VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 63465

Last change on this file since 63465 was 62647, checked in by vboxsync, 8 years ago

VMMR3: warnings

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 156.8 KB
Line 
1/* $Id: HM.cpp 62647 2016-07-28 22:02:27Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_hm HM - Hardware Assisted Virtualization Manager
19 *
20 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
21 * extensions.
22 *
23 * {summary of what HM does}
24 *
25 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
26 * however that was cumbersome to write and parse for such a central component,
27 * so it was shortened to HM when refactoring the code in the 4.3 development
28 * cycle.
29 *
30 * {add sections with more details}
31 *
32 * @sa @ref grp_hm
33 */
34
35
36/*********************************************************************************************************************************
37* Header Files *
38*********************************************************************************************************************************/
39#define LOG_GROUP LOG_GROUP_HM
40#include <VBox/vmm/cpum.h>
41#include <VBox/vmm/stam.h>
42#include <VBox/vmm/mm.h>
43#include <VBox/vmm/pdmapi.h>
44#include <VBox/vmm/pgm.h>
45#include <VBox/vmm/ssm.h>
46#include <VBox/vmm/trpm.h>
47#include <VBox/vmm/dbgf.h>
48#include <VBox/vmm/iom.h>
49#include <VBox/vmm/patm.h>
50#include <VBox/vmm/csam.h>
51#include <VBox/vmm/selm.h>
52#ifdef VBOX_WITH_REM
53# include <VBox/vmm/rem.h>
54#endif
55#include <VBox/vmm/hm_vmx.h>
56#include <VBox/vmm/hm_svm.h>
57#include "HMInternal.h"
58#include <VBox/vmm/vm.h>
59#include <VBox/vmm/uvm.h>
60#include <VBox/err.h>
61#include <VBox/param.h>
62
63#include <iprt/assert.h>
64#include <VBox/log.h>
65#include <iprt/asm.h>
66#include <iprt/asm-amd64-x86.h>
67#include <iprt/env.h>
68#include <iprt/thread.h>
69
70
71/*********************************************************************************************************************************
72* Global Variables *
73*********************************************************************************************************************************/
74#define EXIT_REASON(def, val, str) #def " - " #val " - " str
75#define EXIT_REASON_NIL() NULL
76/** Exit reason descriptions for VT-x, used to describe statistics. */
77static const char * const g_apszVTxExitReasons[MAX_EXITREASON_STAT] =
78{
79 EXIT_REASON(VMX_EXIT_XCPT_OR_NMI , 0, "Exception or non-maskable interrupt (NMI)."),
80 EXIT_REASON(VMX_EXIT_EXT_INT , 1, "External interrupt."),
81 EXIT_REASON(VMX_EXIT_TRIPLE_FAULT , 2, "Triple fault."),
82 EXIT_REASON(VMX_EXIT_INIT_SIGNAL , 3, "INIT signal."),
83 EXIT_REASON(VMX_EXIT_SIPI , 4, "Start-up IPI (SIPI)."),
84 EXIT_REASON(VMX_EXIT_IO_SMI_IRQ , 5, "I/O system-management interrupt (SMI)."),
85 EXIT_REASON(VMX_EXIT_SMI_IRQ , 6, "Other SMI."),
86 EXIT_REASON(VMX_EXIT_INT_WINDOW , 7, "Interrupt window."),
87 EXIT_REASON(VMX_EXIT_NMI_WINDOW , 8, "NMI window."),
88 EXIT_REASON(VMX_EXIT_TASK_SWITCH , 9, "Task switch."),
89 EXIT_REASON(VMX_EXIT_CPUID , 10, "CPUID instruction."),
90 EXIT_REASON(VMX_EXIT_GETSEC , 11, "GETSEC instrunction."),
91 EXIT_REASON(VMX_EXIT_HLT , 12, "HLT instruction."),
92 EXIT_REASON(VMX_EXIT_INVD , 13, "INVD instruction."),
93 EXIT_REASON(VMX_EXIT_INVLPG , 14, "INVLPG instruction."),
94 EXIT_REASON(VMX_EXIT_RDPMC , 15, "RDPMCinstruction."),
95 EXIT_REASON(VMX_EXIT_RDTSC , 16, "RDTSC instruction."),
96 EXIT_REASON(VMX_EXIT_RSM , 17, "RSM instruction in SMM."),
97 EXIT_REASON(VMX_EXIT_VMCALL , 18, "VMCALL instruction."),
98 EXIT_REASON(VMX_EXIT_VMCLEAR , 19, "VMCLEAR instruction."),
99 EXIT_REASON(VMX_EXIT_VMLAUNCH , 20, "VMLAUNCH instruction."),
100 EXIT_REASON(VMX_EXIT_VMPTRLD , 21, "VMPTRLD instruction."),
101 EXIT_REASON(VMX_EXIT_VMPTRST , 22, "VMPTRST instruction."),
102 EXIT_REASON(VMX_EXIT_VMREAD , 23, "VMREAD instruction."),
103 EXIT_REASON(VMX_EXIT_VMRESUME , 24, "VMRESUME instruction."),
104 EXIT_REASON(VMX_EXIT_VMWRITE , 25, "VMWRITE instruction."),
105 EXIT_REASON(VMX_EXIT_VMXOFF , 26, "VMXOFF instruction."),
106 EXIT_REASON(VMX_EXIT_VMXON , 27, "VMXON instruction."),
107 EXIT_REASON(VMX_EXIT_MOV_CRX , 28, "Control-register accesses."),
108 EXIT_REASON(VMX_EXIT_MOV_DRX , 29, "Debug-register accesses."),
109 EXIT_REASON(VMX_EXIT_PORT_IO , 30, "I/O instruction."),
110 EXIT_REASON(VMX_EXIT_RDMSR , 31, "RDMSR instruction."),
111 EXIT_REASON(VMX_EXIT_WRMSR , 32, "WRMSR instruction."),
112 EXIT_REASON(VMX_EXIT_ERR_INVALID_GUEST_STATE, 33, "VM-entry failure due to invalid guest state."),
113 EXIT_REASON(VMX_EXIT_ERR_MSR_LOAD , 34, "VM-entry failure due to MSR loading."),
114 EXIT_REASON_NIL(),
115 EXIT_REASON(VMX_EXIT_MWAIT , 36, "MWAIT instruction."),
116 EXIT_REASON(VMX_EXIT_MTF , 37, "Monitor Trap Flag."),
117 EXIT_REASON_NIL(),
118 EXIT_REASON(VMX_EXIT_MONITOR , 39, "MONITOR instruction."),
119 EXIT_REASON(VMX_EXIT_PAUSE , 40, "PAUSE instruction."),
120 EXIT_REASON(VMX_EXIT_ERR_MACHINE_CHECK , 41, "VM-entry failure due to machine-check."),
121 EXIT_REASON_NIL(),
122 EXIT_REASON(VMX_EXIT_TPR_BELOW_THRESHOLD , 43, "TPR below threshold (MOV to CR8)."),
123 EXIT_REASON(VMX_EXIT_APIC_ACCESS , 44, "APIC access."),
124 EXIT_REASON(VMX_EXIT_VIRTUALIZED_EOI , 45, "Virtualized EOI."),
125 EXIT_REASON(VMX_EXIT_XDTR_ACCESS , 46, "GDTR/IDTR access using LGDT/SGDT/LIDT/SIDT."),
126 EXIT_REASON(VMX_EXIT_TR_ACCESS , 47, "LDTR/TR access using LLDT/SLDT/LTR/STR."),
127 EXIT_REASON(VMX_EXIT_EPT_VIOLATION , 48, "EPT violation."),
128 EXIT_REASON(VMX_EXIT_EPT_MISCONFIG , 49, "EPT misconfiguration."),
129 EXIT_REASON(VMX_EXIT_INVEPT , 50, "INVEPT instruction."),
130 EXIT_REASON(VMX_EXIT_RDTSCP , 51, "RDTSCP instruction."),
131 EXIT_REASON(VMX_EXIT_PREEMPT_TIMER , 52, "VMX-preemption timer expired."),
132 EXIT_REASON(VMX_EXIT_INVVPID , 53, "INVVPID instruction."),
133 EXIT_REASON(VMX_EXIT_WBINVD , 54, "WBINVD instruction."),
134 EXIT_REASON(VMX_EXIT_XSETBV , 55, "XSETBV instruction."),
135 EXIT_REASON(VMX_EXIT_RDRAND , 57, "RDRAND instruction."),
136 EXIT_REASON(VMX_EXIT_INVPCID , 58, "INVPCID instruction."),
137 EXIT_REASON(VMX_EXIT_VMFUNC , 59, "VMFUNC instruction."),
138 EXIT_REASON(VMX_EXIT_ENCLS , 60, "ENCLS instrunction."),
139 EXIT_REASON(VMX_EXIT_RDSEED , 61, "RDSEED instruction."),
140 EXIT_REASON(VMX_EXIT_PML_FULL , 62, "Page-modification log full."),
141 EXIT_REASON(VMX_EXIT_XSAVES , 63, "XSAVES instruction."),
142 EXIT_REASON(VMX_EXIT_XRSTORS , 64, "XRSTORS instruction.")
143};
144/** Array index of the last valid VT-x exit reason. */
145#define MAX_EXITREASON_VTX 64
146
147/** A partial list of Exit reason descriptions for AMD-V, used to describe
148 * statistics.
149 *
150 * @note AMD-V have annoyingly large gaps (e.g. \#NPF VMEXIT comes at 1024),
151 * this array doesn't contain the entire set of exit reasons, we
152 * handle them via hmSvmGetSpecialExitReasonDesc(). */
153static const char * const g_apszAmdVExitReasons[MAX_EXITREASON_STAT] =
154{
155 EXIT_REASON(SVM_EXIT_READ_CR0 , 0, "Read CR0."),
156 EXIT_REASON(SVM_EXIT_READ_CR1 , 1, "Read CR1."),
157 EXIT_REASON(SVM_EXIT_READ_CR2 , 2, "Read CR2."),
158 EXIT_REASON(SVM_EXIT_READ_CR3 , 3, "Read CR3."),
159 EXIT_REASON(SVM_EXIT_READ_CR4 , 4, "Read CR4."),
160 EXIT_REASON(SVM_EXIT_READ_CR5 , 5, "Read CR5."),
161 EXIT_REASON(SVM_EXIT_READ_CR6 , 6, "Read CR6."),
162 EXIT_REASON(SVM_EXIT_READ_CR7 , 7, "Read CR7."),
163 EXIT_REASON(SVM_EXIT_READ_CR8 , 8, "Read CR8."),
164 EXIT_REASON(SVM_EXIT_READ_CR9 , 9, "Read CR9."),
165 EXIT_REASON(SVM_EXIT_READ_CR10 , 10, "Read CR10."),
166 EXIT_REASON(SVM_EXIT_READ_CR11 , 11, "Read CR11."),
167 EXIT_REASON(SVM_EXIT_READ_CR12 , 12, "Read CR12."),
168 EXIT_REASON(SVM_EXIT_READ_CR13 , 13, "Read CR13."),
169 EXIT_REASON(SVM_EXIT_READ_CR14 , 14, "Read CR14."),
170 EXIT_REASON(SVM_EXIT_READ_CR15 , 15, "Read CR15."),
171 EXIT_REASON(SVM_EXIT_WRITE_CR0 , 16, "Write CR0."),
172 EXIT_REASON(SVM_EXIT_WRITE_CR1 , 17, "Write CR1."),
173 EXIT_REASON(SVM_EXIT_WRITE_CR2 , 18, "Write CR2."),
174 EXIT_REASON(SVM_EXIT_WRITE_CR3 , 19, "Write CR3."),
175 EXIT_REASON(SVM_EXIT_WRITE_CR4 , 20, "Write CR4."),
176 EXIT_REASON(SVM_EXIT_WRITE_CR5 , 21, "Write CR5."),
177 EXIT_REASON(SVM_EXIT_WRITE_CR6 , 22, "Write CR6."),
178 EXIT_REASON(SVM_EXIT_WRITE_CR7 , 23, "Write CR7."),
179 EXIT_REASON(SVM_EXIT_WRITE_CR8 , 24, "Write CR8."),
180 EXIT_REASON(SVM_EXIT_WRITE_CR9 , 25, "Write CR9."),
181 EXIT_REASON(SVM_EXIT_WRITE_CR10 , 26, "Write CR10."),
182 EXIT_REASON(SVM_EXIT_WRITE_CR11 , 27, "Write CR11."),
183 EXIT_REASON(SVM_EXIT_WRITE_CR12 , 28, "Write CR12."),
184 EXIT_REASON(SVM_EXIT_WRITE_CR13 , 29, "Write CR13."),
185 EXIT_REASON(SVM_EXIT_WRITE_CR14 , 30, "Write CR14."),
186 EXIT_REASON(SVM_EXIT_WRITE_CR15 , 31, "Write CR15."),
187 EXIT_REASON(SVM_EXIT_READ_DR0 , 32, "Read DR0."),
188 EXIT_REASON(SVM_EXIT_READ_DR1 , 33, "Read DR1."),
189 EXIT_REASON(SVM_EXIT_READ_DR2 , 34, "Read DR2."),
190 EXIT_REASON(SVM_EXIT_READ_DR3 , 35, "Read DR3."),
191 EXIT_REASON(SVM_EXIT_READ_DR4 , 36, "Read DR4."),
192 EXIT_REASON(SVM_EXIT_READ_DR5 , 37, "Read DR5."),
193 EXIT_REASON(SVM_EXIT_READ_DR6 , 38, "Read DR6."),
194 EXIT_REASON(SVM_EXIT_READ_DR7 , 39, "Read DR7."),
195 EXIT_REASON(SVM_EXIT_READ_DR8 , 40, "Read DR8."),
196 EXIT_REASON(SVM_EXIT_READ_DR9 , 41, "Read DR9."),
197 EXIT_REASON(SVM_EXIT_READ_DR10 , 42, "Read DR10."),
198 EXIT_REASON(SVM_EXIT_READ_DR11 , 43, "Read DR11"),
199 EXIT_REASON(SVM_EXIT_READ_DR12 , 44, "Read DR12."),
200 EXIT_REASON(SVM_EXIT_READ_DR13 , 45, "Read DR13."),
201 EXIT_REASON(SVM_EXIT_READ_DR14 , 46, "Read DR14."),
202 EXIT_REASON(SVM_EXIT_READ_DR15 , 47, "Read DR15."),
203 EXIT_REASON(SVM_EXIT_WRITE_DR0 , 48, "Write DR0."),
204 EXIT_REASON(SVM_EXIT_WRITE_DR1 , 49, "Write DR1."),
205 EXIT_REASON(SVM_EXIT_WRITE_DR2 , 50, "Write DR2."),
206 EXIT_REASON(SVM_EXIT_WRITE_DR3 , 51, "Write DR3."),
207 EXIT_REASON(SVM_EXIT_WRITE_DR4 , 52, "Write DR4."),
208 EXIT_REASON(SVM_EXIT_WRITE_DR5 , 53, "Write DR5."),
209 EXIT_REASON(SVM_EXIT_WRITE_DR6 , 54, "Write DR6."),
210 EXIT_REASON(SVM_EXIT_WRITE_DR7 , 55, "Write DR7."),
211 EXIT_REASON(SVM_EXIT_WRITE_DR8 , 56, "Write DR8."),
212 EXIT_REASON(SVM_EXIT_WRITE_DR9 , 57, "Write DR9."),
213 EXIT_REASON(SVM_EXIT_WRITE_DR10 , 58, "Write DR10."),
214 EXIT_REASON(SVM_EXIT_WRITE_DR11 , 59, "Write DR11."),
215 EXIT_REASON(SVM_EXIT_WRITE_DR12 , 60, "Write DR12."),
216 EXIT_REASON(SVM_EXIT_WRITE_DR13 , 61, "Write DR13."),
217 EXIT_REASON(SVM_EXIT_WRITE_DR14 , 62, "Write DR14."),
218 EXIT_REASON(SVM_EXIT_WRITE_DR15 , 63, "Write DR15."),
219 EXIT_REASON(SVM_EXIT_EXCEPTION_0 , 64, "Exception Vector 0 (#DE)."),
220 EXIT_REASON(SVM_EXIT_EXCEPTION_1 , 65, "Exception Vector 1 (#DB)."),
221 EXIT_REASON(SVM_EXIT_EXCEPTION_2 , 66, "Exception Vector 2 (#NMI)."),
222 EXIT_REASON(SVM_EXIT_EXCEPTION_3 , 67, "Exception Vector 3 (#BP)."),
223 EXIT_REASON(SVM_EXIT_EXCEPTION_4 , 68, "Exception Vector 4 (#OF)."),
224 EXIT_REASON(SVM_EXIT_EXCEPTION_5 , 69, "Exception Vector 5 (#BR)."),
225 EXIT_REASON(SVM_EXIT_EXCEPTION_6 , 70, "Exception Vector 6 (#UD)."),
226 EXIT_REASON(SVM_EXIT_EXCEPTION_7 , 71, "Exception Vector 7 (#NM)."),
227 EXIT_REASON(SVM_EXIT_EXCEPTION_8 , 72, "Exception Vector 8 (#DF)."),
228 EXIT_REASON(SVM_EXIT_EXCEPTION_9 , 73, "Exception Vector 9 (#CO_SEG_OVERRUN)."),
229 EXIT_REASON(SVM_EXIT_EXCEPTION_A , 74, "Exception Vector 10 (#TS)."),
230 EXIT_REASON(SVM_EXIT_EXCEPTION_B , 75, "Exception Vector 11 (#NP)."),
231 EXIT_REASON(SVM_EXIT_EXCEPTION_C , 76, "Exception Vector 12 (#SS)."),
232 EXIT_REASON(SVM_EXIT_EXCEPTION_D , 77, "Exception Vector 13 (#GP)."),
233 EXIT_REASON(SVM_EXIT_EXCEPTION_E , 78, "Exception Vector 14 (#PF)."),
234 EXIT_REASON(SVM_EXIT_EXCEPTION_F , 79, "Exception Vector 15 (0x0f)."),
235 EXIT_REASON(SVM_EXIT_EXCEPTION_10 , 80, "Exception Vector 16 (#MF)."),
236 EXIT_REASON(SVM_EXIT_EXCEPTION_11 , 81, "Exception Vector 17 (#AC)."),
237 EXIT_REASON(SVM_EXIT_EXCEPTION_12 , 82, "Exception Vector 18 (#MC)."),
238 EXIT_REASON(SVM_EXIT_EXCEPTION_13 , 83, "Exception Vector 19 (#XF)."),
239 EXIT_REASON(SVM_EXIT_EXCEPTION_14 , 84, "Exception Vector 20 (0x14)."),
240 EXIT_REASON(SVM_EXIT_EXCEPTION_15 , 85, "Exception Vector 22 (0x15)."),
241 EXIT_REASON(SVM_EXIT_EXCEPTION_16 , 86, "Exception Vector 22 (0x16)."),
242 EXIT_REASON(SVM_EXIT_EXCEPTION_17 , 87, "Exception Vector 23 (0x17)."),
243 EXIT_REASON(SVM_EXIT_EXCEPTION_18 , 88, "Exception Vector 24 (0x18)."),
244 EXIT_REASON(SVM_EXIT_EXCEPTION_19 , 89, "Exception Vector 25 (0x19)."),
245 EXIT_REASON(SVM_EXIT_EXCEPTION_1A , 90, "Exception Vector 26 (0x1A)."),
246 EXIT_REASON(SVM_EXIT_EXCEPTION_1B , 91, "Exception Vector 27 (0x1B)."),
247 EXIT_REASON(SVM_EXIT_EXCEPTION_1C , 92, "Exception Vector 28 (0x1C)."),
248 EXIT_REASON(SVM_EXIT_EXCEPTION_1D , 93, "Exception Vector 29 (0x1D)."),
249 EXIT_REASON(SVM_EXIT_EXCEPTION_1E , 94, "Exception Vector 30 (0x1E)."),
250 EXIT_REASON(SVM_EXIT_EXCEPTION_1F , 95, "Exception Vector 31 (0x1F)."),
251 EXIT_REASON(SVM_EXIT_INTR , 96, "Physical maskable interrupt (host)."),
252 EXIT_REASON(SVM_EXIT_NMI , 97, "Physical non-maskable interrupt (host)."),
253 EXIT_REASON(SVM_EXIT_SMI , 98, "System management interrupt (host)."),
254 EXIT_REASON(SVM_EXIT_INIT , 99, "Physical INIT signal (host)."),
255 EXIT_REASON(SVM_EXIT_VINTR , 100, "Virtual interrupt-window exit."),
256 EXIT_REASON(SVM_EXIT_CR0_SEL_WRITE, 101, "Write to CR0 that changed any bits other than CR0.TS or CR0.MP."),
257 EXIT_REASON(SVM_EXIT_IDTR_READ , 102, "Read IDTR"),
258 EXIT_REASON(SVM_EXIT_GDTR_READ , 103, "Read GDTR"),
259 EXIT_REASON(SVM_EXIT_LDTR_READ , 104, "Read LDTR."),
260 EXIT_REASON(SVM_EXIT_TR_READ , 105, "Read TR."),
261 EXIT_REASON(SVM_EXIT_IDTR_WRITE , 106, "Write IDTR."),
262 EXIT_REASON(SVM_EXIT_GDTR_WRITE , 107, "Write GDTR."),
263 EXIT_REASON(SVM_EXIT_LDTR_WRITE , 108, "Write LDTR."),
264 EXIT_REASON(SVM_EXIT_TR_WRITE , 109, "Write TR."),
265 EXIT_REASON(SVM_EXIT_RDTSC , 110, "RDTSC instruction."),
266 EXIT_REASON(SVM_EXIT_RDPMC , 111, "RDPMC instruction."),
267 EXIT_REASON(SVM_EXIT_PUSHF , 112, "PUSHF instruction."),
268 EXIT_REASON(SVM_EXIT_POPF , 113, "POPF instruction."),
269 EXIT_REASON(SVM_EXIT_CPUID , 114, "CPUID instruction."),
270 EXIT_REASON(SVM_EXIT_RSM , 115, "RSM instruction."),
271 EXIT_REASON(SVM_EXIT_IRET , 116, "IRET instruction."),
272 EXIT_REASON(SVM_EXIT_SWINT , 117, "Software interrupt (INTn instructions)."),
273 EXIT_REASON(SVM_EXIT_INVD , 118, "INVD instruction."),
274 EXIT_REASON(SVM_EXIT_PAUSE , 119, "PAUSE instruction."),
275 EXIT_REASON(SVM_EXIT_HLT , 120, "HLT instruction."),
276 EXIT_REASON(SVM_EXIT_INVLPG , 121, "INVLPG instruction."),
277 EXIT_REASON(SVM_EXIT_INVLPGA , 122, "INVLPGA instruction."),
278 EXIT_REASON(SVM_EXIT_IOIO , 123, "IN/OUT accessing protected port."),
279 EXIT_REASON(SVM_EXIT_MSR , 124, "RDMSR or WRMSR access to protected MSR."),
280 EXIT_REASON(SVM_EXIT_TASK_SWITCH , 125, "Task switch."),
281 EXIT_REASON(SVM_EXIT_FERR_FREEZE , 126, "Legacy FPU handling enabled; CPU frozen in an x87/mmx instr. waiting for interrupt."),
282 EXIT_REASON(SVM_EXIT_SHUTDOWN , 127, "Shutdown."),
283 EXIT_REASON(SVM_EXIT_VMRUN , 128, "VMRUN instruction."),
284 EXIT_REASON(SVM_EXIT_VMMCALL , 129, "VMCALL instruction."),
285 EXIT_REASON(SVM_EXIT_VMLOAD , 130, "VMLOAD instruction."),
286 EXIT_REASON(SVM_EXIT_VMSAVE , 131, "VMSAVE instruction."),
287 EXIT_REASON(SVM_EXIT_STGI , 132, "STGI instruction."),
288 EXIT_REASON(SVM_EXIT_CLGI , 133, "CLGI instruction."),
289 EXIT_REASON(SVM_EXIT_SKINIT , 134, "SKINIT instruction."),
290 EXIT_REASON(SVM_EXIT_RDTSCP , 135, "RDTSCP instruction."),
291 EXIT_REASON(SVM_EXIT_ICEBP , 136, "ICEBP instruction."),
292 EXIT_REASON(SVM_EXIT_WBINVD , 137, "WBINVD instruction."),
293 EXIT_REASON(SVM_EXIT_MONITOR , 138, "MONITOR instruction."),
294 EXIT_REASON(SVM_EXIT_MWAIT , 139, "MWAIT instruction."),
295 EXIT_REASON(SVM_EXIT_MWAIT_ARMED , 140, "MWAIT instruction when armed."),
296 EXIT_REASON(SVM_EXIT_XSETBV , 141, "XSETBV instruction."),
297};
298/** Array index of the last valid AMD-V exit reason. */
299#define MAX_EXITREASON_AMDV 141
300
301/** Special exit reasons not covered in the array above. */
302#define SVM_EXIT_REASON_NPF EXIT_REASON(SVM_EXIT_NPF , 1024, "Nested Page Fault.")
303#define SVM_EXIT_REASON_AVIC_INCOMPLETE_IPI EXIT_REASON(SVM_EXIT_AVIC_INCOMPLETE_IPI, 1025, "AVIC - Incomplete IPI delivery.")
304#define SVM_EXIT_REASON_AVIC_NOACCEL EXIT_REASON(SVM_EXIT_AVIC_NOACCEL , 1026, "AVIC - Unhandled register.")
305
306/**
307 * Gets the SVM exit reason if it's one of the reasons not present in the @c
308 * g_apszAmdVExitReasons array.
309 *
310 * @returns The exit reason or NULL if unknown.
311 * @param uExit The exit.
312 */
313DECLINLINE(const char *) hmSvmGetSpecialExitReasonDesc(uint16_t uExit)
314{
315 switch (uExit)
316 {
317 case SVM_EXIT_NPF: return SVM_EXIT_REASON_NPF;
318 case SVM_EXIT_AVIC_INCOMPLETE_IPI: return SVM_EXIT_REASON_AVIC_INCOMPLETE_IPI;
319 case SVM_EXIT_AVIC_NOACCEL: return SVM_EXIT_REASON_AVIC_NOACCEL;
320 }
321 return EXIT_REASON_NIL();
322}
323#undef EXIT_REASON_NIL
324#undef EXIT_REASON
325
326/** @def HMVMX_REPORT_FEATURE
327 * Reports VT-x feature to the release log.
328 *
329 * @param allowed1 Mask of allowed feature bits.
330 * @param disallowed0 Mask of disallowed feature bits.
331 * @param strdesc The description string to report.
332 * @param featflag Mask of the feature to report.
333 */
334#define HMVMX_REPORT_FEATURE(allowed1, disallowed0, strdesc, featflag) \
335 do { \
336 if ((allowed1) & (featflag)) \
337 { \
338 if ((disallowed0) & (featflag)) \
339 LogRel(("HM: " strdesc " (must be set)\n")); \
340 else \
341 LogRel(("HM: " strdesc "\n")); \
342 } \
343 else \
344 LogRel(("HM: " strdesc " (must be cleared)\n")); \
345 } while (0)
346
347/** @def HMVMX_REPORT_ALLOWED_FEATURE
348 * Reports an allowed VT-x feature to the release log.
349 *
350 * @param allowed1 Mask of allowed feature bits.
351 * @param strdesc The description string to report.
352 * @param featflag Mask of the feature to report.
353 */
354#define HMVMX_REPORT_ALLOWED_FEATURE(allowed1, strdesc, featflag) \
355 do { \
356 if ((allowed1) & (featflag)) \
357 LogRel(("HM: " strdesc "\n")); \
358 else \
359 LogRel(("HM: " strdesc " not supported\n")); \
360 } while (0)
361
362/** @def HMVMX_REPORT_MSR_CAPABILITY
363 * Reports MSR feature capability.
364 *
365 * @param msrcaps Mask of MSR feature bits.
366 * @param strdesc The description string to report.
367 * @param cap Mask of the feature to report.
368 */
369#define HMVMX_REPORT_MSR_CAPABILITY(msrcaps, strdesc, cap) \
370 do { \
371 if ((msrcaps) & (cap)) \
372 LogRel(("HM: " strdesc "\n")); \
373 } while (0)
374
375
376/*********************************************************************************************************************************
377* Internal Functions *
378*********************************************************************************************************************************/
379static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
380static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
381static DECLCALLBACK(void) hmR3InfoExitHistory(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
382static int hmR3InitCPU(PVM pVM);
383static int hmR3InitFinalizeR0(PVM pVM);
384static int hmR3InitFinalizeR0Intel(PVM pVM);
385static int hmR3InitFinalizeR0Amd(PVM pVM);
386static int hmR3TermCPU(PVM pVM);
387
388
389
390/**
391 * Initializes the HM.
392 *
393 * This reads the config and check whether VT-x or AMD-V hardware is available
394 * if configured to use it. This is one of the very first components to be
395 * initialized after CFGM, so that we can fall back to raw-mode early in the
396 * initialization process.
397 *
398 * Note that a lot of the set up work is done in ring-0 and thus postponed till
399 * the ring-3 and ring-0 callback to HMR3InitCompleted.
400 *
401 * @returns VBox status code.
402 * @param pVM The cross context VM structure.
403 *
404 * @remarks Be careful with what we call here, since most of the VMM components
405 * are uninitialized.
406 */
407VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
408{
409 LogFlow(("HMR3Init\n"));
410
411 /*
412 * Assert alignment and sizes.
413 */
414 AssertCompileMemberAlignment(VM, hm.s, 32);
415 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
416
417 /*
418 * Register the saved state data unit.
419 */
420 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
421 NULL, NULL, NULL,
422 NULL, hmR3Save, NULL,
423 NULL, hmR3Load, NULL);
424 if (RT_FAILURE(rc))
425 return rc;
426
427 /*
428 * Register info handlers.
429 */
430 rc = DBGFR3InfoRegisterInternalEx(pVM, "exithistory", "Dumps the HM VM-exit history.", hmR3InfoExitHistory,
431 DBGFINFO_FLAGS_ALL_EMTS);
432 AssertRCReturn(rc, rc);
433
434 /*
435 * Read configuration.
436 */
437 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
438
439 /*
440 * Validate the HM settings.
441 */
442 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
443 "HMForced"
444 "|EnableNestedPaging"
445 "|EnableUX"
446 "|EnableLargePages"
447 "|EnableVPID"
448 "|TPRPatchingEnabled"
449 "|64bitEnabled"
450 "|VmxPleGap"
451 "|VmxPleWindow"
452 "|SvmPauseFilter"
453 "|SvmPauseFilterThreshold"
454 "|Exclusive"
455 "|MaxResumeLoops"
456 "|UseVmxPreemptTimer",
457 "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
458 if (RT_FAILURE(rc))
459 return rc;
460
461 /** @cfgm{/HM/HMForced, bool, false}
462 * Forces hardware virtualization, no falling back on raw-mode. HM must be
463 * enabled, i.e. /HMEnabled must be true. */
464 bool fHMForced;
465#ifdef VBOX_WITH_RAW_MODE
466 rc = CFGMR3QueryBoolDef(pCfgHm, "HMForced", &fHMForced, false);
467 AssertRCReturn(rc, rc);
468 AssertLogRelMsgReturn(!fHMForced || pVM->fHMEnabled, ("Configuration error: HM forced but not enabled!\n"),
469 VERR_INVALID_PARAMETER);
470# if defined(RT_OS_DARWIN)
471 if (pVM->fHMEnabled)
472 fHMForced = true;
473# endif
474 AssertLogRelMsgReturn(pVM->cCpus == 1 || pVM->fHMEnabled, ("Configuration error: SMP requires HM to be enabled!\n"),
475 VERR_INVALID_PARAMETER);
476 if (pVM->cCpus > 1)
477 fHMForced = true;
478#else /* !VBOX_WITH_RAW_MODE */
479 AssertRelease(pVM->fHMEnabled);
480 fHMForced = true;
481#endif /* !VBOX_WITH_RAW_MODE */
482
483 /** @cfgm{/HM/EnableNestedPaging, bool, false}
484 * Enables nested paging (aka extended page tables). */
485 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &pVM->hm.s.fAllowNestedPaging, false);
486 AssertRCReturn(rc, rc);
487
488 /** @cfgm{/HM/EnableUX, bool, true}
489 * Enables the VT-x unrestricted execution feature. */
490 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &pVM->hm.s.vmx.fAllowUnrestricted, true);
491 AssertRCReturn(rc, rc);
492
493 /** @cfgm{/HM/EnableLargePages, bool, false}
494 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
495 * page table walking and maybe better TLB hit rate in some cases. */
496 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
497 AssertRCReturn(rc, rc);
498
499 /** @cfgm{/HM/EnableVPID, bool, false}
500 * Enables the VT-x VPID feature. */
501 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
502 AssertRCReturn(rc, rc);
503
504 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
505 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
506 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
507 AssertRCReturn(rc, rc);
508
509 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
510 * Enables AMD64 cpu features.
511 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
512 * already have the support. */
513#ifdef VBOX_ENABLE_64_BITS_GUESTS
514 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuests, HC_ARCH_BITS == 64);
515 AssertLogRelRCReturn(rc, rc);
516#else
517 pVM->hm.s.fAllow64BitGuests = false;
518#endif
519
520 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
521 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
522 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
523 * latest PAUSE instruction to be start of a new PAUSE loop.
524 */
525 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
526 AssertRCReturn(rc, rc);
527
528 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
529 * The pause-filter exiting window in TSC ticks. When the number of ticks
530 * between the current PAUSE instruction and first PAUSE of a loop exceeds
531 * VmxPleWindow, a VM-exit is triggered.
532 *
533 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
534 */
535 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
536 AssertRCReturn(rc, rc);
537
538 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
539 * A counter that is decrement each time a PAUSE instruction is executed by the
540 * guest. When the counter is 0, a \#VMEXIT is triggered.
541 */
542 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
543 AssertRCReturn(rc, rc);
544
545 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
546 * The pause filter threshold in ticks. When the elapsed time between two
547 * successive PAUSE instructions exceeds SvmPauseFilterThreshold, the PauseFilter
548 * count is reset to its initial value. However, if PAUSE is executed PauseFilter
549 * times within PauseFilterThreshold ticks, a VM-exit will be triggered.
550 *
551 * Setting both SvmPauseFilterCount and SvmPauseFilterCount to 0 disables
552 * pause-filter exiting.
553 */
554 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
555 AssertRCReturn(rc, rc);
556
557 /** @cfgm{/HM/Exclusive, bool}
558 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
559 * global init for each host CPU. If false, we do local init each time we wish
560 * to execute guest code.
561 *
562 * On Windows, default is false due to the higher risk of conflicts with other
563 * hypervisors.
564 *
565 * On Mac OS X, this setting is ignored since the code does not handle local
566 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
567 */
568#if defined(RT_OS_DARWIN)
569 pVM->hm.s.fGlobalInit = true;
570#else
571 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
572# if defined(RT_OS_WINDOWS)
573 false
574# else
575 true
576# endif
577 );
578 AssertLogRelRCReturn(rc, rc);
579#endif
580
581 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
582 * The number of times to resume guest execution before we forcibly return to
583 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
584 * determines the default value. */
585 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoops, 0 /* set by R0 later */);
586 AssertLogRelRCReturn(rc, rc);
587
588 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
589 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
590 * available. */
591 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimer, true);
592 AssertLogRelRCReturn(rc, rc);
593
594 /*
595 * Check if VT-x or AMD-v support according to the users wishes.
596 */
597 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
598 * VERR_SVM_IN_USE. */
599 if (pVM->fHMEnabled)
600 {
601 uint32_t fCaps;
602 rc = SUPR3QueryVTCaps(&fCaps);
603 if (RT_SUCCESS(rc))
604 {
605 if (fCaps & SUPVTCAPS_AMD_V)
606 {
607 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
608 pVM->hm.s.svm.fSupported = true;
609 }
610 else if (fCaps & SUPVTCAPS_VT_X)
611 {
612 rc = SUPR3QueryVTxSupported();
613 if (RT_SUCCESS(rc))
614 {
615 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
616 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
617 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
618 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
619 pVM->hm.s.vmx.fSupported = true;
620 }
621 else
622 {
623#ifdef RT_OS_LINUX
624 const char *pszMinReq = " Linux 2.6.13 or newer required!";
625#else
626 const char *pszMinReq = "";
627#endif
628 if (fHMForced)
629 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x.%s\n", pszMinReq);
630
631 /* Fall back to raw-mode. */
632 LogRel(("HM: HMR3Init: Falling back to raw-mode: The host kernel does not support VT-x.%s\n", pszMinReq));
633 pVM->fHMEnabled = false;
634 }
635 }
636 else
637 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
638 VERR_INTERNAL_ERROR_5);
639
640 /*
641 * Do we require a little bit or raw-mode for 64-bit guest execution?
642 */
643 pVM->fHMNeedRawModeCtx = HC_ARCH_BITS == 32
644 && pVM->fHMEnabled
645 && pVM->hm.s.fAllow64BitGuests;
646
647 /*
648 * Disable nested paging and unrestricted guest execution now if they're
649 * configured so that CPUM can make decisions based on our configuration.
650 */
651 Assert(!pVM->hm.s.fNestedPaging);
652 if (pVM->hm.s.fAllowNestedPaging)
653 {
654 if (fCaps & SUPVTCAPS_NESTED_PAGING)
655 pVM->hm.s.fNestedPaging = true;
656 else
657 pVM->hm.s.fAllowNestedPaging = false;
658 }
659
660 if (fCaps & SUPVTCAPS_VT_X)
661 {
662 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
663 if (pVM->hm.s.vmx.fAllowUnrestricted)
664 {
665 if ( (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST)
666 && pVM->hm.s.fNestedPaging)
667 pVM->hm.s.vmx.fUnrestrictedGuest = true;
668 else
669 pVM->hm.s.vmx.fAllowUnrestricted = false;
670 }
671 }
672 }
673 else
674 {
675 const char *pszMsg;
676 switch (rc)
677 {
678 case VERR_UNSUPPORTED_CPU:
679 pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained";
680 break;
681
682 case VERR_VMX_NO_VMX:
683 pszMsg = "VT-x is not available";
684 break;
685
686 case VERR_VMX_MSR_VMX_DISABLED:
687 pszMsg = "VT-x is disabled in the BIOS";
688 break;
689
690 case VERR_VMX_MSR_ALL_VMX_DISABLED:
691 pszMsg = "VT-x is disabled in the BIOS for all CPU modes";
692 break;
693
694 case VERR_VMX_MSR_LOCKING_FAILED:
695 pszMsg = "Failed to enable and lock VT-x features";
696 break;
697
698 case VERR_SVM_NO_SVM:
699 pszMsg = "AMD-V is not available";
700 break;
701
702 case VERR_SVM_DISABLED:
703 pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)";
704 break;
705
706 default:
707 pszMsg = NULL;
708 break;
709 }
710 if (fHMForced && pszMsg)
711 return VM_SET_ERROR(pVM, rc, pszMsg);
712 if (!pszMsg)
713 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
714
715 /* Fall back to raw-mode. */
716 LogRel(("HM: HMR3Init: Falling back to raw-mode: %s\n", pszMsg));
717 pVM->fHMEnabled = false;
718 }
719 }
720
721 /* It's now OK to use the predicate function. */
722 pVM->fHMEnabledFixed = true;
723 return VINF_SUCCESS;
724}
725
726
727/**
728 * Initializes the per-VCPU HM.
729 *
730 * @returns VBox status code.
731 * @param pVM The cross context VM structure.
732 */
733static int hmR3InitCPU(PVM pVM)
734{
735 LogFlow(("HMR3InitCPU\n"));
736
737 if (!HMIsEnabled(pVM))
738 return VINF_SUCCESS;
739
740 for (VMCPUID i = 0; i < pVM->cCpus; i++)
741 {
742 PVMCPU pVCpu = &pVM->aCpus[i];
743 pVCpu->hm.s.fActive = false;
744 }
745
746#ifdef VBOX_WITH_STATISTICS
747 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
748 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
749 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8",STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
750 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC",STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
751 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
752#endif
753
754 /*
755 * Statistics.
756 */
757 for (VMCPUID i = 0; i < pVM->cCpus; i++)
758 {
759 PVMCPU pVCpu = &pVM->aCpus[i];
760 int rc;
761
762#ifdef VBOX_WITH_STATISTICS
763 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
764 "Profiling of RTMpPokeCpu",
765 "/PROF/CPU%d/HM/Poke", i);
766 AssertRC(rc);
767 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
768 "Profiling of poke wait",
769 "/PROF/CPU%d/HM/PokeWait", i);
770 AssertRC(rc);
771 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPokeFailed, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
772 "Profiling of poke wait when RTMpPokeCpu fails",
773 "/PROF/CPU%d/HM/PokeWaitFailed", i);
774 AssertRC(rc);
775 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatEntry, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
776 "Profiling of VMXR0RunGuestCode entry",
777 "/PROF/CPU%d/HM/StatEntry", i);
778 AssertRC(rc);
779 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit1, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
780 "Profiling of VMXR0RunGuestCode exit part 1",
781 "/PROF/CPU%d/HM/SwitchFromGC_1", i);
782 AssertRC(rc);
783 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit2, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
784 "Profiling of VMXR0RunGuestCode exit part 2",
785 "/PROF/CPU%d/HM/SwitchFromGC_2", i);
786 AssertRC(rc);
787
788 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitIO, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
789 "I/O",
790 "/PROF/CPU%d/HM/SwitchFromGC_2/IO", i);
791 AssertRC(rc);
792 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitMovCRx, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
793 "MOV CRx",
794 "/PROF/CPU%d/HM/SwitchFromGC_2/MovCRx", i);
795 AssertRC(rc);
796 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitXcptNmi, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
797 "Exceptions, NMIs",
798 "/PROF/CPU%d/HM/SwitchFromGC_2/XcptNmi", i);
799 AssertRC(rc);
800
801 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatLoadGuestState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
802 "Profiling of VMXR0LoadGuestState",
803 "/PROF/CPU%d/HM/StatLoadGuestState", i);
804 AssertRC(rc);
805 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatInGC, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
806 "Profiling of VMLAUNCH/VMRESUME.",
807 "/PROF/CPU%d/HM/InGC", i);
808 AssertRC(rc);
809
810# if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
811 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatWorldSwitch3264, STAMTYPE_PROFILE, STAMVISIBILITY_USED,
812 STAMUNIT_TICKS_PER_CALL, "Profiling of the 32/64 switcher.",
813 "/PROF/CPU%d/HM/Switcher3264", i);
814 AssertRC(rc);
815# endif
816
817# ifdef HM_PROFILE_EXIT_DISPATCH
818 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED,
819 STAMUNIT_TICKS_PER_CALL, "Profiling the dispatching of exit handlers.",
820 "/PROF/CPU%d/HM/ExitDispatch", i);
821 AssertRC(rc);
822# endif
823
824#endif
825# define HM_REG_COUNTER(a, b, desc) \
826 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, desc, b, i); \
827 AssertRC(rc);
828
829#ifdef VBOX_WITH_STATISTICS
830 HM_REG_COUNTER(&pVCpu->hm.s.StatExitAll, "/HM/CPU%d/Exit/All", "Exits (total).");
831 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowNM, "/HM/CPU%d/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
832 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNM, "/HM/CPU%d/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
833 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPF, "/HM/CPU%d/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
834 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPFEM, "/HM/CPU%d/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
835 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestPF, "/HM/CPU%d/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
836 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestUD, "/HM/CPU%d/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
837 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestSS, "/HM/CPU%d/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
838 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNP, "/HM/CPU%d/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
839 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestGP, "/HM/CPU%d/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
840 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestMF, "/HM/CPU%d/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
841 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDE, "/HM/CPU%d/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
842 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDB, "/HM/CPU%d/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
843 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestBP, "/HM/CPU%d/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
844 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXF, "/HM/CPU%d/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
845 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXcpUnk, "/HM/CPU%d/Exit/Trap/Gst/Other", "Other guest exceptions.");
846 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInvlpg, "/HM/CPU%d/Exit/Instr/Invlpg", "Guest attempted to execute INVLPG.");
847 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInvd, "/HM/CPU%d/Exit/Instr/Invd", "Guest attempted to execute INVD.");
848 HM_REG_COUNTER(&pVCpu->hm.s.StatExitWbinvd, "/HM/CPU%d/Exit/Instr/Wbinvd", "Guest attempted to execute WBINVD.");
849 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPause, "/HM/CPU%d/Exit/Instr/Pause", "Guest attempted to execute PAUSE.");
850 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCpuid, "/HM/CPU%d/Exit/Instr/Cpuid", "Guest attempted to execute CPUID.");
851 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdtsc, "/HM/CPU%d/Exit/Instr/Rdtsc", "Guest attempted to execute RDTSC.");
852 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdtscp, "/HM/CPU%d/Exit/Instr/Rdtscp", "Guest attempted to execute RDTSCP.");
853 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdpmc, "/HM/CPU%d/Exit/Instr/Rdpmc", "Guest attempted to execute RDPMC.");
854 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdrand, "/HM/CPU%d/Exit/Instr/Rdrand", "Guest attempted to execute RDRAND.");
855 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdmsr, "/HM/CPU%d/Exit/Instr/Rdmsr", "Guest attempted to execute RDMSR.");
856 HM_REG_COUNTER(&pVCpu->hm.s.StatExitWrmsr, "/HM/CPU%d/Exit/Instr/Wrmsr", "Guest attempted to execute WRMSR.");
857 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMwait, "/HM/CPU%d/Exit/Instr/Mwait", "Guest attempted to execute MWAIT.");
858 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMonitor, "/HM/CPU%d/Exit/Instr/Monitor", "Guest attempted to execute MONITOR.");
859 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxWrite, "/HM/CPU%d/Exit/Instr/DR/Write", "Guest attempted to write a debug register.");
860 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxRead, "/HM/CPU%d/Exit/Instr/DR/Read", "Guest attempted to read a debug register.");
861 HM_REG_COUNTER(&pVCpu->hm.s.StatExitClts, "/HM/CPU%d/Exit/Instr/CLTS", "Guest attempted to execute CLTS.");
862 HM_REG_COUNTER(&pVCpu->hm.s.StatExitLmsw, "/HM/CPU%d/Exit/Instr/LMSW", "Guest attempted to execute LMSW.");
863 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCli, "/HM/CPU%d/Exit/Instr/Cli", "Guest attempted to execute CLI.");
864 HM_REG_COUNTER(&pVCpu->hm.s.StatExitSti, "/HM/CPU%d/Exit/Instr/Sti", "Guest attempted to execute STI.");
865 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPushf, "/HM/CPU%d/Exit/Instr/Pushf", "Guest attempted to execute PUSHF.");
866 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPopf, "/HM/CPU%d/Exit/Instr/Popf", "Guest attempted to execute POPF.");
867 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIret, "/HM/CPU%d/Exit/Instr/Iret", "Guest attempted to execute IRET.");
868 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInt, "/HM/CPU%d/Exit/Instr/Int", "Guest attempted to execute INT.");
869 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHlt, "/HM/CPU%d/Exit/Instr/Hlt", "Guest attempted to execute HLT.");
870 HM_REG_COUNTER(&pVCpu->hm.s.StatExitXdtrAccess, "/HM/CPU%d/Exit/Instr/XdtrAccess", "Guest attempted to access descriptor table register (GDTR, IDTR, LDTR).");
871 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOWrite, "/HM/CPU%d/Exit/IO/Write", "I/O write.");
872 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIORead, "/HM/CPU%d/Exit/IO/Read", "I/O read.");
873 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringWrite, "/HM/CPU%d/Exit/IO/WriteString", "String I/O write.");
874 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringRead, "/HM/CPU%d/Exit/IO/ReadString", "String I/O read.");
875 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIntWindow, "/HM/CPU%d/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts again.");
876 HM_REG_COUNTER(&pVCpu->hm.s.StatExitExtInt, "/HM/CPU%d/Exit/ExtInt", "Host interrupt received.");
877#endif
878 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHostNmiInGC, "/HM/CPU%d/Exit/HostNmiInGC", "Host NMI received while in guest context.");
879#ifdef VBOX_WITH_STATISTICS
880 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPreemptTimer, "/HM/CPU%d/Exit/PreemptTimer", "VMX-preemption timer expired.");
881 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTprBelowThreshold, "/HM/CPU%d/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
882 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTaskSwitch, "/HM/CPU%d/Exit/TaskSwitch", "Guest attempted a task switch.");
883 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMtf, "/HM/CPU%d/Exit/MonitorTrapFlag", "Monitor Trap Flag.");
884 HM_REG_COUNTER(&pVCpu->hm.s.StatExitApicAccess, "/HM/CPU%d/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
885
886 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchTprMaskedIrq, "/HM/CPU%d/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
887 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchGuestIrq, "/HM/CPU%d/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
888 HM_REG_COUNTER(&pVCpu->hm.s.StatPendingHostIrq, "/HM/CPU%d/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
889 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHmToR3FF, "/HM/CPU%d/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
890 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchExitToR3, "/HM/CPU%d/Switch/ExitToR3", "Exit to ring-3 (total).");
891 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchLongJmpToR3, "/HM/CPU%d/Switch/LongJmpToR3", "Longjump to ring-3.");
892 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchMaxResumeLoops, "/HM/CPU%d/Switch/MaxResumeToR3", "Maximum VMRESUME inner-loop counter reached.");
893 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHltToR3, "/HM/CPU%d/Switch/HltToR3", "HLT causing us to go to ring-3.");
894 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchApicAccessToR3, "/HM/CPU%d/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
895#endif
896 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPreempt, "/HM/CPU%d/Switch/Preempting", "EMT has been preempted while in HM context.");
897#ifdef VBOX_WITH_STATISTICS
898 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchPreemptSaveHostState, "/HM/CPU%d/Switch/SaveHostState", "Preemption caused us to resave host state.");
899
900 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectInterrupt, "/HM/CPU%d/EventInject/Interrupt", "Injected an external interrupt into the guest.");
901 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectXcpt, "/HM/CPU%d/EventInject/Trap", "Injected an exception into the guest.");
902 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingReflect, "/HM/CPU%d/EventInject/PendingReflect", "Reflecting an exception (or #DF) caused due to event injection.");
903 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingInterpret, "/HM/CPU%d/EventInject/PendingInterpret", "Falling to interpreter for handling exception caused due to event injection.");
904
905 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPage, "/HM/CPU%d/Flush/Page", "Invalidating a guest page on all guest CPUs.");
906 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPageManual, "/HM/CPU%d/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
907 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPhysPageManual, "/HM/CPU%d/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
908 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlb, "/HM/CPU%d/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
909 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbManual, "/HM/CPU%d/Flush/TLB/Manual", "Request a full guest-TLB flush.");
910 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
911 HM_REG_COUNTER(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/Skipped", "No TLB flushing required.");
912 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushEntire, "/HM/CPU%d/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
913 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushAsid, "/HM/CPU%d/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
914 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushNestedPaging, "/HM/CPU%d/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
915 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgVirt, "/HM/CPU%d/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
916 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgPhys, "/HM/CPU%d/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
917 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdown, "/HM/CPU%d/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
918 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdownFlush, "/HM/CPU%d/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
919
920 HM_REG_COUNTER(&pVCpu->hm.s.StatTscParavirt, "/HM/CPU%d/TSC/Paravirt", "Paravirtualized TSC in effect.");
921 HM_REG_COUNTER(&pVCpu->hm.s.StatTscOffset, "/HM/CPU%d/TSC/Offset", "TSC offsetting is in effect.");
922 HM_REG_COUNTER(&pVCpu->hm.s.StatTscIntercept, "/HM/CPU%d/TSC/Intercept", "Intercept TSC accesses.");
923
924 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxArmed, "/HM/CPU%d/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
925 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxContextSwitch, "/HM/CPU%d/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
926 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxIoCheck, "/HM/CPU%d/Debug/IOCheck", "Checking for I/O breakpoint.");
927
928 HM_REG_COUNTER(&pVCpu->hm.s.StatLoadMinimal, "/HM/CPU%d/Load/Minimal", "VM-entry loading minimal guest-state.");
929 HM_REG_COUNTER(&pVCpu->hm.s.StatLoadFull, "/HM/CPU%d/Load/Full", "VM-entry loading the full guest-state.");
930
931 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelBase, "/HM/CPU%d/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
932 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit, "/HM/CPU%d/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
933 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckRmOk, "/HM/CPU%d/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
934 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadSel, "/HM/CPU%d/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
935 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRpl, "/HM/CPU%d/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
936 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadLdt, "/HM/CPU%d/VMXCheck/LDT", "Could not use VMX due to unsuitable LDT.");
937 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadTr, "/HM/CPU%d/VMXCheck/TR", "Could not use VMX due to unsuitable TR.");
938 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckPmOk, "/HM/CPU%d/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
939
940#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
941 HM_REG_COUNTER(&pVCpu->hm.s.StatFpu64SwitchBack, "/HM/CPU%d/Switch64/Fpu", "Saving guest FPU/XMM state.");
942 HM_REG_COUNTER(&pVCpu->hm.s.StatDebug64SwitchBack, "/HM/CPU%d/Switch64/Debug", "Saving guest debug state.");
943#endif
944
945 for (unsigned j = 0; j < RT_ELEMENTS(pVCpu->hm.s.StatExitCRxWrite); j++)
946 {
947 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitCRxWrite[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
948 STAMUNIT_OCCURENCES, "Profiling of CRx writes",
949 "/HM/CPU%d/Exit/Instr/CR/Write/%x", i, j);
950 AssertRC(rc);
951 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitCRxRead[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
952 STAMUNIT_OCCURENCES, "Profiling of CRx reads",
953 "/HM/CPU%d/Exit/Instr/CR/Read/%x", i, j);
954 AssertRC(rc);
955 }
956
957#undef HM_REG_COUNTER
958
959 pVCpu->hm.s.paStatExitReason = NULL;
960
961 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pVCpu->hm.s.paStatExitReason), 0 /* uAlignment */, MM_TAG_HM,
962 (void **)&pVCpu->hm.s.paStatExitReason);
963 AssertRC(rc);
964 if (RT_SUCCESS(rc))
965 {
966 const char * const *papszDesc = ASMIsIntelCpu() ? &g_apszVTxExitReasons[0] : &g_apszAmdVExitReasons[0];
967 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
968 {
969 if (papszDesc[j])
970 {
971 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
972 STAMUNIT_OCCURENCES, papszDesc[j], "/HM/CPU%d/Exit/Reason/%02x", i, j);
973 AssertRC(rc);
974 }
975 }
976 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitReasonNpf, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
977 "Nested page fault", "/HM/CPU%d/Exit/Reason/#NPF", i);
978 AssertRC(rc);
979 }
980 pVCpu->hm.s.paStatExitReasonR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatExitReason);
981# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
982 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
983# else
984 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR);
985# endif
986
987 rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * 256, 8, MM_TAG_HM, (void **)&pVCpu->hm.s.paStatInjectedIrqs);
988 AssertRCReturn(rc, rc);
989 pVCpu->hm.s.paStatInjectedIrqsR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatInjectedIrqs);
990# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
991 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
992# else
993 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR);
994# endif
995 for (unsigned j = 0; j < 255; j++)
996 {
997 STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
998 "Injected event.",
999 (j < 0x20) ? "/HM/CPU%d/EventInject/InjectTrap/%02X" : "/HM/CPU%d/EventInject/InjectIRQ/%02X", i, j);
1000 }
1001
1002#endif /* VBOX_WITH_STATISTICS */
1003 }
1004
1005#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1006 /*
1007 * Magic marker for searching in crash dumps.
1008 */
1009 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1010 {
1011 PVMCPU pVCpu = &pVM->aCpus[i];
1012
1013 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
1014 strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
1015 pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1016 }
1017#endif
1018
1019 return VINF_SUCCESS;
1020}
1021
1022
1023/**
1024 * Called when a init phase has completed.
1025 *
1026 * @returns VBox status code.
1027 * @param pVM The cross context VM structure.
1028 * @param enmWhat The phase that completed.
1029 */
1030VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1031{
1032 switch (enmWhat)
1033 {
1034 case VMINITCOMPLETED_RING3:
1035 return hmR3InitCPU(pVM);
1036 case VMINITCOMPLETED_RING0:
1037 return hmR3InitFinalizeR0(pVM);
1038 default:
1039 return VINF_SUCCESS;
1040 }
1041}
1042
1043
1044/**
1045 * Turns off normal raw mode features.
1046 *
1047 * @param pVM The cross context VM structure.
1048 */
1049static void hmR3DisableRawMode(PVM pVM)
1050{
1051 /* Reinit the paging mode to force the new shadow mode. */
1052 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1053 {
1054 PVMCPU pVCpu = &pVM->aCpus[i];
1055
1056 PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1057 }
1058}
1059
1060
1061/**
1062 * Initialize VT-x or AMD-V.
1063 *
1064 * @returns VBox status code.
1065 * @param pVM The cross context VM structure.
1066 */
1067static int hmR3InitFinalizeR0(PVM pVM)
1068{
1069 int rc;
1070
1071 if (!HMIsEnabled(pVM))
1072 return VINF_SUCCESS;
1073
1074 /*
1075 * Hack to allow users to work around broken BIOSes that incorrectly set
1076 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1077 */
1078 if ( !pVM->hm.s.vmx.fSupported
1079 && !pVM->hm.s.svm.fSupported
1080 && pVM->hm.s.lLastError == VERR_SVM_IN_USE /* implies functional AMD-V */
1081 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1082 {
1083 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1084 pVM->hm.s.svm.fSupported = true;
1085 pVM->hm.s.svm.fIgnoreInUseError = true;
1086 pVM->hm.s.lLastError = VINF_SUCCESS;
1087 }
1088
1089 /*
1090 * Report ring-0 init errors.
1091 */
1092 if ( !pVM->hm.s.vmx.fSupported
1093 && !pVM->hm.s.svm.fSupported)
1094 {
1095 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.lLastError));
1096 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.vmx.Msrs.u64FeatureCtrl));
1097 switch (pVM->hm.s.lLastError)
1098 {
1099 case VERR_VMX_IN_VMX_ROOT_MODE:
1100 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1101 case VERR_VMX_NO_VMX:
1102 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1103 case VERR_VMX_MSR_VMX_DISABLED:
1104 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1105 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1106 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1107 case VERR_VMX_MSR_LOCKING_FAILED:
1108 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1109 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1110 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1111 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1112 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1113
1114 case VERR_SVM_IN_USE:
1115 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1116 case VERR_SVM_NO_SVM:
1117 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1118 case VERR_SVM_DISABLED:
1119 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1120 }
1121 return VMSetError(pVM, pVM->hm.s.lLastError, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.lLastError);
1122 }
1123
1124 /*
1125 * Enable VT-x or AMD-V on all host CPUs.
1126 */
1127 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1128 if (RT_FAILURE(rc))
1129 {
1130 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1131 HMR3CheckError(pVM, rc);
1132 return rc;
1133 }
1134
1135 /*
1136 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1137 * (Main should have taken care of this already)
1138 */
1139 pVM->hm.s.fHasIoApic = PDMHasIoApic(pVM);
1140 if (!pVM->hm.s.fHasIoApic)
1141 {
1142 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1143 pVM->hm.s.fTprPatchingAllowed = false;
1144 }
1145
1146 /*
1147 * Do the vendor specific initialization .
1148 * .
1149 * Note! We disable release log buffering here since we're doing relatively .
1150 * lot of logging and doesn't want to hit the disk with each LogRel .
1151 * statement.
1152 */
1153 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1154 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1155 if (pVM->hm.s.vmx.fSupported)
1156 rc = hmR3InitFinalizeR0Intel(pVM);
1157 else
1158 rc = hmR3InitFinalizeR0Amd(pVM);
1159 LogRel(("HM: VT-x/AMD-V init method: %s\n", (pVM->hm.s.fGlobalInit) ? "GLOBAL" : "LOCAL"));
1160 RTLogRelSetBuffering(fOldBuffered);
1161 pVM->hm.s.fInitialized = true;
1162
1163 return rc;
1164}
1165
1166
1167/**
1168 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1169 */
1170static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1171{
1172 NOREF(pVM);
1173 NOREF(pvAllocation);
1174 NOREF(GCPhysAllocation);
1175}
1176
1177
1178/**
1179 * Finish VT-x initialization (after ring-0 init).
1180 *
1181 * @returns VBox status code.
1182 * @param pVM The cross context VM structure.
1183 */
1184static int hmR3InitFinalizeR0Intel(PVM pVM)
1185{
1186 int rc;
1187
1188 Log(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1189 AssertLogRelReturn(pVM->hm.s.vmx.Msrs.u64FeatureCtrl != 0, VERR_HM_IPE_4);
1190
1191 uint64_t val;
1192 uint64_t zap;
1193 RTGCPHYS GCPhys = 0;
1194
1195 LogRel(("HM: Using VT-x implementation 2.0\n"));
1196 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.vmx.u64HostCr4));
1197 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.vmx.u64HostEfer));
1198 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.vmx.u64HostSmmMonitorCtl));
1199 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", pVM->hm.s.vmx.Msrs.u64FeatureCtrl));
1200 if (!(pVM->hm.s.vmx.Msrs.u64FeatureCtrl & MSR_IA32_FEATURE_CONTROL_LOCK))
1201 LogRel(("HM: IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1202 LogRel(("HM: MSR_IA32_VMX_BASIC_INFO = %#RX64\n", pVM->hm.s.vmx.Msrs.u64BasicInfo));
1203 LogRel(("HM: VMCS id = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1204 LogRel(("HM: VMCS size = %u bytes\n", MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1205 LogRel(("HM: VMCS physical address limit = %s\n", MSR_IA32_VMX_BASIC_INFO_VMCS_PHYS_WIDTH(pVM->hm.s.vmx.Msrs.u64BasicInfo) ? "< 4 GB" : "None"));
1206 LogRel(("HM: VMCS memory type = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_MEM_TYPE(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
1207 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BOOL(MSR_IA32_VMX_BASIC_INFO_VMCS_DUAL_MON(pVM->hm.s.vmx.Msrs.u64BasicInfo))));
1208 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BOOL(MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))));
1209 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1210
1211 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxPinCtls.u));
1212 val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1;
1213 zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0;
1214 HMVMX_REPORT_FEATURE(val, zap, "EXT_INT_EXIT", VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT);
1215 HMVMX_REPORT_FEATURE(val, zap, "NMI_EXIT", VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT);
1216 HMVMX_REPORT_FEATURE(val, zap, "VIRTUAL_NMI", VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI);
1217 HMVMX_REPORT_FEATURE(val, zap, "PREEMPT_TIMER", VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
1218 HMVMX_REPORT_FEATURE(val, zap, "POSTED_INTR", VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
1219
1220 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls.u));
1221 val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
1222 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
1223 HMVMX_REPORT_FEATURE(val, zap, "INT_WINDOW_EXIT", VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
1224 HMVMX_REPORT_FEATURE(val, zap, "USE_TSC_OFFSETTING", VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING);
1225 HMVMX_REPORT_FEATURE(val, zap, "HLT_EXIT", VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
1226 HMVMX_REPORT_FEATURE(val, zap, "INVLPG_EXIT", VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
1227 HMVMX_REPORT_FEATURE(val, zap, "MWAIT_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT);
1228 HMVMX_REPORT_FEATURE(val, zap, "RDPMC_EXIT", VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
1229 HMVMX_REPORT_FEATURE(val, zap, "RDTSC_EXIT", VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
1230 HMVMX_REPORT_FEATURE(val, zap, "CR3_LOAD_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT);
1231 HMVMX_REPORT_FEATURE(val, zap, "CR3_STORE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
1232 HMVMX_REPORT_FEATURE(val, zap, "CR8_LOAD_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT);
1233 HMVMX_REPORT_FEATURE(val, zap, "CR8_STORE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT);
1234 HMVMX_REPORT_FEATURE(val, zap, "USE_TPR_SHADOW", VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
1235 HMVMX_REPORT_FEATURE(val, zap, "NMI_WINDOW_EXIT", VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
1236 HMVMX_REPORT_FEATURE(val, zap, "MOV_DR_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
1237 HMVMX_REPORT_FEATURE(val, zap, "UNCOND_IO_EXIT", VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT);
1238 HMVMX_REPORT_FEATURE(val, zap, "USE_IO_BITMAPS", VMX_VMCS_CTRL_PROC_EXEC_USE_IO_BITMAPS);
1239 HMVMX_REPORT_FEATURE(val, zap, "MONITOR_TRAP_FLAG", VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
1240 HMVMX_REPORT_FEATURE(val, zap, "USE_MSR_BITMAPS", VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
1241 HMVMX_REPORT_FEATURE(val, zap, "MONITOR_EXIT", VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT);
1242 HMVMX_REPORT_FEATURE(val, zap, "PAUSE_EXIT", VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
1243 HMVMX_REPORT_FEATURE(val, zap, "USE_SECONDARY_EXEC_CTRL", VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL);
1244 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1245 {
1246 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.u));
1247 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
1248 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0;
1249 HMVMX_REPORT_FEATURE(val, zap, "VIRT_APIC", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC);
1250 HMVMX_REPORT_FEATURE(val, zap, "EPT", VMX_VMCS_CTRL_PROC_EXEC2_EPT);
1251 HMVMX_REPORT_FEATURE(val, zap, "DESCRIPTOR_TABLE_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT);
1252 HMVMX_REPORT_FEATURE(val, zap, "RDTSCP", VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP);
1253 HMVMX_REPORT_FEATURE(val, zap, "VIRT_X2APIC", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_X2APIC);
1254 HMVMX_REPORT_FEATURE(val, zap, "VPID", VMX_VMCS_CTRL_PROC_EXEC2_VPID);
1255 HMVMX_REPORT_FEATURE(val, zap, "WBINVD_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
1256 HMVMX_REPORT_FEATURE(val, zap, "UNRESTRICTED_GUEST", VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST);
1257 HMVMX_REPORT_FEATURE(val, zap, "APIC_REG_VIRT", VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
1258 HMVMX_REPORT_FEATURE(val, zap, "VIRT_INTR_DELIVERY", VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
1259 HMVMX_REPORT_FEATURE(val, zap, "PAUSE_LOOP_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT);
1260 HMVMX_REPORT_FEATURE(val, zap, "RDRAND_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
1261 HMVMX_REPORT_FEATURE(val, zap, "INVPCID", VMX_VMCS_CTRL_PROC_EXEC2_INVPCID);
1262 HMVMX_REPORT_FEATURE(val, zap, "VMFUNC", VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC);
1263 HMVMX_REPORT_FEATURE(val, zap, "VMCS_SHADOWING", VMX_VMCS_CTRL_PROC_EXEC2_VMCS_SHADOWING);
1264 HMVMX_REPORT_FEATURE(val, zap, "ENCLS_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_ENCLS_EXIT);
1265 HMVMX_REPORT_FEATURE(val, zap, "RDSEED_EXIT", VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
1266 HMVMX_REPORT_FEATURE(val, zap, "PML", VMX_VMCS_CTRL_PROC_EXEC2_PML);
1267 HMVMX_REPORT_FEATURE(val, zap, "EPT_VE", VMX_VMCS_CTRL_PROC_EXEC2_EPT_VE);
1268 HMVMX_REPORT_FEATURE(val, zap, "CONCEAL_FROM_PT", VMX_VMCS_CTRL_PROC_EXEC2_CONCEAL_FROM_PT);
1269 HMVMX_REPORT_FEATURE(val, zap, "XSAVES_XRSTORS", VMX_VMCS_CTRL_PROC_EXEC2_XSAVES_XRSTORS);
1270 HMVMX_REPORT_FEATURE(val, zap, "TSC_SCALING", VMX_VMCS_CTRL_PROC_EXEC2_TSC_SCALING);
1271 }
1272
1273 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxEntry.u));
1274 val = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1;
1275 zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0;
1276 HMVMX_REPORT_FEATURE(val, zap, "LOAD_DEBUG", VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG);
1277 HMVMX_REPORT_FEATURE(val, zap, "IA32E_MODE_GUEST", VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
1278 HMVMX_REPORT_FEATURE(val, zap, "ENTRY_SMM", VMX_VMCS_CTRL_ENTRY_ENTRY_SMM);
1279 HMVMX_REPORT_FEATURE(val, zap, "DEACTIVATE_DUALMON", VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON);
1280 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_PERF_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR);
1281 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_PAT_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR);
1282 HMVMX_REPORT_FEATURE(val, zap, "LOAD_GUEST_EFER_MSR", VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR);
1283
1284 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxExit.u));
1285 val = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1;
1286 zap = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0;
1287 HMVMX_REPORT_FEATURE(val, zap, "SAVE_DEBUG", VMX_VMCS_CTRL_EXIT_SAVE_DEBUG);
1288 HMVMX_REPORT_FEATURE(val, zap, "HOST_ADDR_SPACE_SIZE", VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE);
1289 HMVMX_REPORT_FEATURE(val, zap, "LOAD_PERF_MSR", VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR);
1290 HMVMX_REPORT_FEATURE(val, zap, "ACK_EXT_INT", VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
1291 HMVMX_REPORT_FEATURE(val, zap, "SAVE_GUEST_PAT_MSR", VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR);
1292 HMVMX_REPORT_FEATURE(val, zap, "LOAD_HOST_PAT_MSR", VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR);
1293 HMVMX_REPORT_FEATURE(val, zap, "SAVE_GUEST_EFER_MSR", VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR);
1294 HMVMX_REPORT_FEATURE(val, zap, "LOAD_HOST_EFER_MSR", VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR);
1295 HMVMX_REPORT_FEATURE(val, zap, "SAVE_VMX_PREEMPT_TIMER", VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER);
1296
1297 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps)
1298 {
1299 val = pVM->hm.s.vmx.Msrs.u64EptVpidCaps;
1300 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", val));
1301 HMVMX_REPORT_MSR_CAPABILITY(val, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1302 HMVMX_REPORT_MSR_CAPABILITY(val, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1303 HMVMX_REPORT_MSR_CAPABILITY(val, "EMT_UC", MSR_IA32_VMX_EPT_VPID_CAP_EMT_UC);
1304 HMVMX_REPORT_MSR_CAPABILITY(val, "EMT_WB", MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB);
1305 HMVMX_REPORT_MSR_CAPABILITY(val, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1306 HMVMX_REPORT_MSR_CAPABILITY(val, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1307 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1308 HMVMX_REPORT_MSR_CAPABILITY(val, "EPT_ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY);
1309 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1310 HMVMX_REPORT_MSR_CAPABILITY(val, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1311 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1312 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1313 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1314 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1315 HMVMX_REPORT_MSR_CAPABILITY(val, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1316 }
1317
1318 val = pVM->hm.s.vmx.Msrs.u64Misc;
1319 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", val));
1320 if (MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val) == pVM->hm.s.vmx.cPreemptTimerShift)
1321 LogRel(("HM: PREEMPT_TSC_BIT = %#x\n", MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val)));
1322 else
1323 {
1324 LogRel(("HM: PREEMPT_TSC_BIT = %#x - erratum detected, using %#x instead\n",
1325 MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val), pVM->hm.s.vmx.cPreemptTimerShift));
1326 }
1327
1328 LogRel(("HM: STORE_EFERLMA_VMEXIT = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_STORE_EFERLMA_VMEXIT(val))));
1329 LogRel(("HM: ACTIVITY_STATES = %#x\n", MSR_IA32_VMX_MISC_ACTIVITY_STATES(val)));
1330 LogRel(("HM: CR3_TARGET = %#x\n", MSR_IA32_VMX_MISC_CR3_TARGET(val)));
1331 LogRel(("HM: MAX_MSR = %u\n", MSR_IA32_VMX_MISC_MAX_MSR(val)));
1332 LogRel(("HM: RDMSR_SMBASE_MSR_SMM = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_RDMSR_SMBASE_MSR_SMM(val))));
1333 LogRel(("HM: SMM_MONITOR_CTL_B2 = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_SMM_MONITOR_CTL_B2(val))));
1334 LogRel(("HM: VMWRITE_VMEXIT_INFO = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_VMWRITE_VMEXIT_INFO(val))));
1335 LogRel(("HM: MSEG_ID = %#x\n", MSR_IA32_VMX_MISC_MSEG_ID(val)));
1336
1337 /* Paranoia */
1338 AssertRelease(MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.Msrs.u64Misc) >= 512);
1339
1340 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr0Fixed0));
1341 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr0Fixed1));
1342 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr4Fixed0));
1343 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr4Fixed1));
1344
1345 val = pVM->hm.s.vmx.Msrs.u64VmcsEnum;
1346 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", val));
1347 LogRel(("HM: HIGHEST_INDEX = %#x\n", MSR_IA32_VMX_VMCS_ENUM_HIGHEST_INDEX(val)));
1348
1349 val = pVM->hm.s.vmx.Msrs.u64Vmfunc;
1350 if (val)
1351 {
1352 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", val));
1353 HMVMX_REPORT_ALLOWED_FEATURE(val, "EPTP_SWITCHING", VMX_VMCS_CTRL_VMFUNC_EPTP_SWITCHING);
1354 }
1355
1356 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1357
1358 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1359 {
1360 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysMsrBitmap));
1361 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysVmcs));
1362 }
1363
1364 /*
1365 * EPT and unhampered guest execution are determined in HMR3Init, verify the sanity of that.
1366 */
1367 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1368 || (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_EPT),
1369 VERR_HM_IPE_1);
1370 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuest
1371 || ( (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST)
1372 && pVM->hm.s.fNestedPaging),
1373 VERR_HM_IPE_1);
1374
1375 /*
1376 * Enable VPID if configured and supported.
1377 */
1378 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VPID)
1379 pVM->hm.s.vmx.fVpid = pVM->hm.s.vmx.fAllowVpid;
1380
1381#ifdef VBOX_WITH_NEW_APIC
1382#if 0
1383 /*
1384 * Enable APIC register virtualization and virtual-interrupt delivery if supported.
1385 */
1386 if ( (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT)
1387 && (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY))
1388 pVM->hm.s.fVirtApicRegs = true;
1389
1390 /*
1391 * Enable posted-interrupt processing if supported.
1392 */
1393 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1394 * here. */
1395 if ( (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR)
1396 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT))
1397 pVM->hm.s.fPostedIntrs = true;
1398#endif
1399#endif
1400
1401 /*
1402 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1403 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1404 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1405 */
1406 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1407 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1408 {
1409 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1410 LogRel(("HM: Disabled RDTSCP\n"));
1411 }
1412
1413 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
1414 {
1415 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1416 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1417 if (RT_SUCCESS(rc))
1418 {
1419 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1420 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1421 esp. Figure 20-5.*/
1422 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1423 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1424
1425 /* Bit set to 0 means software interrupts are redirected to the
1426 8086 program interrupt handler rather than switching to
1427 protected-mode handler. */
1428 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1429
1430 /* Allow all port IO, so that port IO instructions do not cause
1431 exceptions and would instead cause a VM-exit (based on VT-x's
1432 IO bitmap which we currently configure to always cause an exit). */
1433 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, PAGE_SIZE * 2);
1434 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1435
1436 /*
1437 * Construct a 1024 element page directory with 4 MB pages for
1438 * the identity mapped page table used in real and protected mode
1439 * without paging with EPT.
1440 */
1441 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + PAGE_SIZE * 3);
1442 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1443 {
1444 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1445 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1446 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1447 | X86_PDE4M_G;
1448 }
1449
1450 /* We convert it here every time as PCI regions could be reconfigured. */
1451 if (PDMVmmDevHeapIsEnabled(pVM))
1452 {
1453 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1454 AssertRCReturn(rc, rc);
1455 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1456
1457 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1458 AssertRCReturn(rc, rc);
1459 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1460 }
1461 }
1462 else
1463 {
1464 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1465 pVM->hm.s.vmx.pRealModeTSS = NULL;
1466 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1467 return VMSetError(pVM, rc, RT_SRC_POS,
1468 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1469 }
1470 }
1471
1472 LogRel((pVM->hm.s.fAllow64BitGuests
1473 ? "HM: Guest support: 32-bit and 64-bit\n"
1474 : "HM: Guest support: 32-bit only\n"));
1475
1476 /*
1477 * Call ring-0 to set up the VM.
1478 */
1479 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1480 if (rc != VINF_SUCCESS)
1481 {
1482 AssertMsgFailed(("%Rrc\n", rc));
1483 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1484 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1485 {
1486 PVMCPU pVCpu = &pVM->aCpus[i];
1487 LogRel(("HM: CPU[%u] Last instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
1488 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", i, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1489 }
1490 HMR3CheckError(pVM, rc);
1491 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1492 }
1493
1494 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.vmx.fSupportsVmcsEfer));
1495 LogRel(("HM: Enabled VMX\n"));
1496 pVM->hm.s.vmx.fEnabled = true;
1497
1498 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1499
1500 /*
1501 * Change the CPU features.
1502 */
1503 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1504 if (pVM->hm.s.fAllow64BitGuests)
1505 {
1506 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1507 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1508 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* 64 bits only on Intel CPUs */
1509 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1510 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1511 }
1512 /* Turn on NXE if PAE has been enabled *and* the host has turned on NXE
1513 (we reuse the host EFER in the switcher). */
1514 /** @todo this needs to be fixed properly!! */
1515 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1516 {
1517 if (pVM->hm.s.vmx.u64HostEfer & MSR_K6_EFER_NXE)
1518 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1519 else
1520 LogRel(("HM: NX not enabled on the host, unavailable to PAE guest\n"));
1521 }
1522
1523 /*
1524 * Log configuration details.
1525 */
1526 if (pVM->hm.s.fNestedPaging)
1527 {
1528 LogRel(("HM: Enabled nested paging\n"));
1529 if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_SINGLE_CONTEXT)
1530 LogRel(("HM: EPT flush type = VMXFLUSHEPT_SINGLE_CONTEXT\n"));
1531 else if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_ALL_CONTEXTS)
1532 LogRel(("HM: EPT flush type = VMXFLUSHEPT_ALL_CONTEXTS\n"));
1533 else if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_NOT_SUPPORTED)
1534 LogRel(("HM: EPT flush type = VMXFLUSHEPT_NOT_SUPPORTED\n"));
1535 else
1536 LogRel(("HM: EPT flush type = %d\n", pVM->hm.s.vmx.enmFlushEpt));
1537
1538 if (pVM->hm.s.vmx.fUnrestrictedGuest)
1539 LogRel(("HM: Enabled unrestricted guest execution\n"));
1540
1541#if HC_ARCH_BITS == 64
1542 if (pVM->hm.s.fLargePages)
1543 {
1544 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1545 PGMSetLargePageUsage(pVM, true);
1546 LogRel(("HM: Enabled large page support\n"));
1547 }
1548#endif
1549 }
1550 else
1551 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
1552
1553 if (pVM->hm.s.fVirtApicRegs)
1554 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1555
1556 if (pVM->hm.s.fPostedIntrs)
1557 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1558
1559 if (pVM->hm.s.vmx.fVpid)
1560 {
1561 LogRel(("HM: Enabled VPID\n"));
1562 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_INDIV_ADDR)
1563 LogRel(("HM: VPID flush type = VMXFLUSHVPID_INDIV_ADDR\n"));
1564 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
1565 LogRel(("HM: VPID flush type = VMXFLUSHVPID_SINGLE_CONTEXT\n"));
1566 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
1567 LogRel(("HM: VPID flush type = VMXFLUSHVPID_ALL_CONTEXTS\n"));
1568 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1569 LogRel(("HM: VPID flush type = VMXFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS\n"));
1570 else
1571 LogRel(("HM: VPID flush type = %d\n", pVM->hm.s.vmx.enmFlushVpid));
1572 }
1573 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_NOT_SUPPORTED)
1574 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1575
1576 if (pVM->hm.s.vmx.fUsePreemptTimer)
1577 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1578 else
1579 LogRel(("HM: Disabled VMX-preemption timer\n"));
1580
1581 return VINF_SUCCESS;
1582}
1583
1584
1585/**
1586 * Finish AMD-V initialization (after ring-0 init).
1587 *
1588 * @returns VBox status code.
1589 * @param pVM The cross context VM structure.
1590 */
1591static int hmR3InitFinalizeR0Amd(PVM pVM)
1592{
1593 Log(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1594
1595 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1596
1597 uint32_t u32Family;
1598 uint32_t u32Model;
1599 uint32_t u32Stepping;
1600 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
1601 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1602 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1603 LogRel(("HM: CPUID 0x80000001.u32AMDFeatureECX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureECX));
1604 LogRel(("HM: CPUID 0x80000001.u32AMDFeatureEDX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureEDX));
1605 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.svm.u64MsrHwcr));
1606 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.svm.u32Rev));
1607 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.uMaxAsid));
1608 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.svm.u32Features));
1609
1610 /*
1611 * Enumerate AMD-V features.
1612 */
1613 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1614 {
1615#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1616 HMSVM_REPORT_FEATURE("NESTED_PAGING", AMD_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1617 HMSVM_REPORT_FEATURE("LBR_VIRT", AMD_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1618 HMSVM_REPORT_FEATURE("SVM_LOCK", AMD_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1619 HMSVM_REPORT_FEATURE("NRIP_SAVE", AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1620 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", AMD_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1621 HMSVM_REPORT_FEATURE("VMCB_CLEAN", AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1622 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1623 HMSVM_REPORT_FEATURE("DECODE_ASSIST", AMD_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST),
1624 HMSVM_REPORT_FEATURE("PAUSE_FILTER", AMD_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1625 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", AMD_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1626 HMSVM_REPORT_FEATURE("AVIC", AMD_CPUID_SVM_FEATURE_EDX_AVIC),
1627#undef HMSVM_REPORT_FEATURE
1628 };
1629
1630 uint32_t fSvmFeatures = pVM->hm.s.svm.u32Features;
1631 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1632 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1633 {
1634 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1635 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1636 }
1637 if (fSvmFeatures)
1638 for (unsigned iBit = 0; iBit < 32; iBit++)
1639 if (RT_BIT_32(iBit) & fSvmFeatures)
1640 LogRel(("HM: Reserved bit %u\n", iBit));
1641
1642 /*
1643 * Nested paging is determined in HMR3Init, verify the sanity of that.
1644 */
1645 AssertLogRelReturn( !pVM->hm.s.fNestedPaging
1646 || (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1647 VERR_HM_IPE_1);
1648
1649#if 0
1650 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1651 * here. */
1652 if (RTR0IsPostIpiSupport())
1653 pVM->hm.s.fPostedIntrs = true;
1654#endif
1655
1656 /*
1657 * Call ring-0 to set up the VM.
1658 */
1659 int rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1660 if (rc != VINF_SUCCESS)
1661 {
1662 AssertMsgFailed(("%Rrc\n", rc));
1663 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1664 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1665 }
1666
1667 LogRel(("HM: Enabled SVM\n"));
1668 pVM->hm.s.svm.fEnabled = true;
1669
1670 if (pVM->hm.s.fNestedPaging)
1671 {
1672 LogRel(("HM: Enabled nested paging\n"));
1673
1674 /*
1675 * Enable large pages (2 MB) if applicable.
1676 */
1677#if HC_ARCH_BITS == 64
1678 if (pVM->hm.s.fLargePages)
1679 {
1680 PGMSetLargePageUsage(pVM, true);
1681 LogRel(("HM: Enabled large page support\n"));
1682 }
1683#endif
1684 }
1685
1686 if (pVM->hm.s.fVirtApicRegs)
1687 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1688
1689 if (pVM->hm.s.fPostedIntrs)
1690 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1691
1692 hmR3DisableRawMode(pVM);
1693
1694 /*
1695 * Change the CPU features.
1696 */
1697 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1698 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1699 if (pVM->hm.s.fAllow64BitGuests)
1700 {
1701 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1702 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1703 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1704 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1705 }
1706 /* Turn on NXE if PAE has been enabled. */
1707 else if (CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1708 CPUMR3SetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1709
1710 LogRel(("HM: %s TPR patching\n", (pVM->hm.s.fTprPatchingAllowed) ? "Enabled" : "Disabled"));
1711
1712 LogRel((pVM->hm.s.fAllow64BitGuests
1713 ? "HM: Guest support: 32-bit and 64-bit\n"
1714 : "HM: Guest support: 32-bit only\n"));
1715
1716 return VINF_SUCCESS;
1717}
1718
1719
1720/**
1721 * Applies relocations to data and code managed by this
1722 * component. This function will be called at init and
1723 * whenever the VMM need to relocate it self inside the GC.
1724 *
1725 * @param pVM The cross context VM structure.
1726 */
1727VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1728{
1729 Log(("HMR3Relocate to %RGv\n", MMHyperGetArea(pVM, 0)));
1730
1731 /* Fetch the current paging mode during the relocate callback during state loading. */
1732 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1733 {
1734 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1735 {
1736 PVMCPU pVCpu = &pVM->aCpus[i];
1737 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1738 }
1739 }
1740#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1741 if (HMIsEnabled(pVM))
1742 {
1743 switch (PGMGetHostMode(pVM))
1744 {
1745 case PGMMODE_32_BIT:
1746 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_32_TO_AMD64);
1747 break;
1748
1749 case PGMMODE_PAE:
1750 case PGMMODE_PAE_NX:
1751 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_PAE_TO_AMD64);
1752 break;
1753
1754 default:
1755 AssertFailed();
1756 break;
1757 }
1758 }
1759#endif
1760 return;
1761}
1762
1763
1764/**
1765 * Notification callback which is called whenever there is a chance that a CR3
1766 * value might have changed.
1767 *
1768 * This is called by PGM.
1769 *
1770 * @param pVM The cross context VM structure.
1771 * @param pVCpu The cross context virtual CPU structure.
1772 * @param enmShadowMode New shadow paging mode.
1773 * @param enmGuestMode New guest paging mode.
1774 */
1775VMMR3_INT_DECL(void) HMR3PagingModeChanged(PVM pVM, PVMCPU pVCpu, PGMMODE enmShadowMode, PGMMODE enmGuestMode)
1776{
1777 RT_NOREF_PV(pVM);
1778
1779 /* Ignore page mode changes during state loading. */
1780 if (VMR3GetState(pVCpu->pVMR3) == VMSTATE_LOADING)
1781 return;
1782
1783 pVCpu->hm.s.enmShadowMode = enmShadowMode;
1784
1785 /*
1786 * If the guest left protected mode VMX execution, we'll have to be
1787 * extra careful if/when the guest switches back to protected mode.
1788 */
1789 if (enmGuestMode == PGMMODE_REAL)
1790 {
1791 Log(("HMR3PagingModeChanged indicates real mode execution\n"));
1792 pVCpu->hm.s.vmx.fWasInRealMode = true;
1793 }
1794}
1795
1796
1797/**
1798 * Terminates the HM.
1799 *
1800 * Termination means cleaning up and freeing all resources,
1801 * the VM itself is, at this point, powered off or suspended.
1802 *
1803 * @returns VBox status code.
1804 * @param pVM The cross context VM structure.
1805 */
1806VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
1807{
1808 if (pVM->hm.s.vmx.pRealModeTSS)
1809 {
1810 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
1811 pVM->hm.s.vmx.pRealModeTSS = 0;
1812 }
1813 hmR3TermCPU(pVM);
1814 return 0;
1815}
1816
1817
1818/**
1819 * Terminates the per-VCPU HM.
1820 *
1821 * @returns VBox status code.
1822 * @param pVM The cross context VM structure.
1823 */
1824static int hmR3TermCPU(PVM pVM)
1825{
1826 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1827 {
1828 PVMCPU pVCpu = &pVM->aCpus[i]; NOREF(pVCpu);
1829
1830#ifdef VBOX_WITH_STATISTICS
1831 if (pVCpu->hm.s.paStatExitReason)
1832 {
1833 MMHyperFree(pVM, pVCpu->hm.s.paStatExitReason);
1834 pVCpu->hm.s.paStatExitReason = NULL;
1835 pVCpu->hm.s.paStatExitReasonR0 = NIL_RTR0PTR;
1836 }
1837 if (pVCpu->hm.s.paStatInjectedIrqs)
1838 {
1839 MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedIrqs);
1840 pVCpu->hm.s.paStatInjectedIrqs = NULL;
1841 pVCpu->hm.s.paStatInjectedIrqsR0 = NIL_RTR0PTR;
1842 }
1843#endif
1844
1845#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1846 memset(pVCpu->hm.s.vmx.VMCSCache.aMagic, 0, sizeof(pVCpu->hm.s.vmx.VMCSCache.aMagic));
1847 pVCpu->hm.s.vmx.VMCSCache.uMagic = 0;
1848 pVCpu->hm.s.vmx.VMCSCache.uPos = 0xffffffff;
1849#endif
1850 }
1851 return 0;
1852}
1853
1854
1855/**
1856 * Resets a virtual CPU.
1857 *
1858 * Used by HMR3Reset and CPU hot plugging.
1859 *
1860 * @param pVCpu The cross context virtual CPU structure to reset.
1861 */
1862VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
1863{
1864 /* Sync. entire state on VM reset R0-reentry. It's safe to reset
1865 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
1866 HMCPU_CF_RESET_TO(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1867
1868 pVCpu->hm.s.vmx.u32CR0Mask = 0;
1869 pVCpu->hm.s.vmx.u32CR4Mask = 0;
1870 pVCpu->hm.s.fActive = false;
1871 pVCpu->hm.s.Event.fPending = false;
1872 pVCpu->hm.s.vmx.fWasInRealMode = true;
1873 pVCpu->hm.s.vmx.u64MsrApicBase = 0;
1874 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
1875
1876
1877
1878 /* Reset the contents of the read cache. */
1879 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
1880 for (unsigned j = 0; j < pCache->Read.cValidEntries; j++)
1881 pCache->Read.aFieldVal[j] = 0;
1882
1883#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1884 /* Magic marker for searching in crash dumps. */
1885 strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
1886 pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1887#endif
1888}
1889
1890
1891/**
1892 * The VM is being reset.
1893 *
1894 * For the HM component this means that any GDT/LDT/TSS monitors
1895 * needs to be removed.
1896 *
1897 * @param pVM The cross context VM structure.
1898 */
1899VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
1900{
1901 LogFlow(("HMR3Reset:\n"));
1902
1903 if (HMIsEnabled(pVM))
1904 hmR3DisableRawMode(pVM);
1905
1906 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1907 {
1908 PVMCPU pVCpu = &pVM->aCpus[i];
1909
1910 HMR3ResetCpu(pVCpu);
1911 }
1912
1913 /* Clear all patch information. */
1914 pVM->hm.s.pGuestPatchMem = 0;
1915 pVM->hm.s.pFreeGuestPatchMem = 0;
1916 pVM->hm.s.cbGuestPatchMem = 0;
1917 pVM->hm.s.cPatches = 0;
1918 pVM->hm.s.PatchTree = 0;
1919 pVM->hm.s.fTPRPatchingActive = false;
1920 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
1921}
1922
1923
1924/**
1925 * Callback to patch a TPR instruction (vmmcall or mov cr8).
1926 *
1927 * @returns VBox strict status code.
1928 * @param pVM The cross context VM structure.
1929 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1930 * @param pvUser Unused.
1931 */
1932static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
1933{
1934 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
1935
1936 /* Only execute the handler on the VCPU the original patch request was issued. */
1937 if (pVCpu->idCpu != idCpu)
1938 return VINF_SUCCESS;
1939
1940 Log(("hmR3RemovePatches\n"));
1941 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
1942 {
1943 uint8_t abInstr[15];
1944 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
1945 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
1946 int rc;
1947
1948#ifdef LOG_ENABLED
1949 char szOutput[256];
1950
1951 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
1952 szOutput, sizeof(szOutput), NULL);
1953 if (RT_SUCCESS(rc))
1954 Log(("Patched instr: %s\n", szOutput));
1955#endif
1956
1957 /* Check if the instruction is still the same. */
1958 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
1959 if (rc != VINF_SUCCESS)
1960 {
1961 Log(("Patched code removed? (rc=%Rrc0\n", rc));
1962 continue; /* swapped out or otherwise removed; skip it. */
1963 }
1964
1965 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
1966 {
1967 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
1968 continue; /* skip it. */
1969 }
1970
1971 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
1972 AssertRC(rc);
1973
1974#ifdef LOG_ENABLED
1975 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
1976 szOutput, sizeof(szOutput), NULL);
1977 if (RT_SUCCESS(rc))
1978 Log(("Original instr: %s\n", szOutput));
1979#endif
1980 }
1981 pVM->hm.s.cPatches = 0;
1982 pVM->hm.s.PatchTree = 0;
1983 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
1984 pVM->hm.s.fTPRPatchingActive = false;
1985 return VINF_SUCCESS;
1986}
1987
1988
1989/**
1990 * Worker for enabling patching in a VT-x/AMD-V guest.
1991 *
1992 * @returns VBox status code.
1993 * @param pVM The cross context VM structure.
1994 * @param idCpu VCPU to execute hmR3RemovePatches on.
1995 * @param pPatchMem Patch memory range.
1996 * @param cbPatchMem Size of the memory range.
1997 */
1998static int hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
1999{
2000 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2001 AssertRC(rc);
2002
2003 pVM->hm.s.pGuestPatchMem = pPatchMem;
2004 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2005 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2006 return VINF_SUCCESS;
2007}
2008
2009
2010/**
2011 * Enable patching in a VT-x/AMD-V guest
2012 *
2013 * @returns VBox status code.
2014 * @param pVM The cross context VM structure.
2015 * @param pPatchMem Patch memory range.
2016 * @param cbPatchMem Size of the memory range.
2017 */
2018VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2019{
2020 VM_ASSERT_EMT(pVM);
2021 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2022 if (pVM->cCpus > 1)
2023 {
2024 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2025 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2026 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2027 AssertRC(rc);
2028 return rc;
2029 }
2030 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2031}
2032
2033
2034/**
2035 * Disable patching in a VT-x/AMD-V guest.
2036 *
2037 * @returns VBox status code.
2038 * @param pVM The cross context VM structure.
2039 * @param pPatchMem Patch memory range.
2040 * @param cbPatchMem Size of the memory range.
2041 */
2042VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2043{
2044 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2045 RT_NOREF2(pPatchMem, cbPatchMem);
2046
2047 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2048 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2049
2050 /* @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2051 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2052 (void *)(uintptr_t)VMMGetCpuId(pVM));
2053 AssertRC(rc);
2054
2055 pVM->hm.s.pGuestPatchMem = 0;
2056 pVM->hm.s.pFreeGuestPatchMem = 0;
2057 pVM->hm.s.cbGuestPatchMem = 0;
2058 pVM->hm.s.fTPRPatchingActive = false;
2059 return VINF_SUCCESS;
2060}
2061
2062
2063/**
2064 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2065 *
2066 * @returns VBox strict status code.
2067 * @param pVM The cross context VM structure.
2068 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2069 * @param pvUser User specified CPU context.
2070 *
2071 */
2072static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2073{
2074 /*
2075 * Only execute the handler on the VCPU the original patch request was
2076 * issued. (The other CPU(s) might not yet have switched to protected
2077 * mode, nor have the correct memory context.)
2078 */
2079 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2080 if (pVCpu->idCpu != idCpu)
2081 return VINF_SUCCESS;
2082
2083 /*
2084 * We're racing other VCPUs here, so don't try patch the instruction twice
2085 * and make sure there is still room for our patch record.
2086 */
2087 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2088 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2089 if (pPatch)
2090 {
2091 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2092 return VINF_SUCCESS;
2093 }
2094 uint32_t const idx = pVM->hm.s.cPatches;
2095 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2096 {
2097 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2098 return VINF_SUCCESS;
2099 }
2100 pPatch = &pVM->hm.s.aPatches[idx];
2101
2102 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2103
2104 /*
2105 * Disassembler the instruction and get cracking.
2106 */
2107 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2108 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2109 uint32_t cbOp;
2110 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2111 AssertRC(rc);
2112 if ( rc == VINF_SUCCESS
2113 && pDis->pCurInstr->uOpcode == OP_MOV
2114 && cbOp >= 3)
2115 {
2116 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2117
2118 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2119 AssertRC(rc);
2120
2121 pPatch->cbOp = cbOp;
2122
2123 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2124 {
2125 /* write. */
2126 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2127 {
2128 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2129 pPatch->uSrcOperand = pDis->Param2.Base.idxGenReg;
2130 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", pDis->Param2.Base.idxGenReg));
2131 }
2132 else
2133 {
2134 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2135 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2136 pPatch->uSrcOperand = pDis->Param2.uValue;
2137 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", pDis->Param2.uValue));
2138 }
2139 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2140 AssertRC(rc);
2141
2142 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2143 pPatch->cbNewOp = sizeof(s_abVMMCall);
2144 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2145 }
2146 else
2147 {
2148 /*
2149 * TPR Read.
2150 *
2151 * Found:
2152 * mov eax, dword [fffe0080] (5 bytes)
2153 * Check if next instruction is:
2154 * shr eax, 4
2155 */
2156 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2157
2158 uint8_t const idxMmioReg = pDis->Param1.Base.idxGenReg;
2159 uint8_t const cbOpMmio = cbOp;
2160 uint64_t const uSavedRip = pCtx->rip;
2161
2162 pCtx->rip += cbOp;
2163 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2164 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2165 pCtx->rip = uSavedRip;
2166
2167 if ( rc == VINF_SUCCESS
2168 && pDis->pCurInstr->uOpcode == OP_SHR
2169 && pDis->Param1.fUse == DISUSE_REG_GEN32
2170 && pDis->Param1.Base.idxGenReg == idxMmioReg
2171 && pDis->Param2.fUse == DISUSE_IMMEDIATE8
2172 && pDis->Param2.uValue == 4
2173 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2174 {
2175 uint8_t abInstr[15];
2176
2177 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2178 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2179 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2180 AssertRC(rc);
2181
2182 pPatch->cbOp = cbOpMmio + cbOp;
2183
2184 /* 0xF0, 0x0F, 0x20, 0xC0 = mov eax, cr8 */
2185 abInstr[0] = 0xF0;
2186 abInstr[1] = 0x0F;
2187 abInstr[2] = 0x20;
2188 abInstr[3] = 0xC0 | pDis->Param1.Base.idxGenReg;
2189 for (unsigned i = 4; i < pPatch->cbOp; i++)
2190 abInstr[i] = 0x90; /* nop */
2191
2192 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2193 AssertRC(rc);
2194
2195 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2196 pPatch->cbNewOp = pPatch->cbOp;
2197 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2198
2199 Log(("Acceptable read/shr candidate!\n"));
2200 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2201 }
2202 else
2203 {
2204 pPatch->enmType = HMTPRINSTR_READ;
2205 pPatch->uDstOperand = idxMmioReg;
2206
2207 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2208 AssertRC(rc);
2209
2210 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2211 pPatch->cbNewOp = sizeof(s_abVMMCall);
2212 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2213 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2214 }
2215 }
2216
2217 pPatch->Core.Key = pCtx->eip;
2218 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2219 AssertRC(rc);
2220
2221 pVM->hm.s.cPatches++;
2222 return VINF_SUCCESS;
2223 }
2224
2225 /*
2226 * Save invalid patch, so we will not try again.
2227 */
2228 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2229 pPatch->Core.Key = pCtx->eip;
2230 pPatch->enmType = HMTPRINSTR_INVALID;
2231 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2232 AssertRC(rc);
2233 pVM->hm.s.cPatches++;
2234 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2235 return VINF_SUCCESS;
2236}
2237
2238
2239/**
2240 * Callback to patch a TPR instruction (jump to generated code).
2241 *
2242 * @returns VBox strict status code.
2243 * @param pVM The cross context VM structure.
2244 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2245 * @param pvUser User specified CPU context.
2246 *
2247 */
2248static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2249{
2250 /*
2251 * Only execute the handler on the VCPU the original patch request was
2252 * issued. (The other CPU(s) might not yet have switched to protected
2253 * mode, nor have the correct memory context.)
2254 */
2255 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2256 if (pVCpu->idCpu != idCpu)
2257 return VINF_SUCCESS;
2258
2259 /*
2260 * We're racing other VCPUs here, so don't try patch the instruction twice
2261 * and make sure there is still room for our patch record.
2262 */
2263 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2264 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2265 if (pPatch)
2266 {
2267 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2268 return VINF_SUCCESS;
2269 }
2270 uint32_t const idx = pVM->hm.s.cPatches;
2271 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2272 {
2273 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2274 return VINF_SUCCESS;
2275 }
2276 pPatch = &pVM->hm.s.aPatches[idx];
2277
2278 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2279 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2280
2281 /*
2282 * Disassemble the instruction and get cracking.
2283 */
2284 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2285 uint32_t cbOp;
2286 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2287 AssertRC(rc);
2288 if ( rc == VINF_SUCCESS
2289 && pDis->pCurInstr->uOpcode == OP_MOV
2290 && cbOp >= 5)
2291 {
2292 uint8_t aPatch[64];
2293 uint32_t off = 0;
2294
2295 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2296 AssertRC(rc);
2297
2298 pPatch->cbOp = cbOp;
2299 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2300
2301 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2302 {
2303 /*
2304 * TPR write:
2305 *
2306 * push ECX [51]
2307 * push EDX [52]
2308 * push EAX [50]
2309 * xor EDX,EDX [31 D2]
2310 * mov EAX,EAX [89 C0]
2311 * or
2312 * mov EAX,0000000CCh [B8 CC 00 00 00]
2313 * mov ECX,0C0000082h [B9 82 00 00 C0]
2314 * wrmsr [0F 30]
2315 * pop EAX [58]
2316 * pop EDX [5A]
2317 * pop ECX [59]
2318 * jmp return_address [E9 return_address]
2319 *
2320 */
2321 bool fUsesEax = (pDis->Param2.fUse == DISUSE_REG_GEN32 && pDis->Param2.Base.idxGenReg == DISGREG_EAX);
2322
2323 aPatch[off++] = 0x51; /* push ecx */
2324 aPatch[off++] = 0x52; /* push edx */
2325 if (!fUsesEax)
2326 aPatch[off++] = 0x50; /* push eax */
2327 aPatch[off++] = 0x31; /* xor edx, edx */
2328 aPatch[off++] = 0xD2;
2329 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2330 {
2331 if (!fUsesEax)
2332 {
2333 aPatch[off++] = 0x89; /* mov eax, src_reg */
2334 aPatch[off++] = MAKE_MODRM(3, pDis->Param2.Base.idxGenReg, DISGREG_EAX);
2335 }
2336 }
2337 else
2338 {
2339 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2340 aPatch[off++] = 0xB8; /* mov eax, immediate */
2341 *(uint32_t *)&aPatch[off] = pDis->Param2.uValue;
2342 off += sizeof(uint32_t);
2343 }
2344 aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
2345 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2346 off += sizeof(uint32_t);
2347
2348 aPatch[off++] = 0x0F; /* wrmsr */
2349 aPatch[off++] = 0x30;
2350 if (!fUsesEax)
2351 aPatch[off++] = 0x58; /* pop eax */
2352 aPatch[off++] = 0x5A; /* pop edx */
2353 aPatch[off++] = 0x59; /* pop ecx */
2354 }
2355 else
2356 {
2357 /*
2358 * TPR read:
2359 *
2360 * push ECX [51]
2361 * push EDX [52]
2362 * push EAX [50]
2363 * mov ECX,0C0000082h [B9 82 00 00 C0]
2364 * rdmsr [0F 32]
2365 * mov EAX,EAX [89 C0]
2366 * pop EAX [58]
2367 * pop EDX [5A]
2368 * pop ECX [59]
2369 * jmp return_address [E9 return_address]
2370 *
2371 */
2372 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2373
2374 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2375 aPatch[off++] = 0x51; /* push ecx */
2376 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2377 aPatch[off++] = 0x52; /* push edx */
2378 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2379 aPatch[off++] = 0x50; /* push eax */
2380
2381 aPatch[off++] = 0x31; /* xor edx, edx */
2382 aPatch[off++] = 0xD2;
2383
2384 aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
2385 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2386 off += sizeof(uint32_t);
2387
2388 aPatch[off++] = 0x0F; /* rdmsr */
2389 aPatch[off++] = 0x32;
2390
2391 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2392 {
2393 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2394 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, pDis->Param1.Base.idxGenReg);
2395 }
2396
2397 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2398 aPatch[off++] = 0x58; /* pop eax */
2399 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2400 aPatch[off++] = 0x5A; /* pop edx */
2401 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2402 aPatch[off++] = 0x59; /* pop ecx */
2403 }
2404 aPatch[off++] = 0xE9; /* jmp return_address */
2405 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2406 off += sizeof(RTRCUINTPTR);
2407
2408 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2409 {
2410 /* Write new code to the patch buffer. */
2411 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2412 AssertRC(rc);
2413
2414#ifdef LOG_ENABLED
2415 uint32_t cbCurInstr;
2416 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2417 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2418 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2419 {
2420 char szOutput[256];
2421 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2422 szOutput, sizeof(szOutput), &cbCurInstr);
2423 if (RT_SUCCESS(rc))
2424 Log(("Patch instr %s\n", szOutput));
2425 else
2426 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2427 }
2428#endif
2429
2430 pPatch->aNewOpcode[0] = 0xE9;
2431 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2432
2433 /* Overwrite the TPR instruction with a jump. */
2434 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2435 AssertRC(rc);
2436
2437 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2438
2439 pVM->hm.s.pFreeGuestPatchMem += off;
2440 pPatch->cbNewOp = 5;
2441
2442 pPatch->Core.Key = pCtx->eip;
2443 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2444 AssertRC(rc);
2445
2446 pVM->hm.s.cPatches++;
2447 pVM->hm.s.fTPRPatchingActive = true;
2448 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2449 return VINF_SUCCESS;
2450 }
2451
2452 Log(("Ran out of space in our patch buffer!\n"));
2453 }
2454 else
2455 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2456
2457
2458 /*
2459 * Save invalid patch, so we will not try again.
2460 */
2461 pPatch = &pVM->hm.s.aPatches[idx];
2462 pPatch->Core.Key = pCtx->eip;
2463 pPatch->enmType = HMTPRINSTR_INVALID;
2464 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2465 AssertRC(rc);
2466 pVM->hm.s.cPatches++;
2467 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2468 return VINF_SUCCESS;
2469}
2470
2471
2472/**
2473 * Attempt to patch TPR mmio instructions.
2474 *
2475 * @returns VBox status code.
2476 * @param pVM The cross context VM structure.
2477 * @param pVCpu The cross context virtual CPU structure.
2478 * @param pCtx Pointer to the guest CPU context.
2479 */
2480VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2481{
2482 NOREF(pCtx);
2483 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2484 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2485 (void *)(uintptr_t)pVCpu->idCpu);
2486 AssertRC(rc);
2487 return rc;
2488}
2489
2490
2491/**
2492 * Checks if a code selector (CS) is suitable for execution
2493 * within VMX when unrestricted execution isn't available.
2494 *
2495 * @returns true if selector is suitable for VMX, otherwise
2496 * false.
2497 * @param pSel Pointer to the selector to check (CS).
2498 * @param uStackDpl The CPL, aka the DPL of the stack segment.
2499 */
2500static bool hmR3IsCodeSelectorOkForVmx(PCPUMSELREG pSel, unsigned uStackDpl)
2501{
2502 /*
2503 * Segment must be an accessed code segment, it must be present and it must
2504 * be usable.
2505 * Note! These are all standard requirements and if CS holds anything else
2506 * we've got buggy code somewhere!
2507 */
2508 AssertCompile(X86DESCATTR_TYPE == 0xf);
2509 AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P | X86DESCATTR_UNUSABLE))
2510 == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P),
2511 ("%#x\n", pSel->Attr.u),
2512 false);
2513
2514 /* For conforming segments, CS.DPL must be <= SS.DPL, while CS.DPL
2515 must equal SS.DPL for non-confroming segments.
2516 Note! This is also a hard requirement like above. */
2517 AssertMsgReturn( pSel->Attr.n.u4Type & X86_SEL_TYPE_CONF
2518 ? pSel->Attr.n.u2Dpl <= uStackDpl
2519 : pSel->Attr.n.u2Dpl == uStackDpl,
2520 ("u4Type=%#x u2Dpl=%u uStackDpl=%u\n", pSel->Attr.n.u4Type, pSel->Attr.n.u2Dpl, uStackDpl),
2521 false);
2522
2523 /*
2524 * The following two requirements are VT-x specific:
2525 * - G bit must be set if any high limit bits are set.
2526 * - G bit must be clear if any low limit bits are clear.
2527 */
2528 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2529 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2530 return true;
2531 return false;
2532}
2533
2534
2535/**
2536 * Checks if a data selector (DS/ES/FS/GS) is suitable for
2537 * execution within VMX when unrestricted execution isn't
2538 * available.
2539 *
2540 * @returns true if selector is suitable for VMX, otherwise
2541 * false.
2542 * @param pSel Pointer to the selector to check
2543 * (DS/ES/FS/GS).
2544 */
2545static bool hmR3IsDataSelectorOkForVmx(PCPUMSELREG pSel)
2546{
2547 /*
2548 * Unusable segments are OK. These days they should be marked as such, as
2549 * but as an alternative we for old saved states and AMD<->VT-x migration
2550 * we also treat segments with all the attributes cleared as unusable.
2551 */
2552 if (pSel->Attr.n.u1Unusable || !pSel->Attr.u)
2553 return true;
2554
2555 /** @todo tighten these checks. Will require CPUM load adjusting. */
2556
2557 /* Segment must be accessed. */
2558 if (pSel->Attr.u & X86_SEL_TYPE_ACCESSED)
2559 {
2560 /* Code segments must also be readable. */
2561 if ( !(pSel->Attr.u & X86_SEL_TYPE_CODE)
2562 || (pSel->Attr.u & X86_SEL_TYPE_READ))
2563 {
2564 /* The S bit must be set. */
2565 if (pSel->Attr.n.u1DescType)
2566 {
2567 /* Except for conforming segments, DPL >= RPL. */
2568 if ( pSel->Attr.n.u2Dpl >= (pSel->Sel & X86_SEL_RPL)
2569 || pSel->Attr.n.u4Type >= X86_SEL_TYPE_ER_ACC)
2570 {
2571 /* Segment must be present. */
2572 if (pSel->Attr.n.u1Present)
2573 {
2574 /*
2575 * The following two requirements are VT-x specific:
2576 * - G bit must be set if any high limit bits are set.
2577 * - G bit must be clear if any low limit bits are clear.
2578 */
2579 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2580 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2581 return true;
2582 }
2583 }
2584 }
2585 }
2586 }
2587
2588 return false;
2589}
2590
2591
2592/**
2593 * Checks if the stack selector (SS) is suitable for execution
2594 * within VMX when unrestricted execution isn't available.
2595 *
2596 * @returns true if selector is suitable for VMX, otherwise
2597 * false.
2598 * @param pSel Pointer to the selector to check (SS).
2599 */
2600static bool hmR3IsStackSelectorOkForVmx(PCPUMSELREG pSel)
2601{
2602 /*
2603 * Unusable segments are OK. These days they should be marked as such, as
2604 * but as an alternative we for old saved states and AMD<->VT-x migration
2605 * we also treat segments with all the attributes cleared as unusable.
2606 */
2607 /** @todo r=bird: actually all zeroes isn't gonna cut it... SS.DPL == CPL. */
2608 if (pSel->Attr.n.u1Unusable || !pSel->Attr.u)
2609 return true;
2610
2611 /*
2612 * Segment must be an accessed writable segment, it must be present.
2613 * Note! These are all standard requirements and if SS holds anything else
2614 * we've got buggy code somewhere!
2615 */
2616 AssertCompile(X86DESCATTR_TYPE == 0xf);
2617 AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P | X86_SEL_TYPE_CODE))
2618 == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P),
2619 ("%#x\n", pSel->Attr.u),
2620 false);
2621
2622 /* DPL must equal RPL.
2623 Note! This is also a hard requirement like above. */
2624 AssertMsgReturn(pSel->Attr.n.u2Dpl == (pSel->Sel & X86_SEL_RPL),
2625 ("u2Dpl=%u Sel=%#x\n", pSel->Attr.n.u2Dpl, pSel->Sel),
2626 false);
2627
2628 /*
2629 * The following two requirements are VT-x specific:
2630 * - G bit must be set if any high limit bits are set.
2631 * - G bit must be clear if any low limit bits are clear.
2632 */
2633 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2634 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2635 return true;
2636 return false;
2637}
2638
2639
2640/**
2641 * Force execution of the current IO code in the recompiler.
2642 *
2643 * @returns VBox status code.
2644 * @param pVM The cross context VM structure.
2645 * @param pCtx Partial VM execution context.
2646 */
2647VMMR3_INT_DECL(int) HMR3EmulateIoBlock(PVM pVM, PCPUMCTX pCtx)
2648{
2649 PVMCPU pVCpu = VMMGetCpu(pVM);
2650
2651 Assert(HMIsEnabled(pVM));
2652 Log(("HMR3EmulateIoBlock\n"));
2653
2654 /* This is primarily intended to speed up Grub, so we don't care about paged protected mode. */
2655 if (HMCanEmulateIoBlockEx(pCtx))
2656 {
2657 Log(("HMR3EmulateIoBlock -> enabled\n"));
2658 pVCpu->hm.s.EmulateIoBlock.fEnabled = true;
2659 pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip = pCtx->rip;
2660 pVCpu->hm.s.EmulateIoBlock.cr0 = pCtx->cr0;
2661 return VINF_EM_RESCHEDULE_REM;
2662 }
2663 return VINF_SUCCESS;
2664}
2665
2666
2667/**
2668 * Checks if we can currently use hardware accelerated raw mode.
2669 *
2670 * @returns true if we can currently use hardware acceleration, otherwise false.
2671 * @param pVM The cross context VM structure.
2672 * @param pCtx Partial VM execution context.
2673 */
2674VMMR3DECL(bool) HMR3CanExecuteGuest(PVM pVM, PCPUMCTX pCtx)
2675{
2676 PVMCPU pVCpu = VMMGetCpu(pVM);
2677
2678 Assert(HMIsEnabled(pVM));
2679
2680 /* If we're still executing the IO code, then return false. */
2681 if ( RT_UNLIKELY(pVCpu->hm.s.EmulateIoBlock.fEnabled)
2682 && pCtx->rip < pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip + 0x200
2683 && pCtx->rip > pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip - 0x200
2684 && pCtx->cr0 == pVCpu->hm.s.EmulateIoBlock.cr0)
2685 return false;
2686
2687 pVCpu->hm.s.EmulateIoBlock.fEnabled = false;
2688
2689 /* AMD-V supports real & protected mode with or without paging. */
2690 if (pVM->hm.s.svm.fEnabled)
2691 {
2692 pVCpu->hm.s.fActive = true;
2693 return true;
2694 }
2695
2696 pVCpu->hm.s.fActive = false;
2697
2698 /* Note! The context supplied by REM is partial. If we add more checks here, be sure to verify that REM provides this info! */
2699 Assert( (pVM->hm.s.vmx.fUnrestrictedGuest && !pVM->hm.s.vmx.pRealModeTSS)
2700 || (!pVM->hm.s.vmx.fUnrestrictedGuest && pVM->hm.s.vmx.pRealModeTSS));
2701
2702 bool fSupportsRealMode = pVM->hm.s.vmx.fUnrestrictedGuest || PDMVmmDevHeapIsEnabled(pVM);
2703 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
2704 {
2705 /*
2706 * The VMM device heap is a requirement for emulating real mode or protected mode without paging with the unrestricted
2707 * guest execution feature is missing (VT-x only).
2708 */
2709 if (fSupportsRealMode)
2710 {
2711 if (CPUMIsGuestInRealModeEx(pCtx))
2712 {
2713 /* In V86 mode (VT-x or not), the CPU enforces real-mode compatible selector
2714 * bases and limits, i.e. limit must be 64K and base must be selector * 16.
2715 * If this is not true, we cannot execute real mode as V86 and have to fall
2716 * back to emulation.
2717 */
2718 if ( pCtx->cs.Sel != (pCtx->cs.u64Base >> 4)
2719 || pCtx->ds.Sel != (pCtx->ds.u64Base >> 4)
2720 || pCtx->es.Sel != (pCtx->es.u64Base >> 4)
2721 || pCtx->ss.Sel != (pCtx->ss.u64Base >> 4)
2722 || pCtx->fs.Sel != (pCtx->fs.u64Base >> 4)
2723 || pCtx->gs.Sel != (pCtx->gs.u64Base >> 4))
2724 {
2725 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelBase);
2726 return false;
2727 }
2728 if ( (pCtx->cs.u32Limit != 0xffff)
2729 || (pCtx->ds.u32Limit != 0xffff)
2730 || (pCtx->es.u32Limit != 0xffff)
2731 || (pCtx->ss.u32Limit != 0xffff)
2732 || (pCtx->fs.u32Limit != 0xffff)
2733 || (pCtx->gs.u32Limit != 0xffff))
2734 {
2735 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit);
2736 return false;
2737 }
2738 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckRmOk);
2739 }
2740 else
2741 {
2742 /* Verify the requirements for executing code in protected
2743 mode. VT-x can't handle the CPU state right after a switch
2744 from real to protected mode. (all sorts of RPL & DPL assumptions). */
2745 if (pVCpu->hm.s.vmx.fWasInRealMode)
2746 {
2747 /** @todo If guest is in V86 mode, these checks should be different! */
2748 if ((pCtx->cs.Sel & X86_SEL_RPL) != (pCtx->ss.Sel & X86_SEL_RPL))
2749 {
2750 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRpl);
2751 return false;
2752 }
2753 if ( !hmR3IsCodeSelectorOkForVmx(&pCtx->cs, pCtx->ss.Attr.n.u2Dpl)
2754 || !hmR3IsDataSelectorOkForVmx(&pCtx->ds)
2755 || !hmR3IsDataSelectorOkForVmx(&pCtx->es)
2756 || !hmR3IsDataSelectorOkForVmx(&pCtx->fs)
2757 || !hmR3IsDataSelectorOkForVmx(&pCtx->gs)
2758 || !hmR3IsStackSelectorOkForVmx(&pCtx->ss))
2759 {
2760 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadSel);
2761 return false;
2762 }
2763 }
2764 /* VT-x also chokes on invalid TR or LDTR selectors (minix). */
2765 if (pCtx->gdtr.cbGdt)
2766 {
2767 if ((pCtx->tr.Sel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
2768 {
2769 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadTr);
2770 return false;
2771 }
2772 else if ((pCtx->ldtr.Sel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
2773 {
2774 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadLdt);
2775 return false;
2776 }
2777 }
2778 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckPmOk);
2779 }
2780 }
2781 else
2782 {
2783 if ( !CPUMIsGuestInLongModeEx(pCtx)
2784 && !pVM->hm.s.vmx.fUnrestrictedGuest)
2785 {
2786 if ( !pVM->hm.s.fNestedPaging /* Requires a fake PD for real *and* protected mode without paging - stored in the VMM device heap */
2787 || CPUMIsGuestInRealModeEx(pCtx)) /* Requires a fake TSS for real mode - stored in the VMM device heap */
2788 return false;
2789
2790 /* Too early for VT-x; Solaris guests will fail with a guru meditation otherwise; same for XP. */
2791 if (pCtx->idtr.pIdt == 0 || pCtx->idtr.cbIdt == 0 || pCtx->tr.Sel == 0)
2792 return false;
2793
2794 /* The guest is about to complete the switch to protected mode. Wait a bit longer. */
2795 /* Windows XP; switch to protected mode; all selectors are marked not present in the
2796 * hidden registers (possible recompiler bug; see load_seg_vm) */
2797 if (pCtx->cs.Attr.n.u1Present == 0)
2798 return false;
2799 if (pCtx->ss.Attr.n.u1Present == 0)
2800 return false;
2801
2802 /* Windows XP: possible same as above, but new recompiler requires new heuristics?
2803 VT-x doesn't seem to like something about the guest state and this stuff avoids it. */
2804 /** @todo This check is actually wrong, it doesn't take the direction of the
2805 * stack segment into account. But, it does the job for now. */
2806 if (pCtx->rsp >= pCtx->ss.u32Limit)
2807 return false;
2808 }
2809 }
2810 }
2811
2812 if (pVM->hm.s.vmx.fEnabled)
2813 {
2814 uint32_t mask;
2815
2816 /* if bit N is set in cr0_fixed0, then it must be set in the guest's cr0. */
2817 mask = (uint32_t)pVM->hm.s.vmx.Msrs.u64Cr0Fixed0;
2818 /* Note: We ignore the NE bit here on purpose; see vmmr0\hmr0.cpp for details. */
2819 mask &= ~X86_CR0_NE;
2820
2821 if (fSupportsRealMode)
2822 {
2823 /* Note: We ignore the PE & PG bits here on purpose; we emulate real and protected mode without paging. */
2824 mask &= ~(X86_CR0_PG|X86_CR0_PE);
2825 }
2826 else
2827 {
2828 /* We support protected mode without paging using identity mapping. */
2829 mask &= ~X86_CR0_PG;
2830 }
2831 if ((pCtx->cr0 & mask) != mask)
2832 return false;
2833
2834 /* if bit N is cleared in cr0_fixed1, then it must be zero in the guest's cr0. */
2835 mask = (uint32_t)~pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
2836 if ((pCtx->cr0 & mask) != 0)
2837 return false;
2838
2839 /* if bit N is set in cr4_fixed0, then it must be set in the guest's cr4. */
2840 mask = (uint32_t)pVM->hm.s.vmx.Msrs.u64Cr4Fixed0;
2841 mask &= ~X86_CR4_VMXE;
2842 if ((pCtx->cr4 & mask) != mask)
2843 return false;
2844
2845 /* if bit N is cleared in cr4_fixed1, then it must be zero in the guest's cr4. */
2846 mask = (uint32_t)~pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
2847 if ((pCtx->cr4 & mask) != 0)
2848 return false;
2849
2850 pVCpu->hm.s.fActive = true;
2851 return true;
2852 }
2853
2854 return false;
2855}
2856
2857
2858/**
2859 * Checks if we need to reschedule due to VMM device heap changes.
2860 *
2861 * @returns true if a reschedule is required, otherwise false.
2862 * @param pVM The cross context VM structure.
2863 * @param pCtx VM execution context.
2864 */
2865VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCPUMCTX pCtx)
2866{
2867 /*
2868 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2869 * when the unrestricted guest execution feature is missing (VT-x only).
2870 */
2871 if ( pVM->hm.s.vmx.fEnabled
2872 && !pVM->hm.s.vmx.fUnrestrictedGuest
2873 && CPUMIsGuestInRealModeEx(pCtx)
2874 && !PDMVmmDevHeapIsEnabled(pVM))
2875 {
2876 return true;
2877 }
2878
2879 return false;
2880}
2881
2882
2883/**
2884 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
2885 * event settings changes.
2886 *
2887 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
2888 * function is just updating the VM globals.
2889 *
2890 * @param pVM The VM cross context VM structure.
2891 * @thread EMT(0)
2892 */
2893VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
2894{
2895 /* Interrupts. */
2896 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
2897 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
2898
2899 /* CPU Exceptions. */
2900 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
2901 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
2902 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2903 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2904
2905 /* Common VM exits. */
2906 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
2907 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
2908 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2909 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2910
2911 /* Vendor specific VM exits. */
2912 if (HMR3IsVmxEnabled(pVM->pUVM))
2913 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
2914 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
2915 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2916 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2917 else
2918 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
2919 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
2920 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2921 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2922
2923 /* Done. */
2924 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
2925}
2926
2927
2928/**
2929 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
2930 *
2931 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
2932 * per CPU settings.
2933 *
2934 * @param pVM The VM cross context VM structure.
2935 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2936 */
2937VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
2938{
2939 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
2940}
2941
2942
2943/**
2944 * Notification from EM about a rescheduling into hardware assisted execution
2945 * mode.
2946 *
2947 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2948 */
2949VMMR3_INT_DECL(void) HMR3NotifyScheduled(PVMCPU pVCpu)
2950{
2951 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
2952}
2953
2954
2955/**
2956 * Notification from EM about returning from instruction emulation (REM / EM).
2957 *
2958 * @param pVCpu The cross context virtual CPU structure.
2959 */
2960VMMR3_INT_DECL(void) HMR3NotifyEmulated(PVMCPU pVCpu)
2961{
2962 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
2963}
2964
2965
2966/**
2967 * Checks if we are currently using hardware acceleration.
2968 *
2969 * @returns true if hardware acceleration is being used, otherwise false.
2970 * @param pVCpu The cross context virtual CPU structure.
2971 */
2972VMMR3_INT_DECL(bool) HMR3IsActive(PVMCPU pVCpu)
2973{
2974 return pVCpu->hm.s.fActive;
2975}
2976
2977
2978/**
2979 * External interface for querying whether hardware acceleration is enabled.
2980 *
2981 * @returns true if VT-x or AMD-V is being used, otherwise false.
2982 * @param pUVM The user mode VM handle.
2983 * @sa HMIsEnabled, HMIsEnabledNotMacro.
2984 */
2985VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
2986{
2987 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2988 PVM pVM = pUVM->pVM;
2989 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2990 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
2991}
2992
2993
2994/**
2995 * External interface for querying whether VT-x is being used.
2996 *
2997 * @returns true if VT-x is being used, otherwise false.
2998 * @param pUVM The user mode VM handle.
2999 * @sa HMR3IsSvmEnabled, HMIsEnabled
3000 */
3001VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
3002{
3003 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3004 PVM pVM = pUVM->pVM;
3005 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3006 return pVM->hm.s.vmx.fEnabled
3007 && pVM->hm.s.vmx.fSupported
3008 && pVM->fHMEnabled;
3009}
3010
3011
3012/**
3013 * External interface for querying whether AMD-V is being used.
3014 *
3015 * @returns true if VT-x is being used, otherwise false.
3016 * @param pUVM The user mode VM handle.
3017 * @sa HMR3IsVmxEnabled, HMIsEnabled
3018 */
3019VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
3020{
3021 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3022 PVM pVM = pUVM->pVM;
3023 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3024 return pVM->hm.s.svm.fEnabled
3025 && pVM->hm.s.svm.fSupported
3026 && pVM->fHMEnabled;
3027}
3028
3029
3030/**
3031 * Checks if we are currently using nested paging.
3032 *
3033 * @returns true if nested paging is being used, otherwise false.
3034 * @param pUVM The user mode VM handle.
3035 */
3036VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
3037{
3038 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3039 PVM pVM = pUVM->pVM;
3040 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3041 return pVM->hm.s.fNestedPaging;
3042}
3043
3044
3045/**
3046 * Checks if virtualized APIC registers is enabled.
3047 *
3048 * When enabled this feature allows the hardware to access most of the
3049 * APIC registers in the virtual-APIC page without causing VM-exits. See
3050 * Intel spec. 29.1.1 "Virtualized APIC Registers".
3051 *
3052 * @returns true if virtualized APIC registers is enabled, otherwise
3053 * false.
3054 * @param pUVM The user mode VM handle.
3055 */
3056VMMR3DECL(bool) HMR3IsVirtApicRegsEnabled(PUVM pUVM)
3057{
3058 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3059 PVM pVM = pUVM->pVM;
3060 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3061 return pVM->hm.s.fVirtApicRegs;
3062}
3063
3064
3065/**
3066 * Checks if APIC posted-interrupt processing is enabled.
3067 *
3068 * This returns whether we can deliver interrupts to the guest without
3069 * leaving guest-context by updating APIC state from host-context.
3070 *
3071 * @returns true if APIC posted-interrupt processing is enabled,
3072 * otherwise false.
3073 * @param pUVM The user mode VM handle.
3074 */
3075VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
3076{
3077 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3078 PVM pVM = pUVM->pVM;
3079 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3080 return pVM->hm.s.fPostedIntrs;
3081}
3082
3083
3084/**
3085 * Checks if we are currently using VPID in VT-x mode.
3086 *
3087 * @returns true if VPID is being used, otherwise false.
3088 * @param pUVM The user mode VM handle.
3089 */
3090VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
3091{
3092 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3093 PVM pVM = pUVM->pVM;
3094 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3095 return pVM->hm.s.vmx.fVpid;
3096}
3097
3098
3099/**
3100 * Checks if we are currently using VT-x unrestricted execution,
3101 * aka UX.
3102 *
3103 * @returns true if UX is being used, otherwise false.
3104 * @param pUVM The user mode VM handle.
3105 */
3106VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
3107{
3108 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
3109 PVM pVM = pUVM->pVM;
3110 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
3111 return pVM->hm.s.vmx.fUnrestrictedGuest;
3112}
3113
3114
3115/**
3116 * Checks if internal events are pending. In that case we are not allowed to dispatch interrupts.
3117 *
3118 * @returns true if an internal event is pending, otherwise false.
3119 * @param pVCpu The cross context virtual CPU structure.
3120 */
3121VMMR3_INT_DECL(bool) HMR3IsEventPending(PVMCPU pVCpu)
3122{
3123 return HMIsEnabled(pVCpu->pVMR3) && pVCpu->hm.s.Event.fPending;
3124}
3125
3126
3127/**
3128 * Checks if the VMX-preemption timer is being used.
3129 *
3130 * @returns true if the VMX-preemption timer is being used, otherwise false.
3131 * @param pVM The cross context VM structure.
3132 */
3133VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
3134{
3135 return HMIsEnabled(pVM)
3136 && pVM->hm.s.vmx.fEnabled
3137 && pVM->hm.s.vmx.fUsePreemptTimer;
3138}
3139
3140
3141/**
3142 * Restart an I/O instruction that was refused in ring-0
3143 *
3144 * @returns Strict VBox status code. Informational status codes other than the one documented
3145 * here are to be treated as internal failure. Use IOM_SUCCESS() to check for success.
3146 * @retval VINF_SUCCESS Success.
3147 * @retval VINF_EM_FIRST-VINF_EM_LAST Success with some exceptions (see IOM_SUCCESS()), the
3148 * status code must be passed on to EM.
3149 * @retval VERR_NOT_FOUND if no pending I/O instruction.
3150 *
3151 * @param pVM The cross context VM structure.
3152 * @param pVCpu The cross context virtual CPU structure.
3153 * @param pCtx Pointer to the guest CPU context.
3154 */
3155VMMR3_INT_DECL(VBOXSTRICTRC) HMR3RestartPendingIOInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3156{
3157 /*
3158 * Check if we've got relevant data pending.
3159 */
3160 HMPENDINGIO enmType = pVCpu->hm.s.PendingIO.enmType;
3161 if (enmType == HMPENDINGIO_INVALID)
3162 return VERR_NOT_FOUND;
3163 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_INVALID;
3164 if (pVCpu->hm.s.PendingIO.GCPtrRip != pCtx->rip)
3165 return VERR_NOT_FOUND;
3166
3167 /*
3168 * Execute pending I/O.
3169 */
3170 VBOXSTRICTRC rcStrict;
3171 switch (enmType)
3172 {
3173 case HMPENDINGIO_PORT_READ:
3174 {
3175 uint32_t uAndVal = pVCpu->hm.s.PendingIO.s.Port.uAndVal;
3176 uint32_t u32Val = 0;
3177
3178 rcStrict = IOMIOPortRead(pVM, pVCpu, pVCpu->hm.s.PendingIO.s.Port.uPort, &u32Val,
3179 pVCpu->hm.s.PendingIO.s.Port.cbSize);
3180 if (IOM_SUCCESS(rcStrict))
3181 {
3182 /* Write back to the EAX register. */
3183 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
3184 pCtx->rip = pVCpu->hm.s.PendingIO.GCPtrRipNext;
3185 }
3186 break;
3187 }
3188
3189 default:
3190 AssertLogRelFailedReturn(VERR_HM_UNKNOWN_IO_INSTRUCTION);
3191 }
3192
3193 if (IOM_SUCCESS(rcStrict))
3194 {
3195 /*
3196 * Check for I/O breakpoints.
3197 */
3198 uint32_t const uDr7 = pCtx->dr[7];
3199 if ( ( (uDr7 & X86_DR7_ENABLED_MASK)
3200 && X86_DR7_ANY_RW_IO(uDr7)
3201 && (pCtx->cr4 & X86_CR4_DE))
3202 || DBGFBpIsHwIoArmed(pVM))
3203 {
3204 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, pVCpu->hm.s.PendingIO.s.Port.uPort,
3205 pVCpu->hm.s.PendingIO.s.Port.cbSize);
3206 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
3207 rcStrict2 = TRPMAssertTrap(pVCpu, X86_XCPT_DB, TRPM_TRAP);
3208 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
3209 else if (rcStrict2 != VINF_SUCCESS && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
3210 rcStrict = rcStrict2;
3211 }
3212 }
3213 return rcStrict;
3214}
3215
3216
3217/**
3218 * Check fatal VT-x/AMD-V error and produce some meaningful
3219 * log release message.
3220 *
3221 * @param pVM The cross context VM structure.
3222 * @param iStatusCode VBox status code.
3223 */
3224VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
3225{
3226 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3227 {
3228 PVMCPU pVCpu = &pVM->aCpus[i];
3229 switch (iStatusCode)
3230 {
3231 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
3232 * might be getting inaccurate values for non-guru'ing EMTs. */
3233 case VERR_VMX_INVALID_VMCS_FIELD:
3234 break;
3235
3236 case VERR_VMX_INVALID_VMCS_PTR:
3237 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
3238 LogRel(("HM: CPU[%u] Current pointer %#RGp vs %#RGp\n", i, pVCpu->hm.s.vmx.LastError.u64VMCSPhys,
3239 pVCpu->hm.s.vmx.HCPhysVmcs));
3240 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", i, pVCpu->hm.s.vmx.LastError.u32VMCSRevision));
3241 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3242 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3243 break;
3244
3245 case VERR_VMX_UNABLE_TO_START_VM:
3246 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3247 LogRel(("HM: CPU[%u] Instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
3248 LogRel(("HM: CPU[%u] Exit reason %#x\n", i, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3249
3250 if ( pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMLAUCH_NON_CLEAR_VMCS
3251 || pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMRESUME_NON_LAUNCHED_VMCS)
3252 {
3253 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3254 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3255 }
3256 else if (pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMENTRY_INVALID_CONTROL_FIELDS)
3257 {
3258 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32PinCtls));
3259 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls));
3260 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls2));
3261 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32EntryCtls));
3262 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ExitCtls));
3263 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysMsrBitmap));
3264 LogRel(("HM: CPU[%u] HCPhysGuestMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysGuestMsr));
3265 LogRel(("HM: CPU[%u] HCPhysHostMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysHostMsr));
3266 LogRel(("HM: CPU[%u] cMsrs %u\n", i, pVCpu->hm.s.vmx.cMsrs));
3267 }
3268 /** @todo Log VM-entry event injection control fields
3269 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3270 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3271 break;
3272
3273 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3274 case VERR_VMX_INVALID_VMXON_PTR:
3275 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3276 case VERR_VMX_INVALID_GUEST_STATE:
3277 case VERR_VMX_UNEXPECTED_EXIT:
3278 case VERR_SVM_UNKNOWN_EXIT:
3279 case VERR_SVM_UNEXPECTED_EXIT:
3280 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3281 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3282 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3283 break;
3284 }
3285 }
3286
3287 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3288 {
3289 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed %#RX32\n", pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1));
3290 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry disallowed %#RX32\n", pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0));
3291 }
3292 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3293 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.vmx.HCPhysVmxEnableError));
3294}
3295
3296
3297/**
3298 * Execute state save operation.
3299 *
3300 * @returns VBox status code.
3301 * @param pVM The cross context VM structure.
3302 * @param pSSM SSM operation handle.
3303 */
3304static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3305{
3306 int rc;
3307
3308 Log(("hmR3Save:\n"));
3309
3310 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3311 {
3312 /*
3313 * Save the basic bits - fortunately all the other things can be resynced on load.
3314 */
3315 rc = SSMR3PutU32(pSSM, pVM->aCpus[i].hm.s.Event.fPending);
3316 AssertRCReturn(rc, rc);
3317 rc = SSMR3PutU32(pSSM, pVM->aCpus[i].hm.s.Event.u32ErrCode);
3318 AssertRCReturn(rc, rc);
3319 rc = SSMR3PutU64(pSSM, pVM->aCpus[i].hm.s.Event.u64IntInfo);
3320 AssertRCReturn(rc, rc);
3321 /** @todo Shouldn't we be saving GCPtrFaultAddress too? */
3322
3323 /** @todo We only need to save pVM->aCpus[i].hm.s.vmx.fWasInRealMode and
3324 * perhaps not even that (the initial value of @c true is safe. */
3325 uint32_t u32Dummy = PGMMODE_REAL;
3326 rc = SSMR3PutU32(pSSM, u32Dummy);
3327 AssertRCReturn(rc, rc);
3328 rc = SSMR3PutU32(pSSM, u32Dummy);
3329 AssertRCReturn(rc, rc);
3330 rc = SSMR3PutU32(pSSM, u32Dummy);
3331 AssertRCReturn(rc, rc);
3332 }
3333
3334#ifdef VBOX_HM_WITH_GUEST_PATCHING
3335 rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3336 AssertRCReturn(rc, rc);
3337 rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3338 AssertRCReturn(rc, rc);
3339 rc = SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3340 AssertRCReturn(rc, rc);
3341
3342 /* Store all the guest patch records too. */
3343 rc = SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3344 AssertRCReturn(rc, rc);
3345
3346 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
3347 {
3348 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3349
3350 rc = SSMR3PutU32(pSSM, pPatch->Core.Key);
3351 AssertRCReturn(rc, rc);
3352
3353 rc = SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3354 AssertRCReturn(rc, rc);
3355
3356 rc = SSMR3PutU32(pSSM, pPatch->cbOp);
3357 AssertRCReturn(rc, rc);
3358
3359 rc = SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3360 AssertRCReturn(rc, rc);
3361
3362 rc = SSMR3PutU32(pSSM, pPatch->cbNewOp);
3363 AssertRCReturn(rc, rc);
3364
3365 AssertCompileSize(HMTPRINSTR, 4);
3366 rc = SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3367 AssertRCReturn(rc, rc);
3368
3369 rc = SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3370 AssertRCReturn(rc, rc);
3371
3372 rc = SSMR3PutU32(pSSM, pPatch->uDstOperand);
3373 AssertRCReturn(rc, rc);
3374
3375 rc = SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3376 AssertRCReturn(rc, rc);
3377
3378 rc = SSMR3PutU32(pSSM, pPatch->cFaults);
3379 AssertRCReturn(rc, rc);
3380 }
3381#endif
3382 return VINF_SUCCESS;
3383}
3384
3385
3386/**
3387 * Execute state load operation.
3388 *
3389 * @returns VBox status code.
3390 * @param pVM The cross context VM structure.
3391 * @param pSSM SSM operation handle.
3392 * @param uVersion Data layout version.
3393 * @param uPass The data pass.
3394 */
3395static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3396{
3397 int rc;
3398
3399 Log(("hmR3Load:\n"));
3400 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3401
3402 /*
3403 * Validate version.
3404 */
3405 if ( uVersion != HM_SAVED_STATE_VERSION
3406 && uVersion != HM_SAVED_STATE_VERSION_NO_PATCHING
3407 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3408 {
3409 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3410 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3411 }
3412 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3413 {
3414 rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.fPending);
3415 AssertRCReturn(rc, rc);
3416 rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.u32ErrCode);
3417 AssertRCReturn(rc, rc);
3418 rc = SSMR3GetU64(pSSM, &pVM->aCpus[i].hm.s.Event.u64IntInfo);
3419 AssertRCReturn(rc, rc);
3420
3421 if (uVersion >= HM_SAVED_STATE_VERSION_NO_PATCHING)
3422 {
3423 uint32_t val;
3424 /** @todo See note in hmR3Save(). */
3425 rc = SSMR3GetU32(pSSM, &val);
3426 AssertRCReturn(rc, rc);
3427 rc = SSMR3GetU32(pSSM, &val);
3428 AssertRCReturn(rc, rc);
3429 rc = SSMR3GetU32(pSSM, &val);
3430 AssertRCReturn(rc, rc);
3431 }
3432 }
3433#ifdef VBOX_HM_WITH_GUEST_PATCHING
3434 if (uVersion > HM_SAVED_STATE_VERSION_NO_PATCHING)
3435 {
3436 rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3437 AssertRCReturn(rc, rc);
3438 rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3439 AssertRCReturn(rc, rc);
3440 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3441 AssertRCReturn(rc, rc);
3442
3443 /* Fetch all TPR patch records. */
3444 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3445 AssertRCReturn(rc, rc);
3446
3447 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
3448 {
3449 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3450
3451 rc = SSMR3GetU32(pSSM, &pPatch->Core.Key);
3452 AssertRCReturn(rc, rc);
3453
3454 rc = SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3455 AssertRCReturn(rc, rc);
3456
3457 rc = SSMR3GetU32(pSSM, &pPatch->cbOp);
3458 AssertRCReturn(rc, rc);
3459
3460 rc = SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3461 AssertRCReturn(rc, rc);
3462
3463 rc = SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3464 AssertRCReturn(rc, rc);
3465
3466 rc = SSMR3GetU32(pSSM, (uint32_t *)&pPatch->enmType);
3467 AssertRCReturn(rc, rc);
3468
3469 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3470 pVM->hm.s.fTPRPatchingActive = true;
3471
3472 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTPRPatchingActive == false);
3473
3474 rc = SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3475 AssertRCReturn(rc, rc);
3476
3477 rc = SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3478 AssertRCReturn(rc, rc);
3479
3480 rc = SSMR3GetU32(pSSM, &pPatch->cFaults);
3481 AssertRCReturn(rc, rc);
3482
3483 rc = SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3484 AssertRCReturn(rc, rc);
3485
3486 Log(("hmR3Load: patch %d\n", i));
3487 Log(("Key = %x\n", pPatch->Core.Key));
3488 Log(("cbOp = %d\n", pPatch->cbOp));
3489 Log(("cbNewOp = %d\n", pPatch->cbNewOp));
3490 Log(("type = %d\n", pPatch->enmType));
3491 Log(("srcop = %d\n", pPatch->uSrcOperand));
3492 Log(("dstop = %d\n", pPatch->uDstOperand));
3493 Log(("cFaults = %d\n", pPatch->cFaults));
3494 Log(("target = %x\n", pPatch->pJumpTarget));
3495 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3496 AssertRC(rc);
3497 }
3498 }
3499#endif
3500
3501 return VINF_SUCCESS;
3502}
3503
3504
3505/**
3506 * Displays the guest VM-exit history.
3507 *
3508 * @param pVM The cross context VM structure.
3509 * @param pHlp The info helper functions.
3510 * @param pszArgs Arguments, ignored.
3511 */
3512static DECLCALLBACK(void) hmR3InfoExitHistory(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3513{
3514 NOREF(pszArgs);
3515 PVMCPU pVCpu = VMMGetCpu(pVM);
3516 if (!pVCpu)
3517 pVCpu = &pVM->aCpus[0];
3518
3519 if (HMIsEnabled(pVM))
3520 {
3521 bool const fIsVtx = pVM->hm.s.vmx.fSupported;
3522 const char * const *papszDesc;
3523 unsigned cMaxExitDesc;
3524 if (fIsVtx)
3525 {
3526 cMaxExitDesc = MAX_EXITREASON_VTX;
3527 papszDesc = &g_apszVTxExitReasons[0];
3528 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x VM-exit history:\n", pVCpu->idCpu);
3529 }
3530 else
3531 {
3532 cMaxExitDesc = MAX_EXITREASON_AMDV;
3533 papszDesc = &g_apszAmdVExitReasons[0];
3534 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V #VMEXIT history:\n", pVCpu->idCpu);
3535 }
3536
3537 pHlp->pfnPrintf(pHlp, " idxExitHistoryFree = %u\n", pVCpu->hm.s.idxExitHistoryFree);
3538 unsigned const idxLast = pVCpu->hm.s.idxExitHistoryFree > 0 ?
3539 pVCpu->hm.s.idxExitHistoryFree - 1 :
3540 RT_ELEMENTS(pVCpu->hm.s.auExitHistory) - 1;
3541 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->hm.s.auExitHistory); i++)
3542 {
3543 uint16_t const uExit = pVCpu->hm.s.auExitHistory[i];
3544 const char *pszExit = NULL;
3545 if (uExit <= cMaxExitDesc)
3546 pszExit = papszDesc[uExit];
3547 else if (!fIsVtx)
3548 pszExit = hmSvmGetSpecialExitReasonDesc(uExit);
3549 else
3550 pszExit = NULL;
3551
3552 pHlp->pfnPrintf(pHlp, " auExitHistory[%2u] = 0x%04x %s %s\n", i, uExit, pszExit,
3553 idxLast == i ? "<-- Latest exit" : "");
3554 }
3555 pHlp->pfnPrintf(pHlp, "HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3556 }
3557 else
3558 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3559}
3560
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette