VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/GIMKvm.cpp@ 61072

Last change on this file since 61072 was 58564, checked in by vboxsync, 9 years ago

VMM/GIM: Removed some dead code.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 18.1 KB
Line 
1/* $Id: GIMKvm.cpp 58564 2015-11-04 13:53:54Z vboxsync $ */
2/** @file
3 * GIM - Guest Interface Manager, KVM implementation.
4 */
5
6/*
7 * Copyright (C) 2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_GIM
23#include "GIMInternal.h"
24
25#include <iprt/asm-math.h>
26#include <iprt/assert.h>
27#include <iprt/err.h>
28#include <iprt/string.h>
29#include <iprt/mem.h>
30#include <iprt/spinlock.h>
31
32#include <VBox/vmm/cpum.h>
33#include <VBox/disopcode.h>
34#include <VBox/vmm/ssm.h>
35#include <VBox/vmm/vm.h>
36#include <VBox/vmm/hm.h>
37#include <VBox/vmm/pdmapi.h>
38#include <VBox/version.h>
39
40
41/*********************************************************************************************************************************
42* Defined Constants And Macros *
43*********************************************************************************************************************************/
44
45/**
46 * GIM KVM saved-state version.
47 */
48#define GIM_KVM_SAVED_STATE_VERSION UINT32_C(1)
49
50/**
51 * VBox internal struct. to passback to EMT rendezvous callback while enabling
52 * the KVM wall-clock.
53 */
54typedef struct KVMWALLCLOCKINFO
55{
56 /** Guest physical address of the wall-clock struct. */
57 RTGCPHYS GCPhysWallClock;
58} KVMWALLCLOCKINFO;
59/** Pointer to the wall-clock info. struct. */
60typedef KVMWALLCLOCKINFO *PKVMWALLCLOCKINFO;
61
62
63/*********************************************************************************************************************************
64* Global Variables *
65*********************************************************************************************************************************/
66#ifdef VBOX_WITH_STATISTICS
67# define GIMKVM_MSRRANGE(a_uFirst, a_uLast, a_szName) \
68 { (a_uFirst), (a_uLast), kCpumMsrRdFn_Gim, kCpumMsrWrFn_Gim, 0, 0, 0, 0, 0, a_szName, { 0 }, { 0 }, { 0 }, { 0 } }
69#else
70# define GIMKVM_MSRRANGE(a_uFirst, a_uLast, a_szName) \
71 { (a_uFirst), (a_uLast), kCpumMsrRdFn_Gim, kCpumMsrWrFn_Gim, 0, 0, 0, 0, 0, a_szName }
72#endif
73
74/**
75 * Array of MSR ranges supported by KVM.
76 */
77static CPUMMSRRANGE const g_aMsrRanges_Kvm[] =
78{
79 GIMKVM_MSRRANGE(MSR_GIM_KVM_RANGE0_START, MSR_GIM_KVM_RANGE0_END, "KVM range 0"),
80 GIMKVM_MSRRANGE(MSR_GIM_KVM_RANGE1_START, MSR_GIM_KVM_RANGE1_END, "KVM range 1")
81};
82#undef GIMKVM_MSRRANGE
83
84
85/**
86 * Initializes the KVM GIM provider.
87 *
88 * @returns VBox status code.
89 * @param pVM The cross context VM structure.
90 */
91VMMR3_INT_DECL(int) gimR3KvmInit(PVM pVM)
92{
93 AssertReturn(pVM, VERR_INVALID_PARAMETER);
94 AssertReturn(pVM->gim.s.enmProviderId == GIMPROVIDERID_KVM, VERR_INTERNAL_ERROR_5);
95
96 int rc;
97 PGIMKVM pKvm = &pVM->gim.s.u.Kvm;
98
99 /*
100 * Determine interface capabilities based on the version.
101 */
102 if (!pVM->gim.s.u32Version)
103 {
104 /* Basic features. */
105 pKvm->uBaseFeat = 0
106 | GIM_KVM_BASE_FEAT_CLOCK_OLD
107 //| GIM_KVM_BASE_FEAT_NOP_IO_DELAY
108 //| GIM_KVM_BASE_FEAT_MMU_OP
109 | GIM_KVM_BASE_FEAT_CLOCK
110 //| GIM_KVM_BASE_FEAT_ASYNC_PF
111 //| GIM_KVM_BASE_FEAT_STEAL_TIME
112 //| GIM_KVM_BASE_FEAT_PV_EOI
113 | GIM_KVM_BASE_FEAT_PV_UNHALT
114 ;
115 /* Rest of the features are determined in gimR3KvmInitCompleted(). */
116 }
117
118 /*
119 * Expose HVP (Hypervisor Present) bit to the guest.
120 */
121 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_HVP);
122
123 /*
124 * Modify the standard hypervisor leaves for KVM.
125 */
126 CPUMCPUIDLEAF HyperLeaf;
127 RT_ZERO(HyperLeaf);
128 HyperLeaf.uLeaf = UINT32_C(0x40000000);
129 HyperLeaf.uEax = UINT32_C(0x40000001); /* Minimum value for KVM is 0x40000001. */
130 HyperLeaf.uEbx = 0x4B4D564B; /* 'KVMK' */
131 HyperLeaf.uEcx = 0x564B4D56; /* 'VMKV' */
132 HyperLeaf.uEdx = 0x0000004D; /* 'M000' */
133 rc = CPUMR3CpuIdInsert(pVM, &HyperLeaf);
134 AssertLogRelRCReturn(rc, rc);
135
136 /*
137 * Add KVM specific leaves.
138 */
139 HyperLeaf.uLeaf = UINT32_C(0x40000001);
140 HyperLeaf.uEax = pKvm->uBaseFeat;
141 HyperLeaf.uEbx = 0; /* Reserved */
142 HyperLeaf.uEcx = 0; /* Reserved */
143 HyperLeaf.uEdx = 0; /* Reserved */
144 rc = CPUMR3CpuIdInsert(pVM, &HyperLeaf);
145 AssertLogRelRCReturn(rc, rc);
146
147 /*
148 * Insert all MSR ranges of KVM.
149 */
150 for (unsigned i = 0; i < RT_ELEMENTS(g_aMsrRanges_Kvm); i++)
151 {
152 rc = CPUMR3MsrRangesInsert(pVM, &g_aMsrRanges_Kvm[i]);
153 AssertLogRelRCReturn(rc, rc);
154 }
155
156 /*
157 * Setup hypercall and #UD handling.
158 */
159 for (VMCPUID i = 0; i < pVM->cCpus; i++)
160 VMMHypercallsEnable(&pVM->aCpus[i]);
161
162 if (ASMIsAmdCpu())
163 {
164 pKvm->fTrapXcptUD = true;
165 pKvm->uOpCodeNative = OP_VMMCALL;
166 }
167 else
168 {
169 Assert(ASMIsIntelCpu() || ASMIsViaCentaurCpu());
170 pKvm->fTrapXcptUD = false;
171 pKvm->uOpCodeNative = OP_VMCALL;
172 }
173
174 /* We always need to trap VMCALL/VMMCALL hypercall using #UDs for raw-mode VMs. */
175 if (!HMIsEnabled(pVM))
176 pKvm->fTrapXcptUD = true;
177
178 return VINF_SUCCESS;
179}
180
181
182/**
183 * Initializes remaining bits of the KVM provider.
184 *
185 * This is called after initializing HM and almost all other VMM components.
186 *
187 * @returns VBox status code.
188 * @param pVM The cross context VM structure.
189 */
190VMMR3_INT_DECL(int) gimR3KvmInitCompleted(PVM pVM)
191{
192 PGIMKVM pKvm = &pVM->gim.s.u.Kvm;
193 pKvm->cTscTicksPerSecond = TMCpuTicksPerSecond(pVM);
194
195 if (TMR3CpuTickIsFixedRateMonotonic(pVM, true /* fWithParavirtEnabled */))
196 {
197 /** @todo We might want to consider just enabling this bit *always*. As far
198 * as I can see in the Linux guest, the "TSC_STABLE" bit is only
199 * translated as a "monotonic" bit which even in Async systems we
200 * -should- be reporting a strictly monotonic TSC to the guest. */
201 pKvm->uBaseFeat |= GIM_KVM_BASE_FEAT_TSC_STABLE;
202
203 CPUMCPUIDLEAF HyperLeaf;
204 RT_ZERO(HyperLeaf);
205 HyperLeaf.uLeaf = UINT32_C(0x40000001);
206 HyperLeaf.uEax = pKvm->uBaseFeat;
207 HyperLeaf.uEbx = 0;
208 HyperLeaf.uEcx = 0;
209 HyperLeaf.uEdx = 0;
210 int rc = CPUMR3CpuIdInsert(pVM, &HyperLeaf);
211 AssertLogRelRCReturn(rc, rc);
212 }
213 return VINF_SUCCESS;
214}
215
216
217/**
218 * Terminates the KVM GIM provider.
219 *
220 * @returns VBox status code.
221 * @param pVM The cross context VM structure.
222 */
223VMMR3_INT_DECL(int) gimR3KvmTerm(PVM pVM)
224{
225 gimR3KvmReset(pVM);
226 return VINF_SUCCESS;
227}
228
229
230/**
231 * This resets KVM provider MSRs and unmaps whatever KVM regions that
232 * the guest may have mapped.
233 *
234 * This is called when the VM is being reset.
235 *
236 * @param pVM The cross context VM structure.
237 * @thread EMT(0).
238 */
239VMMR3_INT_DECL(void) gimR3KvmReset(PVM pVM)
240{
241 VM_ASSERT_EMT0(pVM);
242 LogRel(("GIM: KVM: Resetting MSRs\n"));
243
244 /*
245 * Reset MSRs.
246 */
247 PGIMKVM pKvm = &pVM->gim.s.u.Kvm;
248 pKvm->u64WallClockMsr = 0;
249 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
250 {
251 PGIMKVMCPU pKvmCpu = &pVM->aCpus[iCpu].gim.s.u.KvmCpu;
252 pKvmCpu->u64SystemTimeMsr = 0;
253 pKvmCpu->u32SystemTimeVersion = 0;
254 pKvmCpu->fSystemTimeFlags = 0;
255 pKvmCpu->GCPhysSystemTime = 0;
256 pKvmCpu->uTsc = 0;
257 pKvmCpu->uVirtNanoTS = 0;
258 }
259}
260
261
262/**
263 * KVM state-save operation.
264 *
265 * @returns VBox status code.
266 * @param pVM The cross context VM structure.
267 * @param pSSM Pointer to the SSM handle.
268 */
269VMMR3_INT_DECL(int) gimR3KvmSave(PVM pVM, PSSMHANDLE pSSM)
270{
271 PCGIMKVM pcKvm = &pVM->gim.s.u.Kvm;
272
273 /*
274 * Save the KVM SSM version.
275 */
276 SSMR3PutU32(pSSM, GIM_KVM_SAVED_STATE_VERSION);
277
278 /*
279 * Save per-VCPU data.
280 */
281 for (uint32_t i = 0; i < pVM->cCpus; i++)
282 {
283 PCGIMKVMCPU pcKvmCpu = &pVM->aCpus[i].gim.s.u.KvmCpu;
284
285 /* Guest may alter flags (namely GIM_KVM_SYSTEM_TIME_FLAGS_GUEST_PAUSED bit). So re-read them from guest-memory. */
286 GIMKVMSYSTEMTIME SystemTime;
287 RT_ZERO(SystemTime);
288 if (MSR_GIM_KVM_SYSTEM_TIME_IS_ENABLED(pcKvmCpu->u64SystemTimeMsr))
289 {
290 int rc = PGMPhysSimpleReadGCPhys(pVM, &SystemTime, pcKvmCpu->GCPhysSystemTime, sizeof(GIMKVMSYSTEMTIME));
291 AssertRCReturn(rc, rc);
292 }
293
294 SSMR3PutU64(pSSM, pcKvmCpu->u64SystemTimeMsr);
295 SSMR3PutU64(pSSM, pcKvmCpu->uTsc);
296 SSMR3PutU64(pSSM, pcKvmCpu->uVirtNanoTS);
297 SSMR3PutGCPhys(pSSM, pcKvmCpu->GCPhysSystemTime);
298 SSMR3PutU32(pSSM, pcKvmCpu->u32SystemTimeVersion);
299 SSMR3PutU8(pSSM, SystemTime.fFlags);
300 }
301
302 /*
303 * Save per-VM data.
304 */
305 SSMR3PutU64(pSSM, pcKvm->u64WallClockMsr);
306 return SSMR3PutU32(pSSM, pcKvm->uBaseFeat);
307}
308
309
310/**
311 * KVM state-load operation, final pass.
312 *
313 * @returns VBox status code.
314 * @param pVM The cross context VM structure.
315 * @param pSSM Pointer to the SSM handle.
316 * @param uSSMVersion The GIM saved-state version.
317 */
318VMMR3_INT_DECL(int) gimR3KvmLoad(PVM pVM, PSSMHANDLE pSSM, uint32_t uSSMVersion)
319{
320 /*
321 * Load the KVM SSM version first.
322 */
323 uint32_t uKvmSavedStatVersion;
324 int rc = SSMR3GetU32(pSSM, &uKvmSavedStatVersion);
325 AssertRCReturn(rc, rc);
326 if (uKvmSavedStatVersion != GIM_KVM_SAVED_STATE_VERSION)
327 return SSMR3SetLoadError(pSSM, VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION, RT_SRC_POS,
328 N_("Unsupported KVM saved-state version %u (expected %u)."), uKvmSavedStatVersion,
329 GIM_KVM_SAVED_STATE_VERSION);
330
331 /*
332 * Update the TSC frequency from TM.
333 */
334 PGIMKVM pKvm = &pVM->gim.s.u.Kvm;
335 pKvm->cTscTicksPerSecond = TMCpuTicksPerSecond(pVM);
336
337 /*
338 * Load per-VCPU data.
339 */
340 for (uint32_t i = 0; i < pVM->cCpus; i++)
341 {
342 PVMCPU pVCpu = &pVM->aCpus[i];
343 PGIMKVMCPU pKvmCpu = &pVCpu->gim.s.u.KvmCpu;
344
345 uint8_t fSystemTimeFlags = 0;
346 SSMR3GetU64(pSSM, &pKvmCpu->u64SystemTimeMsr);
347 SSMR3GetU64(pSSM, &pKvmCpu->uTsc);
348 SSMR3GetU64(pSSM, &pKvmCpu->uVirtNanoTS);
349 SSMR3GetGCPhys(pSSM, &pKvmCpu->GCPhysSystemTime);
350 SSMR3GetU32(pSSM, &pKvmCpu->u32SystemTimeVersion);
351 rc = SSMR3GetU8(pSSM, &pKvmCpu->fSystemTimeFlags);
352 AssertRCReturn(rc, rc);
353
354 /* Enable the system-time struct. if necessary. */
355 /** @todo update guest struct only if cTscTicksPerSecond doesn't match host
356 * anymore. */
357 if (MSR_GIM_KVM_SYSTEM_TIME_IS_ENABLED(pKvmCpu->u64SystemTimeMsr))
358 {
359 Assert(!TMVirtualIsTicking(pVM)); /* paranoia. */
360 Assert(!TMCpuTickIsTicking(pVCpu));
361 rc = gimR3KvmEnableSystemTime(pVM, pVCpu);
362 AssertRCReturn(rc, rc);
363 }
364 }
365
366 /*
367 * Load per-VM data.
368 */
369 SSMR3GetU64(pSSM, &pKvm->u64WallClockMsr);
370 rc = SSMR3GetU32(pSSM, &pKvm->uBaseFeat);
371 AssertRCReturn(rc, rc);
372
373 return VINF_SUCCESS;
374}
375
376
377/**
378 * Enables the KVM VCPU system-time structure.
379 *
380 * @returns VBox status code.
381 * @param pVM The cross context VM structure.
382 * @param pVCpu The cross context virtual CPU structure.
383 *
384 * @remarks Don't do any release assertions here, these can be triggered by
385 * guest R0 code.
386 */
387VMMR3_INT_DECL(int) gimR3KvmEnableSystemTime(PVM pVM, PVMCPU pVCpu)
388{
389 PGIMKVM pKvm = &pVM->gim.s.u.Kvm;
390 PGIMKVMCPU pKvmCpu = &pVCpu->gim.s.u.KvmCpu;
391
392 /*
393 * Validate the mapping address first.
394 */
395 if (!PGMPhysIsGCPhysNormal(pVM, pKvmCpu->GCPhysSystemTime))
396 {
397 LogRel(("GIM: KVM: VCPU%3d: Invalid physical addr requested for mapping system-time struct. GCPhysSystemTime=%#RGp\n",
398 pVCpu->idCpu, pKvmCpu->GCPhysSystemTime));
399 return VERR_GIM_OPERATION_FAILED;
400 }
401
402 /*
403 * Construct the system-time struct.
404 */
405 GIMKVMSYSTEMTIME SystemTime;
406 RT_ZERO(SystemTime);
407 SystemTime.u32Version = pKvmCpu->u32SystemTimeVersion;
408 SystemTime.u64NanoTS = pKvmCpu->uVirtNanoTS;
409 SystemTime.u64Tsc = pKvmCpu->uTsc;
410 SystemTime.fFlags = pKvmCpu->fSystemTimeFlags | GIM_KVM_SYSTEM_TIME_FLAGS_TSC_STABLE;
411
412 /*
413 * How the guest calculates the system time (nanoseconds):
414 *
415 * tsc = rdtsc - SysTime.u64Tsc
416 * if (SysTime.i8TscShift >= 0)
417 * tsc <<= i8TscShift;
418 * else
419 * tsc >>= -i8TscShift;
420 * time = ((tsc * SysTime.u32TscScale) >> 32) + SysTime.u64NanoTS
421 */
422 uint64_t u64TscFreq = pKvm->cTscTicksPerSecond;
423 SystemTime.i8TscShift = 0;
424 while (u64TscFreq > 2 * RT_NS_1SEC_64)
425 {
426 u64TscFreq >>= 1;
427 SystemTime.i8TscShift--;
428 }
429 uint32_t uTscFreqLo = (uint32_t)u64TscFreq;
430 while (uTscFreqLo <= RT_NS_1SEC)
431 {
432 uTscFreqLo <<= 1;
433 SystemTime.i8TscShift++;
434 }
435 SystemTime.u32TscScale = ASMDivU64ByU32RetU32(RT_NS_1SEC_64 << 32, uTscFreqLo);
436
437 /*
438 * Update guest memory with the system-time struct.
439 */
440 Assert(!(SystemTime.u32Version & UINT32_C(1)));
441 int rc = PGMPhysSimpleWriteGCPhys(pVM, pKvmCpu->GCPhysSystemTime, &SystemTime, sizeof(GIMKVMSYSTEMTIME));
442 if (RT_SUCCESS(rc))
443 {
444 LogRel(("GIM: KVM: VCPU%3d: Enabled system-time struct. at %#RGp - u32TscScale=%#RX32 i8TscShift=%d uVersion=%#RU32 "
445 "fFlags=%#x uTsc=%#RX64 uVirtNanoTS=%#RX64\n", pVCpu->idCpu, pKvmCpu->GCPhysSystemTime, SystemTime.u32TscScale,
446 SystemTime.i8TscShift, SystemTime.u32Version, SystemTime.fFlags, pKvmCpu->uTsc, pKvmCpu->uVirtNanoTS));
447 TMR3CpuTickParavirtEnable(pVM);
448 }
449 else
450 LogRel(("GIM: KVM: VCPU%3d: Failed to write system-time struct. at %#RGp. rc=%Rrc\n",
451 pVCpu->idCpu, pKvmCpu->GCPhysSystemTime, rc));
452
453 return rc;
454}
455
456
457/**
458 * Disables the KVM system-time struct.
459 *
460 * @returns VBox status code.
461 * @param pVM The cross context VM structure.
462 */
463VMMR3_INT_DECL(int) gimR3KvmDisableSystemTime(PVM pVM)
464{
465 TMR3CpuTickParavirtDisable(pVM);
466 return VINF_SUCCESS;
467}
468
469
470/**
471 * @callback_method_impl{PFNVMMEMTRENDEZVOUS,
472 * Worker for gimR3KvmEnableWallClock}
473 */
474static DECLCALLBACK(VBOXSTRICTRC) gimR3KvmEnableWallClockCallback(PVM pVM, PVMCPU pVCpu, void *pvData)
475{
476 Assert(pvData);
477 PKVMWALLCLOCKINFO pWallClockInfo = (PKVMWALLCLOCKINFO)pvData;
478 RTGCPHYS GCPhysWallClock = pWallClockInfo->GCPhysWallClock;
479
480 /*
481 * Read the wall-clock version (sequence) from the guest.
482 */
483 uint32_t uVersion;
484 Assert(PGMPhysIsGCPhysNormal(pVM, GCPhysWallClock));
485 int rc = PGMPhysSimpleReadGCPhys(pVM, &uVersion, GCPhysWallClock, sizeof(uVersion));
486 if (RT_FAILURE(rc))
487 {
488 LogRel(("GIM: KVM: Failed to read wall-clock struct. version at %#RGp. rc=%Rrc\n", GCPhysWallClock, rc));
489 return rc;
490 }
491
492 /*
493 * Ensure the version is incrementally even.
494 */
495 if (!(uVersion & 1))
496 ++uVersion;
497 ++uVersion;
498
499 /*
500 * Update wall-clock guest struct. with UTC information.
501 */
502 RTTIMESPEC TimeSpec;
503 int32_t iSec;
504 int32_t iNano;
505 TMR3UtcNow(pVM, &TimeSpec);
506 RTTimeSpecGetSecondsAndNano(&TimeSpec, &iSec, &iNano);
507
508 GIMKVMWALLCLOCK WallClock;
509 RT_ZERO(WallClock);
510 AssertCompile(sizeof(uVersion) == sizeof(WallClock.u32Version));
511 WallClock.u32Version = uVersion;
512 WallClock.u32Sec = iSec;
513 WallClock.u32Nano = iNano;
514
515 /*
516 * Write out the wall-clock struct. to guest memory.
517 */
518 Assert(!(WallClock.u32Version & 1));
519 rc = PGMPhysSimpleWriteGCPhys(pVM, GCPhysWallClock, &WallClock, sizeof(GIMKVMWALLCLOCK));
520 if (RT_SUCCESS(rc))
521 {
522 LogRel(("GIM: KVM: Enabled wall-clock struct. at %#RGp - u32Sec=%u u32Nano=%u uVersion=%#RU32\n", GCPhysWallClock,
523 WallClock.u32Sec, WallClock.u32Nano, WallClock.u32Version));
524 }
525 else
526 LogRel(("GIM: KVM: Failed to write wall-clock struct. at %#RGp. rc=%Rrc\n", GCPhysWallClock, rc));
527 return rc;
528}
529
530
531/**
532 * Enables the KVM wall-clock structure.
533 *
534 * Since the wall-clock can be read by any VCPU but it is a global struct. in
535 * guest-memory, we do an EMT rendezvous here to be on the safe side. The
536 * alternative is to use an MMIO2 region and use the WallClock.u32Version field
537 * for transactional update. However, this MSR is rarely written to (typically
538 * once during bootup) it's currently not a performance issue especially since
539 * we're already in ring-3. If we really wanted better performance in this code
540 * path, we should be doing it in ring-0 with transactional update while make
541 * sure there is only 1 writer as well.
542 *
543 * @returns VBox status code.
544 * @param pVM The cross context VM structure.
545 * @param GCPhysWallClock Where the guest wall-clock structure is located.
546 *
547 * @remarks Don't do any release assertions here, these can be triggered by
548 * guest R0 code.
549 */
550VMMR3_INT_DECL(int) gimR3KvmEnableWallClock(PVM pVM, RTGCPHYS GCPhysWallClock)
551{
552 KVMWALLCLOCKINFO WallClockInfo;
553 WallClockInfo.GCPhysWallClock = GCPhysWallClock;
554 return VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, gimR3KvmEnableWallClockCallback, &WallClockInfo);
555}
556
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette