VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 54154

Last change on this file since 54154 was 54154, checked in by vboxsync, 10 years ago

VMM/HM: nit, log ordering.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 138.3 KB
Line 
1/* $Id: HM.cpp 54154 2015-02-11 17:27:18Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <VBox/vmm/cpum.h>
24#include <VBox/vmm/stam.h>
25#include <VBox/vmm/mm.h>
26#include <VBox/vmm/pdmapi.h>
27#include <VBox/vmm/pgm.h>
28#include <VBox/vmm/ssm.h>
29#include <VBox/vmm/trpm.h>
30#include <VBox/vmm/dbgf.h>
31#include <VBox/vmm/iom.h>
32#include <VBox/vmm/patm.h>
33#include <VBox/vmm/csam.h>
34#include <VBox/vmm/selm.h>
35#ifdef VBOX_WITH_REM
36# include <VBox/vmm/rem.h>
37#endif
38#include <VBox/vmm/hm_vmx.h>
39#include <VBox/vmm/hm_svm.h>
40#include "HMInternal.h"
41#include <VBox/vmm/vm.h>
42#include <VBox/vmm/uvm.h>
43#include <VBox/err.h>
44#include <VBox/param.h>
45
46#include <iprt/assert.h>
47#include <VBox/log.h>
48#include <iprt/asm.h>
49#include <iprt/asm-amd64-x86.h>
50#include <iprt/env.h>
51#include <iprt/thread.h>
52
53
54/*******************************************************************************
55* Global Variables *
56*******************************************************************************/
57#ifdef VBOX_WITH_STATISTICS
58# define EXIT_REASON(def, val, str) #def " - " #val " - " str
59# define EXIT_REASON_NIL() NULL
60/** Exit reason descriptions for VT-x, used to describe statistics. */
61static const char * const g_apszVTxExitReasons[MAX_EXITREASON_STAT] =
62{
63 EXIT_REASON(VMX_EXIT_XCPT_OR_NMI , 0, "Exception or non-maskable interrupt (NMI)."),
64 EXIT_REASON(VMX_EXIT_EXT_INT , 1, "External interrupt."),
65 EXIT_REASON(VMX_EXIT_TRIPLE_FAULT , 2, "Triple fault."),
66 EXIT_REASON(VMX_EXIT_INIT_SIGNAL , 3, "INIT signal."),
67 EXIT_REASON(VMX_EXIT_SIPI , 4, "Start-up IPI (SIPI)."),
68 EXIT_REASON(VMX_EXIT_IO_SMI_IRQ , 5, "I/O system-management interrupt (SMI)."),
69 EXIT_REASON(VMX_EXIT_SMI_IRQ , 6, "Other SMI."),
70 EXIT_REASON(VMX_EXIT_INT_WINDOW , 7, "Interrupt window."),
71 EXIT_REASON(VMX_EXIT_NMI_WINDOW , 8, "NMI window."),
72 EXIT_REASON(VMX_EXIT_TASK_SWITCH , 9, "Task switch."),
73 EXIT_REASON(VMX_EXIT_CPUID , 10, "CPUID instruction."),
74 EXIT_REASON_NIL(),
75 EXIT_REASON(VMX_EXIT_HLT , 12, "HLT instruction."),
76 EXIT_REASON(VMX_EXIT_INVD , 13, "INVD instruction."),
77 EXIT_REASON(VMX_EXIT_INVLPG , 14, "INVLPG instruction."),
78 EXIT_REASON(VMX_EXIT_RDPMC , 15, "RDPMCinstruction."),
79 EXIT_REASON(VMX_EXIT_RDTSC , 16, "RDTSC instruction."),
80 EXIT_REASON(VMX_EXIT_RSM , 17, "RSM instruction in SMM."),
81 EXIT_REASON(VMX_EXIT_VMCALL , 18, "VMCALL instruction."),
82 EXIT_REASON(VMX_EXIT_VMCLEAR , 19, "VMCLEAR instruction."),
83 EXIT_REASON(VMX_EXIT_VMLAUNCH , 20, "VMLAUNCH instruction."),
84 EXIT_REASON(VMX_EXIT_VMPTRLD , 21, "VMPTRLD instruction."),
85 EXIT_REASON(VMX_EXIT_VMPTRST , 22, "VMPTRST instruction."),
86 EXIT_REASON(VMX_EXIT_VMREAD , 23, "VMREAD instruction."),
87 EXIT_REASON(VMX_EXIT_VMRESUME , 24, "VMRESUME instruction."),
88 EXIT_REASON(VMX_EXIT_VMWRITE , 25, "VMWRITE instruction."),
89 EXIT_REASON(VMX_EXIT_VMXOFF , 26, "VMXOFF instruction."),
90 EXIT_REASON(VMX_EXIT_VMXON , 27, "VMXON instruction."),
91 EXIT_REASON(VMX_EXIT_MOV_CRX , 28, "Control-register accesses."),
92 EXIT_REASON(VMX_EXIT_MOV_DRX , 29, "Debug-register accesses."),
93 EXIT_REASON(VMX_EXIT_PORT_IO , 30, "I/O instruction."),
94 EXIT_REASON(VMX_EXIT_RDMSR , 31, "RDMSR instruction."),
95 EXIT_REASON(VMX_EXIT_WRMSR , 32, "WRMSR instruction."),
96 EXIT_REASON(VMX_EXIT_ERR_INVALID_GUEST_STATE, 33, "VM-entry failure due to invalid guest state."),
97 EXIT_REASON(VMX_EXIT_ERR_MSR_LOAD , 34, "VM-entry failure due to MSR loading."),
98 EXIT_REASON_NIL(),
99 EXIT_REASON(VMX_EXIT_MWAIT , 36, "MWAIT instruction."),
100 EXIT_REASON(VMX_EXIT_MTF , 37, "Monitor Trap Flag."),
101 EXIT_REASON_NIL(),
102 EXIT_REASON(VMX_EXIT_MONITOR , 39, "MONITOR instruction."),
103 EXIT_REASON(VMX_EXIT_PAUSE , 40, "PAUSE instruction."),
104 EXIT_REASON(VMX_EXIT_ERR_MACHINE_CHECK , 41, "VM-entry failure due to machine-check."),
105 EXIT_REASON_NIL(),
106 EXIT_REASON(VMX_EXIT_TPR_BELOW_THRESHOLD, 43, "TPR below threshold (MOV to CR8)."),
107 EXIT_REASON(VMX_EXIT_APIC_ACCESS , 44, "APIC access."),
108 EXIT_REASON_NIL(),
109 EXIT_REASON(VMX_EXIT_XDTR_ACCESS , 46, "Access to GDTR or IDTR using LGDT, LIDT, SGDT, or SIDT."),
110 EXIT_REASON(VMX_EXIT_TR_ACCESS , 47, "Access to LDTR or TR using LLDT, LTR, SLDT, or STR."),
111 EXIT_REASON(VMX_EXIT_EPT_VIOLATION , 48, "EPT violation."),
112 EXIT_REASON(VMX_EXIT_EPT_MISCONFIG , 49, "EPT misconfiguration."),
113 EXIT_REASON(VMX_EXIT_INVEPT , 50, "INVEPT instruction."),
114 EXIT_REASON(VMX_EXIT_RDTSCP , 51, "RDTSCP instruction."),
115 EXIT_REASON(VMX_EXIT_PREEMPT_TIMER , 52, "VMX-preemption timer expired."),
116 EXIT_REASON(VMX_EXIT_INVVPID , 53, "INVVPID instruction."),
117 EXIT_REASON(VMX_EXIT_WBINVD , 54, "WBINVD instruction."),
118 EXIT_REASON(VMX_EXIT_XSETBV , 55, "XSETBV instruction."),
119 EXIT_REASON_NIL(),
120 EXIT_REASON(VMX_EXIT_RDRAND , 57, "RDRAND instruction."),
121 EXIT_REASON(VMX_EXIT_INVPCID , 58, "INVPCID instruction."),
122 EXIT_REASON(VMX_EXIT_VMFUNC , 59, "VMFUNC instruction.")
123};
124/** Exit reason descriptions for AMD-V, used to describe statistics. */
125static const char * const g_apszAmdVExitReasons[MAX_EXITREASON_STAT] =
126{
127 EXIT_REASON(SVM_EXIT_READ_CR0 , 0, "Read CR0."),
128 EXIT_REASON(SVM_EXIT_READ_CR1 , 1, "Read CR1."),
129 EXIT_REASON(SVM_EXIT_READ_CR2 , 2, "Read CR2."),
130 EXIT_REASON(SVM_EXIT_READ_CR3 , 3, "Read CR3."),
131 EXIT_REASON(SVM_EXIT_READ_CR4 , 4, "Read CR4."),
132 EXIT_REASON(SVM_EXIT_READ_CR5 , 5, "Read CR5."),
133 EXIT_REASON(SVM_EXIT_READ_CR6 , 6, "Read CR6."),
134 EXIT_REASON(SVM_EXIT_READ_CR7 , 7, "Read CR7."),
135 EXIT_REASON(SVM_EXIT_READ_CR8 , 8, "Read CR8."),
136 EXIT_REASON(SVM_EXIT_READ_CR9 , 9, "Read CR9."),
137 EXIT_REASON(SVM_EXIT_READ_CR10 , 10, "Read CR10."),
138 EXIT_REASON(SVM_EXIT_READ_CR11 , 11, "Read CR11."),
139 EXIT_REASON(SVM_EXIT_READ_CR12 , 12, "Read CR12."),
140 EXIT_REASON(SVM_EXIT_READ_CR13 , 13, "Read CR13."),
141 EXIT_REASON(SVM_EXIT_READ_CR14 , 14, "Read CR14."),
142 EXIT_REASON(SVM_EXIT_READ_CR15 , 15, "Read CR15."),
143 EXIT_REASON(SVM_EXIT_WRITE_CR0 , 16, "Write CR0."),
144 EXIT_REASON(SVM_EXIT_WRITE_CR1 , 17, "Write CR1."),
145 EXIT_REASON(SVM_EXIT_WRITE_CR2 , 18, "Write CR2."),
146 EXIT_REASON(SVM_EXIT_WRITE_CR3 , 19, "Write CR3."),
147 EXIT_REASON(SVM_EXIT_WRITE_CR4 , 20, "Write CR4."),
148 EXIT_REASON(SVM_EXIT_WRITE_CR5 , 21, "Write CR5."),
149 EXIT_REASON(SVM_EXIT_WRITE_CR6 , 22, "Write CR6."),
150 EXIT_REASON(SVM_EXIT_WRITE_CR7 , 23, "Write CR7."),
151 EXIT_REASON(SVM_EXIT_WRITE_CR8 , 24, "Write CR8."),
152 EXIT_REASON(SVM_EXIT_WRITE_CR9 , 25, "Write CR9."),
153 EXIT_REASON(SVM_EXIT_WRITE_CR10 , 26, "Write CR10."),
154 EXIT_REASON(SVM_EXIT_WRITE_CR11 , 27, "Write CR11."),
155 EXIT_REASON(SVM_EXIT_WRITE_CR12 , 28, "Write CR12."),
156 EXIT_REASON(SVM_EXIT_WRITE_CR13 , 29, "Write CR13."),
157 EXIT_REASON(SVM_EXIT_WRITE_CR14 , 30, "Write CR14."),
158 EXIT_REASON(SVM_EXIT_WRITE_CR15 , 31, "Write CR15."),
159 EXIT_REASON(SVM_EXIT_READ_DR0 , 32, "Read DR0."),
160 EXIT_REASON(SVM_EXIT_READ_DR1 , 33, "Read DR1."),
161 EXIT_REASON(SVM_EXIT_READ_DR2 , 34, "Read DR2."),
162 EXIT_REASON(SVM_EXIT_READ_DR3 , 35, "Read DR3."),
163 EXIT_REASON(SVM_EXIT_READ_DR4 , 36, "Read DR4."),
164 EXIT_REASON(SVM_EXIT_READ_DR5 , 37, "Read DR5."),
165 EXIT_REASON(SVM_EXIT_READ_DR6 , 38, "Read DR6."),
166 EXIT_REASON(SVM_EXIT_READ_DR7 , 39, "Read DR7."),
167 EXIT_REASON(SVM_EXIT_READ_DR8 , 40, "Read DR8."),
168 EXIT_REASON(SVM_EXIT_READ_DR9 , 41, "Read DR9."),
169 EXIT_REASON(SVM_EXIT_READ_DR10 , 42, "Read DR10."),
170 EXIT_REASON(SVM_EXIT_READ_DR11 , 43, "Read DR11"),
171 EXIT_REASON(SVM_EXIT_READ_DR12 , 44, "Read DR12."),
172 EXIT_REASON(SVM_EXIT_READ_DR13 , 45, "Read DR13."),
173 EXIT_REASON(SVM_EXIT_READ_DR14 , 46, "Read DR14."),
174 EXIT_REASON(SVM_EXIT_READ_DR15 , 47, "Read DR15."),
175 EXIT_REASON(SVM_EXIT_WRITE_DR0 , 48, "Write DR0."),
176 EXIT_REASON(SVM_EXIT_WRITE_DR1 , 49, "Write DR1."),
177 EXIT_REASON(SVM_EXIT_WRITE_DR2 , 50, "Write DR2."),
178 EXIT_REASON(SVM_EXIT_WRITE_DR3 , 51, "Write DR3."),
179 EXIT_REASON(SVM_EXIT_WRITE_DR4 , 52, "Write DR4."),
180 EXIT_REASON(SVM_EXIT_WRITE_DR5 , 53, "Write DR5."),
181 EXIT_REASON(SVM_EXIT_WRITE_DR6 , 54, "Write DR6."),
182 EXIT_REASON(SVM_EXIT_WRITE_DR7 , 55, "Write DR7."),
183 EXIT_REASON(SVM_EXIT_WRITE_DR8 , 56, "Write DR8."),
184 EXIT_REASON(SVM_EXIT_WRITE_DR9 , 57, "Write DR9."),
185 EXIT_REASON(SVM_EXIT_WRITE_DR10 , 58, "Write DR10."),
186 EXIT_REASON(SVM_EXIT_WRITE_DR11 , 59, "Write DR11."),
187 EXIT_REASON(SVM_EXIT_WRITE_DR12 , 60, "Write DR12."),
188 EXIT_REASON(SVM_EXIT_WRITE_DR13 , 61, "Write DR13."),
189 EXIT_REASON(SVM_EXIT_WRITE_DR14 , 62, "Write DR14."),
190 EXIT_REASON(SVM_EXIT_WRITE_DR15 , 63, "Write DR15."),
191 EXIT_REASON(SVM_EXIT_EXCEPTION_0 , 64, "Exception Vector 0 (#DE)."),
192 EXIT_REASON(SVM_EXIT_EXCEPTION_1 , 65, "Exception Vector 1 (#DB)."),
193 EXIT_REASON(SVM_EXIT_EXCEPTION_2 , 66, "Exception Vector 2 (#NMI)."),
194 EXIT_REASON(SVM_EXIT_EXCEPTION_3 , 67, "Exception Vector 3 (#BP)."),
195 EXIT_REASON(SVM_EXIT_EXCEPTION_4 , 68, "Exception Vector 4 (#OF)."),
196 EXIT_REASON(SVM_EXIT_EXCEPTION_5 , 69, "Exception Vector 5 (#BR)."),
197 EXIT_REASON(SVM_EXIT_EXCEPTION_6 , 70, "Exception Vector 6 (#UD)."),
198 EXIT_REASON(SVM_EXIT_EXCEPTION_7 , 71, "Exception Vector 7 (#NM)."),
199 EXIT_REASON(SVM_EXIT_EXCEPTION_8 , 72, "Exception Vector 8 (#DF)."),
200 EXIT_REASON(SVM_EXIT_EXCEPTION_9 , 73, "Exception Vector 9 (#CO_SEG_OVERRUN)."),
201 EXIT_REASON(SVM_EXIT_EXCEPTION_A , 74, "Exception Vector 10 (#TS)."),
202 EXIT_REASON(SVM_EXIT_EXCEPTION_B , 75, "Exception Vector 11 (#NP)."),
203 EXIT_REASON(SVM_EXIT_EXCEPTION_C , 76, "Exception Vector 12 (#SS)."),
204 EXIT_REASON(SVM_EXIT_EXCEPTION_D , 77, "Exception Vector 13 (#GP)."),
205 EXIT_REASON(SVM_EXIT_EXCEPTION_E , 78, "Exception Vector 14 (#PF)."),
206 EXIT_REASON(SVM_EXIT_EXCEPTION_F , 79, "Exception Vector 15 (0x0f)."),
207 EXIT_REASON(SVM_EXIT_EXCEPTION_10 , 80, "Exception Vector 16 (#MF)."),
208 EXIT_REASON(SVM_EXIT_EXCEPTION_11 , 81, "Exception Vector 17 (#AC)."),
209 EXIT_REASON(SVM_EXIT_EXCEPTION_12 , 82, "Exception Vector 18 (#MC)."),
210 EXIT_REASON(SVM_EXIT_EXCEPTION_13 , 83, "Exception Vector 19 (#XF)."),
211 EXIT_REASON(SVM_EXIT_EXCEPTION_14 , 84, "Exception Vector 20 (0x14)."),
212 EXIT_REASON(SVM_EXIT_EXCEPTION_15 , 85, "Exception Vector 22 (0x15)."),
213 EXIT_REASON(SVM_EXIT_EXCEPTION_16 , 86, "Exception Vector 22 (0x16)."),
214 EXIT_REASON(SVM_EXIT_EXCEPTION_17 , 87, "Exception Vector 23 (0x17)."),
215 EXIT_REASON(SVM_EXIT_EXCEPTION_18 , 88, "Exception Vector 24 (0x18)."),
216 EXIT_REASON(SVM_EXIT_EXCEPTION_19 , 89, "Exception Vector 25 (0x19)."),
217 EXIT_REASON(SVM_EXIT_EXCEPTION_1A , 90, "Exception Vector 26 (0x1A)."),
218 EXIT_REASON(SVM_EXIT_EXCEPTION_1B , 91, "Exception Vector 27 (0x1B)."),
219 EXIT_REASON(SVM_EXIT_EXCEPTION_1C , 92, "Exception Vector 28 (0x1C)."),
220 EXIT_REASON(SVM_EXIT_EXCEPTION_1D , 93, "Exception Vector 29 (0x1D)."),
221 EXIT_REASON(SVM_EXIT_EXCEPTION_1E , 94, "Exception Vector 30 (0x1E)."),
222 EXIT_REASON(SVM_EXIT_EXCEPTION_1F , 95, "Exception Vector 31 (0x1F)."),
223 EXIT_REASON(SVM_EXIT_INTR , 96, "Physical maskable interrupt (host)."),
224 EXIT_REASON(SVM_EXIT_NMI , 97, "Physical non-maskable interrupt (host)."),
225 EXIT_REASON(SVM_EXIT_SMI , 98, "System management interrupt (host)."),
226 EXIT_REASON(SVM_EXIT_INIT , 99, "Physical INIT signal (host)."),
227 EXIT_REASON(SVM_EXIT_VINTR ,100, "Virtual interrupt-window exit."),
228 EXIT_REASON(SVM_EXIT_CR0_SEL_WRITE ,101, "Write to CR0 that changed any bits other than CR0.TS or CR0.MP."),
229 EXIT_REASON(SVM_EXIT_IDTR_READ ,102, "Read IDTR"),
230 EXIT_REASON(SVM_EXIT_GDTR_READ ,103, "Read GDTR"),
231 EXIT_REASON(SVM_EXIT_LDTR_READ ,104, "Read LDTR."),
232 EXIT_REASON(SVM_EXIT_TR_READ ,105, "Read TR."),
233 EXIT_REASON(SVM_EXIT_TR_READ ,106, "Write IDTR."),
234 EXIT_REASON(SVM_EXIT_TR_READ ,107, "Write GDTR."),
235 EXIT_REASON(SVM_EXIT_TR_READ ,108, "Write LDTR."),
236 EXIT_REASON(SVM_EXIT_TR_READ ,109, "Write TR."),
237 EXIT_REASON(SVM_EXIT_RDTSC ,110, "RDTSC instruction."),
238 EXIT_REASON(SVM_EXIT_RDPMC ,111, "RDPMC instruction."),
239 EXIT_REASON(SVM_EXIT_PUSHF ,112, "PUSHF instruction."),
240 EXIT_REASON(SVM_EXIT_POPF ,113, "POPF instruction."),
241 EXIT_REASON(SVM_EXIT_CPUID ,114, "CPUID instruction."),
242 EXIT_REASON(SVM_EXIT_RSM ,115, "RSM instruction."),
243 EXIT_REASON(SVM_EXIT_IRET ,116, "IRET instruction."),
244 EXIT_REASON(SVM_EXIT_SWINT ,117, "Software interrupt (INTn instructions)."),
245 EXIT_REASON(SVM_EXIT_INVD ,118, "INVD instruction."),
246 EXIT_REASON(SVM_EXIT_PAUSE ,119, "PAUSE instruction."),
247 EXIT_REASON(SVM_EXIT_HLT ,120, "HLT instruction."),
248 EXIT_REASON(SVM_EXIT_INVLPG ,121, "INVLPG instruction."),
249 EXIT_REASON(SVM_EXIT_INVLPGA ,122, "INVLPGA instruction."),
250 EXIT_REASON(SVM_EXIT_IOIO ,123, "IN/OUT accessing protected port."),
251 EXIT_REASON(SVM_EXIT_MSR ,124, "RDMSR or WRMSR access to protected MSR."),
252 EXIT_REASON(SVM_EXIT_TASK_SWITCH ,125, "Task switch."),
253 EXIT_REASON(SVM_EXIT_FERR_FREEZE ,126, "Legacy FPU handling enabled; processor is frozen in an x87/mmx instruction waiting for an interrupt"),
254 EXIT_REASON(SVM_EXIT_SHUTDOWN ,127, "Shutdown."),
255 EXIT_REASON(SVM_EXIT_VMRUN ,128, "VMRUN instruction."),
256 EXIT_REASON(SVM_EXIT_VMMCALL ,129, "VMCALL instruction."),
257 EXIT_REASON(SVM_EXIT_VMLOAD ,130, "VMLOAD instruction."),
258 EXIT_REASON(SVM_EXIT_VMSAVE ,131, "VMSAVE instruction."),
259 EXIT_REASON(SVM_EXIT_STGI ,132, "STGI instruction."),
260 EXIT_REASON(SVM_EXIT_CLGI ,133, "CLGI instruction."),
261 EXIT_REASON(SVM_EXIT_SKINIT ,134, "SKINIT instruction."),
262 EXIT_REASON(SVM_EXIT_RDTSCP ,135, "RDTSCP instruction."),
263 EXIT_REASON(SVM_EXIT_ICEBP ,136, "ICEBP instruction."),
264 EXIT_REASON(SVM_EXIT_WBINVD ,137, "WBINVD instruction."),
265 EXIT_REASON(SVM_EXIT_MONITOR ,138, "MONITOR instruction."),
266 EXIT_REASON(SVM_EXIT_MWAIT ,139, "MWAIT instruction."),
267 EXIT_REASON(SVM_EXIT_MWAIT_ARMED ,140, "MWAIT instruction when armed."),
268 EXIT_REASON(SVM_EXIT_NPF ,1024, "Nested paging fault."),
269 EXIT_REASON_NIL()
270};
271# undef EXIT_REASON
272# undef EXIT_REASON_NIL
273#endif /* VBOX_WITH_STATISTICS */
274
275#define HMVMX_REPORT_FEATURE(allowed1, disallowed0, featflag) \
276 do { \
277 if ((allowed1) & (featflag)) \
278 LogRel(("HM: " #featflag "\n")); \
279 else \
280 LogRel(("HM: " #featflag " (must be cleared)\n")); \
281 if ((disallowed0) & (featflag)) \
282 LogRel(("HM: " #featflag " (must be set)\n")); \
283 } while (0)
284
285#define HMVMX_REPORT_ALLOWED_FEATURE(allowed1, featflag) \
286 do { \
287 if ((allowed1) & (featflag)) \
288 LogRel(("HM: " #featflag "\n")); \
289 else \
290 LogRel(("HM: " #featflag " not supported\n")); \
291 } while (0)
292
293#define HMVMX_REPORT_CAPABILITY(msrcaps, cap) \
294 do { \
295 if ((msrcaps) & (cap)) \
296 LogRel(("HM: " #cap "\n")); \
297 } while (0)
298
299
300/*******************************************************************************
301* Internal Functions *
302*******************************************************************************/
303static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
304static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
305static int hmR3InitCPU(PVM pVM);
306static int hmR3InitFinalizeR0(PVM pVM);
307static int hmR3InitFinalizeR0Intel(PVM pVM);
308static int hmR3InitFinalizeR0Amd(PVM pVM);
309static int hmR3TermCPU(PVM pVM);
310
311
312
313/**
314 * Initializes the HM.
315 *
316 * This reads the config and check whether VT-x or AMD-V hardware is available
317 * if configured to use it. This is one of the very first components to be
318 * initialized after CFGM, so that we can fall back to raw-mode early in the
319 * initialization process.
320 *
321 * Note that a lot of the set up work is done in ring-0 and thus postponed till
322 * the ring-3 and ring-0 callback to HMR3InitCompleted.
323 *
324 * @returns VBox status code.
325 * @param pVM Pointer to the VM.
326 *
327 * @remarks Be careful with what we call here, since most of the VMM components
328 * are uninitialized.
329 */
330VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
331{
332 LogFlow(("HMR3Init\n"));
333
334 /*
335 * Assert alignment and sizes.
336 */
337 AssertCompileMemberAlignment(VM, hm.s, 32);
338 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
339
340 /*
341 * Register the saved state data unit.
342 */
343 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
344 NULL, NULL, NULL,
345 NULL, hmR3Save, NULL,
346 NULL, hmR3Load, NULL);
347 if (RT_FAILURE(rc))
348 return rc;
349
350 /*
351 * Read configuration.
352 */
353 PCFGMNODE pCfgHM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
354
355 /** @cfgm{/HM/HMForced, bool, false}
356 * Forces hardware virtualization, no falling back on raw-mode. HM must be
357 * enabled, i.e. /HMEnabled must be true. */
358 bool fHMForced;
359#ifdef VBOX_WITH_RAW_MODE
360 rc = CFGMR3QueryBoolDef(pCfgHM, "HMForced", &fHMForced, false);
361 AssertRCReturn(rc, rc);
362 AssertLogRelMsgReturn(!fHMForced || pVM->fHMEnabled, ("Configuration error: HM forced but not enabled!\n"),
363 VERR_INVALID_PARAMETER);
364# if defined(RT_OS_DARWIN)
365 if (pVM->fHMEnabled)
366 fHMForced = true;
367# endif
368 AssertLogRelMsgReturn(pVM->cCpus == 1 || pVM->fHMEnabled, ("Configuration error: SMP requires HM to be enabled!\n"),
369 VERR_INVALID_PARAMETER);
370 if (pVM->cCpus > 1)
371 fHMForced = true;
372#else /* !VBOX_WITH_RAW_MODE */
373 AssertRelease(pVM->fHMEnabled);
374 fHMForced = true;
375#endif /* !VBOX_WITH_RAW_MODE */
376
377 /** @cfgm{/HM/EnableNestedPaging, bool, false}
378 * Enables nested paging (aka extended page tables). */
379 rc = CFGMR3QueryBoolDef(pCfgHM, "EnableNestedPaging", &pVM->hm.s.fAllowNestedPaging, false);
380 AssertRCReturn(rc, rc);
381
382 /** @cfgm{/HM/EnableUX, bool, true}
383 * Enables the VT-x unrestricted execution feature. */
384 rc = CFGMR3QueryBoolDef(pCfgHM, "EnableUX", &pVM->hm.s.vmx.fAllowUnrestricted, true);
385 AssertRCReturn(rc, rc);
386
387 /** @cfgm{/HM/EnableLargePages, bool, false}
388 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
389 * page table walking and maybe better TLB hit rate in some cases. */
390 rc = CFGMR3QueryBoolDef(pCfgHM, "EnableLargePages", &pVM->hm.s.fLargePages, false);
391 AssertRCReturn(rc, rc);
392
393 /** @cfgm{/HM/EnableVPID, bool, false}
394 * Enables the VT-x VPID feature. */
395 rc = CFGMR3QueryBoolDef(pCfgHM, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
396 AssertRCReturn(rc, rc);
397
398 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
399 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
400 rc = CFGMR3QueryBoolDef(pCfgHM, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
401 AssertRCReturn(rc, rc);
402
403 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
404 * Enables AMD64 cpu features.
405 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
406 * already have the support. */
407#ifdef VBOX_ENABLE_64_BITS_GUESTS
408 rc = CFGMR3QueryBoolDef(pCfgHM, "64bitEnabled", &pVM->hm.s.fAllow64BitGuests, HC_ARCH_BITS == 64);
409 AssertLogRelRCReturn(rc, rc);
410#else
411 pVM->hm.s.fAllow64BitGuests = false;
412#endif
413
414 /** @cfgm{/HM/Exclusive, bool}
415 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
416 * global init for each host CPU. If false, we do local init each time we wish
417 * to execute guest code.
418 *
419 * Default is false for Mac OS X and Windows due to the higher risk of conflicts
420 * with other hypervisors.
421 */
422 rc = CFGMR3QueryBoolDef(pCfgHM, "Exclusive", &pVM->hm.s.fGlobalInit,
423#if defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS)
424 false
425#else
426 true
427#endif
428 );
429 AssertLogRelRCReturn(rc, rc);
430
431 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
432 * The number of times to resume guest execution before we forcibly return to
433 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
434 * determines the default value. */
435 rc = CFGMR3QueryU32Def(pCfgHM, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoops, 0 /* set by R0 later */);
436 AssertLogRelRCReturn(rc, rc);
437
438 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
439 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
440 * available. */
441 rc = CFGMR3QueryBoolDef(pCfgHM, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimer, true);
442 AssertLogRelRCReturn(rc, rc);
443
444 /*
445 * Check if VT-x or AMD-v support according to the users wishes.
446 */
447 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
448 * VERR_SVM_IN_USE. */
449 if (pVM->fHMEnabled)
450 {
451 uint32_t fCaps;
452 rc = SUPR3QueryVTCaps(&fCaps);
453 if (RT_SUCCESS(rc))
454 {
455 if (fCaps & SUPVTCAPS_AMD_V)
456 LogRel(("HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
457 else if (fCaps & SUPVTCAPS_VT_X)
458 {
459 rc = SUPR3QueryVTxSupported();
460 if (RT_SUCCESS(rc))
461 LogRel(("HMR3Init: VT-x%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
462 else
463 {
464#ifdef RT_OS_LINUX
465 const char *pszMinReq = " Linux 2.6.13 or newer required!";
466#else
467 const char *pszMinReq = "";
468#endif
469 if (fHMForced)
470 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x.%s\n", pszMinReq);
471
472 /* Fall back to raw-mode. */
473 LogRel(("HMR3Init: Falling back to raw-mode: The host kernel does not support VT-x.%s\n", pszMinReq));
474 pVM->fHMEnabled = false;
475 }
476 }
477 else
478 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
479 VERR_INTERNAL_ERROR_5);
480
481 /*
482 * Do we require a little bit or raw-mode for 64-bit guest execution?
483 */
484 pVM->fHMNeedRawModeCtx = HC_ARCH_BITS == 32
485 && pVM->fHMEnabled
486 && pVM->hm.s.fAllow64BitGuests;
487 }
488 else
489 {
490 const char *pszMsg;
491 switch (rc)
492 {
493 case VERR_UNSUPPORTED_CPU:
494 pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained.";
495 break;
496
497 case VERR_VMX_NO_VMX:
498 pszMsg = "VT-x is not available.";
499 break;
500
501 case VERR_VMX_MSR_VMXON_DISABLED:
502 pszMsg = "VT-x is disabled in the BIOS.";
503 break;
504
505 case VERR_VMX_MSR_ALL_VMXON_DISABLED:
506 pszMsg = "VT-x is disabled in the BIOS for all CPU modes.";
507 break;
508
509 case VERR_VMX_MSR_LOCKING_FAILED:
510 pszMsg = "Failed to enable and lock VT-x features.";
511 break;
512
513 case VERR_SVM_NO_SVM:
514 pszMsg = "AMD-V is not available.";
515 break;
516
517 case VERR_SVM_DISABLED:
518 pszMsg = "AMD-V is disabled in the BIOS (or by the host OS).";
519 break;
520
521 default:
522 pszMsg = NULL;
523 break;
524 }
525 if (fHMForced && pszMsg)
526 return VM_SET_ERROR(pVM, rc, pszMsg);
527 if (!pszMsg)
528 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
529
530 /* Fall back to raw-mode. */
531 LogRel(("HMR3Init: Falling back to raw-mode: %s\n", pszMsg));
532 pVM->fHMEnabled = false;
533 }
534 }
535
536 /* It's now OK to use the predicate function. */
537 pVM->fHMEnabledFixed = true;
538 return VINF_SUCCESS;
539}
540
541
542/**
543 * Initializes the per-VCPU HM.
544 *
545 * @returns VBox status code.
546 * @param pVM Pointer to the VM.
547 */
548static int hmR3InitCPU(PVM pVM)
549{
550 LogFlow(("HMR3InitCPU\n"));
551
552 if (!HMIsEnabled(pVM))
553 return VINF_SUCCESS;
554
555 for (VMCPUID i = 0; i < pVM->cCpus; i++)
556 {
557 PVMCPU pVCpu = &pVM->aCpus[i];
558 pVCpu->hm.s.fActive = false;
559 }
560
561#ifdef VBOX_WITH_STATISTICS
562 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
563 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
564 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccess, STAMTYPE_COUNTER, "/HM/TPR/Replace/Success",STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
565 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
566#endif
567
568 /*
569 * Statistics.
570 */
571 for (VMCPUID i = 0; i < pVM->cCpus; i++)
572 {
573 PVMCPU pVCpu = &pVM->aCpus[i];
574 int rc;
575
576#ifdef VBOX_WITH_STATISTICS
577 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
578 "Profiling of RTMpPokeCpu",
579 "/PROF/CPU%d/HM/Poke", i);
580 AssertRC(rc);
581 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPoke, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
582 "Profiling of poke wait",
583 "/PROF/CPU%d/HM/PokeWait", i);
584 AssertRC(rc);
585 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatSpinPokeFailed, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
586 "Profiling of poke wait when RTMpPokeCpu fails",
587 "/PROF/CPU%d/HM/PokeWaitFailed", i);
588 AssertRC(rc);
589 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatEntry, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
590 "Profiling of VMXR0RunGuestCode entry",
591 "/PROF/CPU%d/HM/StatEntry", i);
592 AssertRC(rc);
593 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit1, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
594 "Profiling of VMXR0RunGuestCode exit part 1",
595 "/PROF/CPU%d/HM/SwitchFromGC_1", i);
596 AssertRC(rc);
597 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExit2, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
598 "Profiling of VMXR0RunGuestCode exit part 2",
599 "/PROF/CPU%d/HM/SwitchFromGC_2", i);
600 AssertRC(rc);
601
602 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitIO, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
603 "I/O",
604 "/PROF/CPU%d/HM/SwitchFromGC_2/IO", i);
605 AssertRC(rc);
606 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitMovCRx, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
607 "MOV CRx",
608 "/PROF/CPU%d/HM/SwitchFromGC_2/MovCRx", i);
609 AssertRC(rc);
610 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitXcptNmi, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
611 "Exceptions, NMIs",
612 "/PROF/CPU%d/HM/SwitchFromGC_2/XcptNmi", i);
613 AssertRC(rc);
614
615 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatLoadGuestState, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
616 "Profiling of VMXR0LoadGuestState",
617 "/PROF/CPU%d/HM/StatLoadGuestState", i);
618 AssertRC(rc);
619 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatInGC, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
620 "Profiling of VMLAUNCH/VMRESUME.",
621 "/PROF/CPU%d/HM/InGC", i);
622 AssertRC(rc);
623
624# if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
625 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatWorldSwitch3264, STAMTYPE_PROFILE, STAMVISIBILITY_USED,
626 STAMUNIT_TICKS_PER_CALL, "Profiling of the 32/64 switcher.",
627 "/PROF/CPU%d/HM/Switcher3264", i);
628 AssertRC(rc);
629# endif
630
631# ifdef HM_PROFILE_EXIT_DISPATCH
632 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED,
633 STAMUNIT_TICKS_PER_CALL, "Profiling the dispatching of exit handlers.",
634 "/PROF/CPU%d/HM/ExitDispatch", i);
635 AssertRC(rc);
636# endif
637
638#endif
639# define HM_REG_COUNTER(a, b, desc) \
640 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, desc, b, i); \
641 AssertRC(rc);
642
643#ifdef VBOX_WITH_STATISTICS
644 HM_REG_COUNTER(&pVCpu->hm.s.StatExitAll, "/HM/CPU%d/Exit/All", "Exits (total).");
645 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowNM, "/HM/CPU%d/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
646 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNM, "/HM/CPU%d/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
647 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPF, "/HM/CPU%d/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
648 HM_REG_COUNTER(&pVCpu->hm.s.StatExitShadowPFEM, "/HM/CPU%d/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
649 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestPF, "/HM/CPU%d/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
650 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestUD, "/HM/CPU%d/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
651 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestSS, "/HM/CPU%d/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
652 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestNP, "/HM/CPU%d/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
653 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestGP, "/HM/CPU%d/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
654 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestMF, "/HM/CPU%d/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
655 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDE, "/HM/CPU%d/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
656 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestDB, "/HM/CPU%d/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
657 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestBP, "/HM/CPU%d/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
658 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXF, "/HM/CPU%d/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
659 HM_REG_COUNTER(&pVCpu->hm.s.StatExitGuestXcpUnk, "/HM/CPU%d/Exit/Trap/Gst/Other", "Other guest exceptions.");
660 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInvlpg, "/HM/CPU%d/Exit/Instr/Invlpg", "Guest attempted to execute INVLPG.");
661 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInvd, "/HM/CPU%d/Exit/Instr/Invd", "Guest attempted to execute INVD.");
662 HM_REG_COUNTER(&pVCpu->hm.s.StatExitWbinvd, "/HM/CPU%d/Exit/Instr/Wbinvd", "Guest attempted to execute WBINVD.");
663 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPause, "/HM/CPU%d/Exit/Instr/Pause", "Guest attempted to execute PAUSE.");
664 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCpuid, "/HM/CPU%d/Exit/Instr/Cpuid", "Guest attempted to execute CPUID.");
665 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdtsc, "/HM/CPU%d/Exit/Instr/Rdtsc", "Guest attempted to execute RDTSC.");
666 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdtscp, "/HM/CPU%d/Exit/Instr/Rdtscp", "Guest attempted to execute RDTSCP.");
667 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdpmc, "/HM/CPU%d/Exit/Instr/Rdpmc", "Guest attempted to execute RDPMC.");
668 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdrand, "/HM/CPU%d/Exit/Instr/Rdrand", "Guest attempted to execute RDRAND.");
669 HM_REG_COUNTER(&pVCpu->hm.s.StatExitRdmsr, "/HM/CPU%d/Exit/Instr/Rdmsr", "Guest attempted to execute RDMSR.");
670 HM_REG_COUNTER(&pVCpu->hm.s.StatExitWrmsr, "/HM/CPU%d/Exit/Instr/Wrmsr", "Guest attempted to execute WRMSR.");
671 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMwait, "/HM/CPU%d/Exit/Instr/Mwait", "Guest attempted to execute MWAIT.");
672 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMonitor, "/HM/CPU%d/Exit/Instr/Monitor", "Guest attempted to execute MONITOR.");
673 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxWrite, "/HM/CPU%d/Exit/Instr/DR/Write", "Guest attempted to write a debug register.");
674 HM_REG_COUNTER(&pVCpu->hm.s.StatExitDRxRead, "/HM/CPU%d/Exit/Instr/DR/Read", "Guest attempted to read a debug register.");
675 HM_REG_COUNTER(&pVCpu->hm.s.StatExitClts, "/HM/CPU%d/Exit/Instr/CLTS", "Guest attempted to execute CLTS.");
676 HM_REG_COUNTER(&pVCpu->hm.s.StatExitLmsw, "/HM/CPU%d/Exit/Instr/LMSW", "Guest attempted to execute LMSW.");
677 HM_REG_COUNTER(&pVCpu->hm.s.StatExitCli, "/HM/CPU%d/Exit/Instr/Cli", "Guest attempted to execute CLI.");
678 HM_REG_COUNTER(&pVCpu->hm.s.StatExitSti, "/HM/CPU%d/Exit/Instr/Sti", "Guest attempted to execute STI.");
679 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPushf, "/HM/CPU%d/Exit/Instr/Pushf", "Guest attempted to execute PUSHF.");
680 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPopf, "/HM/CPU%d/Exit/Instr/Popf", "Guest attempted to execute POPF.");
681 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIret, "/HM/CPU%d/Exit/Instr/Iret", "Guest attempted to execute IRET.");
682 HM_REG_COUNTER(&pVCpu->hm.s.StatExitInt, "/HM/CPU%d/Exit/Instr/Int", "Guest attempted to execute INT.");
683 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHlt, "/HM/CPU%d/Exit/Instr/Hlt", "Guest attempted to execute HLT.");
684 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHltToR3, "/HM/CPU%d/Exit/HltToR3", "HLT causing us to go to ring-3.");
685 HM_REG_COUNTER(&pVCpu->hm.s.StatExitXdtrAccess, "/HM/CPU%d/Exit/Instr/XdtrAccess", "Guest attempted to access descriptor table register (GDTR, IDTR, LDTR).");
686 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOWrite, "/HM/CPU%d/Exit/IO/Write", "I/O write.");
687 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIORead, "/HM/CPU%d/Exit/IO/Read", "I/O read.");
688 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringWrite, "/HM/CPU%d/Exit/IO/WriteString", "String I/O write.");
689 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIOStringRead, "/HM/CPU%d/Exit/IO/ReadString", "String I/O read.");
690 HM_REG_COUNTER(&pVCpu->hm.s.StatExitIntWindow, "/HM/CPU%d/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts again.");
691 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMaxResume, "/HM/CPU%d/Exit/MaxResume", "Maximum VMRESUME inner-loop counter reached.");
692 HM_REG_COUNTER(&pVCpu->hm.s.StatExitExtInt, "/HM/CPU%d/Exit/ExtInt", "Host interrupt received.");
693#endif
694 HM_REG_COUNTER(&pVCpu->hm.s.StatExitHostNmiInGC, "/HM/CPU%d/Exit/HostNmiInGC", "Host NMI received while in guest context.");
695#ifdef VBOX_WITH_STATISTICS
696 HM_REG_COUNTER(&pVCpu->hm.s.StatExitPreemptTimer, "/HM/CPU%d/Exit/PreemptTimer", "VMX-preemption timer expired.");
697 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTprBelowThreshold, "/HM/CPU%d/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
698 HM_REG_COUNTER(&pVCpu->hm.s.StatExitTaskSwitch, "/HM/CPU%d/Exit/TaskSwitch", "Guest attempted a task switch.");
699 HM_REG_COUNTER(&pVCpu->hm.s.StatExitMtf, "/HM/CPU%d/Exit/MonitorTrapFlag", "Monitor Trap Flag.");
700 HM_REG_COUNTER(&pVCpu->hm.s.StatExitApicAccess, "/HM/CPU%d/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
701 HM_REG_COUNTER(&pVCpu->hm.s.StatExitApicAccessToR3, "/HM/CPU%d/Exit/ApicAccessToR3", "APIC access causing us to go to ring-3.");
702
703 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchGuestIrq, "/HM/CPU%d/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
704 HM_REG_COUNTER(&pVCpu->hm.s.StatPendingHostIrq, "/HM/CPU%d/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
705 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchHmToR3FF, "/HM/CPU%d/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
706 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchExitToR3, "/HM/CPU%d/Switch/ExitToR3", "Exit to ring-3 (total).");
707 HM_REG_COUNTER(&pVCpu->hm.s.StatSwitchLongJmpToR3, "/HM/CPU%d/Switch/LongJmpToR3", "Longjump to ring-3.");
708
709 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectInterrupt, "/HM/CPU%d/EventInject/Interrupt", "Injected an external interrupt into the guest.");
710 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectXcpt, "/HM/CPU%d/EventInject/Trap", "Injected an exception into the guest.");
711 HM_REG_COUNTER(&pVCpu->hm.s.StatInjectPendingReflect, "/HM/CPU%d/EventInject/PendingReflect", "Reflecting an exception back to the guest.");
712
713 HM_REG_COUNTER(&pVCpu->hm.s.StatPreemptPreempting, "/HM/CPU%d/Preempt/Preempting", "EMT has been preempted while in HM context.");
714 HM_REG_COUNTER(&pVCpu->hm.s.StatPreemptSaveHostState, "/HM/CPU%d/Preempt/SaveHostState", "Preemption caused us to resave host state.");
715
716 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPage, "/HM/CPU%d/Flush/Page", "Invalidating a guest page on all guest CPUs.");
717 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPageManual, "/HM/CPU%d/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
718 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushPhysPageManual, "/HM/CPU%d/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
719 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlb, "/HM/CPU%d/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
720 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbManual, "/HM/CPU%d/Flush/TLB/Manual", "Request a full guest-TLB flush.");
721 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
722 HM_REG_COUNTER(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch, "/HM/CPU%d/Flush/TLB/Skipped", "No TLB flushing required.");
723 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushEntire, "/HM/CPU%d/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
724 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushAsid, "/HM/CPU%d/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
725 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushNestedPaging, "/HM/CPU%d/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
726 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgVirt, "/HM/CPU%d/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
727 HM_REG_COUNTER(&pVCpu->hm.s.StatFlushTlbInvlpgPhys, "/HM/CPU%d/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
728 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdown, "/HM/CPU%d/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
729 HM_REG_COUNTER(&pVCpu->hm.s.StatTlbShootdownFlush, "/HM/CPU%d/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
730
731 HM_REG_COUNTER(&pVCpu->hm.s.StatTscParavirt, "/HM/CPU%d/TSC/Paravirt", "Paravirtualized TSC in effect.");
732 HM_REG_COUNTER(&pVCpu->hm.s.StatTscOffset, "/HM/CPU%d/TSC/Offset", "TSC offsetting is in effect.");
733 HM_REG_COUNTER(&pVCpu->hm.s.StatTscIntercept, "/HM/CPU%d/TSC/Intercept", "Intercept TSC accesses.");
734
735 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxArmed, "/HM/CPU%d/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
736 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxContextSwitch, "/HM/CPU%d/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
737 HM_REG_COUNTER(&pVCpu->hm.s.StatDRxIoCheck, "/HM/CPU%d/Debug/IOCheck", "Checking for I/O breakpoint.");
738
739 HM_REG_COUNTER(&pVCpu->hm.s.StatLoadMinimal, "/HM/CPU%d/Load/Minimal", "VM-entry loading minimal guest-state.");
740 HM_REG_COUNTER(&pVCpu->hm.s.StatLoadFull, "/HM/CPU%d/Load/Full", "VM-entry loading the full guest-state.");
741
742 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelBase, "/HM/CPU%d/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
743 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit, "/HM/CPU%d/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
744 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckRmOk, "/HM/CPU%d/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
745 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadSel, "/HM/CPU%d/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
746 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadRpl, "/HM/CPU%d/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
747 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadLdt, "/HM/CPU%d/VMXCheck/LDT", "Could not use VMX due to unsuitable LDT.");
748 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckBadTr, "/HM/CPU%d/VMXCheck/TR", "Could not use VMX due to unsuitable TR.");
749 HM_REG_COUNTER(&pVCpu->hm.s.StatVmxCheckPmOk, "/HM/CPU%d/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
750
751#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
752 HM_REG_COUNTER(&pVCpu->hm.s.StatFpu64SwitchBack, "/HM/CPU%d/Switch64/Fpu", "Saving guest FPU/XMM state.");
753 HM_REG_COUNTER(&pVCpu->hm.s.StatDebug64SwitchBack, "/HM/CPU%d/Switch64/Debug", "Saving guest debug state.");
754#endif
755
756 for (unsigned j = 0; j < RT_ELEMENTS(pVCpu->hm.s.StatExitCRxWrite); j++)
757 {
758 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitCRxWrite[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
759 STAMUNIT_OCCURENCES, "Profiling of CRx writes",
760 "/HM/CPU%d/Exit/Instr/CR/Write/%x", i, j);
761 AssertRC(rc);
762 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitCRxRead[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
763 STAMUNIT_OCCURENCES, "Profiling of CRx reads",
764 "/HM/CPU%d/Exit/Instr/CR/Read/%x", i, j);
765 AssertRC(rc);
766 }
767
768#undef HM_REG_COUNTER
769
770 pVCpu->hm.s.paStatExitReason = NULL;
771
772 rc = MMHyperAlloc(pVM, MAX_EXITREASON_STAT * sizeof(*pVCpu->hm.s.paStatExitReason), 0 /* uAlignment */, MM_TAG_HM,
773 (void **)&pVCpu->hm.s.paStatExitReason);
774 AssertRC(rc);
775 if (RT_SUCCESS(rc))
776 {
777 const char * const *papszDesc = ASMIsIntelCpu() ? &g_apszVTxExitReasons[0] : &g_apszAmdVExitReasons[0];
778 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
779 {
780 if (papszDesc[j])
781 {
782 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
783 STAMUNIT_OCCURENCES, papszDesc[j], "/HM/CPU%d/Exit/Reason/%02x", i, j);
784 AssertRC(rc);
785 }
786 }
787 rc = STAMR3RegisterF(pVM, &pVCpu->hm.s.StatExitReasonNpf, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
788 "Nested page fault", "/HM/CPU%d/Exit/Reason/#NPF", i);
789 AssertRC(rc);
790 }
791 pVCpu->hm.s.paStatExitReasonR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatExitReason);
792# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
793 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
794# else
795 Assert(pVCpu->hm.s.paStatExitReasonR0 != NIL_RTR0PTR);
796# endif
797
798 rc = MMHyperAlloc(pVM, sizeof(STAMCOUNTER) * 256, 8, MM_TAG_HM, (void **)&pVCpu->hm.s.paStatInjectedIrqs);
799 AssertRCReturn(rc, rc);
800 pVCpu->hm.s.paStatInjectedIrqsR0 = MMHyperR3ToR0(pVM, pVCpu->hm.s.paStatInjectedIrqs);
801# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
802 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
803# else
804 Assert(pVCpu->hm.s.paStatInjectedIrqsR0 != NIL_RTR0PTR);
805# endif
806 for (unsigned j = 0; j < 255; j++)
807 {
808 STAMR3RegisterF(pVM, &pVCpu->hm.s.paStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
809 "Injected event.",
810 (j < 0x20) ? "/HM/CPU%d/EventInject/InjectTrap/%02X" : "/HM/CPU%d/EventInject/InjectIRQ/%02X", i, j);
811 }
812
813#endif /* VBOX_WITH_STATISTICS */
814 }
815
816#ifdef VBOX_WITH_CRASHDUMP_MAGIC
817 /*
818 * Magic marker for searching in crash dumps.
819 */
820 for (VMCPUID i = 0; i < pVM->cCpus; i++)
821 {
822 PVMCPU pVCpu = &pVM->aCpus[i];
823
824 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
825 strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
826 pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
827 }
828#endif
829
830 return VINF_SUCCESS;
831}
832
833
834/**
835 * Called when a init phase has completed.
836 *
837 * @returns VBox status code.
838 * @param pVM The VM.
839 * @param enmWhat The phase that completed.
840 */
841VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
842{
843 switch (enmWhat)
844 {
845 case VMINITCOMPLETED_RING3:
846 return hmR3InitCPU(pVM);
847 case VMINITCOMPLETED_RING0:
848 return hmR3InitFinalizeR0(pVM);
849 default:
850 return VINF_SUCCESS;
851 }
852}
853
854
855/**
856 * Turns off normal raw mode features.
857 *
858 * @param pVM Pointer to the VM.
859 */
860static void hmR3DisableRawMode(PVM pVM)
861{
862 /* Reinit the paging mode to force the new shadow mode. */
863 for (VMCPUID i = 0; i < pVM->cCpus; i++)
864 {
865 PVMCPU pVCpu = &pVM->aCpus[i];
866
867 PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
868 }
869}
870
871
872/**
873 * Initialize VT-x or AMD-V.
874 *
875 * @returns VBox status code.
876 * @param pVM Pointer to the VM.
877 */
878static int hmR3InitFinalizeR0(PVM pVM)
879{
880 int rc;
881
882 if (!HMIsEnabled(pVM))
883 return VINF_SUCCESS;
884
885 /*
886 * Hack to allow users to work around broken BIOSes that incorrectly set
887 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
888 */
889 if ( !pVM->hm.s.vmx.fSupported
890 && !pVM->hm.s.svm.fSupported
891 && pVM->hm.s.lLastError == VERR_SVM_IN_USE /* implies functional AMD-V */
892 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
893 {
894 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
895 pVM->hm.s.svm.fSupported = true;
896 pVM->hm.s.svm.fIgnoreInUseError = true;
897 pVM->hm.s.lLastError = VINF_SUCCESS;
898 }
899
900 /*
901 * Report ring-0 init errors.
902 */
903 if ( !pVM->hm.s.vmx.fSupported
904 && !pVM->hm.s.svm.fSupported)
905 {
906 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.lLastError));
907 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.vmx.Msrs.u64FeatureCtrl));
908 switch (pVM->hm.s.lLastError)
909 {
910 case VERR_VMX_IN_VMX_ROOT_MODE:
911 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor.");
912 case VERR_VMX_NO_VMX:
913 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available.");
914 case VERR_VMX_MSR_VMXON_DISABLED:
915 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is disabled in the BIOS.");
916 case VERR_VMX_MSR_ALL_VMXON_DISABLED:
917 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is disabled in the BIOS for all CPU modes.");
918 case VERR_VMX_MSR_LOCKING_FAILED:
919 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "Failed to enable and lock VT-x features.");
920
921 case VERR_SVM_IN_USE:
922 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor.");
923 case VERR_SVM_NO_SVM:
924 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available.");
925 case VERR_SVM_DISABLED:
926 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS.");
927 }
928 return VMSetError(pVM, pVM->hm.s.lLastError, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.lLastError);
929 }
930
931 /*
932 * Enable VT-x or AMD-V on all host CPUs.
933 */
934 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
935 if (RT_FAILURE(rc))
936 {
937 LogRel(("HMR3InitFinalize: SUPR3CallVMMR0Ex VMMR0_DO_HM_ENABLE failed with %Rrc\n", rc));
938 return rc;
939 }
940
941 /*
942 * No TPR patching is required when the IO-APIC is not enabled for this VM.
943 * (Main should have taken care of this already)
944 */
945 pVM->hm.s.fHasIoApic = PDMHasIoApic(pVM);
946 if (!pVM->hm.s.fHasIoApic)
947 {
948 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
949 pVM->hm.s.fTprPatchingAllowed = false;
950 }
951
952 /*
953 * Do the vendor specific initalization .
954 * .
955 * Note! We disable release log buffering here since we're doing relatively .
956 * lot of logging and doesn't want to hit the disk with each LogRel .
957 * statement.
958 */
959 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
960 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
961 if (pVM->hm.s.vmx.fSupported)
962 rc = hmR3InitFinalizeR0Intel(pVM);
963 else
964 rc = hmR3InitFinalizeR0Amd(pVM);
965 LogRel(("HM: VT-x/AMD-V init method: %s\n", (pVM->hm.s.fGlobalInit) ? "GLOBAL" : "LOCAL"));
966 RTLogRelSetBuffering(fOldBuffered);
967 pVM->hm.s.fInitialized = true;
968
969 return rc;
970}
971
972
973/**
974 * Finish VT-x initialization (after ring-0 init).
975 *
976 * @returns VBox status code.
977 * @param pVM The cross context VM structure.
978 */
979static int hmR3InitFinalizeR0Intel(PVM pVM)
980{
981 int rc;
982
983 Log(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
984 AssertLogRelReturn(pVM->hm.s.vmx.Msrs.u64FeatureCtrl != 0, VERR_HM_IPE_4);
985
986 uint64_t val;
987 uint64_t zap;
988 RTGCPHYS GCPhys = 0;
989
990 LogRel(("HM: Using VT-x implementation 2.0!\n"));
991 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.vmx.u64HostCr4));
992 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.vmx.u64HostEfer));
993 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", pVM->hm.s.vmx.Msrs.u64FeatureCtrl));
994 LogRel(("HM: MSR_IA32_VMX_BASIC_INFO = %#RX64\n", pVM->hm.s.vmx.Msrs.u64BasicInfo));
995 LogRel(("HM: VMCS id = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
996 LogRel(("HM: VMCS size = %u bytes\n", MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
997 LogRel(("HM: VMCS physical address limit = %s\n", MSR_IA32_VMX_BASIC_INFO_VMCS_PHYS_WIDTH(pVM->hm.s.vmx.Msrs.u64BasicInfo) ? "< 4 GB" : "None"));
998 LogRel(("HM: VMCS memory type = %#x\n", MSR_IA32_VMX_BASIC_INFO_VMCS_MEM_TYPE(pVM->hm.s.vmx.Msrs.u64BasicInfo)));
999 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BOOL(MSR_IA32_VMX_BASIC_INFO_VMCS_DUAL_MON(pVM->hm.s.vmx.Msrs.u64BasicInfo))));
1000 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BOOL(MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))));
1001 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1002
1003 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxPinCtls.u));
1004 val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1;
1005 zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0;
1006 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT);
1007 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT);
1008 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI);
1009 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
1010
1011 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls.u));
1012 val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
1013 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
1014 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
1015 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING);
1016 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
1017 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
1018 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT);
1019 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
1020 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
1021 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT);
1022 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
1023 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT);
1024 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT);
1025 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
1026 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
1027 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
1028 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT);
1029 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_USE_IO_BITMAPS);
1030 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
1031 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
1032 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT);
1033 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
1034 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL);
1035 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1036 {
1037 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.u));
1038 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
1039 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0;
1040 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC);
1041 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_EPT);
1042 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT);
1043 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP);
1044 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_VIRT_X2APIC);
1045 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_VPID);
1046 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
1047 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST);
1048 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT);
1049 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
1050 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_INVPCID);
1051 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC);
1052 }
1053
1054 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxEntry.u));
1055 val = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1;
1056 zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0;
1057 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG);
1058 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
1059 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_ENTRY_SMM);
1060 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON);
1061 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR);
1062 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR);
1063 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR);
1064
1065 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVM->hm.s.vmx.Msrs.VmxExit.u));
1066 val = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1;
1067 zap = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0;
1068 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_SAVE_DEBUG);
1069 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE);
1070 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR);
1071 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
1072 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR);
1073 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR);
1074 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR);
1075 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR);
1076 HMVMX_REPORT_FEATURE(val, zap, VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER);
1077
1078 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps)
1079 {
1080 val = pVM->hm.s.vmx.Msrs.u64EptVpidCaps;
1081 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", val));
1082 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1083 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_RWX_W_ONLY);
1084 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_RWX_WX_ONLY);
1085 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_GAW_21_BITS);
1086 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_GAW_30_BITS);
1087 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_GAW_39_BITS);
1088 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_GAW_48_BITS);
1089 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_GAW_57_BITS);
1090 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_EMT_UC);
1091 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_EMT_WC);
1092 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_EMT_WT);
1093 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_EMT_WP);
1094 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB);
1095 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_SP_21_BITS);
1096 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_SP_30_BITS);
1097 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_SP_39_BITS);
1098 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_SP_48_BITS);
1099 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1100 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1101 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1102 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1103 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1104 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1105 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1106 HMVMX_REPORT_CAPABILITY(val, MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1107 }
1108
1109 val = pVM->hm.s.vmx.Msrs.u64Misc;
1110 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", val));
1111 if (MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val) == pVM->hm.s.vmx.cPreemptTimerShift)
1112 LogRel(("HM: MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT = %#x\n", MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val)));
1113 else
1114 {
1115 LogRel(("HM: MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT = %#x - erratum detected, using %#x instead\n",
1116 MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(val), pVM->hm.s.vmx.cPreemptTimerShift));
1117 }
1118
1119 LogRel(("HM: MSR_IA32_VMX_MISC_STORE_EFERLMA_VMEXIT = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_STORE_EFERLMA_VMEXIT(val))));
1120 LogRel(("HM: MSR_IA32_VMX_MISC_ACTIVITY_STATES = %#x\n", MSR_IA32_VMX_MISC_ACTIVITY_STATES(val)));
1121 LogRel(("HM: MSR_IA32_VMX_MISC_CR3_TARGET = %#x\n", MSR_IA32_VMX_MISC_CR3_TARGET(val)));
1122 LogRel(("HM: MSR_IA32_VMX_MISC_MAX_MSR = %u\n", MSR_IA32_VMX_MISC_MAX_MSR(val)));
1123 LogRel(("HM: MSR_IA32_VMX_MISC_RDMSR_SMBASE_MSR_SMM = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_RDMSR_SMBASE_MSR_SMM(val))));
1124 LogRel(("HM: MSR_IA32_VMX_MISC_SMM_MONITOR_CTL_B2 = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_SMM_MONITOR_CTL_B2(val))));
1125 LogRel(("HM: MSR_IA32_VMX_MISC_VMWRITE_VMEXIT_INFO = %RTbool\n", RT_BOOL(MSR_IA32_VMX_MISC_VMWRITE_VMEXIT_INFO(val))));
1126 LogRel(("HM: MSR_IA32_VMX_MISC_MSEG_ID = %#x\n", MSR_IA32_VMX_MISC_MSEG_ID(val)));
1127
1128 /* Paranoia */
1129 AssertRelease(MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.Msrs.u64Misc) >= 512);
1130
1131 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr0Fixed0));
1132 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr0Fixed1));
1133 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr4Fixed0));
1134 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pVM->hm.s.vmx.Msrs.u64Cr4Fixed1));
1135
1136 val = pVM->hm.s.vmx.Msrs.u64VmcsEnum;
1137 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", val));
1138 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM_HIGHEST_INDEX = %#x\n", MSR_IA32_VMX_VMCS_ENUM_HIGHEST_INDEX(val)));
1139
1140 val = pVM->hm.s.vmx.Msrs.u64Vmfunc;
1141 if (val)
1142 {
1143 LogRel(("HM: MSR_A32_VMX_VMFUNC = %#RX64\n", val));
1144 HMVMX_REPORT_ALLOWED_FEATURE(val, VMX_VMCS_CTRL_VMFUNC_EPTP_SWITCHING);
1145 }
1146
1147 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1148
1149 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1150 {
1151 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysMsrBitmap));
1152 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", i, pVM->aCpus[i].hm.s.vmx.HCPhysVmcs));
1153 }
1154
1155 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_EPT)
1156 pVM->hm.s.fNestedPaging = pVM->hm.s.fAllowNestedPaging;
1157
1158 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VPID)
1159 pVM->hm.s.vmx.fVpid = pVM->hm.s.vmx.fAllowVpid;
1160
1161 /*
1162 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1163 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1164 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1165 */
1166 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1167 && CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1168 {
1169 CPUMClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1170 LogRel(("HM: RDTSCP disabled\n"));
1171 }
1172
1173 /* Unrestricted guest execution also requires EPT. */
1174 if ( pVM->hm.s.vmx.fAllowUnrestricted
1175 && pVM->hm.s.fNestedPaging
1176 && (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST))
1177 {
1178 pVM->hm.s.vmx.fUnrestrictedGuest = true;
1179 }
1180
1181 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
1182 {
1183 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1184 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1185 if (RT_SUCCESS(rc))
1186 {
1187 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1188 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1189 esp. Figure 20-5.*/
1190 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1191 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1192
1193 /* Bit set to 0 means software interrupts are redirected to the
1194 8086 program interrupt handler rather than switching to
1195 protected-mode handler. */
1196 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1197
1198 /* Allow all port IO, so that port IO instructions do not cause
1199 exceptions and would instead cause a VM-exit (based on VT-x's
1200 IO bitmap which we currently configure to always cause an exit). */
1201 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, PAGE_SIZE * 2);
1202 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1203
1204 /*
1205 * Construct a 1024 element page directory with 4 MB pages for
1206 * the identity mapped page table used in real and protected mode
1207 * without paging with EPT.
1208 */
1209 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + PAGE_SIZE * 3);
1210 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1211 {
1212 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1213 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1214 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1215 | X86_PDE4M_G;
1216 }
1217
1218 /* We convert it here every time as pci regions could be reconfigured. */
1219 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1220 AssertRCReturn(rc, rc);
1221 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1222
1223 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1224 AssertRCReturn(rc, rc);
1225 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1226 }
1227 else
1228 {
1229 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1230 pVM->hm.s.vmx.pRealModeTSS = NULL;
1231 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1232 return VMSetError(pVM, rc, RT_SRC_POS,
1233 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1234 }
1235 }
1236
1237 LogRel((pVM->hm.s.fAllow64BitGuests
1238 ? "HM: Guest support: 32-bit and 64-bit\n"
1239 : "HM: Guest support: 32-bit only\n"));
1240
1241 /*
1242 * Call ring-0 to set up the VM.
1243 */
1244 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1245 if (rc != VINF_SUCCESS)
1246 {
1247 AssertMsgFailed(("%Rrc\n", rc));
1248 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1249 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1250 {
1251 PVMCPU pVCpu = &pVM->aCpus[i];
1252 LogRel(("HM: CPU[%u] Last instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
1253 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", i, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1254 }
1255 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1256 }
1257
1258 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.vmx.fSupportsVmcsEfer));
1259 LogRel(("HM: VMX enabled!\n"));
1260 pVM->hm.s.vmx.fEnabled = true;
1261
1262 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1263
1264 /*
1265 * Change the CPU features.
1266 */
1267 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1268 if (pVM->hm.s.fAllow64BitGuests)
1269 {
1270 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1271 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1272 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL); /* 64 bits only on Intel CPUs */
1273 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1274 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1275 }
1276 /* Turn on NXE if PAE has been enabled *and* the host has turned on NXE
1277 (we reuse the host EFER in the switcher). */
1278 /** @todo this needs to be fixed properly!! */
1279 else if (CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1280 {
1281 if (pVM->hm.s.vmx.u64HostEfer & MSR_K6_EFER_NXE)
1282 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1283 else
1284 LogRel(("HM: NX not enabled on the host, unavailable to PAE guest\n"));
1285 }
1286
1287 /*
1288 * Log configuration details.
1289 */
1290 if (pVM->hm.s.fNestedPaging)
1291 {
1292 LogRel(("HM: Nested paging enabled!\n"));
1293 if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_SINGLE_CONTEXT)
1294 LogRel(("HM: EPT flush type = VMXFLUSHEPT_SINGLE_CONTEXT\n"));
1295 else if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_ALL_CONTEXTS)
1296 LogRel(("HM: EPT flush type = VMXFLUSHEPT_ALL_CONTEXTS\n"));
1297 else if (pVM->hm.s.vmx.enmFlushEpt == VMXFLUSHEPT_NOT_SUPPORTED)
1298 LogRel(("HM: EPT flush type = VMXFLUSHEPT_NOT_SUPPORTED\n"));
1299 else
1300 LogRel(("HM: EPT flush type = %d\n", pVM->hm.s.vmx.enmFlushEpt));
1301
1302 if (pVM->hm.s.vmx.fUnrestrictedGuest)
1303 LogRel(("HM: Unrestricted guest execution enabled!\n"));
1304
1305#if HC_ARCH_BITS == 64
1306 if (pVM->hm.s.fLargePages)
1307 {
1308 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1309 PGMSetLargePageUsage(pVM, true);
1310 LogRel(("HM: Large page support enabled\n"));
1311 }
1312#endif
1313 }
1314 else
1315 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
1316
1317 if (pVM->hm.s.vmx.fVpid)
1318 {
1319 LogRel(("HM: VPID enabled!\n"));
1320 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_INDIV_ADDR)
1321 LogRel(("HM: VPID flush type = VMXFLUSHVPID_INDIV_ADDR\n"));
1322 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
1323 LogRel(("HM: VPID flush type = VMXFLUSHVPID_SINGLE_CONTEXT\n"));
1324 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
1325 LogRel(("HM: VPID flush type = VMXFLUSHVPID_ALL_CONTEXTS\n"));
1326 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1327 LogRel(("HM: VPID flush type = VMXFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS\n"));
1328 else
1329 LogRel(("HM: VPID flush type = %d\n", pVM->hm.s.vmx.enmFlushVpid));
1330 }
1331 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_NOT_SUPPORTED)
1332 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1333
1334 if (pVM->hm.s.vmx.fUsePreemptTimer)
1335 LogRel(("HM: VMX-preemption timer enabled (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1336 else
1337 LogRel(("HM: VMX-preemption timer disabled\n"));
1338
1339 return VINF_SUCCESS;
1340}
1341
1342
1343/**
1344 * Finish AMD-V initialization (after ring-0 init).
1345 *
1346 * @returns VBox status code.
1347 * @param pVM The cross context VM structure.
1348 */
1349static int hmR3InitFinalizeR0Amd(PVM pVM)
1350{
1351 Log(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1352
1353 LogRel(("HM: Using AMD-V implementation 2.0!\n"));
1354
1355 uint32_t u32Family;
1356 uint32_t u32Model;
1357 uint32_t u32Stepping;
1358 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
1359 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1360 LogRel(("HM: CPUID 0x80000001.u32AMDFeatureECX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureECX));
1361 LogRel(("HM: CPUID 0x80000001.u32AMDFeatureEDX = %#RX32\n", pVM->hm.s.cpuid.u32AMDFeatureEDX));
1362 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.svm.u64MsrHwcr));
1363 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.svm.u32Rev));
1364 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.uMaxAsid));
1365 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.svm.u32Features));
1366
1367 /*
1368 * Enumerate AMD-V features.
1369 */
1370 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1371 {
1372#define HMSVM_REPORT_FEATURE(a_Define) { a_Define, #a_Define }
1373 HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1374 HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1375 HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1376 HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1377 HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1378 HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1379 HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1380 HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST),
1381 HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1382 HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1383 HMSVM_REPORT_FEATURE(AMD_CPUID_SVM_FEATURE_EDX_AVIC),
1384#undef HMSVM_REPORT_FEATURE
1385 };
1386
1387 uint32_t fSvmFeatures = pVM->hm.s.svm.u32Features;
1388 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1389 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1390 {
1391 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1392 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1393 }
1394 if (fSvmFeatures)
1395 for (unsigned iBit = 0; iBit < 32; iBit++)
1396 if (RT_BIT_32(iBit) & fSvmFeatures)
1397 LogRel(("HM: Reserved bit %u\n", iBit));
1398
1399 /*
1400 * Adjust feature(s).
1401 */
1402 if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NESTED_PAGING)
1403 pVM->hm.s.fNestedPaging = pVM->hm.s.fAllowNestedPaging;
1404
1405 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoops));
1406
1407 /*
1408 * Call ring-0 to set up the VM.
1409 */
1410 int rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1411 if (rc != VINF_SUCCESS)
1412 {
1413 AssertMsgFailed(("%Rrc\n", rc));
1414 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1415 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1416 }
1417
1418 LogRel(("HM: AMD-V enabled!\n"));
1419 pVM->hm.s.svm.fEnabled = true;
1420
1421 if (pVM->hm.s.fNestedPaging)
1422 {
1423 LogRel(("HM: Nested paging enabled!\n"));
1424
1425 /*
1426 * Enable large pages (2 MB) if applicable.
1427 */
1428#if HC_ARCH_BITS == 64
1429 if (pVM->hm.s.fLargePages)
1430 {
1431 PGMSetLargePageUsage(pVM, true);
1432 LogRel(("HM: Large page support enabled!\n"));
1433 }
1434#endif
1435 }
1436
1437 hmR3DisableRawMode(pVM);
1438
1439 /*
1440 * Change the CPU features.
1441 */
1442 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SEP);
1443 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_SYSCALL);
1444 if (pVM->hm.s.fAllow64BitGuests)
1445 {
1446 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1447 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
1448 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1449 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LAHF);
1450 }
1451 /* Turn on NXE if PAE has been enabled. */
1452 else if (CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE))
1453 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NX);
1454
1455 LogRel(("HM: TPR patching %s\n", (pVM->hm.s.fTprPatchingAllowed) ? "enabled" : "disabled"));
1456
1457 LogRel((pVM->hm.s.fAllow64BitGuests
1458 ? "HM: Guest support: 32-bit and 64-bit\n"
1459 : "HM: Guest support: 32-bit only\n"));
1460
1461 return VINF_SUCCESS;
1462}
1463
1464
1465/**
1466 * Applies relocations to data and code managed by this
1467 * component. This function will be called at init and
1468 * whenever the VMM need to relocate it self inside the GC.
1469 *
1470 * @param pVM The VM.
1471 */
1472VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
1473{
1474 Log(("HMR3Relocate to %RGv\n", MMHyperGetArea(pVM, 0)));
1475
1476 /* Fetch the current paging mode during the relocate callback during state loading. */
1477 if (VMR3GetState(pVM) == VMSTATE_LOADING)
1478 {
1479 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1480 {
1481 PVMCPU pVCpu = &pVM->aCpus[i];
1482 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
1483 }
1484 }
1485#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1486 if (HMIsEnabled(pVM))
1487 {
1488 switch (PGMGetHostMode(pVM))
1489 {
1490 case PGMMODE_32_BIT:
1491 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_32_TO_AMD64);
1492 break;
1493
1494 case PGMMODE_PAE:
1495 case PGMMODE_PAE_NX:
1496 pVM->hm.s.pfnHost32ToGuest64R0 = VMMR3GetHostToGuestSwitcher(pVM, VMMSWITCHER_PAE_TO_AMD64);
1497 break;
1498
1499 default:
1500 AssertFailed();
1501 break;
1502 }
1503 }
1504#endif
1505 return;
1506}
1507
1508
1509/**
1510 * Notification callback which is called whenever there is a chance that a CR3
1511 * value might have changed.
1512 *
1513 * This is called by PGM.
1514 *
1515 * @param pVM Pointer to the VM.
1516 * @param pVCpu Pointer to the VMCPU.
1517 * @param enmShadowMode New shadow paging mode.
1518 * @param enmGuestMode New guest paging mode.
1519 */
1520VMMR3_INT_DECL(void) HMR3PagingModeChanged(PVM pVM, PVMCPU pVCpu, PGMMODE enmShadowMode, PGMMODE enmGuestMode)
1521{
1522 /* Ignore page mode changes during state loading. */
1523 if (VMR3GetState(pVCpu->pVMR3) == VMSTATE_LOADING)
1524 return;
1525
1526 pVCpu->hm.s.enmShadowMode = enmShadowMode;
1527
1528 /*
1529 * If the guest left protected mode VMX execution, we'll have to be
1530 * extra careful if/when the guest switches back to protected mode.
1531 */
1532 if (enmGuestMode == PGMMODE_REAL)
1533 {
1534 Log(("HMR3PagingModeChanged indicates real mode execution\n"));
1535 pVCpu->hm.s.vmx.fWasInRealMode = true;
1536 }
1537
1538 /** @todo r=ramshankar: Disabling for now. If nothing breaks remove it
1539 * eventually. (Test platforms that use the cache ofc). */
1540#if 0
1541#ifdef VMX_USE_CACHED_VMCS_ACCESSES
1542 /* Reset the contents of the read cache. */
1543 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
1544 for (unsigned j = 0; j < pCache->Read.cValidEntries; j++)
1545 pCache->Read.aFieldVal[j] = 0;
1546#endif
1547#endif
1548}
1549
1550
1551/**
1552 * Terminates the HM.
1553 *
1554 * Termination means cleaning up and freeing all resources,
1555 * the VM itself is, at this point, powered off or suspended.
1556 *
1557 * @returns VBox status code.
1558 * @param pVM Pointer to the VM.
1559 */
1560VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
1561{
1562 if (pVM->hm.s.vmx.pRealModeTSS)
1563 {
1564 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
1565 pVM->hm.s.vmx.pRealModeTSS = 0;
1566 }
1567 hmR3TermCPU(pVM);
1568 return 0;
1569}
1570
1571
1572/**
1573 * Terminates the per-VCPU HM.
1574 *
1575 * @returns VBox status code.
1576 * @param pVM Pointer to the VM.
1577 */
1578static int hmR3TermCPU(PVM pVM)
1579{
1580 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1581 {
1582 PVMCPU pVCpu = &pVM->aCpus[i]; NOREF(pVCpu);
1583
1584#ifdef VBOX_WITH_STATISTICS
1585 if (pVCpu->hm.s.paStatExitReason)
1586 {
1587 MMHyperFree(pVM, pVCpu->hm.s.paStatExitReason);
1588 pVCpu->hm.s.paStatExitReason = NULL;
1589 pVCpu->hm.s.paStatExitReasonR0 = NIL_RTR0PTR;
1590 }
1591 if (pVCpu->hm.s.paStatInjectedIrqs)
1592 {
1593 MMHyperFree(pVM, pVCpu->hm.s.paStatInjectedIrqs);
1594 pVCpu->hm.s.paStatInjectedIrqs = NULL;
1595 pVCpu->hm.s.paStatInjectedIrqsR0 = NIL_RTR0PTR;
1596 }
1597#endif
1598
1599#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1600 memset(pVCpu->hm.s.vmx.VMCSCache.aMagic, 0, sizeof(pVCpu->hm.s.vmx.VMCSCache.aMagic));
1601 pVCpu->hm.s.vmx.VMCSCache.uMagic = 0;
1602 pVCpu->hm.s.vmx.VMCSCache.uPos = 0xffffffff;
1603#endif
1604 }
1605 return 0;
1606}
1607
1608
1609/**
1610 * Resets a virtual CPU.
1611 *
1612 * Used by HMR3Reset and CPU hot plugging.
1613 *
1614 * @param pVCpu The CPU to reset.
1615 */
1616VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
1617{
1618 /* Sync. entire state on VM reset R0-reentry. It's safe to reset
1619 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
1620 HMCPU_CF_RESET_TO(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1621
1622 pVCpu->hm.s.vmx.u32CR0Mask = 0;
1623 pVCpu->hm.s.vmx.u32CR4Mask = 0;
1624 pVCpu->hm.s.fActive = false;
1625 pVCpu->hm.s.Event.fPending = false;
1626 pVCpu->hm.s.vmx.fWasInRealMode = true;
1627 pVCpu->hm.s.vmx.u64MsrApicBase = 0;
1628
1629 /* Reset the contents of the read cache. */
1630 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
1631 for (unsigned j = 0; j < pCache->Read.cValidEntries; j++)
1632 pCache->Read.aFieldVal[j] = 0;
1633
1634#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1635 /* Magic marker for searching in crash dumps. */
1636 strcpy((char *)pCache->aMagic, "VMCSCACHE Magic");
1637 pCache->uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1638#endif
1639}
1640
1641
1642/**
1643 * The VM is being reset.
1644 *
1645 * For the HM component this means that any GDT/LDT/TSS monitors
1646 * needs to be removed.
1647 *
1648 * @param pVM Pointer to the VM.
1649 */
1650VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
1651{
1652 LogFlow(("HMR3Reset:\n"));
1653
1654 if (HMIsEnabled(pVM))
1655 hmR3DisableRawMode(pVM);
1656
1657 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1658 {
1659 PVMCPU pVCpu = &pVM->aCpus[i];
1660
1661 HMR3ResetCpu(pVCpu);
1662 }
1663
1664 /* Clear all patch information. */
1665 pVM->hm.s.pGuestPatchMem = 0;
1666 pVM->hm.s.pFreeGuestPatchMem = 0;
1667 pVM->hm.s.cbGuestPatchMem = 0;
1668 pVM->hm.s.cPatches = 0;
1669 pVM->hm.s.PatchTree = 0;
1670 pVM->hm.s.fTPRPatchingActive = false;
1671 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
1672}
1673
1674
1675/**
1676 * Callback to patch a TPR instruction (vmmcall or mov cr8).
1677 *
1678 * @returns VBox strict status code.
1679 * @param pVM Pointer to the VM.
1680 * @param pVCpu The VMCPU for the EMT we're being called on.
1681 * @param pvUser Unused.
1682 */
1683DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
1684{
1685 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
1686
1687 /* Only execute the handler on the VCPU the original patch request was issued. */
1688 if (pVCpu->idCpu != idCpu)
1689 return VINF_SUCCESS;
1690
1691 Log(("hmR3RemovePatches\n"));
1692 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
1693 {
1694 uint8_t abInstr[15];
1695 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
1696 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
1697 int rc;
1698
1699#ifdef LOG_ENABLED
1700 char szOutput[256];
1701
1702 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
1703 szOutput, sizeof(szOutput), NULL);
1704 if (RT_SUCCESS(rc))
1705 Log(("Patched instr: %s\n", szOutput));
1706#endif
1707
1708 /* Check if the instruction is still the same. */
1709 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
1710 if (rc != VINF_SUCCESS)
1711 {
1712 Log(("Patched code removed? (rc=%Rrc0\n", rc));
1713 continue; /* swapped out or otherwise removed; skip it. */
1714 }
1715
1716 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
1717 {
1718 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
1719 continue; /* skip it. */
1720 }
1721
1722 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
1723 AssertRC(rc);
1724
1725#ifdef LOG_ENABLED
1726 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
1727 szOutput, sizeof(szOutput), NULL);
1728 if (RT_SUCCESS(rc))
1729 Log(("Original instr: %s\n", szOutput));
1730#endif
1731 }
1732 pVM->hm.s.cPatches = 0;
1733 pVM->hm.s.PatchTree = 0;
1734 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
1735 pVM->hm.s.fTPRPatchingActive = false;
1736 return VINF_SUCCESS;
1737}
1738
1739
1740/**
1741 * Worker for enabling patching in a VT-x/AMD-V guest.
1742 *
1743 * @returns VBox status code.
1744 * @param pVM Pointer to the VM.
1745 * @param idCpu VCPU to execute hmR3RemovePatches on.
1746 * @param pPatchMem Patch memory range.
1747 * @param cbPatchMem Size of the memory range.
1748 */
1749static int hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
1750{
1751 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
1752 AssertRC(rc);
1753
1754 pVM->hm.s.pGuestPatchMem = pPatchMem;
1755 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
1756 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
1757 return VINF_SUCCESS;
1758}
1759
1760
1761/**
1762 * Enable patching in a VT-x/AMD-V guest
1763 *
1764 * @returns VBox status code.
1765 * @param pVM Pointer to the VM.
1766 * @param pPatchMem Patch memory range.
1767 * @param cbPatchMem Size of the memory range.
1768 */
1769VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1770{
1771 VM_ASSERT_EMT(pVM);
1772 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
1773 if (pVM->cCpus > 1)
1774 {
1775 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
1776 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
1777 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
1778 AssertRC(rc);
1779 return rc;
1780 }
1781 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
1782}
1783
1784
1785/**
1786 * Disable patching in a VT-x/AMD-V guest.
1787 *
1788 * @returns VBox status code.
1789 * @param pVM Pointer to the VM.
1790 * @param pPatchMem Patch memory range.
1791 * @param cbPatchMem Size of the memory range.
1792 */
1793VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1794{
1795 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
1796
1797 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
1798 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
1799
1800 /* @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
1801 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
1802 (void *)(uintptr_t)VMMGetCpuId(pVM));
1803 AssertRC(rc);
1804
1805 pVM->hm.s.pGuestPatchMem = 0;
1806 pVM->hm.s.pFreeGuestPatchMem = 0;
1807 pVM->hm.s.cbGuestPatchMem = 0;
1808 pVM->hm.s.fTPRPatchingActive = false;
1809 return VINF_SUCCESS;
1810}
1811
1812
1813/**
1814 * Callback to patch a TPR instruction (vmmcall or mov cr8).
1815 *
1816 * @returns VBox strict status code.
1817 * @param pVM Pointer to the VM.
1818 * @param pVCpu The VMCPU for the EMT we're being called on.
1819 * @param pvUser User specified CPU context.
1820 *
1821 */
1822DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
1823{
1824 /*
1825 * Only execute the handler on the VCPU the original patch request was
1826 * issued. (The other CPU(s) might not yet have switched to protected
1827 * mode, nor have the correct memory context.)
1828 */
1829 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
1830 if (pVCpu->idCpu != idCpu)
1831 return VINF_SUCCESS;
1832
1833 /*
1834 * We're racing other VCPUs here, so don't try patch the instruction twice
1835 * and make sure there is still room for our patch record.
1836 */
1837 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1838 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
1839 if (pPatch)
1840 {
1841 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
1842 return VINF_SUCCESS;
1843 }
1844 uint32_t const idx = pVM->hm.s.cPatches;
1845 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
1846 {
1847 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
1848 return VINF_SUCCESS;
1849 }
1850 pPatch = &pVM->hm.s.aPatches[idx];
1851
1852 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
1853
1854 /*
1855 * Disassembler the instruction and get cracking.
1856 */
1857 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
1858 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
1859 uint32_t cbOp;
1860 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
1861 AssertRC(rc);
1862 if ( rc == VINF_SUCCESS
1863 && pDis->pCurInstr->uOpcode == OP_MOV
1864 && cbOp >= 3)
1865 {
1866 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
1867
1868 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
1869 AssertRC(rc);
1870
1871 pPatch->cbOp = cbOp;
1872
1873 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
1874 {
1875 /* write. */
1876 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
1877 {
1878 pPatch->enmType = HMTPRINSTR_WRITE_REG;
1879 pPatch->uSrcOperand = pDis->Param2.Base.idxGenReg;
1880 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", pDis->Param2.Base.idxGenReg));
1881 }
1882 else
1883 {
1884 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
1885 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
1886 pPatch->uSrcOperand = pDis->Param2.uValue;
1887 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", pDis->Param2.uValue));
1888 }
1889 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
1890 AssertRC(rc);
1891
1892 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
1893 pPatch->cbNewOp = sizeof(s_abVMMCall);
1894 }
1895 else
1896 {
1897 /*
1898 * TPR Read.
1899 *
1900 * Found:
1901 * mov eax, dword [fffe0080] (5 bytes)
1902 * Check if next instruction is:
1903 * shr eax, 4
1904 */
1905 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
1906
1907 uint8_t const idxMmioReg = pDis->Param1.Base.idxGenReg;
1908 uint8_t const cbOpMmio = cbOp;
1909 uint64_t const uSavedRip = pCtx->rip;
1910
1911 pCtx->rip += cbOp;
1912 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
1913 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
1914 pCtx->rip = uSavedRip;
1915
1916 if ( rc == VINF_SUCCESS
1917 && pDis->pCurInstr->uOpcode == OP_SHR
1918 && pDis->Param1.fUse == DISUSE_REG_GEN32
1919 && pDis->Param1.Base.idxGenReg == idxMmioReg
1920 && pDis->Param2.fUse == DISUSE_IMMEDIATE8
1921 && pDis->Param2.uValue == 4
1922 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
1923 {
1924 uint8_t abInstr[15];
1925
1926 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
1927 access CR8 in 32-bit mode and not cause a #VMEXIT. */
1928 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
1929 AssertRC(rc);
1930
1931 pPatch->cbOp = cbOpMmio + cbOp;
1932
1933 /* 0xF0, 0x0F, 0x20, 0xC0 = mov eax, cr8 */
1934 abInstr[0] = 0xF0;
1935 abInstr[1] = 0x0F;
1936 abInstr[2] = 0x20;
1937 abInstr[3] = 0xC0 | pDis->Param1.Base.idxGenReg;
1938 for (unsigned i = 4; i < pPatch->cbOp; i++)
1939 abInstr[i] = 0x90; /* nop */
1940
1941 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
1942 AssertRC(rc);
1943
1944 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
1945 pPatch->cbNewOp = pPatch->cbOp;
1946
1947 Log(("Acceptable read/shr candidate!\n"));
1948 pPatch->enmType = HMTPRINSTR_READ_SHR4;
1949 }
1950 else
1951 {
1952 pPatch->enmType = HMTPRINSTR_READ;
1953 pPatch->uDstOperand = idxMmioReg;
1954
1955 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
1956 AssertRC(rc);
1957
1958 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
1959 pPatch->cbNewOp = sizeof(s_abVMMCall);
1960 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
1961 }
1962 }
1963
1964 pPatch->Core.Key = pCtx->eip;
1965 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
1966 AssertRC(rc);
1967
1968 pVM->hm.s.cPatches++;
1969 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccess);
1970 return VINF_SUCCESS;
1971 }
1972
1973 /*
1974 * Save invalid patch, so we will not try again.
1975 */
1976 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
1977 pPatch->Core.Key = pCtx->eip;
1978 pPatch->enmType = HMTPRINSTR_INVALID;
1979 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
1980 AssertRC(rc);
1981 pVM->hm.s.cPatches++;
1982 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
1983 return VINF_SUCCESS;
1984}
1985
1986
1987/**
1988 * Callback to patch a TPR instruction (jump to generated code).
1989 *
1990 * @returns VBox strict status code.
1991 * @param pVM Pointer to the VM.
1992 * @param pVCpu The VMCPU for the EMT we're being called on.
1993 * @param pvUser User specified CPU context.
1994 *
1995 */
1996DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
1997{
1998 /*
1999 * Only execute the handler on the VCPU the original patch request was
2000 * issued. (The other CPU(s) might not yet have switched to protected
2001 * mode, nor have the correct memory context.)
2002 */
2003 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2004 if (pVCpu->idCpu != idCpu)
2005 return VINF_SUCCESS;
2006
2007 /*
2008 * We're racing other VCPUs here, so don't try patch the instruction twice
2009 * and make sure there is still room for our patch record.
2010 */
2011 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2012 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2013 if (pPatch)
2014 {
2015 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2016 return VINF_SUCCESS;
2017 }
2018 uint32_t const idx = pVM->hm.s.cPatches;
2019 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2020 {
2021 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2022 return VINF_SUCCESS;
2023 }
2024 pPatch = &pVM->hm.s.aPatches[idx];
2025
2026 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2027 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2028
2029 /*
2030 * Disassemble the instruction and get cracking.
2031 */
2032 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
2033 uint32_t cbOp;
2034 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
2035 AssertRC(rc);
2036 if ( rc == VINF_SUCCESS
2037 && pDis->pCurInstr->uOpcode == OP_MOV
2038 && cbOp >= 5)
2039 {
2040 uint8_t aPatch[64];
2041 uint32_t off = 0;
2042
2043 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2044 AssertRC(rc);
2045
2046 pPatch->cbOp = cbOp;
2047 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2048
2049 if (pDis->Param1.fUse == DISUSE_DISPLACEMENT32)
2050 {
2051 /*
2052 * TPR write:
2053 *
2054 * push ECX [51]
2055 * push EDX [52]
2056 * push EAX [50]
2057 * xor EDX,EDX [31 D2]
2058 * mov EAX,EAX [89 C0]
2059 * or
2060 * mov EAX,0000000CCh [B8 CC 00 00 00]
2061 * mov ECX,0C0000082h [B9 82 00 00 C0]
2062 * wrmsr [0F 30]
2063 * pop EAX [58]
2064 * pop EDX [5A]
2065 * pop ECX [59]
2066 * jmp return_address [E9 return_address]
2067 *
2068 */
2069 bool fUsesEax = (pDis->Param2.fUse == DISUSE_REG_GEN32 && pDis->Param2.Base.idxGenReg == DISGREG_EAX);
2070
2071 aPatch[off++] = 0x51; /* push ecx */
2072 aPatch[off++] = 0x52; /* push edx */
2073 if (!fUsesEax)
2074 aPatch[off++] = 0x50; /* push eax */
2075 aPatch[off++] = 0x31; /* xor edx, edx */
2076 aPatch[off++] = 0xD2;
2077 if (pDis->Param2.fUse == DISUSE_REG_GEN32)
2078 {
2079 if (!fUsesEax)
2080 {
2081 aPatch[off++] = 0x89; /* mov eax, src_reg */
2082 aPatch[off++] = MAKE_MODRM(3, pDis->Param2.Base.idxGenReg, DISGREG_EAX);
2083 }
2084 }
2085 else
2086 {
2087 Assert(pDis->Param2.fUse == DISUSE_IMMEDIATE32);
2088 aPatch[off++] = 0xB8; /* mov eax, immediate */
2089 *(uint32_t *)&aPatch[off] = pDis->Param2.uValue;
2090 off += sizeof(uint32_t);
2091 }
2092 aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
2093 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2094 off += sizeof(uint32_t);
2095
2096 aPatch[off++] = 0x0F; /* wrmsr */
2097 aPatch[off++] = 0x30;
2098 if (!fUsesEax)
2099 aPatch[off++] = 0x58; /* pop eax */
2100 aPatch[off++] = 0x5A; /* pop edx */
2101 aPatch[off++] = 0x59; /* pop ecx */
2102 }
2103 else
2104 {
2105 /*
2106 * TPR read:
2107 *
2108 * push ECX [51]
2109 * push EDX [52]
2110 * push EAX [50]
2111 * mov ECX,0C0000082h [B9 82 00 00 C0]
2112 * rdmsr [0F 32]
2113 * mov EAX,EAX [89 C0]
2114 * pop EAX [58]
2115 * pop EDX [5A]
2116 * pop ECX [59]
2117 * jmp return_address [E9 return_address]
2118 *
2119 */
2120 Assert(pDis->Param1.fUse == DISUSE_REG_GEN32);
2121
2122 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2123 aPatch[off++] = 0x51; /* push ecx */
2124 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2125 aPatch[off++] = 0x52; /* push edx */
2126 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2127 aPatch[off++] = 0x50; /* push eax */
2128
2129 aPatch[off++] = 0x31; /* xor edx, edx */
2130 aPatch[off++] = 0xD2;
2131
2132 aPatch[off++] = 0xB9; /* mov ecx, 0xc0000082 */
2133 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2134 off += sizeof(uint32_t);
2135
2136 aPatch[off++] = 0x0F; /* rdmsr */
2137 aPatch[off++] = 0x32;
2138
2139 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2140 {
2141 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2142 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, pDis->Param1.Base.idxGenReg);
2143 }
2144
2145 if (pDis->Param1.Base.idxGenReg != DISGREG_EAX)
2146 aPatch[off++] = 0x58; /* pop eax */
2147 if (pDis->Param1.Base.idxGenReg != DISGREG_EDX )
2148 aPatch[off++] = 0x5A; /* pop edx */
2149 if (pDis->Param1.Base.idxGenReg != DISGREG_ECX)
2150 aPatch[off++] = 0x59; /* pop ecx */
2151 }
2152 aPatch[off++] = 0xE9; /* jmp return_address */
2153 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2154 off += sizeof(RTRCUINTPTR);
2155
2156 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2157 {
2158 /* Write new code to the patch buffer. */
2159 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2160 AssertRC(rc);
2161
2162#ifdef LOG_ENABLED
2163 uint32_t cbCurInstr;
2164 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2165 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2166 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2167 {
2168 char szOutput[256];
2169 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2170 szOutput, sizeof(szOutput), &cbCurInstr);
2171 if (RT_SUCCESS(rc))
2172 Log(("Patch instr %s\n", szOutput));
2173 else
2174 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2175 }
2176#endif
2177
2178 pPatch->aNewOpcode[0] = 0xE9;
2179 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2180
2181 /* Overwrite the TPR instruction with a jump. */
2182 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2183 AssertRC(rc);
2184
2185 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2186
2187 pVM->hm.s.pFreeGuestPatchMem += off;
2188 pPatch->cbNewOp = 5;
2189
2190 pPatch->Core.Key = pCtx->eip;
2191 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2192 AssertRC(rc);
2193
2194 pVM->hm.s.cPatches++;
2195 pVM->hm.s.fTPRPatchingActive = true;
2196 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2197 return VINF_SUCCESS;
2198 }
2199
2200 Log(("Ran out of space in our patch buffer!\n"));
2201 }
2202 else
2203 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2204
2205
2206 /*
2207 * Save invalid patch, so we will not try again.
2208 */
2209 pPatch = &pVM->hm.s.aPatches[idx];
2210 pPatch->Core.Key = pCtx->eip;
2211 pPatch->enmType = HMTPRINSTR_INVALID;
2212 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2213 AssertRC(rc);
2214 pVM->hm.s.cPatches++;
2215 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2216 return VINF_SUCCESS;
2217}
2218
2219
2220/**
2221 * Attempt to patch TPR mmio instructions.
2222 *
2223 * @returns VBox status code.
2224 * @param pVM Pointer to the VM.
2225 * @param pVCpu Pointer to the VMCPU.
2226 * @param pCtx Pointer to the guest CPU context.
2227 */
2228VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2229{
2230 NOREF(pCtx);
2231 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2232 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2233 (void *)(uintptr_t)pVCpu->idCpu);
2234 AssertRC(rc);
2235 return rc;
2236}
2237
2238
2239/**
2240 * Checks if a code selector (CS) is suitable for execution
2241 * within VMX when unrestricted execution isn't available.
2242 *
2243 * @returns true if selector is suitable for VMX, otherwise
2244 * false.
2245 * @param pSel Pointer to the selector to check (CS).
2246 * uStackDpl The CPL, aka the DPL of the stack segment.
2247 */
2248static bool hmR3IsCodeSelectorOkForVmx(PCPUMSELREG pSel, unsigned uStackDpl)
2249{
2250 /*
2251 * Segment must be an accessed code segment, it must be present and it must
2252 * be usable.
2253 * Note! These are all standard requirements and if CS holds anything else
2254 * we've got buggy code somewhere!
2255 */
2256 AssertCompile(X86DESCATTR_TYPE == 0xf);
2257 AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P | X86DESCATTR_UNUSABLE))
2258 == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_CODE | X86DESCATTR_DT | X86DESCATTR_P),
2259 ("%#x\n", pSel->Attr.u),
2260 false);
2261
2262 /* For conforming segments, CS.DPL must be <= SS.DPL, while CS.DPL
2263 must equal SS.DPL for non-confroming segments.
2264 Note! This is also a hard requirement like above. */
2265 AssertMsgReturn( pSel->Attr.n.u4Type & X86_SEL_TYPE_CONF
2266 ? pSel->Attr.n.u2Dpl <= uStackDpl
2267 : pSel->Attr.n.u2Dpl == uStackDpl,
2268 ("u4Type=%#x u2Dpl=%u uStackDpl=%u\n", pSel->Attr.n.u4Type, pSel->Attr.n.u2Dpl, uStackDpl),
2269 false);
2270
2271 /*
2272 * The following two requirements are VT-x specific:
2273 * - G bit must be set if any high limit bits are set.
2274 * - G bit must be clear if any low limit bits are clear.
2275 */
2276 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2277 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2278 return true;
2279 return false;
2280}
2281
2282
2283/**
2284 * Checks if a data selector (DS/ES/FS/GS) is suitable for
2285 * execution within VMX when unrestricted execution isn't
2286 * available.
2287 *
2288 * @returns true if selector is suitable for VMX, otherwise
2289 * false.
2290 * @param pSel Pointer to the selector to check
2291 * (DS/ES/FS/GS).
2292 */
2293static bool hmR3IsDataSelectorOkForVmx(PCPUMSELREG pSel)
2294{
2295 /*
2296 * Unusable segments are OK. These days they should be marked as such, as
2297 * but as an alternative we for old saved states and AMD<->VT-x migration
2298 * we also treat segments with all the attributes cleared as unusable.
2299 */
2300 if (pSel->Attr.n.u1Unusable || !pSel->Attr.u)
2301 return true;
2302
2303 /** @todo tighten these checks. Will require CPUM load adjusting. */
2304
2305 /* Segment must be accessed. */
2306 if (pSel->Attr.u & X86_SEL_TYPE_ACCESSED)
2307 {
2308 /* Code segments must also be readable. */
2309 if ( !(pSel->Attr.u & X86_SEL_TYPE_CODE)
2310 || (pSel->Attr.u & X86_SEL_TYPE_READ))
2311 {
2312 /* The S bit must be set. */
2313 if (pSel->Attr.n.u1DescType)
2314 {
2315 /* Except for conforming segments, DPL >= RPL. */
2316 if ( pSel->Attr.n.u2Dpl >= (pSel->Sel & X86_SEL_RPL)
2317 || pSel->Attr.n.u4Type >= X86_SEL_TYPE_ER_ACC)
2318 {
2319 /* Segment must be present. */
2320 if (pSel->Attr.n.u1Present)
2321 {
2322 /*
2323 * The following two requirements are VT-x specific:
2324 * - G bit must be set if any high limit bits are set.
2325 * - G bit must be clear if any low limit bits are clear.
2326 */
2327 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2328 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2329 return true;
2330 }
2331 }
2332 }
2333 }
2334 }
2335
2336 return false;
2337}
2338
2339
2340/**
2341 * Checks if the stack selector (SS) is suitable for execution
2342 * within VMX when unrestricted execution isn't available.
2343 *
2344 * @returns true if selector is suitable for VMX, otherwise
2345 * false.
2346 * @param pSel Pointer to the selector to check (SS).
2347 */
2348static bool hmR3IsStackSelectorOkForVmx(PCPUMSELREG pSel)
2349{
2350 /*
2351 * Unusable segments are OK. These days they should be marked as such, as
2352 * but as an alternative we for old saved states and AMD<->VT-x migration
2353 * we also treat segments with all the attributes cleared as unusable.
2354 */
2355 /** @todo r=bird: actually all zeros isn't gonna cut it... SS.DPL == CPL. */
2356 if (pSel->Attr.n.u1Unusable || !pSel->Attr.u)
2357 return true;
2358
2359 /*
2360 * Segment must be an accessed writable segment, it must be present.
2361 * Note! These are all standard requirements and if SS holds anything else
2362 * we've got buggy code somewhere!
2363 */
2364 AssertCompile(X86DESCATTR_TYPE == 0xf);
2365 AssertMsgReturn( (pSel->Attr.u & (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P | X86_SEL_TYPE_CODE))
2366 == (X86_SEL_TYPE_ACCESSED | X86_SEL_TYPE_WRITE | X86DESCATTR_DT | X86DESCATTR_P),
2367 ("%#x\n", pSel->Attr.u),
2368 false);
2369
2370 /* DPL must equal RPL.
2371 Note! This is also a hard requirement like above. */
2372 AssertMsgReturn(pSel->Attr.n.u2Dpl == (pSel->Sel & X86_SEL_RPL),
2373 ("u2Dpl=%u Sel=%#x\n", pSel->Attr.n.u2Dpl, pSel->Sel),
2374 false);
2375
2376 /*
2377 * The following two requirements are VT-x specific:
2378 * - G bit must be set if any high limit bits are set.
2379 * - G bit must be clear if any low limit bits are clear.
2380 */
2381 if ( ((pSel->u32Limit & 0xfff00000) == 0x00000000 || pSel->Attr.n.u1Granularity)
2382 && ((pSel->u32Limit & 0x00000fff) == 0x00000fff || !pSel->Attr.n.u1Granularity) )
2383 return true;
2384 return false;
2385}
2386
2387
2388/**
2389 * Force execution of the current IO code in the recompiler.
2390 *
2391 * @returns VBox status code.
2392 * @param pVM Pointer to the VM.
2393 * @param pCtx Partial VM execution context.
2394 */
2395VMMR3_INT_DECL(int) HMR3EmulateIoBlock(PVM pVM, PCPUMCTX pCtx)
2396{
2397 PVMCPU pVCpu = VMMGetCpu(pVM);
2398
2399 Assert(HMIsEnabled(pVM));
2400 Log(("HMR3EmulateIoBlock\n"));
2401
2402 /* This is primarily intended to speed up Grub, so we don't care about paged protected mode. */
2403 if (HMCanEmulateIoBlockEx(pCtx))
2404 {
2405 Log(("HMR3EmulateIoBlock -> enabled\n"));
2406 pVCpu->hm.s.EmulateIoBlock.fEnabled = true;
2407 pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip = pCtx->rip;
2408 pVCpu->hm.s.EmulateIoBlock.cr0 = pCtx->cr0;
2409 return VINF_EM_RESCHEDULE_REM;
2410 }
2411 return VINF_SUCCESS;
2412}
2413
2414
2415/**
2416 * Checks if we can currently use hardware accelerated raw mode.
2417 *
2418 * @returns true if we can currently use hardware acceleration, otherwise false.
2419 * @param pVM Pointer to the VM.
2420 * @param pCtx Partial VM execution context.
2421 */
2422VMMR3DECL(bool) HMR3CanExecuteGuest(PVM pVM, PCPUMCTX pCtx)
2423{
2424 PVMCPU pVCpu = VMMGetCpu(pVM);
2425
2426 Assert(HMIsEnabled(pVM));
2427
2428 /* If we're still executing the IO code, then return false. */
2429 if ( RT_UNLIKELY(pVCpu->hm.s.EmulateIoBlock.fEnabled)
2430 && pCtx->rip < pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip + 0x200
2431 && pCtx->rip > pVCpu->hm.s.EmulateIoBlock.GCPtrFunctionEip - 0x200
2432 && pCtx->cr0 == pVCpu->hm.s.EmulateIoBlock.cr0)
2433 return false;
2434
2435 pVCpu->hm.s.EmulateIoBlock.fEnabled = false;
2436
2437 /* AMD-V supports real & protected mode with or without paging. */
2438 if (pVM->hm.s.svm.fEnabled)
2439 {
2440 pVCpu->hm.s.fActive = true;
2441 return true;
2442 }
2443
2444 pVCpu->hm.s.fActive = false;
2445
2446 /* Note! The context supplied by REM is partial. If we add more checks here, be sure to verify that REM provides this info! */
2447 Assert( (pVM->hm.s.vmx.fUnrestrictedGuest && !pVM->hm.s.vmx.pRealModeTSS)
2448 || (!pVM->hm.s.vmx.fUnrestrictedGuest && pVM->hm.s.vmx.pRealModeTSS));
2449
2450 bool fSupportsRealMode = pVM->hm.s.vmx.fUnrestrictedGuest || PDMVmmDevHeapIsEnabled(pVM);
2451 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
2452 {
2453 /*
2454 * The VMM device heap is a requirement for emulating real mode or protected mode without paging with the unrestricted
2455 * guest execution feature is missing (VT-x only).
2456 */
2457 if (fSupportsRealMode)
2458 {
2459 if (CPUMIsGuestInRealModeEx(pCtx))
2460 {
2461 /* In V86 mode (VT-x or not), the CPU enforces real-mode compatible selector
2462 * bases and limits, i.e. limit must be 64K and base must be selector * 16.
2463 * If this is not true, we cannot execute real mode as V86 and have to fall
2464 * back to emulation.
2465 */
2466 if ( pCtx->cs.Sel != (pCtx->cs.u64Base >> 4)
2467 || pCtx->ds.Sel != (pCtx->ds.u64Base >> 4)
2468 || pCtx->es.Sel != (pCtx->es.u64Base >> 4)
2469 || pCtx->ss.Sel != (pCtx->ss.u64Base >> 4)
2470 || pCtx->fs.Sel != (pCtx->fs.u64Base >> 4)
2471 || pCtx->gs.Sel != (pCtx->gs.u64Base >> 4))
2472 {
2473 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelBase);
2474 return false;
2475 }
2476 if ( (pCtx->cs.u32Limit != 0xffff)
2477 || (pCtx->ds.u32Limit != 0xffff)
2478 || (pCtx->es.u32Limit != 0xffff)
2479 || (pCtx->ss.u32Limit != 0xffff)
2480 || (pCtx->fs.u32Limit != 0xffff)
2481 || (pCtx->gs.u32Limit != 0xffff))
2482 {
2483 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRmSelLimit);
2484 return false;
2485 }
2486 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckRmOk);
2487 }
2488 else
2489 {
2490 /* Verify the requirements for executing code in protected
2491 mode. VT-x can't handle the CPU state right after a switch
2492 from real to protected mode. (all sorts of RPL & DPL assumptions). */
2493 if (pVCpu->hm.s.vmx.fWasInRealMode)
2494 {
2495 /** @todo If guest is in V86 mode, these checks should be different! */
2496 if ((pCtx->cs.Sel & X86_SEL_RPL) != (pCtx->ss.Sel & X86_SEL_RPL))
2497 {
2498 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadRpl);
2499 return false;
2500 }
2501 if ( !hmR3IsCodeSelectorOkForVmx(&pCtx->cs, pCtx->ss.Attr.n.u2Dpl)
2502 || !hmR3IsDataSelectorOkForVmx(&pCtx->ds)
2503 || !hmR3IsDataSelectorOkForVmx(&pCtx->es)
2504 || !hmR3IsDataSelectorOkForVmx(&pCtx->fs)
2505 || !hmR3IsDataSelectorOkForVmx(&pCtx->gs)
2506 || !hmR3IsStackSelectorOkForVmx(&pCtx->ss))
2507 {
2508 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadSel);
2509 return false;
2510 }
2511 }
2512 /* VT-x also chokes on invalid TR or LDTR selectors (minix). */
2513 if (pCtx->gdtr.cbGdt)
2514 {
2515 if ((pCtx->tr.Sel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
2516 {
2517 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadTr);
2518 return false;
2519 }
2520 else if ((pCtx->ldtr.Sel | X86_SEL_RPL_LDT) > pCtx->gdtr.cbGdt)
2521 {
2522 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckBadLdt);
2523 return false;
2524 }
2525 }
2526 STAM_COUNTER_INC(&pVCpu->hm.s.StatVmxCheckPmOk);
2527 }
2528 }
2529 else
2530 {
2531 if ( !CPUMIsGuestInLongModeEx(pCtx)
2532 && !pVM->hm.s.vmx.fUnrestrictedGuest)
2533 {
2534 if ( !pVM->hm.s.fNestedPaging /* Requires a fake PD for real *and* protected mode without paging - stored in the VMM device heap */
2535 || CPUMIsGuestInRealModeEx(pCtx)) /* Requires a fake TSS for real mode - stored in the VMM device heap */
2536 return false;
2537
2538 /* Too early for VT-x; Solaris guests will fail with a guru meditation otherwise; same for XP. */
2539 if (pCtx->idtr.pIdt == 0 || pCtx->idtr.cbIdt == 0 || pCtx->tr.Sel == 0)
2540 return false;
2541
2542 /* The guest is about to complete the switch to protected mode. Wait a bit longer. */
2543 /* Windows XP; switch to protected mode; all selectors are marked not present in the
2544 * hidden registers (possible recompiler bug; see load_seg_vm) */
2545 if (pCtx->cs.Attr.n.u1Present == 0)
2546 return false;
2547 if (pCtx->ss.Attr.n.u1Present == 0)
2548 return false;
2549
2550 /* Windows XP: possible same as above, but new recompiler requires new heuristics?
2551 VT-x doesn't seem to like something about the guest state and this stuff avoids it. */
2552 /** @todo This check is actually wrong, it doesn't take the direction of the
2553 * stack segment into account. But, it does the job for now. */
2554 if (pCtx->rsp >= pCtx->ss.u32Limit)
2555 return false;
2556 }
2557 }
2558 }
2559
2560 if (pVM->hm.s.vmx.fEnabled)
2561 {
2562 uint32_t mask;
2563
2564 /* if bit N is set in cr0_fixed0, then it must be set in the guest's cr0. */
2565 mask = (uint32_t)pVM->hm.s.vmx.Msrs.u64Cr0Fixed0;
2566 /* Note: We ignore the NE bit here on purpose; see vmmr0\hmr0.cpp for details. */
2567 mask &= ~X86_CR0_NE;
2568
2569 if (fSupportsRealMode)
2570 {
2571 /* Note: We ignore the PE & PG bits here on purpose; we emulate real and protected mode without paging. */
2572 mask &= ~(X86_CR0_PG|X86_CR0_PE);
2573 }
2574 else
2575 {
2576 /* We support protected mode without paging using identity mapping. */
2577 mask &= ~X86_CR0_PG;
2578 }
2579 if ((pCtx->cr0 & mask) != mask)
2580 return false;
2581
2582 /* if bit N is cleared in cr0_fixed1, then it must be zero in the guest's cr0. */
2583 mask = (uint32_t)~pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
2584 if ((pCtx->cr0 & mask) != 0)
2585 return false;
2586
2587 /* if bit N is set in cr4_fixed0, then it must be set in the guest's cr4. */
2588 mask = (uint32_t)pVM->hm.s.vmx.Msrs.u64Cr4Fixed0;
2589 mask &= ~X86_CR4_VMXE;
2590 if ((pCtx->cr4 & mask) != mask)
2591 return false;
2592
2593 /* if bit N is cleared in cr4_fixed1, then it must be zero in the guest's cr4. */
2594 mask = (uint32_t)~pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
2595 if ((pCtx->cr4 & mask) != 0)
2596 return false;
2597
2598 pVCpu->hm.s.fActive = true;
2599 return true;
2600 }
2601
2602 return false;
2603}
2604
2605
2606/**
2607 * Checks if we need to reschedule due to VMM device heap changes.
2608 *
2609 * @returns true if a reschedule is required, otherwise false.
2610 * @param pVM Pointer to the VM.
2611 * @param pCtx VM execution context.
2612 */
2613VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCPUMCTX pCtx)
2614{
2615 /*
2616 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2617 * when the unrestricted guest execution feature is missing (VT-x only).
2618 */
2619 if ( pVM->hm.s.vmx.fEnabled
2620 && !pVM->hm.s.vmx.fUnrestrictedGuest
2621 && CPUMIsGuestInRealModeEx(pCtx)
2622 && !PDMVmmDevHeapIsEnabled(pVM))
2623 {
2624 return true;
2625 }
2626
2627 return false;
2628}
2629
2630
2631/**
2632 * Notification from EM about a rescheduling into hardware assisted execution
2633 * mode.
2634 *
2635 * @param pVCpu Pointer to the current VMCPU.
2636 */
2637VMMR3_INT_DECL(void) HMR3NotifyScheduled(PVMCPU pVCpu)
2638{
2639 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
2640}
2641
2642
2643/**
2644 * Notification from EM about returning from instruction emulation (REM / EM).
2645 *
2646 * @param pVCpu Pointer to the VMCPU.
2647 */
2648VMMR3_INT_DECL(void) HMR3NotifyEmulated(PVMCPU pVCpu)
2649{
2650 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
2651}
2652
2653
2654/**
2655 * Checks if we are currently using hardware acceleration.
2656 *
2657 * @returns true if hardware acceleration is being used, otherwise false.
2658 * @param pVCpu Pointer to the VMCPU.
2659 */
2660VMMR3_INT_DECL(bool) HMR3IsActive(PVMCPU pVCpu)
2661{
2662 return pVCpu->hm.s.fActive;
2663}
2664
2665
2666/**
2667 * External interface for querying whether hardware acceleration is enabled.
2668 *
2669 * @returns true if VT-x or AMD-V is being used, otherwise false.
2670 * @param pUVM The user mode VM handle.
2671 * @sa HMIsEnabled, HMIsEnabledNotMacro.
2672 */
2673VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
2674{
2675 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2676 PVM pVM = pUVM->pVM;
2677 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2678 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
2679}
2680
2681
2682/**
2683 * External interface for querying whether VT-x is being used.
2684 *
2685 * @returns true if VT-x is being used, otherwise false.
2686 * @param pUVM The user mode VM handle.
2687 * @sa HMR3IsSvmEnabled, HMIsEnabled
2688 */
2689VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
2690{
2691 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2692 PVM pVM = pUVM->pVM;
2693 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2694 return pVM->hm.s.vmx.fEnabled
2695 && pVM->hm.s.vmx.fSupported
2696 && pVM->fHMEnabled;
2697}
2698
2699
2700/**
2701 * External interface for querying whether AMD-V is being used.
2702 *
2703 * @returns true if VT-x is being used, otherwise false.
2704 * @param pUVM The user mode VM handle.
2705 * @sa HMR3IsVmxEnabled, HMIsEnabled
2706 */
2707VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
2708{
2709 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2710 PVM pVM = pUVM->pVM;
2711 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2712 return pVM->hm.s.svm.fEnabled
2713 && pVM->hm.s.svm.fSupported
2714 && pVM->fHMEnabled;
2715}
2716
2717
2718/**
2719 * Checks if we are currently using nested paging.
2720 *
2721 * @returns true if nested paging is being used, otherwise false.
2722 * @param pUVM The user mode VM handle.
2723 */
2724VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
2725{
2726 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2727 PVM pVM = pUVM->pVM;
2728 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2729 return pVM->hm.s.fNestedPaging;
2730}
2731
2732
2733/**
2734 * Checks if we are currently using VPID in VT-x mode.
2735 *
2736 * @returns true if VPID is being used, otherwise false.
2737 * @param pUVM The user mode VM handle.
2738 */
2739VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
2740{
2741 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2742 PVM pVM = pUVM->pVM;
2743 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2744 return pVM->hm.s.vmx.fVpid;
2745}
2746
2747
2748/**
2749 * Checks if we are currently using VT-x unrestricted execution,
2750 * aka UX.
2751 *
2752 * @returns true if UX is being used, otherwise false.
2753 * @param pUVM The user mode VM handle.
2754 */
2755VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
2756{
2757 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2758 PVM pVM = pUVM->pVM;
2759 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2760 return pVM->hm.s.vmx.fUnrestrictedGuest;
2761}
2762
2763
2764/**
2765 * Checks if internal events are pending. In that case we are not allowed to dispatch interrupts.
2766 *
2767 * @returns true if an internal event is pending, otherwise false.
2768 * @param pVM Pointer to the VM.
2769 */
2770VMMR3_INT_DECL(bool) HMR3IsEventPending(PVMCPU pVCpu)
2771{
2772 return HMIsEnabled(pVCpu->pVMR3) && pVCpu->hm.s.Event.fPending;
2773}
2774
2775
2776/**
2777 * Checks if the VMX-preemption timer is being used.
2778 *
2779 * @returns true if the VMX-preemption timer is being used, otherwise false.
2780 * @param pVM Pointer to the VM.
2781 */
2782VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
2783{
2784 return HMIsEnabled(pVM)
2785 && pVM->hm.s.vmx.fEnabled
2786 && pVM->hm.s.vmx.fUsePreemptTimer;
2787}
2788
2789
2790/**
2791 * Restart an I/O instruction that was refused in ring-0
2792 *
2793 * @returns Strict VBox status code. Informational status codes other than the one documented
2794 * here are to be treated as internal failure. Use IOM_SUCCESS() to check for success.
2795 * @retval VINF_SUCCESS Success.
2796 * @retval VINF_EM_FIRST-VINF_EM_LAST Success with some exceptions (see IOM_SUCCESS()), the
2797 * status code must be passed on to EM.
2798 * @retval VERR_NOT_FOUND if no pending I/O instruction.
2799 *
2800 * @param pVM Pointer to the VM.
2801 * @param pVCpu Pointer to the VMCPU.
2802 * @param pCtx Pointer to the guest CPU context.
2803 */
2804VMMR3_INT_DECL(VBOXSTRICTRC) HMR3RestartPendingIOInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2805{
2806 HMPENDINGIO enmType = pVCpu->hm.s.PendingIO.enmType;
2807
2808 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_INVALID;
2809
2810 if ( pVCpu->hm.s.PendingIO.GCPtrRip != pCtx->rip
2811 || enmType == HMPENDINGIO_INVALID)
2812 return VERR_NOT_FOUND;
2813
2814 VBOXSTRICTRC rcStrict;
2815 switch (enmType)
2816 {
2817 case HMPENDINGIO_PORT_READ:
2818 {
2819 uint32_t uAndVal = pVCpu->hm.s.PendingIO.s.Port.uAndVal;
2820 uint32_t u32Val = 0;
2821
2822 rcStrict = IOMIOPortRead(pVM, pVCpu, pVCpu->hm.s.PendingIO.s.Port.uPort,
2823 &u32Val,
2824 pVCpu->hm.s.PendingIO.s.Port.cbSize);
2825 if (IOM_SUCCESS(rcStrict))
2826 {
2827 /* Write back to the EAX register. */
2828 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
2829 pCtx->rip = pVCpu->hm.s.PendingIO.GCPtrRipNext;
2830 }
2831 break;
2832 }
2833
2834 case HMPENDINGIO_PORT_WRITE:
2835 rcStrict = IOMIOPortWrite(pVM, pVCpu, pVCpu->hm.s.PendingIO.s.Port.uPort,
2836 pCtx->eax & pVCpu->hm.s.PendingIO.s.Port.uAndVal,
2837 pVCpu->hm.s.PendingIO.s.Port.cbSize);
2838 if (IOM_SUCCESS(rcStrict))
2839 pCtx->rip = pVCpu->hm.s.PendingIO.GCPtrRipNext;
2840 break;
2841
2842 default:
2843 AssertLogRelFailedReturn(VERR_HM_UNKNOWN_IO_INSTRUCTION);
2844 }
2845
2846 if (IOM_SUCCESS(rcStrict))
2847 {
2848 /*
2849 * Check for I/O breakpoints.
2850 */
2851 uint32_t const uDr7 = pCtx->dr[7];
2852 if ( ( (uDr7 & X86_DR7_ENABLED_MASK)
2853 && X86_DR7_ANY_RW_IO(uDr7)
2854 && (pCtx->cr4 & X86_CR4_DE))
2855 || DBGFBpIsHwIoArmed(pVM))
2856 {
2857 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, pVCpu->hm.s.PendingIO.s.Port.uPort,
2858 pVCpu->hm.s.PendingIO.s.Port.cbSize);
2859 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
2860 rcStrict2 = TRPMAssertTrap(pVCpu, X86_XCPT_DB, TRPM_TRAP);
2861 /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
2862 else if (rcStrict2 != VINF_SUCCESS && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
2863 rcStrict = rcStrict2;
2864 }
2865 }
2866 return rcStrict;
2867}
2868
2869
2870/**
2871 * Check fatal VT-x/AMD-V error and produce some meaningful
2872 * log release message.
2873 *
2874 * @param pVM Pointer to the VM.
2875 * @param iStatusCode VBox status code.
2876 */
2877VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
2878{
2879 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2880 {
2881 PVMCPU pVCpu = &pVM->aCpus[i];
2882 switch (iStatusCode)
2883 {
2884 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
2885 * might be getting inaccurate values for non-guru'ing EMTs. */
2886 case VERR_VMX_INVALID_VMCS_FIELD:
2887 break;
2888
2889 case VERR_VMX_INVALID_VMCS_PTR:
2890 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
2891 LogRel(("HM: CPU[%u] Current pointer %#RGp vs %#RGp\n", i, pVCpu->hm.s.vmx.LastError.u64VMCSPhys,
2892 pVCpu->hm.s.vmx.HCPhysVmcs));
2893 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", i, pVCpu->hm.s.vmx.LastError.u32VMCSRevision));
2894 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
2895 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
2896 break;
2897
2898 case VERR_VMX_UNABLE_TO_START_VM:
2899 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
2900 LogRel(("HM: CPU[%u] Instruction error %#x\n", i, pVCpu->hm.s.vmx.LastError.u32InstrError));
2901 LogRel(("HM: CPU[%u] Exit reason %#x\n", i, pVCpu->hm.s.vmx.LastError.u32ExitReason));
2902
2903 if ( pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMLAUCH_NON_CLEAR_VMCS
2904 || pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMRESUME_NON_LAUNCHED_VMCS)
2905 {
2906 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
2907 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", i, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
2908 }
2909 else if (pVM->aCpus[i].hm.s.vmx.LastError.u32InstrError == VMX_ERROR_VMENTRY_INVALID_CONTROL_FIELDS)
2910 {
2911 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32PinCtls));
2912 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls));
2913 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", i, pVCpu->hm.s.vmx.u32ProcCtls2));
2914 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32EntryCtls));
2915 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", i, pVCpu->hm.s.vmx.u32ExitCtls));
2916 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysMsrBitmap));
2917 LogRel(("HM: CPU[%u] HCPhysGuestMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysGuestMsr));
2918 LogRel(("HM: CPU[%u] HCPhysHostMsr %#RHp\n", i, pVCpu->hm.s.vmx.HCPhysHostMsr));
2919 LogRel(("HM: CPU[%u] cMsrs %u\n", i, pVCpu->hm.s.vmx.cMsrs));
2920 }
2921 /** @todo Log VM-entry event injection control fields
2922 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
2923 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
2924 break;
2925
2926 case VERR_VMX_INVALID_VMXON_PTR:
2927 break;
2928
2929 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
2930 case VERR_VMX_INVALID_GUEST_STATE:
2931 case VERR_VMX_UNEXPECTED_EXIT:
2932 case VERR_SVM_UNKNOWN_EXIT:
2933 case VERR_SVM_UNEXPECTED_EXIT:
2934 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
2935 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
2936 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
2937 {
2938 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", i, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
2939 LogRel(("HM: CPU[%u] idxExitHistoryFree %u\n", i, pVCpu->hm.s.idxExitHistoryFree));
2940 unsigned const idxLast = pVCpu->hm.s.idxExitHistoryFree > 0 ?
2941 pVCpu->hm.s.idxExitHistoryFree - 1 :
2942 RT_ELEMENTS(pVCpu->hm.s.auExitHistory) - 1;
2943 for (unsigned k = 0; k < RT_ELEMENTS(pVCpu->hm.s.auExitHistory); k++)
2944 {
2945 LogRel(("HM: CPU[%u] auExitHistory[%2u] = %#x (%u) %s\n", i, k, pVCpu->hm.s.auExitHistory[k],
2946 pVCpu->hm.s.auExitHistory[k], idxLast == k ? "<-- Last" : ""));
2947 }
2948 break;
2949 }
2950 }
2951 }
2952
2953 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
2954 {
2955 LogRel(("VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed %#RX32\n", pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1));
2956 LogRel(("VERR_VMX_UNABLE_TO_START_VM: VM-entry disallowed %#RX32\n", pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0));
2957 }
2958}
2959
2960
2961/**
2962 * Execute state save operation.
2963 *
2964 * @returns VBox status code.
2965 * @param pVM Pointer to the VM.
2966 * @param pSSM SSM operation handle.
2967 */
2968static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
2969{
2970 int rc;
2971
2972 Log(("hmR3Save:\n"));
2973
2974 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2975 {
2976 /*
2977 * Save the basic bits - fortunately all the other things can be resynced on load.
2978 */
2979 rc = SSMR3PutU32(pSSM, pVM->aCpus[i].hm.s.Event.fPending);
2980 AssertRCReturn(rc, rc);
2981 rc = SSMR3PutU32(pSSM, pVM->aCpus[i].hm.s.Event.u32ErrCode);
2982 AssertRCReturn(rc, rc);
2983 rc = SSMR3PutU64(pSSM, pVM->aCpus[i].hm.s.Event.u64IntInfo);
2984 AssertRCReturn(rc, rc);
2985 /** @todo Shouldn't we be saving GCPtrFaultAddress too? */
2986
2987 /** @todo We only need to save pVM->aCpus[i].hm.s.vmx.fWasInRealMode and
2988 * perhaps not even that (the initial value of @c true is safe. */
2989 uint32_t u32Dummy = PGMMODE_REAL;
2990 rc = SSMR3PutU32(pSSM, u32Dummy);
2991 AssertRCReturn(rc, rc);
2992 rc = SSMR3PutU32(pSSM, u32Dummy);
2993 AssertRCReturn(rc, rc);
2994 rc = SSMR3PutU32(pSSM, u32Dummy);
2995 AssertRCReturn(rc, rc);
2996 }
2997
2998#ifdef VBOX_HM_WITH_GUEST_PATCHING
2999 rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3000 AssertRCReturn(rc, rc);
3001 rc = SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3002 AssertRCReturn(rc, rc);
3003 rc = SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3004 AssertRCReturn(rc, rc);
3005
3006 /* Store all the guest patch records too. */
3007 rc = SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3008 AssertRCReturn(rc, rc);
3009
3010 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
3011 {
3012 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3013
3014 rc = SSMR3PutU32(pSSM, pPatch->Core.Key);
3015 AssertRCReturn(rc, rc);
3016
3017 rc = SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3018 AssertRCReturn(rc, rc);
3019
3020 rc = SSMR3PutU32(pSSM, pPatch->cbOp);
3021 AssertRCReturn(rc, rc);
3022
3023 rc = SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3024 AssertRCReturn(rc, rc);
3025
3026 rc = SSMR3PutU32(pSSM, pPatch->cbNewOp);
3027 AssertRCReturn(rc, rc);
3028
3029 AssertCompileSize(HMTPRINSTR, 4);
3030 rc = SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3031 AssertRCReturn(rc, rc);
3032
3033 rc = SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3034 AssertRCReturn(rc, rc);
3035
3036 rc = SSMR3PutU32(pSSM, pPatch->uDstOperand);
3037 AssertRCReturn(rc, rc);
3038
3039 rc = SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3040 AssertRCReturn(rc, rc);
3041
3042 rc = SSMR3PutU32(pSSM, pPatch->cFaults);
3043 AssertRCReturn(rc, rc);
3044 }
3045#endif
3046 return VINF_SUCCESS;
3047}
3048
3049
3050/**
3051 * Execute state load operation.
3052 *
3053 * @returns VBox status code.
3054 * @param pVM Pointer to the VM.
3055 * @param pSSM SSM operation handle.
3056 * @param uVersion Data layout version.
3057 * @param uPass The data pass.
3058 */
3059static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3060{
3061 int rc;
3062
3063 Log(("hmR3Load:\n"));
3064 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3065
3066 /*
3067 * Validate version.
3068 */
3069 if ( uVersion != HM_SAVED_STATE_VERSION
3070 && uVersion != HM_SAVED_STATE_VERSION_NO_PATCHING
3071 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3072 {
3073 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3074 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3075 }
3076 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3077 {
3078 rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.fPending);
3079 AssertRCReturn(rc, rc);
3080 rc = SSMR3GetU32(pSSM, &pVM->aCpus[i].hm.s.Event.u32ErrCode);
3081 AssertRCReturn(rc, rc);
3082 rc = SSMR3GetU64(pSSM, &pVM->aCpus[i].hm.s.Event.u64IntInfo);
3083 AssertRCReturn(rc, rc);
3084
3085 if (uVersion >= HM_SAVED_STATE_VERSION_NO_PATCHING)
3086 {
3087 uint32_t val;
3088 /** @todo See note in hmR3Save(). */
3089 rc = SSMR3GetU32(pSSM, &val);
3090 AssertRCReturn(rc, rc);
3091 rc = SSMR3GetU32(pSSM, &val);
3092 AssertRCReturn(rc, rc);
3093 rc = SSMR3GetU32(pSSM, &val);
3094 AssertRCReturn(rc, rc);
3095 }
3096 }
3097#ifdef VBOX_HM_WITH_GUEST_PATCHING
3098 if (uVersion > HM_SAVED_STATE_VERSION_NO_PATCHING)
3099 {
3100 rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3101 AssertRCReturn(rc, rc);
3102 rc = SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3103 AssertRCReturn(rc, rc);
3104 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3105 AssertRCReturn(rc, rc);
3106
3107 /* Fetch all TPR patch records. */
3108 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3109 AssertRCReturn(rc, rc);
3110
3111 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
3112 {
3113 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3114
3115 rc = SSMR3GetU32(pSSM, &pPatch->Core.Key);
3116 AssertRCReturn(rc, rc);
3117
3118 rc = SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3119 AssertRCReturn(rc, rc);
3120
3121 rc = SSMR3GetU32(pSSM, &pPatch->cbOp);
3122 AssertRCReturn(rc, rc);
3123
3124 rc = SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3125 AssertRCReturn(rc, rc);
3126
3127 rc = SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3128 AssertRCReturn(rc, rc);
3129
3130 rc = SSMR3GetU32(pSSM, (uint32_t *)&pPatch->enmType);
3131 AssertRCReturn(rc, rc);
3132
3133 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3134 pVM->hm.s.fTPRPatchingActive = true;
3135
3136 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTPRPatchingActive == false);
3137
3138 rc = SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3139 AssertRCReturn(rc, rc);
3140
3141 rc = SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3142 AssertRCReturn(rc, rc);
3143
3144 rc = SSMR3GetU32(pSSM, &pPatch->cFaults);
3145 AssertRCReturn(rc, rc);
3146
3147 rc = SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3148 AssertRCReturn(rc, rc);
3149
3150 Log(("hmR3Load: patch %d\n", i));
3151 Log(("Key = %x\n", pPatch->Core.Key));
3152 Log(("cbOp = %d\n", pPatch->cbOp));
3153 Log(("cbNewOp = %d\n", pPatch->cbNewOp));
3154 Log(("type = %d\n", pPatch->enmType));
3155 Log(("srcop = %d\n", pPatch->uSrcOperand));
3156 Log(("dstop = %d\n", pPatch->uDstOperand));
3157 Log(("cFaults = %d\n", pPatch->cFaults));
3158 Log(("target = %x\n", pPatch->pJumpTarget));
3159 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3160 AssertRC(rc);
3161 }
3162 }
3163#endif
3164
3165 return VINF_SUCCESS;
3166}
3167
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette