VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 97178

Last change on this file since 97178 was 97178, checked in by vboxsync, 2 years ago

VMM/CPUM,EM,HM,IEM,++: Moved VMCPU_FF_INHIBIT_INTERRUPTS and VMCPU_FF_BLOCK_NMIS to CPUMCTX::fInhibit. Moved ldtr and tr up to the CPUMCTXCORE area in hope for better cache alignment of rip, rflags and crX register fields. bugref:9941

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 243.8 KB
Line 
1/* $Id: CPUM.cpp 97178 2022-10-17 21:06:03Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.virtualbox.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28/** @page pg_cpum CPUM - CPU Monitor / Manager
29 *
30 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
31 * also responsible for lazy FPU handling and some of the context loading
32 * in raw mode.
33 *
34 * There are three CPU contexts, the most important one is the guest one (GC).
35 * When running in raw-mode (RC) there is a special hyper context for the VMM
36 * part that floats around inside the guest address space. When running in
37 * raw-mode, CPUM also maintains a host context for saving and restoring
38 * registers across world switches. This latter is done in cooperation with the
39 * world switcher (@see pg_vmm).
40 *
41 * @see grp_cpum
42 *
43 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
44 *
45 * TODO: proper write up, currently just some notes.
46 *
47 * The ring-0 FPU handling per OS:
48 *
49 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
50 * convention (Visual C++ doesn't seem to have a way to disable
51 * generating such code either), so CR0.TS/EM are always zero from what I
52 * can tell. We are also forced to always load/save the guest XMM0-XMM15
53 * registers when entering/leaving guest context. Interrupt handlers
54 * using FPU/SSE will offically have call save and restore functions
55 * exported by the kernel, if the really really have to use the state.
56 *
57 * - 32-bit windows does lazy FPU handling, I think, probably including
58 * lazying saving. The Windows Internals book states that it's a bad
59 * idea to use the FPU in kernel space. However, it looks like it will
60 * restore the FPU state of the current thread in case of a kernel \#NM.
61 * Interrupt handlers should be same as for 64-bit.
62 *
63 * - Darwin allows taking \#NM in kernel space, restoring current thread's
64 * state if I read the code correctly. It saves the FPU state of the
65 * outgoing thread, and uses CR0.TS to lazily load the state of the
66 * incoming one. No idea yet how the FPU is treated by interrupt
67 * handlers, i.e. whether they are allowed to disable the state or
68 * something.
69 *
70 * - Linux also allows \#NM in kernel space (don't know since when), and
71 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
72 * loads the incoming unless configured to agressivly load it. Interrupt
73 * handlers can ask whether they're allowed to use the FPU, and may
74 * freely trash the state if Linux thinks it has saved the thread's state
75 * already. This is a problem.
76 *
77 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
78 * context. When switching threads, the kernel will save the state of
79 * the outgoing thread and lazy load the incoming one using CR0.TS.
80 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
81 * to do stuff, HAT are among the users. The routines there will
82 * manually clear CR0.TS and save the XMM registers they use only if
83 * CR0.TS was zero upon entry. They will skip it when not, because as
84 * mentioned above, the FPU state is saved when switching away from a
85 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
86 * preserve. This is a problem if we restore CR0.TS to 1 after loading
87 * the guest state.
88 *
89 * - FreeBSD - no idea yet.
90 *
91 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
92 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
93 * FPU states.
94 *
95 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
96 * saving and restoring the host and guest states. The motivation for this
97 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
98 *
99 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
100 * state and only restore it once we've restore the host FPU state. This has the
101 * accidental side effect of triggering Solaris to preserve XMM registers in
102 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
103 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
104 *
105 *
106 * @section sec_cpum_logging Logging Level Assignments.
107 *
108 * Following log level assignments:
109 * - Log6 is used for FPU state management.
110 * - Log7 is used for FPU state actualization.
111 *
112 */
113
114
115/*********************************************************************************************************************************
116* Header Files *
117*********************************************************************************************************************************/
118#define LOG_GROUP LOG_GROUP_CPUM
119#define CPUM_WITH_NONCONST_HOST_FEATURES
120#include <VBox/vmm/cpum.h>
121#include <VBox/vmm/cpumdis.h>
122#include <VBox/vmm/cpumctx-v1_6.h>
123#include <VBox/vmm/pgm.h>
124#include <VBox/vmm/apic.h>
125#include <VBox/vmm/mm.h>
126#include <VBox/vmm/em.h>
127#include <VBox/vmm/iem.h>
128#include <VBox/vmm/selm.h>
129#include <VBox/vmm/dbgf.h>
130#include <VBox/vmm/hm.h>
131#include <VBox/vmm/hmvmxinline.h>
132#include <VBox/vmm/ssm.h>
133#include "CPUMInternal.h"
134#include <VBox/vmm/vm.h>
135
136#include <VBox/param.h>
137#include <VBox/dis.h>
138#include <VBox/err.h>
139#include <VBox/log.h>
140#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
141# include <iprt/asm-amd64-x86.h>
142#endif
143#include <iprt/assert.h>
144#include <iprt/cpuset.h>
145#include <iprt/mem.h>
146#include <iprt/mp.h>
147#include <iprt/string.h>
148
149
150/*********************************************************************************************************************************
151* Defined Constants And Macros *
152*********************************************************************************************************************************/
153/**
154 * This was used in the saved state up to the early life of version 14.
155 *
156 * It indicates that we may have some out-of-sync hidden segement registers.
157 * It is only relevant for raw-mode.
158 */
159#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
160
161
162/** For saved state only: Block injection of non-maskable interrupts to the guest.
163 * @note This flag was moved to CPUMCTX::fInhibit in v7.0.2. */
164#define CPUM_OLD_VMCPU_FF_BLOCK_NMIS RT_BIT_64(25)
165
166
167/*********************************************************************************************************************************
168* Structures and Typedefs *
169*********************************************************************************************************************************/
170
171/**
172 * What kind of cpu info dump to perform.
173 */
174typedef enum CPUMDUMPTYPE
175{
176 CPUMDUMPTYPE_TERSE,
177 CPUMDUMPTYPE_DEFAULT,
178 CPUMDUMPTYPE_VERBOSE
179} CPUMDUMPTYPE;
180/** Pointer to a cpu info dump type. */
181typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
182
183
184/*********************************************************************************************************************************
185* Internal Functions *
186*********************************************************************************************************************************/
187static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
188static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
189static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
190static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
191static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
192static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
193static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
194static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
195static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
196static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
197static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
198
199
200/*********************************************************************************************************************************
201* Global Variables *
202*********************************************************************************************************************************/
203#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
204/** Host CPU features. */
205DECL_HIDDEN_DATA(CPUHOSTFEATURES) g_CpumHostFeatures;
206#endif
207
208/** Saved state field descriptors for CPUMCTX. */
209static const SSMFIELD g_aCpumCtxFields[] =
210{
211 SSMFIELD_ENTRY( CPUMCTX, rdi),
212 SSMFIELD_ENTRY( CPUMCTX, rsi),
213 SSMFIELD_ENTRY( CPUMCTX, rbp),
214 SSMFIELD_ENTRY( CPUMCTX, rax),
215 SSMFIELD_ENTRY( CPUMCTX, rbx),
216 SSMFIELD_ENTRY( CPUMCTX, rdx),
217 SSMFIELD_ENTRY( CPUMCTX, rcx),
218 SSMFIELD_ENTRY( CPUMCTX, rsp),
219 SSMFIELD_ENTRY( CPUMCTX, rflags),
220 SSMFIELD_ENTRY( CPUMCTX, rip),
221 SSMFIELD_ENTRY( CPUMCTX, r8),
222 SSMFIELD_ENTRY( CPUMCTX, r9),
223 SSMFIELD_ENTRY( CPUMCTX, r10),
224 SSMFIELD_ENTRY( CPUMCTX, r11),
225 SSMFIELD_ENTRY( CPUMCTX, r12),
226 SSMFIELD_ENTRY( CPUMCTX, r13),
227 SSMFIELD_ENTRY( CPUMCTX, r14),
228 SSMFIELD_ENTRY( CPUMCTX, r15),
229 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
230 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
231 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
232 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
233 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
234 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
235 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
236 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
237 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
238 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
239 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
240 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
241 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
242 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
243 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
244 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
245 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
246 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
247 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
248 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
249 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
250 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
251 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
252 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
253 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
254 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
255 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
256 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
257 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
258 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
259 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
260 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
261 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
262 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
263 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
264 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
265 SSMFIELD_ENTRY( CPUMCTX, cr0),
266 SSMFIELD_ENTRY( CPUMCTX, cr2),
267 SSMFIELD_ENTRY( CPUMCTX, cr3),
268 SSMFIELD_ENTRY( CPUMCTX, cr4),
269 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
270 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
271 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
272 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
273 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
274 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
275 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
276 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
277 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
278 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
279 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
280 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
281 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
282 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
283 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
284 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
285 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
286 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
287 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
288 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
289 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
290 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
291 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
292 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
293 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
294 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
295 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
296 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
297 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
298 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
299 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
300 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
301 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
302 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
303 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
304 SSMFIELD_ENTRY_TERM()
305};
306
307/** Saved state field descriptors for SVM nested hardware-virtualization
308 * Host State. */
309static const SSMFIELD g_aSvmHwvirtHostState[] =
310{
311 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
324 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
325 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
326 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
327 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
328 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
329 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
330 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
331 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
332 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
333 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
334 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
335 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
336 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
337 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
338 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
339 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
340 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
341 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
342 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
343 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
344 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
345 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
346 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
347 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
348 SSMFIELD_ENTRY_TERM()
349};
350
351/** Saved state field descriptors for VMX nested hardware-virtualization
352 * VMCS. */
353static const SSMFIELD g_aVmxHwvirtVmcs[] =
354{
355 SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId),
356 SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort),
357 SSMFIELD_ENTRY( VMXVVMCS, fVmcsState),
358 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0),
359 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0),
360
361 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, u16Reserved0),
362
363 SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError),
364 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason),
365 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo),
366 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode),
367 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo),
368 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode),
369 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen),
370 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo),
371 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2),
372
373 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr),
374 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1),
375
376 SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual),
377 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx),
378 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi),
379 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi),
380 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip),
381 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr),
382 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved5),
383
384 SSMFIELD_ENTRY( VMXVVMCS, u16Vpid),
385 SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector),
386 SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex),
387 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0),
388
389 SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls),
390 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls),
391 SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap),
392 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask),
393 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch),
394 SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount),
395 SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls),
396 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount),
397 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount),
398 SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls),
399 SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount),
400 SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo),
401 SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode),
402 SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen),
403 SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold),
404 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2),
405 SSMFIELD_ENTRY( VMXVVMCS, u32PleGap),
406 SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow),
407 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1),
408
409 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA),
410 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB),
411 SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap),
412 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore),
413 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad),
414 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad),
415 SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr),
416 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml),
417 SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset),
418 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic),
419 SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess),
420 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc),
421 SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls),
422 SSMFIELD_ENTRY( VMXVVMCS, u64EptPtr),
423 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0),
424 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1),
425 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2),
426 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3),
427 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList),
428 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap),
429 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap),
430 SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo),
431 SSMFIELD_ENTRY( VMXVVMCS, u64XssExitBitmap),
432 SSMFIELD_ENTRY( VMXVVMCS, u64EnclsExitBitmap),
433 SSMFIELD_ENTRY( VMXVVMCS, u64SppTablePtr),
434 SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier),
435 SSMFIELD_ENTRY_VER( VMXVVMCS, u64ProcCtls3, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
436 SSMFIELD_ENTRY_VER( VMXVVMCS, u64EnclvExitBitmap, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
437 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0),
438
439 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask),
440 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask),
441 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow),
442 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow),
443 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0),
444 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1),
445 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2),
446 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3),
447 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved4),
448
449 SSMFIELD_ENTRY( VMXVVMCS, HostEs),
450 SSMFIELD_ENTRY( VMXVVMCS, HostCs),
451 SSMFIELD_ENTRY( VMXVVMCS, HostSs),
452 SSMFIELD_ENTRY( VMXVVMCS, HostDs),
453 SSMFIELD_ENTRY( VMXVVMCS, HostFs),
454 SSMFIELD_ENTRY( VMXVVMCS, HostGs),
455 SSMFIELD_ENTRY( VMXVVMCS, HostTr),
456 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2),
457
458 SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs),
459 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4),
460
461 SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr),
462 SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr),
463 SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr),
464 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
465 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3),
466
467 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0),
468 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3),
469 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4),
470 SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase),
471 SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase),
472 SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase),
473 SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase),
474 SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase),
475 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp),
476 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip),
477 SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp),
478 SSMFIELD_ENTRY( VMXVVMCS, u64HostRip),
479 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
480 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
481 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
482 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved7),
483
484 SSMFIELD_ENTRY( VMXVVMCS, GuestEs),
485 SSMFIELD_ENTRY( VMXVVMCS, GuestCs),
486 SSMFIELD_ENTRY( VMXVVMCS, GuestSs),
487 SSMFIELD_ENTRY( VMXVVMCS, GuestDs),
488 SSMFIELD_ENTRY( VMXVVMCS, GuestFs),
489 SSMFIELD_ENTRY( VMXVVMCS, GuestGs),
490 SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr),
491 SSMFIELD_ENTRY( VMXVVMCS, GuestTr),
492 SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus),
493 SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex),
494 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1),
495
496 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit),
497 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit),
498 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit),
499 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit),
500 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit),
501 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit),
502 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit),
503 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit),
504 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit),
505 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit),
506 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr),
507 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr),
508 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr),
509 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr),
510 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr),
511 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr),
512 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr),
513 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr),
514 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState),
515 SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState),
516 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase),
517 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS),
518 SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer),
519 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3),
520
521 SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr),
522 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr),
523 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr),
524 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr),
525 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr),
526 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0),
527 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1),
528 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2),
529 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3),
530 SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr),
531 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRtitCtlMsr),
532 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
533 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2),
534
535 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0),
536 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3),
537 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4),
538 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase),
539 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase),
540 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase),
541 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase),
542 SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase),
543 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase),
544 SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase),
545 SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase),
546 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase),
547 SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase),
548 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7),
549 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp),
550 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip),
551 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags),
552 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpts),
553 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp),
554 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip),
555 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
556 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
557 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
558 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved6),
559
560 SSMFIELD_ENTRY_TERM()
561};
562
563/** Saved state field descriptors for CPUMCTX. */
564static const SSMFIELD g_aCpumX87Fields[] =
565{
566 SSMFIELD_ENTRY( X86FXSTATE, FCW),
567 SSMFIELD_ENTRY( X86FXSTATE, FSW),
568 SSMFIELD_ENTRY( X86FXSTATE, FTW),
569 SSMFIELD_ENTRY( X86FXSTATE, FOP),
570 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
571 SSMFIELD_ENTRY( X86FXSTATE, CS),
572 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
573 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
574 SSMFIELD_ENTRY( X86FXSTATE, DS),
575 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
576 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
577 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
578 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
579 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
580 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
581 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
582 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
583 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
584 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
585 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
586 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
587 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
588 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
589 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
590 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
591 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
592 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
593 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
594 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
595 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
596 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
597 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
598 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
599 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
600 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
601 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
602 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
603 SSMFIELD_ENTRY_TERM()
604};
605
606/** Saved state field descriptors for X86XSAVEHDR. */
607static const SSMFIELD g_aCpumXSaveHdrFields[] =
608{
609 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
610 SSMFIELD_ENTRY_TERM()
611};
612
613/** Saved state field descriptors for X86XSAVEYMMHI. */
614static const SSMFIELD g_aCpumYmmHiFields[] =
615{
616 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
617 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
618 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
619 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
620 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
621 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
622 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
623 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
624 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
625 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
626 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
627 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
628 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
629 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
630 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
631 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
632 SSMFIELD_ENTRY_TERM()
633};
634
635/** Saved state field descriptors for X86XSAVEBNDREGS. */
636static const SSMFIELD g_aCpumBndRegsFields[] =
637{
638 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
639 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
640 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
641 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
642 SSMFIELD_ENTRY_TERM()
643};
644
645/** Saved state field descriptors for X86XSAVEBNDCFG. */
646static const SSMFIELD g_aCpumBndCfgFields[] =
647{
648 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
649 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
650 SSMFIELD_ENTRY_TERM()
651};
652
653#if 0 /** @todo */
654/** Saved state field descriptors for X86XSAVEOPMASK. */
655static const SSMFIELD g_aCpumOpmaskFields[] =
656{
657 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
658 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
659 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
660 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
661 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
662 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
663 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
664 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
665 SSMFIELD_ENTRY_TERM()
666};
667#endif
668
669/** Saved state field descriptors for X86XSAVEZMMHI256. */
670static const SSMFIELD g_aCpumZmmHi256Fields[] =
671{
672 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
673 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
674 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
675 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
676 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
677 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
678 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
679 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
680 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
681 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
682 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
683 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
684 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
685 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
686 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
687 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
688 SSMFIELD_ENTRY_TERM()
689};
690
691/** Saved state field descriptors for X86XSAVEZMM16HI. */
692static const SSMFIELD g_aCpumZmm16HiFields[] =
693{
694 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
695 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
696 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
697 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
698 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
699 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
700 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
701 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
702 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
703 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
704 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
705 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
706 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
707 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
708 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
709 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
710 SSMFIELD_ENTRY_TERM()
711};
712
713
714
715/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
716 * registeres changed. */
717static const SSMFIELD g_aCpumX87FieldsMem[] =
718{
719 SSMFIELD_ENTRY( X86FXSTATE, FCW),
720 SSMFIELD_ENTRY( X86FXSTATE, FSW),
721 SSMFIELD_ENTRY( X86FXSTATE, FTW),
722 SSMFIELD_ENTRY( X86FXSTATE, FOP),
723 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
724 SSMFIELD_ENTRY( X86FXSTATE, CS),
725 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
726 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
727 SSMFIELD_ENTRY( X86FXSTATE, DS),
728 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
729 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
730 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
731 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
732 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
733 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
734 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
735 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
736 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
737 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
738 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
739 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
740 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
741 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
742 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
743 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
744 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
745 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
746 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
747 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
748 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
749 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
750 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
751 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
752 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
753 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
754 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
755 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
756 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
757};
758
759/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
760 * registeres changed. */
761static const SSMFIELD g_aCpumCtxFieldsMem[] =
762{
763 SSMFIELD_ENTRY( CPUMCTX, rdi),
764 SSMFIELD_ENTRY( CPUMCTX, rsi),
765 SSMFIELD_ENTRY( CPUMCTX, rbp),
766 SSMFIELD_ENTRY( CPUMCTX, rax),
767 SSMFIELD_ENTRY( CPUMCTX, rbx),
768 SSMFIELD_ENTRY( CPUMCTX, rdx),
769 SSMFIELD_ENTRY( CPUMCTX, rcx),
770 SSMFIELD_ENTRY( CPUMCTX, rsp),
771 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
772 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
773 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
774 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
775 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
776 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
777 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
778 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
779 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
780 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
781 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
782 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
783 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
784 SSMFIELD_ENTRY( CPUMCTX, rflags),
785 SSMFIELD_ENTRY( CPUMCTX, rip),
786 SSMFIELD_ENTRY( CPUMCTX, r8),
787 SSMFIELD_ENTRY( CPUMCTX, r9),
788 SSMFIELD_ENTRY( CPUMCTX, r10),
789 SSMFIELD_ENTRY( CPUMCTX, r11),
790 SSMFIELD_ENTRY( CPUMCTX, r12),
791 SSMFIELD_ENTRY( CPUMCTX, r13),
792 SSMFIELD_ENTRY( CPUMCTX, r14),
793 SSMFIELD_ENTRY( CPUMCTX, r15),
794 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
795 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
796 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
797 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
798 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
799 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
800 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
801 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
802 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
803 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
804 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
805 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
806 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
807 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
808 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
809 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
810 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
811 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
812 SSMFIELD_ENTRY( CPUMCTX, cr0),
813 SSMFIELD_ENTRY( CPUMCTX, cr2),
814 SSMFIELD_ENTRY( CPUMCTX, cr3),
815 SSMFIELD_ENTRY( CPUMCTX, cr4),
816 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
817 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
818 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
819 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
820 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
821 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
822 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
823 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
824 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
825 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
826 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
827 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
828 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
829 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
830 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
831 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
832 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
833 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
834 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
835 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
836 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
837 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
838 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
839 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
840 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
841 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
842 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
843 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
844 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
845 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
846 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
847 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
848 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
849 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
850 SSMFIELD_ENTRY_TERM()
851};
852
853/** Saved state field descriptors for CPUMCTX_VER1_6. */
854static const SSMFIELD g_aCpumX87FieldsV16[] =
855{
856 SSMFIELD_ENTRY( X86FXSTATE, FCW),
857 SSMFIELD_ENTRY( X86FXSTATE, FSW),
858 SSMFIELD_ENTRY( X86FXSTATE, FTW),
859 SSMFIELD_ENTRY( X86FXSTATE, FOP),
860 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
861 SSMFIELD_ENTRY( X86FXSTATE, CS),
862 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
863 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
864 SSMFIELD_ENTRY( X86FXSTATE, DS),
865 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
866 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
867 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
868 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
869 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
870 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
871 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
872 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
873 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
874 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
875 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
876 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
877 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
878 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
879 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
880 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
881 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
882 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
883 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
884 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
885 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
886 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
887 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
888 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
889 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
890 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
891 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
892 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
893 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
894 SSMFIELD_ENTRY_TERM()
895};
896
897/** Saved state field descriptors for CPUMCTX_VER1_6. */
898static const SSMFIELD g_aCpumCtxFieldsV16[] =
899{
900 SSMFIELD_ENTRY( CPUMCTX, rdi),
901 SSMFIELD_ENTRY( CPUMCTX, rsi),
902 SSMFIELD_ENTRY( CPUMCTX, rbp),
903 SSMFIELD_ENTRY( CPUMCTX, rax),
904 SSMFIELD_ENTRY( CPUMCTX, rbx),
905 SSMFIELD_ENTRY( CPUMCTX, rdx),
906 SSMFIELD_ENTRY( CPUMCTX, rcx),
907 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
908 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
909 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
910 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
911 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
912 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
913 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
914 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
915 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
916 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
917 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
918 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
919 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
920 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
921 SSMFIELD_ENTRY( CPUMCTX, rflags),
922 SSMFIELD_ENTRY( CPUMCTX, rip),
923 SSMFIELD_ENTRY( CPUMCTX, r8),
924 SSMFIELD_ENTRY( CPUMCTX, r9),
925 SSMFIELD_ENTRY( CPUMCTX, r10),
926 SSMFIELD_ENTRY( CPUMCTX, r11),
927 SSMFIELD_ENTRY( CPUMCTX, r12),
928 SSMFIELD_ENTRY( CPUMCTX, r13),
929 SSMFIELD_ENTRY( CPUMCTX, r14),
930 SSMFIELD_ENTRY( CPUMCTX, r15),
931 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
932 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
933 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
934 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
935 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
936 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
937 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
938 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
939 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
940 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
941 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
942 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
943 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
944 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
945 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
946 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
947 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
948 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
949 SSMFIELD_ENTRY( CPUMCTX, cr0),
950 SSMFIELD_ENTRY( CPUMCTX, cr2),
951 SSMFIELD_ENTRY( CPUMCTX, cr3),
952 SSMFIELD_ENTRY( CPUMCTX, cr4),
953 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
954 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
955 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
956 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
957 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
958 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
959 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
960 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
961 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
962 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
963 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
964 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
965 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
966 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
967 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
968 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
969 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
970 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
971 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
972 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
973 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
974 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
975 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
976 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
977 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
978 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
979 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
980 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
981 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
982 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
983 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
984 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
985 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
986 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
987 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
988 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
989 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
990 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
991 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
992 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
993 SSMFIELD_ENTRY_TERM()
994};
995
996
997#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
998/**
999 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
1000 *
1001 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
1002 * (last instruction pointer, last data pointer, last opcode) except when the ES
1003 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
1004 * clear these registers there is potential, local FPU leakage from a process
1005 * using the FPU to another.
1006 *
1007 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
1008 *
1009 * @param pVM The cross context VM structure.
1010 */
1011static void cpumR3CheckLeakyFpu(PVM pVM)
1012{
1013 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
1014 uint32_t const u32Family = u32CpuVersion >> 8;
1015 if ( u32Family >= 6 /* K7 and higher */
1016 && (ASMIsAmdCpu() || ASMIsHygonCpu()) )
1017 {
1018 uint32_t cExt = ASMCpuId_EAX(0x80000000);
1019 if (RTX86IsValidExtRange(cExt))
1020 {
1021 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
1022 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
1023 {
1024 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1025 {
1026 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1027 pVCpu->cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
1028 }
1029 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
1030 }
1031 }
1032 }
1033}
1034#endif
1035
1036
1037/**
1038 * Initialize the SVM hardware virtualization state.
1039 *
1040 * @param pVM The cross context VM structure.
1041 */
1042static void cpumR3InitSvmHwVirtState(PVM pVM)
1043{
1044 LogRel(("CPUM: AMD-V nested-guest init\n"));
1045 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1046 {
1047 PVMCPU pVCpu = pVM->apCpusR3[i];
1048 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1049
1050 /* Initialize that SVM hardware virtualization is available. */
1051 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
1052
1053 AssertCompile(sizeof(pCtx->hwvirt.svm.Vmcb) == SVM_VMCB_PAGES * X86_PAGE_SIZE);
1054 AssertCompile(sizeof(pCtx->hwvirt.svm.abMsrBitmap) == SVM_MSRPM_PAGES * X86_PAGE_SIZE);
1055 AssertCompile(sizeof(pCtx->hwvirt.svm.abIoBitmap) == SVM_IOPM_PAGES * X86_PAGE_SIZE);
1056
1057 /* Initialize non-zero values. */
1058 pCtx->hwvirt.svm.GCPhysVmcb = NIL_RTGCPHYS;
1059 }
1060}
1061
1062
1063/**
1064 * Resets per-VCPU SVM hardware virtualization state.
1065 *
1066 * @param pVCpu The cross context virtual CPU structure.
1067 */
1068DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
1069{
1070 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1071 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
1072
1073 RT_ZERO(pCtx->hwvirt.svm.Vmcb);
1074 RT_ZERO(pCtx->hwvirt.svm.HostState);
1075 RT_ZERO(pCtx->hwvirt.svm.abMsrBitmap);
1076 RT_ZERO(pCtx->hwvirt.svm.abIoBitmap);
1077
1078 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1079 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1080 pCtx->hwvirt.svm.GCPhysVmcb = NIL_RTGCPHYS;
1081 pCtx->hwvirt.svm.cPauseFilter = 0;
1082 pCtx->hwvirt.svm.cPauseFilterThreshold = 0;
1083 pCtx->hwvirt.svm.fInterceptEvents = false;
1084}
1085
1086
1087/**
1088 * Initializes the VMX hardware virtualization state.
1089 *
1090 * @param pVM The cross context VM structure.
1091 */
1092static void cpumR3InitVmxHwVirtState(PVM pVM)
1093{
1094 LogRel(("CPUM: VT-x nested-guest init\n"));
1095 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1096 {
1097 PVMCPU pVCpu = pVM->apCpusR3[i];
1098 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1099
1100 /* Initialize that VMX hardware virtualization is available. */
1101 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
1102
1103 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_PAGES * X86_PAGE_SIZE);
1104 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_SIZE);
1105 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_PAGES * X86_PAGE_SIZE);
1106 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_SIZE);
1107 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1108 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1109 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1110 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1111 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1112 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1113 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1114 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_SIZE);
1115 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1116 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1117 AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_PAGES * X86_PAGE_SIZE);
1118 AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_SIZE);
1119 AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == (VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES) * X86_PAGE_SIZE);
1120 AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1121
1122 /* Initialize non-zero values. */
1123 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1124 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1125 pCtx->hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS;
1126 }
1127}
1128
1129
1130/**
1131 * Resets per-VCPU VMX hardware virtualization state.
1132 *
1133 * @param pVCpu The cross context virtual CPU structure.
1134 */
1135DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1136{
1137 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1138 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1139
1140 RT_ZERO(pCtx->hwvirt.vmx.Vmcs);
1141 RT_ZERO(pCtx->hwvirt.vmx.ShadowVmcs);
1142 RT_ZERO(pCtx->hwvirt.vmx.abVmreadBitmap);
1143 RT_ZERO(pCtx->hwvirt.vmx.abVmwriteBitmap);
1144 RT_ZERO(pCtx->hwvirt.vmx.aEntryMsrLoadArea);
1145 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrStoreArea);
1146 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrLoadArea);
1147 RT_ZERO(pCtx->hwvirt.vmx.abMsrBitmap);
1148 RT_ZERO(pCtx->hwvirt.vmx.abIoBitmap);
1149
1150 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1151 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1152 pCtx->hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS;
1153 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1154 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1155 /* Don't reset diagnostics here. */
1156
1157 pCtx->hwvirt.vmx.fInterceptEvents = false;
1158 pCtx->hwvirt.vmx.fNmiUnblockingIret = false;
1159 pCtx->hwvirt.vmx.uFirstPauseLoopTick = 0;
1160 pCtx->hwvirt.vmx.uPrevPauseTick = 0;
1161 pCtx->hwvirt.vmx.uEntryTick = 0;
1162 pCtx->hwvirt.vmx.offVirtApicWrite = 0;
1163 pCtx->hwvirt.vmx.fVirtNmiBlocking = false;
1164
1165 /* Stop any VMX-preemption timer. */
1166 CPUMStopGuestVmxPremptTimer(pVCpu);
1167
1168 /* Clear all nested-guest FFs. */
1169 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
1170}
1171
1172
1173/**
1174 * Displays the host and guest VMX features.
1175 *
1176 * @param pVM The cross context VM structure.
1177 * @param pHlp The info helper functions.
1178 * @param pszArgs "terse", "default" or "verbose".
1179 */
1180DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1181{
1182 RT_NOREF(pszArgs);
1183 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1184 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1185 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1186 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
1187 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
1188 {
1189#define VMXFEATDUMP(a_szDesc, a_Var) \
1190 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1191
1192 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1193 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1194 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1195 /* Basic. */
1196 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1197
1198 /* Pin-based controls. */
1199 VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
1200 VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
1201 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1202 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1203 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1204
1205 /* Processor-based controls. */
1206 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1207 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1208 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1209 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1210 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1211 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1212 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1213 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1214 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1215 VMXFEATDUMP("TertiaryExecCtls - Activate tertiary controls ", fVmxTertiaryExecCtls);
1216 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1217 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1218 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1219 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1220 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1221 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1222 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1223 VMXFEATDUMP("MonitorTrapFlag - Monitor Trap Flag ", fVmxMonitorTrapFlag);
1224 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1225 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1226 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1227 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1228
1229 /* Secondary processor-based controls. */
1230 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1231 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1232 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1233 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1234 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1235 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1236 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1237 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1238 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1239 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1240 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1241 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1242 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1243 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1244 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1245 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1246 VMXFEATDUMP("PML - Page-Modification Log (PML) ", fVmxPml);
1247 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1248 VMXFEATDUMP("ConcealVmxFromPt - Conceal VMX from Processor Trace ", fVmxConcealVmxFromPt);
1249 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1250 VMXFEATDUMP("ModeBasedExecuteEpt - Mode-based execute permissions ", fVmxModeBasedExecuteEpt);
1251 VMXFEATDUMP("SppEpt - Sub-page page write permissions for EPT ", fVmxSppEpt);
1252 VMXFEATDUMP("PtEpt - Processor Trace address' translatable by EPT ", fVmxPtEpt);
1253 VMXFEATDUMP("UseTscScaling - Use TSC scaling ", fVmxUseTscScaling);
1254 VMXFEATDUMP("UserWaitPause - Enable TPAUSE, UMONITOR and UMWAIT ", fVmxUserWaitPause);
1255 VMXFEATDUMP("EnclvExit - ENCLV exiting ", fVmxEnclvExit);
1256
1257 /* Tertiary processor-based controls. */
1258 VMXFEATDUMP("LoadIwKeyExit - LOADIWKEY exiting ", fVmxLoadIwKeyExit);
1259
1260 /* VM-entry controls. */
1261 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1262 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1263 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
1264 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
1265
1266 /* VM-exit controls. */
1267 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1268 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1269 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1270 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
1271 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
1272 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
1273 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
1274 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1275
1276 /* Miscellaneous data. */
1277 VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1278 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxPt);
1279 VMXFEATDUMP("VmwriteAll - VMWRITE to any supported VMCS field ", fVmxVmwriteAll);
1280 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1281#undef VMXFEATDUMP
1282 }
1283 else
1284 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1285}
1286
1287
1288/**
1289 * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
1290 * or NEM) is allowed.
1291 *
1292 * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
1293 * otherwise.
1294 * @param pVM The cross context VM structure.
1295 */
1296static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
1297{
1298 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1299#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1300 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1301 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1302 return true;
1303#else
1304 NOREF(pVM);
1305#endif
1306 return false;
1307}
1308
1309
1310/**
1311 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1312 *
1313 * @param pVM The cross context VM structure.
1314 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1315 * and no hardware-assisted nested-guest execution is
1316 * possible for this VM.
1317 * @param pGuestFeatures The guest features to use (only VMX features are
1318 * accessed).
1319 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1320 *
1321 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1322 */
1323static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1324{
1325 bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
1326
1327 Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
1328 Assert(pGuestFeatures->fVmx);
1329
1330 /* Basic information. */
1331 uint8_t const fTrueVmxMsrs = 1;
1332 {
1333 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1334 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1335 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1336 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1337 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1338 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1339 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, fTrueVmxMsrs );
1340 pGuestVmxMsrs->u64Basic = u64Basic;
1341 }
1342
1343 /* Pin-based VM-execution controls. */
1344 {
1345 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1346 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1347 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1348 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1349 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1350 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1351 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1352 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1353 fAllowed0, fAllowed1, fFeatures));
1354 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1355
1356 /* True pin-based VM-execution controls. */
1357 if (fTrueVmxMsrs)
1358 {
1359 /* VMX_PIN_CTLS_DEFAULT1 contains MB1 reserved bits and must be reserved MB1 in true pin-based controls as well. */
1360 pGuestVmxMsrs->TruePinCtls.u = pGuestVmxMsrs->PinCtls.u;
1361 }
1362 }
1363
1364 /* Processor-based VM-execution controls. */
1365 {
1366 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1367 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1368 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1369 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1370 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1371 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1372 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1373 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1374 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1375 | (pGuestFeatures->fVmxTertiaryExecCtls << VMX_BF_PROC_CTLS_USE_TERTIARY_CTLS_SHIFT )
1376 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1377 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1378 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1379 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1380 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1381 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1382 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1383 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1384 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1385 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1386 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1387 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1388 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1389 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1390 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1391 fAllowed1, fFeatures));
1392 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1393
1394 /* True processor-based VM-execution controls. */
1395 if (fTrueVmxMsrs)
1396 {
1397 /* VMX_PROC_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved. */
1398 uint32_t const fTrueAllowed0 = VMX_PROC_CTLS_DEFAULT1 & ~( VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_MASK
1399 | VMX_BF_PROC_CTLS_CR3_STORE_EXIT_MASK);
1400 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1401 pGuestVmxMsrs->TrueProcCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1402 }
1403 }
1404
1405 /* Secondary processor-based VM-execution controls. */
1406 if (pGuestFeatures->fVmxSecondaryExecCtls)
1407 {
1408 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1409 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1410 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1411 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1412 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1413 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1414 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1415 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT )
1416 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1417 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1418 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1419 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1420 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1421 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1422 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1423 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1424 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1425 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1426 | (pGuestFeatures->fVmxConcealVmxFromPt << VMX_BF_PROC_CTLS2_CONCEAL_VMX_FROM_PT_SHIFT)
1427 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1428 | (pGuestFeatures->fVmxModeBasedExecuteEpt << VMX_BF_PROC_CTLS2_MODE_BASED_EPT_PERM_SHIFT)
1429 | (pGuestFeatures->fVmxSppEpt << VMX_BF_PROC_CTLS2_SPP_EPT_SHIFT )
1430 | (pGuestFeatures->fVmxPtEpt << VMX_BF_PROC_CTLS2_PT_EPT_SHIFT )
1431 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT )
1432 | (pGuestFeatures->fVmxUserWaitPause << VMX_BF_PROC_CTLS2_USER_WAIT_PAUSE_SHIFT )
1433 | (pGuestFeatures->fVmxEnclvExit << VMX_BF_PROC_CTLS2_ENCLV_EXIT_SHIFT );
1434 uint32_t const fAllowed0 = 0;
1435 uint32_t const fAllowed1 = fFeatures;
1436 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1437 }
1438
1439 /* Tertiary processor-based VM-execution controls. */
1440 if (pGuestFeatures->fVmxTertiaryExecCtls)
1441 {
1442 pGuestVmxMsrs->u64ProcCtls3 = (pGuestFeatures->fVmxLoadIwKeyExit << VMX_BF_PROC_CTLS3_LOADIWKEY_EXIT_SHIFT);
1443 }
1444
1445 /* VM-exit controls. */
1446 {
1447 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1448 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1449 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1450 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1451 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1452 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1453 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1454 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
1455 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1456 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1457 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1458 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1459 fAllowed1, fFeatures));
1460 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1461
1462 /* True VM-exit controls. */
1463 if (fTrueVmxMsrs)
1464 {
1465 /* VMX_EXIT_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved */
1466 uint32_t const fTrueAllowed0 = VMX_EXIT_CTLS_DEFAULT1 & ~VMX_BF_EXIT_CTLS_SAVE_DEBUG_MASK;
1467 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1468 pGuestVmxMsrs->TrueExitCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1469 }
1470 }
1471
1472 /* VM-entry controls. */
1473 {
1474 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1475 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1476 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1477 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1478 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1479 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1480 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1481 fAllowed1, fFeatures));
1482 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1483
1484 /* True VM-entry controls. */
1485 if (fTrueVmxMsrs)
1486 {
1487 /* VMX_ENTRY_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved */
1488 uint32_t const fTrueAllowed0 = VMX_ENTRY_CTLS_DEFAULT1 & ~( VMX_BF_ENTRY_CTLS_LOAD_DEBUG_MASK
1489 | VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_MASK
1490 | VMX_BF_ENTRY_CTLS_ENTRY_SMM_MASK
1491 | VMX_BF_ENTRY_CTLS_DEACTIVATE_DUAL_MON_MASK);
1492 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1493 pGuestVmxMsrs->TrueEntryCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1494 }
1495 }
1496
1497 /* Miscellaneous data. */
1498 {
1499 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
1500
1501 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1502 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1503 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1504 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1505 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1506 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxPt )
1507 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1508 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1509 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1510 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1511 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1512 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1513 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1514 }
1515
1516 /* CR0 Fixed-0 (we report this fixed value regardless of whether UX is supported as it does on real hardware). */
1517 pGuestVmxMsrs->u64Cr0Fixed0 = VMX_V_CR0_FIXED0;
1518
1519 /* CR0 Fixed-1. */
1520 {
1521 /*
1522 * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
1523 * This is different from CR4 fixed-1 bits which are reported as per the
1524 * CPU features and/or micro-architecture/generation. Why? Ask Intel.
1525 */
1526 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : VMX_V_CR0_FIXED1;
1527 pGuestVmxMsrs->u64Cr0Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr0Fixed0; /* Make sure the CR0 MB1 bits are not clear. */
1528 }
1529
1530 /* CR4 Fixed-0. */
1531 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1532
1533 /* CR4 Fixed-1. */
1534 {
1535 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr4Fixed1 : CPUMGetGuestCR4ValidMask(pVM);
1536 pGuestVmxMsrs->u64Cr4Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr4Fixed0; /* Make sure the CR4 MB1 bits are not clear. */
1537 }
1538
1539 /* VMCS Enumeration. */
1540 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1541
1542 /* VPID and EPT Capabilities. */
1543 if (pGuestFeatures->fVmxEpt)
1544 {
1545 /*
1546 * INVVPID instruction always causes a VM-exit unconditionally, so we are free to fake
1547 * and emulate any INVVPID flush type. However, it only makes sense to expose the types
1548 * when INVVPID instruction is supported just to be more compatible with guest
1549 * hypervisors that may make assumptions by only looking at this MSR even though they
1550 * are technically supposed to refer to VMX_PROC_CTLS2_VPID first.
1551 *
1552 * See Intel spec. 25.1.2 "Instructions That Cause VM Exits Unconditionally".
1553 * See Intel spec. 30.3 "VMX Instructions".
1554 */
1555 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64EptVpidCaps : UINT64_MAX;
1556 uint8_t const fVpid = pGuestFeatures->fVmxVpid;
1557
1558 uint8_t const fExecOnly = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EXEC_ONLY);
1559 uint8_t const fPml4 = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1560 uint8_t const fMemTypeUc = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_UC);
1561 uint8_t const fMemTypeWb = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_WB);
1562 uint8_t const f2MPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDE_2M);
1563 uint8_t const fInvept = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT);
1564 /** @todo Nested VMX: Support accessed/dirty bits, see @bugref{10092#c25}. */
1565 /* uint8_t const fAccessDirty = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY); */
1566 uint8_t const fEptSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
1567 uint8_t const fEptAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
1568 uint8_t const fVpidIndiv = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1569 uint8_t const fVpidSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
1570 uint8_t const fVpidAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
1571 uint8_t const fVpidSingleGlobal = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
1572 pGuestVmxMsrs->u64EptVpidCaps = RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EXEC_ONLY, fExecOnly)
1573 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4, fPml4)
1574 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_UC, fMemTypeUc)
1575 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_WB, fMemTypeWb)
1576 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDE_2M, f2MPage)
1577 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDPTE_1G, 0)
1578 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT, fInvept)
1579 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY, 0)
1580 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION, 0)
1581 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_SUPER_SHW_STACK, 0)
1582 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX, fEptSingle)
1583 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX, fEptAll)
1584 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID, fVpid)
1585 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR, fVpid & fVpidIndiv)
1586 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX, fVpid & fVpidSingle)
1587 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX, fVpid & fVpidAll)
1588 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS, fVpid & fVpidSingleGlobal);
1589 }
1590
1591 /* VM Functions. */
1592 if (pGuestFeatures->fVmxVmFunc)
1593 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1594}
1595
1596
1597/**
1598 * Checks whether the given guest CPU VMX features are compatible with the provided
1599 * base features.
1600 *
1601 * @returns @c true if compatible, @c false otherwise.
1602 * @param pVM The cross context VM structure.
1603 * @param pBase The base VMX CPU features.
1604 * @param pGst The guest VMX CPU features.
1605 *
1606 * @remarks Only VMX feature bits are examined.
1607 */
1608static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1609{
1610 if (!cpumR3IsHwAssistNstGstExecAllowed(pVM))
1611 return false;
1612
1613#define CPUM_VMX_FEAT_SHIFT(a_pFeat, a_FeatName, a_cShift) ((uint64_t)(a_pFeat->a_FeatName) << (a_cShift))
1614#define CPUM_VMX_MAKE_FEATURES_1(a_pFeat) ( CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInsOutInfo , 0) \
1615 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExtIntExit , 1) \
1616 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxNmiExit , 2) \
1617 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtNmi , 3) \
1618 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPreemptTimer , 4) \
1619 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPostedInt , 5) \
1620 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxIntWindowExit , 6) \
1621 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxTscOffsetting , 7) \
1622 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxHltExit , 8) \
1623 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInvlpgExit , 9) \
1624 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMwaitExit , 10) \
1625 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdpmcExit , 12) \
1626 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdtscExit , 13) \
1627 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr3LoadExit , 14) \
1628 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr3StoreExit , 15) \
1629 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxTertiaryExecCtls , 16) \
1630 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr8LoadExit , 17) \
1631 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr8StoreExit , 18) \
1632 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseTprShadow , 19) \
1633 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxNmiWindowExit , 20) \
1634 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMovDRxExit , 21) \
1635 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUncondIoExit , 22) \
1636 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseIoBitmaps , 23) \
1637 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMonitorTrapFlag , 24) \
1638 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseMsrBitmaps , 25) \
1639 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMonitorExit , 26) \
1640 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPauseExit , 27) \
1641 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSecondaryExecCtls , 28) \
1642 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtApicAccess , 29) \
1643 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEpt , 30) \
1644 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxDescTableExit , 31) \
1645 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdtscp , 32) \
1646 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtX2ApicMode , 33) \
1647 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVpid , 34) \
1648 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxWbinvdExit , 35) \
1649 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUnrestrictedGuest , 36) \
1650 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxApicRegVirt , 37) \
1651 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtIntDelivery , 38) \
1652 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPauseLoopExit , 39) \
1653 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdrandExit , 40) \
1654 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInvpcid , 41) \
1655 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmFunc , 42) \
1656 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmcsShadowing , 43) \
1657 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdseedExit , 44) \
1658 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPml , 45) \
1659 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEptXcptVe , 46) \
1660 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxConcealVmxFromPt , 47) \
1661 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxXsavesXrstors , 48) \
1662 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxModeBasedExecuteEpt, 49) \
1663 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSppEpt , 50) \
1664 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPtEpt , 51) \
1665 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseTscScaling , 52) \
1666 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUserWaitPause , 53) \
1667 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEnclvExit , 54) \
1668 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxLoadIwKeyExit , 55) \
1669 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadDebugCtls , 56) \
1670 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxIa32eModeGuest , 57) \
1671 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadEferMsr , 58) \
1672 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadPatMsr , 59) \
1673 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveDebugCtls , 60) \
1674 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxHostAddrSpaceSize , 61) \
1675 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitAckExtInt , 62) \
1676 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSavePatMsr , 63))
1677
1678#define CPUM_VMX_MAKE_FEATURES_2(a_pFeat) ( CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitLoadPatMsr , 0) \
1679 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveEferMsr , 1) \
1680 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitLoadEferMsr , 2) \
1681 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSavePreemptTimer , 3) \
1682 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveEferLma , 4) \
1683 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPt , 5) \
1684 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmwriteAll , 6) \
1685 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryInjectSoftInt , 7))
1686
1687 /* Check first set of feature bits. */
1688 {
1689 uint64_t const fBase = CPUM_VMX_MAKE_FEATURES_1(pBase);
1690 uint64_t const fGst = CPUM_VMX_MAKE_FEATURES_1(pGst);
1691 if ((fBase | fGst) != fBase)
1692 {
1693 uint64_t const fDiff = fBase ^ fGst;
1694 LogRel(("CPUM: VMX features (1) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1695 fBase, fGst, fDiff));
1696 return false;
1697 }
1698 }
1699
1700 /* Check second set of feature bits. */
1701 {
1702 uint64_t const fBase = CPUM_VMX_MAKE_FEATURES_2(pBase);
1703 uint64_t const fGst = CPUM_VMX_MAKE_FEATURES_2(pGst);
1704 if ((fBase | fGst) != fBase)
1705 {
1706 uint64_t const fDiff = fBase ^ fGst;
1707 LogRel(("CPUM: VMX features (2) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1708 fBase, fGst, fDiff));
1709 return false;
1710 }
1711 }
1712#undef CPUM_VMX_FEAT_SHIFT
1713#undef CPUM_VMX_MAKE_FEATURES_1
1714#undef CPUM_VMX_MAKE_FEATURES_2
1715
1716 return true;
1717}
1718
1719
1720/**
1721 * Initializes VMX guest features and MSRs.
1722 *
1723 * @param pVM The cross context VM structure.
1724 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1725 * and no hardware-assisted nested-guest execution is
1726 * possible for this VM.
1727 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1728 */
1729void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1730{
1731 Assert(pVM);
1732 Assert(pGuestVmxMsrs);
1733
1734 /*
1735 * While it would be nice to check this earlier while initializing
1736 * fNestedVmxEpt but we would not have enumearted host features then, so do
1737 * it at least now.
1738 */
1739 /** @todo r=bird: Why don't we just ditch the fNestedVmxEpt and
1740 * fNestedVmxUnrestrictedGuest state members and read the CFGM stuff
1741 * here? Neither of them have any purpose beyond keeping the two value
1742 * read in cpumR3CpuIdReadConfig for use here. They aren't even
1743 * necessarily correct after the feature merging has taken place. */
1744 if (pVM->cpum.s.fNestedVmxEpt)
1745 {
1746 const char *pszWhy = NULL;
1747 if (!VM_IS_HM_ENABLED(pVM) && !VM_IS_EXEC_ENGINE_IEM(pVM))
1748 pszWhy = "execution engine is neither HM nor IEM";
1749 else if (VM_IS_HM_ENABLED(pVM) && !HMIsNestedPagingActive(pVM))
1750 pszWhy = "nested paging is not enabled for the VM or it is not supported by the host";
1751 else if (VM_IS_HM_ENABLED(pVM) && !pVM->cpum.s.HostFeatures.fNoExecute)
1752 pszWhy = "NX is not available on the host";
1753 if (pszWhy)
1754 {
1755 LogRel(("CPUM: Warning! EPT not exposed to the guest because %s.\n", pszWhy));
1756 pVM->cpum.s.fNestedVmxEpt = false;
1757 }
1758 }
1759 if ( pVM->cpum.s.fNestedVmxUnrestrictedGuest
1760 && !pVM->cpum.s.fNestedVmxEpt)
1761 {
1762 LogRel(("CPUM: Warning! Can't expose \"Unrestricted Guest\" to the guest when EPT is not exposed!\n"));
1763 pVM->cpum.s.fNestedVmxUnrestrictedGuest = false;
1764 }
1765
1766 /*
1767 * Initialize the set of VMX features we emulate.
1768 *
1769 * Note! Some bits might be reported as 1 always if they fall under the
1770 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1771 */
1772 CPUMFEATURES EmuFeat;
1773 RT_ZERO(EmuFeat);
1774 EmuFeat.fVmx = 1;
1775 EmuFeat.fVmxInsOutInfo = 1;
1776 EmuFeat.fVmxExtIntExit = 1;
1777 EmuFeat.fVmxNmiExit = 1;
1778 EmuFeat.fVmxVirtNmi = 1;
1779 EmuFeat.fVmxPreemptTimer = pVM->cpum.s.fNestedVmxPreemptTimer;
1780 EmuFeat.fVmxPostedInt = 0;
1781 EmuFeat.fVmxIntWindowExit = 1;
1782 EmuFeat.fVmxTscOffsetting = 1;
1783 EmuFeat.fVmxHltExit = 1;
1784 EmuFeat.fVmxInvlpgExit = 1;
1785 EmuFeat.fVmxMwaitExit = 1;
1786 EmuFeat.fVmxRdpmcExit = 1;
1787 EmuFeat.fVmxRdtscExit = 1;
1788 EmuFeat.fVmxCr3LoadExit = 1;
1789 EmuFeat.fVmxCr3StoreExit = 1;
1790 EmuFeat.fVmxTertiaryExecCtls = 0;
1791 EmuFeat.fVmxCr8LoadExit = 1;
1792 EmuFeat.fVmxCr8StoreExit = 1;
1793 EmuFeat.fVmxUseTprShadow = 1;
1794 EmuFeat.fVmxNmiWindowExit = 0;
1795 EmuFeat.fVmxMovDRxExit = 1;
1796 EmuFeat.fVmxUncondIoExit = 1;
1797 EmuFeat.fVmxUseIoBitmaps = 1;
1798 EmuFeat.fVmxMonitorTrapFlag = 0;
1799 EmuFeat.fVmxUseMsrBitmaps = 1;
1800 EmuFeat.fVmxMonitorExit = 1;
1801 EmuFeat.fVmxPauseExit = 1;
1802 EmuFeat.fVmxSecondaryExecCtls = 1;
1803 EmuFeat.fVmxVirtApicAccess = 1;
1804 EmuFeat.fVmxEpt = pVM->cpum.s.fNestedVmxEpt;
1805 EmuFeat.fVmxDescTableExit = 1;
1806 EmuFeat.fVmxRdtscp = 1;
1807 EmuFeat.fVmxVirtX2ApicMode = 0;
1808 EmuFeat.fVmxVpid = 0; /** @todo Consider enabling this when EPT works. */
1809 EmuFeat.fVmxWbinvdExit = 1;
1810 EmuFeat.fVmxUnrestrictedGuest = pVM->cpum.s.fNestedVmxUnrestrictedGuest;
1811 EmuFeat.fVmxApicRegVirt = 0;
1812 EmuFeat.fVmxVirtIntDelivery = 0;
1813 EmuFeat.fVmxPauseLoopExit = 0;
1814 EmuFeat.fVmxRdrandExit = 0;
1815 EmuFeat.fVmxInvpcid = 1;
1816 EmuFeat.fVmxVmFunc = 0;
1817 EmuFeat.fVmxVmcsShadowing = 0;
1818 EmuFeat.fVmxRdseedExit = 0;
1819 EmuFeat.fVmxPml = 0;
1820 EmuFeat.fVmxEptXcptVe = 0;
1821 EmuFeat.fVmxConcealVmxFromPt = 0;
1822 EmuFeat.fVmxXsavesXrstors = 0;
1823 EmuFeat.fVmxModeBasedExecuteEpt = 0;
1824 EmuFeat.fVmxSppEpt = 0;
1825 EmuFeat.fVmxPtEpt = 0;
1826 EmuFeat.fVmxUseTscScaling = 0;
1827 EmuFeat.fVmxUserWaitPause = 0;
1828 EmuFeat.fVmxEnclvExit = 0;
1829 EmuFeat.fVmxLoadIwKeyExit = 0;
1830 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1831 EmuFeat.fVmxIa32eModeGuest = 1;
1832 EmuFeat.fVmxEntryLoadEferMsr = 1;
1833 EmuFeat.fVmxEntryLoadPatMsr = 0;
1834 EmuFeat.fVmxExitSaveDebugCtls = 1;
1835 EmuFeat.fVmxHostAddrSpaceSize = 1;
1836 EmuFeat.fVmxExitAckExtInt = 1;
1837 EmuFeat.fVmxExitSavePatMsr = 0;
1838 EmuFeat.fVmxExitLoadPatMsr = 0;
1839 EmuFeat.fVmxExitSaveEferMsr = 1;
1840 EmuFeat.fVmxExitLoadEferMsr = 1;
1841 EmuFeat.fVmxSavePreemptTimer = 0; /* Cannot be enabled if VMX-preemption timer is disabled. */
1842 EmuFeat.fVmxExitSaveEferLma = 1; /* Cannot be disabled if unrestricted guest is enabled. */
1843 EmuFeat.fVmxPt = 0;
1844 EmuFeat.fVmxVmwriteAll = 0; /** @todo NSTVMX: enable this when nested VMCS shadowing is enabled. */
1845 EmuFeat.fVmxEntryInjectSoftInt = 1;
1846
1847 /*
1848 * Merge guest features.
1849 *
1850 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1851 * by the hardware, hence we merge our emulated features with the host features below.
1852 */
1853 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
1854 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1855 Assert(pBaseFeat->fVmx);
1856 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1857 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1858 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1859 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1860 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1861 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1862 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1863 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1864 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1865 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1866 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1867 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1868 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1869 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1870 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1871 pGuestFeat->fVmxTertiaryExecCtls = (pBaseFeat->fVmxTertiaryExecCtls & EmuFeat.fVmxTertiaryExecCtls );
1872 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1873 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1874 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1875 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1876 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1877 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1878 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1879 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1880 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1881 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1882 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1883 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1884 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1885 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1886 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1887 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1888 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1889 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1890 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1891 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1892 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1893 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1894 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1895 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1896 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1897 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1898 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1899 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1900 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1901 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1902 pGuestFeat->fVmxConcealVmxFromPt = (pBaseFeat->fVmxConcealVmxFromPt & EmuFeat.fVmxConcealVmxFromPt );
1903 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1904 pGuestFeat->fVmxModeBasedExecuteEpt = (pBaseFeat->fVmxModeBasedExecuteEpt & EmuFeat.fVmxModeBasedExecuteEpt );
1905 pGuestFeat->fVmxSppEpt = (pBaseFeat->fVmxSppEpt & EmuFeat.fVmxSppEpt );
1906 pGuestFeat->fVmxPtEpt = (pBaseFeat->fVmxPtEpt & EmuFeat.fVmxPtEpt );
1907 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1908 pGuestFeat->fVmxUserWaitPause = (pBaseFeat->fVmxUserWaitPause & EmuFeat.fVmxUserWaitPause );
1909 pGuestFeat->fVmxEnclvExit = (pBaseFeat->fVmxEnclvExit & EmuFeat.fVmxEnclvExit );
1910 pGuestFeat->fVmxLoadIwKeyExit = (pBaseFeat->fVmxLoadIwKeyExit & EmuFeat.fVmxLoadIwKeyExit );
1911 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1912 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1913 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1914 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1915 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1916 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1917 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1918 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1919 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1920 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1921 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1922 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1923 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1924 pGuestFeat->fVmxPt = (pBaseFeat->fVmxPt & EmuFeat.fVmxPt );
1925 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1926 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1927
1928#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1929 /* Don't expose VMX preemption timer if host is subject to VMX-preemption timer erratum. */
1930 if ( pGuestFeat->fVmxPreemptTimer
1931 && HMIsSubjectToVmxPreemptTimerErratum())
1932 {
1933 LogRel(("CPUM: Warning! VMX-preemption timer not exposed to guest due to host CPU erratum.\n"));
1934 pGuestFeat->fVmxPreemptTimer = 0;
1935 pGuestFeat->fVmxSavePreemptTimer = 0;
1936 }
1937#endif
1938
1939 /* Sanity checking. */
1940 if (!pGuestFeat->fVmxSecondaryExecCtls)
1941 {
1942 Assert(!pGuestFeat->fVmxVirtApicAccess);
1943 Assert(!pGuestFeat->fVmxEpt);
1944 Assert(!pGuestFeat->fVmxDescTableExit);
1945 Assert(!pGuestFeat->fVmxRdtscp);
1946 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
1947 Assert(!pGuestFeat->fVmxVpid);
1948 Assert(!pGuestFeat->fVmxWbinvdExit);
1949 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
1950 Assert(!pGuestFeat->fVmxApicRegVirt);
1951 Assert(!pGuestFeat->fVmxVirtIntDelivery);
1952 Assert(!pGuestFeat->fVmxPauseLoopExit);
1953 Assert(!pGuestFeat->fVmxRdrandExit);
1954 Assert(!pGuestFeat->fVmxInvpcid);
1955 Assert(!pGuestFeat->fVmxVmFunc);
1956 Assert(!pGuestFeat->fVmxVmcsShadowing);
1957 Assert(!pGuestFeat->fVmxRdseedExit);
1958 Assert(!pGuestFeat->fVmxPml);
1959 Assert(!pGuestFeat->fVmxEptXcptVe);
1960 Assert(!pGuestFeat->fVmxConcealVmxFromPt);
1961 Assert(!pGuestFeat->fVmxXsavesXrstors);
1962 Assert(!pGuestFeat->fVmxModeBasedExecuteEpt);
1963 Assert(!pGuestFeat->fVmxSppEpt);
1964 Assert(!pGuestFeat->fVmxPtEpt);
1965 Assert(!pGuestFeat->fVmxUseTscScaling);
1966 Assert(!pGuestFeat->fVmxUserWaitPause);
1967 Assert(!pGuestFeat->fVmxEnclvExit);
1968 }
1969 else if (pGuestFeat->fVmxUnrestrictedGuest)
1970 {
1971 /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
1972 Assert(pGuestFeat->fVmxExitSaveEferLma);
1973 /* Unrestricted guest execution requires EPT. See Intel spec. 25.2.1.1 "VM-Execution Control Fields". */
1974 Assert(pGuestFeat->fVmxEpt);
1975 }
1976
1977 if (!pGuestFeat->fVmxTertiaryExecCtls)
1978 Assert(!pGuestFeat->fVmxLoadIwKeyExit);
1979
1980 /*
1981 * Finally initialize the VMX guest MSRs.
1982 */
1983 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
1984}
1985
1986
1987/**
1988 * Gets the host hardware-virtualization MSRs.
1989 *
1990 * @returns VBox status code.
1991 * @param pMsrs Where to store the MSRs.
1992 */
1993static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
1994{
1995 Assert(pMsrs);
1996
1997 uint32_t fCaps = 0;
1998 int rc = SUPR3QueryVTCaps(&fCaps);
1999 if (RT_SUCCESS(rc))
2000 {
2001 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
2002 {
2003 SUPHWVIRTMSRS HwvirtMsrs;
2004 rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
2005 if (RT_SUCCESS(rc))
2006 {
2007 if (fCaps & SUPVTCAPS_VT_X)
2008 HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
2009 else
2010 HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
2011 return VINF_SUCCESS;
2012 }
2013
2014 LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
2015 return rc;
2016 }
2017
2018 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
2019 return VERR_INTERNAL_ERROR_5;
2020 }
2021 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
2022 return VINF_SUCCESS;
2023}
2024
2025
2026/**
2027 * @callback_method_impl{FNTMTIMERINT,
2028 * Callback that fires when the nested VMX-preemption timer expired.}
2029 */
2030static DECLCALLBACK(void) cpumR3VmxPreemptTimerCallback(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
2031{
2032 RT_NOREF(pVM, hTimer);
2033 PVMCPU pVCpu = (PVMCPUR3)pvUser;
2034 AssertPtr(pVCpu);
2035 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
2036}
2037
2038
2039/**
2040 * Initializes the CPUM.
2041 *
2042 * @returns VBox status code.
2043 * @param pVM The cross context VM structure.
2044 */
2045VMMR3DECL(int) CPUMR3Init(PVM pVM)
2046{
2047 LogFlow(("CPUMR3Init\n"));
2048
2049 /*
2050 * Assert alignment, sizes and tables.
2051 */
2052 AssertCompileMemberAlignment(VM, cpum.s, 32);
2053 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
2054 AssertCompileSizeAlignment(CPUMCTX, 64);
2055 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
2056 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
2057 AssertCompileMemberAlignment(VM, cpum, 64);
2058 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
2059#ifdef VBOX_STRICT
2060 int rc2 = cpumR3MsrStrictInitChecks();
2061 AssertRCReturn(rc2, rc2);
2062#endif
2063
2064 /*
2065 * Gather info about the host CPU.
2066 */
2067#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2068 if (!ASMHasCpuId())
2069 {
2070 LogRel(("The CPU doesn't support CPUID!\n"));
2071 return VERR_UNSUPPORTED_CPU;
2072 }
2073
2074 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
2075#endif
2076
2077 CPUMMSRS HostMsrs;
2078 RT_ZERO(HostMsrs);
2079 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
2080 AssertLogRelRCReturn(rc, rc);
2081
2082#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2083 /* Use the host features detected by CPUMR0ModuleInit if available. */
2084 if (pVM->cpum.s.HostFeatures.enmCpuVendor != CPUMCPUVENDOR_INVALID)
2085 g_CpumHostFeatures.s = pVM->cpum.s.HostFeatures;
2086 else
2087 {
2088 PCPUMCPUIDLEAF paLeaves;
2089 uint32_t cLeaves;
2090 rc = CPUMCpuIdCollectLeavesX86(&paLeaves, &cLeaves);
2091 AssertLogRelRCReturn(rc, rc);
2092
2093 rc = cpumCpuIdExplodeFeaturesX86(paLeaves, cLeaves, &HostMsrs, &g_CpumHostFeatures.s);
2094 RTMemFree(paLeaves);
2095 AssertLogRelRCReturn(rc, rc);
2096 }
2097 pVM->cpum.s.HostFeatures = g_CpumHostFeatures.s;
2098 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
2099#endif
2100
2101 /*
2102 * Check that the CPU supports the minimum features we require.
2103 */
2104#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
2105 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
2106 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
2107 if (!pVM->cpum.s.HostFeatures.fMmx)
2108 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
2109 if (!pVM->cpum.s.HostFeatures.fTsc)
2110 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
2111#endif
2112
2113 /*
2114 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
2115 */
2116 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
2117 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
2118
2119 /*
2120 * Figure out which XSAVE/XRSTOR features are available on the host.
2121 */
2122 uint64_t fXcr0Host = 0;
2123 uint64_t fXStateHostMask = 0;
2124#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2125 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
2126 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
2127 {
2128 fXStateHostMask = fXcr0Host = ASMGetXcr0();
2129 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
2130 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2131 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
2132 }
2133#endif
2134 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
2135 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
2136 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
2137
2138 /*
2139 * Initialize the host XSAVE/XRSTOR mask.
2140 */
2141#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2142 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
2143 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
2144 AssertLogRelReturn( pVM->cpum.s.HostFeatures.cbMaxExtendedState >= sizeof(X86FXSTATE)
2145 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Host.XState)
2146 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Guest.XState)
2147 , VERR_CPUM_IPE_2);
2148#endif
2149
2150 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2151 {
2152 PVMCPU pVCpu = pVM->apCpusR3[i];
2153
2154 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
2155 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2156 }
2157
2158 /*
2159 * Register saved state data item.
2160 */
2161 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
2162 NULL, cpumR3LiveExec, NULL,
2163 NULL, cpumR3SaveExec, NULL,
2164 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
2165 if (RT_FAILURE(rc))
2166 return rc;
2167
2168 /*
2169 * Register info handlers and registers with the debugger facility.
2170 */
2171 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2172 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2173 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2174 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2175 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2176 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2177 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2178 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2179 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2180 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2181 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2182 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2183 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.",
2184 &cpumR3CpuIdInfo);
2185 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2186 &cpumR3InfoVmxFeatures);
2187
2188 rc = cpumR3DbgInit(pVM);
2189 if (RT_FAILURE(rc))
2190 return rc;
2191
2192#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2193 /*
2194 * Check if we need to workaround partial/leaky FPU handling.
2195 */
2196 cpumR3CheckLeakyFpu(pVM);
2197#endif
2198
2199 /*
2200 * Initialize the Guest CPUID and MSR states.
2201 */
2202 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
2203 if (RT_FAILURE(rc))
2204 return rc;
2205
2206 /*
2207 * Init the VMX/SVM state.
2208 *
2209 * This must be done after initializing CPUID/MSR features as we access the
2210 * the VMX/SVM guest features below.
2211 *
2212 * In the case of nested VT-x, we also need to create the per-VCPU
2213 * VMX preemption timers.
2214 */
2215 if (pVM->cpum.s.GuestFeatures.fVmx)
2216 cpumR3InitVmxHwVirtState(pVM);
2217 else if (pVM->cpum.s.GuestFeatures.fSvm)
2218 cpumR3InitSvmHwVirtState(pVM);
2219 else
2220 Assert(pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2221
2222 CPUMR3Reset(pVM);
2223 return VINF_SUCCESS;
2224}
2225
2226
2227/**
2228 * Applies relocations to data and code managed by this
2229 * component. This function will be called at init and
2230 * whenever the VMM need to relocate it self inside the GC.
2231 *
2232 * The CPUM will update the addresses used by the switcher.
2233 *
2234 * @param pVM The cross context VM structure.
2235 */
2236VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2237{
2238 RT_NOREF(pVM);
2239}
2240
2241
2242/**
2243 * Terminates the CPUM.
2244 *
2245 * Termination means cleaning up and freeing all resources,
2246 * the VM it self is at this point powered off or suspended.
2247 *
2248 * @returns VBox status code.
2249 * @param pVM The cross context VM structure.
2250 */
2251VMMR3DECL(int) CPUMR3Term(PVM pVM)
2252{
2253#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2254 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2255 {
2256 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2257 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2258 pVCpu->cpum.s.uMagic = 0;
2259 pvCpu->cpum.s.Guest.dr[5] = 0;
2260 }
2261#endif
2262
2263 if (pVM->cpum.s.GuestFeatures.fVmx)
2264 {
2265 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2266 {
2267 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2268 if (pVCpu->cpum.s.hNestedVmxPreemptTimer != NIL_TMTIMERHANDLE)
2269 {
2270 int rc = TMR3TimerDestroy(pVM, pVCpu->cpum.s.hNestedVmxPreemptTimer); AssertRC(rc);
2271 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2272 }
2273 }
2274 }
2275 return VINF_SUCCESS;
2276}
2277
2278
2279/**
2280 * Resets a virtual CPU.
2281 *
2282 * Used by CPUMR3Reset and CPU hot plugging.
2283 *
2284 * @param pVM The cross context VM structure.
2285 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2286 * being reset. This may differ from the current EMT.
2287 */
2288VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2289{
2290 /** @todo anything different for VCPU > 0? */
2291 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2292
2293 /*
2294 * Initialize everything to ZERO first.
2295 */
2296 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2297
2298 RT_BZERO(pCtx, RT_UOFFSETOF(CPUMCTX, aoffXState));
2299
2300 pVCpu->cpum.s.fUseFlags = fUseFlags;
2301
2302 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2303 pCtx->eip = 0x0000fff0;
2304 pCtx->edx = 0x00000600; /* P6 processor */
2305 pCtx->eflags.Bits.u1Reserved0 = 1;
2306
2307 pCtx->cs.Sel = 0xf000;
2308 pCtx->cs.ValidSel = 0xf000;
2309 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2310 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2311 pCtx->cs.u32Limit = 0x0000ffff;
2312 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2313 pCtx->cs.Attr.n.u1Present = 1;
2314 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2315
2316 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2317 pCtx->ds.u32Limit = 0x0000ffff;
2318 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2319 pCtx->ds.Attr.n.u1Present = 1;
2320 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2321
2322 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2323 pCtx->es.u32Limit = 0x0000ffff;
2324 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2325 pCtx->es.Attr.n.u1Present = 1;
2326 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2327
2328 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2329 pCtx->fs.u32Limit = 0x0000ffff;
2330 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2331 pCtx->fs.Attr.n.u1Present = 1;
2332 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2333
2334 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2335 pCtx->gs.u32Limit = 0x0000ffff;
2336 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2337 pCtx->gs.Attr.n.u1Present = 1;
2338 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2339
2340 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2341 pCtx->ss.u32Limit = 0x0000ffff;
2342 pCtx->ss.Attr.n.u1Present = 1;
2343 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2344 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2345
2346 pCtx->idtr.cbIdt = 0xffff;
2347 pCtx->gdtr.cbGdt = 0xffff;
2348
2349 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2350 pCtx->ldtr.u32Limit = 0xffff;
2351 pCtx->ldtr.Attr.n.u1Present = 1;
2352 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2353
2354 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2355 pCtx->tr.u32Limit = 0xffff;
2356 pCtx->tr.Attr.n.u1Present = 1;
2357 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2358
2359 pCtx->dr[6] = X86_DR6_INIT_VAL;
2360 pCtx->dr[7] = X86_DR7_INIT_VAL;
2361
2362 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
2363 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2364 pFpuCtx->FCW = 0x37f;
2365
2366 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2367 IA-32 Processor States Following Power-up, Reset, or INIT */
2368 pFpuCtx->MXCSR = 0x1F80;
2369 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2370
2371 pCtx->aXcr[0] = XSAVE_C_X87;
2372 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2373 {
2374 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2375 as we don't know what happened before. (Bother optimize later?) */
2376 pCtx->XState.Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2377 }
2378
2379 /*
2380 * MSRs.
2381 */
2382 /* Init PAT MSR */
2383 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2384
2385 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2386 * The Intel docs don't mention it. */
2387 Assert(!pCtx->msrEFER);
2388
2389 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2390 is supposed to be here, just trying provide useful/sensible values. */
2391 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2392 if (pRange)
2393 {
2394 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2395 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2396 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2397 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2398 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2399 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2400 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2401 }
2402
2403 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2404
2405 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2406 * called from each EMT while we're getting called by CPUMR3Reset()
2407 * iteratively on the same thread. Fix later. */
2408#if 0 /** @todo r=bird: This we will do in TM, not here. */
2409 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2410 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2411#endif
2412
2413
2414 /* C-state control. Guesses. */
2415 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2416 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2417 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2418 * functionality. The default value must be different due to incompatible write mask.
2419 */
2420 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2421 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2422 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2423 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2424
2425 /*
2426 * Hardware virtualization state.
2427 */
2428 CPUMSetGuestGif(pCtx, true);
2429 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2430 if (pVM->cpum.s.GuestFeatures.fVmx)
2431 cpumR3ResetVmxHwVirtState(pVCpu);
2432 else if (pVM->cpum.s.GuestFeatures.fSvm)
2433 cpumR3ResetSvmHwVirtState(pVCpu);
2434}
2435
2436
2437/**
2438 * Resets the CPU.
2439 *
2440 * @returns VINF_SUCCESS.
2441 * @param pVM The cross context VM structure.
2442 */
2443VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2444{
2445 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2446 {
2447 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2448 CPUMR3ResetCpu(pVM, pVCpu);
2449
2450#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2451
2452 /* Magic marker for searching in crash dumps. */
2453 strcpy((char *)pVCpu->.cpum.s.aMagic, "CPUMCPU Magic");
2454 pVCpu->cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2455 pVCpu->cpum.s.Guest->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2456#endif
2457 }
2458}
2459
2460
2461
2462
2463/**
2464 * Pass 0 live exec callback.
2465 *
2466 * @returns VINF_SSM_DONT_CALL_AGAIN.
2467 * @param pVM The cross context VM structure.
2468 * @param pSSM The saved state handle.
2469 * @param uPass The pass (0).
2470 */
2471static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2472{
2473 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2474 cpumR3SaveCpuId(pVM, pSSM);
2475 return VINF_SSM_DONT_CALL_AGAIN;
2476}
2477
2478
2479/**
2480 * Execute state save operation.
2481 *
2482 * @returns VBox status code.
2483 * @param pVM The cross context VM structure.
2484 * @param pSSM SSM operation handle.
2485 */
2486static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2487{
2488 /*
2489 * Save.
2490 */
2491 SSMR3PutU32(pSSM, pVM->cCpus);
2492 SSMR3PutU32(pSSM, sizeof(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr));
2493 CPUMCTX DummyHyperCtx;
2494 RT_ZERO(DummyHyperCtx);
2495 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2496 {
2497 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2498
2499 SSMR3PutStructEx(pSSM, &DummyHyperCtx, sizeof(DummyHyperCtx), 0, g_aCpumCtxFields, NULL);
2500
2501 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2502 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2503 SSMR3PutStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2504 if (pGstCtx->fXStateMask != 0)
2505 SSMR3PutStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2506 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2507 {
2508 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2509 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2510 }
2511 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2512 {
2513 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2514 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2515 }
2516 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2517 {
2518 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2519 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2520 }
2521 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2522 {
2523 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2524 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2525 }
2526 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2527 {
2528 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2529 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2530 }
2531 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[0].u);
2532 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[1].u);
2533 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[2].u);
2534 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[3].u);
2535 if (pVM->cpum.s.GuestFeatures.fSvm)
2536 {
2537 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2538 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2539 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2540 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2541 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2542 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2543 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2544 g_aSvmHwvirtHostState, NULL /* pvUser */);
2545 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2546 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2547 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2548 /* This is saved in the old VMCPUM_FF format. Change if more flags are added. */
2549 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fSavedInhibit & CPUMCTX_INHIBIT_NMI ? CPUM_OLD_VMCPU_FF_BLOCK_NMIS : 0);
2550 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2551 }
2552 if (pVM->cpum.s.GuestFeatures.fVmx)
2553 {
2554 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon);
2555 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs);
2556 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2557 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode);
2558 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2559 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents);
2560 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2561 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs), 0, g_aVmxHwvirtVmcs, NULL);
2562 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2563 0, g_aVmxHwvirtVmcs, NULL);
2564 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2565 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2566 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2567 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2568 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2569 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap));
2570 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap));
2571 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2572 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick);
2573 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick);
2574 SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite);
2575 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2576 SSMR3PutU64(pSSM, MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON); /* Deprecated since 2021/09/22. Value kept backwards compatibile with 6.1.26. */
2577 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2578 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2579 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2580 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2581 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2582 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2583 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2584 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2585 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2586 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2587 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2588 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2589 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2590 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2591 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2592 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2593 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2594 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2595 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2596 }
2597 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2598 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2599 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2600 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2601 }
2602
2603 cpumR3SaveCpuId(pVM, pSSM);
2604 return VINF_SUCCESS;
2605}
2606
2607
2608/**
2609 * @callback_method_impl{FNSSMINTLOADPREP}
2610 */
2611static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2612{
2613 NOREF(pSSM);
2614 pVM->cpum.s.fPendingRestore = true;
2615 return VINF_SUCCESS;
2616}
2617
2618
2619/**
2620 * @callback_method_impl{FNSSMINTLOADEXEC}
2621 */
2622static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2623{
2624 int rc; /* Only for AssertRCReturn use. */
2625
2626 /*
2627 * Validate version.
2628 */
2629 if ( uVersion != CPUM_SAVED_STATE_VERSION_PAE_PDPES
2630 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2
2631 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX
2632 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2633 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2634 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2635 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2636 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2637 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2638 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2639 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2640 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2641 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2642 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2643 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2644 {
2645 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2646 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2647 }
2648
2649 if (uPass == SSM_PASS_FINAL)
2650 {
2651 /*
2652 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2653 * really old SSM file versions.)
2654 */
2655 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2656 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2657 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2658 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR));
2659
2660 /*
2661 * Figure x86 and ctx field definitions to use for older states.
2662 */
2663 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2664 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2665 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2666 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2667 {
2668 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2669 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2670 }
2671 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2672 {
2673 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2674 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2675 }
2676
2677 /*
2678 * The hyper state used to preceed the CPU count. Starting with
2679 * XSAVE it was moved down till after we've got the count.
2680 */
2681 CPUMCTX HyperCtxIgnored;
2682 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2683 {
2684 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2685 {
2686 X86FXSTATE Ign;
2687 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2688 SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored),
2689 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2690 }
2691 }
2692
2693 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2694 {
2695 uint32_t cCpus;
2696 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2697 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2698 VERR_SSM_UNEXPECTED_DATA);
2699 }
2700 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2701 || pVM->cCpus == 1,
2702 ("cCpus=%u\n", pVM->cCpus),
2703 VERR_SSM_UNEXPECTED_DATA);
2704
2705 uint32_t cbMsrs = 0;
2706 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2707 {
2708 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2709 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2710 VERR_SSM_UNEXPECTED_DATA);
2711 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2712 VERR_SSM_UNEXPECTED_DATA);
2713 }
2714
2715 /*
2716 * Do the per-CPU restoring.
2717 */
2718 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2719 {
2720 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2721 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2722
2723 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2724 {
2725 /*
2726 * The XSAVE saved state layout moved the hyper state down here.
2727 */
2728 rc = SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored), 0, g_aCpumCtxFields, NULL);
2729 AssertRCReturn(rc, rc);
2730
2731 /*
2732 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2733 */
2734 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2735 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2736 AssertRCReturn(rc, rc);
2737
2738 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2739 if (pGstCtx->fXStateMask != 0)
2740 {
2741 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2742 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2743 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2744 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2745 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2746 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2747 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2748 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2749 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2750 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2751 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2752 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2753 }
2754
2755 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2756 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2757 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2758 {
2759 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2760 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2761 VERR_CPUM_INVALID_XCR0);
2762 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2763 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2764 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2765 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2766 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2767 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2768 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2769 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2770 }
2771
2772 /* Check that the XCR1 is zero, as we don't implement it yet. */
2773 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2774
2775 /*
2776 * Restore the individual extended state components we support.
2777 */
2778 if (pGstCtx->fXStateMask != 0)
2779 {
2780 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr),
2781 0, g_aCpumXSaveHdrFields, NULL);
2782 AssertRCReturn(rc, rc);
2783 AssertLogRelMsgReturn(!(pGstCtx->XState.Hdr.bmXState & ~pGstCtx->fXStateMask),
2784 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2785 pGstCtx->XState.Hdr.bmXState, pGstCtx->fXStateMask),
2786 VERR_CPUM_INVALID_XSAVE_HDR);
2787 }
2788 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2789 {
2790 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2791 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2792 }
2793 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2794 {
2795 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2796 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2797 }
2798 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2799 {
2800 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2801 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2802 }
2803 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2804 {
2805 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2806 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2807 }
2808 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2809 {
2810 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2811 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2812 }
2813 if (uVersion >= CPUM_SAVED_STATE_VERSION_PAE_PDPES)
2814 {
2815 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[0].u);
2816 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[1].u);
2817 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[2].u);
2818 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[3].u);
2819 }
2820 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2821 {
2822 if (pVM->cpum.s.GuestFeatures.fSvm)
2823 {
2824 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2825 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2826 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2827 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2828 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2829 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2830 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2831 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2832 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2833 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2834 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2835
2836 uint32_t fSavedLocalFFs = 0;
2837 rc = SSMR3GetU32(pSSM, &fSavedLocalFFs);
2838 AssertRCReturn(rc, rc);
2839 Assert(fSavedLocalFFs == 0 || fSavedLocalFFs == CPUM_OLD_VMCPU_FF_BLOCK_NMIS);
2840 pGstCtx->hwvirt.fSavedInhibit = fSavedLocalFFs & CPUM_OLD_VMCPU_FF_BLOCK_NMIS ? CPUMCTX_INHIBIT_NMI : 0;
2841
2842 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2843 }
2844 }
2845 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX)
2846 {
2847 if (pVM->cpum.s.GuestFeatures.fVmx)
2848 {
2849 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon);
2850 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs);
2851 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2852 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode);
2853 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2854 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents);
2855 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2856 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs),
2857 0, g_aVmxHwvirtVmcs, NULL);
2858 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2859 0, g_aVmxHwvirtVmcs, NULL);
2860 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2861 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2862 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2863 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2864 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2865 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap));
2866 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap));
2867 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2868 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick);
2869 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick);
2870 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite);
2871 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2872 SSMR3Skip(pSSM, sizeof(uint64_t)); /* Unused - used to be IA32_FEATURE_CONTROL, see @bugref{10106}. */
2873 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2874 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2875 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2876 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2877 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2878 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2879 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2880 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2881 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2882 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2883 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2884 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2885 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2886 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2887 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2888 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2889 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2890 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2891 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2)
2892 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2893 }
2894 }
2895 }
2896 else
2897 {
2898 /*
2899 * Pre XSAVE saved state.
2900 */
2901 SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87),
2902 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2903 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2904 }
2905
2906 /*
2907 * Restore a couple of flags and the MSRs.
2908 */
2909 uint32_t fIgnoredUsedFlags = 0;
2910 rc = SSMR3GetU32(pSSM, &fIgnoredUsedFlags); /* we're recalc the two relevant flags after loading state. */
2911 AssertRCReturn(rc, rc);
2912 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2913
2914 rc = VINF_SUCCESS;
2915 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2916 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2917 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2918 {
2919 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2920 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2921 }
2922 AssertRCReturn(rc, rc);
2923
2924 /* REM and other may have cleared must-be-one fields in DR6 and
2925 DR7, fix these. */
2926 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2927 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2928 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2929 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2930 }
2931
2932 /* Older states does not have the internal selector register flags
2933 and valid selector value. Supply those. */
2934 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2935 {
2936 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2937 {
2938 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2939 bool const fValid = true /*!VM_IS_RAW_MODE_ENABLED(pVM)*/
2940 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2941 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2942 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2943 if (fValid)
2944 {
2945 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2946 {
2947 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2948 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2949 }
2950
2951 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2952 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2953 }
2954 else
2955 {
2956 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2957 {
2958 paSelReg[iSelReg].fFlags = 0;
2959 paSelReg[iSelReg].ValidSel = 0;
2960 }
2961
2962 /* This might not be 104% correct, but I think it's close
2963 enough for all practical purposes... (REM always loaded
2964 LDTR registers.) */
2965 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2966 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2967 }
2968 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2969 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2970 }
2971 }
2972
2973 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2974 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2975 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2976 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2977 {
2978 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2979 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2980 }
2981
2982 /*
2983 * A quick sanity check.
2984 */
2985 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2986 {
2987 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2988 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2989 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2990 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2991 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2992 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2993 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2994 }
2995 }
2996
2997 pVM->cpum.s.fPendingRestore = false;
2998
2999 /*
3000 * Guest CPUIDs (and VMX MSR features).
3001 */
3002 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
3003 {
3004 CPUMMSRS GuestMsrs;
3005 RT_ZERO(GuestMsrs);
3006
3007 CPUMFEATURES BaseFeatures;
3008 bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx;
3009 if (fVmxGstFeat)
3010 {
3011 /*
3012 * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state.
3013 * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features
3014 * here so we can compare them for compatibility after exploding guest features.
3015 */
3016 BaseFeatures = pVM->cpum.s.GuestFeatures;
3017
3018 /* Use the VMX MSR features from the saved state while exploding guest features. */
3019 GuestMsrs.hwvirt.vmx = pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.vmx.Msrs;
3020 }
3021
3022 /* Load CPUID and explode guest features. */
3023 rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
3024 if (fVmxGstFeat)
3025 {
3026 /*
3027 * Check if the exploded VMX features from the saved state are compatible with the host-derived features
3028 * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with
3029 * VMX features presented to the guest.
3030 */
3031 bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures);
3032 if (!fIsCompat)
3033 return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO;
3034 }
3035 return rc;
3036 }
3037 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
3038}
3039
3040
3041/**
3042 * @callback_method_impl{FNSSMINTLOADDONE}
3043 */
3044static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
3045{
3046 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
3047 return VINF_SUCCESS;
3048
3049 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
3050 if (pVM->cpum.s.fPendingRestore)
3051 {
3052 LogRel(("CPUM: Missing state!\n"));
3053 return VERR_INTERNAL_ERROR_2;
3054 }
3055
3056 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3057 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3058 {
3059 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3060
3061 /* Notify PGM of the NXE states in case they've changed. */
3062 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
3063
3064 /* During init. this is done in CPUMR3InitCompleted(). */
3065 if (fSupportsLongMode)
3066 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3067
3068 /* Recalc the CPUM_USE_DEBUG_REGS_HYPER value. */
3069 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX);
3070 }
3071 return VINF_SUCCESS;
3072}
3073
3074
3075/**
3076 * Checks if the CPUM state restore is still pending.
3077 *
3078 * @returns true / false.
3079 * @param pVM The cross context VM structure.
3080 */
3081VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
3082{
3083 return pVM->cpum.s.fPendingRestore;
3084}
3085
3086
3087/**
3088 * Formats the EFLAGS value into mnemonics.
3089 *
3090 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
3091 * @param efl The EFLAGS value.
3092 */
3093static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
3094{
3095 /*
3096 * Format the flags.
3097 */
3098 static const struct
3099 {
3100 const char *pszSet; const char *pszClear; uint32_t fFlag;
3101 } s_aFlags[] =
3102 {
3103 { "vip",NULL, X86_EFL_VIP },
3104 { "vif",NULL, X86_EFL_VIF },
3105 { "ac", NULL, X86_EFL_AC },
3106 { "vm", NULL, X86_EFL_VM },
3107 { "rf", NULL, X86_EFL_RF },
3108 { "nt", NULL, X86_EFL_NT },
3109 { "ov", "nv", X86_EFL_OF },
3110 { "dn", "up", X86_EFL_DF },
3111 { "ei", "di", X86_EFL_IF },
3112 { "tf", NULL, X86_EFL_TF },
3113 { "nt", "pl", X86_EFL_SF },
3114 { "nz", "zr", X86_EFL_ZF },
3115 { "ac", "na", X86_EFL_AF },
3116 { "po", "pe", X86_EFL_PF },
3117 { "cy", "nc", X86_EFL_CF },
3118 };
3119 char *psz = pszEFlags;
3120 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
3121 {
3122 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
3123 if (pszAdd)
3124 {
3125 strcpy(psz, pszAdd);
3126 psz += strlen(pszAdd);
3127 *psz++ = ' ';
3128 }
3129 }
3130 psz[-1] = '\0';
3131}
3132
3133
3134/**
3135 * Formats a full register dump.
3136 *
3137 * @param pVM The cross context VM structure.
3138 * @param pCtx The context to format.
3139 * @param pCtxCore The context core to format.
3140 * @param pHlp Output functions.
3141 * @param enmType The dump type.
3142 * @param pszPrefix Register name prefix.
3143 */
3144static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
3145 const char *pszPrefix)
3146{
3147 NOREF(pVM);
3148
3149 /*
3150 * Format the EFLAGS.
3151 */
3152 uint32_t efl = pCtxCore->eflags.u32;
3153 char szEFlags[80];
3154 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3155
3156 /*
3157 * Format the registers.
3158 */
3159 switch (enmType)
3160 {
3161 case CPUMDUMPTYPE_TERSE:
3162 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3163 pHlp->pfnPrintf(pHlp,
3164 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3165 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3166 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3167 "%sr14=%016RX64 %sr15=%016RX64\n"
3168 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3169 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3170 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3171 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3172 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3173 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3174 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3175 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3176 else
3177 pHlp->pfnPrintf(pHlp,
3178 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3179 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3180 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3181 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3182 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3183 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3184 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3185 break;
3186
3187 case CPUMDUMPTYPE_DEFAULT:
3188 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3189 pHlp->pfnPrintf(pHlp,
3190 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3191 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3192 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3193 "%sr14=%016RX64 %sr15=%016RX64\n"
3194 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3195 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3196 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3197 ,
3198 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3199 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3200 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3201 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3202 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3203 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3204 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3205 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3206 else
3207 pHlp->pfnPrintf(pHlp,
3208 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3209 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3210 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3211 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3212 ,
3213 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3214 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3215 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3216 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3217 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3218 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3219 break;
3220
3221 case CPUMDUMPTYPE_VERBOSE:
3222 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3223 pHlp->pfnPrintf(pHlp,
3224 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3225 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3226 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3227 "%sr14=%016RX64 %sr15=%016RX64\n"
3228 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3229 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3230 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3231 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3232 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3233 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3234 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3235 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3236 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3237 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3238 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3239 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3240 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3241 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3242 ,
3243 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3244 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3245 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3246 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3247 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3248 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3249 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3250 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3251 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3252 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3253 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3254 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3255 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3256 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3257 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3258 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3259 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3260 else
3261 pHlp->pfnPrintf(pHlp,
3262 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3263 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3264 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3265 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3266 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3267 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3268 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3269 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3270 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3271 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3272 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3273 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3274 ,
3275 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3276 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3277 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3278 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3279 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3280 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3281 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3282 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3283 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3284 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3285 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3286 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3287
3288 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3289 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3290 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3291 {
3292 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
3293 pHlp->pfnPrintf(pHlp,
3294 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3295 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3296 ,
3297 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3298 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3299 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3300 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3301 );
3302 /*
3303 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3304 * not (FP)R0-7 as Intel SDM suggests.
3305 */
3306 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3307 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3308 {
3309 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3310 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3311 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3312 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3313 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3314 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3315 iExponent -= 16383; /* subtract bias */
3316 /** @todo This isn't entirenly correct and needs more work! */
3317 pHlp->pfnPrintf(pHlp,
3318 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3319 pszPrefix, iST, pszPrefix, iFPR,
3320 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3321 uTag, chSign, iInteger, u64Fraction, iExponent);
3322 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3323 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3324 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3325 else
3326 pHlp->pfnPrintf(pHlp, "\n");
3327 }
3328
3329 /* XMM/YMM/ZMM registers. */
3330 if (pCtx->fXStateMask & XSAVE_C_YMM)
3331 {
3332 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3333 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3334 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3335 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3336 pszPrefix, i, i < 10 ? " " : "",
3337 pYmmHiCtx->aYmmHi[i].au32[3],
3338 pYmmHiCtx->aYmmHi[i].au32[2],
3339 pYmmHiCtx->aYmmHi[i].au32[1],
3340 pYmmHiCtx->aYmmHi[i].au32[0],
3341 pFpuCtx->aXMM[i].au32[3],
3342 pFpuCtx->aXMM[i].au32[2],
3343 pFpuCtx->aXMM[i].au32[1],
3344 pFpuCtx->aXMM[i].au32[0]);
3345 else
3346 {
3347 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3348 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3349 pHlp->pfnPrintf(pHlp,
3350 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3351 pszPrefix, i, i < 10 ? " " : "",
3352 pZmmHi256->aHi256Regs[i].au32[7],
3353 pZmmHi256->aHi256Regs[i].au32[6],
3354 pZmmHi256->aHi256Regs[i].au32[5],
3355 pZmmHi256->aHi256Regs[i].au32[4],
3356 pZmmHi256->aHi256Regs[i].au32[3],
3357 pZmmHi256->aHi256Regs[i].au32[2],
3358 pZmmHi256->aHi256Regs[i].au32[1],
3359 pZmmHi256->aHi256Regs[i].au32[0],
3360 pYmmHiCtx->aYmmHi[i].au32[3],
3361 pYmmHiCtx->aYmmHi[i].au32[2],
3362 pYmmHiCtx->aYmmHi[i].au32[1],
3363 pYmmHiCtx->aYmmHi[i].au32[0],
3364 pFpuCtx->aXMM[i].au32[3],
3365 pFpuCtx->aXMM[i].au32[2],
3366 pFpuCtx->aXMM[i].au32[1],
3367 pFpuCtx->aXMM[i].au32[0]);
3368
3369 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3370 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3371 pHlp->pfnPrintf(pHlp,
3372 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3373 pszPrefix, i + 16,
3374 pZmm16Hi->aRegs[i].au32[15],
3375 pZmm16Hi->aRegs[i].au32[14],
3376 pZmm16Hi->aRegs[i].au32[13],
3377 pZmm16Hi->aRegs[i].au32[12],
3378 pZmm16Hi->aRegs[i].au32[11],
3379 pZmm16Hi->aRegs[i].au32[10],
3380 pZmm16Hi->aRegs[i].au32[9],
3381 pZmm16Hi->aRegs[i].au32[8],
3382 pZmm16Hi->aRegs[i].au32[7],
3383 pZmm16Hi->aRegs[i].au32[6],
3384 pZmm16Hi->aRegs[i].au32[5],
3385 pZmm16Hi->aRegs[i].au32[4],
3386 pZmm16Hi->aRegs[i].au32[3],
3387 pZmm16Hi->aRegs[i].au32[2],
3388 pZmm16Hi->aRegs[i].au32[1],
3389 pZmm16Hi->aRegs[i].au32[0]);
3390 }
3391 }
3392 else
3393 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3394 pHlp->pfnPrintf(pHlp,
3395 i & 1
3396 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3397 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3398 pszPrefix, i, i < 10 ? " " : "",
3399 pFpuCtx->aXMM[i].au32[3],
3400 pFpuCtx->aXMM[i].au32[2],
3401 pFpuCtx->aXMM[i].au32[1],
3402 pFpuCtx->aXMM[i].au32[0]);
3403
3404 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3405 {
3406 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3407 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3408 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3409 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3410 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3411 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3412 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3413 }
3414
3415 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3416 {
3417 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3418 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3419 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3420 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3421 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3422 }
3423
3424 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3425 {
3426 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3427 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3428 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3429 }
3430
3431 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3432 if (pFpuCtx->au32RsrvdRest[i])
3433 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3434 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3435 }
3436
3437 pHlp->pfnPrintf(pHlp,
3438 "%sEFER =%016RX64\n"
3439 "%sPAT =%016RX64\n"
3440 "%sSTAR =%016RX64\n"
3441 "%sCSTAR =%016RX64\n"
3442 "%sLSTAR =%016RX64\n"
3443 "%sSFMASK =%016RX64\n"
3444 "%sKERNELGSBASE =%016RX64\n",
3445 pszPrefix, pCtx->msrEFER,
3446 pszPrefix, pCtx->msrPAT,
3447 pszPrefix, pCtx->msrSTAR,
3448 pszPrefix, pCtx->msrCSTAR,
3449 pszPrefix, pCtx->msrLSTAR,
3450 pszPrefix, pCtx->msrSFMASK,
3451 pszPrefix, pCtx->msrKERNELGSBASE);
3452
3453 if (CPUMIsGuestInPAEModeEx(pCtx))
3454 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->aPaePdpes); i++)
3455 pHlp->pfnPrintf(pHlp, "%sPAE PDPTE %u =%016RX64\n", pszPrefix, i, pCtx->aPaePdpes[i]);
3456 break;
3457 }
3458}
3459
3460
3461/**
3462 * Display all cpu states and any other cpum info.
3463 *
3464 * @param pVM The cross context VM structure.
3465 * @param pHlp The info helper functions.
3466 * @param pszArgs Arguments, ignored.
3467 */
3468static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3469{
3470 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3471 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3472 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3473 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3474 cpumR3InfoHost(pVM, pHlp, pszArgs);
3475}
3476
3477
3478/**
3479 * Parses the info argument.
3480 *
3481 * The argument starts with 'verbose', 'terse' or 'default' and then
3482 * continues with the comment string.
3483 *
3484 * @param pszArgs The pointer to the argument string.
3485 * @param penmType Where to store the dump type request.
3486 * @param ppszComment Where to store the pointer to the comment string.
3487 */
3488static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3489{
3490 if (!pszArgs)
3491 {
3492 *penmType = CPUMDUMPTYPE_DEFAULT;
3493 *ppszComment = "";
3494 }
3495 else
3496 {
3497 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3498 {
3499 pszArgs += 7;
3500 *penmType = CPUMDUMPTYPE_VERBOSE;
3501 }
3502 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3503 {
3504 pszArgs += 5;
3505 *penmType = CPUMDUMPTYPE_TERSE;
3506 }
3507 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3508 {
3509 pszArgs += 7;
3510 *penmType = CPUMDUMPTYPE_DEFAULT;
3511 }
3512 else
3513 *penmType = CPUMDUMPTYPE_DEFAULT;
3514 *ppszComment = RTStrStripL(pszArgs);
3515 }
3516}
3517
3518
3519/**
3520 * Display the guest cpu state.
3521 *
3522 * @param pVM The cross context VM structure.
3523 * @param pHlp The info helper functions.
3524 * @param pszArgs Arguments.
3525 */
3526static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3527{
3528 CPUMDUMPTYPE enmType;
3529 const char *pszComment;
3530 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3531
3532 PVMCPU pVCpu = VMMGetCpu(pVM);
3533 if (!pVCpu)
3534 pVCpu = pVM->apCpusR3[0];
3535
3536 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3537
3538 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3539 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3540}
3541
3542
3543/**
3544 * Displays an SVM VMCB control area.
3545 *
3546 * @param pHlp The info helper functions.
3547 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3548 * @param pszPrefix Caller specified string prefix.
3549 */
3550static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3551{
3552 AssertReturnVoid(pHlp);
3553 AssertReturnVoid(pVmcbCtrl);
3554
3555 pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3556 pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3557 pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3558 pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3559 pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3560 pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3561 pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3562 pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3563 pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3564 pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3565 pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3566 pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
3567 pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3568 pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3569 pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
3570 pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3571 pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3572 pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3573 pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3574 pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3575 pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3576 pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3577 pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3578 pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3579 pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
3580 pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3581 pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3582 pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3583 pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3584 pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3585 pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
3586 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3587 pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3588 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3589 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3590 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3591 pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
3592 pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3593 pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3594 pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3595 pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
3596 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3597 pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3598 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3599 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3600 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3601 pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3602 pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
3603 pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3604 pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3605 pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3606 pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3607 pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3608 pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3609 pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
3610 pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3611 pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3612 pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3613 pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3614 pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3615}
3616
3617
3618/**
3619 * Helper for dumping the SVM VMCB selector registers.
3620 *
3621 * @param pHlp The info helper functions.
3622 * @param pSel Pointer to the SVM selector register.
3623 * @param pszName Name of the selector.
3624 * @param pszPrefix Caller specified string prefix.
3625 */
3626DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3627{
3628 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3629 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3630 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3631}
3632
3633
3634/**
3635 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3636 *
3637 * @param pHlp The info helper functions.
3638 * @param pXdtr Pointer to the descriptor table register.
3639 * @param pszName Name of the descriptor table register.
3640 * @param pszPrefix Caller specified string prefix.
3641 */
3642DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3643{
3644 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3645 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3646}
3647
3648
3649/**
3650 * Displays an SVM VMCB state-save area.
3651 *
3652 * @param pHlp The info helper functions.
3653 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3654 * @param pszPrefix Caller specified string prefix.
3655 */
3656static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3657{
3658 AssertReturnVoid(pHlp);
3659 AssertReturnVoid(pVmcbStateSave);
3660
3661 char szEFlags[80];
3662 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3663
3664 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3665 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3666 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3667 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3668 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3669 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3670 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3671 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3672 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3673 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3674 pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3675 pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3676 pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3677 pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3678 pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3679 pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3680 pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3681 pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3682 pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3683 pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3684 pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3685 pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3686 pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3687 pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3688 pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3689 pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3690 pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3691 pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3692 pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3693 pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3694 pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3695 pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3696 pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3697 pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3698 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3699 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3700}
3701
3702
3703/**
3704 * Displays a virtual-VMCS.
3705 *
3706 * @param pVCpu The cross context virtual CPU structure.
3707 * @param pHlp The info helper functions.
3708 * @param pVmcs Pointer to a virtual VMCS.
3709 * @param pszPrefix Caller specified string prefix.
3710 */
3711static void cpumR3InfoVmxVmcs(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
3712{
3713 AssertReturnVoid(pHlp);
3714 AssertReturnVoid(pVmcs);
3715
3716 /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
3717#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3718 do { \
3719 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
3720 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
3721 } while (0)
3722
3723#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3724 do { \
3725 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
3726 (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
3727 } while (0)
3728
3729#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3730 do { \
3731 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
3732 (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
3733 (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
3734 } while (0)
3735
3736#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3737 do { \
3738 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
3739 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
3740 } while (0)
3741
3742 /* Header. */
3743 {
3744 pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
3745 pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
3746 pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, VMXGetAbortDesc(pVmcs->enmVmxAbort));
3747 pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, VMXGetVmcsStateDesc(pVmcs->fVmcsState));
3748 }
3749
3750 /* Control fields. */
3751 {
3752 /* 16-bit. */
3753 pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
3754 pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
3755 pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
3756 pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
3757
3758 /* 32-bit. */
3759 pHlp->pfnPrintf(pHlp, " %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
3760 pHlp->pfnPrintf(pHlp, " %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
3761 pHlp->pfnPrintf(pHlp, " %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
3762 pHlp->pfnPrintf(pHlp, " %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
3763 pHlp->pfnPrintf(pHlp, " %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
3764 pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
3765 pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
3766 pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
3767 pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
3768 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
3769 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
3770 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
3771 pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
3772 {
3773 uint32_t const fInfo = pVmcs->u32EntryIntInfo;
3774 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
3775 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo));
3776 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetEntryIntInfoTypeDesc(uType));
3777 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo));
3778 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3779 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3780 }
3781 pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode);
3782 pHlp->pfnPrintf(pHlp, " %sVM-entry instr length = %u byte(s)\n", pszPrefix, pVmcs->u32EntryInstrLen);
3783 pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold);
3784 pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap);
3785 pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow);
3786
3787 /* 64-bit. */
3788 pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u);
3789 pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u);
3790 pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u);
3791 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u);
3792 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u);
3793 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u);
3794 pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u);
3795 pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u);
3796 pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u);
3797 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u);
3798 pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u);
3799 pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u);
3800 pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u);
3801 pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptPtr.u);
3802 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u);
3803 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u);
3804 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u);
3805 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u);
3806 pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u);
3807 pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u);
3808 pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u);
3809 pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u);
3810 pHlp->pfnPrintf(pHlp, " %sXSS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssExitBitmap.u);
3811 pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclsExitBitmap.u);
3812 pHlp->pfnPrintf(pHlp, " %sSPP-table ptr = %#RX64\n", pszPrefix, pVmcs->u64SppTablePtr.u);
3813 pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u);
3814 pHlp->pfnPrintf(pHlp, " %sTertiary processor ctls = %#RX64\n", pszPrefix, pVmcs->u64ProcCtls3.u);
3815 pHlp->pfnPrintf(pHlp, " %sENCLV-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclvExitBitmap.u);
3816
3817 /* Natural width. */
3818 pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u);
3819 pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u);
3820 pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u);
3821 pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u);
3822 pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u);
3823 pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u);
3824 pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u);
3825 pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u);
3826 }
3827
3828 /* Guest state. */
3829 {
3830 char szEFlags[80];
3831 cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u);
3832 pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix);
3833
3834 /* 16-bit. */
3835 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "CS", pszPrefix);
3836 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "SS", pszPrefix);
3837 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "ES", pszPrefix);
3838 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "DS", pszPrefix);
3839 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "FS", pszPrefix);
3840 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "GS", pszPrefix);
3841 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "LDTR", pszPrefix);
3842 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "TR", pszPrefix);
3843 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
3844 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
3845 pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus);
3846 pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex);
3847
3848 /* 32-bit. */
3849 pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState);
3850 pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState);
3851 pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase);
3852 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS);
3853 pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer);
3854
3855 /* 64-bit. */
3856 pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u);
3857 pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u);
3858 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u);
3859 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u);
3860 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u);
3861 pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u);
3862 pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u);
3863 pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u);
3864 pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u);
3865 pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u);
3866 pHlp->pfnPrintf(pHlp, " %sRTIT_CTL = %#RX64\n", pszPrefix, pVmcs->u64GuestRtitCtlMsr.u);
3867 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64GuestPkrsMsr.u);
3868
3869 /* Natural width. */
3870 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u);
3871 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u);
3872 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u);
3873 pHlp->pfnPrintf(pHlp, " %sDR7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u);
3874 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u);
3875 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u);
3876 pHlp->pfnPrintf(pHlp, " %sRFLAGS = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags);
3877 pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpts.u);
3878 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u);
3879 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u);
3880 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64GuestSCetMsr.u);
3881 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64GuestSsp.u);
3882 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64GuestIntrSspTableAddrMsr.u);
3883 }
3884
3885 /* Host state. */
3886 {
3887 pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix);
3888
3889 /* 16-bit. */
3890 pHlp->pfnPrintf(pHlp, " %sCS = %#RX16\n", pszPrefix, pVmcs->HostCs);
3891 pHlp->pfnPrintf(pHlp, " %sSS = %#RX16\n", pszPrefix, pVmcs->HostSs);
3892 pHlp->pfnPrintf(pHlp, " %sDS = %#RX16\n", pszPrefix, pVmcs->HostDs);
3893 pHlp->pfnPrintf(pHlp, " %sES = %#RX16\n", pszPrefix, pVmcs->HostEs);
3894 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "FS", pszPrefix);
3895 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "GS", pszPrefix);
3896 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "TR", pszPrefix);
3897 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
3898 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
3899
3900 /* 32-bit. */
3901 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs);
3902
3903 /* 64-bit. */
3904 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u);
3905 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u);
3906 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u);
3907 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64HostPkrsMsr.u);
3908
3909 /* Natural width. */
3910 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u);
3911 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u);
3912 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u);
3913 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u);
3914 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u);
3915 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u);
3916 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u);
3917 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64HostSCetMsr.u);
3918 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64HostSsp.u);
3919 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64HostIntrSspTableAddrMsr.u);
3920
3921 }
3922
3923 /* Read-only fields. */
3924 {
3925 pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix);
3926
3927 /* 16-bit (none currently). */
3928
3929 /* 32-bit. */
3930 pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason));
3931 pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u);
3932 pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError);
3933 pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo);
3934 {
3935 uint32_t const fInfo = pVmcs->u32RoExitIntInfo;
3936 uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo);
3937 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo));
3938 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetExitIntInfoTypeDesc(uType));
3939 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo));
3940 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3941 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3942 }
3943 pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode);
3944 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo);
3945 {
3946 uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo;
3947 uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo);
3948 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo));
3949 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetIdtVectoringInfoTypeDesc(uType));
3950 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo));
3951 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo));
3952 }
3953 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode);
3954 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u byte(s)\n", pszPrefix, pVmcs->u32RoExitInstrLen);
3955 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo);
3956
3957 /* 64-bit. */
3958 pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u);
3959
3960 /* Natural width. */
3961 pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u);
3962 pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u);
3963 pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u);
3964 pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u);
3965 pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u);
3966 }
3967
3968#ifdef DEBUG_ramshankar
3969 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3970 {
3971 void *pvPage = RTMemTmpAllocZ(VMX_V_VIRT_APIC_SIZE);
3972 Assert(pvPage);
3973 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
3974 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pvPage, GCPhysVirtApic, VMX_V_VIRT_APIC_SIZE);
3975 if (RT_SUCCESS(rc))
3976 {
3977 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC page\n", pszPrefix);
3978 pHlp->pfnPrintf(pHlp, "%.*Rhxs\n", VMX_V_VIRT_APIC_SIZE, pvPage);
3979 pHlp->pfnPrintf(pHlp, "\n");
3980 }
3981 RTMemTmpFree(pvPage);
3982 }
3983#else
3984 NOREF(pVCpu);
3985#endif
3986
3987#undef CPUMVMX_DUMP_HOST_XDTR
3988#undef CPUMVMX_DUMP_HOST_FS_GS_TR
3989#undef CPUMVMX_DUMP_GUEST_SEGREG
3990#undef CPUMVMX_DUMP_GUEST_XDTR
3991}
3992
3993
3994/**
3995 * Display the guest's hardware-virtualization cpu state.
3996 *
3997 * @param pVM The cross context VM structure.
3998 * @param pHlp The info helper functions.
3999 * @param pszArgs Arguments, ignored.
4000 */
4001static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4002{
4003 RT_NOREF(pszArgs);
4004
4005 PVMCPU pVCpu = VMMGetCpu(pVM);
4006 if (!pVCpu)
4007 pVCpu = pVM->apCpusR3[0];
4008
4009 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
4010 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
4011 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
4012
4013 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
4014 pHlp->pfnPrintf(pHlp, "fSavedInhibit = %#RX32\n", pCtx->hwvirt.fSavedInhibit);
4015 pHlp->pfnPrintf(pHlp, "In nested-guest hwvirt mode = %RTbool\n", CPUMIsGuestInNestedHwvirtMode(pCtx));
4016
4017 if (fSvm)
4018 {
4019 pHlp->pfnPrintf(pHlp, "SVM hwvirt state:\n");
4020 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
4021
4022 char szEFlags[80];
4023 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
4024 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
4025 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
4026 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
4027 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.Vmcb.ctrl, " " /* pszPrefix */);
4028 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
4029 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.Vmcb.guest, " " /* pszPrefix */);
4030 pHlp->pfnPrintf(pHlp, " HostState:\n");
4031 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
4032 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
4033 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
4034 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
4035 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
4036 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
4037 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
4038 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
4039 PCCPUMSELREG pSelEs = &pCtx->hwvirt.svm.HostState.es;
4040 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4041 pSelEs->Sel, pSelEs->u64Base, pSelEs->u32Limit, pSelEs->Attr.u);
4042 PCCPUMSELREG pSelCs = &pCtx->hwvirt.svm.HostState.cs;
4043 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4044 pSelCs->Sel, pSelCs->u64Base, pSelCs->u32Limit, pSelCs->Attr.u);
4045 PCCPUMSELREG pSelSs = &pCtx->hwvirt.svm.HostState.ss;
4046 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4047 pSelSs->Sel, pSelSs->u64Base, pSelSs->u32Limit, pSelSs->Attr.u);
4048 PCCPUMSELREG pSelDs = &pCtx->hwvirt.svm.HostState.ds;
4049 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4050 pSelDs->Sel, pSelDs->u64Base, pSelDs->u32Limit, pSelDs->Attr.u);
4051 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
4052 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
4053 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
4054 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
4055 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
4056 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
4057 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
4058 }
4059 else if (fVmx)
4060 {
4061 pHlp->pfnPrintf(pHlp, "VMX hwvirt state:\n");
4062 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
4063 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
4064 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
4065 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag));
4066 pHlp->pfnPrintf(pHlp, " uDiagAux = %#RX64\n", pCtx->hwvirt.vmx.uDiagAux);
4067 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, VMXGetAbortDesc(pCtx->hwvirt.vmx.enmAbort));
4068 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
4069 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
4070 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
4071 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
4072 pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret);
4073 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
4074 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
4075 pHlp->pfnPrintf(pHlp, " uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick);
4076 pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite);
4077 pHlp->pfnPrintf(pHlp, " fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking);
4078 pHlp->pfnPrintf(pHlp, " VMCS cache:\n");
4079 cpumR3InfoVmxVmcs(pVCpu, pHlp, &pCtx->hwvirt.vmx.Vmcs, " " /* pszPrefix */);
4080 }
4081 else
4082 pHlp->pfnPrintf(pHlp, "Hwvirt state disabled.\n");
4083
4084#undef CPUMHWVIRTDUMP_NONE
4085#undef CPUMHWVIRTDUMP_COMMON
4086#undef CPUMHWVIRTDUMP_SVM
4087#undef CPUMHWVIRTDUMP_VMX
4088#undef CPUMHWVIRTDUMP_LAST
4089#undef CPUMHWVIRTDUMP_ALL
4090}
4091
4092/**
4093 * Display the current guest instruction
4094 *
4095 * @param pVM The cross context VM structure.
4096 * @param pHlp The info helper functions.
4097 * @param pszArgs Arguments, ignored.
4098 */
4099static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4100{
4101 NOREF(pszArgs);
4102
4103 PVMCPU pVCpu = VMMGetCpu(pVM);
4104 if (!pVCpu)
4105 pVCpu = pVM->apCpusR3[0];
4106
4107 char szInstruction[256];
4108 szInstruction[0] = '\0';
4109 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
4110 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
4111}
4112
4113
4114/**
4115 * Display the hypervisor cpu state.
4116 *
4117 * @param pVM The cross context VM structure.
4118 * @param pHlp The info helper functions.
4119 * @param pszArgs Arguments, ignored.
4120 */
4121static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4122{
4123 PVMCPU pVCpu = VMMGetCpu(pVM);
4124 if (!pVCpu)
4125 pVCpu = pVM->apCpusR3[0];
4126
4127 CPUMDUMPTYPE enmType;
4128 const char *pszComment;
4129 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4130 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
4131
4132 pHlp->pfnPrintf(pHlp,
4133 ".dr0=%016RX64 .dr1=%016RX64 .dr2=%016RX64 .dr3=%016RX64\n"
4134 ".dr4=%016RX64 .dr5=%016RX64 .dr6=%016RX64 .dr7=%016RX64\n",
4135 pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3],
4136 pVCpu->cpum.s.Hyper.dr[4], pVCpu->cpum.s.Hyper.dr[5], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7]);
4137 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
4138}
4139
4140
4141/**
4142 * Display the host cpu state.
4143 *
4144 * @param pVM The cross context VM structure.
4145 * @param pHlp The info helper functions.
4146 * @param pszArgs Arguments, ignored.
4147 */
4148static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4149{
4150 CPUMDUMPTYPE enmType;
4151 const char *pszComment;
4152 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4153 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
4154
4155 PVMCPU pVCpu = VMMGetCpu(pVM);
4156 if (!pVCpu)
4157 pVCpu = pVM->apCpusR3[0];
4158 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
4159
4160 /*
4161 * Format the EFLAGS.
4162 */
4163 uint64_t efl = pCtx->rflags;
4164 char szEFlags[80];
4165 cpumR3InfoFormatFlags(&szEFlags[0], efl);
4166
4167 /*
4168 * Format the registers.
4169 */
4170 pHlp->pfnPrintf(pHlp,
4171 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
4172 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
4173 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
4174 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
4175 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
4176 "r14=%016RX64 r15=%016RX64\n"
4177 "iopl=%d %31s\n"
4178 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
4179 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
4180 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
4181 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
4182 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
4183 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
4184 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4185 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
4186 ,
4187 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
4188 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
4189 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
4190 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
4191 pCtx->r11, pCtx->r12, pCtx->r13,
4192 pCtx->r14, pCtx->r15,
4193 X86_EFL_GET_IOPL(efl), szEFlags,
4194 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4195 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
4196 pCtx->cr4, pCtx->ldtr, pCtx->tr,
4197 pCtx->dr0, pCtx->dr1, pCtx->dr2,
4198 pCtx->dr3, pCtx->dr6, pCtx->dr7,
4199 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
4200 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
4201 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
4202}
4203
4204/**
4205 * Structure used when disassembling and instructions in DBGF.
4206 * This is used so the reader function can get the stuff it needs.
4207 */
4208typedef struct CPUMDISASSTATE
4209{
4210 /** Pointer to the CPU structure. */
4211 PDISCPUSTATE pCpu;
4212 /** Pointer to the VM. */
4213 PVM pVM;
4214 /** Pointer to the VMCPU. */
4215 PVMCPU pVCpu;
4216 /** Pointer to the first byte in the segment. */
4217 RTGCUINTPTR GCPtrSegBase;
4218 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
4219 RTGCUINTPTR GCPtrSegEnd;
4220 /** The size of the segment minus 1. */
4221 RTGCUINTPTR cbSegLimit;
4222 /** Pointer to the current page - R3 Ptr. */
4223 void const *pvPageR3;
4224 /** Pointer to the current page - GC Ptr. */
4225 RTGCPTR pvPageGC;
4226 /** The lock information that PGMPhysReleasePageMappingLock needs. */
4227 PGMPAGEMAPLOCK PageMapLock;
4228 /** Whether the PageMapLock is valid or not. */
4229 bool fLocked;
4230 /** 64 bits mode or not. */
4231 bool f64Bits;
4232} CPUMDISASSTATE, *PCPUMDISASSTATE;
4233
4234
4235/**
4236 * @callback_method_impl{FNDISREADBYTES}
4237 */
4238static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
4239{
4240 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
4241 for (;;)
4242 {
4243 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
4244
4245 /*
4246 * Need to update the page translation?
4247 */
4248 if ( !pState->pvPageR3
4249 || (GCPtr >> GUEST_PAGE_SHIFT) != (pState->pvPageGC >> GUEST_PAGE_SHIFT))
4250 {
4251 /* translate the address */
4252 pState->pvPageGC = GCPtr & ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK;
4253
4254 /* Release mapping lock previously acquired. */
4255 if (pState->fLocked)
4256 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
4257 int rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
4258 if (RT_SUCCESS(rc))
4259 pState->fLocked = true;
4260 else
4261 {
4262 pState->fLocked = false;
4263 pState->pvPageR3 = NULL;
4264 return rc;
4265 }
4266 }
4267
4268 /*
4269 * Check the segment limit.
4270 */
4271 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
4272 return VERR_OUT_OF_SELECTOR_BOUNDS;
4273
4274 /*
4275 * Calc how much we can read.
4276 */
4277 uint32_t cb = GUEST_PAGE_SIZE - (GCPtr & GUEST_PAGE_OFFSET_MASK);
4278 if (!pState->f64Bits)
4279 {
4280 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
4281 if (cb > cbSeg && cbSeg)
4282 cb = cbSeg;
4283 }
4284 if (cb > cbMaxRead)
4285 cb = cbMaxRead;
4286
4287 /*
4288 * Read and advance or exit.
4289 */
4290 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & GUEST_PAGE_OFFSET_MASK), cb);
4291 offInstr += (uint8_t)cb;
4292 if (cb >= cbMinRead)
4293 {
4294 pDis->cbCachedInstr = offInstr;
4295 return VINF_SUCCESS;
4296 }
4297 cbMinRead -= (uint8_t)cb;
4298 cbMaxRead -= (uint8_t)cb;
4299 }
4300}
4301
4302
4303/**
4304 * Disassemble an instruction and return the information in the provided structure.
4305 *
4306 * @returns VBox status code.
4307 * @param pVM The cross context VM structure.
4308 * @param pVCpu The cross context virtual CPU structure.
4309 * @param pCtx Pointer to the guest CPU context.
4310 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
4311 * @param pCpu Disassembly state.
4312 * @param pszPrefix String prefix for logging (debug only).
4313 *
4314 */
4315VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
4316 const char *pszPrefix)
4317{
4318 CPUMDISASSTATE State;
4319 int rc;
4320
4321 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
4322 State.pCpu = pCpu;
4323 State.pvPageGC = 0;
4324 State.pvPageR3 = NULL;
4325 State.pVM = pVM;
4326 State.pVCpu = pVCpu;
4327 State.fLocked = false;
4328 State.f64Bits = false;
4329
4330 /*
4331 * Get selector information.
4332 */
4333 DISCPUMODE enmDisCpuMode;
4334 if ( (pCtx->cr0 & X86_CR0_PE)
4335 && pCtx->eflags.Bits.u1VM == 0)
4336 {
4337 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4338 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
4339 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
4340 State.GCPtrSegBase = pCtx->cs.u64Base;
4341 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
4342 State.cbSegLimit = pCtx->cs.u32Limit;
4343 enmDisCpuMode = (State.f64Bits)
4344 ? DISCPUMODE_64BIT
4345 : pCtx->cs.Attr.n.u1DefBig
4346 ? DISCPUMODE_32BIT
4347 : DISCPUMODE_16BIT;
4348 }
4349 else
4350 {
4351 /* real or V86 mode */
4352 enmDisCpuMode = DISCPUMODE_16BIT;
4353 State.GCPtrSegBase = pCtx->cs.Sel * 16;
4354 State.GCPtrSegEnd = 0xFFFFFFFF;
4355 State.cbSegLimit = 0xFFFFFFFF;
4356 }
4357
4358 /*
4359 * Disassemble the instruction.
4360 */
4361 uint32_t cbInstr;
4362#ifndef LOG_ENABLED
4363 RT_NOREF_PV(pszPrefix);
4364 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
4365 if (RT_SUCCESS(rc))
4366 {
4367#else
4368 char szOutput[160];
4369 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
4370 pCpu, &cbInstr, szOutput, sizeof(szOutput));
4371 if (RT_SUCCESS(rc))
4372 {
4373 /* log it */
4374 if (pszPrefix)
4375 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
4376 else
4377 Log(("%s", szOutput));
4378#endif
4379 rc = VINF_SUCCESS;
4380 }
4381 else
4382 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
4383
4384 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
4385 if (State.fLocked)
4386 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
4387
4388 return rc;
4389}
4390
4391
4392
4393/**
4394 * API for controlling a few of the CPU features found in CR4.
4395 *
4396 * Currently only X86_CR4_TSD is accepted as input.
4397 *
4398 * @returns VBox status code.
4399 *
4400 * @param pVM The cross context VM structure.
4401 * @param fOr The CR4 OR mask.
4402 * @param fAnd The CR4 AND mask.
4403 */
4404VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
4405{
4406 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
4407 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
4408
4409 pVM->cpum.s.CR4.OrMask &= fAnd;
4410 pVM->cpum.s.CR4.OrMask |= fOr;
4411
4412 return VINF_SUCCESS;
4413}
4414
4415
4416/**
4417 * Called when the ring-3 init phase completes.
4418 *
4419 * @returns VBox status code.
4420 * @param pVM The cross context VM structure.
4421 * @param enmWhat Which init phase.
4422 */
4423VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
4424{
4425 switch (enmWhat)
4426 {
4427 case VMINITCOMPLETED_RING3:
4428 {
4429 /*
4430 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
4431 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
4432 */
4433 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
4434 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4435 {
4436 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4437
4438 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
4439 if (fSupportsLongMode)
4440 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
4441 }
4442
4443 /* Register statistic counters for MSRs. */
4444 cpumR3MsrRegStats(pVM);
4445
4446 /* There shouldn't be any more calls to CPUMR3SetGuestCpuIdFeature and
4447 CPUMR3ClearGuestCpuIdFeature now, so do some final CPUID polishing (NX). */
4448 cpumR3CpuIdRing3InitDone(pVM);
4449
4450 /* Create VMX-preemption timer for nested guests if required. Must be
4451 done here as CPUM is initialized before TM. */
4452 if (pVM->cpum.s.GuestFeatures.fVmx)
4453 {
4454 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4455 {
4456 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4457 char szName[32];
4458 RTStrPrintf(szName, sizeof(szName), "Nested VMX-preemption %u", idCpu);
4459 int rc = TMR3TimerCreate(pVM, TMCLOCK_VIRTUAL_SYNC, cpumR3VmxPreemptTimerCallback, pVCpu,
4460 TMTIMER_FLAGS_RING0, szName, &pVCpu->cpum.s.hNestedVmxPreemptTimer);
4461 AssertLogRelRCReturn(rc, rc);
4462 }
4463 }
4464 break;
4465 }
4466
4467 default:
4468 break;
4469 }
4470 return VINF_SUCCESS;
4471}
4472
4473
4474/**
4475 * Called when the ring-0 init phases completed.
4476 *
4477 * @param pVM The cross context VM structure.
4478 */
4479VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM)
4480{
4481 /*
4482 * Enable log buffering as we're going to log a lot of lines.
4483 */
4484 bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4485
4486 /*
4487 * Log the cpuid.
4488 */
4489 RTCPUSET OnlineSet;
4490 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4491 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4492 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4493 RTCPUID cCores = RTMpGetCoreCount();
4494 if (cCores)
4495 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
4496 LogRel(("************************* CPUID dump ************************\n"));
4497 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4498 LogRel(("\n"));
4499 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
4500 LogRel(("******************** End of CPUID dump **********************\n"));
4501
4502 /*
4503 * Log VT-x extended features.
4504 *
4505 * SVM features are currently all covered under CPUID so there is nothing
4506 * to do here for SVM.
4507 */
4508 if (pVM->cpum.s.HostFeatures.fVmx)
4509 {
4510 LogRel(("*********************** VT-x features ***********************\n"));
4511 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
4512 LogRel(("\n"));
4513 LogRel(("******************* End of VT-x features ********************\n"));
4514 }
4515
4516 /*
4517 * Restore the log buffering state to what it was previously.
4518 */
4519 RTLogRelSetBuffering(fOldBuffered);
4520}
4521
4522
4523/**
4524 * Marks the guest debug state as active.
4525 *
4526 * @returns nothing.
4527 * @param pVCpu The cross context virtual CPU structure.
4528 *
4529 * @note This is used solely by NEM (hence the name) to set the correct flags here
4530 * without loading the host's DRx registers, which is not possible from ring-3 anyway.
4531 * The specific NEM backends have to make sure to load the correct values.
4532 */
4533VMMR3_INT_DECL(void) CPUMR3NemActivateGuestDebugState(PVMCPUCC pVCpu)
4534{
4535 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_HYPER);
4536 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_GUEST);
4537}
4538
4539
4540/**
4541 * Marks the hyper debug state as active.
4542 *
4543 * @returns nothing.
4544 * @param pVCpu The cross context virtual CPU structure.
4545 *
4546 * @note This is used solely by NEM (hence the name) to set the correct flags here
4547 * without loading the host's DRx registers, which is not possible from ring-3 anyway.
4548 * The specific NEM backends have to make sure to load the correct values.
4549 */
4550VMMR3_INT_DECL(void) CPUMR3NemActivateHyperDebugState(PVMCPUCC pVCpu)
4551{
4552 /*
4553 * Make sure the hypervisor values are up to date.
4554 */
4555 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */);
4556
4557 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_GUEST);
4558 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_HYPER);
4559}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette