VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-win.cpp@ 107044

Last change on this file since 107044 was 106520, checked in by vboxsync, 6 weeks ago

VMM/NEM-win: Unused variable g_apszWHvMemAccesstypes. jiraref:VBP-1171

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 153.0 KB
Line 
1/* $Id: NEMR3Native-win.cpp 106520 2024-10-20 02:30:08Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 Windows backend.
4 *
5 * Log group 2: Exit logging.
6 * Log group 3: Log context on exit.
7 * Log group 5: Ring-3 memory management
8 * Log group 6: Ring-0 memory management
9 * Log group 12: API intercepts.
10 */
11
12/*
13 * Copyright (C) 2018-2024 Oracle and/or its affiliates.
14 *
15 * This file is part of VirtualBox base platform packages, as
16 * available from https://www.virtualbox.org.
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation, in version 3 of the
21 * License.
22 *
23 * This program is distributed in the hope that it will be useful, but
24 * WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
26 * General Public License for more details.
27 *
28 * You should have received a copy of the GNU General Public License
29 * along with this program; if not, see <https://www.gnu.org/licenses>.
30 *
31 * SPDX-License-Identifier: GPL-3.0-only
32 */
33
34
35/*********************************************************************************************************************************
36* Header Files *
37*********************************************************************************************************************************/
38#define LOG_GROUP LOG_GROUP_NEM
39#define VMCPU_INCL_CPUM_GST_CTX
40#include <iprt/nt/nt-and-windows.h>
41#include <iprt/nt/hyperv.h>
42#include <iprt/nt/vid.h>
43#include <WinHvPlatform.h>
44
45#ifndef _WIN32_WINNT_WIN10
46# error "Missing _WIN32_WINNT_WIN10"
47#endif
48#ifndef _WIN32_WINNT_WIN10_RS1 /* Missing define, causing trouble for us. */
49# define _WIN32_WINNT_WIN10_RS1 (_WIN32_WINNT_WIN10 + 1)
50#endif
51#include <sysinfoapi.h>
52#include <debugapi.h>
53#include <errhandlingapi.h>
54#include <fileapi.h>
55#include <winerror.h> /* no api header for this. */
56
57#include <VBox/vmm/nem.h>
58#include <VBox/vmm/iem.h>
59#include <VBox/vmm/em.h>
60#include <VBox/vmm/apic.h>
61#include <VBox/vmm/pdm.h>
62#include <VBox/vmm/dbgftrace.h>
63#include "NEMInternal.h"
64#include <VBox/vmm/vmcc.h>
65
66#include <iprt/ldr.h>
67#include <iprt/path.h>
68#include <iprt/string.h>
69#include <iprt/system.h>
70#include <iprt/utf16.h>
71
72#ifndef NTDDI_WIN10_VB /* Present in W10 2004 SDK, quite possibly earlier. */
73HRESULT WINAPI WHvQueryGpaRangeDirtyBitmap(WHV_PARTITION_HANDLE, WHV_GUEST_PHYSICAL_ADDRESS, UINT64, UINT64 *, UINT32);
74# define WHvMapGpaRangeFlagTrackDirtyPages ((WHV_MAP_GPA_RANGE_FLAGS)0x00000008)
75#endif
76
77
78/*********************************************************************************************************************************
79* Defined Constants And Macros *
80*********************************************************************************************************************************/
81#ifdef LOG_ENABLED
82# define NEM_WIN_INTERCEPT_NT_IO_CTLS
83#endif
84
85/** VID I/O control detection: Fake partition handle input. */
86#define NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE ((HANDLE)(uintptr_t)38479125)
87/** VID I/O control detection: Fake partition ID return. */
88#define NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID UINT64_C(0xfa1e000042424242)
89/** VID I/O control detection: The property we get via VidGetPartitionProperty. */
90#define NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_PROPERTY_CODE HvPartitionPropertyProcessorVendor
91/** VID I/O control detection: Fake property value return. */
92#define NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_PROPERTY_VALUE UINT64_C(0xf00dface01020304)
93/** VID I/O control detection: Fake CPU index input. */
94#define NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX UINT32_C(42)
95/** VID I/O control detection: Fake timeout input. */
96#define NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT UINT32_C(0x00080286)
97
98
99/*********************************************************************************************************************************
100* Global Variables *
101*********************************************************************************************************************************/
102/** @name APIs imported from WinHvPlatform.dll
103 * @{ */
104static decltype(WHvGetCapability) * g_pfnWHvGetCapability;
105static decltype(WHvCreatePartition) * g_pfnWHvCreatePartition;
106static decltype(WHvSetupPartition) * g_pfnWHvSetupPartition;
107static decltype(WHvDeletePartition) * g_pfnWHvDeletePartition;
108static decltype(WHvGetPartitionProperty) * g_pfnWHvGetPartitionProperty;
109static decltype(WHvSetPartitionProperty) * g_pfnWHvSetPartitionProperty;
110static decltype(WHvMapGpaRange) * g_pfnWHvMapGpaRange;
111static decltype(WHvUnmapGpaRange) * g_pfnWHvUnmapGpaRange;
112static decltype(WHvTranslateGva) * g_pfnWHvTranslateGva;
113static decltype(WHvQueryGpaRangeDirtyBitmap) * g_pfnWHvQueryGpaRangeDirtyBitmap;
114static decltype(WHvCreateVirtualProcessor) * g_pfnWHvCreateVirtualProcessor;
115static decltype(WHvDeleteVirtualProcessor) * g_pfnWHvDeleteVirtualProcessor;
116static decltype(WHvRunVirtualProcessor) * g_pfnWHvRunVirtualProcessor;
117static decltype(WHvCancelRunVirtualProcessor) * g_pfnWHvCancelRunVirtualProcessor;
118static decltype(WHvGetVirtualProcessorRegisters) * g_pfnWHvGetVirtualProcessorRegisters;
119static decltype(WHvSetVirtualProcessorRegisters) * g_pfnWHvSetVirtualProcessorRegisters;
120/** @} */
121
122/** @name APIs imported from Vid.dll
123 * @{ */
124static decltype(VidGetHvPartitionId) *g_pfnVidGetHvPartitionId;
125static decltype(VidGetPartitionProperty) *g_pfnVidGetPartitionProperty;
126#ifdef LOG_ENABLED
127static decltype(VidStartVirtualProcessor) *g_pfnVidStartVirtualProcessor;
128static decltype(VidStopVirtualProcessor) *g_pfnVidStopVirtualProcessor;
129static decltype(VidMessageSlotMap) *g_pfnVidMessageSlotMap;
130static decltype(VidMessageSlotHandleAndGetNext) *g_pfnVidMessageSlotHandleAndGetNext;
131static decltype(VidGetVirtualProcessorState) *g_pfnVidGetVirtualProcessorState;
132static decltype(VidSetVirtualProcessorState) *g_pfnVidSetVirtualProcessorState;
133static decltype(VidGetVirtualProcessorRunningStatus) *g_pfnVidGetVirtualProcessorRunningStatus;
134#endif
135/** @} */
136
137/** The Windows build number. */
138static uint32_t g_uBuildNo = 17134;
139
140
141
142/**
143 * Import instructions.
144 */
145static const struct
146{
147 uint8_t idxDll; /**< 0 for WinHvPlatform.dll, 1 for vid.dll. */
148 bool fOptional; /**< Set if import is optional. */
149 PFNRT *ppfn; /**< The function pointer variable. */
150 const char *pszName; /**< The function name. */
151} g_aImports[] =
152{
153#define NEM_WIN_IMPORT(a_idxDll, a_fOptional, a_Name) { (a_idxDll), (a_fOptional), (PFNRT *)&RT_CONCAT(g_pfn,a_Name), #a_Name }
154 NEM_WIN_IMPORT(0, false, WHvGetCapability),
155 NEM_WIN_IMPORT(0, false, WHvCreatePartition),
156 NEM_WIN_IMPORT(0, false, WHvSetupPartition),
157 NEM_WIN_IMPORT(0, false, WHvDeletePartition),
158 NEM_WIN_IMPORT(0, false, WHvGetPartitionProperty),
159 NEM_WIN_IMPORT(0, false, WHvSetPartitionProperty),
160 NEM_WIN_IMPORT(0, false, WHvMapGpaRange),
161 NEM_WIN_IMPORT(0, false, WHvUnmapGpaRange),
162 NEM_WIN_IMPORT(0, false, WHvTranslateGva),
163 NEM_WIN_IMPORT(0, true, WHvQueryGpaRangeDirtyBitmap),
164 NEM_WIN_IMPORT(0, false, WHvCreateVirtualProcessor),
165 NEM_WIN_IMPORT(0, false, WHvDeleteVirtualProcessor),
166 NEM_WIN_IMPORT(0, false, WHvRunVirtualProcessor),
167 NEM_WIN_IMPORT(0, false, WHvCancelRunVirtualProcessor),
168 NEM_WIN_IMPORT(0, false, WHvGetVirtualProcessorRegisters),
169 NEM_WIN_IMPORT(0, false, WHvSetVirtualProcessorRegisters),
170
171 NEM_WIN_IMPORT(1, true, VidGetHvPartitionId),
172 NEM_WIN_IMPORT(1, true, VidGetPartitionProperty),
173#ifdef LOG_ENABLED
174 NEM_WIN_IMPORT(1, false, VidMessageSlotMap),
175 NEM_WIN_IMPORT(1, false, VidMessageSlotHandleAndGetNext),
176 NEM_WIN_IMPORT(1, false, VidStartVirtualProcessor),
177 NEM_WIN_IMPORT(1, false, VidStopVirtualProcessor),
178 NEM_WIN_IMPORT(1, false, VidGetVirtualProcessorState),
179 NEM_WIN_IMPORT(1, false, VidSetVirtualProcessorState),
180 NEM_WIN_IMPORT(1, false, VidGetVirtualProcessorRunningStatus),
181#endif
182#undef NEM_WIN_IMPORT
183};
184
185
186/** The real NtDeviceIoControlFile API in NTDLL. */
187static decltype(NtDeviceIoControlFile) *g_pfnNtDeviceIoControlFile;
188/** Pointer to the NtDeviceIoControlFile import table entry. */
189static decltype(NtDeviceIoControlFile) **g_ppfnVidNtDeviceIoControlFile;
190#ifdef LOG_ENABLED
191/** Info about the VidGetHvPartitionId I/O control interface. */
192static NEMWINIOCTL g_IoCtlGetHvPartitionId;
193/** Info about the VidGetPartitionProperty I/O control interface. */
194static NEMWINIOCTL g_IoCtlGetPartitionProperty;
195/** Info about the VidStartVirtualProcessor I/O control interface. */
196static NEMWINIOCTL g_IoCtlStartVirtualProcessor;
197/** Info about the VidStopVirtualProcessor I/O control interface. */
198static NEMWINIOCTL g_IoCtlStopVirtualProcessor;
199/** Info about the VidMessageSlotHandleAndGetNext I/O control interface. */
200static NEMWINIOCTL g_IoCtlMessageSlotHandleAndGetNext;
201/** Info about the VidMessageSlotMap I/O control interface - for logging. */
202static NEMWINIOCTL g_IoCtlMessageSlotMap;
203/** Info about the VidGetVirtualProcessorState I/O control interface - for logging. */
204static NEMWINIOCTL g_IoCtlGetVirtualProcessorState;
205/** Info about the VidSetVirtualProcessorState I/O control interface - for logging. */
206static NEMWINIOCTL g_IoCtlSetVirtualProcessorState;
207/** Pointer to what nemR3WinIoctlDetector_ForLogging should fill in. */
208static NEMWINIOCTL *g_pIoCtlDetectForLogging;
209#endif
210
211#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
212/** Mapping slot for CPU #0.
213 * @{ */
214static VID_MESSAGE_MAPPING_HEADER *g_pMsgSlotMapping = NULL;
215static const HV_MESSAGE_HEADER *g_pHvMsgHdr;
216static const HV_X64_INTERCEPT_MESSAGE_HEADER *g_pX64MsgHdr;
217/** @} */
218#endif
219
220
221/*
222 * Let the preprocessor alias the APIs to import variables for better autocompletion.
223 */
224#ifndef IN_SLICKEDIT
225# define WHvGetCapability g_pfnWHvGetCapability
226# define WHvCreatePartition g_pfnWHvCreatePartition
227# define WHvSetupPartition g_pfnWHvSetupPartition
228# define WHvDeletePartition g_pfnWHvDeletePartition
229# define WHvGetPartitionProperty g_pfnWHvGetPartitionProperty
230# define WHvSetPartitionProperty g_pfnWHvSetPartitionProperty
231# define WHvMapGpaRange g_pfnWHvMapGpaRange
232# define WHvUnmapGpaRange g_pfnWHvUnmapGpaRange
233# define WHvTranslateGva g_pfnWHvTranslateGva
234# define WHvQueryGpaRangeDirtyBitmap g_pfnWHvQueryGpaRangeDirtyBitmap
235# define WHvCreateVirtualProcessor g_pfnWHvCreateVirtualProcessor
236# define WHvDeleteVirtualProcessor g_pfnWHvDeleteVirtualProcessor
237# define WHvRunVirtualProcessor g_pfnWHvRunVirtualProcessor
238# define WHvGetRunExitContextSize g_pfnWHvGetRunExitContextSize
239# define WHvCancelRunVirtualProcessor g_pfnWHvCancelRunVirtualProcessor
240# define WHvGetVirtualProcessorRegisters g_pfnWHvGetVirtualProcessorRegisters
241# define WHvSetVirtualProcessorRegisters g_pfnWHvSetVirtualProcessorRegisters
242
243# define VidMessageSlotHandleAndGetNext g_pfnVidMessageSlotHandleAndGetNext
244# define VidStartVirtualProcessor g_pfnVidStartVirtualProcessor
245# define VidStopVirtualProcessor g_pfnVidStopVirtualProcessor
246
247#endif
248
249#if 0 /* unused */
250/** WHV_MEMORY_ACCESS_TYPE names */
251static const char * const g_apszWHvMemAccesstypes[4] = { "read", "write", "exec", "!undefined!" };
252#endif
253
254
255/*********************************************************************************************************************************
256* Internal Functions *
257*********************************************************************************************************************************/
258DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv);
259DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv);
260
261/*
262 * Instantate the code we used to share with ring-0.
263 */
264#include "../VMMAll/NEMAllNativeTemplate-win.cpp.h"
265
266
267
268#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
269/**
270 * Wrapper that logs the call from VID.DLL.
271 *
272 * This is very handy for figuring out why an API call fails.
273 */
274static NTSTATUS WINAPI
275nemR3WinLogWrapper_NtDeviceIoControlFile(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
276 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
277 PVOID pvOutput, ULONG cbOutput)
278{
279
280 char szFunction[32];
281 const char *pszFunction;
282 if (uFunction == g_IoCtlMessageSlotHandleAndGetNext.uFunction)
283 pszFunction = "VidMessageSlotHandleAndGetNext";
284 else if (uFunction == g_IoCtlStartVirtualProcessor.uFunction)
285 pszFunction = "VidStartVirtualProcessor";
286 else if (uFunction == g_IoCtlStopVirtualProcessor.uFunction)
287 pszFunction = "VidStopVirtualProcessor";
288 else if (uFunction == g_IoCtlMessageSlotMap.uFunction)
289 pszFunction = "VidMessageSlotMap";
290 else if (uFunction == g_IoCtlGetVirtualProcessorState.uFunction)
291 pszFunction = "VidGetVirtualProcessorState";
292 else if (uFunction == g_IoCtlSetVirtualProcessorState.uFunction)
293 pszFunction = "VidSetVirtualProcessorState";
294 else
295 {
296 RTStrPrintf(szFunction, sizeof(szFunction), "%#x", uFunction);
297 pszFunction = szFunction;
298 }
299
300 if (cbInput > 0 && pvInput)
301 Log12(("VID!NtDeviceIoControlFile: %s/input: %.*Rhxs\n", pszFunction, RT_MIN(cbInput, 32), pvInput));
302 NTSTATUS rcNt = g_pfnNtDeviceIoControlFile(hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, uFunction,
303 pvInput, cbInput, pvOutput, cbOutput);
304 if (!hEvt && !pfnApcCallback && !pvApcCtx)
305 Log12(("VID!NtDeviceIoControlFile: hFile=%#zx pIos=%p->{s:%#x, i:%#zx} uFunction=%s Input=%p LB %#x Output=%p LB %#x) -> %#x; Caller=%p\n",
306 hFile, pIos, pIos->Status, pIos->Information, pszFunction, pvInput, cbInput, pvOutput, cbOutput, rcNt, ASMReturnAddress()));
307 else
308 Log12(("VID!NtDeviceIoControlFile: hFile=%#zx hEvt=%#zx Apc=%p/%p pIos=%p->{s:%#x, i:%#zx} uFunction=%s Input=%p LB %#x Output=%p LB %#x) -> %#x; Caller=%p\n",
309 hFile, hEvt, RT_CB_LOG_CAST(pfnApcCallback), pvApcCtx, pIos, pIos->Status, pIos->Information, pszFunction,
310 pvInput, cbInput, pvOutput, cbOutput, rcNt, ASMReturnAddress()));
311 if (cbOutput > 0 && pvOutput)
312 {
313 Log12(("VID!NtDeviceIoControlFile: %s/output: %.*Rhxs\n", pszFunction, RT_MIN(cbOutput, 32), pvOutput));
314 if (uFunction == 0x2210cc && g_pMsgSlotMapping == NULL && cbOutput >= sizeof(void *))
315 {
316 g_pMsgSlotMapping = *(VID_MESSAGE_MAPPING_HEADER **)pvOutput;
317 g_pHvMsgHdr = (const HV_MESSAGE_HEADER *)(g_pMsgSlotMapping + 1);
318 g_pX64MsgHdr = (const HV_X64_INTERCEPT_MESSAGE_HEADER *)(g_pHvMsgHdr + 1);
319 Log12(("VID!NtDeviceIoControlFile: Message slot mapping: %p\n", g_pMsgSlotMapping));
320 }
321 }
322 if ( g_pMsgSlotMapping
323 && ( uFunction == g_IoCtlMessageSlotHandleAndGetNext.uFunction
324 || uFunction == g_IoCtlStopVirtualProcessor.uFunction
325 || uFunction == g_IoCtlMessageSlotMap.uFunction
326 ))
327 Log12(("VID!NtDeviceIoControlFile: enmVidMsgType=%#x cb=%#x msg=%#x payload=%u cs:rip=%04x:%08RX64 (%s)\n",
328 g_pMsgSlotMapping->enmVidMsgType, g_pMsgSlotMapping->cbMessage,
329 g_pHvMsgHdr->MessageType, g_pHvMsgHdr->PayloadSize,
330 g_pX64MsgHdr->CsSegment.Selector, g_pX64MsgHdr->Rip, pszFunction));
331
332 return rcNt;
333}
334#endif /* NEM_WIN_INTERCEPT_NT_IO_CTLS */
335
336
337/**
338 * Patches the call table of VID.DLL so we can intercept NtDeviceIoControlFile.
339 *
340 * This is for used to figure out the I/O control codes and in logging builds
341 * for logging API calls that WinHvPlatform.dll does.
342 *
343 * @returns VBox status code.
344 * @param hLdrModVid The VID module handle.
345 * @param pErrInfo Where to return additional error information.
346 */
347static int nemR3WinInitVidIntercepts(RTLDRMOD hLdrModVid, PRTERRINFO pErrInfo)
348{
349 /*
350 * Locate the real API.
351 */
352 g_pfnNtDeviceIoControlFile = (decltype(NtDeviceIoControlFile) *)RTLdrGetSystemSymbol("NTDLL.DLL", "NtDeviceIoControlFile");
353 AssertReturn(g_pfnNtDeviceIoControlFile != NULL,
354 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Failed to resolve NtDeviceIoControlFile from NTDLL.DLL"));
355
356 /*
357 * Locate the PE header and get what we need from it.
358 */
359 uint8_t const *pbImage = (uint8_t const *)RTLdrGetNativeHandle(hLdrModVid);
360 IMAGE_DOS_HEADER const *pMzHdr = (IMAGE_DOS_HEADER const *)pbImage;
361 AssertReturn(pMzHdr->e_magic == IMAGE_DOS_SIGNATURE,
362 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL mapping doesn't start with MZ signature: %#x", pMzHdr->e_magic));
363 IMAGE_NT_HEADERS const *pNtHdrs = (IMAGE_NT_HEADERS const *)&pbImage[pMzHdr->e_lfanew];
364 AssertReturn(pNtHdrs->Signature == IMAGE_NT_SIGNATURE,
365 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL has invalid PE signaturre: %#x @%#x",
366 pNtHdrs->Signature, pMzHdr->e_lfanew));
367
368 uint32_t const cbImage = pNtHdrs->OptionalHeader.SizeOfImage;
369 IMAGE_DATA_DIRECTORY const ImportDir = pNtHdrs->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
370
371 /*
372 * Walk the import descriptor table looking for NTDLL.DLL.
373 */
374 AssertReturn( ImportDir.Size > 0
375 && ImportDir.Size < cbImage,
376 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory size: %#x", ImportDir.Size));
377 AssertReturn( ImportDir.VirtualAddress > 0
378 && ImportDir.VirtualAddress <= cbImage - ImportDir.Size,
379 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory RVA: %#x", ImportDir.VirtualAddress));
380
381 for (PIMAGE_IMPORT_DESCRIPTOR pImps = (PIMAGE_IMPORT_DESCRIPTOR)&pbImage[ImportDir.VirtualAddress];
382 pImps->Name != 0 && pImps->FirstThunk != 0;
383 pImps++)
384 {
385 AssertReturn(pImps->Name < cbImage,
386 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad import directory entry name: %#x", pImps->Name));
387 const char *pszModName = (const char *)&pbImage[pImps->Name];
388 if (RTStrICmpAscii(pszModName, "ntdll.dll"))
389 continue;
390 AssertReturn(pImps->FirstThunk < cbImage,
391 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
392 AssertReturn(pImps->OriginalFirstThunk < cbImage,
393 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad FirstThunk: %#x", pImps->FirstThunk));
394
395 /*
396 * Walk the thunks table(s) looking for NtDeviceIoControlFile.
397 */
398 uintptr_t *puFirstThunk = (uintptr_t *)&pbImage[pImps->FirstThunk]; /* update this. */
399 if ( pImps->OriginalFirstThunk != 0
400 && pImps->OriginalFirstThunk != pImps->FirstThunk)
401 {
402 uintptr_t const *puOrgThunk = (uintptr_t const *)&pbImage[pImps->OriginalFirstThunk]; /* read from this. */
403 uintptr_t cLeft = (cbImage - (RT_MAX(pImps->FirstThunk, pImps->OriginalFirstThunk)))
404 / sizeof(*puFirstThunk);
405 while (cLeft-- > 0 && *puOrgThunk != 0)
406 {
407 if (!(*puOrgThunk & IMAGE_ORDINAL_FLAG64)) /* ASSUMES 64-bit */
408 {
409 AssertReturn(*puOrgThunk > 0 && *puOrgThunk < cbImage,
410 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "VID.DLL bad thunk entry: %#x", *puOrgThunk));
411
412 const char *pszSymbol = (const char *)&pbImage[*puOrgThunk + 2];
413 if (strcmp(pszSymbol, "NtDeviceIoControlFile") == 0)
414 g_ppfnVidNtDeviceIoControlFile = (decltype(NtDeviceIoControlFile) **)puFirstThunk;
415 }
416
417 puOrgThunk++;
418 puFirstThunk++;
419 }
420 }
421 else
422 {
423 /* No original thunk table, so scan the resolved symbols for a match
424 with the NtDeviceIoControlFile address. */
425 uintptr_t const uNeedle = (uintptr_t)g_pfnNtDeviceIoControlFile;
426 uintptr_t cLeft = (cbImage - pImps->FirstThunk) / sizeof(*puFirstThunk);
427 while (cLeft-- > 0 && *puFirstThunk != 0)
428 {
429 if (*puFirstThunk == uNeedle)
430 g_ppfnVidNtDeviceIoControlFile = (decltype(NtDeviceIoControlFile) **)puFirstThunk;
431 puFirstThunk++;
432 }
433 }
434 }
435
436 if (g_ppfnVidNtDeviceIoControlFile != NULL)
437 {
438 /* Make the thunk writable we can freely modify it. */
439 DWORD fOldProt = PAGE_READONLY;
440 VirtualProtect((void *)(uintptr_t)g_ppfnVidNtDeviceIoControlFile, sizeof(uintptr_t), PAGE_EXECUTE_READWRITE, &fOldProt);
441
442#ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
443 *g_ppfnVidNtDeviceIoControlFile = nemR3WinLogWrapper_NtDeviceIoControlFile;
444#endif
445 return VINF_SUCCESS;
446 }
447 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Failed to patch NtDeviceIoControlFile import in VID.DLL!");
448}
449
450
451/**
452 * Worker for nemR3NativeInit that probes and load the native API.
453 *
454 * @returns VBox status code.
455 * @param fForced Whether the HMForced flag is set and we should
456 * fail if we cannot initialize.
457 * @param pErrInfo Where to always return error info.
458 */
459static int nemR3WinInitProbeAndLoad(bool fForced, PRTERRINFO pErrInfo)
460{
461 /*
462 * Check that the DLL files we need are present, but without loading them.
463 * We'd like to avoid loading them unnecessarily.
464 */
465 WCHAR wszPath[MAX_PATH + 64];
466 UINT cwcPath = GetSystemDirectoryW(wszPath, MAX_PATH);
467 if (cwcPath >= MAX_PATH || cwcPath < 2)
468 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "GetSystemDirectoryW failed (%#x / %u)", cwcPath, GetLastError());
469
470 if (wszPath[cwcPath - 1] != '\\' || wszPath[cwcPath - 1] != '/')
471 wszPath[cwcPath++] = '\\';
472 RTUtf16CopyAscii(&wszPath[cwcPath], RT_ELEMENTS(wszPath) - cwcPath, "WinHvPlatform.dll");
473 if (GetFileAttributesW(wszPath) == INVALID_FILE_ATTRIBUTES)
474 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "The native API dll was not found (%ls)", wszPath);
475
476 /*
477 * Check that we're in a VM and that the hypervisor identifies itself as Hyper-V.
478 */
479 if (!ASMHasCpuId())
480 return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "No CPUID support");
481 if (!RTX86IsValidStdRange(ASMCpuId_EAX(0)))
482 return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "No CPUID leaf #1");
483 if (!(ASMCpuId_ECX(1) & X86_CPUID_FEATURE_ECX_HVP))
484 return RTErrInfoSet(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Not in a hypervisor partition (HVP=0)");
485
486 uint32_t cMaxHyperLeaf = 0;
487 uint32_t uEbx = 0;
488 uint32_t uEcx = 0;
489 uint32_t uEdx = 0;
490 ASMCpuIdExSlow(0x40000000, 0, 0, 0, &cMaxHyperLeaf, &uEbx, &uEcx, &uEdx);
491 if (!RTX86IsValidHypervisorRange(cMaxHyperLeaf))
492 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Invalid hypervisor CPUID range (%#x %#x %#x %#x)",
493 cMaxHyperLeaf, uEbx, uEcx, uEdx);
494 if ( uEbx != UINT32_C(0x7263694d) /* Micr */
495 || uEcx != UINT32_C(0x666f736f) /* osof */
496 || uEdx != UINT32_C(0x76482074) /* t Hv */)
497 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE,
498 "Not Hyper-V CPUID signature: %#x %#x %#x (expected %#x %#x %#x)",
499 uEbx, uEcx, uEdx, UINT32_C(0x7263694d), UINT32_C(0x666f736f), UINT32_C(0x76482074));
500 if (cMaxHyperLeaf < UINT32_C(0x40000005))
501 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "Too narrow hypervisor CPUID range (%#x)", cMaxHyperLeaf);
502
503 /** @todo would be great if we could recognize a root partition from the
504 * CPUID info, but I currently don't dare do that. */
505
506 /*
507 * Now try load the DLLs and resolve the APIs.
508 */
509 static const char * const s_apszDllNames[2] = { "WinHvPlatform.dll", "vid.dll" };
510 RTLDRMOD ahMods[2] = { NIL_RTLDRMOD, NIL_RTLDRMOD };
511 int rc = VINF_SUCCESS;
512 for (unsigned i = 0; i < RT_ELEMENTS(s_apszDllNames); i++)
513 {
514 int rc2 = RTLdrLoadSystem(s_apszDllNames[i], true /*fNoUnload*/, &ahMods[i]);
515 if (RT_FAILURE(rc2))
516 {
517 if (!RTErrInfoIsSet(pErrInfo))
518 RTErrInfoSetF(pErrInfo, rc2, "Failed to load API DLL: %s: %Rrc", s_apszDllNames[i], rc2);
519 else
520 RTErrInfoAddF(pErrInfo, rc2, "; %s: %Rrc", s_apszDllNames[i], rc2);
521 ahMods[i] = NIL_RTLDRMOD;
522 rc = VERR_NEM_INIT_FAILED;
523 }
524 }
525 if (RT_SUCCESS(rc))
526 rc = nemR3WinInitVidIntercepts(ahMods[1], pErrInfo);
527 if (RT_SUCCESS(rc))
528 {
529 for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
530 {
531 int rc2 = RTLdrGetSymbol(ahMods[g_aImports[i].idxDll], g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
532 if (RT_SUCCESS(rc2))
533 {
534 if (g_aImports[i].fOptional)
535 LogRel(("NEM: info: Found optional import %s!%s.\n",
536 s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName));
537 }
538 else
539 {
540 *g_aImports[i].ppfn = NULL;
541
542 LogRel(("NEM: %s: Failed to import %s!%s: %Rrc",
543 g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
544 s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName, rc2));
545 if (!g_aImports[i].fOptional)
546 {
547 if (RTErrInfoIsSet(pErrInfo))
548 RTErrInfoAddF(pErrInfo, rc2, ", %s!%s",
549 s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName);
550 else
551 rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: %s!%s",
552 s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName);
553 Assert(RT_FAILURE(rc));
554 }
555 }
556 }
557 if (RT_SUCCESS(rc))
558 {
559 Assert(!RTErrInfoIsSet(pErrInfo));
560 }
561 }
562
563 for (unsigned i = 0; i < RT_ELEMENTS(ahMods); i++)
564 RTLdrClose(ahMods[i]);
565 return rc;
566}
567
568
569/**
570 * Wrapper for different WHvGetCapability signatures.
571 */
572DECLINLINE(HRESULT) WHvGetCapabilityWrapper(WHV_CAPABILITY_CODE enmCap, WHV_CAPABILITY *pOutput, uint32_t cbOutput)
573{
574 return g_pfnWHvGetCapability(enmCap, pOutput, cbOutput, NULL);
575}
576
577
578/**
579 * Worker for nemR3NativeInit that gets the hypervisor capabilities.
580 *
581 * @returns VBox status code.
582 * @param pVM The cross context VM structure.
583 * @param pErrInfo Where to always return error info.
584 */
585static int nemR3WinInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo)
586{
587#define NEM_LOG_REL_CAP_EX(a_szField, a_szFmt, a_Value) LogRel(("NEM: %-38s= " a_szFmt "\n", a_szField, a_Value))
588#define NEM_LOG_REL_CAP_SUB_EX(a_szField, a_szFmt, a_Value) LogRel(("NEM: %36s: " a_szFmt "\n", a_szField, a_Value))
589#define NEM_LOG_REL_CAP_SUB(a_szField, a_Value) NEM_LOG_REL_CAP_SUB_EX(a_szField, "%d", a_Value)
590
591 /*
592 * Is the hypervisor present with the desired capability?
593 *
594 * In build 17083 this translates into:
595 * - CPUID[0x00000001].HVP is set
596 * - CPUID[0x40000000] == "Microsoft Hv"
597 * - CPUID[0x40000001].eax == "Hv#1"
598 * - CPUID[0x40000003].ebx[12] is set.
599 * - VidGetExoPartitionProperty(INVALID_HANDLE_VALUE, 0x60000, &Ignored) returns
600 * a non-zero value.
601 */
602 /**
603 * @todo Someone at Microsoft please explain weird API design:
604 * 1. Pointless CapabilityCode duplication int the output;
605 * 2. No output size.
606 */
607 WHV_CAPABILITY Caps;
608 RT_ZERO(Caps);
609 SetLastError(0);
610 HRESULT hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeHypervisorPresent, &Caps, sizeof(Caps));
611 DWORD rcWin = GetLastError();
612 if (FAILED(hrc))
613 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
614 "WHvGetCapability/WHvCapabilityCodeHypervisorPresent failed: %Rhrc (Last=%#x/%u)",
615 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
616 if (!Caps.HypervisorPresent)
617 {
618 if (!RTPathExists(RTPATH_NT_PASSTHRU_PREFIX "Device\\VidExo"))
619 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE,
620 "WHvCapabilityCodeHypervisorPresent is FALSE! Make sure you have enabled the 'Windows Hypervisor Platform' feature.");
621 return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "WHvCapabilityCodeHypervisorPresent is FALSE! (%u)", rcWin);
622 }
623 LogRel(("NEM: WHvCapabilityCodeHypervisorPresent is TRUE, so this might work...\n"));
624
625
626 /*
627 * Check what extended VM exits are supported.
628 */
629 RT_ZERO(Caps);
630 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeExtendedVmExits, &Caps, sizeof(Caps));
631 if (FAILED(hrc))
632 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
633 "WHvGetCapability/WHvCapabilityCodeExtendedVmExits failed: %Rhrc (Last=%#x/%u)",
634 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
635 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeExtendedVmExits", "%'#018RX64", Caps.ExtendedVmExits.AsUINT64);
636 pVM->nem.s.fExtendedMsrExit = RT_BOOL(Caps.ExtendedVmExits.X64MsrExit);
637 pVM->nem.s.fExtendedCpuIdExit = RT_BOOL(Caps.ExtendedVmExits.X64CpuidExit);
638 pVM->nem.s.fExtendedXcptExit = RT_BOOL(Caps.ExtendedVmExits.ExceptionExit);
639 NEM_LOG_REL_CAP_SUB("fExtendedMsrExit", pVM->nem.s.fExtendedMsrExit);
640 NEM_LOG_REL_CAP_SUB("fExtendedCpuIdExit", pVM->nem.s.fExtendedCpuIdExit);
641 NEM_LOG_REL_CAP_SUB("fExtendedXcptExit", pVM->nem.s.fExtendedXcptExit);
642 if (Caps.ExtendedVmExits.AsUINT64 & ~(uint64_t)7)
643 LogRel(("NEM: Warning! Unknown VM exit definitions: %#RX64\n", Caps.ExtendedVmExits.AsUINT64));
644 /** @todo RECHECK: WHV_EXTENDED_VM_EXITS typedef. */
645
646 /*
647 * Check features in case they end up defining any.
648 */
649 RT_ZERO(Caps);
650 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeFeatures, &Caps, sizeof(Caps));
651 if (FAILED(hrc))
652 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
653 "WHvGetCapability/WHvCapabilityCodeFeatures failed: %Rhrc (Last=%#x/%u)",
654 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
655 if (Caps.Features.AsUINT64 & ~(uint64_t)0)
656 LogRel(("NEM: Warning! Unknown feature definitions: %#RX64\n", Caps.Features.AsUINT64));
657 /** @todo RECHECK: WHV_CAPABILITY_FEATURES typedef. */
658
659 /*
660 * Check supported exception exit bitmap bits.
661 * We don't currently require this, so we just log failure.
662 */
663 RT_ZERO(Caps);
664 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeExceptionExitBitmap, &Caps, sizeof(Caps));
665 if (SUCCEEDED(hrc))
666 LogRel(("NEM: Supported exception exit bitmap: %#RX64\n", Caps.ExceptionExitBitmap));
667 else
668 LogRel(("NEM: Warning! WHvGetCapability/WHvCapabilityCodeExceptionExitBitmap failed: %Rhrc (Last=%#x/%u)",
669 hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
670
671 /*
672 * Check that the CPU vendor is supported.
673 */
674 RT_ZERO(Caps);
675 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorVendor, &Caps, sizeof(Caps));
676 if (FAILED(hrc))
677 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
678 "WHvGetCapability/WHvCapabilityCodeProcessorVendor failed: %Rhrc (Last=%#x/%u)",
679 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
680 switch (Caps.ProcessorVendor)
681 {
682 /** @todo RECHECK: WHV_PROCESSOR_VENDOR typedef. */
683 case WHvProcessorVendorIntel:
684 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d - Intel", Caps.ProcessorVendor);
685 pVM->nem.s.enmCpuVendor = CPUMCPUVENDOR_INTEL;
686 break;
687 case WHvProcessorVendorAmd:
688 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d - AMD", Caps.ProcessorVendor);
689 pVM->nem.s.enmCpuVendor = CPUMCPUVENDOR_AMD;
690 break;
691 default:
692 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d", Caps.ProcessorVendor);
693 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Unknown processor vendor: %d", Caps.ProcessorVendor);
694 }
695
696 /*
697 * CPU features, guessing these are virtual CPU features?
698 */
699 RT_ZERO(Caps);
700 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorFeatures, &Caps, sizeof(Caps));
701 if (FAILED(hrc))
702 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
703 "WHvGetCapability/WHvCapabilityCodeProcessorFeatures failed: %Rhrc (Last=%#x/%u)",
704 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
705 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorFeatures", "%'#018RX64", Caps.ProcessorFeatures.AsUINT64);
706#define NEM_LOG_REL_CPU_FEATURE(a_Field) NEM_LOG_REL_CAP_SUB(#a_Field, Caps.ProcessorFeatures.a_Field)
707 NEM_LOG_REL_CPU_FEATURE(Sse3Support);
708 NEM_LOG_REL_CPU_FEATURE(LahfSahfSupport);
709 NEM_LOG_REL_CPU_FEATURE(Ssse3Support);
710 NEM_LOG_REL_CPU_FEATURE(Sse4_1Support);
711 NEM_LOG_REL_CPU_FEATURE(Sse4_2Support);
712 NEM_LOG_REL_CPU_FEATURE(Sse4aSupport);
713 NEM_LOG_REL_CPU_FEATURE(XopSupport);
714 NEM_LOG_REL_CPU_FEATURE(PopCntSupport);
715 NEM_LOG_REL_CPU_FEATURE(Cmpxchg16bSupport);
716 NEM_LOG_REL_CPU_FEATURE(Altmovcr8Support);
717 NEM_LOG_REL_CPU_FEATURE(LzcntSupport);
718 NEM_LOG_REL_CPU_FEATURE(MisAlignSseSupport);
719 NEM_LOG_REL_CPU_FEATURE(MmxExtSupport);
720 NEM_LOG_REL_CPU_FEATURE(Amd3DNowSupport);
721 NEM_LOG_REL_CPU_FEATURE(ExtendedAmd3DNowSupport);
722 NEM_LOG_REL_CPU_FEATURE(Page1GbSupport);
723 NEM_LOG_REL_CPU_FEATURE(AesSupport);
724 NEM_LOG_REL_CPU_FEATURE(PclmulqdqSupport);
725 NEM_LOG_REL_CPU_FEATURE(PcidSupport);
726 NEM_LOG_REL_CPU_FEATURE(Fma4Support);
727 NEM_LOG_REL_CPU_FEATURE(F16CSupport);
728 NEM_LOG_REL_CPU_FEATURE(RdRandSupport);
729 NEM_LOG_REL_CPU_FEATURE(RdWrFsGsSupport);
730 NEM_LOG_REL_CPU_FEATURE(SmepSupport);
731 NEM_LOG_REL_CPU_FEATURE(EnhancedFastStringSupport);
732 NEM_LOG_REL_CPU_FEATURE(Bmi1Support);
733 NEM_LOG_REL_CPU_FEATURE(Bmi2Support);
734 /* two reserved bits here, see below */
735 NEM_LOG_REL_CPU_FEATURE(MovbeSupport);
736 NEM_LOG_REL_CPU_FEATURE(Npiep1Support);
737 NEM_LOG_REL_CPU_FEATURE(DepX87FPUSaveSupport);
738 NEM_LOG_REL_CPU_FEATURE(RdSeedSupport);
739 NEM_LOG_REL_CPU_FEATURE(AdxSupport);
740 NEM_LOG_REL_CPU_FEATURE(IntelPrefetchSupport);
741 NEM_LOG_REL_CPU_FEATURE(SmapSupport);
742 NEM_LOG_REL_CPU_FEATURE(HleSupport);
743 NEM_LOG_REL_CPU_FEATURE(RtmSupport);
744 NEM_LOG_REL_CPU_FEATURE(RdtscpSupport);
745 NEM_LOG_REL_CPU_FEATURE(ClflushoptSupport);
746 NEM_LOG_REL_CPU_FEATURE(ClwbSupport);
747 NEM_LOG_REL_CPU_FEATURE(ShaSupport);
748 NEM_LOG_REL_CPU_FEATURE(X87PointersSavedSupport);
749#undef NEM_LOG_REL_CPU_FEATURE
750 if (Caps.ProcessorFeatures.AsUINT64 & (~(RT_BIT_64(43) - 1) | RT_BIT_64(27) | RT_BIT_64(28)))
751 LogRel(("NEM: Warning! Unknown CPU features: %#RX64\n", Caps.ProcessorFeatures.AsUINT64));
752 pVM->nem.s.uCpuFeatures.u64 = Caps.ProcessorFeatures.AsUINT64;
753 /** @todo RECHECK: WHV_PROCESSOR_FEATURES typedef. */
754
755 /*
756 * The cache line flush size.
757 */
758 RT_ZERO(Caps);
759 hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorClFlushSize, &Caps, sizeof(Caps));
760 if (FAILED(hrc))
761 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
762 "WHvGetCapability/WHvCapabilityCodeProcessorClFlushSize failed: %Rhrc (Last=%#x/%u)",
763 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
764 NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorClFlushSize", "2^%u", Caps.ProcessorClFlushSize);
765 if (Caps.ProcessorClFlushSize < 8 && Caps.ProcessorClFlushSize > 9)
766 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Unsupported cache line flush size: %u", Caps.ProcessorClFlushSize);
767 pVM->nem.s.cCacheLineFlushShift = Caps.ProcessorClFlushSize;
768
769 /*
770 * See if they've added more properties that we're not aware of.
771 */
772 /** @todo RECHECK: WHV_CAPABILITY_CODE typedef. */
773 if (!IsDebuggerPresent()) /* Too noisy when in debugger, so skip. */
774 {
775 static const struct
776 {
777 uint32_t iMin, iMax; } s_aUnknowns[] =
778 {
779 { 0x0004, 0x000f },
780 { 0x1003, 0x100f },
781 { 0x2000, 0x200f },
782 { 0x3000, 0x300f },
783 { 0x4000, 0x400f },
784 };
785 for (uint32_t j = 0; j < RT_ELEMENTS(s_aUnknowns); j++)
786 for (uint32_t i = s_aUnknowns[j].iMin; i <= s_aUnknowns[j].iMax; i++)
787 {
788 RT_ZERO(Caps);
789 hrc = WHvGetCapabilityWrapper((WHV_CAPABILITY_CODE)i, &Caps, sizeof(Caps));
790 if (SUCCEEDED(hrc))
791 LogRel(("NEM: Warning! Unknown capability %#x returning: %.*Rhxs\n", i, sizeof(Caps), &Caps));
792 }
793 }
794
795 /*
796 * For proper operation, we require CPUID exits.
797 */
798 if (!pVM->nem.s.fExtendedCpuIdExit)
799 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Missing required extended CPUID exit support");
800 if (!pVM->nem.s.fExtendedMsrExit)
801 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Missing required extended MSR exit support");
802 if (!pVM->nem.s.fExtendedXcptExit)
803 return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Missing required extended exception exit support");
804
805#undef NEM_LOG_REL_CAP_EX
806#undef NEM_LOG_REL_CAP_SUB_EX
807#undef NEM_LOG_REL_CAP_SUB
808 return VINF_SUCCESS;
809}
810
811#ifdef LOG_ENABLED
812
813/**
814 * Used to fill in g_IoCtlGetHvPartitionId.
815 */
816static NTSTATUS WINAPI
817nemR3WinIoctlDetector_GetHvPartitionId(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
818 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
819 PVOID pvOutput, ULONG cbOutput)
820{
821 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
822 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
823 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
824 AssertLogRelMsgReturn(cbInput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
825 RT_NOREF(pvInput);
826
827 AssertLogRelMsgReturn(RT_VALID_PTR(pvOutput), ("pvOutput=%p\n", pvOutput), STATUS_INVALID_PARAMETER_9);
828 AssertLogRelMsgReturn(cbOutput == sizeof(HV_PARTITION_ID), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
829 *(HV_PARTITION_ID *)pvOutput = NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID;
830
831 g_IoCtlGetHvPartitionId.cbInput = cbInput;
832 g_IoCtlGetHvPartitionId.cbOutput = cbOutput;
833 g_IoCtlGetHvPartitionId.uFunction = uFunction;
834
835 return STATUS_SUCCESS;
836}
837
838
839/**
840 * Used to fill in g_IoCtlGetHvPartitionId.
841 */
842static NTSTATUS WINAPI
843nemR3WinIoctlDetector_GetPartitionProperty(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
844 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
845 PVOID pvOutput, ULONG cbOutput)
846{
847 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
848 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
849 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
850 AssertLogRelMsgReturn(cbInput == sizeof(VID_PARTITION_PROPERTY_CODE), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
851 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
852 AssertLogRelMsgReturn(*(VID_PARTITION_PROPERTY_CODE *)pvInput == NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_PROPERTY_CODE,
853 ("*pvInput=%#x, expected %#x\n", *(HV_PARTITION_PROPERTY_CODE *)pvInput,
854 NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_PROPERTY_CODE), STATUS_INVALID_PARAMETER_9);
855 AssertLogRelMsgReturn(RT_VALID_PTR(pvOutput), ("pvOutput=%p\n", pvOutput), STATUS_INVALID_PARAMETER_9);
856 AssertLogRelMsgReturn(cbOutput == sizeof(HV_PARTITION_PROPERTY), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
857 *(HV_PARTITION_PROPERTY *)pvOutput = NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_PROPERTY_VALUE;
858
859 g_IoCtlGetPartitionProperty.cbInput = cbInput;
860 g_IoCtlGetPartitionProperty.cbOutput = cbOutput;
861 g_IoCtlGetPartitionProperty.uFunction = uFunction;
862
863 return STATUS_SUCCESS;
864}
865
866
867/**
868 * Used to fill in g_IoCtlStartVirtualProcessor.
869 */
870static NTSTATUS WINAPI
871nemR3WinIoctlDetector_StartVirtualProcessor(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
872 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
873 PVOID pvOutput, ULONG cbOutput)
874{
875 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
876 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
877 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
878 AssertLogRelMsgReturn(cbInput == sizeof(HV_VP_INDEX), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
879 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
880 AssertLogRelMsgReturn(*(HV_VP_INDEX *)pvInput == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
881 ("*piCpu=%u\n", *(HV_VP_INDEX *)pvInput), STATUS_INVALID_PARAMETER_9);
882 AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
883 RT_NOREF(pvOutput);
884
885 g_IoCtlStartVirtualProcessor.cbInput = cbInput;
886 g_IoCtlStartVirtualProcessor.cbOutput = cbOutput;
887 g_IoCtlStartVirtualProcessor.uFunction = uFunction;
888
889 return STATUS_SUCCESS;
890}
891
892
893/**
894 * Used to fill in g_IoCtlStartVirtualProcessor.
895 */
896static NTSTATUS WINAPI
897nemR3WinIoctlDetector_StopVirtualProcessor(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
898 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
899 PVOID pvOutput, ULONG cbOutput)
900{
901 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
902 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
903 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
904 AssertLogRelMsgReturn(cbInput == sizeof(HV_VP_INDEX), ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_8);
905 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
906 AssertLogRelMsgReturn(*(HV_VP_INDEX *)pvInput == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
907 ("*piCpu=%u\n", *(HV_VP_INDEX *)pvInput), STATUS_INVALID_PARAMETER_9);
908 AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
909 RT_NOREF(pvOutput);
910
911 g_IoCtlStopVirtualProcessor.cbInput = cbInput;
912 g_IoCtlStopVirtualProcessor.cbOutput = cbOutput;
913 g_IoCtlStopVirtualProcessor.uFunction = uFunction;
914
915 return STATUS_SUCCESS;
916}
917
918
919/**
920 * Used to fill in g_IoCtlMessageSlotHandleAndGetNext
921 */
922static NTSTATUS WINAPI
923nemR3WinIoctlDetector_MessageSlotHandleAndGetNext(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
924 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
925 PVOID pvOutput, ULONG cbOutput)
926{
927 AssertLogRelMsgReturn(hFile == NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, ("hFile=%p\n", hFile), STATUS_INVALID_PARAMETER_1);
928 RT_NOREF(hEvt); RT_NOREF(pfnApcCallback); RT_NOREF(pvApcCtx);
929 AssertLogRelMsgReturn(RT_VALID_PTR(pIos), ("pIos=%p\n", pIos), STATUS_INVALID_PARAMETER_5);
930
931 if (g_uBuildNo >= 17758)
932 {
933 /* No timeout since about build 17758, it's now always an infinite wait. So, a somewhat compatible change. */
934 AssertLogRelMsgReturn(cbInput == RT_UOFFSETOF(VID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT, cMillies),
935 ("cbInput=%#x\n", cbInput),
936 STATUS_INVALID_PARAMETER_8);
937 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
938 PCVID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT pVidIn = (PCVID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT)pvInput;
939 AssertLogRelMsgReturn( pVidIn->iCpu == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX
940 && pVidIn->fFlags == VID_MSHAGN_F_HANDLE_MESSAGE,
941 ("iCpu=%u fFlags=%#x cMillies=%#x\n", pVidIn->iCpu, pVidIn->fFlags, pVidIn->cMillies),
942 STATUS_INVALID_PARAMETER_9);
943 AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
944 }
945 else
946 {
947 AssertLogRelMsgReturn(cbInput == sizeof(VID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT), ("cbInput=%#x\n", cbInput),
948 STATUS_INVALID_PARAMETER_8);
949 AssertLogRelMsgReturn(RT_VALID_PTR(pvInput), ("pvInput=%p\n", pvInput), STATUS_INVALID_PARAMETER_9);
950 PCVID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT pVidIn = (PCVID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT)pvInput;
951 AssertLogRelMsgReturn( pVidIn->iCpu == NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX
952 && pVidIn->fFlags == VID_MSHAGN_F_HANDLE_MESSAGE
953 && pVidIn->cMillies == NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT,
954 ("iCpu=%u fFlags=%#x cMillies=%#x\n", pVidIn->iCpu, pVidIn->fFlags, pVidIn->cMillies),
955 STATUS_INVALID_PARAMETER_9);
956 AssertLogRelMsgReturn(cbOutput == 0, ("cbInput=%#x\n", cbInput), STATUS_INVALID_PARAMETER_10);
957 RT_NOREF(pvOutput);
958 }
959
960 g_IoCtlMessageSlotHandleAndGetNext.cbInput = cbInput;
961 g_IoCtlMessageSlotHandleAndGetNext.cbOutput = cbOutput;
962 g_IoCtlMessageSlotHandleAndGetNext.uFunction = uFunction;
963
964 return STATUS_SUCCESS;
965}
966
967/**
968 * Used to fill in what g_pIoCtlDetectForLogging points to.
969 */
970static NTSTATUS WINAPI nemR3WinIoctlDetector_ForLogging(HANDLE hFile, HANDLE hEvt, PIO_APC_ROUTINE pfnApcCallback, PVOID pvApcCtx,
971 PIO_STATUS_BLOCK pIos, ULONG uFunction, PVOID pvInput, ULONG cbInput,
972 PVOID pvOutput, ULONG cbOutput)
973{
974 RT_NOREF(hFile, hEvt, pfnApcCallback, pvApcCtx, pIos, pvInput, pvOutput);
975
976 g_pIoCtlDetectForLogging->cbInput = cbInput;
977 g_pIoCtlDetectForLogging->cbOutput = cbOutput;
978 g_pIoCtlDetectForLogging->uFunction = uFunction;
979
980 return STATUS_SUCCESS;
981}
982
983#endif /* LOG_ENABLED */
984
985/**
986 * Worker for nemR3NativeInit that detect I/O control function numbers for VID.
987 *
988 * We use the function numbers directly in ring-0 and to name functions when
989 * logging NtDeviceIoControlFile calls.
990 *
991 * @note We could alternatively do this by disassembling the respective
992 * functions, but hooking NtDeviceIoControlFile and making fake calls
993 * more easily provides the desired information.
994 *
995 * @returns VBox status code.
996 * @param pVM The cross context VM structure. Will set I/O
997 * control info members.
998 * @param pErrInfo Where to always return error info.
999 */
1000static int nemR3WinInitDiscoverIoControlProperties(PVM pVM, PRTERRINFO pErrInfo)
1001{
1002 RT_NOREF(pVM, pErrInfo);
1003
1004 /*
1005 * Probe the I/O control information for select VID APIs so we can use
1006 * them directly from ring-0 and better log them.
1007 *
1008 */
1009#ifdef LOG_ENABLED
1010 decltype(NtDeviceIoControlFile) * const pfnOrg = *g_ppfnVidNtDeviceIoControlFile;
1011
1012 /* VidGetHvPartitionId - must work due to our memory management. */
1013 BOOL fRet;
1014 if (g_pfnVidGetHvPartitionId)
1015 {
1016 HV_PARTITION_ID idHvPartition = HV_PARTITION_ID_INVALID;
1017 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_GetHvPartitionId;
1018 fRet = g_pfnVidGetHvPartitionId(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, &idHvPartition);
1019 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
1020 AssertReturn(fRet && idHvPartition == NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_ID && g_IoCtlGetHvPartitionId.uFunction != 0,
1021 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
1022 "Problem figuring out VidGetHvPartitionId: fRet=%u idHvPartition=%#x dwErr=%u",
1023 fRet, idHvPartition, GetLastError()) );
1024 LogRel(("NEM: VidGetHvPartitionId -> fun:%#x in:%#x out:%#x\n",
1025 g_IoCtlGetHvPartitionId.uFunction, g_IoCtlGetHvPartitionId.cbInput, g_IoCtlGetHvPartitionId.cbOutput));
1026 }
1027
1028 /* VidGetPartitionProperty - must work as it's fallback for VidGetHvPartitionId. */
1029 if (g_ppfnVidNtDeviceIoControlFile)
1030 {
1031 HV_PARTITION_PROPERTY uPropValue = ~NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_PROPERTY_VALUE;
1032 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_GetPartitionProperty;
1033 fRet = g_pfnVidGetPartitionProperty(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_PROPERTY_CODE,
1034 &uPropValue);
1035 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
1036 AssertReturn( fRet
1037 && uPropValue == NEM_WIN_IOCTL_DETECTOR_FAKE_PARTITION_PROPERTY_VALUE
1038 && g_IoCtlGetHvPartitionId.uFunction != 0,
1039 RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
1040 "Problem figuring out VidGetPartitionProperty: fRet=%u uPropValue=%#x dwErr=%u",
1041 fRet, uPropValue, GetLastError()) );
1042 LogRel(("NEM: VidGetPartitionProperty -> fun:%#x in:%#x out:%#x\n",
1043 g_IoCtlGetPartitionProperty.uFunction, g_IoCtlGetPartitionProperty.cbInput, g_IoCtlGetPartitionProperty.cbOutput));
1044 }
1045
1046 /* VidStartVirtualProcessor */
1047 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_StartVirtualProcessor;
1048 fRet = g_pfnVidStartVirtualProcessor(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
1049 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
1050 AssertStmt(fRet && g_IoCtlStartVirtualProcessor.uFunction != 0,
1051 RTERRINFO_LOG_REL_SET_F(pErrInfo, VERR_NEM_RING3_ONLY,
1052 "Problem figuring out VidStartVirtualProcessor: fRet=%u dwErr=%u", fRet, GetLastError()) );
1053 LogRel(("NEM: VidStartVirtualProcessor -> fun:%#x in:%#x out:%#x\n", g_IoCtlStartVirtualProcessor.uFunction,
1054 g_IoCtlStartVirtualProcessor.cbInput, g_IoCtlStartVirtualProcessor.cbOutput));
1055
1056 /* VidStopVirtualProcessor */
1057 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_StopVirtualProcessor;
1058 fRet = g_pfnVidStopVirtualProcessor(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
1059 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
1060 AssertStmt(fRet && g_IoCtlStopVirtualProcessor.uFunction != 0,
1061 RTERRINFO_LOG_REL_SET_F(pErrInfo, VERR_NEM_RING3_ONLY,
1062 "Problem figuring out VidStopVirtualProcessor: fRet=%u dwErr=%u", fRet, GetLastError()) );
1063 LogRel(("NEM: VidStopVirtualProcessor -> fun:%#x in:%#x out:%#x\n", g_IoCtlStopVirtualProcessor.uFunction,
1064 g_IoCtlStopVirtualProcessor.cbInput, g_IoCtlStopVirtualProcessor.cbOutput));
1065
1066 /* VidMessageSlotHandleAndGetNext */
1067 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_MessageSlotHandleAndGetNext;
1068 fRet = g_pfnVidMessageSlotHandleAndGetNext(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE,
1069 NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX, VID_MSHAGN_F_HANDLE_MESSAGE,
1070 NEM_WIN_IOCTL_DETECTOR_FAKE_TIMEOUT);
1071 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
1072 AssertStmt(fRet && g_IoCtlMessageSlotHandleAndGetNext.uFunction != 0,
1073 RTERRINFO_LOG_REL_SET_F(pErrInfo, VERR_NEM_RING3_ONLY,
1074 "Problem figuring out VidMessageSlotHandleAndGetNext: fRet=%u dwErr=%u",
1075 fRet, GetLastError()) );
1076 LogRel(("NEM: VidMessageSlotHandleAndGetNext -> fun:%#x in:%#x out:%#x\n",
1077 g_IoCtlMessageSlotHandleAndGetNext.uFunction, g_IoCtlMessageSlotHandleAndGetNext.cbInput,
1078 g_IoCtlMessageSlotHandleAndGetNext.cbOutput));
1079
1080 /* The following are only for logging: */
1081 union
1082 {
1083 VID_MAPPED_MESSAGE_SLOT MapSlot;
1084 HV_REGISTER_NAME Name;
1085 HV_REGISTER_VALUE Value;
1086 } uBuf;
1087
1088 /* VidMessageSlotMap */
1089 g_pIoCtlDetectForLogging = &g_IoCtlMessageSlotMap;
1090 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
1091 fRet = g_pfnVidMessageSlotMap(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, &uBuf.MapSlot, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX);
1092 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
1093 Assert(fRet);
1094 LogRel(("NEM: VidMessageSlotMap -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
1095 g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
1096
1097 /* VidGetVirtualProcessorState */
1098 uBuf.Name = HvRegisterExplicitSuspend;
1099 g_pIoCtlDetectForLogging = &g_IoCtlGetVirtualProcessorState;
1100 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
1101 fRet = g_pfnVidGetVirtualProcessorState(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
1102 &uBuf.Name, 1, &uBuf.Value);
1103 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
1104 Assert(fRet);
1105 LogRel(("NEM: VidGetVirtualProcessorState -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
1106 g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
1107
1108 /* VidSetVirtualProcessorState */
1109 uBuf.Name = HvRegisterExplicitSuspend;
1110 g_pIoCtlDetectForLogging = &g_IoCtlSetVirtualProcessorState;
1111 *g_ppfnVidNtDeviceIoControlFile = nemR3WinIoctlDetector_ForLogging;
1112 fRet = g_pfnVidSetVirtualProcessorState(NEM_WIN_IOCTL_DETECTOR_FAKE_HANDLE, NEM_WIN_IOCTL_DETECTOR_FAKE_VP_INDEX,
1113 &uBuf.Name, 1, &uBuf.Value);
1114 *g_ppfnVidNtDeviceIoControlFile = pfnOrg;
1115 Assert(fRet);
1116 LogRel(("NEM: VidSetVirtualProcessorState -> fun:%#x in:%#x out:%#x\n", g_pIoCtlDetectForLogging->uFunction,
1117 g_pIoCtlDetectForLogging->cbInput, g_pIoCtlDetectForLogging->cbOutput));
1118
1119 g_pIoCtlDetectForLogging = NULL;
1120#endif /* LOG_ENABLED */
1121
1122 return VINF_SUCCESS;
1123}
1124
1125
1126/**
1127 * Creates and sets up a Hyper-V (exo) partition.
1128 *
1129 * @returns VBox status code.
1130 * @param pVM The cross context VM structure.
1131 * @param pErrInfo Where to always return error info.
1132 */
1133static int nemR3WinInitCreatePartition(PVM pVM, PRTERRINFO pErrInfo)
1134{
1135 AssertReturn(!pVM->nem.s.hPartition, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
1136 AssertReturn(!pVM->nem.s.hPartitionDevice, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
1137
1138 /*
1139 * Create the partition.
1140 */
1141 WHV_PARTITION_HANDLE hPartition;
1142 HRESULT hrc = WHvCreatePartition(&hPartition);
1143 if (FAILED(hrc))
1144 return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "WHvCreatePartition failed with %Rhrc (Last=%#x/%u)",
1145 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1146
1147 int rc;
1148
1149 /*
1150 * Set partition properties, most importantly the CPU count.
1151 */
1152 /**
1153 * @todo Someone at Microsoft please explain another weird API:
1154 * - Why this API doesn't take the WHV_PARTITION_PROPERTY_CODE value as an
1155 * argument rather than as part of the struct. That is so weird if you've
1156 * used any other NT or windows API, including WHvGetCapability().
1157 * - Why use PVOID when WHV_PARTITION_PROPERTY is what's expected. We
1158 * technically only need 9 bytes for setting/getting
1159 * WHVPartitionPropertyCodeProcessorClFlushSize, but the API insists on 16. */
1160 WHV_PARTITION_PROPERTY Property;
1161 RT_ZERO(Property);
1162 Property.ProcessorCount = pVM->cCpus;
1163 hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorCount, &Property, sizeof(Property));
1164 if (SUCCEEDED(hrc))
1165 {
1166 RT_ZERO(Property);
1167 Property.ExtendedVmExits.X64CpuidExit = pVM->nem.s.fExtendedCpuIdExit; /** @todo Register fixed results and restrict cpuid exits */
1168 Property.ExtendedVmExits.X64MsrExit = pVM->nem.s.fExtendedMsrExit;
1169 Property.ExtendedVmExits.ExceptionExit = pVM->nem.s.fExtendedXcptExit;
1170 hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeExtendedVmExits, &Property, sizeof(Property));
1171 if (SUCCEEDED(hrc))
1172 {
1173 /*
1174 * We'll continue setup in nemR3NativeInitAfterCPUM.
1175 */
1176 pVM->nem.s.fCreatedEmts = false;
1177 pVM->nem.s.hPartition = hPartition;
1178 LogRel(("NEM: Created partition %p.\n", hPartition));
1179 return VINF_SUCCESS;
1180 }
1181
1182 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED,
1183 "Failed setting WHvPartitionPropertyCodeExtendedVmExits to %'#RX64: %Rhrc",
1184 Property.ExtendedVmExits.AsUINT64, hrc);
1185 }
1186 else
1187 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED,
1188 "Failed setting WHvPartitionPropertyCodeProcessorCount to %u: %Rhrc (Last=%#x/%u)",
1189 pVM->cCpus, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1190 WHvDeletePartition(hPartition);
1191
1192 Assert(!pVM->nem.s.hPartitionDevice);
1193 Assert(!pVM->nem.s.hPartition);
1194 return rc;
1195}
1196
1197
1198/**
1199 * Makes sure APIC and firmware will not allow X2APIC mode.
1200 *
1201 * This is rather ugly.
1202 *
1203 * @returns VBox status code
1204 * @param pVM The cross context VM structure.
1205 */
1206static int nemR3WinDisableX2Apic(PVM pVM)
1207{
1208 /*
1209 * First make sure the 'Mode' config value of the APIC isn't set to X2APIC.
1210 * This defaults to APIC, so no need to change unless it's X2APIC.
1211 */
1212 PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/Devices/apic/0/Config");
1213 if (pCfg)
1214 {
1215 uint8_t bMode = 0;
1216 int rc = CFGMR3QueryU8(pCfg, "Mode", &bMode);
1217 AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_CFGM_VALUE_NOT_FOUND, ("%Rrc\n", rc), rc);
1218 if (RT_SUCCESS(rc) && bMode == PDMAPICMODE_X2APIC)
1219 {
1220 LogRel(("NEM: Adjusting APIC configuration from X2APIC to APIC max mode. X2APIC is not supported by the WinHvPlatform API!\n"));
1221 LogRel(("NEM: Disable Hyper-V if you need X2APIC for your guests!\n"));
1222 rc = CFGMR3RemoveValue(pCfg, "Mode");
1223 rc = CFGMR3InsertInteger(pCfg, "Mode", PDMAPICMODE_APIC);
1224 AssertLogRelRCReturn(rc, rc);
1225 }
1226 }
1227
1228 /*
1229 * Now the firmwares.
1230 * These also defaults to APIC and only needs adjusting if configured to X2APIC (2).
1231 */
1232 static const char * const s_apszFirmwareConfigs[] =
1233 {
1234 "/Devices/efi/0/Config",
1235 "/Devices/pcbios/0/Config",
1236 };
1237 for (unsigned i = 0; i < RT_ELEMENTS(s_apszFirmwareConfigs); i++)
1238 {
1239 pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/Devices/APIC/0/Config");
1240 if (pCfg)
1241 {
1242 uint8_t bMode = 0;
1243 int rc = CFGMR3QueryU8(pCfg, "APIC", &bMode);
1244 AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_CFGM_VALUE_NOT_FOUND, ("%Rrc\n", rc), rc);
1245 if (RT_SUCCESS(rc) && bMode == 2)
1246 {
1247 LogRel(("NEM: Adjusting %s/Mode from 2 (X2APIC) to 1 (APIC).\n", s_apszFirmwareConfigs[i]));
1248 rc = CFGMR3RemoveValue(pCfg, "APIC");
1249 rc = CFGMR3InsertInteger(pCfg, "APIC", 1);
1250 AssertLogRelRCReturn(rc, rc);
1251 }
1252 }
1253 }
1254
1255 return VINF_SUCCESS;
1256}
1257
1258
1259/**
1260 * Try initialize the native API.
1261 *
1262 * This may only do part of the job, more can be done in
1263 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
1264 *
1265 * @returns VBox status code.
1266 * @param pVM The cross context VM structure.
1267 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
1268 * the latter we'll fail if we cannot initialize.
1269 * @param fForced Whether the HMForced flag is set and we should
1270 * fail if we cannot initialize.
1271 */
1272int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
1273{
1274 g_uBuildNo = RTSystemGetNtBuildNo();
1275
1276 /*
1277 * Some state init.
1278 */
1279#ifdef NEM_WIN_WITH_A20
1280 pVM->nem.s.fA20Enabled = true;
1281#endif
1282#if 0
1283 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1284 {
1285 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
1286 }
1287#endif
1288
1289 /*
1290 * Error state.
1291 * The error message will be non-empty on failure and 'rc' will be set too.
1292 */
1293 RTERRINFOSTATIC ErrInfo;
1294 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
1295 int rc = nemR3WinInitProbeAndLoad(fForced, pErrInfo);
1296 if (RT_SUCCESS(rc))
1297 {
1298 /*
1299 * Check the capabilties of the hypervisor, starting with whether it's present.
1300 */
1301 rc = nemR3WinInitCheckCapabilities(pVM, pErrInfo);
1302 if (RT_SUCCESS(rc))
1303 {
1304 /*
1305 * Discover the VID I/O control function numbers we need (for interception
1306 * only these days).
1307 */
1308 rc = nemR3WinInitDiscoverIoControlProperties(pVM, pErrInfo);
1309 if (RT_SUCCESS(rc))
1310 {
1311 /*
1312 * Create and initialize a partition.
1313 */
1314 rc = nemR3WinInitCreatePartition(pVM, pErrInfo);
1315 if (RT_SUCCESS(rc))
1316 {
1317 /*
1318 * Set ourselves as the execution engine and make config adjustments.
1319 */
1320 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
1321 Log(("NEM: Marked active!\n"));
1322 nemR3WinDisableX2Apic(pVM);
1323 nemR3DisableCpuIsaExt(pVM, "MONITOR"); /* MONITOR is not supported by Hyper-V (MWAIT is sometimes). */
1324 PGMR3EnableNemMode(pVM);
1325
1326 /*
1327 * Register release statistics
1328 */
1329 STAMR3Register(pVM, (void *)&pVM->nem.s.cMappedPages, STAMTYPE_U32, STAMVISIBILITY_ALWAYS,
1330 "/NEM/PagesCurrentlyMapped", STAMUNIT_PAGES, "Number guest pages currently mapped by the VM");
1331 STAMR3Register(pVM, (void *)&pVM->nem.s.StatMapPage, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS,
1332 "/NEM/PagesMapCalls", STAMUNIT_PAGES, "Calls to WHvMapGpaRange/HvCallMapGpaPages");
1333 STAMR3Register(pVM, (void *)&pVM->nem.s.StatMapPageFailed, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS,
1334 "/NEM/PagesMapFails", STAMUNIT_PAGES, "Calls to WHvMapGpaRange/HvCallMapGpaPages that failed");
1335 STAMR3Register(pVM, (void *)&pVM->nem.s.StatUnmapPage, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS,
1336 "/NEM/PagesUnmapCalls", STAMUNIT_PAGES, "Calls to WHvUnmapGpaRange/HvCallUnmapGpaPages");
1337 STAMR3Register(pVM, (void *)&pVM->nem.s.StatUnmapPageFailed, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS,
1338 "/NEM/PagesUnmapFails", STAMUNIT_PAGES, "Calls to WHvUnmapGpaRange/HvCallUnmapGpaPages that failed");
1339 STAMR3Register(pVM, &pVM->nem.s.StatProfMapGpaRange, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS,
1340 "/NEM/PagesMapGpaRange", STAMUNIT_TICKS_PER_CALL, "Profiling calls to WHvMapGpaRange for bigger stuff");
1341 STAMR3Register(pVM, &pVM->nem.s.StatProfUnmapGpaRange, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS,
1342 "/NEM/PagesUnmapGpaRange", STAMUNIT_TICKS_PER_CALL, "Profiling calls to WHvUnmapGpaRange for bigger stuff");
1343 STAMR3Register(pVM, &pVM->nem.s.StatProfMapGpaRangePage, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS,
1344 "/NEM/PagesMapGpaRangePage", STAMUNIT_TICKS_PER_CALL, "Profiling calls to WHvMapGpaRange for single pages");
1345 STAMR3Register(pVM, &pVM->nem.s.StatProfUnmapGpaRangePage, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS,
1346 "/NEM/PagesUnmapGpaRangePage", STAMUNIT_TICKS_PER_CALL, "Profiling calls to WHvUnmapGpaRange for single pages");
1347
1348 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1349 {
1350 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
1351 STAMR3RegisterF(pVM, &pNemCpu->StatExitPortIo, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of port I/O exits", "/NEM/CPU%u/ExitPortIo", idCpu);
1352 STAMR3RegisterF(pVM, &pNemCpu->StatExitMemUnmapped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of unmapped memory exits", "/NEM/CPU%u/ExitMemUnmapped", idCpu);
1353 STAMR3RegisterF(pVM, &pNemCpu->StatExitMemIntercept, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of intercepted memory exits", "/NEM/CPU%u/ExitMemIntercept", idCpu);
1354 STAMR3RegisterF(pVM, &pNemCpu->StatExitHalt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of HLT exits", "/NEM/CPU%u/ExitHalt", idCpu);
1355 STAMR3RegisterF(pVM, &pNemCpu->StatExitInterruptWindow, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of interrupt window exits", "/NEM/CPU%u/ExitInterruptWindow", idCpu);
1356 STAMR3RegisterF(pVM, &pNemCpu->StatExitCpuId, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of CPUID exits", "/NEM/CPU%u/ExitCpuId", idCpu);
1357 STAMR3RegisterF(pVM, &pNemCpu->StatExitMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of MSR access exits", "/NEM/CPU%u/ExitMsr", idCpu);
1358 STAMR3RegisterF(pVM, &pNemCpu->StatExitException, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of exception exits", "/NEM/CPU%u/ExitException", idCpu);
1359 STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionBp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #BP exits", "/NEM/CPU%u/ExitExceptionBp", idCpu);
1360 STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionDb, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #DB exits", "/NEM/CPU%u/ExitExceptionDb", idCpu);
1361 STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionGp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #GP exits", "/NEM/CPU%u/ExitExceptionGp", idCpu);
1362 STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionGpMesa, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #GP exits from mesa driver", "/NEM/CPU%u/ExitExceptionGpMesa", idCpu);
1363 STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionUd, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #UD exits", "/NEM/CPU%u/ExitExceptionUd", idCpu);
1364 STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionUdHandled, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of handled #UD exits", "/NEM/CPU%u/ExitExceptionUdHandled", idCpu);
1365 STAMR3RegisterF(pVM, &pNemCpu->StatExitUnrecoverable, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of unrecoverable exits", "/NEM/CPU%u/ExitUnrecoverable", idCpu);
1366 STAMR3RegisterF(pVM, &pNemCpu->StatGetMsgTimeout, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of get message timeouts/alerts", "/NEM/CPU%u/GetMsgTimeout", idCpu);
1367 STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuSuccess, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of successful CPU stops", "/NEM/CPU%u/StopCpuSuccess", idCpu);
1368 STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuPending, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pending CPU stops", "/NEM/CPU%u/StopCpuPending", idCpu);
1369 STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuPendingAlerts,STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pending CPU stop alerts", "/NEM/CPU%u/StopCpuPendingAlerts", idCpu);
1370 STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuPendingOdd, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of odd pending CPU stops (see code)", "/NEM/CPU%u/StopCpuPendingOdd", idCpu);
1371 STAMR3RegisterF(pVM, &pNemCpu->StatCancelChangedState, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel changed state", "/NEM/CPU%u/CancelChangedState", idCpu);
1372 STAMR3RegisterF(pVM, &pNemCpu->StatCancelAlertedThread, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel alerted EMT", "/NEM/CPU%u/CancelAlertedEMT", idCpu);
1373 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnFFPre, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pre execution FF breaks", "/NEM/CPU%u/BreakOnFFPre", idCpu);
1374 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnFFPost, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of post execution FF breaks", "/NEM/CPU%u/BreakOnFFPost", idCpu);
1375 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnCancel, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel execution breaks", "/NEM/CPU%u/BreakOnCancel", idCpu);
1376 STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnStatus, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of status code breaks", "/NEM/CPU%u/BreakOnStatus", idCpu);
1377 STAMR3RegisterF(pVM, &pNemCpu->StatImportOnDemand, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of on-demand state imports", "/NEM/CPU%u/ImportOnDemand", idCpu);
1378 STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of state imports on loop return", "/NEM/CPU%u/ImportOnReturn", idCpu);
1379 STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturnSkipped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of skipped state imports on loop return", "/NEM/CPU%u/ImportOnReturnSkipped", idCpu);
1380 STAMR3RegisterF(pVM, &pNemCpu->StatQueryCpuTick, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TSC queries", "/NEM/CPU%u/QueryCpuTick", idCpu);
1381 }
1382
1383 if (!SUPR3IsDriverless())
1384 {
1385 PUVM pUVM = pVM->pUVM;
1386 STAMR3RegisterRefresh(pUVM, &pVM->nem.s.R0Stats.cPagesAvailable, STAMTYPE_U64, STAMVISIBILITY_ALWAYS,
1387 STAMUNIT_PAGES, STAM_REFRESH_GRP_NEM, "Free pages available to the hypervisor",
1388 "/NEM/R0Stats/cPagesAvailable");
1389 STAMR3RegisterRefresh(pUVM, &pVM->nem.s.R0Stats.cPagesInUse, STAMTYPE_U64, STAMVISIBILITY_ALWAYS,
1390 STAMUNIT_PAGES, STAM_REFRESH_GRP_NEM, "Pages in use by hypervisor",
1391 "/NEM/R0Stats/cPagesInUse");
1392 }
1393
1394 }
1395 }
1396 }
1397 }
1398
1399 /*
1400 * We only fail if in forced mode, otherwise just log the complaint and return.
1401 */
1402 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
1403 if ( (fForced || !fFallback)
1404 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
1405 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
1406
1407 if (RTErrInfoIsSet(pErrInfo))
1408 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
1409 return VINF_SUCCESS;
1410}
1411
1412
1413/**
1414 * This is called after CPUMR3Init is done.
1415 *
1416 * @returns VBox status code.
1417 * @param pVM The VM handle..
1418 */
1419int nemR3NativeInitAfterCPUM(PVM pVM)
1420{
1421 /*
1422 * Validate sanity.
1423 */
1424 WHV_PARTITION_HANDLE hPartition = pVM->nem.s.hPartition;
1425 AssertReturn(hPartition != NULL, VERR_WRONG_ORDER);
1426 AssertReturn(!pVM->nem.s.hPartitionDevice, VERR_WRONG_ORDER);
1427 AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
1428 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
1429
1430 /*
1431 * Continue setting up the partition now that we've got most of the CPUID feature stuff.
1432 */
1433 WHV_PARTITION_PROPERTY Property;
1434 HRESULT hrc;
1435
1436#if 0
1437 /* Not sure if we really need to set the vendor.
1438 Update: Apparently we don't. WHvPartitionPropertyCodeProcessorVendor was removed in 17110. */
1439 RT_ZERO(Property);
1440 Property.ProcessorVendor = pVM->nem.s.enmCpuVendor == CPUMCPUVENDOR_AMD ? WHvProcessorVendorAmd
1441 : WHvProcessorVendorIntel;
1442 hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorVendor, &Property, sizeof(Property));
1443 if (FAILED(hrc))
1444 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1445 "Failed to set WHvPartitionPropertyCodeProcessorVendor to %u: %Rhrc (Last=%#x/%u)",
1446 Property.ProcessorVendor, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1447#endif
1448
1449 /* Not sure if we really need to set the cache line flush size. */
1450 RT_ZERO(Property);
1451 Property.ProcessorClFlushSize = pVM->nem.s.cCacheLineFlushShift;
1452 hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorClFlushSize, &Property, sizeof(Property));
1453 if (FAILED(hrc))
1454 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1455 "Failed to set WHvPartitionPropertyCodeProcessorClFlushSize to %u: %Rhrc (Last=%#x/%u)",
1456 pVM->nem.s.cCacheLineFlushShift, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1457
1458 /* Intercept #DB, #BP and #UD exceptions. */
1459 RT_ZERO(Property);
1460 Property.ExceptionExitBitmap = RT_BIT_64(WHvX64ExceptionTypeDebugTrapOrFault)
1461 | RT_BIT_64(WHvX64ExceptionTypeBreakpointTrap)
1462 | RT_BIT_64(WHvX64ExceptionTypeInvalidOpcodeFault);
1463
1464 /* Intercept #GP to workaround the buggy mesa vmwgfx driver. */
1465 PVMCPU pVCpu = pVM->apCpusR3[0]; /** @todo In theory per vCPU, in practice same for all. */
1466 if (pVCpu->nem.s.fTrapXcptGpForLovelyMesaDrv)
1467 Property.ExceptionExitBitmap |= RT_BIT_64(WHvX64ExceptionTypeGeneralProtectionFault);
1468
1469 hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeExceptionExitBitmap, &Property, sizeof(Property));
1470 if (FAILED(hrc))
1471 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1472 "Failed to set WHvPartitionPropertyCodeExceptionExitBitmap to %#RX64: %Rhrc (Last=%#x/%u)",
1473 Property.ExceptionExitBitmap, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1474
1475
1476 /*
1477 * Sync CPU features with CPUM.
1478 */
1479 /** @todo sync CPU features with CPUM. */
1480
1481 /* Set the partition property. */
1482 RT_ZERO(Property);
1483 Property.ProcessorFeatures.AsUINT64 = pVM->nem.s.uCpuFeatures.u64;
1484 hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorFeatures, &Property, sizeof(Property));
1485 if (FAILED(hrc))
1486 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1487 "Failed to set WHvPartitionPropertyCodeProcessorFeatures to %'#RX64: %Rhrc (Last=%#x/%u)",
1488 pVM->nem.s.uCpuFeatures.u64, hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1489
1490 /*
1491 * Set up the partition.
1492 *
1493 * Seems like this is where the partition is actually instantiated and we get
1494 * a handle to it.
1495 */
1496 hrc = WHvSetupPartition(hPartition);
1497 if (FAILED(hrc))
1498 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1499 "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)",
1500 hrc, RTNtLastStatusValue(), RTNtLastErrorValue());
1501
1502 /*
1503 * Hysterical raisins: Get the handle (could also fish this out via VID.DLL NtDeviceIoControlFile intercepting).
1504 */
1505 HANDLE hPartitionDevice;
1506 __try
1507 {
1508 hPartitionDevice = ((HANDLE *)hPartition)[1];
1509 if (!hPartitionDevice)
1510 hPartitionDevice = INVALID_HANDLE_VALUE;
1511 }
1512 __except(EXCEPTION_EXECUTE_HANDLER)
1513 {
1514 hrc = GetExceptionCode();
1515 hPartitionDevice = INVALID_HANDLE_VALUE;
1516 }
1517
1518 /* Test the handle. */
1519 HV_PARTITION_PROPERTY uValue = 0;
1520 if ( g_pfnVidGetPartitionProperty
1521 && hPartitionDevice != INVALID_HANDLE_VALUE
1522 && !g_pfnVidGetPartitionProperty(hPartitionDevice, HvPartitionPropertyProcessorVendor, &uValue))
1523 hPartitionDevice = INVALID_HANDLE_VALUE;
1524 LogRel(("NEM: HvPartitionPropertyProcessorVendor=%#llx (%lld)\n", uValue, uValue));
1525
1526 /*
1527 * More hysterical rasins: Get the partition ID if we can.
1528 */
1529 HV_PARTITION_ID idHvPartition = HV_PARTITION_ID_INVALID;
1530 if ( g_pfnVidGetHvPartitionId
1531 && hPartitionDevice != INVALID_HANDLE_VALUE
1532 && !g_pfnVidGetHvPartitionId(hPartitionDevice, &idHvPartition))
1533 {
1534 idHvPartition = HV_PARTITION_ID_INVALID;
1535 Log(("NEM: VidGetHvPartitionId failed: %#x\n", GetLastError()));
1536 }
1537 pVM->nem.s.hPartitionDevice = hPartitionDevice;
1538
1539 /*
1540 * Setup the EMTs.
1541 */
1542 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1543 {
1544 pVCpu = pVM->apCpusR3[idCpu];
1545
1546 hrc = WHvCreateVirtualProcessor(hPartition, idCpu, 0 /*fFlags*/);
1547 if (FAILED(hrc))
1548 {
1549 NTSTATUS const rcNtLast = RTNtLastStatusValue();
1550 DWORD const dwErrLast = RTNtLastErrorValue();
1551 while (idCpu-- > 0)
1552 {
1553 HRESULT hrc2 = WHvDeleteVirtualProcessor(hPartition, idCpu);
1554 AssertLogRelMsg(SUCCEEDED(hrc2), ("WHvDeleteVirtualProcessor(%p, %u) -> %Rhrc (Last=%#x/%u)\n",
1555 hPartition, idCpu, hrc2, RTNtLastStatusValue(),
1556 RTNtLastErrorValue()));
1557 }
1558 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
1559 "Call to WHvCreateVirtualProcessor failed: %Rhrc (Last=%#x/%u)", hrc, rcNtLast, dwErrLast);
1560 }
1561 }
1562 pVM->nem.s.fCreatedEmts = true;
1563
1564 LogRel(("NEM: Successfully set up partition (device handle %p, partition ID %#llx)\n", hPartitionDevice, idHvPartition));
1565
1566 /*
1567 * Any hyper-v statistics we can get at now? HvCallMapStatsPage isn't accessible any more.
1568 */
1569 /** @todo stats */
1570
1571 /*
1572 * Adjust features.
1573 *
1574 * Note! We've already disabled X2APIC and MONITOR/MWAIT via CFGM during
1575 * the first init call.
1576 */
1577
1578 return VINF_SUCCESS;
1579}
1580
1581
1582int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1583{
1584 //BOOL fRet = SetThreadPriority(GetCurrentThread(), 0);
1585 //AssertLogRel(fRet);
1586
1587 NOREF(pVM); NOREF(enmWhat);
1588 return VINF_SUCCESS;
1589}
1590
1591
1592int nemR3NativeTerm(PVM pVM)
1593{
1594 /*
1595 * Delete the partition.
1596 */
1597 WHV_PARTITION_HANDLE hPartition = pVM->nem.s.hPartition;
1598 pVM->nem.s.hPartition = NULL;
1599 pVM->nem.s.hPartitionDevice = NULL;
1600 if (hPartition != NULL)
1601 {
1602 VMCPUID idCpu = pVM->nem.s.fCreatedEmts ? pVM->cCpus : 0;
1603 LogRel(("NEM: Destroying partition %p with its %u VCpus...\n", hPartition, idCpu));
1604 while (idCpu-- > 0)
1605 {
1606 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1607 pVCpu->nem.s.pvMsgSlotMapping = NULL;
1608 HRESULT hrc = WHvDeleteVirtualProcessor(hPartition, idCpu);
1609 AssertLogRelMsg(SUCCEEDED(hrc), ("WHvDeleteVirtualProcessor(%p, %u) -> %Rhrc (Last=%#x/%u)\n",
1610 hPartition, idCpu, hrc, RTNtLastStatusValue(),
1611 RTNtLastErrorValue()));
1612 }
1613 WHvDeletePartition(hPartition);
1614 }
1615 pVM->nem.s.fCreatedEmts = false;
1616 return VINF_SUCCESS;
1617}
1618
1619
1620/**
1621 * VM reset notification.
1622 *
1623 * @param pVM The cross context VM structure.
1624 */
1625void nemR3NativeReset(PVM pVM)
1626{
1627#if 0
1628 /* Unfix the A20 gate. */
1629 pVM->nem.s.fA20Fixed = false;
1630#else
1631 RT_NOREF(pVM);
1632#endif
1633}
1634
1635
1636/**
1637 * Reset CPU due to INIT IPI or hot (un)plugging.
1638 *
1639 * @param pVCpu The cross context virtual CPU structure of the CPU being
1640 * reset.
1641 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
1642 */
1643void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
1644{
1645#ifdef NEM_WIN_WITH_A20
1646 /* Lock the A20 gate if INIT IPI, make sure it's enabled. */
1647 if (fInitIpi && pVCpu->idCpu > 0)
1648 {
1649 PVM pVM = pVCpu->CTX_SUFF(pVM);
1650 if (!pVM->nem.s.fA20Enabled)
1651 nemR3NativeNotifySetA20(pVCpu, true);
1652 pVM->nem.s.fA20Enabled = true;
1653 pVM->nem.s.fA20Fixed = true;
1654 }
1655#else
1656 RT_NOREF(pVCpu, fInitIpi);
1657#endif
1658}
1659
1660
1661VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
1662{
1663 return nemHCWinRunGC(pVM, pVCpu);
1664}
1665
1666
1667VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
1668{
1669 Assert(VM_IS_NEM_ENABLED(pVM));
1670
1671#ifndef NEM_WIN_WITH_A20
1672 /*
1673 * Only execute when the A20 gate is enabled because this lovely Hyper-V
1674 * blackbox does not seem to have any way to enable or disable A20.
1675 */
1676 RT_NOREF(pVM);
1677 return PGMPhysIsA20Enabled(pVCpu);
1678#else
1679 RT_NOREF(pVM, pVCpu);
1680 return true;
1681#endif
1682}
1683
1684
1685bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
1686{
1687 NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
1688 return false;
1689}
1690
1691
1692void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
1693{
1694 Log8(("nemR3NativeNotifyFF: canceling %u\n", pVCpu->idCpu));
1695 HRESULT hrc = WHvCancelRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, 0);
1696 AssertMsg(SUCCEEDED(hrc), ("WHvCancelRunVirtualProcessor -> hrc=%Rhrc\n", hrc));
1697 RT_NOREF_PV(hrc);
1698 RT_NOREF_PV(fFlags);
1699}
1700
1701
1702DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop)
1703{
1704 RT_NOREF(pVM, fUseDebugLoop);
1705 return false;
1706}
1707
1708
1709DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop)
1710{
1711 RT_NOREF(pVM, pVCpu, fUseDebugLoop);
1712 return false;
1713}
1714
1715
1716DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
1717{
1718 PGMPAGEMAPLOCK Lock;
1719 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
1720 if (RT_SUCCESS(rc))
1721 PGMPhysReleasePageMappingLock(pVM, &Lock);
1722 return rc;
1723}
1724
1725
1726DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
1727{
1728 PGMPAGEMAPLOCK Lock;
1729 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
1730 if (RT_SUCCESS(rc))
1731 PGMPhysReleasePageMappingLock(pVM, &Lock);
1732 return rc;
1733}
1734
1735
1736VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
1737 uint8_t *pu2State, uint32_t *puNemRange)
1738{
1739 Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p pu2State=%p (%d) puNemRange=%p (%d)\n",
1740 GCPhys, cb, pvR3, pu2State, pu2State, puNemRange, *puNemRange));
1741
1742 *pu2State = UINT8_MAX;
1743 RT_NOREF(puNemRange);
1744
1745 if (pvR3)
1746 {
1747 STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRange, a);
1748 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvR3, GCPhys, cb,
1749 WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagWrite | WHvMapGpaRangeFlagExecute);
1750 STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRange, a);
1751 if (SUCCEEDED(hrc))
1752 *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
1753 else
1754 {
1755 LogRel(("NEMR3NotifyPhysRamRegister: GCPhys=%RGp LB %RGp pvR3=%p hrc=%Rhrc (%#x) Last=%#x/%u\n",
1756 GCPhys, cb, pvR3, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
1757 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
1758 return VERR_NEM_MAP_PAGES_FAILED;
1759 }
1760 }
1761 return VINF_SUCCESS;
1762}
1763
1764
1765VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
1766{
1767 RT_NOREF(pVM);
1768 return g_pfnWHvQueryGpaRangeDirtyBitmap != NULL;
1769}
1770
1771
1772VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
1773 void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
1774{
1775 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d) puNemRange=%p (%#x)\n",
1776 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State, puNemRange, puNemRange ? *puNemRange : UINT32_MAX));
1777 RT_NOREF(puNemRange);
1778
1779 /*
1780 * Unmap the RAM we're replacing.
1781 */
1782 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
1783 {
1784 STAM_REL_PROFILE_START(&pVM->nem.s.StatProfUnmapGpaRange, a);
1785 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, cb);
1786 STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfUnmapGpaRange, a);
1787 if (SUCCEEDED(hrc))
1788 { /* likely */ }
1789 else if (pvMmio2)
1790 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> hrc=%Rhrc (%#x) Last=%#x/%u (ignored)\n",
1791 GCPhys, cb, fFlags, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
1792 else
1793 {
1794 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> hrc=%Rhrc (%#x) Last=%#x/%u\n",
1795 GCPhys, cb, fFlags, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
1796 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
1797 return VERR_NEM_UNMAP_PAGES_FAILED;
1798 }
1799 }
1800
1801 /*
1802 * Map MMIO2 if any.
1803 */
1804 if (pvMmio2)
1805 {
1806 Assert(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2);
1807 WHV_MAP_GPA_RANGE_FLAGS fWHvFlags = WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagWrite | WHvMapGpaRangeFlagExecute;
1808 if ((fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES) && g_pfnWHvQueryGpaRangeDirtyBitmap)
1809 fWHvFlags |= WHvMapGpaRangeFlagTrackDirtyPages;
1810 STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRange, a);
1811 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvMmio2, GCPhys, cb, fWHvFlags);
1812 STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRange, a);
1813 if (SUCCEEDED(hrc))
1814 *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
1815 else
1816 {
1817 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x pvMmio2=%p fWHvFlags=%#x: Map -> hrc=%Rhrc (%#x) Last=%#x/%u\n",
1818 GCPhys, cb, fFlags, pvMmio2, fWHvFlags, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
1819 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
1820 return VERR_NEM_MAP_PAGES_FAILED;
1821 }
1822 }
1823 else
1824 {
1825 Assert(!(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2));
1826 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
1827 }
1828 RT_NOREF(pvRam);
1829 return VINF_SUCCESS;
1830}
1831
1832
1833VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
1834 void *pvRam, void *pvMmio2, uint32_t *puNemRange)
1835{
1836 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
1837 return VINF_SUCCESS;
1838}
1839
1840
1841VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
1842 void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
1843{
1844 int rc = VINF_SUCCESS;
1845 Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p uNemRange=%#x (%#x)\n",
1846 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
1847
1848 /*
1849 * Unmap the MMIO2 pages.
1850 */
1851 /** @todo If we implement aliasing (MMIO2 page aliased into MMIO range),
1852 * we may have more stuff to unmap even in case of pure MMIO... */
1853 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
1854 {
1855 STAM_REL_PROFILE_START(&pVM->nem.s.StatProfUnmapGpaRange, a);
1856 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, cb);
1857 STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfUnmapGpaRange, a);
1858 if (FAILED(hrc))
1859 {
1860 LogRel2(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> hrc=%Rhrc (%#x) Last=%#x/%u (ignored)\n",
1861 GCPhys, cb, fFlags, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
1862 rc = VERR_NEM_UNMAP_PAGES_FAILED;
1863 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
1864 }
1865 }
1866
1867 /*
1868 * Restore the RAM we replaced.
1869 */
1870 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
1871 {
1872 AssertPtr(pvRam);
1873 STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRange, a);
1874 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvRam, GCPhys, cb,
1875 WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagWrite | WHvMapGpaRangeFlagExecute);
1876 STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRange, a);
1877 if (SUCCEEDED(hrc))
1878 { /* likely */ }
1879 else
1880 {
1881 LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp pvMmio2=%p hrc=%Rhrc (%#x) Last=%#x/%u\n",
1882 GCPhys, cb, pvMmio2, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
1883 rc = VERR_NEM_MAP_PAGES_FAILED;
1884 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
1885 }
1886 if (pu2State)
1887 *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
1888 }
1889 /* Mark the pages as unmapped if relevant. */
1890 else if (pu2State)
1891 *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
1892
1893 RT_NOREF(pvMmio2, puNemRange);
1894 return rc;
1895}
1896
1897
1898VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
1899 void *pvBitmap, size_t cbBitmap)
1900{
1901 Assert(VM_IS_NEM_ENABLED(pVM));
1902 AssertReturn(g_pfnWHvQueryGpaRangeDirtyBitmap, VERR_INTERNAL_ERROR_2);
1903 Assert(cbBitmap == (uint32_t)cbBitmap);
1904 RT_NOREF(uNemRange);
1905
1906 /* This is being profiled by PGM, see /PGM/Mmio2QueryAndResetDirtyBitmap. */
1907 HRESULT hrc = WHvQueryGpaRangeDirtyBitmap(pVM->nem.s.hPartition, GCPhys, cb, (UINT64 *)pvBitmap, (uint32_t)cbBitmap);
1908 if (SUCCEEDED(hrc))
1909 return VINF_SUCCESS;
1910
1911 AssertLogRelMsgFailed(("GCPhys=%RGp LB %RGp pvBitmap=%p LB %#zx hrc=%Rhrc (%#x) Last=%#x/%u\n",
1912 GCPhys, cb, pvBitmap, cbBitmap, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
1913 return VERR_NEM_QUERY_DIRTY_BITMAP_FAILED;
1914}
1915
1916
1917VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
1918 uint8_t *pu2State, uint32_t *puNemRange)
1919{
1920 Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags));
1921 *pu2State = UINT8_MAX;
1922 *puNemRange = 0;
1923
1924#if 0 /* Let's not do this after all. We'll protection change notifications for each page and if not we'll map them lazily. */
1925 RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT;
1926 for (RTGCPHYS iPage = 0; iPage < cPages; iPage++, GCPhys += X86_PAGE_SIZE)
1927 {
1928 const void *pvPage;
1929 int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhys, &pvPage);
1930 if (RT_SUCCESS(rc))
1931 {
1932 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhys, X86_PAGE_SIZE,
1933 WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
1934 if (SUCCEEDED(hrc))
1935 { /* likely */ }
1936 else
1937 {
1938 LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
1939 GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
1940 return VERR_NEM_INIT_FAILED;
1941 }
1942 }
1943 else
1944 {
1945 LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
1946 return rc;
1947 }
1948 }
1949 RT_NOREF_PV(fFlags);
1950#else
1951 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags);
1952#endif
1953 return VINF_SUCCESS;
1954}
1955
1956
1957VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
1958 uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
1959{
1960 Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
1961 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
1962 *pu2State = UINT8_MAX;
1963
1964 /*
1965 * (Re-)map readonly.
1966 */
1967 AssertPtrReturn(pvPages, VERR_INVALID_POINTER);
1968 STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRange, a);
1969 HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvPages, GCPhys, cb, WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
1970 STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRange, a);
1971 if (SUCCEEDED(hrc))
1972 *pu2State = NEM_WIN_PAGE_STATE_READABLE;
1973 else
1974 {
1975 LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp LB %RGp pvPages=%p fFlags=%#x hrc=%Rhrc (%#x) Last=%#x/%u\n",
1976 GCPhys, cb, pvPages, fFlags, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
1977 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
1978 return VERR_NEM_MAP_PAGES_FAILED;
1979 }
1980 RT_NOREF(fFlags, puNemRange);
1981 return VINF_SUCCESS;
1982}
1983
1984#ifdef NEM_WIN_WITH_A20
1985
1986/**
1987 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE}
1988 */
1989static DECLCALLBACK(int) nemR3WinUnsetForA20CheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys,
1990 PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
1991{
1992 /* We'll just unmap the memory. */
1993 if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED)
1994 {
1995 HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
1996 if (SUCCEEDED(hrc))
1997 {
1998 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
1999 uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
2000 Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages));
2001 pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
2002 }
2003 else
2004 {
2005 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
2006 LogRel(("nemR3WinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
2007 GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
2008 return VERR_INTERNAL_ERROR_2;
2009 }
2010 }
2011 RT_NOREF(pVCpu, pvUser);
2012 return VINF_SUCCESS;
2013}
2014
2015
2016/**
2017 * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior.
2018 *
2019 * @returns The PGMPhysNemQueryPageInfo result.
2020 * @param pVM The cross context VM structure.
2021 * @param pVCpu The cross context virtual CPU structure.
2022 * @param GCPhys The page to unmap.
2023 */
2024static int nemR3WinUnmapPageForA20Gate(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
2025{
2026 PGMPHYSNEMPAGEINFO Info;
2027 return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info,
2028 nemR3WinUnsetForA20CheckerCallback, NULL);
2029}
2030
2031#endif /* NEM_WIN_WITH_A20 */
2032
2033VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
2034{
2035 Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled));
2036 Assert(VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM)));
2037#ifdef NEM_WIN_WITH_A20
2038 PVM pVM = pVCpu->CTX_SUFF(pVM);
2039 if (!pVM->nem.s.fA20Fixed)
2040 {
2041 pVM->nem.s.fA20Enabled = fEnabled;
2042 for (RTGCPHYS GCPhys = _1M; GCPhys < _1M + _64K; GCPhys += X86_PAGE_SIZE)
2043 nemR3WinUnmapPageForA20Gate(pVM, pVCpu, GCPhys);
2044 }
2045#else
2046 RT_NOREF(pVCpu, fEnabled);
2047#endif
2048}
2049
2050
2051/** @page pg_nem_win NEM/win - Native Execution Manager, Windows.
2052 *
2053 * On Windows the Hyper-V root partition (dom0 in zen terminology) does not have
2054 * nested VT-x or AMD-V capabilities. Early on raw-mode worked inside it, but
2055 * for a while now we've been getting \#GPs when trying to modify CR4 in the
2056 * world switcher. So, when Hyper-V is active on Windows we have little choice
2057 * but to use Hyper-V to run our VMs.
2058 *
2059 *
2060 * @section sub_nem_win_whv The WinHvPlatform API
2061 *
2062 * Since Windows 10 build 17083 there is a documented API for managing Hyper-V
2063 * VMs: header file WinHvPlatform.h and implementation in WinHvPlatform.dll.
2064 * This interface is a wrapper around the undocumented Virtualization
2065 * Infrastructure Driver (VID) API - VID.DLL and VID.SYS. The wrapper is
2066 * written in C++, namespaced, early versions (at least) was using standard C++
2067 * container templates in several places.
2068 *
2069 * When creating a VM using WHvCreatePartition, it will only create the
2070 * WinHvPlatform structures for it, to which you get an abstract pointer. The
2071 * VID API that actually creates the partition is first engaged when you call
2072 * WHvSetupPartition after first setting a lot of properties using
2073 * WHvSetPartitionProperty. Since the VID API is just a very thin wrapper
2074 * around CreateFile and NtDeviceIoControlFile, it returns an actual HANDLE for
2075 * the partition to WinHvPlatform. We fish this HANDLE out of the WinHvPlatform
2076 * partition structures because we need to talk directly to VID for reasons
2077 * we'll get to in a bit. (Btw. we could also intercept the CreateFileW or
2078 * NtDeviceIoControlFile calls from VID.DLL to get the HANDLE should fishing in
2079 * the partition structures become difficult.)
2080 *
2081 * The WinHvPlatform API requires us to both set the number of guest CPUs before
2082 * setting up the partition and call WHvCreateVirtualProcessor for each of them.
2083 * The CPU creation function boils down to a VidMessageSlotMap call that sets up
2084 * and maps a message buffer into ring-3 for async communication with hyper-V
2085 * and/or the VID.SYS thread actually running the CPU thru
2086 * WinHvRunVpDispatchLoop(). When for instance a VMEXIT is encountered, hyper-V
2087 * sends a message that the WHvRunVirtualProcessor API retrieves (and later
2088 * acknowledges) via VidMessageSlotHandleAndGetNext. Since or about build
2089 * 17757 a register page is also mapped into user space when creating the
2090 * virtual CPU. It should be noteded that WHvDeleteVirtualProcessor doesn't do
2091 * much as there seems to be no partner function VidMessagesSlotMap that
2092 * reverses what it did.
2093 *
2094 * Memory is managed thru calls to WHvMapGpaRange and WHvUnmapGpaRange (GPA does
2095 * not mean grade point average here, but rather guest physical addressspace),
2096 * which corresponds to VidCreateVaGpaRangeSpecifyUserVa and VidDestroyGpaRange
2097 * respectively. As 'UserVa' indicates, the functions works on user process
2098 * memory. The mappings are also subject to quota restrictions, so the number
2099 * of ranges are limited and probably their total size as well. Obviously
2100 * VID.SYS keeps track of the ranges, but so does WinHvPlatform, which means
2101 * there is a bit of overhead involved and quota restrctions makes sense.
2102 *
2103 * Running guest code is done through the WHvRunVirtualProcessor function. It
2104 * asynchronously starts or resumes hyper-V CPU execution and then waits for an
2105 * VMEXIT message. Hyper-V / VID.SYS will return information about the message
2106 * in the message buffer mapping, and WHvRunVirtualProcessor will convert that
2107 * finto it's own WHV_RUN_VP_EXIT_CONTEXT format.
2108 *
2109 * Other threads can interrupt the execution by using WHvCancelVirtualProcessor,
2110 * which since or about build 17757 uses VidMessageSlotHandleAndGetNext to do
2111 * the work (earlier builds would open the waiting thread, do a dummy
2112 * QueueUserAPC on it, and let it upon return use VidStopVirtualProcessor to
2113 * do the actual stopping). While there is certainly a race between cancelation
2114 * and the CPU causing a natural VMEXIT, it is not known whether this still
2115 * causes extra work on subsequent WHvRunVirtualProcessor calls (it did in and
2116 * earlier than 17134).
2117 *
2118 * Registers are retrieved and set via WHvGetVirtualProcessorRegisters and
2119 * WHvSetVirtualProcessorRegisters. In addition, several VMEXITs include
2120 * essential register state in the exit context information, potentially making
2121 * it possible to emulate the instruction causing the exit without involving
2122 * WHvGetVirtualProcessorRegisters.
2123 *
2124 *
2125 * @subsection subsec_nem_win_whv_cons Issues & Feedback
2126 *
2127 * Here are some observations (mostly against build 17101):
2128 *
2129 * - The VMEXIT performance is dismal (build 17134).
2130 *
2131 * Our proof of concept implementation with a kernel runloop (i.e. not using
2132 * WHvRunVirtualProcessor and friends, but calling VID.SYS fast I/O control
2133 * entry point directly) delivers 9-10% of the port I/O performance and only
2134 * 6-7% of the MMIO performance that we have with our own hypervisor.
2135 *
2136 * When using the offical WinHvPlatform API, the numbers are %3 for port I/O
2137 * and 5% for MMIO.
2138 *
2139 * While the tests we've done are using tight tight loops only doing port I/O
2140 * and MMIO, the problem is clearly visible when running regular guest OSes.
2141 * Anything that hammers the VGA device would be suffering, for example:
2142 *
2143 * - Windows 2000 boot screen animation overloads us with MMIO exits
2144 * and won't even boot because all the time is spent in interrupt
2145 * handlers and redrawin the screen.
2146 *
2147 * - DSL 4.4 and its bootmenu logo is slower than molasses in january.
2148 *
2149 * We have not found a workaround for this yet.
2150 *
2151 * Something that might improve the issue a little is to detect blocks with
2152 * excessive MMIO and port I/O exits and emulate instructions to cover
2153 * multiple exits before letting Hyper-V have a go at the guest execution
2154 * again. This will only improve the situation under some circumstances,
2155 * since emulating instructions without recompilation can be expensive, so
2156 * there will only be real gains if the exitting instructions are tightly
2157 * packed.
2158 *
2159 * Update: Security fixes during the summer of 2018 caused the performance to
2160 * dropped even more.
2161 *
2162 * Update [build 17757]: Some performance improvements here, but they don't
2163 * yet make up for what was lost this summer.
2164 *
2165 *
2166 * - We need a way to directly modify the TSC offset (or bias if you like).
2167 *
2168 * The current approach of setting the WHvX64RegisterTsc register one by one
2169 * on each virtual CPU in sequence will introduce random inaccuracies,
2170 * especially if the thread doing the job is reschduled at a bad time.
2171 *
2172 *
2173 * - Unable to access WHvX64RegisterMsrMtrrCap (build 17134).
2174 *
2175 *
2176 * - On AMD Ryzen grub/debian 9.0 ends up with a unrecoverable exception
2177 * when IA32_MTRR_PHYSMASK0 is written.
2178 *
2179 *
2180 * - The IA32_APIC_BASE register does not work right:
2181 *
2182 * - Attempts by the guest to clear bit 11 (EN) are ignored, both the
2183 * guest and the VMM reads back the old value.
2184 *
2185 * - Attempts to modify the base address (bits NN:12) seems to be ignored
2186 * in the same way.
2187 *
2188 * - The VMM can modify both the base address as well as the the EN and
2189 * BSP bits, however this is useless if we cannot intercept the WRMSR.
2190 *
2191 * - Attempts by the guest to set the EXTD bit (X2APIC) result in \#GP(0),
2192 * while the VMM ends up with with ERROR_HV_INVALID_PARAMETER. Seems
2193 * there is no way to support X2APIC.
2194 *
2195 *
2196 * - Not sure if this is a thing, but WHvCancelVirtualProcessor seems to cause
2197 * cause a lot more spurious WHvRunVirtualProcessor returns that what we get
2198 * with the replacement code. By spurious returns we mean that the
2199 * subsequent call to WHvRunVirtualProcessor would return immediately.
2200 *
2201 * Update [build 17757]: New cancelation code might have addressed this, but
2202 * haven't had time to test it yet.
2203 *
2204 *
2205 * - There is no API for modifying protection of a page within a GPA range.
2206 *
2207 * From what we can tell, the only way to modify the protection (like readonly
2208 * -> writable, or vice versa) is to first unmap the range and then remap it
2209 * with the new protection.
2210 *
2211 * We are for instance doing this quite a bit in order to track dirty VRAM
2212 * pages. VRAM pages starts out as readonly, when the guest writes to a page
2213 * we take an exit, notes down which page it is, makes it writable and restart
2214 * the instruction. After refreshing the display, we reset all the writable
2215 * pages to readonly again, bulk fashion.
2216 *
2217 * Now to work around this issue, we do page sized GPA ranges. In addition to
2218 * add a lot of tracking overhead to WinHvPlatform and VID.SYS, this also
2219 * causes us to exceed our quota before we've even mapped a default sized
2220 * (128MB) VRAM page-by-page. So, to work around this quota issue we have to
2221 * lazily map pages and actively restrict the number of mappings.
2222 *
2223 * Our best workaround thus far is bypassing WinHvPlatform and VID entirely
2224 * when in comes to guest memory management and instead use the underlying
2225 * hypercalls (HvCallMapGpaPages, HvCallUnmapGpaPages) to do it ourselves.
2226 * (This also maps a whole lot better into our own guest page management
2227 * infrastructure.)
2228 *
2229 * Update [build 17757]: Introduces a KVM like dirty logging API which could
2230 * help tracking dirty VGA pages, while being useless for shadow ROM and
2231 * devices trying catch the guest updating descriptors and such.
2232 *
2233 *
2234 * - Observed problems doing WHvUnmapGpaRange immediately followed by
2235 * WHvMapGpaRange.
2236 *
2237 * As mentioned above, we've been forced to use this sequence when modifying
2238 * page protection. However, when transitioning from readonly to writable,
2239 * we've ended up looping forever with the same write to readonly memory
2240 * VMEXIT. We're wondering if this issue might be related to the lazy mapping
2241 * logic in WinHvPlatform.
2242 *
2243 * Workaround: Insert a WHvRunVirtualProcessor call and make sure to get a GPA
2244 * unmapped exit between the two calls. Not entirely great performance wise
2245 * (or the santity of our code).
2246 *
2247 *
2248 * - Implementing A20 gate behavior is tedious, where as correctly emulating the
2249 * A20M# pin (present on 486 and later) is near impossible for SMP setups
2250 * (e.g. possiblity of two CPUs with different A20 status).
2251 *
2252 * Workaround #1 (obsolete): Only do A20 on CPU 0, restricting the emulation
2253 * to HMA. We unmap all pages related to HMA (0x100000..0x10ffff) when the A20
2254 * state changes, lazily syncing the right pages back when accessed.
2255 *
2256 * Workaround #2 (used): Use IEM when the A20 gate is disabled.
2257 *
2258 *
2259 * - WHVRunVirtualProcessor wastes time converting VID/Hyper-V messages to its
2260 * own format (WHV_RUN_VP_EXIT_CONTEXT).
2261 *
2262 * We understand this might be because Microsoft wishes to remain free to
2263 * modify the VID/Hyper-V messages, but it's still rather silly and does slow
2264 * things down a little. We'd much rather just process the messages directly.
2265 *
2266 *
2267 * - WHVRunVirtualProcessor would've benefited from using a callback interface:
2268 *
2269 * - The potential size changes of the exit context structure wouldn't be
2270 * an issue, since the function could manage that itself.
2271 *
2272 * - State handling could probably be simplified (like cancelation).
2273 *
2274 *
2275 * - WHvGetVirtualProcessorRegisters and WHvSetVirtualProcessorRegisters
2276 * internally converts register names, probably using temporary heap buffers.
2277 *
2278 * From the looks of things, they are converting from WHV_REGISTER_NAME to
2279 * HV_REGISTER_NAME from in the "Virtual Processor Register Names" section in
2280 * the "Hypervisor Top-Level Functional Specification" document. This feels
2281 * like an awful waste of time.
2282 *
2283 * We simply cannot understand why HV_REGISTER_NAME isn't used directly here,
2284 * or at least the same values, making any conversion reduntant. Restricting
2285 * access to certain registers could easily be implement by scanning the
2286 * inputs.
2287 *
2288 * To avoid the heap + conversion overhead, we're currently using the
2289 * HvCallGetVpRegisters and HvCallSetVpRegisters calls directly, at least for
2290 * the ring-0 code.
2291 *
2292 * Update [build 17757]: Register translation has been very cleverly
2293 * optimized and made table driven (2 top level tables, 4 + 1 leaf tables).
2294 * Register information consists of the 32-bit HV register name, register page
2295 * offset, and flags (giving valid offset, size and more). Register
2296 * getting/settings seems to be done by hoping that the register page provides
2297 * it all, and falling back on the VidSetVirtualProcessorState if one or more
2298 * registers are not available there.
2299 *
2300 * Note! We have currently not updated our ring-0 code to take the register
2301 * page into account, so it's suffering a little compared to the ring-3 code
2302 * that now uses the offical APIs for registers.
2303 *
2304 *
2305 * - The YMM and XCR0 registers are not yet named (17083). This probably
2306 * wouldn't be a problem if HV_REGISTER_NAME was used, see previous point.
2307 *
2308 * Update [build 17757]: XCR0 is added. YMM register values seems to be put
2309 * into a yet undocumented XsaveState interface. Approach is a little bulky,
2310 * but saves number of enums and dispenses with register transation. Also,
2311 * the underlying Vid setter API duplicates the input buffer on the heap,
2312 * adding a 16 byte header.
2313 *
2314 *
2315 * - Why does VID.SYS only query/set 32 registers at the time thru the
2316 * HvCallGetVpRegisters and HvCallSetVpRegisters hypercalls?
2317 *
2318 * We've not trouble getting/setting all the registers defined by
2319 * WHV_REGISTER_NAME in one hypercall (around 80). Some kind of stack
2320 * buffering or similar?
2321 *
2322 *
2323 * - To handle the VMMCALL / VMCALL instructions, it seems we need to intercept
2324 * \#UD exceptions and inspect the opcodes. A dedicated exit for hypercalls
2325 * would be more efficient, esp. for guests using \#UD for other purposes..
2326 *
2327 *
2328 * - Wrong instruction length in the VpContext with unmapped GPA memory exit
2329 * contexts on 17115/AMD.
2330 *
2331 * One byte "PUSH CS" was reported as 2 bytes, while a two byte
2332 * "MOV [EBX],EAX" was reported with a 1 byte instruction length. Problem
2333 * naturally present in untranslated hyper-v messages.
2334 *
2335 *
2336 * - The I/O port exit context information seems to be missing the address size
2337 * information needed for correct string I/O emulation.
2338 *
2339 * VT-x provides this information in bits 7:9 in the instruction information
2340 * field on newer CPUs. AMD-V in bits 7:9 in the EXITINFO1 field in the VMCB.
2341 *
2342 * We can probably work around this by scanning the instruction bytes for
2343 * address size prefixes. Haven't investigated it any further yet.
2344 *
2345 *
2346 * - Querying WHvCapabilityCodeExceptionExitBitmap returns zero even when
2347 * intercepts demonstrably works (17134).
2348 *
2349 *
2350 * - Querying HvPartitionPropertyDebugChannelId via HvCallGetPartitionProperty
2351 * (hypercall) hangs the host (17134).
2352 *
2353 * - CommonUtilities::GuidToString needs a 'static' before the hex digit array,
2354 * looks pointless to re-init a stack copy it for each call (novice mistake).
2355 *
2356 *
2357 * Old concerns that have been addressed:
2358 *
2359 * - The WHvCancelVirtualProcessor API schedules a dummy usermode APC callback
2360 * in order to cancel any current or future alertable wait in VID.SYS during
2361 * the VidMessageSlotHandleAndGetNext call.
2362 *
2363 * IIRC this will make the kernel schedule the specified callback thru
2364 * NTDLL!KiUserApcDispatcher by modifying the thread context and quite
2365 * possibly the userland thread stack. When the APC callback returns to
2366 * KiUserApcDispatcher, it will call NtContinue to restore the old thread
2367 * context and resume execution from there. This naturally adds up to some
2368 * CPU cycles, ring transitions aren't for free, especially after Spectre &
2369 * Meltdown mitigations.
2370 *
2371 * Using NtAltertThread call could do the same without the thread context
2372 * modifications and the extra kernel call.
2373 *
2374 * Update: All concerns have addressed in or about build 17757.
2375 *
2376 * The WHvCancelVirtualProcessor API is now implemented using a new
2377 * VidMessageSlotHandleAndGetNext() flag (4). Codepath is slightly longer
2378 * than NtAlertThread, but has the added benefit that spurious wakeups can be
2379 * more easily reduced.
2380 *
2381 *
2382 * - When WHvRunVirtualProcessor returns without a message, or on a terse
2383 * VID message like HLT, it will make a kernel call to get some registers.
2384 * This is potentially inefficient if the caller decides he needs more
2385 * register state.
2386 *
2387 * It would be better to just return what's available and let the caller fetch
2388 * what is missing from his point of view in a single kernel call.
2389 *
2390 * Update: All concerns have been addressed in or about build 17757. Selected
2391 * registers are now available via shared memory and thus HLT should (not
2392 * verified) no longer require a system call to compose the exit context data.
2393 *
2394 *
2395 * - The WHvRunVirtualProcessor implementation does lazy GPA range mappings when
2396 * a unmapped GPA message is received from hyper-V.
2397 *
2398 * Since MMIO is currently realized as unmapped GPA, this will slow down all
2399 * MMIO accesses a tiny little bit as WHvRunVirtualProcessor looks up the
2400 * guest physical address to check if it is a pending lazy mapping.
2401 *
2402 * The lazy mapping feature makes no sense to us. We as API user have all the
2403 * information and can do lazy mapping ourselves if we want/have to (see next
2404 * point).
2405 *
2406 * Update: All concerns have been addressed in or about build 17757.
2407 *
2408 *
2409 * - The WHvGetCapability function has a weird design:
2410 * - The CapabilityCode parameter is pointlessly duplicated in the output
2411 * structure (WHV_CAPABILITY).
2412 *
2413 * - API takes void pointer, but everyone will probably be using
2414 * WHV_CAPABILITY due to WHV_CAPABILITY::CapabilityCode making it
2415 * impractical to use anything else.
2416 *
2417 * - No output size.
2418 *
2419 * - See GetFileAttributesEx, GetFileInformationByHandleEx,
2420 * FindFirstFileEx, and others for typical pattern for generic
2421 * information getters.
2422 *
2423 * Update: All concerns have been addressed in build 17110.
2424 *
2425 *
2426 * - The WHvGetPartitionProperty function uses the same weird design as
2427 * WHvGetCapability, see above.
2428 *
2429 * Update: All concerns have been addressed in build 17110.
2430 *
2431 *
2432 * - The WHvSetPartitionProperty function has a totally weird design too:
2433 * - In contrast to its partner WHvGetPartitionProperty, the property code
2434 * is not a separate input parameter here but part of the input
2435 * structure.
2436 *
2437 * - The input structure is a void pointer rather than a pointer to
2438 * WHV_PARTITION_PROPERTY which everyone probably will be using because
2439 * of the WHV_PARTITION_PROPERTY::PropertyCode field.
2440 *
2441 * - Really, why use PVOID for the input when the function isn't accepting
2442 * minimal sizes. E.g. WHVPartitionPropertyCodeProcessorClFlushSize only
2443 * requires a 9 byte input, but the function insists on 16 bytes (17083).
2444 *
2445 * - See GetFileAttributesEx, SetFileInformationByHandle, FindFirstFileEx,
2446 * and others for typical pattern for generic information setters and
2447 * getters.
2448 *
2449 * Update: All concerns have been addressed in build 17110.
2450 *
2451 *
2452 * @section sec_nem_win_large_pages Large Pages
2453 *
2454 * We've got a standalone memory allocation and access testcase bs3-memalloc-1
2455 * which was run with 48GiB of guest RAM configured on a NUC 11 box running
2456 * Windows 11 GA. In the simplified NEM memory mode no exits should be
2457 * generated while the access tests are running.
2458 *
2459 * The bs3-memalloc-1 results kind of hints at some tiny speed-up if the guest
2460 * RAM is allocated using the MEM_LARGE_PAGES flag, but only in the 3rd access
2461 * check (typical 350 000 MiB/s w/o and around 400 000 MiB/s). The result for
2462 * the 2nd access varies a lot, perhaps hinting at some table optimizations
2463 * going on.
2464 *
2465 * The initial access where the memory is locked/whatever has absolutely horrid
2466 * results regardless of whether large pages are enabled or not. Typically
2467 * bobbing close to 500 MiB/s, non-large pages a little faster.
2468 *
2469 * NEM w/ simplified memory and MEM_LARGE_PAGES:
2470 * @verbatim
2471bs3-memalloc-1: TESTING...
2472bs3-memalloc-1: #0/0x0: 0x0000000000000000 LB 0x000000000009fc00 USABLE (1)
2473bs3-memalloc-1: #1/0x1: 0x000000000009fc00 LB 0x0000000000000400 RESERVED (2)
2474bs3-memalloc-1: #2/0x2: 0x00000000000f0000 LB 0x0000000000010000 RESERVED (2)
2475bs3-memalloc-1: #3/0x3: 0x0000000000100000 LB 0x00000000dfef0000 USABLE (1)
2476bs3-memalloc-1: #4/0x4: 0x00000000dfff0000 LB 0x0000000000010000 ACPI_RECLAIMABLE (3)
2477bs3-memalloc-1: #5/0x5: 0x00000000fec00000 LB 0x0000000000001000 RESERVED (2)
2478bs3-memalloc-1: #6/0x6: 0x00000000fee00000 LB 0x0000000000001000 RESERVED (2)
2479bs3-memalloc-1: #7/0x7: 0x00000000fffc0000 LB 0x0000000000040000 RESERVED (2)
2480bs3-memalloc-1: #8/0x9: 0x0000000100000000 LB 0x0000000b20000000 USABLE (1)
2481bs3-memalloc-1: Found 1 interesting entries covering 0xb20000000 bytes (44 GB).
2482bs3-memalloc-1: From 0x100000000 to 0xc20000000
2483bs3-memalloc-1: INT15h/E820 : PASSED
2484bs3-memalloc-1: Mapping memory above 4GB : PASSED
2485bs3-memalloc-1: Pages : 11 665 408 pages
2486bs3-memalloc-1: MiBs : 45 568 MB
2487bs3-memalloc-1: Alloc elapsed : 90 925 263 996 ns
2488bs3-memalloc-1: Alloc elapsed in ticks : 272 340 387 336 ticks
2489bs3-memalloc-1: Page alloc time : 7 794 ns/page
2490bs3-memalloc-1: Page alloc time in ticks : 23 345 ticks/page
2491bs3-memalloc-1: Alloc thruput : 128 296 pages/s
2492bs3-memalloc-1: Alloc thruput in MiBs : 501 MB/s
2493bs3-memalloc-1: Allocation speed : PASSED
2494bs3-memalloc-1: Access elapsed : 85 074 483 467 ns
2495bs3-memalloc-1: Access elapsed in ticks : 254 816 088 412 ticks
2496bs3-memalloc-1: Page access time : 7 292 ns/page
2497bs3-memalloc-1: Page access time in ticks : 21 843 ticks/page
2498bs3-memalloc-1: Access thruput : 137 119 pages/s
2499bs3-memalloc-1: Access thruput in MiBs : 535 MB/s
2500bs3-memalloc-1: 2nd access : PASSED
2501bs3-memalloc-1: Access elapsed : 112 963 925 ns
2502bs3-memalloc-1: Access elapsed in ticks : 338 284 436 ticks
2503bs3-memalloc-1: Page access time : 9 ns/page
2504bs3-memalloc-1: Page access time in ticks : 28 ticks/page
2505bs3-memalloc-1: Access thruput : 103 266 666 pages/s
2506bs3-memalloc-1: Access thruput in MiBs : 403 385 MB/s
2507bs3-memalloc-1: 3rd access : PASSED
2508bs3-memalloc-1: SUCCESS
2509 * @endverbatim
2510 *
2511 * NEM w/ simplified memory and but no MEM_LARGE_PAGES:
2512 * @verbatim
2513bs3-memalloc-1: From 0x100000000 to 0xc20000000
2514bs3-memalloc-1: Pages : 11 665 408 pages
2515bs3-memalloc-1: MiBs : 45 568 MB
2516bs3-memalloc-1: Alloc elapsed : 90 062 027 900 ns
2517bs3-memalloc-1: Alloc elapsed in ticks : 269 754 826 466 ticks
2518bs3-memalloc-1: Page alloc time : 7 720 ns/page
2519bs3-memalloc-1: Page alloc time in ticks : 23 124 ticks/page
2520bs3-memalloc-1: Alloc thruput : 129 526 pages/s
2521bs3-memalloc-1: Alloc thruput in MiBs : 505 MB/s
2522bs3-memalloc-1: Allocation speed : PASSED
2523bs3-memalloc-1: Access elapsed : 3 596 017 220 ns
2524bs3-memalloc-1: Access elapsed in ticks : 10 770 732 620 ticks
2525bs3-memalloc-1: Page access time : 308 ns/page
2526bs3-memalloc-1: Page access time in ticks : 923 ticks/page
2527bs3-memalloc-1: Access thruput : 3 243 980 pages/s
2528bs3-memalloc-1: Access thruput in MiBs : 12 671 MB/s
2529bs3-memalloc-1: 2nd access : PASSED
2530bs3-memalloc-1: Access elapsed : 133 060 160 ns
2531bs3-memalloc-1: Access elapsed in ticks : 398 459 884 ticks
2532bs3-memalloc-1: Page access time : 11 ns/page
2533bs3-memalloc-1: Page access time in ticks : 34 ticks/page
2534bs3-memalloc-1: Access thruput : 87 670 178 pages/s
2535bs3-memalloc-1: Access thruput in MiBs : 342 461 MB/s
2536bs3-memalloc-1: 3rd access : PASSED
2537 * @endverbatim
2538 *
2539 * Same everything but native VT-x and VBox (stripped output a little):
2540 * @verbatim
2541bs3-memalloc-1: From 0x100000000 to 0xc20000000
2542bs3-memalloc-1: Pages : 11 665 408 pages
2543bs3-memalloc-1: MiBs : 45 568 MB
2544bs3-memalloc-1: Alloc elapsed : 776 111 427 ns
2545bs3-memalloc-1: Alloc elapsed in ticks : 2 323 267 035 ticks
2546bs3-memalloc-1: Page alloc time : 66 ns/page
2547bs3-memalloc-1: Page alloc time in ticks : 199 ticks/page
2548bs3-memalloc-1: Alloc thruput : 15 030 584 pages/s
2549bs3-memalloc-1: Alloc thruput in MiBs : 58 713 MB/s
2550bs3-memalloc-1: Allocation speed : PASSED
2551bs3-memalloc-1: Access elapsed : 112 141 904 ns
2552bs3-memalloc-1: Access elapsed in ticks : 335 751 077 ticks
2553bs3-memalloc-1: Page access time : 9 ns/page
2554bs3-memalloc-1: Page access time in ticks : 28 ticks/page
2555bs3-memalloc-1: Access thruput : 104 023 630 pages/s
2556bs3-memalloc-1: Access thruput in MiBs : 406 342 MB/s
2557bs3-memalloc-1: 2nd access : PASSED
2558bs3-memalloc-1: Access elapsed : 112 023 049 ns
2559bs3-memalloc-1: Access elapsed in ticks : 335 418 343 ticks
2560bs3-memalloc-1: Page access time : 9 ns/page
2561bs3-memalloc-1: Page access time in ticks : 28 ticks/page
2562bs3-memalloc-1: Access thruput : 104 133 998 pages/s
2563bs3-memalloc-1: Access thruput in MiBs : 406 773 MB/s
2564bs3-memalloc-1: 3rd access : PASSED
2565 * @endverbatim
2566 *
2567 * VBox with large pages disabled:
2568 * @verbatim
2569bs3-memalloc-1: From 0x100000000 to 0xc20000000
2570bs3-memalloc-1: Pages : 11 665 408 pages
2571bs3-memalloc-1: MiBs : 45 568 MB
2572bs3-memalloc-1: Alloc elapsed : 50 986 588 028 ns
2573bs3-memalloc-1: Alloc elapsed in ticks : 152 714 862 044 ticks
2574bs3-memalloc-1: Page alloc time : 4 370 ns/page
2575bs3-memalloc-1: Page alloc time in ticks : 13 091 ticks/page
2576bs3-memalloc-1: Alloc thruput : 228 793 pages/s
2577bs3-memalloc-1: Alloc thruput in MiBs : 893 MB/s
2578bs3-memalloc-1: Allocation speed : PASSED
2579bs3-memalloc-1: Access elapsed : 2 849 641 741 ns
2580bs3-memalloc-1: Access elapsed in ticks : 8 535 372 249 ticks
2581bs3-memalloc-1: Page access time : 244 ns/page
2582bs3-memalloc-1: Page access time in ticks : 731 ticks/page
2583bs3-memalloc-1: Access thruput : 4 093 640 pages/s
2584bs3-memalloc-1: Access thruput in MiBs : 15 990 MB/s
2585bs3-memalloc-1: 2nd access : PASSED
2586bs3-memalloc-1: Access elapsed : 2 866 960 770 ns
2587bs3-memalloc-1: Access elapsed in ticks : 8 587 097 799 ticks
2588bs3-memalloc-1: Page access time : 245 ns/page
2589bs3-memalloc-1: Page access time in ticks : 736 ticks/page
2590bs3-memalloc-1: Access thruput : 4 068 910 pages/s
2591bs3-memalloc-1: Access thruput in MiBs : 15 894 MB/s
2592bs3-memalloc-1: 3rd access : PASSED
2593 * @endverbatim
2594 *
2595 * Comparing large pages, therer is an allocation speed difference of two order
2596 * of magnitude. When disabling large pages in VBox the allocation numbers are
2597 * closer, and the is clear from the 2nd and 3rd access tests that VBox doesn't
2598 * spend enough memory on nested page tables as Hyper-V does. The similar 2nd
2599 * and 3rd access numbers the two large page testruns seems to hint strongly at
2600 * Hyper-V eventually getting the large pages in place too, only that it sucks
2601 * hundredfold in the setting up phase.
2602 *
2603 *
2604 *
2605 * @section sec_nem_win_impl Our implementation.
2606 *
2607 * We set out with the goal of wanting to run as much as possible in ring-0,
2608 * reasoning that this would give use the best performance.
2609 *
2610 * This goal was approached gradually, starting out with a pure WinHvPlatform
2611 * implementation, gradually replacing parts: register access, guest memory
2612 * handling, running virtual processors. Then finally moving it all into
2613 * ring-0, while keeping most of it configurable so that we could make
2614 * comparisons (see NEMInternal.h and nemR3NativeRunGC()).
2615 *
2616 *
2617 * @subsection subsect_nem_win_impl_ioctl VID.SYS I/O control calls
2618 *
2619 * To run things in ring-0 we need to talk directly to VID.SYS thru its I/O
2620 * control interface. Looking at changes between like build 17083 and 17101 (if
2621 * memory serves) a set of the VID I/O control numbers shifted a little, which
2622 * means we need to determin them dynamically. We currently do this by hooking
2623 * the NtDeviceIoControlFile API call from VID.DLL and snooping up the
2624 * parameters when making dummy calls to relevant APIs. (We could also
2625 * disassemble the relevant APIs and try fish out the information from that, but
2626 * this is way simpler.)
2627 *
2628 * Issuing I/O control calls from ring-0 is facing a small challenge with
2629 * respect to direct buffering. When using direct buffering the device will
2630 * typically check that the buffer is actually in the user address space range
2631 * and reject kernel addresses. Fortunately, we've got the cross context VM
2632 * structure that is mapped into both kernel and user space, it's also locked
2633 * and safe to access from kernel space. So, we place the I/O control buffers
2634 * in the per-CPU part of it (NEMCPU::uIoCtlBuf) and give the driver the user
2635 * address if direct access buffering or kernel address if not.
2636 *
2637 * The I/O control calls are 'abstracted' in the support driver, see
2638 * SUPR0IoCtlSetupForHandle(), SUPR0IoCtlPerform() and SUPR0IoCtlCleanup().
2639 *
2640 *
2641 * @subsection subsect_nem_win_impl_cpumctx CPUMCTX
2642 *
2643 * Since the CPU state needs to live in Hyper-V when executing, we probably
2644 * should not transfer more than necessary when handling VMEXITs. To help us
2645 * manage this CPUMCTX got a new field CPUMCTX::fExtrn that to indicate which
2646 * part of the state is currently externalized (== in Hyper-V).
2647 *
2648 *
2649 * @subsection sec_nem_win_benchmarks Benchmarks.
2650 *
2651 * @subsubsection subsect_nem_win_benchmarks_bs2t1 17134/2018-06-22: Bootsector2-test1
2652 *
2653 * This is ValidationKit/bootsectors/bootsector2-test1.asm as of 2018-06-22
2654 * (internal r123172) running a the release build of VirtualBox from the same
2655 * source, though with exit optimizations disabled. Host is AMD Threadripper 1950X
2656 * running out an up to date 64-bit Windows 10 build 17134.
2657 *
2658 * The base line column is using the official WinHv API for everything but physical
2659 * memory mapping. The 2nd column is the default NEM/win configuration where we
2660 * put the main execution loop in ring-0, using hypercalls when we can and VID for
2661 * managing execution. The 3rd column is regular VirtualBox using AMD-V directly,
2662 * hyper-V is disabled, main execution loop in ring-0.
2663 *
2664 * @verbatim
2665TESTING... WinHv API Hypercalls + VID VirtualBox AMD-V
2666 32-bit paged protected mode, CPUID : 108 874 ins/sec 113% / 123 602 1198% / 1 305 113
2667 32-bit pae protected mode, CPUID : 106 722 ins/sec 115% / 122 740 1232% / 1 315 201
2668 64-bit long mode, CPUID : 106 798 ins/sec 114% / 122 111 1198% / 1 280 404
2669 16-bit unpaged protected mode, CPUID : 106 835 ins/sec 114% / 121 994 1216% / 1 299 665
2670 32-bit unpaged protected mode, CPUID : 105 257 ins/sec 115% / 121 772 1235% / 1 300 860
2671 real mode, CPUID : 104 507 ins/sec 116% / 121 800 1228% / 1 283 848
2672CPUID EAX=1 : PASSED
2673 32-bit paged protected mode, RDTSC : 99 581 834 ins/sec 100% / 100 323 307 93% / 93 473 299
2674 32-bit pae protected mode, RDTSC : 99 620 585 ins/sec 100% / 99 960 952 84% / 83 968 839
2675 64-bit long mode, RDTSC : 100 540 009 ins/sec 100% / 100 946 372 93% / 93 652 826
2676 16-bit unpaged protected mode, RDTSC : 99 688 473 ins/sec 100% / 100 097 751 76% / 76 281 287
2677 32-bit unpaged protected mode, RDTSC : 98 385 857 ins/sec 102% / 100 510 404 94% / 93 379 536
2678 real mode, RDTSC : 100 087 967 ins/sec 101% / 101 386 138 93% / 93 234 999
2679RDTSC : PASSED
2680 32-bit paged protected mode, Read CR4 : 2 156 102 ins/sec 98% / 2 121 967 17114% / 369 009 009
2681 32-bit pae protected mode, Read CR4 : 2 163 820 ins/sec 98% / 2 133 804 17469% / 377 999 261
2682 64-bit long mode, Read CR4 : 2 164 822 ins/sec 98% / 2 128 698 18875% / 408 619 313
2683 16-bit unpaged protected mode, Read CR4 : 2 162 367 ins/sec 100% / 2 168 508 17132% / 370 477 568
2684 32-bit unpaged protected mode, Read CR4 : 2 163 189 ins/sec 100% / 2 169 808 16768% / 362 734 679
2685 real mode, Read CR4 : 2 162 436 ins/sec 100% / 2 164 914 15551% / 336 288 998
2686Read CR4 : PASSED
2687 real mode, 32-bit IN : 104 649 ins/sec 118% / 123 513 1028% / 1 075 831
2688 real mode, 32-bit OUT : 107 102 ins/sec 115% / 123 660 982% / 1 052 259
2689 real mode, 32-bit IN-to-ring-3 : 105 697 ins/sec 98% / 104 471 201% / 213 216
2690 real mode, 32-bit OUT-to-ring-3 : 105 830 ins/sec 98% / 104 598 198% / 210 495
2691 16-bit unpaged protected mode, 32-bit IN : 104 855 ins/sec 117% / 123 174 1029% / 1 079 591
2692 16-bit unpaged protected mode, 32-bit OUT : 107 529 ins/sec 115% / 124 250 992% / 1 067 053
2693 16-bit unpaged protected mode, 32-bit IN-to-ring-3 : 106 337 ins/sec 103% / 109 565 196% / 209 367
2694 16-bit unpaged protected mode, 32-bit OUT-to-ring-3 : 107 558 ins/sec 100% / 108 237 191% / 206 387
2695 32-bit unpaged protected mode, 32-bit IN : 106 351 ins/sec 116% / 123 584 1016% / 1 081 325
2696 32-bit unpaged protected mode, 32-bit OUT : 106 424 ins/sec 116% / 124 252 995% / 1 059 408
2697 32-bit unpaged protected mode, 32-bit IN-to-ring-3 : 104 035 ins/sec 101% / 105 305 202% / 210 750
2698 32-bit unpaged protected mode, 32-bit OUT-to-ring-3 : 103 831 ins/sec 102% / 106 919 205% / 213 198
2699 32-bit paged protected mode, 32-bit IN : 103 356 ins/sec 119% / 123 870 1041% / 1 076 463
2700 32-bit paged protected mode, 32-bit OUT : 107 177 ins/sec 115% / 124 302 998% / 1 069 655
2701 32-bit paged protected mode, 32-bit IN-to-ring-3 : 104 491 ins/sec 100% / 104 744 200% / 209 264
2702 32-bit paged protected mode, 32-bit OUT-to-ring-3 : 106 603 ins/sec 97% / 103 849 197% / 210 219
2703 32-bit pae protected mode, 32-bit IN : 105 923 ins/sec 115% / 122 759 1041% / 1 103 261
2704 32-bit pae protected mode, 32-bit OUT : 107 083 ins/sec 117% / 126 057 1024% / 1 096 667
2705 32-bit pae protected mode, 32-bit IN-to-ring-3 : 106 114 ins/sec 97% / 103 496 199% / 211 312
2706 32-bit pae protected mode, 32-bit OUT-to-ring-3 : 105 675 ins/sec 96% / 102 096 198% / 209 890
2707 64-bit long mode, 32-bit IN : 105 800 ins/sec 113% / 120 006 1013% / 1 072 116
2708 64-bit long mode, 32-bit OUT : 105 635 ins/sec 113% / 120 375 997% / 1 053 655
2709 64-bit long mode, 32-bit IN-to-ring-3 : 105 274 ins/sec 95% / 100 763 197% / 208 026
2710 64-bit long mode, 32-bit OUT-to-ring-3 : 106 262 ins/sec 94% / 100 749 196% / 209 288
2711NOP I/O Port Access : PASSED
2712 32-bit paged protected mode, 32-bit read : 57 687 ins/sec 119% / 69 136 1197% / 690 548
2713 32-bit paged protected mode, 32-bit write : 57 957 ins/sec 118% / 68 935 1183% / 685 930
2714 32-bit paged protected mode, 32-bit read-to-ring-3 : 57 958 ins/sec 95% / 55 432 276% / 160 505
2715 32-bit paged protected mode, 32-bit write-to-ring-3 : 57 922 ins/sec 100% / 58 340 304% / 176 464
2716 32-bit pae protected mode, 32-bit read : 57 478 ins/sec 119% / 68 453 1141% / 656 159
2717 32-bit pae protected mode, 32-bit write : 57 226 ins/sec 118% / 68 097 1157% / 662 504
2718 32-bit pae protected mode, 32-bit read-to-ring-3 : 57 582 ins/sec 94% / 54 651 268% / 154 867
2719 32-bit pae protected mode, 32-bit write-to-ring-3 : 57 697 ins/sec 100% / 57 750 299% / 173 030
2720 64-bit long mode, 32-bit read : 57 128 ins/sec 118% / 67 779 1071% / 611 949
2721 64-bit long mode, 32-bit write : 57 127 ins/sec 118% / 67 632 1084% / 619 395
2722 64-bit long mode, 32-bit read-to-ring-3 : 57 181 ins/sec 94% / 54 123 265% / 151 937
2723 64-bit long mode, 32-bit write-to-ring-3 : 57 297 ins/sec 99% / 57 286 294% / 168 694
2724 16-bit unpaged protected mode, 32-bit read : 58 827 ins/sec 118% / 69 545 1185% / 697 602
2725 16-bit unpaged protected mode, 32-bit write : 58 678 ins/sec 118% / 69 442 1183% / 694 387
2726 16-bit unpaged protected mode, 32-bit read-to-ring-3 : 57 841 ins/sec 96% / 55 730 275% / 159 163
2727 16-bit unpaged protected mode, 32-bit write-to-ring-3 : 57 855 ins/sec 101% / 58 834 304% / 176 169
2728 32-bit unpaged protected mode, 32-bit read : 58 063 ins/sec 120% / 69 690 1233% / 716 444
2729 32-bit unpaged protected mode, 32-bit write : 57 936 ins/sec 120% / 69 633 1199% / 694 753
2730 32-bit unpaged protected mode, 32-bit read-to-ring-3 : 58 451 ins/sec 96% / 56 183 273% / 159 972
2731 32-bit unpaged protected mode, 32-bit write-to-ring-3 : 58 962 ins/sec 99% / 58 955 298% / 175 936
2732 real mode, 32-bit read : 58 571 ins/sec 118% / 69 478 1160% / 679 917
2733 real mode, 32-bit write : 58 418 ins/sec 118% / 69 320 1185% / 692 513
2734 real mode, 32-bit read-to-ring-3 : 58 072 ins/sec 96% / 55 751 274% / 159 145
2735 real mode, 32-bit write-to-ring-3 : 57 870 ins/sec 101% / 58 755 307% / 178 042
2736NOP MMIO Access : PASSED
2737SUCCESS
2738 * @endverbatim
2739 *
2740 * What we see here is:
2741 *
2742 * - The WinHv API approach is 10 to 12 times slower for exits we can
2743 * handle directly in ring-0 in the VBox AMD-V code.
2744 *
2745 * - The WinHv API approach is 2 to 3 times slower for exits we have to
2746 * go to ring-3 to handle with the VBox AMD-V code.
2747 *
2748 * - By using hypercalls and VID.SYS from ring-0 we gain between
2749 * 13% and 20% over the WinHv API on exits handled in ring-0.
2750 *
2751 * - For exits requiring ring-3 handling are between 6% slower and 3% faster
2752 * than the WinHv API.
2753 *
2754 *
2755 * As a side note, it looks like Hyper-V doesn't let the guest read CR4 but
2756 * triggers exits all the time. This isn't all that important these days since
2757 * OSes like Linux cache the CR4 value specifically to avoid these kinds of exits.
2758 *
2759 *
2760 * @subsubsection subsect_nem_win_benchmarks_bs2t1u1 17134/2018-10-02: Bootsector2-test1
2761 *
2762 * Update on 17134. While expectantly testing a couple of newer builds (17758,
2763 * 17763) hoping for some increases in performance, the numbers turned out
2764 * altogether worse than the June test run. So, we went back to the 1803
2765 * (17134) installation, made sure it was fully up to date (as per 2018-10-02)
2766 * and re-tested.
2767 *
2768 * The numbers had somehow turned significantly worse over the last 3-4 months,
2769 * dropping around 70% for the WinHv API test, more for Hypercalls + VID.
2770 *
2771 * @verbatim
2772TESTING... WinHv API Hypercalls + VID VirtualBox AMD-V *
2773 32-bit paged protected mode, CPUID : 33 270 ins/sec 33 154
2774 real mode, CPUID : 33 534 ins/sec 32 711
2775 [snip]
2776 32-bit paged protected mode, RDTSC : 102 216 011 ins/sec 98 225 419
2777 real mode, RDTSC : 102 492 243 ins/sec 98 225 419
2778 [snip]
2779 32-bit paged protected mode, Read CR4 : 2 096 165 ins/sec 2 123 815
2780 real mode, Read CR4 : 2 081 047 ins/sec 2 075 151
2781 [snip]
2782 32-bit paged protected mode, 32-bit IN : 32 739 ins/sec 33 655
2783 32-bit paged protected mode, 32-bit OUT : 32 702 ins/sec 33 777
2784 32-bit paged protected mode, 32-bit IN-to-ring-3 : 32 579 ins/sec 29 985
2785 32-bit paged protected mode, 32-bit OUT-to-ring-3 : 32 750 ins/sec 29 757
2786 [snip]
2787 32-bit paged protected mode, 32-bit read : 20 042 ins/sec 21 489
2788 32-bit paged protected mode, 32-bit write : 20 036 ins/sec 21 493
2789 32-bit paged protected mode, 32-bit read-to-ring-3 : 19 985 ins/sec 19 143
2790 32-bit paged protected mode, 32-bit write-to-ring-3 : 19 972 ins/sec 19 595
2791
2792 * @endverbatim
2793 *
2794 * Suspects are security updates and/or microcode updates installed since then.
2795 * Given that the RDTSC and CR4 numbers are reasonably unchanges, it seems that
2796 * the Hyper-V core loop (in hvax64.exe) aren't affected. Our ring-0 runloop
2797 * is equally affected as the ring-3 based runloop, so it cannot be ring
2798 * switching as such (unless the ring-0 loop is borked and we didn't notice yet).
2799 *
2800 * The issue is probably in the thread / process switching area, could be
2801 * something special for hyper-V interrupt delivery or worker thread switching.
2802 *
2803 * Really wish this thread ping-pong going on in VID.SYS could be eliminated!
2804 *
2805 *
2806 * @subsubsection subsect_nem_win_benchmarks_bs2t1u2 17763: Bootsector2-test1
2807 *
2808 * Some preliminary numbers for build 17763 on the 3.4 GHz AMD 1950X, the second
2809 * column will improve we get time to have a look the register page.
2810 *
2811 * There is a 50% performance loss here compared to the June numbers with
2812 * build 17134. The RDTSC numbers hits that it isn't in the Hyper-V core
2813 * (hvax64.exe), but something on the NT side.
2814 *
2815 * Clearing bit 20 in nt!KiSpeculationFeatures speeds things up (i.e. changing
2816 * the dword from 0x00300065 to 0x00200065 in windbg). This is checked by
2817 * nt!KePrepareToDispatchVirtualProcessor, making it a no-op if the flag is
2818 * clear. winhvr!WinHvpVpDispatchLoop call that function before making
2819 * hypercall 0xc2, which presumably does the heavy VCpu lifting in hvcax64.exe.
2820 *
2821 * @verbatim
2822TESTING... WinHv API Hypercalls + VID clr(bit-20) + WinHv API
2823 32-bit paged protected mode, CPUID : 54 145 ins/sec 51 436 130 076
2824 real mode, CPUID : 54 178 ins/sec 51 713 130 449
2825 [snip]
2826 32-bit paged protected mode, RDTSC : 98 927 639 ins/sec 100 254 552 100 549 882
2827 real mode, RDTSC : 99 601 206 ins/sec 100 886 699 100 470 957
2828 [snip]
2829 32-bit paged protected mode, 32-bit IN : 54 621 ins/sec 51 524 128 294
2830 32-bit paged protected mode, 32-bit OUT : 54 870 ins/sec 51 671 129 397
2831 32-bit paged protected mode, 32-bit IN-to-ring-3 : 54 624 ins/sec 43 964 127 874
2832 32-bit paged protected mode, 32-bit OUT-to-ring-3 : 54 803 ins/sec 44 087 129 443
2833 [snip]
2834 32-bit paged protected mode, 32-bit read : 28 230 ins/sec 34 042 48 113
2835 32-bit paged protected mode, 32-bit write : 27 962 ins/sec 34 050 48 069
2836 32-bit paged protected mode, 32-bit read-to-ring-3 : 27 841 ins/sec 28 397 48 146
2837 32-bit paged protected mode, 32-bit write-to-ring-3 : 27 896 ins/sec 29 455 47 970
2838 * @endverbatim
2839 *
2840 *
2841 * @subsubsection subsect_nem_win_benchmarks_w2k 17134/2018-06-22: Windows 2000 Boot & Shutdown
2842 *
2843 * Timing the startup and automatic shutdown of a Windows 2000 SP4 guest serves
2844 * as a real world benchmark and example of why exit performance is import. When
2845 * Windows 2000 boots up is doing a lot of VGA redrawing of the boot animation,
2846 * which is very costly. Not having installed guest additions leaves it in a VGA
2847 * mode after the bootup sequence is done, keep up the screen access expenses,
2848 * though the graphics driver more economical than the bootvid code.
2849 *
2850 * The VM was configured to automatically logon. A startup script was installed
2851 * to perform the automatic shuting down and powering off the VM (thru
2852 * vts_shutdown.exe -f -p). An offline snapshot of the VM was taken an restored
2853 * before each test run. The test time run time is calculated from the monotonic
2854 * VBox.log timestamps, starting with the state change to 'RUNNING' and stopping
2855 * at 'POWERING_OFF'.
2856 *
2857 * The host OS and VirtualBox build is the same as for the bootsector2-test1
2858 * scenario.
2859 *
2860 * Results:
2861 *
2862 * - WinHv API for all but physical page mappings:
2863 * 32 min 12.19 seconds
2864 *
2865 * - The default NEM/win configuration where we put the main execution loop
2866 * in ring-0, using hypercalls when we can and VID for managing execution:
2867 * 3 min 23.18 seconds
2868 *
2869 * - Regular VirtualBox using AMD-V directly, hyper-V is disabled, main
2870 * execution loop in ring-0:
2871 * 58.09 seconds
2872 *
2873 * - WinHv API with exit history based optimizations:
2874 * 58.66 seconds
2875 *
2876 * - Hypercall + VID.SYS with exit history base optimizations:
2877 * 58.94 seconds
2878 *
2879 * With a well above average machine needing over half an hour for booting a
2880 * nearly 20 year old guest kind of says it all. The 13%-20% exit performance
2881 * increase we get by using hypercalls and VID.SYS directly pays off a lot here.
2882 * The 3m23s is almost acceptable in comparison to the half an hour.
2883 *
2884 * The similarity between the last three results strongly hits at windows 2000
2885 * doing a lot of waiting during boot and shutdown and isn't the best testcase
2886 * once a basic performance level is reached.
2887 *
2888 *
2889 * @subsubsection subsection_iem_win_benchmarks_deb9_nat Debian 9 NAT performance
2890 *
2891 * This benchmark is about network performance over NAT from a 64-bit Debian 9
2892 * VM with a single CPU. For network performance measurements, we use our own
2893 * NetPerf tool (ValidationKit/utils/network/NetPerf.cpp) to measure latency
2894 * and throughput.
2895 *
2896 * The setups, builds and configurations are as in the previous benchmarks
2897 * (release r123172 on 1950X running 64-bit W10/17134 (2016-06-xx). Please note
2898 * that the exit optimizations hasn't yet been in tuned with NetPerf in mind.
2899 *
2900 * The NAT network setup was selected here since it's the default one and the
2901 * slowest one. There is quite a bit of IPC with worker threads and packet
2902 * processing involved.
2903 *
2904 * Latency test is first up. This is a classic back and forth between the two
2905 * NetPerf instances, where the key measurement is the roundrip latency. The
2906 * values here are the lowest result over 3-6 runs.
2907 *
2908 * Against host system:
2909 * - 152 258 ns/roundtrip - 100% - regular VirtualBox SVM
2910 * - 271 059 ns/roundtrip - 178% - Hypercalls + VID.SYS in ring-0 with exit optimizations.
2911 * - 280 149 ns/roundtrip - 184% - Hypercalls + VID.SYS in ring-0
2912 * - 317 735 ns/roundtrip - 209% - Win HV API with exit optimizations.
2913 * - 342 440 ns/roundtrip - 225% - Win HV API
2914 *
2915 * Against a remote Windows 10 system over a 10Gbps link:
2916 * - 243 969 ns/roundtrip - 100% - regular VirtualBox SVM
2917 * - 384 427 ns/roundtrip - 158% - Win HV API with exit optimizations.
2918 * - 402 411 ns/roundtrip - 165% - Hypercalls + VID.SYS in ring-0
2919 * - 406 313 ns/roundtrip - 167% - Win HV API
2920 * - 413 160 ns/roundtrip - 169% - Hypercalls + VID.SYS in ring-0 with exit optimizations.
2921 *
2922 * What we see here is:
2923 *
2924 * - Consistent and signficant latency increase using Hyper-V compared
2925 * to directly harnessing AMD-V ourselves.
2926 *
2927 * - When talking to the host, it's clear that the hypercalls + VID.SYS
2928 * in ring-0 method pays off.
2929 *
2930 * - When talking to a different host, the numbers are closer and it
2931 * is not longer clear which Hyper-V execution method is better.
2932 *
2933 *
2934 * Throughput benchmarks are performed by one side pushing data full throttle
2935 * for 10 seconds (minus a 1 second at each end of the test), then reversing
2936 * the roles and measuring it in the other direction. The tests ran 3-5 times
2937 * and below are the highest and lowest results in each direction.
2938 *
2939 * Receiving from host system:
2940 * - Regular VirtualBox SVM:
2941 * Max: 96 907 549 bytes/s - 100%
2942 * Min: 86 912 095 bytes/s - 100%
2943 * - Hypercalls + VID.SYS in ring-0:
2944 * Max: 84 036 544 bytes/s - 87%
2945 * Min: 64 978 112 bytes/s - 75%
2946 * - Hypercalls + VID.SYS in ring-0 with exit optimizations:
2947 * Max: 77 760 699 bytes/s - 80%
2948 * Min: 72 677 171 bytes/s - 84%
2949 * - Win HV API with exit optimizations:
2950 * Max: 64 465 905 bytes/s - 67%
2951 * Min: 62 286 369 bytes/s - 72%
2952 * - Win HV API:
2953 * Max: 62 466 631 bytes/s - 64%
2954 * Min: 61 362 782 bytes/s - 70%
2955 *
2956 * Sending to the host system:
2957 * - Regular VirtualBox SVM:
2958 * Max: 87 728 652 bytes/s - 100%
2959 * Min: 86 923 198 bytes/s - 100%
2960 * - Hypercalls + VID.SYS in ring-0:
2961 * Max: 84 280 749 bytes/s - 96%
2962 * Min: 78 369 842 bytes/s - 90%
2963 * - Hypercalls + VID.SYS in ring-0 with exit optimizations:
2964 * Max: 84 119 932 bytes/s - 96%
2965 * Min: 77 396 811 bytes/s - 89%
2966 * - Win HV API:
2967 * Max: 81 714 377 bytes/s - 93%
2968 * Min: 78 697 419 bytes/s - 91%
2969 * - Win HV API with exit optimizations:
2970 * Max: 80 502 488 bytes/s - 91%
2971 * Min: 71 164 978 bytes/s - 82%
2972 *
2973 * Receiving from a remote Windows 10 system over a 10Gbps link:
2974 * - Hypercalls + VID.SYS in ring-0:
2975 * Max: 115 346 922 bytes/s - 136%
2976 * Min: 112 912 035 bytes/s - 137%
2977 * - Regular VirtualBox SVM:
2978 * Max: 84 517 504 bytes/s - 100%
2979 * Min: 82 597 049 bytes/s - 100%
2980 * - Hypercalls + VID.SYS in ring-0 with exit optimizations:
2981 * Max: 77 736 251 bytes/s - 92%
2982 * Min: 73 813 784 bytes/s - 89%
2983 * - Win HV API with exit optimizations:
2984 * Max: 63 035 587 bytes/s - 75%
2985 * Min: 57 538 380 bytes/s - 70%
2986 * - Win HV API:
2987 * Max: 62 279 185 bytes/s - 74%
2988 * Min: 56 813 866 bytes/s - 69%
2989 *
2990 * Sending to a remote Windows 10 system over a 10Gbps link:
2991 * - Win HV API with exit optimizations:
2992 * Max: 116 502 357 bytes/s - 103%
2993 * Min: 49 046 550 bytes/s - 59%
2994 * - Regular VirtualBox SVM:
2995 * Max: 113 030 991 bytes/s - 100%
2996 * Min: 83 059 511 bytes/s - 100%
2997 * - Hypercalls + VID.SYS in ring-0:
2998 * Max: 106 435 031 bytes/s - 94%
2999 * Min: 47 253 510 bytes/s - 57%
3000 * - Hypercalls + VID.SYS in ring-0 with exit optimizations:
3001 * Max: 94 842 287 bytes/s - 84%
3002 * Min: 68 362 172 bytes/s - 82%
3003 * - Win HV API:
3004 * Max: 65 165 225 bytes/s - 58%
3005 * Min: 47 246 573 bytes/s - 57%
3006 *
3007 * What we see here is:
3008 *
3009 * - Again consistent numbers when talking to the host. Showing that the
3010 * ring-0 approach is preferable to the ring-3 one.
3011 *
3012 * - Again when talking to a remote host, things get more difficult to
3013 * make sense of. The spread is larger and direct AMD-V gets beaten by
3014 * a different the Hyper-V approaches in each direction.
3015 *
3016 * - However, if we treat the first entry (remote host) as weird spikes, the
3017 * other entries are consistently worse compared to direct AMD-V. For the
3018 * send case we get really bad results for WinHV.
3019 *
3020 */
3021
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette