/* $Id: NEMR3Native-win-armv8.cpp 104672 2024-05-16 10:50:35Z vboxsync $ */ /** @file * NEM - Native execution manager, native ring-3 Windows backend. * * Log group 2: Exit logging. * Log group 3: Log context on exit. * Log group 5: Ring-3 memory management * Log group 6: Ring-0 memory management * Log group 12: API intercepts. */ /* * Copyright (C) 2018-2023 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_NEM #define VMCPU_INCL_CPUM_GST_CTX #include #include #include #ifndef _WIN32_WINNT_WIN10 # error "Missing _WIN32_WINNT_WIN10" #endif #ifndef _WIN32_WINNT_WIN10_RS1 /* Missing define, causing trouble for us. */ # define _WIN32_WINNT_WIN10_RS1 (_WIN32_WINNT_WIN10 + 1) #endif #include #include #include #include #include /* no api header for this. */ #include #include #include #include #include #include #include "NEMInternal.h" #include #include #include #include #include #include #ifndef NTDDI_WIN10_VB /* Present in W10 2004 SDK, quite possibly earlier. */ HRESULT WINAPI WHvQueryGpaRangeDirtyBitmap(WHV_PARTITION_HANDLE, WHV_GUEST_PHYSICAL_ADDRESS, UINT64, UINT64 *, UINT32); # define WHvMapGpaRangeFlagTrackDirtyPages ((WHV_MAP_GPA_RANGE_FLAGS)0x00000008) #endif /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ /** @name APIs imported from WinHvPlatform.dll * @{ */ static decltype(WHvGetCapability) * g_pfnWHvGetCapability; static decltype(WHvCreatePartition) * g_pfnWHvCreatePartition; static decltype(WHvSetupPartition) * g_pfnWHvSetupPartition; static decltype(WHvDeletePartition) * g_pfnWHvDeletePartition; static decltype(WHvGetPartitionProperty) * g_pfnWHvGetPartitionProperty; static decltype(WHvSetPartitionProperty) * g_pfnWHvSetPartitionProperty; static decltype(WHvMapGpaRange) * g_pfnWHvMapGpaRange; static decltype(WHvUnmapGpaRange) * g_pfnWHvUnmapGpaRange; static decltype(WHvTranslateGva) * g_pfnWHvTranslateGva; static decltype(WHvQueryGpaRangeDirtyBitmap) * g_pfnWHvQueryGpaRangeDirtyBitmap; static decltype(WHvCreateVirtualProcessor) * g_pfnWHvCreateVirtualProcessor; static decltype(WHvDeleteVirtualProcessor) * g_pfnWHvDeleteVirtualProcessor; static decltype(WHvRunVirtualProcessor) * g_pfnWHvRunVirtualProcessor; static decltype(WHvCancelRunVirtualProcessor) * g_pfnWHvCancelRunVirtualProcessor; static decltype(WHvGetVirtualProcessorRegisters) * g_pfnWHvGetVirtualProcessorRegisters; static decltype(WHvSetVirtualProcessorRegisters) * g_pfnWHvSetVirtualProcessorRegisters; /** @} */ /** The Windows build number. */ static uint32_t g_uBuildNo = 17134; /** * Import instructions. */ static const struct { uint8_t idxDll; /**< 0 for WinHvPlatform.dll, 1 for vid.dll. */ bool fOptional; /**< Set if import is optional. */ PFNRT *ppfn; /**< The function pointer variable. */ const char *pszName; /**< The function name. */ } g_aImports[] = { #define NEM_WIN_IMPORT(a_idxDll, a_fOptional, a_Name) { (a_idxDll), (a_fOptional), (PFNRT *)&RT_CONCAT(g_pfn,a_Name), #a_Name } NEM_WIN_IMPORT(0, false, WHvGetCapability), NEM_WIN_IMPORT(0, false, WHvCreatePartition), NEM_WIN_IMPORT(0, false, WHvSetupPartition), NEM_WIN_IMPORT(0, false, WHvDeletePartition), NEM_WIN_IMPORT(0, false, WHvGetPartitionProperty), NEM_WIN_IMPORT(0, false, WHvSetPartitionProperty), NEM_WIN_IMPORT(0, false, WHvMapGpaRange), NEM_WIN_IMPORT(0, false, WHvUnmapGpaRange), NEM_WIN_IMPORT(0, false, WHvTranslateGva), NEM_WIN_IMPORT(0, true, WHvQueryGpaRangeDirtyBitmap), NEM_WIN_IMPORT(0, false, WHvCreateVirtualProcessor), NEM_WIN_IMPORT(0, false, WHvDeleteVirtualProcessor), NEM_WIN_IMPORT(0, false, WHvRunVirtualProcessor), NEM_WIN_IMPORT(0, false, WHvCancelRunVirtualProcessor), NEM_WIN_IMPORT(0, false, WHvGetVirtualProcessorRegisters), NEM_WIN_IMPORT(0, false, WHvSetVirtualProcessorRegisters), #undef NEM_WIN_IMPORT }; /* * Let the preprocessor alias the APIs to import variables for better autocompletion. */ #ifndef IN_SLICKEDIT # define WHvGetCapability g_pfnWHvGetCapability # define WHvCreatePartition g_pfnWHvCreatePartition # define WHvSetupPartition g_pfnWHvSetupPartition # define WHvDeletePartition g_pfnWHvDeletePartition # define WHvGetPartitionProperty g_pfnWHvGetPartitionProperty # define WHvSetPartitionProperty g_pfnWHvSetPartitionProperty # define WHvMapGpaRange g_pfnWHvMapGpaRange # define WHvUnmapGpaRange g_pfnWHvUnmapGpaRange # define WHvTranslateGva g_pfnWHvTranslateGva # define WHvQueryGpaRangeDirtyBitmap g_pfnWHvQueryGpaRangeDirtyBitmap # define WHvCreateVirtualProcessor g_pfnWHvCreateVirtualProcessor # define WHvDeleteVirtualProcessor g_pfnWHvDeleteVirtualProcessor # define WHvRunVirtualProcessor g_pfnWHvRunVirtualProcessor # define WHvGetRunExitContextSize g_pfnWHvGetRunExitContextSize # define WHvCancelRunVirtualProcessor g_pfnWHvCancelRunVirtualProcessor # define WHvGetVirtualProcessorRegisters g_pfnWHvGetVirtualProcessorRegisters # define WHvSetVirtualProcessorRegisters g_pfnWHvSetVirtualProcessorRegisters # define VidMessageSlotHandleAndGetNext g_pfnVidMessageSlotHandleAndGetNext # define VidStartVirtualProcessor g_pfnVidStartVirtualProcessor # define VidStopVirtualProcessor g_pfnVidStopVirtualProcessor #endif /** WHV_MEMORY_ACCESS_TYPE names */ static const char * const g_apszWHvMemAccesstypes[4] = { "read", "write", "exec", "!undefined!" }; /** NEM_WIN_PAGE_STATE_XXX names. */ NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" }; /** HV_INTERCEPT_ACCESS_TYPE names. */ static const char * const g_apszHvInterceptAccessTypes[4] = { "read", "write", "exec", "!undefined!" }; /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv); DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv); NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged); /** * Worker for nemR3NativeInit that probes and load the native API. * * @returns VBox status code. * @param fForced Whether the HMForced flag is set and we should * fail if we cannot initialize. * @param pErrInfo Where to always return error info. */ static int nemR3WinInitProbeAndLoad(bool fForced, PRTERRINFO pErrInfo) { /* * Check that the DLL files we need are present, but without loading them. * We'd like to avoid loading them unnecessarily. */ WCHAR wszPath[MAX_PATH + 64]; UINT cwcPath = GetSystemDirectoryW(wszPath, MAX_PATH); if (cwcPath >= MAX_PATH || cwcPath < 2) return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "GetSystemDirectoryW failed (%#x / %u)", cwcPath, GetLastError()); if (wszPath[cwcPath - 1] != '\\' || wszPath[cwcPath - 1] != '/') wszPath[cwcPath++] = '\\'; RTUtf16CopyAscii(&wszPath[cwcPath], RT_ELEMENTS(wszPath) - cwcPath, "WinHvPlatform.dll"); if (GetFileAttributesW(wszPath) == INVALID_FILE_ATTRIBUTES) return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "The native API dll was not found (%ls)", wszPath); /* * Check that we're in a VM and that the hypervisor identifies itself as Hyper-V. */ /** @todo */ /** @todo would be great if we could recognize a root partition from the * CPUID info, but I currently don't dare do that. */ /* * Now try load the DLLs and resolve the APIs. */ static const char * const s_apszDllNames[1] = { "WinHvPlatform.dll" }; RTLDRMOD ahMods[1] = { NIL_RTLDRMOD }; int rc = VINF_SUCCESS; for (unsigned i = 0; i < RT_ELEMENTS(s_apszDllNames); i++) { int rc2 = RTLdrLoadSystem(s_apszDllNames[i], true /*fNoUnload*/, &ahMods[i]); if (RT_FAILURE(rc2)) { if (!RTErrInfoIsSet(pErrInfo)) RTErrInfoSetF(pErrInfo, rc2, "Failed to load API DLL: %s: %Rrc", s_apszDllNames[i], rc2); else RTErrInfoAddF(pErrInfo, rc2, "; %s: %Rrc", s_apszDllNames[i], rc2); ahMods[i] = NIL_RTLDRMOD; rc = VERR_NEM_INIT_FAILED; } } if (RT_SUCCESS(rc)) { for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++) { int rc2 = RTLdrGetSymbol(ahMods[g_aImports[i].idxDll], g_aImports[i].pszName, (void **)g_aImports[i].ppfn); if (RT_SUCCESS(rc2)) { if (g_aImports[i].fOptional) LogRel(("NEM: info: Found optional import %s!%s.\n", s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName)); } else { *g_aImports[i].ppfn = NULL; LogRel(("NEM: %s: Failed to import %s!%s: %Rrc", g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error", s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName, rc2)); if (!g_aImports[i].fOptional) { if (RTErrInfoIsSet(pErrInfo)) RTErrInfoAddF(pErrInfo, rc2, ", %s!%s", s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName); else rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: %s!%s", s_apszDllNames[g_aImports[i].idxDll], g_aImports[i].pszName); Assert(RT_FAILURE(rc)); } } } if (RT_SUCCESS(rc)) { Assert(!RTErrInfoIsSet(pErrInfo)); } } for (unsigned i = 0; i < RT_ELEMENTS(ahMods); i++) RTLdrClose(ahMods[i]); return rc; } /** * Wrapper for different WHvGetCapability signatures. */ DECLINLINE(HRESULT) WHvGetCapabilityWrapper(WHV_CAPABILITY_CODE enmCap, WHV_CAPABILITY *pOutput, uint32_t cbOutput) { return g_pfnWHvGetCapability(enmCap, pOutput, cbOutput, NULL); } /** * Worker for nemR3NativeInit that gets the hypervisor capabilities. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pErrInfo Where to always return error info. */ static int nemR3WinInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo) { #define NEM_LOG_REL_CAP_EX(a_szField, a_szFmt, a_Value) LogRel(("NEM: %-38s= " a_szFmt "\n", a_szField, a_Value)) #define NEM_LOG_REL_CAP_SUB_EX(a_szField, a_szFmt, a_Value) LogRel(("NEM: %36s: " a_szFmt "\n", a_szField, a_Value)) #define NEM_LOG_REL_CAP_SUB(a_szField, a_Value) NEM_LOG_REL_CAP_SUB_EX(a_szField, "%d", a_Value) /* * Is the hypervisor present with the desired capability? * * In build 17083 this translates into: * - CPUID[0x00000001].HVP is set * - CPUID[0x40000000] == "Microsoft Hv" * - CPUID[0x40000001].eax == "Hv#1" * - CPUID[0x40000003].ebx[12] is set. * - VidGetExoPartitionProperty(INVALID_HANDLE_VALUE, 0x60000, &Ignored) returns * a non-zero value. */ /** * @todo Someone at Microsoft please explain weird API design: * 1. Pointless CapabilityCode duplication int the output; * 2. No output size. */ WHV_CAPABILITY Caps; RT_ZERO(Caps); SetLastError(0); HRESULT hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeHypervisorPresent, &Caps, sizeof(Caps)); DWORD rcWin = GetLastError(); if (FAILED(hrc)) return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "WHvGetCapability/WHvCapabilityCodeHypervisorPresent failed: %Rhrc (Last=%#x/%u)", hrc, RTNtLastStatusValue(), RTNtLastErrorValue()); if (!Caps.HypervisorPresent) { if (!RTPathExists(RTPATH_NT_PASSTHRU_PREFIX "Device\\VidExo")) return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "WHvCapabilityCodeHypervisorPresent is FALSE! Make sure you have enabled the 'Windows Hypervisor Platform' feature."); return RTErrInfoSetF(pErrInfo, VERR_NEM_NOT_AVAILABLE, "WHvCapabilityCodeHypervisorPresent is FALSE! (%u)", rcWin); } LogRel(("NEM: WHvCapabilityCodeHypervisorPresent is TRUE, so this might work...\n")); /* * Check what extended VM exits are supported. */ RT_ZERO(Caps); hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeExtendedVmExits, &Caps, sizeof(Caps)); if (FAILED(hrc)) return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "WHvGetCapability/WHvCapabilityCodeExtendedVmExits failed: %Rhrc (Last=%#x/%u)", hrc, RTNtLastStatusValue(), RTNtLastErrorValue()); NEM_LOG_REL_CAP_EX("WHvCapabilityCodeExtendedVmExits", "%'#018RX64", Caps.ExtendedVmExits.AsUINT64); pVM->nem.s.fHypercallExit = RT_BOOL(Caps.ExtendedVmExits.HypercallExit); pVM->nem.s.fGpaAccessFaultExit = RT_BOOL(Caps.ExtendedVmExits.GpaAccessFaultExit); NEM_LOG_REL_CAP_SUB("fHypercallExit", pVM->nem.s.fHypercallExit); NEM_LOG_REL_CAP_SUB("fGpaAccessFaultExit", pVM->nem.s.fGpaAccessFaultExit); if (Caps.ExtendedVmExits.AsUINT64 & ~(uint64_t)7) LogRel(("NEM: Warning! Unknown VM exit definitions: %#RX64\n", Caps.ExtendedVmExits.AsUINT64)); /** @todo RECHECK: WHV_EXTENDED_VM_EXITS typedef. */ /* * Check features in case they end up defining any. */ RT_ZERO(Caps); hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeFeatures, &Caps, sizeof(Caps)); if (FAILED(hrc)) return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "WHvGetCapability/WHvCapabilityCodeFeatures failed: %Rhrc (Last=%#x/%u)", hrc, RTNtLastStatusValue(), RTNtLastErrorValue()); if (Caps.Features.AsUINT64 & ~(uint64_t)0) LogRel(("NEM: Warning! Unknown feature definitions: %#RX64\n", Caps.Features.AsUINT64)); /** @todo RECHECK: WHV_CAPABILITY_FEATURES typedef. */ /* * Check that the CPU vendor is supported. */ RT_ZERO(Caps); hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorVendor, &Caps, sizeof(Caps)); if (FAILED(hrc)) return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "WHvGetCapability/WHvCapabilityCodeProcessorVendor failed: %Rhrc (Last=%#x/%u)", hrc, RTNtLastStatusValue(), RTNtLastErrorValue()); switch (Caps.ProcessorVendor) { /** @todo RECHECK: WHV_PROCESSOR_VENDOR typedef. */ case WHvProcessorVendorArm: NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d - ARM", Caps.ProcessorVendor); pVM->nem.s.enmCpuVendor = CPUMCPUVENDOR_UNKNOWN; break; default: NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorVendor", "%d", Caps.ProcessorVendor); return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Unknown processor vendor: %d", Caps.ProcessorVendor); } /* * CPU features, guessing these are virtual CPU features? */ RT_ZERO(Caps); hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorFeatures, &Caps, sizeof(Caps)); if (FAILED(hrc)) return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "WHvGetCapability/WHvCapabilityCodeProcessorFeatures failed: %Rhrc (Last=%#x/%u)", hrc, RTNtLastStatusValue(), RTNtLastErrorValue()); NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorFeatures", "%'#018RX64", Caps.ProcessorFeatures.AsUINT64); #define NEM_LOG_REL_CPU_FEATURE(a_Field) NEM_LOG_REL_CAP_SUB(#a_Field, Caps.ProcessorFeatures.a_Field) NEM_LOG_REL_CPU_FEATURE(Asid16); NEM_LOG_REL_CPU_FEATURE(TGran16); NEM_LOG_REL_CPU_FEATURE(TGran64); NEM_LOG_REL_CPU_FEATURE(Haf); NEM_LOG_REL_CPU_FEATURE(Hdbs); NEM_LOG_REL_CPU_FEATURE(Pan); NEM_LOG_REL_CPU_FEATURE(AtS1E1); NEM_LOG_REL_CPU_FEATURE(Uao); NEM_LOG_REL_CPU_FEATURE(El0Aarch32); NEM_LOG_REL_CPU_FEATURE(Fp); NEM_LOG_REL_CPU_FEATURE(FpHp); NEM_LOG_REL_CPU_FEATURE(AdvSimd); NEM_LOG_REL_CPU_FEATURE(AdvSimdHp); NEM_LOG_REL_CPU_FEATURE(GicV3V4); NEM_LOG_REL_CPU_FEATURE(GicV41); NEM_LOG_REL_CPU_FEATURE(Ras); NEM_LOG_REL_CPU_FEATURE(PmuV3); NEM_LOG_REL_CPU_FEATURE(PmuV3ArmV81); NEM_LOG_REL_CPU_FEATURE(PmuV3ArmV84); NEM_LOG_REL_CPU_FEATURE(PmuV3ArmV85); NEM_LOG_REL_CPU_FEATURE(Aes); NEM_LOG_REL_CPU_FEATURE(PolyMul); NEM_LOG_REL_CPU_FEATURE(Sha1); NEM_LOG_REL_CPU_FEATURE(Sha256); NEM_LOG_REL_CPU_FEATURE(Sha512); NEM_LOG_REL_CPU_FEATURE(Crc32); NEM_LOG_REL_CPU_FEATURE(Atomic); NEM_LOG_REL_CPU_FEATURE(Rdm); NEM_LOG_REL_CPU_FEATURE(Sha3); NEM_LOG_REL_CPU_FEATURE(Sm3); NEM_LOG_REL_CPU_FEATURE(Sm4); NEM_LOG_REL_CPU_FEATURE(Dp); NEM_LOG_REL_CPU_FEATURE(Fhm); NEM_LOG_REL_CPU_FEATURE(DcCvap); NEM_LOG_REL_CPU_FEATURE(DcCvadp); NEM_LOG_REL_CPU_FEATURE(ApaBase); NEM_LOG_REL_CPU_FEATURE(ApaEp); NEM_LOG_REL_CPU_FEATURE(ApaEp2); NEM_LOG_REL_CPU_FEATURE(ApaEp2Fp); NEM_LOG_REL_CPU_FEATURE(ApaEp2Fpc); NEM_LOG_REL_CPU_FEATURE(Jscvt); NEM_LOG_REL_CPU_FEATURE(Fcma); NEM_LOG_REL_CPU_FEATURE(RcpcV83); NEM_LOG_REL_CPU_FEATURE(RcpcV84); NEM_LOG_REL_CPU_FEATURE(Gpa); NEM_LOG_REL_CPU_FEATURE(L1ipPipt); NEM_LOG_REL_CPU_FEATURE(DzPermitted); #undef NEM_LOG_REL_CPU_FEATURE if (Caps.ProcessorFeatures.AsUINT64 & (~(RT_BIT_64(47) - 1))) LogRel(("NEM: Warning! Unknown CPU features: %#RX64\n", Caps.ProcessorFeatures.AsUINT64)); pVM->nem.s.uCpuFeatures.u64 = Caps.ProcessorFeatures.AsUINT64; /** @todo RECHECK: WHV_PROCESSOR_FEATURES typedef. */ /* * The cache line flush size. */ RT_ZERO(Caps); hrc = WHvGetCapabilityWrapper(WHvCapabilityCodeProcessorClFlushSize, &Caps, sizeof(Caps)); if (FAILED(hrc)) return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "WHvGetCapability/WHvCapabilityCodeProcessorClFlushSize failed: %Rhrc (Last=%#x/%u)", hrc, RTNtLastStatusValue(), RTNtLastErrorValue()); NEM_LOG_REL_CAP_EX("WHvCapabilityCodeProcessorClFlushSize", "2^%u", Caps.ProcessorClFlushSize); if (Caps.ProcessorClFlushSize < 8 && Caps.ProcessorClFlushSize > 9) return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Unsupported cache line flush size: %u", Caps.ProcessorClFlushSize); pVM->nem.s.cCacheLineFlushShift = Caps.ProcessorClFlushSize; RT_ZERO(Caps); hrc = WHvGetCapabilityWrapper(WHvCapabilityCodePhysicalAddressWidth, &Caps, sizeof(Caps)); if (FAILED(hrc)) return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "WHvGetCapability/WHvCapabilityCodePhysicalAddressWidth failed: %Rhrc (Last=%#x/%u)", hrc, RTNtLastStatusValue(), RTNtLastErrorValue()); NEM_LOG_REL_CAP_EX("WHvCapabilityCodePhysicalAddressWidth", "2^%u", Caps.PhysicalAddressWidth); if (Caps.PhysicalAddressWidth < 32 && Caps.PhysicalAddressWidth > 52) return RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED, "Unsupported physical address width: %u", Caps.ProcessorClFlushSize); pVM->nem.s.cPhysicalAddressWidth = Caps.PhysicalAddressWidth; /* * See if they've added more properties that we're not aware of. */ /** @todo RECHECK: WHV_CAPABILITY_CODE typedef. */ if (!IsDebuggerPresent()) /* Too noisy when in debugger, so skip. */ { static const struct { uint32_t iMin, iMax; } s_aUnknowns[] = { { 0x0004, 0x000f }, { 0x1003, 0x100f }, { 0x2000, 0x200f }, { 0x3000, 0x300f }, { 0x4000, 0x400f }, }; for (uint32_t j = 0; j < RT_ELEMENTS(s_aUnknowns); j++) for (uint32_t i = s_aUnknowns[j].iMin; i <= s_aUnknowns[j].iMax; i++) { RT_ZERO(Caps); hrc = WHvGetCapabilityWrapper((WHV_CAPABILITY_CODE)i, &Caps, sizeof(Caps)); if (SUCCEEDED(hrc)) LogRel(("NEM: Warning! Unknown capability %#x returning: %.*Rhxs\n", i, sizeof(Caps), &Caps)); } } /* * For proper operation, we require CPUID exits. */ /** @todo Any? */ #undef NEM_LOG_REL_CAP_EX #undef NEM_LOG_REL_CAP_SUB_EX #undef NEM_LOG_REL_CAP_SUB return VINF_SUCCESS; } /** * Creates and sets up a Hyper-V (exo) partition. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pErrInfo Where to always return error info. */ static int nemR3WinInitCreatePartition(PVM pVM, PRTERRINFO pErrInfo) { AssertReturn(!pVM->nem.s.hPartition, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order")); AssertReturn(!pVM->nem.s.hPartitionDevice, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order")); /* * Create the partition. */ WHV_PARTITION_HANDLE hPartition; HRESULT hrc = WHvCreatePartition(&hPartition); if (FAILED(hrc)) return RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "WHvCreatePartition failed with %Rhrc (Last=%#x/%u)", hrc, RTNtLastStatusValue(), RTNtLastErrorValue()); int rc; /* * Set partition properties, most importantly the CPU count. */ /** * @todo Someone at Microsoft please explain another weird API: * - Why this API doesn't take the WHV_PARTITION_PROPERTY_CODE value as an * argument rather than as part of the struct. That is so weird if you've * used any other NT or windows API, including WHvGetCapability(). * - Why use PVOID when WHV_PARTITION_PROPERTY is what's expected. We * technically only need 9 bytes for setting/getting * WHVPartitionPropertyCodeProcessorClFlushSize, but the API insists on 16. */ WHV_PARTITION_PROPERTY Property; RT_ZERO(Property); Property.ProcessorCount = pVM->cCpus; hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorCount, &Property, sizeof(Property)); if (SUCCEEDED(hrc)) { RT_ZERO(Property); Property.ExtendedVmExits.HypercallExit = pVM->nem.s.fHypercallExit; hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeExtendedVmExits, &Property, sizeof(Property)); if (SUCCEEDED(hrc)) { /* * We'll continue setup in nemR3NativeInitAfterCPUM. */ pVM->nem.s.fCreatedEmts = false; pVM->nem.s.hPartition = hPartition; LogRel(("NEM: Created partition %p.\n", hPartition)); return VINF_SUCCESS; } rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "Failed setting WHvPartitionPropertyCodeExtendedVmExits to %'#RX64: %Rhrc", Property.ExtendedVmExits.AsUINT64, hrc); } else rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "Failed setting WHvPartitionPropertyCodeProcessorCount to %u: %Rhrc (Last=%#x/%u)", pVM->cCpus, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()); WHvDeletePartition(hPartition); Assert(!pVM->nem.s.hPartitionDevice); Assert(!pVM->nem.s.hPartition); return rc; } static int nemR3NativeInitSetupVm(PVM pVM) { WHV_PARTITION_HANDLE hPartition = pVM->nem.s.hPartition; AssertReturn(hPartition != NULL, VERR_WRONG_ORDER); AssertReturn(!pVM->nem.s.hPartitionDevice, VERR_WRONG_ORDER); AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER); /* * Continue setting up the partition now that we've got most of the CPUID feature stuff. */ WHV_PARTITION_PROPERTY Property; HRESULT hrc; #if 0 /* Not sure if we really need to set the vendor. Update: Apparently we don't. WHvPartitionPropertyCodeProcessorVendor was removed in 17110. */ RT_ZERO(Property); Property.ProcessorVendor = pVM->nem.s.enmCpuVendor == CPUMCPUVENDOR_AMD ? WHvProcessorVendorAmd : WHvProcessorVendorIntel; hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorVendor, &Property, sizeof(Property)); if (FAILED(hrc)) return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Failed to set WHvPartitionPropertyCodeProcessorVendor to %u: %Rhrc (Last=%#x/%u)", Property.ProcessorVendor, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()); #endif /* Not sure if we really need to set the cache line flush size. */ RT_ZERO(Property); Property.ProcessorClFlushSize = pVM->nem.s.cCacheLineFlushShift; hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorClFlushSize, &Property, sizeof(Property)); if (FAILED(hrc)) return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Failed to set WHvPartitionPropertyCodeProcessorClFlushSize to %u: %Rhrc (Last=%#x/%u)", pVM->nem.s.cCacheLineFlushShift, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()); /* * Sync CPU features with CPUM. */ /** @todo sync CPU features with CPUM. */ /* Set the partition property. */ RT_ZERO(Property); Property.ProcessorFeatures.AsUINT64 = pVM->nem.s.uCpuFeatures.u64; hrc = WHvSetPartitionProperty(hPartition, WHvPartitionPropertyCodeProcessorFeatures, &Property, sizeof(Property)); if (FAILED(hrc)) return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Failed to set WHvPartitionPropertyCodeProcessorFeatures to %'#RX64: %Rhrc (Last=%#x/%u)", pVM->nem.s.uCpuFeatures.u64, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()); /* * Set up the partition. * * Seems like this is where the partition is actually instantiated and we get * a handle to it. */ hrc = WHvSetupPartition(hPartition); if (FAILED(hrc)) return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to WHvSetupPartition failed: %Rhrc (Last=%#x/%u)", hrc, RTNtLastStatusValue(), RTNtLastErrorValue()); /* * Setup the EMTs. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { hrc = WHvCreateVirtualProcessor(hPartition, idCpu, 0 /*fFlags*/); if (FAILED(hrc)) { NTSTATUS const rcNtLast = RTNtLastStatusValue(); DWORD const dwErrLast = RTNtLastErrorValue(); while (idCpu-- > 0) { HRESULT hrc2 = WHvDeleteVirtualProcessor(hPartition, idCpu); AssertLogRelMsg(SUCCEEDED(hrc2), ("WHvDeleteVirtualProcessor(%p, %u) -> %Rhrc (Last=%#x/%u)\n", hPartition, idCpu, hrc2, RTNtLastStatusValue(), RTNtLastErrorValue())); } return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to WHvCreateVirtualProcessor failed: %Rhrc (Last=%#x/%u)", hrc, rcNtLast, dwErrLast); } if (idCpu == 0) { /* Need to query the ID registers and populate CPUM. */ CPUMIDREGS IdRegs; RT_ZERO(IdRegs); #if 1 WHV_REGISTER_NAME aenmNames[12]; WHV_REGISTER_VALUE aValues[12]; RT_ZERO(aValues); aenmNames[0] = WHvArm64RegisterIdAa64Dfr0El1; aenmNames[1] = WHvArm64RegisterIdAa64Dfr1El1; aenmNames[2] = WHvArm64RegisterIdAa64Isar0El1; aenmNames[3] = WHvArm64RegisterIdAa64Isar1El1; aenmNames[4] = WHvArm64RegisterIdAa64Isar2El1; aenmNames[5] = WHvArm64RegisterIdAa64Mmfr0El1; aenmNames[6] = WHvArm64RegisterIdAa64Mmfr1El1; aenmNames[7] = WHvArm64RegisterIdAa64Mmfr2El1; aenmNames[8] = WHvArm64RegisterIdAa64Pfr0El1; aenmNames[9] = WHvArm64RegisterIdAa64Pfr1El1; aenmNames[10] = WHvArm64RegisterCtrEl0; aenmNames[11] = WHvArm64RegisterDczidEl0; hrc = WHvGetVirtualProcessorRegisters(hPartition, WHV_ANY_VP /*idCpu*/, aenmNames, RT_ELEMENTS(aenmNames), aValues); AssertLogRelMsgReturn(SUCCEEDED(hrc), ("WHvGetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n", hPartition, WHV_ANY_VP, RT_ELEMENTS(aenmNames), hrc, RTNtLastStatusValue(), RTNtLastErrorValue()) , VERR_NEM_GET_REGISTERS_FAILED); IdRegs.u64RegIdAa64Pfr0El1 = aValues[8].Reg64; IdRegs.u64RegIdAa64Pfr1El1 = aValues[9].Reg64; IdRegs.u64RegIdAa64Dfr0El1 = aValues[0].Reg64; IdRegs.u64RegIdAa64Dfr1El1 = aValues[1].Reg64; IdRegs.u64RegIdAa64Isar0El1 = aValues[2].Reg64; IdRegs.u64RegIdAa64Isar1El1 = aValues[3].Reg64; IdRegs.u64RegIdAa64Isar2El1 = aValues[4].Reg64; IdRegs.u64RegIdAa64Mmfr0El1 = aValues[5].Reg64; IdRegs.u64RegIdAa64Mmfr1El1 = aValues[6].Reg64; IdRegs.u64RegIdAa64Mmfr2El1 = aValues[7].Reg64; IdRegs.u64RegCtrEl0 = aValues[10].Reg64; IdRegs.u64RegDczidEl0 = aValues[11].Reg64; #else switch (pVM->nem.s.cPhysicalAddressWidth) { case 32: IdRegs.u64RegIdAa64Mmfr0El1 = RT_BF_SET(IdRegs.u64RegIdAa64Mmfr0El1, ARMV8_ID_AA64MMFR0_EL1_PARANGE, ARMV8_ID_AA64MMFR0_EL1_PARANGE_32BITS); break; case 36: IdRegs.u64RegIdAa64Mmfr0El1 = RT_BF_SET(IdRegs.u64RegIdAa64Mmfr0El1, ARMV8_ID_AA64MMFR0_EL1_PARANGE, ARMV8_ID_AA64MMFR0_EL1_PARANGE_36BITS); break; case 40: IdRegs.u64RegIdAa64Mmfr0El1 = RT_BF_SET(IdRegs.u64RegIdAa64Mmfr0El1, ARMV8_ID_AA64MMFR0_EL1_PARANGE, ARMV8_ID_AA64MMFR0_EL1_PARANGE_40BITS); break; case 42: IdRegs.u64RegIdAa64Mmfr0El1 = RT_BF_SET(IdRegs.u64RegIdAa64Mmfr0El1, ARMV8_ID_AA64MMFR0_EL1_PARANGE, ARMV8_ID_AA64MMFR0_EL1_PARANGE_42BITS); break; case 44: IdRegs.u64RegIdAa64Mmfr0El1 = RT_BF_SET(IdRegs.u64RegIdAa64Mmfr0El1, ARMV8_ID_AA64MMFR0_EL1_PARANGE, ARMV8_ID_AA64MMFR0_EL1_PARANGE_44BITS); break; case 48: IdRegs.u64RegIdAa64Mmfr0El1 = RT_BF_SET(IdRegs.u64RegIdAa64Mmfr0El1, ARMV8_ID_AA64MMFR0_EL1_PARANGE, ARMV8_ID_AA64MMFR0_EL1_PARANGE_48BITS); break; case 52: IdRegs.u64RegIdAa64Mmfr0El1 = RT_BF_SET(IdRegs.u64RegIdAa64Mmfr0El1, ARMV8_ID_AA64MMFR0_EL1_PARANGE, ARMV8_ID_AA64MMFR0_EL1_PARANGE_52BITS); break; default: AssertReleaseFailed(); break; } #endif int rc = CPUMR3PopulateFeaturesByIdRegisters(pVM, &IdRegs); if (RT_FAILURE(rc)) return rc; } } pVM->nem.s.fCreatedEmts = true; LogRel(("NEM: Successfully set up partition\n")); return VINF_SUCCESS; } /** * Try initialize the native API. * * This may only do part of the job, more can be done in * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted(). * * @returns VBox status code. * @param pVM The cross context VM structure. * @param fFallback Whether we're in fallback mode or use-NEM mode. In * the latter we'll fail if we cannot initialize. * @param fForced Whether the HMForced flag is set and we should * fail if we cannot initialize. */ int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced) { g_uBuildNo = RTSystemGetNtBuildNo(); /* * Error state. * The error message will be non-empty on failure and 'rc' will be set too. */ RTERRINFOSTATIC ErrInfo; PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo); int rc = nemR3WinInitProbeAndLoad(fForced, pErrInfo); if (RT_SUCCESS(rc)) { /* * Check the capabilties of the hypervisor, starting with whether it's present. */ rc = nemR3WinInitCheckCapabilities(pVM, pErrInfo); if (RT_SUCCESS(rc)) { /* * Create and initialize a partition. */ rc = nemR3WinInitCreatePartition(pVM, pErrInfo); if (RT_SUCCESS(rc)) { rc = nemR3NativeInitSetupVm(pVM); if (RT_SUCCESS(rc)) { /* * Set ourselves as the execution engine and make config adjustments. */ VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API); Log(("NEM: Marked active!\n")); PGMR3EnableNemMode(pVM); /* * Register release statistics */ STAMR3Register(pVM, (void *)&pVM->nem.s.cMappedPages, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, "/NEM/PagesCurrentlyMapped", STAMUNIT_PAGES, "Number guest pages currently mapped by the VM"); STAMR3Register(pVM, (void *)&pVM->nem.s.StatMapPage, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/NEM/PagesMapCalls", STAMUNIT_PAGES, "Calls to WHvMapGpaRange/HvCallMapGpaPages"); STAMR3Register(pVM, (void *)&pVM->nem.s.StatMapPageFailed, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/NEM/PagesMapFails", STAMUNIT_PAGES, "Calls to WHvMapGpaRange/HvCallMapGpaPages that failed"); STAMR3Register(pVM, (void *)&pVM->nem.s.StatUnmapPage, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/NEM/PagesUnmapCalls", STAMUNIT_PAGES, "Calls to WHvUnmapGpaRange/HvCallUnmapGpaPages"); STAMR3Register(pVM, (void *)&pVM->nem.s.StatUnmapPageFailed, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/NEM/PagesUnmapFails", STAMUNIT_PAGES, "Calls to WHvUnmapGpaRange/HvCallUnmapGpaPages that failed"); STAMR3Register(pVM, &pVM->nem.s.StatProfMapGpaRange, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, "/NEM/PagesMapGpaRange", STAMUNIT_TICKS_PER_CALL, "Profiling calls to WHvMapGpaRange for bigger stuff"); STAMR3Register(pVM, &pVM->nem.s.StatProfUnmapGpaRange, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, "/NEM/PagesUnmapGpaRange", STAMUNIT_TICKS_PER_CALL, "Profiling calls to WHvUnmapGpaRange for bigger stuff"); STAMR3Register(pVM, &pVM->nem.s.StatProfMapGpaRangePage, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, "/NEM/PagesMapGpaRangePage", STAMUNIT_TICKS_PER_CALL, "Profiling calls to WHvMapGpaRange for single pages"); STAMR3Register(pVM, &pVM->nem.s.StatProfUnmapGpaRangePage, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, "/NEM/PagesUnmapGpaRangePage", STAMUNIT_TICKS_PER_CALL, "Profiling calls to WHvUnmapGpaRange for single pages"); for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s; STAMR3RegisterF(pVM, &pNemCpu->StatExitPortIo, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of port I/O exits", "/NEM/CPU%u/ExitPortIo", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitMemUnmapped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of unmapped memory exits", "/NEM/CPU%u/ExitMemUnmapped", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitMemIntercept, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of intercepted memory exits", "/NEM/CPU%u/ExitMemIntercept", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitHalt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of HLT exits", "/NEM/CPU%u/ExitHalt", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitInterruptWindow, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of interrupt window exits", "/NEM/CPU%u/ExitInterruptWindow", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitCpuId, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of CPUID exits", "/NEM/CPU%u/ExitCpuId", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of MSR access exits", "/NEM/CPU%u/ExitMsr", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitException, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of exception exits", "/NEM/CPU%u/ExitException", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionBp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #BP exits", "/NEM/CPU%u/ExitExceptionBp", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionDb, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #DB exits", "/NEM/CPU%u/ExitExceptionDb", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionGp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #GP exits", "/NEM/CPU%u/ExitExceptionGp", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionGpMesa, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #GP exits from mesa driver", "/NEM/CPU%u/ExitExceptionGpMesa", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionUd, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of #UD exits", "/NEM/CPU%u/ExitExceptionUd", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitExceptionUdHandled, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of handled #UD exits", "/NEM/CPU%u/ExitExceptionUdHandled", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatExitUnrecoverable, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of unrecoverable exits", "/NEM/CPU%u/ExitUnrecoverable", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatGetMsgTimeout, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of get message timeouts/alerts", "/NEM/CPU%u/GetMsgTimeout", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuSuccess, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of successful CPU stops", "/NEM/CPU%u/StopCpuSuccess", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuPending, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pending CPU stops", "/NEM/CPU%u/StopCpuPending", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuPendingAlerts,STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pending CPU stop alerts", "/NEM/CPU%u/StopCpuPendingAlerts", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatStopCpuPendingOdd, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of odd pending CPU stops (see code)", "/NEM/CPU%u/StopCpuPendingOdd", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatCancelChangedState, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel changed state", "/NEM/CPU%u/CancelChangedState", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatCancelAlertedThread, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel alerted EMT", "/NEM/CPU%u/CancelAlertedEMT", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnFFPre, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of pre execution FF breaks", "/NEM/CPU%u/BreakOnFFPre", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnFFPost, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of post execution FF breaks", "/NEM/CPU%u/BreakOnFFPost", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnCancel, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of cancel execution breaks", "/NEM/CPU%u/BreakOnCancel", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatBreakOnStatus, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of status code breaks", "/NEM/CPU%u/BreakOnStatus", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatImportOnDemand, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of on-demand state imports", "/NEM/CPU%u/ImportOnDemand", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of state imports on loop return", "/NEM/CPU%u/ImportOnReturn", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturnSkipped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of skipped state imports on loop return", "/NEM/CPU%u/ImportOnReturnSkipped", idCpu); STAMR3RegisterF(pVM, &pNemCpu->StatQueryCpuTick, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TSC queries", "/NEM/CPU%u/QueryCpuTick", idCpu); } if (!SUPR3IsDriverless()) { PUVM pUVM = pVM->pUVM; STAMR3RegisterRefresh(pUVM, &pVM->nem.s.R0Stats.cPagesAvailable, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_PAGES, STAM_REFRESH_GRP_NEM, "Free pages available to the hypervisor", "/NEM/R0Stats/cPagesAvailable"); STAMR3RegisterRefresh(pUVM, &pVM->nem.s.R0Stats.cPagesInUse, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_PAGES, STAM_REFRESH_GRP_NEM, "Pages in use by hypervisor", "/NEM/R0Stats/cPagesInUse"); } } } } } /* * We only fail if in forced mode, otherwise just log the complaint and return. */ Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo)); if ( (fForced || !fFallback) && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API) return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg); if (RTErrInfoIsSet(pErrInfo)) LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg)); return VINF_SUCCESS; } /** * This is called after CPUMR3Init is done. * * @returns VBox status code. * @param pVM The VM handle.. */ int nemR3NativeInitAfterCPUM(PVM pVM) { /* * Validate sanity. */ AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER); /** @todo */ /* * Any hyper-v statistics we can get at now? HvCallMapStatsPage isn't accessible any more. */ /** @todo stats */ /* * Adjust features. * * Note! We've already disabled X2APIC and MONITOR/MWAIT via CFGM during * the first init call. */ return VINF_SUCCESS; } int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat) { //BOOL fRet = SetThreadPriority(GetCurrentThread(), 0); //AssertLogRel(fRet); NOREF(pVM); NOREF(enmWhat); return VINF_SUCCESS; } int nemR3NativeTerm(PVM pVM) { /* * Delete the partition. */ WHV_PARTITION_HANDLE hPartition = pVM->nem.s.hPartition; pVM->nem.s.hPartition = NULL; pVM->nem.s.hPartitionDevice = NULL; if (hPartition != NULL) { VMCPUID idCpu = pVM->nem.s.fCreatedEmts ? pVM->cCpus : 0; LogRel(("NEM: Destroying partition %p with its %u VCpus...\n", hPartition, idCpu)); while (idCpu-- > 0) { HRESULT hrc = WHvDeleteVirtualProcessor(hPartition, idCpu); AssertLogRelMsg(SUCCEEDED(hrc), ("WHvDeleteVirtualProcessor(%p, %u) -> %Rhrc (Last=%#x/%u)\n", hPartition, idCpu, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); } WHvDeletePartition(hPartition); } pVM->nem.s.fCreatedEmts = false; return VINF_SUCCESS; } /** * VM reset notification. * * @param pVM The cross context VM structure. */ void nemR3NativeReset(PVM pVM) { RT_NOREF(pVM); } /** * Reset CPU due to INIT IPI or hot (un)plugging. * * @param pVCpu The cross context virtual CPU structure of the CPU being * reset. * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case. */ void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi) { RT_NOREF(pVCpu, fInitIpi); } NEM_TMPL_STATIC int nemHCWinCopyStateToHyperV(PVMCC pVM, PVMCPUCC pVCpu) { WHV_REGISTER_NAME aenmNames[128]; WHV_REGISTER_VALUE aValues[128]; uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL; if (!fWhat) return VINF_SUCCESS; uintptr_t iReg = 0; #define ADD_REG64(a_enmName, a_uValue) do { \ aenmNames[iReg] = (a_enmName); \ aValues[iReg].Reg128.High64 = 0; \ aValues[iReg].Reg64 = (a_uValue).x; \ iReg++; \ } while (0) #define ADD_REG64_RAW(a_enmName, a_uValue) do { \ aenmNames[iReg] = (a_enmName); \ aValues[iReg].Reg128.High64 = 0; \ aValues[iReg].Reg64 = (a_uValue); \ iReg++; \ } while (0) #define ADD_REG128(a_enmName, a_uValue) do { \ aenmNames[iReg] = (a_enmName); \ aValues[iReg].Reg128.Low64 = (a_uValue).au64[0]; \ aValues[iReg].Reg128.High64 = (a_uValue).au64[1]; \ iReg++; \ } while (0) /* GPRs */ if (fWhat & CPUMCTX_EXTRN_GPRS_MASK) { if (fWhat & CPUMCTX_EXTRN_X0) ADD_REG64(WHvArm64RegisterX0, pVCpu->cpum.GstCtx.aGRegs[0]); if (fWhat & CPUMCTX_EXTRN_X1) ADD_REG64(WHvArm64RegisterX1, pVCpu->cpum.GstCtx.aGRegs[1]); if (fWhat & CPUMCTX_EXTRN_X2) ADD_REG64(WHvArm64RegisterX2, pVCpu->cpum.GstCtx.aGRegs[2]); if (fWhat & CPUMCTX_EXTRN_X3) ADD_REG64(WHvArm64RegisterX3, pVCpu->cpum.GstCtx.aGRegs[3]); if (fWhat & CPUMCTX_EXTRN_X4_X28) { ADD_REG64(WHvArm64RegisterX4, pVCpu->cpum.GstCtx.aGRegs[4]); ADD_REG64(WHvArm64RegisterX5, pVCpu->cpum.GstCtx.aGRegs[5]); ADD_REG64(WHvArm64RegisterX6, pVCpu->cpum.GstCtx.aGRegs[6]); ADD_REG64(WHvArm64RegisterX7, pVCpu->cpum.GstCtx.aGRegs[7]); ADD_REG64(WHvArm64RegisterX8, pVCpu->cpum.GstCtx.aGRegs[8]); ADD_REG64(WHvArm64RegisterX9, pVCpu->cpum.GstCtx.aGRegs[9]); ADD_REG64(WHvArm64RegisterX10, pVCpu->cpum.GstCtx.aGRegs[10]); ADD_REG64(WHvArm64RegisterX11, pVCpu->cpum.GstCtx.aGRegs[11]); ADD_REG64(WHvArm64RegisterX12, pVCpu->cpum.GstCtx.aGRegs[12]); ADD_REG64(WHvArm64RegisterX13, pVCpu->cpum.GstCtx.aGRegs[13]); ADD_REG64(WHvArm64RegisterX14, pVCpu->cpum.GstCtx.aGRegs[14]); ADD_REG64(WHvArm64RegisterX15, pVCpu->cpum.GstCtx.aGRegs[15]); ADD_REG64(WHvArm64RegisterX16, pVCpu->cpum.GstCtx.aGRegs[16]); ADD_REG64(WHvArm64RegisterX17, pVCpu->cpum.GstCtx.aGRegs[17]); ADD_REG64(WHvArm64RegisterX18, pVCpu->cpum.GstCtx.aGRegs[18]); ADD_REG64(WHvArm64RegisterX19, pVCpu->cpum.GstCtx.aGRegs[19]); ADD_REG64(WHvArm64RegisterX20, pVCpu->cpum.GstCtx.aGRegs[20]); ADD_REG64(WHvArm64RegisterX21, pVCpu->cpum.GstCtx.aGRegs[21]); ADD_REG64(WHvArm64RegisterX22, pVCpu->cpum.GstCtx.aGRegs[22]); ADD_REG64(WHvArm64RegisterX23, pVCpu->cpum.GstCtx.aGRegs[23]); ADD_REG64(WHvArm64RegisterX24, pVCpu->cpum.GstCtx.aGRegs[24]); ADD_REG64(WHvArm64RegisterX25, pVCpu->cpum.GstCtx.aGRegs[25]); ADD_REG64(WHvArm64RegisterX26, pVCpu->cpum.GstCtx.aGRegs[26]); ADD_REG64(WHvArm64RegisterX27, pVCpu->cpum.GstCtx.aGRegs[27]); ADD_REG64(WHvArm64RegisterX28, pVCpu->cpum.GstCtx.aGRegs[28]); } if (fWhat & CPUMCTX_EXTRN_LR) ADD_REG64(WHvArm64RegisterLr, pVCpu->cpum.GstCtx.aGRegs[30]); if (fWhat & CPUMCTX_EXTRN_FP) ADD_REG64(WHvArm64RegisterFp, pVCpu->cpum.GstCtx.aGRegs[29]); } /* RIP & Flags */ if (fWhat & CPUMCTX_EXTRN_PC) ADD_REG64_RAW(WHvArm64RegisterPc, pVCpu->cpum.GstCtx.Pc.u64); if (fWhat & CPUMCTX_EXTRN_PSTATE) ADD_REG64_RAW(WHvArm64RegisterPstate, pVCpu->cpum.GstCtx.fPState); /* Vector state. */ if (fWhat & CPUMCTX_EXTRN_V0_V31) { ADD_REG128(WHvArm64RegisterQ0, pVCpu->cpum.GstCtx.aVRegs[0]); ADD_REG128(WHvArm64RegisterQ1, pVCpu->cpum.GstCtx.aVRegs[1]); ADD_REG128(WHvArm64RegisterQ2, pVCpu->cpum.GstCtx.aVRegs[2]); ADD_REG128(WHvArm64RegisterQ3, pVCpu->cpum.GstCtx.aVRegs[3]); ADD_REG128(WHvArm64RegisterQ4, pVCpu->cpum.GstCtx.aVRegs[4]); ADD_REG128(WHvArm64RegisterQ5, pVCpu->cpum.GstCtx.aVRegs[5]); ADD_REG128(WHvArm64RegisterQ6, pVCpu->cpum.GstCtx.aVRegs[6]); ADD_REG128(WHvArm64RegisterQ7, pVCpu->cpum.GstCtx.aVRegs[7]); ADD_REG128(WHvArm64RegisterQ8, pVCpu->cpum.GstCtx.aVRegs[8]); ADD_REG128(WHvArm64RegisterQ9, pVCpu->cpum.GstCtx.aVRegs[9]); ADD_REG128(WHvArm64RegisterQ10, pVCpu->cpum.GstCtx.aVRegs[10]); ADD_REG128(WHvArm64RegisterQ11, pVCpu->cpum.GstCtx.aVRegs[11]); ADD_REG128(WHvArm64RegisterQ12, pVCpu->cpum.GstCtx.aVRegs[12]); ADD_REG128(WHvArm64RegisterQ13, pVCpu->cpum.GstCtx.aVRegs[13]); ADD_REG128(WHvArm64RegisterQ14, pVCpu->cpum.GstCtx.aVRegs[14]); ADD_REG128(WHvArm64RegisterQ15, pVCpu->cpum.GstCtx.aVRegs[15]); ADD_REG128(WHvArm64RegisterQ16, pVCpu->cpum.GstCtx.aVRegs[16]); ADD_REG128(WHvArm64RegisterQ17, pVCpu->cpum.GstCtx.aVRegs[17]); ADD_REG128(WHvArm64RegisterQ18, pVCpu->cpum.GstCtx.aVRegs[18]); ADD_REG128(WHvArm64RegisterQ19, pVCpu->cpum.GstCtx.aVRegs[19]); ADD_REG128(WHvArm64RegisterQ20, pVCpu->cpum.GstCtx.aVRegs[20]); ADD_REG128(WHvArm64RegisterQ21, pVCpu->cpum.GstCtx.aVRegs[21]); ADD_REG128(WHvArm64RegisterQ22, pVCpu->cpum.GstCtx.aVRegs[22]); ADD_REG128(WHvArm64RegisterQ23, pVCpu->cpum.GstCtx.aVRegs[23]); ADD_REG128(WHvArm64RegisterQ24, pVCpu->cpum.GstCtx.aVRegs[24]); ADD_REG128(WHvArm64RegisterQ25, pVCpu->cpum.GstCtx.aVRegs[25]); ADD_REG128(WHvArm64RegisterQ26, pVCpu->cpum.GstCtx.aVRegs[26]); ADD_REG128(WHvArm64RegisterQ27, pVCpu->cpum.GstCtx.aVRegs[27]); ADD_REG128(WHvArm64RegisterQ28, pVCpu->cpum.GstCtx.aVRegs[28]); ADD_REG128(WHvArm64RegisterQ29, pVCpu->cpum.GstCtx.aVRegs[29]); ADD_REG128(WHvArm64RegisterQ30, pVCpu->cpum.GstCtx.aVRegs[30]); ADD_REG128(WHvArm64RegisterQ31, pVCpu->cpum.GstCtx.aVRegs[31]); } #undef ADD_REG64 #undef ADD_REG64_RAW #undef ADD_REG128 /* * Set the registers. */ Assert(iReg < RT_ELEMENTS(aValues)); Assert(iReg < RT_ELEMENTS(aenmNames)); HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues); if (SUCCEEDED(hrc)) { pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_NEM; return VINF_SUCCESS; } AssertLogRelMsgFailed(("WHvSetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, pVCpu->idCpu, iReg, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); return VERR_INTERNAL_ERROR; } NEM_TMPL_STATIC int nemHCWinCopyStateFromHyperV(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat) { WHV_REGISTER_NAME aenmNames[128]; fWhat &= pVCpu->cpum.GstCtx.fExtrn; if (!fWhat) return VINF_SUCCESS; uintptr_t iReg = 0; /* GPRs */ if (fWhat & CPUMCTX_EXTRN_GPRS_MASK) { if (fWhat & CPUMCTX_EXTRN_X0) aenmNames[iReg++] = WHvArm64RegisterX0; if (fWhat & CPUMCTX_EXTRN_X1) aenmNames[iReg++] = WHvArm64RegisterX1; if (fWhat & CPUMCTX_EXTRN_X2) aenmNames[iReg++] = WHvArm64RegisterX2; if (fWhat & CPUMCTX_EXTRN_X3) aenmNames[iReg++] = WHvArm64RegisterX3; if (fWhat & CPUMCTX_EXTRN_X4_X28) { aenmNames[iReg++] = WHvArm64RegisterX4; aenmNames[iReg++] = WHvArm64RegisterX5; aenmNames[iReg++] = WHvArm64RegisterX6; aenmNames[iReg++] = WHvArm64RegisterX7; aenmNames[iReg++] = WHvArm64RegisterX8; aenmNames[iReg++] = WHvArm64RegisterX9; aenmNames[iReg++] = WHvArm64RegisterX10; aenmNames[iReg++] = WHvArm64RegisterX11; aenmNames[iReg++] = WHvArm64RegisterX12; aenmNames[iReg++] = WHvArm64RegisterX13; aenmNames[iReg++] = WHvArm64RegisterX14; aenmNames[iReg++] = WHvArm64RegisterX15; aenmNames[iReg++] = WHvArm64RegisterX16; aenmNames[iReg++] = WHvArm64RegisterX17; aenmNames[iReg++] = WHvArm64RegisterX18; aenmNames[iReg++] = WHvArm64RegisterX19; aenmNames[iReg++] = WHvArm64RegisterX20; aenmNames[iReg++] = WHvArm64RegisterX21; aenmNames[iReg++] = WHvArm64RegisterX22; aenmNames[iReg++] = WHvArm64RegisterX23; aenmNames[iReg++] = WHvArm64RegisterX24; aenmNames[iReg++] = WHvArm64RegisterX25; aenmNames[iReg++] = WHvArm64RegisterX26; aenmNames[iReg++] = WHvArm64RegisterX27; aenmNames[iReg++] = WHvArm64RegisterX28; } if (fWhat & CPUMCTX_EXTRN_LR) aenmNames[iReg++] = WHvArm64RegisterLr; if (fWhat & CPUMCTX_EXTRN_FP) aenmNames[iReg++] = WHvArm64RegisterFp; } /* PC & Flags */ if (fWhat & CPUMCTX_EXTRN_PC) aenmNames[iReg++] = WHvArm64RegisterPc; if (fWhat & CPUMCTX_EXTRN_PSTATE) aenmNames[iReg++] = WHvArm64RegisterPstate; if (fWhat & CPUMCTX_EXTRN_SPSR) aenmNames[iReg++] = WHvArm64RegisterSpsrEl1; if (fWhat & CPUMCTX_EXTRN_ELR) aenmNames[iReg++] = WHvArm64RegisterElrEl1; if (fWhat & CPUMCTX_EXTRN_SP) { aenmNames[iReg++] = WHvArm64RegisterSpEl0; aenmNames[iReg++] = WHvArm64RegisterSpEl1; } if (fWhat & CPUMCTX_EXTRN_SCTLR_TCR_TTBR) { aenmNames[iReg++] = WHvArm64RegisterSctlrEl1; aenmNames[iReg++] = WHvArm64RegisterTcrEl1; aenmNames[iReg++] = WHvArm64RegisterTtbr0El1; aenmNames[iReg++] = WHvArm64RegisterTtbr1El1; } /* Vector state. */ if (fWhat & CPUMCTX_EXTRN_V0_V31) { aenmNames[iReg++] = WHvArm64RegisterQ0; aenmNames[iReg++] = WHvArm64RegisterQ1; aenmNames[iReg++] = WHvArm64RegisterQ2; aenmNames[iReg++] = WHvArm64RegisterQ3; aenmNames[iReg++] = WHvArm64RegisterQ4; aenmNames[iReg++] = WHvArm64RegisterQ5; aenmNames[iReg++] = WHvArm64RegisterQ6; aenmNames[iReg++] = WHvArm64RegisterQ7; aenmNames[iReg++] = WHvArm64RegisterQ8; aenmNames[iReg++] = WHvArm64RegisterQ9; aenmNames[iReg++] = WHvArm64RegisterQ10; aenmNames[iReg++] = WHvArm64RegisterQ11; aenmNames[iReg++] = WHvArm64RegisterQ12; aenmNames[iReg++] = WHvArm64RegisterQ13; aenmNames[iReg++] = WHvArm64RegisterQ14; aenmNames[iReg++] = WHvArm64RegisterQ15; aenmNames[iReg++] = WHvArm64RegisterQ16; aenmNames[iReg++] = WHvArm64RegisterQ17; aenmNames[iReg++] = WHvArm64RegisterQ18; aenmNames[iReg++] = WHvArm64RegisterQ19; aenmNames[iReg++] = WHvArm64RegisterQ20; aenmNames[iReg++] = WHvArm64RegisterQ21; aenmNames[iReg++] = WHvArm64RegisterQ22; aenmNames[iReg++] = WHvArm64RegisterQ23; aenmNames[iReg++] = WHvArm64RegisterQ24; aenmNames[iReg++] = WHvArm64RegisterQ25; aenmNames[iReg++] = WHvArm64RegisterQ26; aenmNames[iReg++] = WHvArm64RegisterQ27; aenmNames[iReg++] = WHvArm64RegisterQ28; aenmNames[iReg++] = WHvArm64RegisterQ29; aenmNames[iReg++] = WHvArm64RegisterQ30; aenmNames[iReg++] = WHvArm64RegisterQ31; } if (fWhat & CPUMCTX_EXTRN_FPCR) aenmNames[iReg++] = WHvArm64RegisterFpcr; if (fWhat & CPUMCTX_EXTRN_FPSR) aenmNames[iReg++] = WHvArm64RegisterFpsr; /* System registers. */ if (fWhat & CPUMCTX_EXTRN_SYSREG_MISC) { aenmNames[iReg++] = WHvArm64RegisterVbarEl1; aenmNames[iReg++] = WHvArm64RegisterEsrEl1; aenmNames[iReg++] = WHvArm64RegisterFarEl1; /** @todo */ } #if 0 if (fWhat & CPUMCTX_EXTRN_SYSREG_DEBUG) { aenmNames[iReg++] = WHvArm64RegisterDbgbcr0El1; /** @todo */ } #endif if (fWhat & CPUMCTX_EXTRN_SYSREG_PAUTH_KEYS) { aenmNames[iReg++] = WHvArm64RegisterApdAKeyHiEl1; /** @todo */ } size_t const cRegs = iReg; Assert(cRegs < RT_ELEMENTS(aenmNames)); /* * Get the registers. */ WHV_REGISTER_VALUE aValues[128]; RT_ZERO(aValues); Assert(RT_ELEMENTS(aValues) >= cRegs); Assert(RT_ELEMENTS(aenmNames) >= cRegs); HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, (uint32_t)cRegs, aValues); AssertLogRelMsgReturn(SUCCEEDED(hrc), ("WHvGetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, pVCpu->idCpu, cRegs, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()) , VERR_NEM_GET_REGISTERS_FAILED); iReg = 0; #define GET_REG64(a_DstVar, a_enmName) do { \ Assert(aenmNames[iReg] == (a_enmName)); \ (a_DstVar).x = aValues[iReg].Reg64; \ iReg++; \ } while (0) #define GET_REG64_RAW(a_DstVar, a_enmName) do { \ Assert(aenmNames[iReg] == (a_enmName)); \ (a_DstVar) = aValues[iReg].Reg64; \ iReg++; \ } while (0) #define GET_SYSREG64(a_DstVar, a_enmName) do { \ Assert(aenmNames[iReg] == (a_enmName)); \ (a_DstVar).u64 = aValues[iReg].Reg64; \ iReg++; \ } while (0) #define GET_REG128(a_DstVar, a_enmName) do { \ Assert(aenmNames[iReg] == a_enmName); \ (a_DstVar).au64[0] = aValues[iReg].Reg128.Low64; \ (a_DstVar).au64[1] = aValues[iReg].Reg128.High64; \ iReg++; \ } while (0) /* GPRs */ if (fWhat & CPUMCTX_EXTRN_GPRS_MASK) { if (fWhat & CPUMCTX_EXTRN_X0) GET_REG64(pVCpu->cpum.GstCtx.aGRegs[0], WHvArm64RegisterX0); if (fWhat & CPUMCTX_EXTRN_X1) GET_REG64(pVCpu->cpum.GstCtx.aGRegs[1], WHvArm64RegisterX1); if (fWhat & CPUMCTX_EXTRN_X2) GET_REG64(pVCpu->cpum.GstCtx.aGRegs[2], WHvArm64RegisterX2); if (fWhat & CPUMCTX_EXTRN_X3) GET_REG64(pVCpu->cpum.GstCtx.aGRegs[3], WHvArm64RegisterX3); if (fWhat & CPUMCTX_EXTRN_X4_X28) { GET_REG64(pVCpu->cpum.GstCtx.aGRegs[4], WHvArm64RegisterX4); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[5], WHvArm64RegisterX5); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[6], WHvArm64RegisterX6); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[7], WHvArm64RegisterX7); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[8], WHvArm64RegisterX8); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[9], WHvArm64RegisterX9); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[10], WHvArm64RegisterX10); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[11], WHvArm64RegisterX11); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[12], WHvArm64RegisterX12); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[13], WHvArm64RegisterX13); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[14], WHvArm64RegisterX14); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[15], WHvArm64RegisterX15); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[16], WHvArm64RegisterX16); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[17], WHvArm64RegisterX17); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[18], WHvArm64RegisterX18); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[19], WHvArm64RegisterX19); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[20], WHvArm64RegisterX20); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[21], WHvArm64RegisterX21); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[22], WHvArm64RegisterX22); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[23], WHvArm64RegisterX23); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[24], WHvArm64RegisterX24); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[25], WHvArm64RegisterX25); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[26], WHvArm64RegisterX26); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[27], WHvArm64RegisterX27); GET_REG64(pVCpu->cpum.GstCtx.aGRegs[28], WHvArm64RegisterX28); } if (fWhat & CPUMCTX_EXTRN_LR) GET_REG64(pVCpu->cpum.GstCtx.aGRegs[30], WHvArm64RegisterLr); if (fWhat & CPUMCTX_EXTRN_FP) GET_REG64(pVCpu->cpum.GstCtx.aGRegs[29], WHvArm64RegisterFp); } /* RIP & Flags */ if (fWhat & CPUMCTX_EXTRN_PC) GET_REG64_RAW(pVCpu->cpum.GstCtx.Pc.u64, WHvArm64RegisterPc); if (fWhat & CPUMCTX_EXTRN_PSTATE) GET_REG64_RAW(pVCpu->cpum.GstCtx.fPState, WHvArm64RegisterPstate); if (fWhat & CPUMCTX_EXTRN_SPSR) GET_SYSREG64(pVCpu->cpum.GstCtx.Spsr, WHvArm64RegisterSpsrEl1); if (fWhat & CPUMCTX_EXTRN_ELR) GET_SYSREG64(pVCpu->cpum.GstCtx.Elr, WHvArm64RegisterElrEl1); if (fWhat & CPUMCTX_EXTRN_SP) { GET_SYSREG64(pVCpu->cpum.GstCtx.aSpReg[0], WHvArm64RegisterSpEl0); GET_SYSREG64(pVCpu->cpum.GstCtx.aSpReg[1], WHvArm64RegisterSpEl1); } if (fWhat & CPUMCTX_EXTRN_SCTLR_TCR_TTBR) { GET_SYSREG64(pVCpu->cpum.GstCtx.Sctlr, WHvArm64RegisterSctlrEl1); GET_SYSREG64(pVCpu->cpum.GstCtx.Tcr, WHvArm64RegisterTcrEl1); GET_SYSREG64(pVCpu->cpum.GstCtx.Ttbr0, WHvArm64RegisterTtbr0El1); GET_SYSREG64(pVCpu->cpum.GstCtx.Ttbr1, WHvArm64RegisterTtbr1El1); } /* Vector state. */ if (fWhat & CPUMCTX_EXTRN_V0_V31) { GET_REG128(pVCpu->cpum.GstCtx.aVRegs[0], WHvArm64RegisterQ0); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[1], WHvArm64RegisterQ1); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[2], WHvArm64RegisterQ2); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[3], WHvArm64RegisterQ3); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[4], WHvArm64RegisterQ4); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[5], WHvArm64RegisterQ5); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[6], WHvArm64RegisterQ6); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[7], WHvArm64RegisterQ7); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[8], WHvArm64RegisterQ8); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[9], WHvArm64RegisterQ9); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[10], WHvArm64RegisterQ10); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[11], WHvArm64RegisterQ11); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[12], WHvArm64RegisterQ12); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[13], WHvArm64RegisterQ13); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[14], WHvArm64RegisterQ14); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[15], WHvArm64RegisterQ15); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[16], WHvArm64RegisterQ16); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[17], WHvArm64RegisterQ17); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[18], WHvArm64RegisterQ18); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[19], WHvArm64RegisterQ19); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[20], WHvArm64RegisterQ20); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[21], WHvArm64RegisterQ21); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[22], WHvArm64RegisterQ22); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[23], WHvArm64RegisterQ23); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[24], WHvArm64RegisterQ24); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[25], WHvArm64RegisterQ25); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[26], WHvArm64RegisterQ26); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[27], WHvArm64RegisterQ27); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[28], WHvArm64RegisterQ28); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[29], WHvArm64RegisterQ29); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[30], WHvArm64RegisterQ30); GET_REG128(pVCpu->cpum.GstCtx.aVRegs[31], WHvArm64RegisterQ31); } if (fWhat & CPUMCTX_EXTRN_FPCR) GET_REG64_RAW(pVCpu->cpum.GstCtx.fpcr, WHvArm64RegisterFpcr); if (fWhat & CPUMCTX_EXTRN_FPSR) GET_REG64_RAW(pVCpu->cpum.GstCtx.fpsr, WHvArm64RegisterFpsr); /* System registers. */ if (fWhat & CPUMCTX_EXTRN_SYSREG_MISC) { GET_SYSREG64(pVCpu->cpum.GstCtx.VBar, WHvArm64RegisterVbarEl1); GET_SYSREG64(pVCpu->cpum.GstCtx.Esr, WHvArm64RegisterEsrEl1); GET_SYSREG64(pVCpu->cpum.GstCtx.Far, WHvArm64RegisterFarEl1); /** @todo */ } #if 0 if (fWhat & CPUMCTX_EXTRN_SYSREG_DEBUG) { GET_SYSREG64(pVCpu->cpum.GstCtx.aBp[0].Ctrl, WHvArm64RegisterDbgbcr0El1); /** @todo */ } #endif if (fWhat & CPUMCTX_EXTRN_SYSREG_PAUTH_KEYS) { GET_SYSREG64(pVCpu->cpum.GstCtx.Apda.High, WHvArm64RegisterApdAKeyHiEl1); /** @todo */ } /* Almost done, just update extrn flags. */ pVCpu->cpum.GstCtx.fExtrn &= ~fWhat; if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)) pVCpu->cpum.GstCtx.fExtrn = 0; return VINF_SUCCESS; } /** * Interface for importing state on demand (used by IEM). * * @returns VBox status code. * @param pVCpu The cross context CPU structure. * @param fWhat What to import, CPUMCTX_EXTRN_XXX. */ VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat) { STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand); return nemHCWinCopyStateFromHyperV(pVCpu->pVMR3, pVCpu, fWhat); } /** * Query the CPU tick counter and optionally the TSC_AUX MSR value. * * @returns VBox status code. * @param pVCpu The cross context CPU structure. * @param pcTicks Where to return the CPU tick count. * @param puAux Where to return the TSC_AUX register value. */ VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux) { STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick); PVMCC pVM = pVCpu->CTX_SUFF(pVM); VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT); AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9); #if 0 /** @todo */ /* Call the offical API. */ WHV_REGISTER_NAME aenmNames[2] = { WHvX64RegisterTsc, WHvX64RegisterTscAux }; WHV_REGISTER_VALUE aValues[2] = { { {0, 0} }, { {0, 0} } }; Assert(RT_ELEMENTS(aenmNames) == RT_ELEMENTS(aValues)); HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, 2, aValues); AssertLogRelMsgReturn(SUCCEEDED(hrc), ("WHvGetVirtualProcessorRegisters(%p, %u,{tsc,tsc_aux},2,) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, pVCpu->idCpu, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()) , VERR_NEM_GET_REGISTERS_FAILED); *pcTicks = aValues[0].Reg64; if (puAux) *puAux = pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX ? aValues[1].Reg64 : CPUMGetGuestTscAux(pVCpu); #endif return VINF_SUCCESS; } /** * Resumes CPU clock (TSC) on all virtual CPUs. * * This is called by TM when the VM is started, restored, resumed or similar. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context CPU structure of the calling EMT. * @param uPausedTscValue The TSC value at the time of pausing. */ VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue) { VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT); AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9); /* * Call the offical API to do the job. */ if (pVM->cCpus > 1) RTThreadYield(); /* Try decrease the chance that we get rescheduled in the middle. */ #if 0 /** @todo */ /* Start with the first CPU. */ WHV_REGISTER_NAME enmName = WHvX64RegisterTsc; WHV_REGISTER_VALUE Value = { {0, 0} }; Value.Reg64 = uPausedTscValue; uint64_t const uFirstTsc = ASMReadTSC(); HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, 0 /*iCpu*/, &enmName, 1, &Value); AssertLogRelMsgReturn(SUCCEEDED(hrc), ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, uPausedTscValue, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()) , VERR_NEM_SET_TSC); /* Do the other CPUs, adjusting for elapsed TSC and keeping finger crossed that we don't introduce too much drift here. */ for (VMCPUID iCpu = 1; iCpu < pVM->cCpus; iCpu++) { Assert(enmName == WHvX64RegisterTsc); const uint64_t offDelta = (ASMReadTSC() - uFirstTsc); Value.Reg64 = uPausedTscValue + offDelta; hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, iCpu, &enmName, 1, &Value); AssertLogRelMsgReturn(SUCCEEDED(hrc), ("WHvSetVirtualProcessorRegisters(%p, 0,{tsc},2,%#RX64 + %#RX64) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, iCpu, uPausedTscValue, offDelta, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()) , VERR_NEM_SET_TSC); } #endif return VINF_SUCCESS; } #ifdef LOG_ENABLED /** * Logs the current CPU state. */ static void nemR3WinLogState(PVMCC pVM, PVMCPUCC pVCpu) { if (LogIs3Enabled()) { char szRegs[4096]; DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs), "x0=%016VR{x0} x1=%016VR{x1} x2=%016VR{x2} x3=%016VR{x3}\n" "x4=%016VR{x4} x5=%016VR{x5} x6=%016VR{x6} x7=%016VR{x7}\n" "x8=%016VR{x8} x9=%016VR{x9} x10=%016VR{x10} x11=%016VR{x11}\n" "x12=%016VR{x12} x13=%016VR{x13} x14=%016VR{x14} x15=%016VR{x15}\n" "x16=%016VR{x16} x17=%016VR{x17} x18=%016VR{x18} x19=%016VR{x19}\n" "x20=%016VR{x20} x21=%016VR{x21} x22=%016VR{x22} x23=%016VR{x23}\n" "x24=%016VR{x24} x25=%016VR{x25} x26=%016VR{x26} x27=%016VR{x27}\n" "x28=%016VR{x28} x29=%016VR{x29} x30=%016VR{x30}\n" "pc=%016VR{pc} pstate=%016VR{pstate}\n" "sp_el0=%016VR{sp_el0} sp_el1=%016VR{sp_el1} elr_el1=%016VR{elr_el1}\n" "sctlr_el1=%016VR{sctlr_el1} tcr_el1=%016VR{tcr_el1}\n" "ttbr0_el1=%016VR{ttbr0_el1} ttbr1_el1=%016VR{ttbr1_el1}\n" "vbar_el1=%016VR{vbar_el1}\n" ); char szInstr[256]; RT_ZERO(szInstr); #if 0 DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0, DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE, szInstr, sizeof(szInstr), NULL); #endif Log3(("%s%s\n", szRegs, szInstr)); } } #endif /* LOG_ENABLED */ /** * Copies register state from the (common) exit context. * * ASSUMES no state copied yet. * * @param pVCpu The cross context per CPU structure. * @param pMsgHdr The common message header. */ DECLINLINE(void) nemR3WinCopyStateFromArmHeader(PVMCPUCC pVCpu, WHV_INTERCEPT_MESSAGE_HEADER const *pMsgHdr) { Assert( (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_PC | CPUMCTX_EXTRN_PSTATE)) == (CPUMCTX_EXTRN_PC | CPUMCTX_EXTRN_PSTATE)); pVCpu->cpum.GstCtx.Pc.u64 = pMsgHdr->Pc; pVCpu->cpum.GstCtx.fPState = pMsgHdr->Cpsr; pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_PC | CPUMCTX_EXTRN_PSTATE); } /** * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess * and nemHCWinHandleMemoryAccessPageCheckerCallback. */ typedef struct NEMHCWINHMACPCCSTATE { /** Input: Write access. */ bool fWriteAccess; /** Output: Set if we did something. */ bool fDidSomething; /** Output: Set it we should resume. */ bool fCanResume; } NEMHCWINHMACPCCSTATE; /** * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE, * Worker for nemR3WinHandleMemoryAccess; pvUser points to a * NEMHCWINHMACPCCSTATE structure. } */ NEM_TMPL_STATIC DECLCALLBACK(int) nemHCWinHandleMemoryAccessPageCheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser) { NEMHCWINHMACPCCSTATE *pState = (NEMHCWINHMACPCCSTATE *)pvUser; pState->fDidSomething = false; pState->fCanResume = false; /* If A20 is disabled, we may need to make another query on the masked page to get the correct protection information. */ uint8_t u2State = pInfo->u2NemState; RTGCPHYS GCPhysSrc = GCPhys; /* * Consolidate current page state with actual page protection and access type. * We don't really consider downgrades here, as they shouldn't happen. */ int rc; switch (u2State) { case NEM_WIN_PAGE_STATE_UNMAPPED: case NEM_WIN_PAGE_STATE_NOT_SET: if (pInfo->fNemProt == NEM_PAGE_PROT_NONE) { Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys)); return VINF_SUCCESS; } /* Don't bother remapping it if it's a write request to a non-writable page. */ if ( pState->fWriteAccess && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)) { Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys)); return VINF_SUCCESS; } /* Map the page. */ rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, pInfo->fNemProt, &u2State, true /*fBackingState*/); pInfo->u2NemState = u2State; Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n", GCPhys, g_apszPageStates[u2State], rc)); pState->fDidSomething = true; pState->fCanResume = true; return rc; case NEM_WIN_PAGE_STATE_READABLE: if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE) && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE))) { Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys)); return VINF_SUCCESS; } break; case NEM_WIN_PAGE_STATE_WRITABLE: if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE) { if (pInfo->u2OldNemState == NEM_WIN_PAGE_STATE_WRITABLE) Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3a\n", GCPhys)); else { pState->fCanResume = true; Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3b (%s -> %s)\n", GCPhys, g_apszPageStates[pInfo->u2OldNemState], g_apszPageStates[u2State])); } return VINF_SUCCESS; } break; default: AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4); } /* * Unmap and restart the instruction. * If this fails, which it does every so often, just unmap everything for now. */ /** @todo figure out whether we mess up the state or if it's WHv. */ STAM_REL_PROFILE_START(&pVM->nem.s.StatProfUnmapGpaRangePage, a); HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfUnmapGpaRangePage, a); if (SUCCEEDED(hrc)) { pState->fDidSomething = true; pState->fCanResume = true; pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED; STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage); uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages); Log5(("NEM GPA unmapped/exit: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[u2State], cMappedPages)); return VINF_SUCCESS; } STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed); LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s hrc=%Rhrc (%#x)\n", GCPhys, g_apszPageStates[u2State], hrc, hrc)); return VERR_NEM_UNMAP_PAGES_FAILED; } /** * Returns the byte size from the given access SAS value. * * @returns Number of bytes to transfer. * @param uSas The SAS value to convert. */ DECLINLINE(size_t) nemR3WinGetByteCountFromSas(uint8_t uSas) { switch (uSas) { case ARMV8_EC_ISS_DATA_ABRT_SAS_BYTE: return sizeof(uint8_t); case ARMV8_EC_ISS_DATA_ABRT_SAS_HALFWORD: return sizeof(uint16_t); case ARMV8_EC_ISS_DATA_ABRT_SAS_WORD: return sizeof(uint32_t); case ARMV8_EC_ISS_DATA_ABRT_SAS_DWORD: return sizeof(uint64_t); default: AssertReleaseFailed(); } return 0; } /** * Sets the given general purpose register to the given value. * * @param pVCpu The cross context virtual CPU structure of the * calling EMT. * @param uReg The register index. * @param f64BitReg Flag whether to operate on a 64-bit or 32-bit register. * @param fSignExtend Flag whether to sign extend the value. * @param u64Val The value. */ DECLINLINE(void) nemR3WinSetGReg(PVMCPU pVCpu, uint8_t uReg, bool f64BitReg, bool fSignExtend, uint64_t u64Val) { AssertReturnVoid(uReg < 31); if (f64BitReg) pVCpu->cpum.GstCtx.aGRegs[uReg].x = fSignExtend ? (int64_t)u64Val : u64Val; else pVCpu->cpum.GstCtx.aGRegs[uReg].w = fSignExtend ? (int32_t)u64Val : u64Val; /** @todo Does this clear the upper half on real hardware? */ /* Mark the register as not extern anymore. */ switch (uReg) { case 0: pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_X0; break; case 1: pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_X1; break; case 2: pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_X2; break; case 3: pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_X3; break; default: AssertRelease(!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_X4_X28)); /** @todo We need to import all missing registers in order to clear this flag (or just set it in HV from here). */ } } /** * Gets the given general purpose register and returns the value. * * @returns Value from the given register. * @param pVCpu The cross context virtual CPU structure of the * calling EMT. * @param uReg The register index. */ DECLINLINE(uint64_t) nemR3WinGetGReg(PVMCPU pVCpu, uint8_t uReg) { AssertReturn(uReg <= ARMV8_AARCH64_REG_ZR, 0); if (uReg == ARMV8_AARCH64_REG_ZR) return 0; /** @todo Import the register if extern. */ AssertRelease(!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_GPRS_MASK)); return pVCpu->cpum.GstCtx.aGRegs[uReg].x; } /** * Deals with memory access exits (WHvRunVpExitReasonMemoryAccess). * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. * @param pExit The VM exit information to handle. * @sa nemHCWinHandleMessageMemory */ NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitMemory(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit) { uint64_t const uHostTsc = ASMReadTSC(); Assert(pExit->MemoryAccess.Header.InterceptAccessType != 3); /* * Ask PGM for information about the given GCPhys. We need to check if we're * out of sync first. */ WHV_INTERCEPT_MESSAGE_HEADER const *pHdr = &pExit->MemoryAccess.Header; NEMHCWINHMACPCCSTATE State = { pExit->MemoryAccess.Header.InterceptAccessType == WHvMemoryAccessWrite, false, false }; PGMPHYSNEMPAGEINFO Info; int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pExit->MemoryAccess.Gpa, State.fWriteAccess, &Info, nemHCWinHandleMemoryAccessPageCheckerCallback, &State); if (RT_SUCCESS(rc)) { if (Info.fNemProt & ( pExit->MemoryAccess.Header.InterceptAccessType == WHvMemoryAccessWrite ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ)) { if (State.fCanResume) { Log4(("MemExit/%u: %08RX64: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting (%s)\n", pVCpu->idCpu, pHdr->Pc, pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt, Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "", State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.Header.InterceptAccessType])); EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS), pHdr->Pc, uHostTsc); return VINF_SUCCESS; } } Log4(("MemExit/%u: %08RX64: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating (%s)\n", pVCpu->idCpu, pHdr->Pc, pExit->MemoryAccess.Gpa, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt, Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "", State.fDidSomething ? "" : " no-change", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.Header.InterceptAccessType])); } else Log4(("MemExit/%u: %08RX64: %RGp rc=%Rrc%s; emulating (%s)\n", pVCpu->idCpu, pHdr->Pc, pExit->MemoryAccess.Gpa, rc, State.fDidSomething ? " modified-backing" : "", g_apszHvInterceptAccessTypes[pExit->MemoryAccess.Header.InterceptAccessType])); /* * Emulate the memory access, either access handler or special memory. */ PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu, pExit->MemoryAccess.Header.InterceptAccessType == WHvMemoryAccessWrite ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE) : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ), pHdr->Pc, uHostTsc); //nemR3WinCopyStateFromArmHeader(pVCpu, &pExit->MemoryAccess.Header); rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK); AssertRCReturn(rc, rc); uint8_t const cbInstr = pExit->MemoryAccess.InstructionByteCount; RTGCPTR const GCPtrVa = pExit->MemoryAccess.Gva; RTGCPHYS const GCPhys = pExit->MemoryAccess.Gpa; uint64_t const uIss = pExit->MemoryAccess.Syndrome; bool fIsv = RT_BOOL(uIss & ARMV8_EC_ISS_DATA_ABRT_ISV); bool fL2Fault = RT_BOOL(uIss & ARMV8_EC_ISS_DATA_ABRT_S1PTW); bool fWrite = RT_BOOL(uIss & ARMV8_EC_ISS_DATA_ABRT_WNR); bool f64BitReg = RT_BOOL(uIss & ARMV8_EC_ISS_DATA_ABRT_SF); bool fSignExtend = RT_BOOL(uIss & ARMV8_EC_ISS_DATA_ABRT_SSE); uint8_t uReg = ARMV8_EC_ISS_DATA_ABRT_SRT_GET(uIss); uint8_t uAcc = ARMV8_EC_ISS_DATA_ABRT_SAS_GET(uIss); size_t cbAcc = nemR3WinGetByteCountFromSas(uAcc); LogFlowFunc(("fIsv=%RTbool fL2Fault=%RTbool fWrite=%RTbool f64BitReg=%RTbool fSignExtend=%RTbool uReg=%u uAcc=%u GCPtrDataAbrt=%RGv GCPhys=%RGp cbInstr=%u\n", fIsv, fL2Fault, fWrite, f64BitReg, fSignExtend, uReg, uAcc, GCPtrVa, GCPhys, cbInstr)); RT_NOREF(fL2Fault); AssertReturn(fIsv, VERR_NOT_SUPPORTED); /** @todo Implement using IEM when this should occur. */ EMHistoryAddExit(pVCpu, fWrite ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE) : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ), pVCpu->cpum.GstCtx.Pc.u64, ASMReadTSC()); VBOXSTRICTRC rcStrict = VINF_SUCCESS; uint64_t u64Val = 0; if (fWrite) { u64Val = nemR3WinGetGReg(pVCpu, uReg); rcStrict = PGMPhysWrite(pVM, GCPhys, &u64Val, cbAcc, PGMACCESSORIGIN_HM); Log4(("MmioExit/%u: %08RX64: WRITE %RGp LB %u, %.*Rhxs -> rcStrict=%Rrc\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.Pc.u64, GCPhys, cbAcc, cbAcc, &u64Val, VBOXSTRICTRC_VAL(rcStrict) )); } else { rcStrict = PGMPhysRead(pVM, GCPhys, &u64Val, cbAcc, PGMACCESSORIGIN_HM); Log4(("MmioExit/%u: %08RX64: READ %RGp LB %u -> %.*Rhxs rcStrict=%Rrc\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.Pc.u64, GCPhys, cbAcc, cbAcc, &u64Val, VBOXSTRICTRC_VAL(rcStrict) )); if (rcStrict == VINF_SUCCESS) nemR3WinSetGReg(pVCpu, uReg, f64BitReg, fSignExtend, u64Val); } if (rcStrict == VINF_SUCCESS) pVCpu->cpum.GstCtx.Pc.u64 += sizeof(uint32_t); /** @todo Why is InstructionByteCount always 0? */ return rcStrict; } /** * Deals with MSR access exits (WHvRunVpExitReasonUnrecoverableException). * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. * @param pExit The VM exit information to handle. * @sa nemHCWinHandleMessageUnrecoverableException */ NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExitUnrecoverableException(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit) { #if 0 /* * Just copy the state we've got and handle it in the loop for now. */ nemR3WinCopyStateFromX64Header(pVCpu, &pExit->VpContext); Log(("TripleExit/%u: %04x:%08RX64/%s: RFL=%#RX64 -> VINF_EM_TRIPLE_FAULT\n", pVCpu->idCpu, pExit->VpContext.Cs.Selector, pExit->VpContext.Rip, nemR3WinExecStateToLogStr(&pExit->VpContext), pExit->VpContext.Rflags)); RT_NOREF_PV(pVM); return VINF_EM_TRIPLE_FAULT; #else /* * Let IEM decide whether this is really it. */ EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_UNRECOVERABLE_EXCEPTION), pExit->UnrecoverableException.Header.Pc, ASMReadTSC()); nemR3WinCopyStateFromArmHeader(pVCpu, &pExit->UnrecoverableException.Header); AssertReleaseFailed(); RT_NOREF_PV(pVM); return VINF_SUCCESS; #endif } /** * Handles VM exits. * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context per CPU structure. * @param pExit The VM exit information to handle. * @sa nemHCWinHandleMessage */ NEM_TMPL_STATIC VBOXSTRICTRC nemR3WinHandleExit(PVMCC pVM, PVMCPUCC pVCpu, WHV_RUN_VP_EXIT_CONTEXT const *pExit) { int rc = nemHCWinCopyStateFromHyperV(pVM, pVCpu, CPUMCTX_EXTRN_ALL); AssertRCReturn(rc, rc); #ifdef LOG_ENABLED if (LogIs3Enabled()) nemR3WinLogState(pVM, pVCpu); #endif switch (pExit->ExitReason) { case WHvRunVpExitReasonUnmappedGpa: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMemUnmapped); return nemR3WinHandleExitMemory(pVM, pVCpu, pExit); case WHvRunVpExitReasonCanceled: Log4(("CanceledExit/%u\n", pVCpu->idCpu)); return VINF_SUCCESS; case WHvRunVpExitReasonUnrecoverableException: STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitUnrecoverable); return nemR3WinHandleExitUnrecoverableException(pVM, pVCpu, pExit); case WHvRunVpExitReasonUnsupportedFeature: case WHvRunVpExitReasonInvalidVpRegisterValue: LogRel(("Unimplemented exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit)); AssertLogRelMsgFailedReturn(("Unexpected exit on CPU #%u: %#x\n%.32Rhxd\n", pVCpu->idCpu, pExit->ExitReason, pExit), VERR_NEM_IPE_3); /* Undesired exits: */ case WHvRunVpExitReasonNone: default: LogRel(("Unknown exit:\n%.*Rhxd\n", (int)sizeof(*pExit), pExit)); AssertLogRelMsgFailedReturn(("Unknown exit on CPU #%u: %#x!\n", pVCpu->idCpu, pExit->ExitReason), VERR_NEM_IPE_3); } } VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu) { LogFlow(("NEM/%u: %08RX64 pstate=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.Pc, pVCpu->cpum.GstCtx.fPState)); #ifdef LOG_ENABLED if (LogIs3Enabled()) nemR3WinLogState(pVM, pVCpu); #endif if (RT_UNLIKELY(!pVCpu->nem.s.fIdRegsSynced)) { /* * Sync the guest ID registers which are per VM once (they are readonly and stay constant during VM lifetime). * Need to do it here and not during the init because loading a saved state might change the ID registers from what * done in the call to CPUMR3PopulateFeaturesByIdRegisters(). */ PCCPUMIDREGS pIdRegsGst = NULL; int rc = CPUMR3QueryGuestIdRegs(pVM, &pIdRegsGst); AssertRCReturn(rc, rc); WHV_REGISTER_NAME aenmNames[12]; WHV_REGISTER_VALUE aValues[12]; uint32_t iReg = 0; #define ADD_REG64(a_enmName, a_uValue) do { \ aenmNames[iReg] = (a_enmName); \ aValues[iReg].Reg128.High64 = 0; \ aValues[iReg].Reg64 = (a_uValue); \ iReg++; \ } while (0) ADD_REG64(WHvArm64RegisterIdAa64Mmfr0El1, pIdRegsGst->u64RegIdAa64Mmfr0El1); #undef ADD_REG64 //HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues); //AssertReturn(SUCCEEDED(hrc), VERR_NEM_IPE_9); pVCpu->nem.s.fIdRegsSynced = true; } /* * Try switch to NEM runloop state. */ if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED)) { /* likely */ } else { VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED); LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu)); return VINF_SUCCESS; } /* * The run loop. * * Current approach to state updating to use the sledgehammer and sync * everything every time. This will be optimized later. */ const bool fSingleStepping = DBGFIsStepping(pVCpu); // const uint32_t fCheckVmFFs = !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK // : VM_FF_HP_R0_PRE_HM_STEP_MASK; // const uint32_t fCheckCpuFFs = !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK; VBOXSTRICTRC rcStrict = VINF_SUCCESS; for (unsigned iLoop = 0;; iLoop++) { /* * Pending interrupts or such? Need to check and deal with this prior * to the state syncing. */ #if 0 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_FIQ | VMCPU_FF_UPDATE_IRQ)) { /* Try inject interrupt. */ rcStrict = nemHCWinHandleInterruptFF(pVM, pVCpu, &pVCpu->nem.s.fDesiredInterruptWindows); if (rcStrict == VINF_SUCCESS) { /* likely */ } else { LogFlow(("NEM/%u: breaking: nemHCWinHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) )); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus); break; } } #endif /* Ensure that Hyper-V has the whole state. */ int rc2 = nemHCWinCopyStateToHyperV(pVM, pVCpu); AssertRCReturn(rc2, rc2); /* * Poll timers and run for a bit. * * With the VID approach (ring-0 or ring-3) we can specify a timeout here, * so we take the time of the next timer event and uses that as a deadline. * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine. */ /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing * the whole polling job when timers have changed... */ uint64_t offDeltaIgnored; uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt); if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC) && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK)) { if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM)) { #if 0 //def LOG_ENABLED if (LogIsFlowEnabled()) { static const WHV_REGISTER_NAME s_aNames[6] = { WHvX64RegisterCs, WHvX64RegisterRip, WHvX64RegisterRflags, WHvX64RegisterSs, WHvX64RegisterRsp, WHvX64RegisterCr0 }; WHV_REGISTER_VALUE aRegs[RT_ELEMENTS(s_aNames)] = { {{0, 0} } }; WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, s_aNames, RT_ELEMENTS(s_aNames), aRegs); LogFlow(("NEM/%u: Entry @ %04x:%08RX64 IF=%d EFL=%#RX64 SS:RSP=%04x:%08RX64 cr0=%RX64\n", pVCpu->idCpu, aRegs[0].Segment.Selector, aRegs[1].Reg64, RT_BOOL(aRegs[2].Reg64 & X86_EFL_IF), aRegs[2].Reg64, aRegs[3].Segment.Selector, aRegs[4].Reg64, aRegs[5].Reg64)); } #endif WHV_RUN_VP_EXIT_CONTEXT ExitReason = {0}; TMNotifyStartOfExecution(pVM, pVCpu); HRESULT hrc = WHvRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, &ExitReason, sizeof(ExitReason)); VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT); TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC()); #ifdef LOG_ENABLED LogFlow(("NEM/%u: Exit @ @todo Reason=%#x\n", pVCpu->idCpu, ExitReason.ExitReason)); #endif if (SUCCEEDED(hrc)) { /* * Deal with the message. */ rcStrict = nemR3WinHandleExit(pVM, pVCpu, &ExitReason); if (rcStrict == VINF_SUCCESS) { /* hopefully likely */ } else { LogFlow(("NEM/%u: breaking: nemHCWinHandleMessage -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) )); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus); break; } } else AssertLogRelMsgFailedReturn(("WHvRunVirtualProcessor failed for CPU #%u: %#x (%u)\n", pVCpu->idCpu, hrc, GetLastError()), VERR_NEM_IPE_0); /* * If no relevant FFs are pending, loop. */ if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK) && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) ) continue; /** @todo Try handle pending flags, not just return to EM loops. Take care * not to set important RCs here unless we've handled a message. */ LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n", pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions)); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost); } else { LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) )); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel); } } else { LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu)); STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre); } break; } /* the run loop */ /* * If the CPU is running, make sure to stop it before we try sync back the * state and return to EM. We don't sync back the whole state if we can help it. */ if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM)) VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED); if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL) { /* Try anticipate what we might need. */ uint64_t fImport = IEM_CPUMCTX_EXTRN_MUST_MASK; if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST) || RT_FAILURE(rcStrict)) fImport = CPUMCTX_EXTRN_ALL; else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_IRQ | VMCPU_FF_INTERRUPT_FIQ)) fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK; if (pVCpu->cpum.GstCtx.fExtrn & fImport) { int rc2 = nemHCWinCopyStateFromHyperV(pVM, pVCpu, fImport); if (RT_SUCCESS(rc2)) pVCpu->cpum.GstCtx.fExtrn &= ~fImport; else if (RT_SUCCESS(rcStrict)) rcStrict = rc2; if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)) pVCpu->cpum.GstCtx.fExtrn = 0; STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn); } else STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped); } else { STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped); pVCpu->cpum.GstCtx.fExtrn = 0; } #if 0 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, VBOXSTRICTRC_VAL(rcStrict) )); #endif return rcStrict; } VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu) { Assert(VM_IS_NEM_ENABLED(pVM)); RT_NOREF(pVM, pVCpu); return true; } bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable) { NOREF(pVM); NOREF(pVCpu); NOREF(fEnable); return false; } void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags) { Log8(("nemR3NativeNotifyFF: canceling %u\n", pVCpu->idCpu)); HRESULT hrc = WHvCancelRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, 0); AssertMsg(SUCCEEDED(hrc), ("WHvCancelRunVirtualProcessor -> hrc=%Rhrc\n", hrc)); RT_NOREF_PV(hrc); RT_NOREF_PV(fFlags); } DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop) { RT_NOREF(pVM, fUseDebugLoop); return false; } DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop) { RT_NOREF(pVM, pVCpu, fUseDebugLoop); return false; } DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv) { PGMPAGEMAPLOCK Lock; int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock); if (RT_SUCCESS(rc)) PGMPhysReleasePageMappingLock(pVM, &Lock); return rc; } DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv) { PGMPAGEMAPLOCK Lock; int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock); if (RT_SUCCESS(rc)) PGMPhysReleasePageMappingLock(pVM, &Lock); return rc; } VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3, uint8_t *pu2State, uint32_t *puNemRange) { Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p pu2State=%p (%d) puNemRange=%p (%d)\n", GCPhys, cb, pvR3, pu2State, pu2State, puNemRange, *puNemRange)); *pu2State = UINT8_MAX; RT_NOREF(puNemRange); if (pvR3) { STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRange, a); HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvR3, GCPhys, cb, WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagWrite | WHvMapGpaRangeFlagExecute); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRange, a); if (SUCCEEDED(hrc)) *pu2State = NEM_WIN_PAGE_STATE_WRITABLE; else { LogRel(("NEMR3NotifyPhysRamRegister: GCPhys=%RGp LB %RGp pvR3=%p hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhys, cb, pvR3, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed); return VERR_NEM_MAP_PAGES_FAILED; } } return VINF_SUCCESS; } VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM) { RT_NOREF(pVM); return g_pfnWHvQueryGpaRangeDirtyBitmap != NULL; } VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange) { Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d) puNemRange=%p (%#x)\n", GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State, puNemRange, puNemRange ? *puNemRange : UINT32_MAX)); RT_NOREF(puNemRange); /* * Unmap the RAM we're replacing. */ if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) { STAM_REL_PROFILE_START(&pVM->nem.s.StatProfUnmapGpaRange, a); HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, cb); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfUnmapGpaRange, a); if (SUCCEEDED(hrc)) { /* likely */ } else if (pvMmio2) LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> hrc=%Rhrc (%#x) Last=%#x/%u (ignored)\n", GCPhys, cb, fFlags, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); else { LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhys, cb, fFlags, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed); return VERR_NEM_UNMAP_PAGES_FAILED; } } /* * Map MMIO2 if any. */ if (pvMmio2) { Assert(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2); WHV_MAP_GPA_RANGE_FLAGS fWHvFlags = WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagWrite | WHvMapGpaRangeFlagExecute; if ((fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES) && g_pfnWHvQueryGpaRangeDirtyBitmap) fWHvFlags |= WHvMapGpaRangeFlagTrackDirtyPages; STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRange, a); HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvMmio2, GCPhys, cb, fWHvFlags); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRange, a); if (SUCCEEDED(hrc)) *pu2State = NEM_WIN_PAGE_STATE_WRITABLE; else { LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x pvMmio2=%p fWHvFlags=%#x: Map -> hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhys, cb, fFlags, pvMmio2, fWHvFlags, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed); return VERR_NEM_MAP_PAGES_FAILED; } } else { Assert(!(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)); *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED; } RT_NOREF(pvRam); return VINF_SUCCESS; } VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam, void *pvMmio2, uint32_t *puNemRange) { RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange); return VINF_SUCCESS; } VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange) { int rc = VINF_SUCCESS; Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p uNemRange=%#x (%#x)\n", GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange)); /* * Unmap the MMIO2 pages. */ /** @todo If we implement aliasing (MMIO2 page aliased into MMIO range), * we may have more stuff to unmap even in case of pure MMIO... */ if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2) { STAM_REL_PROFILE_START(&pVM->nem.s.StatProfUnmapGpaRange, a); HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, cb); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfUnmapGpaRange, a); if (FAILED(hrc)) { LogRel2(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> hrc=%Rhrc (%#x) Last=%#x/%u (ignored)\n", GCPhys, cb, fFlags, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); rc = VERR_NEM_UNMAP_PAGES_FAILED; STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed); } } /* * Restore the RAM we replaced. */ if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) { AssertPtr(pvRam); STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRange, a); HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvRam, GCPhys, cb, WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagWrite | WHvMapGpaRangeFlagExecute); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRange, a); if (SUCCEEDED(hrc)) { /* likely */ } else { LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp pvMmio2=%p hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhys, cb, pvMmio2, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); rc = VERR_NEM_MAP_PAGES_FAILED; STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed); } if (pu2State) *pu2State = NEM_WIN_PAGE_STATE_WRITABLE; } /* Mark the pages as unmapped if relevant. */ else if (pu2State) *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED; RT_NOREF(pvMmio2, puNemRange); return rc; } VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange, void *pvBitmap, size_t cbBitmap) { Assert(VM_IS_NEM_ENABLED(pVM)); AssertReturn(g_pfnWHvQueryGpaRangeDirtyBitmap, VERR_INTERNAL_ERROR_2); Assert(cbBitmap == (uint32_t)cbBitmap); RT_NOREF(uNemRange); /* This is being profiled by PGM, see /PGM/Mmio2QueryAndResetDirtyBitmap. */ HRESULT hrc = WHvQueryGpaRangeDirtyBitmap(pVM->nem.s.hPartition, GCPhys, cb, (UINT64 *)pvBitmap, (uint32_t)cbBitmap); if (SUCCEEDED(hrc)) return VINF_SUCCESS; AssertLogRelMsgFailed(("GCPhys=%RGp LB %RGp pvBitmap=%p LB %#zx hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhys, cb, pvBitmap, cbBitmap, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); return VERR_NEM_QUERY_DIRTY_BITMAP_FAILED; } VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange) { Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags)); *pu2State = UINT8_MAX; *puNemRange = 0; #if 0 /* Let's not do this after all. We'll protection change notifications for each page and if not we'll map them lazily. */ RTGCPHYS const cPages = cb >> X86_PAGE_SHIFT; for (RTGCPHYS iPage = 0; iPage < cPages; iPage++, GCPhys += X86_PAGE_SIZE) { const void *pvPage; int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhys, &pvPage); if (RT_SUCCESS(rc)) { HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhys, X86_PAGE_SIZE, WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute); if (SUCCEEDED(hrc)) { /* likely */ } else { LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); return VERR_NEM_INIT_FAILED; } } else { LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc)); return rc; } } RT_NOREF_PV(fFlags); #else RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags); #endif return VINF_SUCCESS; } VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange) { Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n", GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange)); *pu2State = UINT8_MAX; /* * (Re-)map readonly. */ AssertPtrReturn(pvPages, VERR_INVALID_POINTER); STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRange, a); HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvPages, GCPhys, cb, WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRange, a); if (SUCCEEDED(hrc)) *pu2State = NEM_WIN_PAGE_STATE_READABLE; else { LogRel(("nemR3NativeNotifyPhysRomRegisterEarly: GCPhys=%RGp LB %RGp pvPages=%p fFlags=%#x hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhys, cb, pvPages, fFlags, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed); return VERR_NEM_MAP_PAGES_FAILED; } RT_NOREF(fFlags, puNemRange); return VINF_SUCCESS; } VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled) { Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled)); Assert(VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM))); RT_NOREF(pVCpu, fEnabled); } void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb) { Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind)); NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb); } VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb, RTR3PTR pvMemR3, uint8_t *pu2State) { Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n", GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State)); *pu2State = UINT8_MAX; if (pvMemR3) { STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRange, a); HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvMemR3, GCPhys, cb, WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute | WHvMapGpaRangeFlagWrite); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRange, a); if (SUCCEEDED(hrc)) *pu2State = NEM_WIN_PAGE_STATE_WRITABLE; else AssertLogRelMsgFailed(("NEMHCNotifyHandlerPhysicalDeregister: WHvMapGpaRange(,%p,%RGp,%RGp,) -> %Rhrc\n", pvMemR3, GCPhys, cb, hrc)); } RT_NOREF(enmKind); } void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM) { Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n", GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM)); NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM); } /** * Worker that maps pages into Hyper-V. * * This is used by the PGM physical page notifications as well as the memory * access VMEXIT handlers. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the * calling EMT. * @param GCPhysSrc The source page address. * @param GCPhysDst The hyper-V destination page. This may differ from * GCPhysSrc when A20 is disabled. * @param fPageProt NEM_PAGE_PROT_XXX. * @param pu2State Our page state (input/output). * @param fBackingChanged Set if the page backing is being changed. * @thread EMT(pVCpu) */ NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged) { /* * Looks like we need to unmap a page before we can change the backing * or even modify the protection. This is going to be *REALLY* efficient. * PGM lends us two bits to keep track of the state here. */ RT_NOREF(pVCpu); uint8_t const u2OldState = *pu2State; uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_WIN_PAGE_STATE_WRITABLE : fPageProt & NEM_PAGE_PROT_READ ? NEM_WIN_PAGE_STATE_READABLE : NEM_WIN_PAGE_STATE_UNMAPPED; if ( fBackingChanged || u2NewState != u2OldState) { if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED) { STAM_REL_PROFILE_START(&pVM->nem.s.StatProfUnmapGpaRangePage, a); HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst, X86_PAGE_SIZE); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfUnmapGpaRangePage, a); if (SUCCEEDED(hrc)) { *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED; STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage); uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages); if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED) { Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages)); return VINF_SUCCESS; } } else { STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed); LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); return VERR_NEM_INIT_FAILED; } } } /* * Writeable mapping? */ if (fPageProt & NEM_PAGE_PROT_WRITE) { void *pvPage; int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage); if (RT_SUCCESS(rc)) { HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvPage, GCPhysDst, X86_PAGE_SIZE, WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute | WHvMapGpaRangeFlagWrite); if (SUCCEEDED(hrc)) { *pu2State = NEM_WIN_PAGE_STATE_WRITABLE; STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage); uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages); Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages)); return VINF_SUCCESS; } STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed); LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); return VERR_NEM_INIT_FAILED; } LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc)); return rc; } if (fPageProt & NEM_PAGE_PROT_READ) { const void *pvPage; int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage); if (RT_SUCCESS(rc)) { STAM_REL_PROFILE_START(&pVM->nem.s.StatProfMapGpaRangePage, a); HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhysDst, X86_PAGE_SIZE, WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfMapGpaRangePage, a); if (SUCCEEDED(hrc)) { *pu2State = NEM_WIN_PAGE_STATE_READABLE; STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage); uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages); Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages)); return VINF_SUCCESS; } STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed); LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); return VERR_NEM_INIT_FAILED; } LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc)); return rc; } /* We already unmapped it above. */ *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED; return VINF_SUCCESS; } NEM_TMPL_STATIC int nemHCJustUnmapPageFromHyperV(PVMCC pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State) { if (*pu2State <= NEM_WIN_PAGE_STATE_UNMAPPED) { Log5(("nemHCJustUnmapPageFromHyperV: %RGp == unmapped\n", GCPhysDst)); *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED; return VINF_SUCCESS; } STAM_REL_PROFILE_START(&pVM->nem.s.StatProfUnmapGpaRangePage, a); HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE); STAM_REL_PROFILE_STOP(&pVM->nem.s.StatProfUnmapGpaRangePage, a); if (SUCCEEDED(hrc)) { STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage); uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages); *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED; Log5(("nemHCJustUnmapPageFromHyperV: %RGp => unmapped (total %u)\n", GCPhysDst, cMappedPages)); return VINF_SUCCESS; } STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed); LogRel(("nemHCJustUnmapPageFromHyperV(%RGp): failed! hrc=%Rhrc (%#x) Last=%#x/%u\n", GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue())); return VERR_NEM_IPE_6; } int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State) { Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n", GCPhys, HCPhys, fPageProt, enmType, *pu2State)); RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType); int rc; RT_NOREF_PV(fPageProt); rc = nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State); return rc; } VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State) { Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n", GCPhys, HCPhys, fPageProt, enmType, *pu2State)); Assert(VM_IS_NEM_ENABLED(pVM)); RT_NOREF(HCPhys, enmType, pvR3); RT_NOREF_PV(fPageProt); nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State); } VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew, RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State) { Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp pvNewR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n", GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, *pu2State)); Assert(VM_IS_NEM_ENABLED(pVM)); RT_NOREF(HCPhysPrev, HCPhysNew, pvNewR3, enmType); RT_NOREF_PV(fPageProt); nemHCJustUnmapPageFromHyperV(pVM, GCPhys, pu2State); } /** * Returns features supported by the NEM backend. * * @returns Flags of features supported by the native NEM backend. * @param pVM The cross context VM structure. */ VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM) { RT_NOREF(pVM); /** @todo Is NEM_FEAT_F_FULL_GST_EXEC always true? */ return NEM_FEAT_F_NESTED_PAGING | NEM_FEAT_F_FULL_GST_EXEC; } /** @page pg_nem_win_aarmv8 NEM/win - Native Execution Manager, Windows. * * Open questions: * - Why can't one read and write WHvArm64RegisterId* * - WHvArm64RegisterDbgbcr0El1 is not readable? * - Getting notified about system register reads/writes (GIC)? * - InstructionByteCount and InstructionBytes for unmapped GPA exit are zero... * - Handling of (vTimer) interrupts, how is WHvRequestInterrupt() supposed to be used? */