/* $Id: PGM.cpp 91580 2021-10-06 07:22:04Z vboxsync $ */ /** @file * PGM - Page Manager and Monitor. (Mixing stuff here, not good?) */ /* * Copyright (C) 2006-2020 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /** @page pg_pgm PGM - The Page Manager and Monitor * * @sa @ref grp_pgm * @subpage pg_pgm_pool * @subpage pg_pgm_phys * * * @section sec_pgm_modes Paging Modes * * There are three memory contexts: Host Context (HC), Guest Context (GC) * and intermediate context. When talking about paging HC can also be referred * to as "host paging", and GC referred to as "shadow paging". * * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode * is defined by the host operating system. The mode used in the shadow paging mode * depends on the host paging mode and what the mode the guest is currently in. The * following relation between the two is defined: * * @verbatim Host > 32-bit | PAE | AMD64 | Guest | | | | ==v================================ 32-bit 32-bit PAE PAE -------|--------|--------|--------| PAE PAE PAE PAE -------|--------|--------|--------| AMD64 AMD64 AMD64 AMD64 -------|--------|--------|--------| @endverbatim * * All configuration except those in the diagonal (upper left) are expected to * require special effort from the switcher (i.e. a bit slower). * * * * * @section sec_pgm_shw The Shadow Memory Context * * * [..] * * Because of guest context mappings requires PDPT and PML4 entries to allow * writing on AMD64, the two upper levels will have fixed flags whatever the * guest is thinking of using there. So, when shadowing the PD level we will * calculate the effective flags of PD and all the higher levels. In legacy * PAE mode this only applies to the PWT and PCD bits (the rest are * ignored/reserved/MBZ). We will ignore those bits for the present. * * * * @section sec_pgm_int The Intermediate Memory Context * * The world switch goes thru an intermediate memory context which purpose it is * to provide different mappings of the switcher code. All guest mappings are also * present in this context. * * The switcher code is mapped at the same location as on the host, at an * identity mapped location (physical equals virtual address), and at the * hypervisor location. The identity mapped location is for when the world * switches that involves disabling paging. * * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This * simplifies switching guest CPU mode and consistency at the cost of more * code to do the work. All memory use for those page tables is located below * 4GB (this includes page tables for guest context mappings). * * Note! The intermediate memory context is also used for 64-bit guest * execution on 32-bit hosts. Because we need to load 64-bit registers * prior to switching to guest context, we need to be in 64-bit mode * first. So, HM has some 64-bit worker routines in VMMRC.rc that get * invoked via the special world switcher code in LegacyToAMD64.asm. * * * @subsection subsec_pgm_int_gc Guest Context Mappings * * During assignment and relocation of a guest context mapping the intermediate * memory context is used to verify the new location. * * Guest context mappings are currently restricted to below 4GB, for reasons * of simplicity. This may change when we implement AMD64 support. * * * * * @section sec_pgm_misc Misc * * * @subsection sec_pgm_misc_A20 The A20 Gate * * PGM implements the A20 gate masking when translating a virtual guest address * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and * the code reading the guest page table entries during shadowing. The masking * is done consistenly for all CPU modes, paged ones included. Large pages are * also masked correctly. (On current CPUs, experiments indicates that AMD does * not apply A20M in paged modes and intel only does it for the 2nd MB of * memory.) * * The A20 gate implementation is per CPU core. It can be configured on a per * core basis via the keyboard device and PC architecture device. This is * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where * guest OSes try pushing things anyway, so who cares. (On current real systems * the A20M signal is probably only sent to the boot CPU and it affects all * thread and probably all cores in that package.) * * The keyboard device and the PC architecture device doesn't OR their A20 * config bits together, rather they are currently implemented such that they * mirror the CPU state. So, flipping the bit in either of them will change the * A20 state. (On real hardware the bits of the two devices should probably be * ORed together to indicate enabled, i.e. both needs to be cleared to disable * A20 masking.) * * The A20 state will change immediately, transmeta fashion. There is no delays * due to buses, wiring or other physical stuff. (On real hardware there are * normally delays, the delays differs between the two devices and probably also * between chipsets and CPU generations. Note that it's said that transmeta CPUs * does the change immediately like us, they apparently intercept/handles the * port accesses in microcode. Neat.) * * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area * * * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE * * The differences between legacy PAE and long mode PAE are: * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the * usual meanings while 6 is ignored (AMD). This means that upon switching to * legacy PAE mode we'll have to clear these bits and when going to long mode * they must be set. This applies to both intermediate and shadow contexts, * however we don't need to do it for the intermediate one since we're * executing with CR0.WP at that time. * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode * a page aligned one is required. * * * @section sec_pgm_handlers Access Handlers * * Placeholder. * * * @subsection sec_pgm_handlers_phys Physical Access Handlers * * Placeholder. * * * @subsection sec_pgm_handlers_virt Virtual Access Handlers (obsolete) * * We currently implement three types of virtual access handlers: ALL, WRITE * and HYPERVISOR (WRITE). See PGMVIRTHANDLERKIND for some more details. * * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the * rest of this section is going to be about these handlers. * * We'll go thru the life cycle of a handler and try make sense of it all, don't know * how successful this is gonna be... * * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers * and create a new node that is inserted into the AVL tree (range key). Then * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE). * * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate. * * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers * via the current guest CR3 and update the physical page -> virtual handler * translation. Needless to say, this doesn't exactly scale very well. If any changes * are detected, it will flag a virtual bit update just like we did on registration. * PGMPHYS pages with changes will have their virtual handler state reset to NONE. * * 2b. The virtual bit update process will iterate all the pages covered by all the * virtual handlers and update the PGMPAGE virtual handler state to the max of all * virtual handlers on that page. * * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure * we don't miss any alias mappings of the monitored pages. * * 2d. SyncCR3 will then proceed with syncing the CR3 table. * * 3. \#PF(np,read) on a page in the range. This will cause it to be synced * read-only and resumed if it's a WRITE handler. If it's an ALL handler we * will call the handlers like in the next step. If the physical mapping has * changed we will - some time in the future - perform a handler callback * (optional) and update the physical -> virtual handler cache. * * 4. \#PF(,write) on a page in the range. This will cause the handler to * be invoked. * * 5. The guest invalidates the page and changes the physical backing or * unmaps it. This should cause the invalidation callback to be invoked * (it might not yet be 100% perfect). Exactly what happens next... is * this where we mess up and end up out of sync for a while? * * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister. * We will then set all PGMPAGEs in the physical -> virtual handler cache for * this handler to NONE and trigger a full PGM resync (basically the same * as int step 1). Which means 2 is executed again. * * * @subsubsection sub_sec_pgm_handler_virt_todo TODOs * * There is a bunch of things that needs to be done to make the virtual handlers * work 100% correctly and work more efficiently. * * The first bit hasn't been implemented yet because it's going to slow the * whole mess down even more, and besides it seems to be working reliably for * our current uses. OTOH, some of the optimizations might end up more or less * implementing the missing bits, so we'll see. * * On the optimization side, the first thing to do is to try avoid unnecessary * cache flushing. Then try team up with the shadowing code to track changes * in mappings by means of access to them (shadow in), updates to shadows pages, * invlpg, and shadow PT discarding (perhaps). * * Some idea that have popped up for optimization for current and new features: * - bitmap indicating where there are virtual handlers installed. * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!) * - Further optimize this by min/max (needs min/max avl getters). * - Shadow page table entry bit (if any left)? * */ /** @page pg_pgm_phys PGM Physical Guest Memory Management * * * Objectives: * - Guest RAM over-commitment using memory ballooning, * zero pages and general page sharing. * - Moving or mirroring a VM onto a different physical machine. * * * @section sec_pgmPhys_Definitions Definitions * * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking * machinery associated with it. * * * * * @section sec_pgmPhys_AllocPage Allocating a page. * * Initially we map *all* guest memory to the (per VM) zero page, which * means that none of the read functions will cause pages to be allocated. * * Exception, access bit in page tables that have been shared. This must * be handled, but we must also make sure PGMGst*Modify doesn't make * unnecessary modifications. * * Allocation points: * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite. * - Replacing a zero page mapping at \#PF. * - Replacing a shared page mapping at \#PF. * - ROM registration (currently MMR3RomRegister). * - VM restore (pgmR3Load). * * For the first three it would make sense to keep a few pages handy * until we've reached the max memory commitment for the VM. * * For the ROM registration, we know exactly how many pages we need * and will request these from ring-0. For restore, we will save * the number of non-zero pages in the saved state and allocate * them up front. This would allow the ring-0 component to refuse * the request if the isn't sufficient memory available for VM use. * * Btw. for both ROM and restore allocations we won't be requiring * zeroed pages as they are going to be filled instantly. * * * @section sec_pgmPhys_FreePage Freeing a page * * There are a few points where a page can be freed: * - After being replaced by the zero page. * - After being replaced by a shared page. * - After being ballooned by the guest additions. * - At reset. * - At restore. * * When freeing one or more pages they will be returned to the ring-0 * component and replaced by the zero page. * * The reasoning for clearing out all the pages on reset is that it will * return us to the exact same state as on power on, and may thereby help * us reduce the memory load on the system. Further it might have a * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation). * * On restore, as mention under the allocation topic, pages should be * freed / allocated depending on how many is actually required by the * new VM state. The simplest approach is to do like on reset, and free * all non-ROM pages and then allocate what we need. * * A measure to prevent some fragmentation, would be to let each allocation * chunk have some affinity towards the VM having allocated the most pages * from it. Also, try make sure to allocate from allocation chunks that * are almost full. Admittedly, both these measures might work counter to * our intentions and its probably not worth putting a lot of effort, * cpu time or memory into this. * * * @section sec_pgmPhys_SharePage Sharing a page * * The basic idea is that there there will be a idle priority kernel * thread walking the non-shared VM pages hashing them and looking for * pages with the same checksum. If such pages are found, it will compare * them byte-by-byte to see if they actually are identical. If found to be * identical it will allocate a shared page, copy the content, check that * the page didn't change while doing this, and finally request both the * VMs to use the shared page instead. If the page is all zeros (special * checksum and byte-by-byte check) it will request the VM that owns it * to replace it with the zero page. * * To make this efficient, we will have to make sure not to try share a page * that will change its contents soon. This part requires the most work. * A simple idea would be to request the VM to write monitor the page for * a while to make sure it isn't modified any time soon. Also, it may * make sense to skip pages that are being write monitored since this * information is readily available to the thread if it works on the * per-VM guest memory structures (presently called PGMRAMRANGE). * * * @section sec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures * * The pages are organized in allocation chunks in ring-0, this is a necessity * if we wish to have an OS agnostic approach to this whole thing. (On Linux we * could easily work on a page-by-page basis if we liked. Whether this is possible * or efficient on NT I don't quite know.) Fragmentation within these chunks may * become a problem as part of the idea here is that we wish to return memory to * the host system. * * For instance, starting two VMs at the same time, they will both allocate the * guest memory on-demand and if permitted their page allocations will be * intermixed. Shut down one of the two VMs and it will be difficult to return * any memory to the host system because the page allocation for the two VMs are * mixed up in the same allocation chunks. * * To further complicate matters, when pages are freed because they have been * ballooned or become shared/zero the whole idea is that the page is supposed * to be reused by another VM or returned to the host system. This will cause * allocation chunks to contain pages belonging to different VMs and prevent * returning memory to the host when one of those VM shuts down. * * The only way to really deal with this problem is to move pages. This can * either be done at VM shutdown and or by the idle priority worker thread * that will be responsible for finding sharable/zero pages. The mechanisms * involved for coercing a VM to move a page (or to do it for it) will be * the same as when telling it to share/zero a page. * * * @section sec_pgmPhys_Tracking Tracking Structures And Their Cost * * There's a difficult balance between keeping the per-page tracking structures * (global and guest page) easy to use and keeping them from eating too much * memory. We have limited virtual memory resources available when operating in * 32-bit kernel space (on 64-bit there'll it's quite a different story). The * tracking structures will be attempted designed such that we can deal with up * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones. * * * @subsection subsec_pgmPhys_Tracking_Kernel Kernel Space * * @see pg_GMM * * @subsection subsec_pgmPhys_Tracking_PerVM Per-VM * * Fixed info is the physical address of the page (HCPhys) and the page id * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part. * Today we've restricting ourselves to 40(-12) bits because this is the current * restrictions of all AMD64 implementations (I think Barcelona will up this * to 48(-12) bits, not that it really matters) and I needed the bits for * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a * decent range for the page id: 2^(28+12) = 1024TB. * * In additions to these, we'll have to keep maintaining the page flags as we * currently do. Although it wouldn't harm to optimize these quite a bit, like * for instance the ROM shouldn't depend on having a write handler installed * in order for it to become read-only. A RO/RW bit should be considered so * that the page syncing code doesn't have to mess about checking multiple * flag combinations (ROM || RW handler || write monitored) in order to * figure out how to setup a shadow PTE. But this of course, is second * priority at present. Current this requires 12 bits, but could probably * be optimized to ~8. * * Then there's the 24 bits used to track which shadow page tables are * currently mapping a page for the purpose of speeding up physical * access handlers, and thereby the page pool cache. More bit for this * purpose wouldn't hurt IIRC. * * Then there is a new bit in which we need to record what kind of page * this is, shared, zero, normal or write-monitored-normal. This'll * require 2 bits. One bit might be needed for indicating whether a * write monitored page has been written to. And yet another one or * two for tracking migration status. 3-4 bits total then. * * Whatever is left will can be used to record the sharabilitiy of a * page. The page checksum will not be stored in the per-VM table as * the idle thread will not be permitted to do modifications to it. * It will instead have to keep its own working set of potentially * shareable pages and their check sums and stuff. * * For the present we'll keep the current packing of the * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course, * we'll have to change it to a struct with a total of 128-bits at * our disposal. * * The initial layout will be like this: * @verbatim RTHCPHYS HCPhys; The current stuff. 63:40 Current shadow PT tracking stuff. 39:12 The physical page frame number. 11:0 The current flags. uint32_t u28PageId : 28; The page id. uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }. uint32_t fWrittenTo : 1; Whether a write monitored page was written to. uint32_t u1Reserved : 1; Reserved for later. uint32_t u32Reserved; Reserved for later, mostly sharing stats. @endverbatim * * The final layout will be something like this: * @verbatim RTHCPHYS HCPhys; The current stuff. 63:48 High page id (12+). 47:12 The physical page frame number. 11:0 Low page id. uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way). uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}. uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}. uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}.. uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }. uint32_t fWrittenTo : 1; Whether a write monitored page was written to. uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats. uint32_t u32Tracking; The shadow PT tracking stuff, roughly. @endverbatim * * Cost wise, this means we'll double the cost for guest memory. There isn't anyway * around that I'm afraid. It means that the cost of dealing out 32GB of memory * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another * example, the VM heap cost when assigning 1GB to a VM will be: 4MB. * * A couple of cost examples for the total cost per-VM + kernel. * 32-bit Windows and 32-bit linux: * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB * 64-bit Windows and 64-bit linux: * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB * * UPDATE - 2007-09-27: * Will need a ballooned flag/state too because we cannot * trust the guest 100% and reporting the same page as ballooned more * than once will put the GMM off balance. * * * @section sec_pgmPhys_Serializing Serializing Access * * Initially, we'll try a simple scheme: * * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified * by the EMT thread of that VM while in the pgm critsect. * - Other threads in the VM process that needs to make reliable use of * the per-VM RAM tracking structures will enter the critsect. * - No process external thread or kernel thread will ever try enter * the pgm critical section, as that just won't work. * - The idle thread (and similar threads) doesn't not need 100% reliable * data when performing it tasks as the EMT thread will be the one to * do the actual changes later anyway. So, as long as it only accesses * the main ram range, it can do so by somehow preventing the VM from * being destroyed while it works on it... * * - The over-commitment management, including the allocating/freeing * chunks, is serialized by a ring-0 mutex lock (a fast one since the * more mundane mutex implementation is broken on Linux). * - A separate mutex is protecting the set of allocation chunks so * that pages can be shared or/and freed up while some other VM is * allocating more chunks. This mutex can be take from under the other * one, but not the other way around. * * * @section sec_pgmPhys_Request VM Request interface * * When in ring-0 it will become necessary to send requests to a VM so it can * for instance move a page while defragmenting during VM destroy. The idle * thread will make use of this interface to request VMs to setup shared * pages and to perform write monitoring of pages. * * I would propose an interface similar to the current VMReq interface, similar * in that it doesn't require locking and that the one sending the request may * wait for completion if it wishes to. This shouldn't be very difficult to * realize. * * The requests themselves are also pretty simple. They are basically: * -# Check that some precondition is still true. * -# Do the update. * -# Update all shadow page tables involved with the page. * * The 3rd step is identical to what we're already doing when updating a * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs. * * * * @section sec_pgmPhys_MappingCaches Mapping Caches * * In order to be able to map in and out memory and to be able to support * guest with more RAM than we've got virtual address space, we'll employing * a mapping cache. Normally ring-0 and ring-3 can share the same cache, * however on 32-bit darwin the ring-0 code is running in a different memory * context and therefore needs a separate cache. In raw-mode context we also * need a separate cache. The 32-bit darwin mapping cache and the one for * raw-mode context share a lot of code, see PGMRZDYNMAP. * * * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3 * * We've considered implementing the ring-3 mapping cache page based but found * that this was bother some when one had to take into account TLBs+SMP and * portability (missing the necessary APIs on several platforms). There were * also some performance concerns with this approach which hadn't quite been * worked out. * * Instead, we'll be mapping allocation chunks into the VM process. This simplifies * matters greatly quite a bit since we don't need to invent any new ring-0 stuff, * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping * compared to the previous idea is that mapping or unmapping a 1MB chunk is more * costly than a single page, although how much more costly is uncertain. We'll * try address this by using a very big cache, preferably bigger than the actual * VM RAM size if possible. The current VM RAM sizes should give some idea for * 32-bit boxes, while on 64-bit we can probably get away with employing an * unlimited cache. * * The cache have to parts, as already indicated, the ring-3 side and the * ring-0 side. * * The ring-0 will be tied to the page allocator since it will operate on the * memory objects it contains. It will therefore require the first ring-0 mutex * discussed in @ref sec_pgmPhys_Serializing. We some double house keeping wrt * to who has mapped what I think, since both VMMR0.r0 and RTR0MemObj will keep * track of mapping relations * * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll * require anyone that desires to do changes to the mapping cache to do that * from within this critsect. Alternatively, we could employ a separate critsect * for serializing changes to the mapping cache as this would reduce potential * contention with other threads accessing mappings unrelated to the changes * that are in process. We can see about this later, contention will show * up in the statistics anyway, so it'll be simple to tell. * * The organization of the ring-3 part will be very much like how the allocation * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid * having to walk the tree all the time, we'll have a couple of lookaside entries * like in we do for I/O ports and MMIO in IOM. * * The simplified flow of a PGMPhysRead/Write function: * -# Enter the PGM critsect. * -# Lookup GCPhys in the ram ranges and get the Page ID. * -# Calc the Allocation Chunk ID from the Page ID. * -# Check the lookaside entries and then the AVL tree for the Chunk ID. * If not found in cache: * -# Call ring-0 and request it to be mapped and supply * a chunk to be unmapped if the cache is maxed out already. * -# Insert the new mapping into the AVL tree (id + R3 address). * -# Update the relevant lookaside entry and return the mapping address. * -# Do the read/write according to monitoring flags and everything. * -# Leave the critsect. * * * @section sec_pgmPhys_Fallback Fallback * * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC * API and thus require a fallback. * * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator * will return to the ring-3 caller (and later ring-0) and asking it to seed * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a * "SeededAllocPages" call to ring-0. * * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable * all page sharing (zero page detection will continue). It will also force * all allocations to come from the VM which seeded the page. Both these * measures are taken to make sure that there will never be any need for * mapping anything into ring-3 - everything will be mapped already. * * Whether we'll continue to use the current MM locked memory management * for this I don't quite know (I'd prefer not to and just ditch that all * together), we'll see what's simplest to do. * * * * @section sec_pgmPhys_Changes Changes * * Breakdown of the changes involved? */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM #define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */ #include #include #include #include #include #include #include #include #include #include #include #include "PGMInternal.h" #include #include #include "PGMInline.h" #include #include #include #include #include #include #include #include #include #include #include #ifdef RT_OS_LINUX # include #endif /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * Argument package for pgmR3RElocatePhysHnadler, pgmR3RelocateVirtHandler and * pgmR3RelocateHyperVirtHandler. */ typedef struct PGMRELOCHANDLERARGS { RTGCINTPTR offDelta; PVM pVM; } PGMRELOCHANDLERARGS; /** Pointer to a page access handlere relocation argument package. */ typedef PGMRELOCHANDLERARGS const *PCPGMRELOCHANDLERARGS; /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static int pgmR3InitPaging(PVM pVM); static int pgmR3InitStats(PVM pVM); static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); #ifdef VBOX_STRICT static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag; #endif #ifdef VBOX_WITH_DEBUGGER static FNDBGCCMD pgmR3CmdError; static FNDBGCCMD pgmR3CmdSync; static FNDBGCCMD pgmR3CmdSyncAlways; # ifdef VBOX_STRICT static FNDBGCCMD pgmR3CmdAssertCR3; # endif static FNDBGCCMD pgmR3CmdPhysToFile; #endif /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ #ifdef VBOX_WITH_DEBUGGER /** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */ static const DBGCVARDESC g_aPgmErrorArgs[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." }, }; static const DBGCVARDESC g_aPgmPhysToFileArgs[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." }, { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." }, }; # ifdef DEBUG_sandervl static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] = { /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */ { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." }, { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." }, }; # endif /** Command descriptors. */ static const DBGCCMD g_aCmds[] = { /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */ { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." }, { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." }, { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." }, # ifdef VBOX_STRICT { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." }, # ifdef VBOX_WITH_PAGE_SHARING { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." }, { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." }, # endif # endif { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." }, { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." }, }; #endif /** * Initiates the paging of VM. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) PGMR3Init(PVM pVM) { LogFlow(("PGMR3Init:\n")); PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM"); int rc; /* * Assert alignment and sizes. */ AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding)); AssertCompile(sizeof(pVM->apCpusR3[0]->pgm.s) <= sizeof(pVM->apCpusR3[0]->pgm.padding)); AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t)); /* * Init the structure. */ /*pVM->pgm.s.fRestoreRomPagesAtReset = false;*/ for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++) { pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS; pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID; pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID; } for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++) { pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS; pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID; pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID; } /* Init the per-CPU part. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; PPGMCPU pPGM = &pVCpu->pgm.s; pPGM->enmShadowMode = PGMMODE_INVALID; pPGM->enmGuestMode = PGMMODE_INVALID; pPGM->idxGuestModeData = UINT8_MAX; pPGM->idxShadowModeData = UINT8_MAX; pPGM->idxBothModeData = UINT8_MAX; pPGM->GCPhysCR3 = NIL_RTGCPHYS; pPGM->pGst32BitPdR3 = NULL; pPGM->pGstPaePdptR3 = NULL; pPGM->pGstAmd64Pml4R3 = NULL; pPGM->pGst32BitPdR0 = NIL_RTR0PTR; pPGM->pGstPaePdptR0 = NIL_RTR0PTR; pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR; for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++) { pPGM->apGstPaePDsR3[i] = NULL; pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR; pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS; pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS; } pPGM->fA20Enabled = true; pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20); } pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID; pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */ pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS; rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc, #ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT true #else false #endif ); AssertLogRelRCReturn(rc, rc); #if HC_ARCH_BITS == 32 # ifdef RT_OS_DARWIN rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3); # else rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE); # endif #else rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX); #endif AssertLogRelRCReturn(rc, rc); for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++) pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID; /* * Get the configured RAM size - to estimate saved state size. */ uint64_t cbRam; rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam); if (rc == VERR_CFGM_VALUE_NOT_FOUND) cbRam = 0; else if (RT_SUCCESS(rc)) { if (cbRam < PAGE_SIZE) cbRam = 0; cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE); } else { AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc)); return rc; } /* * Check for PCI pass-through and other configurables. */ rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false); AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc); AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER); rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "PageFusionAllowed", &pVM->pgm.s.fPageFusionAllowed, false); AssertLogRelRCReturn(rc, rc); /** @cfgm{/PGM/ZeroRamPagesOnReset, boolean, true} * Whether to clear RAM pages on (hard) reset. */ rc = CFGMR3QueryBoolDef(pCfgPGM, "ZeroRamPagesOnReset", &pVM->pgm.s.fZeroRamPagesOnReset, true); AssertLogRelRCReturn(rc, rc); /* * Register callbacks, string formatters and the saved state data unit. */ #ifdef VBOX_STRICT VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL); #endif PGMRegisterStringFormatTypes(); rc = pgmR3InitSavedState(pVM, cbRam); if (RT_FAILURE(rc)) return rc; /* * Initialize the PGM critical section and flush the phys TLBs */ rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM"); AssertRCReturn(rc, rc); PGMR3PhysChunkInvalidateTLB(pVM); pgmPhysInvalidatePageMapTLB(pVM); /* * For the time being we sport a full set of handy pages in addition to the base * memory to simplify things. */ rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */ AssertRCReturn(rc, rc); /* * Trees */ rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3); if (RT_SUCCESS(rc)) pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3); /* * Allocate the zero page. */ if (RT_SUCCESS(rc)) { rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3); if (RT_SUCCESS(rc)) { pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3); pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3); pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3); AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS); } } /* * Allocate the invalid MMIO page. * (The invalid bits in HCPhysInvMmioPg are set later on init complete.) */ if (RT_SUCCESS(rc)) { rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3); if (RT_SUCCESS(rc)) { ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface); pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3); AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS); pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg; } } /* * Register the physical access handler protecting ROMs. */ if (RT_SUCCESS(rc)) rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE, pgmPhysRomWriteHandler, NULL, NULL, "pgmPhysRomWritePfHandler", NULL, NULL, "pgmPhysRomWritePfHandler", "ROM write protection", &pVM->pgm.s.hRomPhysHandlerType); /* * Init the paging. */ if (RT_SUCCESS(rc)) rc = pgmR3InitPaging(pVM); /* * Init the page pool. */ if (RT_SUCCESS(rc)) rc = pgmR3PoolInit(pVM); if (RT_SUCCESS(rc)) { for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL); if (RT_FAILURE(rc)) break; } } if (RT_SUCCESS(rc)) { /* * Info & statistics */ DBGFR3InfoRegisterInternalEx(pVM, "mode", "Shows the current paging mode. " "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.", pgmR3InfoMode, DBGFINFO_FLAGS_ALL_EMTS); DBGFR3InfoRegisterInternal(pVM, "pgmcr3", "Dumps all the entries in the top level paging table. No arguments.", pgmR3InfoCr3); DBGFR3InfoRegisterInternal(pVM, "phys", "Dumps all the physical address ranges. Pass 'verbose' to get more details.", pgmR3PhysInfo); DBGFR3InfoRegisterInternal(pVM, "handlers", "Dumps physical, virtual and hyper virtual handlers. " "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted." "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.", pgmR3InfoHandlers); #ifndef PGM_WITHOUT_MAPPINGS DBGFR3InfoRegisterInternal(pVM, "mappings", "Dumps guest mappings.", pgmR3MapInfo); #endif pgmR3InitStats(pVM); #ifdef VBOX_WITH_DEBUGGER /* * Debugger commands. */ static bool s_fRegisteredCmds = false; if (!s_fRegisteredCmds) { int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds)); if (RT_SUCCESS(rc2)) s_fRegisteredCmds = true; } #endif #ifdef RT_OS_LINUX /* * Log the /proc/sys/vm/max_map_count value on linux as that is * frequently giving us grief when too low. */ int64_t const cGuessNeeded = MMR3PhysGetRamSize(pVM) / _2M + 16384 /*guesstimate*/; int64_t cMaxMapCount = 0; int rc2 = RTLinuxSysFsReadIntFile(10, &cMaxMapCount, "/proc/sys/vm/max_map_count"); LogRel(("PGM: /proc/sys/vm/max_map_count = %RI64 (rc2=%Rrc); cGuessNeeded=%RI64\n", cMaxMapCount, rc2, cGuessNeeded)); if (RT_SUCCESS(rc2) && cMaxMapCount < cGuessNeeded) LogRel(("PGM: WARNING!!\n" "PGM: WARNING!! Please increase /proc/sys/vm/max_map_count to at least %RI64 (or reduce the amount of RAM assigned to the VM)!\n" "PGM: WARNING!!\n", cMaxMapCount)); #endif return VINF_SUCCESS; } /* Almost no cleanup necessary, MM frees all memory. */ PDMR3CritSectDelete(pVM, &pVM->pgm.s.CritSectX); return rc; } /** * Init paging. * * Since we need to check what mode the host is operating in before we can choose * the right paging functions for the host we have to delay this until R0 has * been initialized. * * @returns VBox status code. * @param pVM The cross context VM structure. */ static int pgmR3InitPaging(PVM pVM) { /* * Force a recalculation of modes and switcher so everyone gets notified. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID; pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID; pVCpu->pgm.s.idxGuestModeData = UINT8_MAX; pVCpu->pgm.s.idxShadowModeData = UINT8_MAX; pVCpu->pgm.s.idxBothModeData = UINT8_MAX; } pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID; #ifndef PGM_WITHOUT_MAPPINGS /* * Allocate static mapping space for whatever the cr3 register * points to and in the case of PAE mode to the 4 PDs. */ int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping); if (RT_FAILURE(rc)) { AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc)); return rc; } MMR3HyperReserveFence(pVM); #endif #if 0 /* * Allocate pages for the three possible intermediate contexts * (AMD64, PAE and plain 32-Bit). We maintain all three contexts * for the sake of simplicity. The AMD64 uses the PAE for the * lower levels, making the total number of pages 11 (3 + 7 + 1). * * We assume that two page tables will be enought for the core code * mappings (HC virtual and identity). */ pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY); pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY); pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY); pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY); pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY); pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY); pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY); pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY); pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY); pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY); pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY); pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY); pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD); AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK)); pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT); AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK)); pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4); AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff); /* * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action. */ ASMMemZeroPage(pVM->pgm.s.pInterPD); ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]); ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]); ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]); ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]); ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT); for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++) { ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]); pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]); } for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++) { const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]); } RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64); for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++) pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT | HCPhysInterPaePDPT64; #endif /* * Initialize paging workers and mode from current host mode * and the guest running in real mode. */ pVM->pgm.s.enmHostMode = SUPR3GetPagingMode(); switch (pVM->pgm.s.enmHostMode) { case SUPPAGINGMODE_32_BIT: case SUPPAGINGMODE_32_BIT_GLOBAL: case SUPPAGINGMODE_PAE: case SUPPAGINGMODE_PAE_GLOBAL: case SUPPAGINGMODE_PAE_NX: case SUPPAGINGMODE_PAE_GLOBAL_NX: break; case SUPPAGINGMODE_AMD64: case SUPPAGINGMODE_AMD64_GLOBAL: case SUPPAGINGMODE_AMD64_NX: case SUPPAGINGMODE_AMD64_GLOBAL_NX: if (ARCH_BITS != 64) { AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode)); LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode)); return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE; } break; default: AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode)); return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE; } LogFlow(("pgmR3InitPaging: returns successfully\n")); #if HC_ARCH_BITS == 64 && 0 LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n", pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4)); LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n", MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]), MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64))); #endif /* * Log the host paging mode. It may come in handy. */ const char *pszHostMode; switch (pVM->pgm.s.enmHostMode) { case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break; case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break; case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break; case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break; case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break; case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break; case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break; case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break; case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break; case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break; default: pszHostMode = "???"; break; } LogRel(("PGM: Host paging mode: %s\n", pszHostMode)); return VINF_SUCCESS; } /** * Init statistics * @returns VBox status code. */ static int pgmR3InitStats(PVM pVM) { PPGM pPGM = &pVM->pgm.s; int rc; /* * Release statistics. */ /* Common - misc variables */ STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages."); STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages."); STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages."); STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages."); STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages."); STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages."); STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages."); STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to."); STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages."); STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages."); STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages."); STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages)."); STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled)."); STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages."); STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations."); STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks."); STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks."); STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk."); STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk."); STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page."); STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page."); STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page."); STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking."); /* Live save */ STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM)."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages."); STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages."); #ifdef VBOX_WITH_STATISTICS # define PGM_REG_COUNTER(a, b, c) \ rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \ AssertRC(rc); # define PGM_REG_COUNTER_BYTES(a, b, c) \ rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \ AssertRC(rc); # define PGM_REG_PROFILE(a, b, c) \ rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \ AssertRC(rc); PGMSTATS *pStats = &pVM->pgm.s.Stats; PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Alloc", "Time spent by the host OS for large page allocation."); PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Clear", "Time spent clearing the newly allocated large pages."); PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long."); PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/IsValidR3", "pgmPhysIsValidLargePage profiling - R3."); PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/IsValidRZ", "pgmPhysIsValidLargePage profiling - RZ."); PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict."); PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation)."); PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called."); PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead."); PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called."); PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite."); PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called."); PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr."); PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called."); PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr."); PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits."); PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses."); PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling."); PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling."); PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling."); PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling."); PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits."); PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses."); PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits."); PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses."); PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits."); PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses."); PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts)."); PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts)."); PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits."); PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses."); PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits."); PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses."); PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called."); PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called."); PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers."); PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers."); PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers."); PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers."); PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced."); PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced."); /// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages."); PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced."); PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced."); /// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages."); PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called."); PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead."); PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called."); PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite."); PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called."); PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr."); PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called."); PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr."); /* GC only: */ PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict."); PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3."); PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called."); PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead."); PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called."); PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite."); PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called."); PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr."); PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called."); PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr."); PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings"); PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs."); PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2."); PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2"); PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long."); PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted."); PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive)."); # undef PGM_REG_COUNTER # undef PGM_REG_PROFILE #endif /* * Note! The layout below matches the member layout exactly! */ /* * Common - stats */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PPGMCPU pPgmCpu = &pVM->apCpusR3[idCpu]->pgm.s; #define PGM_REG_COUNTER(a, b, c) \ rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \ AssertRC(rc); #define PGM_REG_PROFILE(a, b, c) \ rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \ AssertRC(rc); PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes."); PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes."); #ifdef VBOX_WITH_STATISTICS PGMCPUSTATS *pCpuStats = &pVM->apCpusR3[idCpu]->pgm.s.Stats; # if 0 /* rarely useful; leave for debugging. */ for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++) STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j); for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++) STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j); # endif /* R0 only: */ PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling."); PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig()."); /* RZ only: */ PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled."); PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s)."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation."); PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation)."); #if 0 /* rarely useful; leave for debugging. */ for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++) STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j); #endif PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled."); PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler."); PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict."); PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled."); PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet."); PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path."); PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage"); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses."); PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0)."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0"); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1"); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2"); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses"); //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called."); PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset."); PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))"); PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))"); PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))"); PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))"); PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))"); PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))"); PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))"); PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))"); PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))"); PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))"); PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))"); /* HC only: */ /* RZ & R3: */ PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body."); PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section."); PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs."); PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs."); PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit."); PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry."); PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present."); PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry."); PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed."); PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed."); PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body."); PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed."); PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs"); PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs"); PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit."); PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage."); PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation."); PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault()."); PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking."); PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking."); PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly."); PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking."); PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries)."); PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses."); PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking."); PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses."); PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling."); PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page."); PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page."); PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page."); PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict)."); PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory."); PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory."); PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory."); PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSizeChanges, "/PGM/CPU%u/RZ/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB)."); PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3."); PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage."); PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage."); PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage."); PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage."); PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read)."); PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling."); PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body."); PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)"); PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)"); PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)"); PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)"); PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body."); PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body."); PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section."); PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs."); PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs."); PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit."); PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry."); PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present."); PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry."); PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed."); PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed."); PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body."); PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed."); PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs"); PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs"); PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit."); PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage."); PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation."); PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault()."); PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking."); PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking."); PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly."); PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking."); PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses."); PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking."); PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses."); PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling."); PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page."); PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page."); PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page."); PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict)."); PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory."); PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory."); PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory."); PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSizeChanges, "/PGM/CPU%u/R3/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB)."); PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3."); PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage."); PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage."); PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read)."); PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling."); PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body."); PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)"); PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)"); PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)"); PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)"); PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body."); #endif /* VBOX_WITH_STATISTICS */ #undef PGM_REG_PROFILE #undef PGM_REG_COUNTER } return VINF_SUCCESS; } /** * Init the PGM bits that rely on VMMR0 and MM to be fully initialized. * * The dynamic mapping area will also be allocated and initialized at this * time. We could allocate it during PGMR3Init of course, but the mapping * wouldn't be allocated at that time preventing us from setting up the * page table entries with the dummy page. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) PGMR3InitDynMap(PVM pVM) { #ifndef PGM_WITHOUT_MAPPINGS RTGCPTR GCPtr; int rc; /* * Reserve space for the dynamic mappings. */ rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr); if (RT_SUCCESS(rc)) pVM->pgm.s.pbDynPageMapBaseGC = GCPtr; if ( RT_SUCCESS(rc) && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT)) { rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr); if (RT_SUCCESS(rc)) pVM->pgm.s.pbDynPageMapBaseGC = GCPtr; } if (RT_SUCCESS(rc)) { AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT)); MMR3HyperReserveFence(pVM); } return rc; #else RT_NOREF(pVM); return VINF_SUCCESS; #endif } /** * Ring-3 init finalizing. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) PGMR3InitFinalize(PVM pVM) { #ifndef PGM_WITHOUT_MAPPINGS int rc = VERR_IPE_UNINITIALIZED_STATUS; /* (MSC incorrectly thinks it can be used uninitialized) */ /* * Reserve space for the dynamic mappings. * Initialize the dynamic mapping pages with dummy pages to simply the cache. */ /* get the pointer to the page table entries. */ PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC); AssertRelease(pMapping); const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr; const unsigned iPT = off >> X86_PD_SHIFT; const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK; pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]); pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]); /* init cache area */ RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM); for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE) { rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0); AssertRCReturn(rc, rc); } #endif /* * Determine the max physical address width (MAXPHYADDR) and apply it to * all the mask members and stuff. */ uint32_t cMaxPhysAddrWidth; uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000); if ( uMaxExtLeaf >= 0x80000008 && uMaxExtLeaf <= 0x80000fff) { cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff; LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth)); cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth); pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52; for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++) pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit); } else { LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf)); cMaxPhysAddrWidth = 48; pVM->pgm.s.fLessThan52PhysicalAddressBits = true; pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000); } /** @todo query from CPUM. */ pVM->pgm.s.GCPhysInvAddrMask = 0; for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++) pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit); /* * Initialize the invalid paging entry masks, assuming NX is disabled. */ uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000); for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; /** @todo The manuals are not entirely clear whether the physical * address width is relevant. See table 5-9 in the intel * manual vs the PDE4M descriptions. Write testcase (NP). */ pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK) | X86_PDE4M_MBZ_MASK; pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX; pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX; pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX; pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK; pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX; pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX; pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX; pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX; pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX; pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX; pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D; pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A; pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A; pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D; pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A; pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A; } /* * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total); * Intel only goes up to 36 bits, so we stick to 36 as well. * Update: More recent intel manuals specifies 40 bits just like AMD. */ uint32_t u32Dummy, u32Features; CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features); if (u32Features & X86_CPUID_FEATURE_EDX_PSE36) pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1; else pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* * Allocate memory if we're supposed to do that. */ #ifdef PGM_WITHOUT_MAPPINGS int rc = VINF_SUCCESS; #endif if (pVM->pgm.s.fRamPreAlloc) rc = pgmR3PhysRamPreAllocate(pVM); //pgmLogState(pVM); LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp -> %Rrc\n", pVM->pgm.s.GCPhys4MBPSEMask, rc)); return rc; } /** * Init phase completed callback. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param enmWhat What has been completed. * @thread EMT(0) */ VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat) { switch (enmWhat) { case VMINITCOMPLETED_HM: #ifdef VBOX_WITH_PCI_PASSTHROUGH if (pVM->pgm.s.fPciPassthrough) { AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC); AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM); AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING); /* * Report assignments to the IOMMU (hope that's good enough for now). */ if (pVM->pgm.s.fPciPassthrough) { int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL); AssertRCReturn(rc, rc); } } #else AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG); #endif break; default: /* shut up gcc */ break; } return VINF_SUCCESS; } /** * Applies relocations to data and code managed by this component. * * This function will be called at init and whenever the VMM need to relocate it * self inside the GC. * * @param pVM The cross context VM structure. * @param offDelta Relocation delta relative to old location. */ VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta) { LogFlow(("PGMR3Relocate: offDelta=%RGv\n", offDelta)); /* * Paging stuff. */ /* Shadow, guest and both mode switch & relocation for each VCPU. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData; if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData) && g_aPgmShadowModeData[idxShw].pfnRelocate) g_aPgmShadowModeData[idxShw].pfnRelocate(pVCpu, offDelta); else AssertFailed(); uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData; if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData) && g_aPgmGuestModeData[idxGst].pfnRelocate) g_aPgmGuestModeData[idxGst].pfnRelocate(pVCpu, offDelta); else AssertFailed(); } /* * Ram ranges. */ if (pVM->pgm.s.pRamRangesXR3) pgmR3PhysRelinkRamRanges(pVM); #ifndef PGM_WITHOUT_MAPPINGS /* * Update the two page directories with all page table mappings. * (One or more of them have changed, that's why we're here.) */ pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3); for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3) pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3); /* Relocate GC addresses of Page Tables. */ for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3) { for (RTHCUINT i = 0; i < pCur->cPTs; i++) { pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3); pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3); } } /* * Dynamic page mapping area. */ pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta; pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta; pVM->pgm.s.pbDynPageMapBaseGC += offDelta; if (pVM->pgm.s.pRCDynMap) { pVM->pgm.s.pRCDynMap += offDelta; PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap); pDynMap->paPages += offDelta; PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages); for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++) { paPages[iPage].pvPage += offDelta; paPages[iPage].uPte.pLegacy += offDelta; paPages[iPage].uPte.pPae += offDelta; } } #endif /* PGM_WITHOUT_MAPPINGS */ /* * The Zero page. */ pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3); AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR); /* * The page pool. */ pgmR3PoolRelocate(pVM); } /** * Resets a virtual CPU when unplugged. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. */ VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu) { uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData; if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData) && g_aPgmGuestModeData[idxGst].pfnExit) { int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu); AssertReleaseRC(rc); } pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS; int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL); AssertReleaseRC(rc); STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges); pgmR3PoolResetUnpluggedCpu(pVM, pVCpu); /* * Re-init other members. */ pVCpu->pgm.s.fA20Enabled = true; pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20); /* * Clear the FFs PGM owns. */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL); } /** * The VM is being reset. * * For the PGM component this means that any PD write monitors * needs to be removed. * * @param pVM The cross context VM structure. */ VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM) { LogFlow(("PGMR3Reset:\n")); VM_ASSERT_EMT(pVM); PGM_LOCK_VOID(pVM); /* * Unfix any fixed mappings and disable CR3 monitoring. */ pVM->pgm.s.fMappingsFixed = false; pVM->pgm.s.fMappingsFixedRestored = false; pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR; pVM->pgm.s.cbMappingFixed = 0; /* * Exit the guest paging mode before the pgm pool gets reset. * Important to clean up the amd64 case. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData; if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData) && g_aPgmGuestModeData[idxGst].pfnExit) { int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu); AssertReleaseRC(rc); } pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS; } #ifdef DEBUG DBGFR3_INFO_LOG_SAFE(pVM, "mappings", NULL); DBGFR3_INFO_LOG_SAFE(pVM, "handlers", "all nostat"); #endif /* * Switch mode back to real mode. (Before resetting the pgm pool!) */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL); AssertReleaseRC(rc); STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges); STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes); } /* * Reset the shadow page pool. */ pgmR3PoolReset(pVM); /* * Re-init various other members and clear the FFs that PGM owns. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; pVCpu->pgm.s.fGst32BitPageSizeExtension = false; PGMNotifyNxeChanged(pVCpu, false); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL); if (!pVCpu->pgm.s.fA20Enabled) { pVCpu->pgm.s.fA20Enabled = true; pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20); #ifdef PGM_WITH_A20 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); pgmR3RefreshShadowModeAfterA20Change(pVCpu); HMFlushTlb(pVCpu); #endif } } //pgmLogState(pVM); PGM_UNLOCK(pVM); } /** * Memory setup after VM construction or reset. * * @param pVM The cross context VM structure. * @param fAtReset Indicates the context, after reset if @c true or after * construction if @c false. */ VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset) { if (fAtReset) { PGM_LOCK_VOID(pVM); int rc = pgmR3PhysRamZeroAll(pVM); AssertReleaseRC(rc); rc = pgmR3PhysRomReset(pVM); AssertReleaseRC(rc); PGM_UNLOCK(pVM); } } #ifdef VBOX_STRICT /** * VM state change callback for clearing fNoMorePhysWrites after * a snapshot has been created. */ static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser) { if ( enmState == VMSTATE_RUNNING || enmState == VMSTATE_RESUMING) pUVM->pVM->pgm.s.fNoMorePhysWrites = false; NOREF(enmOldState); NOREF(pvUser); } #endif /** * Private API to reset fNoMorePhysWrites. */ VMMR3_INT_DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM) { pVM->pgm.s.fNoMorePhysWrites = false; } /** * Terminates the PGM. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) PGMR3Term(PVM pVM) { /* Must free shared pages here. */ PGM_LOCK_VOID(pVM); pgmR3PhysRamTerm(pVM); pgmR3PhysRomTerm(pVM); PGM_UNLOCK(pVM); PGMDeregisterStringFormatTypes(); return PDMR3CritSectDelete(pVM, &pVM->pgm.s.CritSectX); } /** * Show paging mode. * * @param pVM The cross context VM structure. * @param pHlp The info helpers. * @param pszArgs "all" (default), "guest", "shadow" or "host". */ static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { /* digest argument. */ bool fGuest, fShadow, fHost; if (pszArgs) pszArgs = RTStrStripL(pszArgs); if (!pszArgs || !*pszArgs || strstr(pszArgs, "all")) fShadow = fHost = fGuest = true; else { fShadow = fHost = fGuest = false; if (strstr(pszArgs, "guest")) fGuest = true; if (strstr(pszArgs, "shadow")) fShadow = true; if (strstr(pszArgs, "host")) fHost = true; } PVMCPU pVCpu = VMMGetCpu(pVM); if (!pVCpu) pVCpu = pVM->apCpusR3[0]; /* print info. */ if (fGuest) pHlp->pfnPrintf(pHlp, "Guest paging mode (VCPU #%u): %s (changed %RU64 times), A20 %s (changed %RU64 times)\n", pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmGuestMode), pVCpu->pgm.s.cGuestModeChanges.c, pVCpu->pgm.s.fA20Enabled ? "enabled" : "disabled", pVCpu->pgm.s.cA20Changes.c); if (fShadow) pHlp->pfnPrintf(pHlp, "Shadow paging mode (VCPU #%u): %s\n", pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmShadowMode)); if (fHost) { const char *psz; switch (pVM->pgm.s.enmHostMode) { case SUPPAGINGMODE_INVALID: psz = "invalid"; break; case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break; case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break; case SUPPAGINGMODE_PAE: psz = "PAE"; break; case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break; case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break; case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break; case SUPPAGINGMODE_AMD64: psz = "AMD64"; break; case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break; case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break; case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break; default: psz = "unknown"; break; } pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz); } } /** * Dump registered MMIO ranges to the log. * * @param pVM The cross context VM structure. * @param pHlp The info helpers. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { bool const fVerbose = pszArgs && strstr(pszArgs, "verbose") != NULL; pHlp->pfnPrintf(pHlp, "RAM ranges (pVM=%p)\n" "%.*s %.*s\n", pVM, sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ", sizeof(RTHCPTR) * 2, "pvHC "); for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3) { pHlp->pfnPrintf(pHlp, "%RGp-%RGp %RHv %s\n", pCur->GCPhys, pCur->GCPhysLast, pCur->pvR3, pCur->pszDesc); if (fVerbose) { RTGCPHYS const cPages = pCur->cb >> X86_PAGE_SHIFT; RTGCPHYS iPage = 0; while (iPage < cPages) { RTGCPHYS const iFirstPage = iPage; PGMPAGETYPE const enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]); do iPage++; while (iPage < cPages && (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == enmType); const char *pszType; const char *pszMore = NULL; switch (enmType) { case PGMPAGETYPE_RAM: pszType = "RAM"; break; case PGMPAGETYPE_MMIO2: pszType = "MMIO2"; break; case PGMPAGETYPE_MMIO2_ALIAS_MMIO: pszType = "MMIO2-alias-MMIO"; break; case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: pszType = "special-alias-MMIO"; break; case PGMPAGETYPE_ROM_SHADOW: case PGMPAGETYPE_ROM: { pszType = enmType == PGMPAGETYPE_ROM_SHADOW ? "ROM-shadowed" : "ROM"; RTGCPHYS const GCPhysFirstPg = iFirstPage * X86_PAGE_SIZE; PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; while (pRom && GCPhysFirstPg > pRom->GCPhysLast) pRom = pRom->pNextR3; if (pRom && GCPhysFirstPg - pRom->GCPhys < pRom->cb) pszMore = pRom->pszDesc; break; } case PGMPAGETYPE_MMIO: { pszType = "MMIO"; PGM_LOCK_VOID(pVM); PPGMPHYSHANDLER pHandler = pgmHandlerPhysicalLookup(pVM, iFirstPage * X86_PAGE_SIZE); if (pHandler) pszMore = pHandler->pszDesc; PGM_UNLOCK(pVM); break; } case PGMPAGETYPE_INVALID: pszType = "invalid"; break; default: pszType = "bad"; break; } if (pszMore) pHlp->pfnPrintf(pHlp, " %RGp-%RGp %-20s %s\n", pCur->GCPhys + iFirstPage * X86_PAGE_SIZE, pCur->GCPhys + iPage * X86_PAGE_SIZE - 1, pszType, pszMore); else pHlp->pfnPrintf(pHlp, " %RGp-%RGp %s\n", pCur->GCPhys + iFirstPage * X86_PAGE_SIZE, pCur->GCPhys + iPage * X86_PAGE_SIZE - 1, pszType); } } } } /** * Dump the page directory to the log. * * @param pVM The cross context VM structure. * @param pHlp The info helpers. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { /** @todo SMP support!! */ PVMCPU pVCpu = pVM->apCpusR3[0]; /** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */ /* Big pages supported? */ const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE); /* Global pages supported? */ const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE); NOREF(pszArgs); /* * Get page directory addresses. */ PGM_LOCK_VOID(pVM); PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); Assert(pPDSrc); /* * Iterate the page directory. */ for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++) { X86PDE PdeSrc = pPDSrc->a[iPD]; if (PdeSrc.u & X86_PDE_P) { if ((PdeSrc.u & X86_PDE_PS) && fPSE) pHlp->pfnPrintf(pHlp, "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n", iPD, pgmGstGet4MBPhysPage(pVM, PdeSrc), PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_US), !!(PdeSrc.u & X86_PDE_RW), (PdeSrc.u & X86_PDE4M_G) && fPGE); else pHlp->pfnPrintf(pHlp, "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n", iPD, (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK), PdeSrc.u & X86_PDE_P, !!(PdeSrc.u & X86_PDE_US), !!(PdeSrc.u & X86_PDE_RW), (PdeSrc.u & X86_PDE4M_G) && fPGE); } } PGM_UNLOCK(pVM); } /** * Called by pgmPoolFlushAllInt prior to flushing the pool. * * @returns VBox status code, fully asserted. * @param pVCpu The cross context virtual CPU structure. */ int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu) { /* Unmap the old CR3 value before flushing everything. */ int rc = VINF_SUCCESS; uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData; if ( idxBth < RT_ELEMENTS(g_aPgmBothModeData) && g_aPgmBothModeData[idxBth].pfnUnmapCR3) { rc = g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu); AssertRC(rc); } /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */ uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData; if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData) && g_aPgmShadowModeData[idxShw].pfnExit) { rc = g_aPgmShadowModeData[idxShw].pfnExit(pVCpu); AssertMsgRCReturn(rc, ("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc), rc); } Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL); return rc; } /** * Called by pgmPoolFlushAllInt after flushing the pool. * * @returns VBox status code, fully asserted. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. */ int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu) { pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID; int rc = PGMHCChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu)); Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)); AssertRCReturn(rc, rc); AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS); Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL || pVCpu->pgm.s.enmShadowMode == PGMMODE_NONE); AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED_32BIT || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu), ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode))); return rc; } /** * Called by PGMR3PhysSetA20 after changing the A20 state. * * @param pVCpu The cross context virtual CPU structure. */ void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu) { /** @todo Probably doing a bit too much here. */ int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu); AssertReleaseRC(rc); rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu); AssertReleaseRC(rc); } #ifdef VBOX_WITH_DEBUGGER /** * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.} */ static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Validate input. */ DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); PVM pVM = pUVM->pVM; DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING)); if (!cArgs) { /* * Print the list of error injection locations with status. */ DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n"); DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages); } else { /* * String switch on where to inject the error. */ bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror"); const char *pszWhere = paArgs[0].u.pszString; if (!strcmp(pszWhere, "handy")) ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState); else return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere); DBGCCmdHlpPrintf(pCmdHlp, "done\n"); } return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.} */ static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Validate input. */ NOREF(pCmd); NOREF(paArgs); NOREF(cArgs); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp)); if (!pVCpu) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID"); /* * Force page directory sync. */ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n"); if (RT_FAILURE(rc)) return rc; return VINF_SUCCESS; } #ifdef VBOX_STRICT /** * EMT callback for pgmR3CmdAssertCR3. * * @returns VBox status code. * @param pUVM The user mode VM handle. * @param pcErrors Where to return the error count. */ static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors) { PVM pVM = pUVM->pVM; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); PVMCPU pVCpu = VMMGetCpu(pVM); *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu)); return VINF_SUCCESS; } /** * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.} */ static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Validate input. */ NOREF(pCmd); NOREF(paArgs); NOREF(cArgs); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n"); if (RT_FAILURE(rc)) return rc; unsigned cErrors = 0; rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors); if (RT_FAILURE(rc)) return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc); if (cErrors > 0) return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors); return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n"); } #endif /* VBOX_STRICT */ /** * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.} */ static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Validate input. */ NOREF(pCmd); NOREF(paArgs); NOREF(cArgs); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp)); if (!pVCpu) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID"); /* * Force page directory sync. */ int rc; if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS) { ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS); rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n"); } else { ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS); VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n"); } return rc; } /** * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.} */ static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs) { /* * Validate input. */ NOREF(pCmd); DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM); PVM pVM = pUVM->pVM; DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2); DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING); if (cArgs == 2) { DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING); if (strcmp(paArgs[1].u.pszString, "nozero")) return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString); } bool fIncZeroPgs = cArgs < 2; /* * Open the output file and get the ram parameters. */ RTFILE hFile; int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE); if (RT_FAILURE(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc); uint32_t cbRamHole = 0; CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT); uint64_t cbRam = 0; CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0); RTGCPHYS GCPhysEnd = cbRam + cbRamHole; /* * Dump the physical memory, page by page. */ RTGCPHYS GCPhys = 0; char abZeroPg[PAGE_SIZE]; RT_ZERO(abZeroPg); PGM_LOCK_VOID(pVM); for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3; pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc); pRam = pRam->pNextR3) { /* fill the gap */ if (pRam->GCPhys > GCPhys && fIncZeroPgs) { while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc)) { rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL); GCPhys += PAGE_SIZE; } } PCPGMPAGE pPage = &pRam->aPages[0]; while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc)) { if ( PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_BALLOONED(pPage)) { if (fIncZeroPgs) { rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL); if (RT_FAILURE(rc)) DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys); } } else { switch (PGM_PAGE_GET_TYPE(pPage)) { case PGMPAGETYPE_RAM: case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */ case PGMPAGETYPE_ROM: case PGMPAGETYPE_MMIO2: { void const *pvPage; PGMPAGEMAPLOCK Lock; rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock); if (RT_SUCCESS(rc)) { rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL); PGMPhysReleasePageMappingLock(pVM, &Lock); if (RT_FAILURE(rc)) DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys); } else DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys); break; } default: AssertFailed(); RT_FALL_THRU(); case PGMPAGETYPE_MMIO: case PGMPAGETYPE_MMIO2_ALIAS_MMIO: case PGMPAGETYPE_SPECIAL_ALIAS_MMIO: if (fIncZeroPgs) { rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL); if (RT_FAILURE(rc)) DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys); } break; } } /* advance */ GCPhys += PAGE_SIZE; pPage++; } } PGM_UNLOCK(pVM); RTFileClose(hFile); if (RT_SUCCESS(rc)) return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString); return VINF_SUCCESS; } #endif /* VBOX_WITH_DEBUGGER */ /** * pvUser argument of the pgmR3CheckIntegrity*Node callbacks. */ typedef struct PGMCHECKINTARGS { bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */ PPGMPHYSHANDLER pPrevPhys; PVM pVM; } PGMCHECKINTARGS, *PPGMCHECKINTARGS; /** * Validate a node in the physical handler tree. * * @returns 0 on if ok, other wise 1. * @param pNode The handler node. * @param pvUser pVM. */ static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser) { PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser; PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode; AssertReleaseReturn(!((uintptr_t)pCur & 7), 1); AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast, ("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc)); AssertReleaseMsg( !pArgs->pPrevPhys || ( pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key), ("pPrevPhys=%p %RGp-%RGp %s\n" " pCur=%p %RGp-%RGp %s\n", pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc, pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc)); pArgs->pPrevPhys = pCur; return 0; } /** * Perform an integrity check on the PGM component. * * @returns VINF_SUCCESS if everything is fine. * @returns VBox error status after asserting on integrity breach. * @param pVM The cross context VM structure. */ VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM) { /* * Check the trees. */ int cErrors = 0; const PGMCHECKINTARGS LeftToRight = { true, NULL, pVM }; const PGMCHECKINTARGS RightToLeft = { false, NULL, pVM }; PGMCHECKINTARGS Args = LeftToRight; cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args); Args = RightToLeft; cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args); return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR; }