VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 94961

Last change on this file since 94961 was 94946, checked in by vboxsync, 3 years ago

VMM/HM: Use g_CpumHostFeatures instead of the copy in the VM structure. [arm build fix] bugref:10093

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 158.2 KB
Line 
1/* $Id: HM.cpp 94946 2022-05-09 10:38:40Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_hm HM - Hardware Assisted Virtualization Manager
19 *
20 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
21 * extensions.
22 *
23 * {summary of what HM does}
24 *
25 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
26 * however that was cumbersome to write and parse for such a central component,
27 * so it was shortened to HM when refactoring the code in the 4.3 development
28 * cycle.
29 *
30 * {add sections with more details}
31 *
32 * @sa @ref grp_hm
33 */
34
35
36/*********************************************************************************************************************************
37* Header Files *
38*********************************************************************************************************************************/
39#define LOG_GROUP LOG_GROUP_HM
40#define VMCPU_INCL_CPUM_GST_CTX
41#include <VBox/vmm/cpum.h>
42#include <VBox/vmm/stam.h>
43#include <VBox/vmm/em.h>
44#include <VBox/vmm/pdmapi.h>
45#include <VBox/vmm/pgm.h>
46#include <VBox/vmm/ssm.h>
47#include <VBox/vmm/gim.h>
48#include <VBox/vmm/gcm.h>
49#include <VBox/vmm/trpm.h>
50#include <VBox/vmm/dbgf.h>
51#include <VBox/vmm/iom.h>
52#include <VBox/vmm/iem.h>
53#include <VBox/vmm/selm.h>
54#include <VBox/vmm/nem.h>
55#include <VBox/vmm/hm_vmx.h>
56#include <VBox/vmm/hm_svm.h>
57#include "HMInternal.h"
58#include <VBox/vmm/vmcc.h>
59#include <VBox/err.h>
60#include <VBox/param.h>
61
62#include <iprt/assert.h>
63#include <VBox/log.h>
64#include <iprt/asm.h>
65#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
66# include <iprt/asm-amd64-x86.h>
67#endif
68#include <iprt/env.h>
69#include <iprt/thread.h>
70
71
72/*********************************************************************************************************************************
73* Defined Constants And Macros *
74*********************************************************************************************************************************/
75/** @def HMVMX_REPORT_FEAT
76 * Reports VT-x feature to the release log.
77 *
78 * @param a_uAllowed1 Mask of allowed-1 feature bits.
79 * @param a_uAllowed0 Mask of allowed-0 feature bits.
80 * @param a_StrDesc The description string to report.
81 * @param a_Featflag Mask of the feature to report.
82 */
83#define HMVMX_REPORT_FEAT(a_uAllowed1, a_uAllowed0, a_StrDesc, a_Featflag) \
84 do { \
85 if ((a_uAllowed1) & (a_Featflag)) \
86 { \
87 if ((a_uAllowed0) & (a_Featflag)) \
88 LogRel(("HM: " a_StrDesc " (must be set)\n")); \
89 else \
90 LogRel(("HM: " a_StrDesc "\n")); \
91 } \
92 else \
93 LogRel(("HM: " a_StrDesc " (must be cleared)\n")); \
94 } while (0)
95
96/** @def HMVMX_REPORT_ALLOWED_FEAT
97 * Reports an allowed VT-x feature to the release log.
98 *
99 * @param a_uAllowed1 Mask of allowed-1 feature bits.
100 * @param a_StrDesc The description string to report.
101 * @param a_FeatFlag Mask of the feature to report.
102 */
103#define HMVMX_REPORT_ALLOWED_FEAT(a_uAllowed1, a_StrDesc, a_FeatFlag) \
104 do { \
105 if ((a_uAllowed1) & (a_FeatFlag)) \
106 LogRel(("HM: " a_StrDesc "\n")); \
107 else \
108 LogRel(("HM: " a_StrDesc " not supported\n")); \
109 } while (0)
110
111/** @def HMVMX_REPORT_MSR_CAP
112 * Reports MSR feature capability.
113 *
114 * @param a_MsrCaps Mask of MSR feature bits.
115 * @param a_StrDesc The description string to report.
116 * @param a_fCap Mask of the feature to report.
117 */
118#define HMVMX_REPORT_MSR_CAP(a_MsrCaps, a_StrDesc, a_fCap) \
119 do { \
120 if ((a_MsrCaps) & (a_fCap)) \
121 LogRel(("HM: " a_StrDesc "\n")); \
122 } while (0)
123
124/** @def HMVMX_LOGREL_FEAT
125 * Dumps a feature flag from a bitmap of features to the release log.
126 *
127 * @param a_fVal The value of all the features.
128 * @param a_fMask The specific bitmask of the feature.
129 */
130#define HMVMX_LOGREL_FEAT(a_fVal, a_fMask) \
131 do { \
132 if ((a_fVal) & (a_fMask)) \
133 LogRel(("HM: %s\n", #a_fMask)); \
134 } while (0)
135
136
137/*********************************************************************************************************************************
138* Internal Functions *
139*********************************************************************************************************************************/
140static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
141static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
142static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
143static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
144static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
145static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
146static int hmR3InitFinalizeR3(PVM pVM);
147static int hmR3InitFinalizeR0(PVM pVM);
148static int hmR3InitFinalizeR0Intel(PVM pVM);
149static int hmR3InitFinalizeR0Amd(PVM pVM);
150static int hmR3TermCPU(PVM pVM);
151
152
153#ifdef VBOX_WITH_STATISTICS
154/**
155 * Returns the name of the hardware exception.
156 *
157 * @returns The name of the hardware exception.
158 * @param uVector The exception vector.
159 */
160static const char *hmR3GetXcptName(uint8_t uVector)
161{
162 switch (uVector)
163 {
164 case X86_XCPT_DE: return "#DE";
165 case X86_XCPT_DB: return "#DB";
166 case X86_XCPT_NMI: return "#NMI";
167 case X86_XCPT_BP: return "#BP";
168 case X86_XCPT_OF: return "#OF";
169 case X86_XCPT_BR: return "#BR";
170 case X86_XCPT_UD: return "#UD";
171 case X86_XCPT_NM: return "#NM";
172 case X86_XCPT_DF: return "#DF";
173 case X86_XCPT_CO_SEG_OVERRUN: return "#CO_SEG_OVERRUN";
174 case X86_XCPT_TS: return "#TS";
175 case X86_XCPT_NP: return "#NP";
176 case X86_XCPT_SS: return "#SS";
177 case X86_XCPT_GP: return "#GP";
178 case X86_XCPT_PF: return "#PF";
179 case X86_XCPT_MF: return "#MF";
180 case X86_XCPT_AC: return "#AC";
181 case X86_XCPT_MC: return "#MC";
182 case X86_XCPT_XF: return "#XF";
183 case X86_XCPT_VE: return "#VE";
184 case X86_XCPT_CP: return "#CP";
185 case X86_XCPT_VC: return "#VC";
186 case X86_XCPT_SX: return "#SX";
187 }
188 return "Reserved";
189}
190#endif /* VBOX_WITH_STATISTICS */
191
192
193/**
194 * Initializes the HM.
195 *
196 * This is the very first component to really do init after CFGM so that we can
197 * establish the predominant execution engine for the VM prior to initializing
198 * other modules. It takes care of NEM initialization if needed (HM disabled or
199 * not available in HW).
200 *
201 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
202 * hypervisor API via NEM, and then back on raw-mode if that isn't available
203 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
204 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
205 * X, OS/2 and others).
206 *
207 * Note that a lot of the set up work is done in ring-0 and thus postponed till
208 * the ring-3 and ring-0 callback to HMR3InitCompleted.
209 *
210 * @returns VBox status code.
211 * @param pVM The cross context VM structure.
212 *
213 * @remarks Be careful with what we call here, since most of the VMM components
214 * are uninitialized.
215 */
216VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
217{
218 LogFlowFunc(("\n"));
219
220 /*
221 * Assert alignment and sizes.
222 */
223 AssertCompileMemberAlignment(VM, hm.s, 32);
224 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
225
226 /*
227 * Register the saved state data unit.
228 */
229 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
230 NULL, NULL, NULL,
231 NULL, hmR3Save, NULL,
232 NULL, hmR3Load, NULL);
233 if (RT_FAILURE(rc))
234 return rc;
235
236 /*
237 * Read configuration.
238 */
239 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
240
241 /*
242 * Validate the HM settings.
243 */
244 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
245 "HMForced" /* implied 'true' these days */
246 "|UseNEMInstead"
247 "|FallbackToNEM"
248 "|FallbackToIEM"
249 "|EnableNestedPaging"
250 "|EnableUX"
251 "|EnableLargePages"
252 "|EnableVPID"
253 "|IBPBOnVMExit"
254 "|IBPBOnVMEntry"
255 "|SpecCtrlByHost"
256 "|L1DFlushOnSched"
257 "|L1DFlushOnVMEntry"
258 "|MDSClearOnSched"
259 "|MDSClearOnVMEntry"
260 "|TPRPatchingEnabled"
261 "|64bitEnabled"
262 "|Exclusive"
263 "|MaxResumeLoops"
264 "|VmxPleGap"
265 "|VmxPleWindow"
266 "|VmxLbr"
267 "|UseVmxPreemptTimer"
268 "|SvmPauseFilter"
269 "|SvmPauseFilterThreshold"
270 "|SvmVirtVmsaveVmload"
271 "|SvmVGif"
272 "|LovelyMesaDrvWorkaround"
273 "|MissingOS2TlbFlushWorkaround",
274 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
275 if (RT_FAILURE(rc))
276 return rc;
277
278 /** @cfgm{/HM/HMForced, bool, false}
279 * Forces hardware virtualization, no falling back on raw-mode. HM must be
280 * enabled, i.e. /HMEnabled must be true. */
281 bool const fHMForced = true;
282#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
283 AssertRelease(pVM->fHMEnabled);
284#else
285 AssertRelease(!pVM->fHMEnabled);
286#endif
287
288 /** @cfgm{/HM/UseNEMInstead, bool, true}
289 * Don't use HM, use NEM instead. */
290 bool fUseNEMInstead = false;
291 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
292 AssertRCReturn(rc, rc);
293 if (fUseNEMInstead && pVM->fHMEnabled)
294 {
295 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
296 pVM->fHMEnabled = false;
297 }
298
299 /** @cfgm{/HM/FallbackToNEM, bool, true}
300 * Enables fallback on NEM. */
301 bool fFallbackToNEM = true;
302 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
303 AssertRCReturn(rc, rc);
304
305 /** @cfgm{/HM/FallbackToIEM, bool, false on AMD64 else true }
306 * Enables fallback on NEM. */
307#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
308 bool fFallbackToIEM = false;
309#else
310 bool fFallbackToIEM = true;
311#endif
312 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToIEM", &fFallbackToIEM, fFallbackToIEM);
313 AssertRCReturn(rc, rc);
314
315 /** @cfgm{/HM/EnableNestedPaging, bool, false}
316 * Enables nested paging (aka extended page tables). */
317 bool fAllowNestedPaging = false;
318 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &fAllowNestedPaging, false);
319 AssertRCReturn(rc, rc);
320
321 /** @cfgm{/HM/EnableUX, bool, true}
322 * Enables the VT-x unrestricted execution feature. */
323 bool fAllowUnrestricted = true;
324 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &fAllowUnrestricted, true);
325 AssertRCReturn(rc, rc);
326
327 /** @cfgm{/HM/EnableLargePages, bool, false}
328 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
329 * page table walking and maybe better TLB hit rate in some cases. */
330 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
331 AssertRCReturn(rc, rc);
332
333 /** @cfgm{/HM/EnableVPID, bool, false}
334 * Enables the VT-x VPID feature. */
335 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
336 AssertRCReturn(rc, rc);
337
338 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
339 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
340 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
341 AssertRCReturn(rc, rc);
342
343 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
344 * Enables AMD64 cpu features.
345 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
346 * already have the support. */
347#ifdef VBOX_WITH_64_BITS_GUESTS
348 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuestsCfg, HC_ARCH_BITS == 64);
349 AssertLogRelRCReturn(rc, rc);
350#else
351 pVM->hm.s.fAllow64BitGuestsCfg = false;
352#endif
353
354 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
355 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
356 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
357 * latest PAUSE instruction to be start of a new PAUSE loop.
358 */
359 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
360 AssertRCReturn(rc, rc);
361
362 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
363 * The pause-filter exiting window in TSC ticks. When the number of ticks
364 * between the current PAUSE instruction and first PAUSE of a loop exceeds
365 * VmxPleWindow, a VM-exit is triggered.
366 *
367 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
368 */
369 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
370 AssertRCReturn(rc, rc);
371
372 /** @cfgm{/HM/VmxLbr, bool, false}
373 * Whether to enable LBR for the guest. This is disabled by default as it's only
374 * useful while debugging and enabling it causes a noticeable performance hit. */
375 rc = CFGMR3QueryBoolDef(pCfgHm, "VmxLbr", &pVM->hm.s.vmx.fLbrCfg, false);
376 AssertRCReturn(rc, rc);
377
378 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
379 * A counter that is decrement each time a PAUSE instruction is executed by the
380 * guest. When the counter is 0, a \#VMEXIT is triggered.
381 *
382 * Setting SvmPauseFilterCount to 0 disables pause-filter exiting.
383 */
384 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
385 AssertRCReturn(rc, rc);
386
387 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
388 * The pause filter threshold in ticks. When the elapsed time (in ticks) between
389 * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the
390 * PauseFilter count is reset to its initial value. However, if PAUSE is
391 * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will
392 * be triggered.
393 *
394 * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be
395 * activated.
396 */
397 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
398 AssertRCReturn(rc, rc);
399
400 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
401 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
402 * available. */
403 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
404 AssertRCReturn(rc, rc);
405
406 /** @cfgm{/HM/SvmVGif, bool, true}
407 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
408 * if it's available. */
409 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
410 AssertRCReturn(rc, rc);
411
412 /** @cfgm{/HM/SvmLbrVirt, bool, false}
413 * Whether to make use of the LBR virtualization feature of the CPU if it's
414 * available. This is disabled by default as it's only useful while debugging
415 * and enabling it causes a small hit to performance. */
416 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmLbrVirt", &pVM->hm.s.svm.fLbrVirt, false);
417 AssertRCReturn(rc, rc);
418
419 /** @cfgm{/HM/Exclusive, bool}
420 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
421 * global init for each host CPU. If false, we do local init each time we wish
422 * to execute guest code.
423 *
424 * On Windows, default is false due to the higher risk of conflicts with other
425 * hypervisors.
426 *
427 * On Mac OS X, this setting is ignored since the code does not handle local
428 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
429 */
430#if defined(RT_OS_DARWIN)
431 pVM->hm.s.fGlobalInit = true;
432#else
433 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
434# if defined(RT_OS_WINDOWS)
435 false
436# else
437 true
438# endif
439 );
440 AssertLogRelRCReturn(rc, rc);
441#endif
442
443 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
444 * The number of times to resume guest execution before we forcibly return to
445 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
446 * determines the default value. */
447 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoopsCfg, 0 /* set by R0 later */);
448 AssertLogRelRCReturn(rc, rc);
449
450 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
451 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
452 * available. */
453 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimerCfg, true);
454 AssertLogRelRCReturn(rc, rc);
455
456 /** @cfgm{/HM/IBPBOnVMExit, bool}
457 * Costly paranoia setting. */
458 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
459 AssertLogRelRCReturn(rc, rc);
460
461 /** @cfgm{/HM/IBPBOnVMEntry, bool}
462 * Costly paranoia setting. */
463 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
464 AssertLogRelRCReturn(rc, rc);
465
466 /** @cfgm{/HM/L1DFlushOnSched, bool, true}
467 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
468 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnSched", &pVM->hm.s.fL1dFlushOnSched, true);
469 AssertLogRelRCReturn(rc, rc);
470
471 /** @cfgm{/HM/L1DFlushOnVMEntry, bool}
472 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
473 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnVMEntry", &pVM->hm.s.fL1dFlushOnVmEntry, false);
474 AssertLogRelRCReturn(rc, rc);
475
476 /* Disable L1DFlushOnSched if L1DFlushOnVMEntry is enabled. */
477 if (pVM->hm.s.fL1dFlushOnVmEntry)
478 pVM->hm.s.fL1dFlushOnSched = false;
479
480 /** @cfgm{/HM/SpecCtrlByHost, bool}
481 * Another expensive paranoia setting. */
482 rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false);
483 AssertLogRelRCReturn(rc, rc);
484
485 /** @cfgm{/HM/MDSClearOnSched, bool, true}
486 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
487 * ignored on CPUs that aren't affected. */
488 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnSched", &pVM->hm.s.fMdsClearOnSched, true);
489 AssertLogRelRCReturn(rc, rc);
490
491 /** @cfgm{/HM/MDSClearOnVmEntry, bool, false}
492 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
493 * ignored on CPUs that aren't affected. */
494 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnVmEntry", &pVM->hm.s.fMdsClearOnVmEntry, false);
495 AssertLogRelRCReturn(rc, rc);
496
497 /* Disable MDSClearOnSched if MDSClearOnVmEntry is enabled. */
498 if (pVM->hm.s.fMdsClearOnVmEntry)
499 pVM->hm.s.fMdsClearOnSched = false;
500
501 /** @cfgm{/HM/LovelyMesaDrvWorkaround,bool}
502 * Workaround for mesa vmsvga 3d driver making incorrect assumptions about
503 * the hypervisor it is running under. */
504 bool fMesaWorkaround;
505 rc = CFGMR3QueryBoolDef(pCfgHm, "LovelyMesaDrvWorkaround", &fMesaWorkaround, false);
506 AssertLogRelRCReturn(rc, rc);
507 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
508 {
509 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
510 pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv = fMesaWorkaround;
511 }
512
513 /** @cfgm{/HM/MissingOS2TlbFlushWorkaround,bool}
514 * Workaround OS/2 not flushing the TLB after page directory and page table
515 * modifications when returning to protected mode from a real mode call
516 * (TESTCFG.SYS typically crashes). See ticketref:20625 for details. */
517 rc = CFGMR3QueryBoolDef(pCfgHm, "MissingOS2TlbFlushWorkaround", &pVM->hm.s.fMissingOS2TlbFlushWorkaround, false);
518 AssertLogRelRCReturn(rc, rc);
519
520 /*
521 * Check if VT-x or AMD-v support according to the users wishes.
522 */
523 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
524 * VERR_SVM_IN_USE. */
525 if (pVM->fHMEnabled)
526 {
527 uint32_t fCaps;
528 rc = SUPR3QueryVTCaps(&fCaps);
529 if (RT_SUCCESS(rc))
530 {
531 if (fCaps & SUPVTCAPS_AMD_V)
532 {
533 pVM->hm.s.svm.fSupported = true;
534 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
535 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
536 }
537 else if (fCaps & SUPVTCAPS_VT_X)
538 {
539 const char *pszWhy;
540 rc = SUPR3QueryVTxSupported(&pszWhy);
541 if (RT_SUCCESS(rc))
542 {
543 pVM->hm.s.vmx.fSupported = true;
544 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
545 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
546 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
547 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
548 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
549 }
550 else
551 {
552 /*
553 * Before failing, try fallback to NEM if we're allowed to do that.
554 */
555 pVM->fHMEnabled = false;
556 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
557 if (fFallbackToNEM)
558 {
559 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
560 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
561
562 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
563 if ( RT_SUCCESS(rc2)
564 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
565 rc = VINF_SUCCESS;
566 }
567 if (RT_FAILURE(rc))
568 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
569 }
570 }
571 else
572 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
573 VERR_INTERNAL_ERROR_5);
574
575 /*
576 * Disable nested paging and unrestricted guest execution now if they're
577 * configured so that CPUM can make decisions based on our configuration.
578 */
579 if ( fAllowNestedPaging
580 && (fCaps & SUPVTCAPS_NESTED_PAGING))
581 {
582 pVM->hm.s.fNestedPagingCfg = true;
583 if (fCaps & SUPVTCAPS_VT_X)
584 {
585 if ( fAllowUnrestricted
586 && (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST))
587 pVM->hm.s.vmx.fUnrestrictedGuestCfg = true;
588 else
589 Assert(!pVM->hm.s.vmx.fUnrestrictedGuestCfg);
590 }
591 }
592 else
593 Assert(!pVM->hm.s.fNestedPagingCfg);
594 }
595 else
596 {
597 const char *pszMsg;
598 switch (rc)
599 {
600 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
601 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
602 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
603 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
604 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
605 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
606 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
607 case VERR_SUP_DRIVERLESS: pszMsg = "Driverless mode"; break;
608 default:
609 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
610 }
611
612 /*
613 * Before failing, try fallback to NEM if we're allowed to do that.
614 */
615 pVM->fHMEnabled = false;
616 if (fFallbackToNEM)
617 {
618 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
619 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
620 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
621 if ( RT_SUCCESS(rc2)
622 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
623 {
624 rc = VINF_SUCCESS;
625
626 /* For some reason, HM is in charge or large pages. Make sure to enable them: */
627 PGMSetLargePageUsage(pVM, pVM->hm.s.fLargePages);
628 }
629 }
630
631 /*
632 * Then try fall back on IEM if NEM isn't available and we're allowed to.
633 */
634 if (RT_FAILURE(rc))
635 {
636 if ( fFallbackToIEM
637 && (!fFallbackToNEM || rc == VERR_NEM_NOT_AVAILABLE || rc == VERR_SUP_DRIVERLESS))
638 {
639 LogRel(("HM: HMR3Init: Falling back on IEM: %s\n", !fFallbackToNEM ? pszMsg : "NEM not available"));
640 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_IEM);
641#ifdef VBOX_WITH_PGM_NEM_MODE
642 PGMR3EnableNemMode(pVM);
643#endif
644 }
645 else
646 return VM_SET_ERROR(pVM, rc, pszMsg);
647 }
648 }
649 }
650 else
651 {
652 /*
653 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
654 */
655 rc = VERR_NEM_NOT_AVAILABLE;
656 if (fUseNEMInstead)
657 {
658 rc = NEMR3Init(pVM, false /*fFallback*/, true);
659 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
660 if (RT_SUCCESS(rc))
661 {
662 /* For some reason, HM is in charge or large pages. Make sure to enable them: */
663 PGMSetLargePageUsage(pVM, pVM->hm.s.fLargePages);
664 }
665 else if (!fFallbackToIEM || rc != VERR_NEM_NOT_AVAILABLE)
666 return rc;
667 }
668
669 if (fFallbackToIEM && rc == VERR_NEM_NOT_AVAILABLE)
670 {
671 LogRel(("HM: HMR3Init: Falling back on IEM%s\n", fUseNEMInstead ? ": NEM not available" : ""));
672 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_IEM);
673#ifdef VBOX_WITH_PGM_NEM_MODE
674 PGMR3EnableNemMode(pVM);
675#endif
676 }
677
678 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET
679 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT /* paranoia */)
680 return VM_SET_ERROR(pVM, rc, "Misconfigured VM: No guest execution engine available!");
681 }
682
683 if (pVM->fHMEnabled)
684 {
685 /*
686 * Register info handlers now that HM is used for sure.
687 */
688 rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS);
689 AssertRCReturn(rc, rc);
690
691 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
692 DBGFINFO_FLAGS_ALL_EMTS);
693 AssertRCReturn(rc, rc);
694
695 rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.",
696 hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS);
697 AssertRCReturn(rc, rc);
698
699 rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the HM LBR info.", hmR3InfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
700 AssertRCReturn(rc, rc);
701 }
702
703 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET);
704 return VINF_SUCCESS;
705}
706
707
708/**
709 * Initializes HM components after ring-3 phase has been fully initialized.
710 *
711 * @returns VBox status code.
712 * @param pVM The cross context VM structure.
713 */
714static int hmR3InitFinalizeR3(PVM pVM)
715{
716 LogFlowFunc(("\n"));
717
718 if (!HMIsEnabled(pVM))
719 return VINF_SUCCESS;
720
721 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
722 {
723 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
724 pVCpu->hm.s.fActive = false;
725 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu); /* Is safe to call now since GIMR3Init() has completed. */
726 pVCpu->hm.s.fGCMTrapXcptDE = GCMShouldTrapXcptDE(pVCpu); /* Is safe to call now since GCMR3Init() has completed. */
727 }
728
729#if defined(RT_ARCH_AMD64) ||defined(RT_ARCH_X86)
730 /*
731 * Check if L1D flush is needed/possible.
732 */
733 if ( !g_CpumHostFeatures.s.fFlushCmd
734 || g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
735 || g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Core7_End
736 || g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d
737 || g_CpumHostFeatures.s.fArchRdclNo)
738 pVM->hm.s.fL1dFlushOnSched = pVM->hm.s.fL1dFlushOnVmEntry = false;
739
740 /*
741 * Check if MDS flush is needed/possible.
742 * On atoms and knight family CPUs, we will only allow clearing on scheduling.
743 */
744 if ( !g_CpumHostFeatures.s.fMdsClear
745 || g_CpumHostFeatures.s.fArchMdsNo)
746 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
747 else if ( ( g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Atom_Airmount
748 && g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Atom_End)
749 || ( g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Phi_KnightsLanding
750 && g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Phi_End))
751 {
752 if (!pVM->hm.s.fMdsClearOnSched)
753 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry;
754 pVM->hm.s.fMdsClearOnVmEntry = false;
755 }
756 else if ( g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
757 || g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Core7_End)
758 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
759#endif
760
761 /*
762 * Statistics.
763 */
764#ifdef VBOX_WITH_STATISTICS
765 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
766 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
767 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8", STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
768 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC", STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
769 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
770#endif
771
772#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
773 bool const fCpuSupportsVmx = ASMIsIntelCpu() || ASMIsViaCentaurCpu() || ASMIsShanghaiCpu();
774#else
775 bool const fCpuSupportsVmx = false;
776#endif
777 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
778 {
779 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
780 PHMCPU pHmCpu = &pVCpu->hm.s;
781 int rc;
782
783# define HM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
784 rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
785 AssertRC(rc); \
786 } while (0)
787# define HM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
788 HM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
789
790#ifdef VBOX_WITH_STATISTICS
791
792 HM_REG_PROFILE(&pHmCpu->StatPoke, "/PROF/CPU%u/HM/Poke", "Profiling of RTMpPokeCpu.");
793 HM_REG_PROFILE(&pHmCpu->StatSpinPoke, "/PROF/CPU%u/HM/PokeWait", "Profiling of poke wait.");
794 HM_REG_PROFILE(&pHmCpu->StatSpinPokeFailed, "/PROF/CPU%u/HM/PokeWaitFailed", "Profiling of poke wait when RTMpPokeCpu fails.");
795 HM_REG_PROFILE(&pHmCpu->StatEntry, "/PROF/CPU%u/HM/Entry", "Profiling of entry until entering GC.");
796 HM_REG_PROFILE(&pHmCpu->StatPreExit, "/PROF/CPU%u/HM/SwitchFromGC_1", "Profiling of pre-exit processing after returning from GC.");
797 HM_REG_PROFILE(&pHmCpu->StatExitHandling, "/PROF/CPU%u/HM/SwitchFromGC_2", "Profiling of exit handling (longjmps not included!)");
798 HM_REG_PROFILE(&pHmCpu->StatExitIO, "/PROF/CPU%u/HM/SwitchFromGC_2/IO", "I/O.");
799 HM_REG_PROFILE(&pHmCpu->StatExitMovCRx, "/PROF/CPU%u/HM/SwitchFromGC_2/MovCRx", "MOV CRx.");
800 HM_REG_PROFILE(&pHmCpu->StatExitXcptNmi, "/PROF/CPU%u/HM/SwitchFromGC_2/XcptNmi", "Exceptions, NMIs.");
801 HM_REG_PROFILE(&pHmCpu->StatExitVmentry, "/PROF/CPU%u/HM/SwitchFromGC_2/Vmentry", "VMLAUNCH/VMRESUME on Intel or VMRUN on AMD.");
802 HM_REG_PROFILE(&pHmCpu->StatImportGuestState, "/PROF/CPU%u/HM/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
803 HM_REG_PROFILE(&pHmCpu->StatExportGuestState, "/PROF/CPU%u/HM/ExportGuestState", "Profiling of exporting guest state to hardware before VM-entry.");
804 HM_REG_PROFILE(&pHmCpu->StatLoadGuestFpuState, "/PROF/CPU%u/HM/LoadGuestFpuState", "Profiling of CPUMR0LoadGuestFPU.");
805 HM_REG_PROFILE(&pHmCpu->StatInGC, "/PROF/CPU%u/HM/InGC", "Profiling of execution of guest-code in hardware.");
806# ifdef HM_PROFILE_EXIT_DISPATCH
807 HM_REG_STAT(&pHmCpu->StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
808 "/PROF/CPU%u/HM/ExitDispatch", "Profiling the dispatching of exit handlers.");
809# endif
810#endif
811# define HM_REG_COUNTER(a, b, desc) HM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
812
813#ifdef VBOX_WITH_STATISTICS
814 HM_REG_COUNTER(&pHmCpu->StatExitAll, "/HM/CPU%u/Exit/All", "Total exits (excludes nested-guest and debug loops exits).");
815 HM_REG_COUNTER(&pHmCpu->StatDebugExitAll, "/HM/CPU%u/Exit/DebugAll", "Total debug-loop exits.");
816 HM_REG_COUNTER(&pHmCpu->StatNestedExitAll, "/HM/CPU%u/Exit/NestedGuest/All", "Total nested-guest exits.");
817 HM_REG_COUNTER(&pHmCpu->StatExitShadowNM, "/HM/CPU%u/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
818 HM_REG_COUNTER(&pHmCpu->StatExitGuestNM, "/HM/CPU%u/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
819 HM_REG_COUNTER(&pHmCpu->StatExitShadowPF, "/HM/CPU%u/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
820 HM_REG_COUNTER(&pHmCpu->StatExitShadowPFEM, "/HM/CPU%u/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
821 HM_REG_COUNTER(&pHmCpu->StatExitGuestPF, "/HM/CPU%u/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
822 HM_REG_COUNTER(&pHmCpu->StatExitGuestUD, "/HM/CPU%u/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
823 HM_REG_COUNTER(&pHmCpu->StatExitGuestSS, "/HM/CPU%u/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
824 HM_REG_COUNTER(&pHmCpu->StatExitGuestNP, "/HM/CPU%u/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
825 HM_REG_COUNTER(&pHmCpu->StatExitGuestTS, "/HM/CPU%u/Exit/Trap/Gst/#TS", "Guest #TS (task switch) exception.");
826 HM_REG_COUNTER(&pHmCpu->StatExitGuestOF, "/HM/CPU%u/Exit/Trap/Gst/#OF", "Guest #OF (overflow) exception.");
827 HM_REG_COUNTER(&pHmCpu->StatExitGuestGP, "/HM/CPU%u/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
828 HM_REG_COUNTER(&pHmCpu->StatExitGuestDE, "/HM/CPU%u/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
829 HM_REG_COUNTER(&pHmCpu->StatExitGuestDF, "/HM/CPU%u/Exit/Trap/Gst/#DF", "Guest #DF (double fault) exception.");
830 HM_REG_COUNTER(&pHmCpu->StatExitGuestBR, "/HM/CPU%u/Exit/Trap/Gst/#BR", "Guest #BR (boundary range exceeded) exception.");
831#endif
832 HM_REG_COUNTER(&pHmCpu->StatExitGuestAC, "/HM/CPU%u/Exit/Trap/Gst/#AC", "Guest #AC (alignment check) exception.");
833 if (fCpuSupportsVmx)
834 HM_REG_COUNTER(&pHmCpu->StatExitGuestACSplitLock, "/HM/CPU%u/Exit/Trap/Gst/#AC-split-lock", "Guest triggered #AC due to split-lock being enabled on the host (interpreted).");
835#ifdef VBOX_WITH_STATISTICS
836 HM_REG_COUNTER(&pHmCpu->StatExitGuestDB, "/HM/CPU%u/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
837 HM_REG_COUNTER(&pHmCpu->StatExitGuestMF, "/HM/CPU%u/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
838 HM_REG_COUNTER(&pHmCpu->StatExitGuestBP, "/HM/CPU%u/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
839 HM_REG_COUNTER(&pHmCpu->StatExitGuestXF, "/HM/CPU%u/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
840 HM_REG_COUNTER(&pHmCpu->StatExitGuestXcpUnk, "/HM/CPU%u/Exit/Trap/Gst/Other", "Other guest exceptions.");
841 HM_REG_COUNTER(&pHmCpu->StatExitRdmsr, "/HM/CPU%u/Exit/Instr/Rdmsr", "MSR read.");
842 HM_REG_COUNTER(&pHmCpu->StatExitWrmsr, "/HM/CPU%u/Exit/Instr/Wrmsr", "MSR write.");
843 HM_REG_COUNTER(&pHmCpu->StatExitDRxWrite, "/HM/CPU%u/Exit/Instr/DR-Write", "Debug register write.");
844 HM_REG_COUNTER(&pHmCpu->StatExitDRxRead, "/HM/CPU%u/Exit/Instr/DR-Read", "Debug register read.");
845 HM_REG_COUNTER(&pHmCpu->StatExitCR0Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
846 HM_REG_COUNTER(&pHmCpu->StatExitCR2Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
847 HM_REG_COUNTER(&pHmCpu->StatExitCR3Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
848 HM_REG_COUNTER(&pHmCpu->StatExitCR4Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
849 HM_REG_COUNTER(&pHmCpu->StatExitCR8Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
850 HM_REG_COUNTER(&pHmCpu->StatExitCR0Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
851 HM_REG_COUNTER(&pHmCpu->StatExitCR2Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
852 HM_REG_COUNTER(&pHmCpu->StatExitCR3Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
853 HM_REG_COUNTER(&pHmCpu->StatExitCR4Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
854 HM_REG_COUNTER(&pHmCpu->StatExitCR8Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
855 HM_REG_COUNTER(&pHmCpu->StatExitClts, "/HM/CPU%u/Exit/Instr/CLTS", "CLTS instruction.");
856 HM_REG_COUNTER(&pHmCpu->StatExitLmsw, "/HM/CPU%u/Exit/Instr/LMSW", "LMSW instruction.");
857 HM_REG_COUNTER(&pHmCpu->StatExitXdtrAccess, "/HM/CPU%u/Exit/Instr/XdtrAccess", "GDTR, IDTR, LDTR access.");
858 HM_REG_COUNTER(&pHmCpu->StatExitIOWrite, "/HM/CPU%u/Exit/Instr/IO/Write", "I/O write.");
859 HM_REG_COUNTER(&pHmCpu->StatExitIORead, "/HM/CPU%u/Exit/Instr/IO/Read", "I/O read.");
860 HM_REG_COUNTER(&pHmCpu->StatExitIOStringWrite, "/HM/CPU%u/Exit/Instr/IO/WriteString", "String I/O write.");
861 HM_REG_COUNTER(&pHmCpu->StatExitIOStringRead, "/HM/CPU%u/Exit/Instr/IO/ReadString", "String I/O read.");
862 HM_REG_COUNTER(&pHmCpu->StatExitIntWindow, "/HM/CPU%u/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts.");
863 HM_REG_COUNTER(&pHmCpu->StatExitExtInt, "/HM/CPU%u/Exit/ExtInt", "Physical maskable interrupt (host).");
864#endif
865 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGC, "/HM/CPU%u/Exit/HostNmiInGC", "Host NMI received while in guest context.");
866 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGCIpi, "/HM/CPU%u/Exit/HostNmiInGCIpi", "Host NMI received while in guest context dispatched using IPIs.");
867 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/Exit/PreemptTimer", "VMX-preemption timer expired.");
868#ifdef VBOX_WITH_STATISTICS
869 HM_REG_COUNTER(&pHmCpu->StatExitTprBelowThreshold, "/HM/CPU%u/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
870 HM_REG_COUNTER(&pHmCpu->StatExitTaskSwitch, "/HM/CPU%u/Exit/TaskSwitch", "Task switch caused through task gate in IDT.");
871 HM_REG_COUNTER(&pHmCpu->StatExitApicAccess, "/HM/CPU%u/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
872
873 HM_REG_COUNTER(&pHmCpu->StatSwitchTprMaskedIrq, "/HM/CPU%u/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
874 HM_REG_COUNTER(&pHmCpu->StatSwitchGuestIrq, "/HM/CPU%u/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
875 HM_REG_COUNTER(&pHmCpu->StatSwitchPendingHostIrq, "/HM/CPU%u/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
876 HM_REG_COUNTER(&pHmCpu->StatSwitchHmToR3FF, "/HM/CPU%u/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
877 HM_REG_COUNTER(&pHmCpu->StatSwitchVmReq, "/HM/CPU%u/Switch/VmReq", "Exit to ring-3 due to pending VM requests.");
878 HM_REG_COUNTER(&pHmCpu->StatSwitchPgmPoolFlush, "/HM/CPU%u/Switch/PgmPoolFlush", "Exit to ring-3 due to pending PGM pool flush.");
879 HM_REG_COUNTER(&pHmCpu->StatSwitchDma, "/HM/CPU%u/Switch/PendingDma", "Exit to ring-3 due to pending DMA requests.");
880 HM_REG_COUNTER(&pHmCpu->StatSwitchExitToR3, "/HM/CPU%u/Switch/ExitToR3", "Exit to ring-3 (total).");
881 HM_REG_COUNTER(&pHmCpu->StatSwitchLongJmpToR3, "/HM/CPU%u/Switch/LongJmpToR3", "Longjump to ring-3.");
882 HM_REG_COUNTER(&pHmCpu->StatSwitchMaxResumeLoops, "/HM/CPU%u/Switch/MaxResumeLoops", "Maximum VMRESUME inner-loop counter reached.");
883 HM_REG_COUNTER(&pHmCpu->StatSwitchHltToR3, "/HM/CPU%u/Switch/HltToR3", "HLT causing us to go to ring-3.");
884 HM_REG_COUNTER(&pHmCpu->StatSwitchApicAccessToR3, "/HM/CPU%u/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
885#endif
886 HM_REG_COUNTER(&pHmCpu->StatSwitchPreempt, "/HM/CPU%u/Switch/Preempting", "EMT has been preempted while in HM context.");
887#ifdef VBOX_WITH_STATISTICS
888 HM_REG_COUNTER(&pHmCpu->StatSwitchNstGstVmexit, "/HM/CPU%u/Switch/NstGstVmexit", "Nested-guest VM-exit occurred.");
889
890 HM_REG_COUNTER(&pHmCpu->StatInjectInterrupt, "/HM/CPU%u/EventInject/Interrupt", "Injected an external interrupt into the guest.");
891 HM_REG_COUNTER(&pHmCpu->StatInjectXcpt, "/HM/CPU%u/EventInject/Trap", "Injected an exception into the guest.");
892 HM_REG_COUNTER(&pHmCpu->StatInjectReflect, "/HM/CPU%u/EventInject/Reflect", "Reflecting an exception caused due to event injection.");
893 HM_REG_COUNTER(&pHmCpu->StatInjectConvertDF, "/HM/CPU%u/EventInject/ReflectDF", "Injected a converted #DF caused due to event injection.");
894 HM_REG_COUNTER(&pHmCpu->StatInjectInterpret, "/HM/CPU%u/EventInject/Interpret", "Falling back to interpreter for handling exception caused due to event injection.");
895 HM_REG_COUNTER(&pHmCpu->StatInjectReflectNPF, "/HM/CPU%u/EventInject/ReflectNPF", "Reflecting event that caused an EPT violation / nested #PF.");
896
897 HM_REG_COUNTER(&pHmCpu->StatFlushPage, "/HM/CPU%u/Flush/Page", "Invalidating a guest page on all guest CPUs.");
898 HM_REG_COUNTER(&pHmCpu->StatFlushPageManual, "/HM/CPU%u/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
899 HM_REG_COUNTER(&pHmCpu->StatFlushPhysPageManual, "/HM/CPU%u/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
900 HM_REG_COUNTER(&pHmCpu->StatFlushTlb, "/HM/CPU%u/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
901 HM_REG_COUNTER(&pHmCpu->StatFlushTlbManual, "/HM/CPU%u/Flush/TLB/Manual", "Request a full guest-TLB flush.");
902 HM_REG_COUNTER(&pHmCpu->StatFlushTlbNstGst, "/HM/CPU%u/Flush/TLB/NestedGuest", "Request a nested-guest-TLB flush.");
903 HM_REG_COUNTER(&pHmCpu->StatFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
904 HM_REG_COUNTER(&pHmCpu->StatNoFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/Skipped", "No TLB flushing required.");
905 HM_REG_COUNTER(&pHmCpu->StatFlushEntire, "/HM/CPU%u/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
906 HM_REG_COUNTER(&pHmCpu->StatFlushAsid, "/HM/CPU%u/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
907 HM_REG_COUNTER(&pHmCpu->StatFlushNestedPaging, "/HM/CPU%u/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
908 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgVirt, "/HM/CPU%u/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
909 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgPhys, "/HM/CPU%u/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
910 HM_REG_COUNTER(&pHmCpu->StatTlbShootdown, "/HM/CPU%u/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
911 HM_REG_COUNTER(&pHmCpu->StatTlbShootdownFlush, "/HM/CPU%u/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
912
913 HM_REG_COUNTER(&pHmCpu->StatTscParavirt, "/HM/CPU%u/TSC/Paravirt", "Paravirtualized TSC in effect.");
914 HM_REG_COUNTER(&pHmCpu->StatTscOffset, "/HM/CPU%u/TSC/Offset", "TSC offsetting is in effect.");
915 HM_REG_COUNTER(&pHmCpu->StatTscIntercept, "/HM/CPU%u/TSC/Intercept", "Intercept TSC accesses.");
916
917 HM_REG_COUNTER(&pHmCpu->StatDRxArmed, "/HM/CPU%u/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
918 HM_REG_COUNTER(&pHmCpu->StatDRxContextSwitch, "/HM/CPU%u/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
919 HM_REG_COUNTER(&pHmCpu->StatDRxIoCheck, "/HM/CPU%u/Debug/IOCheck", "Checking for I/O breakpoint.");
920
921 HM_REG_COUNTER(&pHmCpu->StatExportMinimal, "/HM/CPU%u/Export/Minimal", "VM-entry exporting minimal guest-state.");
922 HM_REG_COUNTER(&pHmCpu->StatExportFull, "/HM/CPU%u/Export/Full", "VM-entry exporting the full guest-state.");
923 HM_REG_COUNTER(&pHmCpu->StatLoadGuestFpu, "/HM/CPU%u/Export/GuestFpu", "VM-entry loading the guest-FPU state.");
924 HM_REG_COUNTER(&pHmCpu->StatExportHostState, "/HM/CPU%u/Export/HostState", "VM-entry exporting host-state.");
925
926 if (fCpuSupportsVmx)
927 {
928 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRip, "/HM/CPU%u/WriteHostRIP", "Number of VMX_VMCS_HOST_RIP instructions.");
929 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRsp, "/HM/CPU%u/WriteHostRSP", "Number of VMX_VMCS_HOST_RSP instructions.");
930 HM_REG_COUNTER(&pHmCpu->StatVmxVmLaunch, "/HM/CPU%u/VMLaunch", "Number of VM-entries using VMLAUNCH.");
931 HM_REG_COUNTER(&pHmCpu->StatVmxVmResume, "/HM/CPU%u/VMResume", "Number of VM-entries using VMRESUME.");
932 }
933
934 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelBase, "/HM/CPU%u/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
935 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelLimit, "/HM/CPU%u/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
936 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelAttr, "/HM/CPU%u/VMXCheck/RMSelAttrs", "Could not use VMX due to unsuitable real-mode selector attributes.");
937
938 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelBase, "/HM/CPU%u/VMXCheck/V86SelBase", "Could not use VMX due to unsuitable v8086-mode selector base.");
939 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelLimit, "/HM/CPU%u/VMXCheck/V86SelLimit", "Could not use VMX due to unsuitable v8086-mode selector limit.");
940 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelAttr, "/HM/CPU%u/VMXCheck/V86SelAttrs", "Could not use VMX due to unsuitable v8086-mode selector attributes.");
941
942 HM_REG_COUNTER(&pHmCpu->StatVmxCheckRmOk, "/HM/CPU%u/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
943 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadSel, "/HM/CPU%u/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
944 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRpl, "/HM/CPU%u/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
945 HM_REG_COUNTER(&pHmCpu->StatVmxCheckPmOk, "/HM/CPU%u/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
946#endif
947 if (fCpuSupportsVmx)
948 {
949 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/PreemptTimer", "VMX-preemption timer fired.");
950 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionReusingDeadline, "/HM/CPU%u/PreemptTimer/ReusingDeadline", "VMX-preemption timer arming logic using previously calculated deadline");
951 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionReusingDeadlineExpired, "/HM/CPU%u/PreemptTimer/ReusingDeadlineExpired", "VMX-preemption timer arming logic found previous deadline already expired (ignored)");
952 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionRecalcingDeadline, "/HM/CPU%u/PreemptTimer/RecalcingDeadline", "VMX-preemption timer arming logic recalculating the deadline (slightly expensive)");
953 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionRecalcingDeadlineExpired, "/HM/CPU%u/PreemptTimer/RecalcingDeadlineExpired", "VMX-preemption timer arming logic found recalculated deadline expired (ignored)");
954 }
955#ifdef VBOX_WITH_STATISTICS
956 /*
957 * Guest Exit reason stats.
958 */
959 if (fCpuSupportsVmx)
960 {
961 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
962 {
963 const char *pszExitName = HMGetVmxExitName(j);
964 if (pszExitName)
965 {
966 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
967 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
968 AssertRCReturn(rc, rc);
969 }
970 }
971 }
972 else
973 {
974 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
975 {
976 const char *pszExitName = HMGetSvmExitName(j);
977 if (pszExitName)
978 {
979 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
980 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
981 AssertRC(rc);
982 }
983 }
984 }
985 HM_REG_COUNTER(&pHmCpu->StatExitReasonNpf, "/HM/CPU%u/Exit/Reason/#NPF", "Nested page faults");
986
987#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
988 /*
989 * Nested-guest VM-exit reason stats.
990 */
991 if (fCpuSupportsVmx)
992 {
993 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
994 {
995 const char *pszExitName = HMGetVmxExitName(j);
996 if (pszExitName)
997 {
998 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
999 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
1000 AssertRC(rc);
1001 }
1002 }
1003 }
1004 else
1005 {
1006 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1007 {
1008 const char *pszExitName = HMGetSvmExitName(j);
1009 if (pszExitName)
1010 {
1011 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1012 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/NestedGuest/Reason/%02x", idCpu, j);
1013 AssertRC(rc);
1014 }
1015 }
1016 }
1017 HM_REG_COUNTER(&pHmCpu->StatNestedExitReasonNpf, "/HM/CPU%u/Exit/NestedGuest/Reason/#NPF", "Nested page faults");
1018#endif
1019
1020 /*
1021 * Injected interrupts stats.
1022 */
1023 char szDesc[64];
1024 for (unsigned j = 0; j < RT_ELEMENTS(pHmCpu->aStatInjectedIrqs); j++)
1025 {
1026 RTStrPrintf(&szDesc[0], sizeof(szDesc), "Interrupt %u", j);
1027 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1028 STAMUNIT_OCCURENCES, szDesc, "/HM/CPU%u/EventInject/InjectIntr/%02X", idCpu, j);
1029 AssertRC(rc);
1030 }
1031
1032 /*
1033 * Injected exception stats.
1034 */
1035 for (unsigned j = 0; j < RT_ELEMENTS(pHmCpu->aStatInjectedXcpts); j++)
1036 {
1037 RTStrPrintf(&szDesc[0], sizeof(szDesc), "%s exception", hmR3GetXcptName(j));
1038 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatInjectedXcpts[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1039 STAMUNIT_OCCURENCES, szDesc, "/HM/CPU%u/EventInject/InjectXcpt/%02X", idCpu, j);
1040 AssertRC(rc);
1041 }
1042
1043#endif /* VBOX_WITH_STATISTICS */
1044#undef HM_REG_COUNTER
1045#undef HM_REG_PROFILE
1046#undef HM_REG_STAT
1047 }
1048
1049 return VINF_SUCCESS;
1050}
1051
1052
1053/**
1054 * Called when a init phase has completed.
1055 *
1056 * @returns VBox status code.
1057 * @param pVM The cross context VM structure.
1058 * @param enmWhat The phase that completed.
1059 */
1060VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1061{
1062 switch (enmWhat)
1063 {
1064 case VMINITCOMPLETED_RING3:
1065 return hmR3InitFinalizeR3(pVM);
1066 case VMINITCOMPLETED_RING0:
1067 return hmR3InitFinalizeR0(pVM);
1068 default:
1069 return VINF_SUCCESS;
1070 }
1071}
1072
1073
1074/**
1075 * Turns off normal raw mode features.
1076 *
1077 * @param pVM The cross context VM structure.
1078 */
1079static void hmR3DisableRawMode(PVM pVM)
1080{
1081/** @todo r=bird: HM shouldn't be doing this crap. */
1082 /* Reinit the paging mode to force the new shadow mode. */
1083 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1084 {
1085 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1086 PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL, false /* fForce */);
1087 }
1088}
1089
1090
1091/**
1092 * Initialize VT-x or AMD-V.
1093 *
1094 * @returns VBox status code.
1095 * @param pVM The cross context VM structure.
1096 */
1097static int hmR3InitFinalizeR0(PVM pVM)
1098{
1099 int rc;
1100
1101 if (!HMIsEnabled(pVM))
1102 return VINF_SUCCESS;
1103
1104 /*
1105 * Hack to allow users to work around broken BIOSes that incorrectly set
1106 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1107 */
1108 if ( !pVM->hm.s.vmx.fSupported
1109 && !pVM->hm.s.svm.fSupported
1110 && pVM->hm.s.ForR3.rcInit == VERR_SVM_IN_USE /* implies functional AMD-V */
1111 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1112 {
1113 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1114 pVM->hm.s.svm.fSupported = true;
1115 pVM->hm.s.svm.fIgnoreInUseError = true;
1116 pVM->hm.s.ForR3.rcInit = VINF_SUCCESS;
1117 }
1118
1119 /*
1120 * Report ring-0 init errors.
1121 */
1122 if ( !pVM->hm.s.vmx.fSupported
1123 && !pVM->hm.s.svm.fSupported)
1124 {
1125 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.ForR3.rcInit));
1126 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.ForR3.vmx.u64HostFeatCtrl));
1127 switch (pVM->hm.s.ForR3.rcInit)
1128 {
1129 case VERR_VMX_IN_VMX_ROOT_MODE:
1130 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1131 case VERR_VMX_NO_VMX:
1132 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1133 case VERR_VMX_MSR_VMX_DISABLED:
1134 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1135 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1136 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1137 case VERR_VMX_MSR_LOCKING_FAILED:
1138 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1139 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1140 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1141 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1142 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1143
1144 case VERR_SVM_IN_USE:
1145 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1146 case VERR_SVM_NO_SVM:
1147 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1148 case VERR_SVM_DISABLED:
1149 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1150 }
1151 return VMSetError(pVM, pVM->hm.s.ForR3.rcInit, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.ForR3.rcInit);
1152 }
1153
1154 /*
1155 * Enable VT-x or AMD-V on all host CPUs.
1156 */
1157 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1158 if (RT_FAILURE(rc))
1159 {
1160 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1161 HMR3CheckError(pVM, rc);
1162 return rc;
1163 }
1164
1165 /*
1166 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1167 * (Main should have taken care of this already)
1168 */
1169 if (!PDMHasIoApic(pVM))
1170 {
1171 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1172 pVM->hm.s.fTprPatchingAllowed = false;
1173 }
1174
1175 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool fL1dFlushOnVmEntry=%RTbool); fL1dFlushOnSched=%RTbool fMdsClearOnVmEntry=%RTbool\n",
1176 pVM->hm.s.ForR3.fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry, pVM->hm.s.fL1dFlushOnVmEntry,
1177 pVM->hm.s.fL1dFlushOnSched, pVM->hm.s.fMdsClearOnVmEntry));
1178
1179 /*
1180 * Do the vendor specific initialization
1181 *
1182 * Note! We disable release log buffering here since we're doing relatively
1183 * lot of logging and doesn't want to hit the disk with each LogRel
1184 * statement.
1185 */
1186 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1187 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1188 if (pVM->hm.s.vmx.fSupported)
1189 rc = hmR3InitFinalizeR0Intel(pVM);
1190 else
1191 rc = hmR3InitFinalizeR0Amd(pVM);
1192 LogRel((pVM->hm.s.fGlobalInit ? "HM: VT-x/AMD-V init method: Global\n"
1193 : "HM: VT-x/AMD-V init method: Local\n"));
1194 RTLogRelSetBuffering(fOldBuffered);
1195 pVM->hm.s.fInitialized = true;
1196
1197 return rc;
1198}
1199
1200
1201/**
1202 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1203 */
1204static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1205{
1206 NOREF(pVM);
1207 NOREF(pvAllocation);
1208 NOREF(GCPhysAllocation);
1209}
1210
1211
1212/**
1213 * Returns a description of the VMCS (and associated regions') memory type given the
1214 * IA32_VMX_BASIC MSR.
1215 *
1216 * @returns The descriptive memory type.
1217 * @param uMsrVmxBasic IA32_VMX_BASIC MSR value.
1218 */
1219static const char *hmR3VmxGetMemTypeDesc(uint64_t uMsrVmxBasic)
1220{
1221 uint8_t const uMemType = RT_BF_GET(uMsrVmxBasic, VMX_BF_BASIC_VMCS_MEM_TYPE);
1222 switch (uMemType)
1223 {
1224 case VMX_BASIC_MEM_TYPE_WB: return "Write Back (WB)";
1225 case VMX_BASIC_MEM_TYPE_UC: return "Uncacheable (UC)";
1226 }
1227 return "Unknown";
1228}
1229
1230
1231/**
1232 * Returns a single-line description of all the activity-states supported by the CPU
1233 * given the IA32_VMX_MISC MSR.
1234 *
1235 * @returns All supported activity states.
1236 * @param uMsrMisc IA32_VMX_MISC MSR value.
1237 */
1238static const char *hmR3VmxGetActivityStateAllDesc(uint64_t uMsrMisc)
1239{
1240 static const char * const s_apszActStates[] =
1241 {
1242 "",
1243 " ( HLT )",
1244 " ( SHUTDOWN )",
1245 " ( HLT SHUTDOWN )",
1246 " ( SIPI_WAIT )",
1247 " ( HLT SIPI_WAIT )",
1248 " ( SHUTDOWN SIPI_WAIT )",
1249 " ( HLT SHUTDOWN SIPI_WAIT )"
1250 };
1251 uint8_t const idxActStates = RT_BF_GET(uMsrMisc, VMX_BF_MISC_ACTIVITY_STATES);
1252 Assert(idxActStates < RT_ELEMENTS(s_apszActStates));
1253 return s_apszActStates[idxActStates];
1254}
1255
1256
1257/**
1258 * Reports MSR_IA32_FEATURE_CONTROL MSR to the log.
1259 *
1260 * @param fFeatMsr The feature control MSR value.
1261 */
1262static void hmR3VmxReportFeatCtlMsr(uint64_t fFeatMsr)
1263{
1264 uint64_t const val = fFeatMsr;
1265 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", val));
1266 HMVMX_REPORT_MSR_CAP(val, "LOCK", MSR_IA32_FEATURE_CONTROL_LOCK);
1267 HMVMX_REPORT_MSR_CAP(val, "SMX_VMXON", MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
1268 HMVMX_REPORT_MSR_CAP(val, "VMXON", MSR_IA32_FEATURE_CONTROL_VMXON);
1269 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN0", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_0);
1270 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN1", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_1);
1271 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN2", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_2);
1272 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN3", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_3);
1273 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN4", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_4);
1274 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN5", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_5);
1275 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN6", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_6);
1276 HMVMX_REPORT_MSR_CAP(val, "SENTER_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SENTER_GLOBAL_EN);
1277 HMVMX_REPORT_MSR_CAP(val, "SGX_LAUNCH_EN", MSR_IA32_FEATURE_CONTROL_SGX_LAUNCH_EN);
1278 HMVMX_REPORT_MSR_CAP(val, "SGX_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SGX_GLOBAL_EN);
1279 HMVMX_REPORT_MSR_CAP(val, "LMCE", MSR_IA32_FEATURE_CONTROL_LMCE);
1280 if (!(val & MSR_IA32_FEATURE_CONTROL_LOCK))
1281 LogRel(("HM: MSR_IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1282}
1283
1284
1285/**
1286 * Reports MSR_IA32_VMX_BASIC MSR to the log.
1287 *
1288 * @param uBasicMsr The VMX basic MSR value.
1289 */
1290static void hmR3VmxReportBasicMsr(uint64_t uBasicMsr)
1291{
1292 LogRel(("HM: MSR_IA32_VMX_BASIC = %#RX64\n", uBasicMsr));
1293 LogRel(("HM: VMCS id = %#x\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_ID)));
1294 LogRel(("HM: VMCS size = %u bytes\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_SIZE)));
1295 LogRel(("HM: VMCS physical address limit = %s\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_PHYSADDR_WIDTH) ?
1296 "< 4 GB" : "None"));
1297 LogRel(("HM: VMCS memory type = %s\n", hmR3VmxGetMemTypeDesc(uBasicMsr)));
1298 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_DUAL_MON)));
1299 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_INS_OUTS)));
1300 LogRel(("HM: Supports true-capability MSRs = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_TRUE_CTLS)));
1301 LogRel(("HM: VM-entry Xcpt error-code optional = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_XCPT_ERRCODE)));
1302}
1303
1304
1305/**
1306 * Reports MSR_IA32_PINBASED_CTLS to the log.
1307 *
1308 * @param pVmxMsr Pointer to the VMX MSR.
1309 */
1310static void hmR3VmxReportPinBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1311{
1312 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1313 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1314 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVmxMsr->u));
1315 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EXT_INT_EXIT", VMX_PIN_CTLS_EXT_INT_EXIT);
1316 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_EXIT", VMX_PIN_CTLS_NMI_EXIT);
1317 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRTUAL_NMI", VMX_PIN_CTLS_VIRT_NMI);
1318 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PREEMPT_TIMER", VMX_PIN_CTLS_PREEMPT_TIMER);
1319 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "POSTED_INT", VMX_PIN_CTLS_POSTED_INT);
1320}
1321
1322
1323/**
1324 * Reports MSR_IA32_VMX_PROCBASED_CTLS MSR to the log.
1325 *
1326 * @param pVmxMsr Pointer to the VMX MSR.
1327 */
1328static void hmR3VmxReportProcBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1329{
1330 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1331 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1332 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVmxMsr->u));
1333 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INT_WINDOW_EXIT", VMX_PROC_CTLS_INT_WINDOW_EXIT);
1334 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TSC_OFFSETTING", VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1335 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HLT_EXIT", VMX_PROC_CTLS_HLT_EXIT);
1336 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVLPG_EXIT", VMX_PROC_CTLS_INVLPG_EXIT);
1337 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MWAIT_EXIT", VMX_PROC_CTLS_MWAIT_EXIT);
1338 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDPMC_EXIT", VMX_PROC_CTLS_RDPMC_EXIT);
1339 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSC_EXIT", VMX_PROC_CTLS_RDTSC_EXIT);
1340 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_LOAD_EXIT", VMX_PROC_CTLS_CR3_LOAD_EXIT);
1341 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_STORE_EXIT", VMX_PROC_CTLS_CR3_STORE_EXIT);
1342 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TERTIARY_CTLS", VMX_PROC_CTLS_USE_TERTIARY_CTLS);
1343 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_LOAD_EXIT", VMX_PROC_CTLS_CR8_LOAD_EXIT);
1344 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_STORE_EXIT", VMX_PROC_CTLS_CR8_STORE_EXIT);
1345 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TPR_SHADOW", VMX_PROC_CTLS_USE_TPR_SHADOW);
1346 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_WINDOW_EXIT", VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1347 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MOV_DR_EXIT", VMX_PROC_CTLS_MOV_DR_EXIT);
1348 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNCOND_IO_EXIT", VMX_PROC_CTLS_UNCOND_IO_EXIT);
1349 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_IO_BITMAPS", VMX_PROC_CTLS_USE_IO_BITMAPS);
1350 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_TRAP_FLAG", VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1351 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_MSR_BITMAPS", VMX_PROC_CTLS_USE_MSR_BITMAPS);
1352 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_EXIT", VMX_PROC_CTLS_MONITOR_EXIT);
1353 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_EXIT", VMX_PROC_CTLS_PAUSE_EXIT);
1354 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_SECONDARY_CTLS", VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1355}
1356
1357
1358/**
1359 * Reports MSR_IA32_VMX_PROCBASED_CTLS2 MSR to the log.
1360 *
1361 * @param pVmxMsr Pointer to the VMX MSR.
1362 */
1363static void hmR3VmxReportProcBasedCtls2Msr(PCVMXCTLSMSR pVmxMsr)
1364{
1365 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1366 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1367 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVmxMsr->u));
1368 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_APIC_ACCESS", VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1369 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT", VMX_PROC_CTLS2_EPT);
1370 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DESC_TABLE_EXIT", VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1371 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSCP", VMX_PROC_CTLS2_RDTSCP);
1372 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_X2APIC_MODE", VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1373 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VPID", VMX_PROC_CTLS2_VPID);
1374 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "WBINVD_EXIT", VMX_PROC_CTLS2_WBINVD_EXIT);
1375 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNRESTRICTED_GUEST", VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1376 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "APIC_REG_VIRT", VMX_PROC_CTLS2_APIC_REG_VIRT);
1377 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_INT_DELIVERY", VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1378 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_LOOP_EXIT", VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1379 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDRAND_EXIT", VMX_PROC_CTLS2_RDRAND_EXIT);
1380 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVPCID", VMX_PROC_CTLS2_INVPCID);
1381 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMFUNC", VMX_PROC_CTLS2_VMFUNC);
1382 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMCS_SHADOWING", VMX_PROC_CTLS2_VMCS_SHADOWING);
1383 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLS_EXIT", VMX_PROC_CTLS2_ENCLS_EXIT);
1384 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDSEED_EXIT", VMX_PROC_CTLS2_RDSEED_EXIT);
1385 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PML", VMX_PROC_CTLS2_PML);
1386 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT_XCPT_VE", VMX_PROC_CTLS2_EPT_XCPT_VE);
1387 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
1388 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "XSAVES_XRSTORS", VMX_PROC_CTLS2_XSAVES_XRSTORS);
1389 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MODE_BASED_EPT_PERM", VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
1390 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SPP_EPT", VMX_PROC_CTLS2_SPP_EPT);
1391 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PT_EPT", VMX_PROC_CTLS2_PT_EPT);
1392 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "TSC_SCALING", VMX_PROC_CTLS2_TSC_SCALING);
1393 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USER_WAIT_PAUSE", VMX_PROC_CTLS2_USER_WAIT_PAUSE);
1394 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLV_EXIT", VMX_PROC_CTLS2_ENCLV_EXIT);
1395}
1396
1397
1398/**
1399 * Reports MSR_IA32_VMX_PROCBASED_CTLS3 MSR to the log.
1400 *
1401 * @param uProcCtls3 The tertiary processor-based VM-execution control MSR.
1402 */
1403static void hmR3VmxReportProcBasedCtls3Msr(uint64_t uProcCtls3)
1404{
1405 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS3 = %#RX64\n", uProcCtls3));
1406 LogRel(("HM: LOADIWKEY_EXIT = %RTbool\n", RT_BOOL(uProcCtls3 & VMX_PROC_CTLS3_LOADIWKEY_EXIT)));
1407}
1408
1409
1410/**
1411 * Reports MSR_IA32_VMX_ENTRY_CTLS to the log.
1412 *
1413 * @param pVmxMsr Pointer to the VMX MSR.
1414 */
1415static void hmR3VmxReportEntryCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1416{
1417 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1418 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1419 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVmxMsr->u));
1420 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_DEBUG", VMX_ENTRY_CTLS_LOAD_DEBUG);
1421 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "IA32E_MODE_GUEST", VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1422 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENTRY_TO_SMM", VMX_ENTRY_CTLS_ENTRY_TO_SMM);
1423 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DEACTIVATE_DUAL_MON", VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
1424 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_ENTRY_CTLS_LOAD_PERF_MSR);
1425 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1426 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1427 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_BNDCFGS_MSR", VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR);
1428 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
1429 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_RTIT_CTL_MSR", VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR);
1430 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_CET_STATE", VMX_ENTRY_CTLS_LOAD_CET_STATE);
1431 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PKRS_MSR", VMX_ENTRY_CTLS_LOAD_PKRS_MSR);
1432}
1433
1434
1435/**
1436 * Reports MSR_IA32_VMX_EXIT_CTLS to the log.
1437 *
1438 * @param pVmxMsr Pointer to the VMX MSR.
1439 */
1440static void hmR3VmxReportExitCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1441{
1442 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1443 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1444 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVmxMsr->u));
1445 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_DEBUG", VMX_EXIT_CTLS_SAVE_DEBUG);
1446 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HOST_ADDR_SPACE_SIZE", VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1447 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_EXIT_CTLS_LOAD_PERF_MSR);
1448 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ACK_EXT_INT", VMX_EXIT_CTLS_ACK_EXT_INT);
1449 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PAT_MSR", VMX_EXIT_CTLS_SAVE_PAT_MSR);
1450 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_EXIT_CTLS_LOAD_PAT_MSR);
1451 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_EFER_MSR", VMX_EXIT_CTLS_SAVE_EFER_MSR);
1452 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_EXIT_CTLS_LOAD_EFER_MSR);
1453 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PREEMPT_TIMER", VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1454 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_BNDCFGS_MSR", VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR);
1455 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT);
1456 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_RTIT_CTL_MSR", VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR);
1457 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_CET_STATE", VMX_EXIT_CTLS_LOAD_CET_STATE);
1458 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PKRS_MSR", VMX_EXIT_CTLS_LOAD_PKRS_MSR);
1459}
1460
1461
1462/**
1463 * Reports MSR_IA32_VMX_EPT_VPID_CAP MSR to the log.
1464 *
1465 * @param fCaps The VMX EPT/VPID capability MSR value.
1466 */
1467static void hmR3VmxReportEptVpidCapsMsr(uint64_t fCaps)
1468{
1469 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", fCaps));
1470 HMVMX_REPORT_MSR_CAP(fCaps, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1471 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1472 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_5", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_5);
1473 HMVMX_REPORT_MSR_CAP(fCaps, "MEMTYPE_UC", MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_UC);
1474 HMVMX_REPORT_MSR_CAP(fCaps, "MEMTYPE_WB", MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_WB);
1475 HMVMX_REPORT_MSR_CAP(fCaps, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1476 HMVMX_REPORT_MSR_CAP(fCaps, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1477 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1478 HMVMX_REPORT_MSR_CAP(fCaps, "ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY);
1479 HMVMX_REPORT_MSR_CAP(fCaps, "ADVEXITINFO_EPT_VIOLATION", MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION);
1480 HMVMX_REPORT_MSR_CAP(fCaps, "SUPER_SHW_STACK", MSR_IA32_VMX_EPT_VPID_CAP_SUPER_SHW_STACK);
1481 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1482 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1483 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1484 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1485 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1486 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1487 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1488}
1489
1490
1491/**
1492 * Reports MSR_IA32_VMX_MISC MSR to the log.
1493 *
1494 * @param pVM Pointer to the VM.
1495 * @param fMisc The VMX misc. MSR value.
1496 */
1497static void hmR3VmxReportMiscMsr(PVM pVM, uint64_t fMisc)
1498{
1499 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", fMisc));
1500 uint8_t const cPreemptTimerShift = RT_BF_GET(fMisc, VMX_BF_MISC_PREEMPT_TIMER_TSC);
1501 if (cPreemptTimerShift == pVM->hm.s.vmx.cPreemptTimerShift)
1502 LogRel(("HM: PREEMPT_TIMER_TSC = %#x\n", cPreemptTimerShift));
1503 else
1504 {
1505 LogRel(("HM: PREEMPT_TIMER_TSC = %#x - erratum detected, using %#x instead\n", cPreemptTimerShift,
1506 pVM->hm.s.vmx.cPreemptTimerShift));
1507 }
1508 LogRel(("HM: EXIT_SAVE_EFER_LMA = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_EXIT_SAVE_EFER_LMA)));
1509 LogRel(("HM: ACTIVITY_STATES = %#x%s\n", RT_BF_GET(fMisc, VMX_BF_MISC_ACTIVITY_STATES),
1510 hmR3VmxGetActivityStateAllDesc(fMisc)));
1511 LogRel(("HM: INTEL_PT = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_INTEL_PT)));
1512 LogRel(("HM: SMM_READ_SMBASE_MSR = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_SMM_READ_SMBASE_MSR)));
1513 LogRel(("HM: CR3_TARGET = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_CR3_TARGET)));
1514 LogRel(("HM: MAX_MSR = %#x ( %u )\n", RT_BF_GET(fMisc, VMX_BF_MISC_MAX_MSRS),
1515 VMX_MISC_MAX_MSRS(fMisc)));
1516 LogRel(("HM: VMXOFF_BLOCK_SMI = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMXOFF_BLOCK_SMI)));
1517 LogRel(("HM: VMWRITE_ALL = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMWRITE_ALL)));
1518 LogRel(("HM: ENTRY_INJECT_SOFT_INT = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_ENTRY_INJECT_SOFT_INT)));
1519 LogRel(("HM: MSEG_ID = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_MSEG_ID)));
1520}
1521
1522
1523/**
1524 * Reports MSR_IA32_VMX_VMCS_ENUM MSR to the log.
1525 *
1526 * @param uVmcsEnum The VMX VMCS enum MSR value.
1527 */
1528static void hmR3VmxReportVmcsEnumMsr(uint64_t uVmcsEnum)
1529{
1530 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", uVmcsEnum));
1531 LogRel(("HM: HIGHEST_IDX = %#x\n", RT_BF_GET(uVmcsEnum, VMX_BF_VMCS_ENUM_HIGHEST_IDX)));
1532}
1533
1534
1535/**
1536 * Reports MSR_IA32_VMX_VMFUNC MSR to the log.
1537 *
1538 * @param uVmFunc The VMX VMFUNC MSR value.
1539 */
1540static void hmR3VmxReportVmFuncMsr(uint64_t uVmFunc)
1541{
1542 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", uVmFunc));
1543 HMVMX_REPORT_ALLOWED_FEAT(uVmFunc, "EPTP_SWITCHING", RT_BF_GET(uVmFunc, VMX_BF_VMFUNC_EPTP_SWITCHING));
1544}
1545
1546
1547/**
1548 * Reports VMX CR0, CR4 fixed MSRs.
1549 *
1550 * @param pMsrs Pointer to the VMX MSRs.
1551 */
1552static void hmR3VmxReportCrFixedMsrs(PVMXMSRS pMsrs)
1553{
1554 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pMsrs->u64Cr0Fixed0));
1555 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pMsrs->u64Cr0Fixed1));
1556 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pMsrs->u64Cr4Fixed0));
1557 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pMsrs->u64Cr4Fixed1));
1558}
1559
1560
1561/**
1562 * Finish VT-x initialization (after ring-0 init).
1563 *
1564 * @returns VBox status code.
1565 * @param pVM The cross context VM structure.
1566 */
1567static int hmR3InitFinalizeR0Intel(PVM pVM)
1568{
1569 int rc;
1570
1571 LogFunc(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1572 AssertLogRelReturn(pVM->hm.s.ForR3.vmx.u64HostFeatCtrl != 0, VERR_HM_IPE_4);
1573
1574 LogRel(("HM: Using VT-x implementation 3.0\n"));
1575 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoopsCfg));
1576 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostCr4));
1577 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostMsrEfer));
1578 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostSmmMonitorCtl));
1579
1580 hmR3VmxReportFeatCtlMsr(pVM->hm.s.ForR3.vmx.u64HostFeatCtrl);
1581 hmR3VmxReportBasicMsr(pVM->hm.s.ForR3.vmx.Msrs.u64Basic);
1582
1583 hmR3VmxReportPinBasedCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.PinCtls);
1584 hmR3VmxReportProcBasedCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.ProcCtls);
1585 if (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1586 hmR3VmxReportProcBasedCtls2Msr(&pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2);
1587 if (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TERTIARY_CTLS)
1588 hmR3VmxReportProcBasedCtls3Msr(pVM->hm.s.ForR3.vmx.Msrs.u64ProcCtls3);
1589
1590 hmR3VmxReportEntryCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.EntryCtls);
1591 hmR3VmxReportExitCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.ExitCtls);
1592
1593 if (RT_BF_GET(pVM->hm.s.ForR3.vmx.Msrs.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1594 {
1595 /* We don't extensively dump the true capability MSRs as we don't use them, see @bugref{9180#c5}. */
1596 LogRel(("HM: MSR_IA32_VMX_TRUE_PINBASED_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TruePinCtls));
1597 LogRel(("HM: MSR_IA32_VMX_TRUE_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueProcCtls));
1598 LogRel(("HM: MSR_IA32_VMX_TRUE_ENTRY_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueEntryCtls));
1599 LogRel(("HM: MSR_IA32_VMX_TRUE_EXIT_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueExitCtls));
1600 }
1601
1602 hmR3VmxReportMiscMsr(pVM, pVM->hm.s.ForR3.vmx.Msrs.u64Misc);
1603 hmR3VmxReportVmcsEnumMsr(pVM->hm.s.ForR3.vmx.Msrs.u64VmcsEnum);
1604 if (pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps)
1605 hmR3VmxReportEptVpidCapsMsr(pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps);
1606 if (pVM->hm.s.ForR3.vmx.Msrs.u64VmFunc)
1607 hmR3VmxReportVmFuncMsr(pVM->hm.s.ForR3.vmx.Msrs.u64VmFunc);
1608 hmR3VmxReportCrFixedMsrs(&pVM->hm.s.ForR3.vmx.Msrs);
1609
1610#ifdef TODO_9217_VMCSINFO
1611 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1612 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1613 {
1614 PCVMXVMCSINFOSHARED pVmcsInfo = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfo;
1615 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
1616 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysVmcs));
1617 }
1618#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1619 if (pVM->cpum.ro.GuestFeatures.fVmx)
1620 {
1621 LogRel(("HM: Nested-guest:\n"));
1622 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1623 {
1624 PCVMXVMCSINFOSHARED pVmcsInfoNstGst = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfoNstGst;
1625 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysMsrBitmap));
1626 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysVmcs));
1627 }
1628 }
1629#endif
1630#endif /* TODO_9217_VMCSINFO */
1631
1632 /*
1633 * EPT and unrestricted guest execution are determined in HMR3Init, verify the sanity of that.
1634 */
1635 AssertLogRelReturn( !pVM->hm.s.fNestedPagingCfg
1636 || (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT),
1637 VERR_HM_IPE_1);
1638 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuestCfg
1639 || ( (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
1640 && pVM->hm.s.fNestedPagingCfg),
1641 VERR_HM_IPE_1);
1642
1643 /*
1644 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1645 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1646 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1647 */
1648 if ( !(pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1649 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1650 {
1651 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1652 LogRel(("HM: Disabled RDTSCP\n"));
1653 }
1654
1655 if (!pVM->hm.s.vmx.fUnrestrictedGuestCfg)
1656 {
1657 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1658 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1659 if (RT_SUCCESS(rc))
1660 {
1661 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1662 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1663 esp. Figure 20-5.*/
1664 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1665 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1666
1667 /* Bit set to 0 means software interrupts are redirected to the
1668 8086 program interrupt handler rather than switching to
1669 protected-mode handler. */
1670 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1671
1672 /* Allow all port IO, so that port IO instructions do not cause
1673 exceptions and would instead cause a VM-exit (based on VT-x's
1674 IO bitmap which we currently configure to always cause an exit). */
1675 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, X86_PAGE_SIZE * 2);
1676 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1677
1678 /*
1679 * Construct a 1024 element page directory with 4 MB pages for the identity mapped
1680 * page table used in real and protected mode without paging with EPT.
1681 */
1682 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + X86_PAGE_SIZE * 3);
1683 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1684 {
1685 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1686 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1687 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1688 | X86_PDE4M_G;
1689 }
1690
1691 /* We convert it here every time as PCI regions could be reconfigured. */
1692 if (PDMVmmDevHeapIsEnabled(pVM))
1693 {
1694 RTGCPHYS GCPhys;
1695 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1696 AssertRCReturn(rc, rc);
1697 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1698
1699 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1700 AssertRCReturn(rc, rc);
1701 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1702 }
1703 }
1704 else
1705 {
1706 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1707 pVM->hm.s.vmx.pRealModeTSS = NULL;
1708 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1709 return VMSetError(pVM, rc, RT_SRC_POS,
1710 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1711 }
1712 }
1713
1714 LogRel((pVM->hm.s.fAllow64BitGuestsCfg ? "HM: Guest support: 32-bit and 64-bit\n"
1715 : "HM: Guest support: 32-bit only\n"));
1716
1717 /*
1718 * Call ring-0 to set up the VM.
1719 */
1720 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1721 if (rc != VINF_SUCCESS)
1722 {
1723 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1724 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1725 {
1726 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1727 LogRel(("HM: CPU[%u] Last instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
1728 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", idCpu, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1729 }
1730 HMR3CheckError(pVM, rc);
1731 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1732 }
1733
1734 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.ForR3.vmx.fSupportsVmcsEfer));
1735 LogRel(("HM: Enabled VMX\n"));
1736 pVM->hm.s.vmx.fEnabled = true;
1737
1738 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1739
1740 /*
1741 * Change the CPU features.
1742 */
1743 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1744 if (pVM->hm.s.fAllow64BitGuestsCfg)
1745 {
1746 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1747 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1748 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* (Long mode only on Intel CPUs.) */
1749 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1750 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1751 }
1752 /* Given that we're on a long mode host, we can simply enable NX for PAE capable guests. */
1753 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1754 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1755
1756 /*
1757 * Log configuration details.
1758 */
1759 if (pVM->hm.s.fNestedPagingCfg)
1760 {
1761 LogRel(("HM: Enabled nested paging\n"));
1762 if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
1763 LogRel(("HM: EPT flush type = Single context\n"));
1764 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1765 LogRel(("HM: EPT flush type = All contexts\n"));
1766 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_NOT_SUPPORTED)
1767 LogRel(("HM: EPT flush type = Not supported\n"));
1768 else
1769 LogRel(("HM: EPT flush type = %#x\n", pVM->hm.s.ForR3.vmx.enmTlbFlushEpt));
1770
1771 if (pVM->hm.s.vmx.fUnrestrictedGuestCfg)
1772 LogRel(("HM: Enabled unrestricted guest execution\n"));
1773
1774 if (pVM->hm.s.fLargePages)
1775 {
1776 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1777 PGMSetLargePageUsage(pVM, true);
1778 LogRel(("HM: Enabled large page support\n"));
1779 }
1780 }
1781 else
1782 Assert(!pVM->hm.s.vmx.fUnrestrictedGuestCfg);
1783
1784 if (pVM->hm.s.ForR3.vmx.fVpid)
1785 {
1786 LogRel(("HM: Enabled VPID\n"));
1787 if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_INDIV_ADDR)
1788 LogRel(("HM: VPID flush type = Individual addresses\n"));
1789 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
1790 LogRel(("HM: VPID flush type = Single context\n"));
1791 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1792 LogRel(("HM: VPID flush type = All contexts\n"));
1793 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1794 LogRel(("HM: VPID flush type = Single context retain globals\n"));
1795 else
1796 LogRel(("HM: VPID flush type = %#x\n", pVM->hm.s.ForR3.vmx.enmTlbFlushVpid));
1797 }
1798 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_NOT_SUPPORTED)
1799 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1800
1801 if (pVM->hm.s.vmx.fUsePreemptTimerCfg)
1802 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1803 else
1804 LogRel(("HM: Disabled VMX-preemption timer\n"));
1805
1806 if (pVM->hm.s.fVirtApicRegs)
1807 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1808
1809 if (pVM->hm.s.fPostedIntrs)
1810 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1811
1812 if (pVM->hm.s.ForR3.vmx.fUseVmcsShadowing)
1813 {
1814 bool const fFullVmcsShadow = RT_BOOL(pVM->hm.s.ForR3.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL);
1815 LogRel(("HM: Enabled %s VMCS shadowing\n", fFullVmcsShadow ? "full" : "partial"));
1816 }
1817
1818 return VINF_SUCCESS;
1819}
1820
1821
1822/**
1823 * Finish AMD-V initialization (after ring-0 init).
1824 *
1825 * @returns VBox status code.
1826 * @param pVM The cross context VM structure.
1827 */
1828static int hmR3InitFinalizeR0Amd(PVM pVM)
1829{
1830 LogFunc(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1831
1832 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1833
1834#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1835 uint32_t u32Family;
1836 uint32_t u32Model;
1837 uint32_t u32Stepping;
1838 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
1839 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1840#endif
1841 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoopsCfg));
1842 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.ForR3.svm.u64MsrHwcr));
1843 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.ForR3.svm.u32Rev));
1844 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.ForR3.uMaxAsid));
1845 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.ForR3.svm.fFeatures));
1846
1847 /*
1848 * Enumerate AMD-V features.
1849 */
1850 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1851 {
1852#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1853 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1854 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1855 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1856 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1857 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1858 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1859 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1860 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1861 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1862 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1863 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1864 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1865 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1866 HMSVM_REPORT_FEATURE("GMET", X86_CPUID_SVM_FEATURE_EDX_GMET),
1867#undef HMSVM_REPORT_FEATURE
1868 };
1869
1870 uint32_t fSvmFeatures = pVM->hm.s.ForR3.svm.fFeatures;
1871 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1872 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1873 {
1874 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1875 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1876 }
1877 if (fSvmFeatures)
1878 for (unsigned iBit = 0; iBit < 32; iBit++)
1879 if (RT_BIT_32(iBit) & fSvmFeatures)
1880 LogRel(("HM: Reserved bit %u\n", iBit));
1881
1882 /*
1883 * Nested paging is determined in HMR3Init, verify the sanity of that.
1884 */
1885 AssertLogRelReturn( !pVM->hm.s.fNestedPagingCfg
1886 || (pVM->hm.s.ForR3.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1887 VERR_HM_IPE_1);
1888
1889#if 0
1890 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1891 * here. */
1892 if (RTR0IsPostIpiSupport())
1893 pVM->hm.s.fPostedIntrs = true;
1894#endif
1895
1896 /*
1897 * Determine whether we need to intercept #UD in SVM mode for emulating
1898 * intel SYSENTER/SYSEXIT on AMD64, as these instructions results in #UD
1899 * when executed in long-mode. This is only really applicable when
1900 * non-default CPU profiles are in effect, i.e. guest vendor differs
1901 * from the host one.
1902 */
1903 if (CPUMGetGuestCpuVendor(pVM) != CPUMGetHostCpuVendor(pVM))
1904 switch (CPUMGetGuestCpuVendor(pVM))
1905 {
1906 case CPUMCPUVENDOR_INTEL:
1907 case CPUMCPUVENDOR_VIA: /*?*/
1908 case CPUMCPUVENDOR_SHANGHAI: /*?*/
1909 switch (CPUMGetHostCpuVendor(pVM))
1910 {
1911 case CPUMCPUVENDOR_AMD:
1912 case CPUMCPUVENDOR_HYGON:
1913 if (pVM->hm.s.fAllow64BitGuestsCfg)
1914 {
1915 LogRel(("HM: Intercepting #UD for emulating SYSENTER/SYSEXIT in long mode.\n"));
1916 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1917 pVM->apCpusR3[idCpu]->hm.s.svm.fEmulateLongModeSysEnterExit = true;
1918 }
1919 break;
1920 default: break;
1921 }
1922 default: break;
1923 }
1924
1925 /*
1926 * Call ring-0 to set up the VM.
1927 */
1928 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1929 if (rc != VINF_SUCCESS)
1930 {
1931 AssertMsgFailed(("%Rrc\n", rc));
1932 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1933 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1934 }
1935
1936 LogRel(("HM: Enabled SVM\n"));
1937 pVM->hm.s.svm.fEnabled = true;
1938
1939 if (pVM->hm.s.fNestedPagingCfg)
1940 {
1941 LogRel(("HM: Enabled nested paging\n"));
1942
1943 /*
1944 * Enable large pages (2 MB) if applicable.
1945 */
1946 if (pVM->hm.s.fLargePages)
1947 {
1948 PGMSetLargePageUsage(pVM, true);
1949 LogRel(("HM: Enabled large page support\n"));
1950 }
1951 }
1952
1953 if (pVM->hm.s.fVirtApicRegs)
1954 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1955
1956 if (pVM->hm.s.fPostedIntrs)
1957 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1958
1959 hmR3DisableRawMode(pVM);
1960
1961 /*
1962 * Change the CPU features.
1963 */
1964 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1965 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1966 if (pVM->hm.s.fAllow64BitGuestsCfg)
1967 {
1968 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1969 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1970 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1971 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1972 }
1973 /* Turn on NXE if PAE has been enabled. */
1974 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1975 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1976
1977 LogRel((pVM->hm.s.fTprPatchingAllowed ? "HM: Enabled TPR patching\n"
1978 : "HM: Disabled TPR patching\n"));
1979
1980 LogRel((pVM->hm.s.fAllow64BitGuestsCfg ? "HM: Guest support: 32-bit and 64-bit\n"
1981 : "HM: Guest support: 32-bit only\n"));
1982 return VINF_SUCCESS;
1983}
1984
1985
1986/**
1987 * Applies relocations to data and code managed by this
1988 * component. This function will be called at init and
1989 * whenever the VMM need to relocate it self inside the GC.
1990 *
1991 * @param pVM The cross context VM structure.
1992 */
1993VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1994{
1995 /* Fetch the current paging mode during the relocate callback during state loading. */
1996 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1997 {
1998 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1999 {
2000 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2001 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
2002 }
2003 }
2004}
2005
2006
2007/**
2008 * Terminates the HM.
2009 *
2010 * Termination means cleaning up and freeing all resources,
2011 * the VM itself is, at this point, powered off or suspended.
2012 *
2013 * @returns VBox status code.
2014 * @param pVM The cross context VM structure.
2015 */
2016VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
2017{
2018 if (pVM->hm.s.vmx.pRealModeTSS)
2019 {
2020 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
2021 pVM->hm.s.vmx.pRealModeTSS = 0;
2022 }
2023 hmR3TermCPU(pVM);
2024 return 0;
2025}
2026
2027
2028/**
2029 * Terminates the per-VCPU HM.
2030 *
2031 * @returns VBox status code.
2032 * @param pVM The cross context VM structure.
2033 */
2034static int hmR3TermCPU(PVM pVM)
2035{
2036 RT_NOREF(pVM);
2037 return VINF_SUCCESS;
2038}
2039
2040
2041/**
2042 * Resets a virtual CPU.
2043 *
2044 * Used by HMR3Reset and CPU hot plugging.
2045 *
2046 * @param pVCpu The cross context virtual CPU structure to reset.
2047 */
2048VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
2049{
2050 /* Sync. entire state on VM reset ring-0 re-entry. It's safe to reset
2051 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
2052 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2053
2054 pVCpu->hm.s.fActive = false;
2055 pVCpu->hm.s.Event.fPending = false;
2056 pVCpu->hm.s.vmx.u64GstMsrApicBase = 0;
2057 pVCpu->hm.s.vmx.VmcsInfo.fWasInRealMode = true;
2058#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2059 if (pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmx)
2060 pVCpu->hm.s.vmx.VmcsInfoNstGst.fWasInRealMode = true;
2061#endif
2062}
2063
2064
2065/**
2066 * The VM is being reset.
2067 *
2068 * For the HM component this means that any GDT/LDT/TSS monitors
2069 * needs to be removed.
2070 *
2071 * @param pVM The cross context VM structure.
2072 */
2073VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
2074{
2075 LogFlow(("HMR3Reset:\n"));
2076
2077 if (HMIsEnabled(pVM))
2078 hmR3DisableRawMode(pVM);
2079
2080 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2081 HMR3ResetCpu(pVM->apCpusR3[idCpu]);
2082
2083 /* Clear all patch information. */
2084 pVM->hm.s.pGuestPatchMem = 0;
2085 pVM->hm.s.pFreeGuestPatchMem = 0;
2086 pVM->hm.s.cbGuestPatchMem = 0;
2087 pVM->hm.s.cPatches = 0;
2088 pVM->hm.s.PatchTree = 0;
2089 pVM->hm.s.fTprPatchingActive = false;
2090 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
2091}
2092
2093
2094/**
2095 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2096 *
2097 * @returns VBox strict status code.
2098 * @param pVM The cross context VM structure.
2099 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2100 * @param pvUser Unused.
2101 */
2102static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
2103{
2104 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2105
2106 /* Only execute the handler on the VCPU the original patch request was issued. */
2107 if (pVCpu->idCpu != idCpu)
2108 return VINF_SUCCESS;
2109
2110 Log(("hmR3RemovePatches\n"));
2111 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
2112 {
2113 uint8_t abInstr[15];
2114 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
2115 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
2116 int rc;
2117
2118#ifdef LOG_ENABLED
2119 char szOutput[256];
2120 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2121 szOutput, sizeof(szOutput), NULL);
2122 if (RT_SUCCESS(rc))
2123 Log(("Patched instr: %s\n", szOutput));
2124#endif
2125
2126 /* Check if the instruction is still the same. */
2127 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2128 if (rc != VINF_SUCCESS)
2129 {
2130 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2131 continue; /* swapped out or otherwise removed; skip it. */
2132 }
2133
2134 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2135 {
2136 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2137 continue; /* skip it. */
2138 }
2139
2140 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2141 AssertRC(rc);
2142
2143#ifdef LOG_ENABLED
2144 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2145 szOutput, sizeof(szOutput), NULL);
2146 if (RT_SUCCESS(rc))
2147 Log(("Original instr: %s\n", szOutput));
2148#endif
2149 }
2150 pVM->hm.s.cPatches = 0;
2151 pVM->hm.s.PatchTree = 0;
2152 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2153 pVM->hm.s.fTprPatchingActive = false;
2154 return VINF_SUCCESS;
2155}
2156
2157
2158/**
2159 * Worker for enabling patching in a VT-x/AMD-V guest.
2160 *
2161 * @returns VBox status code.
2162 * @param pVM The cross context VM structure.
2163 * @param idCpu VCPU to execute hmR3RemovePatches on.
2164 * @param pPatchMem Patch memory range.
2165 * @param cbPatchMem Size of the memory range.
2166 */
2167static DECLCALLBACK(int) hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2168{
2169 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2170 AssertRC(rc);
2171
2172 pVM->hm.s.pGuestPatchMem = pPatchMem;
2173 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2174 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2175 return VINF_SUCCESS;
2176}
2177
2178
2179/**
2180 * Enable patching in a VT-x/AMD-V guest
2181 *
2182 * @returns VBox status code.
2183 * @param pVM The cross context VM structure.
2184 * @param pPatchMem Patch memory range.
2185 * @param cbPatchMem Size of the memory range.
2186 */
2187VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2188{
2189 VM_ASSERT_EMT(pVM);
2190 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2191 if (pVM->cCpus > 1)
2192 {
2193 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2194 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2195 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2196 AssertRC(rc);
2197 return rc;
2198 }
2199 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2200}
2201
2202
2203/**
2204 * Disable patching in a VT-x/AMD-V guest.
2205 *
2206 * @returns VBox status code.
2207 * @param pVM The cross context VM structure.
2208 * @param pPatchMem Patch memory range.
2209 * @param cbPatchMem Size of the memory range.
2210 */
2211VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2212{
2213 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2214 RT_NOREF2(pPatchMem, cbPatchMem);
2215
2216 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2217 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2218
2219 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2220 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2221 (void *)(uintptr_t)VMMGetCpuId(pVM));
2222 AssertRC(rc);
2223
2224 pVM->hm.s.pGuestPatchMem = 0;
2225 pVM->hm.s.pFreeGuestPatchMem = 0;
2226 pVM->hm.s.cbGuestPatchMem = 0;
2227 pVM->hm.s.fTprPatchingActive = false;
2228 return VINF_SUCCESS;
2229}
2230
2231
2232/**
2233 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2234 *
2235 * @returns VBox strict status code.
2236 * @param pVM The cross context VM structure.
2237 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2238 * @param pvUser User specified CPU context.
2239 *
2240 */
2241static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2242{
2243 /*
2244 * Only execute the handler on the VCPU the original patch request was
2245 * issued. (The other CPU(s) might not yet have switched to protected
2246 * mode, nor have the correct memory context.)
2247 */
2248 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2249 if (pVCpu->idCpu != idCpu)
2250 return VINF_SUCCESS;
2251
2252 /*
2253 * We're racing other VCPUs here, so don't try patch the instruction twice
2254 * and make sure there is still room for our patch record.
2255 */
2256 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2257 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2258 if (pPatch)
2259 {
2260 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2261 return VINF_SUCCESS;
2262 }
2263 uint32_t const idx = pVM->hm.s.cPatches;
2264 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2265 {
2266 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2267 return VINF_SUCCESS;
2268 }
2269 pPatch = &pVM->hm.s.aPatches[idx];
2270
2271 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2272
2273 /*
2274 * Disassembler the instruction and get cracking.
2275 */
2276 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2277 DISCPUSTATE Dis;
2278 uint32_t cbOp;
2279 int rc = EMInterpretDisasCurrent(pVM, pVCpu, &Dis, &cbOp);
2280 AssertRC(rc);
2281 if ( rc == VINF_SUCCESS
2282 && Dis.pCurInstr->uOpcode == OP_MOV
2283 && cbOp >= 3)
2284 {
2285 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2286
2287 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2288 AssertRC(rc);
2289
2290 pPatch->cbOp = cbOp;
2291
2292 if (Dis.Param1.fUse == DISUSE_DISPLACEMENT32)
2293 {
2294 /* write. */
2295 if (Dis.Param2.fUse == DISUSE_REG_GEN32)
2296 {
2297 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2298 pPatch->uSrcOperand = Dis.Param2.Base.idxGenReg;
2299 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", Dis.Param2.Base.idxGenReg));
2300 }
2301 else
2302 {
2303 Assert(Dis.Param2.fUse == DISUSE_IMMEDIATE32);
2304 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2305 pPatch->uSrcOperand = Dis.Param2.uValue;
2306 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", Dis.Param2.uValue));
2307 }
2308 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2309 AssertRC(rc);
2310
2311 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2312 pPatch->cbNewOp = sizeof(s_abVMMCall);
2313 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2314 }
2315 else
2316 {
2317 /*
2318 * TPR Read.
2319 *
2320 * Found:
2321 * mov eax, dword [fffe0080] (5 bytes)
2322 * Check if next instruction is:
2323 * shr eax, 4
2324 */
2325 Assert(Dis.Param1.fUse == DISUSE_REG_GEN32);
2326
2327 uint8_t const idxMmioReg = Dis.Param1.Base.idxGenReg;
2328 uint8_t const cbOpMmio = cbOp;
2329 uint64_t const uSavedRip = pCtx->rip;
2330
2331 pCtx->rip += cbOp;
2332 rc = EMInterpretDisasCurrent(pVM, pVCpu, &Dis, &cbOp);
2333 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2334 pCtx->rip = uSavedRip;
2335
2336 if ( rc == VINF_SUCCESS
2337 && Dis.pCurInstr->uOpcode == OP_SHR
2338 && Dis.Param1.fUse == DISUSE_REG_GEN32
2339 && Dis.Param1.Base.idxGenReg == idxMmioReg
2340 && Dis.Param2.fUse == DISUSE_IMMEDIATE8
2341 && Dis.Param2.uValue == 4
2342 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2343 {
2344 uint8_t abInstr[15];
2345
2346 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2347 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2348 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2349 AssertRC(rc);
2350
2351 pPatch->cbOp = cbOpMmio + cbOp;
2352
2353 /* 0xf0, 0x0f, 0x20, 0xc0 = mov eax, cr8 */
2354 abInstr[0] = 0xf0;
2355 abInstr[1] = 0x0f;
2356 abInstr[2] = 0x20;
2357 abInstr[3] = 0xc0 | Dis.Param1.Base.idxGenReg;
2358 for (unsigned i = 4; i < pPatch->cbOp; i++)
2359 abInstr[i] = 0x90; /* nop */
2360
2361 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2362 AssertRC(rc);
2363
2364 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2365 pPatch->cbNewOp = pPatch->cbOp;
2366 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2367
2368 Log(("Acceptable read/shr candidate!\n"));
2369 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2370 }
2371 else
2372 {
2373 pPatch->enmType = HMTPRINSTR_READ;
2374 pPatch->uDstOperand = idxMmioReg;
2375
2376 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2377 AssertRC(rc);
2378
2379 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2380 pPatch->cbNewOp = sizeof(s_abVMMCall);
2381 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2382 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2383 }
2384 }
2385
2386 pPatch->Core.Key = pCtx->eip;
2387 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2388 AssertRC(rc);
2389
2390 pVM->hm.s.cPatches++;
2391 return VINF_SUCCESS;
2392 }
2393
2394 /*
2395 * Save invalid patch, so we will not try again.
2396 */
2397 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2398 pPatch->Core.Key = pCtx->eip;
2399 pPatch->enmType = HMTPRINSTR_INVALID;
2400 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2401 AssertRC(rc);
2402 pVM->hm.s.cPatches++;
2403 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2404 return VINF_SUCCESS;
2405}
2406
2407
2408/**
2409 * Callback to patch a TPR instruction (jump to generated code).
2410 *
2411 * @returns VBox strict status code.
2412 * @param pVM The cross context VM structure.
2413 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2414 * @param pvUser User specified CPU context.
2415 *
2416 */
2417static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2418{
2419 /*
2420 * Only execute the handler on the VCPU the original patch request was
2421 * issued. (The other CPU(s) might not yet have switched to protected
2422 * mode, nor have the correct memory context.)
2423 */
2424 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2425 if (pVCpu->idCpu != idCpu)
2426 return VINF_SUCCESS;
2427
2428 /*
2429 * We're racing other VCPUs here, so don't try patch the instruction twice
2430 * and make sure there is still room for our patch record.
2431 */
2432 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2433 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2434 if (pPatch)
2435 {
2436 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2437 return VINF_SUCCESS;
2438 }
2439 uint32_t const idx = pVM->hm.s.cPatches;
2440 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2441 {
2442 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2443 return VINF_SUCCESS;
2444 }
2445 pPatch = &pVM->hm.s.aPatches[idx];
2446
2447 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2448 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2449
2450 /*
2451 * Disassemble the instruction and get cracking.
2452 */
2453 DISCPUSTATE Dis;
2454 uint32_t cbOp;
2455 int rc = EMInterpretDisasCurrent(pVM, pVCpu, &Dis, &cbOp);
2456 AssertRC(rc);
2457 if ( rc == VINF_SUCCESS
2458 && Dis.pCurInstr->uOpcode == OP_MOV
2459 && cbOp >= 5)
2460 {
2461 uint8_t aPatch[64];
2462 uint32_t off = 0;
2463
2464 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2465 AssertRC(rc);
2466
2467 pPatch->cbOp = cbOp;
2468 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2469
2470 if (Dis.Param1.fUse == DISUSE_DISPLACEMENT32)
2471 {
2472 /*
2473 * TPR write:
2474 *
2475 * push ECX [51]
2476 * push EDX [52]
2477 * push EAX [50]
2478 * xor EDX,EDX [31 D2]
2479 * mov EAX,EAX [89 C0]
2480 * or
2481 * mov EAX,0000000CCh [B8 CC 00 00 00]
2482 * mov ECX,0C0000082h [B9 82 00 00 C0]
2483 * wrmsr [0F 30]
2484 * pop EAX [58]
2485 * pop EDX [5A]
2486 * pop ECX [59]
2487 * jmp return_address [E9 return_address]
2488 */
2489 bool fUsesEax = (Dis.Param2.fUse == DISUSE_REG_GEN32 && Dis.Param2.Base.idxGenReg == DISGREG_EAX);
2490
2491 aPatch[off++] = 0x51; /* push ecx */
2492 aPatch[off++] = 0x52; /* push edx */
2493 if (!fUsesEax)
2494 aPatch[off++] = 0x50; /* push eax */
2495 aPatch[off++] = 0x31; /* xor edx, edx */
2496 aPatch[off++] = 0xd2;
2497 if (Dis.Param2.fUse == DISUSE_REG_GEN32)
2498 {
2499 if (!fUsesEax)
2500 {
2501 aPatch[off++] = 0x89; /* mov eax, src_reg */
2502 aPatch[off++] = MAKE_MODRM(3, Dis.Param2.Base.idxGenReg, DISGREG_EAX);
2503 }
2504 }
2505 else
2506 {
2507 Assert(Dis.Param2.fUse == DISUSE_IMMEDIATE32);
2508 aPatch[off++] = 0xb8; /* mov eax, immediate */
2509 *(uint32_t *)&aPatch[off] = Dis.Param2.uValue;
2510 off += sizeof(uint32_t);
2511 }
2512 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2513 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2514 off += sizeof(uint32_t);
2515
2516 aPatch[off++] = 0x0f; /* wrmsr */
2517 aPatch[off++] = 0x30;
2518 if (!fUsesEax)
2519 aPatch[off++] = 0x58; /* pop eax */
2520 aPatch[off++] = 0x5a; /* pop edx */
2521 aPatch[off++] = 0x59; /* pop ecx */
2522 }
2523 else
2524 {
2525 /*
2526 * TPR read:
2527 *
2528 * push ECX [51]
2529 * push EDX [52]
2530 * push EAX [50]
2531 * mov ECX,0C0000082h [B9 82 00 00 C0]
2532 * rdmsr [0F 32]
2533 * mov EAX,EAX [89 C0]
2534 * pop EAX [58]
2535 * pop EDX [5A]
2536 * pop ECX [59]
2537 * jmp return_address [E9 return_address]
2538 */
2539 Assert(Dis.Param1.fUse == DISUSE_REG_GEN32);
2540
2541 if (Dis.Param1.Base.idxGenReg != DISGREG_ECX)
2542 aPatch[off++] = 0x51; /* push ecx */
2543 if (Dis.Param1.Base.idxGenReg != DISGREG_EDX )
2544 aPatch[off++] = 0x52; /* push edx */
2545 if (Dis.Param1.Base.idxGenReg != DISGREG_EAX)
2546 aPatch[off++] = 0x50; /* push eax */
2547
2548 aPatch[off++] = 0x31; /* xor edx, edx */
2549 aPatch[off++] = 0xd2;
2550
2551 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2552 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2553 off += sizeof(uint32_t);
2554
2555 aPatch[off++] = 0x0f; /* rdmsr */
2556 aPatch[off++] = 0x32;
2557
2558 if (Dis.Param1.Base.idxGenReg != DISGREG_EAX)
2559 {
2560 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2561 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, Dis.Param1.Base.idxGenReg);
2562 }
2563
2564 if (Dis.Param1.Base.idxGenReg != DISGREG_EAX)
2565 aPatch[off++] = 0x58; /* pop eax */
2566 if (Dis.Param1.Base.idxGenReg != DISGREG_EDX )
2567 aPatch[off++] = 0x5a; /* pop edx */
2568 if (Dis.Param1.Base.idxGenReg != DISGREG_ECX)
2569 aPatch[off++] = 0x59; /* pop ecx */
2570 }
2571 aPatch[off++] = 0xe9; /* jmp return_address */
2572 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2573 off += sizeof(RTRCUINTPTR);
2574
2575 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2576 {
2577 /* Write new code to the patch buffer. */
2578 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2579 AssertRC(rc);
2580
2581#ifdef LOG_ENABLED
2582 uint32_t cbCurInstr;
2583 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2584 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2585 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2586 {
2587 char szOutput[256];
2588 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2589 szOutput, sizeof(szOutput), &cbCurInstr);
2590 if (RT_SUCCESS(rc))
2591 Log(("Patch instr %s\n", szOutput));
2592 else
2593 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2594 }
2595#endif
2596
2597 pPatch->aNewOpcode[0] = 0xE9;
2598 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2599
2600 /* Overwrite the TPR instruction with a jump. */
2601 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2602 AssertRC(rc);
2603
2604 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2605
2606 pVM->hm.s.pFreeGuestPatchMem += off;
2607 pPatch->cbNewOp = 5;
2608
2609 pPatch->Core.Key = pCtx->eip;
2610 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2611 AssertRC(rc);
2612
2613 pVM->hm.s.cPatches++;
2614 pVM->hm.s.fTprPatchingActive = true;
2615 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2616 return VINF_SUCCESS;
2617 }
2618
2619 Log(("Ran out of space in our patch buffer!\n"));
2620 }
2621 else
2622 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2623
2624
2625 /*
2626 * Save invalid patch, so we will not try again.
2627 */
2628 pPatch = &pVM->hm.s.aPatches[idx];
2629 pPatch->Core.Key = pCtx->eip;
2630 pPatch->enmType = HMTPRINSTR_INVALID;
2631 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2632 AssertRC(rc);
2633 pVM->hm.s.cPatches++;
2634 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2635 return VINF_SUCCESS;
2636}
2637
2638
2639/**
2640 * Attempt to patch TPR mmio instructions.
2641 *
2642 * @returns VBox status code.
2643 * @param pVM The cross context VM structure.
2644 * @param pVCpu The cross context virtual CPU structure.
2645 */
2646VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu)
2647{
2648 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2649 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2650 (void *)(uintptr_t)pVCpu->idCpu);
2651 AssertRC(rc);
2652 return rc;
2653}
2654
2655
2656/**
2657 * Checks if we need to reschedule due to VMM device heap changes.
2658 *
2659 * @returns true if a reschedule is required, otherwise false.
2660 * @param pVM The cross context VM structure.
2661 * @param pCtx VM execution context.
2662 */
2663VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCCPUMCTX pCtx)
2664{
2665 /*
2666 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2667 * when the unrestricted guest execution feature is missing (VT-x only).
2668 */
2669 if ( pVM->hm.s.vmx.fEnabled
2670 && !pVM->hm.s.vmx.fUnrestrictedGuestCfg
2671 && CPUMIsGuestInRealModeEx(pCtx)
2672 && !PDMVmmDevHeapIsEnabled(pVM))
2673 return true;
2674
2675 return false;
2676}
2677
2678
2679/**
2680 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
2681 * event settings changes.
2682 *
2683 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
2684 * function is just updating the VM globals.
2685 *
2686 * @param pVM The VM cross context VM structure.
2687 * @thread EMT(0)
2688 */
2689VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
2690{
2691 /* Interrupts. */
2692 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
2693 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
2694
2695 /* CPU Exceptions. */
2696 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
2697 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
2698 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2699 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2700
2701 /* Common VM exits. */
2702 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
2703 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
2704 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2705 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2706
2707 /* Vendor specific VM exits. */
2708 if (HMR3IsVmxEnabled(pVM->pUVM))
2709 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
2710 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
2711 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2712 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2713 else
2714 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
2715 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
2716 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2717 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2718
2719 /* Done. */
2720 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
2721}
2722
2723
2724/**
2725 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
2726 *
2727 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
2728 * per CPU settings.
2729 *
2730 * @param pVM The VM cross context VM structure.
2731 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2732 */
2733VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
2734{
2735 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
2736}
2737
2738
2739/**
2740 * Checks if we are currently using hardware acceleration.
2741 *
2742 * @returns true if hardware acceleration is being used, otherwise false.
2743 * @param pVCpu The cross context virtual CPU structure.
2744 */
2745VMMR3_INT_DECL(bool) HMR3IsActive(PCVMCPU pVCpu)
2746{
2747 return pVCpu->hm.s.fActive;
2748}
2749
2750
2751/**
2752 * External interface for querying whether hardware acceleration is enabled.
2753 *
2754 * @returns true if VT-x or AMD-V is being used, otherwise false.
2755 * @param pUVM The user mode VM handle.
2756 * @sa HMIsEnabled, HMIsEnabledNotMacro.
2757 */
2758VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
2759{
2760 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2761 PVM pVM = pUVM->pVM;
2762 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2763 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
2764}
2765
2766
2767/**
2768 * External interface for querying whether VT-x is being used.
2769 *
2770 * @returns true if VT-x is being used, otherwise false.
2771 * @param pUVM The user mode VM handle.
2772 * @sa HMR3IsSvmEnabled, HMIsEnabled
2773 */
2774VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
2775{
2776 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2777 PVM pVM = pUVM->pVM;
2778 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2779 return pVM->hm.s.vmx.fEnabled
2780 && pVM->hm.s.vmx.fSupported
2781 && pVM->fHMEnabled;
2782}
2783
2784
2785/**
2786 * External interface for querying whether AMD-V is being used.
2787 *
2788 * @returns true if VT-x is being used, otherwise false.
2789 * @param pUVM The user mode VM handle.
2790 * @sa HMR3IsVmxEnabled, HMIsEnabled
2791 */
2792VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
2793{
2794 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2795 PVM pVM = pUVM->pVM;
2796 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2797 return pVM->hm.s.svm.fEnabled
2798 && pVM->hm.s.svm.fSupported
2799 && pVM->fHMEnabled;
2800}
2801
2802
2803/**
2804 * Checks if we are currently using nested paging.
2805 *
2806 * @returns true if nested paging is being used, otherwise false.
2807 * @param pUVM The user mode VM handle.
2808 */
2809VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
2810{
2811 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2812 PVM pVM = pUVM->pVM;
2813 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2814 return pVM->hm.s.fNestedPagingCfg;
2815}
2816
2817
2818/**
2819 * Checks if virtualized APIC registers are enabled.
2820 *
2821 * When enabled this feature allows the hardware to access most of the
2822 * APIC registers in the virtual-APIC page without causing VM-exits. See
2823 * Intel spec. 29.1.1 "Virtualized APIC Registers".
2824 *
2825 * @returns true if virtualized APIC registers is enabled, otherwise
2826 * false.
2827 * @param pUVM The user mode VM handle.
2828 */
2829VMMR3DECL(bool) HMR3AreVirtApicRegsEnabled(PUVM pUVM)
2830{
2831 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2832 PVM pVM = pUVM->pVM;
2833 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2834 return pVM->hm.s.fVirtApicRegs;
2835}
2836
2837
2838/**
2839 * Checks if APIC posted-interrupt processing is enabled.
2840 *
2841 * This returns whether we can deliver interrupts to the guest without
2842 * leaving guest-context by updating APIC state from host-context.
2843 *
2844 * @returns true if APIC posted-interrupt processing is enabled,
2845 * otherwise false.
2846 * @param pUVM The user mode VM handle.
2847 */
2848VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
2849{
2850 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2851 PVM pVM = pUVM->pVM;
2852 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2853 return pVM->hm.s.fPostedIntrs;
2854}
2855
2856
2857/**
2858 * Checks if we are currently using VPID in VT-x mode.
2859 *
2860 * @returns true if VPID is being used, otherwise false.
2861 * @param pUVM The user mode VM handle.
2862 */
2863VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
2864{
2865 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2866 PVM pVM = pUVM->pVM;
2867 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2868 return pVM->hm.s.ForR3.vmx.fVpid;
2869}
2870
2871
2872/**
2873 * Checks if we are currently using VT-x unrestricted execution,
2874 * aka UX.
2875 *
2876 * @returns true if UX is being used, otherwise false.
2877 * @param pUVM The user mode VM handle.
2878 */
2879VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
2880{
2881 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2882 PVM pVM = pUVM->pVM;
2883 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2884 return pVM->hm.s.vmx.fUnrestrictedGuestCfg
2885 || pVM->hm.s.svm.fSupported;
2886}
2887
2888
2889/**
2890 * Checks if the VMX-preemption timer is being used.
2891 *
2892 * @returns true if the VMX-preemption timer is being used, otherwise false.
2893 * @param pVM The cross context VM structure.
2894 */
2895VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
2896{
2897 return HMIsEnabled(pVM)
2898 && pVM->hm.s.vmx.fEnabled
2899 && pVM->hm.s.vmx.fUsePreemptTimerCfg;
2900}
2901
2902
2903#ifdef TODO_9217_VMCSINFO
2904/**
2905 * Helper for HMR3CheckError to log VMCS controls to the release log.
2906 *
2907 * @param idCpu The Virtual CPU ID.
2908 * @param pVmcsInfo The VMCS info. object.
2909 */
2910static void hmR3CheckErrorLogVmcsCtls(VMCPUID idCpu, PCVMXVMCSINFO pVmcsInfo)
2911{
2912 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", idCpu, pVmcsInfo->u32PinCtls));
2913 {
2914 uint32_t const u32Val = pVmcsInfo->u32PinCtls;
2915 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_EXT_INT_EXIT );
2916 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_NMI_EXIT );
2917 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_VIRT_NMI );
2918 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_PREEMPT_TIMER);
2919 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_POSTED_INT );
2920 }
2921 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls));
2922 {
2923 uint32_t const u32Val = pVmcsInfo->u32ProcCtls;
2924 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INT_WINDOW_EXIT );
2925 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TSC_OFFSETTING);
2926 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_HLT_EXIT );
2927 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INVLPG_EXIT );
2928 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MWAIT_EXIT );
2929 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDPMC_EXIT );
2930 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDTSC_EXIT );
2931 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_LOAD_EXIT );
2932 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_STORE_EXIT );
2933 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TERTIARY_CTLS );
2934 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_LOAD_EXIT );
2935 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_STORE_EXIT );
2936 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TPR_SHADOW );
2937 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_NMI_WINDOW_EXIT );
2938 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MOV_DR_EXIT );
2939 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_UNCOND_IO_EXIT );
2940 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_IO_BITMAPS );
2941 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_TRAP_FLAG );
2942 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_MSR_BITMAPS );
2943 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_EXIT );
2944 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_PAUSE_EXIT );
2945 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2946 }
2947 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls2));
2948 {
2949 uint32_t const u32Val = pVmcsInfo->u32ProcCtls2;
2950 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_APIC_ACCESS );
2951 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT );
2952 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_DESC_TABLE_EXIT );
2953 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDTSCP );
2954 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_X2APIC_MODE );
2955 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VPID );
2956 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_WBINVD_EXIT );
2957 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_UNRESTRICTED_GUEST );
2958 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_APIC_REG_VIRT );
2959 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_INT_DELIVERY );
2960 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT );
2961 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDRAND_EXIT );
2962 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_INVPCID );
2963 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMFUNC );
2964 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMCS_SHADOWING );
2965 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLS_EXIT );
2966 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDSEED_EXIT );
2967 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PML );
2968 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT_XCPT_VE );
2969 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
2970 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_XSAVES_XRSTORS );
2971 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
2972 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_SPP_EPT );
2973 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PT_EPT );
2974 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_TSC_SCALING );
2975 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_USER_WAIT_PAUSE );
2976 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLV_EXIT );
2977 }
2978 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", idCpu, pVmcsInfo->u32EntryCtls));
2979 {
2980 uint32_t const u32Val = pVmcsInfo->u32EntryCtls;
2981 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_DEBUG );
2982 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_IA32E_MODE_GUEST );
2983 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_ENTRY_TO_SMM );
2984 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
2985 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PERF_MSR );
2986 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PAT_MSR );
2987 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_EFER_MSR );
2988 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR );
2989 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
2990 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR );
2991 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_CET_STATE );
2992 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PKRS_MSR );
2993 }
2994 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", idCpu, pVmcsInfo->u32ExitCtls));
2995 {
2996 uint32_t const u32Val = pVmcsInfo->u32ExitCtls;
2997 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_DEBUG );
2998 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE );
2999 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PERF_MSR );
3000 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_ACK_EXT_INT );
3001 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PAT_MSR );
3002 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PAT_MSR );
3003 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_EFER_MSR );
3004 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_EFER_MSR );
3005 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER );
3006 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR );
3007 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT );
3008 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR );
3009 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_CET_STATE );
3010 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PKRS_MSR );
3011 }
3012}
3013#endif
3014
3015
3016/**
3017 * Check fatal VT-x/AMD-V error and produce some meaningful
3018 * log release message.
3019 *
3020 * @param pVM The cross context VM structure.
3021 * @param iStatusCode VBox status code.
3022 */
3023VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
3024{
3025 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3026 {
3027 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
3028 * might be getting inaccurate values for non-guru'ing EMTs. */
3029 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3030#ifdef TODO_9217_VMCSINFO
3031 PCVMXVMCSINFOSHARED pVmcsInfo = hmGetVmxActiveVmcsInfoShared(pVCpu);
3032#endif
3033 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
3034 switch (iStatusCode)
3035 {
3036 case VERR_VMX_INVALID_VMCS_PTR:
3037 {
3038 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
3039 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3040#ifdef TODO_9217_VMCSINFO
3041 LogRel(("HM: CPU[%u] Current pointer %#RHp vs %#RHp\n", idCpu, pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs,
3042 pVmcsInfo->HCPhysVmcs));
3043#endif
3044 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32VmcsRev));
3045 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3046 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3047 break;
3048 }
3049
3050 case VERR_VMX_UNABLE_TO_START_VM:
3051 {
3052 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3053 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3054 LogRel(("HM: CPU[%u] Instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
3055 LogRel(("HM: CPU[%u] Exit reason %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3056
3057 if ( pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS
3058 || pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS)
3059 {
3060 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3061 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3062 }
3063 else if (pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMENTRY_INVALID_CTLS)
3064 {
3065#ifdef TODO_9217_VMCSINFO
3066 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3067 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
3068 LogRel(("HM: CPU[%u] HCPhysGuestMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrLoad));
3069 LogRel(("HM: CPU[%u] HCPhysGuestMsrStore %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrStore));
3070 LogRel(("HM: CPU[%u] HCPhysHostMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysHostMsrLoad));
3071 LogRel(("HM: CPU[%u] cEntryMsrLoad %u\n", idCpu, pVmcsInfo->cEntryMsrLoad));
3072 LogRel(("HM: CPU[%u] cExitMsrStore %u\n", idCpu, pVmcsInfo->cExitMsrStore));
3073 LogRel(("HM: CPU[%u] cExitMsrLoad %u\n", idCpu, pVmcsInfo->cExitMsrLoad));
3074#endif
3075 }
3076 /** @todo Log VM-entry event injection control fields
3077 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3078 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3079 break;
3080 }
3081
3082 case VERR_VMX_INVALID_GUEST_STATE:
3083 {
3084 LogRel(("HM: VERR_VMX_INVALID_GUEST_STATE:\n"));
3085 LogRel(("HM: CPU[%u] HM error = %#RX32\n", idCpu, pVCpu->hm.s.u32HMError));
3086 LogRel(("HM: CPU[%u] Guest-intr. state = %#RX32\n", idCpu, pVCpu->hm.s.vmx.LastError.u32GuestIntrState));
3087#ifdef TODO_9217_VMCSINFO
3088 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3089#endif
3090 break;
3091 }
3092
3093 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3094 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3095 case VERR_VMX_INVALID_VMXON_PTR:
3096 case VERR_VMX_UNEXPECTED_EXIT:
3097 case VERR_VMX_INVALID_VMCS_FIELD:
3098 case VERR_SVM_UNKNOWN_EXIT:
3099 case VERR_SVM_UNEXPECTED_EXIT:
3100 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3101 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3102 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3103 break;
3104 }
3105 }
3106
3107 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3108 {
3109 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-1 %#RX32\n", pVM->hm.s.ForR3.vmx.Msrs.EntryCtls.n.allowed1));
3110 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-0 %#RX32\n", pVM->hm.s.ForR3.vmx.Msrs.EntryCtls.n.allowed0));
3111 }
3112 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3113 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.ForR3.vmx.HCPhysVmxEnableError));
3114}
3115
3116
3117/**
3118 * Execute state save operation.
3119 *
3120 * Save only data that cannot be re-loaded while entering HM ring-0 code. This
3121 * is because we always save the VM state from ring-3 and thus most HM state
3122 * will be re-synced dynamically at runtime and don't need to be part of the VM
3123 * saved state.
3124 *
3125 * @returns VBox status code.
3126 * @param pVM The cross context VM structure.
3127 * @param pSSM SSM operation handle.
3128 */
3129static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3130{
3131 Log(("hmR3Save:\n"));
3132
3133 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3134 {
3135 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3136 Assert(!pVCpu->hm.s.Event.fPending);
3137 if (pVM->cpum.ro.GuestFeatures.fSvm)
3138 {
3139 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3140 SSMR3PutBool(pSSM, pVmcbNstGstCache->fCacheValid);
3141 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx);
3142 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx);
3143 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx);
3144 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx);
3145 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold);
3146 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount);
3147 SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt);
3148 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl);
3149 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset);
3150 SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking);
3151 SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging);
3152 SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt);
3153 }
3154 }
3155
3156 /* Save the guest patch data. */
3157 SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3158 SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3159 SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3160
3161 /* Store all the guest patch records too. */
3162 int rc = SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3163 if (RT_FAILURE(rc))
3164 return rc;
3165
3166 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3167 {
3168 AssertCompileSize(HMTPRINSTR, 4);
3169 PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3170 SSMR3PutU32(pSSM, pPatch->Core.Key);
3171 SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3172 SSMR3PutU32(pSSM, pPatch->cbOp);
3173 SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3174 SSMR3PutU32(pSSM, pPatch->cbNewOp);
3175 SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3176 SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3177 SSMR3PutU32(pSSM, pPatch->uDstOperand);
3178 SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3179 rc = SSMR3PutU32(pSSM, pPatch->cFaults);
3180 if (RT_FAILURE(rc))
3181 return rc;
3182 }
3183
3184 return VINF_SUCCESS;
3185}
3186
3187
3188/**
3189 * Execute state load operation.
3190 *
3191 * @returns VBox status code.
3192 * @param pVM The cross context VM structure.
3193 * @param pSSM SSM operation handle.
3194 * @param uVersion Data layout version.
3195 * @param uPass The data pass.
3196 */
3197static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3198{
3199 int rc;
3200
3201 LogFlowFunc(("uVersion=%u\n", uVersion));
3202 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3203
3204 /*
3205 * Validate version.
3206 */
3207 if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT
3208 && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING
3209 && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING
3210 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3211 {
3212 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3213 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3214 }
3215
3216 /*
3217 * Load per-VCPU state.
3218 */
3219 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3220 {
3221 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3222 if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT)
3223 {
3224 /* Load the SVM nested hw.virt state if the VM is configured for it. */
3225 if (pVM->cpum.ro.GuestFeatures.fSvm)
3226 {
3227 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3228 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fCacheValid);
3229 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx);
3230 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx);
3231 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx);
3232 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx);
3233 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold);
3234 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount);
3235 SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt);
3236 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl);
3237 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset);
3238 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking);
3239 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging);
3240 rc = SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt);
3241 AssertRCReturn(rc, rc);
3242 }
3243 }
3244 else
3245 {
3246 /* Pending HM event (obsolete for a long time since TPRM holds the info.) */
3247 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.fPending);
3248 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.u32ErrCode);
3249 SSMR3GetU64(pSSM, &pVCpu->hm.s.Event.u64IntInfo);
3250
3251 /* VMX fWasInRealMode related data. */
3252 uint32_t uDummy;
3253 SSMR3GetU32(pSSM, &uDummy);
3254 SSMR3GetU32(pSSM, &uDummy);
3255 rc = SSMR3GetU32(pSSM, &uDummy);
3256 AssertRCReturn(rc, rc);
3257 }
3258 }
3259
3260 /*
3261 * Load TPR patching data.
3262 */
3263 if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING)
3264 {
3265 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3266 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3267 SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3268
3269 /* Fetch all TPR patch records. */
3270 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3271 AssertRCReturn(rc, rc);
3272 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3273 {
3274 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3275 SSMR3GetU32(pSSM, &pPatch->Core.Key);
3276 SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3277 SSMR3GetU32(pSSM, &pPatch->cbOp);
3278 SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3279 SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3280 SSM_GET_ENUM32_RET(pSSM, pPatch->enmType, HMTPRINSTR);
3281
3282 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3283 pVM->hm.s.fTprPatchingActive = true;
3284 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTprPatchingActive == false);
3285
3286 SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3287 SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3288 SSMR3GetU32(pSSM, &pPatch->cFaults);
3289 rc = SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3290 AssertRCReturn(rc, rc);
3291
3292 LogFlow(("hmR3Load: patch %d\n", i));
3293 LogFlow(("Key = %x\n", pPatch->Core.Key));
3294 LogFlow(("cbOp = %d\n", pPatch->cbOp));
3295 LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp));
3296 LogFlow(("type = %d\n", pPatch->enmType));
3297 LogFlow(("srcop = %d\n", pPatch->uSrcOperand));
3298 LogFlow(("dstop = %d\n", pPatch->uDstOperand));
3299 LogFlow(("cFaults = %d\n", pPatch->cFaults));
3300 LogFlow(("target = %x\n", pPatch->pJumpTarget));
3301
3302 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3303 AssertRCReturn(rc, rc);
3304 }
3305 }
3306
3307 return VINF_SUCCESS;
3308}
3309
3310
3311/**
3312 * Displays HM info.
3313 *
3314 * @param pVM The cross context VM structure.
3315 * @param pHlp The info helper functions.
3316 * @param pszArgs Arguments, ignored.
3317 */
3318static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3319{
3320 NOREF(pszArgs);
3321 PVMCPU pVCpu = VMMGetCpu(pVM);
3322 if (!pVCpu)
3323 pVCpu = pVM->apCpusR3[0];
3324
3325 if (HMIsEnabled(pVM))
3326 {
3327 if (pVM->hm.s.vmx.fSupported)
3328 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu);
3329 else
3330 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu);
3331 pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3332 pHlp->pfnPrintf(pHlp, " rcLastExitToR3 = %Rrc\n", pVCpu->hm.s.rcLastExitToR3);
3333 if (pVM->hm.s.vmx.fSupported)
3334 {
3335 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3336 bool const fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active;
3337 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
3338
3339 pHlp->pfnPrintf(pHlp, " %s VMCS active\n", fNstGstVmcsActive ? "Nested-guest" : "Guest");
3340 pHlp->pfnPrintf(pHlp, " Real-on-v86 active = %RTbool\n", fRealOnV86Active);
3341 if (fRealOnV86Active)
3342 {
3343 pHlp->pfnPrintf(pHlp, " EFlags = %#x\n", pVmcsInfoShared->RealMode.Eflags.u32);
3344 pHlp->pfnPrintf(pHlp, " Attr CS = %#x\n", pVmcsInfoShared->RealMode.AttrCS.u);
3345 pHlp->pfnPrintf(pHlp, " Attr SS = %#x\n", pVmcsInfoShared->RealMode.AttrSS.u);
3346 pHlp->pfnPrintf(pHlp, " Attr DS = %#x\n", pVmcsInfoShared->RealMode.AttrDS.u);
3347 pHlp->pfnPrintf(pHlp, " Attr ES = %#x\n", pVmcsInfoShared->RealMode.AttrES.u);
3348 pHlp->pfnPrintf(pHlp, " Attr FS = %#x\n", pVmcsInfoShared->RealMode.AttrFS.u);
3349 pHlp->pfnPrintf(pHlp, " Attr GS = %#x\n", pVmcsInfoShared->RealMode.AttrGS.u);
3350 }
3351 }
3352 }
3353 else
3354 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3355}
3356
3357
3358/**
3359 * Displays the HM Last-Branch-Record info. for the guest.
3360 *
3361 * @param pVM The cross context VM structure.
3362 * @param pHlp The info helper functions.
3363 * @param pszArgs Arguments, ignored.
3364 */
3365static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3366{
3367 NOREF(pszArgs);
3368 PVMCPU pVCpu = VMMGetCpu(pVM);
3369 if (!pVCpu)
3370 pVCpu = pVM->apCpusR3[0];
3371
3372 if (!HMIsEnabled(pVM))
3373 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3374 else if (HMIsVmxActive(pVM))
3375 {
3376 if (pVM->hm.s.vmx.fLbrCfg)
3377 {
3378 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3379 uint32_t const cLbrStack = pVM->hm.s.ForR3.vmx.idLbrFromIpMsrLast - pVM->hm.s.ForR3.vmx.idLbrFromIpMsrFirst + 1;
3380
3381 /** @todo r=ramshankar: The index technically varies depending on the CPU, but
3382 * 0xf should cover everything we support thus far. Fix if necessary
3383 * later. */
3384 uint32_t const idxTopOfStack = pVmcsInfoShared->u64LbrTosMsr & 0xf;
3385 if (idxTopOfStack > cLbrStack)
3386 {
3387 pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
3388 idxTopOfStack, pVmcsInfoShared->u64LbrTosMsr, cLbrStack);
3389 return;
3390 }
3391
3392 /*
3393 * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
3394 */
3395 pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
3396 uint32_t idxCurrent = idxTopOfStack;
3397 Assert(idxTopOfStack < cLbrStack);
3398 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr) <= cLbrStack);
3399 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrToIpMsr) <= cLbrStack);
3400 for (;;)
3401 {
3402 if (pVM->hm.s.ForR3.vmx.idLbrToIpMsrFirst)
3403 pHlp->pfnPrintf(pHlp, " Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64\n", idxCurrent,
3404 pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent], pVmcsInfoShared->au64LbrToIpMsr[idxCurrent]);
3405 else
3406 pHlp->pfnPrintf(pHlp, " Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent]);
3407
3408 idxCurrent = (idxCurrent - 1) % cLbrStack;
3409 if (idxCurrent == idxTopOfStack)
3410 break;
3411 }
3412 }
3413 else
3414 pHlp->pfnPrintf(pHlp, "VM not configured to record LBRs for the guest\n");
3415 }
3416 else
3417 {
3418 Assert(HMIsSvmActive(pVM));
3419 /** @todo SVM: LBRs (get them from VMCB if possible). */
3420 pHlp->pfnPrintf(pHlp, "SVM LBR not implemented.\n");
3421 }
3422}
3423
3424
3425/**
3426 * Displays the HM pending event.
3427 *
3428 * @param pVM The cross context VM structure.
3429 * @param pHlp The info helper functions.
3430 * @param pszArgs Arguments, ignored.
3431 */
3432static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3433{
3434 NOREF(pszArgs);
3435 PVMCPU pVCpu = VMMGetCpu(pVM);
3436 if (!pVCpu)
3437 pVCpu = pVM->apCpusR3[0];
3438
3439 if (HMIsEnabled(pVM))
3440 {
3441 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3442 if (pVCpu->hm.s.Event.fPending)
3443 {
3444 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3445 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3446 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3447 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3448 }
3449 }
3450 else
3451 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3452}
3453
3454
3455/**
3456 * Displays the SVM nested-guest VMCB cache.
3457 *
3458 * @param pVM The cross context VM structure.
3459 * @param pHlp The info helper functions.
3460 * @param pszArgs Arguments, ignored.
3461 */
3462static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3463{
3464 NOREF(pszArgs);
3465 PVMCPU pVCpu = VMMGetCpu(pVM);
3466 if (!pVCpu)
3467 pVCpu = pVM->apCpusR3[0];
3468
3469 bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM);
3470 if ( fSvmEnabled
3471 && pVM->cpum.ro.GuestFeatures.fSvm)
3472 {
3473 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3474 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu);
3475 pHlp->pfnPrintf(pHlp, " fCacheValid = %#RTbool\n", pVmcbNstGstCache->fCacheValid);
3476 pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx);
3477 pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx);
3478 pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx);
3479 pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx);
3480 pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold);
3481 pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount);
3482 pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt);
3483 pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl);
3484 pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset);
3485 pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking);
3486 pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging);
3487 pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt);
3488 }
3489 else
3490 {
3491 if (!fSvmEnabled)
3492 pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n");
3493 else
3494 pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n");
3495 }
3496}
3497
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette