VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/SELM.cpp@ 42418

Last change on this file since 42418 was 42418, checked in by vboxsync, 12 years ago

try to fix the burns

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 105.7 KB
Line 
1/* $Id: SELM.cpp 42418 2012-07-26 16:24:26Z vboxsync $ */
2/** @file
3 * SELM - The Selector Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_selm SELM - The Selector Manager
19 *
20 * SELM takes care of GDT, LDT and TSS shadowing in raw-mode, and the injection
21 * of a few hyper selector for the raw-mode context. In the hardware assisted
22 * virtualization mode its only task is to decode entries in the guest GDT or
23 * LDT once in a while.
24 *
25 * @see grp_selm
26 *
27 *
28 * @section seg_selm_shadowing Shadowing
29 *
30 * SELMR3UpdateFromCPUM() and SELMR3SyncTSS() does the bulk synchronization
31 * work. The three structures (GDT, LDT, TSS) are all shadowed wholesale atm.
32 * The idea is to do it in a more on-demand fashion when we get time. There
33 * also a whole bunch of issues with the current synchronization of all three
34 * tables, see notes and todos in the code.
35 *
36 * When the guest makes changes to the GDT we will try update the shadow copy
37 * without involving SELMR3UpdateFromCPUM(), see selmGCSyncGDTEntry().
38 *
39 * When the guest make LDT changes we'll trigger a full resync of the LDT
40 * (SELMR3UpdateFromCPUM()), which, needless to say, isn't optimal.
41 *
42 * The TSS shadowing is limited to the fields we need to care about, namely SS0
43 * and ESP0. The Patch Manager makes use of these. We monitor updates to the
44 * guest TSS and will try keep our SS0 and ESP0 copies up to date this way
45 * rather than go the SELMR3SyncTSS() route.
46 *
47 * When in raw-mode SELM also injects a few extra GDT selectors which are used
48 * by the raw-mode (hyper) context. These start their life at the high end of
49 * the table and will be relocated when the guest tries to make use of them...
50 * Well, that was that idea at least, only the code isn't quite there yet which
51 * is why we have trouble with guests which actually have a full sized GDT.
52 *
53 * So, the summary of the current GDT, LDT and TSS shadowing is that there is a
54 * lot of relatively simple and enjoyable work to be done, see @bugref{3267}.
55 *
56 */
57
58/*******************************************************************************
59* Header Files *
60*******************************************************************************/
61#define LOG_GROUP LOG_GROUP_SELM
62#include <VBox/vmm/selm.h>
63#include <VBox/vmm/cpum.h>
64#include <VBox/vmm/stam.h>
65#include <VBox/vmm/mm.h>
66#include <VBox/vmm/ssm.h>
67#include <VBox/vmm/pgm.h>
68#include <VBox/vmm/trpm.h>
69#include <VBox/vmm/dbgf.h>
70#include "SELMInternal.h"
71#include <VBox/vmm/vm.h>
72#include <VBox/err.h>
73#include <VBox/param.h>
74
75#include <iprt/assert.h>
76#include <VBox/log.h>
77#include <iprt/asm.h>
78#include <iprt/string.h>
79#include <iprt/thread.h>
80#include <iprt/string.h>
81
82
83/**
84 * Enable or disable tracking of Shadow GDT/LDT/TSS.
85 * @{
86 */
87#define SELM_TRACK_SHADOW_GDT_CHANGES
88#define SELM_TRACK_SHADOW_LDT_CHANGES
89#define SELM_TRACK_SHADOW_TSS_CHANGES
90/** @} */
91
92
93/** SELM saved state version. */
94#define SELM_SAVED_STATE_VERSION 5
95
96
97/*******************************************************************************
98* Internal Functions *
99*******************************************************************************/
100static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM);
101static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
102static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
103static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
104static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
105static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
106static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
107static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
108static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
109static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
110//static DECLCALLBACK(void) selmR3InfoTss(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
111//static DECLCALLBACK(void) selmR3InfoTssGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
112
113
114/*******************************************************************************
115* Global Variables *
116*******************************************************************************/
117#ifdef LOG_ENABLED
118/** Segment register names. */
119static char const g_aszSRegNms[X86_SREG_COUNT][4] = { "ES", "CS", "SS", "DS", "FS", "GS" };
120#endif
121
122
123/**
124 * Initializes the SELM.
125 *
126 * @returns VBox status code.
127 * @param pVM Pointer to the VM.
128 */
129VMMR3DECL(int) SELMR3Init(PVM pVM)
130{
131 LogFlow(("SELMR3Init\n"));
132
133 /*
134 * Assert alignment and sizes.
135 * (The TSS block requires contiguous back.)
136 */
137 AssertCompile(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding)); AssertRelease(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding));
138 AssertCompileMemberAlignment(VM, selm.s, 32); AssertRelease(!(RT_OFFSETOF(VM, selm.s) & 31));
139#if 0 /* doesn't work */
140 AssertCompile((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
141 AssertCompile((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
142#endif
143 AssertRelease((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
144 AssertRelease((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
145 AssertRelease(sizeof(pVM->selm.s.Tss.IntRedirBitmap) == 0x20);
146
147 /*
148 * Init the structure.
149 */
150 pVM->selm.s.offVM = RT_OFFSETOF(VM, selm);
151 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = (SELM_GDT_ELEMENTS - 0x1) << 3;
152 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = (SELM_GDT_ELEMENTS - 0x2) << 3;
153 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = (SELM_GDT_ELEMENTS - 0x3) << 3;
154 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = (SELM_GDT_ELEMENTS - 0x4) << 3;
155 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = (SELM_GDT_ELEMENTS - 0x5) << 3;
156
157 /*
158 * Allocate GDT table.
159 */
160 int rc = MMR3HyperAllocOnceNoRel(pVM, sizeof(pVM->selm.s.paGdtR3[0]) * SELM_GDT_ELEMENTS,
161 PAGE_SIZE, MM_TAG_SELM, (void **)&pVM->selm.s.paGdtR3);
162 AssertRCReturn(rc, rc);
163
164 /*
165 * Allocate LDT area.
166 */
167 rc = MMR3HyperAllocOnceNoRel(pVM, _64K + PAGE_SIZE, PAGE_SIZE, MM_TAG_SELM, &pVM->selm.s.pvLdtR3);
168 AssertRCReturn(rc, rc);
169
170 /*
171 * Init Guest's and Shadow GDT, LDT, TSS changes control variables.
172 */
173 pVM->selm.s.cbEffGuestGdtLimit = 0;
174 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
175 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
176 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
177
178 pVM->selm.s.paGdtRC = NIL_RTRCPTR; /* Must be set in SELMR3Relocate because of monitoring. */
179 pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
180 pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
181 pVM->selm.s.GCSelTss = RTSEL_MAX;
182
183 pVM->selm.s.fDisableMonitoring = false;
184 pVM->selm.s.fSyncTSSRing0Stack = false;
185
186 /* The I/O bitmap starts right after the virtual interrupt redirection bitmap. Outside the TSS on purpose; the CPU will not check it
187 * for I/O operations. */
188 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
189 /* bit set to 1 means no redirection */
190 memset(pVM->selm.s.Tss.IntRedirBitmap, 0xff, sizeof(pVM->selm.s.Tss.IntRedirBitmap));
191
192 /*
193 * Register the saved state data unit.
194 */
195 rc = SSMR3RegisterInternal(pVM, "selm", 1, SELM_SAVED_STATE_VERSION, sizeof(SELM),
196 NULL, NULL, NULL,
197 NULL, selmR3Save, NULL,
198 NULL, selmR3Load, selmR3LoadDone);
199 if (RT_FAILURE(rc))
200 return rc;
201
202 /*
203 * Statistics.
204 */
205 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest GDT.");
206 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest GDT.");
207 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestLDT, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/LDT", STAMUNIT_OCCURENCES, "The number of writes to the Guest LDT was detected.");
208 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS.");
209 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSRedir, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSRedir",STAMUNIT_OCCURENCES, "The number of handled redir bitmap writes to the Guest TSS.");
210 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandledChanged,STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSIntChg", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS where the R0 stack changed.");
211 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest TSS.");
212 STAM_REG(pVM, &pVM->selm.s.StatTSSSync, STAMTYPE_PROFILE, "/PROF/SELM/TSSSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3SyncTSS() body.");
213 STAM_REG(pVM, &pVM->selm.s.StatUpdateFromCPUM, STAMTYPE_PROFILE, "/PROF/SELM/UpdateFromCPUM", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3UpdateFromCPUM() body.");
214
215 STAM_REL_REG(pVM, &pVM->selm.s.StatHyperSelsChanged, STAMTYPE_COUNTER, "/SELM/HyperSels/Changed", STAMUNIT_OCCURENCES, "The number of times we had to relocate our hypervisor selectors.");
216 STAM_REL_REG(pVM, &pVM->selm.s.StatScanForHyperSels, STAMTYPE_COUNTER, "/SELM/HyperSels/Scan", STAMUNIT_OCCURENCES, "The number of times we had find free hypervisor selectors.");
217
218 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleES", STAMUNIT_OCCURENCES, "Stale ES was detected in UpdateFromCPUM.");
219 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleCS", STAMUNIT_OCCURENCES, "Stale CS was detected in UpdateFromCPUM.");
220 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleSS", STAMUNIT_OCCURENCES, "Stale SS was detected in UpdateFromCPUM.");
221 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleDS", STAMUNIT_OCCURENCES, "Stale DS was detected in UpdateFromCPUM.");
222 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleFS", STAMUNIT_OCCURENCES, "Stale FS was detected in UpdateFromCPUM.");
223 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleGS", STAMUNIT_OCCURENCES, "Stale GS was detected in UpdateFromCPUM.");
224
225 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleES", STAMUNIT_OCCURENCES, "Already stale ES in UpdateFromCPUM.");
226 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleCS", STAMUNIT_OCCURENCES, "Already stale CS in UpdateFromCPUM.");
227 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleSS", STAMUNIT_OCCURENCES, "Already stale SS in UpdateFromCPUM.");
228 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleDS", STAMUNIT_OCCURENCES, "Already stale DS in UpdateFromCPUM.");
229 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleFS", STAMUNIT_OCCURENCES, "Already stale FS in UpdateFromCPUM.");
230 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleGS", STAMUNIT_OCCURENCES, "Already stale GS in UpdateFromCPUM.");
231
232 STAM_REL_REG(pVM, &pVM->selm.s.StatStaleToUnstaleSReg, STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/StaleToUnstale", STAMUNIT_OCCURENCES, "Transitions from stale to unstale UpdateFromCPUM.");
233
234 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedES", STAMUNIT_OCCURENCES, "Updated hidden ES values in UpdateFromCPUM.");
235 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedCS", STAMUNIT_OCCURENCES, "Updated hidden CS values in UpdateFromCPUM.");
236 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedSS", STAMUNIT_OCCURENCES, "Updated hidden SS values in UpdateFromCPUM.");
237 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedDS", STAMUNIT_OCCURENCES, "Updated hidden DS values in UpdateFromCPUM.");
238 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedFS", STAMUNIT_OCCURENCES, "Updated hidden FS values in UpdateFromCPUM.");
239 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedGS", STAMUNIT_OCCURENCES, "Updated hidden GS values in UpdateFromCPUM.");
240
241 STAM_REG( pVM, &pVM->selm.s.StatLoadHidSelGst, STAMTYPE_COUNTER, "/SELM/LoadHidSel/LoadedGuest", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Loaded from guest tables.");
242 STAM_REG( pVM, &pVM->selm.s.StatLoadHidSelShw, STAMTYPE_COUNTER, "/SELM/LoadHidSel/LoadedShadow", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Loaded from shadow tables.");
243 STAM_REL_REG(pVM, &pVM->selm.s.StatLoadHidSelReadErrors, STAMTYPE_COUNTER, "/SELM/LoadHidSel/GstReadErrors", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Guest table read errors.");
244 STAM_REL_REG(pVM, &pVM->selm.s.StatLoadHidSelGstNoGood, STAMTYPE_COUNTER, "/SELM/LoadHidSel/NoGoodGuest", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: No good guest table entry.");
245
246 /*
247 * Default action when entering raw mode for the first time
248 */
249 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
250 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
251 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
252 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
253
254 /*
255 * Register info handlers.
256 */
257 DBGFR3InfoRegisterInternal(pVM, "gdt", "Displays the shadow GDT. No arguments.", &selmR3InfoGdt);
258 DBGFR3InfoRegisterInternal(pVM, "gdtguest", "Displays the guest GDT. No arguments.", &selmR3InfoGdtGuest);
259 DBGFR3InfoRegisterInternal(pVM, "ldt", "Displays the shadow LDT. No arguments.", &selmR3InfoLdt);
260 DBGFR3InfoRegisterInternal(pVM, "ldtguest", "Displays the guest LDT. No arguments.", &selmR3InfoLdtGuest);
261 //DBGFR3InfoRegisterInternal(pVM, "tss", "Displays the shadow TSS. No arguments.", &selmR3InfoTss);
262 //DBGFR3InfoRegisterInternal(pVM, "tssguest", "Displays the guest TSS. No arguments.", &selmR3InfoTssGuest);
263
264 return rc;
265}
266
267
268/**
269 * Finalizes HMA page attributes.
270 *
271 * @returns VBox status code.
272 * @param pVM Pointer to the VM.
273 */
274VMMR3DECL(int) SELMR3InitFinalize(PVM pVM)
275{
276 /** @cfgm{/DoubleFault,bool,false}
277 * Enables catching of double faults in the raw-mode context VMM code. This can
278 * be used when the triple faults or hangs occur and one suspect an unhandled
279 * double fault. This is not enabled by default because it means making the
280 * hyper selectors writeable for all supervisor code, including the guest's.
281 * The double fault is a task switch and thus requires write access to the GDT
282 * of the TSS (to set it busy), to the old TSS (to store state), and to the Trap
283 * 8 TSS for the back link.
284 */
285 bool f;
286#if defined(DEBUG_bird)
287 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, true);
288#else
289 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, false);
290#endif
291 AssertLogRelRCReturn(rc, rc);
292 if (f)
293 {
294 PX86DESC paGdt = pVM->selm.s.paGdtR3;
295 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3]), sizeof(paGdt[0]),
296 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
297 AssertRC(rc);
298 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3]), sizeof(paGdt[0]),
299 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
300 AssertRC(rc);
301 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]),
302 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
303 AssertRC(rc);
304 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]),
305 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
306 AssertRC(rc);
307 }
308 return VINF_SUCCESS;
309}
310
311
312/**
313 * Setup the hypervisor GDT selectors in our shadow table
314 *
315 * @param pVM Pointer to the VM.
316 */
317static void selmR3SetupHyperGDTSelectors(PVM pVM)
318{
319 PX86DESC paGdt = pVM->selm.s.paGdtR3;
320
321 /*
322 * Set up global code and data descriptors for use in the guest context.
323 * Both are wide open (base 0, limit 4GB)
324 */
325 PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> 3];
326 pDesc->Gen.u16LimitLow = 0xffff;
327 pDesc->Gen.u4LimitHigh = 0xf;
328 pDesc->Gen.u16BaseLow = 0;
329 pDesc->Gen.u8BaseHigh1 = 0;
330 pDesc->Gen.u8BaseHigh2 = 0;
331 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
332 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
333 pDesc->Gen.u2Dpl = 0; /* supervisor */
334 pDesc->Gen.u1Present = 1;
335 pDesc->Gen.u1Available = 0;
336 pDesc->Gen.u1Long = 0;
337 pDesc->Gen.u1DefBig = 1; /* def 32 bit */
338 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
339
340 /* data */
341 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> 3];
342 pDesc->Gen.u16LimitLow = 0xffff;
343 pDesc->Gen.u4LimitHigh = 0xf;
344 pDesc->Gen.u16BaseLow = 0;
345 pDesc->Gen.u8BaseHigh1 = 0;
346 pDesc->Gen.u8BaseHigh2 = 0;
347 pDesc->Gen.u4Type = X86_SEL_TYPE_RW_ACC;
348 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
349 pDesc->Gen.u2Dpl = 0; /* supervisor */
350 pDesc->Gen.u1Present = 1;
351 pDesc->Gen.u1Available = 0;
352 pDesc->Gen.u1Long = 0;
353 pDesc->Gen.u1DefBig = 1; /* big */
354 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
355
356 /* 64-bit mode code (& data?) */
357 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> 3];
358 pDesc->Gen.u16LimitLow = 0xffff;
359 pDesc->Gen.u4LimitHigh = 0xf;
360 pDesc->Gen.u16BaseLow = 0;
361 pDesc->Gen.u8BaseHigh1 = 0;
362 pDesc->Gen.u8BaseHigh2 = 0;
363 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
364 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
365 pDesc->Gen.u2Dpl = 0; /* supervisor */
366 pDesc->Gen.u1Present = 1;
367 pDesc->Gen.u1Available = 0;
368 pDesc->Gen.u1Long = 1; /* The Long (L) attribute bit. */
369 pDesc->Gen.u1DefBig = 0; /* With L=1 this must be 0. */
370 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
371
372 /*
373 * TSS descriptor
374 */
375 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
376 RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
377 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
378 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
379 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
380 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
381 pDesc->Gen.u4LimitHigh = 0;
382 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
383 pDesc->Gen.u1DescType = 0; /* system */
384 pDesc->Gen.u2Dpl = 0; /* supervisor */
385 pDesc->Gen.u1Present = 1;
386 pDesc->Gen.u1Available = 0;
387 pDesc->Gen.u1Long = 0;
388 pDesc->Gen.u1DefBig = 0;
389 pDesc->Gen.u1Granularity = 0; /* byte limit */
390
391 /*
392 * TSS descriptor for trap 08
393 */
394 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3];
395 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
396 pDesc->Gen.u4LimitHigh = 0;
397 RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.TssTrap08);
398 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
399 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
400 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
401 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
402 pDesc->Gen.u1DescType = 0; /* system */
403 pDesc->Gen.u2Dpl = 0; /* supervisor */
404 pDesc->Gen.u1Present = 1;
405 pDesc->Gen.u1Available = 0;
406 pDesc->Gen.u1Long = 0;
407 pDesc->Gen.u1DefBig = 0;
408 pDesc->Gen.u1Granularity = 0; /* byte limit */
409}
410
411/**
412 * Applies relocations to data and code managed by this
413 * component. This function will be called at init and
414 * whenever the VMM need to relocate it self inside the GC.
415 *
416 * @param pVM The VM.
417 */
418VMMR3DECL(void) SELMR3Relocate(PVM pVM)
419{
420 PX86DESC paGdt = pVM->selm.s.paGdtR3;
421 LogFlow(("SELMR3Relocate\n"));
422
423 for (VMCPUID i = 0; i < pVM->cCpus; i++)
424 {
425 PVMCPU pVCpu = &pVM->aCpus[i];
426
427 /*
428 * Update GDTR and selector.
429 */
430 CPUMSetHyperGDTR(pVCpu, MMHyperR3ToRC(pVM, paGdt), SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1);
431
432 /** @todo selector relocations should be a separate operation? */
433 CPUMSetHyperCS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]);
434 CPUMSetHyperDS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
435 CPUMSetHyperES(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
436 CPUMSetHyperSS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
437 CPUMSetHyperTR(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]);
438 }
439
440 selmR3SetupHyperGDTSelectors(pVM);
441
442/** @todo SELM must be called when any of the CR3s changes during a cpu mode change. */
443/** @todo PGM knows the proper CR3 values these days, not CPUM. */
444 /*
445 * Update the TSSes.
446 */
447 /* Only applies to raw mode which supports only 1 VCPU */
448 PVMCPU pVCpu = &pVM->aCpus[0];
449
450 /* Current TSS */
451 pVM->selm.s.Tss.cr3 = PGMGetHyperCR3(pVCpu);
452 pVM->selm.s.Tss.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
453 pVM->selm.s.Tss.esp0 = VMMGetStackRC(pVCpu);
454 pVM->selm.s.Tss.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
455 pVM->selm.s.Tss.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
456 pVM->selm.s.Tss.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
457 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
458
459 /* trap 08 */
460 pVM->selm.s.TssTrap08.cr3 = PGMGetInterRCCR3(pVM, pVCpu); /* this should give use better survival chances. */
461 pVM->selm.s.TssTrap08.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
462 pVM->selm.s.TssTrap08.ss = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
463 pVM->selm.s.TssTrap08.esp0 = VMMGetStackRC(pVCpu) - PAGE_SIZE / 2; /* upper half can be analysed this way. */
464 pVM->selm.s.TssTrap08.esp = pVM->selm.s.TssTrap08.esp0;
465 pVM->selm.s.TssTrap08.ebp = pVM->selm.s.TssTrap08.esp0;
466 pVM->selm.s.TssTrap08.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
467 pVM->selm.s.TssTrap08.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
468 pVM->selm.s.TssTrap08.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
469 pVM->selm.s.TssTrap08.fs = 0;
470 pVM->selm.s.TssTrap08.gs = 0;
471 pVM->selm.s.TssTrap08.selLdt = 0;
472 pVM->selm.s.TssTrap08.eflags = 0x2; /* all cleared */
473 pVM->selm.s.TssTrap08.ecx = VM_RC_ADDR(pVM, &pVM->selm.s.Tss); /* setup ecx to normal Hypervisor TSS address. */
474 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.ecx;
475 pVM->selm.s.TssTrap08.eax = pVM->selm.s.TssTrap08.ecx;
476 pVM->selm.s.TssTrap08.edx = VM_RC_ADDR(pVM, pVM); /* setup edx VM address. */
477 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.edx;
478 pVM->selm.s.TssTrap08.ebx = pVM->selm.s.TssTrap08.edx;
479 pVM->selm.s.TssTrap08.offIoBitmap = sizeof(VBOXTSS);
480 /* TRPM will be updating the eip */
481
482 if ( !pVM->selm.s.fDisableMonitoring
483 && !VMMIsHwVirtExtForced(pVM))
484 {
485 /*
486 * Update shadow GDT/LDT/TSS write access handlers.
487 */
488 int rc;
489#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
490 if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
491 {
492 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.paGdtRC);
493 AssertRC(rc);
494 }
495 pVM->selm.s.paGdtRC = MMHyperR3ToRC(pVM, paGdt);
496 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.paGdtRC,
497 pVM->selm.s.paGdtRC + SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1,
498 0, 0, "selmRCShadowGDTWriteHandler", 0, "Shadow GDT write access handler");
499 AssertRC(rc);
500#endif
501#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
502 if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
503 {
504 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvMonShwTssRC);
505 AssertRC(rc);
506 }
507 pVM->selm.s.pvMonShwTssRC = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
508 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvMonShwTssRC,
509 pVM->selm.s.pvMonShwTssRC + sizeof(pVM->selm.s.Tss) - 1,
510 0, 0, "selmRCShadowTSSWriteHandler", 0, "Shadow TSS write access handler");
511 AssertRC(rc);
512#endif
513
514 /*
515 * Update the GC LDT region handler and address.
516 */
517#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
518 if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
519 {
520 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvLdtRC);
521 AssertRC(rc);
522 }
523#endif
524 pVM->selm.s.pvLdtRC = MMHyperR3ToRC(pVM, pVM->selm.s.pvLdtR3);
525#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
526 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvLdtRC,
527 pVM->selm.s.pvLdtRC + _64K + PAGE_SIZE - 1,
528 0, 0, "selmRCShadowLDTWriteHandler", 0, "Shadow LDT write access handler");
529 AssertRC(rc);
530#endif
531 }
532}
533
534
535/**
536 * Terminates the SELM.
537 *
538 * Termination means cleaning up and freeing all resources,
539 * the VM it self is at this point powered off or suspended.
540 *
541 * @returns VBox status code.
542 * @param pVM Pointer to the VM.
543 */
544VMMR3DECL(int) SELMR3Term(PVM pVM)
545{
546 NOREF(pVM);
547 return 0;
548}
549
550
551/**
552 * The VM is being reset.
553 *
554 * For the SELM component this means that any GDT/LDT/TSS monitors
555 * needs to be removed.
556 *
557 * @param pVM Pointer to the VM.
558 */
559VMMR3DECL(void) SELMR3Reset(PVM pVM)
560{
561 LogFlow(("SELMR3Reset:\n"));
562 VM_ASSERT_EMT(pVM);
563
564 /*
565 * Uninstall guest GDT/LDT/TSS write access handlers.
566 */
567 int rc;
568 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
569 {
570 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
571 AssertRC(rc);
572 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
573 pVM->selm.s.GuestGdtr.cbGdt = 0;
574 }
575 pVM->selm.s.fGDTRangeRegistered = false;
576 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
577 {
578 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
579 AssertRC(rc);
580 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
581 }
582 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
583 {
584 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
585 AssertRC(rc);
586 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
587 pVM->selm.s.GCSelTss = RTSEL_MAX;
588 }
589
590 /*
591 * Re-initialize other members.
592 */
593 pVM->selm.s.cbLdtLimit = 0;
594 pVM->selm.s.offLdtHyper = 0;
595 pVM->selm.s.cbMonitoredGuestTss = 0;
596
597 pVM->selm.s.fSyncTSSRing0Stack = false;
598
599 /*
600 * Default action when entering raw mode for the first time
601 */
602 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
603 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
604 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
605 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
606}
607
608/**
609 * Disable GDT/LDT/TSS monitoring and syncing
610 *
611 * @param pVM Pointer to the VM.
612 */
613VMMR3DECL(void) SELMR3DisableMonitoring(PVM pVM)
614{
615 /*
616 * Uninstall guest GDT/LDT/TSS write access handlers.
617 */
618 int rc;
619 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
620 {
621 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
622 AssertRC(rc);
623 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
624 pVM->selm.s.GuestGdtr.cbGdt = 0;
625 }
626 pVM->selm.s.fGDTRangeRegistered = false;
627 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
628 {
629 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
630 AssertRC(rc);
631 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
632 }
633 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
634 {
635 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
636 AssertRC(rc);
637 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
638 pVM->selm.s.GCSelTss = RTSEL_MAX;
639 }
640
641 /*
642 * Unregister shadow GDT/LDT/TSS write access handlers.
643 */
644#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
645 if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
646 {
647 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.paGdtRC);
648 AssertRC(rc);
649 pVM->selm.s.paGdtRC = NIL_RTRCPTR;
650 }
651#endif
652#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
653 if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
654 {
655 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvMonShwTssRC);
656 AssertRC(rc);
657 pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
658 }
659#endif
660#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
661 if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
662 {
663 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvLdtRC);
664 AssertRC(rc);
665 pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
666 }
667#endif
668
669 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
670 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
671 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
672 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
673
674 pVM->selm.s.fDisableMonitoring = true;
675}
676
677
678/**
679 * Execute state save operation.
680 *
681 * @returns VBox status code.
682 * @param pVM Pointer to the VM.
683 * @param pSSM SSM operation handle.
684 */
685static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM)
686{
687 LogFlow(("selmR3Save:\n"));
688
689 /*
690 * Save the basic bits - fortunately all the other things can be resynced on load.
691 */
692 PSELM pSelm = &pVM->selm.s;
693
694 SSMR3PutBool(pSSM, pSelm->fDisableMonitoring);
695 SSMR3PutBool(pSSM, pSelm->fSyncTSSRing0Stack);
696 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS]);
697 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_DS]);
698 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]);
699 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]); /* reserved for DS64. */
700 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS]);
701 return SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]);
702}
703
704
705/**
706 * Execute state load operation.
707 *
708 * @returns VBox status code.
709 * @param pVM Pointer to the VM.
710 * @param pSSM SSM operation handle.
711 * @param uVersion Data layout version.
712 * @param uPass The data pass.
713 */
714static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
715{
716 LogFlow(("selmR3Load:\n"));
717 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
718
719 /*
720 * Validate version.
721 */
722 if (uVersion != SELM_SAVED_STATE_VERSION)
723 {
724 AssertMsgFailed(("selmR3Load: Invalid version uVersion=%d!\n", uVersion));
725 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
726 }
727
728 /*
729 * Do a reset.
730 */
731 SELMR3Reset(pVM);
732
733 /* Get the monitoring flag. */
734 SSMR3GetBool(pSSM, &pVM->selm.s.fDisableMonitoring);
735
736 /* Get the TSS state flag. */
737 SSMR3GetBool(pSSM, &pVM->selm.s.fSyncTSSRing0Stack);
738
739 /*
740 * Get the selectors.
741 */
742 RTSEL SelCS;
743 SSMR3GetSel(pSSM, &SelCS);
744 RTSEL SelDS;
745 SSMR3GetSel(pSSM, &SelDS);
746 RTSEL SelCS64;
747 SSMR3GetSel(pSSM, &SelCS64);
748 RTSEL SelDS64;
749 SSMR3GetSel(pSSM, &SelDS64);
750 RTSEL SelTSS;
751 SSMR3GetSel(pSSM, &SelTSS);
752 RTSEL SelTSSTrap08;
753 SSMR3GetSel(pSSM, &SelTSSTrap08);
754
755 /* Copy the selectors; they will be checked during relocation. */
756 PSELM pSelm = &pVM->selm.s;
757 pSelm->aHyperSel[SELM_HYPER_SEL_CS] = SelCS;
758 pSelm->aHyperSel[SELM_HYPER_SEL_DS] = SelDS;
759 pSelm->aHyperSel[SELM_HYPER_SEL_CS64] = SelCS64;
760 pSelm->aHyperSel[SELM_HYPER_SEL_TSS] = SelTSS;
761 pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SelTSSTrap08;
762
763 return VINF_SUCCESS;
764}
765
766
767/**
768 * Sync the GDT, LDT and TSS after loading the state.
769 *
770 * Just to play save, we set the FFs to force syncing before
771 * executing GC code.
772 *
773 * @returns VBox status code.
774 * @param pVM Pointer to the VM.
775 * @param pSSM SSM operation handle.
776 */
777static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
778{
779 PVMCPU pVCpu = VMMGetCpu(pVM);
780
781 LogFlow(("selmR3LoadDone:\n"));
782
783 /*
784 * Don't do anything if it's a load failure.
785 */
786 int rc = SSMR3HandleGetStatus(pSSM);
787 if (RT_FAILURE(rc))
788 return VINF_SUCCESS;
789
790 /*
791 * Do the syncing if we're in protected mode.
792 */
793 if (PGMGetGuestMode(pVCpu) != PGMMODE_REAL)
794 {
795 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
796 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
797 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
798 SELMR3UpdateFromCPUM(pVM, pVCpu);
799 }
800
801 /*
802 * Flag everything for resync on next raw mode entry.
803 */
804 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
805 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
806 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
807
808 return VINF_SUCCESS;
809}
810
811
812/**
813 * Updates (syncs) the shadow GDT.
814 *
815 * @returns VBox status code.
816 * @param pVM The VM handle.
817 * @param pVCpu The current virtual CPU.
818 */
819static int selmR3UpdateShadowGdt(PVM pVM, PVMCPU pVCpu)
820{
821 /*
822 * Always assume the best...
823 */
824 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
825
826 /* If the GDT was changed, then make sure the LDT is checked too */
827 /** @todo only do this if the actual ldtr selector was changed; this is a bit excessive */
828 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
829 /* Same goes for the TSS selector */
830 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
831
832 /*
833 * Get the GDTR and check if there is anything to do (there usually is).
834 */
835 VBOXGDTR GDTR;
836 CPUMGetGuestGDTR(pVCpu, &GDTR);
837 if (GDTR.cbGdt < sizeof(X86DESC))
838 {
839 Log(("No GDT entries...\n"));
840 return VINF_SUCCESS;
841 }
842
843 /*
844 * Read the Guest GDT.
845 * ASSUMES that the entire GDT is in memory.
846 */
847 RTUINT cbEffLimit = GDTR.cbGdt;
848 PX86DESC pGDTE = &pVM->selm.s.paGdtR3[1];
849 int rc = PGMPhysSimpleReadGCPtr(pVCpu, pGDTE, GDTR.pGdt + sizeof(X86DESC), cbEffLimit + 1 - sizeof(X86DESC));
850 if (RT_FAILURE(rc))
851 {
852 /*
853 * Read it page by page.
854 *
855 * Keep track of the last valid page and delay memsets and
856 * adjust cbEffLimit to reflect the effective size. The latter
857 * is something we do in the belief that the guest will probably
858 * never actually commit the last page, thus allowing us to keep
859 * our selectors in the high end of the GDT.
860 */
861 RTUINT cbLeft = cbEffLimit + 1 - sizeof(X86DESC);
862 RTGCPTR GCPtrSrc = (RTGCPTR)GDTR.pGdt + sizeof(X86DESC);
863 uint8_t *pu8Dst = (uint8_t *)&pVM->selm.s.paGdtR3[1];
864 uint8_t *pu8DstInvalid = pu8Dst;
865
866 while (cbLeft)
867 {
868 RTUINT cb = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
869 cb = RT_MIN(cb, cbLeft);
870 rc = PGMPhysSimpleReadGCPtr(pVCpu, pu8Dst, GCPtrSrc, cb);
871 if (RT_SUCCESS(rc))
872 {
873 if (pu8DstInvalid != pu8Dst)
874 RT_BZERO(pu8DstInvalid, pu8Dst - pu8DstInvalid);
875 GCPtrSrc += cb;
876 pu8Dst += cb;
877 pu8DstInvalid = pu8Dst;
878 }
879 else if ( rc == VERR_PAGE_NOT_PRESENT
880 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
881 {
882 GCPtrSrc += cb;
883 pu8Dst += cb;
884 }
885 else
886 {
887 AssertLogRelMsgFailed(("Couldn't read GDT at %016RX64, rc=%Rrc!\n", GDTR.pGdt, rc));
888 return VERR_SELM_GDT_READ_ERROR;
889 }
890 cbLeft -= cb;
891 }
892
893 /* any invalid pages at the end? */
894 if (pu8DstInvalid != pu8Dst)
895 {
896 cbEffLimit = pu8DstInvalid - (uint8_t *)pVM->selm.s.paGdtR3 - 1;
897 /* If any GDTEs was invalidated, zero them. */
898 if (cbEffLimit < pVM->selm.s.cbEffGuestGdtLimit)
899 RT_BZERO(pu8DstInvalid + cbEffLimit + 1, pVM->selm.s.cbEffGuestGdtLimit - cbEffLimit);
900 }
901
902 /* keep track of the effective limit. */
903 if (cbEffLimit != pVM->selm.s.cbEffGuestGdtLimit)
904 {
905 Log(("SELMR3UpdateFromCPUM: cbEffGuestGdtLimit=%#x -> %#x (actual %#x)\n",
906 pVM->selm.s.cbEffGuestGdtLimit, cbEffLimit, GDTR.cbGdt));
907 pVM->selm.s.cbEffGuestGdtLimit = cbEffLimit;
908 }
909 }
910
911 /*
912 * Check if the Guest GDT intrudes on our GDT entries.
913 */
914 /** @todo we should try to minimize relocations by making sure our current selectors can be reused. */
915 RTSEL aHyperSel[SELM_HYPER_SEL_MAX];
916 if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
917 {
918 PX86DESC pGDTEStart = pVM->selm.s.paGdtR3;
919 PX86DESC pGDTECur = (PX86DESC)((char *)pGDTEStart + GDTR.cbGdt + 1 - sizeof(X86DESC));
920 int iGDT = 0;
921
922 Log(("Internal SELM GDT conflict: use non-present entries\n"));
923 STAM_REL_COUNTER_INC(&pVM->selm.s.StatScanForHyperSels);
924 while (pGDTECur > pGDTEStart)
925 {
926 /* We can reuse non-present entries */
927 if (!pGDTECur->Gen.u1Present)
928 {
929 aHyperSel[iGDT] = ((uintptr_t)pGDTECur - (uintptr_t)pVM->selm.s.paGdtR3) / sizeof(X86DESC);
930 aHyperSel[iGDT] = aHyperSel[iGDT] << X86_SEL_SHIFT;
931 Log(("SELM: Found unused GDT %04X\n", aHyperSel[iGDT]));
932 iGDT++;
933 if (iGDT >= SELM_HYPER_SEL_MAX)
934 break;
935 }
936
937 pGDTECur--;
938 }
939 if (iGDT != SELM_HYPER_SEL_MAX)
940 {
941 AssertLogRelMsgFailed(("Internal SELM GDT conflict.\n"));
942 return VERR_SELM_GDT_TOO_FULL;
943 }
944 }
945 else
946 {
947 aHyperSel[SELM_HYPER_SEL_CS] = SELM_HYPER_DEFAULT_SEL_CS;
948 aHyperSel[SELM_HYPER_SEL_DS] = SELM_HYPER_DEFAULT_SEL_DS;
949 aHyperSel[SELM_HYPER_SEL_CS64] = SELM_HYPER_DEFAULT_SEL_CS64;
950 aHyperSel[SELM_HYPER_SEL_TSS] = SELM_HYPER_DEFAULT_SEL_TSS;
951 aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SELM_HYPER_DEFAULT_SEL_TSS_TRAP08;
952 }
953
954 /*
955 * Work thru the copied GDT entries adjusting them for correct virtualization.
956 */
957 PX86DESC pGDTEEnd = (PX86DESC)((char *)pGDTE + cbEffLimit + 1 - sizeof(X86DESC));
958 while (pGDTE < pGDTEEnd)
959 {
960 if (pGDTE->Gen.u1Present)
961 selmGuestToShadowDesc(pGDTE);
962
963 /* Next GDT entry. */
964 pGDTE++;
965 }
966
967 /*
968 * Check if our hypervisor selectors were changed.
969 */
970 if ( aHyperSel[SELM_HYPER_SEL_CS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]
971 || aHyperSel[SELM_HYPER_SEL_DS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]
972 || aHyperSel[SELM_HYPER_SEL_CS64] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64]
973 || aHyperSel[SELM_HYPER_SEL_TSS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]
974 || aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08])
975 {
976 /* Reinitialize our hypervisor GDTs */
977 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = aHyperSel[SELM_HYPER_SEL_CS];
978 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = aHyperSel[SELM_HYPER_SEL_DS];
979 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = aHyperSel[SELM_HYPER_SEL_CS64];
980 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = aHyperSel[SELM_HYPER_SEL_TSS];
981 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = aHyperSel[SELM_HYPER_SEL_TSS_TRAP08];
982
983 STAM_REL_COUNTER_INC(&pVM->selm.s.StatHyperSelsChanged);
984
985 /*
986 * Do the relocation callbacks to let everyone update their hyper selector dependencies.
987 * (SELMR3Relocate will call selmR3SetupHyperGDTSelectors() for us.)
988 */
989 VMR3Relocate(pVM, 0);
990 }
991 else if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
992 /* We overwrote all entries above, so we have to save them again. */
993 selmR3SetupHyperGDTSelectors(pVM);
994
995 /*
996 * Adjust the cached GDT limit.
997 * Any GDT entries which have been removed must be cleared.
998 */
999 if (pVM->selm.s.GuestGdtr.cbGdt != GDTR.cbGdt)
1000 {
1001 if (pVM->selm.s.GuestGdtr.cbGdt > GDTR.cbGdt)
1002 RT_BZERO(pGDTE, pVM->selm.s.GuestGdtr.cbGdt - GDTR.cbGdt);
1003 }
1004
1005 /*
1006 * Check if Guest's GDTR is changed.
1007 */
1008 if ( GDTR.pGdt != pVM->selm.s.GuestGdtr.pGdt
1009 || GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1010 {
1011 Log(("SELMR3UpdateFromCPUM: Guest's GDT is changed to pGdt=%016RX64 cbGdt=%08X\n", GDTR.pGdt, GDTR.cbGdt));
1012
1013 /*
1014 * [Re]Register write virtual handler for guest's GDT.
1015 */
1016 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
1017 {
1018 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
1019 AssertRC(rc);
1020 }
1021
1022 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE,
1023 GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
1024 0, selmR3GuestGDTWriteHandler, "selmRCGuestGDTWriteHandler", 0,
1025 "Guest GDT write access handler");
1026 if (RT_FAILURE(rc))
1027 return rc;
1028
1029 /* Update saved Guest GDTR. */
1030 pVM->selm.s.GuestGdtr = GDTR;
1031 pVM->selm.s.fGDTRangeRegistered = true;
1032 }
1033
1034 return VINF_SUCCESS;
1035}
1036
1037
1038/**
1039 * Updates (syncs) the shadow LDT.
1040 *
1041 * @returns VBox status code.
1042 * @param pVM The VM handle.
1043 * @param pVCpu The current virtual CPU.
1044 */
1045static int selmR3UpdateShadowLdt(PVM pVM, PVMCPU pVCpu)
1046{
1047 int rc = VINF_SUCCESS;
1048
1049 /*
1050 * Always assume the best...
1051 */
1052 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
1053
1054 /*
1055 * LDT handling is done similarly to the GDT handling with a shadow
1056 * array. However, since the LDT is expected to be swappable (at least
1057 * some ancient OSes makes it swappable) it must be floating and
1058 * synced on a per-page basis.
1059 *
1060 * Eventually we will change this to be fully on demand. Meaning that
1061 * we will only sync pages containing LDT selectors actually used and
1062 * let the #PF handler lazily sync pages as they are used.
1063 * (This applies to GDT too, when we start making OS/2 fast.)
1064 */
1065
1066 /*
1067 * First, determine the current LDT selector.
1068 */
1069 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1070 if ((SelLdt & X86_SEL_MASK) == 0)
1071 {
1072 /* ldtr = 0 - update hyper LDTR and deregister any active handler. */
1073 CPUMSetHyperLDTR(pVCpu, 0);
1074 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1075 {
1076 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1077 AssertRC(rc);
1078 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1079 }
1080 pVM->selm.s.cbLdtLimit = 0;
1081 return VINF_SUCCESS;
1082 }
1083
1084 /*
1085 * Get the LDT selector.
1086 */
1087 PX86DESC pDesc = &pVM->selm.s.paGdtR3[SelLdt >> X86_SEL_SHIFT];
1088 RTGCPTR GCPtrLdt = X86DESC_BASE(pDesc);
1089 uint32_t cbLdt = X86DESC_LIMIT_G(pDesc);
1090
1091 /*
1092 * Validate it.
1093 */
1094 if ( !cbLdt
1095 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt
1096 || pDesc->Gen.u1DescType
1097 || pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1098 {
1099 AssertMsg(!cbLdt, ("Invalid LDT %04x!\n", SelLdt));
1100
1101 /* cbLdt > 0:
1102 * This is quite impossible, so we do as most people do when faced with
1103 * the impossible, we simply ignore it.
1104 */
1105 CPUMSetHyperLDTR(pVCpu, 0);
1106 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1107 {
1108 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1109 AssertRC(rc);
1110 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1111 }
1112 return VINF_SUCCESS;
1113 }
1114 /** @todo check what intel does about odd limits. */
1115 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1116
1117 /*
1118 * Use the cached guest ldt address if the descriptor has already been modified (see below)
1119 * (this is necessary due to redundant LDT updates; see todo above at GDT sync)
1120 */
1121 if (MMHyperIsInsideArea(pVM, GCPtrLdt))
1122 GCPtrLdt = pVM->selm.s.GCPtrGuestLdt; /* use the old one */
1123
1124
1125 /** @todo Handle only present LDT segments. */
1126// if (pDesc->Gen.u1Present)
1127 {
1128 /*
1129 * Check if Guest's LDT address/limit is changed.
1130 */
1131 if ( GCPtrLdt != pVM->selm.s.GCPtrGuestLdt
1132 || cbLdt != pVM->selm.s.cbLdtLimit)
1133 {
1134 Log(("SELMR3UpdateFromCPUM: Guest LDT changed to from %RGv:%04x to %RGv:%04x. (GDTR=%016RX64:%04x)\n",
1135 pVM->selm.s.GCPtrGuestLdt, pVM->selm.s.cbLdtLimit, GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1136
1137 /*
1138 * [Re]Register write virtual handler for guest's GDT.
1139 * In the event of LDT overlapping something, don't install it just assume it's being updated.
1140 */
1141 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1142 {
1143 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1144 AssertRC(rc);
1145 }
1146#ifdef DEBUG
1147 if (pDesc->Gen.u1Present)
1148 Log(("LDT selector marked not present!!\n"));
1149#endif
1150 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrLdt, GCPtrLdt + cbLdt /* already inclusive */,
1151 0, selmR3GuestLDTWriteHandler, "selmRCGuestLDTWriteHandler", 0, "Guest LDT write access handler");
1152 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1153 {
1154 /** @todo investigate the various cases where conflicts happen and try avoid them by enh. the instruction emulation. */
1155 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1156 Log(("WARNING: Guest LDT (%RGv:%04x) conflicted with existing access range!! Assumes LDT is begin updated. (GDTR=%016RX64:%04x)\n",
1157 GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1158 }
1159 else if (RT_SUCCESS(rc))
1160 pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
1161 else
1162 {
1163 CPUMSetHyperLDTR(pVCpu, 0);
1164 return rc;
1165 }
1166
1167 pVM->selm.s.cbLdtLimit = cbLdt;
1168 }
1169 }
1170
1171 /*
1172 * Calc Shadow LDT base.
1173 */
1174 unsigned off;
1175 pVM->selm.s.offLdtHyper = off = (GCPtrLdt & PAGE_OFFSET_MASK);
1176 RTGCPTR GCPtrShadowLDT = (RTGCPTR)((RTGCUINTPTR)pVM->selm.s.pvLdtRC + off);
1177 PX86DESC pShadowLDT = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1178
1179 /*
1180 * Enable the LDT selector in the shadow GDT.
1181 */
1182 pDesc->Gen.u1Present = 1;
1183 pDesc->Gen.u16BaseLow = RT_LOWORD(GCPtrShadowLDT);
1184 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(GCPtrShadowLDT);
1185 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(GCPtrShadowLDT);
1186 pDesc->Gen.u1Available = 0;
1187 pDesc->Gen.u1Long = 0;
1188 if (cbLdt > 0xffff)
1189 {
1190 cbLdt = 0xffff;
1191 pDesc->Gen.u4LimitHigh = 0;
1192 pDesc->Gen.u16LimitLow = pDesc->Gen.u1Granularity ? 0xf : 0xffff;
1193 }
1194
1195 /*
1196 * Set Hyper LDTR and notify TRPM.
1197 */
1198 CPUMSetHyperLDTR(pVCpu, SelLdt);
1199
1200 /*
1201 * Loop synchronising the LDT page by page.
1202 */
1203 /** @todo investigate how intel handle various operations on half present cross page entries. */
1204 off = GCPtrLdt & (sizeof(X86DESC) - 1);
1205 AssertMsg(!off, ("LDT is not aligned on entry size! GCPtrLdt=%08x\n", GCPtrLdt));
1206
1207 /* Note: Do not skip the first selector; unlike the GDT, a zero LDT selector is perfectly valid. */
1208 unsigned cbLeft = cbLdt + 1;
1209 PX86DESC pLDTE = pShadowLDT;
1210 while (cbLeft)
1211 {
1212 /*
1213 * Read a chunk.
1214 */
1215 unsigned cbChunk = PAGE_SIZE - ((RTGCUINTPTR)GCPtrLdt & PAGE_OFFSET_MASK);
1216 if (cbChunk > cbLeft)
1217 cbChunk = cbLeft;
1218 rc = PGMPhysSimpleReadGCPtr(pVCpu, pShadowLDT, GCPtrLdt, cbChunk);
1219 if (RT_SUCCESS(rc))
1220 {
1221 /*
1222 * Mark page
1223 */
1224 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D);
1225 AssertRC(rc);
1226
1227 /*
1228 * Loop thru the available LDT entries.
1229 * Figure out where to start and end and the potential cross pageness of
1230 * things adds a little complexity. pLDTE is updated there and not in the
1231 * 'next' part of the loop. The pLDTEEnd is inclusive.
1232 */
1233 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pShadowLDT + cbChunk) - 1;
1234 if (pLDTE + 1 < pShadowLDT)
1235 pLDTE = (PX86DESC)((uintptr_t)pShadowLDT + off);
1236 while (pLDTE <= pLDTEEnd)
1237 {
1238 if (pLDTE->Gen.u1Present)
1239 selmGuestToShadowDesc(pLDTE);
1240
1241 /* Next LDT entry. */
1242 pLDTE++;
1243 }
1244 }
1245 else
1246 {
1247 RT_BZERO(pShadowLDT, cbChunk);
1248 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("rc=%Rrc\n", rc));
1249 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, 0);
1250 AssertRC(rc);
1251 }
1252
1253 /*
1254 * Advance to the next page.
1255 */
1256 cbLeft -= cbChunk;
1257 GCPtrShadowLDT += cbChunk;
1258 pShadowLDT = (PX86DESC)((char *)pShadowLDT + cbChunk);
1259 GCPtrLdt += cbChunk;
1260 }
1261
1262 return VINF_SUCCESS;
1263}
1264
1265
1266/**
1267 * Checks and updates segment selector registers.
1268 *
1269 * @returns VBox strict status code.
1270 * @retval VINF_EM_RESCHEDULE_REM if a stale register was found.
1271 *
1272 * @param pVM The VM handle.
1273 * @param pVCpu The current virtual CPU.
1274 */
1275static VBOXSTRICTRC selmR3UpdateSegmentRegisters(PVM pVM, PVMCPU pVCpu)
1276{
1277 Assert(CPUMIsGuestInProtectedMode(pVCpu));
1278
1279 /*
1280 * No stale selectors in V8086 mode.
1281 */
1282 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1283 if (pCtx->eflags.Bits.u1VM)
1284 return VINF_SUCCESS;
1285
1286 /*
1287 * Check for stale selectors and load hidden register bits where they
1288 * are missing.
1289 */
1290 uint32_t uCpl = CPUMGetGuestCPL(pVCpu);
1291 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1292 PCPUMSELREG paSReg = CPUMCTX_FIRST_SREG(pCtx);
1293 for (uint32_t iSReg = 0; iSReg < X86_SREG_COUNT; iSReg++)
1294 {
1295 RTSEL const Sel = paSReg[iSReg].Sel & (X86_SEL_MASK | X86_SEL_LDT);
1296 if (Sel & (X86_SEL_MASK | X86_SEL_LDT))
1297 {
1298 /* Get the shadow descriptor entry corresponding to this. */
1299 static X86DESC const s_NotPresentDesc = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } };
1300 PCX86DESC pDesc;
1301 if (!(Sel & X86_SEL_LDT))
1302 {
1303 if ((Sel | (sizeof(*pDesc) - 1)) <= pCtx->gdtr.cbGdt)
1304 pDesc = &pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
1305 else
1306 pDesc = &s_NotPresentDesc;
1307 }
1308 else
1309 {
1310 if ((Sel | (sizeof(*pDesc) - 1)) <= pVM->selm.s.cbLdtLimit)
1311 pDesc = &((PCX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper))[Sel >> X86_SEL_SHIFT];
1312 else
1313 pDesc = &s_NotPresentDesc;
1314 }
1315
1316 /* Check the segment register. */
1317 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &paSReg[iSReg]))
1318 {
1319 if (!(paSReg[iSReg].fFlags & CPUMSELREG_FLAGS_STALE))
1320 {
1321 /* Did it go stale? */
1322 if (selmIsSRegStale32(&paSReg[iSReg], pDesc, iSReg))
1323 {
1324 Log2(("SELM: Detected stale %s=%#x (was valid)\n", g_aszSRegNms[iSReg], Sel));
1325 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatDetectedStaleSReg[iSReg]);
1326 paSReg[iSReg].fFlags |= CPUMSELREG_FLAGS_STALE;
1327 rcStrict = VINF_EM_RESCHEDULE_REM;
1328 }
1329 }
1330 else
1331 {
1332 /* Did it stop being stale? I.e. did the guest change it things
1333 back to the way they were? */
1334 if (!selmIsSRegStale32(&paSReg[iSReg], pDesc, iSReg))
1335 {
1336 STAM_REL_COUNTER_INC(&pVM->selm.s.StatStaleToUnstaleSReg);
1337 paSReg[iSReg].fFlags &= CPUMSELREG_FLAGS_STALE;
1338 }
1339 else
1340 {
1341 Log2(("SELM: Already stale %s=%#x\n", g_aszSRegNms[iSReg], Sel));
1342 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatAlreadyStaleSReg[iSReg]);
1343 rcStrict = VINF_EM_RESCHEDULE_REM;
1344 }
1345 }
1346 }
1347 /* Load the hidden registers if it's a valid descriptor for the
1348 current segment register. */
1349 else if (selmIsShwDescGoodForSReg(&paSReg[iSReg], pDesc, iSReg, uCpl))
1350 {
1351 selmLoadHiddenSRegFromShadowDesc(&paSReg[iSReg], pDesc);
1352 STAM_COUNTER_INC(&pVM->selm.s.aStatUpdatedSReg[iSReg]);
1353 }
1354 /* It's stale. */
1355 else
1356 {
1357 Log2(("SELM: Detected stale %s=%#x (wasn't valid)\n", g_aszSRegNms[iSReg], Sel));
1358 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatDetectedStaleSReg[iSReg]);
1359 paSReg[iSReg].fFlags = CPUMSELREG_FLAGS_STALE;
1360 rcStrict = VINF_EM_RESCHEDULE_REM;
1361 }
1362 }
1363 /* else: 0 selector, ignore. */
1364 }
1365
1366 return rcStrict;
1367}
1368
1369
1370/**
1371 * Updates the Guest GDT & LDT virtualization based on current CPU state.
1372 *
1373 * @returns VBox status code.
1374 * @param pVM Pointer to the VM.
1375 * @param pVCpu Pointer to the VMCPU.
1376 */
1377VMMR3DECL(VBOXSTRICTRC) SELMR3UpdateFromCPUM(PVM pVM, PVMCPU pVCpu)
1378{
1379 if (pVM->selm.s.fDisableMonitoring)
1380 {
1381 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
1382 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
1383 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1384 return VINF_SUCCESS;
1385 }
1386
1387 STAM_PROFILE_START(&pVM->selm.s.StatUpdateFromCPUM, a);
1388
1389 /*
1390 * GDT sync
1391 */
1392 int rc;
1393 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_GDT))
1394 {
1395 rc = selmR3UpdateShadowGdt(pVM, pVCpu);
1396 if (RT_FAILURE(rc))
1397 return rc; /* We're toast, so forget the profiling. */
1398 AssertRCSuccess(rc);
1399 }
1400
1401 /*
1402 * TSS sync
1403 */
1404 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1405 {
1406 rc = SELMR3SyncTSS(pVM, pVCpu);
1407 if (RT_FAILURE(rc))
1408 return rc;
1409 AssertRCSuccess(rc);
1410 }
1411
1412 /*
1413 * LDT sync
1414 */
1415 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_LDT))
1416 {
1417 rc = selmR3UpdateShadowLdt(pVM, pVCpu);
1418 if (RT_FAILURE(rc))
1419 return rc;
1420 AssertRCSuccess(rc);
1421 }
1422
1423 /*
1424 * Check selector registers.
1425 */
1426 VBOXSTRICTRC rcStrict = selmR3UpdateSegmentRegisters(pVM, pVCpu);
1427
1428 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1429 return rcStrict;
1430}
1431
1432
1433/**
1434 * \#PF Handler callback for virtual access handler ranges.
1435 *
1436 * Important to realize that a physical page in a range can have aliases, and
1437 * for ALL and WRITE handlers these will also trigger.
1438 *
1439 * @returns VINF_SUCCESS if the handler have carried out the operation.
1440 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1441 * @param pVM Pointer to the VM.
1442 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1443 * @param pvPtr The HC mapping of that address.
1444 * @param pvBuf What the guest is reading/writing.
1445 * @param cbBuf How much it's reading/writing.
1446 * @param enmAccessType The access type.
1447 * @param pvUser User argument.
1448 */
1449static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1450 PGMACCESSTYPE enmAccessType, void *pvUser)
1451{
1452 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1453 Log(("selmR3GuestGDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
1454 NOREF(pvPtr); NOREF(pvBuf); NOREF(pvUser);
1455
1456 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_GDT);
1457 return VINF_PGM_HANDLER_DO_DEFAULT;
1458}
1459
1460
1461/**
1462 * \#PF Handler callback for virtual access handler ranges.
1463 *
1464 * Important to realize that a physical page in a range can have aliases, and
1465 * for ALL and WRITE handlers these will also trigger.
1466 *
1467 * @returns VINF_SUCCESS if the handler have carried out the operation.
1468 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1469 * @param pVM Pointer to the VM.
1470 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1471 * @param pvPtr The HC mapping of that address.
1472 * @param pvBuf What the guest is reading/writing.
1473 * @param cbBuf How much it's reading/writing.
1474 * @param enmAccessType The access type.
1475 * @param pvUser User argument.
1476 */
1477static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1478 PGMACCESSTYPE enmAccessType, void *pvUser)
1479{
1480 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1481 Log(("selmR3GuestLDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
1482 NOREF(pvPtr); NOREF(pvBuf); NOREF(pvUser);
1483
1484 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_LDT);
1485 return VINF_PGM_HANDLER_DO_DEFAULT;
1486}
1487
1488
1489/**
1490 * \#PF Handler callback for virtual access handler ranges.
1491 *
1492 * Important to realize that a physical page in a range can have aliases, and
1493 * for ALL and WRITE handlers these will also trigger.
1494 *
1495 * @returns VINF_SUCCESS if the handler have carried out the operation.
1496 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1497 * @param pVM Pointer to the VM.
1498 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1499 * @param pvPtr The HC mapping of that address.
1500 * @param pvBuf What the guest is reading/writing.
1501 * @param cbBuf How much it's reading/writing.
1502 * @param enmAccessType The access type.
1503 * @param pvUser User argument.
1504 */
1505static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1506 PGMACCESSTYPE enmAccessType, void *pvUser)
1507{
1508 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1509 Log(("selmR3GuestTSSWriteHandler: write %.*Rhxs to %RGv size %d\n", RT_MIN(8, cbBuf), pvBuf, GCPtr, cbBuf));
1510 NOREF(pvBuf); NOREF(GCPtr); NOREF(cbBuf); NOREF(pvUser);NOREF(pvPtr);
1511
1512 /** @todo This can be optimized by checking for the ESP0 offset and tracking TR
1513 * reloads in REM (setting VM_FF_SELM_SYNC_TSS if TR is reloaded). We
1514 * should probably also deregister the virtual handler if TR.base/size
1515 * changes while we're in REM. */
1516
1517 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_TSS);
1518 return VINF_PGM_HANDLER_DO_DEFAULT;
1519}
1520
1521
1522/**
1523 * Synchronize the shadowed fields in the TSS.
1524 *
1525 * At present we're shadowing the ring-0 stack selector & pointer, and the
1526 * interrupt redirection bitmap (if present). We take the lazy approach wrt to
1527 * REM and this function is called both if REM made any changes to the TSS or
1528 * loaded TR.
1529 *
1530 * @returns VBox status code.
1531 * @param pVM Pointer to the VM.
1532 * @param pVCpu Pointer to the VMCPU.
1533 */
1534VMMR3DECL(int) SELMR3SyncTSS(PVM pVM, PVMCPU pVCpu)
1535{
1536 int rc;
1537
1538 if (pVM->selm.s.fDisableMonitoring)
1539 {
1540 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1541 return VINF_SUCCESS;
1542 }
1543
1544 STAM_PROFILE_START(&pVM->selm.s.StatTSSSync, a);
1545 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS));
1546
1547 /*
1548 * Get TR and extract and store the basic info.
1549 *
1550 * Note! The TSS limit is not checked by the LTR code, so we
1551 * have to be a bit careful with it. We make sure cbTss
1552 * won't be zero if TR is valid and if it's NULL we'll
1553 * make sure cbTss is 0.
1554 */
1555 CPUMSELREGHID trHid;
1556 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1557 RTGCPTR GCPtrTss = trHid.u64Base;
1558 uint32_t cbTss = trHid.u32Limit;
1559 Assert( (SelTss & X86_SEL_MASK)
1560 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1561 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1562 if (SelTss & X86_SEL_MASK)
1563 {
1564 Assert(!(SelTss & X86_SEL_LDT));
1565 Assert(trHid.Attr.n.u1DescType == 0);
1566 Assert( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1567 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY);
1568 if (!++cbTss)
1569 cbTss = UINT32_MAX;
1570 }
1571 else
1572 {
1573 Assert( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1574 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1575 cbTss = 0; /* the reset case. */
1576 }
1577 pVM->selm.s.cbGuestTss = cbTss;
1578 pVM->selm.s.fGuestTss32Bit = trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1579 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY;
1580
1581 /*
1582 * Figure out the size of what need to monitor.
1583 */
1584 /* We're not interested in any 16-bit TSSes. */
1585 uint32_t cbMonitoredTss = cbTss;
1586 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1587 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1588 cbMonitoredTss = 0;
1589
1590 pVM->selm.s.offGuestIoBitmap = 0;
1591 bool fNoRing1Stack = true;
1592 if (cbMonitoredTss)
1593 {
1594 /*
1595 * 32-bit TSS. What we're really keen on is the SS0 and ESP0 fields.
1596 * If VME is enabled we also want to keep an eye on the interrupt
1597 * redirection bitmap.
1598 */
1599 VBOXTSS Tss;
1600 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
1601 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1602 if ( !(cr4 & X86_CR4_VME)
1603 || ( RT_SUCCESS(rc)
1604 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1605 && Tss.offIoBitmap > cbTss) /* beyond the end */ /** @todo not sure how the partial case is handled; probably not allowed. */
1606 )
1607 /* No interrupt redirection bitmap, just ESP0 and SS0. */
1608 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1609 else if (RT_SUCCESS(rc))
1610 {
1611 /*
1612 * Everything up to and including the interrupt redirection bitmap. Unfortunately
1613 * this can be quite a large chunk. We use to skip it earlier and just hope it
1614 * was kind of static...
1615 *
1616 * Update the virtual interrupt redirection bitmap while we're here.
1617 * (It is located in the 32 bytes before TR:offIoBitmap.)
1618 */
1619 cbMonitoredTss = Tss.offIoBitmap;
1620 pVM->selm.s.offGuestIoBitmap = Tss.offIoBitmap;
1621
1622 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1623 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pVM->selm.s.Tss.IntRedirBitmap,
1624 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1625 AssertRC(rc);
1626 /** @todo memset the bitmap on failure? */
1627 Log2(("Redirection bitmap:\n"));
1628 Log2(("%.*Rhxd\n", sizeof(Tss.IntRedirBitmap), &pVM->selm.s.Tss.IntRedirBitmap));
1629 }
1630 else
1631 {
1632 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
1633 pVM->selm.s.offGuestIoBitmap = 0;
1634 /** @todo memset the bitmap? */
1635 }
1636
1637 /*
1638 * Update the ring 0 stack selector and base address.
1639 */
1640 if (RT_SUCCESS(rc))
1641 {
1642#ifdef LOG_ENABLED
1643 if (LogIsEnabled())
1644 {
1645 uint32_t ssr0, espr0;
1646 SELMGetRing1Stack(pVM, &ssr0, &espr0);
1647 if ((ssr0 & ~1) != Tss.ss0 || espr0 != Tss.esp0)
1648 {
1649 RTGCPHYS GCPhys = NIL_RTGCPHYS;
1650 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
1651 Log(("SELMR3SyncTSS: Updating TSS ring 0 stack to %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1652 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1653 AssertMsg(ssr0 != Tss.ss0,
1654 ("ring-1 leak into TSS.SS0! %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1655 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1656 }
1657 Log(("offIoBitmap=%#x\n", Tss.offIoBitmap));
1658 }
1659#endif /* LOG_ENABLED */
1660 AssertMsg(!(Tss.ss0 & 3), ("ring-1 leak into TSS.SS0? %04X:%08X\n", Tss.ss0, Tss.esp0));
1661
1662 /* Update our TSS structure for the guest's ring 1 stack */
1663 selmSetRing1Stack(pVM, Tss.ss0 | 1, Tss.esp0);
1664 pVM->selm.s.fSyncTSSRing0Stack = fNoRing1Stack = false;
1665 }
1666 }
1667
1668 /*
1669 * Flush the ring-1 stack and the direct syscall dispatching if we
1670 * cannot obtain SS0:ESP0.
1671 */
1672 if (fNoRing1Stack)
1673 {
1674 selmSetRing1Stack(pVM, 0 /* invalid SS */, 0);
1675 pVM->selm.s.fSyncTSSRing0Stack = cbMonitoredTss != 0;
1676
1677 /** @todo handle these dependencies better! */
1678 TRPMR3SetGuestTrapHandler(pVM, 0x2E, TRPM_INVALID_HANDLER);
1679 TRPMR3SetGuestTrapHandler(pVM, 0x80, TRPM_INVALID_HANDLER);
1680 }
1681
1682 /*
1683 * Check for monitor changes and apply them.
1684 */
1685 if ( GCPtrTss != pVM->selm.s.GCPtrGuestTss
1686 || cbMonitoredTss != pVM->selm.s.cbMonitoredGuestTss)
1687 {
1688 Log(("SELMR3SyncTSS: Guest's TSS is changed to pTss=%RGv cbMonitoredTss=%08X cbGuestTss=%#08x\n",
1689 GCPtrTss, cbMonitoredTss, pVM->selm.s.cbGuestTss));
1690
1691 /* Release the old range first. */
1692 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
1693 {
1694 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
1695 AssertRC(rc);
1696 }
1697
1698 /* Register the write handler if TS != 0. */
1699 if (cbMonitoredTss != 0)
1700 {
1701 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
1702 0, selmR3GuestTSSWriteHandler,
1703 "selmRCGuestTSSWriteHandler", 0, "Guest TSS write access handler");
1704 if (RT_FAILURE(rc))
1705 {
1706 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1707 return rc;
1708 }
1709
1710 /* Update saved Guest TSS info. */
1711 pVM->selm.s.GCPtrGuestTss = GCPtrTss;
1712 pVM->selm.s.cbMonitoredGuestTss = cbMonitoredTss;
1713 pVM->selm.s.GCSelTss = SelTss;
1714 }
1715 else
1716 {
1717 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
1718 pVM->selm.s.cbMonitoredGuestTss = 0;
1719 pVM->selm.s.GCSelTss = 0;
1720 }
1721 }
1722
1723 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1724
1725 STAM_PROFILE_STOP(&pVM->selm.s.StatTSSSync, a);
1726 return VINF_SUCCESS;
1727}
1728
1729
1730/**
1731 * Compares the Guest GDT and LDT with the shadow tables.
1732 * This is a VBOX_STRICT only function.
1733 *
1734 * @returns VBox status code.
1735 * @param pVM Pointer to the VM.
1736 */
1737VMMR3DECL(int) SELMR3DebugCheck(PVM pVM)
1738{
1739#ifdef VBOX_STRICT
1740 PVMCPU pVCpu = VMMGetCpu(pVM);
1741
1742 /*
1743 * Get GDTR and check for conflict.
1744 */
1745 VBOXGDTR GDTR;
1746 CPUMGetGuestGDTR(pVCpu, &GDTR);
1747 if (GDTR.cbGdt == 0)
1748 return VINF_SUCCESS;
1749
1750 if (GDTR.cbGdt >= (unsigned)(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
1751 Log(("SELMR3DebugCheck: guest GDT size forced us to look for unused selectors.\n"));
1752
1753 if (GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1754 Log(("SELMR3DebugCheck: limits have changed! new=%d old=%d\n", GDTR.cbGdt, pVM->selm.s.GuestGdtr.cbGdt));
1755
1756 /*
1757 * Loop thru the GDT checking each entry.
1758 */
1759 RTGCPTR GCPtrGDTEGuest = GDTR.pGdt;
1760 PX86DESC pGDTE = pVM->selm.s.paGdtR3;
1761 PX86DESC pGDTEEnd = (PX86DESC)((uintptr_t)pGDTE + GDTR.cbGdt);
1762 while (pGDTE < pGDTEEnd)
1763 {
1764 X86DESC GDTEGuest;
1765 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTEGuest, GCPtrGDTEGuest, sizeof(GDTEGuest));
1766 if (RT_SUCCESS(rc))
1767 {
1768 if (pGDTE->Gen.u1DescType || pGDTE->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1769 {
1770 if ( pGDTE->Gen.u16LimitLow != GDTEGuest.Gen.u16LimitLow
1771 || pGDTE->Gen.u4LimitHigh != GDTEGuest.Gen.u4LimitHigh
1772 || pGDTE->Gen.u16BaseLow != GDTEGuest.Gen.u16BaseLow
1773 || pGDTE->Gen.u8BaseHigh1 != GDTEGuest.Gen.u8BaseHigh1
1774 || pGDTE->Gen.u8BaseHigh2 != GDTEGuest.Gen.u8BaseHigh2
1775 || pGDTE->Gen.u1DefBig != GDTEGuest.Gen.u1DefBig
1776 || pGDTE->Gen.u1DescType != GDTEGuest.Gen.u1DescType)
1777 {
1778 unsigned iGDT = pGDTE - pVM->selm.s.paGdtR3;
1779 SELMR3DumpDescriptor(*pGDTE, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, shadow");
1780 SELMR3DumpDescriptor(GDTEGuest, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, guest");
1781 }
1782 }
1783 }
1784
1785 /* Advance to the next descriptor. */
1786 GCPtrGDTEGuest += sizeof(X86DESC);
1787 pGDTE++;
1788 }
1789
1790
1791 /*
1792 * LDT?
1793 */
1794 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1795 if ((SelLdt & X86_SEL_MASK) == 0)
1796 return VINF_SUCCESS;
1797 if (SelLdt > GDTR.cbGdt)
1798 {
1799 Log(("SELMR3DebugCheck: ldt is out of bound SelLdt=%#x\n", SelLdt));
1800 return VERR_SELM_LDT_OUT_OF_BOUNDS;
1801 }
1802 X86DESC LDTDesc;
1803 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTDesc, GDTR.pGdt + (SelLdt & X86_SEL_MASK), sizeof(LDTDesc));
1804 if (RT_FAILURE(rc))
1805 {
1806 Log(("SELMR3DebugCheck: Failed to read LDT descriptor. rc=%d\n", rc));
1807 return rc;
1808 }
1809 RTGCPTR GCPtrLDTEGuest = X86DESC_BASE(&LDTDesc);
1810 uint32_t cbLdt = X86DESC_LIMIT_G(&LDTDesc);
1811
1812 /*
1813 * Validate it.
1814 */
1815 if (!cbLdt)
1816 return VINF_SUCCESS;
1817 /** @todo check what intel does about odd limits. */
1818 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1819 if ( LDTDesc.Gen.u1DescType
1820 || LDTDesc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT
1821 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt)
1822 {
1823 Log(("SELmR3DebugCheck: Invalid LDT %04x!\n", SelLdt));
1824 return VERR_SELM_INVALID_LDT;
1825 }
1826
1827 /*
1828 * Loop thru the LDT checking each entry.
1829 */
1830 unsigned off = (GCPtrLDTEGuest & PAGE_OFFSET_MASK);
1831 PX86DESC pLDTE = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1832 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pGDTE + cbLdt);
1833 while (pLDTE < pLDTEEnd)
1834 {
1835 X86DESC LDTEGuest;
1836 rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTEGuest, GCPtrLDTEGuest, sizeof(LDTEGuest));
1837 if (RT_SUCCESS(rc))
1838 {
1839 if ( pLDTE->Gen.u16LimitLow != LDTEGuest.Gen.u16LimitLow
1840 || pLDTE->Gen.u4LimitHigh != LDTEGuest.Gen.u4LimitHigh
1841 || pLDTE->Gen.u16BaseLow != LDTEGuest.Gen.u16BaseLow
1842 || pLDTE->Gen.u8BaseHigh1 != LDTEGuest.Gen.u8BaseHigh1
1843 || pLDTE->Gen.u8BaseHigh2 != LDTEGuest.Gen.u8BaseHigh2
1844 || pLDTE->Gen.u1DefBig != LDTEGuest.Gen.u1DefBig
1845 || pLDTE->Gen.u1DescType != LDTEGuest.Gen.u1DescType)
1846 {
1847 unsigned iLDT = pLDTE - (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1848 SELMR3DumpDescriptor(*pLDTE, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, shadow");
1849 SELMR3DumpDescriptor(LDTEGuest, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, guest");
1850 }
1851 }
1852
1853 /* Advance to the next descriptor. */
1854 GCPtrLDTEGuest += sizeof(X86DESC);
1855 pLDTE++;
1856 }
1857
1858#else /* !VBOX_STRICT */
1859 NOREF(pVM);
1860#endif /* !VBOX_STRICT */
1861
1862 return VINF_SUCCESS;
1863}
1864
1865
1866/**
1867 * Validates the RawR0 TSS values against the one in the Guest TSS.
1868 *
1869 * @returns true if it matches.
1870 * @returns false and assertions on mismatch..
1871 * @param pVM Pointer to the VM.
1872 */
1873VMMR3DECL(bool) SELMR3CheckTSS(PVM pVM)
1874{
1875#ifdef VBOX_STRICT
1876 PVMCPU pVCpu = VMMGetCpu(pVM);
1877
1878 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1879 return true;
1880
1881 /*
1882 * Get TR and extract the basic info.
1883 */
1884 CPUMSELREGHID trHid;
1885 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1886 RTGCPTR GCPtrTss = trHid.u64Base;
1887 uint32_t cbTss = trHid.u32Limit;
1888 Assert( (SelTss & X86_SEL_MASK)
1889 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1890 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1891 if (SelTss & X86_SEL_MASK)
1892 {
1893 AssertReturn(!(SelTss & X86_SEL_LDT), false);
1894 AssertReturn(trHid.Attr.n.u1DescType == 0, false);
1895 AssertReturn( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1896 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY,
1897 false);
1898 if (!++cbTss)
1899 cbTss = UINT32_MAX;
1900 }
1901 else
1902 {
1903 AssertReturn( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1904 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */),
1905 false);
1906 cbTss = 0; /* the reset case. */
1907 }
1908 AssertMsgReturn(pVM->selm.s.cbGuestTss == cbTss, ("%#x %#x\n", pVM->selm.s.cbGuestTss, cbTss), false);
1909 AssertMsgReturn(pVM->selm.s.fGuestTss32Bit == ( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1910 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY),
1911 ("%RTbool u4Type=%d\n", pVM->selm.s.fGuestTss32Bit, trHid.Attr.n.u4Type),
1912 false);
1913 AssertMsgReturn( pVM->selm.s.GCSelTss == SelTss
1914 || (!pVM->selm.s.GCSelTss && !(SelTss & X86_SEL_LDT)),
1915 ("%#x %#x\n", pVM->selm.s.GCSelTss, SelTss),
1916 false);
1917 AssertMsgReturn( pVM->selm.s.GCPtrGuestTss == GCPtrTss
1918 || (pVM->selm.s.GCPtrGuestTss == RTRCPTR_MAX && !GCPtrTss),
1919 ("%#RGv %#RGv\n", pVM->selm.s.GCPtrGuestTss, GCPtrTss),
1920 false);
1921
1922
1923 /*
1924 * Figure out the size of what need to monitor.
1925 */
1926 /* We're not interested in any 16-bit TSSes. */
1927 uint32_t cbMonitoredTss = cbTss;
1928 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1929 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1930 cbMonitoredTss = 0;
1931 if (cbMonitoredTss)
1932 {
1933 VBOXTSS Tss;
1934 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
1935 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1936 AssertReturn( rc == VINF_SUCCESS
1937 /* Happens early in XP boot during page table switching. */
1938 || ( (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
1939 && !(CPUMGetGuestEFlags(pVCpu) & X86_EFL_IF)),
1940 false);
1941 if ( !(cr4 & X86_CR4_VME)
1942 || ( RT_SUCCESS(rc)
1943 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1944 && Tss.offIoBitmap > cbTss)
1945 )
1946 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1947 else if (RT_SUCCESS(rc))
1948 {
1949 cbMonitoredTss = Tss.offIoBitmap;
1950 AssertMsgReturn(pVM->selm.s.offGuestIoBitmap == Tss.offIoBitmap,
1951 ("#x %#x\n", pVM->selm.s.offGuestIoBitmap, Tss.offIoBitmap),
1952 false);
1953
1954 /* check the bitmap */
1955 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1956 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss.IntRedirBitmap,
1957 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1958 AssertRCReturn(rc, false);
1959 AssertMsgReturn(!memcmp(&Tss.IntRedirBitmap[0], &pVM->selm.s.Tss.IntRedirBitmap[0], sizeof(Tss.IntRedirBitmap)),
1960 ("offIoBitmap=%#x cbTss=%#x\n"
1961 " Guest: %.32Rhxs\n"
1962 "Shadow: %.32Rhxs\n",
1963 Tss.offIoBitmap, cbTss,
1964 &Tss.IntRedirBitmap[0],
1965 &pVM->selm.s.Tss.IntRedirBitmap[0]),
1966 false);
1967 }
1968 else
1969 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
1970
1971 /*
1972 * Check SS0 and ESP0.
1973 */
1974 if ( !pVM->selm.s.fSyncTSSRing0Stack
1975 && RT_SUCCESS(rc))
1976 {
1977 if ( Tss.esp0 != pVM->selm.s.Tss.esp1
1978 || Tss.ss0 != (pVM->selm.s.Tss.ss1 & ~1))
1979 {
1980 RTGCPHYS GCPhys;
1981 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
1982 AssertMsgFailed(("TSS out of sync!! (%04X:%08X vs %04X:%08X (guest)) Tss=%RGv Phys=%RGp\n",
1983 (pVM->selm.s.Tss.ss1 & ~1), pVM->selm.s.Tss.esp1,
1984 Tss.ss1, Tss.esp1, GCPtrTss, GCPhys));
1985 return false;
1986 }
1987 }
1988 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
1989 }
1990 else
1991 {
1992 AssertMsgReturn(pVM->selm.s.Tss.ss1 == 0 && pVM->selm.s.Tss.esp1 == 0, ("%04x:%08x\n", pVM->selm.s.Tss.ss1, pVM->selm.s.Tss.esp1), false);
1993 AssertReturn(!pVM->selm.s.fSyncTSSRing0Stack, false);
1994 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
1995 }
1996
1997
1998
1999 return true;
2000
2001#else /* !VBOX_STRICT */
2002 NOREF(pVM);
2003 return true;
2004#endif /* !VBOX_STRICT */
2005}
2006
2007
2008/**
2009 * Returns flat address and limit of LDT by LDT selector from guest GDTR.
2010 *
2011 * Fully validate selector.
2012 *
2013 * @returns VBox status.
2014 * @param pVM Pointer to the VM.
2015 * @param SelLdt LDT selector.
2016 * @param ppvLdt Where to store the flat address of LDT.
2017 * @param pcbLimit Where to store LDT limit.
2018 */
2019VMMDECL(int) SELMGetLDTFromSel(PVM pVM, RTSEL SelLdt, PRTGCPTR ppvLdt, unsigned *pcbLimit)
2020{
2021 PVMCPU pVCpu = VMMGetCpu(pVM);
2022
2023 /* Get guest GDTR. */
2024 VBOXGDTR GDTR;
2025 CPUMGetGuestGDTR(pVCpu, &GDTR);
2026
2027 /* Check selector TI and GDT limit. */
2028 if ( (SelLdt & X86_SEL_LDT)
2029 || SelLdt > GDTR.cbGdt)
2030 return VERR_INVALID_SELECTOR;
2031
2032 /* Read descriptor from GC. */
2033 X86DESC Desc;
2034 int rc = PGMPhysSimpleReadGCPtr(pVCpu, (void *)&Desc, (RTGCPTR)(GDTR.pGdt + (SelLdt & X86_SEL_MASK)), sizeof(Desc));
2035 if (RT_FAILURE(rc))
2036 {
2037 /* fatal */
2038 Log(("Can't read LDT descriptor for selector=%04X\n", SelLdt));
2039 return VERR_SELECTOR_NOT_PRESENT;
2040 }
2041
2042 /* Check if LDT descriptor is not present. */
2043 if (Desc.Gen.u1Present == 0)
2044 return VERR_SELECTOR_NOT_PRESENT;
2045
2046 /* Check LDT descriptor type. */
2047 if ( Desc.Gen.u1DescType == 1
2048 || Desc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
2049 return VERR_INVALID_SELECTOR;
2050
2051 /* LDT descriptor is ok. */
2052 if (ppvLdt)
2053 {
2054 *ppvLdt = (RTGCPTR)X86DESC_BASE(&Desc);
2055 *pcbLimit = X86DESC_LIMIT_G(&Desc);
2056 }
2057 return VINF_SUCCESS;
2058}
2059
2060
2061/**
2062 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
2063 *
2064 * See SELMR3GetSelectorInfo for details.
2065 *
2066 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
2067 *
2068 * @param pVCpu Pointer to the VMCPU.
2069 * @param Sel The selector to get info about.
2070 * @param pSelInfo Where to store the information.
2071 */
2072static int selmR3GetSelectorInfo64(PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2073{
2074 /*
2075 * Read it from the guest descriptor table.
2076 */
2077 X86DESC64 Desc;
2078 VBOXGDTR Gdtr;
2079 RTGCPTR GCPtrDesc;
2080 CPUMGetGuestGDTR(pVCpu, &Gdtr);
2081 if (!(Sel & X86_SEL_LDT))
2082 {
2083 /* GDT */
2084 if ((unsigned)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2085 return VERR_INVALID_SELECTOR;
2086 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2087 }
2088 else
2089 {
2090 /*
2091 * LDT - must locate the LDT first.
2092 */
2093 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
2094 if ( (unsigned)(SelLdt & X86_SEL_MASK) < sizeof(X86DESC) /* the first selector is invalid, right? */ /** @todo r=bird: No, I don't think so */
2095 || (unsigned)(SelLdt & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2096 return VERR_INVALID_SELECTOR;
2097 GCPtrDesc = Gdtr.pGdt + (SelLdt & X86_SEL_MASK);
2098 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2099 if (RT_FAILURE(rc))
2100 return rc;
2101
2102 /* validate the LDT descriptor. */
2103 if (Desc.Gen.u1Present == 0)
2104 return VERR_SELECTOR_NOT_PRESENT;
2105 if ( Desc.Gen.u1DescType == 1
2106 || Desc.Gen.u4Type != AMD64_SEL_TYPE_SYS_LDT)
2107 return VERR_INVALID_SELECTOR;
2108
2109 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc);
2110 if ((uint32_t)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > cbLimit)
2111 return VERR_INVALID_SELECTOR;
2112
2113 /* calc the descriptor location. */
2114 GCPtrDesc = X86DESC64_BASE(&Desc);
2115 GCPtrDesc += (Sel & X86_SEL_MASK);
2116 }
2117
2118 /* read the descriptor. */
2119 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2120 if (RT_FAILURE(rc))
2121 {
2122 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(X86DESC));
2123 if (RT_FAILURE(rc))
2124 return rc;
2125 Desc.au64[1] = 0;
2126 }
2127
2128 /*
2129 * Extract the base and limit
2130 * (We ignore the present bit here, which is probably a bit silly...)
2131 */
2132 pSelInfo->Sel = Sel;
2133 pSelInfo->fFlags = DBGFSELINFO_FLAGS_LONG_MODE;
2134 pSelInfo->u.Raw64 = Desc;
2135 if (Desc.Gen.u1DescType)
2136 {
2137 /*
2138 * 64-bit code selectors are wide open, it's not possible to detect
2139 * 64-bit data or stack selectors without also dragging in assumptions
2140 * about current CS (i.e. that's we're executing in 64-bit mode). So,
2141 * the selinfo user needs to deal with this in the context the info is
2142 * used unfortunately.
2143 */
2144 if ( Desc.Gen.u1Long
2145 && !Desc.Gen.u1DefBig
2146 && (Desc.Gen.u4Type & X86_SEL_TYPE_CODE))
2147 {
2148 /* Note! We ignore the segment limit hacks that was added by AMD. */
2149 pSelInfo->GCPtrBase = 0;
2150 pSelInfo->cbLimit = ~(RTGCUINTPTR)0;
2151 }
2152 else
2153 {
2154 pSelInfo->cbLimit = X86DESC_LIMIT_G(&Desc);
2155 pSelInfo->GCPtrBase = X86DESC_BASE(&Desc);
2156 }
2157 pSelInfo->SelGate = 0;
2158 }
2159 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_LDT
2160 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_AVAIL
2161 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY)
2162 {
2163 /* Note. LDT descriptors are weird in long mode, we ignore the footnote
2164 in the AMD manual here as a simplification. */
2165 pSelInfo->GCPtrBase = X86DESC64_BASE(&Desc);
2166 pSelInfo->cbLimit = X86DESC_LIMIT_G(&Desc);
2167 pSelInfo->SelGate = 0;
2168 }
2169 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE
2170 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TRAP_GATE
2171 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_INT_GATE)
2172 {
2173 pSelInfo->cbLimit = X86DESC64_BASE(&Desc);
2174 pSelInfo->GCPtrBase = Desc.Gate.u16OffsetLow
2175 | ((uint32_t)Desc.Gate.u16OffsetHigh << 16)
2176 | ((uint64_t)Desc.Gate.u32OffsetTop << 32);
2177 pSelInfo->SelGate = Desc.Gate.u16Sel;
2178 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2179 }
2180 else
2181 {
2182 pSelInfo->cbLimit = 0;
2183 pSelInfo->GCPtrBase = 0;
2184 pSelInfo->SelGate = 0;
2185 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2186 }
2187 if (!Desc.Gen.u1Present)
2188 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2189
2190 return VINF_SUCCESS;
2191}
2192
2193
2194/**
2195 * Worker for selmR3GetSelectorInfo32 and SELMR3GetShadowSelectorInfo that
2196 * interprets a legacy descriptor table entry and fills in the selector info
2197 * structure from it.
2198 *
2199 * @param pSelInfo Where to store the selector info. Only the fFlags and
2200 * Sel members have been initialized.
2201 * @param pDesc The legacy descriptor to parse.
2202 */
2203DECLINLINE(void) selmR3SelInfoFromDesc32(PDBGFSELINFO pSelInfo, PCX86DESC pDesc)
2204{
2205 pSelInfo->u.Raw64.au64[1] = 0;
2206 pSelInfo->u.Raw = *pDesc;
2207 if ( pDesc->Gen.u1DescType
2208 || !(pDesc->Gen.u4Type & 4))
2209 {
2210 pSelInfo->cbLimit = X86DESC_LIMIT_G(pDesc);
2211 pSelInfo->GCPtrBase = X86DESC_BASE(pDesc);
2212 pSelInfo->SelGate = 0;
2213 }
2214 else if (pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_UNDEFINED4)
2215 {
2216 pSelInfo->cbLimit = 0;
2217 if (pDesc->Gen.u4Type == X86_SEL_TYPE_SYS_TASK_GATE)
2218 pSelInfo->GCPtrBase = 0;
2219 else
2220 pSelInfo->GCPtrBase = pDesc->Gate.u16OffsetLow
2221 | (uint32_t)pDesc->Gate.u16OffsetHigh << 16;
2222 pSelInfo->SelGate = pDesc->Gate.u16Sel;
2223 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2224 }
2225 else
2226 {
2227 pSelInfo->cbLimit = 0;
2228 pSelInfo->GCPtrBase = 0;
2229 pSelInfo->SelGate = 0;
2230 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2231 }
2232 if (!pDesc->Gen.u1Present)
2233 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2234}
2235
2236
2237/**
2238 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
2239 *
2240 * See SELMR3GetSelectorInfo for details.
2241 *
2242 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
2243 *
2244 * @param pVM Pointer to the VM.
2245 * @param pVCpu Pointer to the VMCPU.
2246 * @param Sel The selector to get info about.
2247 * @param pSelInfo Where to store the information.
2248 */
2249static int selmR3GetSelectorInfo32(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2250{
2251 /*
2252 * Read the descriptor entry
2253 */
2254 pSelInfo->fFlags = 0;
2255 X86DESC Desc;
2256 if ( !(Sel & X86_SEL_LDT)
2257 && ( pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_MASK)
2258 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_MASK)
2259 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_MASK)
2260 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_MASK)
2261 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_MASK))
2262 )
2263 {
2264 /*
2265 * Hypervisor descriptor.
2266 */
2267 pSelInfo->fFlags = DBGFSELINFO_FLAGS_HYPER;
2268 if (CPUMIsGuestInProtectedMode(pVCpu))
2269 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2270 else
2271 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2272
2273 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2274 }
2275 else if (CPUMIsGuestInProtectedMode(pVCpu))
2276 {
2277 /*
2278 * Read it from the guest descriptor table.
2279 */
2280 pSelInfo->fFlags = DBGFSELINFO_FLAGS_PROT_MODE;
2281
2282 VBOXGDTR Gdtr;
2283 RTGCPTR GCPtrDesc;
2284 CPUMGetGuestGDTR(pVCpu, &Gdtr);
2285 if (!(Sel & X86_SEL_LDT))
2286 {
2287 /* GDT */
2288 if ((unsigned)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2289 return VERR_INVALID_SELECTOR;
2290 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2291 }
2292 else
2293 {
2294 /*
2295 * LDT - must locate the LDT first...
2296 */
2297 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
2298 if ( (unsigned)(SelLdt & X86_SEL_MASK) < sizeof(X86DESC) /* the first selector is invalid, right? */ /** @todo r=bird: No, I don't think so */
2299 || (unsigned)(SelLdt & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2300 return VERR_INVALID_SELECTOR;
2301 GCPtrDesc = Gdtr.pGdt + (SelLdt & X86_SEL_MASK);
2302 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2303 if (RT_FAILURE(rc))
2304 return rc;
2305
2306 /* validate the LDT descriptor. */
2307 if (Desc.Gen.u1Present == 0)
2308 return VERR_SELECTOR_NOT_PRESENT;
2309 if ( Desc.Gen.u1DescType == 1
2310 || Desc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
2311 return VERR_INVALID_SELECTOR;
2312
2313 uint32_t cbLimit = X86DESC_LIMIT_G(&Desc);
2314 if ((uint32_t)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > cbLimit)
2315 return VERR_INVALID_SELECTOR;
2316
2317 /* calc the descriptor location. */
2318 GCPtrDesc = X86DESC_BASE(&Desc);
2319 GCPtrDesc += (Sel & X86_SEL_MASK);
2320 }
2321
2322 /* read the descriptor. */
2323 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2324 if (RT_FAILURE(rc))
2325 return rc;
2326 }
2327 else
2328 {
2329 /*
2330 * We're in real mode.
2331 */
2332 pSelInfo->Sel = Sel;
2333 pSelInfo->GCPtrBase = Sel << 4;
2334 pSelInfo->cbLimit = 0xffff;
2335 pSelInfo->fFlags = DBGFSELINFO_FLAGS_REAL_MODE;
2336 pSelInfo->u.Raw64.au64[0] = 0;
2337 pSelInfo->u.Raw64.au64[1] = 0;
2338 pSelInfo->SelGate = 0;
2339 return VINF_SUCCESS;
2340 }
2341
2342 /*
2343 * Extract the base and limit or sel:offset for gates.
2344 */
2345 pSelInfo->Sel = Sel;
2346 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2347
2348 return VINF_SUCCESS;
2349}
2350
2351
2352/**
2353 * Gets information about a selector.
2354 *
2355 * Intended for the debugger mostly and will prefer the guest descriptor tables
2356 * over the shadow ones.
2357 *
2358 * @retval VINF_SUCCESS on success.
2359 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2360 * descriptor table.
2361 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2362 * is not returned if the selector itself isn't present, you have to
2363 * check that for yourself (see DBGFSELINFO::fFlags).
2364 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2365 * pagetable or page backing the selector table wasn't present.
2366 * @returns Other VBox status code on other errors.
2367 *
2368 * @param pVM Pointer to the VM.
2369 * @param pVCpu Pointer to the VMCPU.
2370 * @param Sel The selector to get info about.
2371 * @param pSelInfo Where to store the information.
2372 */
2373VMMR3DECL(int) SELMR3GetSelectorInfo(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2374{
2375 AssertPtr(pSelInfo);
2376 if (CPUMIsGuestInLongMode(pVCpu))
2377 return selmR3GetSelectorInfo64(pVCpu, Sel, pSelInfo);
2378 return selmR3GetSelectorInfo32(pVM, pVCpu, Sel, pSelInfo);
2379}
2380
2381
2382/**
2383 * Gets information about a selector from the shadow tables.
2384 *
2385 * This is intended to be faster than the SELMR3GetSelectorInfo() method, but
2386 * requires that the caller ensures that the shadow tables are up to date.
2387 *
2388 * @retval VINF_SUCCESS on success.
2389 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2390 * descriptor table.
2391 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2392 * is not returned if the selector itself isn't present, you have to
2393 * check that for yourself (see DBGFSELINFO::fFlags).
2394 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2395 * pagetable or page backing the selector table wasn't present.
2396 * @returns Other VBox status code on other errors.
2397 *
2398 * @param pVM Pointer to the VM.
2399 * @param Sel The selector to get info about.
2400 * @param pSelInfo Where to store the information.
2401 *
2402 * @remarks Don't use this when in hardware assisted virtualization mode.
2403 */
2404VMMR3DECL(int) SELMR3GetShadowSelectorInfo(PVM pVM, RTSEL Sel, PDBGFSELINFO pSelInfo)
2405{
2406 Assert(pSelInfo);
2407
2408 /*
2409 * Read the descriptor entry
2410 */
2411 X86DESC Desc;
2412 if (!(Sel & X86_SEL_LDT))
2413 {
2414 /*
2415 * Global descriptor.
2416 */
2417 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2418 pSelInfo->fFlags = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_MASK)
2419 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_MASK)
2420 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_MASK)
2421 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_MASK)
2422 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_MASK)
2423 ? DBGFSELINFO_FLAGS_HYPER
2424 : 0;
2425 /** @todo check that the GDT offset is valid. */
2426 }
2427 else
2428 {
2429 /*
2430 * Local Descriptor.
2431 */
2432 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2433 Desc = paLDT[Sel >> X86_SEL_SHIFT];
2434 /** @todo check if the LDT page is actually available. */
2435 /** @todo check that the LDT offset is valid. */
2436 pSelInfo->fFlags = 0;
2437 }
2438 if (CPUMIsGuestInProtectedMode(VMMGetCpu0(pVM)))
2439 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2440 else
2441 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2442
2443 /*
2444 * Extract the base and limit or sel:offset for gates.
2445 */
2446 pSelInfo->Sel = Sel;
2447 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2448
2449 return VINF_SUCCESS;
2450}
2451
2452
2453/**
2454 * Formats a descriptor.
2455 *
2456 * @param Desc Descriptor to format.
2457 * @param Sel Selector number.
2458 * @param pszOutput Output buffer.
2459 * @param cchOutput Size of output buffer.
2460 */
2461static void selmR3FormatDescriptor(X86DESC Desc, RTSEL Sel, char *pszOutput, size_t cchOutput)
2462{
2463 /*
2464 * Make variable description string.
2465 */
2466 static struct
2467 {
2468 unsigned cch;
2469 const char *psz;
2470 } const aTypes[32] =
2471 {
2472#define STRENTRY(str) { sizeof(str) - 1, str }
2473 /* system */
2474 STRENTRY("Reserved0 "), /* 0x00 */
2475 STRENTRY("TSS16Avail "), /* 0x01 */
2476 STRENTRY("LDT "), /* 0x02 */
2477 STRENTRY("TSS16Busy "), /* 0x03 */
2478 STRENTRY("Call16 "), /* 0x04 */
2479 STRENTRY("Task "), /* 0x05 */
2480 STRENTRY("Int16 "), /* 0x06 */
2481 STRENTRY("Trap16 "), /* 0x07 */
2482 STRENTRY("Reserved8 "), /* 0x08 */
2483 STRENTRY("TSS32Avail "), /* 0x09 */
2484 STRENTRY("ReservedA "), /* 0x0a */
2485 STRENTRY("TSS32Busy "), /* 0x0b */
2486 STRENTRY("Call32 "), /* 0x0c */
2487 STRENTRY("ReservedD "), /* 0x0d */
2488 STRENTRY("Int32 "), /* 0x0e */
2489 STRENTRY("Trap32 "), /* 0x0f */
2490 /* non system */
2491 STRENTRY("DataRO "), /* 0x10 */
2492 STRENTRY("DataRO Accessed "), /* 0x11 */
2493 STRENTRY("DataRW "), /* 0x12 */
2494 STRENTRY("DataRW Accessed "), /* 0x13 */
2495 STRENTRY("DataDownRO "), /* 0x14 */
2496 STRENTRY("DataDownRO Accessed "), /* 0x15 */
2497 STRENTRY("DataDownRW "), /* 0x16 */
2498 STRENTRY("DataDownRW Accessed "), /* 0x17 */
2499 STRENTRY("CodeEO "), /* 0x18 */
2500 STRENTRY("CodeEO Accessed "), /* 0x19 */
2501 STRENTRY("CodeER "), /* 0x1a */
2502 STRENTRY("CodeER Accessed "), /* 0x1b */
2503 STRENTRY("CodeConfEO "), /* 0x1c */
2504 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
2505 STRENTRY("CodeConfER "), /* 0x1e */
2506 STRENTRY("CodeConfER Accessed ") /* 0x1f */
2507#undef SYSENTRY
2508 };
2509#define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
2510 char szMsg[128];
2511 char *psz = &szMsg[0];
2512 unsigned i = Desc.Gen.u1DescType << 4 | Desc.Gen.u4Type;
2513 memcpy(psz, aTypes[i].psz, aTypes[i].cch);
2514 psz += aTypes[i].cch;
2515
2516 if (Desc.Gen.u1Present)
2517 ADD_STR(psz, "Present ");
2518 else
2519 ADD_STR(psz, "Not-Present ");
2520 if (Desc.Gen.u1Granularity)
2521 ADD_STR(psz, "Page ");
2522 if (Desc.Gen.u1DefBig)
2523 ADD_STR(psz, "32-bit ");
2524 else
2525 ADD_STR(psz, "16-bit ");
2526#undef ADD_STR
2527 *psz = '\0';
2528
2529 /*
2530 * Limit and Base and format the output.
2531 */
2532 uint32_t u32Limit = X86DESC_LIMIT_G(&Desc);
2533 uint32_t u32Base = X86DESC_BASE(&Desc);
2534
2535 RTStrPrintf(pszOutput, cchOutput, "%04x - %08x %08x - base=%08x limit=%08x dpl=%d %s",
2536 Sel, Desc.au32[0], Desc.au32[1], u32Base, u32Limit, Desc.Gen.u2Dpl, szMsg);
2537}
2538
2539
2540/**
2541 * Dumps a descriptor.
2542 *
2543 * @param Desc Descriptor to dump.
2544 * @param Sel Selector number.
2545 * @param pszMsg Message to prepend the log entry with.
2546 */
2547VMMR3DECL(void) SELMR3DumpDescriptor(X86DESC Desc, RTSEL Sel, const char *pszMsg)
2548{
2549 char szOutput[128];
2550 selmR3FormatDescriptor(Desc, Sel, &szOutput[0], sizeof(szOutput));
2551 Log(("%s: %s\n", pszMsg, szOutput));
2552 NOREF(szOutput[0]);
2553}
2554
2555
2556/**
2557 * Display the shadow gdt.
2558 *
2559 * @param pVM Pointer to the VM.
2560 * @param pHlp The info helpers.
2561 * @param pszArgs Arguments, ignored.
2562 */
2563static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2564{
2565 NOREF(pszArgs);
2566 pHlp->pfnPrintf(pHlp, "Shadow GDT (GCAddr=%RRv):\n", MMHyperR3ToRC(pVM, pVM->selm.s.paGdtR3));
2567 for (unsigned iGDT = 0; iGDT < SELM_GDT_ELEMENTS; iGDT++)
2568 {
2569 if (pVM->selm.s.paGdtR3[iGDT].Gen.u1Present)
2570 {
2571 char szOutput[128];
2572 selmR3FormatDescriptor(pVM->selm.s.paGdtR3[iGDT], iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2573 const char *psz = "";
2574 if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> X86_SEL_SHIFT))
2575 psz = " HyperCS";
2576 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> X86_SEL_SHIFT))
2577 psz = " HyperDS";
2578 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> X86_SEL_SHIFT))
2579 psz = " HyperCS64";
2580 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> X86_SEL_SHIFT))
2581 psz = " HyperTSS";
2582 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
2583 psz = " HyperTSSTrap08";
2584 pHlp->pfnPrintf(pHlp, "%s%s\n", szOutput, psz);
2585 }
2586 }
2587}
2588
2589
2590/**
2591 * Display the guest gdt.
2592 *
2593 * @param pVM Pointer to the VM.
2594 * @param pHlp The info helpers.
2595 * @param pszArgs Arguments, ignored.
2596 */
2597static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2598{
2599 /** @todo SMP support! */
2600 PVMCPU pVCpu = &pVM->aCpus[0];
2601
2602 VBOXGDTR GDTR;
2603 CPUMGetGuestGDTR(pVCpu, &GDTR);
2604 RTGCPTR GCPtrGDT = GDTR.pGdt;
2605 unsigned cGDTs = ((unsigned)GDTR.cbGdt + 1) / sizeof(X86DESC);
2606
2607 pHlp->pfnPrintf(pHlp, "Guest GDT (GCAddr=%RGv limit=%x):\n", GCPtrGDT, GDTR.cbGdt);
2608 for (unsigned iGDT = 0; iGDT < cGDTs; iGDT++, GCPtrGDT += sizeof(X86DESC))
2609 {
2610 X86DESC GDTE;
2611 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTE, GCPtrGDT, sizeof(GDTE));
2612 if (RT_SUCCESS(rc))
2613 {
2614 if (GDTE.Gen.u1Present)
2615 {
2616 char szOutput[128];
2617 selmR3FormatDescriptor(GDTE, iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2618 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2619 }
2620 }
2621 else if (rc == VERR_PAGE_NOT_PRESENT)
2622 {
2623 if ((GCPtrGDT & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2624 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", iGDT << X86_SEL_SHIFT, GCPtrGDT);
2625 }
2626 else
2627 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", iGDT << X86_SEL_SHIFT, rc, GCPtrGDT);
2628 }
2629 NOREF(pszArgs);
2630}
2631
2632
2633/**
2634 * Display the shadow ldt.
2635 *
2636 * @param pVM Pointer to the VM.
2637 * @param pHlp The info helpers.
2638 * @param pszArgs Arguments, ignored.
2639 */
2640static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2641{
2642 unsigned cLDTs = ((unsigned)pVM->selm.s.cbLdtLimit + 1) >> X86_SEL_SHIFT;
2643 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2644 pHlp->pfnPrintf(pHlp, "Shadow LDT (GCAddr=%RRv limit=%#x):\n", pVM->selm.s.pvLdtRC + pVM->selm.s.offLdtHyper, pVM->selm.s.cbLdtLimit);
2645 for (unsigned iLDT = 0; iLDT < cLDTs; iLDT++)
2646 {
2647 if (paLDT[iLDT].Gen.u1Present)
2648 {
2649 char szOutput[128];
2650 selmR3FormatDescriptor(paLDT[iLDT], (iLDT << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2651 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2652 }
2653 }
2654 NOREF(pszArgs);
2655}
2656
2657
2658/**
2659 * Display the guest ldt.
2660 *
2661 * @param pVM Pointer to the VM.
2662 * @param pHlp The info helpers.
2663 * @param pszArgs Arguments, ignored.
2664 */
2665static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2666{
2667 /** @todo SMP support! */
2668 PVMCPU pVCpu = &pVM->aCpus[0];
2669
2670 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
2671 if (!(SelLdt & X86_SEL_MASK))
2672 {
2673 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x): Null-Selector\n", SelLdt);
2674 return;
2675 }
2676
2677 RTGCPTR GCPtrLdt;
2678 unsigned cbLdt;
2679 int rc = SELMGetLDTFromSel(pVM, SelLdt, &GCPtrLdt, &cbLdt);
2680 if (RT_FAILURE(rc))
2681 {
2682 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x): rc=%Rrc\n", SelLdt, rc);
2683 return;
2684 }
2685
2686 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x GCAddr=%RGv limit=%x):\n", SelLdt, GCPtrLdt, cbLdt);
2687 unsigned cLdts = (cbLdt + 1) >> X86_SEL_SHIFT;
2688 for (unsigned iLdt = 0; iLdt < cLdts; iLdt++, GCPtrLdt += sizeof(X86DESC))
2689 {
2690 X86DESC LdtE;
2691 rc = PGMPhysSimpleReadGCPtr(pVCpu, &LdtE, GCPtrLdt, sizeof(LdtE));
2692 if (RT_SUCCESS(rc))
2693 {
2694 if (LdtE.Gen.u1Present)
2695 {
2696 char szOutput[128];
2697 selmR3FormatDescriptor(LdtE, (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2698 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2699 }
2700 }
2701 else if (rc == VERR_PAGE_NOT_PRESENT)
2702 {
2703 if ((GCPtrLdt & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2704 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, GCPtrLdt);
2705 }
2706 else
2707 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, rc, GCPtrLdt);
2708 }
2709 NOREF(pszArgs);
2710}
2711
2712
2713/**
2714 * Dumps the hypervisor GDT
2715 *
2716 * @param pVM Pointer to the VM.
2717 */
2718VMMR3DECL(void) SELMR3DumpHyperGDT(PVM pVM)
2719{
2720 DBGFR3Info(pVM, "gdt", NULL, NULL);
2721}
2722
2723
2724/**
2725 * Dumps the hypervisor LDT
2726 *
2727 * @param pVM Pointer to the VM.
2728 */
2729VMMR3DECL(void) SELMR3DumpHyperLDT(PVM pVM)
2730{
2731 DBGFR3Info(pVM, "ldt", NULL, NULL);
2732}
2733
2734
2735/**
2736 * Dumps the guest GDT
2737 *
2738 * @param pVM Pointer to the VM.
2739 */
2740VMMR3DECL(void) SELMR3DumpGuestGDT(PVM pVM)
2741{
2742 DBGFR3Info(pVM, "gdtguest", NULL, NULL);
2743}
2744
2745
2746/**
2747 * Dumps the guest LDT
2748 *
2749 * @param pVM Pointer to the VM.
2750 */
2751VMMR3DECL(void) SELMR3DumpGuestLDT(PVM pVM)
2752{
2753 DBGFR3Info(pVM, "ldtguest", NULL, NULL);
2754}
2755
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette