VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 93830

Last change on this file since 93830 was 93830, checked in by vboxsync, 3 years ago

VMM/CPUM: Add some helpers for NEM to activate the hyper or guest debug state respectively without loading the host's DRx registers which doesn't work from ring-3 anyway, bugref:9044

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 240.8 KB
Line 
1/* $Id: CPUM.cpp 93830 2022-02-17 16:56:18Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/hm.h>
120#include <VBox/vmm/hmvmxinline.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
130# include <iprt/asm-amd64-x86.h>
131#endif
132#include <iprt/assert.h>
133#include <iprt/cpuset.h>
134#include <iprt/mem.h>
135#include <iprt/mp.h>
136#include <iprt/string.h>
137
138
139/*********************************************************************************************************************************
140* Defined Constants And Macros *
141*********************************************************************************************************************************/
142/**
143 * This was used in the saved state up to the early life of version 14.
144 *
145 * It indicates that we may have some out-of-sync hidden segement registers.
146 * It is only relevant for raw-mode.
147 */
148#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
149
150
151/*********************************************************************************************************************************
152* Structures and Typedefs *
153*********************************************************************************************************************************/
154
155/**
156 * What kind of cpu info dump to perform.
157 */
158typedef enum CPUMDUMPTYPE
159{
160 CPUMDUMPTYPE_TERSE,
161 CPUMDUMPTYPE_DEFAULT,
162 CPUMDUMPTYPE_VERBOSE
163} CPUMDUMPTYPE;
164/** Pointer to a cpu info dump type. */
165typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
166
167
168/*********************************************************************************************************************************
169* Internal Functions *
170*********************************************************************************************************************************/
171static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
172static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
173static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
175static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
176static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
181static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
182
183
184/*********************************************************************************************************************************
185* Global Variables *
186*********************************************************************************************************************************/
187/** Saved state field descriptors for CPUMCTX. */
188static const SSMFIELD g_aCpumCtxFields[] =
189{
190 SSMFIELD_ENTRY( CPUMCTX, rdi),
191 SSMFIELD_ENTRY( CPUMCTX, rsi),
192 SSMFIELD_ENTRY( CPUMCTX, rbp),
193 SSMFIELD_ENTRY( CPUMCTX, rax),
194 SSMFIELD_ENTRY( CPUMCTX, rbx),
195 SSMFIELD_ENTRY( CPUMCTX, rdx),
196 SSMFIELD_ENTRY( CPUMCTX, rcx),
197 SSMFIELD_ENTRY( CPUMCTX, rsp),
198 SSMFIELD_ENTRY( CPUMCTX, rflags),
199 SSMFIELD_ENTRY( CPUMCTX, rip),
200 SSMFIELD_ENTRY( CPUMCTX, r8),
201 SSMFIELD_ENTRY( CPUMCTX, r9),
202 SSMFIELD_ENTRY( CPUMCTX, r10),
203 SSMFIELD_ENTRY( CPUMCTX, r11),
204 SSMFIELD_ENTRY( CPUMCTX, r12),
205 SSMFIELD_ENTRY( CPUMCTX, r13),
206 SSMFIELD_ENTRY( CPUMCTX, r14),
207 SSMFIELD_ENTRY( CPUMCTX, r15),
208 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
209 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
210 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
211 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
212 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
213 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
214 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
215 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
216 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
217 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
218 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
219 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
220 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
221 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
222 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
223 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
224 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
225 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
226 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
227 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
228 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
229 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
230 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
231 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
232 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
233 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
234 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
235 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
236 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
237 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
238 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
239 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
240 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
241 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
242 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
243 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
244 SSMFIELD_ENTRY( CPUMCTX, cr0),
245 SSMFIELD_ENTRY( CPUMCTX, cr2),
246 SSMFIELD_ENTRY( CPUMCTX, cr3),
247 SSMFIELD_ENTRY( CPUMCTX, cr4),
248 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
252 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
253 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
254 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
255 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
256 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
257 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
259 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
260 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
261 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
262 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
264 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
265 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
266 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
267 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
272 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
273 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
274 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
275 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
276 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
277 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
278 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
279 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
280 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
282 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
283 SSMFIELD_ENTRY_TERM()
284};
285
286/** Saved state field descriptors for SVM nested hardware-virtualization
287 * Host State. */
288static const SSMFIELD g_aSvmHwvirtHostState[] =
289{
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
324 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
325 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
326 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
327 SSMFIELD_ENTRY_TERM()
328};
329
330/** Saved state field descriptors for VMX nested hardware-virtualization
331 * VMCS. */
332static const SSMFIELD g_aVmxHwvirtVmcs[] =
333{
334 SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId),
335 SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort),
336 SSMFIELD_ENTRY( VMXVVMCS, fVmcsState),
337 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0),
338 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0),
339
340 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, u16Reserved0),
341
342 SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError),
343 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason),
344 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo),
345 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode),
346 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo),
347 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode),
348 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen),
349 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo),
350 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2),
351
352 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr),
353 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1),
354
355 SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual),
356 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx),
357 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi),
358 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi),
359 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip),
360 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr),
361 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved5),
362
363 SSMFIELD_ENTRY( VMXVVMCS, u16Vpid),
364 SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector),
365 SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex),
366 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0),
367
368 SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls),
369 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls),
370 SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap),
371 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask),
372 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch),
373 SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount),
374 SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls),
375 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount),
376 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount),
377 SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls),
378 SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount),
379 SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo),
380 SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode),
381 SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen),
382 SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold),
383 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2),
384 SSMFIELD_ENTRY( VMXVVMCS, u32PleGap),
385 SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow),
386 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1),
387
388 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA),
389 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB),
390 SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap),
391 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore),
392 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad),
393 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad),
394 SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr),
395 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml),
396 SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset),
397 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic),
398 SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess),
399 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc),
400 SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls),
401 SSMFIELD_ENTRY( VMXVVMCS, u64EptPtr),
402 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0),
403 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1),
404 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2),
405 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3),
406 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList),
407 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap),
408 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap),
409 SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo),
410 SSMFIELD_ENTRY( VMXVVMCS, u64XssExitBitmap),
411 SSMFIELD_ENTRY( VMXVVMCS, u64EnclsExitBitmap),
412 SSMFIELD_ENTRY( VMXVVMCS, u64SppTablePtr),
413 SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier),
414 SSMFIELD_ENTRY_VER( VMXVVMCS, u64ProcCtls3, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
415 SSMFIELD_ENTRY_VER( VMXVVMCS, u64EnclvExitBitmap, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
416 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0),
417
418 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask),
419 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask),
420 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow),
421 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow),
422 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0),
423 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1),
424 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2),
425 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3),
426 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved4),
427
428 SSMFIELD_ENTRY( VMXVVMCS, HostEs),
429 SSMFIELD_ENTRY( VMXVVMCS, HostCs),
430 SSMFIELD_ENTRY( VMXVVMCS, HostSs),
431 SSMFIELD_ENTRY( VMXVVMCS, HostDs),
432 SSMFIELD_ENTRY( VMXVVMCS, HostFs),
433 SSMFIELD_ENTRY( VMXVVMCS, HostGs),
434 SSMFIELD_ENTRY( VMXVVMCS, HostTr),
435 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2),
436
437 SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs),
438 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4),
439
440 SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr),
441 SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr),
442 SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr),
443 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
444 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3),
445
446 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0),
447 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3),
448 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4),
449 SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase),
450 SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase),
451 SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase),
452 SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase),
453 SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase),
454 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp),
455 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip),
456 SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp),
457 SSMFIELD_ENTRY( VMXVVMCS, u64HostRip),
458 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
459 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
460 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
461 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved7),
462
463 SSMFIELD_ENTRY( VMXVVMCS, GuestEs),
464 SSMFIELD_ENTRY( VMXVVMCS, GuestCs),
465 SSMFIELD_ENTRY( VMXVVMCS, GuestSs),
466 SSMFIELD_ENTRY( VMXVVMCS, GuestDs),
467 SSMFIELD_ENTRY( VMXVVMCS, GuestFs),
468 SSMFIELD_ENTRY( VMXVVMCS, GuestGs),
469 SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr),
470 SSMFIELD_ENTRY( VMXVVMCS, GuestTr),
471 SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus),
472 SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex),
473 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1),
474
475 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit),
476 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit),
477 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit),
478 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit),
479 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit),
480 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit),
481 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit),
482 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit),
483 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit),
484 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit),
485 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr),
486 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr),
487 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr),
488 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr),
489 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr),
490 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr),
491 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr),
492 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr),
493 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState),
494 SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState),
495 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase),
496 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS),
497 SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer),
498 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3),
499
500 SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr),
501 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr),
502 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr),
503 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr),
504 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr),
505 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0),
506 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1),
507 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2),
508 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3),
509 SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr),
510 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRtitCtlMsr),
511 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
512 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2),
513
514 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0),
515 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3),
516 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4),
517 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase),
518 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase),
519 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase),
520 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase),
521 SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase),
522 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase),
523 SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase),
524 SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase),
525 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase),
526 SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase),
527 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7),
528 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp),
529 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip),
530 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags),
531 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpts),
532 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp),
533 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip),
534 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
535 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
536 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
537 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved6),
538
539 SSMFIELD_ENTRY_TERM()
540};
541
542/** Saved state field descriptors for CPUMCTX. */
543static const SSMFIELD g_aCpumX87Fields[] =
544{
545 SSMFIELD_ENTRY( X86FXSTATE, FCW),
546 SSMFIELD_ENTRY( X86FXSTATE, FSW),
547 SSMFIELD_ENTRY( X86FXSTATE, FTW),
548 SSMFIELD_ENTRY( X86FXSTATE, FOP),
549 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
550 SSMFIELD_ENTRY( X86FXSTATE, CS),
551 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
552 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
553 SSMFIELD_ENTRY( X86FXSTATE, DS),
554 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
555 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
556 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
557 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
558 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
559 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
560 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
561 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
562 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
563 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
564 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
565 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
566 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
567 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
568 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
569 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
570 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
571 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
572 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
573 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
574 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
575 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
576 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
577 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
578 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
579 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
580 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
581 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
582 SSMFIELD_ENTRY_TERM()
583};
584
585/** Saved state field descriptors for X86XSAVEHDR. */
586static const SSMFIELD g_aCpumXSaveHdrFields[] =
587{
588 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
589 SSMFIELD_ENTRY_TERM()
590};
591
592/** Saved state field descriptors for X86XSAVEYMMHI. */
593static const SSMFIELD g_aCpumYmmHiFields[] =
594{
595 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
596 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
597 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
598 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
599 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
600 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
601 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
602 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
603 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
604 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
605 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
606 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
607 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
608 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
609 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
610 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
611 SSMFIELD_ENTRY_TERM()
612};
613
614/** Saved state field descriptors for X86XSAVEBNDREGS. */
615static const SSMFIELD g_aCpumBndRegsFields[] =
616{
617 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
618 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
619 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
620 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
621 SSMFIELD_ENTRY_TERM()
622};
623
624/** Saved state field descriptors for X86XSAVEBNDCFG. */
625static const SSMFIELD g_aCpumBndCfgFields[] =
626{
627 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
628 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
629 SSMFIELD_ENTRY_TERM()
630};
631
632#if 0 /** @todo */
633/** Saved state field descriptors for X86XSAVEOPMASK. */
634static const SSMFIELD g_aCpumOpmaskFields[] =
635{
636 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
637 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
638 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
639 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
640 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
641 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
642 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
643 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
644 SSMFIELD_ENTRY_TERM()
645};
646#endif
647
648/** Saved state field descriptors for X86XSAVEZMMHI256. */
649static const SSMFIELD g_aCpumZmmHi256Fields[] =
650{
651 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
652 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
653 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
654 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
655 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
656 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
657 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
658 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
659 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
660 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
661 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
662 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
663 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
664 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
665 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
666 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
667 SSMFIELD_ENTRY_TERM()
668};
669
670/** Saved state field descriptors for X86XSAVEZMM16HI. */
671static const SSMFIELD g_aCpumZmm16HiFields[] =
672{
673 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
674 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
675 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
676 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
677 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
678 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
679 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
680 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
681 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
682 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
683 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
684 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
685 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
686 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
687 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
688 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
689 SSMFIELD_ENTRY_TERM()
690};
691
692
693
694/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
695 * registeres changed. */
696static const SSMFIELD g_aCpumX87FieldsMem[] =
697{
698 SSMFIELD_ENTRY( X86FXSTATE, FCW),
699 SSMFIELD_ENTRY( X86FXSTATE, FSW),
700 SSMFIELD_ENTRY( X86FXSTATE, FTW),
701 SSMFIELD_ENTRY( X86FXSTATE, FOP),
702 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
703 SSMFIELD_ENTRY( X86FXSTATE, CS),
704 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
705 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
706 SSMFIELD_ENTRY( X86FXSTATE, DS),
707 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
708 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
709 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
710 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
711 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
712 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
713 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
714 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
715 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
716 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
717 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
718 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
719 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
720 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
721 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
722 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
723 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
724 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
725 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
726 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
727 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
728 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
729 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
730 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
731 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
732 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
733 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
734 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
735 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
736};
737
738/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
739 * registeres changed. */
740static const SSMFIELD g_aCpumCtxFieldsMem[] =
741{
742 SSMFIELD_ENTRY( CPUMCTX, rdi),
743 SSMFIELD_ENTRY( CPUMCTX, rsi),
744 SSMFIELD_ENTRY( CPUMCTX, rbp),
745 SSMFIELD_ENTRY( CPUMCTX, rax),
746 SSMFIELD_ENTRY( CPUMCTX, rbx),
747 SSMFIELD_ENTRY( CPUMCTX, rdx),
748 SSMFIELD_ENTRY( CPUMCTX, rcx),
749 SSMFIELD_ENTRY( CPUMCTX, rsp),
750 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
751 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
752 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
753 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
754 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
755 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
756 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
757 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
758 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
759 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
760 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
761 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
762 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
763 SSMFIELD_ENTRY( CPUMCTX, rflags),
764 SSMFIELD_ENTRY( CPUMCTX, rip),
765 SSMFIELD_ENTRY( CPUMCTX, r8),
766 SSMFIELD_ENTRY( CPUMCTX, r9),
767 SSMFIELD_ENTRY( CPUMCTX, r10),
768 SSMFIELD_ENTRY( CPUMCTX, r11),
769 SSMFIELD_ENTRY( CPUMCTX, r12),
770 SSMFIELD_ENTRY( CPUMCTX, r13),
771 SSMFIELD_ENTRY( CPUMCTX, r14),
772 SSMFIELD_ENTRY( CPUMCTX, r15),
773 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
774 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
775 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
776 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
777 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
778 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
779 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
780 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
781 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
782 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
783 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
784 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
785 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
786 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
787 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
788 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
789 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
790 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
791 SSMFIELD_ENTRY( CPUMCTX, cr0),
792 SSMFIELD_ENTRY( CPUMCTX, cr2),
793 SSMFIELD_ENTRY( CPUMCTX, cr3),
794 SSMFIELD_ENTRY( CPUMCTX, cr4),
795 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
796 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
797 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
798 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
799 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
800 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
801 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
802 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
803 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
804 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
805 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
806 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
807 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
808 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
809 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
810 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
811 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
812 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
813 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
814 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
815 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
816 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
817 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
818 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
819 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
820 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
821 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
822 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
823 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
824 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
825 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
826 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
827 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
828 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
829 SSMFIELD_ENTRY_TERM()
830};
831
832/** Saved state field descriptors for CPUMCTX_VER1_6. */
833static const SSMFIELD g_aCpumX87FieldsV16[] =
834{
835 SSMFIELD_ENTRY( X86FXSTATE, FCW),
836 SSMFIELD_ENTRY( X86FXSTATE, FSW),
837 SSMFIELD_ENTRY( X86FXSTATE, FTW),
838 SSMFIELD_ENTRY( X86FXSTATE, FOP),
839 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
840 SSMFIELD_ENTRY( X86FXSTATE, CS),
841 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
842 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
843 SSMFIELD_ENTRY( X86FXSTATE, DS),
844 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
845 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
846 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
847 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
848 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
849 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
850 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
851 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
852 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
853 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
854 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
855 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
856 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
857 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
858 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
859 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
860 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
861 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
862 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
863 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
864 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
865 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
866 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
867 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
868 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
869 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
870 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
871 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
872 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
873 SSMFIELD_ENTRY_TERM()
874};
875
876/** Saved state field descriptors for CPUMCTX_VER1_6. */
877static const SSMFIELD g_aCpumCtxFieldsV16[] =
878{
879 SSMFIELD_ENTRY( CPUMCTX, rdi),
880 SSMFIELD_ENTRY( CPUMCTX, rsi),
881 SSMFIELD_ENTRY( CPUMCTX, rbp),
882 SSMFIELD_ENTRY( CPUMCTX, rax),
883 SSMFIELD_ENTRY( CPUMCTX, rbx),
884 SSMFIELD_ENTRY( CPUMCTX, rdx),
885 SSMFIELD_ENTRY( CPUMCTX, rcx),
886 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
887 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
888 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
889 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
890 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
891 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
892 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
893 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
894 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
895 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
896 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
897 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
898 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
899 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
900 SSMFIELD_ENTRY( CPUMCTX, rflags),
901 SSMFIELD_ENTRY( CPUMCTX, rip),
902 SSMFIELD_ENTRY( CPUMCTX, r8),
903 SSMFIELD_ENTRY( CPUMCTX, r9),
904 SSMFIELD_ENTRY( CPUMCTX, r10),
905 SSMFIELD_ENTRY( CPUMCTX, r11),
906 SSMFIELD_ENTRY( CPUMCTX, r12),
907 SSMFIELD_ENTRY( CPUMCTX, r13),
908 SSMFIELD_ENTRY( CPUMCTX, r14),
909 SSMFIELD_ENTRY( CPUMCTX, r15),
910 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
911 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
912 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
913 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
914 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
915 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
916 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
917 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
918 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
919 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
920 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
921 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
922 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
923 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
924 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
925 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
926 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
927 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
928 SSMFIELD_ENTRY( CPUMCTX, cr0),
929 SSMFIELD_ENTRY( CPUMCTX, cr2),
930 SSMFIELD_ENTRY( CPUMCTX, cr3),
931 SSMFIELD_ENTRY( CPUMCTX, cr4),
932 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
933 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
934 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
935 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
936 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
937 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
938 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
939 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
940 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
941 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
942 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
943 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
944 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
945 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
946 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
947 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
948 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
949 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
950 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
951 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
952 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
953 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
954 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
955 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
956 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
957 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
958 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
959 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
960 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
961 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
962 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
963 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
964 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
965 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
966 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
967 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
968 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
969 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
970 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
971 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
972 SSMFIELD_ENTRY_TERM()
973};
974
975
976#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
977/**
978 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
979 *
980 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
981 * (last instruction pointer, last data pointer, last opcode) except when the ES
982 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
983 * clear these registers there is potential, local FPU leakage from a process
984 * using the FPU to another.
985 *
986 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
987 *
988 * @param pVM The cross context VM structure.
989 */
990static void cpumR3CheckLeakyFpu(PVM pVM)
991{
992 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
993 uint32_t const u32Family = u32CpuVersion >> 8;
994 if ( u32Family >= 6 /* K7 and higher */
995 && (ASMIsAmdCpu() || ASMIsHygonCpu()) )
996 {
997 uint32_t cExt = ASMCpuId_EAX(0x80000000);
998 if (RTX86IsValidExtRange(cExt))
999 {
1000 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
1001 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
1002 {
1003 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1004 {
1005 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1006 pVCpu->cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
1007 }
1008 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
1009 }
1010 }
1011 }
1012}
1013#endif
1014
1015
1016/**
1017 * Initialize SVM hardware virtualization state (used to allocate it).
1018 *
1019 * @param pVM The cross context VM structure.
1020 */
1021static void cpumR3InitSvmHwVirtState(PVM pVM)
1022{
1023 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1024
1025 LogRel(("CPUM: AMD-V nested-guest init\n"));
1026 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1027 {
1028 PVMCPU pVCpu = pVM->apCpusR3[i];
1029 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
1030
1031 AssertCompile(SVM_VMCB_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.Vmcb));
1032 AssertCompile(SVM_MSRPM_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.abMsrBitmap));
1033 AssertCompile(SVM_IOPM_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.abIoBitmap));
1034 }
1035}
1036
1037
1038/**
1039 * Resets per-VCPU SVM hardware virtualization state.
1040 *
1041 * @param pVCpu The cross context virtual CPU structure.
1042 */
1043DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
1044{
1045 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1046 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
1047
1048 RT_ZERO(pCtx->hwvirt.svm.Vmcb);
1049 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1050 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1051}
1052
1053
1054/**
1055 * Allocates memory for the VMX hardware virtualization state.
1056 *
1057 * @param pVM The cross context VM structure.
1058 */
1059static void cpumR3InitVmxHwVirtState(PVM pVM)
1060{
1061 LogRel(("CPUM: VT-x nested-guest init\n"));
1062 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1063 {
1064 PVMCPU pVCpu = pVM->apCpusR3[i];
1065 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1066
1067 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
1068
1069 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_PAGES * X86_PAGE_SIZE);
1070 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_SIZE);
1071 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_PAGES * X86_PAGE_SIZE);
1072 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_SIZE);
1073 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1074 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1075 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1076 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1077 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1078 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1079 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1080 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_SIZE);
1081 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1082 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1083 AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_PAGES * X86_PAGE_SIZE);
1084 AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_SIZE);
1085 AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == (VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES) * X86_PAGE_SIZE);
1086 AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1087 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVirtApicPage) == VMX_V_VIRT_APIC_PAGES * X86_PAGE_SIZE);
1088 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVirtApicPage) == VMX_V_VIRT_APIC_SIZE);
1089
1090 /*
1091 * Zero out all allocated pages (should compress well for saved-state).
1092 */
1093 /** @todo r=bird: this is and always was unnecessary - they are already zeroed. */
1094 RT_ZERO(pCtx->hwvirt.vmx.Vmcs);
1095 RT_ZERO(pCtx->hwvirt.vmx.ShadowVmcs);
1096 RT_ZERO(pCtx->hwvirt.vmx.abVmreadBitmap);
1097 RT_ZERO(pCtx->hwvirt.vmx.abVmwriteBitmap);
1098 RT_ZERO(pCtx->hwvirt.vmx.aEntryMsrLoadArea);
1099 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrStoreArea);
1100 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrLoadArea);
1101 RT_ZERO(pCtx->hwvirt.vmx.abMsrBitmap);
1102 RT_ZERO(pCtx->hwvirt.vmx.abIoBitmap);
1103 RT_ZERO(pCtx->hwvirt.vmx.abVirtApicPage);
1104 }
1105}
1106
1107
1108/**
1109 * Resets per-VCPU VMX hardware virtualization state.
1110 *
1111 * @param pVCpu The cross context virtual CPU structure.
1112 */
1113DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1114{
1115 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1116 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1117
1118 RT_ZERO(pCtx->hwvirt.vmx.Vmcs);
1119 RT_ZERO(pCtx->hwvirt.vmx.ShadowVmcs);
1120 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1121 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1122 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1123 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1124 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1125 /* Don't reset diagnostics here. */
1126
1127 /* Stop any VMX-preemption timer. */
1128 CPUMStopGuestVmxPremptTimer(pVCpu);
1129
1130 /* Clear all nested-guest FFs. */
1131 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
1132}
1133
1134
1135/**
1136 * Displays the host and guest VMX features.
1137 *
1138 * @param pVM The cross context VM structure.
1139 * @param pHlp The info helper functions.
1140 * @param pszArgs "terse", "default" or "verbose".
1141 */
1142DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1143{
1144 RT_NOREF(pszArgs);
1145 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1146 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1147 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1148 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
1149 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
1150 {
1151#define VMXFEATDUMP(a_szDesc, a_Var) \
1152 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1153
1154 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1155 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1156 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1157 /* Basic. */
1158 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1159
1160 /* Pin-based controls. */
1161 VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
1162 VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
1163 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1164 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1165 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1166
1167 /* Processor-based controls. */
1168 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1169 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1170 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1171 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1172 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1173 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1174 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1175 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1176 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1177 VMXFEATDUMP("TertiaryExecCtls - Activate tertiary controls ", fVmxTertiaryExecCtls);
1178 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1179 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1180 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1181 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1182 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1183 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1184 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1185 VMXFEATDUMP("MonitorTrapFlag - Monitor Trap Flag ", fVmxMonitorTrapFlag);
1186 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1187 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1188 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1189 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1190
1191 /* Secondary processor-based controls. */
1192 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1193 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1194 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1195 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1196 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1197 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1198 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1199 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1200 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1201 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1202 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1203 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1204 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1205 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1206 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1207 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1208 VMXFEATDUMP("PML - Page-Modification Log (PML) ", fVmxPml);
1209 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1210 VMXFEATDUMP("ConcealVmxFromPt - Conceal VMX from Processor Trace ", fVmxConcealVmxFromPt);
1211 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1212 VMXFEATDUMP("ModeBasedExecuteEpt - Mode-based execute permissions ", fVmxModeBasedExecuteEpt);
1213 VMXFEATDUMP("SppEpt - Sub-page page write permissions for EPT ", fVmxSppEpt);
1214 VMXFEATDUMP("PtEpt - Processor Trace address' translatable by EPT ", fVmxPtEpt);
1215 VMXFEATDUMP("UseTscScaling - Use TSC scaling ", fVmxUseTscScaling);
1216 VMXFEATDUMP("UserWaitPause - Enable TPAUSE, UMONITOR and UMWAIT ", fVmxUserWaitPause);
1217 VMXFEATDUMP("EnclvExit - ENCLV exiting ", fVmxEnclvExit);
1218
1219 /* Tertiary processor-based controls. */
1220 VMXFEATDUMP("LoadIwKeyExit - LOADIWKEY exiting ", fVmxLoadIwKeyExit);
1221
1222 /* VM-entry controls. */
1223 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1224 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1225 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
1226 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
1227
1228 /* VM-exit controls. */
1229 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1230 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1231 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1232 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
1233 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
1234 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
1235 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
1236 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1237
1238 /* Miscellaneous data. */
1239 VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1240 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxPt);
1241 VMXFEATDUMP("VmwriteAll - VMWRITE to any supported VMCS field ", fVmxVmwriteAll);
1242 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1243#undef VMXFEATDUMP
1244 }
1245 else
1246 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1247}
1248
1249
1250/**
1251 * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
1252 * or NEM) is allowed.
1253 *
1254 * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
1255 * otherwise.
1256 * @param pVM The cross context VM structure.
1257 */
1258static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
1259{
1260 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1261#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1262 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1263 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1264 return true;
1265#else
1266 NOREF(pVM);
1267#endif
1268 return false;
1269}
1270
1271
1272/**
1273 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1274 *
1275 * @param pVM The cross context VM structure.
1276 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1277 * and no hardware-assisted nested-guest execution is
1278 * possible for this VM.
1279 * @param pGuestFeatures The guest features to use (only VMX features are
1280 * accessed).
1281 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1282 *
1283 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1284 */
1285static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1286{
1287 bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
1288
1289 Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
1290 Assert(pGuestFeatures->fVmx);
1291
1292 /*
1293 * We don't support the following MSRs yet:
1294 * - True Pin-based VM-execution controls.
1295 * - True Processor-based VM-execution controls.
1296 * - True VM-entry VM-execution controls.
1297 * - True VM-exit VM-execution controls.
1298 */
1299
1300 /* Basic information. */
1301 uint8_t const fTrueVmxMsrs = 1;
1302 {
1303 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1304 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1305 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1306 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1307 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1308 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1309 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, fTrueVmxMsrs );
1310 pGuestVmxMsrs->u64Basic = u64Basic;
1311 }
1312
1313 /* Pin-based VM-execution controls. */
1314 {
1315 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1316 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1317 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1318 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1319 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1320 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1321 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1322 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1323 fAllowed0, fAllowed1, fFeatures));
1324 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1325
1326 /* True pin-based VM-execution controls. */
1327 if (fTrueVmxMsrs)
1328 {
1329 /* VMX_PIN_CTLS_DEFAULT1 contains MB1 reserved bits and must be reserved MB1 in true pin-based controls as well. */
1330 pGuestVmxMsrs->TruePinCtls.u = pGuestVmxMsrs->PinCtls.u;
1331 }
1332 }
1333
1334 /* Processor-based VM-execution controls. */
1335 {
1336 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1337 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1338 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1339 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1340 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1341 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1342 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1343 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1344 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1345 | (pGuestFeatures->fVmxTertiaryExecCtls << VMX_BF_PROC_CTLS_USE_TERTIARY_CTLS_SHIFT )
1346 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1347 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1348 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1349 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1350 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1351 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1352 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1353 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1354 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1355 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1356 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1357 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1358 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1359 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1360 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1361 fAllowed1, fFeatures));
1362 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1363
1364 /* True processor-based VM-execution controls. */
1365 if (fTrueVmxMsrs)
1366 {
1367 /* VMX_PROC_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved. */
1368 uint32_t const fTrueAllowed0 = VMX_PROC_CTLS_DEFAULT1 & ~( VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_MASK
1369 | VMX_BF_PROC_CTLS_CR3_STORE_EXIT_MASK);
1370 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1371 pGuestVmxMsrs->TrueProcCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1372 }
1373 }
1374
1375 /* Secondary processor-based VM-execution controls. */
1376 if (pGuestFeatures->fVmxSecondaryExecCtls)
1377 {
1378 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1379 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1380 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1381 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1382 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1383 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1384 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1385 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT )
1386 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1387 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1388 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1389 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1390 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1391 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1392 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1393 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1394 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1395 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1396 | (pGuestFeatures->fVmxConcealVmxFromPt << VMX_BF_PROC_CTLS2_CONCEAL_VMX_FROM_PT_SHIFT)
1397 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1398 | (pGuestFeatures->fVmxModeBasedExecuteEpt << VMX_BF_PROC_CTLS2_MODE_BASED_EPT_PERM_SHIFT)
1399 | (pGuestFeatures->fVmxSppEpt << VMX_BF_PROC_CTLS2_SPP_EPT_SHIFT )
1400 | (pGuestFeatures->fVmxPtEpt << VMX_BF_PROC_CTLS2_PT_EPT_SHIFT )
1401 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT )
1402 | (pGuestFeatures->fVmxUserWaitPause << VMX_BF_PROC_CTLS2_USER_WAIT_PAUSE_SHIFT )
1403 | (pGuestFeatures->fVmxEnclvExit << VMX_BF_PROC_CTLS2_ENCLV_EXIT_SHIFT );
1404 uint32_t const fAllowed0 = 0;
1405 uint32_t const fAllowed1 = fFeatures;
1406 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1407 }
1408
1409 /* Tertiary processor-based VM-execution controls. */
1410 if (pGuestFeatures->fVmxTertiaryExecCtls)
1411 {
1412 pGuestVmxMsrs->u64ProcCtls3 = (pGuestFeatures->fVmxLoadIwKeyExit << VMX_BF_PROC_CTLS3_LOADIWKEY_EXIT_SHIFT);
1413 }
1414
1415 /* VM-exit controls. */
1416 {
1417 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1418 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1419 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1420 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1421 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1422 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1423 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1424 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
1425 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1426 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1427 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1428 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1429 fAllowed1, fFeatures));
1430 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1431
1432 /* True VM-exit controls. */
1433 if (fTrueVmxMsrs)
1434 {
1435 /* VMX_EXIT_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved */
1436 uint32_t const fTrueAllowed0 = VMX_EXIT_CTLS_DEFAULT1 & ~VMX_BF_EXIT_CTLS_SAVE_DEBUG_MASK;
1437 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1438 pGuestVmxMsrs->TrueExitCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1439 }
1440 }
1441
1442 /* VM-entry controls. */
1443 {
1444 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1445 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1446 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1447 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1448 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1449 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1450 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1451 fAllowed1, fFeatures));
1452 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1453
1454 /* True VM-entry controls. */
1455 if (fTrueVmxMsrs)
1456 {
1457 /* VMX_ENTRY_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved */
1458 uint32_t const fTrueAllowed0 = VMX_ENTRY_CTLS_DEFAULT1 & ~( VMX_BF_ENTRY_CTLS_LOAD_DEBUG_MASK
1459 | VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_MASK
1460 | VMX_BF_ENTRY_CTLS_ENTRY_SMM_MASK
1461 | VMX_BF_ENTRY_CTLS_DEACTIVATE_DUAL_MON_MASK);
1462 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1463 pGuestVmxMsrs->TrueEntryCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1464 }
1465 }
1466
1467 /* Miscellaneous data. */
1468 {
1469 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
1470
1471 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1472 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1473 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1474 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1475 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1476 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxPt )
1477 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1478 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1479 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1480 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1481 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1482 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1483 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1484 }
1485
1486 /* CR0 Fixed-0 (we report this fixed value regardless of whether UX is supported as it does on real hardware). */
1487 pGuestVmxMsrs->u64Cr0Fixed0 = VMX_V_CR0_FIXED0;
1488
1489 /* CR0 Fixed-1. */
1490 {
1491 /*
1492 * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
1493 * This is different from CR4 fixed-1 bits which are reported as per the
1494 * CPU features and/or micro-architecture/generation. Why? Ask Intel.
1495 */
1496 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : VMX_V_CR0_FIXED1;
1497 pGuestVmxMsrs->u64Cr0Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr0Fixed0; /* Make sure the CR0 MB1 bits are not clear. */
1498 }
1499
1500 /* CR4 Fixed-0. */
1501 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1502
1503 /* CR4 Fixed-1. */
1504 {
1505 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr4Fixed1 : CPUMGetGuestCR4ValidMask(pVM);
1506 pGuestVmxMsrs->u64Cr4Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr4Fixed0; /* Make sure the CR4 MB1 bits are not clear. */
1507 }
1508
1509 /* VMCS Enumeration. */
1510 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1511
1512 /* VPID and EPT Capabilities. */
1513 if (pGuestFeatures->fVmxEpt)
1514 {
1515 /*
1516 * INVVPID instruction always causes a VM-exit unconditionally, so we are free to fake
1517 * and emulate any INVVPID flush type. However, it only makes sense to expose the types
1518 * when INVVPID instruction is supported just to be more compatible with guest
1519 * hypervisors that may make assumptions by only looking at this MSR even though they
1520 * are technically supposed to refer to VMX_PROC_CTLS2_VPID first.
1521 *
1522 * See Intel spec. 25.1.2 "Instructions That Cause VM Exits Unconditionally".
1523 * See Intel spec. 30.3 "VMX Instructions".
1524 */
1525 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64EptVpidCaps : UINT64_MAX;
1526 uint8_t const fVpid = pGuestFeatures->fVmxVpid;
1527
1528 uint8_t const fExecOnly = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EXEC_ONLY);
1529 uint8_t const fPml4 = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1530 uint8_t const fMemTypeUc = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_UC);
1531 uint8_t const fMemTypeWb = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_WB);
1532 uint8_t const f2MPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDE_2M);
1533 uint8_t const f1GPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDPTE_1G);
1534 uint8_t const fInvept = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT);
1535 /** @todo Nested VMX: Support accessed/dirty bits, see @bugref{10092#c25}. */
1536 /* uint8_t const fAccessDirty = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY); */
1537 uint8_t const fEptSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
1538 uint8_t const fEptAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
1539 uint8_t const fVpidIndiv = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1540 uint8_t const fVpidSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
1541 uint8_t const fVpidAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
1542 uint8_t const fVpidSingleGlobal = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
1543 pGuestVmxMsrs->u64EptVpidCaps = RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EXEC_ONLY, fExecOnly)
1544 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4, fPml4)
1545 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_UC, fMemTypeUc)
1546 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_WB, fMemTypeWb)
1547 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDE_2M, f2MPage)
1548 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDPTE_1G, f1GPage)
1549 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT, fInvept)
1550 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY, 0)
1551 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION, 0)
1552 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_SUPER_SHW_STACK, 0)
1553 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX, fEptSingle)
1554 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX, fEptAll)
1555 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID, fVpid)
1556 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR, fVpid & fVpidIndiv)
1557 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX, fVpid & fVpidSingle)
1558 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX, fVpid & fVpidAll)
1559 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS, fVpid & fVpidSingleGlobal);
1560 }
1561
1562 /* VM Functions. */
1563 if (pGuestFeatures->fVmxVmFunc)
1564 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1565}
1566
1567
1568/**
1569 * Checks whether the given guest CPU VMX features are compatible with the provided
1570 * base features.
1571 *
1572 * @returns @c true if compatible, @c false otherwise.
1573 * @param pVM The cross context VM structure.
1574 * @param pBase The base VMX CPU features.
1575 * @param pGst The guest VMX CPU features.
1576 *
1577 * @remarks Only VMX feature bits are examined.
1578 */
1579static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1580{
1581 if (!cpumR3IsHwAssistNstGstExecAllowed(pVM))
1582 return false;
1583
1584#define CPUM_VMX_FEAT_SHIFT(a_pFeat, a_FeatName, a_cShift) ((uint64_t)(a_pFeat->a_FeatName) << (a_cShift))
1585#define CPUM_VMX_MAKE_FEATURES_1(a_pFeat) ( CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInsOutInfo , 0) \
1586 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExtIntExit , 1) \
1587 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxNmiExit , 2) \
1588 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtNmi , 3) \
1589 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPreemptTimer , 4) \
1590 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPostedInt , 5) \
1591 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxIntWindowExit , 6) \
1592 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxTscOffsetting , 7) \
1593 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxHltExit , 8) \
1594 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInvlpgExit , 9) \
1595 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMwaitExit , 10) \
1596 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdpmcExit , 12) \
1597 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdtscExit , 13) \
1598 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr3LoadExit , 14) \
1599 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr3StoreExit , 15) \
1600 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxTertiaryExecCtls , 16) \
1601 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr8LoadExit , 17) \
1602 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr8StoreExit , 18) \
1603 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseTprShadow , 19) \
1604 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxNmiWindowExit , 20) \
1605 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMovDRxExit , 21) \
1606 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUncondIoExit , 22) \
1607 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseIoBitmaps , 23) \
1608 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMonitorTrapFlag , 24) \
1609 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseMsrBitmaps , 25) \
1610 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMonitorExit , 26) \
1611 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPauseExit , 27) \
1612 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSecondaryExecCtls , 28) \
1613 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtApicAccess , 29) \
1614 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEpt , 30) \
1615 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxDescTableExit , 31) \
1616 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdtscp , 32) \
1617 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtX2ApicMode , 33) \
1618 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVpid , 34) \
1619 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxWbinvdExit , 35) \
1620 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUnrestrictedGuest , 36) \
1621 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxApicRegVirt , 37) \
1622 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtIntDelivery , 38) \
1623 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPauseLoopExit , 39) \
1624 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdrandExit , 40) \
1625 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInvpcid , 41) \
1626 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmFunc , 42) \
1627 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmcsShadowing , 43) \
1628 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdseedExit , 44) \
1629 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPml , 45) \
1630 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEptXcptVe , 46) \
1631 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxConcealVmxFromPt , 47) \
1632 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxXsavesXrstors , 48) \
1633 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxModeBasedExecuteEpt, 49) \
1634 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSppEpt , 50) \
1635 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPtEpt , 51) \
1636 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseTscScaling , 52) \
1637 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUserWaitPause , 53) \
1638 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEnclvExit , 54) \
1639 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxLoadIwKeyExit , 55) \
1640 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadDebugCtls , 56) \
1641 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxIa32eModeGuest , 57) \
1642 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadEferMsr , 58) \
1643 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadPatMsr , 59) \
1644 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveDebugCtls , 60) \
1645 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxHostAddrSpaceSize , 61) \
1646 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitAckExtInt , 62) \
1647 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSavePatMsr , 63))
1648
1649#define CPUM_VMX_MAKE_FEATURES_2(a_pFeat) ( CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitLoadPatMsr , 0) \
1650 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveEferMsr , 1) \
1651 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitLoadEferMsr , 2) \
1652 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSavePreemptTimer , 3) \
1653 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveEferLma , 4) \
1654 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPt , 5) \
1655 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmwriteAll , 6) \
1656 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryInjectSoftInt , 7))
1657
1658 /* Check first set of feature bits. */
1659 {
1660 uint64_t const fBase = CPUM_VMX_MAKE_FEATURES_1(pBase);
1661 uint64_t const fGst = CPUM_VMX_MAKE_FEATURES_1(pGst);
1662 if ((fBase | fGst) != fBase)
1663 {
1664 uint64_t const fDiff = fBase ^ fGst;
1665 LogRel(("CPUM: VMX features (1) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1666 fBase, fGst, fDiff));
1667 return false;
1668 }
1669 }
1670
1671 /* Check second set of feature bits. */
1672 {
1673 uint64_t const fBase = CPUM_VMX_MAKE_FEATURES_2(pBase);
1674 uint64_t const fGst = CPUM_VMX_MAKE_FEATURES_2(pGst);
1675 if ((fBase | fGst) != fBase)
1676 {
1677 uint64_t const fDiff = fBase ^ fGst;
1678 LogRel(("CPUM: VMX features (2) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1679 fBase, fGst, fDiff));
1680 return false;
1681 }
1682 }
1683#undef CPUM_VMX_FEAT_SHIFT
1684#undef CPUM_VMX_MAKE_FEATURES_1
1685#undef CPUM_VMX_MAKE_FEATURES_2
1686
1687 return true;
1688}
1689
1690
1691/**
1692 * Initializes VMX guest features and MSRs.
1693 *
1694 * @param pVM The cross context VM structure.
1695 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1696 * and no hardware-assisted nested-guest execution is
1697 * possible for this VM.
1698 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1699 */
1700void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1701{
1702 Assert(pVM);
1703 Assert(pGuestVmxMsrs);
1704
1705 /*
1706 * While it would be nice to check this earlier while initializing fNestedVmxEpt
1707 * but we would not have enumearted host features then, so do it at least now.
1708 */
1709 if ( !pVM->cpum.s.HostFeatures.fNoExecute
1710 && pVM->cpum.s.fNestedVmxEpt)
1711 {
1712 LogRel(("CPUM: Warning! EPT not exposed to the guest since NX isn't available on the host.\n"));
1713 pVM->cpum.s.fNestedVmxEpt = false;
1714 pVM->cpum.s.fNestedVmxUnrestrictedGuest = false;
1715 }
1716
1717 /*
1718 * Initialize the set of VMX features we emulate.
