1 | /* $Id: PGM.cpp 76553 2019-01-01 01:45:53Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2019 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /** @page pg_pgm PGM - The Page Manager and Monitor
|
---|
20 | *
|
---|
21 | * @sa @ref grp_pgm
|
---|
22 | * @subpage pg_pgm_pool
|
---|
23 | * @subpage pg_pgm_phys
|
---|
24 | *
|
---|
25 | *
|
---|
26 | * @section sec_pgm_modes Paging Modes
|
---|
27 | *
|
---|
28 | * There are three memory contexts: Host Context (HC), Guest Context (GC)
|
---|
29 | * and intermediate context. When talking about paging HC can also be referred
|
---|
30 | * to as "host paging", and GC referred to as "shadow paging".
|
---|
31 | *
|
---|
32 | * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
|
---|
33 | * is defined by the host operating system. The mode used in the shadow paging mode
|
---|
34 | * depends on the host paging mode and what the mode the guest is currently in. The
|
---|
35 | * following relation between the two is defined:
|
---|
36 | *
|
---|
37 | * @verbatim
|
---|
38 | Host > 32-bit | PAE | AMD64 |
|
---|
39 | Guest | | | |
|
---|
40 | ==v================================
|
---|
41 | 32-bit 32-bit PAE PAE
|
---|
42 | -------|--------|--------|--------|
|
---|
43 | PAE PAE PAE PAE
|
---|
44 | -------|--------|--------|--------|
|
---|
45 | AMD64 AMD64 AMD64 AMD64
|
---|
46 | -------|--------|--------|--------| @endverbatim
|
---|
47 | *
|
---|
48 | * All configuration except those in the diagonal (upper left) are expected to
|
---|
49 | * require special effort from the switcher (i.e. a bit slower).
|
---|
50 | *
|
---|
51 | *
|
---|
52 | *
|
---|
53 | *
|
---|
54 | * @section sec_pgm_shw The Shadow Memory Context
|
---|
55 | *
|
---|
56 | *
|
---|
57 | * [..]
|
---|
58 | *
|
---|
59 | * Because of guest context mappings requires PDPT and PML4 entries to allow
|
---|
60 | * writing on AMD64, the two upper levels will have fixed flags whatever the
|
---|
61 | * guest is thinking of using there. So, when shadowing the PD level we will
|
---|
62 | * calculate the effective flags of PD and all the higher levels. In legacy
|
---|
63 | * PAE mode this only applies to the PWT and PCD bits (the rest are
|
---|
64 | * ignored/reserved/MBZ). We will ignore those bits for the present.
|
---|
65 | *
|
---|
66 | *
|
---|
67 | *
|
---|
68 | * @section sec_pgm_int The Intermediate Memory Context
|
---|
69 | *
|
---|
70 | * The world switch goes thru an intermediate memory context which purpose it is
|
---|
71 | * to provide different mappings of the switcher code. All guest mappings are also
|
---|
72 | * present in this context.
|
---|
73 | *
|
---|
74 | * The switcher code is mapped at the same location as on the host, at an
|
---|
75 | * identity mapped location (physical equals virtual address), and at the
|
---|
76 | * hypervisor location. The identity mapped location is for when the world
|
---|
77 | * switches that involves disabling paging.
|
---|
78 | *
|
---|
79 | * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
|
---|
80 | * simplifies switching guest CPU mode and consistency at the cost of more
|
---|
81 | * code to do the work. All memory use for those page tables is located below
|
---|
82 | * 4GB (this includes page tables for guest context mappings).
|
---|
83 | *
|
---|
84 | * Note! The intermediate memory context is also used for 64-bit guest
|
---|
85 | * execution on 32-bit hosts. Because we need to load 64-bit registers
|
---|
86 | * prior to switching to guest context, we need to be in 64-bit mode
|
---|
87 | * first. So, HM has some 64-bit worker routines in VMMRC.rc that get
|
---|
88 | * invoked via the special world switcher code in LegacyToAMD64.asm.
|
---|
89 | *
|
---|
90 | *
|
---|
91 | * @subsection subsec_pgm_int_gc Guest Context Mappings
|
---|
92 | *
|
---|
93 | * During assignment and relocation of a guest context mapping the intermediate
|
---|
94 | * memory context is used to verify the new location.
|
---|
95 | *
|
---|
96 | * Guest context mappings are currently restricted to below 4GB, for reasons
|
---|
97 | * of simplicity. This may change when we implement AMD64 support.
|
---|
98 | *
|
---|
99 | *
|
---|
100 | *
|
---|
101 | *
|
---|
102 | * @section sec_pgm_misc Misc
|
---|
103 | *
|
---|
104 | *
|
---|
105 | * @subsection sec_pgm_misc_A20 The A20 Gate
|
---|
106 | *
|
---|
107 | * PGM implements the A20 gate masking when translating a virtual guest address
|
---|
108 | * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
|
---|
109 | * the code reading the guest page table entries during shadowing. The masking
|
---|
110 | * is done consistenly for all CPU modes, paged ones included. Large pages are
|
---|
111 | * also masked correctly. (On current CPUs, experiments indicates that AMD does
|
---|
112 | * not apply A20M in paged modes and intel only does it for the 2nd MB of
|
---|
113 | * memory.)
|
---|
114 | *
|
---|
115 | * The A20 gate implementation is per CPU core. It can be configured on a per
|
---|
116 | * core basis via the keyboard device and PC architecture device. This is
|
---|
117 | * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
|
---|
118 | * guest OSes try pushing things anyway, so who cares. (On current real systems
|
---|
119 | * the A20M signal is probably only sent to the boot CPU and it affects all
|
---|
120 | * thread and probably all cores in that package.)
|
---|
121 | *
|
---|
122 | * The keyboard device and the PC architecture device doesn't OR their A20
|
---|
123 | * config bits together, rather they are currently implemented such that they
|
---|
124 | * mirror the CPU state. So, flipping the bit in either of them will change the
|
---|
125 | * A20 state. (On real hardware the bits of the two devices should probably be
|
---|
126 | * ORed together to indicate enabled, i.e. both needs to be cleared to disable
|
---|
127 | * A20 masking.)
|
---|
128 | *
|
---|
129 | * The A20 state will change immediately, transmeta fashion. There is no delays
|
---|
130 | * due to buses, wiring or other physical stuff. (On real hardware there are
|
---|
131 | * normally delays, the delays differs between the two devices and probably also
|
---|
132 | * between chipsets and CPU generations. Note that it's said that transmeta CPUs
|
---|
133 | * does the change immediately like us, they apparently intercept/handles the
|
---|
134 | * port accesses in microcode. Neat.)
|
---|
135 | *
|
---|
136 | * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
|
---|
137 | *
|
---|
138 | *
|
---|
139 | * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
|
---|
140 | *
|
---|
141 | * The differences between legacy PAE and long mode PAE are:
|
---|
142 | * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
|
---|
143 | * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
|
---|
144 | * usual meanings while 6 is ignored (AMD). This means that upon switching to
|
---|
145 | * legacy PAE mode we'll have to clear these bits and when going to long mode
|
---|
146 | * they must be set. This applies to both intermediate and shadow contexts,
|
---|
147 | * however we don't need to do it for the intermediate one since we're
|
---|
148 | * executing with CR0.WP at that time.
|
---|
149 | * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
|
---|
150 | * a page aligned one is required.
|
---|
151 | *
|
---|
152 | *
|
---|
153 | * @section sec_pgm_handlers Access Handlers
|
---|
154 | *
|
---|
155 | * Placeholder.
|
---|
156 | *
|
---|
157 | *
|
---|
158 | * @subsection sec_pgm_handlers_phys Physical Access Handlers
|
---|
159 | *
|
---|
160 | * Placeholder.
|
---|
161 | *
|
---|
162 | *
|
---|
163 | * @subsection sec_pgm_handlers_virt Virtual Access Handlers
|
---|
164 | *
|
---|
165 | * We currently implement three types of virtual access handlers: ALL, WRITE
|
---|
166 | * and HYPERVISOR (WRITE). See PGMVIRTHANDLERKIND for some more details.
|
---|
167 | *
|
---|
168 | * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
|
---|
169 | * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
|
---|
170 | * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
|
---|
171 | * rest of this section is going to be about these handlers.
|
---|
172 | *
|
---|
173 | * We'll go thru the life cycle of a handler and try make sense of it all, don't know
|
---|
174 | * how successful this is gonna be...
|
---|
175 | *
|
---|
176 | * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
|
---|
177 | * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
|
---|
178 | * and create a new node that is inserted into the AVL tree (range key). Then
|
---|
179 | * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
|
---|
180 | *
|
---|
181 | * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
|
---|
182 | *
|
---|
183 | * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
|
---|
184 | * via the current guest CR3 and update the physical page -> virtual handler
|
---|
185 | * translation. Needless to say, this doesn't exactly scale very well. If any changes
|
---|
186 | * are detected, it will flag a virtual bit update just like we did on registration.
|
---|
187 | * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
|
---|
188 | *
|
---|
189 | * 2b. The virtual bit update process will iterate all the pages covered by all the
|
---|
190 | * virtual handlers and update the PGMPAGE virtual handler state to the max of all
|
---|
191 | * virtual handlers on that page.
|
---|
192 | *
|
---|
193 | * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
|
---|
194 | * we don't miss any alias mappings of the monitored pages.
|
---|
195 | *
|
---|
196 | * 2d. SyncCR3 will then proceed with syncing the CR3 table.
|
---|
197 | *
|
---|
198 | * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
|
---|
199 | * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
|
---|
200 | * will call the handlers like in the next step. If the physical mapping has
|
---|
201 | * changed we will - some time in the future - perform a handler callback
|
---|
202 | * (optional) and update the physical -> virtual handler cache.
|
---|
203 | *
|
---|
204 | * 4. \#PF(,write) on a page in the range. This will cause the handler to
|
---|
205 | * be invoked.
|
---|
206 | *
|
---|
207 | * 5. The guest invalidates the page and changes the physical backing or
|
---|
208 | * unmaps it. This should cause the invalidation callback to be invoked
|
---|
209 | * (it might not yet be 100% perfect). Exactly what happens next... is
|
---|
210 | * this where we mess up and end up out of sync for a while?
|
---|
211 | *
|
---|
212 | * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
|
---|
213 | * We will then set all PGMPAGEs in the physical -> virtual handler cache for
|
---|
214 | * this handler to NONE and trigger a full PGM resync (basically the same
|
---|
215 | * as int step 1). Which means 2 is executed again.
|
---|
216 | *
|
---|
217 | *
|
---|
218 | * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
|
---|
219 | *
|
---|
220 | * There is a bunch of things that needs to be done to make the virtual handlers
|
---|
221 | * work 100% correctly and work more efficiently.
|
---|
222 | *
|
---|
223 | * The first bit hasn't been implemented yet because it's going to slow the
|
---|
224 | * whole mess down even more, and besides it seems to be working reliably for
|
---|
225 | * our current uses. OTOH, some of the optimizations might end up more or less
|
---|
226 | * implementing the missing bits, so we'll see.
|
---|
227 | *
|
---|
228 | * On the optimization side, the first thing to do is to try avoid unnecessary
|
---|
229 | * cache flushing. Then try team up with the shadowing code to track changes
|
---|
230 | * in mappings by means of access to them (shadow in), updates to shadows pages,
|
---|
231 | * invlpg, and shadow PT discarding (perhaps).
|
---|
232 | *
|
---|
233 | * Some idea that have popped up for optimization for current and new features:
|
---|
234 | * - bitmap indicating where there are virtual handlers installed.
|
---|
235 | * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
|
---|
236 | * - Further optimize this by min/max (needs min/max avl getters).
|
---|
237 | * - Shadow page table entry bit (if any left)?
|
---|
238 | *
|
---|
239 | */
|
---|
240 |
|
---|
241 |
|
---|
242 | /** @page pg_pgm_phys PGM Physical Guest Memory Management
|
---|
243 | *
|
---|
244 | *
|
---|
245 | * Objectives:
|
---|
246 | * - Guest RAM over-commitment using memory ballooning,
|
---|
247 | * zero pages and general page sharing.
|
---|
248 | * - Moving or mirroring a VM onto a different physical machine.
|
---|
249 | *
|
---|
250 | *
|
---|
251 | * @section sec_pgmPhys_Definitions Definitions
|
---|
252 | *
|
---|
253 | * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
|
---|
254 | * machinery associated with it.
|
---|
255 | *
|
---|
256 | *
|
---|
257 | *
|
---|
258 | *
|
---|
259 | * @section sec_pgmPhys_AllocPage Allocating a page.
|
---|
260 | *
|
---|
261 | * Initially we map *all* guest memory to the (per VM) zero page, which
|
---|
262 | * means that none of the read functions will cause pages to be allocated.
|
---|
263 | *
|
---|
264 | * Exception, access bit in page tables that have been shared. This must
|
---|
265 | * be handled, but we must also make sure PGMGst*Modify doesn't make
|
---|
266 | * unnecessary modifications.
|
---|
267 | *
|
---|
268 | * Allocation points:
|
---|
269 | * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
|
---|
270 | * - Replacing a zero page mapping at \#PF.
|
---|
271 | * - Replacing a shared page mapping at \#PF.
|
---|
272 | * - ROM registration (currently MMR3RomRegister).
|
---|
273 | * - VM restore (pgmR3Load).
|
---|
274 | *
|
---|
275 | * For the first three it would make sense to keep a few pages handy
|
---|
276 | * until we've reached the max memory commitment for the VM.
|
---|
277 | *
|
---|
278 | * For the ROM registration, we know exactly how many pages we need
|
---|
279 | * and will request these from ring-0. For restore, we will save
|
---|
280 | * the number of non-zero pages in the saved state and allocate
|
---|
281 | * them up front. This would allow the ring-0 component to refuse
|
---|
282 | * the request if the isn't sufficient memory available for VM use.
|
---|
283 | *
|
---|
284 | * Btw. for both ROM and restore allocations we won't be requiring
|
---|
285 | * zeroed pages as they are going to be filled instantly.
|
---|
286 | *
|
---|
287 | *
|
---|
288 | * @section sec_pgmPhys_FreePage Freeing a page
|
---|
289 | *
|
---|
290 | * There are a few points where a page can be freed:
|
---|
291 | * - After being replaced by the zero page.
|
---|
292 | * - After being replaced by a shared page.
|
---|
293 | * - After being ballooned by the guest additions.
|
---|
294 | * - At reset.
|
---|
295 | * - At restore.
|
---|
296 | *
|
---|
297 | * When freeing one or more pages they will be returned to the ring-0
|
---|
298 | * component and replaced by the zero page.
|
---|
299 | *
|
---|
300 | * The reasoning for clearing out all the pages on reset is that it will
|
---|
301 | * return us to the exact same state as on power on, and may thereby help
|
---|
302 | * us reduce the memory load on the system. Further it might have a
|
---|
303 | * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
|
---|
304 | *
|
---|
305 | * On restore, as mention under the allocation topic, pages should be
|
---|
306 | * freed / allocated depending on how many is actually required by the
|
---|
307 | * new VM state. The simplest approach is to do like on reset, and free
|
---|
308 | * all non-ROM pages and then allocate what we need.
|
---|
309 | *
|
---|
310 | * A measure to prevent some fragmentation, would be to let each allocation
|
---|
311 | * chunk have some affinity towards the VM having allocated the most pages
|
---|
312 | * from it. Also, try make sure to allocate from allocation chunks that
|
---|
313 | * are almost full. Admittedly, both these measures might work counter to
|
---|
314 | * our intentions and its probably not worth putting a lot of effort,
|
---|
315 | * cpu time or memory into this.
|
---|
316 | *
|
---|
317 | *
|
---|
318 | * @section sec_pgmPhys_SharePage Sharing a page
|
---|
319 | *
|
---|
320 | * The basic idea is that there there will be a idle priority kernel
|
---|
321 | * thread walking the non-shared VM pages hashing them and looking for
|
---|
322 | * pages with the same checksum. If such pages are found, it will compare
|
---|
323 | * them byte-by-byte to see if they actually are identical. If found to be
|
---|
324 | * identical it will allocate a shared page, copy the content, check that
|
---|
325 | * the page didn't change while doing this, and finally request both the
|
---|
326 | * VMs to use the shared page instead. If the page is all zeros (special
|
---|
327 | * checksum and byte-by-byte check) it will request the VM that owns it
|
---|
328 | * to replace it with the zero page.
|
---|
329 | *
|
---|
330 | * To make this efficient, we will have to make sure not to try share a page
|
---|
331 | * that will change its contents soon. This part requires the most work.
|
---|
332 | * A simple idea would be to request the VM to write monitor the page for
|
---|
333 | * a while to make sure it isn't modified any time soon. Also, it may
|
---|
334 | * make sense to skip pages that are being write monitored since this
|
---|
335 | * information is readily available to the thread if it works on the
|
---|
336 | * per-VM guest memory structures (presently called PGMRAMRANGE).
|
---|
337 | *
|
---|
338 | *
|
---|
339 | * @section sec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
|
---|
340 | *
|
---|
341 | * The pages are organized in allocation chunks in ring-0, this is a necessity
|
---|
342 | * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
|
---|
343 | * could easily work on a page-by-page basis if we liked. Whether this is possible
|
---|
344 | * or efficient on NT I don't quite know.) Fragmentation within these chunks may
|
---|
345 | * become a problem as part of the idea here is that we wish to return memory to
|
---|
346 | * the host system.
|
---|
347 | *
|
---|
348 | * For instance, starting two VMs at the same time, they will both allocate the
|
---|
349 | * guest memory on-demand and if permitted their page allocations will be
|
---|
350 | * intermixed. Shut down one of the two VMs and it will be difficult to return
|
---|
351 | * any memory to the host system because the page allocation for the two VMs are
|
---|
352 | * mixed up in the same allocation chunks.
|
---|
353 | *
|
---|
354 | * To further complicate matters, when pages are freed because they have been
|
---|
355 | * ballooned or become shared/zero the whole idea is that the page is supposed
|
---|
356 | * to be reused by another VM or returned to the host system. This will cause
|
---|
357 | * allocation chunks to contain pages belonging to different VMs and prevent
|
---|
358 | * returning memory to the host when one of those VM shuts down.
|
---|
359 | *
|
---|
360 | * The only way to really deal with this problem is to move pages. This can
|
---|
361 | * either be done at VM shutdown and or by the idle priority worker thread
|
---|
362 | * that will be responsible for finding sharable/zero pages. The mechanisms
|
---|
363 | * involved for coercing a VM to move a page (or to do it for it) will be
|
---|
364 | * the same as when telling it to share/zero a page.
|
---|
365 | *
|
---|
366 | *
|
---|
367 | * @section sec_pgmPhys_Tracking Tracking Structures And Their Cost
|
---|
368 | *
|
---|
369 | * There's a difficult balance between keeping the per-page tracking structures
|
---|
370 | * (global and guest page) easy to use and keeping them from eating too much
|
---|
371 | * memory. We have limited virtual memory resources available when operating in
|
---|
372 | * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
|
---|
373 | * tracking structures will be attempted designed such that we can deal with up
|
---|
374 | * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
|
---|
375 | *
|
---|
376 | *
|
---|
377 | * @subsection subsec_pgmPhys_Tracking_Kernel Kernel Space
|
---|
378 | *
|
---|
379 | * @see pg_GMM
|
---|
380 | *
|
---|
381 | * @subsection subsec_pgmPhys_Tracking_PerVM Per-VM
|
---|
382 | *
|
---|
383 | * Fixed info is the physical address of the page (HCPhys) and the page id
|
---|
384 | * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
|
---|
385 | * Today we've restricting ourselves to 40(-12) bits because this is the current
|
---|
386 | * restrictions of all AMD64 implementations (I think Barcelona will up this
|
---|
387 | * to 48(-12) bits, not that it really matters) and I needed the bits for
|
---|
388 | * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
|
---|
389 | * decent range for the page id: 2^(28+12) = 1024TB.
|
---|
390 | *
|
---|
391 | * In additions to these, we'll have to keep maintaining the page flags as we
|
---|
392 | * currently do. Although it wouldn't harm to optimize these quite a bit, like
|
---|
393 | * for instance the ROM shouldn't depend on having a write handler installed
|
---|
394 | * in order for it to become read-only. A RO/RW bit should be considered so
|
---|
395 | * that the page syncing code doesn't have to mess about checking multiple
|
---|
396 | * flag combinations (ROM || RW handler || write monitored) in order to
|
---|
397 | * figure out how to setup a shadow PTE. But this of course, is second
|
---|
398 | * priority at present. Current this requires 12 bits, but could probably
|
---|
399 | * be optimized to ~8.
|
---|
400 | *
|
---|
401 | * Then there's the 24 bits used to track which shadow page tables are
|
---|
402 | * currently mapping a page for the purpose of speeding up physical
|
---|
403 | * access handlers, and thereby the page pool cache. More bit for this
|
---|
404 | * purpose wouldn't hurt IIRC.
|
---|
405 | *
|
---|
406 | * Then there is a new bit in which we need to record what kind of page
|
---|
407 | * this is, shared, zero, normal or write-monitored-normal. This'll
|
---|
408 | * require 2 bits. One bit might be needed for indicating whether a
|
---|
409 | * write monitored page has been written to. And yet another one or
|
---|
410 | * two for tracking migration status. 3-4 bits total then.
|
---|
411 | *
|
---|
412 | * Whatever is left will can be used to record the sharabilitiy of a
|
---|
413 | * page. The page checksum will not be stored in the per-VM table as
|
---|
414 | * the idle thread will not be permitted to do modifications to it.
|
---|
415 | * It will instead have to keep its own working set of potentially
|
---|
416 | * shareable pages and their check sums and stuff.
|
---|
417 | *
|
---|
418 | * For the present we'll keep the current packing of the
|
---|
419 | * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
|
---|
420 | * we'll have to change it to a struct with a total of 128-bits at
|
---|
421 | * our disposal.
|
---|
422 | *
|
---|
423 | * The initial layout will be like this:
|
---|
424 | * @verbatim
|
---|
425 | RTHCPHYS HCPhys; The current stuff.
|
---|
426 | 63:40 Current shadow PT tracking stuff.
|
---|
427 | 39:12 The physical page frame number.
|
---|
428 | 11:0 The current flags.
|
---|
429 | uint32_t u28PageId : 28; The page id.
|
---|
430 | uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
|
---|
431 | uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
|
---|
432 | uint32_t u1Reserved : 1; Reserved for later.
|
---|
433 | uint32_t u32Reserved; Reserved for later, mostly sharing stats.
|
---|
434 | @endverbatim
|
---|
435 | *
|
---|
436 | * The final layout will be something like this:
|
---|
437 | * @verbatim
|
---|
438 | RTHCPHYS HCPhys; The current stuff.
|
---|
439 | 63:48 High page id (12+).
|
---|
440 | 47:12 The physical page frame number.
|
---|
441 | 11:0 Low page id.
|
---|
442 | uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
|
---|
443 | uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
|
---|
444 | uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
|
---|
445 | uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
|
---|
446 | uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
|
---|
447 | uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
|
---|
448 | uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
|
---|
449 | uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
|
---|
450 | @endverbatim
|
---|
451 | *
|
---|
452 | * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
|
---|
453 | * around that I'm afraid. It means that the cost of dealing out 32GB of memory
|
---|
454 | * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
|
---|
455 | * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
|
---|
456 | *
|
---|
457 | * A couple of cost examples for the total cost per-VM + kernel.
|
---|
458 | * 32-bit Windows and 32-bit linux:
|
---|
459 | * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
|
---|
460 | * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
|
---|
461 | * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
|
---|
462 | * 64-bit Windows and 64-bit linux:
|
---|
463 | * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
|
---|
464 | * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
|
---|
465 | * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
|
---|
466 | *
|
---|
467 | * UPDATE - 2007-09-27:
|
---|
468 | * Will need a ballooned flag/state too because we cannot
|
---|
469 | * trust the guest 100% and reporting the same page as ballooned more
|
---|
470 | * than once will put the GMM off balance.
|
---|
471 | *
|
---|
472 | *
|
---|
473 | * @section sec_pgmPhys_Serializing Serializing Access
|
---|
474 | *
|
---|
475 | * Initially, we'll try a simple scheme:
|
---|
476 | *
|
---|
477 | * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
|
---|
478 | * by the EMT thread of that VM while in the pgm critsect.
|
---|
479 | * - Other threads in the VM process that needs to make reliable use of
|
---|
480 | * the per-VM RAM tracking structures will enter the critsect.
|
---|
481 | * - No process external thread or kernel thread will ever try enter
|
---|
482 | * the pgm critical section, as that just won't work.
|
---|
483 | * - The idle thread (and similar threads) doesn't not need 100% reliable
|
---|
484 | * data when performing it tasks as the EMT thread will be the one to
|
---|
485 | * do the actual changes later anyway. So, as long as it only accesses
|
---|
486 | * the main ram range, it can do so by somehow preventing the VM from
|
---|
487 | * being destroyed while it works on it...
|
---|
488 | *
|
---|
489 | * - The over-commitment management, including the allocating/freeing
|
---|
490 | * chunks, is serialized by a ring-0 mutex lock (a fast one since the
|
---|
491 | * more mundane mutex implementation is broken on Linux).
|
---|
492 | * - A separate mutex is protecting the set of allocation chunks so
|
---|
493 | * that pages can be shared or/and freed up while some other VM is
|
---|
494 | * allocating more chunks. This mutex can be take from under the other
|
---|
495 | * one, but not the other way around.
|
---|
496 | *
|
---|
497 | *
|
---|
498 | * @section sec_pgmPhys_Request VM Request interface
|
---|
499 | *
|
---|
500 | * When in ring-0 it will become necessary to send requests to a VM so it can
|
---|
501 | * for instance move a page while defragmenting during VM destroy. The idle
|
---|
502 | * thread will make use of this interface to request VMs to setup shared
|
---|
503 | * pages and to perform write monitoring of pages.
|
---|
504 | *
|
---|
505 | * I would propose an interface similar to the current VMReq interface, similar
|
---|
506 | * in that it doesn't require locking and that the one sending the request may
|
---|
507 | * wait for completion if it wishes to. This shouldn't be very difficult to
|
---|
508 | * realize.
|
---|
509 | *
|
---|
510 | * The requests themselves are also pretty simple. They are basically:
|
---|
511 | * -# Check that some precondition is still true.
|
---|
512 | * -# Do the update.
|
---|
513 | * -# Update all shadow page tables involved with the page.
|
---|
514 | *
|
---|
515 | * The 3rd step is identical to what we're already doing when updating a
|
---|
516 | * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
|
---|
517 | *
|
---|
518 | *
|
---|
519 | *
|
---|
520 | * @section sec_pgmPhys_MappingCaches Mapping Caches
|
---|
521 | *
|
---|
522 | * In order to be able to map in and out memory and to be able to support
|
---|
523 | * guest with more RAM than we've got virtual address space, we'll employing
|
---|
524 | * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
|
---|
525 | * however on 32-bit darwin the ring-0 code is running in a different memory
|
---|
526 | * context and therefore needs a separate cache. In raw-mode context we also
|
---|
527 | * need a separate cache. The 32-bit darwin mapping cache and the one for
|
---|
528 | * raw-mode context share a lot of code, see PGMRZDYNMAP.
|
---|
529 | *
|
---|
530 | *
|
---|
531 | * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
|
---|
532 | *
|
---|
533 | * We've considered implementing the ring-3 mapping cache page based but found
|
---|
534 | * that this was bother some when one had to take into account TLBs+SMP and
|
---|
535 | * portability (missing the necessary APIs on several platforms). There were
|
---|
536 | * also some performance concerns with this approach which hadn't quite been
|
---|
537 | * worked out.
|
---|
538 | *
|
---|
539 | * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
|
---|
540 | * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
|
---|
541 | * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
|
---|
542 | * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
|
---|
543 | * costly than a single page, although how much more costly is uncertain. We'll
|
---|
544 | * try address this by using a very big cache, preferably bigger than the actual
|
---|
545 | * VM RAM size if possible. The current VM RAM sizes should give some idea for
|
---|
546 | * 32-bit boxes, while on 64-bit we can probably get away with employing an
|
---|
547 | * unlimited cache.
|
---|
548 | *
|
---|
549 | * The cache have to parts, as already indicated, the ring-3 side and the
|
---|
550 | * ring-0 side.
|
---|
551 | *
|
---|
552 | * The ring-0 will be tied to the page allocator since it will operate on the
|
---|
553 | * memory objects it contains. It will therefore require the first ring-0 mutex
|
---|
554 | * discussed in @ref sec_pgmPhys_Serializing. We some double house keeping wrt
|
---|
555 | * to who has mapped what I think, since both VMMR0.r0 and RTR0MemObj will keep
|
---|
556 | * track of mapping relations
|
---|
557 | *
|
---|
558 | * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
|
---|
559 | * require anyone that desires to do changes to the mapping cache to do that
|
---|
560 | * from within this critsect. Alternatively, we could employ a separate critsect
|
---|
561 | * for serializing changes to the mapping cache as this would reduce potential
|
---|
562 | * contention with other threads accessing mappings unrelated to the changes
|
---|
563 | * that are in process. We can see about this later, contention will show
|
---|
564 | * up in the statistics anyway, so it'll be simple to tell.
|
---|
565 | *
|
---|
566 | * The organization of the ring-3 part will be very much like how the allocation
|
---|
567 | * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
|
---|
568 | * having to walk the tree all the time, we'll have a couple of lookaside entries
|
---|
569 | * like in we do for I/O ports and MMIO in IOM.
|
---|
570 | *
|
---|
571 | * The simplified flow of a PGMPhysRead/Write function:
|
---|
572 | * -# Enter the PGM critsect.
|
---|
573 | * -# Lookup GCPhys in the ram ranges and get the Page ID.
|
---|
574 | * -# Calc the Allocation Chunk ID from the Page ID.
|
---|
575 | * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
|
---|
576 | * If not found in cache:
|
---|
577 | * -# Call ring-0 and request it to be mapped and supply
|
---|
578 | * a chunk to be unmapped if the cache is maxed out already.
|
---|
579 | * -# Insert the new mapping into the AVL tree (id + R3 address).
|
---|
580 | * -# Update the relevant lookaside entry and return the mapping address.
|
---|
581 | * -# Do the read/write according to monitoring flags and everything.
|
---|
582 | * -# Leave the critsect.
|
---|
583 | *
|
---|
584 | *
|
---|
585 | * @section sec_pgmPhys_Fallback Fallback
|
---|
586 | *
|
---|
587 | * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
|
---|
588 | * API and thus require a fallback.
|
---|
589 | *
|
---|
590 | * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
|
---|
591 | * will return to the ring-3 caller (and later ring-0) and asking it to seed
|
---|
592 | * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
|
---|
593 | * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
|
---|
594 | * "SeededAllocPages" call to ring-0.
|
---|
595 | *
|
---|
596 | * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
|
---|
597 | * all page sharing (zero page detection will continue). It will also force
|
---|
598 | * all allocations to come from the VM which seeded the page. Both these
|
---|
599 | * measures are taken to make sure that there will never be any need for
|
---|
600 | * mapping anything into ring-3 - everything will be mapped already.
|
---|
601 | *
|
---|
602 | * Whether we'll continue to use the current MM locked memory management
|
---|
603 | * for this I don't quite know (I'd prefer not to and just ditch that all
|
---|
604 | * together), we'll see what's simplest to do.
|
---|
605 | *
|
---|
606 | *
|
---|
607 | *
|
---|
608 | * @section sec_pgmPhys_Changes Changes
|
---|
609 | *
|
---|
610 | * Breakdown of the changes involved?
|
---|
611 | */
|
---|
612 |
|
---|
613 |
|
---|
614 | /*********************************************************************************************************************************
|
---|
615 | * Header Files *
|
---|
616 | *********************************************************************************************************************************/
|
---|
617 | #define LOG_GROUP LOG_GROUP_PGM
|
---|
618 | #include <VBox/vmm/dbgf.h>
|
---|
619 | #include <VBox/vmm/pgm.h>
|
---|
620 | #include <VBox/vmm/cpum.h>
|
---|
621 | #include <VBox/vmm/iom.h>
|
---|
622 | #include <VBox/sup.h>
|
---|
623 | #include <VBox/vmm/mm.h>
|
---|
624 | #include <VBox/vmm/em.h>
|
---|
625 | #include <VBox/vmm/stam.h>
|
---|
626 | #ifdef VBOX_WITH_REM
|
---|
627 | # include <VBox/vmm/rem.h>
|
---|
628 | #endif
|
---|
629 | #include <VBox/vmm/selm.h>
|
---|
630 | #include <VBox/vmm/ssm.h>
|
---|
631 | #include <VBox/vmm/hm.h>
|
---|
632 | #include "PGMInternal.h"
|
---|
633 | #include <VBox/vmm/vm.h>
|
---|
634 | #include <VBox/vmm/uvm.h>
|
---|
635 | #include "PGMInline.h"
|
---|
636 |
|
---|
637 | #include <VBox/dbg.h>
|
---|
638 | #include <VBox/param.h>
|
---|
639 | #include <VBox/err.h>
|
---|
640 |
|
---|
641 | #include <iprt/asm.h>
|
---|
642 | #include <iprt/asm-amd64-x86.h>
|
---|
643 | #include <iprt/assert.h>
|
---|
644 | #include <iprt/env.h>
|
---|
645 | #include <iprt/mem.h>
|
---|
646 | #include <iprt/file.h>
|
---|
647 | #include <iprt/string.h>
|
---|
648 | #include <iprt/thread.h>
|
---|
649 |
|
---|
650 |
|
---|
651 | /*********************************************************************************************************************************
|
---|
652 | * Structures and Typedefs *
|
---|
653 | *********************************************************************************************************************************/
|
---|
654 | /**
|
---|
655 | * Argument package for pgmR3RElocatePhysHnadler, pgmR3RelocateVirtHandler and
|
---|
656 | * pgmR3RelocateHyperVirtHandler.
|
---|
657 | */
|
---|
658 | typedef struct PGMRELOCHANDLERARGS
|
---|
659 | {
|
---|
660 | RTGCINTPTR offDelta;
|
---|
661 | PVM pVM;
|
---|
662 | } PGMRELOCHANDLERARGS;
|
---|
663 | /** Pointer to a page access handlere relocation argument package. */
|
---|
664 | typedef PGMRELOCHANDLERARGS const *PCPGMRELOCHANDLERARGS;
|
---|
665 |
|
---|
666 |
|
---|
667 | /*********************************************************************************************************************************
|
---|
668 | * Internal Functions *
|
---|
669 | *********************************************************************************************************************************/
|
---|
670 | static int pgmR3InitPaging(PVM pVM);
|
---|
671 | static int pgmR3InitStats(PVM pVM);
|
---|
672 | static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
|
---|
673 | static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
|
---|
674 | static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
|
---|
675 | static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
|
---|
676 | #ifdef VBOX_WITH_RAW_MODE
|
---|
677 | static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
|
---|
678 | static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
|
---|
679 | #endif /* VBOX_WITH_RAW_MODE */
|
---|
680 | #ifdef VBOX_STRICT
|
---|
681 | static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
|
---|
682 | #endif
|
---|
683 |
|
---|
684 | #ifdef VBOX_WITH_DEBUGGER
|
---|
685 | static FNDBGCCMD pgmR3CmdError;
|
---|
686 | static FNDBGCCMD pgmR3CmdSync;
|
---|
687 | static FNDBGCCMD pgmR3CmdSyncAlways;
|
---|
688 | # ifdef VBOX_STRICT
|
---|
689 | static FNDBGCCMD pgmR3CmdAssertCR3;
|
---|
690 | # endif
|
---|
691 | static FNDBGCCMD pgmR3CmdPhysToFile;
|
---|
692 | #endif
|
---|
693 |
|
---|
694 |
|
---|
695 | /*********************************************************************************************************************************
|
---|
696 | * Global Variables *
|
---|
697 | *********************************************************************************************************************************/
|
---|
698 | #ifdef VBOX_WITH_DEBUGGER
|
---|
699 | /** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
|
---|
700 | static const DBGCVARDESC g_aPgmErrorArgs[] =
|
---|
701 | {
|
---|
702 | /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
|
---|
703 | { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
|
---|
704 | };
|
---|
705 |
|
---|
706 | static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
|
---|
707 | {
|
---|
708 | /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
|
---|
709 | { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
|
---|
710 | { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
|
---|
711 | };
|
---|
712 |
|
---|
713 | # ifdef DEBUG_sandervl
|
---|
714 | static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
|
---|
715 | {
|
---|
716 | /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
|
---|
717 | { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
|
---|
718 | { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
|
---|
719 | };
|
---|
720 | # endif
|
---|
721 |
|
---|
722 | /** Command descriptors. */
|
---|
723 | static const DBGCCMD g_aCmds[] =
|
---|
724 | {
|
---|
725 | /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
|
---|
726 | { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
|
---|
727 | { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
|
---|
728 | { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
|
---|
729 | # ifdef VBOX_STRICT
|
---|
730 | { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
|
---|
731 | # ifdef VBOX_WITH_PAGE_SHARING
|
---|
732 | { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
|
---|
733 | { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
|
---|
734 | # endif
|
---|
735 | # endif
|
---|
736 | { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
|
---|
737 | { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
|
---|
738 | };
|
---|
739 | #endif
|
---|
740 |
|
---|
741 |
|
---|
742 |
|
---|
743 |
|
---|
744 | /**
|
---|
745 | * Initiates the paging of VM.
|
---|
746 | *
|
---|
747 | * @returns VBox status code.
|
---|
748 | * @param pVM The cross context VM structure.
|
---|
749 | */
|
---|
750 | VMMR3DECL(int) PGMR3Init(PVM pVM)
|
---|
751 | {
|
---|
752 | LogFlow(("PGMR3Init:\n"));
|
---|
753 | PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
|
---|
754 | int rc;
|
---|
755 |
|
---|
756 | /*
|
---|
757 | * Assert alignment and sizes.
|
---|
758 | */
|
---|
759 | AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
|
---|
760 | AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
|
---|
761 | AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
|
---|
762 |
|
---|
763 | /*
|
---|
764 | * Init the structure.
|
---|
765 | */
|
---|
766 | pVM->pgm.s.offVM = RT_UOFFSETOF(VM, pgm.s);
|
---|
767 | pVM->pgm.s.offVCpuPGM = RT_UOFFSETOF(VMCPU, pgm.s);
|
---|
768 | /*pVM->pgm.s.fRestoreRomPagesAtReset = false;*/
|
---|
769 |
|
---|
770 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
|
---|
771 | {
|
---|
772 | pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
|
---|
773 | pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
|
---|
774 | pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
|
---|
775 | }
|
---|
776 |
|
---|
777 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
|
---|
778 | {
|
---|
779 | pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
|
---|
780 | pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
|
---|
781 | pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
|
---|
782 | }
|
---|
783 |
|
---|
784 | /* Init the per-CPU part. */
|
---|
785 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
786 | {
|
---|
787 | PVMCPU pVCpu = &pVM->aCpus[idCpu];
|
---|
788 | PPGMCPU pPGM = &pVCpu->pgm.s;
|
---|
789 |
|
---|
790 | pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
|
---|
791 | pPGM->offVCpu = RT_UOFFSETOF(VMCPU, pgm.s);
|
---|
792 | pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
|
---|
793 |
|
---|
794 | pPGM->enmShadowMode = PGMMODE_INVALID;
|
---|
795 | pPGM->enmGuestMode = PGMMODE_INVALID;
|
---|
796 | pPGM->idxGuestModeData = UINT8_MAX;
|
---|
797 | pPGM->idxShadowModeData = UINT8_MAX;
|
---|
798 | pPGM->idxBothModeData = UINT8_MAX;
|
---|
799 |
|
---|
800 | pPGM->GCPhysCR3 = NIL_RTGCPHYS;
|
---|
801 |
|
---|
802 | pPGM->pGst32BitPdR3 = NULL;
|
---|
803 | pPGM->pGstPaePdptR3 = NULL;
|
---|
804 | pPGM->pGstAmd64Pml4R3 = NULL;
|
---|
805 | #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
806 | pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
|
---|
807 | pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
|
---|
808 | pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
|
---|
809 | #endif
|
---|
810 | pPGM->pGst32BitPdRC = NIL_RTRCPTR;
|
---|
811 | pPGM->pGstPaePdptRC = NIL_RTRCPTR;
|
---|
812 | for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
|
---|
813 | {
|
---|
814 | pPGM->apGstPaePDsR3[i] = NULL;
|
---|
815 | #ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
816 | pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
|
---|
817 | #endif
|
---|
818 | pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
|
---|
819 | pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
|
---|
820 | pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
|
---|
821 | pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
|
---|
822 | }
|
---|
823 |
|
---|
824 | pPGM->fA20Enabled = true;
|
---|
825 | pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
|
---|
826 | }
|
---|
827 |
|
---|
828 | pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
|
---|
829 | pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
|
---|
830 | pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
|
---|
831 |
|
---|
832 | rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
|
---|
833 | #ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
|
---|
834 | true
|
---|
835 | #else
|
---|
836 | false
|
---|
837 | #endif
|
---|
838 | );
|
---|
839 | AssertLogRelRCReturn(rc, rc);
|
---|
840 |
|
---|
841 | #if HC_ARCH_BITS == 32
|
---|
842 | # ifdef RT_OS_DARWIN
|
---|
843 | rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
|
---|
844 | # else
|
---|
845 | rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
|
---|
846 | # endif
|
---|
847 | #else
|
---|
848 | rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
|
---|
849 | #endif
|
---|
850 | AssertLogRelRCReturn(rc, rc);
|
---|
851 | for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
|
---|
852 | pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
|
---|
853 |
|
---|
854 | /*
|
---|
855 | * Get the configured RAM size - to estimate saved state size.
|
---|
856 | */
|
---|
857 | uint64_t cbRam;
|
---|
858 | rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
|
---|
859 | if (rc == VERR_CFGM_VALUE_NOT_FOUND)
|
---|
860 | cbRam = 0;
|
---|
861 | else if (RT_SUCCESS(rc))
|
---|
862 | {
|
---|
863 | if (cbRam < PAGE_SIZE)
|
---|
864 | cbRam = 0;
|
---|
865 | cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
|
---|
866 | }
|
---|
867 | else
|
---|
868 | {
|
---|
869 | AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
|
---|
870 | return rc;
|
---|
871 | }
|
---|
872 |
|
---|
873 | /*
|
---|
874 | * Check for PCI pass-through and other configurables.
|
---|
875 | */
|
---|
876 | rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
|
---|
877 | AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
|
---|
878 | AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
|
---|
879 |
|
---|
880 | rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "PageFusionAllowed", &pVM->pgm.s.fPageFusionAllowed, false);
|
---|
881 | AssertLogRelRCReturn(rc, rc);
|
---|
882 |
|
---|
883 | /** @cfgm{/PGM/ZeroRamPagesOnReset, boolean, true}
|
---|
884 | * Whether to clear RAM pages on (hard) reset. */
|
---|
885 | rc = CFGMR3QueryBoolDef(pCfgPGM, "ZeroRamPagesOnReset", &pVM->pgm.s.fZeroRamPagesOnReset, true);
|
---|
886 | AssertLogRelRCReturn(rc, rc);
|
---|
887 |
|
---|
888 | #ifdef VBOX_WITH_STATISTICS
|
---|
889 | /*
|
---|
890 | * Allocate memory for the statistics before someone tries to use them.
|
---|
891 | */
|
---|
892 | size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
|
---|
893 | void *pv;
|
---|
894 | rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
|
---|
895 | AssertRCReturn(rc, rc);
|
---|
896 |
|
---|
897 | pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
|
---|
898 | pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
|
---|
899 | pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
|
---|
900 | pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
|
---|
901 |
|
---|
902 | for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
|
---|
903 | {
|
---|
904 | pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
|
---|
905 | pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
|
---|
906 | pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
|
---|
907 |
|
---|
908 | pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
|
---|
909 | }
|
---|
910 | #endif /* VBOX_WITH_STATISTICS */
|
---|
911 |
|
---|
912 | /*
|
---|
913 | * Register callbacks, string formatters and the saved state data unit.
|
---|
914 | */
|
---|
915 | #ifdef VBOX_STRICT
|
---|
916 | VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
|
---|
917 | #endif
|
---|
918 | PGMRegisterStringFormatTypes();
|
---|
919 |
|
---|
920 | rc = pgmR3InitSavedState(pVM, cbRam);
|
---|
921 | if (RT_FAILURE(rc))
|
---|
922 | return rc;
|
---|
923 |
|
---|
924 | /*
|
---|
925 | * Initialize the PGM critical section and flush the phys TLBs
|
---|
926 | */
|
---|
927 | rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
|
---|
928 | AssertRCReturn(rc, rc);
|
---|
929 |
|
---|
930 | PGMR3PhysChunkInvalidateTLB(pVM);
|
---|
931 | pgmPhysInvalidatePageMapTLB(pVM);
|
---|
932 |
|
---|
933 | /*
|
---|
934 | * For the time being we sport a full set of handy pages in addition to the base
|
---|
935 | * memory to simplify things.
|
---|
936 | */
|
---|
937 | rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
|
---|
938 | AssertRCReturn(rc, rc);
|
---|
939 |
|
---|
940 | /*
|
---|
941 | * Trees
|
---|
942 | */
|
---|
943 | rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
|
---|
944 | if (RT_SUCCESS(rc))
|
---|
945 | {
|
---|
946 | pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
|
---|
947 | pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
|
---|
948 | }
|
---|
949 |
|
---|
950 | /*
|
---|
951 | * Allocate the zero page.
|
---|
952 | */
|
---|
953 | if (RT_SUCCESS(rc))
|
---|
954 | {
|
---|
955 | rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
|
---|
956 | if (RT_SUCCESS(rc))
|
---|
957 | {
|
---|
958 | pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
|
---|
959 | pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
|
---|
960 | pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
|
---|
961 | AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
|
---|
962 | }
|
---|
963 | }
|
---|
964 |
|
---|
965 | /*
|
---|
966 | * Allocate the invalid MMIO page.
|
---|
967 | * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
|
---|
968 | */
|
---|
969 | if (RT_SUCCESS(rc))
|
---|
970 | {
|
---|
971 | rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
|
---|
972 | if (RT_SUCCESS(rc))
|
---|
973 | {
|
---|
974 | ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
|
---|
975 | pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
|
---|
976 | AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
|
---|
977 | pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
|
---|
978 | }
|
---|
979 | }
|
---|
980 |
|
---|
981 | /*
|
---|
982 | * Register the physical access handler protecting ROMs.
|
---|
983 | */
|
---|
984 | if (RT_SUCCESS(rc))
|
---|
985 | rc = PGMR3HandlerPhysicalTypeRegister(pVM, PGMPHYSHANDLERKIND_WRITE,
|
---|
986 | pgmPhysRomWriteHandler,
|
---|
987 | NULL, NULL, "pgmPhysRomWritePfHandler",
|
---|
988 | NULL, NULL, "pgmPhysRomWritePfHandler",
|
---|
989 | "ROM write protection",
|
---|
990 | &pVM->pgm.s.hRomPhysHandlerType);
|
---|
991 |
|
---|
992 | /*
|
---|
993 | * Init the paging.
|
---|
994 | */
|
---|
995 | if (RT_SUCCESS(rc))
|
---|
996 | rc = pgmR3InitPaging(pVM);
|
---|
997 |
|
---|
998 | /*
|
---|
999 | * Init the page pool.
|
---|
1000 | */
|
---|
1001 | if (RT_SUCCESS(rc))
|
---|
1002 | rc = pgmR3PoolInit(pVM);
|
---|
1003 |
|
---|
1004 | if (RT_SUCCESS(rc))
|
---|
1005 | {
|
---|
1006 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
1007 | {
|
---|
1008 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
1009 | rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
|
---|
1010 | if (RT_FAILURE(rc))
|
---|
1011 | break;
|
---|
1012 | }
|
---|
1013 | }
|
---|
1014 |
|
---|
1015 | if (RT_SUCCESS(rc))
|
---|
1016 | {
|
---|
1017 | /*
|
---|
1018 | * Info & statistics
|
---|
1019 | */
|
---|
1020 | DBGFR3InfoRegisterInternalEx(pVM, "mode",
|
---|
1021 | "Shows the current paging mode. "
|
---|
1022 | "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
|
---|
1023 | pgmR3InfoMode,
|
---|
1024 | DBGFINFO_FLAGS_ALL_EMTS);
|
---|
1025 | DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
|
---|
1026 | "Dumps all the entries in the top level paging table. No arguments.",
|
---|
1027 | pgmR3InfoCr3);
|
---|
1028 | DBGFR3InfoRegisterInternal(pVM, "phys",
|
---|
1029 | "Dumps all the physical address ranges. Pass 'verbose' to get more details.",
|
---|
1030 | pgmR3PhysInfo);
|
---|
1031 | DBGFR3InfoRegisterInternal(pVM, "handlers",
|
---|
1032 | "Dumps physical, virtual and hyper virtual handlers. "
|
---|
1033 | "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
|
---|
1034 | "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
|
---|
1035 | pgmR3InfoHandlers);
|
---|
1036 | DBGFR3InfoRegisterInternal(pVM, "mappings",
|
---|
1037 | "Dumps guest mappings.",
|
---|
1038 | pgmR3MapInfo);
|
---|
1039 |
|
---|
1040 | pgmR3InitStats(pVM);
|
---|
1041 |
|
---|
1042 | #ifdef VBOX_WITH_DEBUGGER
|
---|
1043 | /*
|
---|
1044 | * Debugger commands.
|
---|
1045 | */
|
---|
1046 | static bool s_fRegisteredCmds = false;
|
---|
1047 | if (!s_fRegisteredCmds)
|
---|
1048 | {
|
---|
1049 | int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
|
---|
1050 | if (RT_SUCCESS(rc2))
|
---|
1051 | s_fRegisteredCmds = true;
|
---|
1052 | }
|
---|
1053 | #endif
|
---|
1054 | return VINF_SUCCESS;
|
---|
1055 | }
|
---|
1056 |
|
---|
1057 | /* Almost no cleanup necessary, MM frees all memory. */
|
---|
1058 | PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
|
---|
1059 |
|
---|
1060 | return rc;
|
---|
1061 | }
|
---|
1062 |
|
---|
1063 |
|
---|
1064 | /**
|
---|
1065 | * Init paging.
|
---|
1066 | *
|
---|
1067 | * Since we need to check what mode the host is operating in before we can choose
|
---|
1068 | * the right paging functions for the host we have to delay this until R0 has
|
---|
1069 | * been initialized.
|
---|
1070 | *
|
---|
1071 | * @returns VBox status code.
|
---|
1072 | * @param pVM The cross context VM structure.
|
---|
1073 | */
|
---|
1074 | static int pgmR3InitPaging(PVM pVM)
|
---|
1075 | {
|
---|
1076 | /*
|
---|
1077 | * Force a recalculation of modes and switcher so everyone gets notified.
|
---|
1078 | */
|
---|
1079 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
1080 | {
|
---|
1081 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
1082 |
|
---|
1083 | pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
|
---|
1084 | pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
|
---|
1085 | pVCpu->pgm.s.idxGuestModeData = UINT8_MAX;
|
---|
1086 | pVCpu->pgm.s.idxShadowModeData = UINT8_MAX;
|
---|
1087 | pVCpu->pgm.s.idxBothModeData = UINT8_MAX;
|
---|
1088 | }
|
---|
1089 |
|
---|
1090 | pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
|
---|
1091 |
|
---|
1092 | /*
|
---|
1093 | * Allocate static mapping space for whatever the cr3 register
|
---|
1094 | * points to and in the case of PAE mode to the 4 PDs.
|
---|
1095 | */
|
---|
1096 | int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
|
---|
1097 | if (RT_FAILURE(rc))
|
---|
1098 | {
|
---|
1099 | AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
|
---|
1100 | return rc;
|
---|
1101 | }
|
---|
1102 | MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
|
---|
1103 |
|
---|
1104 | /*
|
---|
1105 | * Allocate pages for the three possible intermediate contexts
|
---|
1106 | * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
|
---|
1107 | * for the sake of simplicity. The AMD64 uses the PAE for the
|
---|
1108 | * lower levels, making the total number of pages 11 (3 + 7 + 1).
|
---|
1109 | *
|
---|
1110 | * We assume that two page tables will be enought for the core code
|
---|
1111 | * mappings (HC virtual and identity).
|
---|
1112 | */
|
---|
1113 | pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
|
---|
1114 | pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
|
---|
1115 | pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
|
---|
1116 | pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
|
---|
1117 | pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
|
---|
1118 | pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
|
---|
1119 | pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
|
---|
1120 | pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
|
---|
1121 | pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
|
---|
1122 | pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
|
---|
1123 | pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
|
---|
1124 | pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
|
---|
1125 |
|
---|
1126 | pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
|
---|
1127 | AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
|
---|
1128 | pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
|
---|
1129 | AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
|
---|
1130 | pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
|
---|
1131 | AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
|
---|
1132 |
|
---|
1133 | /*
|
---|
1134 | * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
|
---|
1135 | */
|
---|
1136 | ASMMemZeroPage(pVM->pgm.s.pInterPD);
|
---|
1137 | ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
|
---|
1138 | ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
|
---|
1139 |
|
---|
1140 | ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
|
---|
1141 | ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
|
---|
1142 |
|
---|
1143 | ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
|
---|
1144 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
|
---|
1145 | {
|
---|
1146 | ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
|
---|
1147 | pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
|
---|
1148 | | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
|
---|
1149 | }
|
---|
1150 |
|
---|
1151 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
|
---|
1152 | {
|
---|
1153 | const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
|
---|
1154 | pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
|
---|
1155 | | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
|
---|
1156 | }
|
---|
1157 |
|
---|
1158 | RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
|
---|
1159 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
|
---|
1160 | pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
|
---|
1161 | | HCPhysInterPaePDPT64;
|
---|
1162 |
|
---|
1163 | /*
|
---|
1164 | * Initialize paging workers and mode from current host mode
|
---|
1165 | * and the guest running in real mode.
|
---|
1166 | */
|
---|
1167 | pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
|
---|
1168 | switch (pVM->pgm.s.enmHostMode)
|
---|
1169 | {
|
---|
1170 | case SUPPAGINGMODE_32_BIT:
|
---|
1171 | case SUPPAGINGMODE_32_BIT_GLOBAL:
|
---|
1172 | case SUPPAGINGMODE_PAE:
|
---|
1173 | case SUPPAGINGMODE_PAE_GLOBAL:
|
---|
1174 | case SUPPAGINGMODE_PAE_NX:
|
---|
1175 | case SUPPAGINGMODE_PAE_GLOBAL_NX:
|
---|
1176 | break;
|
---|
1177 |
|
---|
1178 | case SUPPAGINGMODE_AMD64:
|
---|
1179 | case SUPPAGINGMODE_AMD64_GLOBAL:
|
---|
1180 | case SUPPAGINGMODE_AMD64_NX:
|
---|
1181 | case SUPPAGINGMODE_AMD64_GLOBAL_NX:
|
---|
1182 | if (ARCH_BITS != 64)
|
---|
1183 | {
|
---|
1184 | AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
|
---|
1185 | LogRel(("PGM: Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
|
---|
1186 | return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
|
---|
1187 | }
|
---|
1188 | break;
|
---|
1189 | default:
|
---|
1190 | AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
|
---|
1191 | return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
|
---|
1192 | }
|
---|
1193 |
|
---|
1194 | LogFlow(("pgmR3InitPaging: returns successfully\n"));
|
---|
1195 | #if HC_ARCH_BITS == 64
|
---|
1196 | LogRel(("PGM: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
|
---|
1197 | pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
|
---|
1198 | LogRel(("PGM: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
|
---|
1199 | MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
|
---|
1200 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
|
---|
1201 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
|
---|
1202 | MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
|
---|
1203 | #endif
|
---|
1204 |
|
---|
1205 | /*
|
---|
1206 | * Log the host paging mode. It may come in handy.
|
---|
1207 | */
|
---|
1208 | const char *pszHostMode;
|
---|
1209 | switch (pVM->pgm.s.enmHostMode)
|
---|
1210 | {
|
---|
1211 | case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
|
---|
1212 | case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
|
---|
1213 | case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
|
---|
1214 | case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
|
---|
1215 | case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
|
---|
1216 | case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
|
---|
1217 | case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
|
---|
1218 | case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
|
---|
1219 | case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
|
---|
1220 | case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
|
---|
1221 | default: pszHostMode = "???"; break;
|
---|
1222 | }
|
---|
1223 | LogRel(("PGM: Host paging mode: %s\n", pszHostMode));
|
---|
1224 |
|
---|
1225 | return VINF_SUCCESS;
|
---|
1226 | }
|
---|
1227 |
|
---|
1228 |
|
---|
1229 | /**
|
---|
1230 | * Init statistics
|
---|
1231 | * @returns VBox status code.
|
---|
1232 | */
|
---|
1233 | static int pgmR3InitStats(PVM pVM)
|
---|
1234 | {
|
---|
1235 | PPGM pPGM = &pVM->pgm.s;
|
---|
1236 | int rc;
|
---|
1237 |
|
---|
1238 | /*
|
---|
1239 | * Release statistics.
|
---|
1240 | */
|
---|
1241 | /* Common - misc variables */
|
---|
1242 | STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
|
---|
1243 | STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
|
---|
1244 | STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
|
---|
1245 | STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
|
---|
1246 | STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
|
---|
1247 | STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
|
---|
1248 | STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
|
---|
1249 | STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
|
---|
1250 | STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
|
---|
1251 | STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
|
---|
1252 | STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
|
---|
1253 | STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
|
---|
1254 | STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
|
---|
1255 | STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
|
---|
1256 | STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
|
---|
1257 | STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
|
---|
1258 | STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
|
---|
1259 | STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
|
---|
1260 | STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
|
---|
1261 |
|
---|
1262 | STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
|
---|
1263 | STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
|
---|
1264 | STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
|
---|
1265 |
|
---|
1266 | STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
|
---|
1267 |
|
---|
1268 | /* Live save */
|
---|
1269 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
|
---|
1270 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
|
---|
1271 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
|
---|
1272 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
|
---|
1273 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
|
---|
1274 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
|
---|
1275 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
|
---|
1276 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
|
---|
1277 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
|
---|
1278 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
|
---|
1279 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
|
---|
1280 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
|
---|
1281 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
|
---|
1282 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
|
---|
1283 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
|
---|
1284 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
|
---|
1285 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
|
---|
1286 | STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
|
---|
1287 |
|
---|
1288 | #ifdef VBOX_WITH_STATISTICS
|
---|
1289 |
|
---|
1290 | # define PGM_REG_COUNTER(a, b, c) \
|
---|
1291 | rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
|
---|
1292 | AssertRC(rc);
|
---|
1293 |
|
---|
1294 | # define PGM_REG_COUNTER_BYTES(a, b, c) \
|
---|
1295 | rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
|
---|
1296 | AssertRC(rc);
|
---|
1297 |
|
---|
1298 | # define PGM_REG_PROFILE(a, b, c) \
|
---|
1299 | rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
|
---|
1300 | AssertRC(rc);
|
---|
1301 |
|
---|
1302 | PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
|
---|
1303 |
|
---|
1304 | PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
|
---|
1305 | PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
|
---|
1306 | PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
|
---|
1307 | PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
|
---|
1308 | PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
|
---|
1309 |
|
---|
1310 | PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
|
---|
1311 | PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
|
---|
1312 | PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
|
---|
1313 | PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
|
---|
1314 | PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
|
---|
1315 | PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
|
---|
1316 | PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
|
---|
1317 | PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
|
---|
1318 | PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
|
---|
1319 | PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
|
---|
1320 |
|
---|
1321 | PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
|
---|
1322 | PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
|
---|
1323 | PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
|
---|
1324 | PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
|
---|
1325 | PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
|
---|
1326 | PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
|
---|
1327 |
|
---|
1328 | PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
|
---|
1329 | PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
|
---|
1330 | PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
|
---|
1331 | PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
|
---|
1332 | PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
|
---|
1333 | PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
|
---|
1334 | PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
|
---|
1335 | PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
|
---|
1336 |
|
---|
1337 | PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
|
---|
1338 | PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
|
---|
1339 | PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
|
---|
1340 | PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
|
---|
1341 |
|
---|
1342 | PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
|
---|
1343 | PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
|
---|
1344 | PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
|
---|
1345 | PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
|
---|
1346 |
|
---|
1347 | PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
|
---|
1348 | PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
|
---|
1349 | PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
|
---|
1350 | PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
|
---|
1351 | PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
|
---|
1352 | PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
|
---|
1353 | PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
|
---|
1354 | PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
|
---|
1355 |
|
---|
1356 | PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
|
---|
1357 | PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
|
---|
1358 | /// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
|
---|
1359 | PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
|
---|
1360 | PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
|
---|
1361 | /// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
|
---|
1362 |
|
---|
1363 | PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
|
---|
1364 | PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
|
---|
1365 | PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
|
---|
1366 | PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
|
---|
1367 | PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
|
---|
1368 | PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
|
---|
1369 | PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
|
---|
1370 | PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
|
---|
1371 |
|
---|
1372 | /* GC only: */
|
---|
1373 | PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
|
---|
1374 | PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
|
---|
1375 |
|
---|
1376 | PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
|
---|
1377 | PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
|
---|
1378 | PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
|
---|
1379 | PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
|
---|
1380 | PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
|
---|
1381 | PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
|
---|
1382 | PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
|
---|
1383 | PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
|
---|
1384 |
|
---|
1385 | PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
|
---|
1386 | PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
|
---|
1387 | PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
|
---|
1388 | PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
|
---|
1389 | PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
|
---|
1390 | PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
|
---|
1391 | PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
|
---|
1392 |
|
---|
1393 | # undef PGM_REG_COUNTER
|
---|
1394 | # undef PGM_REG_PROFILE
|
---|
1395 | #endif
|
---|
1396 |
|
---|
1397 | /*
|
---|
1398 | * Note! The layout below matches the member layout exactly!
|
---|
1399 | */
|
---|
1400 |
|
---|
1401 | /*
|
---|
1402 | * Common - stats
|
---|
1403 | */
|
---|
1404 | for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
|
---|
1405 | {
|
---|
1406 | PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
|
---|
1407 |
|
---|
1408 | #define PGM_REG_COUNTER(a, b, c) \
|
---|
1409 | rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
|
---|
1410 | AssertRC(rc);
|
---|
1411 | #define PGM_REG_PROFILE(a, b, c) \
|
---|
1412 | rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
|
---|
1413 | AssertRC(rc);
|
---|
1414 |
|
---|
1415 | PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
|
---|
1416 | PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
|
---|
1417 |
|
---|
1418 | #ifdef VBOX_WITH_STATISTICS
|
---|
1419 | PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
|
---|
1420 |
|
---|
1421 | # if 0 /* rarely useful; leave for debugging. */
|
---|
1422 | for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
|
---|
1423 | STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
|
---|
1424 | "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
|
---|
1425 | for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
|
---|
1426 | STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
|
---|
1427 | "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
|
---|
1428 | # endif
|
---|
1429 | /* R0 only: */
|
---|
1430 | PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
|
---|
1431 | PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
|
---|
1432 |
|
---|
1433 | /* RZ only: */
|
---|
1434 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
|
---|
1435 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
|
---|
1436 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
|
---|
1437 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
|
---|
1438 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
|
---|
1439 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
|
---|
1440 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
|
---|
1441 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
|
---|
1442 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
|
---|
1443 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
|
---|
1444 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
|
---|
1445 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
|
---|
1446 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
|
---|
1447 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
|
---|
1448 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
|
---|
1449 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
|
---|
1450 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
|
---|
1451 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
|
---|
1452 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsHack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USHack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be enabled.");
|
---|
1453 | PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Wp0RoUsUnhack, "/PGM/CPU%u/RZ/Trap0e/Time2/WP0R0USUnhack", "Profiling of the Trap0eHandler body when the cause is CR0.WP and netware hack to be disabled.");
|
---|
1454 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
|
---|
1455 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
|
---|
1456 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
|
---|
1457 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
|
---|
1458 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
|
---|
1459 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
|
---|
1460 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
|
---|
1461 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
|
---|
1462 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
|
---|
1463 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
|
---|
1464 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
|
---|
1465 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
|
---|
1466 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
|
---|
1467 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
|
---|
1468 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
|
---|
1469 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
|
---|
1470 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
|
---|
1471 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
|
---|
1472 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
|
---|
1473 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
|
---|
1474 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
|
---|
1475 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
|
---|
1476 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
|
---|
1477 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
|
---|
1478 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
|
---|
1479 | PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
|
---|
1480 | #if 0 /* rarely useful; leave for debugging. */
|
---|
1481 | for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
|
---|
1482 | STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
|
---|
1483 | "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
|
---|
1484 | #endif
|
---|
1485 | PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
|
---|
1486 | PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
|
---|
1487 | PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
|
---|
1488 | PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
|
---|
1489 | PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
|
---|
1490 |
|
---|
1491 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
|
---|
1492 | PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
|
---|
1493 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
|
---|
1494 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
|
---|
1495 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
|
---|
1496 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
|
---|
1497 | PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
|
---|
1498 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
|
---|
1499 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
|
---|
1500 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
|
---|
1501 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
|
---|
1502 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
|
---|
1503 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
|
---|
1504 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
|
---|
1505 | PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
|
---|
1506 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
|
---|
1507 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
|
---|
1508 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
|
---|
1509 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
|
---|
1510 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
|
---|
1511 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
|
---|
1512 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
|
---|
1513 | //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
|
---|
1514 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
|
---|
1515 | PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
|
---|
1516 | PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
|
---|
1517 | PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
|
---|
1518 | PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
|
---|
1519 | PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
|
---|
1520 | PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
|
---|
1521 | PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
|
---|
1522 | PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
|
---|
1523 | PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
|
---|
1524 | PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
|
---|
1525 | PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
|
---|
1526 | PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
|
---|
1527 |
|
---|
1528 | /* HC only: */
|
---|
1529 |
|
---|
1530 | /* RZ & R3: */
|
---|
1531 | PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
|
---|
1532 | PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
|
---|
1533 | PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
|
---|
1534 | PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
|
---|
1535 | PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
|
---|
1536 | PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
|
---|
1537 | PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
|
---|
1538 | PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
|
---|
1539 | PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
|
---|
1540 | PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
|
---|
1541 | PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
|
---|
1542 | PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
|
---|
1543 | PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
|
---|
1544 | PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
|
---|
1545 | PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
|
---|
1546 | PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
|
---|
1547 | PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
|
---|
1548 | PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
|
---|
1549 | PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
|
---|
1550 | PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
|
---|
1551 | PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
|
---|
1552 | PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
|
---|
1553 | PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
|
---|
1554 | PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
|
---|
1555 | PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
|
---|
1556 | PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
|
---|
1557 | PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
|
---|
1558 | PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
|
---|
1559 | PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
|
---|
1560 | PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
|
---|
1561 | PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
|
---|
1562 | PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
|
---|
1563 | PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
|
---|
1564 | PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
|
---|
1565 | PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSizeChanges, "/PGM/CPU%u/RZ/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
|
---|
1566 | PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
|
---|
1567 | PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
|
---|
1568 | PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
|
---|
1569 | PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
|
---|
1570 | PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
|
---|
1571 | PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
|
---|
1572 | PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
|
---|
1573 | PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
|
---|
1574 | PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
|
---|
1575 | PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
|
---|
1576 | PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
|
---|
1577 | PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
|
---|
1578 | PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
|
---|
1579 |
|
---|
1580 | PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
|
---|
1581 | PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
|
---|
1582 | PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
|
---|
1583 | PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
|
---|
1584 | PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
|
---|
1585 | PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
|
---|
1586 | PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
|
---|
1587 | PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
|
---|
1588 | PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
|
---|
1589 | PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
|
---|
1590 | PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
|
---|
1591 | PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
|
---|
1592 | PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
|
---|
1593 | PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
|
---|
1594 | PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
|
---|
1595 | PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
|
---|
1596 | PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
|
---|
1597 | PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
|
---|
1598 | PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
|
---|
1599 | PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
|
---|
1600 | PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
|
---|
1601 | PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
|
---|
1602 | PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
|
---|
1603 | PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
|
---|
1604 | PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
|
---|
1605 | PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
|
---|
1606 | PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
|
---|
1607 | PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
|
---|
1608 | PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
|
---|
1609 | PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
|
---|
1610 | PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
|
---|
1611 | PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
|
---|
1612 | PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
|
---|
1613 | PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSizeChanges, "/PGM/CPU%u/R3/InvalidatePage/SizeChanges", "The number of times PGMInvalidatePage() was called on a page size change (4KB <-> 2/4MB).");
|
---|
1614 | PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
|
---|
1615 | PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
|
---|
1616 | PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
|
---|
1617 | PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
|
---|
1618 | PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
|
---|
1619 | PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
|
---|
1620 | PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
|
---|
1621 | PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
|
---|
1622 | PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
|
---|
1623 | PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
|
---|
1624 | PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
|
---|
1625 | #endif /* VBOX_WITH_STATISTICS */
|
---|
1626 |
|
---|
1627 | #undef PGM_REG_PROFILE
|
---|
1628 | #undef PGM_REG_COUNTER
|
---|
1629 |
|
---|
1630 | }
|
---|
1631 |
|
---|
1632 | return VINF_SUCCESS;
|
---|
1633 | }
|
---|
1634 |
|
---|
1635 |
|
---|
1636 | /**
|
---|
1637 | * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
|
---|
1638 | *
|
---|
1639 | * The dynamic mapping area will also be allocated and initialized at this
|
---|
1640 | * time. We could allocate it during PGMR3Init of course, but the mapping
|
---|
1641 | * wouldn't be allocated at that time preventing us from setting up the
|
---|
1642 | * page table entries with the dummy page.
|
---|
1643 | *
|
---|
1644 | * @returns VBox status code.
|
---|
1645 | * @param pVM The cross context VM structure.
|
---|
1646 | */
|
---|
1647 | VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
|
---|
1648 | {
|
---|
1649 | RTGCPTR GCPtr;
|
---|
1650 | int rc;
|
---|
1651 |
|
---|
1652 | /*
|
---|
1653 | * Reserve space for the dynamic mappings.
|
---|
1654 | */
|
---|
1655 | rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
|
---|
1656 | if (RT_SUCCESS(rc))
|
---|
1657 | pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
|
---|
1658 |
|
---|
1659 | if ( RT_SUCCESS(rc)
|
---|
1660 | && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
|
---|
1661 | {
|
---|
1662 | rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
|
---|
1663 | if (RT_SUCCESS(rc))
|
---|
1664 | pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
|
---|
1665 | }
|
---|
1666 | if (RT_SUCCESS(rc))
|
---|
1667 | {
|
---|
1668 | AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
|
---|
1669 | MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
|
---|
1670 | }
|
---|
1671 | return rc;
|
---|
1672 | }
|
---|
1673 |
|
---|
1674 |
|
---|
1675 | /**
|
---|
1676 | * Ring-3 init finalizing.
|
---|
1677 | *
|
---|
1678 | * @returns VBox status code.
|
---|
1679 | * @param pVM The cross context VM structure.
|
---|
1680 | */
|
---|
1681 | VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
|
---|
1682 | {
|
---|
1683 | int rc = VERR_IPE_UNINITIALIZED_STATUS; /* (MSC incorrectly thinks it can be usused uninitialized) */
|
---|
1684 |
|
---|
1685 | /*
|
---|
1686 | * Reserve space for the dynamic mappings.
|
---|
1687 | * Initialize the dynamic mapping pages with dummy pages to simply the cache.
|
---|
1688 | */
|
---|
1689 | /* get the pointer to the page table entries. */
|
---|
1690 | PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
|
---|
1691 | AssertRelease(pMapping);
|
---|
1692 | const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
|
---|
1693 | const unsigned iPT = off >> X86_PD_SHIFT;
|
---|
1694 | const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
|
---|
1695 | pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
|
---|
1696 | pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
|
---|
1697 |
|
---|
1698 | /* init cache area */
|
---|
1699 | RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
|
---|
1700 | for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
|
---|
1701 | {
|
---|
1702 | rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
|
---|
1703 | AssertRCReturn(rc, rc);
|
---|
1704 | }
|
---|
1705 |
|
---|
1706 | /*
|
---|
1707 | * Determine the max physical address width (MAXPHYADDR) and apply it to
|
---|
1708 | * all the mask members and stuff.
|
---|
1709 | */
|
---|
1710 | uint32_t cMaxPhysAddrWidth;
|
---|
1711 | uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
|
---|
1712 | if ( uMaxExtLeaf >= 0x80000008
|
---|
1713 | && uMaxExtLeaf <= 0x80000fff)
|
---|
1714 | {
|
---|
1715 | cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
|
---|
1716 | LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
|
---|
1717 | cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
|
---|
1718 | pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
|
---|
1719 | for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
|
---|
1720 | pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
|
---|
1721 | }
|
---|
1722 | else
|
---|
1723 | {
|
---|
1724 | LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
|
---|
1725 | cMaxPhysAddrWidth = 48;
|
---|
1726 | pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
|
---|
1727 | pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
|
---|
1728 | }
|
---|
1729 |
|
---|
1730 | /** @todo query from CPUM. */
|
---|
1731 | pVM->pgm.s.GCPhysInvAddrMask = 0;
|
---|
1732 | for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
|
---|
1733 | pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
|
---|
1734 |
|
---|
1735 | /*
|
---|
1736 | * Initialize the invalid paging entry masks, assuming NX is disabled.
|
---|
1737 | */
|
---|
1738 | uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
|
---|
1739 | for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
|
---|
1740 | {
|
---|
1741 | PVMCPU pVCpu = &pVM->aCpus[iCpu];
|
---|
1742 |
|
---|
1743 | /** @todo The manuals are not entirely clear whether the physical
|
---|
1744 | * address width is relevant. See table 5-9 in the intel
|
---|
1745 | * manual vs the PDE4M descriptions. Write testcase (NP). */
|
---|
1746 | pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
|
---|
1747 | | X86_PDE4M_MBZ_MASK;
|
---|
1748 |
|
---|
1749 | pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
|
---|
1750 | pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
|
---|
1751 | pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
|
---|
1752 | pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
|
---|
1753 |
|
---|
1754 | pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
|
---|
1755 | pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
|
---|
1756 | pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
|
---|
1757 | pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
|
---|
1758 | pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
|
---|
1759 | pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
|
---|
1760 |
|
---|
1761 | pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
|
---|
1762 | pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
|
---|
1763 | pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
|
---|
1764 | pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
|
---|
1765 | X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
|
---|
1766 | pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
|
---|
1767 | pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
|
---|
1768 | }
|
---|
1769 |
|
---|
1770 | /*
|
---|
1771 | * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
|
---|
1772 | * Intel only goes up to 36 bits, so we stick to 36 as well.
|
---|
1773 | * Update: More recent intel manuals specifies 40 bits just like AMD.
|
---|
1774 | */
|
---|
1775 | uint32_t u32Dummy, u32Features;
|
---|
1776 | CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, 0, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
|
---|
1777 | if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
|
---|
1778 | pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
|
---|
1779 | else
|
---|
1780 | pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
|
---|
1781 |
|
---|
1782 | /*
|
---|
1783 | * Allocate memory if we're supposed to do that.
|
---|
1784 | */
|
---|
1785 | if (pVM->pgm.s.fRamPreAlloc)
|
---|
1786 | rc = pgmR3PhysRamPreAllocate(pVM);
|
---|
1787 |
|
---|
1788 | //pgmLogState(pVM);
|
---|
1789 | LogRel(("PGM: PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
|
---|
1790 | return rc;
|
---|
1791 | }
|
---|
1792 |
|
---|
1793 |
|
---|
1794 | /**
|
---|
1795 | * Init phase completed callback.
|
---|
1796 | *
|
---|
1797 | * @returns VBox status code.
|
---|
1798 | * @param pVM The cross context VM structure.
|
---|
1799 | * @param enmWhat What has been completed.
|
---|
1800 | * @thread EMT(0)
|
---|
1801 | */
|
---|
1802 | VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
|
---|
1803 | {
|
---|
1804 | switch (enmWhat)
|
---|
1805 | {
|
---|
1806 | case VMINITCOMPLETED_HM:
|
---|
1807 | #ifdef VBOX_WITH_PCI_PASSTHROUGH
|
---|
1808 | if (pVM->pgm.s.fPciPassthrough)
|
---|
1809 | {
|
---|
1810 | AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
|
---|
1811 | AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
|
---|
1812 | AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
|
---|
1813 |
|
---|
1814 | /*
|
---|
1815 | * Report assignments to the IOMMU (hope that's good enough for now).
|
---|
1816 | */
|
---|
1817 | if (pVM->pgm.s.fPciPassthrough)
|
---|
1818 | {
|
---|
1819 | int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
|
---|
1820 | AssertRCReturn(rc, rc);
|
---|
1821 | }
|
---|
1822 | }
|
---|
1823 | #else
|
---|
1824 | AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
|
---|
1825 | #endif
|
---|
1826 | break;
|
---|
1827 |
|
---|
1828 | default:
|
---|
1829 | /* shut up gcc */
|
---|
1830 | break;
|
---|
1831 | }
|
---|
1832 |
|
---|
1833 | return VINF_SUCCESS;
|
---|
1834 | }
|
---|
1835 |
|
---|
1836 |
|
---|
1837 | /**
|
---|
1838 | * Applies relocations to data and code managed by this component.
|
---|
1839 | *
|
---|
1840 | * This function will be called at init and whenever the VMM need to relocate it
|
---|
1841 | * self inside the GC.
|
---|
1842 | *
|
---|
1843 | * @param pVM The cross context VM structure.
|
---|
1844 | * @param offDelta Relocation delta relative to old location.
|
---|
1845 | */
|
---|
1846 | VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
|
---|
1847 | {
|
---|
1848 | LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
|
---|
1849 |
|
---|
1850 | /*
|
---|
1851 | * Paging stuff.
|
---|
1852 | */
|
---|
1853 | pVM->pgm.s.GCPtrCR3Mapping += offDelta;
|
---|
1854 |
|
---|
1855 | /* Shadow, guest and both mode switch & relocation for each VCPU. */
|
---|
1856 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
1857 | {
|
---|
1858 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
1859 |
|
---|
1860 | uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
|
---|
1861 | if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
|
---|
1862 | && g_aPgmShadowModeData[idxShw].pfnRelocate)
|
---|
1863 | g_aPgmShadowModeData[idxShw].pfnRelocate(pVCpu, offDelta);
|
---|
1864 | else
|
---|
1865 | AssertFailed();
|
---|
1866 |
|
---|
1867 | uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
|
---|
1868 | if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
|
---|
1869 | && g_aPgmGuestModeData[idxGst].pfnRelocate)
|
---|
1870 | g_aPgmGuestModeData[idxGst].pfnRelocate(pVCpu, offDelta);
|
---|
1871 | else
|
---|
1872 | AssertFailed();
|
---|
1873 | }
|
---|
1874 |
|
---|
1875 | /*
|
---|
1876 | * Trees.
|
---|
1877 | */
|
---|
1878 | pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
|
---|
1879 |
|
---|
1880 | /*
|
---|
1881 | * Ram ranges.
|
---|
1882 | */
|
---|
1883 | if (pVM->pgm.s.pRamRangesXR3)
|
---|
1884 | {
|
---|
1885 | /* Update the pSelfRC pointers and relink them. */
|
---|
1886 | for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
|
---|
1887 | if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
|
---|
1888 | pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
|
---|
1889 | pgmR3PhysRelinkRamRanges(pVM);
|
---|
1890 |
|
---|
1891 | /* Flush the RC TLB. */
|
---|
1892 | for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
|
---|
1893 | pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
|
---|
1894 | }
|
---|
1895 |
|
---|
1896 | /*
|
---|
1897 | * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
|
---|
1898 | * be mapped and thus not included in the above exercise.
|
---|
1899 | */
|
---|
1900 | for (PPGMREGMMIORANGE pCur = pVM->pgm.s.pRegMmioRangesR3; pCur; pCur = pCur->pNextR3)
|
---|
1901 | if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
|
---|
1902 | pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
|
---|
1903 |
|
---|
1904 | /*
|
---|
1905 | * Update the two page directories with all page table mappings.
|
---|
1906 | * (One or more of them have changed, that's why we're here.)
|
---|
1907 | */
|
---|
1908 | pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
|
---|
1909 | for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
|
---|
1910 | pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
|
---|
1911 |
|
---|
1912 | /* Relocate GC addresses of Page Tables. */
|
---|
1913 | for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
|
---|
1914 | {
|
---|
1915 | for (RTHCUINT i = 0; i < pCur->cPTs; i++)
|
---|
1916 | {
|
---|
1917 | pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
|
---|
1918 | pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
|
---|
1919 | }
|
---|
1920 | }
|
---|
1921 |
|
---|
1922 | /*
|
---|
1923 | * Dynamic page mapping area.
|
---|
1924 | */
|
---|
1925 | pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
|
---|
1926 | pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
|
---|
1927 | pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
|
---|
1928 |
|
---|
1929 | if (pVM->pgm.s.pRCDynMap)
|
---|
1930 | {
|
---|
1931 | pVM->pgm.s.pRCDynMap += offDelta;
|
---|
1932 | PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
|
---|
1933 |
|
---|
1934 | pDynMap->paPages += offDelta;
|
---|
1935 | PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
|
---|
1936 |
|
---|
1937 | for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
|
---|
1938 | {
|
---|
1939 | paPages[iPage].pvPage += offDelta;
|
---|
1940 | paPages[iPage].uPte.pLegacy += offDelta;
|
---|
1941 | paPages[iPage].uPte.pPae += offDelta;
|
---|
1942 | }
|
---|
1943 | }
|
---|
1944 |
|
---|
1945 | /*
|
---|
1946 | * The Zero page.
|
---|
1947 | */
|
---|
1948 | pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
|
---|
1949 | #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
|
---|
1950 | AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || VM_IS_RAW_MODE_ENABLED(pVM));
|
---|
1951 | #else
|
---|
1952 | AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
|
---|
1953 | #endif
|
---|
1954 |
|
---|
1955 | /*
|
---|
1956 | * Physical and virtual handlers.
|
---|
1957 | */
|
---|
1958 | PGMRELOCHANDLERARGS Args = { offDelta, pVM };
|
---|
1959 | RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &Args);
|
---|
1960 | pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
|
---|
1961 |
|
---|
1962 | PPGMPHYSHANDLERTYPEINT pCurPhysType;
|
---|
1963 | RTListOff32ForEach(&pVM->pgm.s.pTreesR3->HeadPhysHandlerTypes, pCurPhysType, PGMPHYSHANDLERTYPEINT, ListNode)
|
---|
1964 | {
|
---|
1965 | if (pCurPhysType->pfnHandlerRC != NIL_RTRCPTR)
|
---|
1966 | pCurPhysType->pfnHandlerRC += offDelta;
|
---|
1967 | if (pCurPhysType->pfnPfHandlerRC != NIL_RTRCPTR)
|
---|
1968 | pCurPhysType->pfnPfHandlerRC += offDelta;
|
---|
1969 | }
|
---|
1970 |
|
---|
1971 | #ifdef VBOX_WITH_RAW_MODE
|
---|
1972 | RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &Args);
|
---|
1973 | RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &Args);
|
---|
1974 |
|
---|
1975 | PPGMVIRTHANDLERTYPEINT pCurVirtType;
|
---|
1976 | RTListOff32ForEach(&pVM->pgm.s.pTreesR3->HeadVirtHandlerTypes, pCurVirtType, PGMVIRTHANDLERTYPEINT, ListNode)
|
---|
1977 | {
|
---|
1978 | if (pCurVirtType->pfnHandlerRC != NIL_RTRCPTR)
|
---|
1979 | pCurVirtType->pfnHandlerRC += offDelta;
|
---|
1980 | if (pCurVirtType->pfnPfHandlerRC != NIL_RTRCPTR)
|
---|
1981 | pCurVirtType->pfnPfHandlerRC += offDelta;
|
---|
1982 | }
|
---|
1983 | #endif
|
---|
1984 |
|
---|
1985 | /*
|
---|
1986 | * The page pool.
|
---|
1987 | */
|
---|
1988 | pgmR3PoolRelocate(pVM);
|
---|
1989 |
|
---|
1990 | #ifdef VBOX_WITH_STATISTICS
|
---|
1991 | /*
|
---|
1992 | * Statistics.
|
---|
1993 | */
|
---|
1994 | pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
|
---|
1995 | for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
|
---|
1996 | pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
|
---|
1997 | #endif
|
---|
1998 | }
|
---|
1999 |
|
---|
2000 |
|
---|
2001 | /**
|
---|
2002 | * Callback function for relocating a physical access handler.
|
---|
2003 | *
|
---|
2004 | * @returns 0 (continue enum)
|
---|
2005 | * @param pNode Pointer to a PGMPHYSHANDLER node.
|
---|
2006 | * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
|
---|
2007 | */
|
---|
2008 | static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
|
---|
2009 | {
|
---|
2010 | PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
|
---|
2011 | PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
|
---|
2012 | if (pHandler->pvUserRC >= 0x10000)
|
---|
2013 | pHandler->pvUserRC += pArgs->offDelta;
|
---|
2014 | return 0;
|
---|
2015 | }
|
---|
2016 |
|
---|
2017 | #ifdef VBOX_WITH_RAW_MODE
|
---|
2018 |
|
---|
2019 | /**
|
---|
2020 | * Callback function for relocating a virtual access handler.
|
---|
2021 | *
|
---|
2022 | * @returns 0 (continue enum)
|
---|
2023 | * @param pNode Pointer to a PGMVIRTHANDLER node.
|
---|
2024 | * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
|
---|
2025 | */
|
---|
2026 | static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
|
---|
2027 | {
|
---|
2028 | PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
|
---|
2029 | PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
|
---|
2030 | Assert(PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->enmKind != PGMVIRTHANDLERKIND_HYPERVISOR);
|
---|
2031 |
|
---|
2032 | if ( pHandler->pvUserRC != NIL_RTRCPTR
|
---|
2033 | && PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->fRelocUserRC)
|
---|
2034 | pHandler->pvUserRC += pArgs->offDelta;
|
---|
2035 | return 0;
|
---|
2036 | }
|
---|
2037 |
|
---|
2038 |
|
---|
2039 | /**
|
---|
2040 | * Callback function for relocating a virtual access handler for the hypervisor mapping.
|
---|
2041 | *
|
---|
2042 | * @returns 0 (continue enum)
|
---|
2043 | * @param pNode Pointer to a PGMVIRTHANDLER node.
|
---|
2044 | * @param pvUser Pointer to a PGMRELOCHANDLERARGS.
|
---|
2045 | */
|
---|
2046 | static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
|
---|
2047 | {
|
---|
2048 | PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
|
---|
2049 | PCPGMRELOCHANDLERARGS pArgs = (PCPGMRELOCHANDLERARGS)pvUser;
|
---|
2050 | Assert(PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->enmKind == PGMVIRTHANDLERKIND_HYPERVISOR);
|
---|
2051 |
|
---|
2052 | if ( pHandler->pvUserRC != NIL_RTRCPTR
|
---|
2053 | && PGMVIRTANDLER_GET_TYPE(pArgs->pVM, pHandler)->fRelocUserRC)
|
---|
2054 | pHandler->pvUserRC += pArgs->offDelta;
|
---|
2055 | return 0;
|
---|
2056 | }
|
---|
2057 |
|
---|
2058 | #endif /* VBOX_WITH_RAW_MODE */
|
---|
2059 |
|
---|
2060 | /**
|
---|
2061 | * Resets a virtual CPU when unplugged.
|
---|
2062 | *
|
---|
2063 | * @param pVM The cross context VM structure.
|
---|
2064 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2065 | */
|
---|
2066 | VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
|
---|
2067 | {
|
---|
2068 | uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
|
---|
2069 | if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
|
---|
2070 | && g_aPgmGuestModeData[idxGst].pfnExit)
|
---|
2071 | {
|
---|
2072 | int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
|
---|
2073 | AssertReleaseRC(rc);
|
---|
2074 | }
|
---|
2075 | pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
|
---|
2076 |
|
---|
2077 | int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
|
---|
2078 | AssertReleaseRC(rc);
|
---|
2079 |
|
---|
2080 | STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
|
---|
2081 |
|
---|
2082 | pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
|
---|
2083 |
|
---|
2084 | /*
|
---|
2085 | * Re-init other members.
|
---|
2086 | */
|
---|
2087 | pVCpu->pgm.s.fA20Enabled = true;
|
---|
2088 | pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
|
---|
2089 |
|
---|
2090 | /*
|
---|
2091 | * Clear the FFs PGM owns.
|
---|
2092 | */
|
---|
2093 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
2094 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
|
---|
2095 | }
|
---|
2096 |
|
---|
2097 |
|
---|
2098 | /**
|
---|
2099 | * The VM is being reset.
|
---|
2100 | *
|
---|
2101 | * For the PGM component this means that any PD write monitors
|
---|
2102 | * needs to be removed.
|
---|
2103 | *
|
---|
2104 | * @param pVM The cross context VM structure.
|
---|
2105 | */
|
---|
2106 | VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
|
---|
2107 | {
|
---|
2108 | LogFlow(("PGMR3Reset:\n"));
|
---|
2109 | VM_ASSERT_EMT(pVM);
|
---|
2110 |
|
---|
2111 | pgmLock(pVM);
|
---|
2112 |
|
---|
2113 | /*
|
---|
2114 | * Unfix any fixed mappings and disable CR3 monitoring.
|
---|
2115 | */
|
---|
2116 | pVM->pgm.s.fMappingsFixed = false;
|
---|
2117 | pVM->pgm.s.fMappingsFixedRestored = false;
|
---|
2118 | pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
|
---|
2119 | pVM->pgm.s.cbMappingFixed = 0;
|
---|
2120 |
|
---|
2121 | /*
|
---|
2122 | * Exit the guest paging mode before the pgm pool gets reset.
|
---|
2123 | * Important to clean up the amd64 case.
|
---|
2124 | */
|
---|
2125 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
2126 | {
|
---|
2127 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
2128 | uintptr_t const idxGst = pVCpu->pgm.s.idxGuestModeData;
|
---|
2129 | if ( idxGst < RT_ELEMENTS(g_aPgmGuestModeData)
|
---|
2130 | && g_aPgmGuestModeData[idxGst].pfnExit)
|
---|
2131 | {
|
---|
2132 | int rc = g_aPgmGuestModeData[idxGst].pfnExit(pVCpu);
|
---|
2133 | AssertReleaseRC(rc);
|
---|
2134 | }
|
---|
2135 | pVCpu->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
|
---|
2136 | }
|
---|
2137 |
|
---|
2138 | #ifdef DEBUG
|
---|
2139 | DBGFR3_INFO_LOG_SAFE(pVM, "mappings", NULL);
|
---|
2140 | DBGFR3_INFO_LOG_SAFE(pVM, "handlers", "all nostat");
|
---|
2141 | #endif
|
---|
2142 |
|
---|
2143 | /*
|
---|
2144 | * Switch mode back to real mode. (Before resetting the pgm pool!)
|
---|
2145 | */
|
---|
2146 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
2147 | {
|
---|
2148 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
2149 |
|
---|
2150 | int rc = PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL);
|
---|
2151 | AssertReleaseRC(rc);
|
---|
2152 |
|
---|
2153 | STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
|
---|
2154 | STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
|
---|
2155 | }
|
---|
2156 |
|
---|
2157 | /*
|
---|
2158 | * Reset the shadow page pool.
|
---|
2159 | */
|
---|
2160 | pgmR3PoolReset(pVM);
|
---|
2161 |
|
---|
2162 | /*
|
---|
2163 | * Re-init various other members and clear the FFs that PGM owns.
|
---|
2164 | */
|
---|
2165 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
2166 | {
|
---|
2167 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
2168 |
|
---|
2169 | pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
|
---|
2170 | PGMNotifyNxeChanged(pVCpu, false);
|
---|
2171 |
|
---|
2172 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
2173 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
|
---|
2174 |
|
---|
2175 | if (!pVCpu->pgm.s.fA20Enabled)
|
---|
2176 | {
|
---|
2177 | pVCpu->pgm.s.fA20Enabled = true;
|
---|
2178 | pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
|
---|
2179 | #ifdef PGM_WITH_A20
|
---|
2180 | pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
|
---|
2181 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
2182 | pgmR3RefreshShadowModeAfterA20Change(pVCpu);
|
---|
2183 | HMFlushTLB(pVCpu);
|
---|
2184 | #endif
|
---|
2185 | }
|
---|
2186 | }
|
---|
2187 |
|
---|
2188 | //pgmLogState(pVM);
|
---|
2189 | pgmUnlock(pVM);
|
---|
2190 | }
|
---|
2191 |
|
---|
2192 |
|
---|
2193 | /**
|
---|
2194 | * Memory setup after VM construction or reset.
|
---|
2195 | *
|
---|
2196 | * @param pVM The cross context VM structure.
|
---|
2197 | * @param fAtReset Indicates the context, after reset if @c true or after
|
---|
2198 | * construction if @c false.
|
---|
2199 | */
|
---|
2200 | VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
|
---|
2201 | {
|
---|
2202 | if (fAtReset)
|
---|
2203 | {
|
---|
2204 | pgmLock(pVM);
|
---|
2205 |
|
---|
2206 | int rc = pgmR3PhysRamZeroAll(pVM);
|
---|
2207 | AssertReleaseRC(rc);
|
---|
2208 |
|
---|
2209 | rc = pgmR3PhysRomReset(pVM);
|
---|
2210 | AssertReleaseRC(rc);
|
---|
2211 |
|
---|
2212 | pgmUnlock(pVM);
|
---|
2213 | }
|
---|
2214 | }
|
---|
2215 |
|
---|
2216 |
|
---|
2217 | #ifdef VBOX_STRICT
|
---|
2218 | /**
|
---|
2219 | * VM state change callback for clearing fNoMorePhysWrites after
|
---|
2220 | * a snapshot has been created.
|
---|
2221 | */
|
---|
2222 | static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
|
---|
2223 | {
|
---|
2224 | if ( enmState == VMSTATE_RUNNING
|
---|
2225 | || enmState == VMSTATE_RESUMING)
|
---|
2226 | pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
|
---|
2227 | NOREF(enmOldState); NOREF(pvUser);
|
---|
2228 | }
|
---|
2229 | #endif
|
---|
2230 |
|
---|
2231 | /**
|
---|
2232 | * Private API to reset fNoMorePhysWrites.
|
---|
2233 | */
|
---|
2234 | VMMR3_INT_DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
|
---|
2235 | {
|
---|
2236 | pVM->pgm.s.fNoMorePhysWrites = false;
|
---|
2237 | }
|
---|
2238 |
|
---|
2239 | /**
|
---|
2240 | * Terminates the PGM.
|
---|
2241 | *
|
---|
2242 | * @returns VBox status code.
|
---|
2243 | * @param pVM The cross context VM structure.
|
---|
2244 | */
|
---|
2245 | VMMR3DECL(int) PGMR3Term(PVM pVM)
|
---|
2246 | {
|
---|
2247 | /* Must free shared pages here. */
|
---|
2248 | pgmLock(pVM);
|
---|
2249 | pgmR3PhysRamTerm(pVM);
|
---|
2250 | pgmR3PhysRomTerm(pVM);
|
---|
2251 | pgmUnlock(pVM);
|
---|
2252 |
|
---|
2253 | PGMDeregisterStringFormatTypes();
|
---|
2254 | return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
|
---|
2255 | }
|
---|
2256 |
|
---|
2257 |
|
---|
2258 | /**
|
---|
2259 | * Show paging mode.
|
---|
2260 | *
|
---|
2261 | * @param pVM The cross context VM structure.
|
---|
2262 | * @param pHlp The info helpers.
|
---|
2263 | * @param pszArgs "all" (default), "guest", "shadow" or "host".
|
---|
2264 | */
|
---|
2265 | static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
|
---|
2266 | {
|
---|
2267 | /* digest argument. */
|
---|
2268 | bool fGuest, fShadow, fHost;
|
---|
2269 | if (pszArgs)
|
---|
2270 | pszArgs = RTStrStripL(pszArgs);
|
---|
2271 | if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
|
---|
2272 | fShadow = fHost = fGuest = true;
|
---|
2273 | else
|
---|
2274 | {
|
---|
2275 | fShadow = fHost = fGuest = false;
|
---|
2276 | if (strstr(pszArgs, "guest"))
|
---|
2277 | fGuest = true;
|
---|
2278 | if (strstr(pszArgs, "shadow"))
|
---|
2279 | fShadow = true;
|
---|
2280 | if (strstr(pszArgs, "host"))
|
---|
2281 | fHost = true;
|
---|
2282 | }
|
---|
2283 |
|
---|
2284 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
2285 | if (!pVCpu)
|
---|
2286 | pVCpu = &pVM->aCpus[0];
|
---|
2287 |
|
---|
2288 |
|
---|
2289 | /* print info. */
|
---|
2290 | if (fGuest)
|
---|
2291 | pHlp->pfnPrintf(pHlp, "Guest paging mode (VCPU #%u): %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
|
---|
2292 | pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmGuestMode), pVCpu->pgm.s.cGuestModeChanges.c,
|
---|
2293 | pVCpu->pgm.s.fA20Enabled ? "enabled" : "disabled", pVCpu->pgm.s.cA20Changes.c);
|
---|
2294 | if (fShadow)
|
---|
2295 | pHlp->pfnPrintf(pHlp, "Shadow paging mode (VCPU #%u): %s\n", pVCpu->idCpu, PGMGetModeName(pVCpu->pgm.s.enmShadowMode));
|
---|
2296 | if (fHost)
|
---|
2297 | {
|
---|
2298 | const char *psz;
|
---|
2299 | switch (pVM->pgm.s.enmHostMode)
|
---|
2300 | {
|
---|
2301 | case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
|
---|
2302 | case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
|
---|
2303 | case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
|
---|
2304 | case SUPPAGINGMODE_PAE: psz = "PAE"; break;
|
---|
2305 | case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
|
---|
2306 | case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
|
---|
2307 | case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
|
---|
2308 | case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
|
---|
2309 | case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
|
---|
2310 | case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
|
---|
2311 | case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
|
---|
2312 | default: psz = "unknown"; break;
|
---|
2313 | }
|
---|
2314 | pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
|
---|
2315 | }
|
---|
2316 | }
|
---|
2317 |
|
---|
2318 |
|
---|
2319 | /**
|
---|
2320 | * Dump registered MMIO ranges to the log.
|
---|
2321 | *
|
---|
2322 | * @param pVM The cross context VM structure.
|
---|
2323 | * @param pHlp The info helpers.
|
---|
2324 | * @param pszArgs Arguments, ignored.
|
---|
2325 | */
|
---|
2326 | static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
|
---|
2327 | {
|
---|
2328 | bool const fVerbose = pszArgs && strstr(pszArgs, "verbose") != NULL;
|
---|
2329 |
|
---|
2330 | pHlp->pfnPrintf(pHlp,
|
---|
2331 | "RAM ranges (pVM=%p)\n"
|
---|
2332 | "%.*s %.*s\n",
|
---|
2333 | pVM,
|
---|
2334 | sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
|
---|
2335 | sizeof(RTHCPTR) * 2, "pvHC ");
|
---|
2336 |
|
---|
2337 | for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
|
---|
2338 | {
|
---|
2339 | pHlp->pfnPrintf(pHlp,
|
---|
2340 | "%RGp-%RGp %RHv %s\n",
|
---|
2341 | pCur->GCPhys,
|
---|
2342 | pCur->GCPhysLast,
|
---|
2343 | pCur->pvR3,
|
---|
2344 | pCur->pszDesc);
|
---|
2345 | if (fVerbose)
|
---|
2346 | {
|
---|
2347 | RTGCPHYS const cPages = pCur->cb >> X86_PAGE_SHIFT;
|
---|
2348 | RTGCPHYS iPage = 0;
|
---|
2349 | while (iPage < cPages)
|
---|
2350 | {
|
---|
2351 | RTGCPHYS const iFirstPage = iPage;
|
---|
2352 | PGMPAGETYPE const enmType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]);
|
---|
2353 | do
|
---|
2354 | iPage++;
|
---|
2355 | while (iPage < cPages && (PGMPAGETYPE)PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == enmType);
|
---|
2356 | const char *pszType;
|
---|
2357 | const char *pszMore = NULL;
|
---|
2358 | switch (enmType)
|
---|
2359 | {
|
---|
2360 | case PGMPAGETYPE_RAM:
|
---|
2361 | pszType = "RAM";
|
---|
2362 | break;
|
---|
2363 |
|
---|
2364 | case PGMPAGETYPE_MMIO2:
|
---|
2365 | pszType = "MMIO2";
|
---|
2366 | break;
|
---|
2367 |
|
---|
2368 | case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
|
---|
2369 | pszType = "MMIO2-alias-MMIO";
|
---|
2370 | break;
|
---|
2371 |
|
---|
2372 | case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
|
---|
2373 | pszType = "special-alias-MMIO";
|
---|
2374 | break;
|
---|
2375 |
|
---|
2376 | case PGMPAGETYPE_ROM_SHADOW:
|
---|
2377 | case PGMPAGETYPE_ROM:
|
---|
2378 | {
|
---|
2379 | pszType = enmType == PGMPAGETYPE_ROM_SHADOW ? "ROM-shadowed" : "ROM";
|
---|
2380 |
|
---|
2381 | RTGCPHYS const GCPhysFirstPg = iFirstPage * X86_PAGE_SIZE;
|
---|
2382 | PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
|
---|
2383 | while (pRom && GCPhysFirstPg > pRom->GCPhysLast)
|
---|
2384 | pRom = pRom->pNextR3;
|
---|
2385 | if (pRom && GCPhysFirstPg - pRom->GCPhys < pRom->cb)
|
---|
2386 | pszMore = pRom->pszDesc;
|
---|
2387 | break;
|
---|
2388 | }
|
---|
2389 |
|
---|
2390 | case PGMPAGETYPE_MMIO:
|
---|
2391 | {
|
---|
2392 | pszType = "MMIO";
|
---|
2393 | pgmLock(pVM);
|
---|
2394 | PPGMPHYSHANDLER pHandler = pgmHandlerPhysicalLookup(pVM, iFirstPage * X86_PAGE_SIZE);
|
---|
2395 | if (pHandler)
|
---|
2396 | pszMore = pHandler->pszDesc;
|
---|
2397 | pgmUnlock(pVM);
|
---|
2398 | break;
|
---|
2399 | }
|
---|
2400 |
|
---|
2401 | case PGMPAGETYPE_INVALID:
|
---|
2402 | pszType = "invalid";
|
---|
2403 | break;
|
---|
2404 |
|
---|
2405 | default:
|
---|
2406 | pszType = "bad";
|
---|
2407 | break;
|
---|
2408 | }
|
---|
2409 | if (pszMore)
|
---|
2410 | pHlp->pfnPrintf(pHlp, " %RGp-%RGp %-20s %s\n",
|
---|
2411 | pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
|
---|
2412 | pCur->GCPhys + iPage * X86_PAGE_SIZE,
|
---|
2413 | pszType, pszMore);
|
---|
2414 | else
|
---|
2415 | pHlp->pfnPrintf(pHlp, " %RGp-%RGp %s\n",
|
---|
2416 | pCur->GCPhys + iFirstPage * X86_PAGE_SIZE,
|
---|
2417 | pCur->GCPhys + iPage * X86_PAGE_SIZE,
|
---|
2418 | pszType);
|
---|
2419 |
|
---|
2420 | }
|
---|
2421 | }
|
---|
2422 | }
|
---|
2423 | }
|
---|
2424 |
|
---|
2425 |
|
---|
2426 | /**
|
---|
2427 | * Dump the page directory to the log.
|
---|
2428 | *
|
---|
2429 | * @param pVM The cross context VM structure.
|
---|
2430 | * @param pHlp The info helpers.
|
---|
2431 | * @param pszArgs Arguments, ignored.
|
---|
2432 | */
|
---|
2433 | static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
|
---|
2434 | {
|
---|
2435 | /** @todo SMP support!! */
|
---|
2436 | PVMCPU pVCpu = &pVM->aCpus[0];
|
---|
2437 |
|
---|
2438 | /** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
|
---|
2439 | /* Big pages supported? */
|
---|
2440 | const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
|
---|
2441 |
|
---|
2442 | /* Global pages supported? */
|
---|
2443 | const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
|
---|
2444 |
|
---|
2445 | NOREF(pszArgs);
|
---|
2446 |
|
---|
2447 | /*
|
---|
2448 | * Get page directory addresses.
|
---|
2449 | */
|
---|
2450 | pgmLock(pVM);
|
---|
2451 | PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
|
---|
2452 | Assert(pPDSrc);
|
---|
2453 |
|
---|
2454 | /*
|
---|
2455 | * Iterate the page directory.
|
---|
2456 | */
|
---|
2457 | for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
|
---|
2458 | {
|
---|
2459 | X86PDE PdeSrc = pPDSrc->a[iPD];
|
---|
2460 | if (PdeSrc.n.u1Present)
|
---|
2461 | {
|
---|
2462 | if (PdeSrc.b.u1Size && fPSE)
|
---|
2463 | pHlp->pfnPrintf(pHlp,
|
---|
2464 | "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
|
---|
2465 | iPD,
|
---|
2466 | pgmGstGet4MBPhysPage(pVM, PdeSrc),
|
---|
2467 | PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
|
---|
2468 | else
|
---|
2469 | pHlp->pfnPrintf(pHlp,
|
---|
2470 | "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
|
---|
2471 | iPD,
|
---|
2472 | (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
|
---|
2473 | PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
|
---|
2474 | }
|
---|
2475 | }
|
---|
2476 | pgmUnlock(pVM);
|
---|
2477 | }
|
---|
2478 |
|
---|
2479 |
|
---|
2480 | /**
|
---|
2481 | * Service a VMMCALLRING3_PGM_LOCK call.
|
---|
2482 | *
|
---|
2483 | * @returns VBox status code.
|
---|
2484 | * @param pVM The cross context VM structure.
|
---|
2485 | */
|
---|
2486 | VMMR3DECL(int) PGMR3LockCall(PVM pVM)
|
---|
2487 | {
|
---|
2488 | int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
|
---|
2489 | AssertRC(rc);
|
---|
2490 | return rc;
|
---|
2491 | }
|
---|
2492 |
|
---|
2493 |
|
---|
2494 | /**
|
---|
2495 | * Called by pgmPoolFlushAllInt prior to flushing the pool.
|
---|
2496 | *
|
---|
2497 | * @returns VBox status code, fully asserted.
|
---|
2498 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2499 | */
|
---|
2500 | int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
|
---|
2501 | {
|
---|
2502 | /* Unmap the old CR3 value before flushing everything. */
|
---|
2503 | int rc = VINF_SUCCESS;
|
---|
2504 | uintptr_t idxBth = pVCpu->pgm.s.idxBothModeData;
|
---|
2505 | if ( idxBth < RT_ELEMENTS(g_aPgmBothModeData)
|
---|
2506 | && g_aPgmBothModeData[idxBth].pfnMapCR3)
|
---|
2507 | {
|
---|
2508 | rc = g_aPgmBothModeData[idxBth].pfnUnmapCR3(pVCpu);
|
---|
2509 | AssertRC(rc);
|
---|
2510 | }
|
---|
2511 |
|
---|
2512 | /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
|
---|
2513 | uintptr_t idxShw = pVCpu->pgm.s.idxShadowModeData;
|
---|
2514 | if ( idxShw < RT_ELEMENTS(g_aPgmShadowModeData)
|
---|
2515 | && g_aPgmShadowModeData[idxShw].pfnExit)
|
---|
2516 | {
|
---|
2517 | rc = g_aPgmShadowModeData[idxShw].pfnExit(pVCpu);
|
---|
2518 | AssertMsgRCReturn(rc, ("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc), rc);
|
---|
2519 | }
|
---|
2520 |
|
---|
2521 | Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
|
---|
2522 | return rc;
|
---|
2523 | }
|
---|
2524 |
|
---|
2525 |
|
---|
2526 | /**
|
---|
2527 | * Called by pgmPoolFlushAllInt after flushing the pool.
|
---|
2528 | *
|
---|
2529 | * @returns VBox status code, fully asserted.
|
---|
2530 | * @param pVM The cross context VM structure.
|
---|
2531 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2532 | */
|
---|
2533 | int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
|
---|
2534 | {
|
---|
2535 | pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
|
---|
2536 | int rc = PGMHCChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
|
---|
2537 | Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
|
---|
2538 | AssertRCReturn(rc, rc);
|
---|
2539 | AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
|
---|
2540 |
|
---|
2541 | Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL || pVCpu->pgm.s.enmShadowMode == PGMMODE_NONE);
|
---|
2542 | AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED_32BIT
|
---|
2543 | || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
|
---|
2544 | ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
|
---|
2545 | return rc;
|
---|
2546 | }
|
---|
2547 |
|
---|
2548 |
|
---|
2549 | /**
|
---|
2550 | * Called by PGMR3PhysSetA20 after changing the A20 state.
|
---|
2551 | *
|
---|
2552 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2553 | */
|
---|
2554 | void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
|
---|
2555 | {
|
---|
2556 | /** @todo Probably doing a bit too much here. */
|
---|
2557 | int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
|
---|
2558 | AssertReleaseRC(rc);
|
---|
2559 | rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
|
---|
2560 | AssertReleaseRC(rc);
|
---|
2561 | }
|
---|
2562 |
|
---|
2563 |
|
---|
2564 | #ifdef VBOX_WITH_DEBUGGER
|
---|
2565 |
|
---|
2566 | /**
|
---|
2567 | * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
|
---|
2568 | */
|
---|
2569 | static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
|
---|
2570 | {
|
---|
2571 | /*
|
---|
2572 | * Validate input.
|
---|
2573 | */
|
---|
2574 | DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
|
---|
2575 | PVM pVM = pUVM->pVM;
|
---|
2576 | DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
|
---|
2577 |
|
---|
2578 | if (!cArgs)
|
---|
2579 | {
|
---|
2580 | /*
|
---|
2581 | * Print the list of error injection locations with status.
|
---|
2582 | */
|
---|
2583 | DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
|
---|
2584 | DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
|
---|
2585 | }
|
---|
2586 | else
|
---|
2587 | {
|
---|
2588 | /*
|
---|
2589 | * String switch on where to inject the error.
|
---|
2590 | */
|
---|
2591 | bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
|
---|
2592 | const char *pszWhere = paArgs[0].u.pszString;
|
---|
2593 | if (!strcmp(pszWhere, "handy"))
|
---|
2594 | ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
|
---|
2595 | else
|
---|
2596 | return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
|
---|
2597 | DBGCCmdHlpPrintf(pCmdHlp, "done\n");
|
---|
2598 | }
|
---|
2599 | return VINF_SUCCESS;
|
---|
2600 | }
|
---|
2601 |
|
---|
2602 |
|
---|
2603 | /**
|
---|
2604 | * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
|
---|
2605 | */
|
---|
2606 | static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
|
---|
2607 | {
|
---|
2608 | /*
|
---|
2609 | * Validate input.
|
---|
2610 | */
|
---|
2611 | NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
|
---|
2612 | DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
|
---|
2613 | PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
|
---|
2614 | if (!pVCpu)
|
---|
2615 | return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
|
---|
2616 |
|
---|
2617 | /*
|
---|
2618 | * Force page directory sync.
|
---|
2619 | */
|
---|
2620 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
2621 |
|
---|
2622 | int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
|
---|
2623 | if (RT_FAILURE(rc))
|
---|
2624 | return rc;
|
---|
2625 |
|
---|
2626 | return VINF_SUCCESS;
|
---|
2627 | }
|
---|
2628 |
|
---|
2629 | #ifdef VBOX_STRICT
|
---|
2630 |
|
---|
2631 | /**
|
---|
2632 | * EMT callback for pgmR3CmdAssertCR3.
|
---|
2633 | *
|
---|
2634 | * @returns VBox status code.
|
---|
2635 | * @param pUVM The user mode VM handle.
|
---|
2636 | * @param pcErrors Where to return the error count.
|
---|
2637 | */
|
---|
2638 | static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
|
---|
2639 | {
|
---|
2640 | PVM pVM = pUVM->pVM;
|
---|
2641 | VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
|
---|
2642 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
2643 |
|
---|
2644 | *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
|
---|
2645 |
|
---|
2646 | return VINF_SUCCESS;
|
---|
2647 | }
|
---|
2648 |
|
---|
2649 |
|
---|
2650 | /**
|
---|
2651 | * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
|
---|
2652 | */
|
---|
2653 | static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
|
---|
2654 | {
|
---|
2655 | /*
|
---|
2656 | * Validate input.
|
---|
2657 | */
|
---|
2658 | NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
|
---|
2659 | DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
|
---|
2660 |
|
---|
2661 | int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
|
---|
2662 | if (RT_FAILURE(rc))
|
---|
2663 | return rc;
|
---|
2664 |
|
---|
2665 | unsigned cErrors = 0;
|
---|
2666 | rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
|
---|
2667 | if (RT_FAILURE(rc))
|
---|
2668 | return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
|
---|
2669 | if (cErrors > 0)
|
---|
2670 | return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
|
---|
2671 | return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
|
---|
2672 | }
|
---|
2673 |
|
---|
2674 | #endif /* VBOX_STRICT */
|
---|
2675 |
|
---|
2676 | /**
|
---|
2677 | * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
|
---|
2678 | */
|
---|
2679 | static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
|
---|
2680 | {
|
---|
2681 | /*
|
---|
2682 | * Validate input.
|
---|
2683 | */
|
---|
2684 | NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
|
---|
2685 | DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
|
---|
2686 | PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
|
---|
2687 | if (!pVCpu)
|
---|
2688 | return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
|
---|
2689 |
|
---|
2690 | /*
|
---|
2691 | * Force page directory sync.
|
---|
2692 | */
|
---|
2693 | int rc;
|
---|
2694 | if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
|
---|
2695 | {
|
---|
2696 | ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
|
---|
2697 | rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
|
---|
2698 | }
|
---|
2699 | else
|
---|
2700 | {
|
---|
2701 | ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
|
---|
2702 | VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
|
---|
2703 | rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
|
---|
2704 | }
|
---|
2705 | return rc;
|
---|
2706 | }
|
---|
2707 |
|
---|
2708 |
|
---|
2709 | /**
|
---|
2710 | * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
|
---|
2711 | */
|
---|
2712 | static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
|
---|
2713 | {
|
---|
2714 | /*
|
---|
2715 | * Validate input.
|
---|
2716 | */
|
---|
2717 | NOREF(pCmd);
|
---|
2718 | DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
|
---|
2719 | PVM pVM = pUVM->pVM;
|
---|
2720 | DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
|
---|
2721 | DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType == DBGCVAR_TYPE_STRING);
|
---|
2722 | if (cArgs == 2)
|
---|
2723 | {
|
---|
2724 | DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[1].enmType == DBGCVAR_TYPE_STRING);
|
---|
2725 | if (strcmp(paArgs[1].u.pszString, "nozero"))
|
---|
2726 | return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
|
---|
2727 | }
|
---|
2728 | bool fIncZeroPgs = cArgs < 2;
|
---|
2729 |
|
---|
2730 | /*
|
---|
2731 | * Open the output file and get the ram parameters.
|
---|
2732 | */
|
---|
2733 | RTFILE hFile;
|
---|
2734 | int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
|
---|
2735 | if (RT_FAILURE(rc))
|
---|
2736 | return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
|
---|
2737 |
|
---|
2738 | uint32_t cbRamHole = 0;
|
---|
2739 | CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
|
---|
2740 | uint64_t cbRam = 0;
|
---|
2741 | CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
|
---|
2742 | RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
|
---|
2743 |
|
---|
2744 | /*
|
---|
2745 | * Dump the physical memory, page by page.
|
---|
2746 | */
|
---|
2747 | RTGCPHYS GCPhys = 0;
|
---|
2748 | char abZeroPg[PAGE_SIZE];
|
---|
2749 | RT_ZERO(abZeroPg);
|
---|
2750 |
|
---|
2751 | pgmLock(pVM);
|
---|
2752 | for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
|
---|
2753 | pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
|
---|
2754 | pRam = pRam->pNextR3)
|
---|
2755 | {
|
---|
2756 | /* fill the gap */
|
---|
2757 | if (pRam->GCPhys > GCPhys && fIncZeroPgs)
|
---|
2758 | {
|
---|
2759 | while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
|
---|
2760 | {
|
---|
2761 | rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
|
---|
2762 | GCPhys += PAGE_SIZE;
|
---|
2763 | }
|
---|
2764 | }
|
---|
2765 |
|
---|
2766 | PCPGMPAGE pPage = &pRam->aPages[0];
|
---|
2767 | while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
|
---|
2768 | {
|
---|
2769 | if ( PGM_PAGE_IS_ZERO(pPage)
|
---|
2770 | || PGM_PAGE_IS_BALLOONED(pPage))
|
---|
2771 | {
|
---|
2772 | if (fIncZeroPgs)
|
---|
2773 | {
|
---|
2774 | rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
|
---|
2775 | if (RT_FAILURE(rc))
|
---|
2776 | DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
|
---|
2777 | }
|
---|
2778 | }
|
---|
2779 | else
|
---|
2780 | {
|
---|
2781 | switch (PGM_PAGE_GET_TYPE(pPage))
|
---|
2782 | {
|
---|
2783 | case PGMPAGETYPE_RAM:
|
---|
2784 | case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
|
---|
2785 | case PGMPAGETYPE_ROM:
|
---|
2786 | case PGMPAGETYPE_MMIO2:
|
---|
2787 | {
|
---|
2788 | void const *pvPage;
|
---|
2789 | PGMPAGEMAPLOCK Lock;
|
---|
2790 | rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
|
---|
2791 | if (RT_SUCCESS(rc))
|
---|
2792 | {
|
---|
2793 | rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
|
---|
2794 | PGMPhysReleasePageMappingLock(pVM, &Lock);
|
---|
2795 | if (RT_FAILURE(rc))
|
---|
2796 | DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
|
---|
2797 | }
|
---|
2798 | else
|
---|
2799 | DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
|
---|
2800 | break;
|
---|
2801 | }
|
---|
2802 |
|
---|
2803 | default:
|
---|
2804 | AssertFailed();
|
---|
2805 | RT_FALL_THRU();
|
---|
2806 | case PGMPAGETYPE_MMIO:
|
---|
2807 | case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
|
---|
2808 | case PGMPAGETYPE_SPECIAL_ALIAS_MMIO:
|
---|
2809 | if (fIncZeroPgs)
|
---|
2810 | {
|
---|
2811 | rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
|
---|
2812 | if (RT_FAILURE(rc))
|
---|
2813 | DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
|
---|
2814 | }
|
---|
2815 | break;
|
---|
2816 | }
|
---|
2817 | }
|
---|
2818 |
|
---|
2819 |
|
---|
2820 | /* advance */
|
---|
2821 | GCPhys += PAGE_SIZE;
|
---|
2822 | pPage++;
|
---|
2823 | }
|
---|
2824 | }
|
---|
2825 | pgmUnlock(pVM);
|
---|
2826 |
|
---|
2827 | RTFileClose(hFile);
|
---|
2828 | if (RT_SUCCESS(rc))
|
---|
2829 | return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
|
---|
2830 | return VINF_SUCCESS;
|
---|
2831 | }
|
---|
2832 |
|
---|
2833 | #endif /* VBOX_WITH_DEBUGGER */
|
---|
2834 |
|
---|
2835 | /**
|
---|
2836 | * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
|
---|
2837 | */
|
---|
2838 | typedef struct PGMCHECKINTARGS
|
---|
2839 | {
|
---|
2840 | bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
|
---|
2841 | PPGMPHYSHANDLER pPrevPhys;
|
---|
2842 | #ifdef VBOX_WITH_RAW_MODE
|
---|
2843 | PPGMVIRTHANDLER pPrevVirt;
|
---|
2844 | PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
|
---|
2845 | #else
|
---|
2846 | void *pvFiller1, *pvFiller2;
|
---|
2847 | #endif
|
---|
2848 | PVM pVM;
|
---|
2849 | } PGMCHECKINTARGS, *PPGMCHECKINTARGS;
|
---|
2850 |
|
---|
2851 | /**
|
---|
2852 | * Validate a node in the physical handler tree.
|
---|
2853 | *
|
---|
2854 | * @returns 0 on if ok, other wise 1.
|
---|
2855 | * @param pNode The handler node.
|
---|
2856 | * @param pvUser pVM.
|
---|
2857 | */
|
---|
2858 | static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
|
---|
2859 | {
|
---|
2860 | PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
|
---|
2861 | PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
|
---|
2862 | AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
|
---|
2863 | AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,
|
---|
2864 | ("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
|
---|
2865 | AssertReleaseMsg( !pArgs->pPrevPhys
|
---|
2866 | || ( pArgs->fLeftToRight
|
---|
2867 | ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key
|
---|
2868 | : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
|
---|
2869 | ("pPrevPhys=%p %RGp-%RGp %s\n"
|
---|
2870 | " pCur=%p %RGp-%RGp %s\n",
|
---|
2871 | pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
|
---|
2872 | pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
|
---|
2873 | pArgs->pPrevPhys = pCur;
|
---|
2874 | return 0;
|
---|
2875 | }
|
---|
2876 |
|
---|
2877 | #ifdef VBOX_WITH_RAW_MODE
|
---|
2878 |
|
---|
2879 | /**
|
---|
2880 | * Validate a node in the virtual handler tree.
|
---|
2881 | *
|
---|
2882 | * @returns 0 on if ok, other wise 1.
|
---|
2883 | * @param pNode The handler node.
|
---|
2884 | * @param pvUser pVM.
|
---|
2885 | */
|
---|
2886 | static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
|
---|
2887 | {
|
---|
2888 | PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
|
---|
2889 | PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
|
---|
2890 | AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
|
---|
2891 | AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
|
---|
2892 | AssertReleaseMsg( !pArgs->pPrevVirt
|
---|
2893 | || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
|
---|
2894 | ("pPrevVirt=%p %RGv-%RGv %s\n"
|
---|
2895 | " pCur=%p %RGv-%RGv %s\n",
|
---|
2896 | pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
|
---|
2897 | pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
|
---|
2898 | for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
|
---|
2899 | {
|
---|
2900 | AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -(intptr_t)RT_UOFFSETOF_DYN(PGMVIRTHANDLER, aPhysToVirt[iPage]),
|
---|
2901 | ("pCur=%p %RGv-%RGv %s\n"
|
---|
2902 | "iPage=%d offVirtHandle=%#x expected %#x\n",
|
---|
2903 | pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
|
---|
2904 | iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -(intptr_t)RT_UOFFSETOF_DYN(PGMVIRTHANDLER, aPhysToVirt[iPage])));
|
---|
2905 | }
|
---|
2906 | pArgs->pPrevVirt = pCur;
|
---|
2907 | return 0;
|
---|
2908 | }
|
---|
2909 |
|
---|
2910 |
|
---|
2911 | /**
|
---|
2912 | * Validate a node in the virtual handler tree.
|
---|
2913 | *
|
---|
2914 | * @returns 0 on if ok, other wise 1.
|
---|
2915 | * @param pNode The handler node.
|
---|
2916 | * @param pvUser pVM.
|
---|
2917 | */
|
---|
2918 | static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
|
---|
2919 | {
|
---|
2920 | PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
|
---|
2921 | PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
|
---|
2922 | AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
|
---|
2923 | AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
|
---|
2924 | AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
|
---|
2925 | AssertReleaseMsg( !pArgs->pPrevPhys2Virt
|
---|
2926 | || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
|
---|
2927 | ("pPrevPhys2Virt=%p %RGp-%RGp\n"
|
---|
2928 | " pCur=%p %RGp-%RGp\n",
|
---|
2929 | pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
|
---|
2930 | pCur, pCur->Core.Key, pCur->Core.KeyLast));
|
---|
2931 | AssertReleaseMsg( !pArgs->pPrevPhys2Virt
|
---|
2932 | || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
|
---|
2933 | ("pPrevPhys2Virt=%p %RGp-%RGp\n"
|
---|
2934 | " pCur=%p %RGp-%RGp\n",
|
---|
2935 | pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
|
---|
2936 | pCur, pCur->Core.Key, pCur->Core.KeyLast));
|
---|
2937 | AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
|
---|
2938 | ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
|
---|
2939 | pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
|
---|
2940 | if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
|
---|
2941 | {
|
---|
2942 | PPGMPHYS2VIRTHANDLER pCur2 = pCur;
|
---|
2943 | for (;;)
|
---|
2944 | {
|
---|
2945 | pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
|
---|
2946 | AssertReleaseMsg(pCur2 != pCur,
|
---|
2947 | (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
|
---|
2948 | pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
|
---|
2949 | AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
|
---|
2950 | (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
|
---|
2951 | "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
|
---|
2952 | pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
|
---|
2953 | pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
|
---|
2954 | AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
|
---|
2955 | (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
|
---|
2956 | "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
|
---|
2957 | pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
|
---|
2958 | pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
|
---|
2959 | AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
|
---|
2960 | (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
|
---|
2961 | "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
|
---|
2962 | pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
|
---|
2963 | pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
|
---|
2964 | if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
|
---|
2965 | break;
|
---|
2966 | }
|
---|
2967 | }
|
---|
2968 |
|
---|
2969 | pArgs->pPrevPhys2Virt = pCur;
|
---|
2970 | return 0;
|
---|
2971 | }
|
---|
2972 |
|
---|
2973 | #endif /* VBOX_WITH_RAW_MODE */
|
---|
2974 |
|
---|
2975 | /**
|
---|
2976 | * Perform an integrity check on the PGM component.
|
---|
2977 | *
|
---|
2978 | * @returns VINF_SUCCESS if everything is fine.
|
---|
2979 | * @returns VBox error status after asserting on integrity breach.
|
---|
2980 | * @param pVM The cross context VM structure.
|
---|
2981 | */
|
---|
2982 | VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
|
---|
2983 | {
|
---|
2984 | AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
|
---|
2985 |
|
---|
2986 | /*
|
---|
2987 | * Check the trees.
|
---|
2988 | */
|
---|
2989 | int cErrors = 0;
|
---|
2990 | const PGMCHECKINTARGS LeftToRight = { true, NULL, NULL, NULL, pVM };
|
---|
2991 | const PGMCHECKINTARGS RightToLeft = { false, NULL, NULL, NULL, pVM };
|
---|
2992 | PGMCHECKINTARGS Args = LeftToRight;
|
---|
2993 | cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
|
---|
2994 | Args = RightToLeft;
|
---|
2995 | cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
|
---|
2996 | #ifdef VBOX_WITH_RAW_MODE
|
---|
2997 | Args = LeftToRight;
|
---|
2998 | cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
|
---|
2999 | Args = RightToLeft;
|
---|
3000 | cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
|
---|
3001 | Args = LeftToRight;
|
---|
3002 | cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
|
---|
3003 | Args = RightToLeft;
|
---|
3004 | cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
|
---|
3005 | Args = LeftToRight;
|
---|
3006 | cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
|
---|
3007 | Args = RightToLeft;
|
---|
3008 | cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
|
---|
3009 | #endif /* VBOX_WITH_RAW_MODE */
|
---|
3010 |
|
---|
3011 | return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
|
---|
3012 | }
|
---|
3013 |
|
---|