VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMPool.cpp@ 104627

Last change on this file since 104627 was 103015, checked in by vboxsync, 11 months ago

iprt/asm-mem.h: Eliminated the ASMMemZeroPage function, replaced the three actual uses in PGMPool with RT_BZERO/PAGE_SIZE.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 74.3 KB
Line 
1/* $Id: PGMPool.cpp 103015 2024-01-24 00:59:13Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28/** @page pg_pgm_pool PGM Shadow Page Pool
29 *
30 * Motivations:
31 * -# Relationship between shadow page tables and physical guest pages. This
32 * should allow us to skip most of the global flushes now following access
33 * handler changes. The main expense is flushing shadow pages.
34 * -# Limit the pool size if necessary (default is kind of limitless).
35 * -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
36 * -# Required for 64-bit guests.
37 * -# Combining the PD cache and page pool in order to simplify caching.
38 *
39 *
40 * @section sec_pgm_pool_outline Design Outline
41 *
42 * The shadow page pool tracks pages used for shadowing paging structures (i.e.
43 * page tables, page directory, page directory pointer table and page map
44 * level-4). Each page in the pool has an unique identifier. This identifier is
45 * used to link a guest physical page to a shadow PT. The identifier is a
46 * non-zero value and has a relativly low max value - say 14 bits. This makes it
47 * possible to fit it into the upper bits of the of the aHCPhys entries in the
48 * ram range.
49 *
50 * By restricting host physical memory to the first 48 bits (which is the
51 * announced physical memory range of the K8L chip (scheduled for 2008)), we
52 * can safely use the upper 16 bits for shadow page ID and reference counting.
53 *
54 * Update: The 48 bit assumption will be lifted with the new physical memory
55 * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
56 * into a box in some years.
57 *
58 * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
59 * or PD. This is solved by creating a list of physical cross reference extents
60 * when ever this happens. Each node in the list (extent) is can contain 3 page
61 * pool indexes. The list it self is chained using indexes into the paPhysExt
62 * array.
63 *
64 *
65 * @section sec_pgm_pool_life Life Cycle of a Shadow Page
66 *
67 * -# The SyncPT function requests a page from the pool.
68 * The request includes the kind of page it is (PT/PD, PAE/legacy), the
69 * address of the page it's shadowing, and more.
70 * -# The pool responds to the request by allocating a new page.
71 * When the cache is enabled, it will first check if it's in the cache.
72 * Should the pool be exhausted, one of two things can be done:
73 * -# Flush the whole pool and current CR3.
74 * -# Use the cache to find a page which can be flushed (~age).
75 * -# The SyncPT function will sync one or more pages and insert it into the
76 * shadow PD.
77 * -# The SyncPage function may sync more pages on a later \#PFs.
78 * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
79 * When caching is enabled, the page isn't flush but remains in the cache.
80 *
81 *
82 * @section sec_pgm_pool_monitoring Monitoring
83 *
84 * We always monitor GUEST_PAGE_SIZE chunks of memory. When we've got multiple
85 * shadow pages for the same GUEST_PAGE_SIZE of guest memory (PAE and mixed
86 * PD/PT) the pages sharing the monitor get linked using the
87 * iMonitoredNext/Prev. The head page is the pvUser to the access handlers.
88 *
89 *
90 * @section sec_pgm_pool_impl Implementation
91 *
92 * The pool will take pages from the MM page pool. The tracking data
93 * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
94 * pool content can be accessed both by using the page id and the physical
95 * address (HC). The former is managed by means of an array, the latter by an
96 * offset based AVL tree.
97 *
98 * Flushing of a pool page means that we iterate the content (we know what kind
99 * it is) and updates the link information in the ram range.
100 *
101 * ...
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_PGM_POOL
109#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
110#include <VBox/vmm/pgm.h>
111#include <VBox/vmm/mm.h>
112#include "PGMInternal.h"
113#include <VBox/vmm/vmcc.h>
114#include <VBox/vmm/uvm.h>
115#include "PGMInline.h"
116
117#include <VBox/log.h>
118#include <VBox/err.h>
119#include <iprt/asm-mem.h>
120#include <iprt/string.h>
121#include <VBox/dbg.h>
122
123
124/*********************************************************************************************************************************
125* Structures and Typedefs *
126*********************************************************************************************************************************/
127typedef struct PGMPOOLCHECKERSTATE
128{
129 PDBGCCMDHLP pCmdHlp;
130 PVM pVM;
131 PPGMPOOL pPool;
132 PPGMPOOLPAGE pPage;
133 bool fFirstMsg;
134 uint32_t cErrors;
135} PGMPOOLCHECKERSTATE;
136typedef PGMPOOLCHECKERSTATE *PPGMPOOLCHECKERSTATE;
137
138
139
140/*********************************************************************************************************************************
141* Internal Functions *
142*********************************************************************************************************************************/
143static FNDBGFHANDLERINT pgmR3PoolInfoPages;
144static FNDBGFHANDLERINT pgmR3PoolInfoRoots;
145
146#ifdef VBOX_WITH_DEBUGGER
147static FNDBGCCMD pgmR3PoolCmdCheck;
148
149/** Command descriptors. */
150static const DBGCCMD g_aCmds[] =
151{
152 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
153 { "pgmpoolcheck", 0, 0, NULL, 0, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." },
154};
155#endif
156
157/**
158 * Initializes the pool
159 *
160 * @returns VBox status code.
161 * @param pVM The cross context VM structure.
162 */
163int pgmR3PoolInit(PVM pVM)
164{
165 int rc;
166
167 AssertCompile(NIL_PGMPOOL_IDX == 0);
168 /* pPage->cLocked is an unsigned byte. */
169 AssertCompile(VMM_MAX_CPU_COUNT <= 255);
170
171 /*
172 * Query Pool config.
173 */
174 PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
175
176 /* Default pgm pool size is 1024 pages (4MB). */
177 uint16_t cMaxPages = 1024;
178
179 /* Adjust it up relative to the RAM size, using the nested paging formula. */
180 uint64_t cbRam;
181 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0); AssertRCReturn(rc, rc);
182 /** @todo guest x86 specific */
183 uint64_t u64MaxPages = (cbRam >> 9)
184 + (cbRam >> 18)
185 + (cbRam >> 27)
186 + 32 * GUEST_PAGE_SIZE;
187 u64MaxPages >>= GUEST_PAGE_SHIFT;
188 if (u64MaxPages > PGMPOOL_IDX_LAST)
189 cMaxPages = PGMPOOL_IDX_LAST;
190 else
191 cMaxPages = (uint16_t)u64MaxPages;
192
193 /** @cfgm{/PGM/Pool/MaxPages, uint16_t, \#pages, 16, 0x3fff, F(ram-size)}
194 * The max size of the shadow page pool in pages. The pool will grow dynamically
195 * up to this limit.
196 */
197 rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages);
198 AssertLogRelRCReturn(rc, rc);
199 AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
200 ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
201 AssertCompile(RT_IS_POWER_OF_TWO(PGMPOOL_CFG_MAX_GROW));
202 if (cMaxPages < PGMPOOL_IDX_LAST)
203 cMaxPages = RT_ALIGN(cMaxPages, PGMPOOL_CFG_MAX_GROW / 2);
204 if (cMaxPages > PGMPOOL_IDX_LAST)
205 cMaxPages = PGMPOOL_IDX_LAST;
206 LogRel(("PGM: PGMPool: cMaxPages=%u (u64MaxPages=%llu)\n", cMaxPages, u64MaxPages));
207
208 /** @todo
209 * We need to be much more careful with our allocation strategy here.
210 * For nested paging we don't need pool user info nor extents at all, but
211 * we can't check for nested paging here (too early during init to get a
212 * confirmation it can be used). The default for large memory configs is a
213 * bit large for shadow paging, so I've restricted the extent maximum to 8k
214 * (8k * 16 = 128k of hyper heap).
215 *
216 * Also when large page support is enabled, we typically don't need so much,
217 * although that depends on the availability of 2 MB chunks on the host.
218 */
219
220 /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, \#users, MaxUsers, 32K, MaxPages*2}
221 * The max number of shadow page user tracking records. Each shadow page has
222 * zero of other shadow pages (or CR3s) that references it, or uses it if you
223 * like. The structures describing these relationships are allocated from a
224 * fixed sized pool. This configuration variable defines the pool size.
225 */
226 uint16_t cMaxUsers;
227 rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
228 AssertLogRelRCReturn(rc, rc);
229 AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
230 ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
231
232 /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, \#extents, 16, MaxPages * 2, MIN(MaxPages*2\,8192)}
233 * The max number of extents for tracking aliased guest pages.
234 */
235 uint16_t cMaxPhysExts;
236 rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts,
237 RT_MIN(cMaxPages * 2, 8192 /* 8Ki max as this eat too much hyper heap */));
238 AssertLogRelRCReturn(rc, rc);
239 AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPhysExts <= PGMPOOL_IDX_LAST,
240 ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
241
242 /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
243 * Enables or disabling caching of shadow pages. Caching means that we will try
244 * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
245 * SyncPage requests one. When reusing a shadow page, we can save time
246 * reconstructing it and it's children.
247 */
248 bool fCacheEnabled;
249 rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
250 AssertLogRelRCReturn(rc, rc);
251
252 LogRel(("PGM: pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
253 cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
254
255 /*
256 * Allocate the data structures.
257 */
258 uint32_t cb = RT_UOFFSETOF_DYN(PGMPOOL, aPages[cMaxPages]);
259 cb += cMaxUsers * sizeof(PGMPOOLUSER);
260 cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
261 PPGMPOOL pPool;
262 RTR0PTR pPoolR0;
263 rc = SUPR3PageAllocEx(RT_ALIGN_32(cb, HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT, 0 /*fFlags*/, (void **)&pPool, &pPoolR0, NULL);
264 if (RT_FAILURE(rc))
265 return rc;
266 Assert(ASMMemIsZero(pPool, cb));
267 pVM->pgm.s.pPoolR3 = pPool->pPoolR3 = pPool;
268 pVM->pgm.s.pPoolR0 = pPool->pPoolR0 = pPoolR0;
269
270 /*
271 * Initialize it.
272 */
273 pPool->pVMR3 = pVM;
274 pPool->pVMR0 = pVM->pVMR0ForCall;
275 pPool->cMaxPages = cMaxPages;
276 pPool->cCurPages = PGMPOOL_IDX_FIRST;
277 pPool->iUserFreeHead = 0;
278 pPool->cMaxUsers = cMaxUsers;
279 PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
280 pPool->paUsersR3 = paUsers;
281 pPool->paUsersR0 = pPoolR0 + (uintptr_t)paUsers - (uintptr_t)pPool;
282 for (unsigned i = 0; i < cMaxUsers; i++)
283 {
284 paUsers[i].iNext = i + 1;
285 paUsers[i].iUser = NIL_PGMPOOL_IDX;
286 paUsers[i].iUserTable = 0xfffffffe;
287 }
288 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
289 pPool->iPhysExtFreeHead = 0;
290 pPool->cMaxPhysExts = cMaxPhysExts;
291 PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
292 pPool->paPhysExtsR3 = paPhysExts;
293 pPool->paPhysExtsR0 = pPoolR0 + (uintptr_t)paPhysExts - (uintptr_t)pPool;
294 for (unsigned i = 0; i < cMaxPhysExts; i++)
295 {
296 paPhysExts[i].iNext = i + 1;
297 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
298 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
299 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
300 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
301 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
302 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
303 }
304 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
305 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
306 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
307 pPool->iAgeHead = NIL_PGMPOOL_IDX;
308 pPool->iAgeTail = NIL_PGMPOOL_IDX;
309 pPool->fCacheEnabled = fCacheEnabled;
310
311 pPool->hAccessHandlerType = NIL_PGMPHYSHANDLERTYPE;
312 rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE, PGMPHYSHANDLER_F_KEEP_PGM_LOCK,
313 pgmPoolAccessHandler, "Guest Paging Access Handler", &pPool->hAccessHandlerType);
314 AssertLogRelRCReturn(rc, rc);
315
316 pPool->HCPhysTree = 0;
317
318 /*
319 * The NIL entry.
320 */
321 Assert(NIL_PGMPOOL_IDX == 0);
322 pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
323 pPool->aPages[NIL_PGMPOOL_IDX].idx = NIL_PGMPOOL_IDX;
324 pPool->aPages[NIL_PGMPOOL_IDX].Core.Key = NIL_RTHCPHYS;
325 pPool->aPages[NIL_PGMPOOL_IDX].GCPhys = NIL_RTGCPHYS;
326 pPool->aPages[NIL_PGMPOOL_IDX].iNext = NIL_PGMPOOL_IDX;
327 /* pPool->aPages[NIL_PGMPOOL_IDX].cLocked = INT32_MAX; - test this out... */
328 pPool->aPages[NIL_PGMPOOL_IDX].pvPageR3 = 0;
329 pPool->aPages[NIL_PGMPOOL_IDX].iUserHead = NIL_PGMPOOL_USER_INDEX;
330 pPool->aPages[NIL_PGMPOOL_IDX].iModifiedNext = NIL_PGMPOOL_IDX;
331 pPool->aPages[NIL_PGMPOOL_IDX].iModifiedPrev = NIL_PGMPOOL_IDX;
332 pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredNext = NIL_PGMPOOL_IDX;
333 pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredPrev = NIL_PGMPOOL_IDX;
334 pPool->aPages[NIL_PGMPOOL_IDX].iAgeNext = NIL_PGMPOOL_IDX;
335 pPool->aPages[NIL_PGMPOOL_IDX].iAgePrev = NIL_PGMPOOL_IDX;
336
337 Assert(pPool->aPages[NIL_PGMPOOL_IDX].idx == NIL_PGMPOOL_IDX);
338 Assert(pPool->aPages[NIL_PGMPOOL_IDX].GCPhys == NIL_RTGCPHYS);
339 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fSeenNonGlobal);
340 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fMonitored);
341 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fCached);
342 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fZeroed);
343 Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fReusedFlushPending);
344
345 /*
346 * Register statistics.
347 */
348 STAM_REL_REG(pVM, &pPool->StatGrow, STAMTYPE_PROFILE, "/PGM/Pool/Grow", STAMUNIT_TICKS_PER_CALL, "Profiling PGMR0PoolGrow");
349#ifdef VBOX_WITH_STATISTICS
350 STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
351 STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
352 STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
353 STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
354 STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
355 STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll.");
356 STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset.");
357 STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
358 STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
359 STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage().");
360 STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage().");
361 STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages.");
362 STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
363 STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
364 STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
365 STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref.");
366 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT.");
367 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
368 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
369 STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries.");
370 STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries.");
371 STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records.");
372 STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages.");
373 STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
374 STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
375
376 STAM_REG(pVM, &pPool->StatMonitorPfRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access handler.");
377 STAM_REG(pVM, &pPool->StatMonitorPfRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
378 STAM_REG(pVM, &pPool->StatMonitorPfRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
379 STAM_REG(pVM, &pPool->StatMonitorPfRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
380 STAM_REG(pVM, &pPool->StatMonitorPfRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
381 STAM_REG(pVM, &pPool->StatMonitorPfRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
382 STAM_REG(pVM, &pPool->StatMonitorPfRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access we've handled (except REP STOSD).");
383 STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
384 STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
385 STAM_REG(pVM, &pPool->StatMonitorPfRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
386 STAM_REG(pVM, &pPool->StatMonitorPfRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
387
388 STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM", STAMUNIT_TICKS_PER_CALL, "Profiling the regular access handler.");
389 STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the regular access handler.");
390 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[0], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses.");
391 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[1], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses.");
392 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[2], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses.");
393 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[3], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses.");
394 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[4], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses.");
395 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[5], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses.");
396 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[6], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses.");
397 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[7], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses.");
398 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[8], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses.");
399 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[9], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses.");
400 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[10], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses.");
401 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[11], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses.");
402 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[12], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses.");
403 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[13], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses.");
404 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[14], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses.");
405 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[15], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses.");
406 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[16], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses.");
407 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[17], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses.");
408 STAM_REG(pVM, &pPool->aStatMonitorRZSizes[18], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses.");
409 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[0], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1.");
410 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[1], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2.");
411 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[2], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3.");
412 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[3], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4.");
413 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[4], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5.");
414 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[5], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6.");
415 STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[6], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7.");
416
417 STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
418 STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
419 STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
420 STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
421
422 STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
423 STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
424 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[0], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses (R3).");
425 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[1], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses (R3).");
426 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[2], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses (R3).");
427 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[3], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses (R3).");
428 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[4], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses (R3).");
429 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[5], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses (R3).");
430 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[6], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses (R3).");
431 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[7], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses (R3).");
432 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[8], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses (R3).");
433 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[9], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses (R3).");
434 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[10], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses (R3).");
435 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[11], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses (R3).");
436 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[12], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses (R3).");
437 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[13], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses (R3).");
438 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[14], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses (R3).");
439 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[15], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses (R3).");
440 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[16], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses.");
441 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[17], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses.");
442 STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[18], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses.");
443 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[0], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1 in R3.");
444 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[1], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2 in R3.");
445 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[2], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3 in R3.");
446 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[3], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4 in R3.");
447 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[4], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5 in R3.");
448 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[5], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6 in R3.");
449 STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[6], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7 in R3.");
450
451 STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
452 STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
453 STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
454 STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
455
456 STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
457 STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
458 STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page).");
459 STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage.");
460 STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management.");
461 STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow.");
462 STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
463 STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
464 STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
465 STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
466 STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
467 STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
468#endif /* VBOX_WITH_STATISTICS */
469
470 DBGFR3InfoRegisterInternalEx(pVM, "pgmpoolpages", "Lists page pool pages.", pgmR3PoolInfoPages, 0);
471 DBGFR3InfoRegisterInternalEx(pVM, "pgmpoolroots", "Lists page pool roots.", pgmR3PoolInfoRoots, 0);
472
473#ifdef VBOX_WITH_DEBUGGER
474 /*
475 * Debugger commands.
476 */
477 static bool s_fRegisteredCmds = false;
478 if (!s_fRegisteredCmds)
479 {
480 rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
481 if (RT_SUCCESS(rc))
482 s_fRegisteredCmds = true;
483 }
484#endif
485
486 return VINF_SUCCESS;
487}
488
489
490/**
491 * Relocate the page pool data.
492 *
493 * @param pVM The cross context VM structure.
494 */
495void pgmR3PoolRelocate(PVM pVM)
496{
497 RT_NOREF(pVM);
498}
499
500
501/**
502 * Grows the shadow page pool.
503 *
504 * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
505 *
506 * @returns VBox status code.
507 * @param pVM The cross context VM structure.
508 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
509 */
510VMMR3_INT_DECL(int) PGMR3PoolGrow(PVM pVM, PVMCPU pVCpu)
511{
512 /* This used to do a lot of stuff, but it has moved to ring-0 (PGMR0PoolGrow). */
513 AssertReturn(pVM->pgm.s.pPoolR3->cCurPages < pVM->pgm.s.pPoolR3->cMaxPages, VERR_PGM_POOL_MAXED_OUT_ALREADY);
514 int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_PGM_POOL_GROW, 0, NULL);
515 if (rc == VINF_SUCCESS)
516 return rc;
517 LogRel(("PGMR3PoolGrow: rc=%Rrc cCurPages=%#x cMaxPages=%#x\n",
518 rc, pVM->pgm.s.pPoolR3->cCurPages, pVM->pgm.s.pPoolR3->cMaxPages));
519 if (pVM->pgm.s.pPoolR3->cCurPages > 128 && RT_FAILURE_NP(rc))
520 return -rc;
521 return rc;
522}
523
524
525/**
526 * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages
527 * and all modification counters.
528 *
529 * This is only called on one of the EMTs while the other ones are waiting for
530 * it to complete this function.
531 *
532 * @returns VINF_SUCCESS (VBox strict status code).
533 * @param pVM The cross context VM structure.
534 * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused.
535 * @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well.
536 * (This is the pvUser, so it has to be void *.)
537 *
538 */
539DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTlb)
540{
541 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
542 STAM_PROFILE_START(&pPool->StatClearAll, c);
543 NOREF(pVCpu);
544
545 PGM_LOCK_VOID(pVM);
546 Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTlb=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTlb));
547
548 /*
549 * Iterate all the pages until we've encountered all that are in use.
550 * This is a simple but not quite optimal solution.
551 */
552 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
553 unsigned cLeft = pPool->cUsedPages;
554 uint32_t iPage = pPool->cCurPages;
555 while (--iPage >= PGMPOOL_IDX_FIRST)
556 {
557 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
558 if (pPage->GCPhys != NIL_RTGCPHYS)
559 {
560 switch (pPage->enmKind)
561 {
562 /*
563 * We only care about shadow page tables that reference physical memory
564 */
565#ifdef PGM_WITH_LARGE_PAGES
566 case PGMPOOLKIND_PAE_PD_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
567 if (pPage->cPresent)
568 {
569 PX86PDPAE pShwPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
570 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
571 {
572 //Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0); - bogus, includes X86_PDE_PS.
573 if ((pShwPD->a[i].u & (X86_PDE_P | X86_PDE_PS)) == (X86_PDE_P | X86_PDE_PS))
574 {
575 pShwPD->a[i].u = 0;
576 Assert(pPage->cPresent);
577 pPage->cPresent--;
578 }
579 }
580 if (pPage->cPresent == 0)
581 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
582 }
583 goto default_case;
584
585 case PGMPOOLKIND_EPT_PD_FOR_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
586 if (pPage->cPresent)
587 {
588 PEPTPD pShwPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
589 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
590 {
591 if ((pShwPD->a[i].u & (EPT_E_READ | EPT_E_LEAF)) == (EPT_E_READ | EPT_E_LEAF))
592 {
593 pShwPD->a[i].u = 0;
594 Assert(pPage->cPresent);
595 pPage->cPresent--;
596 }
597 }
598 if (pPage->cPresent == 0)
599 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
600 }
601 goto default_case;
602
603# ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
604 case PGMPOOLKIND_EPT_PD_FOR_EPT_PD: /* Large pages reference 2 MB of physical memory, so we must clear them. */
605 if (pPage->cPresent)
606 {
607 PEPTPD pShwPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
608 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
609 {
610 if ( (pShwPD->a[i].u & EPT_PRESENT_MASK)
611 && (pShwPD->a[i].u & EPT_E_LEAF))
612 {
613 pShwPD->a[i].u = 0;
614 Assert(pPage->cPresent);
615 pPage->cPresent--;
616 }
617 }
618 if (pPage->cPresent == 0)
619 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
620 }
621 goto default_case;
622# endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
623#endif /* PGM_WITH_LARGE_PAGES */
624
625 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
626 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
627 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
628 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
629 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
630 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
631 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
632 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
633 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
634#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
635 case PGMPOOLKIND_EPT_PT_FOR_EPT_PT:
636 case PGMPOOLKIND_EPT_PT_FOR_EPT_2MB:
637 case PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT:
638 case PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4:
639#endif
640 {
641 if (pPage->cPresent)
642 {
643 void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
644 STAM_PROFILE_START(&pPool->StatZeroPage, z);
645#if 0
646 /* Useful check for leaking references; *very* expensive though. */
647 switch (pPage->enmKind)
648 {
649 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
650 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
651 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
652 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
653 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
654 {
655 bool fFoundFirst = false;
656 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw;
657 for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++)
658 {
659 if (pPT->a[ptIndex].u)
660 {
661 if (!fFoundFirst)
662 {
663 AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
664 if (pPage->iFirstPresent != ptIndex)
665 Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
666 fFoundFirst = true;
667 }
668 if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex]))
669 {
670 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS);
671 if (pPage->iFirstPresent == ptIndex)
672 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
673 }
674 }
675 }
676 AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys));
677 break;
678 }
679 default:
680 break;
681 }
682#endif
683 RT_BZERO(pvShw, PAGE_SIZE);
684 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
685 pPage->cPresent = 0;
686 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
687 }
688 }
689 RT_FALL_THRU();
690 default:
691#ifdef PGM_WITH_LARGE_PAGES
692 default_case:
693#endif
694 Assert(!pPage->cModifications || ++cModifiedPages);
695 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
696 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
697 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
698 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
699 pPage->cModifications = 0;
700 break;
701
702 }
703 if (!--cLeft)
704 break;
705 }
706 }
707
708#ifndef DEBUG_michael
709 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
710#endif
711 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
712 pPool->cModifiedPages = 0;
713
714 /*
715 * Clear all the GCPhys links and rebuild the phys ext free list.
716 */
717 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX);
718 pRam;
719 pRam = pRam->CTX_SUFF(pNext))
720 {
721 iPage = pRam->cb >> GUEST_PAGE_SHIFT;
722 while (iPage-- > 0)
723 PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0);
724 }
725
726 pPool->iPhysExtFreeHead = 0;
727 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
728 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
729 for (unsigned i = 0; i < cMaxPhysExts; i++)
730 {
731 paPhysExts[i].iNext = i + 1;
732 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
733 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
734 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
735 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
736 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
737 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
738 }
739 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
740
741
742#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
743 /* Reset all dirty pages to reactivate the page monitoring. */
744 /* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to
745 * recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint
746 */
747 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
748 {
749 unsigned idxPage = pPool->aidxDirtyPages[i];
750 if (idxPage == NIL_PGMPOOL_IDX)
751 continue;
752
753 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
754 Assert(pPage->idx == idxPage);
755 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
756
757 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i));
758
759 Log(("Reactivate dirty page %RGp\n", pPage->GCPhys));
760
761 /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
762 int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK);
763 AssertRCSuccess(rc);
764 pPage->fDirty = false;
765
766 pPool->aidxDirtyPages[i] = NIL_PGMPOOL_IDX;
767 }
768
769 /* Clear all dirty pages. */
770 pPool->idxFreeDirtyPage = 0;
771 pPool->cDirtyPages = 0;
772#endif
773
774 /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
775 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
776 pVM->apCpusR3[idCpu]->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
777
778 /* Flush job finished. */
779 VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
780 pPool->cPresent = 0;
781 PGM_UNLOCK(pVM);
782
783 PGM_INVL_ALL_VCPU_TLBS(pVM);
784
785 if (fpvFlushRemTlb)
786 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
787 CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
788
789 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
790 return VINF_SUCCESS;
791}
792
793
794/**
795 * Clears the shadow page pool.
796 *
797 * @param pVM The cross context VM structure.
798 * @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as
799 * well.
800 */
801void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb)
802{
803 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb);
804 AssertRC(rc);
805}
806
807
808/**
809 * Stringifies a PGMPOOLACCESS value.
810 */
811static const char *pgmPoolPoolAccessToStr(uint8_t enmAccess)
812{
813 switch ((PGMPOOLACCESS)enmAccess)
814 {
815 case PGMPOOLACCESS_DONTCARE: return "DONTCARE";
816 case PGMPOOLACCESS_USER_RW: return "USER_RW";
817 case PGMPOOLACCESS_USER_R: return "USER_R";
818 case PGMPOOLACCESS_USER_RW_NX: return "USER_RW_NX";
819 case PGMPOOLACCESS_USER_R_NX: return "USER_R_NX";
820 case PGMPOOLACCESS_SUPERVISOR_RW: return "SUPERVISOR_RW";
821 case PGMPOOLACCESS_SUPERVISOR_R: return "SUPERVISOR_R";
822 case PGMPOOLACCESS_SUPERVISOR_RW_NX: return "SUPERVISOR_RW_NX";
823 case PGMPOOLACCESS_SUPERVISOR_R_NX: return "SUPERVISOR_R_NX";
824 }
825 return "Unknown Access";
826}
827
828
829/**
830 * Stringifies a PGMPOOLKIND value.
831 */
832static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
833{
834 switch ((PGMPOOLKIND)enmKind)
835 {
836 case PGMPOOLKIND_INVALID:
837 return "INVALID";
838 case PGMPOOLKIND_FREE:
839 return "FREE";
840 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
841 return "32BIT_PT_FOR_PHYS";
842 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
843 return "32BIT_PT_FOR_32BIT_PT";
844 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
845 return "32BIT_PT_FOR_32BIT_4MB";
846 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
847 return "PAE_PT_FOR_PHYS";
848 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
849 return "PAE_PT_FOR_32BIT_PT";
850 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
851 return "PAE_PT_FOR_32BIT_4MB";
852 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
853 return "PAE_PT_FOR_PAE_PT";
854 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
855 return "PAE_PT_FOR_PAE_2MB";
856 case PGMPOOLKIND_32BIT_PD:
857 return "32BIT_PD";
858 case PGMPOOLKIND_32BIT_PD_PHYS:
859 return "32BIT_PD_PHYS";
860 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
861 return "PAE_PD0_FOR_32BIT_PD";
862 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
863 return "PAE_PD1_FOR_32BIT_PD";
864 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
865 return "PAE_PD2_FOR_32BIT_PD";
866 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
867 return "PAE_PD3_FOR_32BIT_PD";
868 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
869 return "PAE_PD_FOR_PAE_PD";
870 case PGMPOOLKIND_PAE_PD_PHYS:
871 return "PAE_PD_PHYS";
872 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
873 return "PAE_PDPT_FOR_32BIT";
874 case PGMPOOLKIND_PAE_PDPT:
875 return "PAE_PDPT";
876 case PGMPOOLKIND_PAE_PDPT_PHYS:
877 return "PAE_PDPT_PHYS";
878 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
879 return "64BIT_PDPT_FOR_64BIT_PDPT";
880 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
881 return "64BIT_PDPT_FOR_PHYS";
882 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
883 return "64BIT_PD_FOR_64BIT_PD";
884 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
885 return "64BIT_PD_FOR_PHYS";
886 case PGMPOOLKIND_64BIT_PML4:
887 return "64BIT_PML4";
888 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
889 return "EPT_PDPT_FOR_PHYS";
890 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
891 return "EPT_PD_FOR_PHYS";
892 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
893 return "EPT_PT_FOR_PHYS";
894 case PGMPOOLKIND_ROOT_NESTED:
895 return "ROOT_NESTED";
896 case PGMPOOLKIND_EPT_PT_FOR_EPT_PT:
897 return "EPT_PT_FOR_EPT_PT";
898 case PGMPOOLKIND_EPT_PT_FOR_EPT_2MB:
899 return "EPT_PT_FOR_EPT_2MB";
900 case PGMPOOLKIND_EPT_PD_FOR_EPT_PD:
901 return "EPT_PD_FOR_EPT_PD";
902 case PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT:
903 return "EPT_PDPT_FOR_EPT_PDPT";
904 case PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4:
905 return "EPT_PML4_FOR_EPT_PML4";
906 }
907 return "Unknown kind!";
908}
909
910
911/**
912 * Protect all pgm pool page table entries to monitor writes
913 *
914 * @param pVM The cross context VM structure.
915 *
916 * @remarks ASSUMES the caller will flush all TLBs!!
917 */
918void pgmR3PoolWriteProtectPages(PVM pVM)
919{
920 PGM_LOCK_ASSERT_OWNER(pVM);
921 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
922 unsigned cLeft = pPool->cUsedPages;
923 unsigned iPage = pPool->cCurPages;
924 while (--iPage >= PGMPOOL_IDX_FIRST)
925 {
926 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
927 if ( pPage->GCPhys != NIL_RTGCPHYS
928 && pPage->cPresent)
929 {
930 union
931 {
932 void *pv;
933 PX86PT pPT;
934 PPGMSHWPTPAE pPTPae;
935 PEPTPT pPTEpt;
936 } uShw;
937 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
938
939 switch (pPage->enmKind)
940 {
941 /*
942 * We only care about shadow page tables.
943 */
944 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
945 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
946 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
947 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++)
948 if (uShw.pPT->a[iShw].u & X86_PTE_P)
949 uShw.pPT->a[iShw].u = ~(X86PGUINT)X86_PTE_RW;
950 break;
951
952 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
953 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
954 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
955 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
956 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
957 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++)
958 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
959 PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]);
960 break;
961
962 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
963 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++)
964 if (uShw.pPTEpt->a[iShw].u & EPT_E_READ)
965 uShw.pPTEpt->a[iShw].u &= ~(X86PGPAEUINT)EPT_E_WRITE;
966 break;
967
968 default:
969 break;
970 }
971 if (!--cLeft)
972 break;
973 }
974 }
975}
976
977
978/**
979 * @callback_method_impl{FNDBGFHANDLERINT, pgmpoolpages}
980 */
981static DECLCALLBACK(void) pgmR3PoolInfoPages(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
982{
983 RT_NOREF(pszArgs);
984
985 PPGMPOOL const pPool = pVM->pgm.s.CTX_SUFF(pPool);
986 unsigned const cPages = pPool->cCurPages;
987 unsigned cLeft = pPool->cUsedPages;
988 for (unsigned iPage = 0; iPage < cPages; iPage++)
989 {
990 PGMPOOLPAGE volatile const *pPage = (PGMPOOLPAGE volatile const *)&pPool->aPages[iPage];
991 RTGCPHYS const GCPhys = pPage->GCPhys;
992 uint8_t const enmKind = pPage->enmKind;
993 if ( enmKind != PGMPOOLKIND_INVALID
994 && enmKind != PGMPOOLKIND_FREE)
995 {
996 pHlp->pfnPrintf(pHlp, "#%04x: HCPhys=%RHp GCPhys=%RGp %s %s %s%s%s\n",
997 iPage, pPage->Core.Key, GCPhys, pPage->fA20Enabled ? "A20 " : "!A20",
998 pgmPoolPoolKindToStr(enmKind),
999 pPage->enmAccess == PGMPOOLACCESS_DONTCARE ? "" : pgmPoolPoolAccessToStr(pPage->enmAccess),
1000 pPage->fCached ? " cached" : "", pPage->fMonitored ? " monitored" : "");
1001 if (!--cLeft)
1002 break;
1003 }
1004 }
1005}
1006
1007
1008/**
1009 * @callback_method_impl{FNDBGFHANDLERINT, pgmpoolroots}
1010 */
1011static DECLCALLBACK(void) pgmR3PoolInfoRoots(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1012{
1013 RT_NOREF(pszArgs);
1014
1015 PPGMPOOL const pPool = pVM->pgm.s.CTX_SUFF(pPool);
1016 unsigned const cPages = pPool->cCurPages;
1017 unsigned cLeft = pPool->cUsedPages;
1018 for (unsigned iPage = 0; iPage < cPages; iPage++)
1019 {
1020 PGMPOOLPAGE volatile const *pPage = (PGMPOOLPAGE volatile const *)&pPool->aPages[iPage];
1021 RTGCPHYS const GCPhys = pPage->GCPhys;
1022 if (GCPhys != NIL_RTGCPHYS)
1023 {
1024 uint8_t const enmKind = pPage->enmKind;
1025 switch (enmKind)
1026 {
1027 default:
1028 break;
1029
1030 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1031 case PGMPOOLKIND_PAE_PDPT:
1032 case PGMPOOLKIND_PAE_PDPT_PHYS:
1033 case PGMPOOLKIND_64BIT_PML4:
1034 case PGMPOOLKIND_ROOT_NESTED:
1035 case PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4:
1036 pHlp->pfnPrintf(pHlp, "#%04x: HCPhys=%RHp GCPhys=%RGp %s %s %s\n",
1037 iPage, pPage->Core.Key, GCPhys, pPage->fA20Enabled ? "A20 " : "!A20",
1038 pgmPoolPoolKindToStr(enmKind), pPage->fMonitored ? " monitored" : "");
1039 break;
1040 }
1041 if (!--cLeft)
1042 break;
1043 }
1044 }
1045}
1046
1047#ifdef VBOX_WITH_DEBUGGER
1048
1049/**
1050 * Helper for pgmR3PoolCmdCheck that reports an error.
1051 */
1052static void pgmR3PoolCheckError(PPGMPOOLCHECKERSTATE pState, const char *pszFormat, ...)
1053{
1054 if (pState->fFirstMsg)
1055 {
1056 DBGCCmdHlpPrintf(pState->pCmdHlp, "Checking pool page #%i for %RGp %s\n",
1057 pState->pPage->idx, pState->pPage->GCPhys, pgmPoolPoolKindToStr(pState->pPage->enmKind));
1058 pState->fFirstMsg = false;
1059 }
1060
1061 ++pState->cErrors;
1062
1063 va_list va;
1064 va_start(va, pszFormat);
1065 pState->pCmdHlp->pfnPrintfV(pState->pCmdHlp, NULL, pszFormat, va);
1066 va_end(va);
1067}
1068
1069
1070/**
1071 * @callback_method_impl{FNDBGCCMD, The '.pgmpoolcheck' command.}
1072 */
1073static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
1074{
1075 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
1076 PVM pVM = pUVM->pVM;
1077 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1078 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0);
1079 NOREF(paArgs);
1080
1081 PGM_LOCK_VOID(pVM);
1082 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1083 PGMPOOLCHECKERSTATE State = { pCmdHlp, pVM, pPool, NULL, true, 0 };
1084 for (unsigned i = 0; i < pPool->cCurPages; i++)
1085 {
1086 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1087 State.pPage = pPage;
1088 State.fFirstMsg = true;
1089
1090 if (pPage->idx != i)
1091 pgmR3PoolCheckError(&State, "Invalid idx value: %#x, expected %#x", pPage->idx, i);
1092
1093 if (pPage->enmKind == PGMPOOLKIND_FREE)
1094 continue;
1095 if (pPage->enmKind > PGMPOOLKIND_LAST || pPage->enmKind <= PGMPOOLKIND_INVALID)
1096 {
1097 if (pPage->enmKind != PGMPOOLKIND_INVALID || pPage->idx != 0)
1098 pgmR3PoolCheckError(&State, "Invalid enmKind value: %#x\n", pPage->enmKind);
1099 continue;
1100 }
1101
1102 void const *pvGuestPage = NULL;
1103 PGMPAGEMAPLOCK LockPage;
1104 if ( pPage->enmKind != PGMPOOLKIND_EPT_PDPT_FOR_PHYS
1105 && pPage->enmKind != PGMPOOLKIND_EPT_PD_FOR_PHYS
1106 && pPage->enmKind != PGMPOOLKIND_EPT_PT_FOR_PHYS
1107 && pPage->enmKind != PGMPOOLKIND_ROOT_NESTED)
1108 {
1109 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, &pvGuestPage, &LockPage);
1110 if (RT_FAILURE(rc))
1111 {
1112 pgmR3PoolCheckError(&State, "PGMPhysGCPhys2CCPtrReadOnly failed for %RGp: %Rrc\n", pPage->GCPhys, rc);
1113 continue;
1114 }
1115 }
1116# define HCPHYS_TO_POOL_PAGE(a_HCPhys) (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, (a_HCPhys))
1117
1118 /*
1119 * Check if something obvious is out of sync.
1120 */
1121 switch (pPage->enmKind)
1122 {
1123 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1124 {
1125 PCPGMSHWPTPAE const pShwPT = (PCPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
1126 PCX86PDPAE const pGstPT = (PCX86PDPAE)pvGuestPage;
1127 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1128 if (PGMSHWPTEPAE_IS_P(pShwPT->a[j]))
1129 {
1130 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1131 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1132 if ( rc != VINF_SUCCESS
1133 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys)
1134 pgmR3PoolCheckError(&State, "Mismatch HCPhys: rc=%Rrc idx=%#x guest %RX64 shw=%RX64 vs %RHp\n",
1135 rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
1136 else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j])
1137 && !(pGstPT->a[j].u & X86_PTE_RW))
1138 pgmR3PoolCheckError(&State, "Mismatch r/w gst/shw: idx=%#x guest %RX64 shw=%RX64 vs %RHp\n",
1139 j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
1140 }
1141 break;
1142 }
1143
1144 case PGMPOOLKIND_EPT_PT_FOR_EPT_PT:
1145 {
1146 PCEPTPT const pShwPT = (PCEPTPT)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
1147 PCEPTPT const pGstPT = (PCEPTPT)pvGuestPage;
1148 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1149 {
1150 uint64_t const uShw = pShwPT->a[j].u;
1151 if (uShw & EPT_PRESENT_MASK)
1152 {
1153 uint64_t const uGst = pGstPT->a[j].u;
1154 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1155 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), uGst & EPT_E_PG_MASK, &HCPhys);
1156 if ( rc != VINF_SUCCESS
1157 || (uShw & EPT_E_PG_MASK) != HCPhys)
1158 pgmR3PoolCheckError(&State, "Mismatch HCPhys: rc=%Rrc idx=%#x guest %RX64 shw=%RX64 vs %RHp\n",
1159 rc, j, uGst, uShw, HCPhys);
1160 if ( (uShw & (EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE))
1161 != (EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE)
1162 && ( ((uShw & EPT_E_READ) && !(uGst & EPT_E_READ))
1163 || ((uShw & EPT_E_WRITE) && !(uGst & EPT_E_WRITE))
1164 || ((uShw & EPT_E_EXECUTE) && !(uGst & EPT_E_EXECUTE)) ) )
1165 pgmR3PoolCheckError(&State, "Mismatch r/w/x: idx=%#x guest %RX64 shw=%RX64\n", j, uGst, uShw);
1166 }
1167 }
1168 break;
1169 }
1170
1171 case PGMPOOLKIND_EPT_PT_FOR_EPT_2MB:
1172 {
1173 PCEPTPT const pShwPT = (PCEPTPT)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
1174 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1175 {
1176 uint64_t const uShw = pShwPT->a[j].u;
1177 if (uShw & EPT_E_LEAF)
1178 pgmR3PoolCheckError(&State, "Leafness-error: idx=%#x shw=%RX64 (2MB)\n", j, uShw);
1179 else if (uShw & EPT_PRESENT_MASK)
1180 {
1181 RTGCPHYS const GCPhysSubPage = pPage->GCPhys | (j << PAGE_SHIFT);
1182 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1183 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), GCPhysSubPage, &HCPhys);
1184 if ( rc != VINF_SUCCESS
1185 || (uShw & EPT_E_PG_MASK) != HCPhys)
1186 pgmR3PoolCheckError(&State, "Mismatch HCPhys: rc=%Rrc idx=%#x guest %RX64 shw=%RX64 vs %RHp\n",
1187 rc, j, GCPhysSubPage, uShw, HCPhys);
1188 }
1189 }
1190 break;
1191 }
1192
1193 case PGMPOOLKIND_EPT_PD_FOR_EPT_PD:
1194 {
1195 PCEPTPD const pShwPD = (PCEPTPD)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
1196 PCEPTPD const pGstPD = (PCEPTPD)pvGuestPage;
1197 for (unsigned j = 0; j < RT_ELEMENTS(pShwPD->a); j++)
1198 {
1199 uint64_t const uShw = pShwPD->a[j].u;
1200 if (uShw & EPT_PRESENT_MASK)
1201 {
1202 uint64_t const uGst = pGstPD->a[j].u;
1203 if (uShw & EPT_E_LEAF)
1204 {
1205 if (!(uGst & EPT_E_LEAF))
1206 pgmR3PoolCheckError(&State, "Leafness-mismatch: idx=%#x guest %RX64 shw=%RX64\n", j, uGst, uShw);
1207 else
1208 {
1209 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1210 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), uGst & EPT_PDE2M_PG_MASK, &HCPhys);
1211 if ( rc != VINF_SUCCESS
1212 || (uShw & EPT_E_PG_MASK) != HCPhys)
1213 pgmR3PoolCheckError(&State, "Mismatch HCPhys: rc=%Rrc idx=%#x guest %RX64 shw=%RX64 vs %RHp (2MB)\n",
1214 rc, j, uGst, uShw, HCPhys);
1215 }
1216 }
1217 else
1218 {
1219 PPGMPOOLPAGE pSubPage = HCPHYS_TO_POOL_PAGE(uShw & EPT_E_PG_MASK);
1220 if (pSubPage)
1221 {
1222 if ( pSubPage->enmKind != PGMPOOLKIND_EPT_PT_FOR_EPT_PT
1223 && pSubPage->enmKind != PGMPOOLKIND_EPT_PT_FOR_EPT_2MB)
1224 pgmR3PoolCheckError(&State, "Wrong sub-table type: idx=%#x guest %RX64 shw=%RX64: idxSub=%#x %s\n",
1225 j, uGst, uShw, pSubPage->idx, pgmPoolPoolKindToStr(pSubPage->enmKind));
1226 if (pSubPage->fA20Enabled != pPage->fA20Enabled)
1227 pgmR3PoolCheckError(&State, "Wrong sub-table A20: idx=%#x guest %RX64 shw=%RX64: idxSub=%#x A20=%d, expected %d\n",
1228 j, uGst, uShw, pSubPage->idx, pSubPage->fA20Enabled, pPage->fA20Enabled);
1229 if (pSubPage->GCPhys != (uGst & EPT_E_PG_MASK))
1230 pgmR3PoolCheckError(&State, "Wrong sub-table GCPhys: idx=%#x guest %RX64 shw=%RX64: GCPhys=%#RGp idxSub=%#x\n",
1231 j, uGst, uShw, pSubPage->GCPhys, pSubPage->idx);
1232 }
1233 else
1234 pgmR3PoolCheckError(&State, "sub table not found: idx=%#x shw=%RX64\n", j, uShw);
1235 }
1236 if ( (uShw & (EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE))
1237 != (EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE)
1238 && ( ((uShw & EPT_E_READ) && !(uGst & EPT_E_READ))
1239 || ((uShw & EPT_E_WRITE) && !(uGst & EPT_E_WRITE))
1240 || ((uShw & EPT_E_EXECUTE) && !(uGst & EPT_E_EXECUTE)) ) )
1241 pgmR3PoolCheckError(&State, "Mismatch r/w/x: idx=%#x guest %RX64 shw=%RX64\n",
1242 j, uGst, uShw);
1243 }
1244 }
1245 break;
1246 }
1247
1248 case PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT:
1249 {
1250 PCEPTPDPT const pShwPDPT = (PCEPTPDPT)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
1251 PCEPTPDPT const pGstPDPT = (PCEPTPDPT)pvGuestPage;
1252 for (unsigned j = 0; j < RT_ELEMENTS(pShwPDPT->a); j++)
1253 {
1254 uint64_t const uShw = pShwPDPT->a[j].u;
1255 if (uShw & EPT_PRESENT_MASK)
1256 {
1257 uint64_t const uGst = pGstPDPT->a[j].u;
1258 if (uShw & EPT_E_LEAF)
1259 pgmR3PoolCheckError(&State, "No 1GiB shadow pages: idx=%#x guest %RX64 shw=%RX64\n", j, uGst, uShw);
1260 else
1261 {
1262 PPGMPOOLPAGE pSubPage = HCPHYS_TO_POOL_PAGE(uShw & EPT_E_PG_MASK);
1263 if (pSubPage)
1264 {
1265 if (pSubPage->enmKind != PGMPOOLKIND_EPT_PD_FOR_EPT_PD)
1266 pgmR3PoolCheckError(&State, "Wrong sub-table type: idx=%#x guest %RX64 shw=%RX64: idxSub=%#x %s\n",
1267 j, uGst, uShw, pSubPage->idx, pgmPoolPoolKindToStr(pSubPage->enmKind));
1268 if (pSubPage->fA20Enabled != pPage->fA20Enabled)
1269 pgmR3PoolCheckError(&State, "Wrong sub-table A20: idx=%#x guest %RX64 shw=%RX64: idxSub=%#x A20=%d, expected %d\n",
1270 j, uGst, uShw, pSubPage->idx, pSubPage->fA20Enabled, pPage->fA20Enabled);
1271 if (pSubPage->GCPhys != (uGst & EPT_E_PG_MASK))
1272 pgmR3PoolCheckError(&State, "Wrong sub-table GCPhys: idx=%#x guest %RX64 shw=%RX64: GCPhys=%#RGp idxSub=%#x\n",
1273 j, uGst, uShw, pSubPage->GCPhys, pSubPage->idx);
1274 }
1275 else
1276 pgmR3PoolCheckError(&State, "sub table not found: idx=%#x shw=%RX64\n", j, uShw);
1277
1278 }
1279 if ( (uShw & (EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE))
1280 != (EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE)
1281 && ( ((uShw & EPT_E_READ) && !(uGst & EPT_E_READ))
1282 || ((uShw & EPT_E_WRITE) && !(uGst & EPT_E_WRITE))
1283 || ((uShw & EPT_E_EXECUTE) && !(uGst & EPT_E_EXECUTE)) ) )
1284 pgmR3PoolCheckError(&State, "Mismatch r/w/x: idx=%#x guest %RX64 shw=%RX64\n",
1285 j, uGst, uShw);
1286 }
1287 }
1288 break;
1289 }
1290
1291 case PGMPOOLKIND_EPT_PML4_FOR_EPT_PML4:
1292 {
1293 PCEPTPML4 const pShwPML4 = (PCEPTPML4)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
1294 PCEPTPML4 const pGstPML4 = (PCEPTPML4)pvGuestPage;
1295 for (unsigned j = 0; j < RT_ELEMENTS(pShwPML4->a); j++)
1296 {
1297 uint64_t const uShw = pShwPML4->a[j].u;
1298 if (uShw & EPT_PRESENT_MASK)
1299 {
1300 uint64_t const uGst = pGstPML4->a[j].u;
1301 if (uShw & EPT_E_LEAF)
1302 pgmR3PoolCheckError(&State, "No 0.5TiB shadow pages: idx=%#x guest %RX64 shw=%RX64\n", j, uGst, uShw);
1303 else
1304 {
1305 PPGMPOOLPAGE pSubPage = HCPHYS_TO_POOL_PAGE(uShw & EPT_E_PG_MASK);
1306 if (pSubPage)
1307 {
1308 if (pSubPage->enmKind != PGMPOOLKIND_EPT_PDPT_FOR_EPT_PDPT)
1309 pgmR3PoolCheckError(&State, "Wrong sub-table type: idx=%#x guest %RX64 shw=%RX64: idxSub=%#x %s\n",
1310 j, uGst, uShw, pSubPage->idx, pgmPoolPoolKindToStr(pSubPage->enmKind));
1311 if (pSubPage->fA20Enabled != pPage->fA20Enabled)
1312 pgmR3PoolCheckError(&State, "Wrong sub-table A20: idx=%#x guest %RX64 shw=%RX64: idxSub=%#x A20=%d, expected %d\n",
1313 j, uGst, uShw, pSubPage->idx, pSubPage->fA20Enabled, pPage->fA20Enabled);
1314 if (pSubPage->GCPhys != (uGst & EPT_E_PG_MASK))
1315 pgmR3PoolCheckError(&State, "Wrong sub-table GCPhys: idx=%#x guest %RX64 shw=%RX64: GCPhys=%#RGp idxSub=%#x\n",
1316 j, uGst, uShw, pSubPage->GCPhys, pSubPage->idx);
1317 }
1318 else
1319 pgmR3PoolCheckError(&State, "sub table not found: idx=%#x shw=%RX64\n", j, uShw);
1320
1321 }
1322 if ( (uShw & (EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE))
1323 != (EPT_E_READ | EPT_E_WRITE | EPT_E_EXECUTE)
1324 && ( ((uShw & EPT_E_READ) && !(uGst & EPT_E_READ))
1325 || ((uShw & EPT_E_WRITE) && !(uGst & EPT_E_WRITE))
1326 || ((uShw & EPT_E_EXECUTE) && !(uGst & EPT_E_EXECUTE)) ) )
1327 pgmR3PoolCheckError(&State, "Mismatch r/w/x: idx=%#x guest %RX64 shw=%RX64\n",
1328 j, uGst, uShw);
1329 }
1330 }
1331 break;
1332 }
1333 }
1334
1335#undef HCPHYS_TO_POOL_PAGE
1336 if (pvGuestPage)
1337 PGMPhysReleasePageMappingLock(pVM, &LockPage);
1338 }
1339 PGM_UNLOCK(pVM);
1340
1341 if (State.cErrors > 0)
1342 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Found %u error(s)", State.cErrors);
1343 DBGCCmdHlpPrintf(pCmdHlp, "No errors found\n");
1344 return VINF_SUCCESS;
1345}
1346
1347#endif /* VBOX_WITH_DEBUGGER */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette