsg, szOutput));
2549 NOREF(szOutput[0]);
2550}
2551
2552
2553/**
2554 * Display the shadow gdt.
2555 *
2556 * @param pVM Pointer to the VM.
2557 * @param pHlp The info helpers.
2558 * @param pszArgs Arguments, ignored.
2559 */
2560static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2561{
2562 NOREF(pszArgs);
2563 pHlp->pfnPrintf(pHlp, "Shadow GDT (GCAddr=%RRv):\n", MMHyperR3ToRC(pVM, pVM->selm.s.paGdtR3));
2564 for (unsigned iGDT = 0; iGDT < SELM_GDT_ELEMENTS; iGDT++)
2565 {
2566 if (pVM->selm.s.paGdtR3[iGDT].Gen.u1Present)
2567 {
2568 char szOutput[128];
2569 selmR3FormatDescriptor(pVM->selm.s.paGdtR3[iGDT], iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2570 const char *psz = "";
2571 if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> X86_SEL_SHIFT))
2572 psz = " HyperCS";
2573 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> X86_SEL_SHIFT))
2574 psz = " HyperDS";
2575 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> X86_SEL_SHIFT))
2576 psz = " HyperCS64";
2577 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> X86_SEL_SHIFT))
2578 psz = " HyperTSS";
2579 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
2580 psz = " HyperTSSTrap08";
2581 pHlp->pfnPrintf(pHlp, "%s%s\n", szOutput, psz);
2582 }
2583 }
2584}
2585
2586
2587/**
2588 * Display the guest gdt.
2589 *
2590 * @param pVM Pointer to the VM.
2591 * @param pHlp The info helpers.
2592 * @param pszArgs Arguments, ignored.
2593 */
2594static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2595{
2596 /** @todo SMP support! */
2597 PVMCPU pVCpu = &pVM->aCpus[0];
2598
2599 VBOXGDTR GDTR;
2600 CPUMGetGuestGDTR(pVCpu, &GDTR);
2601 RTGCPTR GCPtrGDT = GDTR.pGdt;
2602 unsigned cGDTs = ((unsigned)GDTR.cbGdt + 1) / sizeof(X86DESC);
2603
2604 pHlp->pfnPrintf(pHlp, "Guest GDT (GCAddr=%RGv limit=%x):\n", GCPtrGDT, GDTR.cbGdt);
2605 for (unsigned iGDT = 0; iGDT < cGDTs; iGDT++, GCPtrGDT += sizeof(X86DESC))
2606 {
2607 X86DESC GDTE;
2608 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTE, GCPtrGDT, sizeof(GDTE));
2609 if (RT_SUCCESS(rc))
2610 {
2611 if (GDTE.Gen.u1Present)
2612 {
2613 char szOutput[128];
2614 selmR3FormatDescriptor(GDTE, iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2615 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2616 }
2617 }
2618 else if (rc == VERR_PAGE_NOT_PRESENT)
2619 {
2620 if ((GCPtrGDT & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2621 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", iGDT << X86_SEL_SHIFT, GCPtrGDT);
2622 }
2623 else
2624 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", iGDT << X86_SEL_SHIFT, rc, GCPtrGDT);
2625 }
2626 NOREF(pszArgs);
2627}
2628
2629
2630/**
2631 * Display the shadow ldt.
2632 *
2633 * @param pVM Pointer to the VM.
2634 * @param pHlp The info helpers.
2635 * @param pszArgs Arguments, ignored.
2636 */
2637static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2638{
2639 unsigned cLDTs = ((unsigned)pVM->selm.s.cbLdtLimit + 1) >> X86_SEL_SHIFT;
2640 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2641 pHlp->pfnPrintf(pHlp, "Shadow LDT (GCAddr=%RRv limit=%#x):\n", pVM->selm.s.pvLdtRC + pVM->selm.s.offLdtHyper, pVM->selm.s.cbLdtLimit);
2642 for (unsigned iLDT = 0; iLDT < cLDTs; iLDT++)
2643 {
2644 if (paLDT[iLDT].Gen.u1Present)
2645 {
2646 char szOutput[128];
2647 selmR3FormatDescriptor(paLDT[iLDT], (iLDT << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2648 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2649 }
2650 }
2651 NOREF(pszArgs);
2652}
2653
2654
2655/**
2656 * Display the guest ldt.
2657 *
2658 * @param pVM Pointer to the VM.
2659 * @param pHlp The info helpers.
2660 * @param pszArgs Arguments, ignored.
2661 */
2662static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2663{
2664 /** @todo SMP support! */
2665 PVMCPU pVCpu = &pVM->aCpus[0];
2666
2667 uint64_t GCPtrLdt;
2668 uint32_t cbLdt;
2669 RTSEL SelLdt = CPUMGetGuestLdtrEx(pVCpu, &GCPtrLdt, &cbLdt);
2670 if (!(SelLdt & X86_SEL_MASK_OFF_RPL))
2671 {
2672 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x): Null-Selector\n", SelLdt);
2673 return;
2674 }
2675
2676 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x GCAddr=%RX64 limit=%x):\n", SelLdt, GCPtrLdt, cbLdt);
2677 unsigned cLdts = (cbLdt + 1) >> X86_SEL_SHIFT;
2678 for (unsigned iLdt = 0; iLdt < cLdts; iLdt++, GCPtrLdt += sizeof(X86DESC))
2679 {
2680 X86DESC LdtE;
2681 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &LdtE, GCPtrLdt, sizeof(LdtE));
2682 if (RT_SUCCESS(rc))
2683 {
2684 if (LdtE.Gen.u1Present)
2685 {
2686 char szOutput[128];
2687 selmR3FormatDescriptor(LdtE, (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2688 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2689 }
2690 }
2691 else if (rc == VERR_PAGE_NOT_PRESENT)
2692 {
2693 if ((GCPtrLdt & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2694 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, GCPtrLdt);
2695 }
2696 else
2697 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, rc, GCPtrLdt);
2698 }
2699 NOREF(pszArgs);
2700}
2701
2702
2703/**
2704 * Dumps the hypervisor GDT
2705 *
2706 * @param pVM Pointer to the VM.
2707 */
2708VMMR3DECL(void) SELMR3DumpHyperGDT(PVM pVM)
2709{
2710 DBGFR3Info(pVM->pUVM, "gdt", NULL, NULL);
2711}
2712
2713
2714/**
2715 * Dumps the hypervisor LDT
2716 *
2717 * @param pVM Pointer to the VM.
2718 */
2719VMMR3DECL(void) SELMR3DumpHyperLDT(PVM pVM)
2720{
2721 DBGFR3Info(pVM->pUVM, "ldt", NULL, NULL);
2722}
2723
2724
2725/**
2726 * Dumps the guest GDT
2727 *
2728 * @param pVM Pointer to the VM.
2729 */
2730VMMR3DECL(void) SELMR3DumpGuestGDT(PVM pVM)
2731{
2732 DBGFR3Info(pVM->pUVM, "gdtguest", NULL, NULL);
2733}
2734
2735
2736/**
2737 * Dumps the guest LDT
2738 *
2739 * @param pVM Pointer to the VM.
2740 */
2741VMMR3DECL(void) SELMR3DumpGuestLDT(PVM pVM)
2742{
2743 DBGFR3Info(pVM->pUVM, "ldtguest", NULL, NULL);
2744}
2745
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette