VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp@ 100877

Last change on this file since 100877 was 100877, checked in by vboxsync, 16 months ago

VMM/NEMR3Native-darwin: Disable intercepting #DB exceptions and mov drX instructions as it currently breaks using a debugger inside the guest. This will break using the hypervisor debugger but only very few people use it anyway and even less on macOS, bugref:10504

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 182.2 KB
Line 
1/* $Id: NEMR3Native-darwin.cpp 100877 2023-08-15 08:13:22Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 macOS backend using Hypervisor.framework.
4 *
5 * Log group 2: Exit logging.
6 * Log group 3: Log context on exit.
7 * Log group 5: Ring-3 memory management
8 */
9
10/*
11 * Copyright (C) 2020-2023 Oracle and/or its affiliates.
12 *
13 * This file is part of VirtualBox base platform packages, as
14 * available from https://www.virtualbox.org.
15 *
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation, in version 3 of the
19 * License.
20 *
21 * This program is distributed in the hope that it will be useful, but
22 * WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 * General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, see <https://www.gnu.org/licenses>.
28 *
29 * SPDX-License-Identifier: GPL-3.0-only
30 */
31
32
33/*********************************************************************************************************************************
34* Header Files *
35*********************************************************************************************************************************/
36#define LOG_GROUP LOG_GROUP_NEM
37#define VMCPU_INCL_CPUM_GST_CTX
38#define CPUM_WITH_NONCONST_HOST_FEATURES /* required for initializing parts of the g_CpumHostFeatures structure here. */
39#include <VBox/vmm/nem.h>
40#include <VBox/vmm/iem.h>
41#include <VBox/vmm/em.h>
42#include <VBox/vmm/apic.h>
43#include <VBox/vmm/pdm.h>
44#include <VBox/vmm/hm.h>
45#include <VBox/vmm/hm_vmx.h>
46#include <VBox/vmm/dbgftrace.h>
47#include <VBox/vmm/gcm.h>
48#include "VMXInternal.h"
49#include "NEMInternal.h"
50#include <VBox/vmm/vmcc.h>
51#include "dtrace/VBoxVMM.h"
52
53#include <iprt/asm.h>
54#include <iprt/ldr.h>
55#include <iprt/mem.h>
56#include <iprt/path.h>
57#include <iprt/string.h>
58#include <iprt/system.h>
59#include <iprt/utf16.h>
60
61#include <mach/mach_time.h>
62#include <mach/kern_return.h>
63
64
65/*********************************************************************************************************************************
66* Defined Constants And Macros *
67*********************************************************************************************************************************/
68/* No nested hwvirt (for now). */
69#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
70# undef VBOX_WITH_NESTED_HWVIRT_VMX
71#endif
72
73
74/** @name HV return codes.
75 * @{ */
76/** Operation was successful. */
77#define HV_SUCCESS 0
78/** An error occurred during operation. */
79#define HV_ERROR 0xfae94001
80/** The operation could not be completed right now, try again. */
81#define HV_BUSY 0xfae94002
82/** One of the parameters passed wis invalid. */
83#define HV_BAD_ARGUMENT 0xfae94003
84/** Not enough resources left to fulfill the operation. */
85#define HV_NO_RESOURCES 0xfae94005
86/** The device could not be found. */
87#define HV_NO_DEVICE 0xfae94006
88/** The operation is not supportd on this platform with this configuration. */
89#define HV_UNSUPPORTED 0xfae94007
90/** @} */
91
92
93/** @name HV memory protection flags.
94 * @{ */
95/** Memory is readable. */
96#define HV_MEMORY_READ RT_BIT_64(0)
97/** Memory is writeable. */
98#define HV_MEMORY_WRITE RT_BIT_64(1)
99/** Memory is executable. */
100#define HV_MEMORY_EXEC RT_BIT_64(2)
101/** @} */
102
103
104/** @name HV shadow VMCS protection flags.
105 * @{ */
106/** Shadow VMCS field is not accessible. */
107#define HV_SHADOW_VMCS_NONE 0
108/** Shadow VMCS fild is readable. */
109#define HV_SHADOW_VMCS_READ RT_BIT_64(0)
110/** Shadow VMCS field is writeable. */
111#define HV_SHADOW_VMCS_WRITE RT_BIT_64(1)
112/** @} */
113
114
115/** Default VM creation flags. */
116#define HV_VM_DEFAULT 0
117/** Default guest address space creation flags. */
118#define HV_VM_SPACE_DEFAULT 0
119/** Default vCPU creation flags. */
120#define HV_VCPU_DEFAULT 0
121
122#define HV_DEADLINE_FOREVER UINT64_MAX
123
124
125/*********************************************************************************************************************************
126* Structures and Typedefs *
127*********************************************************************************************************************************/
128
129/** HV return code type. */
130typedef uint32_t hv_return_t;
131/** HV capability bitmask. */
132typedef uint64_t hv_capability_t;
133/** Option bitmask type when creating a VM. */
134typedef uint64_t hv_vm_options_t;
135/** Option bitmask when creating a vCPU. */
136typedef uint64_t hv_vcpu_options_t;
137/** HV memory protection flags type. */
138typedef uint64_t hv_memory_flags_t;
139/** Shadow VMCS protection flags. */
140typedef uint64_t hv_shadow_flags_t;
141/** Guest physical address type. */
142typedef uint64_t hv_gpaddr_t;
143
144
145/**
146 * VMX Capability enumeration.
147 */
148typedef enum
149{
150 HV_VMX_CAP_PINBASED = 0,
151 HV_VMX_CAP_PROCBASED,
152 HV_VMX_CAP_PROCBASED2,
153 HV_VMX_CAP_ENTRY,
154 HV_VMX_CAP_EXIT,
155 HV_VMX_CAP_BASIC, /* Since 11.0 */
156 HV_VMX_CAP_TRUE_PINBASED, /* Since 11.0 */
157 HV_VMX_CAP_TRUE_PROCBASED, /* Since 11.0 */
158 HV_VMX_CAP_TRUE_ENTRY, /* Since 11.0 */
159 HV_VMX_CAP_TRUE_EXIT, /* Since 11.0 */
160 HV_VMX_CAP_MISC, /* Since 11.0 */
161 HV_VMX_CAP_CR0_FIXED0, /* Since 11.0 */
162 HV_VMX_CAP_CR0_FIXED1, /* Since 11.0 */
163 HV_VMX_CAP_CR4_FIXED0, /* Since 11.0 */
164 HV_VMX_CAP_CR4_FIXED1, /* Since 11.0 */
165 HV_VMX_CAP_VMCS_ENUM, /* Since 11.0 */
166 HV_VMX_CAP_EPT_VPID_CAP, /* Since 11.0 */
167 HV_VMX_CAP_PREEMPTION_TIMER = 32
168} hv_vmx_capability_t;
169
170
171/**
172 * MSR information.
173 */
174typedef enum
175{
176 HV_VMX_INFO_MSR_IA32_ARCH_CAPABILITIES = 0,
177 HV_VMX_INFO_MSR_IA32_PERF_CAPABILITIES,
178 HV_VMX_VALID_MSR_IA32_PERFEVNTSEL,
179 HV_VMX_VALID_MSR_IA32_FIXED_CTR_CTRL,
180 HV_VMX_VALID_MSR_IA32_PERF_GLOBAL_CTRL,
181 HV_VMX_VALID_MSR_IA32_PERF_GLOBAL_STATUS,
182 HV_VMX_VALID_MSR_IA32_DEBUGCTL,
183 HV_VMX_VALID_MSR_IA32_SPEC_CTRL,
184 HV_VMX_NEED_MSR_IA32_SPEC_CTRL
185} hv_vmx_msr_info_t;
186
187
188/**
189 * HV x86 register enumeration.
190 */
191typedef enum
192{
193 HV_X86_RIP = 0,
194 HV_X86_RFLAGS,
195 HV_X86_RAX,
196 HV_X86_RCX,
197 HV_X86_RDX,
198 HV_X86_RBX,
199 HV_X86_RSI,
200 HV_X86_RDI,
201 HV_X86_RSP,
202 HV_X86_RBP,
203 HV_X86_R8,
204 HV_X86_R9,
205 HV_X86_R10,
206 HV_X86_R11,
207 HV_X86_R12,
208 HV_X86_R13,
209 HV_X86_R14,
210 HV_X86_R15,
211 HV_X86_CS,
212 HV_X86_SS,
213 HV_X86_DS,
214 HV_X86_ES,
215 HV_X86_FS,
216 HV_X86_GS,
217 HV_X86_IDT_BASE,
218 HV_X86_IDT_LIMIT,
219 HV_X86_GDT_BASE,
220 HV_X86_GDT_LIMIT,
221 HV_X86_LDTR,
222 HV_X86_LDT_BASE,
223 HV_X86_LDT_LIMIT,
224 HV_X86_LDT_AR,
225 HV_X86_TR,
226 HV_X86_TSS_BASE,
227 HV_X86_TSS_LIMIT,
228 HV_X86_TSS_AR,
229 HV_X86_CR0,
230 HV_X86_CR1,
231 HV_X86_CR2,
232 HV_X86_CR3,
233 HV_X86_CR4,
234 HV_X86_DR0,
235 HV_X86_DR1,
236 HV_X86_DR2,
237 HV_X86_DR3,
238 HV_X86_DR4,
239 HV_X86_DR5,
240 HV_X86_DR6,
241 HV_X86_DR7,
242 HV_X86_TPR,
243 HV_X86_XCR0,
244 HV_X86_REGISTERS_MAX
245} hv_x86_reg_t;
246
247
248/** MSR permission flags type. */
249typedef uint32_t hv_msr_flags_t;
250/** MSR can't be accessed. */
251#define HV_MSR_NONE 0
252/** MSR is readable by the guest. */
253#define HV_MSR_READ RT_BIT(0)
254/** MSR is writeable by the guest. */
255#define HV_MSR_WRITE RT_BIT(1)
256
257
258typedef hv_return_t FN_HV_CAPABILITY(hv_capability_t capability, uint64_t *valu);
259typedef hv_return_t FN_HV_VM_CREATE(hv_vm_options_t flags);
260typedef hv_return_t FN_HV_VM_DESTROY(void);
261typedef hv_return_t FN_HV_VM_SPACE_CREATE(hv_vm_space_t *asid);
262typedef hv_return_t FN_HV_VM_SPACE_DESTROY(hv_vm_space_t asid);
263typedef hv_return_t FN_HV_VM_MAP(const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
264typedef hv_return_t FN_HV_VM_UNMAP(hv_gpaddr_t gpa, size_t size);
265typedef hv_return_t FN_HV_VM_PROTECT(hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
266typedef hv_return_t FN_HV_VM_MAP_SPACE(hv_vm_space_t asid, const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
267typedef hv_return_t FN_HV_VM_UNMAP_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size);
268typedef hv_return_t FN_HV_VM_PROTECT_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
269typedef hv_return_t FN_HV_VM_SYNC_TSC(uint64_t tsc);
270
271typedef hv_return_t FN_HV_VCPU_CREATE(hv_vcpuid_t *vcpu, hv_vcpu_options_t flags);
272typedef hv_return_t FN_HV_VCPU_DESTROY(hv_vcpuid_t vcpu);
273typedef hv_return_t FN_HV_VCPU_SET_SPACE(hv_vcpuid_t vcpu, hv_vm_space_t asid);
274typedef hv_return_t FN_HV_VCPU_READ_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t *value);
275typedef hv_return_t FN_HV_VCPU_WRITE_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t value);
276typedef hv_return_t FN_HV_VCPU_READ_FPSTATE(hv_vcpuid_t vcpu, void *buffer, size_t size);
277typedef hv_return_t FN_HV_VCPU_WRITE_FPSTATE(hv_vcpuid_t vcpu, const void *buffer, size_t size);
278typedef hv_return_t FN_HV_VCPU_ENABLE_NATIVE_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
279typedef hv_return_t FN_HV_VCPU_READ_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t *value);
280typedef hv_return_t FN_HV_VCPU_WRITE_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t value);
281typedef hv_return_t FN_HV_VCPU_FLUSH(hv_vcpuid_t vcpu);
282typedef hv_return_t FN_HV_VCPU_INVALIDATE_TLB(hv_vcpuid_t vcpu);
283typedef hv_return_t FN_HV_VCPU_RUN(hv_vcpuid_t vcpu);
284typedef hv_return_t FN_HV_VCPU_RUN_UNTIL(hv_vcpuid_t vcpu, uint64_t deadline);
285typedef hv_return_t FN_HV_VCPU_INTERRUPT(hv_vcpuid_t *vcpus, unsigned int vcpu_count);
286typedef hv_return_t FN_HV_VCPU_GET_EXEC_TIME(hv_vcpuid_t *vcpus, uint64_t *time);
287
288typedef hv_return_t FN_HV_VMX_VCPU_READ_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
289typedef hv_return_t FN_HV_VMX_VCPU_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
290
291typedef hv_return_t FN_HV_VMX_VCPU_READ_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
292typedef hv_return_t FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
293typedef hv_return_t FN_HV_VMX_VCPU_SET_SHADOW_ACCESS(hv_vcpuid_t vcpu, uint32_t field, hv_shadow_flags_t flags);
294
295typedef hv_return_t FN_HV_VMX_READ_CAPABILITY(hv_vmx_capability_t field, uint64_t *value);
296typedef hv_return_t FN_HV_VMX_VCPU_SET_APIC_ADDRESS(hv_vcpuid_t vcpu, hv_gpaddr_t gpa);
297
298/* Since 11.0 */
299typedef hv_return_t FN_HV_VMX_GET_MSR_INFO(hv_vmx_msr_info_t field, uint64_t *value);
300typedef hv_return_t FN_HV_VMX_VCPU_GET_CAP_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *allowed_0, uint64_t *allowed_1);
301typedef hv_return_t FN_HV_VCPU_ENABLE_MANAGED_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
302typedef hv_return_t FN_HV_VCPU_SET_MSR_ACCESS(hv_vcpuid_t vcpu, uint32_t msr, hv_msr_flags_t flags);
303
304
305/*********************************************************************************************************************************
306* Global Variables *
307*********************************************************************************************************************************/
308static void nemR3DarwinVmcsDump(PVMCPU pVCpu);
309
310/** NEM_DARWIN_PAGE_STATE_XXX names. */
311NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
312/** MSRs. */
313static SUPHWVIRTMSRS g_HmMsrs;
314/** VMX: Set if swapping EFER is supported. */
315static bool g_fHmVmxSupportsVmcsEfer = false;
316/** @name APIs imported from Hypervisor.framework.
317 * @{ */
318static FN_HV_CAPABILITY *g_pfnHvCapability = NULL; /* Since 10.15 */
319static FN_HV_VM_CREATE *g_pfnHvVmCreate = NULL; /* Since 10.10 */
320static FN_HV_VM_DESTROY *g_pfnHvVmDestroy = NULL; /* Since 10.10 */
321static FN_HV_VM_SPACE_CREATE *g_pfnHvVmSpaceCreate = NULL; /* Since 10.15 */
322static FN_HV_VM_SPACE_DESTROY *g_pfnHvVmSpaceDestroy = NULL; /* Since 10.15 */
323static FN_HV_VM_MAP *g_pfnHvVmMap = NULL; /* Since 10.10 */
324static FN_HV_VM_UNMAP *g_pfnHvVmUnmap = NULL; /* Since 10.10 */
325static FN_HV_VM_PROTECT *g_pfnHvVmProtect = NULL; /* Since 10.10 */
326static FN_HV_VM_MAP_SPACE *g_pfnHvVmMapSpace = NULL; /* Since 10.15 */
327static FN_HV_VM_UNMAP_SPACE *g_pfnHvVmUnmapSpace = NULL; /* Since 10.15 */
328static FN_HV_VM_PROTECT_SPACE *g_pfnHvVmProtectSpace = NULL; /* Since 10.15 */
329static FN_HV_VM_SYNC_TSC *g_pfnHvVmSyncTsc = NULL; /* Since 10.10 */
330
331static FN_HV_VCPU_CREATE *g_pfnHvVCpuCreate = NULL; /* Since 10.10 */
332static FN_HV_VCPU_DESTROY *g_pfnHvVCpuDestroy = NULL; /* Since 10.10 */
333static FN_HV_VCPU_SET_SPACE *g_pfnHvVCpuSetSpace = NULL; /* Since 10.15 */
334static FN_HV_VCPU_READ_REGISTER *g_pfnHvVCpuReadRegister = NULL; /* Since 10.10 */
335static FN_HV_VCPU_WRITE_REGISTER *g_pfnHvVCpuWriteRegister = NULL; /* Since 10.10 */
336static FN_HV_VCPU_READ_FPSTATE *g_pfnHvVCpuReadFpState = NULL; /* Since 10.10 */
337static FN_HV_VCPU_WRITE_FPSTATE *g_pfnHvVCpuWriteFpState = NULL; /* Since 10.10 */
338static FN_HV_VCPU_ENABLE_NATIVE_MSR *g_pfnHvVCpuEnableNativeMsr = NULL; /* Since 10.10 */
339static FN_HV_VCPU_READ_MSR *g_pfnHvVCpuReadMsr = NULL; /* Since 10.10 */
340static FN_HV_VCPU_WRITE_MSR *g_pfnHvVCpuWriteMsr = NULL; /* Since 10.10 */
341static FN_HV_VCPU_FLUSH *g_pfnHvVCpuFlush = NULL; /* Since 10.10 */
342static FN_HV_VCPU_INVALIDATE_TLB *g_pfnHvVCpuInvalidateTlb = NULL; /* Since 10.10 */
343static FN_HV_VCPU_RUN *g_pfnHvVCpuRun = NULL; /* Since 10.10 */
344static FN_HV_VCPU_RUN_UNTIL *g_pfnHvVCpuRunUntil = NULL; /* Since 10.15 */
345static FN_HV_VCPU_INTERRUPT *g_pfnHvVCpuInterrupt = NULL; /* Since 10.10 */
346static FN_HV_VCPU_GET_EXEC_TIME *g_pfnHvVCpuGetExecTime = NULL; /* Since 10.10 */
347
348static FN_HV_VMX_READ_CAPABILITY *g_pfnHvVmxReadCapability = NULL; /* Since 10.10 */
349static FN_HV_VMX_VCPU_READ_VMCS *g_pfnHvVmxVCpuReadVmcs = NULL; /* Since 10.10 */
350static FN_HV_VMX_VCPU_WRITE_VMCS *g_pfnHvVmxVCpuWriteVmcs = NULL; /* Since 10.10 */
351static FN_HV_VMX_VCPU_READ_SHADOW_VMCS *g_pfnHvVmxVCpuReadShadowVmcs = NULL; /* Since 10.15 */
352static FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS *g_pfnHvVmxVCpuWriteShadowVmcs = NULL; /* Since 10.15 */
353static FN_HV_VMX_VCPU_SET_SHADOW_ACCESS *g_pfnHvVmxVCpuSetShadowAccess = NULL; /* Since 10.15 */
354static FN_HV_VMX_VCPU_SET_APIC_ADDRESS *g_pfnHvVmxVCpuSetApicAddress = NULL; /* Since 10.10 */
355
356static FN_HV_VMX_GET_MSR_INFO *g_pfnHvVmxGetMsrInfo = NULL; /* Since 11.0 */
357static FN_HV_VMX_VCPU_GET_CAP_WRITE_VMCS *g_pfnHvVmxVCpuGetCapWriteVmcs = NULL; /* Since 11.0 */
358static FN_HV_VCPU_ENABLE_MANAGED_MSR *g_pfnHvVCpuEnableManagedMsr = NULL; /* Since 11.0 */
359static FN_HV_VCPU_SET_MSR_ACCESS *g_pfnHvVCpuSetMsrAccess = NULL; /* Since 11.0 */
360/** @} */
361
362
363/**
364 * Import instructions.
365 */
366static const struct
367{
368 bool fOptional; /**< Set if import is optional. */
369 void **ppfn; /**< The function pointer variable. */
370 const char *pszName; /**< The function name. */
371} g_aImports[] =
372{
373#define NEM_DARWIN_IMPORT(a_fOptional, a_Pfn, a_Name) { (a_fOptional), (void **)&(a_Pfn), #a_Name }
374 NEM_DARWIN_IMPORT(true, g_pfnHvCapability, hv_capability),
375 NEM_DARWIN_IMPORT(false, g_pfnHvVmCreate, hv_vm_create),
376 NEM_DARWIN_IMPORT(false, g_pfnHvVmDestroy, hv_vm_destroy),
377 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceCreate, hv_vm_space_create),
378 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceDestroy, hv_vm_space_destroy),
379 NEM_DARWIN_IMPORT(false, g_pfnHvVmMap, hv_vm_map),
380 NEM_DARWIN_IMPORT(false, g_pfnHvVmUnmap, hv_vm_unmap),
381 NEM_DARWIN_IMPORT(false, g_pfnHvVmProtect, hv_vm_protect),
382 NEM_DARWIN_IMPORT(true, g_pfnHvVmMapSpace, hv_vm_map_space),
383 NEM_DARWIN_IMPORT(true, g_pfnHvVmUnmapSpace, hv_vm_unmap_space),
384 NEM_DARWIN_IMPORT(true, g_pfnHvVmProtectSpace, hv_vm_protect_space),
385 NEM_DARWIN_IMPORT(false, g_pfnHvVmSyncTsc, hv_vm_sync_tsc),
386
387 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuCreate, hv_vcpu_create),
388 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuDestroy, hv_vcpu_destroy),
389 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuSetSpace, hv_vcpu_set_space),
390 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadRegister, hv_vcpu_read_register),
391 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteRegister, hv_vcpu_write_register),
392 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadFpState, hv_vcpu_read_fpstate),
393 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteFpState, hv_vcpu_write_fpstate),
394 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuEnableNativeMsr, hv_vcpu_enable_native_msr),
395 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadMsr, hv_vcpu_read_msr),
396 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteMsr, hv_vcpu_write_msr),
397 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuFlush, hv_vcpu_flush),
398 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInvalidateTlb, hv_vcpu_invalidate_tlb),
399 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuRun, hv_vcpu_run),
400 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuRunUntil, hv_vcpu_run_until),
401 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInterrupt, hv_vcpu_interrupt),
402 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuGetExecTime, hv_vcpu_get_exec_time),
403 NEM_DARWIN_IMPORT(false, g_pfnHvVmxReadCapability, hv_vmx_read_capability),
404 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuReadVmcs, hv_vmx_vcpu_read_vmcs),
405 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuWriteVmcs, hv_vmx_vcpu_write_vmcs),
406 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuReadShadowVmcs, hv_vmx_vcpu_read_shadow_vmcs),
407 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuWriteShadowVmcs, hv_vmx_vcpu_write_shadow_vmcs),
408 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuSetShadowAccess, hv_vmx_vcpu_set_shadow_access),
409 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuSetApicAddress, hv_vmx_vcpu_set_apic_address),
410 NEM_DARWIN_IMPORT(true, g_pfnHvVmxGetMsrInfo, hv_vmx_get_msr_info),
411 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuGetCapWriteVmcs, hv_vmx_vcpu_get_cap_write_vmcs),
412 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuEnableManagedMsr, hv_vcpu_enable_managed_msr),
413 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuSetMsrAccess, hv_vcpu_set_msr_access)
414#undef NEM_DARWIN_IMPORT
415};
416
417
418/*
419 * Let the preprocessor alias the APIs to import variables for better autocompletion.
420 */
421#ifndef IN_SLICKEDIT
422# define hv_capability g_pfnHvCapability
423# define hv_vm_create g_pfnHvVmCreate
424# define hv_vm_destroy g_pfnHvVmDestroy
425# define hv_vm_space_create g_pfnHvVmSpaceCreate
426# define hv_vm_space_destroy g_pfnHvVmSpaceDestroy
427# define hv_vm_map g_pfnHvVmMap
428# define hv_vm_unmap g_pfnHvVmUnmap
429# define hv_vm_protect g_pfnHvVmProtect
430# define hv_vm_map_space g_pfnHvVmMapSpace
431# define hv_vm_unmap_space g_pfnHvVmUnmapSpace
432# define hv_vm_protect_space g_pfnHvVmProtectSpace
433# define hv_vm_sync_tsc g_pfnHvVmSyncTsc
434
435# define hv_vcpu_create g_pfnHvVCpuCreate
436# define hv_vcpu_destroy g_pfnHvVCpuDestroy
437# define hv_vcpu_set_space g_pfnHvVCpuSetSpace
438# define hv_vcpu_read_register g_pfnHvVCpuReadRegister
439# define hv_vcpu_write_register g_pfnHvVCpuWriteRegister
440# define hv_vcpu_read_fpstate g_pfnHvVCpuReadFpState
441# define hv_vcpu_write_fpstate g_pfnHvVCpuWriteFpState
442# define hv_vcpu_enable_native_msr g_pfnHvVCpuEnableNativeMsr
443# define hv_vcpu_read_msr g_pfnHvVCpuReadMsr
444# define hv_vcpu_write_msr g_pfnHvVCpuWriteMsr
445# define hv_vcpu_flush g_pfnHvVCpuFlush
446# define hv_vcpu_invalidate_tlb g_pfnHvVCpuInvalidateTlb
447# define hv_vcpu_run g_pfnHvVCpuRun
448# define hv_vcpu_run_until g_pfnHvVCpuRunUntil
449# define hv_vcpu_interrupt g_pfnHvVCpuInterrupt
450# define hv_vcpu_get_exec_time g_pfnHvVCpuGetExecTime
451
452# define hv_vmx_read_capability g_pfnHvVmxReadCapability
453# define hv_vmx_vcpu_read_vmcs g_pfnHvVmxVCpuReadVmcs
454# define hv_vmx_vcpu_write_vmcs g_pfnHvVmxVCpuWriteVmcs
455# define hv_vmx_vcpu_read_shadow_vmcs g_pfnHvVmxVCpuReadShadowVmcs
456# define hv_vmx_vcpu_write_shadow_vmcs g_pfnHvVmxVCpuWriteShadowVmcs
457# define hv_vmx_vcpu_set_shadow_access g_pfnHvVmxVCpuSetShadowAccess
458# define hv_vmx_vcpu_set_apic_address g_pfnHvVmxVCpuSetApicAddress
459
460# define hv_vmx_get_msr_info g_pfnHvVmxGetMsrInfo
461# define hv_vmx_vcpu_get_cap_write_vmcs g_pfnHvVmxVCpuGetCapWriteVmcs
462# define hv_vcpu_enable_managed_msr g_pfnHvVCpuEnableManagedMsr
463# define hv_vcpu_set_msr_access g_pfnHvVCpuSetMsrAccess
464#endif
465
466static const struct
467{
468 uint32_t u32VmcsFieldId; /**< The VMCS field identifier. */
469 const char *pszVmcsField; /**< The VMCS field name. */
470 bool f64Bit;
471} g_aVmcsFieldsCap[] =
472{
473#define NEM_DARWIN_VMCS64_FIELD_CAP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true }
474#define NEM_DARWIN_VMCS32_FIELD_CAP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
475
476 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PIN_EXEC),
477 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PROC_EXEC),
478 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_EXCEPTION_BITMAP),
479 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_EXIT),
480 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_ENTRY),
481 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PROC_EXEC2),
482 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PLE_GAP),
483 NEM_DARWIN_VMCS32_FIELD_CAP(VMX_VMCS32_CTRL_PLE_WINDOW),
484 NEM_DARWIN_VMCS64_FIELD_CAP(VMX_VMCS64_CTRL_TSC_OFFSET_FULL),
485 NEM_DARWIN_VMCS64_FIELD_CAP(VMX_VMCS64_GUEST_DEBUGCTL_FULL)
486#undef NEM_DARWIN_VMCS64_FIELD_CAP
487#undef NEM_DARWIN_VMCS32_FIELD_CAP
488};
489
490
491/*********************************************************************************************************************************
492* Internal Functions *
493*********************************************************************************************************************************/
494DECLINLINE(void) vmxHCImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo);
495
496
497/**
498 * Converts a HV return code to a VBox status code.
499 *
500 * @returns VBox status code.
501 * @param hrc The HV return code to convert.
502 */
503DECLINLINE(int) nemR3DarwinHvSts2Rc(hv_return_t hrc)
504{
505 if (hrc == HV_SUCCESS)
506 return VINF_SUCCESS;
507
508 switch (hrc)
509 {
510 case HV_ERROR: return VERR_INVALID_STATE;
511 case HV_BUSY: return VERR_RESOURCE_BUSY;
512 case HV_BAD_ARGUMENT: return VERR_INVALID_PARAMETER;
513 case HV_NO_RESOURCES: return VERR_OUT_OF_RESOURCES;
514 case HV_NO_DEVICE: return VERR_NOT_FOUND;
515 case HV_UNSUPPORTED: return VERR_NOT_SUPPORTED;
516 }
517
518 return VERR_IPE_UNEXPECTED_STATUS;
519}
520
521
522/**
523 * Unmaps the given guest physical address range (page aligned).
524 *
525 * @returns VBox status code.
526 * @param pVM The cross context VM structure.
527 * @param GCPhys The guest physical address to start unmapping at.
528 * @param cb The size of the range to unmap in bytes.
529 * @param pu2State Where to store the new state of the unmappd page, optional.
530 */
531DECLINLINE(int) nemR3DarwinUnmap(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint8_t *pu2State)
532{
533 if (*pu2State == NEM_DARWIN_PAGE_STATE_UNMAPPED)
534 {
535 Log5(("nemR3DarwinUnmap: %RGp == unmapped\n", GCPhys));
536 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
537 return VINF_SUCCESS;
538 }
539
540 LogFlowFunc(("Unmapping %RGp LB %zu\n", GCPhys, cb));
541 hv_return_t hrc;
542 if (pVM->nem.s.fCreatedAsid)
543 hrc = hv_vm_unmap_space(pVM->nem.s.uVmAsid, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, cb);
544 else
545 hrc = hv_vm_unmap(GCPhys, cb);
546 if (RT_LIKELY(hrc == HV_SUCCESS))
547 {
548 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
549 if (pu2State)
550 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
551 Log5(("nemR3DarwinUnmap: %RGp => unmapped\n", GCPhys));
552 return VINF_SUCCESS;
553 }
554
555 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
556 LogRel(("nemR3DarwinUnmap(%RGp): failed! hrc=%#x\n",
557 GCPhys, hrc));
558 return VERR_NEM_IPE_6;
559}
560
561
562/**
563 * Resolves a NEM page state from the given protection flags.
564 *
565 * @returns NEM page state.
566 * @param fPageProt The page protection flags.
567 */
568DECLINLINE(uint8_t) nemR3DarwinPageStateFromProt(uint32_t fPageProt)
569{
570 switch (fPageProt)
571 {
572 case NEM_PAGE_PROT_NONE:
573 return NEM_DARWIN_PAGE_STATE_UNMAPPED;
574 case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE:
575 return NEM_DARWIN_PAGE_STATE_RX;
576 case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE:
577 return NEM_DARWIN_PAGE_STATE_RW;
578 case NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE:
579 return NEM_DARWIN_PAGE_STATE_RWX;
580 default:
581 break;
582 }
583
584 AssertLogRelMsgFailed(("Invalid combination of page protection flags %#x, can't map to page state!\n", fPageProt));
585 return NEM_DARWIN_PAGE_STATE_UNMAPPED;
586}
587
588
589/**
590 * Maps a given guest physical address range backed by the given memory with the given
591 * protection flags.
592 *
593 * @returns VBox status code.
594 * @param pVM The cross context VM structure.
595 * @param GCPhys The guest physical address to start mapping.
596 * @param pvRam The R3 pointer of the memory to back the range with.
597 * @param cb The size of the range, page aligned.
598 * @param fPageProt The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
599 * @param pu2State Where to store the state for the new page, optional.
600 */
601DECLINLINE(int) nemR3DarwinMap(PVM pVM, RTGCPHYS GCPhys, const void *pvRam, size_t cb, uint32_t fPageProt, uint8_t *pu2State)
602{
603 LogFlowFunc(("Mapping %RGp LB %zu fProt=%#x\n", GCPhys, cb, fPageProt));
604
605 Assert(fPageProt != NEM_PAGE_PROT_NONE);
606
607 hv_memory_flags_t fHvMemProt = 0;
608 if (fPageProt & NEM_PAGE_PROT_READ)
609 fHvMemProt |= HV_MEMORY_READ;
610 if (fPageProt & NEM_PAGE_PROT_WRITE)
611 fHvMemProt |= HV_MEMORY_WRITE;
612 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
613 fHvMemProt |= HV_MEMORY_EXEC;
614
615 hv_return_t hrc;
616 if (pVM->nem.s.fCreatedAsid)
617 hrc = hv_vm_map_space(pVM->nem.s.uVmAsid, pvRam, GCPhys, cb, fHvMemProt);
618 else
619 hrc = hv_vm_map(pvRam, GCPhys, cb, fHvMemProt);
620 if (hrc == HV_SUCCESS)
621 {
622 if (pu2State)
623 *pu2State = nemR3DarwinPageStateFromProt(fPageProt);
624 return VINF_SUCCESS;
625 }
626
627 return nemR3DarwinHvSts2Rc(hrc);
628}
629
630
631/**
632 * Changes the protection flags for the given guest physical address range.
633 *
634 * @returns VBox status code.
635 * @param pVM The cross context VM structure.
636 * @param GCPhys The guest physical address to start mapping.
637 * @param cb The size of the range, page aligned.
638 * @param fPageProt The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
639 * @param pu2State Where to store the state for the new page, optional.
640 */
641DECLINLINE(int) nemR3DarwinProtect(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint32_t fPageProt, uint8_t *pu2State)
642{
643 hv_memory_flags_t fHvMemProt = 0;
644 if (fPageProt & NEM_PAGE_PROT_READ)
645 fHvMemProt |= HV_MEMORY_READ;
646 if (fPageProt & NEM_PAGE_PROT_WRITE)
647 fHvMemProt |= HV_MEMORY_WRITE;
648 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
649 fHvMemProt |= HV_MEMORY_EXEC;
650
651 hv_return_t hrc;
652 if (pVM->nem.s.fCreatedAsid)
653 hrc = hv_vm_protect_space(pVM->nem.s.uVmAsid, GCPhys, cb, fHvMemProt);
654 else
655 hrc = hv_vm_protect(GCPhys, cb, fHvMemProt);
656 if (hrc == HV_SUCCESS)
657 {
658 if (pu2State)
659 *pu2State = nemR3DarwinPageStateFromProt(fPageProt);
660 return VINF_SUCCESS;
661 }
662
663 return nemR3DarwinHvSts2Rc(hrc);
664}
665
666
667DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
668{
669 PGMPAGEMAPLOCK Lock;
670 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
671 if (RT_SUCCESS(rc))
672 PGMPhysReleasePageMappingLock(pVM, &Lock);
673 return rc;
674}
675
676
677DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
678{
679 PGMPAGEMAPLOCK Lock;
680 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
681 if (RT_SUCCESS(rc))
682 PGMPhysReleasePageMappingLock(pVM, &Lock);
683 return rc;
684}
685
686
687#ifdef LOG_ENABLED
688/**
689 * Logs the current CPU state.
690 */
691static void nemR3DarwinLogState(PVMCC pVM, PVMCPUCC pVCpu)
692{
693 if (LogIs3Enabled())
694 {
695#if 0
696 char szRegs[4096];
697 DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
698 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
699 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
700 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
701 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
702 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
703 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
704 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
705 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
706 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
707 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
708 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
709 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
710 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
711 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
712 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
713 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
714 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
715 " efer=%016VR{efer}\n"
716 " pat=%016VR{pat}\n"
717 " sf_mask=%016VR{sf_mask}\n"
718 "krnl_gs_base=%016VR{krnl_gs_base}\n"
719 " lstar=%016VR{lstar}\n"
720 " star=%016VR{star} cstar=%016VR{cstar}\n"
721 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
722 );
723
724 char szInstr[256];
725 DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
726 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
727 szInstr, sizeof(szInstr), NULL);
728 Log3(("%s%s\n", szRegs, szInstr));
729#else
730 RT_NOREF(pVM, pVCpu);
731#endif
732 }
733}
734#endif /* LOG_ENABLED */
735
736
737DECLINLINE(int) nemR3DarwinReadVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t *pData)
738{
739 uint64_t u64Data;
740 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
741 if (RT_LIKELY(hrc == HV_SUCCESS))
742 {
743 *pData = (uint16_t)u64Data;
744 return VINF_SUCCESS;
745 }
746
747 return nemR3DarwinHvSts2Rc(hrc);
748}
749
750
751DECLINLINE(int) nemR3DarwinReadVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t *pData)
752{
753 uint64_t u64Data;
754 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
755 if (RT_LIKELY(hrc == HV_SUCCESS))
756 {
757 *pData = (uint32_t)u64Data;
758 return VINF_SUCCESS;
759 }
760
761 return nemR3DarwinHvSts2Rc(hrc);
762}
763
764
765DECLINLINE(int) nemR3DarwinReadVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t *pData)
766{
767 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, pData);
768 if (RT_LIKELY(hrc == HV_SUCCESS))
769 return VINF_SUCCESS;
770
771 return nemR3DarwinHvSts2Rc(hrc);
772}
773
774
775DECLINLINE(int) nemR3DarwinWriteVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t u16Val)
776{
777 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u16Val);
778 if (RT_LIKELY(hrc == HV_SUCCESS))
779 return VINF_SUCCESS;
780
781 return nemR3DarwinHvSts2Rc(hrc);
782}
783
784
785DECLINLINE(int) nemR3DarwinWriteVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t u32Val)
786{
787 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u32Val);
788 if (RT_LIKELY(hrc == HV_SUCCESS))
789 return VINF_SUCCESS;
790
791 return nemR3DarwinHvSts2Rc(hrc);
792}
793
794
795DECLINLINE(int) nemR3DarwinWriteVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t u64Val)
796{
797 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u64Val);
798 if (RT_LIKELY(hrc == HV_SUCCESS))
799 return VINF_SUCCESS;
800
801 return nemR3DarwinHvSts2Rc(hrc);
802}
803
804DECLINLINE(int) nemR3DarwinMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Val)
805{
806 hv_return_t hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, idMsr, pu64Val);
807 if (RT_LIKELY(hrc == HV_SUCCESS))
808 return VINF_SUCCESS;
809
810 return nemR3DarwinHvSts2Rc(hrc);
811}
812
813#if 0 /*unused*/
814DECLINLINE(int) nemR3DarwinMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Val)
815{
816 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, idMsr, u64Val);
817 if (RT_LIKELY(hrc == HV_SUCCESS))
818 return VINF_SUCCESS;
819
820 return nemR3DarwinHvSts2Rc(hrc);
821}
822#endif
823
824static int nemR3DarwinCopyStateFromHv(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat)
825{
826#define READ_GREG(a_GReg, a_Value) \
827 do \
828 { \
829 hrc = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, (a_GReg), &(a_Value)); \
830 if (RT_LIKELY(hrc == HV_SUCCESS)) \
831 { /* likely */ } \
832 else \
833 return VERR_INTERNAL_ERROR; \
834 } while(0)
835#define READ_VMCS_FIELD(a_Field, a_Value) \
836 do \
837 { \
838 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &(a_Value)); \
839 if (RT_LIKELY(hrc == HV_SUCCESS)) \
840 { /* likely */ } \
841 else \
842 return VERR_INTERNAL_ERROR; \
843 } while(0)
844#define READ_VMCS16_FIELD(a_Field, a_Value) \
845 do \
846 { \
847 uint64_t u64Data; \
848 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
849 if (RT_LIKELY(hrc == HV_SUCCESS)) \
850 { (a_Value) = (uint16_t)u64Data; } \
851 else \
852 return VERR_INTERNAL_ERROR; \
853 } while(0)
854#define READ_VMCS32_FIELD(a_Field, a_Value) \
855 do \
856 { \
857 uint64_t u64Data; \
858 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
859 if (RT_LIKELY(hrc == HV_SUCCESS)) \
860 { (a_Value) = (uint32_t)u64Data; } \
861 else \
862 return VERR_INTERNAL_ERROR; \
863 } while(0)
864#define READ_MSR(a_Msr, a_Value) \
865 do \
866 { \
867 hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, (a_Msr), &(a_Value)); \
868 if (RT_LIKELY(hrc == HV_SUCCESS)) \
869 { /* likely */ } \
870 else \
871 AssertFailedReturn(VERR_INTERNAL_ERROR); \
872 } while(0)
873
874 STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateImport, x);
875
876 RT_NOREF(pVM);
877 fWhat &= pVCpu->cpum.GstCtx.fExtrn;
878
879 if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
880 vmxHCImportGuestIntrState(pVCpu, &pVCpu->nem.s.VmcsInfo);
881
882 /* GPRs */
883 hv_return_t hrc;
884 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
885 {
886 if (fWhat & CPUMCTX_EXTRN_RAX)
887 READ_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
888 if (fWhat & CPUMCTX_EXTRN_RCX)
889 READ_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
890 if (fWhat & CPUMCTX_EXTRN_RDX)
891 READ_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
892 if (fWhat & CPUMCTX_EXTRN_RBX)
893 READ_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
894 if (fWhat & CPUMCTX_EXTRN_RSP)
895 READ_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
896 if (fWhat & CPUMCTX_EXTRN_RBP)
897 READ_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
898 if (fWhat & CPUMCTX_EXTRN_RSI)
899 READ_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
900 if (fWhat & CPUMCTX_EXTRN_RDI)
901 READ_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
902 if (fWhat & CPUMCTX_EXTRN_R8_R15)
903 {
904 READ_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
905 READ_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
906 READ_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
907 READ_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
908 READ_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
909 READ_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
910 READ_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
911 READ_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
912 }
913 }
914
915 /* RIP & Flags */
916 if (fWhat & CPUMCTX_EXTRN_RIP)
917 READ_GREG(HV_X86_RIP, pVCpu->cpum.GstCtx.rip);
918 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
919 {
920 uint64_t fRFlagsTmp = 0;
921 READ_GREG(HV_X86_RFLAGS, fRFlagsTmp);
922 pVCpu->cpum.GstCtx.rflags.u = fRFlagsTmp;
923 }
924
925 /* Segments */
926#define READ_SEG(a_SReg, a_enmName) \
927 do { \
928 READ_VMCS16_FIELD(VMX_VMCS16_GUEST_ ## a_enmName ## _SEL, (a_SReg).Sel); \
929 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _LIMIT, (a_SReg).u32Limit); \
930 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _ACCESS_RIGHTS, (a_SReg).Attr.u); \
931 READ_VMCS_FIELD(VMX_VMCS_GUEST_ ## a_enmName ## _BASE, (a_SReg).u64Base); \
932 (a_SReg).ValidSel = (a_SReg).Sel; \
933 } while (0)
934 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
935 {
936 if (fWhat & CPUMCTX_EXTRN_ES)
937 READ_SEG(pVCpu->cpum.GstCtx.es, ES);
938 if (fWhat & CPUMCTX_EXTRN_CS)
939 READ_SEG(pVCpu->cpum.GstCtx.cs, CS);
940 if (fWhat & CPUMCTX_EXTRN_SS)
941 READ_SEG(pVCpu->cpum.GstCtx.ss, SS);
942 if (fWhat & CPUMCTX_EXTRN_DS)
943 READ_SEG(pVCpu->cpum.GstCtx.ds, DS);
944 if (fWhat & CPUMCTX_EXTRN_FS)
945 READ_SEG(pVCpu->cpum.GstCtx.fs, FS);
946 if (fWhat & CPUMCTX_EXTRN_GS)
947 READ_SEG(pVCpu->cpum.GstCtx.gs, GS);
948 }
949
950 /* Descriptor tables and the task segment. */
951 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
952 {
953 if (fWhat & CPUMCTX_EXTRN_LDTR)
954 READ_SEG(pVCpu->cpum.GstCtx.ldtr, LDTR);
955
956 if (fWhat & CPUMCTX_EXTRN_TR)
957 {
958 /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
959 avoid to trigger sanity assertions around the code, always fix this. */
960 READ_SEG(pVCpu->cpum.GstCtx.tr, TR);
961 switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
962 {
963 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
964 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
965 break;
966 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
967 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
968 break;
969 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
970 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
971 break;
972 }
973 }
974 if (fWhat & CPUMCTX_EXTRN_IDTR)
975 {
976 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_IDTR_LIMIT, pVCpu->cpum.GstCtx.idtr.cbIdt);
977 READ_VMCS_FIELD(VMX_VMCS_GUEST_IDTR_BASE, pVCpu->cpum.GstCtx.idtr.pIdt);
978 }
979 if (fWhat & CPUMCTX_EXTRN_GDTR)
980 {
981 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_GDTR_LIMIT, pVCpu->cpum.GstCtx.gdtr.cbGdt);
982 READ_VMCS_FIELD(VMX_VMCS_GUEST_GDTR_BASE, pVCpu->cpum.GstCtx.gdtr.pGdt);
983 }
984 }
985
986 /* Control registers. */
987 bool fMaybeChangedMode = false;
988 bool fUpdateCr3 = false;
989 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
990 {
991 uint64_t u64CrTmp = 0;
992
993 if (fWhat & CPUMCTX_EXTRN_CR0)
994 {
995 READ_GREG(HV_X86_CR0, u64CrTmp);
996 if (pVCpu->cpum.GstCtx.cr0 != u64CrTmp)
997 {
998 CPUMSetGuestCR0(pVCpu, u64CrTmp);
999 fMaybeChangedMode = true;
1000 }
1001 }
1002 if (fWhat & CPUMCTX_EXTRN_CR2)
1003 READ_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
1004 if (fWhat & CPUMCTX_EXTRN_CR3)
1005 {
1006 READ_GREG(HV_X86_CR3, u64CrTmp);
1007 if (pVCpu->cpum.GstCtx.cr3 != u64CrTmp)
1008 {
1009 CPUMSetGuestCR3(pVCpu, u64CrTmp);
1010 fUpdateCr3 = true;
1011 }
1012
1013 /*
1014 * If the guest is in PAE mode, sync back the PDPE's into the guest state.
1015 * CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date.
1016 */
1017 if (CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx))
1018 {
1019 X86PDPE aPaePdpes[4];
1020 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE0_FULL, aPaePdpes[0].u);
1021 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE1_FULL, aPaePdpes[1].u);
1022 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE2_FULL, aPaePdpes[2].u);
1023 READ_VMCS_FIELD(VMX_VMCS64_GUEST_PDPTE3_FULL, aPaePdpes[3].u);
1024 if (memcmp(&aPaePdpes[0], &pVCpu->cpum.GstCtx.aPaePdpes[0], sizeof(aPaePdpes)))
1025 {
1026 memcpy(&pVCpu->cpum.GstCtx.aPaePdpes[0], &aPaePdpes[0], sizeof(aPaePdpes));
1027 fUpdateCr3 = true;
1028 }
1029 }
1030 }
1031 if (fWhat & CPUMCTX_EXTRN_CR4)
1032 {
1033 READ_GREG(HV_X86_CR4, u64CrTmp);
1034 u64CrTmp &= ~VMX_V_CR4_FIXED0;
1035
1036 if (pVCpu->cpum.GstCtx.cr4 != u64CrTmp)
1037 {
1038 CPUMSetGuestCR4(pVCpu, u64CrTmp);
1039 fMaybeChangedMode = true;
1040 }
1041 }
1042 }
1043
1044#if 0 /* Always done. */
1045 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1046 {
1047 uint64_t u64Cr8 = 0;
1048
1049 READ_GREG(HV_X86_TPR, u64Cr8);
1050 APICSetTpr(pVCpu, u64Cr8 << 4);
1051 }
1052#endif
1053
1054 if (fWhat & CPUMCTX_EXTRN_XCRx)
1055 READ_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
1056
1057 /* Debug registers. */
1058 if (fWhat & CPUMCTX_EXTRN_DR7)
1059 {
1060 uint64_t u64Dr7;
1061 READ_GREG(HV_X86_DR7, u64Dr7);
1062 if (pVCpu->cpum.GstCtx.dr[7] != u64Dr7)
1063 CPUMSetGuestDR7(pVCpu, u64Dr7);
1064 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
1065 }
1066 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1067 {
1068 uint64_t u64DrTmp;
1069
1070 READ_GREG(HV_X86_DR0, u64DrTmp);
1071 if (pVCpu->cpum.GstCtx.dr[0] != u64DrTmp)
1072 CPUMSetGuestDR0(pVCpu, u64DrTmp);
1073 READ_GREG(HV_X86_DR1, u64DrTmp);
1074 if (pVCpu->cpum.GstCtx.dr[1] != u64DrTmp)
1075 CPUMSetGuestDR1(pVCpu, u64DrTmp);
1076 READ_GREG(HV_X86_DR2, u64DrTmp);
1077 if (pVCpu->cpum.GstCtx.dr[2] != u64DrTmp)
1078 CPUMSetGuestDR2(pVCpu, u64DrTmp);
1079 READ_GREG(HV_X86_DR3, u64DrTmp);
1080 if (pVCpu->cpum.GstCtx.dr[3] != u64DrTmp)
1081 CPUMSetGuestDR3(pVCpu, u64DrTmp);
1082 }
1083 if (fWhat & CPUMCTX_EXTRN_DR6)
1084 {
1085 uint64_t u64Dr6;
1086 READ_GREG(HV_X86_DR6, u64Dr6);
1087 if (pVCpu->cpum.GstCtx.dr[6] != u64Dr6)
1088 CPUMSetGuestDR6(pVCpu, u64Dr6);
1089 }
1090
1091 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
1092 {
1093 hrc = hv_vcpu_read_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1094 if (hrc == HV_SUCCESS)
1095 { /* likely */ }
1096 else
1097 {
1098 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1099 return nemR3DarwinHvSts2Rc(hrc);
1100 }
1101 }
1102
1103 /* MSRs */
1104 if (fWhat & CPUMCTX_EXTRN_EFER)
1105 {
1106 uint64_t u64Efer;
1107
1108 READ_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, u64Efer);
1109 if (u64Efer != pVCpu->cpum.GstCtx.msrEFER)
1110 {
1111 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, u64Efer));
1112 if ((u64Efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
1113 PGMNotifyNxeChanged(pVCpu, RT_BOOL(u64Efer & MSR_K6_EFER_NXE));
1114 pVCpu->cpum.GstCtx.msrEFER = u64Efer;
1115 fMaybeChangedMode = true;
1116 }
1117 }
1118
1119 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1120 READ_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1121 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1122 {
1123 uint64_t u64Tmp;
1124 READ_MSR(MSR_IA32_SYSENTER_EIP, u64Tmp);
1125 pVCpu->cpum.GstCtx.SysEnter.eip = u64Tmp;
1126 READ_MSR(MSR_IA32_SYSENTER_ESP, u64Tmp);
1127 pVCpu->cpum.GstCtx.SysEnter.esp = u64Tmp;
1128 READ_MSR(MSR_IA32_SYSENTER_CS, u64Tmp);
1129 pVCpu->cpum.GstCtx.SysEnter.cs = u64Tmp;
1130 }
1131 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1132 {
1133 READ_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1134 READ_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1135 READ_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1136 READ_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1137 }
1138 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
1139 {
1140 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1141 READ_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1142 }
1143 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1144 {
1145 /* Last Branch Record. */
1146 if (pVM->nem.s.fLbr)
1147 {
1148 PVMXVMCSINFOSHARED const pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
1149 uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
1150 uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
1151 uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
1152 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
1153 Assert(cLbrStack <= 32);
1154 for (uint32_t i = 0; i < cLbrStack; i++)
1155 {
1156 READ_MSR(idFromIpMsrStart + i, pVmcsInfoShared->au64LbrFromIpMsr[i]);
1157
1158 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
1159 if (idToIpMsrStart != 0)
1160 READ_MSR(idToIpMsrStart + i, pVmcsInfoShared->au64LbrToIpMsr[i]);
1161 if (idInfoMsrStart != 0)
1162 READ_MSR(idInfoMsrStart + i, pVmcsInfoShared->au64LbrInfoMsr[i]);
1163 }
1164
1165 READ_MSR(pVM->nem.s.idLbrTosMsr, pVmcsInfoShared->u64LbrTosMsr);
1166
1167 if (pVM->nem.s.idLerFromIpMsr)
1168 READ_MSR(pVM->nem.s.idLerFromIpMsr, pVmcsInfoShared->u64LerFromIpMsr);
1169 if (pVM->nem.s.idLerToIpMsr)
1170 READ_MSR(pVM->nem.s.idLerToIpMsr, pVmcsInfoShared->u64LerToIpMsr);
1171 }
1172 }
1173
1174 /* Almost done, just update extrn flags and maybe change PGM mode. */
1175 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
1176 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
1177 pVCpu->cpum.GstCtx.fExtrn = 0;
1178
1179#ifdef LOG_ENABLED
1180 nemR3DarwinLogState(pVM, pVCpu);
1181#endif
1182
1183 /* Typical. */
1184 if (!fMaybeChangedMode && !fUpdateCr3)
1185 {
1186 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1187 return VINF_SUCCESS;
1188 }
1189
1190 /*
1191 * Slow.
1192 */
1193 if (fMaybeChangedMode)
1194 {
1195 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
1196 false /* fForce */);
1197 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
1198 }
1199
1200 if (fUpdateCr3)
1201 {
1202 int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3);
1203 if (rc == VINF_SUCCESS)
1204 { /* likely */ }
1205 else
1206 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
1207 }
1208
1209 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1210
1211 return VINF_SUCCESS;
1212#undef READ_GREG
1213#undef READ_VMCS_FIELD
1214#undef READ_VMCS32_FIELD
1215#undef READ_SEG
1216#undef READ_MSR
1217}
1218
1219
1220/**
1221 * State to pass between vmxHCExitEptViolation
1222 * and nemR3DarwinHandleMemoryAccessPageCheckerCallback.
1223 */
1224typedef struct NEMHCDARWINHMACPCCSTATE
1225{
1226 /** Input: Write access. */
1227 bool fWriteAccess;
1228 /** Output: Set if we did something. */
1229 bool fDidSomething;
1230 /** Output: Set it we should resume. */
1231 bool fCanResume;
1232} NEMHCDARWINHMACPCCSTATE;
1233
1234/**
1235 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
1236 * Worker for vmxHCExitEptViolation; pvUser points to a
1237 * NEMHCDARWINHMACPCCSTATE structure. }
1238 */
1239static DECLCALLBACK(int)
1240nemR3DarwinHandleMemoryAccessPageCheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
1241{
1242 RT_NOREF(pVCpu);
1243
1244 NEMHCDARWINHMACPCCSTATE *pState = (NEMHCDARWINHMACPCCSTATE *)pvUser;
1245 pState->fDidSomething = false;
1246 pState->fCanResume = false;
1247
1248 uint8_t u2State = pInfo->u2NemState;
1249
1250 /*
1251 * Consolidate current page state with actual page protection and access type.
1252 * We don't really consider downgrades here, as they shouldn't happen.
1253 */
1254 switch (u2State)
1255 {
1256 case NEM_DARWIN_PAGE_STATE_UNMAPPED:
1257 {
1258 if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
1259 {
1260 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
1261 return VINF_SUCCESS;
1262 }
1263
1264 /* Don't bother remapping it if it's a write request to a non-writable page. */
1265 if ( pState->fWriteAccess
1266 && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
1267 {
1268 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
1269 return VINF_SUCCESS;
1270 }
1271
1272 int rc = VINF_SUCCESS;
1273 if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1274 {
1275 void *pvPage;
1276 rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhys, &pvPage);
1277 if (RT_SUCCESS(rc))
1278 rc = nemR3DarwinMap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, pvPage, X86_PAGE_SIZE, pInfo->fNemProt, &u2State);
1279 }
1280 else if (pInfo->fNemProt & NEM_PAGE_PROT_READ)
1281 {
1282 const void *pvPage;
1283 rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhys, &pvPage);
1284 if (RT_SUCCESS(rc))
1285 rc = nemR3DarwinMap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, pvPage, X86_PAGE_SIZE, pInfo->fNemProt, &u2State);
1286 }
1287 else /* Only EXECUTE doesn't work. */
1288 AssertReleaseFailed();
1289
1290 pInfo->u2NemState = u2State;
1291 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
1292 GCPhys, g_apszPageStates[u2State], rc));
1293 pState->fDidSomething = true;
1294 pState->fCanResume = true;
1295 return rc;
1296 }
1297 case NEM_DARWIN_PAGE_STATE_RX:
1298 if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1299 && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
1300 {
1301 pState->fCanResume = true;
1302 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
1303 return VINF_SUCCESS;
1304 }
1305 break;
1306
1307 case NEM_DARWIN_PAGE_STATE_RW:
1308 case NEM_DARWIN_PAGE_STATE_RWX:
1309 if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1310 {
1311 pState->fCanResume = true;
1312 if ( pInfo->u2OldNemState == NEM_DARWIN_PAGE_STATE_RW
1313 || pInfo->u2OldNemState == NEM_DARWIN_PAGE_STATE_RWX)
1314 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: Spurious EPT fault\n", GCPhys));
1315 return VINF_SUCCESS;
1316 }
1317 break;
1318
1319 default:
1320 AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
1321 }
1322
1323 /* Unmap and restart the instruction. */
1324 int rc = nemR3DarwinUnmap(pVM, GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE, &u2State);
1325 if (RT_SUCCESS(rc))
1326 {
1327 pInfo->u2NemState = u2State;
1328 pState->fDidSomething = true;
1329 pState->fCanResume = true;
1330 Log5(("NEM GPA unmapped/exit: %RGp (was %s)\n", GCPhys, g_apszPageStates[u2State]));
1331 return VINF_SUCCESS;
1332 }
1333
1334 LogRel(("nemR3DarwinHandleMemoryAccessPageCheckerCallback/unmap: GCPhys=%RGp %s rc=%Rrc\n",
1335 GCPhys, g_apszPageStates[u2State], rc));
1336 return VERR_NEM_UNMAP_PAGES_FAILED;
1337}
1338
1339
1340DECL_FORCE_INLINE(bool) nemR3DarwinIsUnrestrictedGuest(PCVMCC pVM)
1341{
1342 RT_NOREF(pVM);
1343 return true;
1344}
1345
1346
1347DECL_FORCE_INLINE(bool) nemR3DarwinIsNestedPaging(PCVMCC pVM)
1348{
1349 RT_NOREF(pVM);
1350 return true;
1351}
1352
1353
1354DECL_FORCE_INLINE(bool) nemR3DarwinIsPreemptTimerUsed(PCVMCC pVM)
1355{
1356 RT_NOREF(pVM);
1357 return false;
1358}
1359
1360
1361#if 0 /* unused */
1362DECL_FORCE_INLINE(bool) nemR3DarwinIsVmxLbr(PCVMCC pVM)
1363{
1364 RT_NOREF(pVM);
1365 return false;
1366}
1367#endif
1368
1369
1370/*
1371 * Instantiate the code we share with ring-0.
1372 */
1373#define IN_NEM_DARWIN
1374//#define HMVMX_ALWAYS_TRAP_ALL_XCPTS
1375//#define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
1376//#define HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
1377#define VCPU_2_VMXSTATE(a_pVCpu) (a_pVCpu)->nem.s
1378#define VCPU_2_VMXSTATS(a_pVCpu) (*(a_pVCpu)->nem.s.pVmxStats)
1379
1380#define VM_IS_VMX_UNRESTRICTED_GUEST(a_pVM) nemR3DarwinIsUnrestrictedGuest((a_pVM))
1381#define VM_IS_VMX_NESTED_PAGING(a_pVM) nemR3DarwinIsNestedPaging((a_pVM))
1382#define VM_IS_VMX_PREEMPT_TIMER_USED(a_pVM) nemR3DarwinIsPreemptTimerUsed((a_pVM))
1383#define VM_IS_VMX_LBR(a_pVM) nemR3DarwinIsVmxLbr((a_pVM))
1384
1385#define VMX_VMCS_WRITE_16(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs16((a_pVCpu), (a_FieldEnc), (a_Val))
1386#define VMX_VMCS_WRITE_32(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs32((a_pVCpu), (a_FieldEnc), (a_Val))
1387#define VMX_VMCS_WRITE_64(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1388#define VMX_VMCS_WRITE_NW(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1389
1390#define VMX_VMCS_READ_16(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs16((a_pVCpu), (a_FieldEnc), (a_pVal))
1391#define VMX_VMCS_READ_32(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs32((a_pVCpu), (a_FieldEnc), (a_pVal))
1392#define VMX_VMCS_READ_64(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1393#define VMX_VMCS_READ_NW(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1394
1395#include "../VMMAll/VMXAllTemplate.cpp.h"
1396
1397#undef VMX_VMCS_WRITE_16
1398#undef VMX_VMCS_WRITE_32
1399#undef VMX_VMCS_WRITE_64
1400#undef VMX_VMCS_WRITE_NW
1401
1402#undef VMX_VMCS_READ_16
1403#undef VMX_VMCS_READ_32
1404#undef VMX_VMCS_READ_64
1405#undef VMX_VMCS_READ_NW
1406
1407#undef VM_IS_VMX_PREEMPT_TIMER_USED
1408#undef VM_IS_VMX_NESTED_PAGING
1409#undef VM_IS_VMX_UNRESTRICTED_GUEST
1410#undef VCPU_2_VMXSTATS
1411#undef VCPU_2_VMXSTATE
1412
1413
1414/**
1415 * Exports the guest GP registers to HV for execution.
1416 *
1417 * @returns VBox status code.
1418 * @param pVCpu The cross context virtual CPU structure of the
1419 * calling EMT.
1420 */
1421static int nemR3DarwinExportGuestGprs(PVMCPUCC pVCpu)
1422{
1423#define WRITE_GREG(a_GReg, a_Value) \
1424 do \
1425 { \
1426 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1427 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1428 { /* likely */ } \
1429 else \
1430 return VERR_INTERNAL_ERROR; \
1431 } while(0)
1432
1433 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->nem.s.fCtxChanged);
1434 if (fCtxChanged & HM_CHANGED_GUEST_GPRS_MASK)
1435 {
1436 if (fCtxChanged & HM_CHANGED_GUEST_RAX)
1437 WRITE_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
1438 if (fCtxChanged & HM_CHANGED_GUEST_RCX)
1439 WRITE_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
1440 if (fCtxChanged & HM_CHANGED_GUEST_RDX)
1441 WRITE_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
1442 if (fCtxChanged & HM_CHANGED_GUEST_RBX)
1443 WRITE_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
1444 if (fCtxChanged & HM_CHANGED_GUEST_RSP)
1445 WRITE_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
1446 if (fCtxChanged & HM_CHANGED_GUEST_RBP)
1447 WRITE_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
1448 if (fCtxChanged & HM_CHANGED_GUEST_RSI)
1449 WRITE_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
1450 if (fCtxChanged & HM_CHANGED_GUEST_RDI)
1451 WRITE_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
1452 if (fCtxChanged & HM_CHANGED_GUEST_R8_R15)
1453 {
1454 WRITE_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
1455 WRITE_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
1456 WRITE_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
1457 WRITE_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
1458 WRITE_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
1459 WRITE_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
1460 WRITE_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
1461 WRITE_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
1462 }
1463
1464 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_GPRS_MASK);
1465 }
1466
1467 if (fCtxChanged & HM_CHANGED_GUEST_CR2)
1468 {
1469 WRITE_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
1470 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_CR2);
1471 }
1472
1473 return VINF_SUCCESS;
1474#undef WRITE_GREG
1475}
1476
1477
1478/**
1479 * Exports the guest debug registers into the guest-state applying any hypervisor
1480 * debug related states (hardware breakpoints from the debugger, etc.).
1481 *
1482 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
1483 *
1484 * @returns VBox status code.
1485 * @param pVCpu The cross context virtual CPU structure.
1486 * @param pVmxTransient The VMX-transient structure.
1487 */
1488static int nemR3DarwinExportDebugState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
1489{
1490 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1491
1492#ifdef VBOX_STRICT
1493 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
1494 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
1495 {
1496 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
1497 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
1498 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
1499 }
1500#endif
1501
1502 bool fSteppingDB = false;
1503 bool fInterceptMovDRx = false;
1504 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
1505 if (pVCpu->nem.s.fSingleInstruction)
1506 {
1507 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
1508 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
1509 {
1510 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
1511 Assert(fSteppingDB == false);
1512 }
1513 else
1514 {
1515 pVCpu->cpum.GstCtx.eflags.u |= X86_EFL_TF;
1516 pVCpu->nem.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
1517 pVCpu->nem.s.fClearTrapFlag = true;
1518 fSteppingDB = true;
1519 }
1520 }
1521
1522 uint64_t u64GuestDr7;
1523 if ( fSteppingDB
1524 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1525 {
1526 /*
1527 * Use the combined guest and host DRx values found in the hypervisor register set
1528 * because the hypervisor debugger has breakpoints active or someone is single stepping
1529 * on the host side without a monitor trap flag.
1530 *
1531 * Note! DBGF expects a clean DR6 state before executing guest code.
1532 */
1533 if (!CPUMIsHyperDebugStateActive(pVCpu))
1534 {
1535 /*
1536 * Make sure the hypervisor values are up to date.
1537 */
1538 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */);
1539
1540 CPUMR3NemActivateHyperDebugState(pVCpu);
1541
1542 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1543 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1544 }
1545
1546 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
1547 u64GuestDr7 = CPUMGetHyperDR7(pVCpu);
1548 pVCpu->nem.s.fUsingHyperDR7 = true;
1549 fInterceptMovDRx = true;
1550 }
1551 else
1552 {
1553 /*
1554 * If the guest has enabled debug registers, we need to load them prior to
1555 * executing guest code so they'll trigger at the right time.
1556 */
1557 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
1558 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
1559 {
1560 if (!CPUMIsGuestDebugStateActive(pVCpu))
1561 {
1562 CPUMR3NemActivateGuestDebugState(pVCpu);
1563
1564 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1565 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1566 }
1567 Assert(!fInterceptMovDRx);
1568 }
1569 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1570 {
1571 /*
1572 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
1573 * must intercept #DB in order to maintain a correct DR6 guest value, and
1574 * because we need to intercept it to prevent nested #DBs from hanging the
1575 * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
1576 */
1577 fInterceptMovDRx = true;
1578 }
1579
1580 /* Update DR7 with the actual guest value. */
1581 u64GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
1582 pVCpu->nem.s.fUsingHyperDR7 = false;
1583 }
1584
1585 /** @todo The DRx handling is not quite correct breaking debugging inside the guest with gdb,
1586 * see @ticketref{21413} and @ticketref{21546}, so this is disabled for now. See @bugref{10504}
1587 * as well.
1588 */
1589#if 0
1590 if (fInterceptMovDRx)
1591 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
1592 else
1593 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
1594#endif
1595
1596 /*
1597 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
1598 * monitor-trap flag and update our cache.
1599 */
1600 if (uProcCtls != pVmcsInfo->u32ProcCtls)
1601 {
1602 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
1603 AssertRC(rc);
1604 pVmcsInfo->u32ProcCtls = uProcCtls;
1605 }
1606
1607 /*
1608 * Update guest DR7.
1609 */
1610 int rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_GUEST_DR7, u64GuestDr7);
1611 AssertRC(rc);
1612
1613 /*
1614 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
1615 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
1616 *
1617 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
1618 */
1619 if (fSteppingDB)
1620 {
1621 Assert(pVCpu->nem.s.fSingleInstruction);
1622 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
1623
1624 uint32_t fIntrState = 0;
1625 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
1626 AssertRC(rc);
1627
1628 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
1629 {
1630 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
1631 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, fIntrState);
1632 AssertRC(rc);
1633 }
1634 }
1635
1636 /*
1637 * Store status of the shared guest/host debug state at the time of VM-entry.
1638 */
1639 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
1640 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
1641
1642 return VINF_SUCCESS;
1643}
1644
1645
1646/**
1647 * Converts the given CPUM externalized bitmask to the appropriate HM changed bitmask.
1648 *
1649 * @returns Bitmask of HM changed flags.
1650 * @param fCpumExtrn The CPUM extern bitmask.
1651 */
1652static uint64_t nemR3DarwinCpumExtrnToHmChanged(uint64_t fCpumExtrn)
1653{
1654 uint64_t fHmChanged = 0;
1655
1656 /* Invert to gt a mask of things which are kept in CPUM. */
1657 uint64_t fCpumIntern = ~fCpumExtrn;
1658
1659 if (fCpumIntern & CPUMCTX_EXTRN_GPRS_MASK)
1660 {
1661 if (fCpumIntern & CPUMCTX_EXTRN_RAX)
1662 fHmChanged |= HM_CHANGED_GUEST_RAX;
1663 if (fCpumIntern & CPUMCTX_EXTRN_RCX)
1664 fHmChanged |= HM_CHANGED_GUEST_RCX;
1665 if (fCpumIntern & CPUMCTX_EXTRN_RDX)
1666 fHmChanged |= HM_CHANGED_GUEST_RDX;
1667 if (fCpumIntern & CPUMCTX_EXTRN_RBX)
1668 fHmChanged |= HM_CHANGED_GUEST_RBX;
1669 if (fCpumIntern & CPUMCTX_EXTRN_RSP)
1670 fHmChanged |= HM_CHANGED_GUEST_RSP;
1671 if (fCpumIntern & CPUMCTX_EXTRN_RBP)
1672 fHmChanged |= HM_CHANGED_GUEST_RBP;
1673 if (fCpumIntern & CPUMCTX_EXTRN_RSI)
1674 fHmChanged |= HM_CHANGED_GUEST_RSI;
1675 if (fCpumIntern & CPUMCTX_EXTRN_RDI)
1676 fHmChanged |= HM_CHANGED_GUEST_RDI;
1677 if (fCpumIntern & CPUMCTX_EXTRN_R8_R15)
1678 fHmChanged |= HM_CHANGED_GUEST_R8_R15;
1679 }
1680
1681 /* RIP & Flags */
1682 if (fCpumIntern & CPUMCTX_EXTRN_RIP)
1683 fHmChanged |= HM_CHANGED_GUEST_RIP;
1684 if (fCpumIntern & CPUMCTX_EXTRN_RFLAGS)
1685 fHmChanged |= HM_CHANGED_GUEST_RFLAGS;
1686
1687 /* Segments */
1688 if (fCpumIntern & CPUMCTX_EXTRN_SREG_MASK)
1689 {
1690 if (fCpumIntern & CPUMCTX_EXTRN_ES)
1691 fHmChanged |= HM_CHANGED_GUEST_ES;
1692 if (fCpumIntern & CPUMCTX_EXTRN_CS)
1693 fHmChanged |= HM_CHANGED_GUEST_CS;
1694 if (fCpumIntern & CPUMCTX_EXTRN_SS)
1695 fHmChanged |= HM_CHANGED_GUEST_SS;
1696 if (fCpumIntern & CPUMCTX_EXTRN_DS)
1697 fHmChanged |= HM_CHANGED_GUEST_DS;
1698 if (fCpumIntern & CPUMCTX_EXTRN_FS)
1699 fHmChanged |= HM_CHANGED_GUEST_FS;
1700 if (fCpumIntern & CPUMCTX_EXTRN_GS)
1701 fHmChanged |= HM_CHANGED_GUEST_GS;
1702 }
1703
1704 /* Descriptor tables & task segment. */
1705 if (fCpumIntern & CPUMCTX_EXTRN_TABLE_MASK)
1706 {
1707 if (fCpumIntern & CPUMCTX_EXTRN_LDTR)
1708 fHmChanged |= HM_CHANGED_GUEST_LDTR;
1709 if (fCpumIntern & CPUMCTX_EXTRN_TR)
1710 fHmChanged |= HM_CHANGED_GUEST_TR;
1711 if (fCpumIntern & CPUMCTX_EXTRN_IDTR)
1712 fHmChanged |= HM_CHANGED_GUEST_IDTR;
1713 if (fCpumIntern & CPUMCTX_EXTRN_GDTR)
1714 fHmChanged |= HM_CHANGED_GUEST_GDTR;
1715 }
1716
1717 /* Control registers. */
1718 if (fCpumIntern & CPUMCTX_EXTRN_CR_MASK)
1719 {
1720 if (fCpumIntern & CPUMCTX_EXTRN_CR0)
1721 fHmChanged |= HM_CHANGED_GUEST_CR0;
1722 if (fCpumIntern & CPUMCTX_EXTRN_CR2)
1723 fHmChanged |= HM_CHANGED_GUEST_CR2;
1724 if (fCpumIntern & CPUMCTX_EXTRN_CR3)
1725 fHmChanged |= HM_CHANGED_GUEST_CR3;
1726 if (fCpumIntern & CPUMCTX_EXTRN_CR4)
1727 fHmChanged |= HM_CHANGED_GUEST_CR4;
1728 }
1729 if (fCpumIntern & CPUMCTX_EXTRN_APIC_TPR)
1730 fHmChanged |= HM_CHANGED_GUEST_APIC_TPR;
1731
1732 /* Debug registers. */
1733 if (fCpumIntern & CPUMCTX_EXTRN_DR0_DR3)
1734 fHmChanged |= HM_CHANGED_GUEST_DR0_DR3;
1735 if (fCpumIntern & CPUMCTX_EXTRN_DR6)
1736 fHmChanged |= HM_CHANGED_GUEST_DR6;
1737 if (fCpumIntern & CPUMCTX_EXTRN_DR7)
1738 fHmChanged |= HM_CHANGED_GUEST_DR7;
1739
1740 /* Floating point state. */
1741 if (fCpumIntern & CPUMCTX_EXTRN_X87)
1742 fHmChanged |= HM_CHANGED_GUEST_X87;
1743 if (fCpumIntern & CPUMCTX_EXTRN_SSE_AVX)
1744 fHmChanged |= HM_CHANGED_GUEST_SSE_AVX;
1745 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_XSAVE)
1746 fHmChanged |= HM_CHANGED_GUEST_OTHER_XSAVE;
1747 if (fCpumIntern & CPUMCTX_EXTRN_XCRx)
1748 fHmChanged |= HM_CHANGED_GUEST_XCRx;
1749
1750 /* MSRs */
1751 if (fCpumIntern & CPUMCTX_EXTRN_EFER)
1752 fHmChanged |= HM_CHANGED_GUEST_EFER_MSR;
1753 if (fCpumIntern & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1754 fHmChanged |= HM_CHANGED_GUEST_KERNEL_GS_BASE;
1755 if (fCpumIntern & CPUMCTX_EXTRN_SYSENTER_MSRS)
1756 fHmChanged |= HM_CHANGED_GUEST_SYSENTER_MSR_MASK;
1757 if (fCpumIntern & CPUMCTX_EXTRN_SYSCALL_MSRS)
1758 fHmChanged |= HM_CHANGED_GUEST_SYSCALL_MSRS;
1759 if (fCpumIntern & CPUMCTX_EXTRN_TSC_AUX)
1760 fHmChanged |= HM_CHANGED_GUEST_TSC_AUX;
1761 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_MSRS)
1762 fHmChanged |= HM_CHANGED_GUEST_OTHER_MSRS;
1763
1764 return fHmChanged;
1765}
1766
1767
1768/**
1769 * Exports the guest state to HV for execution.
1770 *
1771 * @returns VBox status code.
1772 * @param pVM The cross context VM structure.
1773 * @param pVCpu The cross context virtual CPU structure of the
1774 * calling EMT.
1775 * @param pVmxTransient The transient VMX structure.
1776 */
1777static int nemR3DarwinExportGuestState(PVMCC pVM, PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
1778{
1779#define WRITE_GREG(a_GReg, a_Value) \
1780 do \
1781 { \
1782 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1783 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1784 { /* likely */ } \
1785 else \
1786 return VERR_INTERNAL_ERROR; \
1787 } while(0)
1788#define WRITE_VMCS_FIELD(a_Field, a_Value) \
1789 do \
1790 { \
1791 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), (a_Value)); \
1792 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1793 { /* likely */ } \
1794 else \
1795 return VERR_INTERNAL_ERROR; \
1796 } while(0)
1797#define WRITE_MSR(a_Msr, a_Value) \
1798 do \
1799 { \
1800 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, (a_Msr), (a_Value)); \
1801 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1802 { /* likely */ } \
1803 else \
1804 AssertFailedReturn(VERR_INTERNAL_ERROR); \
1805 } while(0)
1806
1807 RT_NOREF(pVM);
1808
1809#ifdef LOG_ENABLED
1810 nemR3DarwinLogState(pVM, pVCpu);
1811#endif
1812
1813 STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateExport, x);
1814
1815 uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL;
1816 if (!fWhat)
1817 return VINF_SUCCESS;
1818
1819 pVCpu->nem.s.fCtxChanged |= nemR3DarwinCpumExtrnToHmChanged(pVCpu->cpum.GstCtx.fExtrn);
1820
1821 int rc = vmxHCExportGuestEntryExitCtls(pVCpu, pVmxTransient);
1822 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1823
1824 rc = nemR3DarwinExportGuestGprs(pVCpu);
1825 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1826
1827 rc = vmxHCExportGuestCR0(pVCpu, pVmxTransient);
1828 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1829
1830 VBOXSTRICTRC rcStrict = vmxHCExportGuestCR3AndCR4(pVCpu, pVmxTransient);
1831 if (rcStrict == VINF_SUCCESS)
1832 { /* likely */ }
1833 else
1834 {
1835 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
1836 return VBOXSTRICTRC_VAL(rcStrict);
1837 }
1838
1839 rc = nemR3DarwinExportDebugState(pVCpu, pVmxTransient);
1840 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1841
1842 vmxHCExportGuestXcptIntercepts(pVCpu, pVmxTransient);
1843 vmxHCExportGuestRip(pVCpu);
1844 //vmxHCExportGuestRsp(pVCpu);
1845 vmxHCExportGuestRflags(pVCpu, pVmxTransient);
1846
1847 rc = vmxHCExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
1848 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1849
1850 if (fWhat & CPUMCTX_EXTRN_XCRx)
1851 {
1852 WRITE_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
1853 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_XCRx);
1854 }
1855
1856 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1857 {
1858 Assert(pVCpu->nem.s.fCtxChanged & HM_CHANGED_GUEST_APIC_TPR);
1859 vmxHCExportGuestApicTpr(pVCpu, pVmxTransient);
1860
1861 rc = APICGetTpr(pVCpu, &pVmxTransient->u8GuestTpr, NULL /*pfPending*/, NULL /*pu8PendingIntr*/);
1862 AssertRC(rc);
1863
1864 WRITE_GREG(HV_X86_TPR, pVmxTransient->u8GuestTpr);
1865 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
1866 }
1867
1868 /* Debug registers. */
1869 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1870 {
1871 WRITE_GREG(HV_X86_DR0, CPUMGetHyperDR0(pVCpu));
1872 WRITE_GREG(HV_X86_DR1, CPUMGetHyperDR1(pVCpu));
1873 WRITE_GREG(HV_X86_DR2, CPUMGetHyperDR2(pVCpu));
1874 WRITE_GREG(HV_X86_DR3, CPUMGetHyperDR3(pVCpu));
1875 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR0_DR3);
1876 }
1877 if (fWhat & CPUMCTX_EXTRN_DR6)
1878 {
1879 WRITE_GREG(HV_X86_DR6, CPUMGetHyperDR6(pVCpu));
1880 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR6);
1881 }
1882 if (fWhat & CPUMCTX_EXTRN_DR7)
1883 {
1884 WRITE_GREG(HV_X86_DR7, CPUMGetHyperDR7(pVCpu));
1885 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR7);
1886 }
1887
1888 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1889 {
1890 hv_return_t hrc = hv_vcpu_write_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1891 if (hrc == HV_SUCCESS)
1892 { /* likely */ }
1893 else
1894 return nemR3DarwinHvSts2Rc(hrc);
1895
1896 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~(HM_CHANGED_GUEST_X87 | HM_CHANGED_GUEST_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE));
1897 }
1898
1899 /* MSRs */
1900 if (fWhat & CPUMCTX_EXTRN_EFER)
1901 {
1902 WRITE_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, pVCpu->cpum.GstCtx.msrEFER);
1903 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
1904 }
1905 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1906 {
1907 WRITE_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1908 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_KERNEL_GS_BASE);
1909 }
1910 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1911 {
1912 WRITE_MSR(MSR_IA32_SYSENTER_CS, pVCpu->cpum.GstCtx.SysEnter.cs);
1913 WRITE_MSR(MSR_IA32_SYSENTER_EIP, pVCpu->cpum.GstCtx.SysEnter.eip);
1914 WRITE_MSR(MSR_IA32_SYSENTER_ESP, pVCpu->cpum.GstCtx.SysEnter.esp);
1915 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
1916 }
1917 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1918 {
1919 WRITE_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1920 WRITE_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1921 WRITE_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1922 WRITE_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1923 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSCALL_MSRS);
1924 }
1925 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
1926 {
1927 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1928
1929 WRITE_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1930 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
1931 }
1932 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1933 {
1934 /* Last Branch Record. */
1935 if (pVM->nem.s.fLbr)
1936 {
1937 PVMXVMCSINFOSHARED const pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
1938 uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
1939 uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
1940 uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
1941 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
1942 Assert(cLbrStack <= 32);
1943 for (uint32_t i = 0; i < cLbrStack; i++)
1944 {
1945 WRITE_MSR(idFromIpMsrStart + i, pVmcsInfoShared->au64LbrFromIpMsr[i]);
1946
1947 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
1948 if (idToIpMsrStart != 0)
1949 WRITE_MSR(idToIpMsrStart + i, pVmcsInfoShared->au64LbrToIpMsr[i]);
1950 if (idInfoMsrStart != 0)
1951 WRITE_MSR(idInfoMsrStart + i, pVmcsInfoShared->au64LbrInfoMsr[i]);
1952 }
1953
1954 WRITE_MSR(pVM->nem.s.idLbrTosMsr, pVmcsInfoShared->u64LbrTosMsr);
1955 if (pVM->nem.s.idLerFromIpMsr)
1956 WRITE_MSR(pVM->nem.s.idLerFromIpMsr, pVmcsInfoShared->u64LerFromIpMsr);
1957 if (pVM->nem.s.idLerToIpMsr)
1958 WRITE_MSR(pVM->nem.s.idLerToIpMsr, pVmcsInfoShared->u64LerToIpMsr);
1959 }
1960
1961 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
1962 }
1963
1964 hv_vcpu_invalidate_tlb(pVCpu->nem.s.hVCpuId);
1965 hv_vcpu_flush(pVCpu->nem.s.hVCpuId);
1966
1967 pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_NEM;
1968
1969 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
1970 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~( HM_CHANGED_GUEST_HWVIRT
1971 | HM_CHANGED_VMX_GUEST_AUTO_MSRS
1972 | HM_CHANGED_VMX_GUEST_LAZY_MSRS
1973 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
1974
1975 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateExport, x);
1976 return VINF_SUCCESS;
1977#undef WRITE_GREG
1978#undef WRITE_VMCS_FIELD
1979}
1980
1981
1982/**
1983 * Common worker for both nemR3DarwinHandleExit() and nemR3DarwinHandleExitDebug().
1984 *
1985 * @returns VBox strict status code.
1986 * @param pVM The cross context VM structure.
1987 * @param pVCpu The cross context virtual CPU structure of the
1988 * calling EMT.
1989 * @param pVmxTransient The transient VMX structure.
1990 */
1991DECLINLINE(int) nemR3DarwinHandleExitCommon(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1992{
1993 uint32_t uExitReason;
1994 int rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
1995 AssertRC(rc);
1996 pVmxTransient->fVmcsFieldsRead = 0;
1997 pVmxTransient->fIsNestedGuest = false;
1998 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
1999 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
2000
2001 if (RT_UNLIKELY(pVmxTransient->fVMEntryFailed))
2002 AssertLogRelMsgFailedReturn(("Running guest failed for CPU #%u: %#x %u\n",
2003 pVCpu->idCpu, pVmxTransient->uExitReason, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
2004 VERR_NEM_IPE_0);
2005
2006 /** @todo Only copy the state on demand (the R0 VT-x code saves some stuff unconditionally and the VMX template assumes that
2007 * when handling exits). */
2008 /*
2009 * Note! What is being fetched here must match the default value for the
2010 * a_fDonePostExit parameter of vmxHCImportGuestState exactly!
2011 */
2012 rc = nemR3DarwinCopyStateFromHv(pVM, pVCpu, CPUMCTX_EXTRN_ALL);
2013 AssertRCReturn(rc, rc);
2014
2015 STAM_COUNTER_INC(&pVCpu->nem.s.pVmxStats->aStatExitReason[pVmxTransient->uExitReason & MASK_EXITREASON_STAT]);
2016 STAM_REL_COUNTER_INC(&pVCpu->nem.s.pVmxStats->StatExitAll);
2017 return VINF_SUCCESS;
2018}
2019
2020
2021/**
2022 * Handles an exit from hv_vcpu_run().
2023 *
2024 * @returns VBox strict status code.
2025 * @param pVM The cross context VM structure.
2026 * @param pVCpu The cross context virtual CPU structure of the
2027 * calling EMT.
2028 * @param pVmxTransient The transient VMX structure.
2029 */
2030static VBOXSTRICTRC nemR3DarwinHandleExit(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
2031{
2032 int rc = nemR3DarwinHandleExitCommon(pVM, pVCpu, pVmxTransient);
2033 AssertRCReturn(rc, rc);
2034
2035#ifndef HMVMX_USE_FUNCTION_TABLE
2036 return vmxHCHandleExit(pVCpu, pVmxTransient);
2037#else
2038 return g_aVMExitHandlers[pVmxTransient->uExitReason].pfn(pVCpu, pVmxTransient);
2039#endif
2040}
2041
2042
2043/**
2044 * Handles an exit from hv_vcpu_run() - debug runloop variant.
2045 *
2046 * @returns VBox strict status code.
2047 * @param pVM The cross context VM structure.
2048 * @param pVCpu The cross context virtual CPU structure of the
2049 * calling EMT.
2050 * @param pVmxTransient The transient VMX structure.
2051 * @param pDbgState The debug state structure.
2052 */
2053static VBOXSTRICTRC nemR3DarwinHandleExitDebug(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
2054{
2055 int rc = nemR3DarwinHandleExitCommon(pVM, pVCpu, pVmxTransient);
2056 AssertRCReturn(rc, rc);
2057
2058 return vmxHCRunDebugHandleExit(pVCpu, pVmxTransient, pDbgState);
2059}
2060
2061
2062/**
2063 * Worker for nemR3NativeInit that loads the Hypervisor.framework shared library.
2064 *
2065 * @returns VBox status code.
2066 * @param fForced Whether the HMForced flag is set and we should
2067 * fail if we cannot initialize.
2068 * @param pErrInfo Where to always return error info.
2069 */
2070static int nemR3DarwinLoadHv(bool fForced, PRTERRINFO pErrInfo)
2071{
2072 RTLDRMOD hMod = NIL_RTLDRMOD;
2073 static const char *s_pszHvPath = "/System/Library/Frameworks/Hypervisor.framework/Hypervisor";
2074
2075 int rc = RTLdrLoadEx(s_pszHvPath, &hMod, RTLDRLOAD_FLAGS_NO_UNLOAD | RTLDRLOAD_FLAGS_NO_SUFFIX, pErrInfo);
2076 if (RT_SUCCESS(rc))
2077 {
2078 for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
2079 {
2080 int rc2 = RTLdrGetSymbol(hMod, g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
2081 if (RT_SUCCESS(rc2))
2082 {
2083 if (g_aImports[i].fOptional)
2084 LogRel(("NEM: info: Found optional import Hypervisor!%s.\n",
2085 g_aImports[i].pszName));
2086 }
2087 else
2088 {
2089 *g_aImports[i].ppfn = NULL;
2090
2091 LogRel(("NEM: %s: Failed to import Hypervisor!%s: %Rrc\n",
2092 g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
2093 g_aImports[i].pszName, rc2));
2094 if (!g_aImports[i].fOptional)
2095 {
2096 if (RTErrInfoIsSet(pErrInfo))
2097 RTErrInfoAddF(pErrInfo, rc2, ", Hypervisor!%s", g_aImports[i].pszName);
2098 else
2099 rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: Hypervisor!%s", g_aImports[i].pszName);
2100 Assert(RT_FAILURE(rc));
2101 }
2102 }
2103 }
2104 if (RT_SUCCESS(rc))
2105 {
2106 Assert(!RTErrInfoIsSet(pErrInfo));
2107 }
2108
2109 RTLdrClose(hMod);
2110 }
2111 else
2112 {
2113 RTErrInfoAddF(pErrInfo, rc, "Failed to load Hypervisor.framwork: %s: %Rrc", s_pszHvPath, rc);
2114 rc = VERR_NEM_INIT_FAILED;
2115 }
2116
2117 return rc;
2118}
2119
2120
2121/**
2122 * Read and initialize the global capabilities supported by this CPU.
2123 *
2124 * @returns VBox status code.
2125 */
2126static int nemR3DarwinCapsInit(void)
2127{
2128 RT_ZERO(g_HmMsrs);
2129
2130 hv_return_t hrc = hv_vmx_read_capability(HV_VMX_CAP_PINBASED, &g_HmMsrs.u.vmx.PinCtls.u);
2131 if (hrc == HV_SUCCESS)
2132 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED, &g_HmMsrs.u.vmx.ProcCtls.u);
2133 if (hrc == HV_SUCCESS)
2134 hrc = hv_vmx_read_capability(HV_VMX_CAP_ENTRY, &g_HmMsrs.u.vmx.EntryCtls.u);
2135 if (hrc == HV_SUCCESS)
2136 hrc = hv_vmx_read_capability(HV_VMX_CAP_EXIT, &g_HmMsrs.u.vmx.ExitCtls.u);
2137 if (hrc == HV_SUCCESS)
2138 {
2139 hrc = hv_vmx_read_capability(HV_VMX_CAP_BASIC, &g_HmMsrs.u.vmx.u64Basic);
2140 if (hrc == HV_SUCCESS)
2141 {
2142 if (hrc == HV_SUCCESS)
2143 hrc = hv_vmx_read_capability(HV_VMX_CAP_MISC, &g_HmMsrs.u.vmx.u64Misc);
2144 if (hrc == HV_SUCCESS)
2145 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED0, &g_HmMsrs.u.vmx.u64Cr0Fixed0);
2146 if (hrc == HV_SUCCESS)
2147 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED1, &g_HmMsrs.u.vmx.u64Cr0Fixed1);
2148 if (hrc == HV_SUCCESS)
2149 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED0, &g_HmMsrs.u.vmx.u64Cr4Fixed0);
2150 if (hrc == HV_SUCCESS)
2151 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED1, &g_HmMsrs.u.vmx.u64Cr4Fixed1);
2152 if (hrc == HV_SUCCESS)
2153 hrc = hv_vmx_read_capability(HV_VMX_CAP_VMCS_ENUM, &g_HmMsrs.u.vmx.u64VmcsEnum);
2154 if ( hrc == HV_SUCCESS
2155 && RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
2156 {
2157 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PINBASED, &g_HmMsrs.u.vmx.TruePinCtls.u);
2158 if (hrc == HV_SUCCESS)
2159 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PROCBASED, &g_HmMsrs.u.vmx.TrueProcCtls.u);
2160 if (hrc == HV_SUCCESS)
2161 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_ENTRY, &g_HmMsrs.u.vmx.TrueEntryCtls.u);
2162 if (hrc == HV_SUCCESS)
2163 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_EXIT, &g_HmMsrs.u.vmx.TrueExitCtls.u);
2164 }
2165 }
2166 else
2167 {
2168 /* Likely running on anything < 11.0 (BigSur) so provide some sensible defaults. */
2169 g_HmMsrs.u.vmx.u64Cr0Fixed0 = 0x80000021;
2170 g_HmMsrs.u.vmx.u64Cr0Fixed1 = 0xffffffff;
2171 g_HmMsrs.u.vmx.u64Cr4Fixed0 = 0x2000;
2172 g_HmMsrs.u.vmx.u64Cr4Fixed1 = 0x1767ff;
2173 hrc = HV_SUCCESS;
2174 }
2175 }
2176
2177 if ( hrc == HV_SUCCESS
2178 && g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2179 {
2180 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2, &g_HmMsrs.u.vmx.ProcCtls2.u);
2181
2182 if ( hrc == HV_SUCCESS
2183 && g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & (VMX_PROC_CTLS2_EPT | VMX_PROC_CTLS2_VPID))
2184 {
2185 hrc = hv_vmx_read_capability(HV_VMX_CAP_EPT_VPID_CAP, &g_HmMsrs.u.vmx.u64EptVpidCaps);
2186 if (hrc != HV_SUCCESS)
2187 hrc = HV_SUCCESS; /* Probably just outdated OS. */
2188 }
2189
2190 g_HmMsrs.u.vmx.u64VmFunc = 0; /* No way to read that on macOS. */
2191 }
2192
2193 if (hrc == HV_SUCCESS)
2194 {
2195 /*
2196 * Check for EFER swapping support.
2197 */
2198 g_fHmVmxSupportsVmcsEfer = true; //(g_HmMsrs.u.vmx.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
2199 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2200 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR);
2201 }
2202
2203 /*
2204 * Get MSR_IA32_ARCH_CAPABILITIES and expand it into the host feature structure.
2205 * This is only available with 11.0+ (BigSur) as the required API is only available there,
2206 * we could in theory initialize this when creating the EMTs using hv_vcpu_read_msr() but
2207 * the required vCPU handle is created after CPUM was initialized which is too late.
2208 * Given that the majority of users is on 11.0 and later we don't care for now.
2209 */
2210 if ( hrc == HV_SUCCESS
2211 && hv_vmx_get_msr_info)
2212 {
2213 g_CpumHostFeatures.s.fArchRdclNo = 0;
2214 g_CpumHostFeatures.s.fArchIbrsAll = 0;
2215 g_CpumHostFeatures.s.fArchRsbOverride = 0;
2216 g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d = 0;
2217 g_CpumHostFeatures.s.fArchMdsNo = 0;
2218 uint32_t const cStdRange = ASMCpuId_EAX(0);
2219 if ( RTX86IsValidStdRange(cStdRange)
2220 && cStdRange >= 7)
2221 {
2222 uint32_t const fStdFeaturesEdx = ASMCpuId_EDX(1);
2223 uint32_t fStdExtFeaturesEdx;
2224 ASMCpuIdExSlow(7, 0, 0, 0, NULL, NULL, NULL, &fStdExtFeaturesEdx);
2225 if ( (fStdExtFeaturesEdx & X86_CPUID_STEXT_FEATURE_EDX_ARCHCAP)
2226 && (fStdFeaturesEdx & X86_CPUID_FEATURE_EDX_MSR))
2227 {
2228 uint64_t fArchVal;
2229 hrc = hv_vmx_get_msr_info(HV_VMX_INFO_MSR_IA32_ARCH_CAPABILITIES, &fArchVal);
2230 if (hrc == HV_SUCCESS)
2231 {
2232 g_CpumHostFeatures.s.fArchRdclNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RDCL_NO);
2233 g_CpumHostFeatures.s.fArchIbrsAll = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_IBRS_ALL);
2234 g_CpumHostFeatures.s.fArchRsbOverride = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_RSBO);
2235 g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_VMM_NEED_NOT_FLUSH_L1D);
2236 g_CpumHostFeatures.s.fArchMdsNo = RT_BOOL(fArchVal & MSR_IA32_ARCH_CAP_F_MDS_NO);
2237 }
2238 }
2239 else
2240 g_CpumHostFeatures.s.fArchCap = 0;
2241 }
2242 }
2243
2244 return nemR3DarwinHvSts2Rc(hrc);
2245}
2246
2247
2248/**
2249 * Sets up the LBR MSR ranges based on the host CPU.
2250 *
2251 * @returns VBox status code.
2252 * @param pVM The cross context VM structure.
2253 *
2254 * @sa hmR0VmxSetupLbrMsrRange
2255 */
2256static int nemR3DarwinSetupLbrMsrRange(PVMCC pVM)
2257{
2258 Assert(pVM->nem.s.fLbr);
2259 uint32_t idLbrFromIpMsrFirst;
2260 uint32_t idLbrFromIpMsrLast;
2261 uint32_t idLbrToIpMsrFirst;
2262 uint32_t idLbrToIpMsrLast;
2263 uint32_t idLbrInfoMsrFirst;
2264 uint32_t idLbrInfoMsrLast;
2265 uint32_t idLbrTosMsr;
2266 uint32_t idLbrSelectMsr;
2267 uint32_t idLerFromIpMsr;
2268 uint32_t idLerToIpMsr;
2269
2270 /*
2271 * Determine the LBR MSRs supported for this host CPU family and model.
2272 *
2273 * See Intel spec. 17.4.8 "LBR Stack".
2274 * See Intel "Model-Specific Registers" spec.
2275 */
2276 uint32_t const uFamilyModel = (g_CpumHostFeatures.s.uFamily << 8)
2277 | g_CpumHostFeatures.s.uModel;
2278 switch (uFamilyModel)
2279 {
2280 case 0x0f01: case 0x0f02:
2281 idLbrFromIpMsrFirst = MSR_P4_LASTBRANCH_0;
2282 idLbrFromIpMsrLast = MSR_P4_LASTBRANCH_3;
2283 idLbrToIpMsrFirst = 0x0;
2284 idLbrToIpMsrLast = 0x0;
2285 idLbrInfoMsrFirst = 0x0;
2286 idLbrInfoMsrLast = 0x0;
2287 idLbrTosMsr = MSR_P4_LASTBRANCH_TOS;
2288 idLbrSelectMsr = 0x0;
2289 idLerFromIpMsr = 0x0;
2290 idLerToIpMsr = 0x0;
2291 break;
2292
2293 case 0x065c: case 0x065f: case 0x064e: case 0x065e: case 0x068e:
2294 case 0x069e: case 0x0655: case 0x0666: case 0x067a: case 0x0667:
2295 case 0x066a: case 0x066c: case 0x067d: case 0x067e:
2296 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
2297 idLbrFromIpMsrLast = MSR_LASTBRANCH_31_FROM_IP;
2298 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
2299 idLbrToIpMsrLast = MSR_LASTBRANCH_31_TO_IP;
2300 idLbrInfoMsrFirst = MSR_LASTBRANCH_0_INFO;
2301 idLbrInfoMsrLast = MSR_LASTBRANCH_31_INFO;
2302 idLbrTosMsr = MSR_LASTBRANCH_TOS;
2303 idLbrSelectMsr = MSR_LASTBRANCH_SELECT;
2304 idLerFromIpMsr = MSR_LER_FROM_IP;
2305 idLerToIpMsr = MSR_LER_TO_IP;
2306 break;
2307
2308 case 0x063d: case 0x0647: case 0x064f: case 0x0656: case 0x063c:
2309 case 0x0645: case 0x0646: case 0x063f: case 0x062a: case 0x062d:
2310 case 0x063a: case 0x063e: case 0x061a: case 0x061e: case 0x061f:
2311 case 0x062e: case 0x0625: case 0x062c: case 0x062f:
2312 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
2313 idLbrFromIpMsrLast = MSR_LASTBRANCH_15_FROM_IP;
2314 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
2315 idLbrToIpMsrLast = MSR_LASTBRANCH_15_TO_IP;
2316 idLbrInfoMsrFirst = MSR_LASTBRANCH_0_INFO;
2317 idLbrInfoMsrLast = MSR_LASTBRANCH_15_INFO;
2318 idLbrTosMsr = MSR_LASTBRANCH_TOS;
2319 idLbrSelectMsr = MSR_LASTBRANCH_SELECT;
2320 idLerFromIpMsr = MSR_LER_FROM_IP;
2321 idLerToIpMsr = MSR_LER_TO_IP;
2322 break;
2323
2324 case 0x0617: case 0x061d: case 0x060f:
2325 idLbrFromIpMsrFirst = MSR_CORE2_LASTBRANCH_0_FROM_IP;
2326 idLbrFromIpMsrLast = MSR_CORE2_LASTBRANCH_3_FROM_IP;
2327 idLbrToIpMsrFirst = MSR_CORE2_LASTBRANCH_0_TO_IP;
2328 idLbrToIpMsrLast = MSR_CORE2_LASTBRANCH_3_TO_IP;
2329 idLbrInfoMsrFirst = 0x0;
2330 idLbrInfoMsrLast = 0x0;
2331 idLbrTosMsr = MSR_CORE2_LASTBRANCH_TOS;
2332 idLbrSelectMsr = 0x0;
2333 idLerFromIpMsr = 0x0;
2334 idLerToIpMsr = 0x0;
2335 break;
2336
2337 /* Atom and related microarchitectures we don't care about:
2338 case 0x0637: case 0x064a: case 0x064c: case 0x064d: case 0x065a:
2339 case 0x065d: case 0x061c: case 0x0626: case 0x0627: case 0x0635:
2340 case 0x0636: */
2341 /* All other CPUs: */
2342 default:
2343 {
2344 LogRelFunc(("Could not determine LBR stack size for the CPU model %#x\n", uFamilyModel));
2345 VMCC_GET_CPU_0(pVM)->nem.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_UNKNOWN;
2346 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2347 }
2348 }
2349
2350 /*
2351 * Validate.
2352 */
2353 uint32_t const cLbrStack = idLbrFromIpMsrLast - idLbrFromIpMsrFirst + 1;
2354 PCVMCPU pVCpu0 = VMCC_GET_CPU_0(pVM);
2355 AssertCompile( RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr)
2356 == RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrToIpMsr));
2357 AssertCompile( RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr)
2358 == RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrInfoMsr));
2359 if (cLbrStack > RT_ELEMENTS(pVCpu0->nem.s.vmx.VmcsInfo.au64LbrFromIpMsr))
2360 {
2361 LogRelFunc(("LBR stack size of the CPU (%u) exceeds our buffer size\n", cLbrStack));
2362 VMCC_GET_CPU_0(pVM)->nem.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_OVERFLOW;
2363 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2364 }
2365 NOREF(pVCpu0);
2366
2367 /*
2368 * Update the LBR info. to the VM struct. for use later.
2369 */
2370 pVM->nem.s.idLbrTosMsr = idLbrTosMsr;
2371 pVM->nem.s.idLbrSelectMsr = idLbrSelectMsr;
2372
2373 pVM->nem.s.idLbrFromIpMsrFirst = idLbrFromIpMsrFirst;
2374 pVM->nem.s.idLbrFromIpMsrLast = idLbrFromIpMsrLast;
2375
2376 pVM->nem.s.idLbrToIpMsrFirst = idLbrToIpMsrFirst;
2377 pVM->nem.s.idLbrToIpMsrLast = idLbrToIpMsrLast;
2378
2379 pVM->nem.s.idLbrInfoMsrFirst = idLbrInfoMsrFirst;
2380 pVM->nem.s.idLbrInfoMsrLast = idLbrInfoMsrLast;
2381
2382 pVM->nem.s.idLerFromIpMsr = idLerFromIpMsr;
2383 pVM->nem.s.idLerToIpMsr = idLerToIpMsr;
2384 return VINF_SUCCESS;
2385}
2386
2387
2388/**
2389 * Sets up pin-based VM-execution controls in the VMCS.
2390 *
2391 * @returns VBox status code.
2392 * @param pVCpu The cross context virtual CPU structure.
2393 * @param pVmcsInfo The VMCS info. object.
2394 */
2395static int nemR3DarwinVmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2396{
2397 //PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2398 uint32_t fVal = g_HmMsrs.u.vmx.PinCtls.n.allowed0; /* Bits set here must always be set. */
2399 uint32_t const fZap = g_HmMsrs.u.vmx.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2400
2401 if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
2402 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2403
2404#if 0 /** @todo Use preemption timer */
2405 /* Enable the VMX-preemption timer. */
2406 if (pVM->hmr0.s.vmx.fUsePreemptTimer)
2407 {
2408 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
2409 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
2410 }
2411
2412 /* Enable posted-interrupt processing. */
2413 if (pVM->hm.s.fPostedIntrs)
2414 {
2415 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
2416 Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
2417 fVal |= VMX_PIN_CTLS_POSTED_INT;
2418 }
2419#endif
2420
2421 if ((fVal & fZap) != fVal)
2422 {
2423 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2424 g_HmMsrs.u.vmx.PinCtls.n.allowed0, fVal, fZap));
2425 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2426 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2427 }
2428
2429 /* Commit it to the VMCS and update our cache. */
2430 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PIN_EXEC, fVal);
2431 AssertRC(rc);
2432 pVmcsInfo->u32PinCtls = fVal;
2433
2434 return VINF_SUCCESS;
2435}
2436
2437
2438/**
2439 * Sets up secondary processor-based VM-execution controls in the VMCS.
2440 *
2441 * @returns VBox status code.
2442 * @param pVCpu The cross context virtual CPU structure.
2443 * @param pVmcsInfo The VMCS info. object.
2444 */
2445static int nemR3DarwinVmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2446{
2447 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2448 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
2449 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2450
2451 /* WBINVD causes a VM-exit. */
2452 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
2453 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
2454
2455 /* Enable the INVPCID instruction if we expose it to the guest and is supported
2456 by the hardware. Without this, guest executing INVPCID would cause a #UD. */
2457 if ( pVM->cpum.ro.GuestFeatures.fInvpcid
2458 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
2459 fVal |= VMX_PROC_CTLS2_INVPCID;
2460
2461#if 0 /** @todo */
2462 /* Enable VPID. */
2463 if (pVM->hmr0.s.vmx.fVpid)
2464 fVal |= VMX_PROC_CTLS2_VPID;
2465
2466 if (pVM->hm.s.fVirtApicRegs)
2467 {
2468 /* Enable APIC-register virtualization. */
2469 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2470 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2471
2472 /* Enable virtual-interrupt delivery. */
2473 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2474 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2475 }
2476
2477 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
2478 where the TPR shadow resides. */
2479 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2480 * done dynamically. */
2481 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2482 {
2483 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
2484 hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
2485 }
2486#endif
2487
2488 /* Enable the RDTSCP instruction if we expose it to the guest and is supported
2489 by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
2490 if ( pVM->cpum.ro.GuestFeatures.fRdTscP
2491 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
2492 fVal |= VMX_PROC_CTLS2_RDTSCP;
2493
2494 /* Enable Pause-Loop exiting. */
2495 if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
2496 && pVM->nem.s.cPleGapTicks
2497 && pVM->nem.s.cPleWindowTicks)
2498 {
2499 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2500
2501 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PLE_GAP, pVM->nem.s.cPleGapTicks); AssertRC(rc);
2502 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PLE_WINDOW, pVM->nem.s.cPleWindowTicks); AssertRC(rc);
2503 }
2504
2505 if ((fVal & fZap) != fVal)
2506 {
2507 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2508 g_HmMsrs.u.vmx.ProcCtls2.n.allowed0, fVal, fZap));
2509 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2510 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2511 }
2512
2513 /* Commit it to the VMCS and update our cache. */
2514 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2515 AssertRC(rc);
2516 pVmcsInfo->u32ProcCtls2 = fVal;
2517
2518 return VINF_SUCCESS;
2519}
2520
2521
2522/**
2523 * Enables native access for the given MSR.
2524 *
2525 * @returns VBox status code.
2526 * @param pVCpu The cross context virtual CPU structure.
2527 * @param idMsr The MSR to enable native access for.
2528 */
2529static int nemR3DarwinMsrSetNative(PVMCPUCC pVCpu, uint32_t idMsr)
2530{
2531 hv_return_t hrc = hv_vcpu_enable_native_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
2532 if (hrc == HV_SUCCESS)
2533 return VINF_SUCCESS;
2534
2535 return nemR3DarwinHvSts2Rc(hrc);
2536}
2537
2538
2539/**
2540 * Sets the MSR to managed for the given vCPU allowing the guest to access it.
2541 *
2542 * @returns VBox status code.
2543 * @param pVCpu The cross context virtual CPU structure.
2544 * @param idMsr The MSR to enable managed access for.
2545 * @param fMsrPerm The MSR permissions flags.
2546 */
2547static int nemR3DarwinMsrSetManaged(PVMCPUCC pVCpu, uint32_t idMsr, hv_msr_flags_t fMsrPerm)
2548{
2549 Assert(hv_vcpu_enable_managed_msr);
2550
2551 hv_return_t hrc = hv_vcpu_enable_managed_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
2552 if (hrc == HV_SUCCESS)
2553 {
2554 hrc = hv_vcpu_set_msr_access(pVCpu->nem.s.hVCpuId, idMsr, fMsrPerm);
2555 if (hrc == HV_SUCCESS)
2556 return VINF_SUCCESS;
2557 }
2558
2559 return nemR3DarwinHvSts2Rc(hrc);
2560}
2561
2562
2563/**
2564 * Sets up the MSR permissions which don't change through the lifetime of the VM.
2565 *
2566 * @returns VBox status code.
2567 * @param pVCpu The cross context virtual CPU structure.
2568 * @param pVmcsInfo The VMCS info. object.
2569 */
2570static int nemR3DarwinSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2571{
2572 RT_NOREF(pVmcsInfo);
2573
2574 /*
2575 * The guest can access the following MSRs (read, write) without causing
2576 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
2577 */
2578 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2579 int rc;
2580 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_CS); AssertRCReturn(rc, rc);
2581 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_ESP); AssertRCReturn(rc, rc);
2582 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_EIP); AssertRCReturn(rc, rc);
2583 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_GS_BASE); AssertRCReturn(rc, rc);
2584 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_FS_BASE); AssertRCReturn(rc, rc);
2585
2586 /*
2587 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
2588 * associated with then. We never need to intercept access (writes need to be
2589 * executed without causing a VM-exit, reads will #GP fault anyway).
2590 *
2591 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
2592 * read/write them. We swap the guest/host MSR value using the
2593 * auto-load/store MSR area.
2594 */
2595 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2596 {
2597 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_PRED_CMD);
2598 AssertRCReturn(rc, rc);
2599 }
2600#if 0 /* Doesn't work. */
2601 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
2602 {
2603 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_FLUSH_CMD);
2604 AssertRCReturn(rc, rc);
2605 }
2606#endif
2607 if (pVM->cpum.ro.GuestFeatures.fIbrs)
2608 {
2609 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SPEC_CTRL);
2610 AssertRCReturn(rc, rc);
2611 }
2612
2613 /*
2614 * Allow full read/write access for the following MSRs (mandatory for VT-x)
2615 * required for 64-bit guests.
2616 */
2617 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_LSTAR); AssertRCReturn(rc, rc);
2618 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K6_STAR); AssertRCReturn(rc, rc);
2619 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_SF_MASK); AssertRCReturn(rc, rc);
2620 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_KERNEL_GS_BASE); AssertRCReturn(rc, rc);
2621
2622 /* Required for enabling the RDTSCP instruction. */
2623 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_TSC_AUX); AssertRCReturn(rc, rc);
2624
2625 /* Last Branch Record. */
2626 if (pVM->nem.s.fLbr)
2627 {
2628 uint32_t const idFromIpMsrStart = pVM->nem.s.idLbrFromIpMsrFirst;
2629 uint32_t const idToIpMsrStart = pVM->nem.s.idLbrToIpMsrFirst;
2630 uint32_t const idInfoMsrStart = pVM->nem.s.idLbrInfoMsrFirst;
2631 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
2632 Assert(cLbrStack <= 32);
2633 for (uint32_t i = 0; i < cLbrStack; i++)
2634 {
2635 rc = nemR3DarwinMsrSetManaged(pVCpu, idFromIpMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
2636 AssertRCReturn(rc, rc);
2637
2638 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
2639 if (idToIpMsrStart != 0)
2640 {
2641 rc = nemR3DarwinMsrSetManaged(pVCpu, idToIpMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
2642 AssertRCReturn(rc, rc);
2643 }
2644
2645 if (idInfoMsrStart != 0)
2646 {
2647 rc = nemR3DarwinMsrSetManaged(pVCpu, idInfoMsrStart + i, HV_MSR_READ | HV_MSR_WRITE);
2648 AssertRCReturn(rc, rc);
2649 }
2650 }
2651
2652 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLbrTosMsr, HV_MSR_READ | HV_MSR_WRITE);
2653 AssertRCReturn(rc, rc);
2654
2655 if (pVM->nem.s.idLerFromIpMsr)
2656 {
2657 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLerFromIpMsr, HV_MSR_READ | HV_MSR_WRITE);
2658 AssertRCReturn(rc, rc);
2659 }
2660
2661 if (pVM->nem.s.idLerToIpMsr)
2662 {
2663 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLerToIpMsr, HV_MSR_READ | HV_MSR_WRITE);
2664 AssertRCReturn(rc, rc);
2665 }
2666
2667 if (pVM->nem.s.idLbrSelectMsr)
2668 {
2669 rc = nemR3DarwinMsrSetManaged(pVCpu, pVM->nem.s.idLbrSelectMsr, HV_MSR_READ | HV_MSR_WRITE);
2670 AssertRCReturn(rc, rc);
2671 }
2672 }
2673
2674 return VINF_SUCCESS;
2675}
2676
2677
2678/**
2679 * Sets up processor-based VM-execution controls in the VMCS.
2680 *
2681 * @returns VBox status code.
2682 * @param pVCpu The cross context virtual CPU structure.
2683 * @param pVmcsInfo The VMCS info. object.
2684 */
2685static int nemR3DarwinVmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2686{
2687 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
2688 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2689
2690 /** @todo The DRx handling is not quite correct breaking debugging inside the guest with gdb,
2691 * see @ticketref{21413} and @ticketref{21546}, so intercepting mov drX is disabled for now. See @bugref{10504}
2692 * as well. This will break the hypervisor debugger but only very few people use it and even less on macOS
2693 * using the NEM backend.
2694 */
2695 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2696// | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2697// | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2698 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2699 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2700 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2701 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2702
2703#ifdef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
2704 fVal |= VMX_PROC_CTLS_CR3_LOAD_EXIT
2705 | VMX_PROC_CTLS_CR3_STORE_EXIT;
2706#endif
2707
2708 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2709 if ( !(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2710 || (g_HmMsrs.u.vmx.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2711 {
2712 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2713 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2714 }
2715
2716 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2717 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2718 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2719
2720 if ((fVal & fZap) != fVal)
2721 {
2722 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2723 g_HmMsrs.u.vmx.ProcCtls.n.allowed0, fVal, fZap));
2724 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2725 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2726 }
2727
2728 /* Commit it to the VMCS and update our cache. */
2729 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2730 AssertRC(rc);
2731 pVmcsInfo->u32ProcCtls = fVal;
2732
2733 /* Set up MSR permissions that don't change through the lifetime of the VM. */
2734 rc = nemR3DarwinSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
2735 AssertRCReturn(rc, rc);
2736
2737 /*
2738 * Set up secondary processor-based VM-execution controls
2739 * (we assume the CPU to always support it as we rely on unrestricted guest execution support).
2740 */
2741 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2742 return nemR3DarwinVmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
2743}
2744
2745
2746/**
2747 * Sets up miscellaneous (everything other than Pin, Processor and secondary
2748 * Processor-based VM-execution) control fields in the VMCS.
2749 *
2750 * @returns VBox status code.
2751 * @param pVCpu The cross context virtual CPU structure.
2752 * @param pVmcsInfo The VMCS info. object.
2753 */
2754static int nemR3DarwinVmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2755{
2756 int rc = VINF_SUCCESS;
2757 //rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo); TODO
2758 if (RT_SUCCESS(rc))
2759 {
2760 uint64_t const u64Cr0Mask = vmxHCGetFixedCr0Mask(pVCpu);
2761 uint64_t const u64Cr4Mask = vmxHCGetFixedCr4Mask(pVCpu);
2762
2763 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
2764 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
2765
2766 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
2767 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
2768
2769 if (pVCpu->CTX_SUFF(pVM)->nem.s.fLbr)
2770 {
2771 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
2772 AssertRC(rc);
2773 }
2774 return VINF_SUCCESS;
2775 }
2776 else
2777 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
2778 return rc;
2779}
2780
2781
2782/**
2783 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2784 *
2785 * We shall setup those exception intercepts that don't change during the
2786 * lifetime of the VM here. The rest are done dynamically while loading the
2787 * guest state.
2788 *
2789 * @param pVCpu The cross context virtual CPU structure.
2790 * @param pVmcsInfo The VMCS info. object.
2791 */
2792static void nemR3DarwinVmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2793{
2794 /*
2795 * The following exceptions are always intercepted:
2796 *
2797 * #AC - To prevent the guest from hanging the CPU and for dealing with
2798 * split-lock detecting host configs.
2799 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
2800 * recursive #DBs can cause a CPU hang.
2801 */
2802 /** @todo The DRx handling is not quite correct breaking debugging inside the guest with gdb,
2803 * see @ticketref{21413} and @ticketref{21546}, so intercepting #DB is disabled for now. See @bugref{10504}
2804 * as well. This will break the hypervisor debugger but only very few people use it and even less on macOS
2805 * using the NEM backend.
2806 */
2807 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
2808 /*| RT_BIT(X86_XCPT_DB)*/;
2809
2810 /* Commit it to the VMCS. */
2811 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2812 AssertRC(rc);
2813
2814 /* Update our cache of the exception bitmap. */
2815 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
2816}
2817
2818
2819/**
2820 * Initialize the VMCS information field for the given vCPU.
2821 *
2822 * @returns VBox status code.
2823 * @param pVCpu The cross context virtual CPU structure of the
2824 * calling EMT.
2825 */
2826static int nemR3DarwinInitVmcs(PVMCPU pVCpu)
2827{
2828 int rc = nemR3DarwinVmxSetupVmcsPinCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2829 if (RT_SUCCESS(rc))
2830 {
2831 rc = nemR3DarwinVmxSetupVmcsProcCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2832 if (RT_SUCCESS(rc))
2833 {
2834 rc = nemR3DarwinVmxSetupVmcsMiscCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2835 if (RT_SUCCESS(rc))
2836 {
2837 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &pVCpu->nem.s.VmcsInfo.u32EntryCtls);
2838 if (RT_SUCCESS(rc))
2839 {
2840 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_EXIT, &pVCpu->nem.s.VmcsInfo.u32ExitCtls);
2841 if (RT_SUCCESS(rc))
2842 {
2843 nemR3DarwinVmxSetupVmcsXcptBitmap(pVCpu, &pVCpu->nem.s.VmcsInfo);
2844 return VINF_SUCCESS;
2845 }
2846 LogRelFunc(("Failed to read the exit controls. rc=%Rrc\n", rc));
2847 }
2848 else
2849 LogRelFunc(("Failed to read the entry controls. rc=%Rrc\n", rc));
2850 }
2851 else
2852 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
2853 }
2854 else
2855 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
2856 }
2857 else
2858 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
2859
2860 return rc;
2861}
2862
2863
2864/**
2865 * Registers statistics for the given vCPU.
2866 *
2867 * @returns VBox status code.
2868 * @param pVM The cross context VM structure.
2869 * @param idCpu The CPU ID.
2870 * @param pNemCpu The NEM CPU structure.
2871 */
2872static int nemR3DarwinStatisticsRegister(PVM pVM, VMCPUID idCpu, PNEMCPU pNemCpu)
2873{
2874#define NEM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
2875 int rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
2876 AssertRC(rc); \
2877 } while (0)
2878#define NEM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
2879 NEM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
2880#define NEM_REG_COUNTER(a, b, desc) NEM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
2881
2882 PVMXSTATISTICS const pVmxStats = pNemCpu->pVmxStats;
2883
2884 NEM_REG_COUNTER(&pVmxStats->StatExitCR0Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
2885 NEM_REG_COUNTER(&pVmxStats->StatExitCR2Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
2886 NEM_REG_COUNTER(&pVmxStats->StatExitCR3Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
2887 NEM_REG_COUNTER(&pVmxStats->StatExitCR4Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
2888 NEM_REG_COUNTER(&pVmxStats->StatExitCR8Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
2889 NEM_REG_COUNTER(&pVmxStats->StatExitCR0Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
2890 NEM_REG_COUNTER(&pVmxStats->StatExitCR2Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
2891 NEM_REG_COUNTER(&pVmxStats->StatExitCR3Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
2892 NEM_REG_COUNTER(&pVmxStats->StatExitCR4Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
2893 NEM_REG_COUNTER(&pVmxStats->StatExitCR8Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
2894
2895 NEM_REG_COUNTER(&pVmxStats->StatExitAll, "/NEM/CPU%u/Exit/All", "Total exits (including nested-guest exits).");
2896
2897 NEM_REG_COUNTER(&pVmxStats->StatImportGuestStateFallback, "/NEM/CPU%u/ImportGuestStateFallback", "Times vmxHCImportGuestState took the fallback code path.");
2898 NEM_REG_COUNTER(&pVmxStats->StatReadToTransientFallback, "/NEM/CPU%u/ReadToTransientFallback", "Times vmxHCReadToTransient took the fallback code path.");
2899
2900#ifdef VBOX_WITH_STATISTICS
2901 NEM_REG_PROFILE(&pNemCpu->StatProfGstStateImport, "/NEM/CPU%u/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
2902 NEM_REG_PROFILE(&pNemCpu->StatProfGstStateExport, "/NEM/CPU%u/ExportGuestState", "Profiling of exporting guest state from hardware after VM-exit.");
2903
2904 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
2905 {
2906 const char *pszExitName = HMGetVmxExitName(j);
2907 if (pszExitName)
2908 {
2909 int rc = STAMR3RegisterF(pVM, &pVmxStats->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
2910 STAMUNIT_OCCURENCES, pszExitName, "/NEM/CPU%u/Exit/Reason/%02x", idCpu, j);
2911 AssertRCReturn(rc, rc);
2912 }
2913 }
2914#endif
2915
2916 return VINF_SUCCESS;
2917
2918#undef NEM_REG_COUNTER
2919#undef NEM_REG_PROFILE
2920#undef NEM_REG_STAT
2921}
2922
2923
2924/**
2925 * Displays the HM Last-Branch-Record info. for the guest.
2926 *
2927 * @param pVM The cross context VM structure.
2928 * @param pHlp The info helper functions.
2929 * @param pszArgs Arguments, ignored.
2930 */
2931static DECLCALLBACK(void) nemR3DarwinInfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2932{
2933 NOREF(pszArgs);
2934 PVMCPU pVCpu = VMMGetCpu(pVM);
2935 if (!pVCpu)
2936 pVCpu = pVM->apCpusR3[0];
2937
2938 Assert(pVM->nem.s.fLbr);
2939
2940 PCVMXVMCSINFOSHARED pVmcsInfoShared = &pVCpu->nem.s.vmx.VmcsInfo;
2941 uint32_t const cLbrStack = pVM->nem.s.idLbrFromIpMsrLast - pVM->nem.s.idLbrFromIpMsrFirst + 1;
2942
2943 /** @todo r=ramshankar: The index technically varies depending on the CPU, but
2944 * 0xf should cover everything we support thus far. Fix if necessary
2945 * later. */
2946 uint32_t const idxTopOfStack = pVmcsInfoShared->u64LbrTosMsr & 0xf;
2947 if (idxTopOfStack > cLbrStack)
2948 {
2949 pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
2950 idxTopOfStack, pVmcsInfoShared->u64LbrTosMsr, cLbrStack);
2951 return;
2952 }
2953
2954 /*
2955 * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
2956 */
2957 pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
2958 if (pVM->nem.s.idLerFromIpMsr)
2959 pHlp->pfnPrintf(pHlp, "LER: From IP=%#016RX64 - To IP=%#016RX64\n",
2960 pVmcsInfoShared->u64LerFromIpMsr, pVmcsInfoShared->u64LerToIpMsr);
2961 uint32_t idxCurrent = idxTopOfStack;
2962 Assert(idxTopOfStack < cLbrStack);
2963 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr) <= cLbrStack);
2964 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrToIpMsr) <= cLbrStack);
2965 for (;;)
2966 {
2967 if (pVM->nem.s.idLbrToIpMsrFirst)
2968 pHlp->pfnPrintf(pHlp, " Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64 (Info: %#016RX64)\n", idxCurrent,
2969 pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent],
2970 pVmcsInfoShared->au64LbrToIpMsr[idxCurrent],
2971 pVmcsInfoShared->au64LbrInfoMsr[idxCurrent]);
2972 else
2973 pHlp->pfnPrintf(pHlp, " Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent]);
2974
2975 idxCurrent = (idxCurrent - 1) % cLbrStack;
2976 if (idxCurrent == idxTopOfStack)
2977 break;
2978 }
2979}
2980
2981
2982/**
2983 * Try initialize the native API.
2984 *
2985 * This may only do part of the job, more can be done in
2986 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
2987 *
2988 * @returns VBox status code.
2989 * @param pVM The cross context VM structure.
2990 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
2991 * the latter we'll fail if we cannot initialize.
2992 * @param fForced Whether the HMForced flag is set and we should
2993 * fail if we cannot initialize.
2994 */
2995int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
2996{
2997 AssertReturn(!pVM->nem.s.fCreatedVm, VERR_WRONG_ORDER);
2998
2999 /*
3000 * Some state init.
3001 */
3002 PCFGMNODE pCfgNem = CFGMR3GetChild(CFGMR3GetRoot(pVM), "NEM/");
3003
3004 /** @cfgm{/NEM/VmxPleGap, uint32_t, 0}
3005 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
3006 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
3007 * latest PAUSE instruction to be start of a new PAUSE loop.
3008 */
3009 int rc = CFGMR3QueryU32Def(pCfgNem, "VmxPleGap", &pVM->nem.s.cPleGapTicks, 0);
3010 AssertRCReturn(rc, rc);
3011
3012 /** @cfgm{/NEM/VmxPleWindow, uint32_t, 0}
3013 * The pause-filter exiting window in TSC ticks. When the number of ticks
3014 * between the current PAUSE instruction and first PAUSE of a loop exceeds
3015 * VmxPleWindow, a VM-exit is triggered.
3016 *
3017 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
3018 */
3019 rc = CFGMR3QueryU32Def(pCfgNem, "VmxPleWindow", &pVM->nem.s.cPleWindowTicks, 0);
3020 AssertRCReturn(rc, rc);
3021
3022 /** @cfgm{/NEM/VmxLbr, bool, false}
3023 * Whether to enable LBR for the guest. This is disabled by default as it's only
3024 * useful while debugging and enabling it causes a noticeable performance hit. */
3025 rc = CFGMR3QueryBoolDef(pCfgNem, "VmxLbr", &pVM->nem.s.fLbr, false);
3026 AssertRCReturn(rc, rc);
3027
3028 /*
3029 * Error state.
3030 * The error message will be non-empty on failure and 'rc' will be set too.
3031 */
3032 RTERRINFOSTATIC ErrInfo;
3033 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
3034 rc = nemR3DarwinLoadHv(fForced, pErrInfo);
3035 if (RT_SUCCESS(rc))
3036 {
3037 if ( !hv_vcpu_enable_managed_msr
3038 && pVM->nem.s.fLbr)
3039 {
3040 LogRel(("NEM: LBR recording is disabled because the Hypervisor API misses hv_vcpu_enable_managed_msr/hv_vcpu_set_msr_access functionality\n"));
3041 pVM->nem.s.fLbr = false;
3042 }
3043
3044 /*
3045 * While hv_vcpu_run_until() is available starting with Catalina (10.15) it sometimes returns
3046 * an error there for no obvious reasons and there is no indication as to why this happens
3047 * and Apple doesn't document anything. Starting with BigSur (11.0) it appears to work correctly
3048 * so pretend that hv_vcpu_run_until() doesn't exist on Catalina which can be determined by checking
3049 * whether another method is available which was introduced with BigSur.
3050 */
3051 if (!hv_vmx_get_msr_info) /* Not available means this runs on < 11.0 */
3052 hv_vcpu_run_until = NULL;
3053
3054 if (hv_vcpu_run_until)
3055 {
3056 struct mach_timebase_info TimeInfo;
3057
3058 if (mach_timebase_info(&TimeInfo) == KERN_SUCCESS)
3059 {
3060 pVM->nem.s.cMachTimePerNs = RT_MIN(1, (double)TimeInfo.denom / (double)TimeInfo.numer);
3061 LogRel(("NEM: cMachTimePerNs=%llu (TimeInfo.numer=%u TimeInfo.denom=%u)\n",
3062 pVM->nem.s.cMachTimePerNs, TimeInfo.numer, TimeInfo.denom));
3063 }
3064 else
3065 hv_vcpu_run_until = NULL; /* To avoid running forever (TM asserts when the guest runs for longer than 4 seconds). */
3066 }
3067
3068 hv_return_t hrc = hv_vm_create(HV_VM_DEFAULT);
3069 if (hrc == HV_SUCCESS)
3070 {
3071 if (hv_vm_space_create)
3072 {
3073 hrc = hv_vm_space_create(&pVM->nem.s.uVmAsid);
3074 if (hrc == HV_SUCCESS)
3075 {
3076 LogRel(("NEM: Successfully created ASID: %u\n", pVM->nem.s.uVmAsid));
3077 pVM->nem.s.fCreatedAsid = true;
3078 }
3079 else
3080 LogRel(("NEM: Failed to create ASID for VM (hrc=%#x), continuing...\n", pVM->nem.s.uVmAsid));
3081 }
3082 pVM->nem.s.fCreatedVm = true;
3083
3084 /* Register release statistics */
3085 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3086 {
3087 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
3088 PVMXSTATISTICS pVmxStats = (PVMXSTATISTICS)RTMemAllocZ(sizeof(*pVmxStats));
3089 if (RT_LIKELY(pVmxStats))
3090 {
3091 pNemCpu->pVmxStats = pVmxStats;
3092 rc = nemR3DarwinStatisticsRegister(pVM, idCpu, pNemCpu);
3093 AssertRC(rc);
3094 }
3095 else
3096 {
3097 rc = VERR_NO_MEMORY;
3098 break;
3099 }
3100 }
3101
3102 if (RT_SUCCESS(rc))
3103 {
3104 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
3105 Log(("NEM: Marked active!\n"));
3106 PGMR3EnableNemMode(pVM);
3107 }
3108 }
3109 else
3110 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
3111 "hv_vm_create() failed: %#x", hrc);
3112 }
3113
3114 /*
3115 * We only fail if in forced mode, otherwise just log the complaint and return.
3116 */
3117 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
3118 if ( (fForced || !fFallback)
3119 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
3120 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
3121
3122 if (pVM->nem.s.fLbr)
3123 {
3124 rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the NEM LBR info.", nemR3DarwinInfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
3125 AssertRCReturn(rc, rc);
3126 }
3127
3128 if (RTErrInfoIsSet(pErrInfo))
3129 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
3130 return VINF_SUCCESS;
3131}
3132
3133
3134/**
3135 * Worker to create the vCPU handle on the EMT running it later on (as required by HV).
3136 *
3137 * @returns VBox status code
3138 * @param pVM The VM handle.
3139 * @param pVCpu The vCPU handle.
3140 * @param idCpu ID of the CPU to create.
3141 */
3142static DECLCALLBACK(int) nemR3DarwinNativeInitVCpuOnEmt(PVM pVM, PVMCPU pVCpu, VMCPUID idCpu)
3143{
3144 hv_return_t hrc = hv_vcpu_create(&pVCpu->nem.s.hVCpuId, HV_VCPU_DEFAULT);
3145 if (hrc != HV_SUCCESS)
3146 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
3147 "Call to hv_vcpu_create failed on vCPU %u: %#x (%Rrc)", idCpu, hrc, nemR3DarwinHvSts2Rc(hrc));
3148
3149 if (idCpu == 0)
3150 {
3151 /* First call initializs the MSR structure holding the capabilities of the host CPU. */
3152 int rc = nemR3DarwinCapsInit();
3153 AssertRCReturn(rc, rc);
3154
3155 if (hv_vmx_vcpu_get_cap_write_vmcs)
3156 {
3157 /* Log the VMCS field write capabilities. */
3158 for (uint32_t i = 0; i < RT_ELEMENTS(g_aVmcsFieldsCap); i++)
3159 {
3160 uint64_t u64Allowed0 = 0;
3161 uint64_t u64Allowed1 = 0;
3162
3163 hrc = hv_vmx_vcpu_get_cap_write_vmcs(pVCpu->nem.s.hVCpuId, g_aVmcsFieldsCap[i].u32VmcsFieldId,
3164 &u64Allowed0, &u64Allowed1);
3165 if (hrc == HV_SUCCESS)
3166 {
3167 if (g_aVmcsFieldsCap[i].f64Bit)
3168 LogRel(("NEM: %s = (allowed_0=%#016RX64 allowed_1=%#016RX64)\n",
3169 g_aVmcsFieldsCap[i].pszVmcsField, u64Allowed0, u64Allowed1));
3170 else
3171 LogRel(("NEM: %s = (allowed_0=%#08RX32 allowed_1=%#08RX32)\n",
3172 g_aVmcsFieldsCap[i].pszVmcsField, (uint32_t)u64Allowed0, (uint32_t)u64Allowed1));
3173
3174 uint32_t cBits = g_aVmcsFieldsCap[i].f64Bit ? 64 : 32;
3175 for (uint32_t iBit = 0; iBit < cBits; iBit++)
3176 {
3177 bool fAllowed0 = RT_BOOL(u64Allowed0 & RT_BIT_64(iBit));
3178 bool fAllowed1 = RT_BOOL(u64Allowed1 & RT_BIT_64(iBit));
3179
3180 if (!fAllowed0 && !fAllowed1)
3181 LogRel(("NEM: Bit %02u = Must NOT be set\n", iBit));
3182 else if (!fAllowed0 && fAllowed1)
3183 LogRel(("NEM: Bit %02u = Can be set or not be set\n", iBit));
3184 else if (fAllowed0 && !fAllowed1)
3185 LogRel(("NEM: Bit %02u = UNDEFINED (AppleHV error)!\n", iBit));
3186 else if (fAllowed0 && fAllowed1)
3187 LogRel(("NEM: Bit %02u = MUST be set\n", iBit));
3188 else
3189 AssertFailed();
3190 }
3191 }
3192 else
3193 LogRel(("NEM: %s = failed to query (hrc=%d)\n", g_aVmcsFieldsCap[i].pszVmcsField, hrc));
3194 }
3195 }
3196 }
3197
3198 int rc = nemR3DarwinInitVmcs(pVCpu);
3199 AssertRCReturn(rc, rc);
3200
3201 if (pVM->nem.s.fCreatedAsid)
3202 {
3203 hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, pVM->nem.s.uVmAsid);
3204 AssertReturn(hrc == HV_SUCCESS, VERR_NEM_VM_CREATE_FAILED);
3205 }
3206
3207 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3208
3209 return VINF_SUCCESS;
3210}
3211
3212
3213/**
3214 * Worker to destroy the vCPU handle on the EMT running it later on (as required by HV).
3215 *
3216 * @returns VBox status code
3217 * @param pVCpu The vCPU handle.
3218 */
3219static DECLCALLBACK(int) nemR3DarwinNativeTermVCpuOnEmt(PVMCPU pVCpu)
3220{
3221 hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
3222 Assert(hrc == HV_SUCCESS);
3223
3224 hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
3225 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
3226 return VINF_SUCCESS;
3227}
3228
3229
3230/**
3231 * Worker to setup the TPR shadowing feature if available on the CPU and the VM has an APIC enabled.
3232 *
3233 * @returns VBox status code
3234 * @param pVM The VM handle.
3235 * @param pVCpu The vCPU handle.
3236 */
3237static DECLCALLBACK(int) nemR3DarwinNativeInitTprShadowing(PVM pVM, PVMCPU pVCpu)
3238{
3239 PVMXVMCSINFO pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
3240 uint32_t fVal = pVmcsInfo->u32ProcCtls;
3241
3242 /* Use TPR shadowing if supported by the CPU. */
3243 if ( PDMHasApic(pVM)
3244 && (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
3245 {
3246 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
3247 /* CR8 writes cause a VM-exit based on TPR threshold. */
3248 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
3249 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
3250 }
3251 else
3252 {
3253 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
3254 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
3255 }
3256
3257 /* Commit it to the VMCS and update our cache. */
3258 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
3259 AssertRC(rc);
3260 pVmcsInfo->u32ProcCtls = fVal;
3261
3262 return VINF_SUCCESS;
3263}
3264
3265
3266/**
3267 * This is called after CPUMR3Init is done.
3268 *
3269 * @returns VBox status code.
3270 * @param pVM The VM handle..
3271 */
3272int nemR3NativeInitAfterCPUM(PVM pVM)
3273{
3274 /*
3275 * Validate sanity.
3276 */
3277 AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
3278 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
3279
3280 if (pVM->nem.s.fLbr)
3281 {
3282 int rc = nemR3DarwinSetupLbrMsrRange(pVM);
3283 AssertRCReturn(rc, rc);
3284 }
3285
3286 /*
3287 * Setup the EMTs.
3288 */
3289 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3290 {
3291 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3292
3293 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitVCpuOnEmt, 3, pVM, pVCpu, idCpu);
3294 if (RT_FAILURE(rc))
3295 {
3296 /* Rollback. */
3297 while (idCpu--)
3298 VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeTermVCpuOnEmt, 1, pVCpu);
3299
3300 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to hv_vcpu_create failed: %Rrc", rc);
3301 }
3302 }
3303
3304 pVM->nem.s.fCreatedEmts = true;
3305 return VINF_SUCCESS;
3306}
3307
3308
3309int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
3310{
3311 if (enmWhat == VMINITCOMPLETED_RING3)
3312 {
3313 /* Now that PDM is initialized the APIC state is known in order to enable the TPR shadowing feature on all EMTs. */
3314 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3315 {
3316 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3317
3318 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitTprShadowing, 2, pVM, pVCpu);
3319 if (RT_FAILURE(rc))
3320 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Setting up TPR shadowing failed: %Rrc", rc);
3321 }
3322 }
3323 return VINF_SUCCESS;
3324}
3325
3326
3327int nemR3NativeTerm(PVM pVM)
3328{
3329 /*
3330 * Delete the VM.
3331 */
3332
3333 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu--)
3334 {
3335 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3336
3337 /*
3338 * Need to do this or hv_vm_space_destroy() fails later on (on 10.15 at least). Could've been documented in
3339 * API reference so I wouldn't have to decompile the kext to find this out but we are talking
3340 * about Apple here unfortunately, API documentation is not their strong suit...
3341 * Would have been of course even better to just automatically drop the address space reference when the vCPU
3342 * gets destroyed.
3343 */
3344 hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
3345 Assert(hrc == HV_SUCCESS);
3346
3347 /*
3348 * Apple's documentation states that the vCPU should be destroyed
3349 * on the thread running the vCPU but as all the other EMTs are gone
3350 * at this point, destroying the VM would hang.
3351 *
3352 * We seem to be at luck here though as destroying apparently works
3353 * from EMT(0) as well.
3354 */
3355 hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
3356 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
3357
3358 if (pVCpu->nem.s.pVmxStats)
3359 {
3360 RTMemFree(pVCpu->nem.s.pVmxStats);
3361 pVCpu->nem.s.pVmxStats = NULL;
3362 }
3363 }
3364
3365 pVM->nem.s.fCreatedEmts = false;
3366
3367 if (pVM->nem.s.fCreatedAsid)
3368 {
3369 hv_return_t hrc = hv_vm_space_destroy(pVM->nem.s.uVmAsid);
3370 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
3371 pVM->nem.s.fCreatedAsid = false;
3372 }
3373
3374 if (pVM->nem.s.fCreatedVm)
3375 {
3376 hv_return_t hrc = hv_vm_destroy();
3377 if (hrc != HV_SUCCESS)
3378 LogRel(("NEM: hv_vm_destroy() failed with %#x\n", hrc));
3379
3380 pVM->nem.s.fCreatedVm = false;
3381 }
3382 return VINF_SUCCESS;
3383}
3384
3385
3386/**
3387 * VM reset notification.
3388 *
3389 * @param pVM The cross context VM structure.
3390 */
3391void nemR3NativeReset(PVM pVM)
3392{
3393 RT_NOREF(pVM);
3394}
3395
3396
3397/**
3398 * Reset CPU due to INIT IPI or hot (un)plugging.
3399 *
3400 * @param pVCpu The cross context virtual CPU structure of the CPU being
3401 * reset.
3402 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
3403 */
3404void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
3405{
3406 RT_NOREF(fInitIpi);
3407 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
3408}
3409
3410
3411/**
3412 * Dumps the VMCS in response to a faild hv_vcpu_run{_until}() call.
3413 *
3414 * @param pVCpu The cross context virtual CPU structure.
3415 */
3416static void nemR3DarwinVmcsDump(PVMCPU pVCpu)
3417{
3418 static const struct
3419 {
3420 uint32_t u32VmcsFieldId; /**< The VMCS field identifier. */
3421 const char *pszVmcsField; /**< The VMCS field name. */
3422 bool f64Bit;
3423 } s_aVmcsFieldsDump[] =
3424 {
3425 #define NEM_DARWIN_VMCSNW_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true }
3426 #define NEM_DARWIN_VMCS64_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, true }
3427 #define NEM_DARWIN_VMCS32_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
3428 #define NEM_DARWIN_VMCS16_FIELD_DUMP(a_u32VmcsFieldId) { (a_u32VmcsFieldId), #a_u32VmcsFieldId, false }
3429 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_VPID),
3430 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR),
3431 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_EPTP_INDEX),
3432 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_ES_SEL),
3433 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_CS_SEL),
3434 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_SS_SEL),
3435 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_DS_SEL),
3436 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_FS_SEL),
3437 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_GS_SEL),
3438 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_LDTR_SEL),
3439 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_TR_SEL),
3440 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_INTR_STATUS),
3441 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_GUEST_PML_INDEX),
3442 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_ES_SEL),
3443 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_CS_SEL),
3444 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_SS_SEL),
3445 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_DS_SEL),
3446 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_FS_SEL),
3447 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_GS_SEL),
3448 NEM_DARWIN_VMCS16_FIELD_DUMP(VMX_VMCS16_HOST_TR_SEL),
3449
3450 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL),
3451 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH),
3452 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL),
3453 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH),
3454 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_MSR_BITMAP_FULL),
3455 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_MSR_BITMAP_HIGH),
3456 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL),
3457 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH),
3458 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL),
3459 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH),
3460 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL),
3461 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH),
3462 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL),
3463 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH),
3464 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL),
3465 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH),
3466 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_OFFSET_FULL),
3467 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_OFFSET_HIGH),
3468 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL),
3469 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH),
3470 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL),
3471 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH),
3472 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL),
3473 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH),
3474 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL),
3475 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH),
3476 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_FULL),
3477 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_HIGH),
3478 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL),
3479 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH),
3480 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL),
3481 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH),
3482 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL),
3483 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH),
3484 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL),
3485 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH),
3486 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_LIST_FULL),
3487 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_EPTP_LIST_HIGH),
3488 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL),
3489 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH),
3490 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL),
3491 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH),
3492 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_FULL),
3493 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_HIGH),
3494 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL),
3495 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH),
3496 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL),
3497 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH),
3498 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_SPPTP_FULL),
3499 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_SPPTP_HIGH),
3500 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL),
3501 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH),
3502 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_PROC_EXEC3_FULL),
3503 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_PROC_EXEC3_HIGH),
3504 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_FULL),
3505 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_HIGH),
3506 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL),
3507 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH),
3508 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL),
3509 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH),
3510 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_DEBUGCTL_FULL),
3511 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_DEBUGCTL_HIGH),
3512 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PAT_FULL),
3513 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PAT_HIGH),
3514 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_EFER_FULL),
3515 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_EFER_HIGH),
3516 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL),
3517 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH),
3518 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE0_FULL),
3519 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE0_HIGH),
3520 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE1_FULL),
3521 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE1_HIGH),
3522 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE2_FULL),
3523 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE2_HIGH),
3524 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE3_FULL),
3525 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PDPTE3_HIGH),
3526 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_BNDCFGS_FULL),
3527 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_BNDCFGS_HIGH),
3528 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_RTIT_CTL_FULL),
3529 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_RTIT_CTL_HIGH),
3530 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PKRS_FULL),
3531 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_GUEST_PKRS_HIGH),
3532 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PAT_FULL),
3533 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PAT_HIGH),
3534 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_EFER_FULL),
3535 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_EFER_HIGH),
3536 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL),
3537 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH),
3538 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PKRS_FULL),
3539 NEM_DARWIN_VMCS64_FIELD_DUMP(VMX_VMCS64_HOST_PKRS_HIGH),
3540
3541 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PIN_EXEC),
3542 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PROC_EXEC),
3543 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXCEPTION_BITMAP),
3544 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK),
3545 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH),
3546 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_CR3_TARGET_COUNT),
3547 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT),
3548 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT),
3549 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT),
3550 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY),
3551 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT),
3552 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO),
3553 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE),
3554 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH),
3555 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_TPR_THRESHOLD),
3556 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PROC_EXEC2),
3557 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PLE_GAP),
3558 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_CTRL_PLE_WINDOW),
3559 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_VM_INSTR_ERROR),
3560 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_REASON),
3561 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO),
3562 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE),
3563 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_IDT_VECTORING_INFO),
3564 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE),
3565 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INSTR_LENGTH),
3566 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_RO_EXIT_INSTR_INFO),
3567 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ES_LIMIT),
3568 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_CS_LIMIT),
3569 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SS_LIMIT),
3570 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_DS_LIMIT),
3571 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_FS_LIMIT),
3572 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GS_LIMIT),
3573 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_LDTR_LIMIT),
3574 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_TR_LIMIT),
3575 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GDTR_LIMIT),
3576 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_IDTR_LIMIT),
3577 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS),
3578 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS),
3579 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS),
3580 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS),
3581 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS),
3582 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS),
3583 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS),
3584 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS),
3585 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_INT_STATE),
3586 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_ACTIVITY_STATE),
3587 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SMBASE),
3588 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_GUEST_SYSENTER_CS),
3589 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_PREEMPT_TIMER_VALUE),
3590 NEM_DARWIN_VMCS32_FIELD_DUMP(VMX_VMCS32_HOST_SYSENTER_CS),
3591
3592 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR0_MASK),
3593 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR4_MASK),
3594 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR0_READ_SHADOW),
3595 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR4_READ_SHADOW),
3596 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL0),
3597 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL1),
3598 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL2),
3599 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_CTRL_CR3_TARGET_VAL3),
3600 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_EXIT_QUALIFICATION),
3601 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RCX),
3602 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RSI),
3603 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RDI),
3604 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_IO_RIP),
3605 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_RO_GUEST_LINEAR_ADDR),
3606 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR0),
3607 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR3),
3608 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CR4),
3609 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_ES_BASE),
3610 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_CS_BASE),
3611 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SS_BASE),
3612 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_DS_BASE),
3613 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_FS_BASE),
3614 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_GS_BASE),
3615 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_LDTR_BASE),
3616 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_TR_BASE),
3617 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_GDTR_BASE),
3618 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_IDTR_BASE),
3619 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_DR7),
3620 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RSP),
3621 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RIP),
3622 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_RFLAGS),
3623 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS),
3624 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SYSENTER_ESP),
3625 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SYSENTER_EIP),
3626 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_S_CET),
3627 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_SSP),
3628 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_GUEST_INTR_SSP_TABLE_ADDR),
3629 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR0),
3630 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR3),
3631 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_CR4),
3632 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_FS_BASE),
3633 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_GS_BASE),
3634 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_TR_BASE),
3635 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_GDTR_BASE),
3636 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_IDTR_BASE),
3637 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SYSENTER_ESP),
3638 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SYSENTER_EIP),
3639 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_RSP),
3640 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_RIP),
3641 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_S_CET),
3642 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_SSP),
3643 NEM_DARWIN_VMCSNW_FIELD_DUMP(VMX_VMCS_HOST_INTR_SSP_TABLE_ADDR)
3644 #undef NEM_DARWIN_VMCSNW_FIELD_DUMP
3645 #undef NEM_DARWIN_VMCS64_FIELD_DUMP
3646 #undef NEM_DARWIN_VMCS32_FIELD_DUMP
3647 #undef NEM_DARWIN_VMCS16_FIELD_DUMP
3648 };
3649
3650 for (uint32_t i = 0; i < RT_ELEMENTS(s_aVmcsFieldsDump); i++)
3651 {
3652 if (s_aVmcsFieldsDump[i].f64Bit)
3653 {
3654 uint64_t u64Val;
3655 int rc = nemR3DarwinReadVmcs64(pVCpu, s_aVmcsFieldsDump[i].u32VmcsFieldId, &u64Val);
3656 if (RT_SUCCESS(rc))
3657 LogRel(("NEM/VMCS: %040s: 0x%016RX64\n", s_aVmcsFieldsDump[i].pszVmcsField, u64Val));
3658 else
3659 LogRel(("NEM/VMCS: %040s: rc=%Rrc\n", s_aVmcsFieldsDump[i].pszVmcsField, rc));
3660 }
3661 else
3662 {
3663 uint32_t u32Val;
3664 int rc = nemR3DarwinReadVmcs32(pVCpu, s_aVmcsFieldsDump[i].u32VmcsFieldId, &u32Val);
3665 if (RT_SUCCESS(rc))
3666 LogRel(("NEM/VMCS: %040s: 0x%08RX32\n", s_aVmcsFieldsDump[i].pszVmcsField, u32Val));
3667 else
3668 LogRel(("NEM/VMCS: %040s: rc=%Rrc\n", s_aVmcsFieldsDump[i].pszVmcsField, rc));
3669 }
3670 }
3671}
3672
3673
3674/**
3675 * Runs the guest once until an exit occurs.
3676 *
3677 * @returns HV status code.
3678 * @param pVM The cross context VM structure.
3679 * @param pVCpu The cross context virtual CPU structure.
3680 * @param pVmxTransient The transient VMX execution structure.
3681 */
3682static hv_return_t nemR3DarwinRunGuest(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
3683{
3684 TMNotifyStartOfExecution(pVM, pVCpu);
3685
3686 Assert(!pVCpu->nem.s.fCtxChanged);
3687 hv_return_t hrc;
3688 if (hv_vcpu_run_until) /** @todo Configur the deadline dynamically based on when the next timer triggers. */
3689 hrc = hv_vcpu_run_until(pVCpu->nem.s.hVCpuId, mach_absolute_time() + 2 * RT_NS_1SEC_64 * pVM->nem.s.cMachTimePerNs);
3690 else
3691 hrc = hv_vcpu_run(pVCpu->nem.s.hVCpuId);
3692
3693 TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
3694
3695 if (hrc != HV_SUCCESS)
3696 nemR3DarwinVmcsDump(pVCpu);
3697
3698 /*
3699 * Sync the TPR shadow with our APIC state.
3700 */
3701 if ( !pVmxTransient->fIsNestedGuest
3702 && (pVCpu->nem.s.VmcsInfo.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
3703 {
3704 uint64_t u64Tpr;
3705 hv_return_t hrc2 = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, HV_X86_TPR, &u64Tpr);
3706 Assert(hrc2 == HV_SUCCESS); RT_NOREF(hrc2);
3707
3708 if (pVmxTransient->u8GuestTpr != (uint8_t)u64Tpr)
3709 {
3710 int rc = APICSetTpr(pVCpu, (uint8_t)u64Tpr);
3711 AssertRC(rc);
3712 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
3713 }
3714 }
3715
3716 return hrc;
3717}
3718
3719
3720/**
3721 * Prepares the VM to run the guest.
3722 *
3723 * @returns Strict VBox status code.
3724 * @param pVM The cross context VM structure.
3725 * @param pVCpu The cross context virtual CPU structure.
3726 * @param pVmxTransient The VMX transient state.
3727 * @param fSingleStepping Flag whether we run in single stepping mode.
3728 */
3729static VBOXSTRICTRC nemR3DarwinPreRunGuest(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient, bool fSingleStepping)
3730{
3731 /*
3732 * Check and process force flag actions, some of which might require us to go back to ring-3.
3733 */
3734 VBOXSTRICTRC rcStrict = vmxHCCheckForceFlags(pVCpu, false /*fIsNestedGuest*/, fSingleStepping);
3735 if (rcStrict == VINF_SUCCESS)
3736 { /*likely */ }
3737 else
3738 return rcStrict;
3739
3740 /*
3741 * Do not execute in HV if the A20 isn't enabled.
3742 */
3743 if (PGMPhysIsA20Enabled(pVCpu))
3744 { /* likely */ }
3745 else
3746 {
3747 LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu));
3748 return VINF_EM_RESCHEDULE_REM;
3749 }
3750
3751 /*
3752 * Evaluate events to be injected into the guest.
3753 *
3754 * Events in TRPM can be injected without inspecting the guest state.
3755 * If any new events (interrupts/NMI) are pending currently, we try to set up the
3756 * guest to cause a VM-exit the next time they are ready to receive the event.
3757 */
3758 if (TRPMHasTrap(pVCpu))
3759 vmxHCTrpmTrapToPendingEvent(pVCpu);
3760
3761 uint32_t fIntrState;
3762 rcStrict = vmxHCEvaluatePendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, &fIntrState);
3763
3764 /*
3765 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
3766 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
3767 * also result in triple-faulting the VM.
3768 *
3769 * With nested-guests, the above does not apply since unrestricted guest execution is a
3770 * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
3771 */
3772 rcStrict = vmxHCInjectPendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, fIntrState, fSingleStepping);
3773 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
3774 { /* likely */ }
3775 else
3776 return rcStrict;
3777
3778 int rc = nemR3DarwinExportGuestState(pVM, pVCpu, pVmxTransient);
3779 AssertRCReturn(rc, rc);
3780
3781 LogFlowFunc(("Running vCPU\n"));
3782 pVCpu->nem.s.Event.fPending = false;
3783 return VINF_SUCCESS;
3784}
3785
3786
3787/**
3788 * The normal runloop (no debugging features enabled).
3789 *
3790 * @returns Strict VBox status code.
3791 * @param pVM The cross context VM structure.
3792 * @param pVCpu The cross context virtual CPU structure.
3793 */
3794static VBOXSTRICTRC nemR3DarwinRunGuestNormal(PVM pVM, PVMCPU pVCpu)
3795{
3796 /*
3797 * The run loop.
3798 *
3799 * Current approach to state updating to use the sledgehammer and sync
3800 * everything every time. This will be optimized later.
3801 */
3802 VMXTRANSIENT VmxTransient;
3803 RT_ZERO(VmxTransient);
3804 VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
3805
3806 /*
3807 * Poll timers and run for a bit.
3808 */
3809 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
3810 * the whole polling job when timers have changed... */
3811 uint64_t offDeltaIgnored;
3812 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
3813 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
3814 for (unsigned iLoop = 0;; iLoop++)
3815 {
3816 rcStrict = nemR3DarwinPreRunGuest(pVM, pVCpu, &VmxTransient, false /* fSingleStepping */);
3817 if (rcStrict != VINF_SUCCESS)
3818 break;
3819
3820 hv_return_t hrc = nemR3DarwinRunGuest(pVM, pVCpu, &VmxTransient);
3821 if (hrc == HV_SUCCESS)
3822 {
3823 /*
3824 * Deal with the message.
3825 */
3826 rcStrict = nemR3DarwinHandleExit(pVM, pVCpu, &VmxTransient);
3827 if (rcStrict == VINF_SUCCESS)
3828 { /* hopefully likely */ }
3829 else
3830 {
3831 LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
3832 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
3833 break;
3834 }
3835 }
3836 else
3837 {
3838 AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
3839 pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
3840 VERR_NEM_IPE_0);
3841 }
3842 } /* the run loop */
3843
3844 return rcStrict;
3845}
3846
3847
3848/**
3849 * Checks if any expensive dtrace probes are enabled and we should go to the
3850 * debug loop.
3851 *
3852 * @returns true if we should use debug loop, false if not.
3853 */
3854static bool nemR3DarwinAnyExpensiveProbesEnabled(void)
3855{
3856 /** @todo Check performance penalty when checking these over and over */
3857 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED() /* expensive too due to context */
3858 | VBOXVMM_XCPT_DE_ENABLED()
3859 | VBOXVMM_XCPT_DB_ENABLED()
3860 | VBOXVMM_XCPT_BP_ENABLED()
3861 | VBOXVMM_XCPT_OF_ENABLED()
3862 | VBOXVMM_XCPT_BR_ENABLED()
3863 | VBOXVMM_XCPT_UD_ENABLED()
3864 | VBOXVMM_XCPT_NM_ENABLED()
3865 | VBOXVMM_XCPT_DF_ENABLED()
3866 | VBOXVMM_XCPT_TS_ENABLED()
3867 | VBOXVMM_XCPT_NP_ENABLED()
3868 | VBOXVMM_XCPT_SS_ENABLED()
3869 | VBOXVMM_XCPT_GP_ENABLED()
3870 | VBOXVMM_XCPT_PF_ENABLED()
3871 | VBOXVMM_XCPT_MF_ENABLED()
3872 | VBOXVMM_XCPT_AC_ENABLED()
3873 | VBOXVMM_XCPT_XF_ENABLED()
3874 | VBOXVMM_XCPT_VE_ENABLED()
3875 | VBOXVMM_XCPT_SX_ENABLED()
3876 | VBOXVMM_INT_SOFTWARE_ENABLED()
3877 /* not available in R3 | VBOXVMM_INT_HARDWARE_ENABLED()*/
3878 ) != 0
3879 || ( VBOXVMM_INSTR_HALT_ENABLED()
3880 | VBOXVMM_INSTR_MWAIT_ENABLED()
3881 | VBOXVMM_INSTR_MONITOR_ENABLED()
3882 | VBOXVMM_INSTR_CPUID_ENABLED()
3883 | VBOXVMM_INSTR_INVD_ENABLED()
3884 | VBOXVMM_INSTR_WBINVD_ENABLED()
3885 | VBOXVMM_INSTR_INVLPG_ENABLED()
3886 | VBOXVMM_INSTR_RDTSC_ENABLED()
3887 | VBOXVMM_INSTR_RDTSCP_ENABLED()
3888 | VBOXVMM_INSTR_RDPMC_ENABLED()
3889 | VBOXVMM_INSTR_RDMSR_ENABLED()
3890 | VBOXVMM_INSTR_WRMSR_ENABLED()
3891 | VBOXVMM_INSTR_CRX_READ_ENABLED()
3892 | VBOXVMM_INSTR_CRX_WRITE_ENABLED()
3893 | VBOXVMM_INSTR_DRX_READ_ENABLED()
3894 | VBOXVMM_INSTR_DRX_WRITE_ENABLED()
3895 | VBOXVMM_INSTR_PAUSE_ENABLED()
3896 | VBOXVMM_INSTR_XSETBV_ENABLED()
3897 | VBOXVMM_INSTR_SIDT_ENABLED()
3898 | VBOXVMM_INSTR_LIDT_ENABLED()
3899 | VBOXVMM_INSTR_SGDT_ENABLED()
3900 | VBOXVMM_INSTR_LGDT_ENABLED()
3901 | VBOXVMM_INSTR_SLDT_ENABLED()
3902 | VBOXVMM_INSTR_LLDT_ENABLED()
3903 | VBOXVMM_INSTR_STR_ENABLED()
3904 | VBOXVMM_INSTR_LTR_ENABLED()
3905 | VBOXVMM_INSTR_GETSEC_ENABLED()
3906 | VBOXVMM_INSTR_RSM_ENABLED()
3907 | VBOXVMM_INSTR_RDRAND_ENABLED()
3908 | VBOXVMM_INSTR_RDSEED_ENABLED()
3909 | VBOXVMM_INSTR_XSAVES_ENABLED()
3910 | VBOXVMM_INSTR_XRSTORS_ENABLED()
3911 | VBOXVMM_INSTR_VMM_CALL_ENABLED()
3912 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED()
3913 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED()
3914 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED()
3915 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED()
3916 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED()
3917 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED()
3918 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED()
3919 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED()
3920 | VBOXVMM_INSTR_VMX_VMXON_ENABLED()
3921 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED()
3922 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED()
3923 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED()
3924 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED()
3925 ) != 0
3926 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED()
3927 | VBOXVMM_EXIT_HALT_ENABLED()
3928 | VBOXVMM_EXIT_MWAIT_ENABLED()
3929 | VBOXVMM_EXIT_MONITOR_ENABLED()
3930 | VBOXVMM_EXIT_CPUID_ENABLED()
3931 | VBOXVMM_EXIT_INVD_ENABLED()
3932 | VBOXVMM_EXIT_WBINVD_ENABLED()
3933 | VBOXVMM_EXIT_INVLPG_ENABLED()
3934 | VBOXVMM_EXIT_RDTSC_ENABLED()
3935 | VBOXVMM_EXIT_RDTSCP_ENABLED()
3936 | VBOXVMM_EXIT_RDPMC_ENABLED()
3937 | VBOXVMM_EXIT_RDMSR_ENABLED()
3938 | VBOXVMM_EXIT_WRMSR_ENABLED()
3939 | VBOXVMM_EXIT_CRX_READ_ENABLED()
3940 | VBOXVMM_EXIT_CRX_WRITE_ENABLED()
3941 | VBOXVMM_EXIT_DRX_READ_ENABLED()
3942 | VBOXVMM_EXIT_DRX_WRITE_ENABLED()
3943 | VBOXVMM_EXIT_PAUSE_ENABLED()
3944 | VBOXVMM_EXIT_XSETBV_ENABLED()
3945 | VBOXVMM_EXIT_SIDT_ENABLED()
3946 | VBOXVMM_EXIT_LIDT_ENABLED()
3947 | VBOXVMM_EXIT_SGDT_ENABLED()
3948 | VBOXVMM_EXIT_LGDT_ENABLED()
3949 | VBOXVMM_EXIT_SLDT_ENABLED()
3950 | VBOXVMM_EXIT_LLDT_ENABLED()
3951 | VBOXVMM_EXIT_STR_ENABLED()
3952 | VBOXVMM_EXIT_LTR_ENABLED()
3953 | VBOXVMM_EXIT_GETSEC_ENABLED()
3954 | VBOXVMM_EXIT_RSM_ENABLED()
3955 | VBOXVMM_EXIT_RDRAND_ENABLED()
3956 | VBOXVMM_EXIT_RDSEED_ENABLED()
3957 | VBOXVMM_EXIT_XSAVES_ENABLED()
3958 | VBOXVMM_EXIT_XRSTORS_ENABLED()
3959 | VBOXVMM_EXIT_VMM_CALL_ENABLED()
3960 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED()
3961 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED()
3962 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED()
3963 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED()
3964 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED()
3965 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED()
3966 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED()
3967 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED()
3968 | VBOXVMM_EXIT_VMX_VMXON_ENABLED()
3969 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED()
3970 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED()
3971 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED()
3972 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED()
3973 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED()
3974 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED()
3975 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED()
3976 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED()
3977 ) != 0;
3978}
3979
3980
3981/**
3982 * The debug runloop.
3983 *
3984 * @returns Strict VBox status code.
3985 * @param pVM The cross context VM structure.
3986 * @param pVCpu The cross context virtual CPU structure.
3987 */
3988static VBOXSTRICTRC nemR3DarwinRunGuestDebug(PVM pVM, PVMCPU pVCpu)
3989{
3990 /*
3991 * The run loop.
3992 *
3993 * Current approach to state updating to use the sledgehammer and sync
3994 * everything every time. This will be optimized later.
3995 */
3996 VMXTRANSIENT VmxTransient;
3997 RT_ZERO(VmxTransient);
3998 VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
3999
4000 bool const fSavedSingleInstruction = pVCpu->nem.s.fSingleInstruction;
4001 pVCpu->nem.s.fSingleInstruction = pVCpu->nem.s.fSingleInstruction || DBGFIsStepping(pVCpu);
4002 pVCpu->nem.s.fDebugWantRdTscExit = false;
4003 pVCpu->nem.s.fUsingDebugLoop = true;
4004
4005 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
4006 VMXRUNDBGSTATE DbgState;
4007 vmxHCRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
4008 vmxHCPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
4009
4010 /*
4011 * Poll timers and run for a bit.
4012 */
4013 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
4014 * the whole polling job when timers have changed... */
4015 uint64_t offDeltaIgnored;
4016 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
4017 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
4018 for (unsigned iLoop = 0;; iLoop++)
4019 {
4020 bool fStepping = pVCpu->nem.s.fSingleInstruction;
4021
4022 /* Set up VM-execution controls the next two can respond to. */
4023 vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
4024
4025 rcStrict = nemR3DarwinPreRunGuest(pVM, pVCpu, &VmxTransient, fStepping);
4026 if (rcStrict != VINF_SUCCESS)
4027 break;
4028
4029 /* Override any obnoxious code in the above call. */
4030 vmxHCPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
4031
4032 hv_return_t hrc = nemR3DarwinRunGuest(pVM, pVCpu, &VmxTransient);
4033 if (hrc == HV_SUCCESS)
4034 {
4035 /*
4036 * Deal with the message.
4037 */
4038 rcStrict = nemR3DarwinHandleExitDebug(pVM, pVCpu, &VmxTransient, &DbgState);
4039 if (rcStrict == VINF_SUCCESS)
4040 { /* hopefully likely */ }
4041 else
4042 {
4043 LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExitDebug -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
4044 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
4045 break;
4046 }
4047
4048 /*
4049 * Stepping: Did the RIP change, if so, consider it a single step.
4050 * Otherwise, make sure one of the TFs gets set.
4051 */
4052 if (fStepping)
4053 {
4054 int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
4055 AssertRC(rc);
4056 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
4057 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
4058 {
4059 rcStrict = VINF_EM_DBG_STEPPED;
4060 break;
4061 }
4062 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
4063 }
4064 }
4065 else
4066 {
4067 AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
4068 pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
4069 VERR_NEM_IPE_0);
4070 }
4071 } /* the run loop */
4072
4073 /*
4074 * Clear the X86_EFL_TF if necessary.
4075 */
4076 if (pVCpu->nem.s.fClearTrapFlag)
4077 {
4078 int rc = vmxHCImportGuestStateEx(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
4079 AssertRC(rc);
4080 pVCpu->nem.s.fClearTrapFlag = false;
4081 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
4082 }
4083
4084 pVCpu->nem.s.fUsingDebugLoop = false;
4085 pVCpu->nem.s.fDebugWantRdTscExit = false;
4086 pVCpu->nem.s.fSingleInstruction = fSavedSingleInstruction;
4087
4088 /* Restore all controls applied by vmxHCPreRunGuestDebugStateApply above. */
4089 return vmxHCRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
4090}
4091
4092
4093VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
4094{
4095 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u));
4096#ifdef LOG_ENABLED
4097 if (LogIs3Enabled())
4098 nemR3DarwinLogState(pVM, pVCpu);
4099#endif
4100
4101 AssertReturn(NEMR3CanExecuteGuest(pVM, pVCpu), VERR_NEM_IPE_9);
4102
4103 /*
4104 * Try switch to NEM runloop state.
4105 */
4106 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
4107 { /* likely */ }
4108 else
4109 {
4110 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
4111 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
4112 return VINF_SUCCESS;
4113 }
4114
4115 VBOXSTRICTRC rcStrict;
4116 if ( !pVCpu->nem.s.fUseDebugLoop
4117 && !nemR3DarwinAnyExpensiveProbesEnabled()
4118 && !DBGFIsStepping(pVCpu)
4119 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
4120 rcStrict = nemR3DarwinRunGuestNormal(pVM, pVCpu);
4121 else
4122 rcStrict = nemR3DarwinRunGuestDebug(pVM, pVCpu);
4123
4124 if (rcStrict == VINF_EM_RAW_TO_R3)
4125 rcStrict = VINF_SUCCESS;
4126
4127 /*
4128 * Convert any pending HM events back to TRPM due to premature exits.
4129 *
4130 * This is because execution may continue from IEM and we would need to inject
4131 * the event from there (hence place it back in TRPM).
4132 */
4133 if (pVCpu->nem.s.Event.fPending)
4134 {
4135 vmxHCPendingEventToTrpmTrap(pVCpu);
4136 Assert(!pVCpu->nem.s.Event.fPending);
4137
4138 /* Clear the events from the VMCS. */
4139 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
4140 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
4141 }
4142
4143
4144 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
4145 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
4146
4147 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL))
4148 {
4149 /* Try anticipate what we might need. */
4150 uint64_t fImport = NEM_DARWIN_CPUMCTX_EXTRN_MASK_FOR_IEM;
4151 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
4152 || RT_FAILURE(rcStrict))
4153 fImport = CPUMCTX_EXTRN_ALL;
4154 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
4155 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
4156 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
4157
4158 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
4159 {
4160 /* Only import what is external currently. */
4161 int rc2 = nemR3DarwinCopyStateFromHv(pVM, pVCpu, fImport);
4162 if (RT_SUCCESS(rc2))
4163 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
4164 else if (RT_SUCCESS(rcStrict))
4165 rcStrict = rc2;
4166 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
4167 {
4168 pVCpu->cpum.GstCtx.fExtrn = 0;
4169 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4170 }
4171 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
4172 }
4173 else
4174 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
4175 }
4176 else
4177 {
4178 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
4179 pVCpu->cpum.GstCtx.fExtrn = 0;
4180 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
4181 }
4182
4183 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
4184 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags.u, VBOXSTRICTRC_VAL(rcStrict) ));
4185 return rcStrict;
4186}
4187
4188
4189VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
4190{
4191 NOREF(pVM);
4192 return PGMPhysIsA20Enabled(pVCpu);
4193}
4194
4195
4196bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
4197{
4198 VMCPU_ASSERT_EMT(pVCpu);
4199 bool fOld = pVCpu->nem.s.fSingleInstruction;
4200 pVCpu->nem.s.fSingleInstruction = fEnable;
4201 pVCpu->nem.s.fUseDebugLoop = fEnable || pVM->nem.s.fUseDebugLoop;
4202 return fOld;
4203}
4204
4205
4206void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
4207{
4208 LogFlowFunc(("pVM=%p pVCpu=%p fFlags=%#x\n", pVM, pVCpu, fFlags));
4209
4210 RT_NOREF(pVM, fFlags);
4211
4212 hv_return_t hrc = hv_vcpu_interrupt(&pVCpu->nem.s.hVCpuId, 1);
4213 if (hrc != HV_SUCCESS)
4214 LogRel(("NEM: hv_vcpu_interrupt(%u, 1) failed with %#x\n", pVCpu->nem.s.hVCpuId, hrc));
4215}
4216
4217
4218DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChanged(PVM pVM, bool fUseDebugLoop)
4219{
4220 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
4221 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
4222 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
4223 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
4224
4225 return fUseDebugLoop;
4226}
4227
4228
4229DECLHIDDEN(bool) nemR3NativeNotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu, bool fUseDebugLoop)
4230{
4231 RT_NOREF(pVM, pVCpu);
4232 return fUseDebugLoop;
4233}
4234
4235
4236VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
4237 uint8_t *pu2State, uint32_t *puNemRange)
4238{
4239 RT_NOREF(pVM, puNemRange);
4240
4241 Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p\n", GCPhys, cb, pvR3));
4242#if defined(VBOX_WITH_PGM_NEM_MODE)
4243 if (pvR3)
4244 {
4245 int rc = nemR3DarwinMap(pVM, GCPhys, pvR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
4246 if (RT_FAILURE(rc))
4247 {
4248 LogRel(("NEMR3NotifyPhysRamRegister: GCPhys=%RGp LB %RGp pvR3=%p rc=%Rrc\n", GCPhys, cb, pvR3, rc));
4249 return VERR_NEM_MAP_PAGES_FAILED;
4250 }
4251 }
4252 return VINF_SUCCESS;
4253#else
4254 RT_NOREF(pVM, GCPhys, cb, pvR3);
4255 return VERR_NEM_MAP_PAGES_FAILED;
4256#endif
4257}
4258
4259
4260VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
4261{
4262 RT_NOREF(pVM);
4263 return false;
4264}
4265
4266
4267VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
4268 void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
4269{
4270 RT_NOREF(pVM, puNemRange, pvRam, fFlags);
4271
4272 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d)\n",
4273 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State));
4274
4275#if defined(VBOX_WITH_PGM_NEM_MODE)
4276 /*
4277 * Unmap the RAM we're replacing.
4278 */
4279 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
4280 {
4281 int rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
4282 if (RT_SUCCESS(rc))
4283 { /* likely */ }
4284 else if (pvMmio2)
4285 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rc(ignored)\n",
4286 GCPhys, cb, fFlags, rc));
4287 else
4288 {
4289 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
4290 GCPhys, cb, fFlags, rc));
4291 return VERR_NEM_UNMAP_PAGES_FAILED;
4292 }
4293 }
4294
4295 /*
4296 * Map MMIO2 if any.
4297 */
4298 if (pvMmio2)
4299 {
4300 Assert(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2);
4301 int rc = nemR3DarwinMap(pVM, GCPhys, pvMmio2, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE, pu2State);
4302 if (RT_FAILURE(rc))
4303 {
4304 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x pvMmio2=%p: Map -> rc=%Rrc\n",
4305 GCPhys, cb, fFlags, pvMmio2, rc));
4306 return VERR_NEM_MAP_PAGES_FAILED;
4307 }
4308 }
4309 else
4310 Assert(!(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2));
4311
4312#else
4313 RT_NOREF(pVM, GCPhys, cb, pvRam, pvMmio2);
4314 *pu2State = (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) ? UINT8_MAX : NEM_DARWIN_PAGE_STATE_UNMAPPED;
4315#endif
4316 return VINF_SUCCESS;
4317}
4318
4319
4320VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
4321 void *pvRam, void *pvMmio2, uint32_t *puNemRange)
4322{
4323 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
4324 return VINF_SUCCESS;
4325}
4326
4327
4328VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
4329 void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
4330{
4331 RT_NOREF(pVM, puNemRange);
4332
4333 Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p uNemRange=%#x (%#x)\n",
4334 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
4335
4336 int rc = VINF_SUCCESS;
4337#if defined(VBOX_WITH_PGM_NEM_MODE)
4338 /*
4339 * Unmap the MMIO2 pages.
4340 */
4341 /** @todo If we implement aliasing (MMIO2 page aliased into MMIO range),
4342 * we may have more stuff to unmap even in case of pure MMIO... */
4343 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
4344 {
4345 rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
4346 if (RT_FAILURE(rc))
4347 {
4348 LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
4349 GCPhys, cb, fFlags, rc));
4350 return VERR_NEM_UNMAP_PAGES_FAILED;
4351 }
4352 }
4353
4354 /* Ensure the page is masked as unmapped if relevant. */
4355 Assert(!pu2State || *pu2State == NEM_DARWIN_PAGE_STATE_UNMAPPED);
4356
4357 /*
4358 * Restore the RAM we replaced.
4359 */
4360 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
4361 {
4362 AssertPtr(pvRam);
4363 rc = nemR3DarwinMap(pVM, GCPhys, pvRam, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE, pu2State);
4364 if (RT_SUCCESS(rc))
4365 { /* likely */ }
4366 else
4367 {
4368 LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp pvMmio2=%p rc=%Rrc\n", GCPhys, cb, pvMmio2, rc));
4369 rc = VERR_NEM_MAP_PAGES_FAILED;
4370 }
4371 }
4372
4373 RT_NOREF(pvMmio2);
4374#else
4375 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
4376 if (pu2State)
4377 *pu2State = UINT8_MAX;
4378 rc = VERR_NEM_UNMAP_PAGES_FAILED;
4379#endif
4380 return rc;
4381}
4382
4383
4384VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
4385 void *pvBitmap, size_t cbBitmap)
4386{
4387 RT_NOREF(pVM, GCPhys, cb, uNemRange, pvBitmap, cbBitmap);
4388 AssertFailed();
4389 return VERR_NOT_IMPLEMENTED;
4390}
4391
4392
4393VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
4394 uint8_t *pu2State, uint32_t *puNemRange)
4395{
4396 RT_NOREF(pvPages);
4397
4398 Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
4399 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
4400 if (fFlags & NEM_NOTIFY_PHYS_ROM_F_REPLACE)
4401 {
4402 int rc = nemR3DarwinUnmap(pVM, GCPhys, cb, pu2State);
4403 if (RT_FAILURE(rc))
4404 {
4405 LogRel(("NEMR3NotifyPhysRomRegisterLate: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
4406 GCPhys, cb, fFlags, rc));
4407 return VERR_NEM_UNMAP_PAGES_FAILED;
4408 }
4409 }
4410
4411 *puNemRange = 0;
4412 return VINF_SUCCESS;
4413}
4414
4415
4416VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
4417 uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
4418{
4419 Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
4420 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
4421 *pu2State = UINT8_MAX;
4422 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
4423 return VINF_SUCCESS;
4424}
4425
4426
4427VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
4428 RTR3PTR pvMemR3, uint8_t *pu2State)
4429{
4430 Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
4431 GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
4432 *pu2State = UINT8_MAX;
4433 RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
4434}
4435
4436
4437VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
4438{
4439 Log(("NEMR3NotifySetA20: fEnabled=%RTbool\n", fEnabled));
4440 RT_NOREF(pVCpu, fEnabled);
4441}
4442
4443
4444void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
4445{
4446 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
4447 NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
4448}
4449
4450
4451void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
4452 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
4453{
4454 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
4455 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
4456 NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
4457}
4458
4459
4460int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
4461 PGMPAGETYPE enmType, uint8_t *pu2State)
4462{
4463 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4464 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
4465 RT_NOREF(HCPhys, fPageProt, enmType);
4466
4467 return nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE, pu2State);
4468}
4469
4470
4471VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
4472 PGMPAGETYPE enmType, uint8_t *pu2State)
4473{
4474 Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp pvR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n",
4475 GCPhys, HCPhys, pvR3, fPageProt, enmType, *pu2State));
4476 RT_NOREF(HCPhys, pvR3, fPageProt, enmType)
4477
4478 uint8_t u2StateOld = *pu2State;
4479 /* Can return early if this is an unmap request and the page is not mapped. */
4480 if ( fPageProt == NEM_PAGE_PROT_NONE
4481 && u2StateOld == NEM_DARWIN_PAGE_STATE_UNMAPPED)
4482 {
4483 Assert(!pvR3);
4484 return;
4485 }
4486
4487 int rc;
4488 if (u2StateOld == NEM_DARWIN_PAGE_STATE_UNMAPPED)
4489 {
4490 AssertPtr(pvR3);
4491 rc = nemR3DarwinMap(pVM, GCPhys, pvR3, X86_PAGE_SIZE, fPageProt, pu2State);
4492 }
4493 else
4494 rc = nemR3DarwinProtect(pVM, GCPhys, X86_PAGE_SIZE, fPageProt, pu2State);
4495 AssertLogRelMsgRC(rc, ("NEMHCNotifyPhysPageProtChanged: nemR3DarwinMap/nemR3DarwinProtect(,%p,%RGp,%RGp,) u2StateOld=%u -> %Rrc\n",
4496 pvR3, GCPhys, X86_PAGE_SIZE, u2StateOld, rc));
4497}
4498
4499
4500VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
4501 RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
4502{
4503 Log5(("NEMHCNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
4504 GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
4505 RT_NOREF(HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType);
4506
4507 int rc = nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE, pu2State);
4508 if (RT_SUCCESS(rc))
4509 {
4510 rc = nemR3DarwinMap(pVM, GCPhys, pvNewR3, X86_PAGE_SIZE, fPageProt, pu2State);
4511 AssertLogRelMsgRC(rc, ("NEMHCNotifyPhysPageChanged: nemR3DarwinMap(,%p,%RGp,%RGp,) -> %Rrc\n",
4512 pvNewR3, GCPhys, X86_PAGE_SIZE, rc));
4513 }
4514 else
4515 AssertReleaseFailed();
4516}
4517
4518
4519/**
4520 * Interface for importing state on demand (used by IEM).
4521 *
4522 * @returns VBox status code.
4523 * @param pVCpu The cross context CPU structure.
4524 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
4525 */
4526VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
4527{
4528 LogFlowFunc(("pVCpu=%p fWhat=%RX64\n", pVCpu, fWhat));
4529 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
4530
4531 return nemR3DarwinCopyStateFromHv(pVCpu->pVMR3, pVCpu, fWhat);
4532}
4533
4534
4535/**
4536 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
4537 *
4538 * @returns VBox status code.
4539 * @param pVCpu The cross context CPU structure.
4540 * @param pcTicks Where to return the CPU tick count.
4541 * @param puAux Where to return the TSC_AUX register value.
4542 */
4543VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
4544{
4545 LogFlowFunc(("pVCpu=%p pcTicks=%RX64 puAux=%RX32\n", pVCpu, pcTicks, puAux));
4546 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
4547
4548 int rc = nemR3DarwinMsrRead(pVCpu, MSR_IA32_TSC, pcTicks);
4549 if ( RT_SUCCESS(rc)
4550 && puAux)
4551 {
4552 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX)
4553 {
4554 uint64_t u64Aux;
4555 rc = nemR3DarwinMsrRead(pVCpu, MSR_K8_TSC_AUX, &u64Aux);
4556 if (RT_SUCCESS(rc))
4557 *puAux = (uint32_t)u64Aux;
4558 }
4559 else
4560 *puAux = CPUMGetGuestTscAux(pVCpu);
4561 }
4562
4563 return rc;
4564}
4565
4566
4567/**
4568 * Resumes CPU clock (TSC) on all virtual CPUs.
4569 *
4570 * This is called by TM when the VM is started, restored, resumed or similar.
4571 *
4572 * @returns VBox status code.
4573 * @param pVM The cross context VM structure.
4574 * @param pVCpu The cross context CPU structure of the calling EMT.
4575 * @param uPausedTscValue The TSC value at the time of pausing.
4576 */
4577VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
4578{
4579 LogFlowFunc(("pVM=%p pVCpu=%p uPausedTscValue=%RX64\n", pVCpu, uPausedTscValue));
4580 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
4581 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
4582
4583 hv_return_t hrc = hv_vm_sync_tsc(uPausedTscValue);
4584 if (RT_LIKELY(hrc == HV_SUCCESS))
4585 {
4586 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
4587 return VINF_SUCCESS;
4588 }
4589
4590 return nemR3DarwinHvSts2Rc(hrc);
4591}
4592
4593
4594/**
4595 * Returns features supported by the NEM backend.
4596 *
4597 * @returns Flags of features supported by the native NEM backend.
4598 * @param pVM The cross context VM structure.
4599 */
4600VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
4601{
4602 RT_NOREF(pVM);
4603 /*
4604 * Apple's Hypervisor.framework is not supported if the CPU doesn't support nested paging
4605 * and unrestricted guest execution support so we can safely return these flags here always.
4606 */
4607 return NEM_FEAT_F_NESTED_PAGING | NEM_FEAT_F_FULL_GST_EXEC | NEM_FEAT_F_XSAVE_XRSTOR;
4608}
4609
4610
4611/** @page pg_nem_darwin NEM/darwin - Native Execution Manager, macOS.
4612 *
4613 * @todo Add notes as the implementation progresses...
4614 */
4615
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette