/* $Id: PGMPool.cpp 93931 2022-02-24 16:02:00Z vboxsync $ */ /** @file * PGM Shadow Page Pool. */ /* * Copyright (C) 2006-2022 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /** @page pg_pgm_pool PGM Shadow Page Pool * * Motivations: * -# Relationship between shadow page tables and physical guest pages. This * should allow us to skip most of the global flushes now following access * handler changes. The main expense is flushing shadow pages. * -# Limit the pool size if necessary (default is kind of limitless). * -# Allocate shadow pages from RC. We use to only do this in SyncCR3. * -# Required for 64-bit guests. * -# Combining the PD cache and page pool in order to simplify caching. * * * @section sec_pgm_pool_outline Design Outline * * The shadow page pool tracks pages used for shadowing paging structures (i.e. * page tables, page directory, page directory pointer table and page map * level-4). Each page in the pool has an unique identifier. This identifier is * used to link a guest physical page to a shadow PT. The identifier is a * non-zero value and has a relativly low max value - say 14 bits. This makes it * possible to fit it into the upper bits of the of the aHCPhys entries in the * ram range. * * By restricting host physical memory to the first 48 bits (which is the * announced physical memory range of the K8L chip (scheduled for 2008)), we * can safely use the upper 16 bits for shadow page ID and reference counting. * * Update: The 48 bit assumption will be lifted with the new physical memory * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB * into a box in some years. * * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT * or PD. This is solved by creating a list of physical cross reference extents * when ever this happens. Each node in the list (extent) is can contain 3 page * pool indexes. The list it self is chained using indexes into the paPhysExt * array. * * * @section sec_pgm_pool_life Life Cycle of a Shadow Page * * -# The SyncPT function requests a page from the pool. * The request includes the kind of page it is (PT/PD, PAE/legacy), the * address of the page it's shadowing, and more. * -# The pool responds to the request by allocating a new page. * When the cache is enabled, it will first check if it's in the cache. * Should the pool be exhausted, one of two things can be done: * -# Flush the whole pool and current CR3. * -# Use the cache to find a page which can be flushed (~age). * -# The SyncPT function will sync one or more pages and insert it into the * shadow PD. * -# The SyncPage function may sync more pages on a later \#PFs. * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases. * When caching is enabled, the page isn't flush but remains in the cache. * * * @section sec_pgm_pool_monitoring Monitoring * * We always monitor GUEST_PAGE_SIZE chunks of memory. When we've got multiple * shadow pages for the same GUEST_PAGE_SIZE of guest memory (PAE and mixed * PD/PT) the pages sharing the monitor get linked using the * iMonitoredNext/Prev. The head page is the pvUser to the access handlers. * * * @section sec_pgm_pool_impl Implementation * * The pool will take pages from the MM page pool. The tracking data * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The * pool content can be accessed both by using the page id and the physical * address (HC). The former is managed by means of an array, the latter by an * offset based AVL tree. * * Flushing of a pool page means that we iterate the content (we know what kind * it is) and updates the link information in the ram range. * * ... */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM_POOL #define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */ #include #include #include "PGMInternal.h" #include #include #include "PGMInline.h" #include #include #include #include #include /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ #ifdef VBOX_WITH_DEBUGGER static FNDBGCCMD pgmR3PoolCmdCheck; #endif #ifdef VBOX_WITH_DEBUGGER /** Command descriptors. */ static const DBGCCMD g_aCmds[] = { /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */ { "pgmpoolcheck", 0, 0, NULL, 0, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." }, }; #endif /** * Initializes the pool * * @returns VBox status code. * @param pVM The cross context VM structure. */ int pgmR3PoolInit(PVM pVM) { int rc; AssertCompile(NIL_PGMPOOL_IDX == 0); /* pPage->cLocked is an unsigned byte. */ AssertCompile(VMM_MAX_CPU_COUNT <= 255); /* * Query Pool config. */ PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool"); /* Default pgm pool size is 1024 pages (4MB). */ uint16_t cMaxPages = 1024; /* Adjust it up relative to the RAM size, using the nested paging formula. */ uint64_t cbRam; rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0); AssertRCReturn(rc, rc); /** @todo guest x86 specific */ uint64_t u64MaxPages = (cbRam >> 9) + (cbRam >> 18) + (cbRam >> 27) + 32 * GUEST_PAGE_SIZE; u64MaxPages >>= GUEST_PAGE_SHIFT; if (u64MaxPages > PGMPOOL_IDX_LAST) cMaxPages = PGMPOOL_IDX_LAST; else cMaxPages = (uint16_t)u64MaxPages; /** @cfgm{/PGM/Pool/MaxPages, uint16_t, \#pages, 16, 0x3fff, F(ram-size)} * The max size of the shadow page pool in pages. The pool will grow dynamically * up to this limit. */ rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages); AssertLogRelRCReturn(rc, rc); AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16), ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER); AssertCompile(RT_IS_POWER_OF_TWO(PGMPOOL_CFG_MAX_GROW)); if (cMaxPages < PGMPOOL_IDX_LAST) cMaxPages = RT_ALIGN(cMaxPages, PGMPOOL_CFG_MAX_GROW / 2); if (cMaxPages > PGMPOOL_IDX_LAST) cMaxPages = PGMPOOL_IDX_LAST; LogRel(("PGM: PGMPool: cMaxPages=%u (u64MaxPages=%llu)\n", cMaxPages, u64MaxPages)); /** @todo * We need to be much more careful with our allocation strategy here. * For nested paging we don't need pool user info nor extents at all, but * we can't check for nested paging here (too early during init to get a * confirmation it can be used). The default for large memory configs is a * bit large for shadow paging, so I've restricted the extent maximum to 8k * (8k * 16 = 128k of hyper heap). * * Also when large page support is enabled, we typically don't need so much, * although that depends on the availability of 2 MB chunks on the host. */ /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, \#users, MaxUsers, 32K, MaxPages*2} * The max number of shadow page user tracking records. Each shadow page has * zero of other shadow pages (or CR3s) that references it, or uses it if you * like. The structures describing these relationships are allocated from a * fixed sized pool. This configuration variable defines the pool size. */ uint16_t cMaxUsers; rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2); AssertLogRelRCReturn(rc, rc); AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K, ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER); /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, \#extents, 16, MaxPages * 2, MIN(MaxPages*2\,8192)} * The max number of extents for tracking aliased guest pages. */ uint16_t cMaxPhysExts; rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts, RT_MIN(cMaxPages * 2, 8192 /* 8Ki max as this eat too much hyper heap */)); AssertLogRelRCReturn(rc, rc); AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPhysExts <= PGMPOOL_IDX_LAST, ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER); /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true} * Enables or disabling caching of shadow pages. Caching means that we will try * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or * SyncPage requests one. When reusing a shadow page, we can save time * reconstructing it and it's children. */ bool fCacheEnabled; rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true); AssertLogRelRCReturn(rc, rc); LogRel(("PGM: pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n", cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled)); /* * Allocate the data structures. */ uint32_t cb = RT_UOFFSETOF_DYN(PGMPOOL, aPages[cMaxPages]); cb += cMaxUsers * sizeof(PGMPOOLUSER); cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT); PPGMPOOL pPool; RTR0PTR pPoolR0; rc = SUPR3PageAllocEx(RT_ALIGN_32(cb, HOST_PAGE_SIZE) >> HOST_PAGE_SHIFT, 0 /*fFlags*/, (void **)&pPool, &pPoolR0, NULL); if (RT_FAILURE(rc)) return rc; Assert(ASMMemIsZero(pPool, cb)); pVM->pgm.s.pPoolR3 = pPool->pPoolR3 = pPool; pVM->pgm.s.pPoolR0 = pPool->pPoolR0 = pPoolR0; /* * Initialize it. */ pPool->pVMR3 = pVM; pPool->pVMR0 = pVM->pVMR0ForCall; pPool->cMaxPages = cMaxPages; pPool->cCurPages = PGMPOOL_IDX_FIRST; pPool->iUserFreeHead = 0; pPool->cMaxUsers = cMaxUsers; PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages]; pPool->paUsersR3 = paUsers; pPool->paUsersR0 = pPoolR0 + (uintptr_t)paUsers - (uintptr_t)pPool; for (unsigned i = 0; i < cMaxUsers; i++) { paUsers[i].iNext = i + 1; paUsers[i].iUser = NIL_PGMPOOL_IDX; paUsers[i].iUserTable = 0xfffffffe; } paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX; pPool->iPhysExtFreeHead = 0; pPool->cMaxPhysExts = cMaxPhysExts; PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers]; pPool->paPhysExtsR3 = paPhysExts; pPool->paPhysExtsR0 = pPoolR0 + (uintptr_t)paPhysExts - (uintptr_t)pPool; for (unsigned i = 0; i < cMaxPhysExts; i++) { paPhysExts[i].iNext = i + 1; paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; } paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX; for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++) pPool->aiHash[i] = NIL_PGMPOOL_IDX; pPool->iAgeHead = NIL_PGMPOOL_IDX; pPool->iAgeTail = NIL_PGMPOOL_IDX; pPool->fCacheEnabled = fCacheEnabled; pPool->hAccessHandlerType = NIL_PGMPHYSHANDLERTYPE; rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE, PGMPHYSHANDLER_F_KEEP_PGM_LOCK, pgmPoolAccessHandler, "Guest Paging Access Handler", &pPool->hAccessHandlerType); AssertLogRelRCReturn(rc, rc); pPool->HCPhysTree = 0; /* * The NIL entry. */ Assert(NIL_PGMPOOL_IDX == 0); pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID; pPool->aPages[NIL_PGMPOOL_IDX].idx = NIL_PGMPOOL_IDX; pPool->aPages[NIL_PGMPOOL_IDX].Core.Key = NIL_RTHCPHYS; pPool->aPages[NIL_PGMPOOL_IDX].GCPhys = NIL_RTGCPHYS; pPool->aPages[NIL_PGMPOOL_IDX].iNext = NIL_PGMPOOL_IDX; /* pPool->aPages[NIL_PGMPOOL_IDX].cLocked = INT32_MAX; - test this out... */ pPool->aPages[NIL_PGMPOOL_IDX].pvPageR3 = 0; pPool->aPages[NIL_PGMPOOL_IDX].iUserHead = NIL_PGMPOOL_USER_INDEX; pPool->aPages[NIL_PGMPOOL_IDX].iModifiedNext = NIL_PGMPOOL_IDX; pPool->aPages[NIL_PGMPOOL_IDX].iModifiedPrev = NIL_PGMPOOL_IDX; pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredNext = NIL_PGMPOOL_IDX; pPool->aPages[NIL_PGMPOOL_IDX].iMonitoredPrev = NIL_PGMPOOL_IDX; pPool->aPages[NIL_PGMPOOL_IDX].iAgeNext = NIL_PGMPOOL_IDX; pPool->aPages[NIL_PGMPOOL_IDX].iAgePrev = NIL_PGMPOOL_IDX; Assert(pPool->aPages[NIL_PGMPOOL_IDX].idx == NIL_PGMPOOL_IDX); Assert(pPool->aPages[NIL_PGMPOOL_IDX].GCPhys == NIL_RTGCPHYS); Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fSeenNonGlobal); Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fMonitored); Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fCached); Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fZeroed); Assert(!pPool->aPages[NIL_PGMPOOL_IDX].fReusedFlushPending); /* * Register statistics. */ STAM_REL_REG(pVM, &pPool->StatGrow, STAMTYPE_PROFILE, "/PGM/Pool/Grow", STAMUNIT_TICKS_PER_CALL, "Profiling PGMR0PoolGrow"); #ifdef VBOX_WITH_STATISTICS STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size."); STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size."); STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use."); STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages."); STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc."); STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll."); STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset."); STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage."); STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree."); STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage()."); STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage()."); STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages."); STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc."); STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records."); STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries."); STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref."); STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT."); STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs."); STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow."); STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries."); STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries."); STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records."); STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages."); STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches."); STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls."); STAM_REG(pVM, &pPool->StatMonitorPfRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access handler."); STAM_REG(pVM, &pPool->StatMonitorPfRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction."); STAM_REG(pVM, &pPool->StatMonitorPfRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler."); STAM_REG(pVM, &pPool->StatMonitorPfRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit."); STAM_REG(pVM, &pPool->StatMonitorPfRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often."); STAM_REG(pVM, &pPool->StatMonitorPfRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork()."); STAM_REG(pVM, &pPool->StatMonitorPfRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 #PF access we've handled (except REP STOSD)."); STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction."); STAM_REG(pVM, &pPool->StatMonitorPfRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing."); STAM_REG(pVM, &pPool->StatMonitorPfRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/#PF/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle."); STAM_REG(pVM, &pPool->StatMonitorPfRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/#PF/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled."); STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM", STAMUNIT_TICKS_PER_CALL, "Profiling the regular access handler."); STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/IEM/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the regular access handler."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[0], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[1], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[2], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[3], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[4], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[5], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[6], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[7], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[8], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[9], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[10], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[11], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[12], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[13], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[14], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[15], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[16], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[17], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZSizes[18], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[0], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1."); STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[1], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2."); STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[2], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3."); STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[3], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4."); STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[4], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5."); STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[5], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6."); STAM_REG(pVM, &pPool->aStatMonitorRZMisaligned[6], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IEM/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7."); STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults."); STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults."); STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults."); STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults."); STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler."); STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[0], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size01", STAMUNIT_OCCURENCES, "Number of 1 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[1], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size02", STAMUNIT_OCCURENCES, "Number of 2 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[2], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size03", STAMUNIT_OCCURENCES, "Number of 3 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[3], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size04", STAMUNIT_OCCURENCES, "Number of 4 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[4], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size05", STAMUNIT_OCCURENCES, "Number of 5 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[5], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size06", STAMUNIT_OCCURENCES, "Number of 6 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[6], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size07", STAMUNIT_OCCURENCES, "Number of 7 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[7], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size08", STAMUNIT_OCCURENCES, "Number of 8 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[8], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size09", STAMUNIT_OCCURENCES, "Number of 9 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[9], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0a", STAMUNIT_OCCURENCES, "Number of 10 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[10], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0b", STAMUNIT_OCCURENCES, "Number of 11 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[11], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0c", STAMUNIT_OCCURENCES, "Number of 12 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[12], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0d", STAMUNIT_OCCURENCES, "Number of 13 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[13], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0e", STAMUNIT_OCCURENCES, "Number of 14 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[14], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size0f", STAMUNIT_OCCURENCES, "Number of 15 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[15], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size10", STAMUNIT_OCCURENCES, "Number of 16 byte accesses (R3)."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[16], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size11-2f", STAMUNIT_OCCURENCES, "Number of 17-31 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[17], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size20-3f", STAMUNIT_OCCURENCES, "Number of 32-63 byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorR3Sizes[18], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Size40+", STAMUNIT_OCCURENCES, "Number of 64+ byte accesses."); STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[0], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned1", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 1 in R3."); STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[1], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned2", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 2 in R3."); STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[2], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned3", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 3 in R3."); STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[3], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned4", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 4 in R3."); STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[4], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned5", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 5 in R3."); STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[5], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned6", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 6 in R3."); STAM_REG(pVM, &pPool->aStatMonitorR3Misaligned[6], STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Misaligned7", STAMUNIT_OCCURENCES, "Number of misaligned access with offset 7 in R3."); STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults."); STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults."); STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults."); STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults."); STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value."); STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages."); STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page)."); STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage."); STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management."); STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow."); STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache."); STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache."); STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)"); STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page."); STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations."); STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations."); #endif /* VBOX_WITH_STATISTICS */ #ifdef VBOX_WITH_DEBUGGER /* * Debugger commands. */ static bool s_fRegisteredCmds = false; if (!s_fRegisteredCmds) { rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds)); if (RT_SUCCESS(rc)) s_fRegisteredCmds = true; } #endif return VINF_SUCCESS; } /** * Relocate the page pool data. * * @param pVM The cross context VM structure. */ void pgmR3PoolRelocate(PVM pVM) { RT_NOREF(pVM); } /** * Grows the shadow page pool. * * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMR3_INT_DECL(int) PGMR3PoolGrow(PVM pVM, PVMCPU pVCpu) { /* This used to do a lot of stuff, but it has moved to ring-0 (PGMR0PoolGrow). */ AssertReturn(pVM->pgm.s.pPoolR3->cCurPages < pVM->pgm.s.pPoolR3->cMaxPages, VERR_PGM_POOL_MAXED_OUT_ALREADY); int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_PGM_POOL_GROW, 0, NULL); if (rc == VINF_SUCCESS) return rc; LogRel(("PGMR3PoolGrow: rc=%Rrc cCurPages=%#x cMaxPages=%#x\n", rc, pVM->pgm.s.pPoolR3->cCurPages, pVM->pgm.s.pPoolR3->cMaxPages)); if (pVM->pgm.s.pPoolR3->cCurPages > 128 && RT_FAILURE_NP(rc)) return -rc; return rc; } /** * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages * and all modification counters. * * This is only called on one of the EMTs while the other ones are waiting for * it to complete this function. * * @returns VINF_SUCCESS (VBox strict status code). * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the calling EMT. Unused. * @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well. * (This is the pvUser, so it has to be void *.) * */ DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTlb) { PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); STAM_PROFILE_START(&pPool->StatClearAll, c); NOREF(pVCpu); PGM_LOCK_VOID(pVM); Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTlb=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTlb)); /* * Iterate all the pages until we've encountered all that are in use. * This is a simple but not quite optimal solution. */ unsigned cModifiedPages = 0; NOREF(cModifiedPages); unsigned cLeft = pPool->cUsedPages; uint32_t iPage = pPool->cCurPages; while (--iPage >= PGMPOOL_IDX_FIRST) { PPGMPOOLPAGE pPage = &pPool->aPages[iPage]; if (pPage->GCPhys != NIL_RTGCPHYS) { switch (pPage->enmKind) { /* * We only care about shadow page tables that reference physical memory */ #ifdef PGM_WITH_LARGE_PAGES case PGMPOOLKIND_PAE_PD_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */ if (pPage->cPresent) { PX86PDPAE pShwPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage); for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) { //Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0); - bogus, includes X86_PDE_PS. if ((pShwPD->a[i].u & (X86_PDE_P | X86_PDE_PS)) == (X86_PDE_P | X86_PDE_PS)) { pShwPD->a[i].u = 0; Assert(pPage->cPresent); pPage->cPresent--; } } if (pPage->cPresent == 0) pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; } goto default_case; case PGMPOOLKIND_EPT_PD_FOR_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */ if (pPage->cPresent) { PEPTPD pShwPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage); for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) { if ((pShwPD->a[i].u & (EPT_E_READ | EPT_E_LEAF)) == (EPT_E_READ | EPT_E_LEAF)) { pShwPD->a[i].u = 0; Assert(pPage->cPresent); pPage->cPresent--; } } if (pPage->cPresent == 0) pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; } goto default_case; #endif /* PGM_WITH_LARGE_PAGES */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: case PGMPOOLKIND_PAE_PT_FOR_PHYS: case PGMPOOLKIND_EPT_PT_FOR_PHYS: { if (pPage->cPresent) { void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage); STAM_PROFILE_START(&pPool->StatZeroPage, z); #if 0 /* Useful check for leaking references; *very* expensive though. */ switch (pPage->enmKind) { case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_PHYS: { bool fFoundFirst = false; PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw; for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++) { if (pPT->a[ptIndex].u) { if (!fFoundFirst) { AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent)); if (pPage->iFirstPresent != ptIndex) Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent)); fFoundFirst = true; } if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex])) { pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS); if (pPage->iFirstPresent == ptIndex) pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; } } } AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys)); break; } default: break; } #endif ASMMemZeroPage(pvShw); STAM_PROFILE_STOP(&pPool->StatZeroPage, z); pPage->cPresent = 0; pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; } } RT_FALL_THRU(); default: #ifdef PGM_WITH_LARGE_PAGES default_case: #endif Assert(!pPage->cModifications || ++cModifiedPages); Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications); Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications); pPage->iModifiedNext = NIL_PGMPOOL_IDX; pPage->iModifiedPrev = NIL_PGMPOOL_IDX; pPage->cModifications = 0; break; } if (!--cLeft) break; } } #ifndef DEBUG_michael AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages)); #endif pPool->iModifiedHead = NIL_PGMPOOL_IDX; pPool->cModifiedPages = 0; /* * Clear all the GCPhys links and rebuild the phys ext free list. */ for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX); pRam; pRam = pRam->CTX_SUFF(pNext)) { iPage = pRam->cb >> GUEST_PAGE_SHIFT; while (iPage-- > 0) PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0); } pPool->iPhysExtFreeHead = 0; PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts); const unsigned cMaxPhysExts = pPool->cMaxPhysExts; for (unsigned i = 0; i < cMaxPhysExts; i++) { paPhysExts[i].iNext = i + 1; paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX; paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; } paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX; #ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT /* Reset all dirty pages to reactivate the page monitoring. */ /* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to * recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint */ for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) { unsigned idxPage = pPool->aidxDirtyPages[i]; if (idxPage == NIL_PGMPOOL_IDX) continue; PPGMPOOLPAGE pPage = &pPool->aPages[idxPage]; Assert(pPage->idx == idxPage); Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i)); Log(("Reactivate dirty page %RGp\n", pPage->GCPhys)); /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */ int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK); AssertRCSuccess(rc); pPage->fDirty = false; pPool->aidxDirtyPages[i] = NIL_PGMPOOL_IDX; } /* Clear all dirty pages. */ pPool->idxFreeDirtyPage = 0; pPool->cDirtyPages = 0; #endif /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) pVM->apCpusR3[idCpu]->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL; /* Flush job finished. */ VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING); pPool->cPresent = 0; PGM_UNLOCK(pVM); PGM_INVL_ALL_VCPU_TLBS(pVM); if (fpvFlushRemTlb) for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) CPUMSetChangedFlags(pVM->apCpusR3[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH); STAM_PROFILE_STOP(&pPool->StatClearAll, c); return VINF_SUCCESS; } /** * Clears the shadow page pool. * * @param pVM The cross context VM structure. * @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as * well. */ void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb) { int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb); AssertRC(rc); } /** * Protect all pgm pool page table entries to monitor writes * * @param pVM The cross context VM structure. * * @remarks ASSUMES the caller will flush all TLBs!! */ void pgmR3PoolWriteProtectPages(PVM pVM) { PGM_LOCK_ASSERT_OWNER(pVM); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); unsigned cLeft = pPool->cUsedPages; unsigned iPage = pPool->cCurPages; while (--iPage >= PGMPOOL_IDX_FIRST) { PPGMPOOLPAGE pPage = &pPool->aPages[iPage]; if ( pPage->GCPhys != NIL_RTGCPHYS && pPage->cPresent) { union { void *pv; PX86PT pPT; PPGMSHWPTPAE pPTPae; PEPTPT pPTEpt; } uShw; uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); switch (pPage->enmKind) { /* * We only care about shadow page tables. */ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: case PGMPOOLKIND_32BIT_PT_FOR_PHYS: for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++) if (uShw.pPT->a[iShw].u & X86_PTE_P) uShw.pPT->a[iShw].u = ~(X86PGUINT)X86_PTE_RW; break; case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: case PGMPOOLKIND_PAE_PT_FOR_PHYS: for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++) if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw])) PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]); break; case PGMPOOLKIND_EPT_PT_FOR_PHYS: for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++) if (uShw.pPTEpt->a[iShw].u & EPT_E_READ) uShw.pPTEpt->a[iShw].u &= ~(X86PGPAEUINT)EPT_E_WRITE; break; default: break; } if (!--cLeft) break; } } } #ifdef VBOX_WITH_DEBUGGER /** * @callback_method_impl{FNDBGCCMD, The '.pgmpoolcheck' command.} */ static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, -1, cArgs == 0); uint32_t cErrors = 0; NOREF(paArgs); PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); for (unsigned i = 0; i < pPool->cCurPages; i++) { PPGMPOOLPAGE pPage = &pPool->aPages[i]; bool fFirstMsg = true; /** @todo cover other paging modes too. */ if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) { PPGMSHWPTPAE pShwPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage); { PX86PTPAE pGstPT; PGMPAGEMAPLOCK LockPage; int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, (const void **)&pGstPT, &LockPage); AssertReleaseRC(rc); /* Check if any PTEs are out of sync. */ for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++) { if (PGMSHWPTEPAE_IS_P(pShwPT->a[j])) { RTHCPHYS HCPhys = NIL_RTHCPHYS; rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys); if ( rc != VINF_SUCCESS || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys) { if (fFirstMsg) { DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys); fFirstMsg = false; } DBGCCmdHlpPrintf(pCmdHlp, "Mismatch HCPhys: rc=%Rrc idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys); cErrors++; } else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j]) && !(pGstPT->a[j].u & X86_PTE_RW)) { if (fFirstMsg) { DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys); fFirstMsg = false; } DBGCCmdHlpPrintf(pCmdHlp, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys); cErrors++; } } } PGMPhysReleasePageMappingLock(pVM, &LockPage); } /* Make sure this page table can't be written to from any shadow mapping. */ RTHCPHYS HCPhysPT = NIL_RTHCPHYS; int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT); AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys)); if (rc == VINF_SUCCESS) { for (unsigned j = 0; j < pPool->cCurPages; j++) { PPGMPOOLPAGE pTempPage = &pPool->aPages[j]; if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) { PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage); for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++) { if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[k]) # ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT && !pPage->fDirty # endif && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[k]) == HCPhysPT) { if (fFirstMsg) { DBGCCmdHlpPrintf(pCmdHlp, "Check pool page %RGp\n", pPage->GCPhys); fFirstMsg = false; } DBGCCmdHlpPrintf(pCmdHlp, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, PGMSHWPTEPAE_GET_LOG(pShwPT->a[k]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[k])); cErrors++; } } } } } } } if (cErrors > 0) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Found %#x errors", cErrors); return VINF_SUCCESS; } #endif /* VBOX_WITH_DEBUGGER */