1719 *
1720 * Note! Some bits might be reported as 1 always if they fall under the
1721 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1722 */
1723 CPUMFEATURES EmuFeat;
1724 RT_ZERO(EmuFeat);
1725 EmuFeat.fVmx = 1;
1726 EmuFeat.fVmxInsOutInfo = 1;
1727 EmuFeat.fVmxExtIntExit = 1;
1728 EmuFeat.fVmxNmiExit = 1;
1729 EmuFeat.fVmxVirtNmi = 1;
1730 EmuFeat.fVmxPreemptTimer = pVM->cpum.s.fNestedVmxPreemptTimer;
1731 EmuFeat.fVmxPostedInt = 0;
1732 EmuFeat.fVmxIntWindowExit = 1;
1733 EmuFeat.fVmxTscOffsetting = 1;
1734 EmuFeat.fVmxHltExit = 1;
1735 EmuFeat.fVmxInvlpgExit = 1;
1736 EmuFeat.fVmxMwaitExit = 1;
1737 EmuFeat.fVmxRdpmcExit = 1;
1738 EmuFeat.fVmxRdtscExit = 1;
1739 EmuFeat.fVmxCr3LoadExit = 1;
1740 EmuFeat.fVmxCr3StoreExit = 1;
1741 EmuFeat.fVmxTertiaryExecCtls = 0;
1742 EmuFeat.fVmxCr8LoadExit = 1;
1743 EmuFeat.fVmxCr8StoreExit = 1;
1744 EmuFeat.fVmxUseTprShadow = 1;
1745 EmuFeat.fVmxNmiWindowExit = 0;
1746 EmuFeat.fVmxMovDRxExit = 1;
1747 EmuFeat.fVmxUncondIoExit = 1;
1748 EmuFeat.fVmxUseIoBitmaps = 1;
1749 EmuFeat.fVmxMonitorTrapFlag = 0;
1750 EmuFeat.fVmxUseMsrBitmaps = 1;
1751 EmuFeat.fVmxMonitorExit = 1;
1752 EmuFeat.fVmxPauseExit = 1;
1753 EmuFeat.fVmxSecondaryExecCtls = 1;
1754 EmuFeat.fVmxVirtApicAccess = 1;
1755 EmuFeat.fVmxEpt = pVM->cpum.s.fNestedVmxEpt;
1756 EmuFeat.fVmxDescTableExit = 1;
1757 EmuFeat.fVmxRdtscp = 1;
1758 EmuFeat.fVmxVirtX2ApicMode = 0;
1759 EmuFeat.fVmxVpid = 0; /** @todo Consider enabling this when EPT works. */
1760 EmuFeat.fVmxWbinvdExit = 1;
1761 EmuFeat.fVmxUnrestrictedGuest = pVM->cpum.s.fNestedVmxUnrestrictedGuest;
1762 EmuFeat.fVmxApicRegVirt = 0;
1763 EmuFeat.fVmxVirtIntDelivery = 0;
1764 EmuFeat.fVmxPauseLoopExit = 0;
1765 EmuFeat.fVmxRdrandExit = 0;
1766 EmuFeat.fVmxInvpcid = 1;
1767 EmuFeat.fVmxVmFunc = 0;
1768 EmuFeat.fVmxVmcsShadowing = 0;
1769 EmuFeat.fVmxRdseedExit = 0;
1770 EmuFeat.fVmxPml = 0;
1771 EmuFeat.fVmxEptXcptVe = 0;
1772 EmuFeat.fVmxConcealVmxFromPt = 0;
1773 EmuFeat.fVmxXsavesXrstors = 0;
1774 EmuFeat.fVmxModeBasedExecuteEpt = 0;
1775 EmuFeat.fVmxSppEpt = 0;
1776 EmuFeat.fVmxPtEpt = 0;
1777 EmuFeat.fVmxUseTscScaling = 0;
1778 EmuFeat.fVmxUserWaitPause = 0;
1779 EmuFeat.fVmxEnclvExit = 0;
1780 EmuFeat.fVmxLoadIwKeyExit = 0;
1781 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1782 EmuFeat.fVmxIa32eModeGuest = 1;
1783 EmuFeat.fVmxEntryLoadEferMsr = 1;
1784 EmuFeat.fVmxEntryLoadPatMsr = 0;
1785 EmuFeat.fVmxExitSaveDebugCtls = 1;
1786 EmuFeat.fVmxHostAddrSpaceSize = 1;
1787 EmuFeat.fVmxExitAckExtInt = 1;
1788 EmuFeat.fVmxExitSavePatMsr = 0;
1789 EmuFeat.fVmxExitLoadPatMsr = 0;
1790 EmuFeat.fVmxExitSaveEferMsr = 1;
1791 EmuFeat.fVmxExitLoadEferMsr = 1;
1792 EmuFeat.fVmxSavePreemptTimer = 0; /* Cannot be enabled if VMX-preemption timer is disabled. */
1793 EmuFeat.fVmxExitSaveEferLma = 1; /* Cannot be disabled if unrestricted guest is enabled. */
1794 EmuFeat.fVmxPt = 0;
1795 EmuFeat.fVmxVmwriteAll = 0; /** @todo NSTVMX: enable this when nested VMCS shadowing is enabled. */
1796 EmuFeat.fVmxEntryInjectSoftInt = 1;
1797
1798 /*
1799 * Merge guest features.
1800 *
1801 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1802 * by the hardware, hence we merge our emulated features with the host features below.
1803 */
1804 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
1805 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1806 Assert(pBaseFeat->fVmx);
1807 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1808 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1809 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1810 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1811 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1812 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1813 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1814 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1815 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1816 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1817 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1818 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1819 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1820 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1821 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1822 pGuestFeat->fVmxTertiaryExecCtls = (pBaseFeat->fVmxTertiaryExecCtls & EmuFeat.fVmxTertiaryExecCtls );
1823 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1824 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1825 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1826 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1827 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1828 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1829 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1830 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1831 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1832 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1833 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1834 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1835 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1836 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1837 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1838 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1839 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1840 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1841 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1842 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1843 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1844 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1845 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1846 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1847 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1848 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1849 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1850 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1851 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1852 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1853 pGuestFeat->fVmxConcealVmxFromPt = (pBaseFeat->fVmxConcealVmxFromPt & EmuFeat.fVmxConcealVmxFromPt );
1854 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1855 pGuestFeat->fVmxModeBasedExecuteEpt = (pBaseFeat->fVmxModeBasedExecuteEpt & EmuFeat.fVmxModeBasedExecuteEpt );
1856 pGuestFeat->fVmxSppEpt = (pBaseFeat->fVmxSppEpt & EmuFeat.fVmxSppEpt );
1857 pGuestFeat->fVmxPtEpt = (pBaseFeat->fVmxPtEpt & EmuFeat.fVmxPtEpt );
1858 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1859 pGuestFeat->fVmxUserWaitPause = (pBaseFeat->fVmxUserWaitPause & EmuFeat.fVmxUserWaitPause );
1860 pGuestFeat->fVmxEnclvExit = (pBaseFeat->fVmxEnclvExit & EmuFeat.fVmxEnclvExit );
1861 pGuestFeat->fVmxLoadIwKeyExit = (pBaseFeat->fVmxLoadIwKeyExit & EmuFeat.fVmxLoadIwKeyExit );
1862 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1863 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1864 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1865 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1866 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1867 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1868 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1869 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1870 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1871 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1872 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1873 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1874 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1875 pGuestFeat->fVmxPt = (pBaseFeat->fVmxPt & EmuFeat.fVmxPt );
1876 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1877 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1878
1879#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1880 /* Don't expose VMX preemption timer if host is subject to VMX-preemption timer erratum. */
1881 if ( pGuestFeat->fVmxPreemptTimer
1882 && HMIsSubjectToVmxPreemptTimerErratum())
1883 {
1884 LogRel(("CPUM: Warning! VMX-preemption timer not exposed to guest due to host CPU erratum.\n"));
1885 pGuestFeat->fVmxPreemptTimer = 0;
1886 pGuestFeat->fVmxSavePreemptTimer = 0;
1887 }
1888#endif
1889
1890 /* Sanity checking. */
1891 if (!pGuestFeat->fVmxSecondaryExecCtls)
1892 {
1893 Assert(!pGuestFeat->fVmxVirtApicAccess);
1894 Assert(!pGuestFeat->fVmxEpt);
1895 Assert(!pGuestFeat->fVmxDescTableExit);
1896 Assert(!pGuestFeat->fVmxRdtscp);
1897 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
1898 Assert(!pGuestFeat->fVmxVpid);
1899 Assert(!pGuestFeat->fVmxWbinvdExit);
1900 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
1901 Assert(!pGuestFeat->fVmxApicRegVirt);
1902 Assert(!pGuestFeat->fVmxVirtIntDelivery);
1903 Assert(!pGuestFeat->fVmxPauseLoopExit);
1904 Assert(!pGuestFeat->fVmxRdrandExit);
1905 Assert(!pGuestFeat->fVmxInvpcid);
1906 Assert(!pGuestFeat->fVmxVmFunc);
1907 Assert(!pGuestFeat->fVmxVmcsShadowing);
1908 Assert(!pGuestFeat->fVmxRdseedExit);
1909 Assert(!pGuestFeat->fVmxPml);
1910 Assert(!pGuestFeat->fVmxEptXcptVe);
1911 Assert(!pGuestFeat->fVmxConcealVmxFromPt);
1912 Assert(!pGuestFeat->fVmxXsavesXrstors);
1913 Assert(!pGuestFeat->fVmxModeBasedExecuteEpt);
1914 Assert(!pGuestFeat->fVmxSppEpt);
1915 Assert(!pGuestFeat->fVmxPtEpt);
1916 Assert(!pGuestFeat->fVmxUseTscScaling);
1917 Assert(!pGuestFeat->fVmxUserWaitPause);
1918 Assert(!pGuestFeat->fVmxEnclvExit);
1919 }
1920 else if (pGuestFeat->fVmxUnrestrictedGuest)
1921 {
1922 /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
1923 Assert(pGuestFeat->fVmxExitSaveEferLma);
1924 /* Unrestricted guest execution requires EPT. See Intel spec. 25.2.1.1 "VM-Execution Control Fields". */
1925 Assert(pGuestFeat->fVmxEpt);
1926 }
1927
1928 if (!pGuestFeat->fVmxTertiaryExecCtls)
1929 Assert(!pGuestFeat->fVmxLoadIwKeyExit);
1930
1931 /*
1932 * Finally initialize the VMX guest MSRs.
1933 */
1934 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
1935}
1936
1937
1938/**
1939 * Gets the host hardware-virtualization MSRs.
1940 *
1941 * @returns VBox status code.
1942 * @param pMsrs Where to store the MSRs.
1943 */
1944static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
1945{
1946 Assert(pMsrs);
1947
1948 uint32_t fCaps = 0;
1949 int rc = SUPR3QueryVTCaps(&fCaps);
1950 if (RT_SUCCESS(rc))
1951 {
1952 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
1953 {
1954 SUPHWVIRTMSRS HwvirtMsrs;
1955 rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
1956 if (RT_SUCCESS(rc))
1957 {
1958 if (fCaps & SUPVTCAPS_VT_X)
1959 HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
1960 else
1961 HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
1962 return VINF_SUCCESS;
1963 }
1964
1965 LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
1966 return rc;
1967 }
1968
1969 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
1970 return VERR_INTERNAL_ERROR_5;
1971 }
1972 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
1973 return VINF_SUCCESS;
1974}
1975
1976
1977/**
1978 * @callback_method_impl{FNTMTIMERINT,
1979 * Callback that fires when the nested VMX-preemption timer expired.}
1980 */
1981static DECLCALLBACK(void) cpumR3VmxPreemptTimerCallback(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
1982{
1983 RT_NOREF(pVM, hTimer);
1984 PVMCPU pVCpu = (PVMCPUR3)pvUser;
1985 AssertPtr(pVCpu);
1986 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
1987}
1988
1989
1990/**
1991 * Initializes the CPUM.
1992 *
1993 * @returns VBox status code.
1994 * @param pVM The cross context VM structure.
1995 */
1996VMMR3DECL(int) CPUMR3Init(PVM pVM)
1997{
1998 LogFlow(("CPUMR3Init\n"));
1999
2000 /*
2001 * Assert alignment, sizes and tables.
2002 */
2003 AssertCompileMemberAlignment(VM, cpum.s, 32);
2004 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
2005 AssertCompileSizeAlignment(CPUMCTX, 64);
2006 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
2007 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
2008 AssertCompileMemberAlignment(VM, cpum, 64);
2009 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
2010#ifdef VBOX_STRICT
2011 int rc2 = cpumR3MsrStrictInitChecks();
2012 AssertRCReturn(rc2, rc2);
2013#endif
2014
2015 /*
2016 * Gather info about the host CPU.
2017 */
2018#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2019 if (!ASMHasCpuId())
2020 {
2021 LogRel(("The CPU doesn't support CPUID!\n"));
2022 return VERR_UNSUPPORTED_CPU;
2023 }
2024#endif
2025
2026 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
2027
2028 CPUMMSRS HostMsrs;
2029 RT_ZERO(HostMsrs);
2030 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
2031 AssertLogRelRCReturn(rc, rc);
2032
2033#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2034 PCPUMCPUIDLEAF paLeaves;
2035 uint32_t cLeaves;
2036 rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
2037 AssertLogRelRCReturn(rc, rc);
2038
2039 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &HostMsrs, &pVM->cpum.s.HostFeatures);
2040 RTMemFree(paLeaves);
2041 AssertLogRelRCReturn(rc, rc);
2042 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
2043#endif
2044
2045 /*
2046 * Check that the CPU supports the minimum features we require.
2047 */
2048 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
2049 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
2050 if (!pVM->cpum.s.HostFeatures.fMmx)
2051 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
2052 if (!pVM->cpum.s.HostFeatures.fTsc)
2053 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
2054
2055 /*
2056 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
2057 */
2058 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
2059 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
2060
2061 /*
2062 * Figure out which XSAVE/XRSTOR features are available on the host.
2063 */
2064 uint64_t fXcr0Host = 0;
2065 uint64_t fXStateHostMask = 0;
2066#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2067 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
2068 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
2069 {
2070 fXStateHostMask = fXcr0Host = ASMGetXcr0();
2071 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
2072 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2073 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
2074 }
2075#endif
2076 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
2077 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
2078 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
2079
2080 /*
2081 * Initialize the host XSAVE/XRSTOR mask.
2082 */
2083 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
2084 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
2085 AssertLogRelReturn( pVM->cpum.s.HostFeatures.cbMaxExtendedState >= sizeof(X86FXSTATE)
2086 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Host.XState)
2087 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Guest.XState)
2088 , VERR_CPUM_IPE_2);
2089
2090 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2091 {
2092 PVMCPU pVCpu = pVM->apCpusR3[i];
2093
2094 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
2095 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2096 }
2097
2098 /*
2099 * Register saved state data item.
2100 */
2101 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
2102 NULL, cpumR3LiveExec, NULL,
2103 NULL, cpumR3SaveExec, NULL,
2104 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
2105 if (RT_FAILURE(rc))
2106 return rc;
2107
2108 /*
2109 * Register info handlers and registers with the debugger facility.
2110 */
2111 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2112 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2113 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2114 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2115 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2116 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2117 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2118 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2119 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2120 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2121 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2122 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2123 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
2124 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2125 &cpumR3InfoVmxFeatures);
2126
2127 rc = cpumR3DbgInit(pVM);
2128 if (RT_FAILURE(rc))
2129 return rc;
2130
2131#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2132 /*
2133 * Check if we need to workaround partial/leaky FPU handling.
2134 */
2135 cpumR3CheckLeakyFpu(pVM);
2136#endif
2137
2138 /*
2139 * Initialize the Guest CPUID and MSR states.
2140 */
2141 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
2142 if (RT_FAILURE(rc))
2143 return rc;
2144
2145 /*
2146 * Init the VMX/SVM state.
2147 *
2148 * This must be done after initializing CPUID/MSR features as we access the
2149 * the VMX/SVM guest features below.
2150 *
2151 * In the case of nested VT-x, we also need to create the per-VCPU
2152 * VMX preemption timers.
2153 */
2154 if (pVM->cpum.s.GuestFeatures.fVmx)
2155 cpumR3InitVmxHwVirtState(pVM);
2156 else if (pVM->cpum.s.GuestFeatures.fSvm)
2157 cpumR3InitSvmHwVirtState(pVM);
2158 else
2159 Assert(pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2160
2161 CPUMR3Reset(pVM);
2162 return VINF_SUCCESS;
2163}
2164
2165
2166/**
2167 * Applies relocations to data and code managed by this
2168 * component. This function will be called at init and
2169 * whenever the VMM need to relocate it self inside the GC.
2170 *
2171 * The CPUM will update the addresses used by the switcher.
2172 *
2173 * @param pVM The cross context VM structure.
2174 */
2175VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2176{
2177 RT_NOREF(pVM);
2178}
2179
2180
2181/**
2182 * Terminates the CPUM.
2183 *
2184 * Termination means cleaning up and freeing all resources,
2185 * the VM it self is at this point powered off or suspended.
2186 *
2187 * @returns VBox status code.
2188 * @param pVM The cross context VM structure.
2189 */
2190VMMR3DECL(int) CPUMR3Term(PVM pVM)
2191{
2192#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2193 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2194 {
2195 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2196 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2197 pVCpu->cpum.s.uMagic = 0;
2198 pvCpu->cpum.s.Guest.dr[5] = 0;
2199 }
2200#endif
2201
2202 if (pVM->cpum.s.GuestFeatures.fVmx)
2203 {
2204 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2205 {
2206 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2207 if (pVCpu->cpum.s.hNestedVmxPreemptTimer != NIL_TMTIMERHANDLE)
2208 {
2209 int rc = TMR3TimerDestroy(pVM, pVCpu->cpum.s.hNestedVmxPreemptTimer); AssertRC(rc);
2210 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2211 }
2212 }
2213 }
2214 return VINF_SUCCESS;
2215}
2216
2217
2218/**
2219 * Resets a virtual CPU.
2220 *
2221 * Used by CPUMR3Reset and CPU hot plugging.
2222 *
2223 * @param pVM The cross context VM structure.
2224 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2225 * being reset. This may differ from the current EMT.
2226 */
2227VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2228{
2229 /** @todo anything different for VCPU > 0? */
2230 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2231
2232 /*
2233 * Initialize everything to ZERO first.
2234 */
2235 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2236
2237 RT_BZERO(pCtx, RT_UOFFSETOF(CPUMCTX, aoffXState));
2238
2239 pVCpu->cpum.s.fUseFlags = fUseFlags;
2240
2241 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2242 pCtx->eip = 0x0000fff0;
2243 pCtx->edx = 0x00000600; /* P6 processor */
2244 pCtx->eflags.Bits.u1Reserved0 = 1;
2245
2246 pCtx->cs.Sel = 0xf000;
2247 pCtx->cs.ValidSel = 0xf000;
2248 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2249 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2250 pCtx->cs.u32Limit = 0x0000ffff;
2251 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2252 pCtx->cs.Attr.n.u1Present = 1;
2253 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2254
2255 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2256 pCtx->ds.u32Limit = 0x0000ffff;
2257 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2258 pCtx->ds.Attr.n.u1Present = 1;
2259 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2260
2261 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2262 pCtx->es.u32Limit = 0x0000ffff;
2263 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2264 pCtx->es.Attr.n.u1Present = 1;
2265 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2266
2267 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2268 pCtx->fs.u32Limit = 0x0000ffff;
2269 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2270 pCtx->fs.Attr.n.u1Present = 1;
2271 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2272
2273 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2274 pCtx->gs.u32Limit = 0x0000ffff;
2275 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2276 pCtx->gs.Attr.n.u1Present = 1;
2277 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2278
2279 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2280 pCtx->ss.u32Limit = 0x0000ffff;
2281 pCtx->ss.Attr.n.u1Present = 1;
2282 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2283 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2284
2285 pCtx->idtr.cbIdt = 0xffff;
2286 pCtx->gdtr.cbGdt = 0xffff;
2287
2288 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2289 pCtx->ldtr.u32Limit = 0xffff;
2290 pCtx->ldtr.Attr.n.u1Present = 1;
2291 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2292
2293 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2294 pCtx->tr.u32Limit = 0xffff;
2295 pCtx->tr.Attr.n.u1Present = 1;
2296 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2297
2298 pCtx->dr[6] = X86_DR6_INIT_VAL;
2299 pCtx->dr[7] = X86_DR7_INIT_VAL;
2300
2301 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
2302 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2303 pFpuCtx->FCW = 0x37f;
2304
2305 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2306 IA-32 Processor States Following Power-up, Reset, or INIT */
2307 pFpuCtx->MXCSR = 0x1F80;
2308 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2309
2310 pCtx->aXcr[0] = XSAVE_C_X87;
2311 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2312 {
2313 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2314 as we don't know what happened before. (Bother optimize later?) */
2315 pCtx->XState.Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2316 }
2317
2318 /*
2319 * MSRs.
2320 */
2321 /* Init PAT MSR */
2322 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2323
2324 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2325 * The Intel docs don't mention it. */
2326 Assert(!pCtx->msrEFER);
2327
2328 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2329 is supposed to be here, just trying provide useful/sensible values. */
2330 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2331 if (pRange)
2332 {
2333 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2334 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2335 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2336 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2337 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2338 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2339 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2340 }
2341
2342 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2343
2344 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2345 * called from each EMT while we're getting called by CPUMR3Reset()
2346 * iteratively on the same thread. Fix later. */
2347#if 0 /** @todo r=bird: This we will do in TM, not here. */
2348 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2349 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2350#endif
2351
2352
2353 /* C-state control. Guesses. */
2354 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2355 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2356 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2357 * functionality. The default value must be different due to incompatible write mask.
2358 */
2359 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2360 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2361 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2362 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2363
2364 /*
2365 * Hardware virtualization state.
2366 */
2367 CPUMSetGuestGif(pCtx, true);
2368 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2369 if (pVM->cpum.s.GuestFeatures.fVmx)
2370 cpumR3ResetVmxHwVirtState(pVCpu);
2371 else if (pVM->cpum.s.GuestFeatures.fSvm)
2372 cpumR3ResetSvmHwVirtState(pVCpu);
2373}
2374
2375
2376/**
2377 * Resets the CPU.
2378 *
2379 * @returns VINF_SUCCESS.
2380 * @param pVM The cross context VM structure.
2381 */
2382VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2383{
2384 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2385 {
2386 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2387 CPUMR3ResetCpu(pVM, pVCpu);
2388
2389#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2390
2391 /* Magic marker for searching in crash dumps. */
2392 strcpy((char *)pVCpu->.cpum.s.aMagic, "CPUMCPU Magic");
2393 pVCpu->cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2394 pVCpu->cpum.s.Guest->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2395#endif
2396 }
2397}
2398
2399
2400
2401
2402/**
2403 * Pass 0 live exec callback.
2404 *
2405 * @returns VINF_SSM_DONT_CALL_AGAIN.
2406 * @param pVM The cross context VM structure.
2407 * @param pSSM The saved state handle.
2408 * @param uPass The pass (0).
2409 */
2410static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2411{
2412 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2413 cpumR3SaveCpuId(pVM, pSSM);
2414 return VINF_SSM_DONT_CALL_AGAIN;
2415}
2416
2417
2418/**
2419 * Execute state save operation.
2420 *
2421 * @returns VBox status code.
2422 * @param pVM The cross context VM structure.
2423 * @param pSSM SSM operation handle.
2424 */
2425static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2426{
2427 /*
2428 * Save.
2429 */
2430 SSMR3PutU32(pSSM, pVM->cCpus);
2431 SSMR3PutU32(pSSM, sizeof(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr));
2432 CPUMCTX DummyHyperCtx;
2433 RT_ZERO(DummyHyperCtx);
2434 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2435 {
2436 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2437
2438 SSMR3PutStructEx(pSSM, &DummyHyperCtx, sizeof(DummyHyperCtx), 0, g_aCpumCtxFields, NULL);
2439
2440 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2441 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2442 SSMR3PutStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2443 if (pGstCtx->fXStateMask != 0)
2444 SSMR3PutStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2445 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2446 {
2447 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2448 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2449 }
2450 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2451 {
2452 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2453 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2454 }
2455 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2456 {
2457 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2458 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2459 }
2460 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2461 {
2462 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2463 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2464 }
2465 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2466 {
2467 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2468 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2469 }
2470 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[0].u);
2471 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[1].u);
2472 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[2].u);
2473 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[3].u);
2474 if (pVM->cpum.s.GuestFeatures.fSvm)
2475 {
2476 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2477 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2478 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2479 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2480 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2481 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2482 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2483 g_aSvmHwvirtHostState, NULL /* pvUser */);
2484 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2485 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2486 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2487 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2488 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2489 }
2490 if (pVM->cpum.s.GuestFeatures.fVmx)
2491 {
2492 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon);
2493 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs);
2494 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2495 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode);
2496 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2497 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents);
2498 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2499 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs), 0, g_aVmxHwvirtVmcs, NULL);
2500 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2501 0, g_aVmxHwvirtVmcs, NULL);
2502 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2503 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2504 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2505 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2506 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2507 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap));
2508 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap));
2509 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2510 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick);
2511 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick);
2512 SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite);
2513 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2514 SSMR3PutU64(pSSM, MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON); /* Deprecated since 2021/09/22. Value kept backwards compatibile with 6.1.26. */
2515 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2516 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2517 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2518 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2519 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2520 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2521 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2522 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2523 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2524 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2525 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2526 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2527 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2528 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2529 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2530 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2531 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2532 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2533 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2534 }
2535 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2536 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2537 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2538 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2539 }
2540
2541 cpumR3SaveCpuId(pVM, pSSM);
2542 return VINF_SUCCESS;
2543}
2544
2545
2546/**
2547 * @callback_method_impl{FNSSMINTLOADPREP}
2548 */
2549static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2550{
2551 NOREF(pSSM);
2552 pVM->cpum.s.fPendingRestore = true;
2553 return VINF_SUCCESS;
2554}
2555
2556
2557/**
2558 * @callback_method_impl{FNSSMINTLOADEXEC}
2559 */
2560static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2561{
2562 int rc; /* Only for AssertRCReturn use. */
2563
2564 /*
2565 * Validate version.
2566 */
2567 if ( uVersion != CPUM_SAVED_STATE_VERSION_PAE_PDPES
2568 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2
2569 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX
2570 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2571 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2572 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2573 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2574 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2575 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2576 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2577 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2578 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2579 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2580 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2581 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2582 {
2583 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2584 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2585 }
2586
2587 if (uPass == SSM_PASS_FINAL)
2588 {
2589 /*
2590 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2591 * really old SSM file versions.)
2592 */
2593 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2594 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2595 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2596 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR));
2597
2598 /*
2599 * Figure x86 and ctx field definitions to use for older states.
2600 */
2601 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2602 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2603 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2604 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2605 {
2606 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2607 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2608 }
2609 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2610 {
2611 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2612 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2613 }
2614
2615 /*
2616 * The hyper state used to preceed the CPU count. Starting with
2617 * XSAVE it was moved down till after we've got the count.
2618 */
2619 CPUMCTX HyperCtxIgnored;
2620 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2621 {
2622 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2623 {
2624 X86FXSTATE Ign;
2625 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2626 SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored),
2627 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2628 }
2629 }
2630
2631 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2632 {
2633 uint32_t cCpus;
2634 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2635 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2636 VERR_SSM_UNEXPECTED_DATA);
2637 }
2638 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2639 || pVM->cCpus == 1,
2640 ("cCpus=%u\n", pVM->cCpus),
2641 VERR_SSM_UNEXPECTED_DATA);
2642
2643 uint32_t cbMsrs = 0;
2644 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2645 {
2646 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2647 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2648 VERR_SSM_UNEXPECTED_DATA);
2649 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2650 VERR_SSM_UNEXPECTED_DATA);
2651 }
2652
2653 /*
2654 * Do the per-CPU restoring.
2655 */
2656 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2657 {
2658 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2659 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2660
2661 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2662 {
2663 /*
2664 * The XSAVE saved state layout moved the hyper state down here.
2665 */
2666 rc = SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored), 0, g_aCpumCtxFields, NULL);
2667 AssertRCReturn(rc, rc);
2668
2669 /*
2670 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2671 */
2672 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2673 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2674 AssertRCReturn(rc, rc);
2675
2676 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2677 if (pGstCtx->fXStateMask != 0)
2678 {
2679 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2680 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2681 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2682 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2683 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2684 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2685 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2686 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2687 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2688 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2689 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2690 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2691 }
2692
2693 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2694 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2695 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2696 {
2697 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2698 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2699 VERR_CPUM_INVALID_XCR0);
2700 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2701 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2702 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2703 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2704 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2705 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2706 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2707 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2708 }
2709
2710 /* Check that the XCR1 is zero, as we don't implement it yet. */
2711 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2712
2713 /*
2714 * Restore the individual extended state components we support.
2715 */
2716 if (pGstCtx->fXStateMask != 0)
2717 {
2718 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr),
2719 0, g_aCpumXSaveHdrFields, NULL);
2720 AssertRCReturn(rc, rc);
2721 AssertLogRelMsgReturn(!(pGstCtx->XState.Hdr.bmXState & ~pGstCtx->fXStateMask),
2722 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2723 pGstCtx->XState.Hdr.bmXState, pGstCtx->fXStateMask),
2724 VERR_CPUM_INVALID_XSAVE_HDR);
2725 }
2726 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2727 {
2728 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2729 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2730 }
2731 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2732 {
2733 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2734 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2735 }
2736 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2737 {
2738 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2739 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2740 }
2741 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2742 {
2743 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2744 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2745 }
2746 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2747 {
2748 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2749 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2750 }
2751 if (uVersion >= CPUM_SAVED_STATE_VERSION_PAE_PDPES)
2752 {
2753 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[0].u);
2754 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[1].u);
2755 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[2].u);
2756 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[3].u);
2757 }
2758 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2759 {
2760 if (pVM->cpum.s.GuestFeatures.fSvm)
2761 {
2762 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2763 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2764 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2765 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2766 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2767 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2768 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2769 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2770 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2771 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2772 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2773 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2774 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2775 }
2776 }
2777 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX)
2778 {
2779 if (pVM->cpum.s.GuestFeatures.fVmx)
2780 {
2781 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon);
2782 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs);
2783 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2784 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode);
2785 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2786 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents);
2787 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2788 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs),
2789 0, g_aVmxHwvirtVmcs, NULL);
2790 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2791 0, g_aVmxHwvirtVmcs, NULL);
2792 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2793 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2794 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2795 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2796 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2797 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap));
2798 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap));
2799 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2800 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick);
2801 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick);
2802 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite);
2803 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2804 SSMR3Skip(pSSM, sizeof(uint64_t)); /* Unused - used to be IA32_FEATURE_CONTROL, see @bugref{10106}. */
2805 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2806 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2807 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2808 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2809 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2810 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2811 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2812 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2813 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2814 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2815 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2816 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2817 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2818 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2819 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2820 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2821 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2822 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2823 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2)
2824 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2825 }
2826 }
2827 }
2828 else
2829 {
2830 /*
2831 * Pre XSAVE saved state.
2832 */
2833 SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87),
2834 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2835 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2836 }
2837
2838 /*
2839 * Restore a couple of flags and the MSRs.
2840 */
2841 uint32_t fIgnoredUsedFlags = 0;
2842 rc = SSMR3GetU32(pSSM, &fIgnoredUsedFlags); /* we're recalc the two relevant flags after loading state. */
2843 AssertRCReturn(rc, rc);
2844 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2845
2846 rc = VINF_SUCCESS;
2847 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2848 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2849 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2850 {
2851 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2852 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2853 }
2854 AssertRCReturn(rc, rc);
2855
2856 /* REM and other may have cleared must-be-one fields in DR6 and
2857 DR7, fix these. */
2858 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2859 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2860 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2861 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2862 }
2863
2864 /* Older states does not have the internal selector register flags
2865 and valid selector value. Supply those. */
2866 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2867 {
2868 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2869 {
2870 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2871 bool const fValid = true /*!VM_IS_RAW_MODE_ENABLED(pVM)*/
2872 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2873 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2874 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2875 if (fValid)
2876 {
2877 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2878 {
2879 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2880 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2881 }
2882
2883 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2884 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2885 }
2886 else
2887 {
2888 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2889 {
2890 paSelReg[iSelReg].fFlags = 0;
2891 paSelReg[iSelReg].ValidSel = 0;
2892 }
2893
2894 /* This might not be 104% correct, but I think it's close
2895 enough for all practical purposes... (REM always loaded
2896 LDTR registers.) */
2897 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2898 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2899 }
2900 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2901 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2902 }
2903 }
2904
2905 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2906 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2907 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2908 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2909 {
2910 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2911 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2912 }
2913
2914 /*
2915 * A quick sanity check.
2916 */
2917 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2918 {
2919 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2920 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2921 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2922 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2923 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2924 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2925 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2926 }
2927 }
2928
2929 pVM->cpum.s.fPendingRestore = false;
2930
2931 /*
2932 * Guest CPUIDs (and VMX MSR features).
2933 */
2934 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
2935 {
2936 CPUMMSRS GuestMsrs;
2937 RT_ZERO(GuestMsrs);
2938
2939 CPUMFEATURES BaseFeatures;
2940 bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx;
2941 if (fVmxGstFeat)
2942 {
2943 /*
2944 * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state.
2945 * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features
2946 * here so we can compare them for compatibility after exploding guest features.
2947 */
2948 BaseFeatures = pVM->cpum.s.GuestFeatures;
2949
2950 /* Use the VMX MSR features from the saved state while exploding guest features. */
2951 GuestMsrs.hwvirt.vmx = pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.vmx.Msrs;
2952 }
2953
2954 /* Load CPUID and explode guest features. */
2955 rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
2956 if (fVmxGstFeat)
2957 {
2958 /*
2959 * Check if the exploded VMX features from the saved state are compatible with the host-derived features
2960 * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with
2961 * VMX features presented to the guest.
2962 */
2963 bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures);
2964 if (!fIsCompat)
2965 return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO;
2966 }
2967 return rc;
2968 }
2969 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
2970}
2971
2972
2973/**
2974 * @callback_method_impl{FNSSMINTLOADDONE}
2975 */
2976static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2977{
2978 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2979 return VINF_SUCCESS;
2980
2981 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2982 if (pVM->cpum.s.fPendingRestore)
2983 {
2984 LogRel(("CPUM: Missing state!\n"));
2985 return VERR_INTERNAL_ERROR_2;
2986 }
2987
2988 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
2989 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2990 {
2991 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2992
2993 /* Notify PGM of the NXE states in case they've changed. */
2994 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2995
2996 /* During init. this is done in CPUMR3InitCompleted(). */
2997 if (fSupportsLongMode)
2998 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
2999
3000 /* Recalc the CPUM_USE_DEBUG_REGS_HYPER value. */
3001 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX);
3002 }
3003 return VINF_SUCCESS;
3004}
3005
3006
3007/**
3008 * Checks if the CPUM state restore is still pending.
3009 *
3010 * @returns true / false.
3011 * @param pVM The cross context VM structure.
3012 */
3013VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
3014{
3015 return pVM->cpum.s.fPendingRestore;
3016}
3017
3018
3019/**
3020 * Formats the EFLAGS value into mnemonics.
3021 *
3022 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
3023 * @param efl The EFLAGS value.
3024 */
3025static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
3026{
3027 /*
3028 * Format the flags.
3029 */
3030 static const struct
3031 {
3032 const char *pszSet; const char *pszClear; uint32_t fFlag;
3033 } s_aFlags[] =
3034 {
3035 { "vip",NULL, X86_EFL_VIP },
3036 { "vif",NULL, X86_EFL_VIF },
3037 { "ac", NULL, X86_EFL_AC },
3038 { "vm", NULL, X86_EFL_VM },
3039 { "rf", NULL, X86_EFL_RF },
3040 { "nt", NULL, X86_EFL_NT },
3041 { "ov", "nv", X86_EFL_OF },
3042 { "dn", "up", X86_EFL_DF },
3043 { "ei", "di", X86_EFL_IF },
3044 { "tf", NULL, X86_EFL_TF },
3045 { "nt", "pl", X86_EFL_SF },
3046 { "nz", "zr", X86_EFL_ZF },
3047 { "ac", "na", X86_EFL_AF },
3048 { "po", "pe", X86_EFL_PF },
3049 { "cy", "nc", X86_EFL_CF },
3050 };
3051 char *psz = pszEFlags;
3052 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
3053 {
3054 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
3055 if (pszAdd)
3056 {
3057 strcpy(psz, pszAdd);
3058 psz += strlen(pszAdd);
3059 *psz++ = ' ';
3060 }
3061 }
3062 psz[-1] = '\0';
3063}
3064
3065
3066/**
3067 * Formats a full register dump.
3068 *
3069 * @param pVM The cross context VM structure.
3070 * @param pCtx The context to format.
3071 * @param pCtxCore The context core to format.
3072 * @param pHlp Output functions.
3073 * @param enmType The dump type.
3074 * @param pszPrefix Register name prefix.
3075 */
3076static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
3077 const char *pszPrefix)
3078{
3079 NOREF(pVM);
3080
3081 /*
3082 * Format the EFLAGS.
3083 */
3084 uint32_t efl = pCtxCore->eflags.u32;
3085 char szEFlags[80];
3086 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3087
3088 /*
3089 * Format the registers.
3090 */
3091 switch (enmType)
3092 {
3093 case CPUMDUMPTYPE_TERSE:
3094 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3095 pHlp->pfnPrintf(pHlp,
3096 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3097 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3098 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3099 "%sr14=%016RX64 %sr15=%016RX64\n"
3100 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3101 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3102 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3103 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3104 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3105 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3106 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3107 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3108 else
3109 pHlp->pfnPrintf(pHlp,
3110 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3111 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3112 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3113 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3114 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3115 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3116 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3117 break;
3118
3119 case CPUMDUMPTYPE_DEFAULT:
3120 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3121 pHlp->pfnPrintf(pHlp,
3122 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3123 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3124 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3125 "%sr14=%016RX64 %sr15=%016RX64\n"
3126 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3127 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3128 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3129 ,
3130 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3131 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3132 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3133 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3134 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3135 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3136 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3137 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3138 else
3139 pHlp->pfnPrintf(pHlp,
3140 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3141 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3142 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3143 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3144 ,
3145 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3146 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3147 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3148 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3149 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3150 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3151 break;
3152
3153 case CPUMDUMPTYPE_VERBOSE:
3154 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3155 pHlp->pfnPrintf(pHlp,
3156 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3157 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3158 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3159 "%sr14=%016RX64 %sr15=%016RX64\n"
3160 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3161 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3162 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3163 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3164 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3165 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3166 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3167 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3168 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3169 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3170 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3171 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3172 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3173 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3174 ,
3175 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3176 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3177 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3178 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3179 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3180 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3181 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3182 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3183 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3184 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3185 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3186 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3187 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3188 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3189 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3190 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3191 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3192 else
3193 pHlp->pfnPrintf(pHlp,
3194 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3195 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3196 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3197 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3198 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3199 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3200 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3201 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3202 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3203 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3204 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3205 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3206 ,
3207 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3208 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3209 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3210 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3211 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3212 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3213 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3214 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3215 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3216 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3217 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3218 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3219
3220 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3221 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3222 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3223 {
3224 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
3225 pHlp->pfnPrintf(pHlp,
3226 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3227 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3228 ,
3229 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3230 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3231 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3232 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3233 );
3234 /*
3235 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3236 * not (FP)R0-7 as Intel SDM suggests.
3237 */
3238 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3239 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3240 {
3241 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3242 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3243 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3244 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3245 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3246 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3247 iExponent -= 16383; /* subtract bias */
3248 /** @todo This isn't entirenly correct and needs more work! */
3249 pHlp->pfnPrintf(pHlp,
3250 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3251 pszPrefix, iST, pszPrefix, iFPR,
3252 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3253 uTag, chSign, iInteger, u64Fraction, iExponent);
3254 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3255 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3256 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3257 else
3258 pHlp->pfnPrintf(pHlp, "\n");
3259 }
3260
3261 /* XMM/YMM/ZMM registers. */
3262 if (pCtx->fXStateMask & XSAVE_C_YMM)
3263 {
3264 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3265 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3266 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3267 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3268 pszPrefix, i, i < 10 ? " " : "",
3269 pYmmHiCtx->aYmmHi[i].au32[3],
3270 pYmmHiCtx->aYmmHi[i].au32[2],
3271 pYmmHiCtx->aYmmHi[i].au32[1],
3272 pYmmHiCtx->aYmmHi[i].au32[0],
3273 pFpuCtx->aXMM[i].au32[3],
3274 pFpuCtx->aXMM[i].au32[2],
3275 pFpuCtx->aXMM[i].au32[1],
3276 pFpuCtx->aXMM[i].au32[0]);
3277 else
3278 {
3279 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3280 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3281 pHlp->pfnPrintf(pHlp,
3282 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3283 pszPrefix, i, i < 10 ? " " : "",
3284 pZmmHi256->aHi256Regs[i].au32[7],
3285 pZmmHi256->aHi256Regs[i].au32[6],
3286 pZmmHi256->aHi256Regs[i].au32[5],
3287 pZmmHi256->aHi256Regs[i].au32[4],
3288 pZmmHi256->aHi256Regs[i].au32[3],
3289 pZmmHi256->aHi256Regs[i].au32[2],
3290 pZmmHi256->aHi256Regs[i].au32[1],
3291 pZmmHi256->aHi256Regs[i].au32[0],
3292 pYmmHiCtx->aYmmHi[i].au32[3],
3293 pYmmHiCtx->aYmmHi[i].au32[2],
3294 pYmmHiCtx->aYmmHi[i].au32[1],
3295 pYmmHiCtx->aYmmHi[i].au32[0],
3296 pFpuCtx->aXMM[i].au32[3],
3297 pFpuCtx->aXMM[i].au32[2],
3298 pFpuCtx->aXMM[i].au32[1],
3299 pFpuCtx->aXMM[i].au32[0]);
3300
3301 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3302 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3303 pHlp->pfnPrintf(pHlp,
3304 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3305 pszPrefix, i + 16,
3306 pZmm16Hi->aRegs[i].au32[15],
3307 pZmm16Hi->aRegs[i].au32[14],
3308 pZmm16Hi->aRegs[i].au32[13],
3309 pZmm16Hi->aRegs[i].au32[12],
3310 pZmm16Hi->aRegs[i].au32[11],
3311 pZmm16Hi->aRegs[i].au32[10],
3312 pZmm16Hi->aRegs[i].au32[9],
3313 pZmm16Hi->aRegs[i].au32[8],
3314 pZmm16Hi->aRegs[i].au32[7],
3315 pZmm16Hi->aRegs[i].au32[6],
3316 pZmm16Hi->aRegs[i].au32[5],
3317 pZmm16Hi->aRegs[i].au32[4],
3318 pZmm16Hi->aRegs[i].au32[3],
3319 pZmm16Hi->aRegs[i].au32[2],
3320 pZmm16Hi->aRegs[i].au32[1],
3321 pZmm16Hi->aRegs[i].au32[0]);
3322 }
3323 }
3324 else
3325 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3326 pHlp->pfnPrintf(pHlp,
3327 i & 1
3328 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3329 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3330 pszPrefix, i, i < 10 ? " " : "",
3331 pFpuCtx->aXMM[i].au32[3],
3332 pFpuCtx->aXMM[i].au32[2],
3333 pFpuCtx->aXMM[i].au32[1],
3334 pFpuCtx->aXMM[i].au32[0]);
3335
3336 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3337 {
3338 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3339 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3340 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3341 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3342 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3343 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3344 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3345 }
3346
3347 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3348 {
3349 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3350 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3351 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3352 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3353 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3354 }
3355
3356 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3357 {
3358 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3359 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3360 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3361 }
3362
3363 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3364 if (pFpuCtx->au32RsrvdRest[i])
3365 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3366 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3367 }
3368
3369 pHlp->pfnPrintf(pHlp,
3370 "%sEFER =%016RX64\n"
3371 "%sPAT =%016RX64\n"
3372 "%sSTAR =%016RX64\n"
3373 "%sCSTAR =%016RX64\n"
3374 "%sLSTAR =%016RX64\n"
3375 "%sSFMASK =%016RX64\n"
3376 "%sKERNELGSBASE =%016RX64\n",
3377 pszPrefix, pCtx->msrEFER,
3378 pszPrefix, pCtx->msrPAT,
3379 pszPrefix, pCtx->msrSTAR,
3380 pszPrefix, pCtx->msrCSTAR,
3381 pszPrefix, pCtx->msrLSTAR,
3382 pszPrefix, pCtx->msrSFMASK,
3383 pszPrefix, pCtx->msrKERNELGSBASE);
3384
3385 if (CPUMIsGuestInPAEModeEx(pCtx))
3386 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->aPaePdpes); i++)
3387 pHlp->pfnPrintf(pHlp, "%sPAE PDPTE %u =%016RX64\n", pszPrefix, i, pCtx->aPaePdpes[i]);
3388 break;
3389 }
3390}
3391
3392
3393/**
3394 * Display all cpu states and any other cpum info.
3395 *
3396 * @param pVM The cross context VM structure.
3397 * @param pHlp The info helper functions.
3398 * @param pszArgs Arguments, ignored.
3399 */
3400static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3401{
3402 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3403 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3404 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3405 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3406 cpumR3InfoHost(pVM, pHlp, pszArgs);
3407}
3408
3409
3410/**
3411 * Parses the info argument.
3412 *
3413 * The argument starts with 'verbose', 'terse' or 'default' and then
3414 * continues with the comment string.
3415 *
3416 * @param pszArgs The pointer to the argument string.
3417 * @param penmType Where to store the dump type request.
3418 * @param ppszComment Where to store the pointer to the comment string.
3419 */
3420static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3421{
3422 if (!pszArgs)
3423 {
3424 *penmType = CPUMDUMPTYPE_DEFAULT;
3425 *ppszComment = "";
3426 }
3427 else
3428 {
3429 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3430 {
3431 pszArgs += 7;
3432 *penmType = CPUMDUMPTYPE_VERBOSE;
3433 }
3434 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3435 {
3436 pszArgs += 5;
3437 *penmType = CPUMDUMPTYPE_TERSE;
3438 }
3439 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3440 {
3441 pszArgs += 7;
3442 *penmType = CPUMDUMPTYPE_DEFAULT;
3443 }
3444 else
3445 *penmType = CPUMDUMPTYPE_DEFAULT;
3446 *ppszComment = RTStrStripL(pszArgs);
3447 }
3448}
3449
3450
3451/**
3452 * Display the guest cpu state.
3453 *
3454 * @param pVM The cross context VM structure.
3455 * @param pHlp The info helper functions.
3456 * @param pszArgs Arguments.
3457 */
3458static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3459{
3460 CPUMDUMPTYPE enmType;
3461 const char *pszComment;
3462 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3463
3464 PVMCPU pVCpu = VMMGetCpu(pVM);
3465 if (!pVCpu)
3466 pVCpu = pVM->apCpusR3[0];
3467
3468 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3469
3470 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3471 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3472}
3473
3474
3475/**
3476 * Displays an SVM VMCB control area.
3477 *
3478 * @param pHlp The info helper functions.
3479 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3480 * @param pszPrefix Caller specified string prefix.
3481 */
3482static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3483{
3484 AssertReturnVoid(pHlp);
3485 AssertReturnVoid(pVmcbCtrl);
3486
3487 pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3488 pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3489 pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3490 pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3491 pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3492 pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3493 pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3494 pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3495 pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3496 pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3497 pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3498 pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
3499 pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3500 pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3501 pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
3502 pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3503 pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3504 pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3505 pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3506 pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3507 pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3508 pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3509 pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3510 pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3511 pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
3512 pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3513 pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3514 pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3515 pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3516 pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3517 pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
3518 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3519 pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3520 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3521 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3522 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3523 pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
3524 pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3525 pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3526 pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3527 pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
3528 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3529 pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3530 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3531 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3532 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3533 pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3534 pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
3535 pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3536 pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3537 pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3538 pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3539 pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3540 pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3541 pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
3542 pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3543 pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3544 pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3545 pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3546 pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3547}
3548
3549
3550/**
3551 * Helper for dumping the SVM VMCB selector registers.
3552 *
3553 * @param pHlp The info helper functions.
3554 * @param pSel Pointer to the SVM selector register.
3555 * @param pszName Name of the selector.
3556 * @param pszPrefix Caller specified string prefix.
3557 */
3558DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3559{
3560 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3561 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3562 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3563}
3564
3565
3566/**
3567 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3568 *
3569 * @param pHlp The info helper functions.
3570 * @param pXdtr Pointer to the descriptor table register.
3571 * @param pszName Name of the descriptor table register.
3572 * @param pszPrefix Caller specified string prefix.
3573 */
3574DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3575{
3576 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3577 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3578}
3579
3580
3581/**
3582 * Displays an SVM VMCB state-save area.
3583 *
3584 * @param pHlp The info helper functions.
3585 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3586 * @param pszPrefix Caller specified string prefix.
3587 */
3588static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3589{
3590 AssertReturnVoid(pHlp);
3591 AssertReturnVoid(pVmcbStateSave);
3592
3593 char szEFlags[80];
3594 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3595
3596 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3597 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3598 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3599 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3600 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3601 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3602 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3603 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3604 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3605 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3606 pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3607 pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3608 pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3609 pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3610 pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3611 pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3612 pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3613 pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3614 pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3615 pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3616 pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3617 pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3618 pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3619 pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3620 pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3621 pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3622 pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3623 pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3624 pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3625 pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3626 pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3627 pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3628 pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3629 pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3630 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3631 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3632}
3633
3634
3635/**
3636 * Displays a virtual-VMCS.
3637 *
3638 * @param pVCpu The cross context virtual CPU structure.
3639 * @param pHlp The info helper functions.
3640 * @param pVmcs Pointer to a virtual VMCS.
3641 * @param pszPrefix Caller specified string prefix.
3642 */
3643static void cpumR3InfoVmxVmcs(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
3644{
3645 AssertReturnVoid(pHlp);
3646 AssertReturnVoid(pVmcs);
3647
3648 /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
3649#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3650 do { \
3651 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
3652 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
3653 } while (0)
3654
3655#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3656 do { \
3657 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
3658 (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
3659 } while (0)
3660
3661#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3662 do { \
3663 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
3664 (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
3665 (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
3666 } while (0)
3667
3668#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3669 do { \
3670 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
3671 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
3672 } while (0)
3673
3674 /* Header. */
3675 {
3676 pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
3677 pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
3678 pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, VMXGetAbortDesc(pVmcs->enmVmxAbort));
3679 pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, VMXGetVmcsStateDesc(pVmcs->fVmcsState));
3680 }
3681
3682 /* Control fields. */
3683 {
3684 /* 16-bit. */
3685 pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
3686 pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
3687 pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
3688 pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
3689
3690 /* 32-bit. */
3691 pHlp->pfnPrintf(pHlp, " %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
3692 pHlp->pfnPrintf(pHlp, " %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
3693 pHlp->pfnPrintf(pHlp, " %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
3694 pHlp->pfnPrintf(pHlp, " %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
3695 pHlp->pfnPrintf(pHlp, " %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
3696 pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
3697 pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
3698 pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
3699 pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
3700 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
3701 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
3702 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
3703 pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
3704 {
3705 uint32_t const fInfo = pVmcs->u32EntryIntInfo;
3706 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
3707 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo));
3708 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetEntryIntInfoTypeDesc(uType));
3709 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo));
3710 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3711 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3712 }
3713 pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode);
3714 pHlp->pfnPrintf(pHlp, " %sVM-entry instr length = %u byte(s)\n", pszPrefix, pVmcs->u32EntryInstrLen);
3715 pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold);
3716 pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap);
3717 pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow);
3718
3719 /* 64-bit. */
3720 pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u);
3721 pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u);
3722 pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u);
3723 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u);
3724 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u);
3725 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u);
3726 pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u);
3727 pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u);
3728 pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u);
3729 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u);
3730 pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u);
3731 pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u);
3732 pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u);
3733 pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptPtr.u);
3734 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u);
3735 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u);
3736 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u);
3737 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u);
3738 pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u);
3739 pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u);
3740 pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u);
3741 pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u);
3742 pHlp->pfnPrintf(pHlp, " %sXSS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssExitBitmap.u);
3743 pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclsExitBitmap.u);
3744 pHlp->pfnPrintf(pHlp, " %sSPP-table ptr = %#RX64\n", pszPrefix, pVmcs->u64SppTablePtr.u);
3745 pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u);
3746 pHlp->pfnPrintf(pHlp, " %sTertiary processor ctls = %#RX64\n", pszPrefix, pVmcs->u64ProcCtls3.u);
3747 pHlp->pfnPrintf(pHlp, " %sENCLV-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclvExitBitmap.u);
3748
3749 /* Natural width. */
3750 pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u);
3751 pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u);
3752 pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u);
3753 pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u);
3754 pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u);
3755 pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u);
3756 pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u);
3757 pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u);
3758 }
3759
3760 /* Guest state. */
3761 {
3762 char szEFlags[80];
3763 cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u);
3764 pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix);
3765
3766 /* 16-bit. */
3767 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "CS", pszPrefix);
3768 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "SS", pszPrefix);
3769 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "ES", pszPrefix);
3770 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "DS", pszPrefix);
3771 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "FS", pszPrefix);
3772 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "GS", pszPrefix);
3773 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "LDTR", pszPrefix);
3774 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "TR", pszPrefix);
3775 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
3776 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
3777 pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus);
3778 pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex);
3779
3780 /* 32-bit. */
3781 pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState);
3782 pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState);
3783 pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase);
3784 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS);
3785 pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer);
3786
3787 /* 64-bit. */
3788 pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u);
3789 pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u);
3790 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u);
3791 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u);
3792 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u);
3793 pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u);
3794 pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u);
3795 pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u);
3796 pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u);
3797 pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u);
3798 pHlp->pfnPrintf(pHlp, " %sRTIT_CTL = %#RX64\n", pszPrefix, pVmcs->u64GuestRtitCtlMsr.u);
3799 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64GuestPkrsMsr.u);
3800
3801 /* Natural width. */
3802 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u);
3803 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u);
3804 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u);
3805 pHlp->pfnPrintf(pHlp, " %sDR7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u);
3806 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u);
3807 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u);
3808 pHlp->pfnPrintf(pHlp, " %sRFLAGS = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags);
3809 pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpts.u);
3810 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u);
3811 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u);
3812 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64GuestSCetMsr.u);
3813 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64GuestSsp.u);
3814 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64GuestIntrSspTableAddrMsr.u);
3815 }
3816
3817 /* Host state. */
3818 {
3819 pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix);
3820
3821 /* 16-bit. */
3822 pHlp->pfnPrintf(pHlp, " %sCS = %#RX16\n", pszPrefix, pVmcs->HostCs);
3823 pHlp->pfnPrintf(pHlp, " %sSS = %#RX16\n", pszPrefix, pVmcs->HostSs);
3824 pHlp->pfnPrintf(pHlp, " %sDS = %#RX16\n", pszPrefix, pVmcs->HostDs);
3825 pHlp->pfnPrintf(pHlp, " %sES = %#RX16\n", pszPrefix, pVmcs->HostEs);
3826 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "FS", pszPrefix);
3827 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "GS", pszPrefix);
3828 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "TR", pszPrefix);
3829 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
3830 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
3831
3832 /* 32-bit. */
3833 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs);
3834
3835 /* 64-bit. */
3836 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u);
3837 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u);
3838 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u);
3839 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64HostPkrsMsr.u);
3840
3841 /* Natural width. */
3842 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u);
3843 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u);
3844 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u);
3845 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u);
3846 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u);
3847 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u);
3848 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u);
3849 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64HostSCetMsr.u);
3850 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64HostSsp.u);
3851 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64HostIntrSspTableAddrMsr.u);
3852
3853 }
3854
3855 /* Read-only fields. */
3856 {
3857 pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix);
3858
3859 /* 16-bit (none currently). */
3860
3861 /* 32-bit. */
3862 pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason));
3863 pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u);
3864 pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError);
3865 pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo);
3866 {
3867 uint32_t const fInfo = pVmcs->u32RoExitIntInfo;
3868 uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo);
3869 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo));
3870 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetExitIntInfoTypeDesc(uType));
3871 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo));
3872 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3873 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3874 }
3875 pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode);
3876 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo);
3877 {
3878 uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo;
3879 uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo);
3880 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo));
3881 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetIdtVectoringInfoTypeDesc(uType));
3882 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo));
3883 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo));
3884 }
3885 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode);
3886 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u byte(s)\n", pszPrefix, pVmcs->u32RoExitInstrLen);
3887 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo);
3888
3889 /* 64-bit. */
3890 pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u);
3891
3892 /* Natural width. */
3893 pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u);
3894 pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u);
3895 pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u);
3896 pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u);
3897 pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u);
3898 }
3899
3900#ifdef DEBUG_ramshankar
3901 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3902 {
3903 void *pvPage = RTMemTmpAllocZ(VMX_V_VIRT_APIC_SIZE);
3904 Assert(pvPage);
3905 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
3906 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pvPage, GCPhysVirtApic, VMX_V_VIRT_APIC_SIZE);
3907 if (RT_SUCCESS(rc))
3908 {
3909 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC page\n", pszPrefix);
3910 pHlp->pfnPrintf(pHlp, "%.*Rhxs\n", VMX_V_VIRT_APIC_SIZE, pvPage);
3911 pHlp->pfnPrintf(pHlp, "\n");
3912 }
3913 RTMemTmpFree(pvPage);
3914 }
3915#else
3916 NOREF(pVCpu);
3917#endif
3918
3919#undef CPUMVMX_DUMP_HOST_XDTR
3920#undef CPUMVMX_DUMP_HOST_FS_GS_TR
3921#undef CPUMVMX_DUMP_GUEST_SEGREG
3922#undef CPUMVMX_DUMP_GUEST_XDTR
3923}
3924
3925
3926/**
3927 * Display the guest's hardware-virtualization cpu state.
3928 *
3929 * @param pVM The cross context VM structure.
3930 * @param pHlp The info helper functions.
3931 * @param pszArgs Arguments, ignored.
3932 */
3933static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3934{
3935 RT_NOREF(pszArgs);
3936
3937 PVMCPU pVCpu = VMMGetCpu(pVM);
3938 if (!pVCpu)
3939 pVCpu = pVM->apCpusR3[0];
3940
3941 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3942 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
3943 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
3944
3945 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
3946 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
3947 pHlp->pfnPrintf(pHlp, "In nested-guest hwvirt mode = %RTbool\n", CPUMIsGuestInNestedHwvirtMode(pCtx));
3948
3949 if (fSvm)
3950 {
3951 pHlp->pfnPrintf(pHlp, "SVM hwvirt state:\n");
3952 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
3953
3954 char szEFlags[80];
3955 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
3956 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
3957 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
3958 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
3959 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.Vmcb.ctrl, " " /* pszPrefix */);
3960 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
3961 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.Vmcb.guest, " " /* pszPrefix */);
3962 pHlp->pfnPrintf(pHlp, " HostState:\n");
3963 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
3964 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
3965 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
3966 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
3967 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
3968 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
3969 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
3970 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
3971 PCCPUMSELREG pSelEs = &pCtx->hwvirt.svm.HostState.es;
3972 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3973 pSelEs->Sel, pSelEs->u64Base, pSelEs->u32Limit, pSelEs->Attr.u);
3974 PCCPUMSELREG pSelCs = &pCtx->hwvirt.svm.HostState.cs;
3975 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3976 pSelCs->Sel, pSelCs->u64Base, pSelCs->u32Limit, pSelCs->Attr.u);
3977 PCCPUMSELREG pSelSs = &pCtx->hwvirt.svm.HostState.ss;
3978 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3979 pSelSs->Sel, pSelSs->u64Base, pSelSs->u32Limit, pSelSs->Attr.u);
3980 PCCPUMSELREG pSelDs = &pCtx->hwvirt.svm.HostState.ds;
3981 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3982 pSelDs->Sel, pSelDs->u64Base, pSelDs->u32Limit, pSelDs->Attr.u);
3983 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
3984 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
3985 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
3986 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
3987 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
3988 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
3989 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
3990 }
3991 else if (fVmx)
3992 {
3993 pHlp->pfnPrintf(pHlp, "VMX hwvirt state:\n");
3994 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
3995 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
3996 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
3997 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag));
3998 pHlp->pfnPrintf(pHlp, " uDiagAux = %#RX64\n", pCtx->hwvirt.vmx.uDiagAux);
3999 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, VMXGetAbortDesc(pCtx->hwvirt.vmx.enmAbort));
4000 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
4001 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
4002 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
4003 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
4004 pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret);
4005 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
4006 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
4007 pHlp->pfnPrintf(pHlp, " uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick);
4008 pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite);
4009 pHlp->pfnPrintf(pHlp, " fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking);
4010 pHlp->pfnPrintf(pHlp, " VMCS cache:\n");
4011 cpumR3InfoVmxVmcs(pVCpu, pHlp, &pCtx->hwvirt.vmx.Vmcs, " " /* pszPrefix */);
4012 }
4013 else
4014 pHlp->pfnPrintf(pHlp, "Hwvirt state disabled.\n");
4015
4016#undef CPUMHWVIRTDUMP_NONE
4017#undef CPUMHWVIRTDUMP_COMMON
4018#undef CPUMHWVIRTDUMP_SVM
4019#undef CPUMHWVIRTDUMP_VMX
4020#undef CPUMHWVIRTDUMP_LAST
4021#undef CPUMHWVIRTDUMP_ALL
4022}
4023
4024/**
4025 * Display the current guest instruction
4026 *
4027 * @param pVM The cross context VM structure.
4028 * @param pHlp The info helper functions.
4029 * @param pszArgs Arguments, ignored.
4030 */
4031static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4032{
4033 NOREF(pszArgs);
4034
4035 PVMCPU pVCpu = VMMGetCpu(pVM);
4036 if (!pVCpu)
4037 pVCpu = pVM->apCpusR3[0];
4038
4039 char szInstruction[256];
4040 szInstruction[0] = '\0';
4041 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
4042 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
4043}
4044
4045
4046/**
4047 * Display the hypervisor cpu state.
4048 *
4049 * @param pVM The cross context VM structure.
4050 * @param pHlp The info helper functions.
4051 * @param pszArgs Arguments, ignored.
4052 */
4053static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4054{
4055 PVMCPU pVCpu = VMMGetCpu(pVM);
4056 if (!pVCpu)
4057 pVCpu = pVM->apCpusR3[0];
4058
4059 CPUMDUMPTYPE enmType;
4060 const char *pszComment;
4061 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4062 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
4063
4064 pHlp->pfnPrintf(pHlp,
4065 ".dr0=%016RX64 .dr1=%016RX64 .dr2=%016RX64 .dr3=%016RX64\n"
4066 ".dr4=%016RX64 .dr5=%016RX64 .dr6=%016RX64 .dr7=%016RX64\n",
4067 pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3],
4068 pVCpu->cpum.s.Hyper.dr[4], pVCpu->cpum.s.Hyper.dr[5], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7]);
4069 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
4070}
4071
4072
4073/**
4074 * Display the host cpu state.
4075 *
4076 * @param pVM The cross context VM structure.
4077 * @param pHlp The info helper functions.
4078 * @param pszArgs Arguments, ignored.
4079 */
4080static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4081{
4082 CPUMDUMPTYPE enmType;
4083 const char *pszComment;
4084 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4085 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
4086
4087 PVMCPU pVCpu = VMMGetCpu(pVM);
4088 if (!pVCpu)
4089 pVCpu = pVM->apCpusR3[0];
4090 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
4091
4092 /*
4093 * Format the EFLAGS.
4094 */
4095 uint64_t efl = pCtx->rflags;
4096 char szEFlags[80];
4097 cpumR3InfoFormatFlags(&szEFlags[0], efl);
4098
4099 /*
4100 * Format the registers.
4101 */
4102 pHlp->pfnPrintf(pHlp,
4103 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
4104 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
4105 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
4106 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
4107 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
4108 "r14=%016RX64 r15=%016RX64\n"
4109 "iopl=%d %31s\n"
4110 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
4111 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
4112 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
4113 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
4114 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
4115 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
4116 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4117 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
4118 ,
4119 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
4120 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
4121 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
4122 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
4123 pCtx->r11, pCtx->r12, pCtx->r13,
4124 pCtx->r14, pCtx->r15,
4125 X86_EFL_GET_IOPL(efl), szEFlags,
4126 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4127 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
4128 pCtx->cr4, pCtx->ldtr, pCtx->tr,
4129 pCtx->dr0, pCtx->dr1, pCtx->dr2,
4130 pCtx->dr3, pCtx->dr6, pCtx->dr7,
4131 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
4132 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
4133 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
4134}
4135
4136/**
4137 * Structure used when disassembling and instructions in DBGF.
4138 * This is used so the reader function can get the stuff it needs.
4139 */
4140typedef struct CPUMDISASSTATE
4141{
4142 /** Pointer to the CPU structure. */
4143 PDISCPUSTATE pCpu;
4144 /** Pointer to the VM. */
4145 PVM pVM;
4146 /** Pointer to the VMCPU. */
4147 PVMCPU pVCpu;
4148 /** Pointer to the first byte in the segment. */
4149 RTGCUINTPTR GCPtrSegBase;
4150 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
4151 RTGCUINTPTR GCPtrSegEnd;
4152 /** The size of the segment minus 1. */
4153 RTGCUINTPTR cbSegLimit;
4154 /** Pointer to the current page - R3 Ptr. */
4155 void const *pvPageR3;
4156 /** Pointer to the current page - GC Ptr. */
4157 RTGCPTR pvPageGC;
4158 /** The lock information that PGMPhysReleasePageMappingLock needs. */
4159 PGMPAGEMAPLOCK PageMapLock;
4160 /** Whether the PageMapLock is valid or not. */
4161 bool fLocked;
4162 /** 64 bits mode or not. */
4163 bool f64Bits;
4164} CPUMDISASSTATE, *PCPUMDISASSTATE;
4165
4166
4167/**
4168 * @callback_method_impl{FNDISREADBYTES}
4169 */
4170static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
4171{
4172 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
4173 for (;;)
4174 {
4175 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
4176
4177 /*
4178 * Need to update the page translation?
4179 */
4180 if ( !pState->pvPageR3
4181 || (GCPtr >> GUEST_PAGE_SHIFT) != (pState->pvPageGC >> GUEST_PAGE_SHIFT))
4182 {
4183 /* translate the address */
4184 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
4185
4186 /* Release mapping lock previously acquired. */
4187 if (pState->fLocked)
4188 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
4189 int rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
4190 if (RT_SUCCESS(rc))
4191 pState->fLocked = true;
4192 else
4193 {
4194 pState->fLocked = false;
4195 pState->pvPageR3 = NULL;
4196 return rc;
4197 }
4198 }
4199
4200 /*
4201 * Check the segment limit.
4202 */
4203 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
4204 return VERR_OUT_OF_SELECTOR_BOUNDS;
4205
4206 /*
4207 * Calc how much we can read.
4208 */
4209 uint32_t cb = GUEST_PAGE_SIZE - (GCPtr & GUEST_PAGE_OFFSET_MASK);
4210 if (!pState->f64Bits)
4211 {
4212 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
4213 if (cb > cbSeg && cbSeg)
4214 cb = cbSeg;
4215 }
4216 if (cb > cbMaxRead)
4217 cb = cbMaxRead;
4218
4219 /*
4220 * Read and advance or exit.
4221 */
4222 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & GUEST_PAGE_OFFSET_MASK), cb);
4223 offInstr += (uint8_t)cb;
4224 if (cb >= cbMinRead)
4225 {
4226 pDis->cbCachedInstr = offInstr;
4227 return VINF_SUCCESS;
4228 }
4229 cbMinRead -= (uint8_t)cb;
4230 cbMaxRead -= (uint8_t)cb;
4231 }
4232}
4233
4234
4235/**
4236 * Disassemble an instruction and return the information in the provided structure.
4237 *
4238 * @returns VBox status code.
4239 * @param pVM The cross context VM structure.
4240 * @param pVCpu The cross context virtual CPU structure.
4241 * @param pCtx Pointer to the guest CPU context.
4242 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
4243 * @param pCpu Disassembly state.
4244 * @param pszPrefix String prefix for logging (debug only).
4245 *
4246 */
4247VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
4248 const char *pszPrefix)
4249{
4250 CPUMDISASSTATE State;
4251 int rc;
4252
4253 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
4254 State.pCpu = pCpu;
4255 State.pvPageGC = 0;
4256 State.pvPageR3 = NULL;
4257 State.pVM = pVM;
4258 State.pVCpu = pVCpu;
4259 State.fLocked = false;
4260 State.f64Bits = false;
4261
4262 /*
4263 * Get selector information.
4264 */
4265 DISCPUMODE enmDisCpuMode;
4266 if ( (pCtx->cr0 & X86_CR0_PE)
4267 && pCtx->eflags.Bits.u1VM == 0)
4268 {
4269 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4270 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
4271 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
4272 State.GCPtrSegBase = pCtx->cs.u64Base;
4273 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
4274 State.cbSegLimit = pCtx->cs.u32Limit;
4275 enmDisCpuMode = (State.f64Bits)
4276 ? DISCPUMODE_64BIT
4277 : pCtx->cs.Attr.n.u1DefBig
4278 ? DISCPUMODE_32BIT
4279 : DISCPUMODE_16BIT;
4280 }
4281 else
4282 {
4283 /* real or V86 mode */
4284 enmDisCpuMode = DISCPUMODE_16BIT;
4285 State.GCPtrSegBase = pCtx->cs.Sel * 16;
4286 State.GCPtrSegEnd = 0xFFFFFFFF;
4287 State.cbSegLimit = 0xFFFFFFFF;
4288 }
4289
4290 /*
4291 * Disassemble the instruction.
4292 */
4293 uint32_t cbInstr;
4294#ifndef LOG_ENABLED
4295 RT_NOREF_PV(pszPrefix);
4296 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
4297 if (RT_SUCCESS(rc))
4298 {
4299#else
4300 char szOutput[160];
4301 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
4302 pCpu, &cbInstr, szOutput, sizeof(szOutput));
4303 if (RT_SUCCESS(rc))
4304 {
4305 /* log it */
4306 if (pszPrefix)
4307 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
4308 else
4309 Log(("%s", szOutput));
4310#endif
4311 rc = VINF_SUCCESS;
4312 }
4313 else
4314 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
4315
4316 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
4317 if (State.fLocked)
4318 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
4319
4320 return rc;
4321}
4322
4323
4324
4325/**
4326 * API for controlling a few of the CPU features found in CR4.
4327 *
4328 * Currently only X86_CR4_TSD is accepted as input.
4329 *
4330 * @returns VBox status code.
4331 *
4332 * @param pVM The cross context VM structure.
4333 * @param fOr The CR4 OR mask.
4334 * @param fAnd The CR4 AND mask.
4335 */
4336VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
4337{
4338 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
4339 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
4340
4341 pVM->cpum.s.CR4.OrMask &= fAnd;
4342 pVM->cpum.s.CR4.OrMask |= fOr;
4343
4344 return VINF_SUCCESS;
4345}
4346
4347
4348/**
4349 * Called when the ring-3 init phase completes.
4350 *
4351 * @returns VBox status code.
4352 * @param pVM The cross context VM structure.
4353 * @param enmWhat Which init phase.
4354 */
4355VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
4356{
4357 switch (enmWhat)
4358 {
4359 case VMINITCOMPLETED_RING3:
4360 {
4361 /*
4362 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
4363 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
4364 */
4365 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
4366 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4367 {
4368 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4369
4370 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
4371 if (fSupportsLongMode)
4372 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
4373 }
4374
4375 /* Register statistic counters for MSRs. */
4376 cpumR3MsrRegStats(pVM);
4377
4378 /* Create VMX-preemption timer for nested guests if required. Must be
4379 done here as CPUM is initialized before TM. */
4380 if (pVM->cpum.s.GuestFeatures.fVmx)
4381 {
4382 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4383 {
4384 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4385 char szName[32];
4386 RTStrPrintf(szName, sizeof(szName), "Nested VMX-preemption %u", idCpu);
4387 int rc = TMR3TimerCreate(pVM, TMCLOCK_VIRTUAL_SYNC, cpumR3VmxPreemptTimerCallback, pVCpu,
4388 TMTIMER_FLAGS_RING0, szName, &pVCpu->cpum.s.hNestedVmxPreemptTimer);
4389 AssertLogRelRCReturn(rc, rc);
4390 }
4391 }
4392 break;
4393 }
4394
4395 default:
4396 break;
4397 }
4398 return VINF_SUCCESS;
4399}
4400
4401
4402/**
4403 * Called when the ring-0 init phases completed.
4404 *
4405 * @param pVM The cross context VM structure.
4406 */
4407VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM)
4408{
4409 /*
4410 * Enable log buffering as we're going to log a lot of lines.
4411 */
4412 bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4413
4414 /*
4415 * Log the cpuid.
4416 */
4417 RTCPUSET OnlineSet;
4418 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4419 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4420 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4421 RTCPUID cCores = RTMpGetCoreCount();
4422 if (cCores)
4423 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
4424 LogRel(("************************* CPUID dump ************************\n"));
4425 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4426 LogRel(("\n"));
4427 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
4428 LogRel(("******************** End of CPUID dump **********************\n"));
4429
4430 /*
4431 * Log VT-x extended features.
4432 *
4433 * SVM features are currently all covered under CPUID so there is nothing
4434 * to do here for SVM.
4435 */
4436 if (pVM->cpum.s.HostFeatures.fVmx)
4437 {
4438 LogRel(("*********************** VT-x features ***********************\n"));
4439 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
4440 LogRel(("\n"));
4441 LogRel(("******************* End of VT-x features ********************\n"));
4442 }
4443
4444 /*
4445 * Restore the log buffering state to what it was previously.
4446 */
4447 RTLogRelSetBuffering(fOldBuffered);
4448}
4449
4450
4451/**
4452 * Marks the guest debug state as active.
4453 *
4454 * @returns nothing.
4455 * @param pVCpu The cross context virtual CPU structure.
4456 *
4457 * @note This is used solely by NEM (hence the name) to set the correct flags here
4458 * without loading the host's DRx registers, which is not possible from ring-3 anyway.
4459 * The specific NEM backends have to make sure to load the correct values.
4460 */
4461VMMR3_INT_DECL(void) CPUMR3NemActivateGuestDebugState(PVMCPUCC pVCpu)
4462{
4463 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_HYPER);
4464 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_GUEST);
4465}
4466
4467
4468/**
4469 * Marks the hyper debug state as active.
4470 *
4471 * @returns nothing.
4472 * @param pVCpu The cross context virtual CPU structure.
4473 *
4474 * @note This is used solely by NEM (hence the name) to set the correct flags here
4475 * without loading the host's DRx registers, which is not possible from ring-3 anyway.
4476 * The specific NEM backends have to make sure to load the correct values.
4477 */
4478VMMR3_INT_DECL(void) CPUMR3NemActivateHyperDebugState(PVMCPUCC pVCpu)
4479{
4480 /*
4481 * Make sure the hypervisor values are up to date.
4482 */
4483 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */);
4484
4485 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_GUEST);
4486 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_HYPER);
4487}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette