VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMSavedState.cpp@ 104557

Last change on this file since 104557 was 104557, checked in by vboxsync, 5 months ago

VMM/PGMSavedState.cpp: Check status code for errors and return on error before continuing, bugref:3409

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 125.7 KB
Line 
1/* $Id: PGMSavedState.cpp 104557 2024-05-08 14:15:39Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, The Saved State Part.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_PGM
33#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
34#include <VBox/vmm/pgm.h>
35#include <VBox/vmm/stam.h>
36#include <VBox/vmm/ssm.h>
37#include <VBox/vmm/pdmdrv.h>
38#include <VBox/vmm/pdmdev.h>
39#include "PGMInternal.h"
40#include <VBox/vmm/vmcc.h>
41#include "PGMInline.h"
42
43#include <VBox/param.h>
44#include <VBox/err.h>
45
46#include <iprt/asm.h>
47#include <iprt/assert.h>
48#include <iprt/crc.h>
49#include <iprt/mem.h>
50#include <iprt/sha.h>
51#include <iprt/string.h>
52#include <iprt/thread.h>
53
54
55/*********************************************************************************************************************************
56* Defined Constants And Macros *
57*********************************************************************************************************************************/
58/** Saved state data unit version. */
59#define PGM_SAVED_STATE_VERSION 14
60/** Saved state data unit version before the PAE PDPE registers. */
61#define PGM_SAVED_STATE_VERSION_PRE_PAE 13
62/** Saved state data unit version after this includes ballooned page flags in
63 * the state (see @bugref{5515}). */
64#define PGM_SAVED_STATE_VERSION_BALLOON_BROKEN 12
65/** Saved state before the balloon change. */
66#define PGM_SAVED_STATE_VERSION_PRE_BALLOON 11
67/** Saved state data unit version used during 3.1 development, misses the RAM
68 * config. */
69#define PGM_SAVED_STATE_VERSION_NO_RAM_CFG 10
70/** Saved state data unit version for 3.0 (pre teleportation). */
71#define PGM_SAVED_STATE_VERSION_3_0_0 9
72/** Saved state data unit version for 2.2.2 and later. */
73#define PGM_SAVED_STATE_VERSION_2_2_2 8
74/** Saved state data unit version for 2.2.0. */
75#define PGM_SAVED_STATE_VERSION_RR_DESC 7
76/** Saved state data unit version. */
77#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
78
79
80/** @name Sparse state record types
81 * @{ */
82/** Zero page. No data. */
83#define PGM_STATE_REC_RAM_ZERO UINT8_C(0x00)
84/** Raw page. */
85#define PGM_STATE_REC_RAM_RAW UINT8_C(0x01)
86/** Raw MMIO2 page. */
87#define PGM_STATE_REC_MMIO2_RAW UINT8_C(0x02)
88/** Zero MMIO2 page. */
89#define PGM_STATE_REC_MMIO2_ZERO UINT8_C(0x03)
90/** Virgin ROM page. Followed by protection (8-bit) and the raw bits. */
91#define PGM_STATE_REC_ROM_VIRGIN UINT8_C(0x04)
92/** Raw shadowed ROM page. The protection (8-bit) precedes the raw bits. */
93#define PGM_STATE_REC_ROM_SHW_RAW UINT8_C(0x05)
94/** Zero shadowed ROM page. The protection (8-bit) is the only payload. */
95#define PGM_STATE_REC_ROM_SHW_ZERO UINT8_C(0x06)
96/** ROM protection (8-bit). */
97#define PGM_STATE_REC_ROM_PROT UINT8_C(0x07)
98/** Ballooned page. No data. */
99#define PGM_STATE_REC_RAM_BALLOONED UINT8_C(0x08)
100/** The last record type. */
101#define PGM_STATE_REC_LAST PGM_STATE_REC_RAM_BALLOONED
102/** End marker. */
103#define PGM_STATE_REC_END UINT8_C(0xff)
104/** Flag indicating that the data is preceded by the page address.
105 * For RAW pages this is a RTGCPHYS. For MMIO2 and ROM pages this is a 8-bit
106 * range ID and a 32-bit page index.
107 */
108#define PGM_STATE_REC_FLAG_ADDR UINT8_C(0x80)
109/** @} */
110
111/** The CRC-32 for a zero page. */
112#define PGM_STATE_CRC32_ZERO_PAGE UINT32_C(0xc71c0011)
113/** The CRC-32 for a zero half page. */
114#define PGM_STATE_CRC32_ZERO_HALF_PAGE UINT32_C(0xf1e8ba9e)
115
116
117
118/** @name Old Page types used in older saved states.
119 * @{ */
120/** Old saved state: The usual invalid zero entry. */
121#define PGMPAGETYPE_OLD_INVALID 0
122/** Old saved state: RAM page. (RWX) */
123#define PGMPAGETYPE_OLD_RAM 1
124/** Old saved state: MMIO2 page. (RWX) */
125#define PGMPAGETYPE_OLD_MMIO2 1
126/** Old saved state: MMIO2 page aliased over an MMIO page. (RWX)
127 * See PGMHandlerPhysicalPageAlias(). */
128#define PGMPAGETYPE_OLD_MMIO2_ALIAS_MMIO 2
129/** Old saved state: Shadowed ROM. (RWX) */
130#define PGMPAGETYPE_OLD_ROM_SHADOW 3
131/** Old saved state: ROM page. (R-X) */
132#define PGMPAGETYPE_OLD_ROM 4
133/** Old saved state: MMIO page. (---) */
134#define PGMPAGETYPE_OLD_MMIO 5
135/** @} */
136
137
138/*********************************************************************************************************************************
139* Structures and Typedefs *
140*********************************************************************************************************************************/
141/** For loading old saved states. (pre-smp) */
142typedef struct
143{
144 /** If set no conflict checks are required. (boolean) */
145 bool fMappingsFixed;
146 /** Size of fixed mapping */
147 uint32_t cbMappingFixed;
148 /** Base address (GC) of fixed mapping */
149 RTGCPTR GCPtrMappingFixed;
150 /** A20 gate mask.
151 * Our current approach to A20 emulation is to let REM do it and don't bother
152 * anywhere else. The interesting guests will be operating with it enabled anyway.
153 * But should the need arise, we'll subject physical addresses to this mask. */
154 RTGCPHYS GCPhysA20Mask;
155 /** A20 gate state - boolean! */
156 bool fA20Enabled;
157 /** The guest paging mode. */
158 PGMMODE enmGuestMode;
159} PGMOLD;
160
161
162/*********************************************************************************************************************************
163* Global Variables *
164*********************************************************************************************************************************/
165/** PGM fields to save/load. */
166
167static const SSMFIELD s_aPGMFields[] =
168{
169 SSMFIELD_ENTRY_OLD( fMappingsFixed, sizeof(bool)),
170 SSMFIELD_ENTRY_OLD_GCPTR( GCPtrMappingFixed),
171 SSMFIELD_ENTRY_OLD( cbMappingFixed, sizeof(uint32_t)),
172 SSMFIELD_ENTRY( PGM, cBalloonedPages),
173 SSMFIELD_ENTRY_TERM()
174};
175
176static const SSMFIELD s_aPGMFieldsPreBalloon[] =
177{
178 SSMFIELD_ENTRY_OLD( fMappingsFixed, sizeof(bool)),
179 SSMFIELD_ENTRY_OLD_GCPTR( GCPtrMappingFixed),
180 SSMFIELD_ENTRY_OLD( cbMappingFixed, sizeof(uint32_t)),
181 SSMFIELD_ENTRY_TERM()
182};
183
184static const SSMFIELD s_aPGMCpuFields[] =
185{
186 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
187 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
188 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
189 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[0]),
190 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[1]),
191 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[2]),
192 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[3]),
193 SSMFIELD_ENTRY_TERM()
194};
195
196static const SSMFIELD s_aPGMCpuFieldsPrePae[] =
197{
198 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
199 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
200 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
201 SSMFIELD_ENTRY_TERM()
202};
203
204static const SSMFIELD s_aPGMFields_Old[] =
205{
206 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
207 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
208 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
209 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
210 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
211 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
212 SSMFIELD_ENTRY_TERM()
213};
214
215
216/**
217 * Find the ROM tracking structure for the given page.
218 *
219 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
220 * that it's a ROM page.
221 * @param pVM The cross context VM structure.
222 * @param GCPhys The address of the ROM page.
223 */
224static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys) /** @todo change this to take a hint. */
225{
226 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
227 pRomRange;
228 pRomRange = pRomRange->CTX_SUFF(pNext))
229 {
230 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
231 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
232 return &pRomRange->aPages[off >> GUEST_PAGE_SHIFT];
233 }
234 return NULL;
235}
236
237
238/**
239 * Prepares the ROM pages for a live save.
240 *
241 * @returns VBox status code.
242 * @param pVM The cross context VM structure.
243 */
244static int pgmR3PrepRomPages(PVM pVM)
245{
246 /*
247 * Initialize the live save tracking in the ROM page descriptors.
248 */
249 PGM_LOCK_VOID(pVM);
250 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
251 {
252 PPGMRAMRANGE pRamHint = NULL;;
253 uint32_t const cPages = pRom->cb >> GUEST_PAGE_SHIFT;
254
255 for (uint32_t iPage = 0; iPage < cPages; iPage++)
256 {
257 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)PGMROMPROT_INVALID;
258 pRom->aPages[iPage].LiveSave.fWrittenTo = false;
259 pRom->aPages[iPage].LiveSave.fDirty = true;
260 pRom->aPages[iPage].LiveSave.fDirtiedRecently = true;
261 if (!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
262 {
263 if (PGMROMPROT_IS_ROM(pRom->aPages[iPage].enmProt))
264 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
265 else
266 {
267 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT);
268 PPGMPAGE pPage;
269 int rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pPage, &pRamHint);
270 AssertLogRelMsgRC(rc, ("%Rrc GCPhys=%RGp\n", rc, GCPhys));
271 if (RT_SUCCESS(rc))
272 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(pPage) && !PGM_PAGE_IS_BALLOONED(pPage);
273 else
274 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
275 }
276 }
277 }
278
279 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
280 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
281 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
282 }
283 PGM_UNLOCK(pVM);
284
285 return VINF_SUCCESS;
286}
287
288
289/**
290 * Assigns IDs to the ROM ranges and saves them.
291 *
292 * @returns VBox status code.
293 * @param pVM The cross context VM structure.
294 * @param pSSM Saved state handle.
295 */
296static int pgmR3SaveRomRanges(PVM pVM, PSSMHANDLE pSSM)
297{
298 PGM_LOCK_VOID(pVM);
299 uint8_t id = 1;
300 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3, id++)
301 {
302 pRom->idSavedState = id;
303 SSMR3PutU8(pSSM, id);
304 SSMR3PutStrZ(pSSM, ""); /* device name */
305 SSMR3PutU32(pSSM, 0); /* device instance */
306 SSMR3PutU8(pSSM, 0); /* region */
307 SSMR3PutStrZ(pSSM, pRom->pszDesc);
308 SSMR3PutGCPhys(pSSM, pRom->GCPhys);
309 int rc = SSMR3PutGCPhys(pSSM, pRom->cb);
310 if (RT_FAILURE(rc))
311 break;
312 }
313 PGM_UNLOCK(pVM);
314 return SSMR3PutU8(pSSM, UINT8_MAX);
315}
316
317
318/**
319 * Loads the ROM range ID assignments.
320 *
321 * @returns VBox status code.
322 *
323 * @param pVM The cross context VM structure.
324 * @param pSSM The saved state handle.
325 */
326static int pgmR3LoadRomRanges(PVM pVM, PSSMHANDLE pSSM)
327{
328 PGM_LOCK_ASSERT_OWNER(pVM);
329
330 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
331 pRom->idSavedState = UINT8_MAX;
332
333 for (;;)
334 {
335 /*
336 * Read the data.
337 */
338 uint8_t id;
339 int rc = SSMR3GetU8(pSSM, &id);
340 if (RT_FAILURE(rc))
341 return rc;
342 if (id == UINT8_MAX)
343 {
344 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
345 if (pRom->idSavedState != UINT8_MAX)
346 { /* likely */ }
347 else if (pRom->fFlags & PGMPHYS_ROM_FLAGS_MAYBE_MISSING_FROM_STATE)
348 LogRel(("PGM: The '%s' ROM was not found in the saved state, but it is marked as maybe-missing, so that's probably okay.\n",
349 pRom->pszDesc));
350 else
351 AssertLogRelMsg(pRom->idSavedState != UINT8_MAX,
352 ("The '%s' ROM was not found in the saved state. Probably due to some misconfiguration\n",
353 pRom->pszDesc));
354 return VINF_SUCCESS; /* the end */
355 }
356 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
357
358 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
359 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
360 AssertLogRelRCReturn(rc, rc);
361
362 uint32_t uInstance;
363 SSMR3GetU32(pSSM, &uInstance);
364 uint8_t iRegion;
365 SSMR3GetU8(pSSM, &iRegion);
366
367 char szDesc[64];
368 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
369 AssertLogRelRCReturn(rc, rc);
370
371 RTGCPHYS GCPhys;
372 SSMR3GetGCPhys(pSSM, &GCPhys);
373 RTGCPHYS cb;
374 rc = SSMR3GetGCPhys(pSSM, &cb);
375 if (RT_FAILURE(rc))
376 return rc;
377 AssertLogRelMsgReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), ("GCPhys=%RGp %s\n", GCPhys, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
378 AssertLogRelMsgReturn(!(cb & GUEST_PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
379
380 /*
381 * Locate a matching ROM range.
382 */
383 AssertLogRelMsgReturn( uInstance == 0
384 && iRegion == 0
385 && szDevName[0] == '\0',
386 ("GCPhys=%RGp %s\n", GCPhys, szDesc),
387 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
388 PPGMROMRANGE pRom;
389 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
390 {
391 if ( pRom->idSavedState == UINT8_MAX
392 && !strcmp(pRom->pszDesc, szDesc))
393 {
394 pRom->idSavedState = id;
395 break;
396 }
397 }
398 if (!pRom)
399 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("ROM at %RGp by the name '%s' was not found"), GCPhys, szDesc);
400 } /* forever */
401}
402
403
404/**
405 * Scan ROM pages.
406 *
407 * @param pVM The cross context VM structure.
408 */
409static void pgmR3ScanRomPages(PVM pVM)
410{
411 /*
412 * The shadow ROMs.
413 */
414 PGM_LOCK_VOID(pVM);
415 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
416 {
417 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
418 {
419 uint32_t const cPages = pRom->cb >> GUEST_PAGE_SHIFT;
420 for (uint32_t iPage = 0; iPage < cPages; iPage++)
421 {
422 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
423 if (pRomPage->LiveSave.fWrittenTo)
424 {
425 pRomPage->LiveSave.fWrittenTo = false;
426 if (!pRomPage->LiveSave.fDirty)
427 {
428 pRomPage->LiveSave.fDirty = true;
429 pVM->pgm.s.LiveSave.Rom.cReadyPages--;
430 pVM->pgm.s.LiveSave.Rom.cDirtyPages++;
431 }
432 pRomPage->LiveSave.fDirtiedRecently = true;
433 }
434 else
435 pRomPage->LiveSave.fDirtiedRecently = false;
436 }
437 }
438 }
439 PGM_UNLOCK(pVM);
440}
441
442
443/**
444 * Takes care of the virgin ROM pages in the first pass.
445 *
446 * This is an attempt at simplifying the handling of ROM pages a little bit.
447 * This ASSUMES that no new ROM ranges will be added and that they won't be
448 * relinked in any way.
449 *
450 * @param pVM The cross context VM structure.
451 * @param pSSM The SSM handle.
452 * @param fLiveSave Whether we're in a live save or not.
453 */
454static int pgmR3SaveRomVirginPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave)
455{
456 PGM_LOCK_VOID(pVM);
457 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
458 {
459 uint32_t const cPages = pRom->cb >> GUEST_PAGE_SHIFT;
460 for (uint32_t iPage = 0; iPage < cPages; iPage++)
461 {
462 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT);
463 PGMROMPROT enmProt = pRom->aPages[iPage].enmProt;
464
465 /* Get the virgin page descriptor. */
466 PPGMPAGE pPage;
467 if (PGMROMPROT_IS_ROM(enmProt))
468 pPage = pgmPhysGetPage(pVM, GCPhys);
469 else
470 pPage = &pRom->aPages[iPage].Virgin;
471
472 /* Get the page bits. (Cannot use pgmPhysGCPhys2CCPtrInternalReadOnly here!) */
473 int rc = VINF_SUCCESS;
474 char abPage[GUEST_PAGE_SIZE];
475 if ( !PGM_PAGE_IS_ZERO(pPage)
476 && !PGM_PAGE_IS_BALLOONED(pPage))
477 {
478 void const *pvPage;
479#ifdef VBOX_WITH_PGM_NEM_MODE
480 if (!PGMROMPROT_IS_ROM(enmProt) && pVM->pgm.s.fNemMode)
481 pvPage = &pRom->pbR3Alternate[iPage << GUEST_PAGE_SHIFT];
482 else
483#endif
484 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
485 if (RT_SUCCESS(rc))
486 memcpy(abPage, pvPage, GUEST_PAGE_SIZE);
487 }
488 else
489 RT_ZERO(abPage);
490 PGM_UNLOCK(pVM);
491 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
492
493 /* Save it. */
494 if (iPage > 0)
495 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN);
496 else
497 {
498 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN | PGM_STATE_REC_FLAG_ADDR);
499 SSMR3PutU8(pSSM, pRom->idSavedState);
500 SSMR3PutU32(pSSM, iPage);
501 }
502 SSMR3PutU8(pSSM, (uint8_t)enmProt);
503 rc = SSMR3PutMem(pSSM, abPage, GUEST_PAGE_SIZE);
504 if (RT_FAILURE(rc))
505 return rc;
506
507 /* Update state. */
508 PGM_LOCK_VOID(pVM);
509 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)enmProt;
510 if (fLiveSave)
511 {
512 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
513 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
514 pVM->pgm.s.LiveSave.cSavedPages++;
515 }
516 }
517 }
518 PGM_UNLOCK(pVM);
519 return VINF_SUCCESS;
520}
521
522
523/**
524 * Saves dirty pages in the shadowed ROM ranges.
525 *
526 * Used by pgmR3LiveExecPart2 and pgmR3SaveExecMemory.
527 *
528 * @returns VBox status code.
529 * @param pVM The cross context VM structure.
530 * @param pSSM The SSM handle.
531 * @param fLiveSave Whether it's a live save or not.
532 * @param fFinalPass Whether this is the final pass or not.
533 */
534static int pgmR3SaveShadowedRomPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, bool fFinalPass)
535{
536 /*
537 * The Shadowed ROMs.
538 *
539 * ASSUMES that the ROM ranges are fixed.
540 * ASSUMES that all the ROM ranges are mapped.
541 */
542 PGM_LOCK_VOID(pVM);
543 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
544 {
545 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
546 {
547 uint32_t const cPages = pRom->cb >> GUEST_PAGE_SHIFT;
548 uint32_t iPrevPage = cPages;
549 for (uint32_t iPage = 0; iPage < cPages; iPage++)
550 {
551 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
552 if ( !fLiveSave
553 || ( pRomPage->LiveSave.fDirty
554 && ( ( !pRomPage->LiveSave.fDirtiedRecently
555 && !pRomPage->LiveSave.fWrittenTo)
556 || fFinalPass
557 )
558 )
559 )
560 {
561 uint8_t abPage[GUEST_PAGE_SIZE];
562 PGMROMPROT enmProt = pRomPage->enmProt;
563 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT);
564 PPGMPAGE pPage = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : pgmPhysGetPage(pVM, GCPhys);
565 bool fZero = PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_BALLOONED(pPage); Assert(!PGM_PAGE_IS_BALLOONED(pPage)); /* Shouldn't be ballooned. */
566 int rc = VINF_SUCCESS;
567 if (!fZero)
568 {
569 void const *pvPage;
570#ifdef VBOX_WITH_PGM_NEM_MODE
571 if (PGMROMPROT_IS_ROM(enmProt) && pVM->pgm.s.fNemMode)
572 pvPage = &pRom->pbR3Alternate[iPage << GUEST_PAGE_SHIFT];
573 else
574#endif
575 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
576 if (RT_SUCCESS(rc))
577 memcpy(abPage, pvPage, GUEST_PAGE_SIZE);
578 }
579 if (fLiveSave && RT_SUCCESS(rc))
580 {
581 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
582 pRomPage->LiveSave.fDirty = false;
583 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
584 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
585 pVM->pgm.s.LiveSave.cSavedPages++;
586 }
587 PGM_UNLOCK(pVM);
588 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
589
590 if (iPage - 1U == iPrevPage && iPage > 0)
591 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW));
592 else
593 {
594 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW) | PGM_STATE_REC_FLAG_ADDR);
595 SSMR3PutU8(pSSM, pRom->idSavedState);
596 SSMR3PutU32(pSSM, iPage);
597 }
598 rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
599 if (!fZero)
600 rc = SSMR3PutMem(pSSM, abPage, GUEST_PAGE_SIZE);
601 if (RT_FAILURE(rc))
602 return rc;
603
604 PGM_LOCK_VOID(pVM);
605 iPrevPage = iPage;
606 }
607 /*
608 * In the final pass, make sure the protection is in sync.
609 */
610 else if ( fFinalPass
611 && pRomPage->LiveSave.u8Prot != pRomPage->enmProt)
612 {
613 PGMROMPROT enmProt = pRomPage->enmProt;
614 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
615 PGM_UNLOCK(pVM);
616
617 if (iPage - 1U == iPrevPage && iPage > 0)
618 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT);
619 else
620 {
621 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT | PGM_STATE_REC_FLAG_ADDR);
622 SSMR3PutU8(pSSM, pRom->idSavedState);
623 SSMR3PutU32(pSSM, iPage);
624 }
625 int rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
626 if (RT_FAILURE(rc))
627 return rc;
628
629 PGM_LOCK_VOID(pVM);
630 iPrevPage = iPage;
631 }
632 }
633 }
634 }
635 PGM_UNLOCK(pVM);
636 return VINF_SUCCESS;
637}
638
639
640/**
641 * Cleans up ROM pages after a live save.
642 *
643 * @param pVM The cross context VM structure.
644 */
645static void pgmR3DoneRomPages(PVM pVM)
646{
647 NOREF(pVM);
648}
649
650
651/**
652 * Prepares the MMIO2 pages for a live save.
653 *
654 * @returns VBox status code.
655 * @param pVM The cross context VM structure.
656 */
657static int pgmR3PrepMmio2Pages(PVM pVM)
658{
659 /*
660 * Initialize the live save tracking in the MMIO2 ranges.
661 * ASSUME nothing changes here.
662 */
663 PGM_LOCK_VOID(pVM);
664 for (PPGMREGMMIO2RANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
665 {
666 uint32_t const cPages = pRegMmio->RamRange.cb >> GUEST_PAGE_SHIFT;
667 PGM_UNLOCK(pVM);
668
669 PPGMLIVESAVEMMIO2PAGE paLSPages = (PPGMLIVESAVEMMIO2PAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM,
670 sizeof(PGMLIVESAVEMMIO2PAGE) * cPages);
671 if (!paLSPages)
672 return VERR_NO_MEMORY;
673 for (uint32_t iPage = 0; iPage < cPages; iPage++)
674 {
675 /* Initialize it as a dirty zero page. */
676 paLSPages[iPage].fDirty = true;
677 paLSPages[iPage].cUnchangedScans = 0;
678 paLSPages[iPage].fZero = true;
679 paLSPages[iPage].u32CrcH1 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
680 paLSPages[iPage].u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
681 }
682
683 PGM_LOCK_VOID(pVM);
684 pRegMmio->paLSPages = paLSPages;
685 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages += cPages;
686 }
687 PGM_UNLOCK(pVM);
688 return VINF_SUCCESS;
689}
690
691
692/**
693 * Assigns IDs to the MMIO2 ranges and saves them.
694 *
695 * @returns VBox status code.
696 * @param pVM The cross context VM structure.
697 * @param pSSM Saved state handle.
698 */
699static int pgmR3SaveMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
700{
701 PGM_LOCK_VOID(pVM);
702 uint8_t id = 1;
703 for (PPGMREGMMIO2RANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
704 {
705 pRegMmio->idSavedState = id;
706 SSMR3PutU8(pSSM, id);
707 SSMR3PutStrZ(pSSM, pRegMmio->pDevInsR3->pReg->szName);
708 SSMR3PutU32(pSSM, pRegMmio->pDevInsR3->iInstance);
709 SSMR3PutU8(pSSM, pRegMmio->iRegion);
710 SSMR3PutStrZ(pSSM, pRegMmio->RamRange.pszDesc);
711 int rc = SSMR3PutGCPhys(pSSM, pRegMmio->RamRange.cb);
712 if (RT_FAILURE(rc))
713 break;
714 id++;
715 }
716 PGM_UNLOCK(pVM);
717 return SSMR3PutU8(pSSM, UINT8_MAX);
718}
719
720
721/**
722 * Loads the MMIO2 range ID assignments.
723 *
724 * @returns VBox status code.
725 *
726 * @param pVM The cross context VM structure.
727 * @param pSSM The saved state handle.
728 */
729static int pgmR3LoadMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
730{
731 PGM_LOCK_ASSERT_OWNER(pVM);
732
733 for (PPGMREGMMIO2RANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
734 pRegMmio->idSavedState = UINT8_MAX;
735
736 for (;;)
737 {
738 /*
739 * Read the data.
740 */
741 uint8_t id;
742 int rc = SSMR3GetU8(pSSM, &id);
743 if (RT_FAILURE(rc))
744 return rc;
745 if (id == UINT8_MAX)
746 {
747 for (PPGMREGMMIO2RANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
748 AssertLogRelMsg(pRegMmio->idSavedState != UINT8_MAX, ("%s\n", pRegMmio->RamRange.pszDesc));
749 return VINF_SUCCESS; /* the end */
750 }
751 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
752
753 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
754 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
755 AssertLogRelRCReturn(rc, rc);
756
757 uint32_t uInstance;
758 SSMR3GetU32(pSSM, &uInstance);
759 uint8_t iRegion;
760 SSMR3GetU8(pSSM, &iRegion);
761
762 char szDesc[64];
763 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
764 AssertLogRelRCReturn(rc, rc);
765
766 RTGCPHYS cb;
767 rc = SSMR3GetGCPhys(pSSM, &cb);
768 AssertLogRelRCReturn(rc, rc);
769 AssertLogRelMsgReturn(!(cb & GUEST_PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
770
771 /*
772 * Locate a matching MMIO2 range.
773 */
774 PPGMREGMMIO2RANGE pRegMmio;
775 for (pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
776 {
777 if ( pRegMmio->idSavedState == UINT8_MAX
778 && pRegMmio->iRegion == iRegion
779 && pRegMmio->pDevInsR3->iInstance == uInstance
780 && !strcmp(pRegMmio->pDevInsR3->pReg->szName, szDevName))
781 {
782 pRegMmio->idSavedState = id;
783 break;
784 }
785 }
786 if (!pRegMmio)
787 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Failed to locate a MMIO2 range called '%s' owned by %s/%u, region %d"),
788 szDesc, szDevName, uInstance, iRegion);
789
790 /*
791 * Validate the configuration, the size of the MMIO2 region should be
792 * the same.
793 */
794 if (cb != pRegMmio->RamRange.cb)
795 {
796 LogRel(("PGM: MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp\n",
797 pRegMmio->RamRange.pszDesc, cb, pRegMmio->RamRange.cb));
798 if (cb > pRegMmio->RamRange.cb) /* bad idea? */
799 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp"),
800 pRegMmio->RamRange.pszDesc, cb, pRegMmio->RamRange.cb);
801 }
802 } /* forever */
803}
804
805
806/**
807 * Scans one MMIO2 page.
808 *
809 * @returns True if changed, false if unchanged.
810 *
811 * @param pVM The cross context VM structure.
812 * @param pbPage The page bits.
813 * @param pLSPage The live save tracking structure for the page.
814 *
815 */
816DECLINLINE(bool) pgmR3ScanMmio2Page(PVM pVM, uint8_t const *pbPage, PPGMLIVESAVEMMIO2PAGE pLSPage)
817{
818 /*
819 * Special handling of zero pages.
820 */
821 bool const fZero = pLSPage->fZero;
822 if (fZero)
823 {
824 if (ASMMemIsZero(pbPage, GUEST_PAGE_SIZE))
825 {
826 /* Not modified. */
827 if (pLSPage->fDirty)
828 pLSPage->cUnchangedScans++;
829 return false;
830 }
831
832 pLSPage->fZero = false;
833 pLSPage->u32CrcH1 = RTCrc32(pbPage, GUEST_PAGE_SIZE / 2);
834 }
835 else
836 {
837 /*
838 * CRC the first half, if it doesn't match the page is dirty and
839 * we won't check the 2nd half (we'll do that next time).
840 */
841 uint32_t u32CrcH1 = RTCrc32(pbPage, GUEST_PAGE_SIZE / 2);
842 if (u32CrcH1 == pLSPage->u32CrcH1)
843 {
844 uint32_t u32CrcH2 = RTCrc32(pbPage + GUEST_PAGE_SIZE / 2, GUEST_PAGE_SIZE / 2);
845 if (u32CrcH2 == pLSPage->u32CrcH2)
846 {
847 /* Probably not modified. */
848 if (pLSPage->fDirty)
849 pLSPage->cUnchangedScans++;
850 return false;
851 }
852
853 pLSPage->u32CrcH2 = u32CrcH2;
854 }
855 else
856 {
857 pLSPage->u32CrcH1 = u32CrcH1;
858 if ( u32CrcH1 == PGM_STATE_CRC32_ZERO_HALF_PAGE
859 && ASMMemIsZero(pbPage, GUEST_PAGE_SIZE))
860 {
861 pLSPage->u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
862 pLSPage->fZero = true;
863 }
864 }
865 }
866
867 /* dirty page path */
868 pLSPage->cUnchangedScans = 0;
869 if (!pLSPage->fDirty)
870 {
871 pLSPage->fDirty = true;
872 pVM->pgm.s.LiveSave.Mmio2.cReadyPages--;
873 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages++;
874 if (fZero)
875 pVM->pgm.s.LiveSave.Mmio2.cZeroPages--;
876 }
877 return true;
878}
879
880
881/**
882 * Scan for MMIO2 page modifications.
883 *
884 * @param pVM The cross context VM structure.
885 * @param uPass The pass number.
886 */
887static void pgmR3ScanMmio2Pages(PVM pVM, uint32_t uPass)
888{
889 /*
890 * Since this is a bit expensive we lower the scan rate after a little while.
891 */
892 if ( ( (uPass & 3) != 0
893 && uPass > 10)
894 || uPass == SSM_PASS_FINAL)
895 return;
896
897 PGM_LOCK_VOID(pVM); /* paranoia */
898 for (PPGMREGMMIO2RANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
899 {
900 PPGMLIVESAVEMMIO2PAGE paLSPages = pRegMmio->paLSPages;
901 uint32_t cPages = pRegMmio->RamRange.cb >> GUEST_PAGE_SHIFT;
902 PGM_UNLOCK(pVM);
903
904 for (uint32_t iPage = 0; iPage < cPages; iPage++)
905 {
906 uint8_t const *pbPage = (uint8_t const *)pRegMmio->pvR3 + iPage * GUEST_PAGE_SIZE;
907 pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]);
908 }
909
910 PGM_LOCK_VOID(pVM);
911 }
912 PGM_UNLOCK(pVM);
913
914}
915
916
917/**
918 * Save quiescent MMIO2 pages.
919 *
920 * @returns VBox status code.
921 * @param pVM The cross context VM structure.
922 * @param pSSM The SSM handle.
923 * @param fLiveSave Whether it's a live save or not.
924 * @param uPass The pass number.
925 */
926static int pgmR3SaveMmio2Pages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
927{
928 /** @todo implement live saving of MMIO2 pages. (Need some way of telling the
929 * device that we wish to know about changes.) */
930
931 int rc = VINF_SUCCESS;
932 if (uPass == SSM_PASS_FINAL)
933 {
934 /*
935 * The mop up round.
936 */
937 PGM_LOCK_VOID(pVM);
938 for (PPGMREGMMIO2RANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3;
939 pRegMmio && RT_SUCCESS(rc);
940 pRegMmio = pRegMmio->pNextR3)
941 {
942 PPGMLIVESAVEMMIO2PAGE paLSPages = pRegMmio->paLSPages;
943 uint8_t const *pbPage = (uint8_t const *)pRegMmio->RamRange.pvR3;
944 uint32_t cPages = pRegMmio->RamRange.cb >> GUEST_PAGE_SHIFT;
945 uint32_t iPageLast = cPages;
946 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += GUEST_PAGE_SIZE)
947 {
948 uint8_t u8Type;
949 if (!fLiveSave)
950 u8Type = ASMMemIsZero(pbPage, GUEST_PAGE_SIZE) ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
951 else
952 {
953 /* Try figure if it's a clean page, compare the SHA-1 to be really sure. */
954 if ( !paLSPages[iPage].fDirty
955 && !pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
956 {
957 if (paLSPages[iPage].fZero)
958 continue;
959
960 uint8_t abSha1Hash[RTSHA1_HASH_SIZE];
961 RTSha1(pbPage, GUEST_PAGE_SIZE, abSha1Hash);
962 if (!memcmp(abSha1Hash, paLSPages[iPage].abSha1Saved, sizeof(abSha1Hash)))
963 continue;
964 }
965 u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
966 pVM->pgm.s.LiveSave.cSavedPages++;
967 }
968
969 if (iPage != 0 && iPage == iPageLast + 1)
970 rc = SSMR3PutU8(pSSM, u8Type);
971 else
972 {
973 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
974 SSMR3PutU8(pSSM, pRegMmio->idSavedState);
975 rc = SSMR3PutU32(pSSM, iPage);
976 }
977 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
978 rc = SSMR3PutMem(pSSM, pbPage, GUEST_PAGE_SIZE);
979 if (RT_FAILURE(rc))
980 break;
981 iPageLast = iPage;
982 }
983 }
984 PGM_UNLOCK(pVM);
985 }
986 /*
987 * Reduce the rate after a little while since the current MMIO2 approach is
988 * a bit expensive.
989 * We position it two passes after the scan pass to avoid saving busy pages.
990 */
991 else if ( uPass <= 10
992 || (uPass & 3) == 2)
993 {
994 PGM_LOCK_VOID(pVM);
995 for (PPGMREGMMIO2RANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3;
996 pRegMmio && RT_SUCCESS(rc);
997 pRegMmio = pRegMmio->pNextR3)
998 {
999 PPGMLIVESAVEMMIO2PAGE paLSPages = pRegMmio->paLSPages;
1000 uint8_t const *pbPage = (uint8_t const *)pRegMmio->RamRange.pvR3;
1001 uint32_t cPages = pRegMmio->RamRange.cb >> GUEST_PAGE_SHIFT;
1002 uint32_t iPageLast = cPages;
1003 PGM_UNLOCK(pVM);
1004
1005 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += GUEST_PAGE_SIZE)
1006 {
1007 /* Skip clean pages and pages which hasn't quiesced. */
1008 if (!paLSPages[iPage].fDirty)
1009 continue;
1010 if (paLSPages[iPage].cUnchangedScans < 3)
1011 continue;
1012 if (pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
1013 continue;
1014
1015 /* Save it. */
1016 bool const fZero = paLSPages[iPage].fZero;
1017 uint8_t abPage[GUEST_PAGE_SIZE];
1018 if (!fZero)
1019 {
1020 memcpy(abPage, pbPage, GUEST_PAGE_SIZE);
1021 RTSha1(abPage, GUEST_PAGE_SIZE, paLSPages[iPage].abSha1Saved);
1022 }
1023
1024 uint8_t u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
1025 if (iPage != 0 && iPage == iPageLast + 1)
1026 rc = SSMR3PutU8(pSSM, u8Type);
1027 else
1028 {
1029 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
1030 SSMR3PutU8(pSSM, pRegMmio->idSavedState);
1031 rc = SSMR3PutU32(pSSM, iPage);
1032 }
1033 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
1034 rc = SSMR3PutMem(pSSM, abPage, GUEST_PAGE_SIZE);
1035 if (RT_FAILURE(rc))
1036 break;
1037
1038 /* Housekeeping. */
1039 paLSPages[iPage].fDirty = false;
1040 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages--;
1041 pVM->pgm.s.LiveSave.Mmio2.cReadyPages++;
1042 if (u8Type == PGM_STATE_REC_MMIO2_ZERO)
1043 pVM->pgm.s.LiveSave.Mmio2.cZeroPages++;
1044 pVM->pgm.s.LiveSave.cSavedPages++;
1045 iPageLast = iPage;
1046 }
1047
1048 PGM_LOCK_VOID(pVM);
1049 }
1050 PGM_UNLOCK(pVM);
1051 }
1052
1053 return rc;
1054}
1055
1056
1057/**
1058 * Cleans up MMIO2 pages after a live save.
1059 *
1060 * @param pVM The cross context VM structure.
1061 */
1062static void pgmR3DoneMmio2Pages(PVM pVM)
1063{
1064 /*
1065 * Free the tracking structures for the MMIO2 pages.
1066 * We do the freeing outside the lock in case the VM is running.
1067 */
1068 PGM_LOCK_VOID(pVM);
1069 for (PPGMREGMMIO2RANGE pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
1070 {
1071 void *pvMmio2ToFree = pRegMmio->paLSPages;
1072 if (pvMmio2ToFree)
1073 {
1074 pRegMmio->paLSPages = NULL;
1075 PGM_UNLOCK(pVM);
1076 MMR3HeapFree(pvMmio2ToFree);
1077 PGM_LOCK_VOID(pVM);
1078 }
1079 }
1080 PGM_UNLOCK(pVM);
1081}
1082
1083
1084/**
1085 * Prepares the RAM pages for a live save.
1086 *
1087 * @returns VBox status code.
1088 * @param pVM The cross context VM structure.
1089 */
1090static int pgmR3PrepRamPages(PVM pVM)
1091{
1092
1093 /*
1094 * Try allocating tracking structures for the ram ranges.
1095 *
1096 * To avoid lock contention, we leave the lock every time we're allocating
1097 * a new array. This means we'll have to ditch the allocation and start
1098 * all over again if the RAM range list changes in-between.
1099 *
1100 * Note! pgmR3SaveDone will always be called and it is therefore responsible
1101 * for cleaning up.
1102 */
1103 PPGMRAMRANGE pCur;
1104 PGM_LOCK_VOID(pVM);
1105 do
1106 {
1107 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1108 {
1109 if ( !pCur->paLSPages
1110 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1111 {
1112 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1113 uint32_t const cPages = pCur->cb >> GUEST_PAGE_SHIFT;
1114 PGM_UNLOCK(pVM);
1115 PPGMLIVESAVERAMPAGE paLSPages = (PPGMLIVESAVERAMPAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, cPages * sizeof(PGMLIVESAVERAMPAGE));
1116 if (!paLSPages)
1117 return VERR_NO_MEMORY;
1118 PGM_LOCK_VOID(pVM);
1119 if (pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1120 {
1121 PGM_UNLOCK(pVM);
1122 MMR3HeapFree(paLSPages);
1123 PGM_LOCK_VOID(pVM);
1124 break; /* try again */
1125 }
1126 pCur->paLSPages = paLSPages;
1127
1128 /*
1129 * Initialize the array.
1130 */
1131 uint32_t iPage = cPages;
1132 while (iPage-- > 0)
1133 {
1134 /** @todo yield critsect! (after moving this away from EMT0) */
1135 PCPGMPAGE pPage = &pCur->aPages[iPage];
1136 paLSPages[iPage].cDirtied = 0;
1137 paLSPages[iPage].fDirty = 1; /* everything is dirty at this time */
1138 paLSPages[iPage].fWriteMonitored = 0;
1139 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1140 paLSPages[iPage].u2Reserved = 0;
1141 switch (PGM_PAGE_GET_TYPE(pPage))
1142 {
1143 case PGMPAGETYPE_RAM:
1144 if ( PGM_PAGE_IS_ZERO(pPage)
1145 || PGM_PAGE_IS_BALLOONED(pPage))
1146 {
1147 paLSPages[iPage].fZero = 1;
1148 paLSPages[iPage].fShared = 0;
1149#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1150 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1151#endif
1152 }
1153 else if (PGM_PAGE_IS_SHARED(pPage))
1154 {
1155 paLSPages[iPage].fZero = 0;
1156 paLSPages[iPage].fShared = 1;
1157#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1158 paLSPages[iPage].u32Crc = UINT32_MAX;
1159#endif
1160 }
1161 else
1162 {
1163 paLSPages[iPage].fZero = 0;
1164 paLSPages[iPage].fShared = 0;
1165#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1166 paLSPages[iPage].u32Crc = UINT32_MAX;
1167#endif
1168 }
1169 paLSPages[iPage].fIgnore = 0;
1170 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1171 break;
1172
1173 case PGMPAGETYPE_ROM_SHADOW:
1174 case PGMPAGETYPE_ROM:
1175 {
1176 paLSPages[iPage].fZero = 0;
1177 paLSPages[iPage].fShared = 0;
1178 paLSPages[iPage].fDirty = 0;
1179 paLSPages[iPage].fIgnore = 1;
1180#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1181 paLSPages[iPage].u32Crc = UINT32_MAX;
1182#endif
1183 pVM->pgm.s.LiveSave.cIgnoredPages++;
1184 break;
1185 }
1186
1187 default:
1188 AssertMsgFailed(("%R[pgmpage]", pPage));
1189 RT_FALL_THRU();
1190 case PGMPAGETYPE_MMIO2:
1191 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1192 paLSPages[iPage].fZero = 0;
1193 paLSPages[iPage].fShared = 0;
1194 paLSPages[iPage].fDirty = 0;
1195 paLSPages[iPage].fIgnore = 1;
1196#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1197 paLSPages[iPage].u32Crc = UINT32_MAX;
1198#endif
1199 pVM->pgm.s.LiveSave.cIgnoredPages++;
1200 break;
1201
1202 case PGMPAGETYPE_MMIO:
1203 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
1204 paLSPages[iPage].fZero = 0;
1205 paLSPages[iPage].fShared = 0;
1206 paLSPages[iPage].fDirty = 0;
1207 paLSPages[iPage].fIgnore = 1;
1208#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1209 paLSPages[iPage].u32Crc = UINT32_MAX;
1210#endif
1211 pVM->pgm.s.LiveSave.cIgnoredPages++;
1212 break;
1213 }
1214 }
1215 }
1216 }
1217 } while (pCur);
1218 PGM_UNLOCK(pVM);
1219
1220 return VINF_SUCCESS;
1221}
1222
1223
1224/**
1225 * Saves the RAM configuration.
1226 *
1227 * @returns VBox status code.
1228 * @param pVM The cross context VM structure.
1229 * @param pSSM The saved state handle.
1230 */
1231static int pgmR3SaveRamConfig(PVM pVM, PSSMHANDLE pSSM)
1232{
1233 uint32_t cbRamHole = 0;
1234 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
1235 AssertRCReturn(rc, rc);
1236
1237 uint64_t cbRam = 0;
1238 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
1239 AssertRCReturn(rc, rc);
1240
1241 SSMR3PutU32(pSSM, cbRamHole);
1242 return SSMR3PutU64(pSSM, cbRam);
1243}
1244
1245
1246/**
1247 * Loads and verifies the RAM configuration.
1248 *
1249 * @returns VBox status code.
1250 * @param pVM The cross context VM structure.
1251 * @param pSSM The saved state handle.
1252 */
1253static int pgmR3LoadRamConfig(PVM pVM, PSSMHANDLE pSSM)
1254{
1255 uint32_t cbRamHoleCfg = 0;
1256 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHoleCfg, MM_RAM_HOLE_SIZE_DEFAULT);
1257 AssertRCReturn(rc, rc);
1258
1259 uint64_t cbRamCfg = 0;
1260 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRamCfg, 0);
1261 AssertRCReturn(rc, rc);
1262
1263 uint32_t cbRamHoleSaved;
1264 SSMR3GetU32(pSSM, &cbRamHoleSaved);
1265
1266 uint64_t cbRamSaved;
1267 rc = SSMR3GetU64(pSSM, &cbRamSaved);
1268 AssertRCReturn(rc, rc);
1269
1270 if ( cbRamHoleCfg != cbRamHoleSaved
1271 || cbRamCfg != cbRamSaved)
1272 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Ram config mismatch: saved=%RX64/%RX32 config=%RX64/%RX32 (RAM/Hole)"),
1273 cbRamSaved, cbRamHoleSaved, cbRamCfg, cbRamHoleCfg);
1274 return VINF_SUCCESS;
1275}
1276
1277#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1278
1279/**
1280 * Calculates the CRC-32 for a RAM page and updates the live save page tracking
1281 * info with it.
1282 *
1283 * @param pVM The cross context VM structure.
1284 * @param pCur The current RAM range.
1285 * @param paLSPages The current array of live save page tracking
1286 * structures.
1287 * @param iPage The page index.
1288 */
1289static void pgmR3StateCalcCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage)
1290{
1291 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT);
1292 PGMPAGEMAPLOCK PgMpLck;
1293 void const *pvPage;
1294 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage, &PgMpLck);
1295 if (RT_SUCCESS(rc))
1296 {
1297 paLSPages[iPage].u32Crc = RTCrc32(pvPage, GUEST_PAGE_SIZE);
1298 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
1299 }
1300 else
1301 paLSPages[iPage].u32Crc = UINT32_MAX; /* Invalid */
1302}
1303
1304
1305/**
1306 * Verifies the CRC-32 for a page given it's raw bits.
1307 *
1308 * @param pvPage The page bits.
1309 * @param pCur The current RAM range.
1310 * @param paLSPages The current array of live save page tracking
1311 * structures.
1312 * @param iPage The page index.
1313 */
1314static void pgmR3StateVerifyCrc32ForPage(void const *pvPage, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
1315{
1316 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1317 {
1318 uint32_t u32Crc = RTCrc32(pvPage, GUEST_PAGE_SIZE);
1319 Assert( ( !PGM_PAGE_IS_ZERO(&pCur->aPages[iPage])
1320 && !PGM_PAGE_IS_BALLOONED(&pCur->aPages[iPage]))
1321 || u32Crc == PGM_STATE_CRC32_ZERO_PAGE);
1322 AssertMsg(paLSPages[iPage].u32Crc == u32Crc,
1323 ("%08x != %08x for %RGp %R[pgmpage] %s\n", paLSPages[iPage].u32Crc, u32Crc,
1324 pCur->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), &pCur->aPages[iPage], pszWhere));
1325 }
1326}
1327
1328
1329/**
1330 * Verifies the CRC-32 for a RAM page.
1331 *
1332 * @param pVM The cross context VM structure.
1333 * @param pCur The current RAM range.
1334 * @param paLSPages The current array of live save page tracking
1335 * structures.
1336 * @param iPage The page index.
1337 */
1338static void pgmR3StateVerifyCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
1339{
1340 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1341 {
1342 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT);
1343 PGMPAGEMAPLOCK PgMpLck;
1344 void const *pvPage;
1345 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage, &PgMpLck);
1346 if (RT_SUCCESS(rc))
1347 {
1348 pgmR3StateVerifyCrc32ForPage(pvPage, pCur, paLSPages, iPage, pszWhere);
1349 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
1350 }
1351 }
1352}
1353
1354#endif /* PGMLIVESAVERAMPAGE_WITH_CRC32 */
1355
1356/**
1357 * Scan for RAM page modifications and reprotect them.
1358 *
1359 * @param pVM The cross context VM structure.
1360 * @param fFinalPass Whether this is the final pass or not.
1361 */
1362static void pgmR3ScanRamPages(PVM pVM, bool fFinalPass)
1363{
1364 /*
1365 * The RAM.
1366 */
1367 RTGCPHYS GCPhysCur = 0;
1368 PPGMRAMRANGE pCur;
1369 PGM_LOCK_VOID(pVM);
1370 do
1371 {
1372 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1373 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1374 {
1375 if ( pCur->GCPhysLast > GCPhysCur
1376 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1377 {
1378 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1379 uint32_t cPages = pCur->cb >> GUEST_PAGE_SHIFT;
1380 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> GUEST_PAGE_SHIFT;
1381 GCPhysCur = 0;
1382 for (; iPage < cPages; iPage++)
1383 {
1384 /* Do yield first. */
1385 if ( !fFinalPass
1386#ifndef PGMLIVESAVERAMPAGE_WITH_CRC32
1387 && (iPage & 0x7ff) == 0x100
1388#endif
1389 && PDMR3CritSectYield(pVM, &pVM->pgm.s.CritSectX)
1390 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1391 {
1392 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT);
1393 break; /* restart */
1394 }
1395
1396 /* Skip already ignored pages. */
1397 if (paLSPages[iPage].fIgnore)
1398 continue;
1399
1400 if (RT_LIKELY(PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == PGMPAGETYPE_RAM))
1401 {
1402 /*
1403 * A RAM page.
1404 */
1405 switch (PGM_PAGE_GET_STATE(&pCur->aPages[iPage]))
1406 {
1407 case PGM_PAGE_STATE_ALLOCATED:
1408 /** @todo Optimize this: Don't always re-enable write
1409 * monitoring if the page is known to be very busy. */
1410 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1411 {
1412 AssertMsg(paLSPages[iPage].fWriteMonitored,
1413 ("%RGp %R[pgmpage]\n", pCur->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), &pCur->aPages[iPage]));
1414 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, &pCur->aPages[iPage]);
1415 Assert(pVM->pgm.s.cWrittenToPages > 0);
1416 pVM->pgm.s.cWrittenToPages--;
1417 }
1418 else
1419 {
1420 AssertMsg(!paLSPages[iPage].fWriteMonitored,
1421 ("%RGp %R[pgmpage]\n", pCur->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT), &pCur->aPages[iPage]));
1422 pVM->pgm.s.LiveSave.Ram.cMonitoredPages++;
1423 }
1424
1425 if (!paLSPages[iPage].fDirty)
1426 {
1427 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1428 if (paLSPages[iPage].fZero)
1429 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1430 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1431 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1432 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1433 }
1434
1435 pgmPhysPageWriteMonitor(pVM, &pCur->aPages[iPage],
1436 pCur->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT));
1437 paLSPages[iPage].fWriteMonitored = 1;
1438 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1439 paLSPages[iPage].fDirty = 1;
1440 paLSPages[iPage].fZero = 0;
1441 paLSPages[iPage].fShared = 0;
1442#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1443 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1444#endif
1445 break;
1446
1447 case PGM_PAGE_STATE_WRITE_MONITORED:
1448 Assert(paLSPages[iPage].fWriteMonitored);
1449 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) == 0)
1450 {
1451#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1452 if (paLSPages[iPage].fWriteMonitoredJustNow)
1453 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1454 else
1455 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "scan");
1456#endif
1457 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1458 }
1459 else
1460 {
1461 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1462#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1463 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1464#endif
1465 if (!paLSPages[iPage].fDirty)
1466 {
1467 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1468 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1469 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1470 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1471 }
1472 }
1473 break;
1474
1475 case PGM_PAGE_STATE_ZERO:
1476 case PGM_PAGE_STATE_BALLOONED:
1477 if (!paLSPages[iPage].fZero)
1478 {
1479 if (!paLSPages[iPage].fDirty)
1480 {
1481 paLSPages[iPage].fDirty = 1;
1482 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1483 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1484 }
1485 paLSPages[iPage].fZero = 1;
1486 paLSPages[iPage].fShared = 0;
1487#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1488 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1489#endif
1490 }
1491 break;
1492
1493 case PGM_PAGE_STATE_SHARED:
1494 if (!paLSPages[iPage].fShared)
1495 {
1496 if (!paLSPages[iPage].fDirty)
1497 {
1498 paLSPages[iPage].fDirty = 1;
1499 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1500 if (paLSPages[iPage].fZero)
1501 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1502 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1503 }
1504 paLSPages[iPage].fZero = 0;
1505 paLSPages[iPage].fShared = 1;
1506#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1507 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1508#endif
1509 }
1510 break;
1511 }
1512 }
1513 else
1514 {
1515 /*
1516 * All other types => Ignore the page.
1517 */
1518 Assert(!paLSPages[iPage].fIgnore); /* skipped before switch */
1519 paLSPages[iPage].fIgnore = 1;
1520 if (paLSPages[iPage].fWriteMonitored)
1521 {
1522 /** @todo this doesn't hold water when we start monitoring MMIO2 and ROM shadow
1523 * pages! */
1524 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(&pCur->aPages[iPage]) == PGM_PAGE_STATE_WRITE_MONITORED))
1525 {
1526 AssertMsgFailed(("%R[pgmpage]", &pCur->aPages[iPage])); /* shouldn't happen. */
1527 PGM_PAGE_SET_STATE(pVM, &pCur->aPages[iPage], PGM_PAGE_STATE_ALLOCATED);
1528 Assert(pVM->pgm.s.cMonitoredPages > 0);
1529 pVM->pgm.s.cMonitoredPages--;
1530 }
1531 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1532 {
1533 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, &pCur->aPages[iPage]);
1534 Assert(pVM->pgm.s.cWrittenToPages > 0);
1535 pVM->pgm.s.cWrittenToPages--;
1536 }
1537 pVM->pgm.s.LiveSave.Ram.cMonitoredPages--;
1538 }
1539
1540 /** @todo the counting doesn't quite work out here. fix later? */
1541 if (paLSPages[iPage].fDirty)
1542 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1543 else
1544 {
1545 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1546 if (paLSPages[iPage].fZero)
1547 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1548 }
1549 pVM->pgm.s.LiveSave.cIgnoredPages++;
1550 }
1551 } /* for each page in range */
1552
1553 if (GCPhysCur != 0)
1554 break; /* Yield + ramrange change */
1555 GCPhysCur = pCur->GCPhysLast;
1556 }
1557 } /* for each range */
1558 } while (pCur);
1559 PGM_UNLOCK(pVM);
1560}
1561
1562
1563/**
1564 * Save quiescent RAM pages.
1565 *
1566 * @returns VBox status code.
1567 * @param pVM The cross context VM structure.
1568 * @param pSSM The SSM handle.
1569 * @param fLiveSave Whether it's a live save or not.
1570 * @param uPass The pass number.
1571 */
1572static int pgmR3SaveRamPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
1573{
1574 NOREF(fLiveSave);
1575
1576 /*
1577 * The RAM.
1578 */
1579 RTGCPHYS GCPhysLast = NIL_RTGCPHYS;
1580 RTGCPHYS GCPhysCur = 0;
1581 PPGMRAMRANGE pCur;
1582
1583 PGM_LOCK_VOID(pVM);
1584 do
1585 {
1586 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1587 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1588 {
1589 if ( pCur->GCPhysLast > GCPhysCur
1590 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1591 {
1592 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1593 uint32_t cPages = pCur->cb >> GUEST_PAGE_SHIFT;
1594 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> GUEST_PAGE_SHIFT;
1595 GCPhysCur = 0;
1596 for (; iPage < cPages; iPage++)
1597 {
1598 /* Do yield first. */
1599 if ( uPass != SSM_PASS_FINAL
1600 && (iPage & 0x7ff) == 0x100
1601 && PDMR3CritSectYield(pVM, &pVM->pgm.s.CritSectX)
1602 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1603 {
1604 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT);
1605 break; /* restart */
1606 }
1607
1608 PPGMPAGE pCurPage = &pCur->aPages[iPage];
1609
1610 /*
1611 * Only save pages that haven't changed since last scan and are dirty.
1612 */
1613 if ( uPass != SSM_PASS_FINAL
1614 && paLSPages)
1615 {
1616 if (!paLSPages[iPage].fDirty)
1617 continue;
1618 if (paLSPages[iPage].fWriteMonitoredJustNow)
1619 continue;
1620 if (paLSPages[iPage].fIgnore)
1621 continue;
1622 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM) /* in case of recent remappings */
1623 continue;
1624 if ( PGM_PAGE_GET_STATE(pCurPage)
1625 != ( paLSPages[iPage].fZero
1626 ? PGM_PAGE_STATE_ZERO
1627 : paLSPages[iPage].fShared
1628 ? PGM_PAGE_STATE_SHARED
1629 : PGM_PAGE_STATE_WRITE_MONITORED))
1630 continue;
1631 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) > 0)
1632 continue;
1633 }
1634 else
1635 {
1636 if ( paLSPages
1637 && !paLSPages[iPage].fDirty
1638 && !paLSPages[iPage].fIgnore)
1639 {
1640#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1641 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM)
1642 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#1");
1643#endif
1644 continue;
1645 }
1646 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM)
1647 continue;
1648 }
1649
1650 /*
1651 * Do the saving outside the PGM critsect since SSM may block on I/O.
1652 */
1653 int rc;
1654 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT);
1655 bool fZero = PGM_PAGE_IS_ZERO(pCurPage);
1656 bool fBallooned = PGM_PAGE_IS_BALLOONED(pCurPage);
1657 bool fSkipped = false;
1658
1659 if (!fZero && !fBallooned)
1660 {
1661 /*
1662 * Copy the page and then save it outside the lock (since any
1663 * SSM call may block).
1664 */
1665 uint8_t abPage[GUEST_PAGE_SIZE];
1666 PGMPAGEMAPLOCK PgMpLck;
1667 void const *pvPage;
1668 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pCurPage, GCPhys, &pvPage, &PgMpLck);
1669 if (RT_SUCCESS(rc))
1670 {
1671 memcpy(abPage, pvPage, GUEST_PAGE_SIZE);
1672#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1673 if (paLSPages)
1674 pgmR3StateVerifyCrc32ForPage(abPage, pCur, paLSPages, iPage, "save#3");
1675#endif
1676 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
1677 }
1678 PGM_UNLOCK(pVM);
1679 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
1680
1681 /* Try save some memory when restoring. */
1682 if (!ASMMemIsZero(pvPage, GUEST_PAGE_SIZE))
1683 {
1684 if (GCPhys == GCPhysLast + GUEST_PAGE_SIZE)
1685 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
1686 else
1687 {
1688 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
1689 SSMR3PutGCPhys(pSSM, GCPhys);
1690 }
1691 rc = SSMR3PutMem(pSSM, abPage, GUEST_PAGE_SIZE);
1692 }
1693 else
1694 {
1695 if (GCPhys == GCPhysLast + GUEST_PAGE_SIZE)
1696 rc = SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO);
1697 else
1698 {
1699 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO | PGM_STATE_REC_FLAG_ADDR);
1700 rc = SSMR3PutGCPhys(pSSM, GCPhys);
1701 }
1702 }
1703 }
1704 else
1705 {
1706 /*
1707 * Dirty zero or ballooned page.
1708 */
1709#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1710 if (paLSPages)
1711 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#2");
1712#endif
1713 PGM_UNLOCK(pVM);
1714
1715 uint8_t u8RecType = fBallooned ? PGM_STATE_REC_RAM_BALLOONED : PGM_STATE_REC_RAM_ZERO;
1716 if (GCPhys == GCPhysLast + GUEST_PAGE_SIZE)
1717 rc = SSMR3PutU8(pSSM, u8RecType);
1718 else
1719 {
1720 SSMR3PutU8(pSSM, u8RecType | PGM_STATE_REC_FLAG_ADDR);
1721 rc = SSMR3PutGCPhys(pSSM, GCPhys);
1722 }
1723 }
1724 if (RT_FAILURE(rc))
1725 return rc;
1726
1727 PGM_LOCK_VOID(pVM);
1728 if (!fSkipped)
1729 GCPhysLast = GCPhys;
1730 if (paLSPages)
1731 {
1732 paLSPages[iPage].fDirty = 0;
1733 pVM->pgm.s.LiveSave.Ram.cReadyPages++;
1734 if (fZero)
1735 pVM->pgm.s.LiveSave.Ram.cZeroPages++;
1736 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1737 pVM->pgm.s.LiveSave.cSavedPages++;
1738 }
1739 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1740 {
1741 GCPhysCur = GCPhys | GUEST_PAGE_OFFSET_MASK;
1742 break; /* restart */
1743 }
1744
1745 } /* for each page in range */
1746
1747 if (GCPhysCur != 0)
1748 break; /* Yield + ramrange change */
1749 GCPhysCur = pCur->GCPhysLast;
1750 }
1751 } /* for each range */
1752 } while (pCur);
1753
1754 PGM_UNLOCK(pVM);
1755
1756 return VINF_SUCCESS;
1757}
1758
1759
1760/**
1761 * Cleans up RAM pages after a live save.
1762 *
1763 * @param pVM The cross context VM structure.
1764 */
1765static void pgmR3DoneRamPages(PVM pVM)
1766{
1767 /*
1768 * Free the tracking arrays and disable write monitoring.
1769 *
1770 * Play nice with the PGM lock in case we're called while the VM is still
1771 * running. This means we have to delay the freeing since we wish to use
1772 * paLSPages as an indicator of which RAM ranges which we need to scan for
1773 * write monitored pages.
1774 */
1775 void *pvToFree = NULL;
1776 PPGMRAMRANGE pCur;
1777 uint32_t cMonitoredPages = 0;
1778 PGM_LOCK_VOID(pVM);
1779 do
1780 {
1781 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1782 {
1783 if (pCur->paLSPages)
1784 {
1785 if (pvToFree)
1786 {
1787 uint32_t idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1788 PGM_UNLOCK(pVM);
1789 MMR3HeapFree(pvToFree);
1790 pvToFree = NULL;
1791 PGM_LOCK_VOID(pVM);
1792 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1793 break; /* start over again. */
1794 }
1795
1796 pvToFree = pCur->paLSPages;
1797 pCur->paLSPages = NULL;
1798
1799 uint32_t iPage = pCur->cb >> GUEST_PAGE_SHIFT;
1800 while (iPage--)
1801 {
1802 PPGMPAGE pPage = &pCur->aPages[iPage];
1803 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
1804 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1805 {
1806 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
1807 cMonitoredPages++;
1808 }
1809 }
1810 }
1811 }
1812 } while (pCur);
1813
1814 Assert(pVM->pgm.s.cMonitoredPages >= cMonitoredPages);
1815 if (pVM->pgm.s.cMonitoredPages < cMonitoredPages)
1816 pVM->pgm.s.cMonitoredPages = 0;
1817 else
1818 pVM->pgm.s.cMonitoredPages -= cMonitoredPages;
1819
1820 PGM_UNLOCK(pVM);
1821
1822 MMR3HeapFree(pvToFree);
1823 pvToFree = NULL;
1824}
1825
1826
1827/**
1828 * @callback_method_impl{FNSSMINTLIVEEXEC}
1829 */
1830static DECLCALLBACK(int) pgmR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1831{
1832 int rc;
1833
1834 /*
1835 * Save the MMIO2 and ROM range IDs in pass 0.
1836 */
1837 if (uPass == 0)
1838 {
1839 rc = pgmR3SaveRamConfig(pVM, pSSM);
1840 if (RT_FAILURE(rc))
1841 return rc;
1842 rc = pgmR3SaveRomRanges(pVM, pSSM);
1843 if (RT_FAILURE(rc))
1844 return rc;
1845 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
1846 if (RT_FAILURE(rc))
1847 return rc;
1848 }
1849 /*
1850 * Reset the page-per-second estimate to avoid inflation by the initial
1851 * load of zero pages. pgmR3LiveVote ASSUMES this is done at pass 7.
1852 */
1853 else if (uPass == 7)
1854 {
1855 pVM->pgm.s.LiveSave.cSavedPages = 0;
1856 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
1857 }
1858
1859 /*
1860 * Do the scanning.
1861 */
1862 pgmR3ScanRomPages(pVM);
1863 pgmR3ScanMmio2Pages(pVM, uPass);
1864 pgmR3ScanRamPages(pVM, false /*fFinalPass*/);
1865 pgmR3PoolClearAll(pVM, true /*fFlushRemTlb*/); /** @todo this could perhaps be optimized a bit. */
1866
1867 /*
1868 * Save the pages.
1869 */
1870 if (uPass == 0)
1871 rc = pgmR3SaveRomVirginPages( pVM, pSSM, true /*fLiveSave*/);
1872 else
1873 rc = VINF_SUCCESS;
1874 if (RT_SUCCESS(rc))
1875 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, true /*fLiveSave*/, false /*fFinalPass*/);
1876 if (RT_SUCCESS(rc))
1877 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, uPass);
1878 if (RT_SUCCESS(rc))
1879 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, uPass);
1880 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes care of it.) */
1881
1882 return rc;
1883}
1884
1885
1886/**
1887 * @callback_method_impl{FNSSMINTLIVEVOTE}
1888 */
1889static DECLCALLBACK(int) pgmR3LiveVote(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1890{
1891 /*
1892 * Update and calculate parameters used in the decision making.
1893 */
1894 const uint32_t cHistoryEntries = RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory);
1895
1896 /* update history. */
1897 PGM_LOCK_VOID(pVM);
1898 uint32_t const cWrittenToPages = pVM->pgm.s.cWrittenToPages;
1899 PGM_UNLOCK(pVM);
1900 uint32_t const cDirtyNow = pVM->pgm.s.LiveSave.Rom.cDirtyPages
1901 + pVM->pgm.s.LiveSave.Mmio2.cDirtyPages
1902 + pVM->pgm.s.LiveSave.Ram.cDirtyPages
1903 + cWrittenToPages;
1904 uint32_t i = pVM->pgm.s.LiveSave.iDirtyPagesHistory;
1905 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = cDirtyNow;
1906 pVM->pgm.s.LiveSave.iDirtyPagesHistory = (i + 1) % cHistoryEntries;
1907
1908 /* calc shortterm average (4 passes). */
1909 AssertCompile(RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory) > 4);
1910 uint64_t cTotal = pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1911 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 1) % cHistoryEntries];
1912 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 2) % cHistoryEntries];
1913 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 3) % cHistoryEntries];
1914 uint32_t const cDirtyPagesShort = cTotal / 4;
1915 pVM->pgm.s.LiveSave.cDirtyPagesShort = cDirtyPagesShort;
1916
1917 /* calc longterm average. */
1918 cTotal = 0;
1919 if (uPass < cHistoryEntries)
1920 for (i = 0; i < cHistoryEntries && i <= uPass; i++)
1921 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1922 else
1923 for (i = 0; i < cHistoryEntries; i++)
1924 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1925 uint32_t const cDirtyPagesLong = cTotal / cHistoryEntries;
1926 pVM->pgm.s.LiveSave.cDirtyPagesLong = cDirtyPagesLong;
1927
1928 /* estimate the speed */
1929 uint64_t cNsElapsed = RTTimeNanoTS() - pVM->pgm.s.LiveSave.uSaveStartNS;
1930 uint32_t cPagesPerSecond = (uint32_t)( (long double)pVM->pgm.s.LiveSave.cSavedPages
1931 / ((long double)cNsElapsed / 1000000000.0) );
1932 pVM->pgm.s.LiveSave.cPagesPerSecond = cPagesPerSecond;
1933
1934 /*
1935 * Try make a decision.
1936 */
1937 if ( cDirtyPagesShort <= cDirtyPagesLong
1938 && ( cDirtyNow <= cDirtyPagesShort
1939 || cDirtyNow - cDirtyPagesShort < RT_MIN(cDirtyPagesShort / 8, 16)
1940 )
1941 )
1942 {
1943 if (uPass > 10)
1944 {
1945 uint32_t cMsLeftShort = (uint32_t)(cDirtyPagesShort / (long double)cPagesPerSecond * 1000.0);
1946 uint32_t cMsLeftLong = (uint32_t)(cDirtyPagesLong / (long double)cPagesPerSecond * 1000.0);
1947 uint32_t cMsMaxDowntime = SSMR3HandleMaxDowntime(pSSM);
1948 if (cMsMaxDowntime < 32)
1949 cMsMaxDowntime = 32;
1950 if ( ( cMsLeftLong <= cMsMaxDowntime
1951 && cMsLeftShort < cMsMaxDowntime)
1952 || cMsLeftShort < cMsMaxDowntime / 2
1953 )
1954 {
1955 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u|%ums cDirtyPagesLong=%u|%ums cMsMaxDowntime=%u\n",
1956 uPass, cDirtyPagesShort, cMsLeftShort, cDirtyPagesLong, cMsLeftLong, cMsMaxDowntime));
1957 return VINF_SUCCESS;
1958 }
1959 }
1960 else
1961 {
1962 if ( ( cDirtyPagesShort <= 128
1963 && cDirtyPagesLong <= 1024)
1964 || cDirtyPagesLong <= 256
1965 )
1966 {
1967 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u cDirtyPagesLong=%u\n", uPass, cDirtyPagesShort, cDirtyPagesLong));
1968 return VINF_SUCCESS;
1969 }
1970 }
1971 }
1972
1973 /*
1974 * Come up with a completion percentage. Currently this is a simple
1975 * dirty page (long term) vs. total pages ratio + some pass trickery.
1976 */
1977 unsigned uPctDirty = (unsigned)( (long double)cDirtyPagesLong
1978 / (pVM->pgm.s.cAllPages - pVM->pgm.s.LiveSave.cIgnoredPages - pVM->pgm.s.cZeroPages) );
1979 if (uPctDirty <= 100)
1980 SSMR3HandleReportLivePercent(pSSM, RT_MIN(100 - uPctDirty, uPass * 2));
1981 else
1982 AssertMsgFailed(("uPctDirty=%u cDirtyPagesLong=%#x cAllPages=%#x cIgnoredPages=%#x cZeroPages=%#x\n",
1983 uPctDirty, cDirtyPagesLong, pVM->pgm.s.cAllPages, pVM->pgm.s.LiveSave.cIgnoredPages, pVM->pgm.s.cZeroPages));
1984
1985 return VINF_SSM_VOTE_FOR_ANOTHER_PASS;
1986}
1987
1988
1989/**
1990 * @callback_method_impl{FNSSMINTLIVEPREP}
1991 *
1992 * This will attempt to allocate and initialize the tracking structures. It
1993 * will also prepare for write monitoring of pages and initialize PGM::LiveSave.
1994 * pgmR3SaveDone will do the cleanups.
1995 */
1996static DECLCALLBACK(int) pgmR3LivePrep(PVM pVM, PSSMHANDLE pSSM)
1997{
1998 /*
1999 * Indicate that we will be using the write monitoring.
2000 */
2001 PGM_LOCK_VOID(pVM);
2002 /** @todo find a way of mediating this when more users are added. */
2003 if (pVM->pgm.s.fPhysWriteMonitoringEngaged)
2004 {
2005 PGM_UNLOCK(pVM);
2006 AssertLogRelFailedReturn(VERR_PGM_WRITE_MONITOR_ENGAGED);
2007 }
2008 pVM->pgm.s.fPhysWriteMonitoringEngaged = true;
2009 PGM_UNLOCK(pVM);
2010
2011 /*
2012 * Initialize the statistics.
2013 */
2014 pVM->pgm.s.LiveSave.Rom.cReadyPages = 0;
2015 pVM->pgm.s.LiveSave.Rom.cDirtyPages = 0;
2016 pVM->pgm.s.LiveSave.Mmio2.cReadyPages = 0;
2017 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages = 0;
2018 pVM->pgm.s.LiveSave.Ram.cReadyPages = 0;
2019 pVM->pgm.s.LiveSave.Ram.cDirtyPages = 0;
2020 pVM->pgm.s.LiveSave.cIgnoredPages = 0;
2021 pVM->pgm.s.LiveSave.fActive = true;
2022 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory); i++)
2023 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = UINT32_MAX / 2;
2024 pVM->pgm.s.LiveSave.iDirtyPagesHistory = 0;
2025 pVM->pgm.s.LiveSave.cSavedPages = 0;
2026 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
2027 pVM->pgm.s.LiveSave.cPagesPerSecond = 8192;
2028
2029 /*
2030 * Per page type.
2031 */
2032 int rc = pgmR3PrepRomPages(pVM);
2033 if (RT_SUCCESS(rc))
2034 rc = pgmR3PrepMmio2Pages(pVM);
2035 if (RT_SUCCESS(rc))
2036 rc = pgmR3PrepRamPages(pVM);
2037
2038 NOREF(pSSM);
2039 return rc;
2040}
2041
2042
2043/**
2044 * @callback_method_impl{FNSSMINTSAVEEXEC}
2045 */
2046static DECLCALLBACK(int) pgmR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2047{
2048 PPGM pPGM = &pVM->pgm.s;
2049
2050 /*
2051 * Lock PGM and set the no-more-writes indicator.
2052 */
2053 PGM_LOCK_VOID(pVM);
2054 pVM->pgm.s.fNoMorePhysWrites = true;
2055
2056 /*
2057 * Save basic data (required / unaffected by relocation).
2058 */
2059 int rc = SSMR3PutStructEx(pSSM, pPGM, sizeof(*pPGM), 0 /*fFlags*/, &s_aPGMFields[0], NULL /*pvUser*/);
2060
2061 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus && RT_SUCCESS(rc); idCpu++)
2062 rc = SSMR3PutStruct(pSSM, &pVM->apCpusR3[idCpu]->pgm.s, &s_aPGMCpuFields[0]);
2063
2064 /*
2065 * Save the (remainder of the) memory.
2066 */
2067 if (RT_SUCCESS(rc))
2068 {
2069 if (pVM->pgm.s.LiveSave.fActive)
2070 {
2071 pgmR3ScanRomPages(pVM);
2072 pgmR3ScanMmio2Pages(pVM, SSM_PASS_FINAL);
2073 pgmR3ScanRamPages(pVM, true /*fFinalPass*/);
2074
2075 rc = pgmR3SaveShadowedRomPages( pVM, pSSM, true /*fLiveSave*/, true /*fFinalPass*/);
2076 if (RT_SUCCESS(rc))
2077 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2078 if (RT_SUCCESS(rc))
2079 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2080 }
2081 else
2082 {
2083 rc = pgmR3SaveRamConfig(pVM, pSSM);
2084 if (RT_SUCCESS(rc))
2085 rc = pgmR3SaveRomRanges(pVM, pSSM);
2086 if (RT_SUCCESS(rc))
2087 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
2088 if (RT_SUCCESS(rc))
2089 rc = pgmR3SaveRomVirginPages( pVM, pSSM, false /*fLiveSave*/);
2090 if (RT_SUCCESS(rc))
2091 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, false /*fLiveSave*/, true /*fFinalPass*/);
2092 if (RT_SUCCESS(rc))
2093 rc = pgmR3SaveMmio2Pages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2094 if (RT_SUCCESS(rc))
2095 rc = pgmR3SaveRamPages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2096 }
2097 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes of it.) */
2098 }
2099
2100 PGM_UNLOCK(pVM);
2101 return rc;
2102}
2103
2104
2105/**
2106 * @callback_method_impl{FNSSMINTSAVEDONE}
2107 */
2108static DECLCALLBACK(int) pgmR3SaveDone(PVM pVM, PSSMHANDLE pSSM)
2109{
2110 /*
2111 * Do per page type cleanups first.
2112 */
2113 if (pVM->pgm.s.LiveSave.fActive)
2114 {
2115 pgmR3DoneRomPages(pVM);
2116 pgmR3DoneMmio2Pages(pVM);
2117 pgmR3DoneRamPages(pVM);
2118 }
2119
2120 /*
2121 * Clear the live save indicator and disengage write monitoring.
2122 */
2123 PGM_LOCK_VOID(pVM);
2124 pVM->pgm.s.LiveSave.fActive = false;
2125 /** @todo this is blindly assuming that we're the only user of write
2126 * monitoring. Fix this when more users are added. */
2127 pVM->pgm.s.fPhysWriteMonitoringEngaged = false;
2128 PGM_UNLOCK(pVM);
2129
2130 NOREF(pSSM);
2131 return VINF_SUCCESS;
2132}
2133
2134
2135/**
2136 * @callback_method_impl{FNSSMINTLOADPREP}
2137 */
2138static DECLCALLBACK(int) pgmR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2139{
2140 /*
2141 * Call the reset function to make sure all the memory is cleared.
2142 */
2143 PGMR3Reset(pVM);
2144 pVM->pgm.s.LiveSave.fActive = false;
2145 NOREF(pSSM);
2146 return VINF_SUCCESS;
2147}
2148
2149
2150/**
2151 * Load an ignored page.
2152 *
2153 * @returns VBox status code.
2154 * @param pSSM The saved state handle.
2155 */
2156static int pgmR3LoadPageToDevNullOld(PSSMHANDLE pSSM)
2157{
2158 uint8_t abPage[GUEST_PAGE_SIZE];
2159 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2160}
2161
2162
2163/**
2164 * Compares a page with an old save type value.
2165 *
2166 * @returns true if equal, false if not.
2167 * @param pPage The page to compare.
2168 * @param uOldType The old type value from the saved state.
2169 */
2170DECLINLINE(bool) pgmR3CompareNewAndOldPageTypes(PPGMPAGE pPage, uint8_t uOldType)
2171{
2172 uint8_t uOldPageType;
2173 switch (PGM_PAGE_GET_TYPE(pPage))
2174 {
2175 case PGMPAGETYPE_INVALID: uOldPageType = PGMPAGETYPE_OLD_INVALID; break;
2176 case PGMPAGETYPE_RAM: uOldPageType = PGMPAGETYPE_OLD_RAM; break;
2177 case PGMPAGETYPE_MMIO2: uOldPageType = PGMPAGETYPE_OLD_MMIO2; break;
2178 case PGMPAGETYPE_MMIO2_ALIAS_MMIO: uOldPageType = PGMPAGETYPE_OLD_MMIO2_ALIAS_MMIO; break;
2179 case PGMPAGETYPE_ROM_SHADOW: uOldPageType = PGMPAGETYPE_OLD_ROM_SHADOW; break;
2180 case PGMPAGETYPE_ROM: uOldPageType = PGMPAGETYPE_OLD_ROM; break;
2181 case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: RT_FALL_THRU();
2182 case PGMPAGETYPE_MMIO: uOldPageType = PGMPAGETYPE_OLD_MMIO; break;
2183 default:
2184 AssertFailed();
2185 uOldPageType = PGMPAGETYPE_OLD_INVALID;
2186 break;
2187 }
2188 return uOldPageType == uOldType;
2189}
2190
2191
2192/**
2193 * Loads a page without any bits in the saved state, i.e. making sure it's
2194 * really zero.
2195 *
2196 * @returns VBox status code.
2197 * @param pVM The cross context VM structure.
2198 * @param uOldType The page type or PGMPAGETYPE_OLD_INVALID (old saved
2199 * state).
2200 * @param pPage The guest page tracking structure.
2201 * @param GCPhys The page address.
2202 * @param pRam The ram range (logging).
2203 */
2204static int pgmR3LoadPageZeroOld(PVM pVM, uint8_t uOldType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2205{
2206 if ( uOldType != PGMPAGETYPE_OLD_INVALID
2207 && !pgmR3CompareNewAndOldPageTypes(pPage, uOldType))
2208 return VERR_SSM_UNEXPECTED_DATA;
2209
2210 /* I think this should be sufficient. */
2211 if ( !PGM_PAGE_IS_ZERO(pPage)
2212 && !PGM_PAGE_IS_BALLOONED(pPage))
2213 return VERR_SSM_UNEXPECTED_DATA;
2214
2215 NOREF(pVM);
2216 NOREF(GCPhys);
2217 NOREF(pRam);
2218 return VINF_SUCCESS;
2219}
2220
2221
2222/**
2223 * Loads a page from the saved state.
2224 *
2225 * @returns VBox status code.
2226 * @param pVM The cross context VM structure.
2227 * @param pSSM The SSM handle.
2228 * @param uOldType The page type or PGMPAGETYPE_OLD_INVALID (old saved
2229 * state).
2230 * @param pPage The guest page tracking structure.
2231 * @param GCPhys The page address.
2232 * @param pRam The ram range (logging).
2233 */
2234static int pgmR3LoadPageBitsOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uOldType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2235{
2236 /*
2237 * Match up the type, dealing with MMIO2 aliases (dropped).
2238 */
2239 AssertLogRelMsgReturn( uOldType == PGMPAGETYPE_INVALID
2240 || pgmR3CompareNewAndOldPageTypes(pPage, uOldType)
2241 /* kudge for the expanded PXE bios (r67885) - @bugref{5687}: */
2242 || ( uOldType == PGMPAGETYPE_OLD_RAM
2243 && GCPhys >= 0xed000
2244 && GCPhys <= 0xeffff
2245 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM)
2246 ,
2247 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2248 VERR_SSM_UNEXPECTED_DATA);
2249
2250 /*
2251 * Load the page.
2252 */
2253 PGMPAGEMAPLOCK PgMpLck;
2254 void *pvPage;
2255 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage, &PgMpLck);
2256 if (RT_SUCCESS(rc))
2257 {
2258 rc = SSMR3GetMem(pSSM, pvPage, GUEST_PAGE_SIZE);
2259 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2260 }
2261
2262 return rc;
2263}
2264
2265
2266/**
2267 * Loads a page (counter part to pgmR3SavePage).
2268 *
2269 * @returns VBox status code, fully bitched errors.
2270 * @param pVM The cross context VM structure.
2271 * @param pSSM The SSM handle.
2272 * @param uOldType The page type.
2273 * @param pPage The page.
2274 * @param GCPhys The page address.
2275 * @param pRam The RAM range (for error messages).
2276 */
2277static int pgmR3LoadPageOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uOldType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2278{
2279 uint8_t uState;
2280 int rc = SSMR3GetU8(pSSM, &uState);
2281 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2282 if (uState == 0 /* zero */)
2283 rc = pgmR3LoadPageZeroOld(pVM, uOldType, pPage, GCPhys, pRam);
2284 else if (uState == 1)
2285 rc = pgmR3LoadPageBitsOld(pVM, pSSM, uOldType, pPage, GCPhys, pRam);
2286 else
2287 rc = VERR_PGM_INVALID_SAVED_PAGE_STATE;
2288 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uOldType=%d GCPhys=%RGp %s rc=%Rrc\n",
2289 pPage, uState, uOldType, GCPhys, pRam->pszDesc, rc),
2290 rc);
2291 return VINF_SUCCESS;
2292}
2293
2294
2295/**
2296 * Loads a shadowed ROM page.
2297 *
2298 * @returns VBox status code, errors are fully bitched.
2299 * @param pVM The cross context VM structure.
2300 * @param pSSM The saved state handle.
2301 * @param pPage The page.
2302 * @param GCPhys The page address.
2303 * @param pRam The RAM range (for error messages).
2304 */
2305static int pgmR3LoadShadowedRomPageOld(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2306{
2307 /*
2308 * Load and set the protection first, then load the two pages, the first
2309 * one is the active the other is the passive.
2310 */
2311 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2312 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_PGM_SAVED_ROM_PAGE_NOT_FOUND);
2313
2314 uint8_t uProt;
2315 int rc = SSMR3GetU8(pSSM, &uProt);
2316 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2317 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2318 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2319 && enmProt < PGMROMPROT_END,
2320 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2321 VERR_SSM_UNEXPECTED_DATA);
2322
2323 if (pRomPage->enmProt != enmProt)
2324 {
2325 rc = PGMR3PhysRomProtect(pVM, GCPhys, GUEST_PAGE_SIZE, enmProt);
2326 AssertLogRelRCReturn(rc, rc);
2327 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_PGM_SAVED_ROM_PAGE_PROT);
2328 }
2329
2330 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2331 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2332 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2333 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2334
2335 /** @todo this isn't entirely correct as long as pgmPhysGCPhys2CCPtrInternal is
2336 * used down the line (will the 2nd page will be written to the first
2337 * one because of a false TLB hit since the TLB is using GCPhys and
2338 * doesn't check the HCPhys of the desired page). */
2339 rc = pgmR3LoadPageOld(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2340 if (RT_SUCCESS(rc))
2341 {
2342 *pPageActive = *pPage;
2343 rc = pgmR3LoadPageOld(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2344 }
2345 return rc;
2346}
2347
2348/**
2349 * Ram range flags and bits for older versions of the saved state.
2350 *
2351 * @returns VBox status code.
2352 *
2353 * @param pVM The cross context VM structure.
2354 * @param pSSM The SSM handle.
2355 * @param uVersion The saved state version.
2356 */
2357static int pgmR3LoadMemoryOld(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2358{
2359 PPGM pPGM = &pVM->pgm.s;
2360
2361 /*
2362 * Ram range flags and bits.
2363 */
2364 uint32_t i = 0;
2365 for (PPGMRAMRANGE pRam = pPGM->pRamRangesXR3; ; pRam = pRam->pNextR3, i++)
2366 {
2367 /* Check the sequence number / separator. */
2368 uint32_t u32Sep;
2369 int rc = SSMR3GetU32(pSSM, &u32Sep);
2370 if (RT_FAILURE(rc))
2371 return rc;
2372 if (u32Sep == ~0U)
2373 break;
2374 if (u32Sep != i)
2375 {
2376 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2377 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2378 }
2379 AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2380
2381 /* Get the range details. */
2382 RTGCPHYS GCPhys;
2383 SSMR3GetGCPhys(pSSM, &GCPhys);
2384 RTGCPHYS GCPhysLast;
2385 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2386 RTGCPHYS cb;
2387 SSMR3GetGCPhys(pSSM, &cb);
2388 uint8_t fHaveBits;
2389 rc = SSMR3GetU8(pSSM, &fHaveBits);
2390 if (RT_FAILURE(rc))
2391 return rc;
2392 if (fHaveBits & ~1)
2393 {
2394 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2395 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2396 }
2397 size_t cchDesc = 0;
2398 char szDesc[256];
2399 szDesc[0] = '\0';
2400 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2401 {
2402 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2403 if (RT_FAILURE(rc))
2404 return rc;
2405 /* Since we've modified the description strings in r45878, only compare
2406 them if the saved state is more recent. */
2407 if (uVersion != PGM_SAVED_STATE_VERSION_RR_DESC)
2408 cchDesc = strlen(szDesc);
2409 }
2410
2411 /*
2412 * Match it up with the current range.
2413 *
2414 * Note there is a hack for dealing with the high BIOS mapping
2415 * in the old saved state format, this means we might not have
2416 * a 1:1 match on success.
2417 */
2418 if ( ( GCPhys != pRam->GCPhys
2419 || GCPhysLast != pRam->GCPhysLast
2420 || cb != pRam->cb
2421 || ( cchDesc
2422 && strcmp(szDesc, pRam->pszDesc)) )
2423 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2424 && ( uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2425 || GCPhys != UINT32_C(0xfff80000)
2426 || GCPhysLast != UINT32_C(0xffffffff)
2427 || pRam->GCPhysLast != GCPhysLast
2428 || pRam->GCPhys < GCPhys
2429 || !fHaveBits)
2430 )
2431 {
2432 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2433 "State : %RGp-%RGp %RGp bytes %s %s\n",
2434 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2435 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2436 /*
2437 * If we're loading a state for debugging purpose, don't make a fuss if
2438 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2439 */
2440 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2441 || GCPhys < 8 * _1M)
2442 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2443 N_("RAM range mismatch; saved={%RGp-%RGp %RGp bytes %s %s} config={%RGp-%RGp %RGp bytes %s %s}"),
2444 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc,
2445 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc);
2446
2447 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2448 continue;
2449 }
2450
2451 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> GUEST_PAGE_SHIFT;
2452 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2453 {
2454 /*
2455 * Load the pages one by one.
2456 */
2457 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2458 {
2459 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT) + pRam->GCPhys;
2460 PPGMPAGE pPage = &pRam->aPages[iPage];
2461 uint8_t uOldType;
2462 rc = SSMR3GetU8(pSSM, &uOldType);
2463 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2464 if (uOldType == PGMPAGETYPE_OLD_ROM_SHADOW)
2465 rc = pgmR3LoadShadowedRomPageOld(pVM, pSSM, pPage, GCPhysPage, pRam);
2466 else
2467 rc = pgmR3LoadPageOld(pVM, pSSM, uOldType, pPage, GCPhysPage, pRam);
2468 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2469 }
2470 }
2471 else
2472 {
2473 /*
2474 * Old format.
2475 */
2476
2477 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2478 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2479 uint32_t fFlags = 0;
2480 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2481 {
2482 uint16_t u16Flags;
2483 rc = SSMR3GetU16(pSSM, &u16Flags);
2484 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2485 fFlags |= u16Flags;
2486 }
2487
2488 /* Load the bits */
2489 if ( !fHaveBits
2490 && GCPhysLast < UINT32_C(0xe0000000))
2491 {
2492 /*
2493 * Dynamic chunks.
2494 */
2495 const uint32_t cPagesInChunk = (1*1024*1024) >> GUEST_PAGE_SHIFT;
2496 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2497 ("cPages=%#x cPagesInChunk=%#x GCPhys=%RGp %s\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2498 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2499
2500 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2501 {
2502 uint8_t fPresent;
2503 rc = SSMR3GetU8(pSSM, &fPresent);
2504 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2505 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2506 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2507 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2508
2509 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2510 {
2511 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT) + pRam->GCPhys;
2512 PPGMPAGE pPage = &pRam->aPages[iPage];
2513 if (fPresent)
2514 {
2515 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO
2516 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_SPECIAL_ALIAS_MMIO)
2517 rc = pgmR3LoadPageToDevNullOld(pSSM);
2518 else
2519 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2520 }
2521 else
2522 rc = pgmR3LoadPageZeroOld(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2523 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2524 }
2525 }
2526 }
2527 else if (pRam->pvR3)
2528 {
2529 /*
2530 * MMIO2.
2531 */
2532 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2533 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2534 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2535 AssertLogRelMsgReturn(pRam->pvR3,
2536 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2537 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2538
2539 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2540 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2541 }
2542 else if (GCPhysLast < UINT32_C(0xfff80000))
2543 {
2544 /*
2545 * PCI MMIO, no pages saved.
2546 */
2547 }
2548 else
2549 {
2550 /*
2551 * Load the 0xfff80000..0xffffffff BIOS range.
2552 * It starts with X reserved pages that we have to skip over since
2553 * the RAMRANGE create by the new code won't include those.
2554 */
2555 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2556 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2557 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2558 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2559 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2560 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2561 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2562
2563 /* Skip wasted reserved pages before the ROM. */
2564 while (GCPhys < pRam->GCPhys)
2565 {
2566 rc = pgmR3LoadPageToDevNullOld(pSSM);
2567 AssertLogRelRCReturn(rc, rc);
2568 GCPhys += GUEST_PAGE_SIZE;
2569 }
2570
2571 /* Load the bios pages. */
2572 cPages = pRam->cb >> GUEST_PAGE_SHIFT;
2573 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2574 {
2575 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT) + pRam->GCPhys;
2576 PPGMPAGE pPage = &pRam->aPages[iPage];
2577
2578 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2579 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2580 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2581 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
2582 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2583 }
2584 }
2585 }
2586 }
2587
2588 return VINF_SUCCESS;
2589}
2590
2591
2592/**
2593 * Worker for pgmR3Load and pgmR3LoadLocked.
2594 *
2595 * @returns VBox status code.
2596 *
2597 * @param pVM The cross context VM structure.
2598 * @param pSSM The SSM handle.
2599 * @param uVersion The PGM saved state unit version.
2600 * @param uPass The pass number.
2601 *
2602 * @todo This needs splitting up if more record types or code twists are
2603 * added...
2604 */
2605static int pgmR3LoadMemory(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2606{
2607 NOREF(uPass);
2608
2609 /*
2610 * Process page records until we hit the terminator.
2611 */
2612 RTGCPHYS GCPhys = NIL_RTGCPHYS;
2613 PPGMRAMRANGE pRamHint = NULL;
2614 uint8_t id = UINT8_MAX;
2615 uint32_t iPage = UINT32_MAX - 10;
2616 PPGMROMRANGE pRom = NULL;
2617 PPGMREGMMIO2RANGE pRegMmio = NULL;
2618
2619 /*
2620 * We batch up pages that should be freed instead of calling GMM for
2621 * each and every one of them. Note that we'll lose the pages in most
2622 * failure paths - this should probably be addressed one day.
2623 */
2624 uint32_t cPendingPages = 0;
2625 PGMMFREEPAGESREQ pReq;
2626 int rc = GMMR3FreePagesPrepare(pVM, &pReq, 128 /* batch size */, GMMACCOUNT_BASE);
2627 AssertLogRelRCReturn(rc, rc);
2628
2629 for (;;)
2630 {
2631 /*
2632 * Get the record type and flags.
2633 */
2634 uint8_t u8;
2635 rc = SSMR3GetU8(pSSM, &u8);
2636 if (RT_FAILURE(rc))
2637 return rc;
2638 if (u8 == PGM_STATE_REC_END)
2639 {
2640 /*
2641 * Finish off any pages pending freeing.
2642 */
2643 if (cPendingPages)
2644 {
2645 Log(("pgmR3LoadMemory: GMMR3FreePagesPerform pVM=%p cPendingPages=%u\n", pVM, cPendingPages));
2646 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2647 AssertLogRelRCReturn(rc, rc);
2648 }
2649 GMMR3FreePagesCleanup(pReq);
2650 return VINF_SUCCESS;
2651 }
2652 AssertLogRelMsgReturn((u8 & ~PGM_STATE_REC_FLAG_ADDR) <= PGM_STATE_REC_LAST, ("%#x\n", u8), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2653 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2654 {
2655 /*
2656 * RAM page.
2657 */
2658 case PGM_STATE_REC_RAM_ZERO:
2659 case PGM_STATE_REC_RAM_RAW:
2660 case PGM_STATE_REC_RAM_BALLOONED:
2661 {
2662 /*
2663 * Get the address and resolve it into a page descriptor.
2664 */
2665 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2666 GCPhys += GUEST_PAGE_SIZE;
2667 else
2668 {
2669 rc = SSMR3GetGCPhys(pSSM, &GCPhys);
2670 if (RT_FAILURE(rc))
2671 return rc;
2672 }
2673 AssertLogRelMsgReturn(!(GCPhys & GUEST_PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2674
2675 PPGMPAGE pPage;
2676 rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pPage, &pRamHint);
2677 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2678
2679 /*
2680 * Take action according to the record type.
2681 */
2682 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2683 {
2684 case PGM_STATE_REC_RAM_ZERO:
2685 {
2686 if (PGM_PAGE_IS_ZERO(pPage))
2687 break;
2688
2689 /* Ballooned pages must be unmarked (live snapshot and
2690 teleportation scenarios). */
2691 if (PGM_PAGE_IS_BALLOONED(pPage))
2692 {
2693 Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
2694 if (uVersion == PGM_SAVED_STATE_VERSION_BALLOON_BROKEN)
2695 break;
2696 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2697 break;
2698 }
2699
2700 AssertLogRelMsgReturn(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED, ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_PGM_UNEXPECTED_PAGE_STATE);
2701
2702 /* If this is a ROM page, we must clear it and not try to
2703 * free it. Ditto if the VM is using RamPreAlloc (see
2704 * @bugref{6318}). */
2705 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM
2706 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM_SHADOW
2707#ifdef VBOX_WITH_PGM_NEM_MODE
2708 || pVM->pgm.s.fNemMode
2709#endif
2710 || pVM->pgm.s.fRamPreAlloc)
2711 {
2712 PGMPAGEMAPLOCK PgMpLck;
2713 void *pvDstPage;
2714 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage, &PgMpLck);
2715 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2716
2717 RT_BZERO(pvDstPage, GUEST_PAGE_SIZE);
2718 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2719 }
2720 /* Free it only if it's not part of a previously
2721 allocated large page (no need to clear the page). */
2722 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
2723 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2724 {
2725 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, GCPhys, (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
2726 AssertRCReturn(rc, rc);
2727 }
2728 /** @todo handle large pages (see @bugref{5545}) */
2729 break;
2730 }
2731
2732 case PGM_STATE_REC_RAM_BALLOONED:
2733 {
2734 Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
2735 if (PGM_PAGE_IS_BALLOONED(pPage))
2736 break;
2737
2738 /* We don't map ballooned pages in our shadow page tables, let's
2739 just free it if allocated and mark as ballooned. See @bugref{5515}. */
2740 if (PGM_PAGE_IS_ALLOCATED(pPage))
2741 {
2742 /** @todo handle large pages + ballooning when it works. (see @bugref{5515},
2743 * @bugref{5545}). */
2744 AssertLogRelMsgReturn( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
2745 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED,
2746 ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_PGM_LOAD_UNEXPECTED_PAGE_TYPE);
2747
2748 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, GCPhys, (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage));
2749 AssertRCReturn(rc, rc);
2750 }
2751 Assert(PGM_PAGE_IS_ZERO(pPage));
2752 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
2753 break;
2754 }
2755
2756 case PGM_STATE_REC_RAM_RAW:
2757 {
2758 PGMPAGEMAPLOCK PgMpLck;
2759 void *pvDstPage;
2760 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage, &PgMpLck);
2761 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2762 rc = SSMR3GetMem(pSSM, pvDstPage, GUEST_PAGE_SIZE);
2763 pgmPhysReleaseInternalPageMappingLock(pVM, &PgMpLck);
2764 if (RT_FAILURE(rc))
2765 return rc;
2766 break;
2767 }
2768
2769 default:
2770 AssertMsgFailedReturn(("%#x\n", u8), VERR_PGM_SAVED_REC_TYPE);
2771 }
2772 id = UINT8_MAX;
2773 break;
2774 }
2775
2776 /*
2777 * MMIO2 page.
2778 */
2779 case PGM_STATE_REC_MMIO2_RAW:
2780 case PGM_STATE_REC_MMIO2_ZERO:
2781 {
2782 /*
2783 * Get the ID + page number and resolved that into a MMIO2 page.
2784 */
2785 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2786 iPage++;
2787 else
2788 {
2789 SSMR3GetU8(pSSM, &id);
2790 rc = SSMR3GetU32(pSSM, &iPage);
2791 if (RT_FAILURE(rc))
2792 return rc;
2793 }
2794 if ( !pRegMmio
2795 || pRegMmio->idSavedState != id)
2796 {
2797 for (pRegMmio = pVM->pgm.s.pRegMmioRangesR3; pRegMmio; pRegMmio = pRegMmio->pNextR3)
2798 if (pRegMmio->idSavedState == id)
2799 break;
2800 AssertLogRelMsgReturn(pRegMmio, ("id=%#u iPage=%#x\n", id, iPage), VERR_PGM_SAVED_MMIO2_RANGE_NOT_FOUND);
2801 }
2802 AssertLogRelMsgReturn(iPage < (pRegMmio->RamRange.cb >> GUEST_PAGE_SHIFT),
2803 ("iPage=%#x cb=%RGp %s\n", iPage, pRegMmio->RamRange.cb, pRegMmio->RamRange.pszDesc),
2804 VERR_PGM_SAVED_MMIO2_PAGE_NOT_FOUND);
2805 void *pvDstPage = (uint8_t *)pRegMmio->RamRange.pvR3 + ((size_t)iPage << GUEST_PAGE_SHIFT);
2806
2807 /*
2808 * Load the page bits.
2809 */
2810 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_MMIO2_ZERO)
2811 RT_BZERO(pvDstPage, GUEST_PAGE_SIZE);
2812 else
2813 {
2814 rc = SSMR3GetMem(pSSM, pvDstPage, GUEST_PAGE_SIZE);
2815 if (RT_FAILURE(rc))
2816 return rc;
2817 }
2818 GCPhys = NIL_RTGCPHYS;
2819 break;
2820 }
2821
2822 /*
2823 * ROM pages.
2824 */
2825 case PGM_STATE_REC_ROM_VIRGIN:
2826 case PGM_STATE_REC_ROM_SHW_RAW:
2827 case PGM_STATE_REC_ROM_SHW_ZERO:
2828 case PGM_STATE_REC_ROM_PROT:
2829 {
2830 /*
2831 * Get the ID + page number and resolved that into a ROM page descriptor.
2832 */
2833 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2834 iPage++;
2835 else
2836 {
2837 SSMR3GetU8(pSSM, &id);
2838 rc = SSMR3GetU32(pSSM, &iPage);
2839 if (RT_FAILURE(rc))
2840 return rc;
2841 }
2842 if ( !pRom
2843 || pRom->idSavedState != id)
2844 {
2845 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2846 if (pRom->idSavedState == id)
2847 break;
2848 AssertLogRelMsgReturn(pRom, ("id=%#u iPage=%#x\n", id, iPage), VERR_PGM_SAVED_ROM_RANGE_NOT_FOUND);
2849 }
2850 AssertLogRelMsgReturn(iPage < (pRom->cb >> GUEST_PAGE_SHIFT),
2851 ("iPage=%#x cb=%RGp %s\n", iPage, pRom->cb, pRom->pszDesc),
2852 VERR_PGM_SAVED_ROM_PAGE_NOT_FOUND);
2853 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2854 GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << GUEST_PAGE_SHIFT);
2855
2856 /*
2857 * Get and set the protection.
2858 */
2859 uint8_t u8Prot;
2860 rc = SSMR3GetU8(pSSM, &u8Prot);
2861 if (RT_FAILURE(rc))
2862 return rc;
2863 PGMROMPROT enmProt = (PGMROMPROT)u8Prot;
2864 AssertLogRelMsgReturn(enmProt > PGMROMPROT_INVALID && enmProt < PGMROMPROT_END, ("GCPhys=%RGp enmProt=%d\n", GCPhys, enmProt), VERR_PGM_SAVED_ROM_PAGE_PROT);
2865
2866 if (enmProt != pRomPage->enmProt)
2867 {
2868 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2869 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2870 N_("Protection change of unshadowed ROM page: GCPhys=%RGp enmProt=%d %s"),
2871 GCPhys, enmProt, pRom->pszDesc);
2872 rc = PGMR3PhysRomProtect(pVM, GCPhys, GUEST_PAGE_SIZE, enmProt);
2873 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2874 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_PGM_SAVED_ROM_PAGE_PROT);
2875 }
2876 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_ROM_PROT)
2877 break; /* done */
2878
2879 /*
2880 * Get the right page descriptor.
2881 */
2882 PPGMPAGE pRealPage;
2883 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2884 {
2885 case PGM_STATE_REC_ROM_VIRGIN:
2886 if (!PGMROMPROT_IS_ROM(enmProt))
2887 pRealPage = &pRomPage->Virgin;
2888 else
2889 pRealPage = NULL;
2890 break;
2891
2892 case PGM_STATE_REC_ROM_SHW_RAW:
2893 case PGM_STATE_REC_ROM_SHW_ZERO:
2894 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2895 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2896 N_("Shadowed / non-shadowed page type mismatch: GCPhys=%RGp enmProt=%d %s"),
2897 GCPhys, enmProt, pRom->pszDesc);
2898 if (PGMROMPROT_IS_ROM(enmProt))
2899 pRealPage = &pRomPage->Shadow;
2900 else
2901 pRealPage = NULL;
2902 break;
2903
2904 default: AssertLogRelFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE); /* shut up gcc */
2905 }
2906#ifdef VBOX_WITH_PGM_NEM_MODE
2907 bool const fAltPage = pRealPage != NULL;
2908#endif
2909 if (!pRealPage)
2910 {
2911 rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pRealPage, &pRamHint);
2912 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2913 }
2914
2915 /*
2916 * Make it writable and map it (if necessary).
2917 */
2918 void *pvDstPage = NULL;
2919 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2920 {
2921 case PGM_STATE_REC_ROM_SHW_ZERO:
2922 if ( PGM_PAGE_IS_ZERO(pRealPage)
2923 || PGM_PAGE_IS_BALLOONED(pRealPage))
2924 break;
2925 /** @todo implement zero page replacing. */
2926 RT_FALL_THRU();
2927 case PGM_STATE_REC_ROM_VIRGIN:
2928 case PGM_STATE_REC_ROM_SHW_RAW:
2929#ifdef VBOX_WITH_PGM_NEM_MODE
2930 if (fAltPage && pVM->pgm.s.fNemMode)
2931 pvDstPage = &pRom->pbR3Alternate[iPage << GUEST_PAGE_SHIFT];
2932 else
2933#endif
2934 {
2935 rc = pgmPhysPageMakeWritableAndMap(pVM, pRealPage, GCPhys, &pvDstPage);
2936 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2937 }
2938 break;
2939 }
2940
2941 /*
2942 * Load the bits.
2943 */
2944 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2945 {
2946 case PGM_STATE_REC_ROM_SHW_ZERO:
2947 if (pvDstPage)
2948 RT_BZERO(pvDstPage, GUEST_PAGE_SIZE);
2949 break;
2950
2951 case PGM_STATE_REC_ROM_VIRGIN:
2952 case PGM_STATE_REC_ROM_SHW_RAW:
2953 rc = SSMR3GetMem(pSSM, pvDstPage, GUEST_PAGE_SIZE);
2954 if (RT_FAILURE(rc))
2955 return rc;
2956 break;
2957 }
2958 GCPhys = NIL_RTGCPHYS;
2959 break;
2960 }
2961
2962 /*
2963 * Unknown type.
2964 */
2965 default:
2966 AssertLogRelMsgFailedReturn(("%#x\n", u8), VERR_PGM_SAVED_REC_TYPE);
2967 }
2968 } /* forever */
2969}
2970
2971
2972/**
2973 * Worker for pgmR3Load.
2974 *
2975 * @returns VBox status code.
2976 *
2977 * @param pVM The cross context VM structure.
2978 * @param pSSM The SSM handle.
2979 * @param uVersion The saved state version.
2980 */
2981static int pgmR3LoadFinalLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2982{
2983 PPGM pPGM = &pVM->pgm.s;
2984 int rc;
2985 uint32_t u32Sep;
2986
2987 /*
2988 * Load basic data (required / unaffected by relocation).
2989 */
2990 if (uVersion >= PGM_SAVED_STATE_VERSION_3_0_0)
2991 {
2992 if (uVersion > PGM_SAVED_STATE_VERSION_PRE_BALLOON)
2993 rc = SSMR3GetStructEx(pSSM, pPGM, sizeof(*pPGM), 0 /*fFlags*/, &s_aPGMFields[0], NULL /*pvUser*/);
2994 else
2995 rc = SSMR3GetStructEx(pSSM, pPGM, sizeof(*pPGM), 0 /*fFlags*/, &s_aPGMFieldsPreBalloon[0], NULL /*pvUser*/);
2996
2997 AssertLogRelRCReturn(rc, rc);
2998
2999 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3000 {
3001 if (uVersion <= PGM_SAVED_STATE_VERSION_PRE_PAE)
3002 rc = SSMR3GetStruct(pSSM, &pVM->apCpusR3[i]->pgm.s, &s_aPGMCpuFieldsPrePae[0]);
3003 else
3004 rc = SSMR3GetStruct(pSSM, &pVM->apCpusR3[i]->pgm.s, &s_aPGMCpuFields[0]);
3005 AssertLogRelRCReturn(rc, rc);
3006 }
3007 }
3008 else if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
3009 {
3010 AssertRelease(pVM->cCpus == 1);
3011
3012 PGMOLD pgmOld;
3013 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
3014 AssertLogRelRCReturn(rc, rc);
3015
3016 PVMCPU pVCpu0 = pVM->apCpusR3[0];
3017 pVCpu0->pgm.s.fA20Enabled = pgmOld.fA20Enabled;
3018 pVCpu0->pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
3019 pVCpu0->pgm.s.enmGuestMode = pgmOld.enmGuestMode;
3020 }
3021 else
3022 {
3023 AssertRelease(pVM->cCpus == 1);
3024
3025 SSMR3Skip(pSSM, sizeof(bool));
3026 RTGCPTR GCPtrIgn;
3027 SSMR3GetGCPtr(pSSM, &GCPtrIgn);
3028 SSMR3Skip(pSSM, sizeof(uint32_t));
3029
3030 uint32_t cbRamSizeIgnored;
3031 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
3032 if (RT_FAILURE(rc))
3033 return rc;
3034 PVMCPU pVCpu0 = pVM->apCpusR3[0];
3035 SSMR3GetGCPhys(pSSM, &pVCpu0->pgm.s.GCPhysA20Mask);
3036
3037 uint32_t u32 = 0;
3038 SSMR3GetUInt(pSSM, &u32);
3039 pVCpu0->pgm.s.fA20Enabled = !!u32;
3040 SSMR3GetUInt(pSSM, &pVCpu0->pgm.s.fSyncFlags);
3041 RTUINT uGuestMode;
3042 SSMR3GetUInt(pSSM, &uGuestMode);
3043 pVCpu0->pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
3044
3045 /* check separator. */
3046 SSMR3GetU32(pSSM, &u32Sep);
3047 if (RT_FAILURE(rc))
3048 return rc;
3049 if (u32Sep != (uint32_t)~0)
3050 {
3051 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
3052 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
3053 }
3054 }
3055
3056 /*
3057 * Fix the A20 mask.
3058 */
3059 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3060 {
3061 PVMCPU pVCpu = pVM->apCpusR3[i];
3062 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
3063 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
3064 }
3065
3066 /*
3067 * The guest mappings - skipped now, see re-fixation in the caller.
3068 */
3069 if (uVersion <= PGM_SAVED_STATE_VERSION_PRE_PAE)
3070 {
3071 for (uint32_t i = 0; ; i++)
3072 {
3073 rc = SSMR3GetU32(pSSM, &u32Sep); /* sequence number */
3074 if (RT_FAILURE(rc))
3075 return rc;
3076 if (u32Sep == ~0U)
3077 break;
3078 AssertMsgReturn(u32Sep == i, ("u32Sep=%#x i=%#x\n", u32Sep, i), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3079
3080 char szDesc[256];
3081 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
3082 if (RT_FAILURE(rc))
3083 return rc;
3084 RTGCPTR GCPtrIgnore;
3085 SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* GCPtr */
3086 rc = SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* cPTs */
3087 if (RT_FAILURE(rc))
3088 return rc;
3089 }
3090 }
3091
3092 /*
3093 * Load the RAM contents.
3094 */
3095 if (uVersion > PGM_SAVED_STATE_VERSION_3_0_0)
3096 {
3097 if (!pVM->pgm.s.LiveSave.fActive)
3098 {
3099 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3100 {
3101 rc = pgmR3LoadRamConfig(pVM, pSSM);
3102 if (RT_FAILURE(rc))
3103 return rc;
3104 }
3105 rc = pgmR3LoadRomRanges(pVM, pSSM);
3106 if (RT_FAILURE(rc))
3107 return rc;
3108 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
3109 if (RT_FAILURE(rc))
3110 return rc;
3111 }
3112
3113 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, SSM_PASS_FINAL);
3114 }
3115 else
3116 rc = pgmR3LoadMemoryOld(pVM, pSSM, uVersion);
3117
3118 /* Refresh balloon accounting. */
3119 if (pVM->pgm.s.cBalloonedPages)
3120 {
3121 Log(("pgmR3LoadFinalLocked: pVM=%p cBalloonedPages=%#x\n", pVM, pVM->pgm.s.cBalloonedPages));
3122 rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_INFLATE, pVM->pgm.s.cBalloonedPages);
3123 AssertRCReturn(rc, rc);
3124 }
3125 return rc;
3126}
3127
3128
3129/**
3130 * @callback_method_impl{FNSSMINTLOADEXEC}
3131 */
3132static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3133{
3134 int rc;
3135
3136 /*
3137 * Validate version.
3138 */
3139 if ( ( uPass != SSM_PASS_FINAL
3140 && uVersion != PGM_SAVED_STATE_VERSION
3141 && uVersion != PGM_SAVED_STATE_VERSION_PRE_PAE
3142 && uVersion != PGM_SAVED_STATE_VERSION_BALLOON_BROKEN
3143 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
3144 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3145 || ( uVersion != PGM_SAVED_STATE_VERSION
3146 && uVersion != PGM_SAVED_STATE_VERSION_PRE_PAE
3147 && uVersion != PGM_SAVED_STATE_VERSION_BALLOON_BROKEN
3148 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
3149 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG
3150 && uVersion != PGM_SAVED_STATE_VERSION_3_0_0
3151 && uVersion != PGM_SAVED_STATE_VERSION_2_2_2
3152 && uVersion != PGM_SAVED_STATE_VERSION_RR_DESC
3153 && uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
3154 )
3155 {
3156 AssertMsgFailed(("pgmR3Load: Invalid version uVersion=%d (current %d)!\n", uVersion, PGM_SAVED_STATE_VERSION));
3157 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3158 }
3159
3160 /*
3161 * Do the loading while owning the lock because a bunch of the functions
3162 * we're using requires this.
3163 */
3164 if (uPass != SSM_PASS_FINAL)
3165 {
3166 PGM_LOCK_VOID(pVM);
3167 if (uPass != 0)
3168 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, uPass);
3169 else
3170 {
3171 pVM->pgm.s.LiveSave.fActive = true;
3172 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3173 rc = pgmR3LoadRamConfig(pVM, pSSM);
3174 else
3175 rc = VINF_SUCCESS;
3176 if (RT_SUCCESS(rc))
3177 rc = pgmR3LoadRomRanges(pVM, pSSM);
3178 if (RT_SUCCESS(rc))
3179 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
3180 if (RT_SUCCESS(rc))
3181 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, uPass);
3182 }
3183 PGM_UNLOCK(pVM);
3184 }
3185 else
3186 {
3187 PGM_LOCK_VOID(pVM);
3188 rc = pgmR3LoadFinalLocked(pVM, pSSM, uVersion);
3189 pVM->pgm.s.LiveSave.fActive = false;
3190 PGM_UNLOCK(pVM);
3191 if (RT_SUCCESS(rc))
3192 {
3193 /*
3194 * We require a full resync now.
3195 */
3196 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3197 {
3198 PVMCPU pVCpu = pVM->apCpusR3[i];
3199 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3200 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3201 /** @todo For guest PAE, we might get the wrong
3202 * aGCPhysGstPaePDs values now. We should used the
3203 * saved ones... Postponing this since it nothing new
3204 * and PAE/PDPTR needs some general readjusting, see
3205 * @bugref{5880}. */
3206 }
3207
3208 pgmR3HandlerPhysicalUpdateAll(pVM);
3209
3210 /*
3211 * Change the paging mode (indirectly restores PGMCPU::GCPhysCR3).
3212 * (Requires the CPUM state to be restored already!)
3213 */
3214 if (CPUMR3IsStateRestorePending(pVM))
3215 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
3216 N_("PGM was unexpectedly restored before CPUM"));
3217
3218 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3219 {
3220 PVMCPU pVCpu = pVM->apCpusR3[i];
3221
3222 rc = PGMHCChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode, false /* fForce */);
3223 AssertLogRelRCReturn(rc, rc);
3224
3225#if !defined(VBOX_VMM_TARGET_ARMV8)
3226 /* Update the PSE, NX flags and validity masks. */
3227 pVCpu->pgm.s.fGst32BitPageSizeExtension = CPUMIsGuestPageSizeExtEnabled(pVCpu);
3228 PGMNotifyNxeChanged(pVCpu, CPUMIsGuestNXEnabled(pVCpu));
3229#endif
3230 }
3231 }
3232 }
3233
3234 return rc;
3235}
3236
3237
3238/**
3239 * @callback_method_impl{FNSSMINTLOADDONE}
3240 */
3241static DECLCALLBACK(int) pgmR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
3242{
3243 pVM->pgm.s.fRestoreRomPagesOnReset = true;
3244 NOREF(pSSM);
3245 return VINF_SUCCESS;
3246}
3247
3248
3249/**
3250 * Registers the saved state callbacks with SSM.
3251 *
3252 * @returns VBox status code.
3253 * @param pVM The cross context VM structure.
3254 * @param cbRam The RAM size.
3255 */
3256int pgmR3InitSavedState(PVM pVM, uint64_t cbRam)
3257{
3258 return SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
3259 pgmR3LivePrep, pgmR3LiveExec, pgmR3LiveVote,
3260 NULL, pgmR3SaveExec, pgmR3SaveDone,
3261 pgmR3LoadPrep, pgmR3Load, pgmR3LoadDone);
3262}
3263
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette