VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 42186

Last change on this file since 42186 was 41965, checked in by vboxsync, 13 years ago

VMM: ran scm. Mostly svn:keywords changes (adding Revision).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 204.8 KB
Line 
1/* $Id: PGM.cpp 41965 2012-06-29 02:52:49Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2011 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred
30 * to as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 *
99 * @subsection sec_pgm_misc_A20 The A20 Gate
100 *
101 * PGM implements the A20 gate masking when translating a virtual guest address
102 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
103 * the code reading the guest page table entries during shadowing. The masking
104 * is done consistenly for all CPU modes, paged ones included. Large pages are
105 * also masked correctly. (On current CPUs, experiments indicates that AMD does
106 * not apply A20M in paged modes and intel only does it for the 2nd MB of
107 * memory.)
108 *
109 * The A20 gate implementation is per CPU core. It can be configured on a per
110 * core basis via the keyboard device and PC architecture device. This is
111 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
112 * guest OSes try pushing things anyway, so who cares. (On current real systems
113 * the A20M signal is probably only sent to the boot CPU and it affects all
114 * thread and probably all cores in that package.)
115 *
116 * The keyboard device and the PC architecture device doesn't OR their A20
117 * config bits together, rather they are currently implemented such that they
118 * mirror the CPU state. So, flipping the bit in either of them will change the
119 * A20 state. (On real hardware the bits of the two devices should probably be
120 * ORed together to indicate enabled, i.e. both needs to be cleared to disable
121 * A20 masking.)
122 *
123 * The A20 state will change immediately, transmeta fashion. There is no delays
124 * due to buses, wiring or other physical stuff. (On real hardware there are
125 * normally delays, the delays differs between the two devices and probably also
126 * between chipsets and CPU generations. Note that it's said that transmeta CPUs
127 * does the change immediately like us, they apparently intercept/handles the
128 * port accesses in microcode. Neat.)
129 *
130 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
131 *
132 *
133 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
134 *
135 * The differences between legacy PAE and long mode PAE are:
136 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
137 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
138 * usual meanings while 6 is ignored (AMD). This means that upon switching to
139 * legacy PAE mode we'll have to clear these bits and when going to long mode
140 * they must be set. This applies to both intermediate and shadow contexts,
141 * however we don't need to do it for the intermediate one since we're
142 * executing with CR0.WP at that time.
143 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
144 * a page aligned one is required.
145 *
146 *
147 * @section sec_pgm_handlers Access Handlers
148 *
149 * Placeholder.
150 *
151 *
152 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
153 *
154 * Placeholder.
155 *
156 *
157 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
158 *
159 * We currently implement three types of virtual access handlers: ALL, WRITE
160 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
161 *
162 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
163 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
164 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
165 * rest of this section is going to be about these handlers.
166 *
167 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
168 * how successful this is gonna be...
169 *
170 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
171 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
172 * and create a new node that is inserted into the AVL tree (range key). Then
173 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
174 *
175 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
176 *
177 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
178 * via the current guest CR3 and update the physical page -> virtual handler
179 * translation. Needless to say, this doesn't exactly scale very well. If any changes
180 * are detected, it will flag a virtual bit update just like we did on registration.
181 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
182 *
183 * 2b. The virtual bit update process will iterate all the pages covered by all the
184 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
185 * virtual handlers on that page.
186 *
187 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
188 * we don't miss any alias mappings of the monitored pages.
189 *
190 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
191 *
192 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
193 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
194 * will call the handlers like in the next step. If the physical mapping has
195 * changed we will - some time in the future - perform a handler callback
196 * (optional) and update the physical -> virtual handler cache.
197 *
198 * 4. \#PF(,write) on a page in the range. This will cause the handler to
199 * be invoked.
200 *
201 * 5. The guest invalidates the page and changes the physical backing or
202 * unmaps it. This should cause the invalidation callback to be invoked
203 * (it might not yet be 100% perfect). Exactly what happens next... is
204 * this where we mess up and end up out of sync for a while?
205 *
206 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
207 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
208 * this handler to NONE and trigger a full PGM resync (basically the same
209 * as int step 1). Which means 2 is executed again.
210 *
211 *
212 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
213 *
214 * There is a bunch of things that needs to be done to make the virtual handlers
215 * work 100% correctly and work more efficiently.
216 *
217 * The first bit hasn't been implemented yet because it's going to slow the
218 * whole mess down even more, and besides it seems to be working reliably for
219 * our current uses. OTOH, some of the optimizations might end up more or less
220 * implementing the missing bits, so we'll see.
221 *
222 * On the optimization side, the first thing to do is to try avoid unnecessary
223 * cache flushing. Then try team up with the shadowing code to track changes
224 * in mappings by means of access to them (shadow in), updates to shadows pages,
225 * invlpg, and shadow PT discarding (perhaps).
226 *
227 * Some idea that have popped up for optimization for current and new features:
228 * - bitmap indicating where there are virtual handlers installed.
229 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
230 * - Further optimize this by min/max (needs min/max avl getters).
231 * - Shadow page table entry bit (if any left)?
232 *
233 */
234
235
236/** @page pg_pgm_phys PGM Physical Guest Memory Management
237 *
238 *
239 * Objectives:
240 * - Guest RAM over-commitment using memory ballooning,
241 * zero pages and general page sharing.
242 * - Moving or mirroring a VM onto a different physical machine.
243 *
244 *
245 * @subsection subsec_pgmPhys_Definitions Definitions
246 *
247 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
248 * machinery associated with it.
249 *
250 *
251 *
252 *
253 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
254 *
255 * Initially we map *all* guest memory to the (per VM) zero page, which
256 * means that none of the read functions will cause pages to be allocated.
257 *
258 * Exception, access bit in page tables that have been shared. This must
259 * be handled, but we must also make sure PGMGst*Modify doesn't make
260 * unnecessary modifications.
261 *
262 * Allocation points:
263 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
264 * - Replacing a zero page mapping at \#PF.
265 * - Replacing a shared page mapping at \#PF.
266 * - ROM registration (currently MMR3RomRegister).
267 * - VM restore (pgmR3Load).
268 *
269 * For the first three it would make sense to keep a few pages handy
270 * until we've reached the max memory commitment for the VM.
271 *
272 * For the ROM registration, we know exactly how many pages we need
273 * and will request these from ring-0. For restore, we will save
274 * the number of non-zero pages in the saved state and allocate
275 * them up front. This would allow the ring-0 component to refuse
276 * the request if the isn't sufficient memory available for VM use.
277 *
278 * Btw. for both ROM and restore allocations we won't be requiring
279 * zeroed pages as they are going to be filled instantly.
280 *
281 *
282 * @subsection subsec_pgmPhys_FreePage Freeing a page
283 *
284 * There are a few points where a page can be freed:
285 * - After being replaced by the zero page.
286 * - After being replaced by a shared page.
287 * - After being ballooned by the guest additions.
288 * - At reset.
289 * - At restore.
290 *
291 * When freeing one or more pages they will be returned to the ring-0
292 * component and replaced by the zero page.
293 *
294 * The reasoning for clearing out all the pages on reset is that it will
295 * return us to the exact same state as on power on, and may thereby help
296 * us reduce the memory load on the system. Further it might have a
297 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
298 *
299 * On restore, as mention under the allocation topic, pages should be
300 * freed / allocated depending on how many is actually required by the
301 * new VM state. The simplest approach is to do like on reset, and free
302 * all non-ROM pages and then allocate what we need.
303 *
304 * A measure to prevent some fragmentation, would be to let each allocation
305 * chunk have some affinity towards the VM having allocated the most pages
306 * from it. Also, try make sure to allocate from allocation chunks that
307 * are almost full. Admittedly, both these measures might work counter to
308 * our intentions and its probably not worth putting a lot of effort,
309 * cpu time or memory into this.
310 *
311 *
312 * @subsection subsec_pgmPhys_SharePage Sharing a page
313 *
314 * The basic idea is that there there will be a idle priority kernel
315 * thread walking the non-shared VM pages hashing them and looking for
316 * pages with the same checksum. If such pages are found, it will compare
317 * them byte-by-byte to see if they actually are identical. If found to be
318 * identical it will allocate a shared page, copy the content, check that
319 * the page didn't change while doing this, and finally request both the
320 * VMs to use the shared page instead. If the page is all zeros (special
321 * checksum and byte-by-byte check) it will request the VM that owns it
322 * to replace it with the zero page.
323 *
324 * To make this efficient, we will have to make sure not to try share a page
325 * that will change its contents soon. This part requires the most work.
326 * A simple idea would be to request the VM to write monitor the page for
327 * a while to make sure it isn't modified any time soon. Also, it may
328 * make sense to skip pages that are being write monitored since this
329 * information is readily available to the thread if it works on the
330 * per-VM guest memory structures (presently called PGMRAMRANGE).
331 *
332 *
333 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
334 *
335 * The pages are organized in allocation chunks in ring-0, this is a necessity
336 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
337 * could easily work on a page-by-page basis if we liked. Whether this is possible
338 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
339 * become a problem as part of the idea here is that we wish to return memory to
340 * the host system.
341 *
342 * For instance, starting two VMs at the same time, they will both allocate the
343 * guest memory on-demand and if permitted their page allocations will be
344 * intermixed. Shut down one of the two VMs and it will be difficult to return
345 * any memory to the host system because the page allocation for the two VMs are
346 * mixed up in the same allocation chunks.
347 *
348 * To further complicate matters, when pages are freed because they have been
349 * ballooned or become shared/zero the whole idea is that the page is supposed
350 * to be reused by another VM or returned to the host system. This will cause
351 * allocation chunks to contain pages belonging to different VMs and prevent
352 * returning memory to the host when one of those VM shuts down.
353 *
354 * The only way to really deal with this problem is to move pages. This can
355 * either be done at VM shutdown and or by the idle priority worker thread
356 * that will be responsible for finding sharable/zero pages. The mechanisms
357 * involved for coercing a VM to move a page (or to do it for it) will be
358 * the same as when telling it to share/zero a page.
359 *
360 *
361 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
362 *
363 * There's a difficult balance between keeping the per-page tracking structures
364 * (global and guest page) easy to use and keeping them from eating too much
365 * memory. We have limited virtual memory resources available when operating in
366 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
367 * tracking structures will be attempted designed such that we can deal with up
368 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
369 *
370 *
371 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
372 *
373 * @see pg_GMM
374 *
375 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
376 *
377 * Fixed info is the physical address of the page (HCPhys) and the page id
378 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
379 * Today we've restricting ourselves to 40(-12) bits because this is the current
380 * restrictions of all AMD64 implementations (I think Barcelona will up this
381 * to 48(-12) bits, not that it really matters) and I needed the bits for
382 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
383 * decent range for the page id: 2^(28+12) = 1024TB.
384 *
385 * In additions to these, we'll have to keep maintaining the page flags as we
386 * currently do. Although it wouldn't harm to optimize these quite a bit, like
387 * for instance the ROM shouldn't depend on having a write handler installed
388 * in order for it to become read-only. A RO/RW bit should be considered so
389 * that the page syncing code doesn't have to mess about checking multiple
390 * flag combinations (ROM || RW handler || write monitored) in order to
391 * figure out how to setup a shadow PTE. But this of course, is second
392 * priority at present. Current this requires 12 bits, but could probably
393 * be optimized to ~8.
394 *
395 * Then there's the 24 bits used to track which shadow page tables are
396 * currently mapping a page for the purpose of speeding up physical
397 * access handlers, and thereby the page pool cache. More bit for this
398 * purpose wouldn't hurt IIRC.
399 *
400 * Then there is a new bit in which we need to record what kind of page
401 * this is, shared, zero, normal or write-monitored-normal. This'll
402 * require 2 bits. One bit might be needed for indicating whether a
403 * write monitored page has been written to. And yet another one or
404 * two for tracking migration status. 3-4 bits total then.
405 *
406 * Whatever is left will can be used to record the sharabilitiy of a
407 * page. The page checksum will not be stored in the per-VM table as
408 * the idle thread will not be permitted to do modifications to it.
409 * It will instead have to keep its own working set of potentially
410 * shareable pages and their check sums and stuff.
411 *
412 * For the present we'll keep the current packing of the
413 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
414 * we'll have to change it to a struct with a total of 128-bits at
415 * our disposal.
416 *
417 * The initial layout will be like this:
418 * @verbatim
419 RTHCPHYS HCPhys; The current stuff.
420 63:40 Current shadow PT tracking stuff.
421 39:12 The physical page frame number.
422 11:0 The current flags.
423 uint32_t u28PageId : 28; The page id.
424 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
425 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
426 uint32_t u1Reserved : 1; Reserved for later.
427 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
428 @endverbatim
429 *
430 * The final layout will be something like this:
431 * @verbatim
432 RTHCPHYS HCPhys; The current stuff.
433 63:48 High page id (12+).
434 47:12 The physical page frame number.
435 11:0 Low page id.
436 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
437 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
438 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
439 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
440 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
441 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
442 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
443 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
444 @endverbatim
445 *
446 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
447 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
448 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
449 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
450 *
451 * A couple of cost examples for the total cost per-VM + kernel.
452 * 32-bit Windows and 32-bit linux:
453 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
454 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
455 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
456 * 64-bit Windows and 64-bit linux:
457 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
458 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
459 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
460 *
461 * UPDATE - 2007-09-27:
462 * Will need a ballooned flag/state too because we cannot
463 * trust the guest 100% and reporting the same page as ballooned more
464 * than once will put the GMM off balance.
465 *
466 *
467 * @subsection subsec_pgmPhys_Serializing Serializing Access
468 *
469 * Initially, we'll try a simple scheme:
470 *
471 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
472 * by the EMT thread of that VM while in the pgm critsect.
473 * - Other threads in the VM process that needs to make reliable use of
474 * the per-VM RAM tracking structures will enter the critsect.
475 * - No process external thread or kernel thread will ever try enter
476 * the pgm critical section, as that just won't work.
477 * - The idle thread (and similar threads) doesn't not need 100% reliable
478 * data when performing it tasks as the EMT thread will be the one to
479 * do the actual changes later anyway. So, as long as it only accesses
480 * the main ram range, it can do so by somehow preventing the VM from
481 * being destroyed while it works on it...
482 *
483 * - The over-commitment management, including the allocating/freeing
484 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
485 * more mundane mutex implementation is broken on Linux).
486 * - A separate mutex is protecting the set of allocation chunks so
487 * that pages can be shared or/and freed up while some other VM is
488 * allocating more chunks. This mutex can be take from under the other
489 * one, but not the other way around.
490 *
491 *
492 * @subsection subsec_pgmPhys_Request VM Request interface
493 *
494 * When in ring-0 it will become necessary to send requests to a VM so it can
495 * for instance move a page while defragmenting during VM destroy. The idle
496 * thread will make use of this interface to request VMs to setup shared
497 * pages and to perform write monitoring of pages.
498 *
499 * I would propose an interface similar to the current VMReq interface, similar
500 * in that it doesn't require locking and that the one sending the request may
501 * wait for completion if it wishes to. This shouldn't be very difficult to
502 * realize.
503 *
504 * The requests themselves are also pretty simple. They are basically:
505 * -# Check that some precondition is still true.
506 * -# Do the update.
507 * -# Update all shadow page tables involved with the page.
508 *
509 * The 3rd step is identical to what we're already doing when updating a
510 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
511 *
512 *
513 *
514 * @section sec_pgmPhys_MappingCaches Mapping Caches
515 *
516 * In order to be able to map in and out memory and to be able to support
517 * guest with more RAM than we've got virtual address space, we'll employing
518 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
519 * however on 32-bit darwin the ring-0 code is running in a different memory
520 * context and therefore needs a separate cache. In raw-mode context we also
521 * need a separate cache. The 32-bit darwin mapping cache and the one for
522 * raw-mode context share a lot of code, see PGMRZDYNMAP.
523 *
524 *
525 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
526 *
527 * We've considered implementing the ring-3 mapping cache page based but found
528 * that this was bother some when one had to take into account TLBs+SMP and
529 * portability (missing the necessary APIs on several platforms). There were
530 * also some performance concerns with this approach which hadn't quite been
531 * worked out.
532 *
533 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
534 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
535 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
536 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
537 * costly than a single page, although how much more costly is uncertain. We'll
538 * try address this by using a very big cache, preferably bigger than the actual
539 * VM RAM size if possible. The current VM RAM sizes should give some idea for
540 * 32-bit boxes, while on 64-bit we can probably get away with employing an
541 * unlimited cache.
542 *
543 * The cache have to parts, as already indicated, the ring-3 side and the
544 * ring-0 side.
545 *
546 * The ring-0 will be tied to the page allocator since it will operate on the
547 * memory objects it contains. It will therefore require the first ring-0 mutex
548 * discussed in @ref subsec_pgmPhys_Serializing. We
549 * some double house keeping wrt to who has mapped what I think, since both
550 * VMMR0.r0 and RTR0MemObj will keep track of mapping relations
551 *
552 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
553 * require anyone that desires to do changes to the mapping cache to do that
554 * from within this critsect. Alternatively, we could employ a separate critsect
555 * for serializing changes to the mapping cache as this would reduce potential
556 * contention with other threads accessing mappings unrelated to the changes
557 * that are in process. We can see about this later, contention will show
558 * up in the statistics anyway, so it'll be simple to tell.
559 *
560 * The organization of the ring-3 part will be very much like how the allocation
561 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
562 * having to walk the tree all the time, we'll have a couple of lookaside entries
563 * like in we do for I/O ports and MMIO in IOM.
564 *
565 * The simplified flow of a PGMPhysRead/Write function:
566 * -# Enter the PGM critsect.
567 * -# Lookup GCPhys in the ram ranges and get the Page ID.
568 * -# Calc the Allocation Chunk ID from the Page ID.
569 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
570 * If not found in cache:
571 * -# Call ring-0 and request it to be mapped and supply
572 * a chunk to be unmapped if the cache is maxed out already.
573 * -# Insert the new mapping into the AVL tree (id + R3 address).
574 * -# Update the relevant lookaside entry and return the mapping address.
575 * -# Do the read/write according to monitoring flags and everything.
576 * -# Leave the critsect.
577 *
578 *
579 * @section sec_pgmPhys_Fallback Fallback
580 *
581 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
582 * API and thus require a fallback.
583 *
584 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
585 * will return to the ring-3 caller (and later ring-0) and asking it to seed
586 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
587 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
588 * "SeededAllocPages" call to ring-0.
589 *
590 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
591 * all page sharing (zero page detection will continue). It will also force
592 * all allocations to come from the VM which seeded the page. Both these
593 * measures are taken to make sure that there will never be any need for
594 * mapping anything into ring-3 - everything will be mapped already.
595 *
596 * Whether we'll continue to use the current MM locked memory management
597 * for this I don't quite know (I'd prefer not to and just ditch that all
598 * together), we'll see what's simplest to do.
599 *
600 *
601 *
602 * @section sec_pgmPhys_Changes Changes
603 *
604 * Breakdown of the changes involved?
605 */
606
607/*******************************************************************************
608* Header Files *
609*******************************************************************************/
610#define LOG_GROUP LOG_GROUP_PGM
611#include <VBox/vmm/dbgf.h>
612#include <VBox/vmm/pgm.h>
613#include <VBox/vmm/cpum.h>
614#include <VBox/vmm/iom.h>
615#include <VBox/sup.h>
616#include <VBox/vmm/mm.h>
617#include <VBox/vmm/em.h>
618#include <VBox/vmm/stam.h>
619#ifdef VBOX_WITH_REM
620# include <VBox/vmm/rem.h>
621#endif
622#include <VBox/vmm/selm.h>
623#include <VBox/vmm/ssm.h>
624#include <VBox/vmm/hwaccm.h>
625#include "PGMInternal.h"
626#include <VBox/vmm/vm.h>
627#include "PGMInline.h"
628
629#include <VBox/dbg.h>
630#include <VBox/param.h>
631#include <VBox/err.h>
632
633#include <iprt/asm.h>
634#include <iprt/asm-amd64-x86.h>
635#include <iprt/assert.h>
636#include <iprt/env.h>
637#include <iprt/mem.h>
638#include <iprt/file.h>
639#include <iprt/string.h>
640#include <iprt/thread.h>
641
642
643/*******************************************************************************
644* Internal Functions *
645*******************************************************************************/
646static int pgmR3InitPaging(PVM pVM);
647static int pgmR3InitStats(PVM pVM);
648static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
649static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
650static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
651static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
652static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
653static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
654#ifdef VBOX_STRICT
655static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
656#endif
657static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
658static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
659static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
660
661#ifdef VBOX_WITH_DEBUGGER
662/** @todo Convert the first two commands to 'info' items. */
663static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
664static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
665static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
666static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
667# ifdef VBOX_STRICT
668static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
669# endif
670static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs);
671#endif
672
673
674/*******************************************************************************
675* Global Variables *
676*******************************************************************************/
677#ifdef VBOX_WITH_DEBUGGER
678/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
679static const DBGCVARDESC g_aPgmErrorArgs[] =
680{
681 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
682 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
683};
684
685static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
686{
687 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
688 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
689 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
690};
691
692# ifdef DEBUG_sandervl
693static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
694{
695 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
696 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
697 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
698};
699# endif
700
701/** Command descriptors. */
702static const DBGCCMD g_aCmds[] =
703{
704 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
705 { "pgmram", 0, 0, NULL, 0, 0, pgmR3CmdRam, "", "Display the ram ranges." },
706 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
707 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
708 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
709# ifdef VBOX_STRICT
710 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
711# ifdef VBOX_WITH_PAGE_SHARING
712 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
713 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
714# endif
715# endif
716 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
717 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
718};
719#endif
720
721
722
723
724/*
725 * Shadow - 32-bit mode
726 */
727#define PGM_SHW_TYPE PGM_TYPE_32BIT
728#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
729#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
730#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
731#include "PGMShw.h"
732
733/* Guest - real mode */
734#define PGM_GST_TYPE PGM_TYPE_REAL
735#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
736#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
737#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
738#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
739#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
740#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
741#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
742#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
743#include "PGMBth.h"
744#include "PGMGstDefs.h"
745#include "PGMGst.h"
746#undef BTH_PGMPOOLKIND_PT_FOR_PT
747#undef BTH_PGMPOOLKIND_ROOT
748#undef PGM_BTH_NAME
749#undef PGM_BTH_NAME_RC_STR
750#undef PGM_BTH_NAME_R0_STR
751#undef PGM_GST_TYPE
752#undef PGM_GST_NAME
753#undef PGM_GST_NAME_RC_STR
754#undef PGM_GST_NAME_R0_STR
755
756/* Guest - protected mode */
757#define PGM_GST_TYPE PGM_TYPE_PROT
758#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
759#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
760#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
761#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
762#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
763#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
764#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
765#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
766#include "PGMBth.h"
767#include "PGMGstDefs.h"
768#include "PGMGst.h"
769#undef BTH_PGMPOOLKIND_PT_FOR_PT
770#undef BTH_PGMPOOLKIND_ROOT
771#undef PGM_BTH_NAME
772#undef PGM_BTH_NAME_RC_STR
773#undef PGM_BTH_NAME_R0_STR
774#undef PGM_GST_TYPE
775#undef PGM_GST_NAME
776#undef PGM_GST_NAME_RC_STR
777#undef PGM_GST_NAME_R0_STR
778
779/* Guest - 32-bit mode */
780#define PGM_GST_TYPE PGM_TYPE_32BIT
781#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
782#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
783#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
784#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
785#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
786#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
787#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
788#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
789#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
790#include "PGMBth.h"
791#include "PGMGstDefs.h"
792#include "PGMGst.h"
793#undef BTH_PGMPOOLKIND_PT_FOR_BIG
794#undef BTH_PGMPOOLKIND_PT_FOR_PT
795#undef BTH_PGMPOOLKIND_ROOT
796#undef PGM_BTH_NAME
797#undef PGM_BTH_NAME_RC_STR
798#undef PGM_BTH_NAME_R0_STR
799#undef PGM_GST_TYPE
800#undef PGM_GST_NAME
801#undef PGM_GST_NAME_RC_STR
802#undef PGM_GST_NAME_R0_STR
803
804#undef PGM_SHW_TYPE
805#undef PGM_SHW_NAME
806#undef PGM_SHW_NAME_RC_STR
807#undef PGM_SHW_NAME_R0_STR
808
809
810/*
811 * Shadow - PAE mode
812 */
813#define PGM_SHW_TYPE PGM_TYPE_PAE
814#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
815#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
816#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
817#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
818#include "PGMShw.h"
819
820/* Guest - real mode */
821#define PGM_GST_TYPE PGM_TYPE_REAL
822#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
823#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
824#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
825#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
826#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
827#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
828#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
829#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
830#include "PGMGstDefs.h"
831#include "PGMBth.h"
832#undef BTH_PGMPOOLKIND_PT_FOR_PT
833#undef BTH_PGMPOOLKIND_ROOT
834#undef PGM_BTH_NAME
835#undef PGM_BTH_NAME_RC_STR
836#undef PGM_BTH_NAME_R0_STR
837#undef PGM_GST_TYPE
838#undef PGM_GST_NAME
839#undef PGM_GST_NAME_RC_STR
840#undef PGM_GST_NAME_R0_STR
841
842/* Guest - protected mode */
843#define PGM_GST_TYPE PGM_TYPE_PROT
844#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
845#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
846#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
847#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
848#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
849#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
850#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
851#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
852#include "PGMGstDefs.h"
853#include "PGMBth.h"
854#undef BTH_PGMPOOLKIND_PT_FOR_PT
855#undef BTH_PGMPOOLKIND_ROOT
856#undef PGM_BTH_NAME
857#undef PGM_BTH_NAME_RC_STR
858#undef PGM_BTH_NAME_R0_STR
859#undef PGM_GST_TYPE
860#undef PGM_GST_NAME
861#undef PGM_GST_NAME_RC_STR
862#undef PGM_GST_NAME_R0_STR
863
864/* Guest - 32-bit mode */
865#define PGM_GST_TYPE PGM_TYPE_32BIT
866#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
867#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
868#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
869#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
870#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
871#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
872#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
873#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
874#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
875#include "PGMGstDefs.h"
876#include "PGMBth.h"
877#undef BTH_PGMPOOLKIND_PT_FOR_BIG
878#undef BTH_PGMPOOLKIND_PT_FOR_PT
879#undef BTH_PGMPOOLKIND_ROOT
880#undef PGM_BTH_NAME
881#undef PGM_BTH_NAME_RC_STR
882#undef PGM_BTH_NAME_R0_STR
883#undef PGM_GST_TYPE
884#undef PGM_GST_NAME
885#undef PGM_GST_NAME_RC_STR
886#undef PGM_GST_NAME_R0_STR
887
888/* Guest - PAE mode */
889#define PGM_GST_TYPE PGM_TYPE_PAE
890#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
891#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
892#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
893#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
894#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
895#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
896#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
897#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
898#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
899#include "PGMBth.h"
900#include "PGMGstDefs.h"
901#include "PGMGst.h"
902#undef BTH_PGMPOOLKIND_PT_FOR_BIG
903#undef BTH_PGMPOOLKIND_PT_FOR_PT
904#undef BTH_PGMPOOLKIND_ROOT
905#undef PGM_BTH_NAME
906#undef PGM_BTH_NAME_RC_STR
907#undef PGM_BTH_NAME_R0_STR
908#undef PGM_GST_TYPE
909#undef PGM_GST_NAME
910#undef PGM_GST_NAME_RC_STR
911#undef PGM_GST_NAME_R0_STR
912
913#undef PGM_SHW_TYPE
914#undef PGM_SHW_NAME
915#undef PGM_SHW_NAME_RC_STR
916#undef PGM_SHW_NAME_R0_STR
917
918
919/*
920 * Shadow - AMD64 mode
921 */
922#define PGM_SHW_TYPE PGM_TYPE_AMD64
923#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
924#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
925#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
926#include "PGMShw.h"
927
928#ifdef VBOX_WITH_64_BITS_GUESTS
929/* Guest - AMD64 mode */
930# define PGM_GST_TYPE PGM_TYPE_AMD64
931# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
932# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
933# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
934# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
935# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
936# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
937# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
938# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
939# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
940# include "PGMBth.h"
941# include "PGMGstDefs.h"
942# include "PGMGst.h"
943# undef BTH_PGMPOOLKIND_PT_FOR_BIG
944# undef BTH_PGMPOOLKIND_PT_FOR_PT
945# undef BTH_PGMPOOLKIND_ROOT
946# undef PGM_BTH_NAME
947# undef PGM_BTH_NAME_RC_STR
948# undef PGM_BTH_NAME_R0_STR
949# undef PGM_GST_TYPE
950# undef PGM_GST_NAME
951# undef PGM_GST_NAME_RC_STR
952# undef PGM_GST_NAME_R0_STR
953#endif /* VBOX_WITH_64_BITS_GUESTS */
954
955#undef PGM_SHW_TYPE
956#undef PGM_SHW_NAME
957#undef PGM_SHW_NAME_RC_STR
958#undef PGM_SHW_NAME_R0_STR
959
960
961/*
962 * Shadow - Nested paging mode
963 */
964#define PGM_SHW_TYPE PGM_TYPE_NESTED
965#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
966#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
967#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
968#include "PGMShw.h"
969
970/* Guest - real mode */
971#define PGM_GST_TYPE PGM_TYPE_REAL
972#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
973#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
974#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
975#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
976#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
977#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
978#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
979#include "PGMGstDefs.h"
980#include "PGMBth.h"
981#undef BTH_PGMPOOLKIND_PT_FOR_PT
982#undef PGM_BTH_NAME
983#undef PGM_BTH_NAME_RC_STR
984#undef PGM_BTH_NAME_R0_STR
985#undef PGM_GST_TYPE
986#undef PGM_GST_NAME
987#undef PGM_GST_NAME_RC_STR
988#undef PGM_GST_NAME_R0_STR
989
990/* Guest - protected mode */
991#define PGM_GST_TYPE PGM_TYPE_PROT
992#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
993#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
994#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
995#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
996#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
997#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
998#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
999#include "PGMGstDefs.h"
1000#include "PGMBth.h"
1001#undef BTH_PGMPOOLKIND_PT_FOR_PT
1002#undef PGM_BTH_NAME
1003#undef PGM_BTH_NAME_RC_STR
1004#undef PGM_BTH_NAME_R0_STR
1005#undef PGM_GST_TYPE
1006#undef PGM_GST_NAME
1007#undef PGM_GST_NAME_RC_STR
1008#undef PGM_GST_NAME_R0_STR
1009
1010/* Guest - 32-bit mode */
1011#define PGM_GST_TYPE PGM_TYPE_32BIT
1012#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1013#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1014#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1015#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
1016#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
1017#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
1018#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1019#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1020#include "PGMGstDefs.h"
1021#include "PGMBth.h"
1022#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1023#undef BTH_PGMPOOLKIND_PT_FOR_PT
1024#undef PGM_BTH_NAME
1025#undef PGM_BTH_NAME_RC_STR
1026#undef PGM_BTH_NAME_R0_STR
1027#undef PGM_GST_TYPE
1028#undef PGM_GST_NAME
1029#undef PGM_GST_NAME_RC_STR
1030#undef PGM_GST_NAME_R0_STR
1031
1032/* Guest - PAE mode */
1033#define PGM_GST_TYPE PGM_TYPE_PAE
1034#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1035#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1036#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1037#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1038#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1039#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1040#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1041#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1042#include "PGMGstDefs.h"
1043#include "PGMBth.h"
1044#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1045#undef BTH_PGMPOOLKIND_PT_FOR_PT
1046#undef PGM_BTH_NAME
1047#undef PGM_BTH_NAME_RC_STR
1048#undef PGM_BTH_NAME_R0_STR
1049#undef PGM_GST_TYPE
1050#undef PGM_GST_NAME
1051#undef PGM_GST_NAME_RC_STR
1052#undef PGM_GST_NAME_R0_STR
1053
1054#ifdef VBOX_WITH_64_BITS_GUESTS
1055/* Guest - AMD64 mode */
1056# define PGM_GST_TYPE PGM_TYPE_AMD64
1057# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1058# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1059# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1060# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1061# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1062# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1063# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1064# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1065# include "PGMGstDefs.h"
1066# include "PGMBth.h"
1067# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1068# undef BTH_PGMPOOLKIND_PT_FOR_PT
1069# undef PGM_BTH_NAME
1070# undef PGM_BTH_NAME_RC_STR
1071# undef PGM_BTH_NAME_R0_STR
1072# undef PGM_GST_TYPE
1073# undef PGM_GST_NAME
1074# undef PGM_GST_NAME_RC_STR
1075# undef PGM_GST_NAME_R0_STR
1076#endif /* VBOX_WITH_64_BITS_GUESTS */
1077
1078#undef PGM_SHW_TYPE
1079#undef PGM_SHW_NAME
1080#undef PGM_SHW_NAME_RC_STR
1081#undef PGM_SHW_NAME_R0_STR
1082
1083
1084/*
1085 * Shadow - EPT
1086 */
1087#define PGM_SHW_TYPE PGM_TYPE_EPT
1088#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1089#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1090#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1091#include "PGMShw.h"
1092
1093/* Guest - real mode */
1094#define PGM_GST_TYPE PGM_TYPE_REAL
1095#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1096#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1097#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1098#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1099#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1100#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1101#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1102#include "PGMGstDefs.h"
1103#include "PGMBth.h"
1104#undef BTH_PGMPOOLKIND_PT_FOR_PT
1105#undef PGM_BTH_NAME
1106#undef PGM_BTH_NAME_RC_STR
1107#undef PGM_BTH_NAME_R0_STR
1108#undef PGM_GST_TYPE
1109#undef PGM_GST_NAME
1110#undef PGM_GST_NAME_RC_STR
1111#undef PGM_GST_NAME_R0_STR
1112
1113/* Guest - protected mode */
1114#define PGM_GST_TYPE PGM_TYPE_PROT
1115#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1116#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1117#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1118#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1119#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1120#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1121#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1122#include "PGMGstDefs.h"
1123#include "PGMBth.h"
1124#undef BTH_PGMPOOLKIND_PT_FOR_PT
1125#undef PGM_BTH_NAME
1126#undef PGM_BTH_NAME_RC_STR
1127#undef PGM_BTH_NAME_R0_STR
1128#undef PGM_GST_TYPE
1129#undef PGM_GST_NAME
1130#undef PGM_GST_NAME_RC_STR
1131#undef PGM_GST_NAME_R0_STR
1132
1133/* Guest - 32-bit mode */
1134#define PGM_GST_TYPE PGM_TYPE_32BIT
1135#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1136#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1137#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1138#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1139#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1140#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1141#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1142#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1143#include "PGMGstDefs.h"
1144#include "PGMBth.h"
1145#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1146#undef BTH_PGMPOOLKIND_PT_FOR_PT
1147#undef PGM_BTH_NAME
1148#undef PGM_BTH_NAME_RC_STR
1149#undef PGM_BTH_NAME_R0_STR
1150#undef PGM_GST_TYPE
1151#undef PGM_GST_NAME
1152#undef PGM_GST_NAME_RC_STR
1153#undef PGM_GST_NAME_R0_STR
1154
1155/* Guest - PAE mode */
1156#define PGM_GST_TYPE PGM_TYPE_PAE
1157#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1158#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1159#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1160#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1161#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1162#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1163#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1164#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1165#include "PGMGstDefs.h"
1166#include "PGMBth.h"
1167#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1168#undef BTH_PGMPOOLKIND_PT_FOR_PT
1169#undef PGM_BTH_NAME
1170#undef PGM_BTH_NAME_RC_STR
1171#undef PGM_BTH_NAME_R0_STR
1172#undef PGM_GST_TYPE
1173#undef PGM_GST_NAME
1174#undef PGM_GST_NAME_RC_STR
1175#undef PGM_GST_NAME_R0_STR
1176
1177#ifdef VBOX_WITH_64_BITS_GUESTS
1178/* Guest - AMD64 mode */
1179# define PGM_GST_TYPE PGM_TYPE_AMD64
1180# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1181# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1182# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1183# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1184# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1185# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1186# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1187# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1188# include "PGMGstDefs.h"
1189# include "PGMBth.h"
1190# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1191# undef BTH_PGMPOOLKIND_PT_FOR_PT
1192# undef PGM_BTH_NAME
1193# undef PGM_BTH_NAME_RC_STR
1194# undef PGM_BTH_NAME_R0_STR
1195# undef PGM_GST_TYPE
1196# undef PGM_GST_NAME
1197# undef PGM_GST_NAME_RC_STR
1198# undef PGM_GST_NAME_R0_STR
1199#endif /* VBOX_WITH_64_BITS_GUESTS */
1200
1201#undef PGM_SHW_TYPE
1202#undef PGM_SHW_NAME
1203#undef PGM_SHW_NAME_RC_STR
1204#undef PGM_SHW_NAME_R0_STR
1205
1206
1207
1208/**
1209 * Initiates the paging of VM.
1210 *
1211 * @returns VBox status code.
1212 * @param pVM Pointer to VM structure.
1213 */
1214VMMR3DECL(int) PGMR3Init(PVM pVM)
1215{
1216 LogFlow(("PGMR3Init:\n"));
1217 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1218 int rc;
1219
1220 /*
1221 * Assert alignment and sizes.
1222 */
1223 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1224 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1225 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
1226
1227 /*
1228 * Init the structure.
1229 */
1230#ifdef PGM_WITHOUT_MAPPINGS
1231 pVM->pgm.s.fMappingsDisabled = true;
1232#endif
1233 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1234 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1235
1236 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1237 {
1238 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
1239 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1240 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1241 }
1242
1243 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
1244 {
1245 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
1246 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
1247 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
1248 }
1249
1250 /* Init the per-CPU part. */
1251 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1252 {
1253 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1254 PPGMCPU pPGM = &pVCpu->pgm.s;
1255
1256 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1257 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1258 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1259
1260 pPGM->enmShadowMode = PGMMODE_INVALID;
1261 pPGM->enmGuestMode = PGMMODE_INVALID;
1262
1263 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1264
1265 pPGM->pGst32BitPdR3 = NULL;
1266 pPGM->pGstPaePdptR3 = NULL;
1267 pPGM->pGstAmd64Pml4R3 = NULL;
1268#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1269 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1270 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1271 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1272#endif
1273 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1274 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1275 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1276 {
1277 pPGM->apGstPaePDsR3[i] = NULL;
1278#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1279 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1280#endif
1281 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1282 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1283 pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
1284 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1285 }
1286
1287 pPGM->fA20Enabled = true;
1288 pPGM->GCPhysA20Mask = ~(RTGCPHYS)(!pPGM->fA20Enabled << 20);
1289 }
1290
1291 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1292 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1293 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1294
1295 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1296#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1297 true
1298#else
1299 false
1300#endif
1301 );
1302 AssertLogRelRCReturn(rc, rc);
1303
1304#if HC_ARCH_BITS == 32
1305# ifdef RT_OS_DARWIN
1306 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
1307# else
1308 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1309# endif
1310#else
1311 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1312#endif
1313 AssertLogRelRCReturn(rc, rc);
1314 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1315 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1316
1317 /*
1318 * Get the configured RAM size - to estimate saved state size.
1319 */
1320 uint64_t cbRam;
1321 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1322 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1323 cbRam = 0;
1324 else if (RT_SUCCESS(rc))
1325 {
1326 if (cbRam < PAGE_SIZE)
1327 cbRam = 0;
1328 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1329 }
1330 else
1331 {
1332 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1333 return rc;
1334 }
1335
1336 /*
1337 * Check for PCI pass-through.
1338 */
1339 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
1340 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
1341 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
1342
1343#ifdef VBOX_WITH_STATISTICS
1344 /*
1345 * Allocate memory for the statistics before someone tries to use them.
1346 */
1347 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1348 void *pv;
1349 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1350 AssertRCReturn(rc, rc);
1351
1352 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1353 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1354 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1355 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1356
1357 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1358 {
1359 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1360 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1361 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1362
1363 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1364 }
1365#endif /* VBOX_WITH_STATISTICS */
1366
1367 /*
1368 * Register callbacks, string formatters and the saved state data unit.
1369 */
1370#ifdef VBOX_STRICT
1371 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1372#endif
1373 PGMRegisterStringFormatTypes();
1374
1375 rc = pgmR3InitSavedState(pVM, cbRam);
1376 if (RT_FAILURE(rc))
1377 return rc;
1378
1379 /*
1380 * Initialize the PGM critical section and flush the phys TLBs
1381 */
1382 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
1383 AssertRCReturn(rc, rc);
1384
1385 PGMR3PhysChunkInvalidateTLB(pVM);
1386 pgmPhysInvalidatePageMapTLB(pVM);
1387
1388 /*
1389 * For the time being we sport a full set of handy pages in addition to the base
1390 * memory to simplify things.
1391 */
1392 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1393 AssertRCReturn(rc, rc);
1394
1395 /*
1396 * Trees
1397 */
1398 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1399 if (RT_SUCCESS(rc))
1400 {
1401 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1402 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1403
1404 /*
1405 * Allocate the zero page.
1406 */
1407 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1408 }
1409 if (RT_SUCCESS(rc))
1410 {
1411 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1412 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1413 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1414 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1415
1416 /*
1417 * Allocate the invalid MMIO page.
1418 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1419 */
1420 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1421 }
1422 if (RT_SUCCESS(rc))
1423 {
1424 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1425 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1426 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1427 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1428
1429 /*
1430 * Init the paging.
1431 */
1432 rc = pgmR3InitPaging(pVM);
1433 }
1434 if (RT_SUCCESS(rc))
1435 {
1436 /*
1437 * Init the page pool.
1438 */
1439 rc = pgmR3PoolInit(pVM);
1440 }
1441 if (RT_SUCCESS(rc))
1442 {
1443 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1444 {
1445 PVMCPU pVCpu = &pVM->aCpus[i];
1446 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1447 if (RT_FAILURE(rc))
1448 break;
1449 }
1450 }
1451
1452 if (RT_SUCCESS(rc))
1453 {
1454 /*
1455 * Info & statistics
1456 */
1457 DBGFR3InfoRegisterInternal(pVM, "mode",
1458 "Shows the current paging mode. "
1459 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1460 pgmR3InfoMode);
1461 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1462 "Dumps all the entries in the top level paging table. No arguments.",
1463 pgmR3InfoCr3);
1464 DBGFR3InfoRegisterInternal(pVM, "phys",
1465 "Dumps all the physical address ranges. No arguments.",
1466 pgmR3PhysInfo);
1467 DBGFR3InfoRegisterInternal(pVM, "handlers",
1468 "Dumps physical, virtual and hyper virtual handlers. "
1469 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1470 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1471 pgmR3InfoHandlers);
1472 DBGFR3InfoRegisterInternal(pVM, "mappings",
1473 "Dumps guest mappings.",
1474 pgmR3MapInfo);
1475
1476 pgmR3InitStats(pVM);
1477
1478#ifdef VBOX_WITH_DEBUGGER
1479 /*
1480 * Debugger commands.
1481 */
1482 static bool s_fRegisteredCmds = false;
1483 if (!s_fRegisteredCmds)
1484 {
1485 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1486 if (RT_SUCCESS(rc2))
1487 s_fRegisteredCmds = true;
1488 }
1489#endif
1490 return VINF_SUCCESS;
1491 }
1492
1493 /* Almost no cleanup necessary, MM frees all memory. */
1494 PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
1495
1496 return rc;
1497}
1498
1499
1500/**
1501 * Init paging.
1502 *
1503 * Since we need to check what mode the host is operating in before we can choose
1504 * the right paging functions for the host we have to delay this until R0 has
1505 * been initialized.
1506 *
1507 * @returns VBox status code.
1508 * @param pVM Pointer to the VM.
1509 */
1510static int pgmR3InitPaging(PVM pVM)
1511{
1512 /*
1513 * Force a recalculation of modes and switcher so everyone gets notified.
1514 */
1515 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1516 {
1517 PVMCPU pVCpu = &pVM->aCpus[i];
1518
1519 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1520 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1521 }
1522
1523 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1524
1525 /*
1526 * Allocate static mapping space for whatever the cr3 register
1527 * points to and in the case of PAE mode to the 4 PDs.
1528 */
1529 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1530 if (RT_FAILURE(rc))
1531 {
1532 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1533 return rc;
1534 }
1535 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1536
1537 /*
1538 * Allocate pages for the three possible intermediate contexts
1539 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1540 * for the sake of simplicity. The AMD64 uses the PAE for the
1541 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1542 *
1543 * We assume that two page tables will be enought for the core code
1544 * mappings (HC virtual and identity).
1545 */
1546 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1547 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1548 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1549 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1550 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1551 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1552 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1553 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1554 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1555 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1556 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1557 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1558
1559 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1560 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1561 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1562 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1563 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1564 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1565
1566 /*
1567 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1568 */
1569 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1570 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1571 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1572
1573 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1574 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1575
1576 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1577 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1578 {
1579 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1580 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1581 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1582 }
1583
1584 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1585 {
1586 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1587 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1588 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1589 }
1590
1591 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1592 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1593 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1594 | HCPhysInterPaePDPT64;
1595
1596 /*
1597 * Initialize paging workers and mode from current host mode
1598 * and the guest running in real mode.
1599 */
1600 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1601 switch (pVM->pgm.s.enmHostMode)
1602 {
1603 case SUPPAGINGMODE_32_BIT:
1604 case SUPPAGINGMODE_32_BIT_GLOBAL:
1605 case SUPPAGINGMODE_PAE:
1606 case SUPPAGINGMODE_PAE_GLOBAL:
1607 case SUPPAGINGMODE_PAE_NX:
1608 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1609 break;
1610
1611 case SUPPAGINGMODE_AMD64:
1612 case SUPPAGINGMODE_AMD64_GLOBAL:
1613 case SUPPAGINGMODE_AMD64_NX:
1614 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1615#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1616 if (ARCH_BITS != 64)
1617 {
1618 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1619 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1620 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1621 }
1622#endif
1623 break;
1624 default:
1625 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1626 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1627 }
1628 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1629 if (RT_SUCCESS(rc))
1630 {
1631 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1632#if HC_ARCH_BITS == 64
1633 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1634 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1635 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1636 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1637 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1638 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1639 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1640#endif
1641
1642 /*
1643 * Log the host paging mode. It may come in handy.
1644 */
1645 const char *pszHostMode;
1646 switch (pVM->pgm.s.enmHostMode)
1647 {
1648 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1649 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1650 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1651 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1652 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1653 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1654 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1655 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1656 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1657 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1658 default: pszHostMode = "???"; break;
1659 }
1660 LogRel(("Host paging mode: %s\n", pszHostMode));
1661
1662 return VINF_SUCCESS;
1663 }
1664
1665 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1666 return rc;
1667}
1668
1669
1670/**
1671 * Init statistics
1672 * @returns VBox status code.
1673 */
1674static int pgmR3InitStats(PVM pVM)
1675{
1676 PPGM pPGM = &pVM->pgm.s;
1677 int rc;
1678
1679 /*
1680 * Release statistics.
1681 */
1682 /* Common - misc variables */
1683 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1684 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1685 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1686 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1687 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1688 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1689 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1690 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1691 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1692 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1693 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1694 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1695 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1696 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1697 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1698 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1699 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1700 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1701 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1702
1703 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1704 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1705 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1706
1707 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1708
1709 /* Live save */
1710 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1711 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1712 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1713 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1714 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1715 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1716 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1717 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1718 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1719 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1720 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1721 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1722 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1723 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1724 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1725 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1726 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1727 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1728
1729#ifdef VBOX_WITH_STATISTICS
1730
1731# define PGM_REG_COUNTER(a, b, c) \
1732 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1733 AssertRC(rc);
1734
1735# define PGM_REG_COUNTER_BYTES(a, b, c) \
1736 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1737 AssertRC(rc);
1738
1739# define PGM_REG_PROFILE(a, b, c) \
1740 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1741 AssertRC(rc);
1742
1743 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1744
1745 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1746 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1747 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1748 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1749 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1750
1751 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1752 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1753 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1754 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1755 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1756 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1757 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1758 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1759 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1760 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1761
1762 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1763 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1764 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1765 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1766 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1767 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1768
1769 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1770 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1771 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1772 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1773 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1774 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1775 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1776 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1777
1778 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1779 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1780 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1781 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1782
1783 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1784 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1785 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1786 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1787
1788 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1789 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1790 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1791 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1792 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1793 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1794 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1795 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1796
1797 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1798 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1799/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1800 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1801 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1802/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1803
1804 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1805 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1806 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1807 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1808 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1809 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1810 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1811 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1812
1813 /* GC only: */
1814 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1815 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1816
1817 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1818 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1819 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1820 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1821 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1822 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1823 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1824 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1825
1826 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1827 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1828 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1829 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1830 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1831 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1832 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1833
1834# undef PGM_REG_COUNTER
1835# undef PGM_REG_PROFILE
1836#endif
1837
1838 /*
1839 * Note! The layout below matches the member layout exactly!
1840 */
1841
1842 /*
1843 * Common - stats
1844 */
1845 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1846 {
1847 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1848
1849#define PGM_REG_COUNTER(a, b, c) \
1850 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1851 AssertRC(rc);
1852#define PGM_REG_PROFILE(a, b, c) \
1853 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1854 AssertRC(rc);
1855
1856 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1857 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
1858
1859#ifdef VBOX_WITH_STATISTICS
1860 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1861
1862# if 0 /* rarely useful; leave for debugging. */
1863 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1864 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1865 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1866 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1867 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1868 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1869# endif
1870 /* R0 only: */
1871 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1872 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1873
1874 /* RZ only: */
1875 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1876 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1877 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1878 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1879 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1880 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1881 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1882 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1883 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1884 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1885 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
1886 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1887 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1888 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1889 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1890 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1891 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1892 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1893 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1894 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1895 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1896 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1897 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1898 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1899 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1900 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1901 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1902 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1903 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1904 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1905 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1906 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1907 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1908 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1909 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1910 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1911 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1912 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1913 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1914 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1915 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1916 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1917 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1918 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1919#if 0 /* rarely useful; leave for debugging. */
1920 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1921 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1922 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1923#endif
1924 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1925 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1926 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1927 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1928 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1929
1930 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1931 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1932 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1933 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1934 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1935 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1936 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1937 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1938 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1939 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1940 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1941 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1942 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1943 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1944 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1945 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1946 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1947 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1948 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1949 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1950 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1951 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1952 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1953 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1954 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1955 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1956 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1957 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1958 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1959 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1960 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1961 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1962 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1963 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1964 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1965 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1966
1967 /* HC only: */
1968
1969 /* RZ & R3: */
1970 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1971 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1972 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1973 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1974 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1975 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1976 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1977 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1978 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1979 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1980 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1981 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1982 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1983 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1984 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1985 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1986 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1987 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1988 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1989 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1990 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1991 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1992 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1993 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1994 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1995 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1996 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1997 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1998 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1999 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2000 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2001 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2002 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2003 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2004 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2005 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2006 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2007 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2008 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2009 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2010 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
2011 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2012 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2013 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2014 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2015 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2016 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2017
2018 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2019 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2020 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
2021 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2022 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2023 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2024 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2025 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2026 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2027 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2028 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
2029 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2030 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
2031 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
2032 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2033 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2034 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2035 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2036 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2037 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2038 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2039 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2040 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2041 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2042 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2043 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
2044 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2045 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2046 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2047 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2048 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2049 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2050 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2051 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2052 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2053 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2054 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2055 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
2056 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2057 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2058 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2059 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2060 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2061 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2062#endif /* VBOX_WITH_STATISTICS */
2063
2064#undef PGM_REG_PROFILE
2065#undef PGM_REG_COUNTER
2066
2067 }
2068
2069 return VINF_SUCCESS;
2070}
2071
2072
2073/**
2074 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
2075 *
2076 * The dynamic mapping area will also be allocated and initialized at this
2077 * time. We could allocate it during PGMR3Init of course, but the mapping
2078 * wouldn't be allocated at that time preventing us from setting up the
2079 * page table entries with the dummy page.
2080 *
2081 * @returns VBox status code.
2082 * @param pVM Pointer to the VM.
2083 */
2084VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2085{
2086 RTGCPTR GCPtr;
2087 int rc;
2088
2089 /*
2090 * Reserve space for the dynamic mappings.
2091 */
2092 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2093 if (RT_SUCCESS(rc))
2094 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2095
2096 if ( RT_SUCCESS(rc)
2097 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2098 {
2099 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2100 if (RT_SUCCESS(rc))
2101 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2102 }
2103 if (RT_SUCCESS(rc))
2104 {
2105 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2106 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2107 }
2108 return rc;
2109}
2110
2111
2112/**
2113 * Ring-3 init finalizing.
2114 *
2115 * @returns VBox status code.
2116 * @param pVM Pointer to the VM.
2117 */
2118VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2119{
2120 int rc;
2121
2122 /*
2123 * Reserve space for the dynamic mappings.
2124 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2125 */
2126 /* get the pointer to the page table entries. */
2127 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2128 AssertRelease(pMapping);
2129 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2130 const unsigned iPT = off >> X86_PD_SHIFT;
2131 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2132 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2133 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2134
2135 /* init cache area */
2136 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2137 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2138 {
2139 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2140 AssertRCReturn(rc, rc);
2141 }
2142
2143 /*
2144 * Determine the max physical address width (MAXPHYADDR) and apply it to
2145 * all the mask members and stuff.
2146 */
2147 uint32_t cMaxPhysAddrWidth;
2148 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2149 if ( uMaxExtLeaf >= 0x80000008
2150 && uMaxExtLeaf <= 0x80000fff)
2151 {
2152 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2153 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2154 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2155 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2156 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2157 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2158 }
2159 else
2160 {
2161 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2162 cMaxPhysAddrWidth = 48;
2163 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2164 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2165 }
2166
2167 pVM->pgm.s.GCPhysInvAddrMask = 0;
2168 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2169 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2170
2171 /*
2172 * Initialize the invalid paging entry masks, assuming NX is disabled.
2173 */
2174 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2175 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2176 {
2177 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2178
2179 /** @todo The manuals are not entirely clear whether the physical
2180 * address width is relevant. See table 5-9 in the intel
2181 * manual vs the PDE4M descriptions. Write testcase (NP). */
2182 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2183 | X86_PDE4M_MBZ_MASK;
2184
2185 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2186 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2187 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2188 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2189
2190 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2191 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2192 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2193 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2194 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2195 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2196
2197 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2198 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2199 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2200 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2201 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2202 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2203 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2204 }
2205
2206 /*
2207 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2208 * Intel only goes up to 36 bits, so we stick to 36 as well.
2209 * Update: More recent intel manuals specifies 40 bits just like AMD.
2210 */
2211 uint32_t u32Dummy, u32Features;
2212 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2213 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2214 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2215 else
2216 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2217
2218 /*
2219 * Allocate memory if we're supposed to do that.
2220 */
2221 if (pVM->pgm.s.fRamPreAlloc)
2222 rc = pgmR3PhysRamPreAllocate(pVM);
2223
2224 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2225 return rc;
2226}
2227
2228
2229/**
2230 * Init phase completed callback.
2231 *
2232 * @returns VBox status code.
2233 * @param pVM Pointer to the VM.
2234 * @param enmWhat What has been completed.
2235 * @thread EMT(0)
2236 */
2237VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2238{
2239 switch (enmWhat)
2240 {
2241 case VMINITCOMPLETED_HWACCM:
2242#ifdef VBOX_WITH_PCI_PASSTHROUGH
2243 if (pVM->pgm.s.fPciPassthrough)
2244 {
2245 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
2246 AssertLogRelReturn(HWACCMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HWACCM);
2247 AssertLogRelReturn(HWACCMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
2248
2249 /*
2250 * Report assignments to the IOMMU (hope that's good enough for now).
2251 */
2252 if (pVM->pgm.s.fPciPassthrough)
2253 {
2254 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
2255 AssertRCReturn(rc, rc);
2256 }
2257 }
2258#else
2259 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
2260#endif
2261 break;
2262
2263 default:
2264 /* shut up gcc */
2265 break;
2266 }
2267
2268 return VINF_SUCCESS;
2269}
2270
2271
2272/**
2273 * Applies relocations to data and code managed by this component.
2274 *
2275 * This function will be called at init and whenever the VMM need to relocate it
2276 * self inside the GC.
2277 *
2278 * @param pVM The VM.
2279 * @param offDelta Relocation delta relative to old location.
2280 */
2281VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2282{
2283 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2284
2285 /*
2286 * Paging stuff.
2287 */
2288 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2289
2290 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2291
2292 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2293 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2294 {
2295 PVMCPU pVCpu = &pVM->aCpus[i];
2296
2297 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2298
2299 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2300 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2301 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2302 }
2303
2304 /*
2305 * Trees.
2306 */
2307 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2308
2309 /*
2310 * Ram ranges.
2311 */
2312 if (pVM->pgm.s.pRamRangesXR3)
2313 {
2314 /* Update the pSelfRC pointers and relink them. */
2315 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2316 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2317 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2318 pgmR3PhysRelinkRamRanges(pVM);
2319
2320 /* Flush the RC TLB. */
2321 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2322 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2323 }
2324
2325 /*
2326 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2327 * be mapped and thus not included in the above exercise.
2328 */
2329 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2330 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2331 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2332
2333 /*
2334 * Update the two page directories with all page table mappings.
2335 * (One or more of them have changed, that's why we're here.)
2336 */
2337 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2338 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2339 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2340
2341 /* Relocate GC addresses of Page Tables. */
2342 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2343 {
2344 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2345 {
2346 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2347 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2348 }
2349 }
2350
2351 /*
2352 * Dynamic page mapping area.
2353 */
2354 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2355 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2356 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2357
2358 if (pVM->pgm.s.pRCDynMap)
2359 {
2360 pVM->pgm.s.pRCDynMap += offDelta;
2361 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2362
2363 pDynMap->paPages += offDelta;
2364 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2365
2366 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2367 {
2368 paPages[iPage].pvPage += offDelta;
2369 paPages[iPage].uPte.pLegacy += offDelta;
2370 paPages[iPage].uPte.pPae += offDelta;
2371 }
2372 }
2373
2374 /*
2375 * The Zero page.
2376 */
2377 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2378#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2379 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2380#else
2381 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2382#endif
2383
2384 /*
2385 * Physical and virtual handlers.
2386 */
2387 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2388 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2389 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2390 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2391
2392 /*
2393 * The page pool.
2394 */
2395 pgmR3PoolRelocate(pVM);
2396
2397#ifdef VBOX_WITH_STATISTICS
2398 /*
2399 * Statistics.
2400 */
2401 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2402 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2403 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2404#endif
2405}
2406
2407
2408/**
2409 * Callback function for relocating a physical access handler.
2410 *
2411 * @returns 0 (continue enum)
2412 * @param pNode Pointer to a PGMPHYSHANDLER node.
2413 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2414 * not certain the delta will fit in a void pointer for all possible configs.
2415 */
2416static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2417{
2418 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2419 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2420 if (pHandler->pfnHandlerRC)
2421 pHandler->pfnHandlerRC += offDelta;
2422 if (pHandler->pvUserRC >= 0x10000)
2423 pHandler->pvUserRC += offDelta;
2424 return 0;
2425}
2426
2427
2428/**
2429 * Callback function for relocating a virtual access handler.
2430 *
2431 * @returns 0 (continue enum)
2432 * @param pNode Pointer to a PGMVIRTHANDLER node.
2433 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2434 * not certain the delta will fit in a void pointer for all possible configs.
2435 */
2436static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2437{
2438 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2439 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2440 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2441 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2442 Assert(pHandler->pfnHandlerRC);
2443 pHandler->pfnHandlerRC += offDelta;
2444 return 0;
2445}
2446
2447
2448/**
2449 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2450 *
2451 * @returns 0 (continue enum)
2452 * @param pNode Pointer to a PGMVIRTHANDLER node.
2453 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2454 * not certain the delta will fit in a void pointer for all possible configs.
2455 */
2456static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2457{
2458 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2459 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2460 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2461 Assert(pHandler->pfnHandlerRC);
2462 pHandler->pfnHandlerRC += offDelta;
2463 return 0;
2464}
2465
2466
2467/**
2468 * Resets a virtual CPU when unplugged.
2469 *
2470 * @param pVM Pointer to the VM.
2471 * @param pVCpu Pointer to the VMCPU.
2472 */
2473VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2474{
2475 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2476 AssertRC(rc);
2477
2478 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2479 AssertRC(rc);
2480
2481 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2482
2483 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2484
2485 /*
2486 * Re-init other members.
2487 */
2488 pVCpu->pgm.s.fA20Enabled = true;
2489
2490 /*
2491 * Clear the FFs PGM owns.
2492 */
2493 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2494 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2495}
2496
2497
2498/**
2499 * The VM is being reset.
2500 *
2501 * For the PGM component this means that any PD write monitors
2502 * needs to be removed.
2503 *
2504 * @param pVM Pointer to the VM.
2505 */
2506VMMR3DECL(void) PGMR3Reset(PVM pVM)
2507{
2508 int rc;
2509
2510 LogFlow(("PGMR3Reset:\n"));
2511 VM_ASSERT_EMT(pVM);
2512
2513 pgmLock(pVM);
2514
2515 /*
2516 * Unfix any fixed mappings and disable CR3 monitoring.
2517 */
2518 pVM->pgm.s.fMappingsFixed = false;
2519 pVM->pgm.s.fMappingsFixedRestored = false;
2520 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2521 pVM->pgm.s.cbMappingFixed = 0;
2522
2523 /*
2524 * Exit the guest paging mode before the pgm pool gets reset.
2525 * Important to clean up the amd64 case.
2526 */
2527 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2528 {
2529 PVMCPU pVCpu = &pVM->aCpus[i];
2530 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2531 AssertRC(rc);
2532 }
2533
2534#ifdef DEBUG
2535 DBGFR3InfoLog(pVM, "mappings", NULL);
2536 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2537#endif
2538
2539 /*
2540 * Switch mode back to real mode. (before resetting the pgm pool!)
2541 */
2542 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2543 {
2544 PVMCPU pVCpu = &pVM->aCpus[i];
2545
2546 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2547 AssertRC(rc);
2548
2549 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2550 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
2551 }
2552
2553 /*
2554 * Reset the shadow page pool.
2555 */
2556 pgmR3PoolReset(pVM);
2557
2558 /*
2559 * Re-init various other members and clear the FFs that PGM owns.
2560 */
2561 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2562 {
2563 PVMCPU pVCpu = &pVM->aCpus[i];
2564
2565 pVCpu->pgm.s.fA20Enabled = true;
2566 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2567 PGMNotifyNxeChanged(pVCpu, false);
2568
2569 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2570 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2571 }
2572
2573 /*
2574 * Reset (zero) RAM and shadow ROM pages.
2575 */
2576 rc = pgmR3PhysRamReset(pVM);
2577 if (RT_SUCCESS(rc))
2578 rc = pgmR3PhysRomReset(pVM);
2579
2580
2581 pgmUnlock(pVM);
2582 AssertReleaseRC(rc);
2583}
2584
2585
2586#ifdef VBOX_STRICT
2587/**
2588 * VM state change callback for clearing fNoMorePhysWrites after
2589 * a snapshot has been created.
2590 */
2591static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2592{
2593 if ( enmState == VMSTATE_RUNNING
2594 || enmState == VMSTATE_RESUMING)
2595 pVM->pgm.s.fNoMorePhysWrites = false;
2596 NOREF(enmOldState); NOREF(pvUser);
2597}
2598#endif
2599
2600/**
2601 * Private API to reset fNoMorePhysWrites.
2602 */
2603VMMR3DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2604{
2605 pVM->pgm.s.fNoMorePhysWrites = false;
2606}
2607
2608/**
2609 * Terminates the PGM.
2610 *
2611 * @returns VBox status code.
2612 * @param pVM Pointer to VM structure.
2613 */
2614VMMR3DECL(int) PGMR3Term(PVM pVM)
2615{
2616 /* Must free shared pages here. */
2617 pgmLock(pVM);
2618 pgmR3PhysRamTerm(pVM);
2619 pgmR3PhysRomTerm(pVM);
2620 pgmUnlock(pVM);
2621
2622 PGMDeregisterStringFormatTypes();
2623 return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
2624}
2625
2626
2627/**
2628 * Show paging mode.
2629 *
2630 * @param pVM Pointer to the VM.
2631 * @param pHlp The info helpers.
2632 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2633 */
2634static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2635{
2636 /* digest argument. */
2637 bool fGuest, fShadow, fHost;
2638 if (pszArgs)
2639 pszArgs = RTStrStripL(pszArgs);
2640 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2641 fShadow = fHost = fGuest = true;
2642 else
2643 {
2644 fShadow = fHost = fGuest = false;
2645 if (strstr(pszArgs, "guest"))
2646 fGuest = true;
2647 if (strstr(pszArgs, "shadow"))
2648 fShadow = true;
2649 if (strstr(pszArgs, "host"))
2650 fHost = true;
2651 }
2652
2653 /** @todo SMP support! */
2654 /* print info. */
2655 if (fGuest)
2656 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
2657 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2658 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled", pVM->aCpus[0].pgm.s.cA20Changes.c);
2659 if (fShadow)
2660 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2661 if (fHost)
2662 {
2663 const char *psz;
2664 switch (pVM->pgm.s.enmHostMode)
2665 {
2666 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2667 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2668 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2669 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2670 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2671 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2672 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2673 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2674 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2675 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2676 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2677 default: psz = "unknown"; break;
2678 }
2679 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2680 }
2681}
2682
2683
2684/**
2685 * Dump registered MMIO ranges to the log.
2686 *
2687 * @param pVM Pointer to the VM.
2688 * @param pHlp The info helpers.
2689 * @param pszArgs Arguments, ignored.
2690 */
2691static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2692{
2693 NOREF(pszArgs);
2694 pHlp->pfnPrintf(pHlp,
2695 "RAM ranges (pVM=%p)\n"
2696 "%.*s %.*s\n",
2697 pVM,
2698 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2699 sizeof(RTHCPTR) * 2, "pvHC ");
2700
2701 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2702 pHlp->pfnPrintf(pHlp,
2703 "%RGp-%RGp %RHv %s\n",
2704 pCur->GCPhys,
2705 pCur->GCPhysLast,
2706 pCur->pvR3,
2707 pCur->pszDesc);
2708}
2709
2710/**
2711 * Dump the page directory to the log.
2712 *
2713 * @param pVM Pointer to the VM.
2714 * @param pHlp The info helpers.
2715 * @param pszArgs Arguments, ignored.
2716 */
2717static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2718{
2719 /** @todo SMP support!! */
2720 PVMCPU pVCpu = &pVM->aCpus[0];
2721
2722/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2723 /* Big pages supported? */
2724 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2725
2726 /* Global pages supported? */
2727 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2728
2729 NOREF(pszArgs);
2730
2731 /*
2732 * Get page directory addresses.
2733 */
2734 pgmLock(pVM);
2735 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2736 Assert(pPDSrc);
2737
2738 /*
2739 * Iterate the page directory.
2740 */
2741 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2742 {
2743 X86PDE PdeSrc = pPDSrc->a[iPD];
2744 if (PdeSrc.n.u1Present)
2745 {
2746 if (PdeSrc.b.u1Size && fPSE)
2747 pHlp->pfnPrintf(pHlp,
2748 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2749 iPD,
2750 pgmGstGet4MBPhysPage(pVM, PdeSrc),
2751 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2752 else
2753 pHlp->pfnPrintf(pHlp,
2754 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2755 iPD,
2756 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2757 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2758 }
2759 }
2760 pgmUnlock(pVM);
2761}
2762
2763
2764/**
2765 * Service a VMMCALLRING3_PGM_LOCK call.
2766 *
2767 * @returns VBox status code.
2768 * @param pVM Pointer to the VM.
2769 */
2770VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2771{
2772 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
2773 AssertRC(rc);
2774 return rc;
2775}
2776
2777
2778/**
2779 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2780 *
2781 * @returns PGM_TYPE_*.
2782 * @param pgmMode The mode value to convert.
2783 */
2784DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2785{
2786 switch (pgmMode)
2787 {
2788 case PGMMODE_REAL: return PGM_TYPE_REAL;
2789 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2790 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2791 case PGMMODE_PAE:
2792 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2793 case PGMMODE_AMD64:
2794 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2795 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2796 case PGMMODE_EPT: return PGM_TYPE_EPT;
2797 default:
2798 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2799 }
2800}
2801
2802
2803/**
2804 * Gets the index into the paging mode data array of a SHW+GST mode.
2805 *
2806 * @returns PGM::paPagingData index.
2807 * @param uShwType The shadow paging mode type.
2808 * @param uGstType The guest paging mode type.
2809 */
2810DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2811{
2812 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2813 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2814 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2815 + (uGstType - PGM_TYPE_REAL);
2816}
2817
2818
2819/**
2820 * Gets the index into the paging mode data array of a SHW+GST mode.
2821 *
2822 * @returns PGM::paPagingData index.
2823 * @param enmShw The shadow paging mode.
2824 * @param enmGst The guest paging mode.
2825 */
2826DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2827{
2828 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2829 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2830 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2831}
2832
2833
2834/**
2835 * Calculates the max data index.
2836 * @returns The number of entries in the paging data array.
2837 */
2838DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2839{
2840 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2841}
2842
2843
2844/**
2845 * Initializes the paging mode data kept in PGM::paModeData.
2846 *
2847 * @param pVM Pointer to the VM.
2848 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2849 * This is used early in the init process to avoid trouble with PDM
2850 * not being initialized yet.
2851 */
2852static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2853{
2854 PPGMMODEDATA pModeData;
2855 int rc;
2856
2857 /*
2858 * Allocate the array on the first call.
2859 */
2860 if (!pVM->pgm.s.paModeData)
2861 {
2862 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2863 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2864 }
2865
2866 /*
2867 * Initialize the array entries.
2868 */
2869 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2870 pModeData->uShwType = PGM_TYPE_32BIT;
2871 pModeData->uGstType = PGM_TYPE_REAL;
2872 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2873 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2874 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2875
2876 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2877 pModeData->uShwType = PGM_TYPE_32BIT;
2878 pModeData->uGstType = PGM_TYPE_PROT;
2879 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2880 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2881 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2882
2883 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2884 pModeData->uShwType = PGM_TYPE_32BIT;
2885 pModeData->uGstType = PGM_TYPE_32BIT;
2886 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2887 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2888 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2889
2890 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2891 pModeData->uShwType = PGM_TYPE_PAE;
2892 pModeData->uGstType = PGM_TYPE_REAL;
2893 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2894 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2895 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2896
2897 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2898 pModeData->uShwType = PGM_TYPE_PAE;
2899 pModeData->uGstType = PGM_TYPE_PROT;
2900 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2901 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2902 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2903
2904 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2905 pModeData->uShwType = PGM_TYPE_PAE;
2906 pModeData->uGstType = PGM_TYPE_32BIT;
2907 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2908 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2909 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2910
2911 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2912 pModeData->uShwType = PGM_TYPE_PAE;
2913 pModeData->uGstType = PGM_TYPE_PAE;
2914 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2915 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2916 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2917
2918#ifdef VBOX_WITH_64_BITS_GUESTS
2919 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2920 pModeData->uShwType = PGM_TYPE_AMD64;
2921 pModeData->uGstType = PGM_TYPE_AMD64;
2922 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2923 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2924 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2925#endif
2926
2927 /* The nested paging mode. */
2928 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2929 pModeData->uShwType = PGM_TYPE_NESTED;
2930 pModeData->uGstType = PGM_TYPE_REAL;
2931 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2932 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2933
2934 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2935 pModeData->uShwType = PGM_TYPE_NESTED;
2936 pModeData->uGstType = PGM_TYPE_PROT;
2937 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2938 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2939
2940 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2941 pModeData->uShwType = PGM_TYPE_NESTED;
2942 pModeData->uGstType = PGM_TYPE_32BIT;
2943 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2944 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2945
2946 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2947 pModeData->uShwType = PGM_TYPE_NESTED;
2948 pModeData->uGstType = PGM_TYPE_PAE;
2949 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2950 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2951
2952#ifdef VBOX_WITH_64_BITS_GUESTS
2953 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2954 pModeData->uShwType = PGM_TYPE_NESTED;
2955 pModeData->uGstType = PGM_TYPE_AMD64;
2956 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2957 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2958#endif
2959
2960 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2961 switch (pVM->pgm.s.enmHostMode)
2962 {
2963#if HC_ARCH_BITS == 32
2964 case SUPPAGINGMODE_32_BIT:
2965 case SUPPAGINGMODE_32_BIT_GLOBAL:
2966 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2967 {
2968 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2969 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2970 }
2971# ifdef VBOX_WITH_64_BITS_GUESTS
2972 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2973 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2974# endif
2975 break;
2976
2977 case SUPPAGINGMODE_PAE:
2978 case SUPPAGINGMODE_PAE_NX:
2979 case SUPPAGINGMODE_PAE_GLOBAL:
2980 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2981 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2982 {
2983 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2984 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2985 }
2986# ifdef VBOX_WITH_64_BITS_GUESTS
2987 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2988 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2989# endif
2990 break;
2991#endif /* HC_ARCH_BITS == 32 */
2992
2993#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2994 case SUPPAGINGMODE_AMD64:
2995 case SUPPAGINGMODE_AMD64_GLOBAL:
2996 case SUPPAGINGMODE_AMD64_NX:
2997 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2998# ifdef VBOX_WITH_64_BITS_GUESTS
2999 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3000# else
3001 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3002# endif
3003 {
3004 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3005 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3006 }
3007 break;
3008#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3009
3010 default:
3011 AssertFailed();
3012 break;
3013 }
3014
3015 /* Extended paging (EPT) / Intel VT-x */
3016 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3017 pModeData->uShwType = PGM_TYPE_EPT;
3018 pModeData->uGstType = PGM_TYPE_REAL;
3019 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3020 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3021 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3022
3023 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3024 pModeData->uShwType = PGM_TYPE_EPT;
3025 pModeData->uGstType = PGM_TYPE_PROT;
3026 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3027 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3028 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3029
3030 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3031 pModeData->uShwType = PGM_TYPE_EPT;
3032 pModeData->uGstType = PGM_TYPE_32BIT;
3033 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3034 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3035 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3036
3037 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3038 pModeData->uShwType = PGM_TYPE_EPT;
3039 pModeData->uGstType = PGM_TYPE_PAE;
3040 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3041 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3042 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3043
3044#ifdef VBOX_WITH_64_BITS_GUESTS
3045 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3046 pModeData->uShwType = PGM_TYPE_EPT;
3047 pModeData->uGstType = PGM_TYPE_AMD64;
3048 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3049 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3050 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3051#endif
3052 return VINF_SUCCESS;
3053}
3054
3055
3056/**
3057 * Switch to different (or relocated in the relocate case) mode data.
3058 *
3059 * @param pVM Pointer to the VM.
3060 * @param pVCpu Pointer to the VMCPU.
3061 * @param enmShw The shadow paging mode.
3062 * @param enmGst The guest paging mode.
3063 */
3064static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3065{
3066 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3067
3068 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3069 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3070
3071 /* shadow */
3072 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3073 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3074 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3075 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3076 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3077
3078 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3079 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3080
3081 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3082 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3083
3084
3085 /* guest */
3086 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3087 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3088 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3089 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3090 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3091 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3092 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3093 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3094 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3095 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3096 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3097 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3098
3099 /* both */
3100 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3101 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3102 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3103 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3104 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3105 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3106#ifdef VBOX_STRICT
3107 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3108#endif
3109 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3110 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3111
3112 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3113 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3114 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3115 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3116 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3117#ifdef VBOX_STRICT
3118 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3119#endif
3120 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3121 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3122
3123 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3124 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3125 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3126 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3127 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3128#ifdef VBOX_STRICT
3129 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3130#endif
3131 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3132 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3133}
3134
3135
3136/**
3137 * Calculates the shadow paging mode.
3138 *
3139 * @returns The shadow paging mode.
3140 * @param pVM Pointer to the VM.
3141 * @param enmGuestMode The guest mode.
3142 * @param enmHostMode The host mode.
3143 * @param enmShadowMode The current shadow mode.
3144 * @param penmSwitcher Where to store the switcher to use.
3145 * VMMSWITCHER_INVALID means no change.
3146 */
3147static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3148{
3149 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3150 switch (enmGuestMode)
3151 {
3152 /*
3153 * When switching to real or protected mode we don't change
3154 * anything since it's likely that we'll switch back pretty soon.
3155 *
3156 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3157 * and is supposed to determine which shadow paging and switcher to
3158 * use during init.
3159 */
3160 case PGMMODE_REAL:
3161 case PGMMODE_PROTECTED:
3162 if ( enmShadowMode != PGMMODE_INVALID
3163 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3164 break; /* (no change) */
3165
3166 switch (enmHostMode)
3167 {
3168 case SUPPAGINGMODE_32_BIT:
3169 case SUPPAGINGMODE_32_BIT_GLOBAL:
3170 enmShadowMode = PGMMODE_32_BIT;
3171 enmSwitcher = VMMSWITCHER_32_TO_32;
3172 break;
3173
3174 case SUPPAGINGMODE_PAE:
3175 case SUPPAGINGMODE_PAE_NX:
3176 case SUPPAGINGMODE_PAE_GLOBAL:
3177 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3178 enmShadowMode = PGMMODE_PAE;
3179 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3180#ifdef DEBUG_bird
3181 if (RTEnvExist("VBOX_32BIT"))
3182 {
3183 enmShadowMode = PGMMODE_32_BIT;
3184 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3185 }
3186#endif
3187 break;
3188
3189 case SUPPAGINGMODE_AMD64:
3190 case SUPPAGINGMODE_AMD64_GLOBAL:
3191 case SUPPAGINGMODE_AMD64_NX:
3192 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3193 enmShadowMode = PGMMODE_PAE;
3194 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3195#ifdef DEBUG_bird
3196 if (RTEnvExist("VBOX_32BIT"))
3197 {
3198 enmShadowMode = PGMMODE_32_BIT;
3199 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3200 }
3201#endif
3202 break;
3203
3204 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3205 }
3206 break;
3207
3208 case PGMMODE_32_BIT:
3209 switch (enmHostMode)
3210 {
3211 case SUPPAGINGMODE_32_BIT:
3212 case SUPPAGINGMODE_32_BIT_GLOBAL:
3213 enmShadowMode = PGMMODE_32_BIT;
3214 enmSwitcher = VMMSWITCHER_32_TO_32;
3215 break;
3216
3217 case SUPPAGINGMODE_PAE:
3218 case SUPPAGINGMODE_PAE_NX:
3219 case SUPPAGINGMODE_PAE_GLOBAL:
3220 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3221 enmShadowMode = PGMMODE_PAE;
3222 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3223#ifdef DEBUG_bird
3224 if (RTEnvExist("VBOX_32BIT"))
3225 {
3226 enmShadowMode = PGMMODE_32_BIT;
3227 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3228 }
3229#endif
3230 break;
3231
3232 case SUPPAGINGMODE_AMD64:
3233 case SUPPAGINGMODE_AMD64_GLOBAL:
3234 case SUPPAGINGMODE_AMD64_NX:
3235 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3236 enmShadowMode = PGMMODE_PAE;
3237 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3238#ifdef DEBUG_bird
3239 if (RTEnvExist("VBOX_32BIT"))
3240 {
3241 enmShadowMode = PGMMODE_32_BIT;
3242 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3243 }
3244#endif
3245 break;
3246
3247 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3248 }
3249 break;
3250
3251 case PGMMODE_PAE:
3252 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3253 switch (enmHostMode)
3254 {
3255 case SUPPAGINGMODE_32_BIT:
3256 case SUPPAGINGMODE_32_BIT_GLOBAL:
3257 enmShadowMode = PGMMODE_PAE;
3258 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3259 break;
3260
3261 case SUPPAGINGMODE_PAE:
3262 case SUPPAGINGMODE_PAE_NX:
3263 case SUPPAGINGMODE_PAE_GLOBAL:
3264 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3265 enmShadowMode = PGMMODE_PAE;
3266 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3267 break;
3268
3269 case SUPPAGINGMODE_AMD64:
3270 case SUPPAGINGMODE_AMD64_GLOBAL:
3271 case SUPPAGINGMODE_AMD64_NX:
3272 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3273 enmShadowMode = PGMMODE_PAE;
3274 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3275 break;
3276
3277 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3278 }
3279 break;
3280
3281 case PGMMODE_AMD64:
3282 case PGMMODE_AMD64_NX:
3283 switch (enmHostMode)
3284 {
3285 case SUPPAGINGMODE_32_BIT:
3286 case SUPPAGINGMODE_32_BIT_GLOBAL:
3287 enmShadowMode = PGMMODE_AMD64;
3288 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3289 break;
3290
3291 case SUPPAGINGMODE_PAE:
3292 case SUPPAGINGMODE_PAE_NX:
3293 case SUPPAGINGMODE_PAE_GLOBAL:
3294 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3295 enmShadowMode = PGMMODE_AMD64;
3296 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3297 break;
3298
3299 case SUPPAGINGMODE_AMD64:
3300 case SUPPAGINGMODE_AMD64_GLOBAL:
3301 case SUPPAGINGMODE_AMD64_NX:
3302 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3303 enmShadowMode = PGMMODE_AMD64;
3304 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3305 break;
3306
3307 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3308 }
3309 break;
3310
3311
3312 default:
3313 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3314 *penmSwitcher = VMMSWITCHER_INVALID;
3315 return PGMMODE_INVALID;
3316 }
3317 /* Override the shadow mode is nested paging is active. */
3318 pVM->pgm.s.fNestedPaging = HWACCMIsNestedPagingActive(pVM);
3319 if (pVM->pgm.s.fNestedPaging)
3320 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3321
3322 *penmSwitcher = enmSwitcher;
3323 return enmShadowMode;
3324}
3325
3326
3327/**
3328 * Performs the actual mode change.
3329 * This is called by PGMChangeMode and pgmR3InitPaging().
3330 *
3331 * @returns VBox status code. May suspend or power off the VM on error, but this
3332 * will trigger using FFs and not status codes.
3333 *
3334 * @param pVM Pointer to the VM.
3335 * @param pVCpu Pointer to the VMCPU.
3336 * @param enmGuestMode The new guest mode. This is assumed to be different from
3337 * the current mode.
3338 */
3339VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3340{
3341#if HC_ARCH_BITS == 32
3342 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3343#endif
3344 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3345
3346 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3347 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3348
3349 /*
3350 * Calc the shadow mode and switcher.
3351 */
3352 VMMSWITCHER enmSwitcher;
3353 PGMMODE enmShadowMode;
3354 enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3355
3356#ifdef VBOX_WITH_RAW_MODE
3357 if (enmSwitcher != VMMSWITCHER_INVALID)
3358 {
3359 /*
3360 * Select new switcher.
3361 */
3362 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3363 if (RT_FAILURE(rc))
3364 {
3365 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3366 return rc;
3367 }
3368 }
3369#endif
3370
3371 /*
3372 * Exit old mode(s).
3373 */
3374#if HC_ARCH_BITS == 32
3375 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3376 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3377 && enmShadowMode == PGMMODE_NESTED);
3378#else
3379 const bool fForceShwEnterExit = false;
3380#endif
3381 /* shadow */
3382 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3383 || fForceShwEnterExit)
3384 {
3385 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3386 if (PGM_SHW_PFN(Exit, pVCpu))
3387 {
3388 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3389 if (RT_FAILURE(rc))
3390 {
3391 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3392 return rc;
3393 }
3394 }
3395
3396 }
3397 else
3398 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3399
3400 /* guest */
3401 if (PGM_GST_PFN(Exit, pVCpu))
3402 {
3403 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3404 if (RT_FAILURE(rc))
3405 {
3406 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3407 return rc;
3408 }
3409 }
3410
3411 /*
3412 * Load new paging mode data.
3413 */
3414 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3415
3416 /*
3417 * Enter new shadow mode (if changed).
3418 */
3419 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3420 || fForceShwEnterExit)
3421 {
3422 int rc;
3423 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3424 switch (enmShadowMode)
3425 {
3426 case PGMMODE_32_BIT:
3427 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3428 break;
3429 case PGMMODE_PAE:
3430 case PGMMODE_PAE_NX:
3431 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3432 break;
3433 case PGMMODE_AMD64:
3434 case PGMMODE_AMD64_NX:
3435 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3436 break;
3437 case PGMMODE_NESTED:
3438 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3439 break;
3440 case PGMMODE_EPT:
3441 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3442 break;
3443 case PGMMODE_REAL:
3444 case PGMMODE_PROTECTED:
3445 default:
3446 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3447 return VERR_INTERNAL_ERROR;
3448 }
3449 if (RT_FAILURE(rc))
3450 {
3451 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3452 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3453 return rc;
3454 }
3455 }
3456
3457 /*
3458 * Always flag the necessary updates
3459 */
3460 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3461
3462 /*
3463 * Enter the new guest and shadow+guest modes.
3464 */
3465 int rc = -1;
3466 int rc2 = -1;
3467 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3468 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3469 switch (enmGuestMode)
3470 {
3471 case PGMMODE_REAL:
3472 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3473 switch (pVCpu->pgm.s.enmShadowMode)
3474 {
3475 case PGMMODE_32_BIT:
3476 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3477 break;
3478 case PGMMODE_PAE:
3479 case PGMMODE_PAE_NX:
3480 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3481 break;
3482 case PGMMODE_NESTED:
3483 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3484 break;
3485 case PGMMODE_EPT:
3486 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3487 break;
3488 case PGMMODE_AMD64:
3489 case PGMMODE_AMD64_NX:
3490 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3491 default: AssertFailed(); break;
3492 }
3493 break;
3494
3495 case PGMMODE_PROTECTED:
3496 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3497 switch (pVCpu->pgm.s.enmShadowMode)
3498 {
3499 case PGMMODE_32_BIT:
3500 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3501 break;
3502 case PGMMODE_PAE:
3503 case PGMMODE_PAE_NX:
3504 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3505 break;
3506 case PGMMODE_NESTED:
3507 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3508 break;
3509 case PGMMODE_EPT:
3510 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3511 break;
3512 case PGMMODE_AMD64:
3513 case PGMMODE_AMD64_NX:
3514 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3515 default: AssertFailed(); break;
3516 }
3517 break;
3518
3519 case PGMMODE_32_BIT:
3520 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3521 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3522 switch (pVCpu->pgm.s.enmShadowMode)
3523 {
3524 case PGMMODE_32_BIT:
3525 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3526 break;
3527 case PGMMODE_PAE:
3528 case PGMMODE_PAE_NX:
3529 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3530 break;
3531 case PGMMODE_NESTED:
3532 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3533 break;
3534 case PGMMODE_EPT:
3535 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3536 break;
3537 case PGMMODE_AMD64:
3538 case PGMMODE_AMD64_NX:
3539 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3540 default: AssertFailed(); break;
3541 }
3542 break;
3543
3544 case PGMMODE_PAE_NX:
3545 case PGMMODE_PAE:
3546 {
3547 uint32_t u32Dummy, u32Features;
3548
3549 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3550 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3551 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3552 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3553
3554 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3555 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3556 switch (pVCpu->pgm.s.enmShadowMode)
3557 {
3558 case PGMMODE_PAE:
3559 case PGMMODE_PAE_NX:
3560 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3561 break;
3562 case PGMMODE_NESTED:
3563 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3564 break;
3565 case PGMMODE_EPT:
3566 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3567 break;
3568 case PGMMODE_32_BIT:
3569 case PGMMODE_AMD64:
3570 case PGMMODE_AMD64_NX:
3571 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3572 default: AssertFailed(); break;
3573 }
3574 break;
3575 }
3576
3577#ifdef VBOX_WITH_64_BITS_GUESTS
3578 case PGMMODE_AMD64_NX:
3579 case PGMMODE_AMD64:
3580 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3581 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3582 switch (pVCpu->pgm.s.enmShadowMode)
3583 {
3584 case PGMMODE_AMD64:
3585 case PGMMODE_AMD64_NX:
3586 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3587 break;
3588 case PGMMODE_NESTED:
3589 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3590 break;
3591 case PGMMODE_EPT:
3592 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3593 break;
3594 case PGMMODE_32_BIT:
3595 case PGMMODE_PAE:
3596 case PGMMODE_PAE_NX:
3597 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3598 default: AssertFailed(); break;
3599 }
3600 break;
3601#endif
3602
3603 default:
3604 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3605 rc = VERR_NOT_IMPLEMENTED;
3606 break;
3607 }
3608
3609 /* status codes. */
3610 AssertRC(rc);
3611 AssertRC(rc2);
3612 if (RT_SUCCESS(rc))
3613 {
3614 rc = rc2;
3615 if (RT_SUCCESS(rc)) /* no informational status codes. */
3616 rc = VINF_SUCCESS;
3617 }
3618
3619 /* Notify HWACCM as well. */
3620 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3621 return rc;
3622}
3623
3624
3625/**
3626 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3627 *
3628 * @returns VBox status code, fully asserted.
3629 * @param pVCpu Pointer to the VMCPU.
3630 */
3631int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
3632{
3633 /* Unmap the old CR3 value before flushing everything. */
3634 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3635 AssertRC(rc);
3636
3637 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3638 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3639 AssertRC(rc);
3640 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3641 return rc;
3642}
3643
3644
3645/**
3646 * Called by pgmPoolFlushAllInt after flushing the pool.
3647 *
3648 * @returns VBox status code, fully asserted.
3649 * @param pVM Pointer to the VM.
3650 * @param pVCpu Pointer to the VMCPU.
3651 */
3652int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3653{
3654 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3655 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3656 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3657 AssertRCReturn(rc, rc);
3658 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3659
3660 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3661 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3662 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3663 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3664 return rc;
3665}
3666
3667
3668/**
3669 * Called by PGMR3PhysSetA20 after changing the A20 state.
3670 *
3671 * @param pVCpu Pointer to the VMCPU.
3672 */
3673void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
3674{
3675 /** @todo Probably doing a bit too much here. */
3676 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
3677 AssertReleaseRC(rc);
3678 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
3679 AssertReleaseRC(rc);
3680}
3681
3682
3683#ifdef VBOX_WITH_DEBUGGER
3684
3685/**
3686 * The '.pgmram' command.
3687 *
3688 * @returns VBox status.
3689 * @param pCmd Pointer to the command descriptor (as registered).
3690 * @param pCmdHlp Pointer to command helper functions.
3691 * @param pVM Pointer to the current VM (if any).
3692 * @param paArgs Pointer to (readonly) array of arguments.
3693 * @param cArgs Number of arguments in the array.
3694 */
3695static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3696{
3697 /*
3698 * Validate input.
3699 */
3700 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3701 if (!pVM)
3702 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3703 if (!pVM->pgm.s.pRamRangesXR3)
3704 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
3705
3706 /*
3707 * Dump the ranges.
3708 */
3709 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
3710 PPGMRAMRANGE pRam;
3711 for (pRam = pVM->pgm.s.pRamRangesXR3; pRam; pRam = pRam->pNextR3)
3712 {
3713 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3714 "%RGp - %RGp %p\n",
3715 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
3716 if (RT_FAILURE(rc))
3717 return rc;
3718 }
3719
3720 return VINF_SUCCESS;
3721}
3722
3723
3724/**
3725 * The '.pgmerror' and '.pgmerroroff' commands.
3726 *
3727 * @returns VBox status.
3728 * @param pCmd Pointer to the command descriptor (as registered).
3729 * @param pCmdHlp Pointer to command helper functions.
3730 * @param pVM Pointer to the current VM (if any).
3731 * @param paArgs Pointer to (readonly) array of arguments.
3732 * @param cArgs Number of arguments in the array.
3733 */
3734static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3735{
3736 /*
3737 * Validate input.
3738 */
3739 if (!pVM)
3740 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3741 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
3742 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
3743
3744 if (!cArgs)
3745 {
3746 /*
3747 * Print the list of error injection locations with status.
3748 */
3749 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
3750 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3751 }
3752 else
3753 {
3754
3755 /*
3756 * String switch on where to inject the error.
3757 */
3758 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
3759 const char *pszWhere = paArgs[0].u.pszString;
3760 if (!strcmp(pszWhere, "handy"))
3761 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
3762 else
3763 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
3764 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
3765 }
3766 return VINF_SUCCESS;
3767}
3768
3769
3770/**
3771 * The '.pgmsync' command.
3772 *
3773 * @returns VBox status.
3774 * @param pCmd Pointer to the command descriptor (as registered).
3775 * @param pCmdHlp Pointer to command helper functions.
3776 * @param pVM Pointer to the current VM (if any).
3777 * @param paArgs Pointer to (readonly) array of arguments.
3778 * @param cArgs Number of arguments in the array.
3779 */
3780static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3781{
3782 /** @todo SMP support */
3783
3784 /*
3785 * Validate input.
3786 */
3787 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3788 if (!pVM)
3789 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3790
3791 PVMCPU pVCpu = &pVM->aCpus[0];
3792
3793 /*
3794 * Force page directory sync.
3795 */
3796 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3797
3798 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
3799 if (RT_FAILURE(rc))
3800 return rc;
3801
3802 return VINF_SUCCESS;
3803}
3804
3805
3806#ifdef VBOX_STRICT
3807/**
3808 * The '.pgmassertcr3' command.
3809 *
3810 * @returns VBox status.
3811 * @param pCmd Pointer to the command descriptor (as registered).
3812 * @param pCmdHlp Pointer to command helper functions.
3813 * @param pVM Pointer to the current VM (if any).
3814 * @param paArgs Pointer to (readonly) array of arguments.
3815 * @param cArgs Number of arguments in the array.
3816 */
3817static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3818{
3819 /** @todo SMP support!! */
3820
3821 /*
3822 * Validate input.
3823 */
3824 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3825 if (!pVM)
3826 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3827
3828 PVMCPU pVCpu = &pVM->aCpus[0];
3829
3830 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
3831 if (RT_FAILURE(rc))
3832 return rc;
3833
3834 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
3835
3836 return VINF_SUCCESS;
3837}
3838#endif /* VBOX_STRICT */
3839
3840
3841/**
3842 * The '.pgmsyncalways' command.
3843 *
3844 * @returns VBox status.
3845 * @param pCmd Pointer to the command descriptor (as registered).
3846 * @param pCmdHlp Pointer to command helper functions.
3847 * @param pVM Pointer to the current VM (if any).
3848 * @param paArgs Pointer to (readonly) array of arguments.
3849 * @param cArgs Number of arguments in the array.
3850 */
3851static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3852{
3853 /** @todo SMP support!! */
3854 PVMCPU pVCpu = &pVM->aCpus[0];
3855
3856 /*
3857 * Validate input.
3858 */
3859 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3860 if (!pVM)
3861 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3862
3863 /*
3864 * Force page directory sync.
3865 */
3866 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3867 {
3868 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3869 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
3870 }
3871 else
3872 {
3873 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3874 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3875 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
3876 }
3877}
3878
3879
3880/**
3881 * The '.pgmphystofile' command.
3882 *
3883 * @returns VBox status.
3884 * @param pCmd Pointer to the command descriptor (as registered).
3885 * @param pCmdHlp Pointer to command helper functions.
3886 * @param pVM Pointer to the current VM (if any).
3887 * @param paArgs Pointer to (readonly) array of arguments.
3888 * @param cArgs Number of arguments in the array.
3889 */
3890static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs)
3891{
3892 /*
3893 * Validate input.
3894 */
3895 NOREF(pCmd);
3896 if (!pVM)
3897 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3898 if ( cArgs < 1
3899 || cArgs > 2
3900 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
3901 || ( cArgs > 1
3902 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
3903 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
3904 if ( cArgs >= 2
3905 && strcmp(paArgs[1].u.pszString, "nozero"))
3906 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
3907 bool fIncZeroPgs = cArgs < 2;
3908
3909 /*
3910 * Open the output file and get the ram parameters.
3911 */
3912 RTFILE hFile;
3913 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
3914 if (RT_FAILURE(rc))
3915 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
3916
3917 uint32_t cbRamHole = 0;
3918 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
3919 uint64_t cbRam = 0;
3920 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
3921 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
3922
3923 /*
3924 * Dump the physical memory, page by page.
3925 */
3926 RTGCPHYS GCPhys = 0;
3927 char abZeroPg[PAGE_SIZE];
3928 RT_ZERO(abZeroPg);
3929
3930 pgmLock(pVM);
3931 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3932 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
3933 pRam = pRam->pNextR3)
3934 {
3935 /* fill the gap */
3936 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
3937 {
3938 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
3939 {
3940 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3941 GCPhys += PAGE_SIZE;
3942 }
3943 }
3944
3945 PCPGMPAGE pPage = &pRam->aPages[0];
3946 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
3947 {
3948 if ( PGM_PAGE_IS_ZERO(pPage)
3949 || PGM_PAGE_IS_BALLOONED(pPage))
3950 {
3951 if (fIncZeroPgs)
3952 {
3953 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3954 if (RT_FAILURE(rc))
3955 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3956 }
3957 }
3958 else
3959 {
3960 switch (PGM_PAGE_GET_TYPE(pPage))
3961 {
3962 case PGMPAGETYPE_RAM:
3963 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
3964 case PGMPAGETYPE_ROM:
3965 case PGMPAGETYPE_MMIO2:
3966 {
3967 void const *pvPage;
3968 PGMPAGEMAPLOCK Lock;
3969 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
3970 if (RT_SUCCESS(rc))
3971 {
3972 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
3973 PGMPhysReleasePageMappingLock(pVM, &Lock);
3974 if (RT_FAILURE(rc))
3975 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3976 }
3977 else
3978 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3979 break;
3980 }
3981
3982 default:
3983 AssertFailed();
3984 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
3985 case PGMPAGETYPE_MMIO:
3986 if (fIncZeroPgs)
3987 {
3988 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3989 if (RT_FAILURE(rc))
3990 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3991 }
3992 break;
3993 }
3994 }
3995
3996
3997 /* advance */
3998 GCPhys += PAGE_SIZE;
3999 pPage++;
4000 }
4001 }
4002 pgmUnlock(pVM);
4003
4004 RTFileClose(hFile);
4005 if (RT_SUCCESS(rc))
4006 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4007 return VINF_SUCCESS;
4008}
4009
4010#endif /* VBOX_WITH_DEBUGGER */
4011
4012/**
4013 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4014 */
4015typedef struct PGMCHECKINTARGS
4016{
4017 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4018 PPGMPHYSHANDLER pPrevPhys;
4019 PPGMVIRTHANDLER pPrevVirt;
4020 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4021 PVM pVM;
4022} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4023
4024/**
4025 * Validate a node in the physical handler tree.
4026 *
4027 * @returns 0 on if ok, other wise 1.
4028 * @param pNode The handler node.
4029 * @param pvUser pVM.
4030 */
4031static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4032{
4033 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4034 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4035 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4036 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4037 AssertReleaseMsg( !pArgs->pPrevPhys
4038 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4039 ("pPrevPhys=%p %RGp-%RGp %s\n"
4040 " pCur=%p %RGp-%RGp %s\n",
4041 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4042 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4043 pArgs->pPrevPhys = pCur;
4044 return 0;
4045}
4046
4047
4048/**
4049 * Validate a node in the virtual handler tree.
4050 *
4051 * @returns 0 on if ok, other wise 1.
4052 * @param pNode The handler node.
4053 * @param pvUser pVM.
4054 */
4055static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4056{
4057 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4058 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4059 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4060 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4061 AssertReleaseMsg( !pArgs->pPrevVirt
4062 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4063 ("pPrevVirt=%p %RGv-%RGv %s\n"
4064 " pCur=%p %RGv-%RGv %s\n",
4065 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4066 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4067 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4068 {
4069 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4070 ("pCur=%p %RGv-%RGv %s\n"
4071 "iPage=%d offVirtHandle=%#x expected %#x\n",
4072 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4073 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4074 }
4075 pArgs->pPrevVirt = pCur;
4076 return 0;
4077}
4078
4079
4080/**
4081 * Validate a node in the virtual handler tree.
4082 *
4083 * @returns 0 on if ok, other wise 1.
4084 * @param pNode The handler node.
4085 * @param pvUser pVM.
4086 */
4087static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4088{
4089 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4090 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4091 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4092 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4093 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4094 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4095 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4096 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4097 " pCur=%p %RGp-%RGp\n",
4098 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4099 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4100 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4101 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4102 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4103 " pCur=%p %RGp-%RGp\n",
4104 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4105 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4106 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4107 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4108 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4109 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4110 {
4111 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4112 for (;;)
4113 {
4114 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4115 AssertReleaseMsg(pCur2 != pCur,
4116 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4117 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4118 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4119 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4120 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4121 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4122 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4123 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4124 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4125 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4126 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4127 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4128 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4129 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4130 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4131 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4132 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4133 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4134 break;
4135 }
4136 }
4137
4138 pArgs->pPrevPhys2Virt = pCur;
4139 return 0;
4140}
4141
4142
4143/**
4144 * Perform an integrity check on the PGM component.
4145 *
4146 * @returns VINF_SUCCESS if everything is fine.
4147 * @returns VBox error status after asserting on integrity breach.
4148 * @param pVM Pointer to the VM.
4149 */
4150VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4151{
4152 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4153
4154 /*
4155 * Check the trees.
4156 */
4157 int cErrors = 0;
4158 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4159 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4160 PGMCHECKINTARGS Args = s_LeftToRight;
4161 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4162 Args = s_RightToLeft;
4163 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4164 Args = s_LeftToRight;
4165 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4166 Args = s_RightToLeft;
4167 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4168 Args = s_LeftToRight;
4169 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4170 Args = s_RightToLeft;
4171 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4172 Args = s_LeftToRight;
4173 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4174 Args = s_RightToLeft;
4175 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4176
4177 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4178}
4179
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette