VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMSavedState.cpp@ 36054

Last change on this file since 36054 was 36042, checked in by vboxsync, 14 years ago

PGMSavedState.cpp: Must change ballooned pages to zero pages when processing PGM_STATE_REC_RAM_ZERO.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 122.9 KB
Line 
1/* $Id: PGMSavedState.cpp 36042 2011-02-21 16:51:08Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, The Saved State Part.
4 */
5
6/*
7 * Copyright (C) 2006-2009 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/stam.h>
25#include <VBox/vmm/ssm.h>
26#include <VBox/vmm/pdmdrv.h>
27#include <VBox/vmm/pdmdev.h>
28#include "PGMInternal.h"
29#include <VBox/vmm/vm.h>
30#include "PGMInline.h"
31
32#include <VBox/param.h>
33#include <VBox/err.h>
34#include <VBox/vmm/ftm.h>
35
36#include <iprt/asm.h>
37#include <iprt/assert.h>
38#include <iprt/crc.h>
39#include <iprt/mem.h>
40#include <iprt/sha.h>
41#include <iprt/string.h>
42#include <iprt/thread.h>
43
44
45/*******************************************************************************
46* Defined Constants And Macros *
47*******************************************************************************/
48/** Saved state data unit version.
49 * @todo remove the guest mappings from the saved state at next version change! */
50#define PGM_SAVED_STATE_VERSION 13
51/** Saved state data unit version after this includes ballooned page flags in
52 * the state (see #5515). */
53#define PGM_SAVED_STATE_VERSION_BALLOON_BROKEN 12
54/** Saved state before the balloon change. */
55#define PGM_SAVED_STATE_VERSION_PRE_BALLOON 11
56/** Saved state data unit version used during 3.1 development, misses the RAM
57 * config. */
58#define PGM_SAVED_STATE_VERSION_NO_RAM_CFG 10
59/** Saved state data unit version for 3.0 (pre teleportation). */
60#define PGM_SAVED_STATE_VERSION_3_0_0 9
61/** Saved state data unit version for 2.2.2 and later. */
62#define PGM_SAVED_STATE_VERSION_2_2_2 8
63/** Saved state data unit version for 2.2.0. */
64#define PGM_SAVED_STATE_VERSION_RR_DESC 7
65/** Saved state data unit version. */
66#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
67
68
69/** @name Sparse state record types
70 * @{ */
71/** Zero page. No data. */
72#define PGM_STATE_REC_RAM_ZERO UINT8_C(0x00)
73/** Raw page. */
74#define PGM_STATE_REC_RAM_RAW UINT8_C(0x01)
75/** Raw MMIO2 page. */
76#define PGM_STATE_REC_MMIO2_RAW UINT8_C(0x02)
77/** Zero MMIO2 page. */
78#define PGM_STATE_REC_MMIO2_ZERO UINT8_C(0x03)
79/** Virgin ROM page. Followed by protection (8-bit) and the raw bits. */
80#define PGM_STATE_REC_ROM_VIRGIN UINT8_C(0x04)
81/** Raw shadowed ROM page. The protection (8-bit) precedes the raw bits. */
82#define PGM_STATE_REC_ROM_SHW_RAW UINT8_C(0x05)
83/** Zero shadowed ROM page. The protection (8-bit) is the only payload. */
84#define PGM_STATE_REC_ROM_SHW_ZERO UINT8_C(0x06)
85/** ROM protection (8-bit). */
86#define PGM_STATE_REC_ROM_PROT UINT8_C(0x07)
87/** Ballooned page. No data. */
88#define PGM_STATE_REC_RAM_BALLOONED UINT8_C(0x08)
89/** The last record type. */
90#define PGM_STATE_REC_LAST PGM_STATE_REC_RAM_BALLOONED
91/** End marker. */
92#define PGM_STATE_REC_END UINT8_C(0xff)
93/** Flag indicating that the data is preceded by the page address.
94 * For RAW pages this is a RTGCPHYS. For MMIO2 and ROM pages this is a 8-bit
95 * range ID and a 32-bit page index.
96 */
97#define PGM_STATE_REC_FLAG_ADDR UINT8_C(0x80)
98/** @} */
99
100/** The CRC-32 for a zero page. */
101#define PGM_STATE_CRC32_ZERO_PAGE UINT32_C(0xc71c0011)
102/** The CRC-32 for a zero half page. */
103#define PGM_STATE_CRC32_ZERO_HALF_PAGE UINT32_C(0xf1e8ba9e)
104
105
106/*******************************************************************************
107* Structures and Typedefs *
108*******************************************************************************/
109/** For loading old saved states. (pre-smp) */
110typedef struct
111{
112 /** If set no conflict checks are required. (boolean) */
113 bool fMappingsFixed;
114 /** Size of fixed mapping */
115 uint32_t cbMappingFixed;
116 /** Base address (GC) of fixed mapping */
117 RTGCPTR GCPtrMappingFixed;
118 /** A20 gate mask.
119 * Our current approach to A20 emulation is to let REM do it and don't bother
120 * anywhere else. The interesting guests will be operating with it enabled anyway.
121 * But should the need arise, we'll subject physical addresses to this mask. */
122 RTGCPHYS GCPhysA20Mask;
123 /** A20 gate state - boolean! */
124 bool fA20Enabled;
125 /** The guest paging mode. */
126 PGMMODE enmGuestMode;
127} PGMOLD;
128
129
130/*******************************************************************************
131* Global Variables *
132*******************************************************************************/
133/** PGM fields to save/load. */
134
135static const SSMFIELD s_aPGMFields[] =
136{
137 SSMFIELD_ENTRY( PGM, fMappingsFixed),
138 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
139 SSMFIELD_ENTRY( PGM, cbMappingFixed),
140 SSMFIELD_ENTRY( PGM, cBalloonedPages),
141 SSMFIELD_ENTRY_TERM()
142};
143
144static const SSMFIELD s_aPGMFieldsPreBalloon[] =
145{
146 SSMFIELD_ENTRY( PGM, fMappingsFixed),
147 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
148 SSMFIELD_ENTRY( PGM, cbMappingFixed),
149 SSMFIELD_ENTRY_TERM()
150};
151
152static const SSMFIELD s_aPGMCpuFields[] =
153{
154 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
155 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
156 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
157 SSMFIELD_ENTRY_TERM()
158};
159
160static const SSMFIELD s_aPGMFields_Old[] =
161{
162 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
163 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
164 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
165 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
166 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
167 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
168 SSMFIELD_ENTRY_TERM()
169};
170
171
172/**
173 * Find the ROM tracking structure for the given page.
174 *
175 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
176 * that it's a ROM page.
177 * @param pVM The VM handle.
178 * @param GCPhys The address of the ROM page.
179 */
180static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys) /** @todo change this to take a hint. */
181{
182 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
183 pRomRange;
184 pRomRange = pRomRange->CTX_SUFF(pNext))
185 {
186 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
187 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
188 return &pRomRange->aPages[off >> PAGE_SHIFT];
189 }
190 return NULL;
191}
192
193
194/**
195 * Prepares the ROM pages for a live save.
196 *
197 * @returns VBox status code.
198 * @param pVM The VM handle.
199 */
200static int pgmR3PrepRomPages(PVM pVM)
201{
202 /*
203 * Initialize the live save tracking in the ROM page descriptors.
204 */
205 pgmLock(pVM);
206 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
207 {
208 PPGMRAMRANGE pRamHint = NULL;;
209 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
210
211 for (uint32_t iPage = 0; iPage < cPages; iPage++)
212 {
213 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)PGMROMPROT_INVALID;
214 pRom->aPages[iPage].LiveSave.fWrittenTo = false;
215 pRom->aPages[iPage].LiveSave.fDirty = true;
216 pRom->aPages[iPage].LiveSave.fDirtiedRecently = true;
217 if (!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
218 {
219 if (PGMROMPROT_IS_ROM(pRom->aPages[iPage].enmProt))
220 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
221 else
222 {
223 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
224 PPGMPAGE pPage;
225 int rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, GCPhys, &pPage, &pRamHint);
226 AssertLogRelMsgRC(rc, ("%Rrc GCPhys=%RGp\n", rc, GCPhys));
227 if (RT_SUCCESS(rc))
228 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(pPage) && !PGM_PAGE_IS_BALLOONED(pPage);
229 else
230 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
231 }
232 }
233 }
234
235 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
236 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
237 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
238 }
239 pgmUnlock(pVM);
240
241 return VINF_SUCCESS;
242}
243
244
245/**
246 * Assigns IDs to the ROM ranges and saves them.
247 *
248 * @returns VBox status code.
249 * @param pVM The VM handle.
250 * @param pSSM Saved state handle.
251 */
252static int pgmR3SaveRomRanges(PVM pVM, PSSMHANDLE pSSM)
253{
254 pgmLock(pVM);
255 uint8_t id = 1;
256 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3, id++)
257 {
258 pRom->idSavedState = id;
259 SSMR3PutU8(pSSM, id);
260 SSMR3PutStrZ(pSSM, ""); /* device name */
261 SSMR3PutU32(pSSM, 0); /* device instance */
262 SSMR3PutU8(pSSM, 0); /* region */
263 SSMR3PutStrZ(pSSM, pRom->pszDesc);
264 SSMR3PutGCPhys(pSSM, pRom->GCPhys);
265 int rc = SSMR3PutGCPhys(pSSM, pRom->cb);
266 if (RT_FAILURE(rc))
267 break;
268 }
269 pgmUnlock(pVM);
270 return SSMR3PutU8(pSSM, UINT8_MAX);
271}
272
273
274/**
275 * Loads the ROM range ID assignments.
276 *
277 * @returns VBox status code.
278 *
279 * @param pVM The VM handle.
280 * @param pSSM The saved state handle.
281 */
282static int pgmR3LoadRomRanges(PVM pVM, PSSMHANDLE pSSM)
283{
284 Assert(PGMIsLockOwner(pVM));
285
286 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
287 pRom->idSavedState = UINT8_MAX;
288
289 for (;;)
290 {
291 /*
292 * Read the data.
293 */
294 uint8_t id;
295 int rc = SSMR3GetU8(pSSM, &id);
296 if (RT_FAILURE(rc))
297 return rc;
298 if (id == UINT8_MAX)
299 {
300 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
301 AssertLogRelMsg(pRom->idSavedState != UINT8_MAX,
302 ("The \"%s\" ROM was not found in the saved state. Probably due to some misconfiguration\n",
303 pRom->pszDesc));
304 return VINF_SUCCESS; /* the end */
305 }
306 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
307
308 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
309 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
310 AssertLogRelRCReturn(rc, rc);
311
312 uint32_t uInstance;
313 SSMR3GetU32(pSSM, &uInstance);
314 uint8_t iRegion;
315 SSMR3GetU8(pSSM, &iRegion);
316
317 char szDesc[64];
318 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
319 AssertLogRelRCReturn(rc, rc);
320
321 RTGCPHYS GCPhys;
322 SSMR3GetGCPhys(pSSM, &GCPhys);
323 RTGCPHYS cb;
324 rc = SSMR3GetGCPhys(pSSM, &cb);
325 if (RT_FAILURE(rc))
326 return rc;
327 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp %s\n", GCPhys, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
328 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
329
330 /*
331 * Locate a matching ROM range.
332 */
333 AssertLogRelMsgReturn( uInstance == 0
334 && iRegion == 0
335 && szDevName[0] == '\0',
336 ("GCPhys=%RGp %s\n", GCPhys, szDesc),
337 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
338 PPGMROMRANGE pRom;
339 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
340 {
341 if ( pRom->idSavedState == UINT8_MAX
342 && !strcmp(pRom->pszDesc, szDesc))
343 {
344 pRom->idSavedState = id;
345 break;
346 }
347 }
348 if (!pRom)
349 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("ROM at %RGp by the name '%s' was not found"), GCPhys, szDesc);
350 } /* forever */
351}
352
353
354/**
355 * Scan ROM pages.
356 *
357 * @param pVM The VM handle.
358 */
359static void pgmR3ScanRomPages(PVM pVM)
360{
361 /*
362 * The shadow ROMs.
363 */
364 pgmLock(pVM);
365 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
366 {
367 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
368 {
369 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
370 for (uint32_t iPage = 0; iPage < cPages; iPage++)
371 {
372 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
373 if (pRomPage->LiveSave.fWrittenTo)
374 {
375 pRomPage->LiveSave.fWrittenTo = false;
376 if (!pRomPage->LiveSave.fDirty)
377 {
378 pRomPage->LiveSave.fDirty = true;
379 pVM->pgm.s.LiveSave.Rom.cReadyPages--;
380 pVM->pgm.s.LiveSave.Rom.cDirtyPages++;
381 }
382 pRomPage->LiveSave.fDirtiedRecently = true;
383 }
384 else
385 pRomPage->LiveSave.fDirtiedRecently = false;
386 }
387 }
388 }
389 pgmUnlock(pVM);
390}
391
392
393/**
394 * Takes care of the virgin ROM pages in the first pass.
395 *
396 * This is an attempt at simplifying the handling of ROM pages a little bit.
397 * This ASSUMES that no new ROM ranges will be added and that they won't be
398 * relinked in any way.
399 *
400 * @param pVM The VM handle.
401 * @param pSSM The SSM handle.
402 * @param fLiveSave Whether we're in a live save or not.
403 */
404static int pgmR3SaveRomVirginPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave)
405{
406 if (FTMIsDeltaLoadSaveActive(pVM))
407 return VINF_SUCCESS; /* nothing to do as nothing has changed here */
408
409 pgmLock(pVM);
410 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
411 {
412 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
413 for (uint32_t iPage = 0; iPage < cPages; iPage++)
414 {
415 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
416 PGMROMPROT enmProt = pRom->aPages[iPage].enmProt;
417
418 /* Get the virgin page descriptor. */
419 PPGMPAGE pPage;
420 if (PGMROMPROT_IS_ROM(enmProt))
421 pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
422 else
423 pPage = &pRom->aPages[iPage].Virgin;
424
425 /* Get the page bits. (Cannot use pgmPhysGCPhys2CCPtrInternalReadOnly here!) */
426 int rc = VINF_SUCCESS;
427 char abPage[PAGE_SIZE];
428 if ( !PGM_PAGE_IS_ZERO(pPage)
429 && !PGM_PAGE_IS_BALLOONED(pPage))
430 {
431 void const *pvPage;
432 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
433 if (RT_SUCCESS(rc))
434 memcpy(abPage, pvPage, PAGE_SIZE);
435 }
436 else
437 ASMMemZeroPage(abPage);
438 pgmUnlock(pVM);
439 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
440
441 /* Save it. */
442 if (iPage > 0)
443 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN);
444 else
445 {
446 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN | PGM_STATE_REC_FLAG_ADDR);
447 SSMR3PutU8(pSSM, pRom->idSavedState);
448 SSMR3PutU32(pSSM, iPage);
449 }
450 SSMR3PutU8(pSSM, (uint8_t)enmProt);
451 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
452 if (RT_FAILURE(rc))
453 return rc;
454
455 /* Update state. */
456 pgmLock(pVM);
457 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)enmProt;
458 if (fLiveSave)
459 {
460 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
461 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
462 pVM->pgm.s.LiveSave.cSavedPages++;
463 }
464 }
465 }
466 pgmUnlock(pVM);
467 return VINF_SUCCESS;
468}
469
470
471/**
472 * Saves dirty pages in the shadowed ROM ranges.
473 *
474 * Used by pgmR3LiveExecPart2 and pgmR3SaveExecMemory.
475 *
476 * @returns VBox status code.
477 * @param pVM The VM handle.
478 * @param pSSM The SSM handle.
479 * @param fLiveSave Whether it's a live save or not.
480 * @param fFinalPass Whether this is the final pass or not.
481 */
482static int pgmR3SaveShadowedRomPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, bool fFinalPass)
483{
484 if (FTMIsDeltaLoadSaveActive(pVM))
485 return VINF_SUCCESS; /* nothing to do as we deal with those pages separately */
486
487 /*
488 * The Shadowed ROMs.
489 *
490 * ASSUMES that the ROM ranges are fixed.
491 * ASSUMES that all the ROM ranges are mapped.
492 */
493 pgmLock(pVM);
494 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
495 {
496 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
497 {
498 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
499 uint32_t iPrevPage = cPages;
500 for (uint32_t iPage = 0; iPage < cPages; iPage++)
501 {
502 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
503 if ( !fLiveSave
504 || ( pRomPage->LiveSave.fDirty
505 && ( ( !pRomPage->LiveSave.fDirtiedRecently
506 && !pRomPage->LiveSave.fWrittenTo)
507 || fFinalPass
508 )
509 )
510 )
511 {
512 uint8_t abPage[PAGE_SIZE];
513 PGMROMPROT enmProt = pRomPage->enmProt;
514 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
515 PPGMPAGE pPage = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : pgmPhysGetPage(&pVM->pgm.s, GCPhys);
516 bool fZero = PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_BALLOONED(pPage); Assert(!PGM_PAGE_IS_BALLOONED(pPage)); /* Shouldn't be ballooned. */
517 int rc = VINF_SUCCESS;
518 if (!fZero)
519 {
520 void const *pvPage;
521 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
522 if (RT_SUCCESS(rc))
523 memcpy(abPage, pvPage, PAGE_SIZE);
524 }
525 if (fLiveSave && RT_SUCCESS(rc))
526 {
527 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
528 pRomPage->LiveSave.fDirty = false;
529 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
530 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
531 pVM->pgm.s.LiveSave.cSavedPages++;
532 }
533 pgmUnlock(pVM);
534 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
535
536 if (iPage - 1U == iPrevPage && iPage > 0)
537 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW));
538 else
539 {
540 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW) | PGM_STATE_REC_FLAG_ADDR);
541 SSMR3PutU8(pSSM, pRom->idSavedState);
542 SSMR3PutU32(pSSM, iPage);
543 }
544 rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
545 if (!fZero)
546 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
547 if (RT_FAILURE(rc))
548 return rc;
549
550 pgmLock(pVM);
551 iPrevPage = iPage;
552 }
553 /*
554 * In the final pass, make sure the protection is in sync.
555 */
556 else if ( fFinalPass
557 && pRomPage->LiveSave.u8Prot != pRomPage->enmProt)
558 {
559 PGMROMPROT enmProt = pRomPage->enmProt;
560 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
561 pgmUnlock(pVM);
562
563 if (iPage - 1U == iPrevPage && iPage > 0)
564 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT);
565 else
566 {
567 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT | PGM_STATE_REC_FLAG_ADDR);
568 SSMR3PutU8(pSSM, pRom->idSavedState);
569 SSMR3PutU32(pSSM, iPage);
570 }
571 int rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
572 if (RT_FAILURE(rc))
573 return rc;
574
575 pgmLock(pVM);
576 iPrevPage = iPage;
577 }
578 }
579 }
580 }
581 pgmUnlock(pVM);
582 return VINF_SUCCESS;
583}
584
585
586/**
587 * Cleans up ROM pages after a live save.
588 *
589 * @param pVM The VM handle.
590 */
591static void pgmR3DoneRomPages(PVM pVM)
592{
593 NOREF(pVM);
594}
595
596
597/**
598 * Prepares the MMIO2 pages for a live save.
599 *
600 * @returns VBox status code.
601 * @param pVM The VM handle.
602 */
603static int pgmR3PrepMmio2Pages(PVM pVM)
604{
605 /*
606 * Initialize the live save tracking in the MMIO2 ranges.
607 * ASSUME nothing changes here.
608 */
609 pgmLock(pVM);
610 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
611 {
612 uint32_t const cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
613 pgmUnlock(pVM);
614
615 PPGMLIVESAVEMMIO2PAGE paLSPages = (PPGMLIVESAVEMMIO2PAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMLIVESAVEMMIO2PAGE) * cPages);
616 if (!paLSPages)
617 return VERR_NO_MEMORY;
618 for (uint32_t iPage = 0; iPage < cPages; iPage++)
619 {
620 /* Initialize it as a dirty zero page. */
621 paLSPages[iPage].fDirty = true;
622 paLSPages[iPage].cUnchangedScans = 0;
623 paLSPages[iPage].fZero = true;
624 paLSPages[iPage].u32CrcH1 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
625 paLSPages[iPage].u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
626 }
627
628 pgmLock(pVM);
629 pMmio2->paLSPages = paLSPages;
630 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages += cPages;
631 }
632 pgmUnlock(pVM);
633 return VINF_SUCCESS;
634}
635
636
637/**
638 * Assigns IDs to the MMIO2 ranges and saves them.
639 *
640 * @returns VBox status code.
641 * @param pVM The VM handle.
642 * @param pSSM Saved state handle.
643 */
644static int pgmR3SaveMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
645{
646 pgmLock(pVM);
647 uint8_t id = 1;
648 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3, id++)
649 {
650 pMmio2->idSavedState = id;
651 SSMR3PutU8(pSSM, id);
652 SSMR3PutStrZ(pSSM, pMmio2->pDevInsR3->pReg->szName);
653 SSMR3PutU32(pSSM, pMmio2->pDevInsR3->iInstance);
654 SSMR3PutU8(pSSM, pMmio2->iRegion);
655 SSMR3PutStrZ(pSSM, pMmio2->RamRange.pszDesc);
656 int rc = SSMR3PutGCPhys(pSSM, pMmio2->RamRange.cb);
657 if (RT_FAILURE(rc))
658 break;
659 }
660 pgmUnlock(pVM);
661 return SSMR3PutU8(pSSM, UINT8_MAX);
662}
663
664
665/**
666 * Loads the MMIO2 range ID assignments.
667 *
668 * @returns VBox status code.
669 *
670 * @param pVM The VM handle.
671 * @param pSSM The saved state handle.
672 */
673static int pgmR3LoadMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
674{
675 Assert(PGMIsLockOwner(pVM));
676
677 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
678 pMmio2->idSavedState = UINT8_MAX;
679
680 for (;;)
681 {
682 /*
683 * Read the data.
684 */
685 uint8_t id;
686 int rc = SSMR3GetU8(pSSM, &id);
687 if (RT_FAILURE(rc))
688 return rc;
689 if (id == UINT8_MAX)
690 {
691 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
692 AssertLogRelMsg(pMmio2->idSavedState != UINT8_MAX, ("%s\n", pMmio2->RamRange.pszDesc));
693 return VINF_SUCCESS; /* the end */
694 }
695 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
696
697 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
698 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
699 AssertLogRelRCReturn(rc, rc);
700
701 uint32_t uInstance;
702 SSMR3GetU32(pSSM, &uInstance);
703 uint8_t iRegion;
704 SSMR3GetU8(pSSM, &iRegion);
705
706 char szDesc[64];
707 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
708 AssertLogRelRCReturn(rc, rc);
709
710 RTGCPHYS cb;
711 rc = SSMR3GetGCPhys(pSSM, &cb);
712 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
713
714 /*
715 * Locate a matching MMIO2 range.
716 */
717 PPGMMMIO2RANGE pMmio2;
718 for (pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
719 {
720 if ( pMmio2->idSavedState == UINT8_MAX
721 && pMmio2->iRegion == iRegion
722 && pMmio2->pDevInsR3->iInstance == uInstance
723 && !strcmp(pMmio2->pDevInsR3->pReg->szName, szDevName))
724 {
725 pMmio2->idSavedState = id;
726 break;
727 }
728 }
729 if (!pMmio2)
730 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Failed to locate a MMIO2 range called '%s' owned by %s/%u, region %d"),
731 szDesc, szDevName, uInstance, iRegion);
732
733 /*
734 * Validate the configuration, the size of the MMIO2 region should be
735 * the same.
736 */
737 if (cb != pMmio2->RamRange.cb)
738 {
739 LogRel(("PGM: MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp\n",
740 pMmio2->RamRange.pszDesc, cb, pMmio2->RamRange.cb));
741 if (cb > pMmio2->RamRange.cb) /* bad idea? */
742 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp"),
743 pMmio2->RamRange.pszDesc, cb, pMmio2->RamRange.cb);
744 }
745 } /* forever */
746}
747
748
749/**
750 * Scans one MMIO2 page.
751 *
752 * @returns True if changed, false if unchanged.
753 *
754 * @param pVM The VM handle
755 * @param pbPage The page bits.
756 * @param pLSPage The live save tracking structure for the page.
757 *
758 */
759DECLINLINE(bool) pgmR3ScanMmio2Page(PVM pVM, uint8_t const *pbPage, PPGMLIVESAVEMMIO2PAGE pLSPage)
760{
761 /*
762 * Special handling of zero pages.
763 */
764 bool const fZero = pLSPage->fZero;
765 if (fZero)
766 {
767 if (ASMMemIsZeroPage(pbPage))
768 {
769 /* Not modified. */
770 if (pLSPage->fDirty)
771 pLSPage->cUnchangedScans++;
772 return false;
773 }
774
775 pLSPage->fZero = false;
776 pLSPage->u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
777 }
778 else
779 {
780 /*
781 * CRC the first half, if it doesn't match the page is dirty and
782 * we won't check the 2nd half (we'll do that next time).
783 */
784 uint32_t u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
785 if (u32CrcH1 == pLSPage->u32CrcH1)
786 {
787 uint32_t u32CrcH2 = RTCrc32(pbPage + PAGE_SIZE / 2, PAGE_SIZE / 2);
788 if (u32CrcH2 == pLSPage->u32CrcH2)
789 {
790 /* Probably not modified. */
791 if (pLSPage->fDirty)
792 pLSPage->cUnchangedScans++;
793 return false;
794 }
795
796 pLSPage->u32CrcH2 = u32CrcH2;
797 }
798 else
799 {
800 pLSPage->u32CrcH1 = u32CrcH1;
801 if ( u32CrcH1 == PGM_STATE_CRC32_ZERO_HALF_PAGE
802 && ASMMemIsZeroPage(pbPage))
803 {
804 pLSPage->u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
805 pLSPage->fZero = true;
806 }
807 }
808 }
809
810 /* dirty page path */
811 pLSPage->cUnchangedScans = 0;
812 if (!pLSPage->fDirty)
813 {
814 pLSPage->fDirty = true;
815 pVM->pgm.s.LiveSave.Mmio2.cReadyPages--;
816 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages++;
817 if (fZero)
818 pVM->pgm.s.LiveSave.Mmio2.cZeroPages--;
819 }
820 return true;
821}
822
823
824/**
825 * Scan for MMIO2 page modifications.
826 *
827 * @param pVM The VM handle.
828 * @param uPass The pass number.
829 */
830static void pgmR3ScanMmio2Pages(PVM pVM, uint32_t uPass)
831{
832 /*
833 * Since this is a bit expensive we lower the scan rate after a little while.
834 */
835 if ( ( (uPass & 3) != 0
836 && uPass > 10)
837 || uPass == SSM_PASS_FINAL)
838 return;
839
840 pgmLock(pVM); /* paranoia */
841 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
842 {
843 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
844 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
845 pgmUnlock(pVM);
846
847 for (uint32_t iPage = 0; iPage < cPages; iPage++)
848 {
849 uint8_t const *pbPage = (uint8_t const *)pMmio2->pvR3 + iPage * PAGE_SIZE;
850 pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]);
851 }
852
853 pgmLock(pVM);
854 }
855 pgmUnlock(pVM);
856
857}
858
859
860/**
861 * Save quiescent MMIO2 pages.
862 *
863 * @returns VBox status code.
864 * @param pVM The VM handle.
865 * @param pSSM The SSM handle.
866 * @param fLiveSave Whether it's a live save or not.
867 * @param uPass The pass number.
868 */
869static int pgmR3SaveMmio2Pages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
870{
871 /** @todo implement live saving of MMIO2 pages. (Need some way of telling the
872 * device that we wish to know about changes.) */
873
874 int rc = VINF_SUCCESS;
875 if (uPass == SSM_PASS_FINAL)
876 {
877 /*
878 * The mop up round.
879 */
880 pgmLock(pVM);
881 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3;
882 pMmio2 && RT_SUCCESS(rc);
883 pMmio2 = pMmio2->pNextR3)
884 {
885 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
886 uint8_t const *pbPage = (uint8_t const *)pMmio2->RamRange.pvR3;
887 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
888 uint32_t iPageLast = cPages;
889 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
890 {
891 uint8_t u8Type;
892 if (!fLiveSave)
893 u8Type = ASMMemIsZeroPage(pbPage) ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
894 else
895 {
896 /* Try figure if it's a clean page, compare the SHA-1 to be really sure. */
897 if ( !paLSPages[iPage].fDirty
898 && !pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
899 {
900 if (paLSPages[iPage].fZero)
901 continue;
902
903 uint8_t abSha1Hash[RTSHA1_HASH_SIZE];
904 RTSha1(pbPage, PAGE_SIZE, abSha1Hash);
905 if (!memcmp(abSha1Hash, paLSPages[iPage].abSha1Saved, sizeof(abSha1Hash)))
906 continue;
907 }
908 u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
909 pVM->pgm.s.LiveSave.cSavedPages++;
910 }
911
912 if (iPage != 0 && iPage == iPageLast + 1)
913 rc = SSMR3PutU8(pSSM, u8Type);
914 else
915 {
916 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
917 SSMR3PutU8(pSSM, pMmio2->idSavedState);
918 rc = SSMR3PutU32(pSSM, iPage);
919 }
920 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
921 rc = SSMR3PutMem(pSSM, pbPage, PAGE_SIZE);
922 if (RT_FAILURE(rc))
923 break;
924 iPageLast = iPage;
925 }
926 }
927 pgmUnlock(pVM);
928 }
929 /*
930 * Reduce the rate after a little while since the current MMIO2 approach is
931 * a bit expensive.
932 * We position it two passes after the scan pass to avoid saving busy pages.
933 */
934 else if ( uPass <= 10
935 || (uPass & 3) == 2)
936 {
937 pgmLock(pVM);
938 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3;
939 pMmio2 && RT_SUCCESS(rc);
940 pMmio2 = pMmio2->pNextR3)
941 {
942 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
943 uint8_t const *pbPage = (uint8_t const *)pMmio2->RamRange.pvR3;
944 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
945 uint32_t iPageLast = cPages;
946 pgmUnlock(pVM);
947
948 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
949 {
950 /* Skip clean pages and pages which hasn't quiesced. */
951 if (!paLSPages[iPage].fDirty)
952 continue;
953 if (paLSPages[iPage].cUnchangedScans < 3)
954 continue;
955 if (pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
956 continue;
957
958 /* Save it. */
959 bool const fZero = paLSPages[iPage].fZero;
960 uint8_t abPage[PAGE_SIZE];
961 if (!fZero)
962 {
963 memcpy(abPage, pbPage, PAGE_SIZE);
964 RTSha1(abPage, PAGE_SIZE, paLSPages[iPage].abSha1Saved);
965 }
966
967 uint8_t u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
968 if (iPage != 0 && iPage == iPageLast + 1)
969 rc = SSMR3PutU8(pSSM, u8Type);
970 else
971 {
972 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
973 SSMR3PutU8(pSSM, pMmio2->idSavedState);
974 rc = SSMR3PutU32(pSSM, iPage);
975 }
976 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
977 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
978 if (RT_FAILURE(rc))
979 break;
980
981 /* Housekeeping. */
982 paLSPages[iPage].fDirty = false;
983 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages--;
984 pVM->pgm.s.LiveSave.Mmio2.cReadyPages++;
985 if (u8Type == PGM_STATE_REC_MMIO2_ZERO)
986 pVM->pgm.s.LiveSave.Mmio2.cZeroPages++;
987 pVM->pgm.s.LiveSave.cSavedPages++;
988 iPageLast = iPage;
989 }
990
991 pgmLock(pVM);
992 }
993 pgmUnlock(pVM);
994 }
995
996 return rc;
997}
998
999
1000/**
1001 * Cleans up MMIO2 pages after a live save.
1002 *
1003 * @param pVM The VM handle.
1004 */
1005static void pgmR3DoneMmio2Pages(PVM pVM)
1006{
1007 /*
1008 * Free the tracking structures for the MMIO2 pages.
1009 * We do the freeing outside the lock in case the VM is running.
1010 */
1011 pgmLock(pVM);
1012 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
1013 {
1014 void *pvMmio2ToFree = pMmio2->paLSPages;
1015 if (pvMmio2ToFree)
1016 {
1017 pMmio2->paLSPages = NULL;
1018 pgmUnlock(pVM);
1019 MMR3HeapFree(pvMmio2ToFree);
1020 pgmLock(pVM);
1021 }
1022 }
1023 pgmUnlock(pVM);
1024}
1025
1026
1027/**
1028 * Prepares the RAM pages for a live save.
1029 *
1030 * @returns VBox status code.
1031 * @param pVM The VM handle.
1032 */
1033static int pgmR3PrepRamPages(PVM pVM)
1034{
1035
1036 /*
1037 * Try allocating tracking structures for the ram ranges.
1038 *
1039 * To avoid lock contention, we leave the lock every time we're allocating
1040 * a new array. This means we'll have to ditch the allocation and start
1041 * all over again if the RAM range list changes in-between.
1042 *
1043 * Note! pgmR3SaveDone will always be called and it is therefore responsible
1044 * for cleaning up.
1045 */
1046 PPGMRAMRANGE pCur;
1047 pgmLock(pVM);
1048 do
1049 {
1050 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1051 {
1052 if ( !pCur->paLSPages
1053 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1054 {
1055 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1056 uint32_t const cPages = pCur->cb >> PAGE_SHIFT;
1057 pgmUnlock(pVM);
1058 PPGMLIVESAVERAMPAGE paLSPages = (PPGMLIVESAVERAMPAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, cPages * sizeof(PGMLIVESAVERAMPAGE));
1059 if (!paLSPages)
1060 return VERR_NO_MEMORY;
1061 pgmLock(pVM);
1062 if (pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1063 {
1064 pgmUnlock(pVM);
1065 MMR3HeapFree(paLSPages);
1066 pgmLock(pVM);
1067 break; /* try again */
1068 }
1069 pCur->paLSPages = paLSPages;
1070
1071 /*
1072 * Initialize the array.
1073 */
1074 uint32_t iPage = cPages;
1075 while (iPage-- > 0)
1076 {
1077 /** @todo yield critsect! (after moving this away from EMT0) */
1078 PCPGMPAGE pPage = &pCur->aPages[iPage];
1079 paLSPages[iPage].cDirtied = 0;
1080 paLSPages[iPage].fDirty = 1; /* everything is dirty at this time */
1081 paLSPages[iPage].fWriteMonitored = 0;
1082 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1083 paLSPages[iPage].u2Reserved = 0;
1084 switch (PGM_PAGE_GET_TYPE(pPage))
1085 {
1086 case PGMPAGETYPE_RAM:
1087 if ( PGM_PAGE_IS_ZERO(pPage)
1088 || PGM_PAGE_IS_BALLOONED(pPage))
1089 {
1090 paLSPages[iPage].fZero = 1;
1091 paLSPages[iPage].fShared = 0;
1092#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1093 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1094#endif
1095 }
1096 else if (PGM_PAGE_IS_SHARED(pPage))
1097 {
1098 paLSPages[iPage].fZero = 0;
1099 paLSPages[iPage].fShared = 1;
1100#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1101 paLSPages[iPage].u32Crc = UINT32_MAX;
1102#endif
1103 }
1104 else
1105 {
1106 paLSPages[iPage].fZero = 0;
1107 paLSPages[iPage].fShared = 0;
1108#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1109 paLSPages[iPage].u32Crc = UINT32_MAX;
1110#endif
1111 }
1112 paLSPages[iPage].fIgnore = 0;
1113 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1114 break;
1115
1116 case PGMPAGETYPE_ROM_SHADOW:
1117 case PGMPAGETYPE_ROM:
1118 {
1119 paLSPages[iPage].fZero = 0;
1120 paLSPages[iPage].fShared = 0;
1121 paLSPages[iPage].fDirty = 0;
1122 paLSPages[iPage].fIgnore = 1;
1123#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1124 paLSPages[iPage].u32Crc = UINT32_MAX;
1125#endif
1126 pVM->pgm.s.LiveSave.cIgnoredPages++;
1127 break;
1128 }
1129
1130 default:
1131 AssertMsgFailed(("%R[pgmpage]", pPage));
1132 case PGMPAGETYPE_MMIO2:
1133 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1134 paLSPages[iPage].fZero = 0;
1135 paLSPages[iPage].fShared = 0;
1136 paLSPages[iPage].fDirty = 0;
1137 paLSPages[iPage].fIgnore = 1;
1138#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1139 paLSPages[iPage].u32Crc = UINT32_MAX;
1140#endif
1141 pVM->pgm.s.LiveSave.cIgnoredPages++;
1142 break;
1143
1144 case PGMPAGETYPE_MMIO:
1145 paLSPages[iPage].fZero = 0;
1146 paLSPages[iPage].fShared = 0;
1147 paLSPages[iPage].fDirty = 0;
1148 paLSPages[iPage].fIgnore = 1;
1149#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1150 paLSPages[iPage].u32Crc = UINT32_MAX;
1151#endif
1152 pVM->pgm.s.LiveSave.cIgnoredPages++;
1153 break;
1154 }
1155 }
1156 }
1157 }
1158 } while (pCur);
1159 pgmUnlock(pVM);
1160
1161 return VINF_SUCCESS;
1162}
1163
1164
1165/**
1166 * Saves the RAM configuration.
1167 *
1168 * @returns VBox status code.
1169 * @param pVM The VM handle.
1170 * @param pSSM The saved state handle.
1171 */
1172static int pgmR3SaveRamConfig(PVM pVM, PSSMHANDLE pSSM)
1173{
1174 uint32_t cbRamHole = 0;
1175 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
1176 AssertRCReturn(rc, rc);
1177
1178 uint64_t cbRam = 0;
1179 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
1180 AssertRCReturn(rc, rc);
1181
1182 SSMR3PutU32(pSSM, cbRamHole);
1183 return SSMR3PutU64(pSSM, cbRam);
1184}
1185
1186
1187/**
1188 * Loads and verifies the RAM configuration.
1189 *
1190 * @returns VBox status code.
1191 * @param pVM The VM handle.
1192 * @param pSSM The saved state handle.
1193 */
1194static int pgmR3LoadRamConfig(PVM pVM, PSSMHANDLE pSSM)
1195{
1196 uint32_t cbRamHoleCfg = 0;
1197 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHoleCfg, MM_RAM_HOLE_SIZE_DEFAULT);
1198 AssertRCReturn(rc, rc);
1199
1200 uint64_t cbRamCfg = 0;
1201 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRamCfg, 0);
1202 AssertRCReturn(rc, rc);
1203
1204 uint32_t cbRamHoleSaved;
1205 SSMR3GetU32(pSSM, &cbRamHoleSaved);
1206
1207 uint64_t cbRamSaved;
1208 rc = SSMR3GetU64(pSSM, &cbRamSaved);
1209 AssertRCReturn(rc, rc);
1210
1211 if ( cbRamHoleCfg != cbRamHoleSaved
1212 || cbRamCfg != cbRamSaved)
1213 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Ram config mismatch: saved=%RX64/%RX32 config=%RX64/%RX32 (RAM/Hole)"),
1214 cbRamSaved, cbRamHoleSaved, cbRamCfg, cbRamHoleCfg);
1215 return VINF_SUCCESS;
1216}
1217
1218#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1219
1220/**
1221 * Calculates the CRC-32 for a RAM page and updates the live save page tracking
1222 * info with it.
1223 *
1224 * @param pVM The VM handle.
1225 * @param pCur The current RAM range.
1226 * @param paLSPages The current array of live save page tracking
1227 * structures.
1228 * @param iPage The page index.
1229 */
1230static void pgmR3StateCalcCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage)
1231{
1232 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1233 void const *pvPage;
1234 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage);
1235 if (RT_SUCCESS(rc))
1236 paLSPages[iPage].u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1237 else
1238 paLSPages[iPage].u32Crc = UINT32_MAX; /* Invalid */
1239}
1240
1241
1242/**
1243 * Verifies the CRC-32 for a page given it's raw bits.
1244 *
1245 * @param pvPage The page bits.
1246 * @param pCur The current RAM range.
1247 * @param paLSPages The current array of live save page tracking
1248 * structures.
1249 * @param iPage The page index.
1250 */
1251static void pgmR3StateVerifyCrc32ForPage(void const *pvPage, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
1252{
1253 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1254 {
1255 uint32_t u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1256 Assert( ( !PGM_PAGE_IS_ZERO(&pCur->aPages[iPage])
1257 && !PGM_PAGE_IS_BALLOONED(&pCur->aPages[iPage]))
1258 || u32Crc == PGM_STATE_CRC32_ZERO_PAGE);
1259 AssertMsg(paLSPages[iPage].u32Crc == u32Crc,
1260 ("%08x != %08x for %RGp %R[pgmpage] %s\n", paLSPages[iPage].u32Crc, u32Crc,
1261 pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage], pszWhere));
1262 }
1263}
1264
1265
1266/**
1267 * Verifies the CRC-32 for a RAM page.
1268 *
1269 * @param pVM The VM handle.
1270 * @param pCur The current RAM range.
1271 * @param paLSPages The current array of live save page tracking
1272 * structures.
1273 * @param iPage The page index.
1274 */
1275static void pgmR3StateVerifyCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
1276{
1277 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1278 {
1279 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1280 void const *pvPage;
1281 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage);
1282 if (RT_SUCCESS(rc))
1283 pgmR3StateVerifyCrc32ForPage(pvPage, pCur, paLSPages, iPage, pszWhere);
1284 }
1285}
1286
1287#endif /* PGMLIVESAVERAMPAGE_WITH_CRC32 */
1288
1289/**
1290 * Scan for RAM page modifications and reprotect them.
1291 *
1292 * @param pVM The VM handle.
1293 * @param fFinalPass Whether this is the final pass or not.
1294 */
1295static void pgmR3ScanRamPages(PVM pVM, bool fFinalPass)
1296{
1297 /*
1298 * The RAM.
1299 */
1300 RTGCPHYS GCPhysCur = 0;
1301 PPGMRAMRANGE pCur;
1302 pgmLock(pVM);
1303 do
1304 {
1305 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1306 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1307 {
1308 if ( pCur->GCPhysLast > GCPhysCur
1309 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1310 {
1311 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1312 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1313 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1314 GCPhysCur = 0;
1315 for (; iPage < cPages; iPage++)
1316 {
1317 /* Do yield first. */
1318 if ( !fFinalPass
1319#ifndef PGMLIVESAVERAMPAGE_WITH_CRC32
1320 && (iPage & 0x7ff) == 0x100
1321#endif
1322 && PDMR3CritSectYield(&pVM->pgm.s.CritSect)
1323 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1324 {
1325 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1326 break; /* restart */
1327 }
1328
1329 /* Skip already ignored pages. */
1330 if (paLSPages[iPage].fIgnore)
1331 continue;
1332
1333 if (RT_LIKELY(PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == PGMPAGETYPE_RAM))
1334 {
1335 /*
1336 * A RAM page.
1337 */
1338 switch (PGM_PAGE_GET_STATE(&pCur->aPages[iPage]))
1339 {
1340 case PGM_PAGE_STATE_ALLOCATED:
1341 /** @todo Optimize this: Don't always re-enable write
1342 * monitoring if the page is known to be very busy. */
1343 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1344 {
1345 Assert(paLSPages[iPage].fWriteMonitored);
1346 PGM_PAGE_CLEAR_WRITTEN_TO(&pCur->aPages[iPage]);
1347 Assert(pVM->pgm.s.cWrittenToPages > 0);
1348 pVM->pgm.s.cWrittenToPages--;
1349 }
1350 else
1351 {
1352 Assert(!paLSPages[iPage].fWriteMonitored);
1353 pVM->pgm.s.LiveSave.Ram.cMonitoredPages++;
1354 }
1355
1356 if (!paLSPages[iPage].fDirty)
1357 {
1358 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1359 if (paLSPages[iPage].fZero)
1360 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1361 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1362 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1363 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1364 }
1365
1366 pgmPhysPageWriteMonitor(pVM, &pCur->aPages[iPage],
1367 pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1368 paLSPages[iPage].fWriteMonitored = 1;
1369 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1370 paLSPages[iPage].fDirty = 1;
1371 paLSPages[iPage].fZero = 0;
1372 paLSPages[iPage].fShared = 0;
1373#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1374 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1375#endif
1376 break;
1377
1378 case PGM_PAGE_STATE_WRITE_MONITORED:
1379 Assert(paLSPages[iPage].fWriteMonitored);
1380 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) == 0)
1381 {
1382#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1383 if (paLSPages[iPage].fWriteMonitoredJustNow)
1384 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1385 else
1386 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "scan");
1387#endif
1388 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1389 }
1390 else
1391 {
1392 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1393#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1394 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1395#endif
1396 if (!paLSPages[iPage].fDirty)
1397 {
1398 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1399 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1400 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1401 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1402 }
1403 }
1404 break;
1405
1406 case PGM_PAGE_STATE_ZERO:
1407 if (!paLSPages[iPage].fZero)
1408 {
1409 if (!paLSPages[iPage].fDirty)
1410 {
1411 paLSPages[iPage].fDirty = 1;
1412 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1413 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1414 }
1415 paLSPages[iPage].fZero = 1;
1416 paLSPages[iPage].fShared = 0;
1417#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1418 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1419#endif
1420 }
1421 break;
1422
1423 case PGM_PAGE_STATE_BALLOONED:
1424 if (!paLSPages[iPage].fZero)
1425 {
1426 if (!paLSPages[iPage].fDirty)
1427 {
1428 paLSPages[iPage].fDirty = 1;
1429 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1430 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1431 }
1432 paLSPages[iPage].fZero = 1;
1433 paLSPages[iPage].fShared = 0;
1434#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1435 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1436#endif
1437 }
1438 break;
1439
1440 case PGM_PAGE_STATE_SHARED:
1441 if (!paLSPages[iPage].fShared)
1442 {
1443 if (!paLSPages[iPage].fDirty)
1444 {
1445 paLSPages[iPage].fDirty = 1;
1446 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1447 if (paLSPages[iPage].fZero)
1448 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1449 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1450 }
1451 paLSPages[iPage].fZero = 0;
1452 paLSPages[iPage].fShared = 1;
1453#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1454 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1455#endif
1456 }
1457 break;
1458 }
1459 }
1460 else
1461 {
1462 /*
1463 * All other types => Ignore the page.
1464 */
1465 Assert(!paLSPages[iPage].fIgnore); /* skipped before switch */
1466 paLSPages[iPage].fIgnore = 1;
1467 if (paLSPages[iPage].fWriteMonitored)
1468 {
1469 /** @todo this doesn't hold water when we start monitoring MMIO2 and ROM shadow
1470 * pages! */
1471 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(&pCur->aPages[iPage]) == PGM_PAGE_STATE_WRITE_MONITORED))
1472 {
1473 AssertMsgFailed(("%R[pgmpage]", &pCur->aPages[iPage])); /* shouldn't happen. */
1474 PGM_PAGE_SET_STATE(&pCur->aPages[iPage], PGM_PAGE_STATE_ALLOCATED);
1475 Assert(pVM->pgm.s.cMonitoredPages > 0);
1476 pVM->pgm.s.cMonitoredPages--;
1477 }
1478 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1479 {
1480 PGM_PAGE_CLEAR_WRITTEN_TO(&pCur->aPages[iPage]);
1481 Assert(pVM->pgm.s.cWrittenToPages > 0);
1482 pVM->pgm.s.cWrittenToPages--;
1483 }
1484 pVM->pgm.s.LiveSave.Ram.cMonitoredPages--;
1485 }
1486
1487 /** @todo the counting doesn't quite work out here. fix later? */
1488 if (paLSPages[iPage].fDirty)
1489 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1490 else
1491 {
1492 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1493 if (paLSPages[iPage].fZero)
1494 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1495 }
1496 pVM->pgm.s.LiveSave.cIgnoredPages++;
1497 }
1498 } /* for each page in range */
1499
1500 if (GCPhysCur != 0)
1501 break; /* Yield + ramrange change */
1502 GCPhysCur = pCur->GCPhysLast;
1503 }
1504 } /* for each range */
1505 } while (pCur);
1506 pgmUnlock(pVM);
1507}
1508
1509
1510/**
1511 * Save quiescent RAM pages.
1512 *
1513 * @returns VBox status code.
1514 * @param pVM The VM handle.
1515 * @param pSSM The SSM handle.
1516 * @param fLiveSave Whether it's a live save or not.
1517 * @param uPass The pass number.
1518 */
1519static int pgmR3SaveRamPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
1520{
1521 /*
1522 * The RAM.
1523 */
1524 RTGCPHYS GCPhysLast = NIL_RTGCPHYS;
1525 RTGCPHYS GCPhysCur = 0;
1526 PPGMRAMRANGE pCur;
1527 bool fFTMDeltaSaveActive = FTMIsDeltaLoadSaveActive(pVM);
1528
1529 pgmLock(pVM);
1530 do
1531 {
1532 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1533 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1534 {
1535 if ( pCur->GCPhysLast > GCPhysCur
1536 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1537 {
1538 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1539 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1540 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1541 GCPhysCur = 0;
1542 for (; iPage < cPages; iPage++)
1543 {
1544 /* Do yield first. */
1545 if ( uPass != SSM_PASS_FINAL
1546 && (iPage & 0x7ff) == 0x100
1547 && PDMR3CritSectYield(&pVM->pgm.s.CritSect)
1548 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1549 {
1550 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1551 break; /* restart */
1552 }
1553
1554 PPGMPAGE pCurPage = &pCur->aPages[iPage];
1555
1556 /*
1557 * Only save pages that haven't changed since last scan and are dirty.
1558 */
1559 if ( uPass != SSM_PASS_FINAL
1560 && paLSPages)
1561 {
1562 if (!paLSPages[iPage].fDirty)
1563 continue;
1564 if (paLSPages[iPage].fWriteMonitoredJustNow)
1565 continue;
1566 if (paLSPages[iPage].fIgnore)
1567 continue;
1568 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM) /* in case of recent remappings */
1569 continue;
1570 if ( PGM_PAGE_GET_STATE(pCurPage)
1571 != ( paLSPages[iPage].fZero
1572 ? PGM_PAGE_STATE_ZERO
1573 : paLSPages[iPage].fShared
1574 ? PGM_PAGE_STATE_SHARED
1575 : PGM_PAGE_STATE_WRITE_MONITORED))
1576 continue;
1577 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) > 0)
1578 continue;
1579 }
1580 else
1581 {
1582 if ( paLSPages
1583 && !paLSPages[iPage].fDirty
1584 && !paLSPages[iPage].fIgnore)
1585 {
1586#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1587 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM)
1588 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#1");
1589#endif
1590 continue;
1591 }
1592 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM)
1593 continue;
1594 }
1595
1596 /*
1597 * Do the saving outside the PGM critsect since SSM may block on I/O.
1598 */
1599 int rc;
1600 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1601 bool fZero = PGM_PAGE_IS_ZERO(pCurPage);
1602 bool fBallooned = PGM_PAGE_IS_BALLOONED(pCurPage);
1603 bool fSkipped = false;
1604
1605 if (!fZero && !fBallooned)
1606 {
1607 /*
1608 * Copy the page and then save it outside the lock (since any
1609 * SSM call may block).
1610 */
1611 uint8_t abPage[PAGE_SIZE];
1612 void const *pvPage;
1613 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pCurPage, GCPhys, &pvPage);
1614 if (RT_SUCCESS(rc))
1615 {
1616 memcpy(abPage, pvPage, PAGE_SIZE);
1617#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1618 if (paLSPages)
1619 pgmR3StateVerifyCrc32ForPage(abPage, pCur, paLSPages, iPage, "save#3");
1620#endif
1621 }
1622 pgmUnlock(pVM);
1623 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
1624
1625 /* Try save some memory when restoring. */
1626 if (!ASMMemIsZeroPage(pvPage))
1627 {
1628 if (fFTMDeltaSaveActive)
1629 {
1630 if ( PGM_PAGE_IS_WRITTEN_TO(pCurPage)
1631 || PGM_PAGE_IS_FT_DIRTY(pCurPage))
1632 {
1633 if (GCPhys == GCPhysLast + PAGE_SIZE)
1634 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
1635 else
1636 {
1637 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
1638 SSMR3PutGCPhys(pSSM, GCPhys);
1639 }
1640 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
1641 PGM_PAGE_CLEAR_WRITTEN_TO(pCurPage);
1642 PGM_PAGE_CLEAR_FT_DIRTY(pCurPage);
1643 }
1644 /* else nothing changed, so skip it. */
1645 else
1646 fSkipped = true;
1647 }
1648 else
1649 {
1650 if (GCPhys == GCPhysLast + PAGE_SIZE)
1651 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
1652 else
1653 {
1654 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
1655 SSMR3PutGCPhys(pSSM, GCPhys);
1656 }
1657 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
1658 }
1659 }
1660 else
1661 {
1662 if (GCPhys == GCPhysLast + PAGE_SIZE)
1663 rc = SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO);
1664 else
1665 {
1666 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO | PGM_STATE_REC_FLAG_ADDR);
1667 rc = SSMR3PutGCPhys(pSSM, GCPhys);
1668 }
1669 }
1670 }
1671 else
1672 {
1673 /*
1674 * Dirty zero or ballooned page.
1675 */
1676#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1677 if (paLSPages)
1678 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#2");
1679#endif
1680 pgmUnlock(pVM);
1681
1682 uint8_t u8RecType = fBallooned ? PGM_STATE_REC_RAM_BALLOONED : PGM_STATE_REC_RAM_ZERO;
1683 if (GCPhys == GCPhysLast + PAGE_SIZE)
1684 rc = SSMR3PutU8(pSSM, u8RecType);
1685 else
1686 {
1687 SSMR3PutU8(pSSM, u8RecType | PGM_STATE_REC_FLAG_ADDR);
1688 rc = SSMR3PutGCPhys(pSSM, GCPhys);
1689 }
1690 }
1691 if (RT_FAILURE(rc))
1692 return rc;
1693
1694 pgmLock(pVM);
1695 if (!fSkipped)
1696 GCPhysLast = GCPhys;
1697 if (paLSPages)
1698 {
1699 paLSPages[iPage].fDirty = 0;
1700 pVM->pgm.s.LiveSave.Ram.cReadyPages++;
1701 if (fZero)
1702 pVM->pgm.s.LiveSave.Ram.cZeroPages++;
1703 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1704 pVM->pgm.s.LiveSave.cSavedPages++;
1705 }
1706 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1707 {
1708 GCPhysCur = GCPhys | PAGE_OFFSET_MASK;
1709 break; /* restart */
1710 }
1711
1712 } /* for each page in range */
1713
1714 if (GCPhysCur != 0)
1715 break; /* Yield + ramrange change */
1716 GCPhysCur = pCur->GCPhysLast;
1717 }
1718 } /* for each range */
1719 } while (pCur);
1720
1721 pgmUnlock(pVM);
1722
1723 return VINF_SUCCESS;
1724}
1725
1726
1727/**
1728 * Cleans up RAM pages after a live save.
1729 *
1730 * @param pVM The VM handle.
1731 */
1732static void pgmR3DoneRamPages(PVM pVM)
1733{
1734 /*
1735 * Free the tracking arrays and disable write monitoring.
1736 *
1737 * Play nice with the PGM lock in case we're called while the VM is still
1738 * running. This means we have to delay the freeing since we wish to use
1739 * paLSPages as an indicator of which RAM ranges which we need to scan for
1740 * write monitored pages.
1741 */
1742 void *pvToFree = NULL;
1743 PPGMRAMRANGE pCur;
1744 uint32_t cMonitoredPages = 0;
1745 pgmLock(pVM);
1746 do
1747 {
1748 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1749 {
1750 if (pCur->paLSPages)
1751 {
1752 if (pvToFree)
1753 {
1754 uint32_t idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1755 pgmUnlock(pVM);
1756 MMR3HeapFree(pvToFree);
1757 pvToFree = NULL;
1758 pgmLock(pVM);
1759 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1760 break; /* start over again. */
1761 }
1762
1763 pvToFree = pCur->paLSPages;
1764 pCur->paLSPages = NULL;
1765
1766 uint32_t iPage = pCur->cb >> PAGE_SHIFT;
1767 while (iPage--)
1768 {
1769 PPGMPAGE pPage = &pCur->aPages[iPage];
1770 PGM_PAGE_CLEAR_WRITTEN_TO(pPage);
1771 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1772 {
1773 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
1774 cMonitoredPages++;
1775 }
1776 }
1777 }
1778 }
1779 } while (pCur);
1780
1781 Assert(pVM->pgm.s.cMonitoredPages >= cMonitoredPages);
1782 if (pVM->pgm.s.cMonitoredPages < cMonitoredPages)
1783 pVM->pgm.s.cMonitoredPages = 0;
1784 else
1785 pVM->pgm.s.cMonitoredPages -= cMonitoredPages;
1786
1787 pgmUnlock(pVM);
1788
1789 MMR3HeapFree(pvToFree);
1790 pvToFree = NULL;
1791}
1792
1793
1794/**
1795 * Execute a live save pass.
1796 *
1797 * @returns VBox status code.
1798 *
1799 * @param pVM The VM handle.
1800 * @param pSSM The SSM handle.
1801 */
1802static DECLCALLBACK(int) pgmR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1803{
1804 int rc;
1805
1806 /*
1807 * Save the MMIO2 and ROM range IDs in pass 0.
1808 */
1809 if (uPass == 0)
1810 {
1811 rc = pgmR3SaveRamConfig(pVM, pSSM);
1812 if (RT_FAILURE(rc))
1813 return rc;
1814 rc = pgmR3SaveRomRanges(pVM, pSSM);
1815 if (RT_FAILURE(rc))
1816 return rc;
1817 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
1818 if (RT_FAILURE(rc))
1819 return rc;
1820 }
1821 /*
1822 * Reset the page-per-second estimate to avoid inflation by the initial
1823 * load of zero pages. pgmR3LiveVote ASSUMES this is done at pass 7.
1824 */
1825 else if (uPass == 7)
1826 {
1827 pVM->pgm.s.LiveSave.cSavedPages = 0;
1828 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
1829 }
1830
1831 /*
1832 * Do the scanning.
1833 */
1834 pgmR3ScanRomPages(pVM);
1835 pgmR3ScanMmio2Pages(pVM, uPass);
1836 pgmR3ScanRamPages(pVM, false /*fFinalPass*/);
1837 pgmR3PoolClearAll(pVM, true /*fFlushRemTlb*/); /** @todo this could perhaps be optimized a bit. */
1838
1839 /*
1840 * Save the pages.
1841 */
1842 if (uPass == 0)
1843 rc = pgmR3SaveRomVirginPages( pVM, pSSM, true /*fLiveSave*/);
1844 else
1845 rc = VINF_SUCCESS;
1846 if (RT_SUCCESS(rc))
1847 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, true /*fLiveSave*/, false /*fFinalPass*/);
1848 if (RT_SUCCESS(rc))
1849 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, uPass);
1850 if (RT_SUCCESS(rc))
1851 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, uPass);
1852 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes care of it.) */
1853
1854 return rc;
1855}
1856
1857
1858/**
1859 * Votes on whether the live save phase is done or not.
1860 *
1861 * @returns VBox status code.
1862 *
1863 * @param pVM The VM handle.
1864 * @param pSSM The SSM handle.
1865 * @param uPass The data pass.
1866 */
1867static DECLCALLBACK(int) pgmR3LiveVote(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1868{
1869 /*
1870 * Update and calculate parameters used in the decision making.
1871 */
1872 const uint32_t cHistoryEntries = RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory);
1873
1874 /* update history. */
1875 pgmLock(pVM);
1876 uint32_t const cWrittenToPages = pVM->pgm.s.cWrittenToPages;
1877 pgmUnlock(pVM);
1878 uint32_t const cDirtyNow = pVM->pgm.s.LiveSave.Rom.cDirtyPages
1879 + pVM->pgm.s.LiveSave.Mmio2.cDirtyPages
1880 + pVM->pgm.s.LiveSave.Ram.cDirtyPages
1881 + cWrittenToPages;
1882 uint32_t i = pVM->pgm.s.LiveSave.iDirtyPagesHistory;
1883 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = cDirtyNow;
1884 pVM->pgm.s.LiveSave.iDirtyPagesHistory = (i + 1) % cHistoryEntries;
1885
1886 /* calc shortterm average (4 passes). */
1887 AssertCompile(RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory) > 4);
1888 uint64_t cTotal = pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1889 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 1) % cHistoryEntries];
1890 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 2) % cHistoryEntries];
1891 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 3) % cHistoryEntries];
1892 uint32_t const cDirtyPagesShort = cTotal / 4;
1893 pVM->pgm.s.LiveSave.cDirtyPagesShort = cDirtyPagesShort;
1894
1895 /* calc longterm average. */
1896 cTotal = 0;
1897 if (uPass < cHistoryEntries)
1898 for (i = 0; i < cHistoryEntries && i <= uPass; i++)
1899 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1900 else
1901 for (i = 0; i < cHistoryEntries; i++)
1902 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1903 uint32_t const cDirtyPagesLong = cTotal / cHistoryEntries;
1904 pVM->pgm.s.LiveSave.cDirtyPagesLong = cDirtyPagesLong;
1905
1906 /* estimate the speed */
1907 uint64_t cNsElapsed = RTTimeNanoTS() - pVM->pgm.s.LiveSave.uSaveStartNS;
1908 uint32_t cPagesPerSecond = (uint32_t)( pVM->pgm.s.LiveSave.cSavedPages
1909 / ((long double)cNsElapsed / 1000000000.0) );
1910 pVM->pgm.s.LiveSave.cPagesPerSecond = cPagesPerSecond;
1911
1912 /*
1913 * Try make a decision.
1914 */
1915 if ( cDirtyPagesShort <= cDirtyPagesLong
1916 && ( cDirtyNow <= cDirtyPagesShort
1917 || cDirtyNow - cDirtyPagesShort < RT_MIN(cDirtyPagesShort / 8, 16)
1918 )
1919 )
1920 {
1921 if (uPass > 10)
1922 {
1923 uint32_t cMsLeftShort = (uint32_t)(cDirtyPagesShort / (long double)cPagesPerSecond * 1000.0);
1924 uint32_t cMsLeftLong = (uint32_t)(cDirtyPagesLong / (long double)cPagesPerSecond * 1000.0);
1925 uint32_t cMsMaxDowntime = SSMR3HandleMaxDowntime(pSSM);
1926 if (cMsMaxDowntime < 32)
1927 cMsMaxDowntime = 32;
1928 if ( ( cMsLeftLong <= cMsMaxDowntime
1929 && cMsLeftShort < cMsMaxDowntime)
1930 || cMsLeftShort < cMsMaxDowntime / 2
1931 )
1932 {
1933 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u|%ums cDirtyPagesLong=%u|%ums cMsMaxDowntime=%u\n",
1934 uPass, cDirtyPagesShort, cMsLeftShort, cDirtyPagesLong, cMsLeftLong, cMsMaxDowntime));
1935 return VINF_SUCCESS;
1936 }
1937 }
1938 else
1939 {
1940 if ( ( cDirtyPagesShort <= 128
1941 && cDirtyPagesLong <= 1024)
1942 || cDirtyPagesLong <= 256
1943 )
1944 {
1945 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u cDirtyPagesLong=%u\n", uPass, cDirtyPagesShort, cDirtyPagesLong));
1946 return VINF_SUCCESS;
1947 }
1948 }
1949 }
1950
1951 /*
1952 * Come up with a completion percentage. Currently this is a simple
1953 * dirty page (long term) vs. total pages ratio + some pass trickery.
1954 */
1955 unsigned uPctDirty = (unsigned)( (long double)cDirtyPagesLong
1956 / (pVM->pgm.s.cAllPages - pVM->pgm.s.LiveSave.cIgnoredPages - pVM->pgm.s.cZeroPages) );
1957 if (uPctDirty <= 100)
1958 SSMR3HandleReportLivePercent(pSSM, RT_MIN(100 - uPctDirty, uPass * 2));
1959 else
1960 AssertMsgFailed(("uPctDirty=%u cDirtyPagesLong=%#x cAllPages=%#x cIgnoredPages=%#x cZeroPages=%#x\n",
1961 uPctDirty, cDirtyPagesLong, pVM->pgm.s.cAllPages, pVM->pgm.s.LiveSave.cIgnoredPages, pVM->pgm.s.cZeroPages));
1962
1963 return VINF_SSM_VOTE_FOR_ANOTHER_PASS;
1964}
1965
1966
1967/**
1968 * Prepare for a live save operation.
1969 *
1970 * This will attempt to allocate and initialize the tracking structures. It
1971 * will also prepare for write monitoring of pages and initialize PGM::LiveSave.
1972 * pgmR3SaveDone will do the cleanups.
1973 *
1974 * @returns VBox status code.
1975 *
1976 * @param pVM The VM handle.
1977 * @param pSSM The SSM handle.
1978 */
1979static DECLCALLBACK(int) pgmR3LivePrep(PVM pVM, PSSMHANDLE pSSM)
1980{
1981 /*
1982 * Indicate that we will be using the write monitoring.
1983 */
1984 pgmLock(pVM);
1985 /** @todo find a way of mediating this when more users are added. */
1986 if (pVM->pgm.s.fPhysWriteMonitoringEngaged)
1987 {
1988 pgmUnlock(pVM);
1989 AssertLogRelFailedReturn(VERR_INTERNAL_ERROR_2);
1990 }
1991 pVM->pgm.s.fPhysWriteMonitoringEngaged = true;
1992 pgmUnlock(pVM);
1993
1994 /*
1995 * Initialize the statistics.
1996 */
1997 pVM->pgm.s.LiveSave.Rom.cReadyPages = 0;
1998 pVM->pgm.s.LiveSave.Rom.cDirtyPages = 0;
1999 pVM->pgm.s.LiveSave.Mmio2.cReadyPages = 0;
2000 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages = 0;
2001 pVM->pgm.s.LiveSave.Ram.cReadyPages = 0;
2002 pVM->pgm.s.LiveSave.Ram.cDirtyPages = 0;
2003 pVM->pgm.s.LiveSave.cIgnoredPages = 0;
2004 pVM->pgm.s.LiveSave.fActive = true;
2005 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory); i++)
2006 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = UINT32_MAX / 2;
2007 pVM->pgm.s.LiveSave.iDirtyPagesHistory = 0;
2008 pVM->pgm.s.LiveSave.cSavedPages = 0;
2009 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
2010 pVM->pgm.s.LiveSave.cPagesPerSecond = 8192;
2011
2012 /*
2013 * Per page type.
2014 */
2015 int rc = pgmR3PrepRomPages(pVM);
2016 if (RT_SUCCESS(rc))
2017 rc = pgmR3PrepMmio2Pages(pVM);
2018 if (RT_SUCCESS(rc))
2019 rc = pgmR3PrepRamPages(pVM);
2020 return rc;
2021}
2022
2023
2024/**
2025 * Execute state save operation.
2026 *
2027 * @returns VBox status code.
2028 * @param pVM VM Handle.
2029 * @param pSSM SSM operation handle.
2030 */
2031static DECLCALLBACK(int) pgmR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2032{
2033 int rc;
2034 unsigned i;
2035 PPGM pPGM = &pVM->pgm.s;
2036
2037 /*
2038 * Lock PGM and set the no-more-writes indicator.
2039 */
2040 pgmLock(pVM);
2041 pVM->pgm.s.fNoMorePhysWrites = true;
2042
2043 /*
2044 * Save basic data (required / unaffected by relocation).
2045 */
2046 bool const fMappingsFixed = pVM->pgm.s.fMappingsFixed;
2047 pVM->pgm.s.fMappingsFixed |= pVM->pgm.s.fMappingsFixedRestored;
2048 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2049 pVM->pgm.s.fMappingsFixed = fMappingsFixed;
2050
2051 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2052 SSMR3PutStruct(pSSM, &pVM->aCpus[idCpu].pgm.s, &s_aPGMCpuFields[0]);
2053
2054 /*
2055 * The guest mappings.
2056 */
2057 i = 0;
2058 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2059 {
2060 SSMR3PutU32( pSSM, i);
2061 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2062 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
2063 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2064 }
2065 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
2066
2067 /*
2068 * Save the (remainder of the) memory.
2069 */
2070 if (RT_SUCCESS(rc))
2071 {
2072 if (pVM->pgm.s.LiveSave.fActive)
2073 {
2074 pgmR3ScanRomPages(pVM);
2075 pgmR3ScanMmio2Pages(pVM, SSM_PASS_FINAL);
2076 pgmR3ScanRamPages(pVM, true /*fFinalPass*/);
2077
2078 rc = pgmR3SaveShadowedRomPages( pVM, pSSM, true /*fLiveSave*/, true /*fFinalPass*/);
2079 if (RT_SUCCESS(rc))
2080 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2081 if (RT_SUCCESS(rc))
2082 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2083 }
2084 else
2085 {
2086 rc = pgmR3SaveRamConfig(pVM, pSSM);
2087 if (RT_SUCCESS(rc))
2088 rc = pgmR3SaveRomRanges(pVM, pSSM);
2089 if (RT_SUCCESS(rc))
2090 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
2091 if (RT_SUCCESS(rc))
2092 rc = pgmR3SaveRomVirginPages( pVM, pSSM, false /*fLiveSave*/);
2093 if (RT_SUCCESS(rc))
2094 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, false /*fLiveSave*/, true /*fFinalPass*/);
2095 if (RT_SUCCESS(rc))
2096 rc = pgmR3SaveMmio2Pages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2097 if (RT_SUCCESS(rc))
2098 rc = pgmR3SaveRamPages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2099 }
2100 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes of it.) */
2101 }
2102
2103 pgmUnlock(pVM);
2104 return rc;
2105}
2106
2107
2108/**
2109 * Cleans up after an save state operation.
2110 *
2111 * @returns VBox status code.
2112 * @param pVM VM Handle.
2113 * @param pSSM SSM operation handle.
2114 */
2115static DECLCALLBACK(int) pgmR3SaveDone(PVM pVM, PSSMHANDLE pSSM)
2116{
2117 /*
2118 * Do per page type cleanups first.
2119 */
2120 if (pVM->pgm.s.LiveSave.fActive)
2121 {
2122 pgmR3DoneRomPages(pVM);
2123 pgmR3DoneMmio2Pages(pVM);
2124 pgmR3DoneRamPages(pVM);
2125 }
2126
2127 /*
2128 * Clear the live save indicator and disengage write monitoring.
2129 */
2130 pgmLock(pVM);
2131 pVM->pgm.s.LiveSave.fActive = false;
2132 /** @todo this is blindly assuming that we're the only user of write
2133 * monitoring. Fix this when more users are added. */
2134 pVM->pgm.s.fPhysWriteMonitoringEngaged = false;
2135 pgmUnlock(pVM);
2136
2137 return VINF_SUCCESS;
2138}
2139
2140
2141/**
2142 * Prepare state load operation.
2143 *
2144 * @returns VBox status code.
2145 * @param pVM VM Handle.
2146 * @param pSSM SSM operation handle.
2147 */
2148static DECLCALLBACK(int) pgmR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2149{
2150 /*
2151 * Call the reset function to make sure all the memory is cleared.
2152 */
2153 PGMR3Reset(pVM);
2154 pVM->pgm.s.LiveSave.fActive = false;
2155 NOREF(pSSM);
2156 return VINF_SUCCESS;
2157}
2158
2159
2160/**
2161 * Load an ignored page.
2162 *
2163 * @returns VBox status code.
2164 * @param pSSM The saved state handle.
2165 */
2166static int pgmR3LoadPageToDevNullOld(PSSMHANDLE pSSM)
2167{
2168 uint8_t abPage[PAGE_SIZE];
2169 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2170}
2171
2172
2173/**
2174 * Loads a page without any bits in the saved state, i.e. making sure it's
2175 * really zero.
2176 *
2177 * @returns VBox status code.
2178 * @param pVM The VM handle.
2179 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2180 * state).
2181 * @param pPage The guest page tracking structure.
2182 * @param GCPhys The page address.
2183 * @param pRam The ram range (logging).
2184 */
2185static int pgmR3LoadPageZeroOld(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2186{
2187 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2188 && uType != PGMPAGETYPE_INVALID)
2189 return VERR_SSM_UNEXPECTED_DATA;
2190
2191 /* I think this should be sufficient. */
2192 if ( !PGM_PAGE_IS_ZERO(pPage)
2193 && !PGM_PAGE_IS_BALLOONED(pPage))
2194 return VERR_SSM_UNEXPECTED_DATA;
2195
2196 NOREF(pVM);
2197 NOREF(GCPhys);
2198 NOREF(pRam);
2199 return VINF_SUCCESS;
2200}
2201
2202
2203/**
2204 * Loads a page from the saved state.
2205 *
2206 * @returns VBox status code.
2207 * @param pVM The VM handle.
2208 * @param pSSM The SSM handle.
2209 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2210 * state).
2211 * @param pPage The guest page tracking structure.
2212 * @param GCPhys The page address.
2213 * @param pRam The ram range (logging).
2214 */
2215static int pgmR3LoadPageBitsOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2216{
2217 /*
2218 * Match up the type, dealing with MMIO2 aliases (dropped).
2219 */
2220 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2221 || uType == PGMPAGETYPE_INVALID,
2222 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2223 VERR_SSM_UNEXPECTED_DATA);
2224
2225 /*
2226 * Load the page.
2227 */
2228 void *pvPage;
2229 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2230 if (RT_SUCCESS(rc))
2231 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2232
2233 return rc;
2234}
2235
2236
2237/**
2238 * Loads a page (counter part to pgmR3SavePage).
2239 *
2240 * @returns VBox status code, fully bitched errors.
2241 * @param pVM The VM handle.
2242 * @param pSSM The SSM handle.
2243 * @param uType The page type.
2244 * @param pPage The page.
2245 * @param GCPhys The page address.
2246 * @param pRam The RAM range (for error messages).
2247 */
2248static int pgmR3LoadPageOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2249{
2250 uint8_t uState;
2251 int rc = SSMR3GetU8(pSSM, &uState);
2252 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2253 if (uState == 0 /* zero */)
2254 rc = pgmR3LoadPageZeroOld(pVM, uType, pPage, GCPhys, pRam);
2255 else if (uState == 1)
2256 rc = pgmR3LoadPageBitsOld(pVM, pSSM, uType, pPage, GCPhys, pRam);
2257 else
2258 rc = VERR_INTERNAL_ERROR;
2259 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2260 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2261 rc);
2262 return VINF_SUCCESS;
2263}
2264
2265
2266/**
2267 * Loads a shadowed ROM page.
2268 *
2269 * @returns VBox status code, errors are fully bitched.
2270 * @param pVM The VM handle.
2271 * @param pSSM The saved state handle.
2272 * @param pPage The page.
2273 * @param GCPhys The page address.
2274 * @param pRam The RAM range (for error messages).
2275 */
2276static int pgmR3LoadShadowedRomPageOld(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2277{
2278 /*
2279 * Load and set the protection first, then load the two pages, the first
2280 * one is the active the other is the passive.
2281 */
2282 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2283 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2284
2285 uint8_t uProt;
2286 int rc = SSMR3GetU8(pSSM, &uProt);
2287 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2288 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2289 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2290 && enmProt < PGMROMPROT_END,
2291 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2292 VERR_SSM_UNEXPECTED_DATA);
2293
2294 if (pRomPage->enmProt != enmProt)
2295 {
2296 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2297 AssertLogRelRCReturn(rc, rc);
2298 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2299 }
2300
2301 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2302 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2303 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2304 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2305
2306 /** @todo this isn't entirely correct as long as pgmPhysGCPhys2CCPtrInternal is
2307 * used down the line (will the 2nd page will be written to the first
2308 * one because of a false TLB hit since the TLB is using GCPhys and
2309 * doesn't check the HCPhys of the desired page). */
2310 rc = pgmR3LoadPageOld(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2311 if (RT_SUCCESS(rc))
2312 {
2313 *pPageActive = *pPage;
2314 rc = pgmR3LoadPageOld(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2315 }
2316 return rc;
2317}
2318
2319/**
2320 * Ram range flags and bits for older versions of the saved state.
2321 *
2322 * @returns VBox status code.
2323 *
2324 * @param pVM The VM handle
2325 * @param pSSM The SSM handle.
2326 * @param uVersion The saved state version.
2327 */
2328static int pgmR3LoadMemoryOld(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2329{
2330 PPGM pPGM = &pVM->pgm.s;
2331
2332 /*
2333 * Ram range flags and bits.
2334 */
2335 uint32_t i = 0;
2336 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; ; pRam = pRam->pNextR3, i++)
2337 {
2338 /* Check the sequence number / separator. */
2339 uint32_t u32Sep;
2340 int rc = SSMR3GetU32(pSSM, &u32Sep);
2341 if (RT_FAILURE(rc))
2342 return rc;
2343 if (u32Sep == ~0U)
2344 break;
2345 if (u32Sep != i)
2346 {
2347 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2348 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2349 }
2350 AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2351
2352 /* Get the range details. */
2353 RTGCPHYS GCPhys;
2354 SSMR3GetGCPhys(pSSM, &GCPhys);
2355 RTGCPHYS GCPhysLast;
2356 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2357 RTGCPHYS cb;
2358 SSMR3GetGCPhys(pSSM, &cb);
2359 uint8_t fHaveBits;
2360 rc = SSMR3GetU8(pSSM, &fHaveBits);
2361 if (RT_FAILURE(rc))
2362 return rc;
2363 if (fHaveBits & ~1)
2364 {
2365 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2366 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2367 }
2368 size_t cchDesc = 0;
2369 char szDesc[256];
2370 szDesc[0] = '\0';
2371 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2372 {
2373 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2374 if (RT_FAILURE(rc))
2375 return rc;
2376 /* Since we've modified the description strings in r45878, only compare
2377 them if the saved state is more recent. */
2378 if (uVersion != PGM_SAVED_STATE_VERSION_RR_DESC)
2379 cchDesc = strlen(szDesc);
2380 }
2381
2382 /*
2383 * Match it up with the current range.
2384 *
2385 * Note there is a hack for dealing with the high BIOS mapping
2386 * in the old saved state format, this means we might not have
2387 * a 1:1 match on success.
2388 */
2389 if ( ( GCPhys != pRam->GCPhys
2390 || GCPhysLast != pRam->GCPhysLast
2391 || cb != pRam->cb
2392 || ( cchDesc
2393 && strcmp(szDesc, pRam->pszDesc)) )
2394 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2395 && ( uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2396 || GCPhys != UINT32_C(0xfff80000)
2397 || GCPhysLast != UINT32_C(0xffffffff)
2398 || pRam->GCPhysLast != GCPhysLast
2399 || pRam->GCPhys < GCPhys
2400 || !fHaveBits)
2401 )
2402 {
2403 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2404 "State : %RGp-%RGp %RGp bytes %s %s\n",
2405 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2406 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2407 /*
2408 * If we're loading a state for debugging purpose, don't make a fuss if
2409 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2410 */
2411 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2412 || GCPhys < 8 * _1M)
2413 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2414 N_("RAM range mismatch; saved={%RGp-%RGp %RGp bytes %s %s} config={%RGp-%RGp %RGp bytes %s %s}"),
2415 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc,
2416 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc);
2417
2418 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2419 continue;
2420 }
2421
2422 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2423 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2424 {
2425 /*
2426 * Load the pages one by one.
2427 */
2428 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2429 {
2430 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2431 PPGMPAGE pPage = &pRam->aPages[iPage];
2432 uint8_t uType;
2433 rc = SSMR3GetU8(pSSM, &uType);
2434 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2435 if (uType == PGMPAGETYPE_ROM_SHADOW)
2436 rc = pgmR3LoadShadowedRomPageOld(pVM, pSSM, pPage, GCPhysPage, pRam);
2437 else
2438 rc = pgmR3LoadPageOld(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2439 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2440 }
2441 }
2442 else
2443 {
2444 /*
2445 * Old format.
2446 */
2447
2448 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2449 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2450 uint32_t fFlags = 0;
2451 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2452 {
2453 uint16_t u16Flags;
2454 rc = SSMR3GetU16(pSSM, &u16Flags);
2455 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2456 fFlags |= u16Flags;
2457 }
2458
2459 /* Load the bits */
2460 if ( !fHaveBits
2461 && GCPhysLast < UINT32_C(0xe0000000))
2462 {
2463 /*
2464 * Dynamic chunks.
2465 */
2466 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2467 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2468 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2469 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2470
2471 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2472 {
2473 uint8_t fPresent;
2474 rc = SSMR3GetU8(pSSM, &fPresent);
2475 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2476 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2477 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2478 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2479
2480 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2481 {
2482 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2483 PPGMPAGE pPage = &pRam->aPages[iPage];
2484 if (fPresent)
2485 {
2486 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2487 rc = pgmR3LoadPageToDevNullOld(pSSM);
2488 else
2489 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2490 }
2491 else
2492 rc = pgmR3LoadPageZeroOld(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2493 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2494 }
2495 }
2496 }
2497 else if (pRam->pvR3)
2498 {
2499 /*
2500 * MMIO2.
2501 */
2502 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2503 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2504 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2505 AssertLogRelMsgReturn(pRam->pvR3,
2506 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2507 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2508
2509 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2510 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2511 }
2512 else if (GCPhysLast < UINT32_C(0xfff80000))
2513 {
2514 /*
2515 * PCI MMIO, no pages saved.
2516 */
2517 }
2518 else
2519 {
2520 /*
2521 * Load the 0xfff80000..0xffffffff BIOS range.
2522 * It starts with X reserved pages that we have to skip over since
2523 * the RAMRANGE create by the new code won't include those.
2524 */
2525 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2526 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2527 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2528 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2529 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2530 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2531 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2532
2533 /* Skip wasted reserved pages before the ROM. */
2534 while (GCPhys < pRam->GCPhys)
2535 {
2536 rc = pgmR3LoadPageToDevNullOld(pSSM);
2537 GCPhys += PAGE_SIZE;
2538 }
2539
2540 /* Load the bios pages. */
2541 cPages = pRam->cb >> PAGE_SHIFT;
2542 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2543 {
2544 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2545 PPGMPAGE pPage = &pRam->aPages[iPage];
2546
2547 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2548 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2549 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2550 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
2551 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2552 }
2553 }
2554 }
2555 }
2556
2557 return VINF_SUCCESS;
2558}
2559
2560
2561/**
2562 * Worker for pgmR3Load and pgmR3LoadLocked.
2563 *
2564 * @returns VBox status code.
2565 *
2566 * @param pVM The VM handle.
2567 * @param pSSM The SSM handle.
2568 * @param uVersion The PGM saved state unit version.
2569 * @param uPass The pass number.
2570 *
2571 * @todo This needs splitting up if more record types or code twists are
2572 * added...
2573 */
2574static int pgmR3LoadMemory(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2575{
2576 /*
2577 * Process page records until we hit the terminator.
2578 */
2579 RTGCPHYS GCPhys = NIL_RTGCPHYS;
2580 PPGMRAMRANGE pRamHint = NULL;
2581 uint8_t id = UINT8_MAX;
2582 uint32_t iPage = UINT32_MAX - 10;
2583 PPGMROMRANGE pRom = NULL;
2584 PPGMMMIO2RANGE pMmio2 = NULL;
2585
2586 /*
2587 * We batch up pages that should be freed instead of calling GMM for
2588 * each and every one of them. Note that we'll lose the pages in most
2589 * failure paths - this should probably be addressed one day.
2590 */
2591 uint32_t cPendingPages = 0;
2592 PGMMFREEPAGESREQ pReq;
2593 int rc = GMMR3FreePagesPrepare(pVM, &pReq, 128 /* batch size */, GMMACCOUNT_BASE);
2594 AssertLogRelRCReturn(rc, rc);
2595
2596 for (;;)
2597 {
2598 /*
2599 * Get the record type and flags.
2600 */
2601 uint8_t u8;
2602 rc = SSMR3GetU8(pSSM, &u8);
2603 if (RT_FAILURE(rc))
2604 return rc;
2605 if (u8 == PGM_STATE_REC_END)
2606 {
2607 /*
2608 * Finish off any pages pending freeing.
2609 */
2610 if (cPendingPages)
2611 {
2612 Log(("pgmR3LoadMemory: GMMR3FreePagesPerform pVM=%p cPendingPages=%u\n", pVM, cPendingPages));
2613 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2614 AssertLogRelRCReturn(rc, rc);
2615 }
2616 GMMR3FreePagesCleanup(pReq);
2617 return VINF_SUCCESS;
2618 }
2619 AssertLogRelMsgReturn((u8 & ~PGM_STATE_REC_FLAG_ADDR) <= PGM_STATE_REC_LAST, ("%#x\n", u8), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2620 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2621 {
2622 /*
2623 * RAM page.
2624 */
2625 case PGM_STATE_REC_RAM_ZERO:
2626 case PGM_STATE_REC_RAM_RAW:
2627 case PGM_STATE_REC_RAM_BALLOONED:
2628 {
2629 /*
2630 * Get the address and resolve it into a page descriptor.
2631 */
2632 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2633 GCPhys += PAGE_SIZE;
2634 else
2635 {
2636 rc = SSMR3GetGCPhys(pSSM, &GCPhys);
2637 if (RT_FAILURE(rc))
2638 return rc;
2639 }
2640 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2641
2642 PPGMPAGE pPage;
2643 rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, GCPhys, &pPage, &pRamHint);
2644 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2645
2646 /*
2647 * Take action according to the record type.
2648 */
2649 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2650 {
2651 case PGM_STATE_REC_RAM_ZERO:
2652 {
2653 if (PGM_PAGE_IS_ZERO(pPage))
2654 break;
2655
2656 /* Ballooned pages must be unmarked (live snapshot and
2657 teleportation scenarios). */
2658 if (PGM_PAGE_IS_BALLOONED(pPage))
2659 {
2660 Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
2661 if (uVersion == PGM_SAVED_STATE_VERSION_BALLOON_BROKEN)
2662 break;
2663 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
2664 break;
2665 }
2666
2667 AssertLogRelMsgReturn(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED, ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_INTERNAL_ERROR_5);
2668
2669 /* If this is a ROM page, we must clear it and not try
2670 free it... */
2671 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM
2672 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM_SHADOW)
2673 {
2674 void *pvDstPage;
2675 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage);
2676 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2677 ASMMemZeroPage(pvDstPage);
2678 }
2679 /* Free it only if it's not part of a previously
2680 allocated large page (no need to clear the page). */
2681 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
2682 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2683 {
2684 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, GCPhys);
2685 AssertRCReturn(rc, rc);
2686 }
2687 /** @todo handle large pages (see #5545) */
2688 break;
2689 }
2690
2691 case PGM_STATE_REC_RAM_BALLOONED:
2692 {
2693 Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
2694 if (PGM_PAGE_IS_BALLOONED(pPage))
2695 break;
2696
2697 /* We don't map ballooned pages in our shadow page tables, let's
2698 just free it if allocated and mark as ballooned. See #5515. */
2699 if (PGM_PAGE_IS_ALLOCATED(pPage))
2700 {
2701 /** @todo handle large pages + ballooning when it works. (see #5515, #5545). */
2702 AssertLogRelMsgReturn( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
2703 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED,
2704 ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_INTERNAL_ERROR_5);
2705
2706 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, GCPhys);
2707 AssertRCReturn(rc, rc);
2708 }
2709 Assert(PGM_PAGE_IS_ZERO(pPage));
2710 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_BALLOONED);
2711 break;
2712 }
2713
2714 case PGM_STATE_REC_RAM_RAW:
2715 {
2716 void *pvDstPage;
2717 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage);
2718 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2719 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2720 if (RT_FAILURE(rc))
2721 return rc;
2722 break;
2723 }
2724
2725 default:
2726 AssertMsgFailedReturn(("%#x\n", u8), VERR_INTERNAL_ERROR);
2727 }
2728 id = UINT8_MAX;
2729 break;
2730 }
2731
2732 /*
2733 * MMIO2 page.
2734 */
2735 case PGM_STATE_REC_MMIO2_RAW:
2736 case PGM_STATE_REC_MMIO2_ZERO:
2737 {
2738 /*
2739 * Get the ID + page number and resolved that into a MMIO2 page.
2740 */
2741 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2742 iPage++;
2743 else
2744 {
2745 SSMR3GetU8(pSSM, &id);
2746 rc = SSMR3GetU32(pSSM, &iPage);
2747 if (RT_FAILURE(rc))
2748 return rc;
2749 }
2750 if ( !pMmio2
2751 || pMmio2->idSavedState != id)
2752 {
2753 for (pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
2754 if (pMmio2->idSavedState == id)
2755 break;
2756 AssertLogRelMsgReturn(pMmio2, ("id=%#u iPage=%#x\n", id, iPage), VERR_INTERNAL_ERROR);
2757 }
2758 AssertLogRelMsgReturn(iPage < (pMmio2->RamRange.cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pMmio2->RamRange.cb, pMmio2->RamRange.pszDesc), VERR_INTERNAL_ERROR);
2759 void *pvDstPage = (uint8_t *)pMmio2->RamRange.pvR3 + ((size_t)iPage << PAGE_SHIFT);
2760
2761 /*
2762 * Load the page bits.
2763 */
2764 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_MMIO2_ZERO)
2765 ASMMemZeroPage(pvDstPage);
2766 else
2767 {
2768 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2769 if (RT_FAILURE(rc))
2770 return rc;
2771 }
2772 GCPhys = NIL_RTGCPHYS;
2773 break;
2774 }
2775
2776 /*
2777 * ROM pages.
2778 */
2779 case PGM_STATE_REC_ROM_VIRGIN:
2780 case PGM_STATE_REC_ROM_SHW_RAW:
2781 case PGM_STATE_REC_ROM_SHW_ZERO:
2782 case PGM_STATE_REC_ROM_PROT:
2783 {
2784 /*
2785 * Get the ID + page number and resolved that into a ROM page descriptor.
2786 */
2787 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2788 iPage++;
2789 else
2790 {
2791 SSMR3GetU8(pSSM, &id);
2792 rc = SSMR3GetU32(pSSM, &iPage);
2793 if (RT_FAILURE(rc))
2794 return rc;
2795 }
2796 if ( !pRom
2797 || pRom->idSavedState != id)
2798 {
2799 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2800 if (pRom->idSavedState == id)
2801 break;
2802 AssertLogRelMsgReturn(pRom, ("id=%#u iPage=%#x\n", id, iPage), VERR_INTERNAL_ERROR);
2803 }
2804 AssertLogRelMsgReturn(iPage < (pRom->cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pRom->cb, pRom->pszDesc), VERR_INTERNAL_ERROR);
2805 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2806 GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2807
2808 /*
2809 * Get and set the protection.
2810 */
2811 uint8_t u8Prot;
2812 rc = SSMR3GetU8(pSSM, &u8Prot);
2813 if (RT_FAILURE(rc))
2814 return rc;
2815 PGMROMPROT enmProt = (PGMROMPROT)u8Prot;
2816 AssertLogRelMsgReturn(enmProt > PGMROMPROT_INVALID && enmProt < PGMROMPROT_END, ("GCPhys=%RGp enmProt=%d\n", GCPhys, enmProt), VERR_INTERNAL_ERROR);
2817
2818 if (enmProt != pRomPage->enmProt)
2819 {
2820 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2821 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2822 N_("Protection change of unshadowed ROM page: GCPhys=%RGp enmProt=%d %s"),
2823 GCPhys, enmProt, pRom->pszDesc);
2824 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2825 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2826 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2827 }
2828 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_ROM_PROT)
2829 break; /* done */
2830
2831 /*
2832 * Get the right page descriptor.
2833 */
2834 PPGMPAGE pRealPage;
2835 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2836 {
2837 case PGM_STATE_REC_ROM_VIRGIN:
2838 if (!PGMROMPROT_IS_ROM(enmProt))
2839 pRealPage = &pRomPage->Virgin;
2840 else
2841 pRealPage = NULL;
2842 break;
2843
2844 case PGM_STATE_REC_ROM_SHW_RAW:
2845 case PGM_STATE_REC_ROM_SHW_ZERO:
2846 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2847 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2848 N_("Shadowed / non-shadowed page type mismatch: GCPhys=%RGp enmProt=%d %s"),
2849 GCPhys, enmProt, pRom->pszDesc);
2850 if (PGMROMPROT_IS_ROM(enmProt))
2851 pRealPage = &pRomPage->Shadow;
2852 else
2853 pRealPage = NULL;
2854 break;
2855
2856 default: AssertLogRelFailedReturn(VERR_INTERNAL_ERROR); /* shut up gcc */
2857 }
2858 if (!pRealPage)
2859 {
2860 rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, GCPhys, &pRealPage, &pRamHint);
2861 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2862 }
2863
2864 /*
2865 * Make it writable and map it (if necessary).
2866 */
2867 void *pvDstPage = NULL;
2868 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2869 {
2870 case PGM_STATE_REC_ROM_SHW_ZERO:
2871 if ( PGM_PAGE_IS_ZERO(pRealPage)
2872 || PGM_PAGE_IS_BALLOONED(pRealPage))
2873 break;
2874 /** @todo implement zero page replacing. */
2875 /* fall thru */
2876 case PGM_STATE_REC_ROM_VIRGIN:
2877 case PGM_STATE_REC_ROM_SHW_RAW:
2878 {
2879 rc = pgmPhysPageMakeWritableAndMap(pVM, pRealPage, GCPhys, &pvDstPage);
2880 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2881 break;
2882 }
2883 }
2884
2885 /*
2886 * Load the bits.
2887 */
2888 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2889 {
2890 case PGM_STATE_REC_ROM_SHW_ZERO:
2891 if (pvDstPage)
2892 ASMMemZeroPage(pvDstPage);
2893 break;
2894
2895 case PGM_STATE_REC_ROM_VIRGIN:
2896 case PGM_STATE_REC_ROM_SHW_RAW:
2897 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2898 if (RT_FAILURE(rc))
2899 return rc;
2900 break;
2901 }
2902 GCPhys = NIL_RTGCPHYS;
2903 break;
2904 }
2905
2906 /*
2907 * Unknown type.
2908 */
2909 default:
2910 AssertLogRelMsgFailedReturn(("%#x\n", u8), VERR_INTERNAL_ERROR);
2911 }
2912 } /* forever */
2913}
2914
2915
2916/**
2917 * Worker for pgmR3Load.
2918 *
2919 * @returns VBox status code.
2920 *
2921 * @param pVM The VM handle.
2922 * @param pSSM The SSM handle.
2923 * @param uVersion The saved state version.
2924 */
2925static int pgmR3LoadFinalLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2926{
2927 PPGM pPGM = &pVM->pgm.s;
2928 int rc;
2929 uint32_t u32Sep;
2930
2931 /*
2932 * Load basic data (required / unaffected by relocation).
2933 */
2934 if (uVersion >= PGM_SAVED_STATE_VERSION_3_0_0)
2935 {
2936 if (uVersion > PGM_SAVED_STATE_VERSION_PRE_BALLOON)
2937 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2938 else
2939 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFieldsPreBalloon[0]);
2940
2941 AssertLogRelRCReturn(rc, rc);
2942
2943 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2944 {
2945 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFields[0]);
2946 AssertLogRelRCReturn(rc, rc);
2947 }
2948 }
2949 else if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2950 {
2951 AssertRelease(pVM->cCpus == 1);
2952
2953 PGMOLD pgmOld;
2954 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
2955 AssertLogRelRCReturn(rc, rc);
2956
2957 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
2958 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
2959 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
2960
2961 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
2962 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
2963 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
2964 }
2965 else
2966 {
2967 AssertRelease(pVM->cCpus == 1);
2968
2969 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2970 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2971 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2972
2973 uint32_t cbRamSizeIgnored;
2974 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2975 if (RT_FAILURE(rc))
2976 return rc;
2977 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
2978
2979 uint32_t u32 = 0;
2980 SSMR3GetUInt(pSSM, &u32);
2981 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
2982 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
2983 RTUINT uGuestMode;
2984 SSMR3GetUInt(pSSM, &uGuestMode);
2985 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
2986
2987 /* check separator. */
2988 SSMR3GetU32(pSSM, &u32Sep);
2989 if (RT_FAILURE(rc))
2990 return rc;
2991 if (u32Sep != (uint32_t)~0)
2992 {
2993 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2994 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2995 }
2996 }
2997
2998 /*
2999 * The guest mappings - skipped now, see re-fixation in the caller.
3000 */
3001 uint32_t i = 0;
3002 for (;; i++)
3003 {
3004 rc = SSMR3GetU32(pSSM, &u32Sep); /* sequence number */
3005 if (RT_FAILURE(rc))
3006 return rc;
3007 if (u32Sep == ~0U)
3008 break;
3009 AssertMsgReturn(u32Sep == i, ("u32Sep=%#x i=%#x\n", u32Sep, i), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3010
3011 char szDesc[256];
3012 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
3013 if (RT_FAILURE(rc))
3014 return rc;
3015 RTGCPTR GCPtrIgnore;
3016 SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* GCPtr */
3017 rc = SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* cPTs */
3018 if (RT_FAILURE(rc))
3019 return rc;
3020 }
3021
3022 /*
3023 * Load the RAM contents.
3024 */
3025 if (uVersion > PGM_SAVED_STATE_VERSION_3_0_0)
3026 {
3027 if (!pVM->pgm.s.LiveSave.fActive)
3028 {
3029 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3030 {
3031 rc = pgmR3LoadRamConfig(pVM, pSSM);
3032 if (RT_FAILURE(rc))
3033 return rc;
3034 }
3035 rc = pgmR3LoadRomRanges(pVM, pSSM);
3036 if (RT_FAILURE(rc))
3037 return rc;
3038 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
3039 if (RT_FAILURE(rc))
3040 return rc;
3041 }
3042
3043 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, SSM_PASS_FINAL);
3044 }
3045 else
3046 rc = pgmR3LoadMemoryOld(pVM, pSSM, uVersion);
3047
3048 /* Refresh balloon accounting. */
3049 if (pVM->pgm.s.cBalloonedPages)
3050 {
3051 Log(("pgmR3LoadFinalLocked: pVM=%p cBalloonedPages=%#x\n", pVM, pVM->pgm.s.cBalloonedPages));
3052 rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_INFLATE, pVM->pgm.s.cBalloonedPages);
3053 AssertRCReturn(rc, rc);
3054 }
3055 return rc;
3056}
3057
3058
3059/**
3060 * Execute state load operation.
3061 *
3062 * @returns VBox status code.
3063 * @param pVM VM Handle.
3064 * @param pSSM SSM operation handle.
3065 * @param uVersion Data layout version.
3066 * @param uPass The data pass.
3067 */
3068static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3069{
3070 int rc;
3071 PPGM pPGM = &pVM->pgm.s;
3072
3073 /*
3074 * Validate version.
3075 */
3076 if ( ( uPass != SSM_PASS_FINAL
3077 && uVersion != PGM_SAVED_STATE_VERSION
3078 && uVersion != PGM_SAVED_STATE_VERSION_BALLOON_BROKEN
3079 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
3080 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3081 || ( uVersion != PGM_SAVED_STATE_VERSION
3082 && uVersion != PGM_SAVED_STATE_VERSION_BALLOON_BROKEN
3083 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
3084 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG
3085 && uVersion != PGM_SAVED_STATE_VERSION_3_0_0
3086 && uVersion != PGM_SAVED_STATE_VERSION_2_2_2
3087 && uVersion != PGM_SAVED_STATE_VERSION_RR_DESC
3088 && uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
3089 )
3090 {
3091 AssertMsgFailed(("pgmR3Load: Invalid version uVersion=%d (current %d)!\n", uVersion, PGM_SAVED_STATE_VERSION));
3092 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3093 }
3094
3095 /*
3096 * Do the loading while owning the lock because a bunch of the functions
3097 * we're using requires this.
3098 */
3099 if (uPass != SSM_PASS_FINAL)
3100 {
3101 pgmLock(pVM);
3102 if (uPass != 0)
3103 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, uPass);
3104 else
3105 {
3106 pVM->pgm.s.LiveSave.fActive = true;
3107 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3108 rc = pgmR3LoadRamConfig(pVM, pSSM);
3109 else
3110 rc = VINF_SUCCESS;
3111 if (RT_SUCCESS(rc))
3112 rc = pgmR3LoadRomRanges(pVM, pSSM);
3113 if (RT_SUCCESS(rc))
3114 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
3115 if (RT_SUCCESS(rc))
3116 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, uPass);
3117 }
3118 pgmUnlock(pVM);
3119 }
3120 else
3121 {
3122 pgmLock(pVM);
3123 rc = pgmR3LoadFinalLocked(pVM, pSSM, uVersion);
3124 pVM->pgm.s.LiveSave.fActive = false;
3125 pgmUnlock(pVM);
3126 if (RT_SUCCESS(rc))
3127 {
3128 /*
3129 * We require a full resync now.
3130 */
3131 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3132 {
3133 PVMCPU pVCpu = &pVM->aCpus[i];
3134 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3135 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3136 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3137 }
3138
3139 pgmR3HandlerPhysicalUpdateAll(pVM);
3140
3141 /*
3142 * Change the paging mode and restore PGMCPU::GCPhysCR3.
3143 * (The latter requires the CPUM state to be restored already.)
3144 */
3145 if (CPUMR3IsStateRestorePending(pVM))
3146 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
3147 N_("PGM was unexpectedly restored before CPUM"));
3148
3149 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3150 {
3151 PVMCPU pVCpu = &pVM->aCpus[i];
3152
3153 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
3154 AssertLogRelRCReturn(rc, rc);
3155
3156 /* Update pVM->pgm.s.GCPhysCR3. */
3157 Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS || FTMIsDeltaLoadSaveActive(pVM));
3158 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
3159 if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
3160 || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3161 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
3162 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3163 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3164 else
3165 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3166 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
3167
3168 /* Update the PSE, NX flags and validity masks. */
3169 pVCpu->pgm.s.fGst32BitPageSizeExtension = CPUMIsGuestPageSizeExtEnabled(pVCpu);
3170 PGMNotifyNxeChanged(pVCpu, CPUMIsGuestNXEnabled(pVCpu));
3171 }
3172
3173 /*
3174 * Try re-fixate the guest mappings.
3175 */
3176 pVM->pgm.s.fMappingsFixedRestored = false;
3177 if ( pVM->pgm.s.fMappingsFixed
3178 && pgmMapAreMappingsEnabled(&pVM->pgm.s))
3179 {
3180 RTGCPTR GCPtrFixed = pVM->pgm.s.GCPtrMappingFixed;
3181 uint32_t cbFixed = pVM->pgm.s.cbMappingFixed;
3182 pVM->pgm.s.fMappingsFixed = false;
3183
3184 uint32_t cbRequired;
3185 int rc2 = PGMR3MappingsSize(pVM, &cbRequired); AssertRC(rc2);
3186 if ( RT_SUCCESS(rc2)
3187 && cbRequired > cbFixed)
3188 rc2 = VERR_OUT_OF_RANGE;
3189 if (RT_SUCCESS(rc2))
3190 rc2 = pgmR3MappingsFixInternal(pVM, GCPtrFixed, cbFixed);
3191 if (RT_FAILURE(rc2))
3192 {
3193 LogRel(("PGM: Unable to re-fixate the guest mappings at %RGv-%RGv: rc=%Rrc (cbRequired=%#x)\n",
3194 GCPtrFixed, GCPtrFixed + cbFixed, rc2, cbRequired));
3195 pVM->pgm.s.fMappingsFixed = false;
3196 pVM->pgm.s.fMappingsFixedRestored = true;
3197 pVM->pgm.s.GCPtrMappingFixed = GCPtrFixed;
3198 pVM->pgm.s.cbMappingFixed = cbFixed;
3199 }
3200 }
3201 else
3202 {
3203 /* We used to set fixed + disabled while we only use disabled now,
3204 so wipe the state to avoid any confusion. */
3205 pVM->pgm.s.fMappingsFixed = false;
3206 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
3207 pVM->pgm.s.cbMappingFixed = 0;
3208 }
3209
3210 /*
3211 * If we have floating mappings, do a CR3 sync now to make sure the HMA
3212 * doesn't conflict with guest code / data and thereby cause trouble
3213 * when restoring other components like PATM.
3214 */
3215 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3216 {
3217 PVMCPU pVCpu = &pVM->aCpus[0];
3218 rc = PGMSyncCR3(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu), true);
3219 if (RT_FAILURE(rc))
3220 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
3221 N_("PGMSyncCR3 failed unexpectedly with rc=%Rrc"), rc);
3222
3223 /* Make sure to re-sync before executing code. */
3224 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3225 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3226 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3227 }
3228 }
3229 }
3230
3231 return rc;
3232}
3233
3234
3235/**
3236 * Registers the saved state callbacks with SSM.
3237 *
3238 * @returns VBox status code.
3239 * @param pVM Pointer to VM structure.
3240 * @param cbRam The RAM size.
3241 */
3242int pgmR3InitSavedState(PVM pVM, uint64_t cbRam)
3243{
3244 return SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
3245 pgmR3LivePrep, pgmR3LiveExec, pgmR3LiveVote,
3246 NULL, pgmR3SaveExec, pgmR3SaveDone,
3247 pgmR3LoadPrep, pgmR3Load, NULL);
3248}
3249
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette