VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/HM.cpp@ 100651

Last change on this file since 100651 was 100140, checked in by vboxsync, 18 months ago

VMM/EM: Do not do scheduling based on whether HM has been used and is 'active', because that's not a reliable property (especially after restoring saved state) and it's not correct to go to the recompiler all the time after HM was unable to execute a piece of code. This is probably a problem resurfacing after kicking out the IEM_THEN_REM state from EM and resurrecting the REM state. bugref:10369

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 160.5 KB
Line 
1/* $Id: HM.cpp 100140 2023-06-09 14:54:38Z vboxsync $ */
2/** @file
3 * HM - Intel/AMD VM Hardware Support Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28/** @page pg_hm HM - Hardware Assisted Virtualization Manager
29 *
30 * The HM manages guest execution using the VT-x and AMD-V CPU hardware
31 * extensions.
32 *
33 * {summary of what HM does}
34 *
35 * Hardware assisted virtualization manager was originally abbreviated HWACCM,
36 * however that was cumbersome to write and parse for such a central component,
37 * so it was shortened to HM when refactoring the code in the 4.3 development
38 * cycle.
39 *
40 * {add sections with more details}
41 *
42 * @sa @ref grp_hm
43 */
44
45
46/*********************************************************************************************************************************
47* Header Files *
48*********************************************************************************************************************************/
49#define LOG_GROUP LOG_GROUP_HM
50#define VMCPU_INCL_CPUM_GST_CTX
51#include <VBox/vmm/cpum.h>
52#include <VBox/vmm/stam.h>
53#include <VBox/vmm/em.h>
54#include <VBox/vmm/pdmapi.h>
55#include <VBox/vmm/pgm.h>
56#include <VBox/vmm/ssm.h>
57#include <VBox/vmm/gim.h>
58#include <VBox/vmm/gcm.h>
59#include <VBox/vmm/trpm.h>
60#include <VBox/vmm/dbgf.h>
61#include <VBox/vmm/iom.h>
62#include <VBox/vmm/iem.h>
63#include <VBox/vmm/selm.h>
64#include <VBox/vmm/nem.h>
65#include <VBox/vmm/hm_vmx.h>
66#include <VBox/vmm/hm_svm.h>
67#include "HMInternal.h"
68#include <VBox/vmm/vmcc.h>
69#include <VBox/err.h>
70#include <VBox/param.h>
71
72#include <iprt/assert.h>
73#include <VBox/log.h>
74#include <iprt/asm.h>
75#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
76# include <iprt/asm-amd64-x86.h>
77#endif
78#include <iprt/env.h>
79#include <iprt/thread.h>
80
81
82/*********************************************************************************************************************************
83* Defined Constants And Macros *
84*********************************************************************************************************************************/
85/** @def HMVMX_REPORT_FEAT
86 * Reports VT-x feature to the release log.
87 *
88 * @param a_uAllowed1 Mask of allowed-1 feature bits.
89 * @param a_uAllowed0 Mask of allowed-0 feature bits.
90 * @param a_StrDesc The description string to report.
91 * @param a_Featflag Mask of the feature to report.
92 */
93#define HMVMX_REPORT_FEAT(a_uAllowed1, a_uAllowed0, a_StrDesc, a_Featflag) \
94 do { \
95 if ((a_uAllowed1) & (a_Featflag)) \
96 { \
97 if ((a_uAllowed0) & (a_Featflag)) \
98 LogRel(("HM: " a_StrDesc " (must be set)\n")); \
99 else \
100 LogRel(("HM: " a_StrDesc "\n")); \
101 } \
102 else \
103 LogRel(("HM: " a_StrDesc " (must be cleared)\n")); \
104 } while (0)
105
106/** @def HMVMX_REPORT_ALLOWED_FEAT
107 * Reports an allowed VT-x feature to the release log.
108 *
109 * @param a_uAllowed1 Mask of allowed-1 feature bits.
110 * @param a_StrDesc The description string to report.
111 * @param a_FeatFlag Mask of the feature to report.
112 */
113#define HMVMX_REPORT_ALLOWED_FEAT(a_uAllowed1, a_StrDesc, a_FeatFlag) \
114 do { \
115 if ((a_uAllowed1) & (a_FeatFlag)) \
116 LogRel(("HM: " a_StrDesc "\n")); \
117 else \
118 LogRel(("HM: " a_StrDesc " not supported\n")); \
119 } while (0)
120
121/** @def HMVMX_REPORT_MSR_CAP
122 * Reports MSR feature capability.
123 *
124 * @param a_MsrCaps Mask of MSR feature bits.
125 * @param a_StrDesc The description string to report.
126 * @param a_fCap Mask of the feature to report.
127 */
128#define HMVMX_REPORT_MSR_CAP(a_MsrCaps, a_StrDesc, a_fCap) \
129 do { \
130 if ((a_MsrCaps) & (a_fCap)) \
131 LogRel(("HM: " a_StrDesc "\n")); \
132 } while (0)
133
134/** @def HMVMX_LOGREL_FEAT
135 * Dumps a feature flag from a bitmap of features to the release log.
136 *
137 * @param a_fVal The value of all the features.
138 * @param a_fMask The specific bitmask of the feature.
139 */
140#define HMVMX_LOGREL_FEAT(a_fVal, a_fMask) \
141 do { \
142 if ((a_fVal) & (a_fMask)) \
143 LogRel(("HM: %s\n", #a_fMask)); \
144 } while (0)
145
146
147/*********************************************************************************************************************************
148* Internal Functions *
149*********************************************************************************************************************************/
150static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM);
151static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
152static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
153static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
154static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
155static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
156static int hmR3InitFinalizeR3(PVM pVM);
157static int hmR3InitFinalizeR0(PVM pVM);
158static int hmR3InitFinalizeR0Intel(PVM pVM);
159static int hmR3InitFinalizeR0Amd(PVM pVM);
160static int hmR3TermCPU(PVM pVM);
161
162
163#ifdef VBOX_WITH_STATISTICS
164/**
165 * Returns the name of the hardware exception.
166 *
167 * @returns The name of the hardware exception.
168 * @param uVector The exception vector.
169 */
170static const char *hmR3GetXcptName(uint8_t uVector)
171{
172 switch (uVector)
173 {
174 case X86_XCPT_DE: return "#DE";
175 case X86_XCPT_DB: return "#DB";
176 case X86_XCPT_NMI: return "#NMI";
177 case X86_XCPT_BP: return "#BP";
178 case X86_XCPT_OF: return "#OF";
179 case X86_XCPT_BR: return "#BR";
180 case X86_XCPT_UD: return "#UD";
181 case X86_XCPT_NM: return "#NM";
182 case X86_XCPT_DF: return "#DF";
183 case X86_XCPT_CO_SEG_OVERRUN: return "#CO_SEG_OVERRUN";
184 case X86_XCPT_TS: return "#TS";
185 case X86_XCPT_NP: return "#NP";
186 case X86_XCPT_SS: return "#SS";
187 case X86_XCPT_GP: return "#GP";
188 case X86_XCPT_PF: return "#PF";
189 case X86_XCPT_MF: return "#MF";
190 case X86_XCPT_AC: return "#AC";
191 case X86_XCPT_MC: return "#MC";
192 case X86_XCPT_XF: return "#XF";
193 case X86_XCPT_VE: return "#VE";
194 case X86_XCPT_CP: return "#CP";
195 case X86_XCPT_VC: return "#VC";
196 case X86_XCPT_SX: return "#SX";
197 }
198 return "Reserved";
199}
200#endif /* VBOX_WITH_STATISTICS */
201
202
203/**
204 * Initializes the HM.
205 *
206 * This is the very first component to really do init after CFGM so that we can
207 * establish the predominant execution engine for the VM prior to initializing
208 * other modules. It takes care of NEM initialization if needed (HM disabled or
209 * not available in HW).
210 *
211 * If VT-x or AMD-V hardware isn't available, HM will try fall back on a native
212 * hypervisor API via NEM, and then back on raw-mode if that isn't available
213 * either. The fallback to raw-mode will not happen if /HM/HMForced is set
214 * (like for guest using SMP or 64-bit as well as for complicated guest like OS
215 * X, OS/2 and others).
216 *
217 * Note that a lot of the set up work is done in ring-0 and thus postponed till
218 * the ring-3 and ring-0 callback to HMR3InitCompleted.
219 *
220 * @returns VBox status code.
221 * @param pVM The cross context VM structure.
222 *
223 * @remarks Be careful with what we call here, since most of the VMM components
224 * are uninitialized.
225 */
226VMMR3_INT_DECL(int) HMR3Init(PVM pVM)
227{
228 LogFlowFunc(("\n"));
229
230 /*
231 * Assert alignment and sizes.
232 */
233 AssertCompileMemberAlignment(VM, hm.s, 32);
234 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
235
236 /*
237 * Register the saved state data unit.
238 */
239 int rc = SSMR3RegisterInternal(pVM, "HWACCM", 0, HM_SAVED_STATE_VERSION, sizeof(HM),
240 NULL, NULL, NULL,
241 NULL, hmR3Save, NULL,
242 NULL, hmR3Load, NULL);
243 if (RT_FAILURE(rc))
244 return rc;
245
246 /*
247 * Read configuration.
248 */
249 PCFGMNODE pCfgHm = CFGMR3GetChild(CFGMR3GetRoot(pVM), "HM/");
250
251 /*
252 * Validate the HM settings.
253 */
254 rc = CFGMR3ValidateConfig(pCfgHm, "/HM/",
255 "HMForced" /* implied 'true' these days */
256 "|UseNEMInstead"
257 "|FallbackToNEM"
258 "|FallbackToIEM"
259 "|EnableNestedPaging"
260 "|EnableUX"
261 "|EnableLargePages"
262 "|EnableVPID"
263 "|IBPBOnVMExit"
264 "|IBPBOnVMEntry"
265 "|SpecCtrlByHost"
266 "|L1DFlushOnSched"
267 "|L1DFlushOnVMEntry"
268 "|MDSClearOnSched"
269 "|MDSClearOnVMEntry"
270 "|TPRPatchingEnabled"
271 "|64bitEnabled"
272 "|Exclusive"
273 "|MaxResumeLoops"
274 "|VmxPleGap"
275 "|VmxPleWindow"
276 "|VmxLbr"
277 "|UseVmxPreemptTimer"
278 "|SvmPauseFilter"
279 "|SvmPauseFilterThreshold"
280 "|SvmVirtVmsaveVmload"
281 "|SvmVGif"
282 "|LovelyMesaDrvWorkaround"
283 "|MissingOS2TlbFlushWorkaround"
284 "|AlwaysInterceptVmxMovDRx"
285 , "" /* pszValidNodes */, "HM" /* pszWho */, 0 /* uInstance */);
286 if (RT_FAILURE(rc))
287 return rc;
288
289 /** @cfgm{/HM/HMForced, bool, false}
290 * Forces hardware virtualization, no falling back on raw-mode. HM must be
291 * enabled, i.e. /HMEnabled must be true. */
292 bool const fHMForced = true;
293#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
294 AssertRelease(pVM->fHMEnabled);
295#else
296 AssertRelease(!pVM->fHMEnabled);
297#endif
298
299 /** @cfgm{/HM/UseNEMInstead, bool, true}
300 * Don't use HM, use NEM instead. */
301 bool fUseNEMInstead = false;
302 rc = CFGMR3QueryBoolDef(pCfgHm, "UseNEMInstead", &fUseNEMInstead, false);
303 AssertRCReturn(rc, rc);
304 if (fUseNEMInstead && pVM->fHMEnabled)
305 {
306 LogRel(("HM: Setting fHMEnabled to false because fUseNEMInstead is set.\n"));
307 pVM->fHMEnabled = false;
308 }
309
310 /** @cfgm{/HM/FallbackToNEM, bool, true}
311 * Enables fallback on NEM. */
312 bool fFallbackToNEM = true;
313 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToNEM", &fFallbackToNEM, true);
314 AssertRCReturn(rc, rc);
315
316 /** @cfgm{/HM/FallbackToIEM, bool, false on AMD64 else true }
317 * Enables fallback on NEM. */
318#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
319 bool fFallbackToIEM = false;
320#else
321 bool fFallbackToIEM = true;
322#endif
323 rc = CFGMR3QueryBoolDef(pCfgHm, "FallbackToIEM", &fFallbackToIEM, fFallbackToIEM);
324 AssertRCReturn(rc, rc);
325
326 /** @cfgm{/HM/EnableNestedPaging, bool, false}
327 * Enables nested paging (aka extended page tables). */
328 bool fAllowNestedPaging = false;
329 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableNestedPaging", &fAllowNestedPaging, false);
330 AssertRCReturn(rc, rc);
331
332 /** @cfgm{/HM/EnableUX, bool, true}
333 * Enables the VT-x unrestricted execution feature. */
334 bool fAllowUnrestricted = true;
335 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableUX", &fAllowUnrestricted, true);
336 AssertRCReturn(rc, rc);
337
338 /** @cfgm{/HM/EnableLargePages, bool, false}
339 * Enables using large pages (2 MB) for guest memory, thus saving on (nested)
340 * page table walking and maybe better TLB hit rate in some cases. */
341 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableLargePages", &pVM->hm.s.fLargePages, false);
342 AssertRCReturn(rc, rc);
343
344 /** @cfgm{/HM/EnableVPID, bool, false}
345 * Enables the VT-x VPID feature. */
346 rc = CFGMR3QueryBoolDef(pCfgHm, "EnableVPID", &pVM->hm.s.vmx.fAllowVpid, false);
347 AssertRCReturn(rc, rc);
348
349 /** @cfgm{/HM/TPRPatchingEnabled, bool, false}
350 * Enables TPR patching for 32-bit windows guests with IO-APIC. */
351 rc = CFGMR3QueryBoolDef(pCfgHm, "TPRPatchingEnabled", &pVM->hm.s.fTprPatchingAllowed, false);
352 AssertRCReturn(rc, rc);
353
354 /** @cfgm{/HM/64bitEnabled, bool, 32-bit:false, 64-bit:true}
355 * Enables AMD64 cpu features.
356 * On 32-bit hosts this isn't default and require host CPU support. 64-bit hosts
357 * already have the support. */
358#ifdef VBOX_WITH_64_BITS_GUESTS
359 rc = CFGMR3QueryBoolDef(pCfgHm, "64bitEnabled", &pVM->hm.s.fAllow64BitGuestsCfg, HC_ARCH_BITS == 64);
360 AssertLogRelRCReturn(rc, rc);
361#else
362 pVM->hm.s.fAllow64BitGuestsCfg = false;
363#endif
364
365 /** @cfgm{/HM/VmxPleGap, uint32_t, 0}
366 * The pause-filter exiting gap in TSC ticks. When the number of ticks between
367 * two successive PAUSE instructions exceeds VmxPleGap, the CPU considers the
368 * latest PAUSE instruction to be start of a new PAUSE loop.
369 */
370 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleGap", &pVM->hm.s.vmx.cPleGapTicks, 0);
371 AssertRCReturn(rc, rc);
372
373 /** @cfgm{/HM/VmxPleWindow, uint32_t, 0}
374 * The pause-filter exiting window in TSC ticks. When the number of ticks
375 * between the current PAUSE instruction and first PAUSE of a loop exceeds
376 * VmxPleWindow, a VM-exit is triggered.
377 *
378 * Setting VmxPleGap and VmxPleGap to 0 disables pause-filter exiting.
379 */
380 rc = CFGMR3QueryU32Def(pCfgHm, "VmxPleWindow", &pVM->hm.s.vmx.cPleWindowTicks, 0);
381 AssertRCReturn(rc, rc);
382
383 /** @cfgm{/HM/VmxLbr, bool, false}
384 * Whether to enable LBR for the guest. This is disabled by default as it's only
385 * useful while debugging and enabling it causes a noticeable performance hit. */
386 rc = CFGMR3QueryBoolDef(pCfgHm, "VmxLbr", &pVM->hm.s.vmx.fLbrCfg, false);
387 AssertRCReturn(rc, rc);
388
389 /** @cfgm{/HM/SvmPauseFilterCount, uint16_t, 0}
390 * A counter that is decrement each time a PAUSE instruction is executed by the
391 * guest. When the counter is 0, a \#VMEXIT is triggered.
392 *
393 * Setting SvmPauseFilterCount to 0 disables pause-filter exiting.
394 */
395 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilter", &pVM->hm.s.svm.cPauseFilter, 0);
396 AssertRCReturn(rc, rc);
397
398 /** @cfgm{/HM/SvmPauseFilterThreshold, uint16_t, 0}
399 * The pause filter threshold in ticks. When the elapsed time (in ticks) between
400 * two successive PAUSE instructions exceeds SvmPauseFilterThreshold, the
401 * PauseFilter count is reset to its initial value. However, if PAUSE is
402 * executed PauseFilter times within PauseFilterThreshold ticks, a VM-exit will
403 * be triggered.
404 *
405 * Requires SvmPauseFilterCount to be non-zero for pause-filter threshold to be
406 * activated.
407 */
408 rc = CFGMR3QueryU16Def(pCfgHm, "SvmPauseFilterThreshold", &pVM->hm.s.svm.cPauseFilterThresholdTicks, 0);
409 AssertRCReturn(rc, rc);
410
411 /** @cfgm{/HM/SvmVirtVmsaveVmload, bool, true}
412 * Whether to make use of virtualized VMSAVE/VMLOAD feature of the CPU if it's
413 * available. */
414 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVirtVmsaveVmload", &pVM->hm.s.svm.fVirtVmsaveVmload, true);
415 AssertRCReturn(rc, rc);
416
417 /** @cfgm{/HM/SvmVGif, bool, true}
418 * Whether to make use of Virtual GIF (Global Interrupt Flag) feature of the CPU
419 * if it's available. */
420 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmVGif", &pVM->hm.s.svm.fVGif, true);
421 AssertRCReturn(rc, rc);
422
423 /** @cfgm{/HM/SvmLbrVirt, bool, false}
424 * Whether to make use of the LBR virtualization feature of the CPU if it's
425 * available. This is disabled by default as it's only useful while debugging
426 * and enabling it causes a small hit to performance. */
427 rc = CFGMR3QueryBoolDef(pCfgHm, "SvmLbrVirt", &pVM->hm.s.svm.fLbrVirt, false);
428 AssertRCReturn(rc, rc);
429
430 /** @cfgm{/HM/Exclusive, bool}
431 * Determines the init method for AMD-V and VT-x. If set to true, HM will do a
432 * global init for each host CPU. If false, we do local init each time we wish
433 * to execute guest code.
434 *
435 * On Windows, default is false due to the higher risk of conflicts with other
436 * hypervisors.
437 *
438 * On Mac OS X, this setting is ignored since the code does not handle local
439 * init when it utilizes the OS provided VT-x function, SUPR0EnableVTx().
440 */
441#if defined(RT_OS_DARWIN)
442 pVM->hm.s.fGlobalInit = true;
443#else
444 rc = CFGMR3QueryBoolDef(pCfgHm, "Exclusive", &pVM->hm.s.fGlobalInit,
445# if defined(RT_OS_WINDOWS)
446 false
447# else
448 true
449# endif
450 );
451 AssertLogRelRCReturn(rc, rc);
452#endif
453
454 /** @cfgm{/HM/MaxResumeLoops, uint32_t}
455 * The number of times to resume guest execution before we forcibly return to
456 * ring-3. The return value of RTThreadPreemptIsPendingTrusty in ring-0
457 * determines the default value. */
458 rc = CFGMR3QueryU32Def(pCfgHm, "MaxResumeLoops", &pVM->hm.s.cMaxResumeLoopsCfg, 0 /* set by R0 later */);
459 AssertLogRelRCReturn(rc, rc);
460
461 /** @cfgm{/HM/UseVmxPreemptTimer, bool}
462 * Whether to make use of the VMX-preemption timer feature of the CPU if it's
463 * available. */
464 rc = CFGMR3QueryBoolDef(pCfgHm, "UseVmxPreemptTimer", &pVM->hm.s.vmx.fUsePreemptTimerCfg, true);
465 AssertLogRelRCReturn(rc, rc);
466
467 /** @cfgm{/HM/IBPBOnVMExit, bool}
468 * Costly paranoia setting. */
469 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMExit", &pVM->hm.s.fIbpbOnVmExit, false);
470 AssertLogRelRCReturn(rc, rc);
471
472 /** @cfgm{/HM/IBPBOnVMEntry, bool}
473 * Costly paranoia setting. */
474 rc = CFGMR3QueryBoolDef(pCfgHm, "IBPBOnVMEntry", &pVM->hm.s.fIbpbOnVmEntry, false);
475 AssertLogRelRCReturn(rc, rc);
476
477 /** @cfgm{/HM/L1DFlushOnSched, bool, true}
478 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
479 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnSched", &pVM->hm.s.fL1dFlushOnSched, true);
480 AssertLogRelRCReturn(rc, rc);
481
482 /** @cfgm{/HM/L1DFlushOnVMEntry, bool}
483 * CVE-2018-3646 workaround, ignored on CPUs that aren't affected. */
484 rc = CFGMR3QueryBoolDef(pCfgHm, "L1DFlushOnVMEntry", &pVM->hm.s.fL1dFlushOnVmEntry, false);
485 AssertLogRelRCReturn(rc, rc);
486
487 /* Disable L1DFlushOnSched if L1DFlushOnVMEntry is enabled. */
488 if (pVM->hm.s.fL1dFlushOnVmEntry)
489 pVM->hm.s.fL1dFlushOnSched = false;
490
491 /** @cfgm{/HM/SpecCtrlByHost, bool}
492 * Another expensive paranoia setting. */
493 rc = CFGMR3QueryBoolDef(pCfgHm, "SpecCtrlByHost", &pVM->hm.s.fSpecCtrlByHost, false);
494 AssertLogRelRCReturn(rc, rc);
495
496 /** @cfgm{/HM/MDSClearOnSched, bool, true}
497 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
498 * ignored on CPUs that aren't affected. */
499 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnSched", &pVM->hm.s.fMdsClearOnSched, true);
500 AssertLogRelRCReturn(rc, rc);
501
502 /** @cfgm{/HM/MDSClearOnVmEntry, bool, false}
503 * CVE-2018-12126, CVE-2018-12130, CVE-2018-12127, CVE-2019-11091 workaround,
504 * ignored on CPUs that aren't affected. */
505 rc = CFGMR3QueryBoolDef(pCfgHm, "MDSClearOnVmEntry", &pVM->hm.s.fMdsClearOnVmEntry, false);
506 AssertLogRelRCReturn(rc, rc);
507
508 /* Disable MDSClearOnSched if MDSClearOnVmEntry is enabled. */
509 if (pVM->hm.s.fMdsClearOnVmEntry)
510 pVM->hm.s.fMdsClearOnSched = false;
511
512 /** @cfgm{/HM/LovelyMesaDrvWorkaround,bool}
513 * Workaround for mesa vmsvga 3d driver making incorrect assumptions about
514 * the hypervisor it is running under. */
515 bool fMesaWorkaround;
516 rc = CFGMR3QueryBoolDef(pCfgHm, "LovelyMesaDrvWorkaround", &fMesaWorkaround, false);
517 AssertLogRelRCReturn(rc, rc);
518 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
519 {
520 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
521 pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv = fMesaWorkaround;
522 }
523
524 /** @cfgm{/HM/MissingOS2TlbFlushWorkaround,bool}
525 * Workaround OS/2 not flushing the TLB after page directory and page table
526 * modifications when returning to protected mode from a real mode call
527 * (TESTCFG.SYS typically crashes). See ticketref:20625 for details. */
528 rc = CFGMR3QueryBoolDef(pCfgHm, "MissingOS2TlbFlushWorkaround", &pVM->hm.s.fMissingOS2TlbFlushWorkaround, false);
529 AssertLogRelRCReturn(rc, rc);
530
531 /** @cfgm{/HM/AlwaysInterceptVmxMovDRx,int8_t,0}
532 * Whether to always intercept MOV DRx when using VMX.
533 * The value is a tristate: 1 for always intercepting, -1 for lazy intercept,
534 * and 0 for default. The default means that it's always intercepted when the
535 * host DR6 contains bits not known to the guest.
536 *
537 * With the introduction of transactional synchronization extensions new
538 * instructions, aka TSX-NI or RTM, bit 16 in DR6 is cleared to indicate that a
539 * \#DB was related to a transaction. The bit is also cleared when writing zero
540 * to it, so guest lazily resetting DR6 by writing 0 to it, ends up with an
541 * unexpected value. Similiarly, bit 11 in DR7 is used to enabled RTM
542 * debugging support and therefore writable by the guest.
543 *
544 * Out of caution/paranoia, we will by default intercept DRx moves when setting
545 * DR6 to zero (on the host) doesn't result in 0xffff0ff0 (X86_DR6_RA1_MASK).
546 * Note that it seems DR6.RTM remains writable even after the microcode updates
547 * disabling TSX. */
548 rc = CFGMR3QueryS8Def(pCfgHm, "AlwaysInterceptVmxMovDRx", &pVM->hm.s.vmx.fAlwaysInterceptMovDRxCfg, 0);
549 AssertLogRelRCReturn(rc, rc);
550
551 /*
552 * Check if VT-x or AMD-v support according to the users wishes.
553 */
554 /** @todo SUPR3QueryVTCaps won't catch VERR_VMX_IN_VMX_ROOT_MODE or
555 * VERR_SVM_IN_USE. */
556 if (pVM->fHMEnabled)
557 {
558 uint32_t fCaps;
559 rc = SUPR3QueryVTCaps(&fCaps);
560 if (RT_SUCCESS(rc))
561 {
562 if (fCaps & SUPVTCAPS_AMD_V)
563 {
564 pVM->hm.s.svm.fSupported = true;
565 LogRel(("HM: HMR3Init: AMD-V%s\n", fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : ""));
566 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
567 }
568 else if (fCaps & SUPVTCAPS_VT_X)
569 {
570 const char *pszWhy;
571 rc = SUPR3QueryVTxSupported(&pszWhy);
572 if (RT_SUCCESS(rc))
573 {
574 pVM->hm.s.vmx.fSupported = true;
575 LogRel(("HM: HMR3Init: VT-x%s%s%s\n",
576 fCaps & SUPVTCAPS_NESTED_PAGING ? " w/ nested paging" : "",
577 fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST ? " and unrestricted guest execution" : "",
578 (fCaps & (SUPVTCAPS_NESTED_PAGING | SUPVTCAPS_VTX_UNRESTRICTED_GUEST)) ? " hw support" : ""));
579 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_HW_VIRT);
580 }
581 else
582 {
583 /*
584 * Before failing, try fallback to NEM if we're allowed to do that.
585 */
586 pVM->fHMEnabled = false;
587 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET);
588 if (fFallbackToNEM)
589 {
590 LogRel(("HM: HMR3Init: Attempting fall back to NEM: The host kernel does not support VT-x - %s\n", pszWhy));
591 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
592
593 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
594 if ( RT_SUCCESS(rc2)
595 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
596 rc = VINF_SUCCESS;
597 }
598 if (RT_FAILURE(rc))
599 return VMSetError(pVM, rc, RT_SRC_POS, "The host kernel does not support VT-x: %s\n", pszWhy);
600 }
601 }
602 else
603 AssertLogRelMsgFailedReturn(("SUPR3QueryVTCaps didn't return either AMD-V or VT-x flag set (%#x)!\n", fCaps),
604 VERR_INTERNAL_ERROR_5);
605
606 /*
607 * Disable nested paging and unrestricted guest execution now if they're
608 * configured so that CPUM can make decisions based on our configuration.
609 */
610 if ( fAllowNestedPaging
611 && (fCaps & SUPVTCAPS_NESTED_PAGING))
612 {
613 pVM->hm.s.fNestedPagingCfg = true;
614 if (fCaps & SUPVTCAPS_VT_X)
615 {
616 if ( fAllowUnrestricted
617 && (fCaps & SUPVTCAPS_VTX_UNRESTRICTED_GUEST))
618 pVM->hm.s.vmx.fUnrestrictedGuestCfg = true;
619 else
620 Assert(!pVM->hm.s.vmx.fUnrestrictedGuestCfg);
621 }
622 }
623 else
624 Assert(!pVM->hm.s.fNestedPagingCfg);
625 }
626 else
627 {
628 const char *pszMsg;
629 switch (rc)
630 {
631 case VERR_UNSUPPORTED_CPU: pszMsg = "Unknown CPU, VT-x or AMD-v features cannot be ascertained"; break;
632 case VERR_VMX_NO_VMX: pszMsg = "VT-x is not available"; break;
633 case VERR_VMX_MSR_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS"; break;
634 case VERR_VMX_MSR_ALL_VMX_DISABLED: pszMsg = "VT-x is disabled in the BIOS for all CPU modes"; break;
635 case VERR_VMX_MSR_LOCKING_FAILED: pszMsg = "Failed to enable and lock VT-x features"; break;
636 case VERR_SVM_NO_SVM: pszMsg = "AMD-V is not available"; break;
637 case VERR_SVM_DISABLED: pszMsg = "AMD-V is disabled in the BIOS (or by the host OS)"; break;
638 case VERR_SUP_DRIVERLESS: pszMsg = "Driverless mode"; break;
639 default:
640 return VMSetError(pVM, rc, RT_SRC_POS, "SUPR3QueryVTCaps failed with %Rrc", rc);
641 }
642
643 /*
644 * Before failing, try fallback to NEM if we're allowed to do that.
645 */
646 pVM->fHMEnabled = false;
647 if (fFallbackToNEM)
648 {
649 LogRel(("HM: HMR3Init: Attempting fall back to NEM: %s\n", pszMsg));
650 int rc2 = NEMR3Init(pVM, true /*fFallback*/, fHMForced);
651 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
652 if ( RT_SUCCESS(rc2)
653 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET)
654 {
655 rc = VINF_SUCCESS;
656
657 /* For some reason, HM is in charge or large pages. Make sure to enable them: */
658 PGMSetLargePageUsage(pVM, pVM->hm.s.fLargePages);
659 }
660 }
661
662 /*
663 * Then try fall back on IEM if NEM isn't available and we're allowed to.
664 */
665 if (RT_FAILURE(rc))
666 {
667 if ( fFallbackToIEM
668 && (!fFallbackToNEM || rc == VERR_NEM_NOT_AVAILABLE || rc == VERR_SUP_DRIVERLESS))
669 {
670 LogRel(("HM: HMR3Init: Falling back on IEM: %s\n", !fFallbackToNEM ? pszMsg : "NEM not available"));
671 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_IEM);
672#ifdef VBOX_WITH_PGM_NEM_MODE
673 PGMR3EnableNemMode(pVM);
674#endif
675 }
676 else
677 return VM_SET_ERROR(pVM, rc, pszMsg);
678 }
679 }
680 }
681 else
682 {
683 /*
684 * Disabled HM mean raw-mode, unless NEM is supposed to be used.
685 */
686 rc = VERR_NEM_NOT_AVAILABLE;
687 if (fUseNEMInstead)
688 {
689 rc = NEMR3Init(pVM, false /*fFallback*/, true);
690 ASMCompilerBarrier(); /* NEMR3Init may have changed bMainExecutionEngine. */
691 if (RT_SUCCESS(rc))
692 {
693 /* For some reason, HM is in charge or large pages. Make sure to enable them: */
694 PGMSetLargePageUsage(pVM, pVM->hm.s.fLargePages);
695 }
696 else if (!fFallbackToIEM || rc != VERR_NEM_NOT_AVAILABLE)
697 return rc;
698 }
699
700 if (fFallbackToIEM && rc == VERR_NEM_NOT_AVAILABLE)
701 {
702 LogRel(("HM: HMR3Init: Falling back on IEM%s\n", fUseNEMInstead ? ": NEM not available" : ""));
703 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_IEM);
704#ifdef VBOX_WITH_PGM_NEM_MODE
705 PGMR3EnableNemMode(pVM);
706#endif
707 }
708
709 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NOT_SET
710 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT /* paranoia */)
711 return VM_SET_ERROR(pVM, rc, "Misconfigured VM: No guest execution engine available!");
712 }
713
714 if (pVM->fHMEnabled)
715 {
716 /*
717 * Register info handlers now that HM is used for sure.
718 */
719 rc = DBGFR3InfoRegisterInternalEx(pVM, "hm", "Dumps HM info.", hmR3Info, DBGFINFO_FLAGS_ALL_EMTS);
720 AssertRCReturn(rc, rc);
721
722 rc = DBGFR3InfoRegisterInternalEx(pVM, "hmeventpending", "Dumps the pending HM event.", hmR3InfoEventPending,
723 DBGFINFO_FLAGS_ALL_EMTS);
724 AssertRCReturn(rc, rc);
725
726 rc = DBGFR3InfoRegisterInternalEx(pVM, "svmvmcbcache", "Dumps the HM SVM nested-guest VMCB cache.",
727 hmR3InfoSvmNstGstVmcbCache, DBGFINFO_FLAGS_ALL_EMTS);
728 AssertRCReturn(rc, rc);
729
730 rc = DBGFR3InfoRegisterInternalEx(pVM, "lbr", "Dumps the HM LBR info.", hmR3InfoLbr, DBGFINFO_FLAGS_ALL_EMTS);
731 AssertRCReturn(rc, rc);
732 }
733
734 Assert(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET);
735 return VINF_SUCCESS;
736}
737
738
739/**
740 * Initializes HM components after ring-3 phase has been fully initialized.
741 *
742 * @returns VBox status code.
743 * @param pVM The cross context VM structure.
744 */
745static int hmR3InitFinalizeR3(PVM pVM)
746{
747 LogFlowFunc(("\n"));
748
749 if (!HMIsEnabled(pVM))
750 return VINF_SUCCESS;
751
752 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
753 {
754 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
755 pVCpu->hm.s.fActive = false;
756 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu); /* Is safe to call now since GIMR3Init() has completed. */
757 pVCpu->hm.s.fGCMTrapXcptDE = GCMShouldTrapXcptDE(pVCpu); /* Is safe to call now since GCMR3Init() has completed. */
758 }
759
760#if defined(RT_ARCH_AMD64) ||defined(RT_ARCH_X86)
761 /*
762 * Check if L1D flush is needed/possible.
763 */
764 if ( !g_CpumHostFeatures.s.fFlushCmd
765 || g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
766 || g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Core7_End
767 || g_CpumHostFeatures.s.fArchVmmNeedNotFlushL1d
768 || g_CpumHostFeatures.s.fArchRdclNo)
769 pVM->hm.s.fL1dFlushOnSched = pVM->hm.s.fL1dFlushOnVmEntry = false;
770
771 /*
772 * Check if MDS flush is needed/possible.
773 * On atoms and knight family CPUs, we will only allow clearing on scheduling.
774 */
775 if ( !g_CpumHostFeatures.s.fMdsClear
776 || g_CpumHostFeatures.s.fArchMdsNo)
777 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
778 else if ( ( g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Atom_Airmount
779 && g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Atom_End)
780 || ( g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Phi_KnightsLanding
781 && g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Phi_End))
782 {
783 if (!pVM->hm.s.fMdsClearOnSched)
784 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry;
785 pVM->hm.s.fMdsClearOnVmEntry = false;
786 }
787 else if ( g_CpumHostFeatures.s.enmMicroarch < kCpumMicroarch_Intel_Core7_Nehalem
788 || g_CpumHostFeatures.s.enmMicroarch >= kCpumMicroarch_Intel_Core7_End)
789 pVM->hm.s.fMdsClearOnSched = pVM->hm.s.fMdsClearOnVmEntry = false;
790#endif
791
792 /*
793 * Statistics.
794 */
795#ifdef VBOX_WITH_STATISTICS
796 STAM_REG(pVM, &pVM->hm.s.StatTprPatchSuccess, STAMTYPE_COUNTER, "/HM/TPR/Patch/Success", STAMUNIT_OCCURENCES, "Number of times an instruction was successfully patched.");
797 STAM_REG(pVM, &pVM->hm.s.StatTprPatchFailure, STAMTYPE_COUNTER, "/HM/TPR/Patch/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful patch attempts.");
798 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessCr8, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessCR8", STAMUNIT_OCCURENCES, "Number of instruction replacements by MOV CR8.");
799 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceSuccessVmc, STAMTYPE_COUNTER, "/HM/TPR/Replace/SuccessVMC", STAMUNIT_OCCURENCES, "Number of instruction replacements by VMMCALL.");
800 STAM_REG(pVM, &pVM->hm.s.StatTprReplaceFailure, STAMTYPE_COUNTER, "/HM/TPR/Replace/Failed", STAMUNIT_OCCURENCES, "Number of unsuccessful replace attempts.");
801#endif
802
803#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
804 bool const fCpuSupportsVmx = ASMIsIntelCpu() || ASMIsViaCentaurCpu() || ASMIsShanghaiCpu();
805#else
806 bool const fCpuSupportsVmx = false;
807#endif
808 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
809 {
810 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
811 PHMCPU pHmCpu = &pVCpu->hm.s;
812 int rc;
813
814# define HM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
815 rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
816 AssertRC(rc); \
817 } while (0)
818# define HM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
819 HM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
820
821#ifdef VBOX_WITH_STATISTICS
822 HM_REG_PROFILE(&pHmCpu->StatPoke, "/PROF/CPU%u/HM/Poke", "Profiling of RTMpPokeCpu.");
823 HM_REG_PROFILE(&pHmCpu->StatSpinPoke, "/PROF/CPU%u/HM/PokeWait", "Profiling of poke wait.");
824 HM_REG_PROFILE(&pHmCpu->StatSpinPokeFailed, "/PROF/CPU%u/HM/PokeWaitFailed", "Profiling of poke wait when RTMpPokeCpu fails.");
825 HM_REG_PROFILE(&pHmCpu->StatEntry, "/PROF/CPU%u/HM/Entry", "Profiling of entry until entering GC.");
826 HM_REG_PROFILE(&pHmCpu->StatPreExit, "/PROF/CPU%u/HM/SwitchFromGC_1", "Profiling of pre-exit processing after returning from GC.");
827 HM_REG_PROFILE(&pHmCpu->StatExitHandling, "/PROF/CPU%u/HM/SwitchFromGC_2", "Profiling of exit handling (longjmps not included!)");
828 HM_REG_PROFILE(&pHmCpu->StatExitIO, "/PROF/CPU%u/HM/SwitchFromGC_2/IO", "I/O.");
829 HM_REG_PROFILE(&pHmCpu->StatExitMovCRx, "/PROF/CPU%u/HM/SwitchFromGC_2/MovCRx", "MOV CRx.");
830 HM_REG_PROFILE(&pHmCpu->StatExitXcptNmi, "/PROF/CPU%u/HM/SwitchFromGC_2/XcptNmi", "Exceptions, NMIs.");
831 HM_REG_PROFILE(&pHmCpu->StatExitVmentry, "/PROF/CPU%u/HM/SwitchFromGC_2/Vmentry", "VMLAUNCH/VMRESUME on Intel or VMRUN on AMD.");
832 HM_REG_PROFILE(&pHmCpu->StatImportGuestState, "/PROF/CPU%u/HM/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
833 HM_REG_PROFILE(&pHmCpu->StatExportGuestState, "/PROF/CPU%u/HM/ExportGuestState", "Profiling of exporting guest state to hardware before VM-entry.");
834 HM_REG_PROFILE(&pHmCpu->StatLoadGuestFpuState, "/PROF/CPU%u/HM/LoadGuestFpuState", "Profiling of CPUMR0LoadGuestFPU.");
835 HM_REG_PROFILE(&pHmCpu->StatInGC, "/PROF/CPU%u/HM/InGC", "Profiling of execution of guest-code in hardware.");
836# ifdef HM_PROFILE_EXIT_DISPATCH
837 HM_REG_STAT(&pHmCpu->StatExitDispatch, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL,
838 "/PROF/CPU%u/HM/ExitDispatch", "Profiling the dispatching of exit handlers.");
839# endif
840#endif
841# define HM_REG_COUNTER(a, b, desc) HM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
842
843 HM_REG_COUNTER(&pHmCpu->StatImportGuestStateFallback, "/HM/CPU%u/ImportGuestStateFallback", "Times vmxHCImportGuestState took the fallback code path.");
844 HM_REG_COUNTER(&pHmCpu->StatReadToTransientFallback, "/HM/CPU%u/ReadToTransientFallback", "Times vmxHCReadToTransient took the fallback code path.");
845#ifdef VBOX_WITH_STATISTICS
846 HM_REG_COUNTER(&pHmCpu->StatExitAll, "/HM/CPU%u/Exit/All", "Total exits (excludes nested-guest and debug loops exits).");
847 HM_REG_COUNTER(&pHmCpu->StatDebugExitAll, "/HM/CPU%u/Exit/DebugAll", "Total debug-loop exits.");
848 HM_REG_COUNTER(&pHmCpu->StatNestedExitAll, "/HM/CPU%u/ExitNestedGuest/All", "Total nested-guest exits.");
849 HM_REG_COUNTER(&pHmCpu->StatExitShadowNM, "/HM/CPU%u/Exit/Trap/Shw/#NM", "Shadow #NM (device not available, no math co-processor) exception.");
850 HM_REG_COUNTER(&pHmCpu->StatExitGuestNM, "/HM/CPU%u/Exit/Trap/Gst/#NM", "Guest #NM (device not available, no math co-processor) exception.");
851 HM_REG_COUNTER(&pHmCpu->StatExitShadowPF, "/HM/CPU%u/Exit/Trap/Shw/#PF", "Shadow #PF (page fault) exception.");
852 HM_REG_COUNTER(&pHmCpu->StatExitShadowPFEM, "/HM/CPU%u/Exit/Trap/Shw/#PF-EM", "#PF (page fault) exception going back to ring-3 for emulating the instruction.");
853 HM_REG_COUNTER(&pHmCpu->StatExitGuestPF, "/HM/CPU%u/Exit/Trap/Gst/#PF", "Guest #PF (page fault) exception.");
854 HM_REG_COUNTER(&pHmCpu->StatExitGuestUD, "/HM/CPU%u/Exit/Trap/Gst/#UD", "Guest #UD (undefined opcode) exception.");
855 HM_REG_COUNTER(&pHmCpu->StatExitGuestSS, "/HM/CPU%u/Exit/Trap/Gst/#SS", "Guest #SS (stack-segment fault) exception.");
856 HM_REG_COUNTER(&pHmCpu->StatExitGuestNP, "/HM/CPU%u/Exit/Trap/Gst/#NP", "Guest #NP (segment not present) exception.");
857 HM_REG_COUNTER(&pHmCpu->StatExitGuestTS, "/HM/CPU%u/Exit/Trap/Gst/#TS", "Guest #TS (task switch) exception.");
858 HM_REG_COUNTER(&pHmCpu->StatExitGuestOF, "/HM/CPU%u/Exit/Trap/Gst/#OF", "Guest #OF (overflow) exception.");
859 HM_REG_COUNTER(&pHmCpu->StatExitGuestGP, "/HM/CPU%u/Exit/Trap/Gst/#GP", "Guest #GP (general protection) exception.");
860 HM_REG_COUNTER(&pHmCpu->StatExitGuestDE, "/HM/CPU%u/Exit/Trap/Gst/#DE", "Guest #DE (divide error) exception.");
861 HM_REG_COUNTER(&pHmCpu->StatExitGuestDF, "/HM/CPU%u/Exit/Trap/Gst/#DF", "Guest #DF (double fault) exception.");
862 HM_REG_COUNTER(&pHmCpu->StatExitGuestBR, "/HM/CPU%u/Exit/Trap/Gst/#BR", "Guest #BR (boundary range exceeded) exception.");
863#endif
864 HM_REG_COUNTER(&pHmCpu->StatExitGuestAC, "/HM/CPU%u/Exit/Trap/Gst/#AC", "Guest #AC (alignment check) exception.");
865 if (fCpuSupportsVmx)
866 HM_REG_COUNTER(&pHmCpu->StatExitGuestACSplitLock, "/HM/CPU%u/Exit/Trap/Gst/#AC-split-lock", "Guest triggered #AC due to split-lock being enabled on the host (interpreted).");
867#ifdef VBOX_WITH_STATISTICS
868 HM_REG_COUNTER(&pHmCpu->StatExitGuestDB, "/HM/CPU%u/Exit/Trap/Gst/#DB", "Guest #DB (debug) exception.");
869 HM_REG_COUNTER(&pHmCpu->StatExitGuestMF, "/HM/CPU%u/Exit/Trap/Gst/#MF", "Guest #MF (x87 FPU error, math fault) exception.");
870 HM_REG_COUNTER(&pHmCpu->StatExitGuestBP, "/HM/CPU%u/Exit/Trap/Gst/#BP", "Guest #BP (breakpoint) exception.");
871 HM_REG_COUNTER(&pHmCpu->StatExitGuestXF, "/HM/CPU%u/Exit/Trap/Gst/#XF", "Guest #XF (extended math fault, SIMD FPU) exception.");
872 HM_REG_COUNTER(&pHmCpu->StatExitGuestXcpUnk, "/HM/CPU%u/Exit/Trap/Gst/Other", "Other guest exceptions.");
873 HM_REG_COUNTER(&pHmCpu->StatExitRdmsr, "/HM/CPU%u/Exit/Instr/Rdmsr", "MSR read.");
874 HM_REG_COUNTER(&pHmCpu->StatExitWrmsr, "/HM/CPU%u/Exit/Instr/Wrmsr", "MSR write.");
875 HM_REG_COUNTER(&pHmCpu->StatExitDRxWrite, "/HM/CPU%u/Exit/Instr/DR-Write", "Debug register write.");
876 HM_REG_COUNTER(&pHmCpu->StatExitDRxRead, "/HM/CPU%u/Exit/Instr/DR-Read", "Debug register read.");
877 HM_REG_COUNTER(&pHmCpu->StatExitCR0Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
878 HM_REG_COUNTER(&pHmCpu->StatExitCR2Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
879 HM_REG_COUNTER(&pHmCpu->StatExitCR3Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
880 HM_REG_COUNTER(&pHmCpu->StatExitCR4Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
881 HM_REG_COUNTER(&pHmCpu->StatExitCR8Read, "/HM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
882 HM_REG_COUNTER(&pHmCpu->StatExitCR0Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
883 HM_REG_COUNTER(&pHmCpu->StatExitCR2Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
884 HM_REG_COUNTER(&pHmCpu->StatExitCR3Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
885 HM_REG_COUNTER(&pHmCpu->StatExitCR4Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
886 HM_REG_COUNTER(&pHmCpu->StatExitCR8Write, "/HM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
887 HM_REG_COUNTER(&pHmCpu->StatExitClts, "/HM/CPU%u/Exit/Instr/CLTS", "CLTS instruction.");
888 HM_REG_COUNTER(&pHmCpu->StatExitLmsw, "/HM/CPU%u/Exit/Instr/LMSW", "LMSW instruction.");
889 HM_REG_COUNTER(&pHmCpu->StatExitXdtrAccess, "/HM/CPU%u/Exit/Instr/XdtrAccess", "GDTR, IDTR, LDTR access.");
890 HM_REG_COUNTER(&pHmCpu->StatExitIOWrite, "/HM/CPU%u/Exit/Instr/IO/Write", "I/O write.");
891 HM_REG_COUNTER(&pHmCpu->StatExitIORead, "/HM/CPU%u/Exit/Instr/IO/Read", "I/O read.");
892 HM_REG_COUNTER(&pHmCpu->StatExitIOStringWrite, "/HM/CPU%u/Exit/Instr/IO/WriteString", "String I/O write.");
893 HM_REG_COUNTER(&pHmCpu->StatExitIOStringRead, "/HM/CPU%u/Exit/Instr/IO/ReadString", "String I/O read.");
894 HM_REG_COUNTER(&pHmCpu->StatExitIntWindow, "/HM/CPU%u/Exit/IntWindow", "Interrupt-window exit. Guest is ready to receive interrupts.");
895 HM_REG_COUNTER(&pHmCpu->StatExitExtInt, "/HM/CPU%u/Exit/ExtInt", "Physical maskable interrupt (host).");
896#endif
897 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGC, "/HM/CPU%u/Exit/HostNmiInGC", "Host NMI received while in guest context.");
898 HM_REG_COUNTER(&pHmCpu->StatExitHostNmiInGCIpi, "/HM/CPU%u/Exit/HostNmiInGCIpi", "Host NMI received while in guest context dispatched using IPIs.");
899 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/Exit/PreemptTimer", "VMX-preemption timer expired.");
900#ifdef VBOX_WITH_STATISTICS
901 HM_REG_COUNTER(&pHmCpu->StatExitTprBelowThreshold, "/HM/CPU%u/Exit/TprBelowThreshold", "TPR lowered below threshold by the guest.");
902 HM_REG_COUNTER(&pHmCpu->StatExitTaskSwitch, "/HM/CPU%u/Exit/TaskSwitch", "Task switch caused through task gate in IDT.");
903 HM_REG_COUNTER(&pHmCpu->StatExitApicAccess, "/HM/CPU%u/Exit/ApicAccess", "APIC access. Guest attempted to access memory at a physical address on the APIC-access page.");
904
905 HM_REG_COUNTER(&pHmCpu->StatSwitchTprMaskedIrq, "/HM/CPU%u/Switch/TprMaskedIrq", "PDMGetInterrupt() signals TPR masks pending Irq.");
906 HM_REG_COUNTER(&pHmCpu->StatSwitchGuestIrq, "/HM/CPU%u/Switch/IrqPending", "PDMGetInterrupt() cleared behind our back!?!.");
907 HM_REG_COUNTER(&pHmCpu->StatSwitchPendingHostIrq, "/HM/CPU%u/Switch/PendingHostIrq", "Exit to ring-3 due to pending host interrupt before executing guest code.");
908 HM_REG_COUNTER(&pHmCpu->StatSwitchHmToR3FF, "/HM/CPU%u/Switch/HmToR3FF", "Exit to ring-3 due to pending timers, EMT rendezvous, critical section etc.");
909 HM_REG_COUNTER(&pHmCpu->StatSwitchVmReq, "/HM/CPU%u/Switch/VmReq", "Exit to ring-3 due to pending VM requests.");
910 HM_REG_COUNTER(&pHmCpu->StatSwitchPgmPoolFlush, "/HM/CPU%u/Switch/PgmPoolFlush", "Exit to ring-3 due to pending PGM pool flush.");
911 HM_REG_COUNTER(&pHmCpu->StatSwitchDma, "/HM/CPU%u/Switch/PendingDma", "Exit to ring-3 due to pending DMA requests.");
912 HM_REG_COUNTER(&pHmCpu->StatSwitchExitToR3, "/HM/CPU%u/Switch/ExitToR3", "Exit to ring-3 (total).");
913 HM_REG_COUNTER(&pHmCpu->StatSwitchLongJmpToR3, "/HM/CPU%u/Switch/LongJmpToR3", "Longjump to ring-3.");
914 HM_REG_COUNTER(&pHmCpu->StatSwitchMaxResumeLoops, "/HM/CPU%u/Switch/MaxResumeLoops", "Maximum VMRESUME inner-loop counter reached.");
915 HM_REG_COUNTER(&pHmCpu->StatSwitchHltToR3, "/HM/CPU%u/Switch/HltToR3", "HLT causing us to go to ring-3.");
916 HM_REG_COUNTER(&pHmCpu->StatSwitchApicAccessToR3, "/HM/CPU%u/Switch/ApicAccessToR3", "APIC access causing us to go to ring-3.");
917#endif
918 HM_REG_COUNTER(&pHmCpu->StatSwitchPreempt, "/HM/CPU%u/Switch/Preempting", "EMT has been preempted while in HM context.");
919#ifdef VBOX_WITH_STATISTICS
920 HM_REG_COUNTER(&pHmCpu->StatSwitchNstGstVmexit, "/HM/CPU%u/Switch/NstGstVmexit", "Nested-guest VM-exit occurred.");
921
922 HM_REG_COUNTER(&pHmCpu->StatInjectInterrupt, "/HM/CPU%u/EventInject/Interrupt", "Injected an external interrupt into the guest.");
923 HM_REG_COUNTER(&pHmCpu->StatInjectXcpt, "/HM/CPU%u/EventInject/Trap", "Injected an exception into the guest.");
924 HM_REG_COUNTER(&pHmCpu->StatInjectReflect, "/HM/CPU%u/EventInject/Reflect", "Reflecting an exception caused due to event injection.");
925 HM_REG_COUNTER(&pHmCpu->StatInjectConvertDF, "/HM/CPU%u/EventInject/ReflectDF", "Injected a converted #DF caused due to event injection.");
926 HM_REG_COUNTER(&pHmCpu->StatInjectInterpret, "/HM/CPU%u/EventInject/Interpret", "Falling back to interpreter for handling exception caused due to event injection.");
927 HM_REG_COUNTER(&pHmCpu->StatInjectReflectNPF, "/HM/CPU%u/EventInject/ReflectNPF", "Reflecting event that caused an EPT violation / nested #PF.");
928
929 HM_REG_COUNTER(&pHmCpu->StatFlushPage, "/HM/CPU%u/Flush/Page", "Invalidating a guest page on all guest CPUs.");
930 HM_REG_COUNTER(&pHmCpu->StatFlushPageManual, "/HM/CPU%u/Flush/Page/Virt", "Invalidating a guest page using guest-virtual address.");
931 HM_REG_COUNTER(&pHmCpu->StatFlushPhysPageManual, "/HM/CPU%u/Flush/Page/Phys", "Invalidating a guest page using guest-physical address.");
932 HM_REG_COUNTER(&pHmCpu->StatFlushTlb, "/HM/CPU%u/Flush/TLB", "Forcing a full guest-TLB flush (ring-0).");
933 HM_REG_COUNTER(&pHmCpu->StatFlushTlbManual, "/HM/CPU%u/Flush/TLB/Manual", "Request a full guest-TLB flush.");
934 HM_REG_COUNTER(&pHmCpu->StatFlushTlbNstGst, "/HM/CPU%u/Flush/TLB/NestedGuest", "Request a nested-guest-TLB flush.");
935 HM_REG_COUNTER(&pHmCpu->StatFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/CpuSwitch", "Forcing a full guest-TLB flush due to host-CPU reschedule or ASID-limit hit by another guest-VCPU.");
936 HM_REG_COUNTER(&pHmCpu->StatNoFlushTlbWorldSwitch, "/HM/CPU%u/Flush/TLB/Skipped", "No TLB flushing required.");
937 HM_REG_COUNTER(&pHmCpu->StatFlushEntire, "/HM/CPU%u/Flush/TLB/Entire", "Flush the entire TLB (host + guest).");
938 HM_REG_COUNTER(&pHmCpu->StatFlushAsid, "/HM/CPU%u/Flush/TLB/ASID", "Flushed guest-TLB entries for the current VPID.");
939 HM_REG_COUNTER(&pHmCpu->StatFlushNestedPaging, "/HM/CPU%u/Flush/TLB/NestedPaging", "Flushed guest-TLB entries for the current EPT.");
940 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgVirt, "/HM/CPU%u/Flush/TLB/InvlpgVirt", "Invalidated a guest-TLB entry for a guest-virtual address.");
941 HM_REG_COUNTER(&pHmCpu->StatFlushTlbInvlpgPhys, "/HM/CPU%u/Flush/TLB/InvlpgPhys", "Currently not possible, flushes entire guest-TLB.");
942 HM_REG_COUNTER(&pHmCpu->StatTlbShootdown, "/HM/CPU%u/Flush/Shootdown/Page", "Inter-VCPU request to flush queued guest page.");
943 HM_REG_COUNTER(&pHmCpu->StatTlbShootdownFlush, "/HM/CPU%u/Flush/Shootdown/TLB", "Inter-VCPU request to flush entire guest-TLB.");
944
945 HM_REG_COUNTER(&pHmCpu->StatTscParavirt, "/HM/CPU%u/TSC/Paravirt", "Paravirtualized TSC in effect.");
946 HM_REG_COUNTER(&pHmCpu->StatTscOffset, "/HM/CPU%u/TSC/Offset", "TSC offsetting is in effect.");
947 HM_REG_COUNTER(&pHmCpu->StatTscIntercept, "/HM/CPU%u/TSC/Intercept", "Intercept TSC accesses.");
948
949 HM_REG_COUNTER(&pHmCpu->StatDRxArmed, "/HM/CPU%u/Debug/Armed", "Loaded guest-debug state while loading guest-state.");
950 HM_REG_COUNTER(&pHmCpu->StatDRxContextSwitch, "/HM/CPU%u/Debug/ContextSwitch", "Loaded guest-debug state on MOV DRx.");
951 HM_REG_COUNTER(&pHmCpu->StatDRxIoCheck, "/HM/CPU%u/Debug/IOCheck", "Checking for I/O breakpoint.");
952
953 HM_REG_COUNTER(&pHmCpu->StatExportMinimal, "/HM/CPU%u/Export/Minimal", "VM-entry exporting minimal guest-state.");
954 HM_REG_COUNTER(&pHmCpu->StatExportFull, "/HM/CPU%u/Export/Full", "VM-entry exporting the full guest-state.");
955 HM_REG_COUNTER(&pHmCpu->StatLoadGuestFpu, "/HM/CPU%u/Export/GuestFpu", "VM-entry loading the guest-FPU state.");
956 HM_REG_COUNTER(&pHmCpu->StatExportHostState, "/HM/CPU%u/Export/HostState", "VM-entry exporting host-state.");
957
958 if (fCpuSupportsVmx)
959 {
960 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRip, "/HM/CPU%u/WriteHostRIP", "Number of VMX_VMCS_HOST_RIP instructions.");
961 HM_REG_COUNTER(&pHmCpu->StatVmxWriteHostRsp, "/HM/CPU%u/WriteHostRSP", "Number of VMX_VMCS_HOST_RSP instructions.");
962 HM_REG_COUNTER(&pHmCpu->StatVmxVmLaunch, "/HM/CPU%u/VMLaunch", "Number of VM-entries using VMLAUNCH.");
963 HM_REG_COUNTER(&pHmCpu->StatVmxVmResume, "/HM/CPU%u/VMResume", "Number of VM-entries using VMRESUME.");
964 }
965
966 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelBase, "/HM/CPU%u/VMXCheck/RMSelBase", "Could not use VMX due to unsuitable real-mode selector base.");
967 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelLimit, "/HM/CPU%u/VMXCheck/RMSelLimit", "Could not use VMX due to unsuitable real-mode selector limit.");
968 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRmSelAttr, "/HM/CPU%u/VMXCheck/RMSelAttrs", "Could not use VMX due to unsuitable real-mode selector attributes.");
969
970 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelBase, "/HM/CPU%u/VMXCheck/V86SelBase", "Could not use VMX due to unsuitable v8086-mode selector base.");
971 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelLimit, "/HM/CPU%u/VMXCheck/V86SelLimit", "Could not use VMX due to unsuitable v8086-mode selector limit.");
972 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadV86SelAttr, "/HM/CPU%u/VMXCheck/V86SelAttrs", "Could not use VMX due to unsuitable v8086-mode selector attributes.");
973
974 HM_REG_COUNTER(&pHmCpu->StatVmxCheckRmOk, "/HM/CPU%u/VMXCheck/VMX_RM", "VMX execution in real (V86) mode OK.");
975 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadSel, "/HM/CPU%u/VMXCheck/Selector", "Could not use VMX due to unsuitable selector.");
976 HM_REG_COUNTER(&pHmCpu->StatVmxCheckBadRpl, "/HM/CPU%u/VMXCheck/RPL", "Could not use VMX due to unsuitable RPL.");
977 HM_REG_COUNTER(&pHmCpu->StatVmxCheckPmOk, "/HM/CPU%u/VMXCheck/VMX_PM", "VMX execution in protected mode OK.");
978 HM_REG_COUNTER(&pHmCpu->StatVmxCheck1, "/HM/CPU%u/VMXCheck/1", "Could not use VMX due to unsuitable state and no VMMDev heap");
979 HM_REG_COUNTER(&pHmCpu->StatVmxCheck2, "/HM/CPU%u/VMXCheck/2", "CR0/CR4 fixed stuff.");
980 HM_REG_COUNTER(&pHmCpu->StatVmxCheckDisabled, "/HM/CPU%u/VMXCheck/Disabled", "VMX is not enabled.");
981 HM_REG_COUNTER(&pHmCpu->StatVmxCheckOk, "/HM/CPU%u/VMXCheck/Ok", "We could do VMX!");
982#endif
983 if (fCpuSupportsVmx)
984 {
985 HM_REG_COUNTER(&pHmCpu->StatExitPreemptTimer, "/HM/CPU%u/PreemptTimer", "VMX-preemption timer fired.");
986 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionReusingDeadline, "/HM/CPU%u/PreemptTimer/ReusingDeadline", "VMX-preemption timer arming logic using previously calculated deadline");
987 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionReusingDeadlineExpired, "/HM/CPU%u/PreemptTimer/ReusingDeadlineExpired", "VMX-preemption timer arming logic found previous deadline already expired (ignored)");
988 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionRecalcingDeadline, "/HM/CPU%u/PreemptTimer/RecalcingDeadline", "VMX-preemption timer arming logic recalculating the deadline (slightly expensive)");
989 HM_REG_COUNTER(&pHmCpu->StatVmxPreemptionRecalcingDeadlineExpired, "/HM/CPU%u/PreemptTimer/RecalcingDeadlineExpired", "VMX-preemption timer arming logic found recalculated deadline expired (ignored)");
990 }
991#ifdef VBOX_WITH_STATISTICS
992 /*
993 * Guest Exit reason stats.
994 */
995 if (fCpuSupportsVmx)
996 {
997 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
998 {
999 const char *pszExitName = HMGetVmxExitName(j);
1000 if (pszExitName)
1001 {
1002 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1003 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
1004 AssertRCReturn(rc, rc);
1005 }
1006 }
1007 }
1008 else
1009 {
1010 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1011 {
1012 const char *pszExitName = HMGetSvmExitName(j);
1013 if (pszExitName)
1014 {
1015 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1016 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/Exit/Reason/%02x", idCpu, j);
1017 AssertRC(rc);
1018 }
1019 }
1020 }
1021 HM_REG_COUNTER(&pHmCpu->StatExitReasonNpf, "/HM/CPU%u/Exit/Reason/#NPF", "Nested page faults");
1022
1023#if defined(VBOX_WITH_NESTED_HWVIRT_SVM) || defined(VBOX_WITH_NESTED_HWVIRT_VMX)
1024 /*
1025 * Nested-guest VM-exit reason stats.
1026 */
1027 if (fCpuSupportsVmx)
1028 {
1029 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1030 {
1031 const char *pszExitName = HMGetVmxExitName(j);
1032 if (pszExitName)
1033 {
1034 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1035 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/ExitNestedGuest/Reason/%02x", idCpu, j);
1036 AssertRC(rc);
1037 }
1038 }
1039 }
1040 else
1041 {
1042 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
1043 {
1044 const char *pszExitName = HMGetSvmExitName(j);
1045 if (pszExitName)
1046 {
1047 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatNestedExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1048 STAMUNIT_OCCURENCES, pszExitName, "/HM/CPU%u/ExitNestedGuest/Reason/%02x", idCpu, j);
1049 AssertRC(rc);
1050 }
1051 }
1052 }
1053 HM_REG_COUNTER(&pHmCpu->StatNestedExitReasonNpf, "/HM/CPU%u/ExitNestedGuest/Reason/#NPF", "Nested page faults");
1054#endif
1055
1056 /*
1057 * Injected interrupts stats.
1058 */
1059 char szDesc[64];
1060 for (unsigned j = 0; j < RT_ELEMENTS(pHmCpu->aStatInjectedIrqs); j++)
1061 {
1062 RTStrPrintf(&szDesc[0], sizeof(szDesc), "Interrupt %u", j);
1063 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatInjectedIrqs[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1064 STAMUNIT_OCCURENCES, szDesc, "/HM/CPU%u/EventInject/InjectIntr/%02X", idCpu, j);
1065 AssertRC(rc);
1066 }
1067
1068 /*
1069 * Injected exception stats.
1070 */
1071 for (unsigned j = 0; j < RT_ELEMENTS(pHmCpu->aStatInjectedXcpts); j++)
1072 {
1073 RTStrPrintf(&szDesc[0], sizeof(szDesc), "%s exception", hmR3GetXcptName(j));
1074 rc = STAMR3RegisterF(pVM, &pHmCpu->aStatInjectedXcpts[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
1075 STAMUNIT_OCCURENCES, szDesc, "/HM/CPU%u/EventInject/InjectXcpt/%02X", idCpu, j);
1076 AssertRC(rc);
1077 }
1078
1079#endif /* VBOX_WITH_STATISTICS */
1080#undef HM_REG_COUNTER
1081#undef HM_REG_PROFILE
1082#undef HM_REG_STAT
1083 }
1084
1085 return VINF_SUCCESS;
1086}
1087
1088
1089/**
1090 * Called when a init phase has completed.
1091 *
1092 * @returns VBox status code.
1093 * @param pVM The cross context VM structure.
1094 * @param enmWhat The phase that completed.
1095 */
1096VMMR3_INT_DECL(int) HMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
1097{
1098 switch (enmWhat)
1099 {
1100 case VMINITCOMPLETED_RING3:
1101 return hmR3InitFinalizeR3(pVM);
1102 case VMINITCOMPLETED_RING0:
1103 return hmR3InitFinalizeR0(pVM);
1104 default:
1105 return VINF_SUCCESS;
1106 }
1107}
1108
1109
1110/**
1111 * Turns off normal raw mode features.
1112 *
1113 * @param pVM The cross context VM structure.
1114 */
1115static void hmR3DisableRawMode(PVM pVM)
1116{
1117/** @todo r=bird: HM shouldn't be doing this crap. */
1118 /* Reinit the paging mode to force the new shadow mode. */
1119 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1120 {
1121 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1122 PGMHCChangeMode(pVM, pVCpu, PGMMODE_REAL, false /* fForce */);
1123 }
1124}
1125
1126
1127/**
1128 * Initialize VT-x or AMD-V.
1129 *
1130 * @returns VBox status code.
1131 * @param pVM The cross context VM structure.
1132 */
1133static int hmR3InitFinalizeR0(PVM pVM)
1134{
1135 int rc;
1136
1137 /*
1138 * Since HM is in charge of large pages, if large pages isn't supported on Intel CPUs,
1139 * we must disable it here. Doing it here rather than in hmR3InitFinalizeR0Intel covers
1140 * the case of informing PGM even when NEM is the execution engine.
1141 */
1142 if ( pVM->hm.s.fLargePages
1143 && pVM->hm.s.vmx.fSupported
1144 && !(pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M))
1145 {
1146 pVM->hm.s.fLargePages = false;
1147 PGMSetLargePageUsage(pVM, false);
1148 LogRel(("HM: Disabled large page support as the CPU doesn't allow EPT PDEs to map 2MB pages\n"));
1149 }
1150
1151 if (!HMIsEnabled(pVM))
1152 return VINF_SUCCESS;
1153
1154 /*
1155 * Hack to allow users to work around broken BIOSes that incorrectly set
1156 * EFER.SVME, which makes us believe somebody else is already using AMD-V.
1157 */
1158 if ( !pVM->hm.s.vmx.fSupported
1159 && !pVM->hm.s.svm.fSupported
1160 && pVM->hm.s.ForR3.rcInit == VERR_SVM_IN_USE /* implies functional AMD-V */
1161 && RTEnvExist("VBOX_HWVIRTEX_IGNORE_SVM_IN_USE"))
1162 {
1163 LogRel(("HM: VBOX_HWVIRTEX_IGNORE_SVM_IN_USE active!\n"));
1164 pVM->hm.s.svm.fSupported = true;
1165 pVM->hm.s.svm.fIgnoreInUseError = true;
1166 pVM->hm.s.ForR3.rcInit = VINF_SUCCESS;
1167 }
1168
1169 /*
1170 * Report ring-0 init errors.
1171 */
1172 if ( !pVM->hm.s.vmx.fSupported
1173 && !pVM->hm.s.svm.fSupported)
1174 {
1175 LogRel(("HM: Failed to initialize VT-x / AMD-V: %Rrc\n", pVM->hm.s.ForR3.rcInit));
1176 LogRel(("HM: VMX MSR_IA32_FEATURE_CONTROL=%RX64\n", pVM->hm.s.ForR3.vmx.u64HostFeatCtrl));
1177 switch (pVM->hm.s.ForR3.rcInit)
1178 {
1179 case VERR_VMX_IN_VMX_ROOT_MODE:
1180 return VM_SET_ERROR(pVM, VERR_VMX_IN_VMX_ROOT_MODE, "VT-x is being used by another hypervisor");
1181 case VERR_VMX_NO_VMX:
1182 return VM_SET_ERROR(pVM, VERR_VMX_NO_VMX, "VT-x is not available");
1183 case VERR_VMX_MSR_VMX_DISABLED:
1184 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_DISABLED, "VT-x is disabled in the BIOS");
1185 case VERR_VMX_MSR_ALL_VMX_DISABLED:
1186 return VM_SET_ERROR(pVM, VERR_VMX_MSR_ALL_VMX_DISABLED, "VT-x is disabled in the BIOS for all CPU modes");
1187 case VERR_VMX_MSR_LOCKING_FAILED:
1188 return VM_SET_ERROR(pVM, VERR_VMX_MSR_LOCKING_FAILED, "Failed to lock VT-x features while trying to enable VT-x");
1189 case VERR_VMX_MSR_VMX_ENABLE_FAILED:
1190 return VM_SET_ERROR(pVM, VERR_VMX_MSR_VMX_ENABLE_FAILED, "Failed to enable VT-x features");
1191 case VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED:
1192 return VM_SET_ERROR(pVM, VERR_VMX_MSR_SMX_VMX_ENABLE_FAILED, "Failed to enable VT-x features in SMX mode");
1193
1194 case VERR_SVM_IN_USE:
1195 return VM_SET_ERROR(pVM, VERR_SVM_IN_USE, "AMD-V is being used by another hypervisor");
1196 case VERR_SVM_NO_SVM:
1197 return VM_SET_ERROR(pVM, VERR_SVM_NO_SVM, "AMD-V is not available");
1198 case VERR_SVM_DISABLED:
1199 return VM_SET_ERROR(pVM, VERR_SVM_DISABLED, "AMD-V is disabled in the BIOS");
1200 }
1201 return VMSetError(pVM, pVM->hm.s.ForR3.rcInit, RT_SRC_POS, "HM ring-0 init failed: %Rrc", pVM->hm.s.ForR3.rcInit);
1202 }
1203
1204 /*
1205 * Enable VT-x or AMD-V on all host CPUs.
1206 */
1207 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_ENABLE, 0, NULL);
1208 if (RT_FAILURE(rc))
1209 {
1210 LogRel(("HM: Failed to enable, error %Rrc\n", rc));
1211 HMR3CheckError(pVM, rc);
1212 return rc;
1213 }
1214
1215 /*
1216 * No TPR patching is required when the IO-APIC is not enabled for this VM.
1217 * (Main should have taken care of this already)
1218 */
1219 if (!PDMHasIoApic(pVM))
1220 {
1221 Assert(!pVM->hm.s.fTprPatchingAllowed); /* paranoia */
1222 pVM->hm.s.fTprPatchingAllowed = false;
1223 }
1224
1225 LogRel(("HM: fWorldSwitcher=%#x (fIbpbOnVmExit=%RTbool fIbpbOnVmEntry=%RTbool fL1dFlushOnVmEntry=%RTbool); fL1dFlushOnSched=%RTbool fMdsClearOnVmEntry=%RTbool\n",
1226 pVM->hm.s.ForR3.fWorldSwitcher, pVM->hm.s.fIbpbOnVmExit, pVM->hm.s.fIbpbOnVmEntry, pVM->hm.s.fL1dFlushOnVmEntry,
1227 pVM->hm.s.fL1dFlushOnSched, pVM->hm.s.fMdsClearOnVmEntry));
1228
1229 /*
1230 * Do the vendor specific initialization
1231 *
1232 * Note! We disable release log buffering here since we're doing relatively
1233 * lot of logging and doesn't want to hit the disk with each LogRel
1234 * statement.
1235 */
1236 AssertLogRelReturn(!pVM->hm.s.fInitialized, VERR_HM_IPE_5);
1237 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1238 if (pVM->hm.s.vmx.fSupported)
1239 rc = hmR3InitFinalizeR0Intel(pVM);
1240 else
1241 rc = hmR3InitFinalizeR0Amd(pVM);
1242 LogRel((pVM->hm.s.fGlobalInit ? "HM: VT-x/AMD-V init method: Global\n"
1243 : "HM: VT-x/AMD-V init method: Local\n"));
1244 RTLogRelSetBuffering(fOldBuffered);
1245 pVM->hm.s.fInitialized = true;
1246
1247 return rc;
1248}
1249
1250
1251/**
1252 * @callback_method_impl{FNPDMVMMDEVHEAPNOTIFY}
1253 */
1254static DECLCALLBACK(void) hmR3VmmDevHeapNotify(PVM pVM, void *pvAllocation, RTGCPHYS GCPhysAllocation)
1255{
1256 NOREF(pVM);
1257 NOREF(pvAllocation);
1258 NOREF(GCPhysAllocation);
1259}
1260
1261
1262/**
1263 * Returns a description of the VMCS (and associated regions') memory type given the
1264 * IA32_VMX_BASIC MSR.
1265 *
1266 * @returns The descriptive memory type.
1267 * @param uMsrVmxBasic IA32_VMX_BASIC MSR value.
1268 */
1269static const char *hmR3VmxGetMemTypeDesc(uint64_t uMsrVmxBasic)
1270{
1271 uint8_t const uMemType = RT_BF_GET(uMsrVmxBasic, VMX_BF_BASIC_VMCS_MEM_TYPE);
1272 switch (uMemType)
1273 {
1274 case VMX_BASIC_MEM_TYPE_WB: return "Write Back (WB)";
1275 case VMX_BASIC_MEM_TYPE_UC: return "Uncacheable (UC)";
1276 }
1277 return "Unknown";
1278}
1279
1280
1281/**
1282 * Returns a single-line description of all the activity-states supported by the CPU
1283 * given the IA32_VMX_MISC MSR.
1284 *
1285 * @returns All supported activity states.
1286 * @param uMsrMisc IA32_VMX_MISC MSR value.
1287 */
1288static const char *hmR3VmxGetActivityStateAllDesc(uint64_t uMsrMisc)
1289{
1290 static const char * const s_apszActStates[] =
1291 {
1292 "",
1293 " ( HLT )",
1294 " ( SHUTDOWN )",
1295 " ( HLT SHUTDOWN )",
1296 " ( SIPI_WAIT )",
1297 " ( HLT SIPI_WAIT )",
1298 " ( SHUTDOWN SIPI_WAIT )",
1299 " ( HLT SHUTDOWN SIPI_WAIT )"
1300 };
1301 uint8_t const idxActStates = RT_BF_GET(uMsrMisc, VMX_BF_MISC_ACTIVITY_STATES);
1302 Assert(idxActStates < RT_ELEMENTS(s_apszActStates));
1303 return s_apszActStates[idxActStates];
1304}
1305
1306
1307/**
1308 * Reports MSR_IA32_FEATURE_CONTROL MSR to the log.
1309 *
1310 * @param fFeatMsr The feature control MSR value.
1311 */
1312static void hmR3VmxReportFeatCtlMsr(uint64_t fFeatMsr)
1313{
1314 uint64_t const val = fFeatMsr;
1315 LogRel(("HM: MSR_IA32_FEATURE_CONTROL = %#RX64\n", val));
1316 HMVMX_REPORT_MSR_CAP(val, "LOCK", MSR_IA32_FEATURE_CONTROL_LOCK);
1317 HMVMX_REPORT_MSR_CAP(val, "SMX_VMXON", MSR_IA32_FEATURE_CONTROL_SMX_VMXON);
1318 HMVMX_REPORT_MSR_CAP(val, "VMXON", MSR_IA32_FEATURE_CONTROL_VMXON);
1319 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN0", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_0);
1320 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN1", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_1);
1321 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN2", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_2);
1322 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN3", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_3);
1323 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN4", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_4);
1324 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN5", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_5);
1325 HMVMX_REPORT_MSR_CAP(val, "SENTER_LOCAL_FN6", MSR_IA32_FEATURE_CONTROL_SENTER_LOCAL_FN_6);
1326 HMVMX_REPORT_MSR_CAP(val, "SENTER_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SENTER_GLOBAL_EN);
1327 HMVMX_REPORT_MSR_CAP(val, "SGX_LAUNCH_EN", MSR_IA32_FEATURE_CONTROL_SGX_LAUNCH_EN);
1328 HMVMX_REPORT_MSR_CAP(val, "SGX_GLOBAL_EN", MSR_IA32_FEATURE_CONTROL_SGX_GLOBAL_EN);
1329 HMVMX_REPORT_MSR_CAP(val, "LMCE", MSR_IA32_FEATURE_CONTROL_LMCE);
1330 if (!(val & MSR_IA32_FEATURE_CONTROL_LOCK))
1331 LogRel(("HM: MSR_IA32_FEATURE_CONTROL lock bit not set, possibly bad hardware!\n"));
1332}
1333
1334
1335/**
1336 * Reports MSR_IA32_VMX_BASIC MSR to the log.
1337 *
1338 * @param uBasicMsr The VMX basic MSR value.
1339 */
1340static void hmR3VmxReportBasicMsr(uint64_t uBasicMsr)
1341{
1342 LogRel(("HM: MSR_IA32_VMX_BASIC = %#RX64\n", uBasicMsr));
1343 LogRel(("HM: VMCS id = %#x\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_ID)));
1344 LogRel(("HM: VMCS size = %u bytes\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_SIZE)));
1345 LogRel(("HM: VMCS physical address limit = %s\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_PHYSADDR_WIDTH) ?
1346 "< 4 GB" : "None"));
1347 LogRel(("HM: VMCS memory type = %s\n", hmR3VmxGetMemTypeDesc(uBasicMsr)));
1348 LogRel(("HM: Dual-monitor treatment support = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_DUAL_MON)));
1349 LogRel(("HM: OUTS & INS instruction-info = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_VMCS_INS_OUTS)));
1350 LogRel(("HM: Supports true-capability MSRs = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_TRUE_CTLS)));
1351 LogRel(("HM: VM-entry Xcpt error-code optional = %RTbool\n", RT_BF_GET(uBasicMsr, VMX_BF_BASIC_XCPT_ERRCODE)));
1352}
1353
1354
1355/**
1356 * Reports MSR_IA32_PINBASED_CTLS to the log.
1357 *
1358 * @param pVmxMsr Pointer to the VMX MSR.
1359 */
1360static void hmR3VmxReportPinBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1361{
1362 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1363 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1364 LogRel(("HM: MSR_IA32_VMX_PINBASED_CTLS = %#RX64\n", pVmxMsr->u));
1365 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EXT_INT_EXIT", VMX_PIN_CTLS_EXT_INT_EXIT);
1366 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_EXIT", VMX_PIN_CTLS_NMI_EXIT);
1367 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRTUAL_NMI", VMX_PIN_CTLS_VIRT_NMI);
1368 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PREEMPT_TIMER", VMX_PIN_CTLS_PREEMPT_TIMER);
1369 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "POSTED_INT", VMX_PIN_CTLS_POSTED_INT);
1370}
1371
1372
1373/**
1374 * Reports MSR_IA32_VMX_PROCBASED_CTLS MSR to the log.
1375 *
1376 * @param pVmxMsr Pointer to the VMX MSR.
1377 */
1378static void hmR3VmxReportProcBasedCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1379{
1380 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1381 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1382 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS = %#RX64\n", pVmxMsr->u));
1383 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INT_WINDOW_EXIT", VMX_PROC_CTLS_INT_WINDOW_EXIT);
1384 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TSC_OFFSETTING", VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1385 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HLT_EXIT", VMX_PROC_CTLS_HLT_EXIT);
1386 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVLPG_EXIT", VMX_PROC_CTLS_INVLPG_EXIT);
1387 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MWAIT_EXIT", VMX_PROC_CTLS_MWAIT_EXIT);
1388 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDPMC_EXIT", VMX_PROC_CTLS_RDPMC_EXIT);
1389 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSC_EXIT", VMX_PROC_CTLS_RDTSC_EXIT);
1390 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_LOAD_EXIT", VMX_PROC_CTLS_CR3_LOAD_EXIT);
1391 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR3_STORE_EXIT", VMX_PROC_CTLS_CR3_STORE_EXIT);
1392 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TERTIARY_CTLS", VMX_PROC_CTLS_USE_TERTIARY_CTLS);
1393 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_LOAD_EXIT", VMX_PROC_CTLS_CR8_LOAD_EXIT);
1394 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CR8_STORE_EXIT", VMX_PROC_CTLS_CR8_STORE_EXIT);
1395 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_TPR_SHADOW", VMX_PROC_CTLS_USE_TPR_SHADOW);
1396 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "NMI_WINDOW_EXIT", VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1397 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MOV_DR_EXIT", VMX_PROC_CTLS_MOV_DR_EXIT);
1398 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNCOND_IO_EXIT", VMX_PROC_CTLS_UNCOND_IO_EXIT);
1399 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_IO_BITMAPS", VMX_PROC_CTLS_USE_IO_BITMAPS);
1400 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_TRAP_FLAG", VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1401 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_MSR_BITMAPS", VMX_PROC_CTLS_USE_MSR_BITMAPS);
1402 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MONITOR_EXIT", VMX_PROC_CTLS_MONITOR_EXIT);
1403 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_EXIT", VMX_PROC_CTLS_PAUSE_EXIT);
1404 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USE_SECONDARY_CTLS", VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1405}
1406
1407
1408/**
1409 * Reports MSR_IA32_VMX_PROCBASED_CTLS2 MSR to the log.
1410 *
1411 * @param pVmxMsr Pointer to the VMX MSR.
1412 */
1413static void hmR3VmxReportProcBasedCtls2Msr(PCVMXCTLSMSR pVmxMsr)
1414{
1415 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1416 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1417 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS2 = %#RX64\n", pVmxMsr->u));
1418 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_APIC_ACCESS", VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1419 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT", VMX_PROC_CTLS2_EPT);
1420 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DESC_TABLE_EXIT", VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1421 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDTSCP", VMX_PROC_CTLS2_RDTSCP);
1422 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_X2APIC_MODE", VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
1423 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VPID", VMX_PROC_CTLS2_VPID);
1424 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "WBINVD_EXIT", VMX_PROC_CTLS2_WBINVD_EXIT);
1425 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "UNRESTRICTED_GUEST", VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1426 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "APIC_REG_VIRT", VMX_PROC_CTLS2_APIC_REG_VIRT);
1427 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VIRT_INT_DELIVERY", VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
1428 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PAUSE_LOOP_EXIT", VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1429 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDRAND_EXIT", VMX_PROC_CTLS2_RDRAND_EXIT);
1430 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "INVPCID", VMX_PROC_CTLS2_INVPCID);
1431 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMFUNC", VMX_PROC_CTLS2_VMFUNC);
1432 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "VMCS_SHADOWING", VMX_PROC_CTLS2_VMCS_SHADOWING);
1433 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLS_EXIT", VMX_PROC_CTLS2_ENCLS_EXIT);
1434 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "RDSEED_EXIT", VMX_PROC_CTLS2_RDSEED_EXIT);
1435 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PML", VMX_PROC_CTLS2_PML);
1436 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "EPT_XCPT_VE", VMX_PROC_CTLS2_EPT_XCPT_VE);
1437 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
1438 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "XSAVES_XRSTORS", VMX_PROC_CTLS2_XSAVES_XRSTORS);
1439 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "MODE_BASED_EPT_PERM", VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
1440 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SPP_EPT", VMX_PROC_CTLS2_SPP_EPT);
1441 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "PT_EPT", VMX_PROC_CTLS2_PT_EPT);
1442 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "TSC_SCALING", VMX_PROC_CTLS2_TSC_SCALING);
1443 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "USER_WAIT_PAUSE", VMX_PROC_CTLS2_USER_WAIT_PAUSE);
1444 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENCLV_EXIT", VMX_PROC_CTLS2_ENCLV_EXIT);
1445}
1446
1447
1448/**
1449 * Reports MSR_IA32_VMX_PROCBASED_CTLS3 MSR to the log.
1450 *
1451 * @param uProcCtls3 The tertiary processor-based VM-execution control MSR.
1452 */
1453static void hmR3VmxReportProcBasedCtls3Msr(uint64_t uProcCtls3)
1454{
1455 LogRel(("HM: MSR_IA32_VMX_PROCBASED_CTLS3 = %#RX64\n", uProcCtls3));
1456 LogRel(("HM: LOADIWKEY_EXIT = %RTbool\n", RT_BOOL(uProcCtls3 & VMX_PROC_CTLS3_LOADIWKEY_EXIT)));
1457}
1458
1459
1460/**
1461 * Reports MSR_IA32_VMX_ENTRY_CTLS to the log.
1462 *
1463 * @param pVmxMsr Pointer to the VMX MSR.
1464 */
1465static void hmR3VmxReportEntryCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1466{
1467 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1468 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1469 LogRel(("HM: MSR_IA32_VMX_ENTRY_CTLS = %#RX64\n", pVmxMsr->u));
1470 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_DEBUG", VMX_ENTRY_CTLS_LOAD_DEBUG);
1471 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "IA32E_MODE_GUEST", VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1472 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ENTRY_TO_SMM", VMX_ENTRY_CTLS_ENTRY_TO_SMM);
1473 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "DEACTIVATE_DUAL_MON", VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
1474 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_ENTRY_CTLS_LOAD_PERF_MSR);
1475 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_ENTRY_CTLS_LOAD_PAT_MSR);
1476 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1477 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_BNDCFGS_MSR", VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR);
1478 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
1479 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_RTIT_CTL_MSR", VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR);
1480 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_CET_STATE", VMX_ENTRY_CTLS_LOAD_CET_STATE);
1481 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PKRS_MSR", VMX_ENTRY_CTLS_LOAD_PKRS_MSR);
1482}
1483
1484
1485/**
1486 * Reports MSR_IA32_VMX_EXIT_CTLS to the log.
1487 *
1488 * @param pVmxMsr Pointer to the VMX MSR.
1489 */
1490static void hmR3VmxReportExitCtlsMsr(PCVMXCTLSMSR pVmxMsr)
1491{
1492 uint64_t const fAllowed1 = pVmxMsr->n.allowed1;
1493 uint64_t const fAllowed0 = pVmxMsr->n.allowed0;
1494 LogRel(("HM: MSR_IA32_VMX_EXIT_CTLS = %#RX64\n", pVmxMsr->u));
1495 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_DEBUG", VMX_EXIT_CTLS_SAVE_DEBUG);
1496 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "HOST_ADDR_SPACE_SIZE", VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1497 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PERF_MSR", VMX_EXIT_CTLS_LOAD_PERF_MSR);
1498 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "ACK_EXT_INT", VMX_EXIT_CTLS_ACK_EXT_INT);
1499 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PAT_MSR", VMX_EXIT_CTLS_SAVE_PAT_MSR);
1500 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PAT_MSR", VMX_EXIT_CTLS_LOAD_PAT_MSR);
1501 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_EFER_MSR", VMX_EXIT_CTLS_SAVE_EFER_MSR);
1502 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_EFER_MSR", VMX_EXIT_CTLS_LOAD_EFER_MSR);
1503 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "SAVE_PREEMPT_TIMER", VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
1504 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_BNDCFGS_MSR", VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR);
1505 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CONCEAL_VMX_FROM_PT", VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT);
1506 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "CLEAR_RTIT_CTL_MSR", VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR);
1507 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_CET_STATE", VMX_EXIT_CTLS_LOAD_CET_STATE);
1508 HMVMX_REPORT_FEAT(fAllowed1, fAllowed0, "LOAD_PKRS_MSR", VMX_EXIT_CTLS_LOAD_PKRS_MSR);
1509}
1510
1511
1512/**
1513 * Reports MSR_IA32_VMX_EPT_VPID_CAP MSR to the log.
1514 *
1515 * @param fCaps The VMX EPT/VPID capability MSR value.
1516 */
1517static void hmR3VmxReportEptVpidCapsMsr(uint64_t fCaps)
1518{
1519 LogRel(("HM: MSR_IA32_VMX_EPT_VPID_CAP = %#RX64\n", fCaps));
1520 HMVMX_REPORT_MSR_CAP(fCaps, "RWX_X_ONLY", MSR_IA32_VMX_EPT_VPID_CAP_RWX_X_ONLY);
1521 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_4", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1522 HMVMX_REPORT_MSR_CAP(fCaps, "PAGE_WALK_LENGTH_5", MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_5);
1523 HMVMX_REPORT_MSR_CAP(fCaps, "MEMTYPE_UC", MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_UC);
1524 HMVMX_REPORT_MSR_CAP(fCaps, "MEMTYPE_WB", MSR_IA32_VMX_EPT_VPID_CAP_MEMTYPE_WB);
1525 HMVMX_REPORT_MSR_CAP(fCaps, "PDE_2M", MSR_IA32_VMX_EPT_VPID_CAP_PDE_2M);
1526 HMVMX_REPORT_MSR_CAP(fCaps, "PDPTE_1G", MSR_IA32_VMX_EPT_VPID_CAP_PDPTE_1G);
1527 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT);
1528 HMVMX_REPORT_MSR_CAP(fCaps, "ACCESS_DIRTY", MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY);
1529 HMVMX_REPORT_MSR_CAP(fCaps, "ADVEXITINFO_EPT_VIOLATION", MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION);
1530 HMVMX_REPORT_MSR_CAP(fCaps, "SUPER_SHW_STACK", MSR_IA32_VMX_EPT_VPID_CAP_SUPER_SHW_STACK);
1531 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT);
1532 HMVMX_REPORT_MSR_CAP(fCaps, "INVEPT_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
1533 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID);
1534 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_INDIV_ADDR", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1535 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT);
1536 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_ALL_CONTEXTS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS);
1537 HMVMX_REPORT_MSR_CAP(fCaps, "INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS", MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS);
1538}
1539
1540
1541/**
1542 * Reports MSR_IA32_VMX_MISC MSR to the log.
1543 *
1544 * @param pVM Pointer to the VM.
1545 * @param fMisc The VMX misc. MSR value.
1546 */
1547static void hmR3VmxReportMiscMsr(PVM pVM, uint64_t fMisc)
1548{
1549 LogRel(("HM: MSR_IA32_VMX_MISC = %#RX64\n", fMisc));
1550 uint8_t const cPreemptTimerShift = RT_BF_GET(fMisc, VMX_BF_MISC_PREEMPT_TIMER_TSC);
1551 if (cPreemptTimerShift == pVM->hm.s.vmx.cPreemptTimerShift)
1552 LogRel(("HM: PREEMPT_TIMER_TSC = %#x\n", cPreemptTimerShift));
1553 else
1554 {
1555 LogRel(("HM: PREEMPT_TIMER_TSC = %#x - erratum detected, using %#x instead\n", cPreemptTimerShift,
1556 pVM->hm.s.vmx.cPreemptTimerShift));
1557 }
1558 LogRel(("HM: EXIT_SAVE_EFER_LMA = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_EXIT_SAVE_EFER_LMA)));
1559 LogRel(("HM: ACTIVITY_STATES = %#x%s\n", RT_BF_GET(fMisc, VMX_BF_MISC_ACTIVITY_STATES),
1560 hmR3VmxGetActivityStateAllDesc(fMisc)));
1561 LogRel(("HM: INTEL_PT = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_INTEL_PT)));
1562 LogRel(("HM: SMM_READ_SMBASE_MSR = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_SMM_READ_SMBASE_MSR)));
1563 LogRel(("HM: CR3_TARGET = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_CR3_TARGET)));
1564 LogRel(("HM: MAX_MSR = %#x ( %u )\n", RT_BF_GET(fMisc, VMX_BF_MISC_MAX_MSRS),
1565 VMX_MISC_MAX_MSRS(fMisc)));
1566 LogRel(("HM: VMXOFF_BLOCK_SMI = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMXOFF_BLOCK_SMI)));
1567 LogRel(("HM: VMWRITE_ALL = %RTbool\n", RT_BF_GET(fMisc, VMX_BF_MISC_VMWRITE_ALL)));
1568 LogRel(("HM: ENTRY_INJECT_SOFT_INT = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_ENTRY_INJECT_SOFT_INT)));
1569 LogRel(("HM: MSEG_ID = %#x\n", RT_BF_GET(fMisc, VMX_BF_MISC_MSEG_ID)));
1570}
1571
1572
1573/**
1574 * Reports MSR_IA32_VMX_VMCS_ENUM MSR to the log.
1575 *
1576 * @param uVmcsEnum The VMX VMCS enum MSR value.
1577 */
1578static void hmR3VmxReportVmcsEnumMsr(uint64_t uVmcsEnum)
1579{
1580 LogRel(("HM: MSR_IA32_VMX_VMCS_ENUM = %#RX64\n", uVmcsEnum));
1581 LogRel(("HM: HIGHEST_IDX = %#x\n", RT_BF_GET(uVmcsEnum, VMX_BF_VMCS_ENUM_HIGHEST_IDX)));
1582}
1583
1584
1585/**
1586 * Reports MSR_IA32_VMX_VMFUNC MSR to the log.
1587 *
1588 * @param uVmFunc The VMX VMFUNC MSR value.
1589 */
1590static void hmR3VmxReportVmFuncMsr(uint64_t uVmFunc)
1591{
1592 LogRel(("HM: MSR_IA32_VMX_VMFUNC = %#RX64\n", uVmFunc));
1593 HMVMX_REPORT_ALLOWED_FEAT(uVmFunc, "EPTP_SWITCHING", RT_BF_GET(uVmFunc, VMX_BF_VMFUNC_EPTP_SWITCHING));
1594}
1595
1596
1597/**
1598 * Reports VMX CR0, CR4 fixed MSRs.
1599 *
1600 * @param pMsrs Pointer to the VMX MSRs.
1601 */
1602static void hmR3VmxReportCrFixedMsrs(PVMXMSRS pMsrs)
1603{
1604 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED0 = %#RX64\n", pMsrs->u64Cr0Fixed0));
1605 LogRel(("HM: MSR_IA32_VMX_CR0_FIXED1 = %#RX64\n", pMsrs->u64Cr0Fixed1));
1606 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED0 = %#RX64\n", pMsrs->u64Cr4Fixed0));
1607 LogRel(("HM: MSR_IA32_VMX_CR4_FIXED1 = %#RX64\n", pMsrs->u64Cr4Fixed1));
1608}
1609
1610
1611/**
1612 * Finish VT-x initialization (after ring-0 init).
1613 *
1614 * @returns VBox status code.
1615 * @param pVM The cross context VM structure.
1616 */
1617static int hmR3InitFinalizeR0Intel(PVM pVM)
1618{
1619 int rc;
1620
1621 LogFunc(("pVM->hm.s.vmx.fSupported = %d\n", pVM->hm.s.vmx.fSupported));
1622 AssertLogRelReturn(pVM->hm.s.ForR3.vmx.u64HostFeatCtrl != 0, VERR_HM_IPE_4);
1623
1624 LogRel(("HM: Using VT-x implementation 3.0\n"));
1625 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoopsCfg));
1626 LogRel(("HM: Host CR4 = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostCr4));
1627 LogRel(("HM: Host EFER = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostMsrEfer));
1628 LogRel(("HM: MSR_IA32_SMM_MONITOR_CTL = %#RX64\n", pVM->hm.s.ForR3.vmx.u64HostSmmMonitorCtl));
1629 LogRel(("HM: Host DR6 zero'ed = %#RX64%s\n", pVM->hm.s.ForR3.vmx.u64HostDr6Zeroed,
1630 pVM->hm.s.ForR3.vmx.fAlwaysInterceptMovDRx ? " - always intercept MOV DRx" : ""));
1631
1632 hmR3VmxReportFeatCtlMsr(pVM->hm.s.ForR3.vmx.u64HostFeatCtrl);
1633 hmR3VmxReportBasicMsr(pVM->hm.s.ForR3.vmx.Msrs.u64Basic);
1634
1635 hmR3VmxReportPinBasedCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.PinCtls);
1636 hmR3VmxReportProcBasedCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.ProcCtls);
1637 if (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1638 hmR3VmxReportProcBasedCtls2Msr(&pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2);
1639 if (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TERTIARY_CTLS)
1640 hmR3VmxReportProcBasedCtls3Msr(pVM->hm.s.ForR3.vmx.Msrs.u64ProcCtls3);
1641
1642 hmR3VmxReportEntryCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.EntryCtls);
1643 hmR3VmxReportExitCtlsMsr(&pVM->hm.s.ForR3.vmx.Msrs.ExitCtls);
1644
1645 if (RT_BF_GET(pVM->hm.s.ForR3.vmx.Msrs.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1646 {
1647 /* We don't extensively dump the true capability MSRs as we don't use them, see @bugref{9180#c5}. */
1648 LogRel(("HM: MSR_IA32_VMX_TRUE_PINBASED_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TruePinCtls));
1649 LogRel(("HM: MSR_IA32_VMX_TRUE_PROCBASED_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueProcCtls));
1650 LogRel(("HM: MSR_IA32_VMX_TRUE_ENTRY_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueEntryCtls));
1651 LogRel(("HM: MSR_IA32_VMX_TRUE_EXIT_CTLS = %#RX64\n", pVM->hm.s.ForR3.vmx.Msrs.TrueExitCtls));
1652 }
1653
1654 hmR3VmxReportMiscMsr(pVM, pVM->hm.s.ForR3.vmx.Msrs.u64Misc);
1655 hmR3VmxReportVmcsEnumMsr(pVM->hm.s.ForR3.vmx.Msrs.u64VmcsEnum);
1656 if (pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps)
1657 hmR3VmxReportEptVpidCapsMsr(pVM->hm.s.ForR3.vmx.Msrs.u64EptVpidCaps);
1658 if (pVM->hm.s.ForR3.vmx.Msrs.u64VmFunc)
1659 hmR3VmxReportVmFuncMsr(pVM->hm.s.ForR3.vmx.Msrs.u64VmFunc);
1660 hmR3VmxReportCrFixedMsrs(&pVM->hm.s.ForR3.vmx.Msrs);
1661
1662#ifdef TODO_9217_VMCSINFO
1663 LogRel(("HM: APIC-access page physaddr = %#RHp\n", pVM->hm.s.vmx.HCPhysApicAccess));
1664 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1665 {
1666 PCVMXVMCSINFOSHARED pVmcsInfo = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfo;
1667 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
1668 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfo->HCPhysVmcs));
1669 }
1670#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1671 if (pVM->cpum.ro.GuestFeatures.fVmx)
1672 {
1673 LogRel(("HM: Nested-guest:\n"));
1674 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1675 {
1676 PCVMXVMCSINFOSHARED pVmcsInfoNstGst = &pVM->apCpusR3[idCpu]->hm.s.vmx.VmcsInfoNstGst;
1677 LogRel(("HM: VCPU%3d: MSR bitmap physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysMsrBitmap));
1678 LogRel(("HM: VCPU%3d: VMCS physaddr = %#RHp\n", idCpu, pVmcsInfoNstGst->HCPhysVmcs));
1679 }
1680 }
1681#endif
1682#endif /* TODO_9217_VMCSINFO */
1683
1684 /*
1685 * EPT and unrestricted guest execution are determined in HMR3Init, verify the sanity of that.
1686 */
1687 AssertLogRelReturn( !pVM->hm.s.fNestedPagingCfg
1688 || (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_EPT),
1689 VERR_HM_IPE_1);
1690 AssertLogRelReturn( !pVM->hm.s.vmx.fUnrestrictedGuestCfg
1691 || ( (pVM->hm.s.ForR3.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
1692 && pVM->hm.s.fNestedPagingCfg),
1693 VERR_HM_IPE_1);
1694
1695 /*
1696 * Disallow RDTSCP in the guest if there is no secondary process-based VM execution controls as otherwise
1697 * RDTSCP would cause a #UD. There might be no CPUs out there where this happens, as RDTSCP was introduced
1698 * in Nehalems and secondary VM exec. controls should be supported in all of them, but nonetheless it's Intel...
1699 */
1700 if ( !(pVM->hm.s.ForR3.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1701 && CPUMR3GetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP))
1702 {
1703 CPUMR3ClearGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP);
1704 LogRel(("HM: Disabled RDTSCP\n"));
1705 }
1706
1707 if (!pVM->hm.s.vmx.fUnrestrictedGuestCfg)
1708 {
1709 /* Allocate three pages for the TSS we need for real mode emulation. (2 pages for the IO bitmap) */
1710 rc = PDMR3VmmDevHeapAlloc(pVM, HM_VTX_TOTAL_DEVHEAP_MEM, hmR3VmmDevHeapNotify, (RTR3PTR *)&pVM->hm.s.vmx.pRealModeTSS);
1711 if (RT_SUCCESS(rc))
1712 {
1713 /* The IO bitmap starts right after the virtual interrupt redirection bitmap.
1714 Refer Intel spec. 20.3.3 "Software Interrupt Handling in Virtual-8086 mode"
1715 esp. Figure 20-5.*/
1716 ASMMemZero32(pVM->hm.s.vmx.pRealModeTSS, sizeof(*pVM->hm.s.vmx.pRealModeTSS));
1717 pVM->hm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hm.s.vmx.pRealModeTSS);
1718
1719 /* Bit set to 0 means software interrupts are redirected to the
1720 8086 program interrupt handler rather than switching to
1721 protected-mode handler. */
1722 memset(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap, 0, sizeof(pVM->hm.s.vmx.pRealModeTSS->IntRedirBitmap));
1723
1724 /* Allow all port IO, so that port IO instructions do not cause
1725 exceptions and would instead cause a VM-exit (based on VT-x's
1726 IO bitmap which we currently configure to always cause an exit). */
1727 memset(pVM->hm.s.vmx.pRealModeTSS + 1, 0, X86_PAGE_SIZE * 2);
1728 *((unsigned char *)pVM->hm.s.vmx.pRealModeTSS + HM_VTX_TSS_SIZE - 2) = 0xff;
1729
1730 /*
1731 * Construct a 1024 element page directory with 4 MB pages for the identity mapped
1732 * page table used in real and protected mode without paging with EPT.
1733 */
1734 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = (PX86PD)((char *)pVM->hm.s.vmx.pRealModeTSS + X86_PAGE_SIZE * 3);
1735 for (uint32_t i = 0; i < X86_PG_ENTRIES; i++)
1736 {
1737 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u = _4M * i;
1738 pVM->hm.s.vmx.pNonPagingModeEPTPageTable->a[i].u |= X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US
1739 | X86_PDE4M_A | X86_PDE4M_D | X86_PDE4M_PS
1740 | X86_PDE4M_G;
1741 }
1742
1743 /* We convert it here every time as PCI regions could be reconfigured. */
1744 if (PDMVmmDevHeapIsEnabled(pVM))
1745 {
1746 RTGCPHYS GCPhys;
1747 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1748 AssertRCReturn(rc, rc);
1749 LogRel(("HM: Real Mode TSS guest physaddr = %#RGp\n", GCPhys));
1750
1751 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1752 AssertRCReturn(rc, rc);
1753 LogRel(("HM: Non-Paging Mode EPT CR3 = %#RGp\n", GCPhys));
1754 }
1755 }
1756 else
1757 {
1758 LogRel(("HM: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)\n", rc));
1759 pVM->hm.s.vmx.pRealModeTSS = NULL;
1760 pVM->hm.s.vmx.pNonPagingModeEPTPageTable = NULL;
1761 return VMSetError(pVM, rc, RT_SRC_POS,
1762 "HM failure: No real mode VT-x support (PDMR3VMMDevHeapAlloc returned %Rrc)", rc);
1763 }
1764 }
1765
1766 LogRel((pVM->hm.s.fAllow64BitGuestsCfg ? "HM: Guest support: 32-bit and 64-bit\n"
1767 : "HM: Guest support: 32-bit only\n"));
1768
1769 /*
1770 * Call ring-0 to set up the VM.
1771 */
1772 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /* idCpu */, VMMR0_DO_HM_SETUP_VM, 0 /* u64Arg */, NULL /* pReqHdr */);
1773 if (rc != VINF_SUCCESS)
1774 {
1775 LogRel(("HM: VMX setup failed with rc=%Rrc!\n", rc));
1776 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1777 {
1778 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1779 LogRel(("HM: CPU[%u] Last instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
1780 LogRel(("HM: CPU[%u] HM error %#x (%u)\n", idCpu, pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError));
1781 }
1782 HMR3CheckError(pVM, rc);
1783 return VMSetError(pVM, rc, RT_SRC_POS, "VT-x setup failed: %Rrc", rc);
1784 }
1785
1786 LogRel(("HM: Supports VMCS EFER fields = %RTbool\n", pVM->hm.s.ForR3.vmx.fSupportsVmcsEfer));
1787 LogRel(("HM: Enabled VMX\n"));
1788 pVM->hm.s.vmx.fEnabled = true;
1789
1790 hmR3DisableRawMode(pVM); /** @todo make this go away! */
1791
1792 /*
1793 * Log configuration details.
1794 */
1795 if (pVM->hm.s.fNestedPagingCfg)
1796 {
1797 LogRel(("HM: Enabled nested paging\n"));
1798 if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
1799 LogRel(("HM: EPT flush type = Single context\n"));
1800 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_ALL_CONTEXTS)
1801 LogRel(("HM: EPT flush type = All contexts\n"));
1802 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushEpt == VMXTLBFLUSHEPT_NOT_SUPPORTED)
1803 LogRel(("HM: EPT flush type = Not supported\n"));
1804 else
1805 LogRel(("HM: EPT flush type = %#x\n", pVM->hm.s.ForR3.vmx.enmTlbFlushEpt));
1806
1807 if (pVM->hm.s.vmx.fUnrestrictedGuestCfg)
1808 LogRel(("HM: Enabled unrestricted guest execution\n"));
1809
1810 if (pVM->hm.s.fLargePages)
1811 {
1812 /* Use large (2 MB) pages for our EPT PDEs where possible. */
1813 PGMSetLargePageUsage(pVM, true);
1814 LogRel(("HM: Enabled large page support\n"));
1815 }
1816 }
1817 else
1818 Assert(!pVM->hm.s.vmx.fUnrestrictedGuestCfg);
1819
1820 if (pVM->hm.s.ForR3.vmx.fVpid)
1821 {
1822 LogRel(("HM: Enabled VPID\n"));
1823 if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_INDIV_ADDR)
1824 LogRel(("HM: VPID flush type = Individual addresses\n"));
1825 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
1826 LogRel(("HM: VPID flush type = Single context\n"));
1827 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
1828 LogRel(("HM: VPID flush type = All contexts\n"));
1829 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
1830 LogRel(("HM: VPID flush type = Single context retain globals\n"));
1831 else
1832 LogRel(("HM: VPID flush type = %#x\n", pVM->hm.s.ForR3.vmx.enmTlbFlushVpid));
1833 }
1834 else if (pVM->hm.s.ForR3.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_NOT_SUPPORTED)
1835 LogRel(("HM: Ignoring VPID capabilities of CPU\n"));
1836
1837 if (pVM->hm.s.vmx.fUsePreemptTimerCfg)
1838 LogRel(("HM: Enabled VMX-preemption timer (cPreemptTimerShift=%u)\n", pVM->hm.s.vmx.cPreemptTimerShift));
1839 else
1840 LogRel(("HM: Disabled VMX-preemption timer\n"));
1841
1842 if (pVM->hm.s.fVirtApicRegs)
1843 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1844
1845 if (pVM->hm.s.fPostedIntrs)
1846 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1847
1848 if (pVM->hm.s.ForR3.vmx.fUseVmcsShadowing)
1849 {
1850 bool const fFullVmcsShadow = RT_BOOL(pVM->hm.s.ForR3.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL);
1851 LogRel(("HM: Enabled %s VMCS shadowing\n", fFullVmcsShadow ? "full" : "partial"));
1852 }
1853
1854 return VINF_SUCCESS;
1855}
1856
1857
1858/**
1859 * Finish AMD-V initialization (after ring-0 init).
1860 *
1861 * @returns VBox status code.
1862 * @param pVM The cross context VM structure.
1863 */
1864static int hmR3InitFinalizeR0Amd(PVM pVM)
1865{
1866 LogFunc(("pVM->hm.s.svm.fSupported = %d\n", pVM->hm.s.svm.fSupported));
1867
1868 LogRel(("HM: Using AMD-V implementation 2.0\n"));
1869
1870#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1871 uint32_t u32Family;
1872 uint32_t u32Model;
1873 uint32_t u32Stepping;
1874 if (HMIsSubjectToSvmErratum170(&u32Family, &u32Model, &u32Stepping))
1875 LogRel(("HM: AMD Cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
1876#endif
1877 LogRel(("HM: Max resume loops = %u\n", pVM->hm.s.cMaxResumeLoopsCfg));
1878 LogRel(("HM: AMD HWCR MSR = %#RX64\n", pVM->hm.s.ForR3.svm.u64MsrHwcr));
1879 LogRel(("HM: AMD-V revision = %#x\n", pVM->hm.s.ForR3.svm.u32Rev));
1880 LogRel(("HM: AMD-V max ASID = %RU32\n", pVM->hm.s.ForR3.uMaxAsid));
1881 LogRel(("HM: AMD-V features = %#x\n", pVM->hm.s.ForR3.svm.fFeatures));
1882
1883 /*
1884 * Enumerate AMD-V features.
1885 */
1886 static const struct { uint32_t fFlag; const char *pszName; } s_aSvmFeatures[] =
1887 {
1888#define HMSVM_REPORT_FEATURE(a_StrDesc, a_Define) { a_Define, a_StrDesc }
1889 HMSVM_REPORT_FEATURE("NESTED_PAGING", X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1890 HMSVM_REPORT_FEATURE("LBR_VIRT", X86_CPUID_SVM_FEATURE_EDX_LBR_VIRT),
1891 HMSVM_REPORT_FEATURE("SVM_LOCK", X86_CPUID_SVM_FEATURE_EDX_SVM_LOCK),
1892 HMSVM_REPORT_FEATURE("NRIP_SAVE", X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE),
1893 HMSVM_REPORT_FEATURE("TSC_RATE_MSR", X86_CPUID_SVM_FEATURE_EDX_TSC_RATE_MSR),
1894 HMSVM_REPORT_FEATURE("VMCB_CLEAN", X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN),
1895 HMSVM_REPORT_FEATURE("FLUSH_BY_ASID", X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID),
1896 HMSVM_REPORT_FEATURE("DECODE_ASSISTS", X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSISTS),
1897 HMSVM_REPORT_FEATURE("PAUSE_FILTER", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER),
1898 HMSVM_REPORT_FEATURE("PAUSE_FILTER_THRESHOLD", X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD),
1899 HMSVM_REPORT_FEATURE("AVIC", X86_CPUID_SVM_FEATURE_EDX_AVIC),
1900 HMSVM_REPORT_FEATURE("VIRT_VMSAVE_VMLOAD", X86_CPUID_SVM_FEATURE_EDX_VIRT_VMSAVE_VMLOAD),
1901 HMSVM_REPORT_FEATURE("VGIF", X86_CPUID_SVM_FEATURE_EDX_VGIF),
1902 HMSVM_REPORT_FEATURE("GMET", X86_CPUID_SVM_FEATURE_EDX_GMET),
1903 HMSVM_REPORT_FEATURE("SSSCHECK", X86_CPUID_SVM_FEATURE_EDX_SSSCHECK),
1904 HMSVM_REPORT_FEATURE("SPEC_CTRL", X86_CPUID_SVM_FEATURE_EDX_SPEC_CTRL),
1905 HMSVM_REPORT_FEATURE("HOST_MCE_OVERRIDE", X86_CPUID_SVM_FEATURE_EDX_HOST_MCE_OVERRIDE),
1906 HMSVM_REPORT_FEATURE("TLBICTL", X86_CPUID_SVM_FEATURE_EDX_TLBICTL),
1907#undef HMSVM_REPORT_FEATURE
1908 };
1909
1910 uint32_t fSvmFeatures = pVM->hm.s.ForR3.svm.fFeatures;
1911 for (unsigned i = 0; i < RT_ELEMENTS(s_aSvmFeatures); i++)
1912 if (fSvmFeatures & s_aSvmFeatures[i].fFlag)
1913 {
1914 LogRel(("HM: %s\n", s_aSvmFeatures[i].pszName));
1915 fSvmFeatures &= ~s_aSvmFeatures[i].fFlag;
1916 }
1917 if (fSvmFeatures)
1918 for (unsigned iBit = 0; iBit < 32; iBit++)
1919 if (RT_BIT_32(iBit) & fSvmFeatures)
1920 LogRel(("HM: Reserved bit %u\n", iBit));
1921
1922 /*
1923 * Nested paging is determined in HMR3Init, verify the sanity of that.
1924 */
1925 AssertLogRelReturn( !pVM->hm.s.fNestedPagingCfg
1926 || (pVM->hm.s.ForR3.svm.fFeatures & X86_CPUID_SVM_FEATURE_EDX_NESTED_PAGING),
1927 VERR_HM_IPE_1);
1928
1929#if 0
1930 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1931 * here. */
1932 if (RTR0IsPostIpiSupport())
1933 pVM->hm.s.fPostedIntrs = true;
1934#endif
1935
1936 /*
1937 * Determine whether we need to intercept #UD in SVM mode for emulating
1938 * intel SYSENTER/SYSEXIT on AMD64, as these instructions results in #UD
1939 * when executed in long-mode. This is only really applicable when
1940 * non-default CPU profiles are in effect, i.e. guest vendor differs
1941 * from the host one.
1942 */
1943 if (CPUMGetGuestCpuVendor(pVM) != CPUMGetHostCpuVendor(pVM))
1944 switch (CPUMGetGuestCpuVendor(pVM))
1945 {
1946 case CPUMCPUVENDOR_INTEL:
1947 case CPUMCPUVENDOR_VIA: /*?*/
1948 case CPUMCPUVENDOR_SHANGHAI: /*?*/
1949 switch (CPUMGetHostCpuVendor(pVM))
1950 {
1951 case CPUMCPUVENDOR_AMD:
1952 case CPUMCPUVENDOR_HYGON:
1953 if (pVM->hm.s.fAllow64BitGuestsCfg)
1954 {
1955 LogRel(("HM: Intercepting #UD for emulating SYSENTER/SYSEXIT in long mode.\n"));
1956 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1957 pVM->apCpusR3[idCpu]->hm.s.svm.fEmulateLongModeSysEnterExit = true;
1958 }
1959 break;
1960 default: break;
1961 }
1962 default: break;
1963 }
1964
1965 /*
1966 * Call ring-0 to set up the VM.
1967 */
1968 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_HM_SETUP_VM, 0, NULL);
1969 if (rc != VINF_SUCCESS)
1970 {
1971 AssertMsgFailed(("%Rrc\n", rc));
1972 LogRel(("HM: AMD-V setup failed with rc=%Rrc!\n", rc));
1973 return VMSetError(pVM, rc, RT_SRC_POS, "AMD-V setup failed: %Rrc", rc);
1974 }
1975
1976 LogRel(("HM: Enabled SVM\n"));
1977 pVM->hm.s.svm.fEnabled = true;
1978
1979 if (pVM->hm.s.fNestedPagingCfg)
1980 {
1981 LogRel(("HM: Enabled nested paging\n"));
1982
1983 /*
1984 * Enable large pages (2 MB) if applicable.
1985 */
1986 if (pVM->hm.s.fLargePages)
1987 {
1988 PGMSetLargePageUsage(pVM, true);
1989 LogRel(("HM: Enabled large page support\n"));
1990 }
1991 }
1992
1993 if (pVM->hm.s.fVirtApicRegs)
1994 LogRel(("HM: Enabled APIC-register virtualization support\n"));
1995
1996 if (pVM->hm.s.fPostedIntrs)
1997 LogRel(("HM: Enabled posted-interrupt processing support\n"));
1998
1999 hmR3DisableRawMode(pVM);
2000
2001 LogRel((pVM->hm.s.fTprPatchingAllowed ? "HM: Enabled TPR patching\n"
2002 : "HM: Disabled TPR patching\n"));
2003
2004 LogRel((pVM->hm.s.fAllow64BitGuestsCfg ? "HM: Guest support: 32-bit and 64-bit\n"
2005 : "HM: Guest support: 32-bit only\n"));
2006 return VINF_SUCCESS;
2007}
2008
2009
2010/**
2011 * Applies relocations to data and code managed by this
2012 * component. This function will be called at init and
2013 * whenever the VMM need to relocate it self inside the GC.
2014 *
2015 * @param pVM The cross context VM structure.
2016 */
2017VMMR3_INT_DECL(void) HMR3Relocate(PVM pVM)
2018{
2019 /* Fetch the current paging mode during the relocate callback during state loading. */
2020 if (VMR3GetState(pVM) == VMSTATE_LOADING)
2021 {
2022 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2023 {
2024 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2025 pVCpu->hm.s.enmShadowMode = PGMGetShadowMode(pVCpu);
2026 }
2027 }
2028}
2029
2030
2031/**
2032 * Terminates the HM.
2033 *
2034 * Termination means cleaning up and freeing all resources,
2035 * the VM itself is, at this point, powered off or suspended.
2036 *
2037 * @returns VBox status code.
2038 * @param pVM The cross context VM structure.
2039 */
2040VMMR3_INT_DECL(int) HMR3Term(PVM pVM)
2041{
2042 if (pVM->hm.s.vmx.pRealModeTSS)
2043 {
2044 PDMR3VmmDevHeapFree(pVM, pVM->hm.s.vmx.pRealModeTSS);
2045 pVM->hm.s.vmx.pRealModeTSS = 0;
2046 }
2047 hmR3TermCPU(pVM);
2048 return 0;
2049}
2050
2051
2052/**
2053 * Terminates the per-VCPU HM.
2054 *
2055 * @returns VBox status code.
2056 * @param pVM The cross context VM structure.
2057 */
2058static int hmR3TermCPU(PVM pVM)
2059{
2060 RT_NOREF(pVM);
2061 return VINF_SUCCESS;
2062}
2063
2064
2065/**
2066 * Resets a virtual CPU.
2067 *
2068 * Used by HMR3Reset and CPU hot plugging.
2069 *
2070 * @param pVCpu The cross context virtual CPU structure to reset.
2071 */
2072VMMR3_INT_DECL(void) HMR3ResetCpu(PVMCPU pVCpu)
2073{
2074 /* Sync. entire state on VM reset ring-0 re-entry. It's safe to reset
2075 the HM flags here, all other EMTs are in ring-3. See VMR3Reset(). */
2076 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
2077
2078 pVCpu->hm.s.fActive = false;
2079 pVCpu->hm.s.Event.fPending = false;
2080 pVCpu->hm.s.vmx.u64GstMsrApicBase = 0;
2081 pVCpu->hm.s.vmx.VmcsInfo.fWasInRealMode = true;
2082#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2083 if (pVCpu->CTX_SUFF(pVM)->cpum.ro.GuestFeatures.fVmx)
2084 pVCpu->hm.s.vmx.VmcsInfoNstGst.fWasInRealMode = true;
2085#endif
2086}
2087
2088
2089/**
2090 * The VM is being reset.
2091 *
2092 * For the HM component this means that any GDT/LDT/TSS monitors
2093 * needs to be removed.
2094 *
2095 * @param pVM The cross context VM structure.
2096 */
2097VMMR3_INT_DECL(void) HMR3Reset(PVM pVM)
2098{
2099 LogFlow(("HMR3Reset:\n"));
2100
2101 if (HMIsEnabled(pVM))
2102 hmR3DisableRawMode(pVM);
2103
2104 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2105 HMR3ResetCpu(pVM->apCpusR3[idCpu]);
2106
2107 /* Clear all patch information. */
2108 pVM->hm.s.pGuestPatchMem = 0;
2109 pVM->hm.s.pFreeGuestPatchMem = 0;
2110 pVM->hm.s.cbGuestPatchMem = 0;
2111 pVM->hm.s.cPatches = 0;
2112 pVM->hm.s.PatchTree = 0;
2113 pVM->hm.s.fTprPatchingActive = false;
2114 ASMMemZero32(pVM->hm.s.aPatches, sizeof(pVM->hm.s.aPatches));
2115}
2116
2117
2118/**
2119 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2120 *
2121 * @returns VBox strict status code.
2122 * @param pVM The cross context VM structure.
2123 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2124 * @param pvUser Unused.
2125 */
2126static DECLCALLBACK(VBOXSTRICTRC) hmR3RemovePatches(PVM pVM, PVMCPU pVCpu, void *pvUser)
2127{
2128 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2129
2130 /* Only execute the handler on the VCPU the original patch request was issued. */
2131 if (pVCpu->idCpu != idCpu)
2132 return VINF_SUCCESS;
2133
2134 Log(("hmR3RemovePatches\n"));
2135 for (unsigned i = 0; i < pVM->hm.s.cPatches; i++)
2136 {
2137 uint8_t abInstr[15];
2138 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
2139 RTGCPTR pInstrGC = (RTGCPTR)pPatch->Core.Key;
2140 int rc;
2141
2142#ifdef LOG_ENABLED
2143 char szOutput[256];
2144 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2145 szOutput, sizeof(szOutput), NULL);
2146 if (RT_SUCCESS(rc))
2147 Log(("Patched instr: %s\n", szOutput));
2148#endif
2149
2150 /* Check if the instruction is still the same. */
2151 rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pInstrGC, pPatch->cbNewOp);
2152 if (rc != VINF_SUCCESS)
2153 {
2154 Log(("Patched code removed? (rc=%Rrc0\n", rc));
2155 continue; /* swapped out or otherwise removed; skip it. */
2156 }
2157
2158 if (memcmp(abInstr, pPatch->aNewOpcode, pPatch->cbNewOp))
2159 {
2160 Log(("Patched instruction was changed! (rc=%Rrc0\n", rc));
2161 continue; /* skip it. */
2162 }
2163
2164 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pInstrGC, pPatch->aOpcode, pPatch->cbOp);
2165 AssertRC(rc);
2166
2167#ifdef LOG_ENABLED
2168 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, CPUMGetGuestCS(pVCpu), pInstrGC, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2169 szOutput, sizeof(szOutput), NULL);
2170 if (RT_SUCCESS(rc))
2171 Log(("Original instr: %s\n", szOutput));
2172#endif
2173 }
2174 pVM->hm.s.cPatches = 0;
2175 pVM->hm.s.PatchTree = 0;
2176 pVM->hm.s.pFreeGuestPatchMem = pVM->hm.s.pGuestPatchMem;
2177 pVM->hm.s.fTprPatchingActive = false;
2178 return VINF_SUCCESS;
2179}
2180
2181
2182/**
2183 * Worker for enabling patching in a VT-x/AMD-V guest.
2184 *
2185 * @returns VBox status code.
2186 * @param pVM The cross context VM structure.
2187 * @param idCpu VCPU to execute hmR3RemovePatches on.
2188 * @param pPatchMem Patch memory range.
2189 * @param cbPatchMem Size of the memory range.
2190 */
2191static DECLCALLBACK(int) hmR3EnablePatching(PVM pVM, VMCPUID idCpu, RTRCPTR pPatchMem, unsigned cbPatchMem)
2192{
2193 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches, (void *)(uintptr_t)idCpu);
2194 AssertRC(rc);
2195
2196 pVM->hm.s.pGuestPatchMem = pPatchMem;
2197 pVM->hm.s.pFreeGuestPatchMem = pPatchMem;
2198 pVM->hm.s.cbGuestPatchMem = cbPatchMem;
2199 return VINF_SUCCESS;
2200}
2201
2202
2203/**
2204 * Enable patching in a VT-x/AMD-V guest
2205 *
2206 * @returns VBox status code.
2207 * @param pVM The cross context VM structure.
2208 * @param pPatchMem Patch memory range.
2209 * @param cbPatchMem Size of the memory range.
2210 */
2211VMMR3_INT_DECL(int) HMR3EnablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2212{
2213 VM_ASSERT_EMT(pVM);
2214 Log(("HMR3EnablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2215 if (pVM->cCpus > 1)
2216 {
2217 /* We own the IOM lock here and could cause a deadlock by waiting for a VCPU that is blocking on the IOM lock. */
2218 int rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE,
2219 (PFNRT)hmR3EnablePatching, 4, pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2220 AssertRC(rc);
2221 return rc;
2222 }
2223 return hmR3EnablePatching(pVM, VMMGetCpuId(pVM), (RTRCPTR)pPatchMem, cbPatchMem);
2224}
2225
2226
2227/**
2228 * Disable patching in a VT-x/AMD-V guest.
2229 *
2230 * @returns VBox status code.
2231 * @param pVM The cross context VM structure.
2232 * @param pPatchMem Patch memory range.
2233 * @param cbPatchMem Size of the memory range.
2234 */
2235VMMR3_INT_DECL(int) HMR3DisablePatching(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
2236{
2237 Log(("HMR3DisablePatching %RGv size %x\n", pPatchMem, cbPatchMem));
2238 RT_NOREF2(pPatchMem, cbPatchMem);
2239
2240 Assert(pVM->hm.s.pGuestPatchMem == pPatchMem);
2241 Assert(pVM->hm.s.cbGuestPatchMem == cbPatchMem);
2242
2243 /** @todo Potential deadlock when other VCPUs are waiting on the IOM lock (we own it)!! */
2244 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE, hmR3RemovePatches,
2245 (void *)(uintptr_t)VMMGetCpuId(pVM));
2246 AssertRC(rc);
2247
2248 pVM->hm.s.pGuestPatchMem = 0;
2249 pVM->hm.s.pFreeGuestPatchMem = 0;
2250 pVM->hm.s.cbGuestPatchMem = 0;
2251 pVM->hm.s.fTprPatchingActive = false;
2252 return VINF_SUCCESS;
2253}
2254
2255
2256/**
2257 * Callback to patch a TPR instruction (vmmcall or mov cr8).
2258 *
2259 * @returns VBox strict status code.
2260 * @param pVM The cross context VM structure.
2261 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2262 * @param pvUser User specified CPU context.
2263 *
2264 */
2265static DECLCALLBACK(VBOXSTRICTRC) hmR3ReplaceTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2266{
2267 /*
2268 * Only execute the handler on the VCPU the original patch request was
2269 * issued. (The other CPU(s) might not yet have switched to protected
2270 * mode, nor have the correct memory context.)
2271 */
2272 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2273 if (pVCpu->idCpu != idCpu)
2274 return VINF_SUCCESS;
2275
2276 /*
2277 * We're racing other VCPUs here, so don't try patch the instruction twice
2278 * and make sure there is still room for our patch record.
2279 */
2280 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2281 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2282 if (pPatch)
2283 {
2284 Log(("hmR3ReplaceTprInstr: already patched %RGv\n", pCtx->rip));
2285 return VINF_SUCCESS;
2286 }
2287 uint32_t const idx = pVM->hm.s.cPatches;
2288 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2289 {
2290 Log(("hmR3ReplaceTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2291 return VINF_SUCCESS;
2292 }
2293 pPatch = &pVM->hm.s.aPatches[idx];
2294
2295 Log(("hmR3ReplaceTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2296
2297 /*
2298 * Disassembler the instruction and get cracking.
2299 */
2300 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3ReplaceTprInstr");
2301 DISSTATE Dis;
2302 uint32_t cbOp;
2303 int rc = EMInterpretDisasCurrent(pVCpu, &Dis, &cbOp);
2304 AssertRC(rc);
2305 if ( rc == VINF_SUCCESS
2306 && Dis.pCurInstr->uOpcode == OP_MOV
2307 && cbOp >= 3)
2308 {
2309 static uint8_t const s_abVMMCall[3] = { 0x0f, 0x01, 0xd9 };
2310
2311 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2312 AssertRC(rc);
2313
2314 pPatch->cbOp = cbOp;
2315
2316 if (Dis.Param1.fUse == DISUSE_DISPLACEMENT32)
2317 {
2318 /* write. */
2319 if (Dis.Param2.fUse == DISUSE_REG_GEN32)
2320 {
2321 pPatch->enmType = HMTPRINSTR_WRITE_REG;
2322 pPatch->uSrcOperand = Dis.Param2.arch.x86.Base.idxGenReg;
2323 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_REG %u\n", Dis.Param2.arch.x86.Base.idxGenReg));
2324 }
2325 else
2326 {
2327 Assert(Dis.Param2.fUse == DISUSE_IMMEDIATE32);
2328 pPatch->enmType = HMTPRINSTR_WRITE_IMM;
2329 pPatch->uSrcOperand = Dis.Param2.uValue;
2330 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_WRITE_IMM %#llx\n", Dis.Param2.uValue));
2331 }
2332 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2333 AssertRC(rc);
2334
2335 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2336 pPatch->cbNewOp = sizeof(s_abVMMCall);
2337 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2338 }
2339 else
2340 {
2341 /*
2342 * TPR Read.
2343 *
2344 * Found:
2345 * mov eax, dword [fffe0080] (5 bytes)
2346 * Check if next instruction is:
2347 * shr eax, 4
2348 */
2349 Assert(Dis.Param1.fUse == DISUSE_REG_GEN32);
2350
2351 uint8_t const idxMmioReg = Dis.Param1.arch.x86.Base.idxGenReg;
2352 uint8_t const cbOpMmio = cbOp;
2353 uint64_t const uSavedRip = pCtx->rip;
2354
2355 pCtx->rip += cbOp;
2356 rc = EMInterpretDisasCurrent(pVCpu, &Dis, &cbOp);
2357 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Following read");
2358 pCtx->rip = uSavedRip;
2359
2360 if ( rc == VINF_SUCCESS
2361 && Dis.pCurInstr->uOpcode == OP_SHR
2362 && Dis.Param1.fUse == DISUSE_REG_GEN32
2363 && Dis.Param1.arch.x86.Base.idxGenReg == idxMmioReg
2364 && Dis.Param2.fUse == DISUSE_IMMEDIATE8
2365 && Dis.Param2.uValue == 4
2366 && cbOpMmio + cbOp < sizeof(pVM->hm.s.aPatches[idx].aOpcode))
2367 {
2368 uint8_t abInstr[15];
2369
2370 /* Replacing the two instructions above with an AMD-V specific lock-prefixed 32-bit MOV CR8 instruction so as to
2371 access CR8 in 32-bit mode and not cause a #VMEXIT. */
2372 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pPatch->aOpcode, pCtx->rip, cbOpMmio + cbOp);
2373 AssertRC(rc);
2374
2375 pPatch->cbOp = cbOpMmio + cbOp;
2376
2377 /* 0xf0, 0x0f, 0x20, 0xc0 = mov eax, cr8 */
2378 abInstr[0] = 0xf0;
2379 abInstr[1] = 0x0f;
2380 abInstr[2] = 0x20;
2381 abInstr[3] = 0xc0 | Dis.Param1.arch.x86.Base.idxGenReg;
2382 for (unsigned i = 4; i < pPatch->cbOp; i++)
2383 abInstr[i] = 0x90; /* nop */
2384
2385 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, abInstr, pPatch->cbOp);
2386 AssertRC(rc);
2387
2388 memcpy(pPatch->aNewOpcode, abInstr, pPatch->cbOp);
2389 pPatch->cbNewOp = pPatch->cbOp;
2390 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessCr8);
2391
2392 Log(("Acceptable read/shr candidate!\n"));
2393 pPatch->enmType = HMTPRINSTR_READ_SHR4;
2394 }
2395 else
2396 {
2397 pPatch->enmType = HMTPRINSTR_READ;
2398 pPatch->uDstOperand = idxMmioReg;
2399
2400 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->rip, s_abVMMCall, sizeof(s_abVMMCall));
2401 AssertRC(rc);
2402
2403 memcpy(pPatch->aNewOpcode, s_abVMMCall, sizeof(s_abVMMCall));
2404 pPatch->cbNewOp = sizeof(s_abVMMCall);
2405 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceSuccessVmc);
2406 Log(("hmR3ReplaceTprInstr: HMTPRINSTR_READ %u\n", pPatch->uDstOperand));
2407 }
2408 }
2409
2410 pPatch->Core.Key = pCtx->eip;
2411 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2412 AssertRC(rc);
2413
2414 pVM->hm.s.cPatches++;
2415 return VINF_SUCCESS;
2416 }
2417
2418 /*
2419 * Save invalid patch, so we will not try again.
2420 */
2421 Log(("hmR3ReplaceTprInstr: Failed to patch instr!\n"));
2422 pPatch->Core.Key = pCtx->eip;
2423 pPatch->enmType = HMTPRINSTR_INVALID;
2424 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2425 AssertRC(rc);
2426 pVM->hm.s.cPatches++;
2427 STAM_COUNTER_INC(&pVM->hm.s.StatTprReplaceFailure);
2428 return VINF_SUCCESS;
2429}
2430
2431
2432/**
2433 * Callback to patch a TPR instruction (jump to generated code).
2434 *
2435 * @returns VBox strict status code.
2436 * @param pVM The cross context VM structure.
2437 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2438 * @param pvUser User specified CPU context.
2439 *
2440 */
2441static DECLCALLBACK(VBOXSTRICTRC) hmR3PatchTprInstr(PVM pVM, PVMCPU pVCpu, void *pvUser)
2442{
2443 /*
2444 * Only execute the handler on the VCPU the original patch request was
2445 * issued. (The other CPU(s) might not yet have switched to protected
2446 * mode, nor have the correct memory context.)
2447 */
2448 VMCPUID idCpu = (VMCPUID)(uintptr_t)pvUser;
2449 if (pVCpu->idCpu != idCpu)
2450 return VINF_SUCCESS;
2451
2452 /*
2453 * We're racing other VCPUs here, so don't try patch the instruction twice
2454 * and make sure there is still room for our patch record.
2455 */
2456 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2457 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
2458 if (pPatch)
2459 {
2460 Log(("hmR3PatchTprInstr: already patched %RGv\n", pCtx->rip));
2461 return VINF_SUCCESS;
2462 }
2463 uint32_t const idx = pVM->hm.s.cPatches;
2464 if (idx >= RT_ELEMENTS(pVM->hm.s.aPatches))
2465 {
2466 Log(("hmR3PatchTprInstr: no available patch slots (%RGv)\n", pCtx->rip));
2467 return VINF_SUCCESS;
2468 }
2469 pPatch = &pVM->hm.s.aPatches[idx];
2470
2471 Log(("hmR3PatchTprInstr: rip=%RGv idxPatch=%u\n", pCtx->rip, idx));
2472 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "hmR3PatchTprInstr");
2473
2474 /*
2475 * Disassemble the instruction and get cracking.
2476 */
2477 DISSTATE Dis;
2478 uint32_t cbOp;
2479 int rc = EMInterpretDisasCurrent(pVCpu, &Dis, &cbOp);
2480 AssertRC(rc);
2481 if ( rc == VINF_SUCCESS
2482 && Dis.pCurInstr->uOpcode == OP_MOV
2483 && cbOp >= 5)
2484 {
2485 uint8_t aPatch[64];
2486 uint32_t off = 0;
2487
2488 rc = PGMPhysSimpleReadGCPtr(pVCpu, pPatch->aOpcode, pCtx->rip, cbOp);
2489 AssertRC(rc);
2490
2491 pPatch->cbOp = cbOp;
2492 pPatch->enmType = HMTPRINSTR_JUMP_REPLACEMENT;
2493
2494 if (Dis.Param1.fUse == DISUSE_DISPLACEMENT32)
2495 {
2496 /*
2497 * TPR write:
2498 *
2499 * push ECX [51]
2500 * push EDX [52]
2501 * push EAX [50]
2502 * xor EDX,EDX [31 D2]
2503 * mov EAX,EAX [89 C0]
2504 * or
2505 * mov EAX,0000000CCh [B8 CC 00 00 00]
2506 * mov ECX,0C0000082h [B9 82 00 00 C0]
2507 * wrmsr [0F 30]
2508 * pop EAX [58]
2509 * pop EDX [5A]
2510 * pop ECX [59]
2511 * jmp return_address [E9 return_address]
2512 */
2513 bool fUsesEax = (Dis.Param2.fUse == DISUSE_REG_GEN32 && Dis.Param2.arch.x86.Base.idxGenReg == DISGREG_EAX);
2514
2515 aPatch[off++] = 0x51; /* push ecx */
2516 aPatch[off++] = 0x52; /* push edx */
2517 if (!fUsesEax)
2518 aPatch[off++] = 0x50; /* push eax */
2519 aPatch[off++] = 0x31; /* xor edx, edx */
2520 aPatch[off++] = 0xd2;
2521 if (Dis.Param2.fUse == DISUSE_REG_GEN32)
2522 {
2523 if (!fUsesEax)
2524 {
2525 aPatch[off++] = 0x89; /* mov eax, src_reg */
2526 aPatch[off++] = MAKE_MODRM(3, Dis.Param2.arch.x86.Base.idxGenReg, DISGREG_EAX);
2527 }
2528 }
2529 else
2530 {
2531 Assert(Dis.Param2.fUse == DISUSE_IMMEDIATE32);
2532 aPatch[off++] = 0xb8; /* mov eax, immediate */
2533 *(uint32_t *)&aPatch[off] = Dis.Param2.uValue;
2534 off += sizeof(uint32_t);
2535 }
2536 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2537 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2538 off += sizeof(uint32_t);
2539
2540 aPatch[off++] = 0x0f; /* wrmsr */
2541 aPatch[off++] = 0x30;
2542 if (!fUsesEax)
2543 aPatch[off++] = 0x58; /* pop eax */
2544 aPatch[off++] = 0x5a; /* pop edx */
2545 aPatch[off++] = 0x59; /* pop ecx */
2546 }
2547 else
2548 {
2549 /*
2550 * TPR read:
2551 *
2552 * push ECX [51]
2553 * push EDX [52]
2554 * push EAX [50]
2555 * mov ECX,0C0000082h [B9 82 00 00 C0]
2556 * rdmsr [0F 32]
2557 * mov EAX,EAX [89 C0]
2558 * pop EAX [58]
2559 * pop EDX [5A]
2560 * pop ECX [59]
2561 * jmp return_address [E9 return_address]
2562 */
2563 Assert(Dis.Param1.fUse == DISUSE_REG_GEN32);
2564
2565 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_ECX)
2566 aPatch[off++] = 0x51; /* push ecx */
2567 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_EDX )
2568 aPatch[off++] = 0x52; /* push edx */
2569 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_EAX)
2570 aPatch[off++] = 0x50; /* push eax */
2571
2572 aPatch[off++] = 0x31; /* xor edx, edx */
2573 aPatch[off++] = 0xd2;
2574
2575 aPatch[off++] = 0xb9; /* mov ecx, 0xc0000082 */
2576 *(uint32_t *)&aPatch[off] = MSR_K8_LSTAR;
2577 off += sizeof(uint32_t);
2578
2579 aPatch[off++] = 0x0f; /* rdmsr */
2580 aPatch[off++] = 0x32;
2581
2582 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_EAX)
2583 {
2584 aPatch[off++] = 0x89; /* mov dst_reg, eax */
2585 aPatch[off++] = MAKE_MODRM(3, DISGREG_EAX, Dis.Param1.arch.x86.Base.idxGenReg);
2586 }
2587
2588 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_EAX)
2589 aPatch[off++] = 0x58; /* pop eax */
2590 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_EDX )
2591 aPatch[off++] = 0x5a; /* pop edx */
2592 if (Dis.Param1.arch.x86.Base.idxGenReg != DISGREG_ECX)
2593 aPatch[off++] = 0x59; /* pop ecx */
2594 }
2595 aPatch[off++] = 0xe9; /* jmp return_address */
2596 *(RTRCUINTPTR *)&aPatch[off] = ((RTRCUINTPTR)pCtx->eip + cbOp) - ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem + off + 4);
2597 off += sizeof(RTRCUINTPTR);
2598
2599 if (pVM->hm.s.pFreeGuestPatchMem + off <= pVM->hm.s.pGuestPatchMem + pVM->hm.s.cbGuestPatchMem)
2600 {
2601 /* Write new code to the patch buffer. */
2602 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pVM->hm.s.pFreeGuestPatchMem, aPatch, off);
2603 AssertRC(rc);
2604
2605#ifdef LOG_ENABLED
2606 uint32_t cbCurInstr;
2607 for (RTGCPTR GCPtrInstr = pVM->hm.s.pFreeGuestPatchMem;
2608 GCPtrInstr < pVM->hm.s.pFreeGuestPatchMem + off;
2609 GCPtrInstr += RT_MAX(cbCurInstr, 1))
2610 {
2611 char szOutput[256];
2612 rc = DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, pCtx->cs.Sel, GCPtrInstr, DBGF_DISAS_FLAGS_DEFAULT_MODE,
2613 szOutput, sizeof(szOutput), &cbCurInstr);
2614 if (RT_SUCCESS(rc))
2615 Log(("Patch instr %s\n", szOutput));
2616 else
2617 Log(("%RGv: rc=%Rrc\n", GCPtrInstr, rc));
2618 }
2619#endif
2620
2621 pPatch->aNewOpcode[0] = 0xE9;
2622 *(RTRCUINTPTR *)&pPatch->aNewOpcode[1] = ((RTRCUINTPTR)pVM->hm.s.pFreeGuestPatchMem) - ((RTRCUINTPTR)pCtx->eip + 5);
2623
2624 /* Overwrite the TPR instruction with a jump. */
2625 rc = PGMPhysSimpleWriteGCPtr(pVCpu, pCtx->eip, pPatch->aNewOpcode, 5);
2626 AssertRC(rc);
2627
2628 DBGFR3_DISAS_INSTR_CUR_LOG(pVCpu, "Jump");
2629
2630 pVM->hm.s.pFreeGuestPatchMem += off;
2631 pPatch->cbNewOp = 5;
2632
2633 pPatch->Core.Key = pCtx->eip;
2634 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2635 AssertRC(rc);
2636
2637 pVM->hm.s.cPatches++;
2638 pVM->hm.s.fTprPatchingActive = true;
2639 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchSuccess);
2640 return VINF_SUCCESS;
2641 }
2642
2643 Log(("Ran out of space in our patch buffer!\n"));
2644 }
2645 else
2646 Log(("hmR3PatchTprInstr: Failed to patch instr!\n"));
2647
2648
2649 /*
2650 * Save invalid patch, so we will not try again.
2651 */
2652 pPatch = &pVM->hm.s.aPatches[idx];
2653 pPatch->Core.Key = pCtx->eip;
2654 pPatch->enmType = HMTPRINSTR_INVALID;
2655 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
2656 AssertRC(rc);
2657 pVM->hm.s.cPatches++;
2658 STAM_COUNTER_INC(&pVM->hm.s.StatTprPatchFailure);
2659 return VINF_SUCCESS;
2660}
2661
2662
2663/**
2664 * Attempt to patch TPR mmio instructions.
2665 *
2666 * @returns VBox status code.
2667 * @param pVM The cross context VM structure.
2668 * @param pVCpu The cross context virtual CPU structure.
2669 */
2670VMMR3_INT_DECL(int) HMR3PatchTprInstr(PVM pVM, PVMCPU pVCpu)
2671{
2672 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE,
2673 pVM->hm.s.pGuestPatchMem ? hmR3PatchTprInstr : hmR3ReplaceTprInstr,
2674 (void *)(uintptr_t)pVCpu->idCpu);
2675 AssertRC(rc);
2676 return rc;
2677}
2678
2679
2680/**
2681 * Checks if we need to reschedule due to VMM device heap changes.
2682 *
2683 * @returns true if a reschedule is required, otherwise false.
2684 * @param pVM The cross context VM structure.
2685 * @param pCtx VM execution context.
2686 */
2687VMMR3_INT_DECL(bool) HMR3IsRescheduleRequired(PVM pVM, PCCPUMCTX pCtx)
2688{
2689 /*
2690 * The VMM device heap is a requirement for emulating real-mode or protected-mode without paging
2691 * when the unrestricted guest execution feature is missing (VT-x only).
2692 */
2693 if ( pVM->hm.s.vmx.fEnabled
2694 && !pVM->hm.s.vmx.fUnrestrictedGuestCfg
2695 && CPUMIsGuestInRealModeEx(pCtx)
2696 && !PDMVmmDevHeapIsEnabled(pVM))
2697 return true;
2698
2699 return false;
2700}
2701
2702
2703/**
2704 * Noticiation callback from DBGF when interrupt breakpoints or generic debug
2705 * event settings changes.
2706 *
2707 * DBGF will call HMR3NotifyDebugEventChangedPerCpu on each CPU afterwards, this
2708 * function is just updating the VM globals.
2709 *
2710 * @param pVM The VM cross context VM structure.
2711 * @thread EMT(0)
2712 */
2713VMMR3_INT_DECL(void) HMR3NotifyDebugEventChanged(PVM pVM)
2714{
2715 /* Interrupts. */
2716 bool fUseDebugLoop = pVM->dbgf.ro.cSoftIntBreakpoints > 0
2717 || pVM->dbgf.ro.cHardIntBreakpoints > 0;
2718
2719 /* CPU Exceptions. */
2720 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_XCPT_FIRST;
2721 !fUseDebugLoop && enmEvent <= DBGFEVENT_XCPT_LAST;
2722 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2723 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2724
2725 /* Common VM exits. */
2726 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_FIRST;
2727 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_LAST_COMMON;
2728 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2729 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2730
2731 /* Vendor specific VM exits. */
2732 if (HMR3IsVmxEnabled(pVM->pUVM))
2733 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_VMX_FIRST;
2734 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_VMX_LAST;
2735 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2736 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2737 else
2738 for (DBGFEVENTTYPE enmEvent = DBGFEVENT_EXIT_SVM_FIRST;
2739 !fUseDebugLoop && enmEvent <= DBGFEVENT_EXIT_SVM_LAST;
2740 enmEvent = (DBGFEVENTTYPE)(enmEvent + 1))
2741 fUseDebugLoop = DBGF_IS_EVENT_ENABLED(pVM, enmEvent);
2742
2743 /* Done. */
2744 pVM->hm.s.fUseDebugLoop = fUseDebugLoop;
2745}
2746
2747
2748/**
2749 * Follow up notification callback to HMR3NotifyDebugEventChanged for each CPU.
2750 *
2751 * HM uses this to combine the decision made by HMR3NotifyDebugEventChanged with
2752 * per CPU settings.
2753 *
2754 * @param pVM The VM cross context VM structure.
2755 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2756 */
2757VMMR3_INT_DECL(void) HMR3NotifyDebugEventChangedPerCpu(PVM pVM, PVMCPU pVCpu)
2758{
2759 pVCpu->hm.s.fUseDebugLoop = pVCpu->hm.s.fSingleInstruction | pVM->hm.s.fUseDebugLoop;
2760}
2761
2762
2763#if 0 /* evil */
2764/**
2765 * Checks if we are currently using hardware acceleration.
2766 *
2767 * @returns true if hardware acceleration is being used, otherwise false.
2768 * @param pVCpu The cross context virtual CPU structure.
2769 */
2770VMMR3_INT_DECL(bool) HMR3IsActive(PCVMCPU pVCpu)
2771{
2772 return pVCpu->hm.s.fActive;
2773}
2774#endif
2775
2776
2777/**
2778 * External interface for querying whether hardware acceleration is enabled.
2779 *
2780 * @returns true if VT-x or AMD-V is being used, otherwise false.
2781 * @param pUVM The user mode VM handle.
2782 * @sa HMIsEnabled, HMIsEnabledNotMacro.
2783 */
2784VMMR3DECL(bool) HMR3IsEnabled(PUVM pUVM)
2785{
2786 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2787 PVM pVM = pUVM->pVM;
2788 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2789 return pVM->fHMEnabled; /* Don't use the macro as the GUI may query us very very early. */
2790}
2791
2792
2793/**
2794 * External interface for querying whether VT-x is being used.
2795 *
2796 * @returns true if VT-x is being used, otherwise false.
2797 * @param pUVM The user mode VM handle.
2798 * @sa HMR3IsSvmEnabled, HMIsEnabled
2799 */
2800VMMR3DECL(bool) HMR3IsVmxEnabled(PUVM pUVM)
2801{
2802 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2803 PVM pVM = pUVM->pVM;
2804 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2805 return pVM->hm.s.vmx.fEnabled
2806 && pVM->hm.s.vmx.fSupported
2807 && pVM->fHMEnabled;
2808}
2809
2810
2811/**
2812 * External interface for querying whether AMD-V is being used.
2813 *
2814 * @returns true if VT-x is being used, otherwise false.
2815 * @param pUVM The user mode VM handle.
2816 * @sa HMR3IsVmxEnabled, HMIsEnabled
2817 */
2818VMMR3DECL(bool) HMR3IsSvmEnabled(PUVM pUVM)
2819{
2820 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2821 PVM pVM = pUVM->pVM;
2822 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2823 return pVM->hm.s.svm.fEnabled
2824 && pVM->hm.s.svm.fSupported
2825 && pVM->fHMEnabled;
2826}
2827
2828
2829/**
2830 * Checks if we are currently using nested paging.
2831 *
2832 * @returns true if nested paging is being used, otherwise false.
2833 * @param pUVM The user mode VM handle.
2834 */
2835VMMR3DECL(bool) HMR3IsNestedPagingActive(PUVM pUVM)
2836{
2837 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2838 PVM pVM = pUVM->pVM;
2839 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2840 return pVM->hm.s.fNestedPagingCfg;
2841}
2842
2843
2844/**
2845 * Checks if virtualized APIC registers are enabled.
2846 *
2847 * When enabled this feature allows the hardware to access most of the
2848 * APIC registers in the virtual-APIC page without causing VM-exits. See
2849 * Intel spec. 29.1.1 "Virtualized APIC Registers".
2850 *
2851 * @returns true if virtualized APIC registers is enabled, otherwise
2852 * false.
2853 * @param pUVM The user mode VM handle.
2854 */
2855VMMR3DECL(bool) HMR3AreVirtApicRegsEnabled(PUVM pUVM)
2856{
2857 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2858 PVM pVM = pUVM->pVM;
2859 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2860 return pVM->hm.s.fVirtApicRegs;
2861}
2862
2863
2864/**
2865 * Checks if APIC posted-interrupt processing is enabled.
2866 *
2867 * This returns whether we can deliver interrupts to the guest without
2868 * leaving guest-context by updating APIC state from host-context.
2869 *
2870 * @returns true if APIC posted-interrupt processing is enabled,
2871 * otherwise false.
2872 * @param pUVM The user mode VM handle.
2873 */
2874VMMR3DECL(bool) HMR3IsPostedIntrsEnabled(PUVM pUVM)
2875{
2876 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2877 PVM pVM = pUVM->pVM;
2878 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2879 return pVM->hm.s.fPostedIntrs;
2880}
2881
2882
2883/**
2884 * Checks if we are currently using VPID in VT-x mode.
2885 *
2886 * @returns true if VPID is being used, otherwise false.
2887 * @param pUVM The user mode VM handle.
2888 */
2889VMMR3DECL(bool) HMR3IsVpidActive(PUVM pUVM)
2890{
2891 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2892 PVM pVM = pUVM->pVM;
2893 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2894 return pVM->hm.s.ForR3.vmx.fVpid;
2895}
2896
2897
2898/**
2899 * Checks if we are currently using VT-x unrestricted execution,
2900 * aka UX.
2901 *
2902 * @returns true if UX is being used, otherwise false.
2903 * @param pUVM The user mode VM handle.
2904 */
2905VMMR3DECL(bool) HMR3IsUXActive(PUVM pUVM)
2906{
2907 UVM_ASSERT_VALID_EXT_RETURN(pUVM, false);
2908 PVM pVM = pUVM->pVM;
2909 VM_ASSERT_VALID_EXT_RETURN(pVM, false);
2910 return pVM->hm.s.vmx.fUnrestrictedGuestCfg
2911 || pVM->hm.s.svm.fSupported;
2912}
2913
2914
2915/**
2916 * Checks if the VMX-preemption timer is being used.
2917 *
2918 * @returns true if the VMX-preemption timer is being used, otherwise false.
2919 * @param pVM The cross context VM structure.
2920 */
2921VMMR3_INT_DECL(bool) HMR3IsVmxPreemptionTimerUsed(PVM pVM)
2922{
2923 return HMIsEnabled(pVM)
2924 && pVM->hm.s.vmx.fEnabled
2925 && pVM->hm.s.vmx.fUsePreemptTimerCfg;
2926}
2927
2928
2929#ifdef TODO_9217_VMCSINFO
2930/**
2931 * Helper for HMR3CheckError to log VMCS controls to the release log.
2932 *
2933 * @param idCpu The Virtual CPU ID.
2934 * @param pVmcsInfo The VMCS info. object.
2935 */
2936static void hmR3CheckErrorLogVmcsCtls(VMCPUID idCpu, PCVMXVMCSINFO pVmcsInfo)
2937{
2938 LogRel(("HM: CPU[%u] PinCtls %#RX32\n", idCpu, pVmcsInfo->u32PinCtls));
2939 {
2940 uint32_t const u32Val = pVmcsInfo->u32PinCtls;
2941 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_EXT_INT_EXIT );
2942 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_NMI_EXIT );
2943 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_VIRT_NMI );
2944 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_PREEMPT_TIMER);
2945 HMVMX_LOGREL_FEAT(u32Val, VMX_PIN_CTLS_POSTED_INT );
2946 }
2947 LogRel(("HM: CPU[%u] ProcCtls %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls));
2948 {
2949 uint32_t const u32Val = pVmcsInfo->u32ProcCtls;
2950 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INT_WINDOW_EXIT );
2951 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TSC_OFFSETTING);
2952 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_HLT_EXIT );
2953 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_INVLPG_EXIT );
2954 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MWAIT_EXIT );
2955 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDPMC_EXIT );
2956 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_RDTSC_EXIT );
2957 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_LOAD_EXIT );
2958 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR3_STORE_EXIT );
2959 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TERTIARY_CTLS );
2960 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_LOAD_EXIT );
2961 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_CR8_STORE_EXIT );
2962 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_TPR_SHADOW );
2963 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_NMI_WINDOW_EXIT );
2964 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MOV_DR_EXIT );
2965 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_UNCOND_IO_EXIT );
2966 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_IO_BITMAPS );
2967 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_TRAP_FLAG );
2968 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_MSR_BITMAPS );
2969 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_MONITOR_EXIT );
2970 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_PAUSE_EXIT );
2971 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2972 }
2973 LogRel(("HM: CPU[%u] ProcCtls2 %#RX32\n", idCpu, pVmcsInfo->u32ProcCtls2));
2974 {
2975 uint32_t const u32Val = pVmcsInfo->u32ProcCtls2;
2976 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_APIC_ACCESS );
2977 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT );
2978 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_DESC_TABLE_EXIT );
2979 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDTSCP );
2980 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_X2APIC_MODE );
2981 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VPID );
2982 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_WBINVD_EXIT );
2983 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_UNRESTRICTED_GUEST );
2984 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_APIC_REG_VIRT );
2985 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VIRT_INT_DELIVERY );
2986 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT );
2987 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDRAND_EXIT );
2988 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_INVPCID );
2989 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMFUNC );
2990 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_VMCS_SHADOWING );
2991 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLS_EXIT );
2992 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_RDSEED_EXIT );
2993 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PML );
2994 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_EPT_XCPT_VE );
2995 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_CONCEAL_VMX_FROM_PT);
2996 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_XSAVES_XRSTORS );
2997 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_MODE_BASED_EPT_PERM);
2998 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_SPP_EPT );
2999 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_PT_EPT );
3000 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_TSC_SCALING );
3001 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_USER_WAIT_PAUSE );
3002 HMVMX_LOGREL_FEAT(u32Val, VMX_PROC_CTLS2_ENCLV_EXIT );
3003 }
3004 LogRel(("HM: CPU[%u] EntryCtls %#RX32\n", idCpu, pVmcsInfo->u32EntryCtls));
3005 {
3006 uint32_t const u32Val = pVmcsInfo->u32EntryCtls;
3007 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_DEBUG );
3008 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_IA32E_MODE_GUEST );
3009 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_ENTRY_TO_SMM );
3010 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON);
3011 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PERF_MSR );
3012 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PAT_MSR );
3013 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_EFER_MSR );
3014 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR );
3015 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_CONCEAL_VMX_FROM_PT);
3016 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_RTIT_CTL_MSR );
3017 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_CET_STATE );
3018 HMVMX_LOGREL_FEAT(u32Val, VMX_ENTRY_CTLS_LOAD_PKRS_MSR );
3019 }
3020 LogRel(("HM: CPU[%u] ExitCtls %#RX32\n", idCpu, pVmcsInfo->u32ExitCtls));
3021 {
3022 uint32_t const u32Val = pVmcsInfo->u32ExitCtls;
3023 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_DEBUG );
3024 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE );
3025 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PERF_MSR );
3026 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_ACK_EXT_INT );
3027 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PAT_MSR );
3028 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PAT_MSR );
3029 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_EFER_MSR );
3030 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_EFER_MSR );
3031 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER );
3032 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR );
3033 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CONCEAL_VMX_FROM_PT );
3034 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_CLEAR_RTIT_CTL_MSR );
3035 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_CET_STATE );
3036 HMVMX_LOGREL_FEAT(u32Val, VMX_EXIT_CTLS_LOAD_PKRS_MSR );
3037 }
3038}
3039#endif
3040
3041
3042/**
3043 * Check fatal VT-x/AMD-V error and produce some meaningful
3044 * log release message.
3045 *
3046 * @param pVM The cross context VM structure.
3047 * @param iStatusCode VBox status code.
3048 */
3049VMMR3_INT_DECL(void) HMR3CheckError(PVM pVM, int iStatusCode)
3050{
3051 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3052 {
3053 /** @todo r=ramshankar: Are all EMTs out of ring-0 at this point!? If not, we
3054 * might be getting inaccurate values for non-guru'ing EMTs. */
3055 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3056#ifdef TODO_9217_VMCSINFO
3057 PCVMXVMCSINFOSHARED pVmcsInfo = hmGetVmxActiveVmcsInfoShared(pVCpu);
3058#endif
3059 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
3060 switch (iStatusCode)
3061 {
3062 case VERR_VMX_INVALID_VMCS_PTR:
3063 {
3064 LogRel(("HM: VERR_VMX_INVALID_VMCS_PTR:\n"));
3065 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3066#ifdef TODO_9217_VMCSINFO
3067 LogRel(("HM: CPU[%u] Current pointer %#RHp vs %#RHp\n", idCpu, pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs,
3068 pVmcsInfo->HCPhysVmcs));
3069#endif
3070 LogRel(("HM: CPU[%u] Current VMCS version %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32VmcsRev));
3071 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3072 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3073 break;
3074 }
3075
3076 case VERR_VMX_UNABLE_TO_START_VM:
3077 {
3078 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM:\n"));
3079 LogRel(("HM: CPU[%u] %s VMCS active\n", idCpu, fNstGstVmcsActive ? "Nested-guest" : "Guest"));
3080 LogRel(("HM: CPU[%u] Instruction error %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32InstrError));
3081 LogRel(("HM: CPU[%u] Exit reason %#x\n", idCpu, pVCpu->hm.s.vmx.LastError.u32ExitReason));
3082
3083 if ( pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS
3084 || pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS)
3085 {
3086 LogRel(("HM: CPU[%u] Entered Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idEnteredCpu));
3087 LogRel(("HM: CPU[%u] Current Host Cpu %u\n", idCpu, pVCpu->hm.s.vmx.LastError.idCurrentCpu));
3088 }
3089 else if (pVCpu->hm.s.vmx.LastError.u32InstrError == VMXINSTRERR_VMENTRY_INVALID_CTLS)
3090 {
3091#ifdef TODO_9217_VMCSINFO
3092 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3093 LogRel(("HM: CPU[%u] HCPhysMsrBitmap %#RHp\n", idCpu, pVmcsInfo->HCPhysMsrBitmap));
3094 LogRel(("HM: CPU[%u] HCPhysGuestMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrLoad));
3095 LogRel(("HM: CPU[%u] HCPhysGuestMsrStore %#RHp\n", idCpu, pVmcsInfo->HCPhysGuestMsrStore));
3096 LogRel(("HM: CPU[%u] HCPhysHostMsrLoad %#RHp\n", idCpu, pVmcsInfo->HCPhysHostMsrLoad));
3097 LogRel(("HM: CPU[%u] cEntryMsrLoad %u\n", idCpu, pVmcsInfo->cEntryMsrLoad));
3098 LogRel(("HM: CPU[%u] cExitMsrStore %u\n", idCpu, pVmcsInfo->cExitMsrStore));
3099 LogRel(("HM: CPU[%u] cExitMsrLoad %u\n", idCpu, pVmcsInfo->cExitMsrLoad));
3100#endif
3101 }
3102 /** @todo Log VM-entry event injection control fields
3103 * VMX_VMCS_CTRL_ENTRY_IRQ_INFO, VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE
3104 * and VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH from the VMCS. */
3105 break;
3106 }
3107
3108 case VERR_VMX_INVALID_GUEST_STATE:
3109 {
3110 LogRel(("HM: VERR_VMX_INVALID_GUEST_STATE:\n"));
3111 LogRel(("HM: CPU[%u] HM error = %#RX32\n", idCpu, pVCpu->hm.s.u32HMError));
3112 LogRel(("HM: CPU[%u] Guest-intr. state = %#RX32\n", idCpu, pVCpu->hm.s.vmx.LastError.u32GuestIntrState));
3113#ifdef TODO_9217_VMCSINFO
3114 hmR3CheckErrorLogVmcsCtls(idCpu, pVmcsInfo);
3115#endif
3116 break;
3117 }
3118
3119 /* The guru will dump the HM error and exit history. Nothing extra to report for these errors. */
3120 case VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO:
3121 case VERR_VMX_INVALID_VMXON_PTR:
3122 case VERR_VMX_UNEXPECTED_EXIT:
3123 case VERR_VMX_INVALID_VMCS_FIELD:
3124 case VERR_SVM_UNKNOWN_EXIT:
3125 case VERR_SVM_UNEXPECTED_EXIT:
3126 case VERR_SVM_UNEXPECTED_PATCH_TYPE:
3127 case VERR_SVM_UNEXPECTED_XCPT_EXIT:
3128 case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE:
3129 break;
3130 }
3131 }
3132
3133 if (iStatusCode == VERR_VMX_UNABLE_TO_START_VM)
3134 {
3135 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-1 %#RX32\n", pVM->hm.s.ForR3.vmx.Msrs.EntryCtls.n.allowed1));
3136 LogRel(("HM: VERR_VMX_UNABLE_TO_START_VM: VM-entry allowed-0 %#RX32\n", pVM->hm.s.ForR3.vmx.Msrs.EntryCtls.n.allowed0));
3137 }
3138 else if (iStatusCode == VERR_VMX_INVALID_VMXON_PTR)
3139 LogRel(("HM: HCPhysVmxEnableError = %#RHp\n", pVM->hm.s.ForR3.vmx.HCPhysVmxEnableError));
3140}
3141
3142
3143/**
3144 * Execute state save operation.
3145 *
3146 * Save only data that cannot be re-loaded while entering HM ring-0 code. This
3147 * is because we always save the VM state from ring-3 and thus most HM state
3148 * will be re-synced dynamically at runtime and don't need to be part of the VM
3149 * saved state.
3150 *
3151 * @returns VBox status code.
3152 * @param pVM The cross context VM structure.
3153 * @param pSSM SSM operation handle.
3154 */
3155static DECLCALLBACK(int) hmR3Save(PVM pVM, PSSMHANDLE pSSM)
3156{
3157 Log(("hmR3Save:\n"));
3158
3159 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3160 {
3161 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3162 Assert(!pVCpu->hm.s.Event.fPending);
3163 if (pVM->cpum.ro.GuestFeatures.fSvm)
3164 {
3165 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3166 SSMR3PutBool(pSSM, pVmcbNstGstCache->fCacheValid);
3167 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdCRx);
3168 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrCRx);
3169 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptRdDRx);
3170 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16InterceptWrDRx);
3171 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterThreshold);
3172 SSMR3PutU16(pSSM, pVmcbNstGstCache->u16PauseFilterCount);
3173 SSMR3PutU32(pSSM, pVmcbNstGstCache->u32InterceptXcpt);
3174 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64InterceptCtrl);
3175 SSMR3PutU64(pSSM, pVmcbNstGstCache->u64TSCOffset);
3176 SSMR3PutBool(pSSM, pVmcbNstGstCache->fVIntrMasking);
3177 SSMR3PutBool(pSSM, pVmcbNstGstCache->fNestedPaging);
3178 SSMR3PutBool(pSSM, pVmcbNstGstCache->fLbrVirt);
3179 }
3180 }
3181
3182 /* Save the guest patch data. */
3183 SSMR3PutGCPtr(pSSM, pVM->hm.s.pGuestPatchMem);
3184 SSMR3PutGCPtr(pSSM, pVM->hm.s.pFreeGuestPatchMem);
3185 SSMR3PutU32(pSSM, pVM->hm.s.cbGuestPatchMem);
3186
3187 /* Store all the guest patch records too. */
3188 int rc = SSMR3PutU32(pSSM, pVM->hm.s.cPatches);
3189 if (RT_FAILURE(rc))
3190 return rc;
3191
3192 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3193 {
3194 AssertCompileSize(HMTPRINSTR, 4);
3195 PCHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3196 SSMR3PutU32(pSSM, pPatch->Core.Key);
3197 SSMR3PutMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3198 SSMR3PutU32(pSSM, pPatch->cbOp);
3199 SSMR3PutMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3200 SSMR3PutU32(pSSM, pPatch->cbNewOp);
3201 SSMR3PutU32(pSSM, (uint32_t)pPatch->enmType);
3202 SSMR3PutU32(pSSM, pPatch->uSrcOperand);
3203 SSMR3PutU32(pSSM, pPatch->uDstOperand);
3204 SSMR3PutU32(pSSM, pPatch->pJumpTarget);
3205 rc = SSMR3PutU32(pSSM, pPatch->cFaults);
3206 if (RT_FAILURE(rc))
3207 return rc;
3208 }
3209
3210 return VINF_SUCCESS;
3211}
3212
3213
3214/**
3215 * Execute state load operation.
3216 *
3217 * @returns VBox status code.
3218 * @param pVM The cross context VM structure.
3219 * @param pSSM SSM operation handle.
3220 * @param uVersion Data layout version.
3221 * @param uPass The data pass.
3222 */
3223static DECLCALLBACK(int) hmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3224{
3225 int rc;
3226
3227 LogFlowFunc(("uVersion=%u\n", uVersion));
3228 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
3229
3230 /*
3231 * Validate version.
3232 */
3233 if ( uVersion != HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT
3234 && uVersion != HM_SAVED_STATE_VERSION_TPR_PATCHING
3235 && uVersion != HM_SAVED_STATE_VERSION_NO_TPR_PATCHING
3236 && uVersion != HM_SAVED_STATE_VERSION_2_0_X)
3237 {
3238 AssertMsgFailed(("hmR3Load: Invalid version uVersion=%d!\n", uVersion));
3239 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3240 }
3241
3242 /*
3243 * Load per-VCPU state.
3244 */
3245 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3246 {
3247 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3248 if (uVersion >= HM_SAVED_STATE_VERSION_SVM_NESTED_HWVIRT)
3249 {
3250 /* Load the SVM nested hw.virt state if the VM is configured for it. */
3251 if (pVM->cpum.ro.GuestFeatures.fSvm)
3252 {
3253 PSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3254 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fCacheValid);
3255 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdCRx);
3256 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrCRx);
3257 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptRdDRx);
3258 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16InterceptWrDRx);
3259 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterThreshold);
3260 SSMR3GetU16(pSSM, &pVmcbNstGstCache->u16PauseFilterCount);
3261 SSMR3GetU32(pSSM, &pVmcbNstGstCache->u32InterceptXcpt);
3262 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64InterceptCtrl);
3263 SSMR3GetU64(pSSM, &pVmcbNstGstCache->u64TSCOffset);
3264 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fVIntrMasking);
3265 SSMR3GetBool(pSSM, &pVmcbNstGstCache->fNestedPaging);
3266 rc = SSMR3GetBool(pSSM, &pVmcbNstGstCache->fLbrVirt);
3267 AssertRCReturn(rc, rc);
3268 }
3269 }
3270 else
3271 {
3272 /* Pending HM event (obsolete for a long time since TPRM holds the info.) */
3273 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.fPending);
3274 SSMR3GetU32(pSSM, &pVCpu->hm.s.Event.u32ErrCode);
3275 SSMR3GetU64(pSSM, &pVCpu->hm.s.Event.u64IntInfo);
3276
3277 /* VMX fWasInRealMode related data. */
3278 uint32_t uDummy;
3279 SSMR3GetU32(pSSM, &uDummy);
3280 SSMR3GetU32(pSSM, &uDummy);
3281 rc = SSMR3GetU32(pSSM, &uDummy);
3282 AssertRCReturn(rc, rc);
3283 }
3284 }
3285
3286 /*
3287 * Load TPR patching data.
3288 */
3289 if (uVersion >= HM_SAVED_STATE_VERSION_TPR_PATCHING)
3290 {
3291 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pGuestPatchMem);
3292 SSMR3GetGCPtr(pSSM, &pVM->hm.s.pFreeGuestPatchMem);
3293 SSMR3GetU32(pSSM, &pVM->hm.s.cbGuestPatchMem);
3294
3295 /* Fetch all TPR patch records. */
3296 rc = SSMR3GetU32(pSSM, &pVM->hm.s.cPatches);
3297 AssertRCReturn(rc, rc);
3298 for (uint32_t i = 0; i < pVM->hm.s.cPatches; i++)
3299 {
3300 PHMTPRPATCH pPatch = &pVM->hm.s.aPatches[i];
3301 SSMR3GetU32(pSSM, &pPatch->Core.Key);
3302 SSMR3GetMem(pSSM, pPatch->aOpcode, sizeof(pPatch->aOpcode));
3303 SSMR3GetU32(pSSM, &pPatch->cbOp);
3304 SSMR3GetMem(pSSM, pPatch->aNewOpcode, sizeof(pPatch->aNewOpcode));
3305 SSMR3GetU32(pSSM, &pPatch->cbNewOp);
3306 SSM_GET_ENUM32_RET(pSSM, pPatch->enmType, HMTPRINSTR);
3307
3308 if (pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT)
3309 pVM->hm.s.fTprPatchingActive = true;
3310 Assert(pPatch->enmType == HMTPRINSTR_JUMP_REPLACEMENT || pVM->hm.s.fTprPatchingActive == false);
3311
3312 SSMR3GetU32(pSSM, &pPatch->uSrcOperand);
3313 SSMR3GetU32(pSSM, &pPatch->uDstOperand);
3314 SSMR3GetU32(pSSM, &pPatch->cFaults);
3315 rc = SSMR3GetU32(pSSM, &pPatch->pJumpTarget);
3316 AssertRCReturn(rc, rc);
3317
3318 LogFlow(("hmR3Load: patch %d\n", i));
3319 LogFlow(("Key = %x\n", pPatch->Core.Key));
3320 LogFlow(("cbOp = %d\n", pPatch->cbOp));
3321 LogFlow(("cbNewOp = %d\n", pPatch->cbNewOp));
3322 LogFlow(("type = %d\n", pPatch->enmType));
3323 LogFlow(("srcop = %d\n", pPatch->uSrcOperand));
3324 LogFlow(("dstop = %d\n", pPatch->uDstOperand));
3325 LogFlow(("cFaults = %d\n", pPatch->cFaults));
3326 LogFlow(("target = %x\n", pPatch->pJumpTarget));
3327
3328 rc = RTAvloU32Insert(&pVM->hm.s.PatchTree, &pPatch->Core);
3329 AssertRCReturn(rc, rc);
3330 }
3331 }
3332
3333 return VINF_SUCCESS;
3334}
3335
3336
3337/**
3338 * Displays HM info.
3339 *
3340 * @param pVM The cross context VM structure.
3341 * @param pHlp The info helper functions.
3342 * @param pszArgs Arguments, ignored.
3343 */
3344static DECLCALLBACK(void) hmR3Info(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3345{
3346 NOREF(pszArgs);
3347 PVMCPU pVCpu = VMMGetCpu(pVM);
3348 if (!pVCpu)
3349 pVCpu = pVM->apCpusR3[0];
3350
3351 if (HMIsEnabled(pVM))
3352 {
3353 if (pVM->hm.s.vmx.fSupported)
3354 pHlp->pfnPrintf(pHlp, "CPU[%u]: VT-x info:\n", pVCpu->idCpu);
3355 else
3356 pHlp->pfnPrintf(pHlp, "CPU[%u]: AMD-V info:\n", pVCpu->idCpu);
3357 pHlp->pfnPrintf(pHlp, " HM error = %#x (%u)\n", pVCpu->hm.s.u32HMError, pVCpu->hm.s.u32HMError);
3358 pHlp->pfnPrintf(pHlp, " rcLastExitToR3 = %Rrc\n", pVCpu->hm.s.rcLastExitToR3);
3359 if (pVM->hm.s.vmx.fSupported)
3360 {
3361 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3362 bool const fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active;
3363 bool const fNstGstVmcsActive = pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3;
3364
3365 pHlp->pfnPrintf(pHlp, " %s VMCS active\n", fNstGstVmcsActive ? "Nested-guest" : "Guest");
3366 pHlp->pfnPrintf(pHlp, " Real-on-v86 active = %RTbool\n", fRealOnV86Active);
3367 if (fRealOnV86Active)
3368 {
3369 pHlp->pfnPrintf(pHlp, " EFlags = %#x\n", pVmcsInfoShared->RealMode.Eflags.u32);
3370 pHlp->pfnPrintf(pHlp, " Attr CS = %#x\n", pVmcsInfoShared->RealMode.AttrCS.u);
3371 pHlp->pfnPrintf(pHlp, " Attr SS = %#x\n", pVmcsInfoShared->RealMode.AttrSS.u);
3372 pHlp->pfnPrintf(pHlp, " Attr DS = %#x\n", pVmcsInfoShared->RealMode.AttrDS.u);
3373 pHlp->pfnPrintf(pHlp, " Attr ES = %#x\n", pVmcsInfoShared->RealMode.AttrES.u);
3374 pHlp->pfnPrintf(pHlp, " Attr FS = %#x\n", pVmcsInfoShared->RealMode.AttrFS.u);
3375 pHlp->pfnPrintf(pHlp, " Attr GS = %#x\n", pVmcsInfoShared->RealMode.AttrGS.u);
3376 }
3377 }
3378 }
3379 else
3380 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3381}
3382
3383
3384/**
3385 * Displays the HM Last-Branch-Record info. for the guest.
3386 *
3387 * @param pVM The cross context VM structure.
3388 * @param pHlp The info helper functions.
3389 * @param pszArgs Arguments, ignored.
3390 */
3391static DECLCALLBACK(void) hmR3InfoLbr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3392{
3393 NOREF(pszArgs);
3394 PVMCPU pVCpu = VMMGetCpu(pVM);
3395 if (!pVCpu)
3396 pVCpu = pVM->apCpusR3[0];
3397
3398 if (!HMIsEnabled(pVM))
3399 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3400 else if (HMIsVmxActive(pVM))
3401 {
3402 if (pVM->hm.s.vmx.fLbrCfg)
3403 {
3404 PCVMXVMCSINFOSHARED pVmcsInfoShared = hmGetVmxActiveVmcsInfoShared(pVCpu);
3405 uint32_t const cLbrStack = pVM->hm.s.ForR3.vmx.idLbrFromIpMsrLast - pVM->hm.s.ForR3.vmx.idLbrFromIpMsrFirst + 1;
3406
3407 /** @todo r=ramshankar: The index technically varies depending on the CPU, but
3408 * 0xf should cover everything we support thus far. Fix if necessary
3409 * later. */
3410 uint32_t const idxTopOfStack = pVmcsInfoShared->u64LbrTosMsr & 0xf;
3411 if (idxTopOfStack > cLbrStack)
3412 {
3413 pHlp->pfnPrintf(pHlp, "Top-of-stack LBR MSR seems corrupt (index=%u, msr=%#RX64) expected index < %u\n",
3414 idxTopOfStack, pVmcsInfoShared->u64LbrTosMsr, cLbrStack);
3415 return;
3416 }
3417
3418 /*
3419 * Dump the circular buffer of LBR records starting from the most recent record (contained in idxTopOfStack).
3420 */
3421 pHlp->pfnPrintf(pHlp, "CPU[%u]: LBRs (most-recent first)\n", pVCpu->idCpu);
3422 uint32_t idxCurrent = idxTopOfStack;
3423 Assert(idxTopOfStack < cLbrStack);
3424 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr) <= cLbrStack);
3425 Assert(RT_ELEMENTS(pVmcsInfoShared->au64LbrToIpMsr) <= cLbrStack);
3426 for (;;)
3427 {
3428 if (pVM->hm.s.ForR3.vmx.idLbrToIpMsrFirst)
3429 pHlp->pfnPrintf(pHlp, " Branch (%2u): From IP=%#016RX64 - To IP=%#016RX64\n", idxCurrent,
3430 pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent], pVmcsInfoShared->au64LbrToIpMsr[idxCurrent]);
3431 else
3432 pHlp->pfnPrintf(pHlp, " Branch (%2u): LBR=%#RX64\n", idxCurrent, pVmcsInfoShared->au64LbrFromIpMsr[idxCurrent]);
3433
3434 idxCurrent = (idxCurrent - 1) % cLbrStack;
3435 if (idxCurrent == idxTopOfStack)
3436 break;
3437 }
3438 }
3439 else
3440 pHlp->pfnPrintf(pHlp, "VM not configured to record LBRs for the guest\n");
3441 }
3442 else
3443 {
3444 Assert(HMIsSvmActive(pVM));
3445 /** @todo SVM: LBRs (get them from VMCB if possible). */
3446 pHlp->pfnPrintf(pHlp, "SVM LBR not implemented.\n");
3447 }
3448}
3449
3450
3451/**
3452 * Displays the HM pending event.
3453 *
3454 * @param pVM The cross context VM structure.
3455 * @param pHlp The info helper functions.
3456 * @param pszArgs Arguments, ignored.
3457 */
3458static DECLCALLBACK(void) hmR3InfoEventPending(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3459{
3460 NOREF(pszArgs);
3461 PVMCPU pVCpu = VMMGetCpu(pVM);
3462 if (!pVCpu)
3463 pVCpu = pVM->apCpusR3[0];
3464
3465 if (HMIsEnabled(pVM))
3466 {
3467 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM event (fPending=%RTbool)\n", pVCpu->idCpu, pVCpu->hm.s.Event.fPending);
3468 if (pVCpu->hm.s.Event.fPending)
3469 {
3470 pHlp->pfnPrintf(pHlp, " u64IntInfo = %#RX64\n", pVCpu->hm.s.Event.u64IntInfo);
3471 pHlp->pfnPrintf(pHlp, " u32ErrCode = %#RX64\n", pVCpu->hm.s.Event.u32ErrCode);
3472 pHlp->pfnPrintf(pHlp, " cbInstr = %u bytes\n", pVCpu->hm.s.Event.cbInstr);
3473 pHlp->pfnPrintf(pHlp, " GCPtrFaultAddress = %#RGp\n", pVCpu->hm.s.Event.GCPtrFaultAddress);
3474 }
3475 }
3476 else
3477 pHlp->pfnPrintf(pHlp, "HM is not enabled for this VM!\n");
3478}
3479
3480
3481/**
3482 * Displays the SVM nested-guest VMCB cache.
3483 *
3484 * @param pVM The cross context VM structure.
3485 * @param pHlp The info helper functions.
3486 * @param pszArgs Arguments, ignored.
3487 */
3488static DECLCALLBACK(void) hmR3InfoSvmNstGstVmcbCache(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3489{
3490 NOREF(pszArgs);
3491 PVMCPU pVCpu = VMMGetCpu(pVM);
3492 if (!pVCpu)
3493 pVCpu = pVM->apCpusR3[0];
3494
3495 bool const fSvmEnabled = HMR3IsSvmEnabled(pVM->pUVM);
3496 if ( fSvmEnabled
3497 && pVM->cpum.ro.GuestFeatures.fSvm)
3498 {
3499 PCSVMNESTEDVMCBCACHE pVmcbNstGstCache = &pVCpu->hm.s.svm.NstGstVmcbCache;
3500 pHlp->pfnPrintf(pHlp, "CPU[%u]: HM SVM nested-guest VMCB cache\n", pVCpu->idCpu);
3501 pHlp->pfnPrintf(pHlp, " fCacheValid = %#RTbool\n", pVmcbNstGstCache->fCacheValid);
3502 pHlp->pfnPrintf(pHlp, " u16InterceptRdCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdCRx);
3503 pHlp->pfnPrintf(pHlp, " u16InterceptWrCRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrCRx);
3504 pHlp->pfnPrintf(pHlp, " u16InterceptRdDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptRdDRx);
3505 pHlp->pfnPrintf(pHlp, " u16InterceptWrDRx = %#RX16\n", pVmcbNstGstCache->u16InterceptWrDRx);
3506 pHlp->pfnPrintf(pHlp, " u16PauseFilterThreshold = %#RX16\n", pVmcbNstGstCache->u16PauseFilterThreshold);
3507 pHlp->pfnPrintf(pHlp, " u16PauseFilterCount = %#RX16\n", pVmcbNstGstCache->u16PauseFilterCount);
3508 pHlp->pfnPrintf(pHlp, " u32InterceptXcpt = %#RX32\n", pVmcbNstGstCache->u32InterceptXcpt);
3509 pHlp->pfnPrintf(pHlp, " u64InterceptCtrl = %#RX64\n", pVmcbNstGstCache->u64InterceptCtrl);
3510 pHlp->pfnPrintf(pHlp, " u64TSCOffset = %#RX64\n", pVmcbNstGstCache->u64TSCOffset);
3511 pHlp->pfnPrintf(pHlp, " fVIntrMasking = %RTbool\n", pVmcbNstGstCache->fVIntrMasking);
3512 pHlp->pfnPrintf(pHlp, " fNestedPaging = %RTbool\n", pVmcbNstGstCache->fNestedPaging);
3513 pHlp->pfnPrintf(pHlp, " fLbrVirt = %RTbool\n", pVmcbNstGstCache->fLbrVirt);
3514 }
3515 else
3516 {
3517 if (!fSvmEnabled)
3518 pHlp->pfnPrintf(pHlp, "HM SVM is not enabled for this VM!\n");
3519 else
3520 pHlp->pfnPrintf(pHlp, "SVM feature is not exposed to the guest!\n");
3521 }
3522}
3523
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette