VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 73494

Last change on this file since 73494 was 73389, checked in by vboxsync, 6 years ago

VMM, SUPDrv: Nested VMX: bugref:9180 Implement some of the VMX MSRs.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 164.3 KB
Line 
1/* $Id: CPUM.cpp 73389 2018-07-28 07:03:03Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/patm.h>
120#include <VBox/vmm/hm.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for CPUMCTX. */
329static const SSMFIELD g_aCpumX87Fields[] =
330{
331 SSMFIELD_ENTRY( X86FXSTATE, FCW),
332 SSMFIELD_ENTRY( X86FXSTATE, FSW),
333 SSMFIELD_ENTRY( X86FXSTATE, FTW),
334 SSMFIELD_ENTRY( X86FXSTATE, FOP),
335 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
336 SSMFIELD_ENTRY( X86FXSTATE, CS),
337 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
338 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
339 SSMFIELD_ENTRY( X86FXSTATE, DS),
340 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
341 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
342 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
343 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
344 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
345 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
346 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
347 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
348 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
349 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
350 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
351 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
352 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
353 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
354 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
355 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
356 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
357 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
358 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
359 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
360 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
361 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
362 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
363 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
364 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
365 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
366 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
367 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
368 SSMFIELD_ENTRY_TERM()
369};
370
371/** Saved state field descriptors for X86XSAVEHDR. */
372static const SSMFIELD g_aCpumXSaveHdrFields[] =
373{
374 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
375 SSMFIELD_ENTRY_TERM()
376};
377
378/** Saved state field descriptors for X86XSAVEYMMHI. */
379static const SSMFIELD g_aCpumYmmHiFields[] =
380{
381 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
382 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
383 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
384 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
385 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
386 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
387 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
388 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
389 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
390 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
391 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
392 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
393 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
394 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
395 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
396 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
397 SSMFIELD_ENTRY_TERM()
398};
399
400/** Saved state field descriptors for X86XSAVEBNDREGS. */
401static const SSMFIELD g_aCpumBndRegsFields[] =
402{
403 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
404 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
405 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
406 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
407 SSMFIELD_ENTRY_TERM()
408};
409
410/** Saved state field descriptors for X86XSAVEBNDCFG. */
411static const SSMFIELD g_aCpumBndCfgFields[] =
412{
413 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
414 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
415 SSMFIELD_ENTRY_TERM()
416};
417
418#if 0 /** @todo */
419/** Saved state field descriptors for X86XSAVEOPMASK. */
420static const SSMFIELD g_aCpumOpmaskFields[] =
421{
422 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
423 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
424 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
425 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
426 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
427 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
428 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
429 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
430 SSMFIELD_ENTRY_TERM()
431};
432#endif
433
434/** Saved state field descriptors for X86XSAVEZMMHI256. */
435static const SSMFIELD g_aCpumZmmHi256Fields[] =
436{
437 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
438 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
439 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
440 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
441 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
442 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
443 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
444 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
445 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
446 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
447 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
448 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
449 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
450 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
451 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
452 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
453 SSMFIELD_ENTRY_TERM()
454};
455
456/** Saved state field descriptors for X86XSAVEZMM16HI. */
457static const SSMFIELD g_aCpumZmm16HiFields[] =
458{
459 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
460 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
461 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
462 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
463 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
464 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
465 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
466 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
467 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
468 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
469 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
470 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
471 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
472 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
473 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
474 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
475 SSMFIELD_ENTRY_TERM()
476};
477
478
479
480/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
481 * registeres changed. */
482static const SSMFIELD g_aCpumX87FieldsMem[] =
483{
484 SSMFIELD_ENTRY( X86FXSTATE, FCW),
485 SSMFIELD_ENTRY( X86FXSTATE, FSW),
486 SSMFIELD_ENTRY( X86FXSTATE, FTW),
487 SSMFIELD_ENTRY( X86FXSTATE, FOP),
488 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
489 SSMFIELD_ENTRY( X86FXSTATE, CS),
490 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
491 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
492 SSMFIELD_ENTRY( X86FXSTATE, DS),
493 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
494 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
495 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
496 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
497 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
498 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
499 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
500 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
501 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
502 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
503 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
504 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
505 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
506 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
507 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
508 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
509 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
510 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
511 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
512 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
513 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
514 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
515 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
516 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
517 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
518 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
519 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
520 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
521 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
522};
523
524/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
525 * registeres changed. */
526static const SSMFIELD g_aCpumCtxFieldsMem[] =
527{
528 SSMFIELD_ENTRY( CPUMCTX, rdi),
529 SSMFIELD_ENTRY( CPUMCTX, rsi),
530 SSMFIELD_ENTRY( CPUMCTX, rbp),
531 SSMFIELD_ENTRY( CPUMCTX, rax),
532 SSMFIELD_ENTRY( CPUMCTX, rbx),
533 SSMFIELD_ENTRY( CPUMCTX, rdx),
534 SSMFIELD_ENTRY( CPUMCTX, rcx),
535 SSMFIELD_ENTRY( CPUMCTX, rsp),
536 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
537 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
538 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
539 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
540 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
541 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
542 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
543 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
544 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
545 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
546 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
547 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
548 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
549 SSMFIELD_ENTRY( CPUMCTX, rflags),
550 SSMFIELD_ENTRY( CPUMCTX, rip),
551 SSMFIELD_ENTRY( CPUMCTX, r8),
552 SSMFIELD_ENTRY( CPUMCTX, r9),
553 SSMFIELD_ENTRY( CPUMCTX, r10),
554 SSMFIELD_ENTRY( CPUMCTX, r11),
555 SSMFIELD_ENTRY( CPUMCTX, r12),
556 SSMFIELD_ENTRY( CPUMCTX, r13),
557 SSMFIELD_ENTRY( CPUMCTX, r14),
558 SSMFIELD_ENTRY( CPUMCTX, r15),
559 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
560 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
561 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
562 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
563 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
564 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
565 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
566 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
567 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
568 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
569 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
570 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
571 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
572 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
573 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
574 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
575 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
576 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
577 SSMFIELD_ENTRY( CPUMCTX, cr0),
578 SSMFIELD_ENTRY( CPUMCTX, cr2),
579 SSMFIELD_ENTRY( CPUMCTX, cr3),
580 SSMFIELD_ENTRY( CPUMCTX, cr4),
581 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
582 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
583 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
584 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
585 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
586 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
587 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
588 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
589 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
590 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
591 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
592 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
593 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
594 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
595 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
596 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
597 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
598 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
599 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
600 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
601 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
602 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
603 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
604 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
605 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
606 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
607 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
608 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
609 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
610 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
611 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
612 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
613 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
614 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
615 SSMFIELD_ENTRY_TERM()
616};
617
618/** Saved state field descriptors for CPUMCTX_VER1_6. */
619static const SSMFIELD g_aCpumX87FieldsV16[] =
620{
621 SSMFIELD_ENTRY( X86FXSTATE, FCW),
622 SSMFIELD_ENTRY( X86FXSTATE, FSW),
623 SSMFIELD_ENTRY( X86FXSTATE, FTW),
624 SSMFIELD_ENTRY( X86FXSTATE, FOP),
625 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
626 SSMFIELD_ENTRY( X86FXSTATE, CS),
627 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
628 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
629 SSMFIELD_ENTRY( X86FXSTATE, DS),
630 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
631 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
632 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
633 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
634 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
635 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
636 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
637 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
638 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
639 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
640 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
641 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
642 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
643 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
644 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
645 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
646 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
647 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
648 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
649 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
650 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
651 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
652 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
653 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
654 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
655 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
656 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
657 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
658 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
659 SSMFIELD_ENTRY_TERM()
660};
661
662/** Saved state field descriptors for CPUMCTX_VER1_6. */
663static const SSMFIELD g_aCpumCtxFieldsV16[] =
664{
665 SSMFIELD_ENTRY( CPUMCTX, rdi),
666 SSMFIELD_ENTRY( CPUMCTX, rsi),
667 SSMFIELD_ENTRY( CPUMCTX, rbp),
668 SSMFIELD_ENTRY( CPUMCTX, rax),
669 SSMFIELD_ENTRY( CPUMCTX, rbx),
670 SSMFIELD_ENTRY( CPUMCTX, rdx),
671 SSMFIELD_ENTRY( CPUMCTX, rcx),
672 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
673 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
674 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
675 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
676 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
677 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
678 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
679 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
680 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
681 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
682 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
683 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
684 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
685 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
686 SSMFIELD_ENTRY( CPUMCTX, rflags),
687 SSMFIELD_ENTRY( CPUMCTX, rip),
688 SSMFIELD_ENTRY( CPUMCTX, r8),
689 SSMFIELD_ENTRY( CPUMCTX, r9),
690 SSMFIELD_ENTRY( CPUMCTX, r10),
691 SSMFIELD_ENTRY( CPUMCTX, r11),
692 SSMFIELD_ENTRY( CPUMCTX, r12),
693 SSMFIELD_ENTRY( CPUMCTX, r13),
694 SSMFIELD_ENTRY( CPUMCTX, r14),
695 SSMFIELD_ENTRY( CPUMCTX, r15),
696 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
697 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
698 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
699 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
700 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
701 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
702 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
703 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
704 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
705 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
706 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
707 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
708 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
709 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
710 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
711 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
712 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
713 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
714 SSMFIELD_ENTRY( CPUMCTX, cr0),
715 SSMFIELD_ENTRY( CPUMCTX, cr2),
716 SSMFIELD_ENTRY( CPUMCTX, cr3),
717 SSMFIELD_ENTRY( CPUMCTX, cr4),
718 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
719 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
720 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
721 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
722 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
723 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
724 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
725 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
726 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
727 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
728 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
729 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
730 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
731 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
732 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
733 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
734 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
735 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
736 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
737 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
738 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
739 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
740 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
741 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
742 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
743 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
744 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
745 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
746 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
747 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
748 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
749 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
750 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
751 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
752 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
753 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
754 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
755 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
756 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
757 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
758 SSMFIELD_ENTRY_TERM()
759};
760
761
762/**
763 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
764 *
765 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
766 * (last instruction pointer, last data pointer, last opcode) except when the ES
767 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
768 * clear these registers there is potential, local FPU leakage from a process
769 * using the FPU to another.
770 *
771 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
772 *
773 * @param pVM The cross context VM structure.
774 */
775static void cpumR3CheckLeakyFpu(PVM pVM)
776{
777 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
778 uint32_t const u32Family = u32CpuVersion >> 8;
779 if ( u32Family >= 6 /* K7 and higher */
780 && ASMIsAmdCpu())
781 {
782 uint32_t cExt = ASMCpuId_EAX(0x80000000);
783 if (ASMIsValidExtRange(cExt))
784 {
785 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
786 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
787 {
788 for (VMCPUID i = 0; i < pVM->cCpus; i++)
789 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
790 Log(("CPUMR3Init: host CPU has leaky fxsave/fxrstor behaviour\n"));
791 }
792 }
793 }
794}
795
796
797/**
798 * Frees memory allocated for the SVM hardware virtualization state.
799 *
800 * @param pVM The cross context VM structure.
801 */
802static void cpumR3FreeSvmHwVirtState(PVM pVM)
803{
804 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
805 for (VMCPUID i = 0; i < pVM->cCpus; i++)
806 {
807 PVMCPU pVCpu = &pVM->aCpus[i];
808 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
809 {
810 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
811 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
812 }
813 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
814
815 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
816 {
817 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
818 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
819 }
820
821 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
822 {
823 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
824 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
825 }
826 }
827}
828
829
830/**
831 * Allocates memory for the SVM hardware virtualization state.
832 *
833 * @returns VBox status code.
834 * @param pVM The cross context VM structure.
835 */
836static int cpumR3AllocSvmHwVirtState(PVM pVM)
837{
838 Assert(pVM->cpum.ro.GuestFeatures.fSvm);
839
840 int rc = VINF_SUCCESS;
841 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
842 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
843 for (VMCPUID i = 0; i < pVM->cCpus; i++)
844 {
845 PVMCPU pVCpu = &pVM->aCpus[i];
846
847 /*
848 * Allocate the nested-guest VMCB.
849 */
850 SUPPAGE SupNstGstVmcbPage;
851 RT_ZERO(SupNstGstVmcbPage);
852 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
853 Assert(SVM_VMCB_PAGES == 1);
854 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
855 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
856 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
857 if (RT_FAILURE(rc))
858 {
859 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
860 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
861 break;
862 }
863 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
864
865 /*
866 * Allocate the MSRPM (MSR Permission bitmap).
867 */
868 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
869 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
870 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
871 if (RT_FAILURE(rc))
872 {
873 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
874 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
875 SVM_MSRPM_PAGES));
876 break;
877 }
878
879 /*
880 * Allocate the IOPM (IO Permission bitmap).
881 */
882 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
883 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
884 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
885 if (RT_FAILURE(rc))
886 {
887 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
888 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
889 SVM_IOPM_PAGES));
890 break;
891 }
892 }
893
894 /* On any failure, cleanup. */
895 if (RT_FAILURE(rc))
896 cpumR3FreeSvmHwVirtState(pVM);
897
898 return rc;
899}
900
901
902/**
903 * Displays the host and guest VMX features.
904 *
905 * @param pVM The cross context VM structure.
906 * @param pHlp The info helper functions.
907 * @param pszArgs "terse", "default" or "verbose".
908 */
909DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
910{
911 RT_NOREF(pszArgs);
912 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
913 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
914 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
915 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA)
916 {
917#define VMXFEATDUMP(a_szDesc, a_Var) \
918 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
919
920 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
921 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
922 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
923 /* Basic. */
924 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
925 /* Pin-based controls. */
926 VMXFEATDUMP("ExtIntExit - External interrupt VM-exit ", fVmxExtIntExit);
927 VMXFEATDUMP("NmiExit - NMI VM-exit ", fVmxNmiExit);
928 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
929 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
930 /* Processor-based controls. */
931 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
932 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
933 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
934 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
935 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
936 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
937 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
938 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
939 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
940 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
941 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
942 VMXFEATDUMP("TprShadow - TPR shadow ", fVmxTprShadow);
943 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
944 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
945 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
946 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
947 VMXFEATDUMP("MonitorTrapFlag - Monitor trap flag ", fVmxMonitorTrapFlag);
948 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
949 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
950 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
951 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
952 /* Secondary processor-based controls. */
953 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
954 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
955 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
956 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
957 VMXFEATDUMP("VirtX2Apic - Virtualize-x2APIC accesses ", fVmxVirtX2ApicAccess);
958 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
959 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
960 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
961 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
962 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
963 /* VM-entry controls. */
964 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
965 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
966 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER on VM-entry ", fVmxEntryLoadEferMsr);
967 /* VM-exit controls. */
968 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
969 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
970 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
971 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER on VM-exit ", fVmxExitSaveEferMsr);
972 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER on VM-exit ", fVmxExitLoadEferMsr);
973 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
974 VMXFEATDUMP("ExitStoreEferLma - Store EFER.LMA on VM-exit ", fVmxExitStoreEferLma);
975 VMXFEATDUMP("VmwriteAll - VMWRITE to any VMCS field ", fVmxVmwriteAll);
976 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
977#undef VMXFEATDUMP
978 }
979 else
980 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
981}
982
983
984/**
985 * Initializes VMX host and guest features.
986 *
987 * @param pVM The cross context VM structure.
988 *
989 * @remarks This must be called only after HM has fully initialized since it calls
990 * into HM to retrieve VMX and related MSRs.
991 */
992static void cpumR3InitVmxCpuFeatures(PVM pVM)
993{
994 /*
995 * Init. host features.
996 */
997 PCPUMFEATURES pHostFeat = &pVM->cpum.s.HostFeatures;
998 VMXMSRS VmxMsrs;
999 int rc = HMVmxGetHostMsrs(pVM, &VmxMsrs);
1000 if (RT_SUCCESS(rc))
1001 {
1002 /* Basic information. */
1003 pHostFeat->fVmxInsOutInfo = RT_BF_GET(VmxMsrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
1004
1005 /* Pin-based VM-execution controls. */
1006 uint32_t const fPinCtls = VmxMsrs.PinCtls.n.allowed1;
1007 pHostFeat->fVmxExtIntExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_EXT_INT_EXIT);
1008 pHostFeat->fVmxNmiExit = RT_BOOL(fPinCtls & VMX_PIN_CTLS_NMI_EXIT);
1009 pHostFeat->fVmxVirtNmi = RT_BOOL(fPinCtls & VMX_PIN_CTLS_VIRT_NMI);
1010 pHostFeat->fVmxPreemptTimer = RT_BOOL(fPinCtls & VMX_PIN_CTLS_PREEMPT_TIMER);
1011
1012 /* Processor-based VM-execution controls. */
1013 uint32_t const fProcCtls = VmxMsrs.ProcCtls.n.allowed1;
1014 pHostFeat->fVmxIntWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT);
1015 pHostFeat->fVmxTscOffsetting = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING);
1016 pHostFeat->fVmxHltExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_HLT_EXIT);
1017 pHostFeat->fVmxInvlpgExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_INVLPG_EXIT);
1018 pHostFeat->fVmxMwaitExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MWAIT_EXIT);
1019 pHostFeat->fVmxRdpmcExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDPMC_EXIT);
1020 pHostFeat->fVmxRdtscExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_RDTSC_EXIT);
1021 pHostFeat->fVmxCr3LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_LOAD_EXIT);
1022 pHostFeat->fVmxCr3StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT);
1023 pHostFeat->fVmxCr8LoadExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT);
1024 pHostFeat->fVmxCr8StoreExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT);
1025 pHostFeat->fVmxTprShadow = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
1026 pHostFeat->fVmxNmiWindowExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT);
1027 pHostFeat->fVmxMovDRxExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
1028 pHostFeat->fVmxUncondIoExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
1029 pHostFeat->fVmxUseIoBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS);
1030 pHostFeat->fVmxMonitorTrapFlag = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG);
1031 pHostFeat->fVmxUseMsrBitmaps = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
1032 pHostFeat->fVmxMonitorExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_MONITOR_EXIT);
1033 pHostFeat->fVmxPauseExit = RT_BOOL(fProcCtls & VMX_PROC_CTLS_PAUSE_EXIT);
1034 pHostFeat->fVmxSecondaryExecCtls = RT_BOOL(fProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
1035
1036 /* Secondary processor-based VM-execution controls. */
1037 if (pHostFeat->fVmxSecondaryExecCtls)
1038 {
1039 uint32_t const fProcCtls2 = VmxMsrs.ProcCtls2.n.allowed1;
1040 pHostFeat->fVmxVirtApicAccess = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1041 pHostFeat->fVmxEpt = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_EPT);
1042 pHostFeat->fVmxDescTableExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_DESC_TABLE_EXIT);
1043 pHostFeat->fVmxRdtscp = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_RDTSCP);
1044 pHostFeat->fVmxVirtX2ApicAccess = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_ACCESS);
1045 pHostFeat->fVmxVpid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_VPID);
1046 pHostFeat->fVmxWbinvdExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_WBINVD_EXIT);
1047 pHostFeat->fVmxUnrestrictedGuest = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1048 pHostFeat->fVmxPauseLoopExit = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
1049 pHostFeat->fVmxInvpcid = RT_BOOL(fProcCtls2 & VMX_PROC_CTLS2_INVPCID);
1050 }
1051
1052 /* VM-entry controls. */
1053 uint32_t const fEntryCtls = VmxMsrs.EntryCtls.n.allowed1;
1054 pHostFeat->fVmxEntryLoadDebugCtls = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG);
1055 pHostFeat->fVmxIa32eModeGuest = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
1056 pHostFeat->fVmxEntryLoadEferMsr = RT_BOOL(fEntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR);
1057
1058 /* VM-exit controls. */
1059 uint32_t const fExitCtls = VmxMsrs.ExitCtls.n.allowed1;
1060 pHostFeat->fVmxExitSaveDebugCtls = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG);
1061 pHostFeat->fVmxHostAddrSpaceSize = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1062 pHostFeat->fVmxExitAckExtInt = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT);
1063 pHostFeat->fVmxExitSaveEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR);
1064 pHostFeat->fVmxExitLoadEferMsr = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR);
1065 pHostFeat->fVmxSavePreemptTimer = RT_BOOL(fExitCtls & VMX_EXIT_CTLS_SAVE_VMX_PREEMPT_TIMER);
1066
1067 /* Miscellaneous data. */
1068 uint32_t const fMiscData = VmxMsrs.u64Misc;
1069 pHostFeat->fVmxExitStoreEferLma = RT_BOOL(fMiscData & VMX_MISC_EXIT_STORE_EFER_LMA);
1070 pHostFeat->fVmxVmwriteAll = RT_BOOL(fMiscData & VMX_MISC_VMWRITE_ALL);
1071 pHostFeat->fVmxEntryInjectSoftInt = RT_BOOL(fMiscData & VMX_MISC_ENTRY_INJECT_SOFT_INT);
1072 }
1073
1074 /*
1075 * Initialize the set of VMX features we emulate.
1076 * Note! Some bits might be reported as 1 always if they fall under the default1 class bits
1077 * (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1078 */
1079 CPUMFEATURES EmuFeat;
1080 RT_ZERO(EmuFeat);
1081 EmuFeat.fVmx = 1;
1082 EmuFeat.fVmxInsOutInfo = 0;
1083 EmuFeat.fVmxExtIntExit = 1;
1084 EmuFeat.fVmxNmiExit = 1;
1085 EmuFeat.fVmxVirtNmi = 0;
1086 EmuFeat.fVmxPreemptTimer = 0;
1087 EmuFeat.fVmxIntWindowExit = 1;
1088 EmuFeat.fVmxTscOffsetting = 1;
1089 EmuFeat.fVmxHltExit = 1;
1090 EmuFeat.fVmxInvlpgExit = 1;
1091 EmuFeat.fVmxMwaitExit = 1;
1092 EmuFeat.fVmxRdpmcExit = 1;
1093 EmuFeat.fVmxRdtscExit = 1;
1094 EmuFeat.fVmxCr3LoadExit = 1;
1095 EmuFeat.fVmxCr3StoreExit = 1;
1096 EmuFeat.fVmxCr8LoadExit = 1;
1097 EmuFeat.fVmxCr8StoreExit = 1;
1098 EmuFeat.fVmxTprShadow = 0;
1099 EmuFeat.fVmxNmiWindowExit = 0;
1100 EmuFeat.fVmxMovDRxExit = 1;
1101 EmuFeat.fVmxUncondIoExit = 1;
1102 EmuFeat.fVmxUseIoBitmaps = 1;
1103 EmuFeat.fVmxMonitorTrapFlag = 0;
1104 EmuFeat.fVmxUseMsrBitmaps = 0;
1105 EmuFeat.fVmxMonitorExit = 1;
1106 EmuFeat.fVmxPauseExit = 1;
1107 EmuFeat.fVmxSecondaryExecCtls = 1;
1108 EmuFeat.fVmxVirtApicAccess = 0;
1109 EmuFeat.fVmxEpt = 0;
1110 EmuFeat.fVmxDescTableExit = 1;
1111 EmuFeat.fVmxRdtscp = 1;
1112 EmuFeat.fVmxVirtX2ApicAccess = 0;
1113 EmuFeat.fVmxVpid = 0;
1114 EmuFeat.fVmxWbinvdExit = 1;
1115 EmuFeat.fVmxUnrestrictedGuest = 0;
1116 EmuFeat.fVmxPauseLoopExit = 0;
1117 EmuFeat.fVmxInvpcid = 1;
1118 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1119 EmuFeat.fVmxIa32eModeGuest = 1;
1120 EmuFeat.fVmxEntryLoadEferMsr = 1;
1121 EmuFeat.fVmxExitSaveDebugCtls = 1;
1122 EmuFeat.fVmxHostAddrSpaceSize = 1;
1123 EmuFeat.fVmxExitAckExtInt = 0;
1124 EmuFeat.fVmxExitSaveEferMsr = 1;
1125 EmuFeat.fVmxExitLoadEferMsr = 1;
1126 EmuFeat.fVmxSavePreemptTimer = 0;
1127 EmuFeat.fVmxExitStoreEferLma = 1;
1128 EmuFeat.fVmxVmwriteAll = 0;
1129 EmuFeat.fVmxEntryInjectSoftInt = 0;
1130
1131 /*
1132 * Explode guest features.
1133 *
1134 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1135 * by the hardware, hence we merge our emulated features with the host features below.
1136 */
1137 bool const fHostSupportsVmx = pHostFeat->fVmx;
1138 AssertLogRelReturnVoid(!fHostSupportsVmx || HMIsVmxSupported(pVM));
1139 PCCPUMFEATURES pBaseFeat = fHostSupportsVmx ? pHostFeat : &EmuFeat;
1140 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1141 pGuestFeat->fVmx = (pBaseFeat->fVmx & EmuFeat.fVmx );
1142 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1143 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1144 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1145 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1146 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1147 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1148 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1149 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1150 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1151 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1152 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1153 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1154 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1155 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1156 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1157 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1158 pGuestFeat->fVmxTprShadow = (pBaseFeat->fVmxTprShadow & EmuFeat.fVmxTprShadow );
1159 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1160 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1161 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1162 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1163 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1164 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1165 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1166 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1167 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1168 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1169 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1170 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1171 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1172 pGuestFeat->fVmxVirtX2ApicAccess = (pBaseFeat->fVmxVirtX2ApicAccess & EmuFeat.fVmxVirtX2ApicAccess );
1173 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1174 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1175 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1176 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1177 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1178 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1179 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1180 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr);
1181 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1182 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1183 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1184 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1185 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1186 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1187 pGuestFeat->fVmxExitStoreEferLma = (pBaseFeat->fVmxExitStoreEferLma & EmuFeat.fVmxExitStoreEferLma );
1188 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1189 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1190}
1191
1192
1193/**
1194 * Initializes the CPUM.
1195 *
1196 * @returns VBox status code.
1197 * @param pVM The cross context VM structure.
1198 */
1199VMMR3DECL(int) CPUMR3Init(PVM pVM)
1200{
1201 LogFlow(("CPUMR3Init\n"));
1202
1203 /*
1204 * Assert alignment, sizes and tables.
1205 */
1206 AssertCompileMemberAlignment(VM, cpum.s, 32);
1207 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
1208 AssertCompileSizeAlignment(CPUMCTX, 64);
1209 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
1210 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
1211 AssertCompileMemberAlignment(VM, cpum, 64);
1212 AssertCompileMemberAlignment(VM, aCpus, 64);
1213 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
1214 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
1215#ifdef VBOX_STRICT
1216 int rc2 = cpumR3MsrStrictInitChecks();
1217 AssertRCReturn(rc2, rc2);
1218#endif
1219
1220 /*
1221 * Initialize offsets.
1222 */
1223
1224 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
1225 pVM->cpum.s.offCPUMCPU0 = RT_UOFFSETOF(VM, aCpus[0].cpum) - RT_UOFFSETOF(VM, cpum);
1226 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
1227
1228
1229 /* Calculate the offset from CPUMCPU to CPUM. */
1230 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1231 {
1232 PVMCPU pVCpu = &pVM->aCpus[i];
1233
1234 pVCpu->cpum.s.offCPUM = RT_UOFFSETOF_DYN(VM, aCpus[i].cpum) - RT_UOFFSETOF(VM, cpum);
1235 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
1236 }
1237
1238 /*
1239 * Gather info about the host CPU.
1240 */
1241 if (!ASMHasCpuId())
1242 {
1243 Log(("The CPU doesn't support CPUID!\n"));
1244 return VERR_UNSUPPORTED_CPU;
1245 }
1246
1247 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
1248
1249 PCPUMCPUIDLEAF paLeaves;
1250 uint32_t cLeaves;
1251 int rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
1252 AssertLogRelRCReturn(rc, rc);
1253
1254 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &pVM->cpum.s.HostFeatures);
1255 RTMemFree(paLeaves);
1256 AssertLogRelRCReturn(rc, rc);
1257 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
1258
1259 /*
1260 * Check that the CPU supports the minimum features we require.
1261 */
1262 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
1263 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
1264 if (!pVM->cpum.s.HostFeatures.fMmx)
1265 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
1266 if (!pVM->cpum.s.HostFeatures.fTsc)
1267 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
1268
1269 /*
1270 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
1271 */
1272 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
1273 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
1274
1275 /*
1276 * Figure out which XSAVE/XRSTOR features are available on the host.
1277 */
1278 uint64_t fXcr0Host = 0;
1279 uint64_t fXStateHostMask = 0;
1280 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
1281 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
1282 {
1283 fXStateHostMask = fXcr0Host = ASMGetXcr0();
1284 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
1285 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
1286 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
1287 }
1288 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
1289 if (VM_IS_RAW_MODE_ENABLED(pVM)) /* For raw-mode, we only use XSAVE/XRSTOR when the guest starts using it (CPUID/CR4 visibility). */
1290 fXStateHostMask = 0;
1291 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
1292 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
1293
1294 /*
1295 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
1296 */
1297 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
1298 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
1299 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
1300
1301 uint8_t *pbXStates;
1302 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 3 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
1303 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
1304 AssertLogRelRCReturn(rc, rc);
1305
1306 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1307 {
1308 PVMCPU pVCpu = &pVM->aCpus[i];
1309
1310 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1311 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1312 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1313 pbXStates += cbMaxXState;
1314
1315 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1316 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1317 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1318 pbXStates += cbMaxXState;
1319
1320 pVCpu->cpum.s.Hyper.pXStateR3 = (PX86XSAVEAREA)pbXStates;
1321 pVCpu->cpum.s.Hyper.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
1322 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
1323 pbXStates += cbMaxXState;
1324
1325 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
1326 }
1327
1328 /*
1329 * Register saved state data item.
1330 */
1331 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
1332 NULL, cpumR3LiveExec, NULL,
1333 NULL, cpumR3SaveExec, NULL,
1334 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
1335 if (RT_FAILURE(rc))
1336 return rc;
1337
1338 /*
1339 * Register info handlers and registers with the debugger facility.
1340 */
1341 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
1342 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
1343 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
1344 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
1345 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
1346 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
1347 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
1348 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
1349 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
1350 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
1351 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
1352 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
1353 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
1354 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
1355 &cpumR3InfoVmxFeatures);
1356
1357 rc = cpumR3DbgInit(pVM);
1358 if (RT_FAILURE(rc))
1359 return rc;
1360
1361 /*
1362 * Check if we need to workaround partial/leaky FPU handling.
1363 */
1364 cpumR3CheckLeakyFpu(pVM);
1365
1366 /*
1367 * Initialize the Guest CPUID and MSR states.
1368 */
1369 rc = cpumR3InitCpuIdAndMsrs(pVM);
1370 if (RT_FAILURE(rc))
1371 return rc;
1372
1373 /*
1374 * Allocate memory required by the guest hardware virtualization state.
1375 */
1376 if (pVM->cpum.ro.GuestFeatures.fSvm)
1377 {
1378 rc = cpumR3AllocSvmHwVirtState(pVM);
1379 if (RT_FAILURE(rc))
1380 return rc;
1381 }
1382
1383 /*
1384 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestInfo.DefCpuId:
1385 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1386 * of processors from (cpuid(4).eax >> 26) + 1.
1387 *
1388 * Note: this code is obsolete, but let's keep it here for reference.
1389 * Purpose is valid when we artificially cap the max std id to less than 4.
1390 *
1391 * Note: This used to be a separate function CPUMR3SetHwVirt that was called
1392 * after VMINITCOMPLETED_HM.
1393 */
1394 if (VM_IS_RAW_MODE_ENABLED(pVM))
1395 {
1396 Assert( (pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax & UINT32_C(0xffffc000)) == 0
1397 || pVM->cpum.s.aGuestCpuIdPatmStd[0].uEax < 0x4);
1398 pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax &= UINT32_C(0x00003fff);
1399 }
1400
1401 CPUMR3Reset(pVM);
1402 return VINF_SUCCESS;
1403}
1404
1405
1406/**
1407 * Applies relocations to data and code managed by this
1408 * component. This function will be called at init and
1409 * whenever the VMM need to relocate it self inside the GC.
1410 *
1411 * The CPUM will update the addresses used by the switcher.
1412 *
1413 * @param pVM The cross context VM structure.
1414 */
1415VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
1416{
1417 LogFlow(("CPUMR3Relocate\n"));
1418
1419 pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
1420 pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
1421
1422 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1423 {
1424 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1425 pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Guest.pXStateR3);
1426 pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Host.pXStateR3);
1427 pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Hyper.pXStateR3); /** @todo remove me */
1428
1429 /* Recheck the guest DRx values in raw-mode. */
1430 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX, false);
1431 }
1432}
1433
1434
1435/**
1436 * Terminates the CPUM.
1437 *
1438 * Termination means cleaning up and freeing all resources,
1439 * the VM it self is at this point powered off or suspended.
1440 *
1441 * @returns VBox status code.
1442 * @param pVM The cross context VM structure.
1443 */
1444VMMR3DECL(int) CPUMR3Term(PVM pVM)
1445{
1446#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1447 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1448 {
1449 PVMCPU pVCpu = &pVM->aCpus[i];
1450 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1451
1452 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1453 pVCpu->cpum.s.uMagic = 0;
1454 pCtx->dr[5] = 0;
1455 }
1456#endif
1457
1458 if (pVM->cpum.ro.GuestFeatures.fSvm)
1459 cpumR3FreeSvmHwVirtState(pVM);
1460 return VINF_SUCCESS;
1461}
1462
1463
1464/**
1465 * Resets a virtual CPU.
1466 *
1467 * Used by CPUMR3Reset and CPU hot plugging.
1468 *
1469 * @param pVM The cross context VM structure.
1470 * @param pVCpu The cross context virtual CPU structure of the CPU that is
1471 * being reset. This may differ from the current EMT.
1472 */
1473VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
1474{
1475 /** @todo anything different for VCPU > 0? */
1476 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1477
1478 /*
1479 * Initialize everything to ZERO first.
1480 */
1481 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1482
1483 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
1484 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateRC));
1485 memset(pCtx, 0, RT_UOFFSETOF(CPUMCTX, pXStateR0));
1486
1487 pVCpu->cpum.s.fUseFlags = fUseFlags;
1488
1489 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1490 pCtx->eip = 0x0000fff0;
1491 pCtx->edx = 0x00000600; /* P6 processor */
1492 pCtx->eflags.Bits.u1Reserved0 = 1;
1493
1494 pCtx->cs.Sel = 0xf000;
1495 pCtx->cs.ValidSel = 0xf000;
1496 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1497 pCtx->cs.u64Base = UINT64_C(0xffff0000);
1498 pCtx->cs.u32Limit = 0x0000ffff;
1499 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
1500 pCtx->cs.Attr.n.u1Present = 1;
1501 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
1502
1503 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
1504 pCtx->ds.u32Limit = 0x0000ffff;
1505 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
1506 pCtx->ds.Attr.n.u1Present = 1;
1507 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1508
1509 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
1510 pCtx->es.u32Limit = 0x0000ffff;
1511 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
1512 pCtx->es.Attr.n.u1Present = 1;
1513 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1514
1515 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
1516 pCtx->fs.u32Limit = 0x0000ffff;
1517 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
1518 pCtx->fs.Attr.n.u1Present = 1;
1519 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1520
1521 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
1522 pCtx->gs.u32Limit = 0x0000ffff;
1523 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
1524 pCtx->gs.Attr.n.u1Present = 1;
1525 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1526
1527 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
1528 pCtx->ss.u32Limit = 0x0000ffff;
1529 pCtx->ss.Attr.n.u1Present = 1;
1530 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
1531 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
1532
1533 pCtx->idtr.cbIdt = 0xffff;
1534 pCtx->gdtr.cbGdt = 0xffff;
1535
1536 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1537 pCtx->ldtr.u32Limit = 0xffff;
1538 pCtx->ldtr.Attr.n.u1Present = 1;
1539 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1540
1541 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
1542 pCtx->tr.u32Limit = 0xffff;
1543 pCtx->tr.Attr.n.u1Present = 1;
1544 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
1545
1546 pCtx->dr[6] = X86_DR6_INIT_VAL;
1547 pCtx->dr[7] = X86_DR7_INIT_VAL;
1548
1549 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
1550 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
1551 pFpuCtx->FCW = 0x37f;
1552
1553 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
1554 IA-32 Processor States Following Power-up, Reset, or INIT */
1555 pFpuCtx->MXCSR = 0x1F80;
1556 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
1557
1558 pCtx->aXcr[0] = XSAVE_C_X87;
1559 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
1560 {
1561 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
1562 as we don't know what happened before. (Bother optimize later?) */
1563 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
1564 }
1565
1566 /*
1567 * MSRs.
1568 */
1569 /* Init PAT MSR */
1570 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
1571
1572 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
1573 * The Intel docs don't mention it. */
1574 Assert(!pCtx->msrEFER);
1575
1576 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
1577 is supposed to be here, just trying provide useful/sensible values. */
1578 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
1579 if (pRange)
1580 {
1581 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1582 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
1583 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
1584 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
1585 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
1586 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
1587 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
1588 }
1589
1590 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
1591
1592 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
1593 * called from each EMT while we're getting called by CPUMR3Reset()
1594 * iteratively on the same thread. Fix later. */
1595#if 0 /** @todo r=bird: This we will do in TM, not here. */
1596 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
1597 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
1598#endif
1599
1600
1601 /* C-state control. Guesses. */
1602 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
1603 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
1604 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
1605 * functionality. The default value must be different due to incompatible write mask.
1606 */
1607 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
1608 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
1609 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
1610 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
1611
1612 /*
1613 * Hardware virtualization state.
1614 */
1615 pCtx->hwvirt.fGif = true;
1616
1617 /* SVM. */
1618 if (pCtx->hwvirt.svm.CTX_SUFF(pVmcb))
1619 {
1620 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
1621 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1622 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1623 }
1624}
1625
1626
1627/**
1628 * Resets the CPU.
1629 *
1630 * @returns VINF_SUCCESS.
1631 * @param pVM The cross context VM structure.
1632 */
1633VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1634{
1635 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1636 {
1637 CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
1638
1639#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1640 PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
1641
1642 /* Magic marker for searching in crash dumps. */
1643 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1644 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1645 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1646#endif
1647 }
1648}
1649
1650
1651
1652
1653/**
1654 * Pass 0 live exec callback.
1655 *
1656 * @returns VINF_SSM_DONT_CALL_AGAIN.
1657 * @param pVM The cross context VM structure.
1658 * @param pSSM The saved state handle.
1659 * @param uPass The pass (0).
1660 */
1661static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1662{
1663 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
1664 cpumR3SaveCpuId(pVM, pSSM);
1665 return VINF_SSM_DONT_CALL_AGAIN;
1666}
1667
1668
1669/**
1670 * Execute state save operation.
1671 *
1672 * @returns VBox status code.
1673 * @param pVM The cross context VM structure.
1674 * @param pSSM SSM operation handle.
1675 */
1676static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1677{
1678 /*
1679 * Save.
1680 */
1681 SSMR3PutU32(pSSM, pVM->cCpus);
1682 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
1683 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1684 {
1685 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1686
1687 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
1688
1689 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
1690 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
1691 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
1692 if (pGstCtx->fXStateMask != 0)
1693 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
1694 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
1695 {
1696 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
1697 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
1698 }
1699 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
1700 {
1701 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
1702 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
1703 }
1704 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
1705 {
1706 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
1707 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
1708 }
1709 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
1710 {
1711 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
1712 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
1713 }
1714 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
1715 {
1716 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
1717 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
1718 }
1719 if (pVM->cpum.ro.GuestFeatures.fSvm)
1720 {
1721 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
1722 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
1723 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
1724 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
1725 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
1726 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
1727 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
1728 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
1729 g_aSvmHwvirtHostState, NULL /* pvUser */);
1730 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
1731 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1732 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
1733 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
1734 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
1735 }
1736 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1737 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1738 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
1739 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
1740 }
1741
1742 cpumR3SaveCpuId(pVM, pSSM);
1743 return VINF_SUCCESS;
1744}
1745
1746
1747/**
1748 * @callback_method_impl{FNSSMINTLOADPREP}
1749 */
1750static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
1751{
1752 NOREF(pSSM);
1753 pVM->cpum.s.fPendingRestore = true;
1754 return VINF_SUCCESS;
1755}
1756
1757
1758/**
1759 * @callback_method_impl{FNSSMINTLOADEXEC}
1760 */
1761static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1762{
1763 int rc; /* Only for AssertRCReturn use. */
1764
1765 /*
1766 * Validate version.
1767 */
1768 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
1769 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
1770 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
1771 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
1772 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
1773 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
1774 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
1775 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
1776 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
1777 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
1778 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1779 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
1780 {
1781 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
1782 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1783 }
1784
1785 if (uPass == SSM_PASS_FINAL)
1786 {
1787 /*
1788 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
1789 * really old SSM file versions.)
1790 */
1791 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1792 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
1793 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
1794 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
1795
1796 /*
1797 * Figure x86 and ctx field definitions to use for older states.
1798 */
1799 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
1800 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
1801 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
1802 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1803 {
1804 paCpumCtx1Fields = g_aCpumX87FieldsV16;
1805 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
1806 }
1807 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
1808 {
1809 paCpumCtx1Fields = g_aCpumX87FieldsMem;
1810 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
1811 }
1812
1813 /*
1814 * The hyper state used to preceed the CPU count. Starting with
1815 * XSAVE it was moved down till after we've got the count.
1816 */
1817 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
1818 {
1819 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1820 {
1821 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1822 X86FXSTATE Ign;
1823 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
1824 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1825 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
1826 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper),
1827 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
1828 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1829 pVCpu->cpum.s.Hyper.rsp = uRSP;
1830 }
1831 }
1832
1833 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
1834 {
1835 uint32_t cCpus;
1836 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
1837 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
1838 VERR_SSM_UNEXPECTED_DATA);
1839 }
1840 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
1841 || pVM->cCpus == 1,
1842 ("cCpus=%u\n", pVM->cCpus),
1843 VERR_SSM_UNEXPECTED_DATA);
1844
1845 uint32_t cbMsrs = 0;
1846 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
1847 {
1848 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
1849 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
1850 VERR_SSM_UNEXPECTED_DATA);
1851 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
1852 VERR_SSM_UNEXPECTED_DATA);
1853 }
1854
1855 /*
1856 * Do the per-CPU restoring.
1857 */
1858 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1859 {
1860 PVMCPU pVCpu = &pVM->aCpus[iCpu];
1861 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
1862
1863 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
1864 {
1865 /*
1866 * The XSAVE saved state layout moved the hyper state down here.
1867 */
1868 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1869 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
1870 rc = SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
1871 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1872 pVCpu->cpum.s.Hyper.rsp = uRSP;
1873 AssertRCReturn(rc, rc);
1874
1875 /*
1876 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
1877 */
1878 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
1879 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
1880 AssertRCReturn(rc, rc);
1881
1882 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
1883 if (pGstCtx->fXStateMask != 0)
1884 {
1885 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
1886 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
1887 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
1888 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
1889 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
1890 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1891 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
1892 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1893 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
1894 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
1895 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
1896 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1897 }
1898
1899 /* Check that the XCR0 mask is valid (invalid results in #GP). */
1900 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
1901 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
1902 {
1903 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
1904 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
1905 VERR_CPUM_INVALID_XCR0);
1906 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
1907 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1908 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
1909 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1910 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
1911 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
1912 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
1913 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
1914 }
1915
1916 /* Check that the XCR1 is zero, as we don't implement it yet. */
1917 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
1918
1919 /*
1920 * Restore the individual extended state components we support.
1921 */
1922 if (pGstCtx->fXStateMask != 0)
1923 {
1924 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
1925 0, g_aCpumXSaveHdrFields, NULL);
1926 AssertRCReturn(rc, rc);
1927 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
1928 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
1929 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
1930 VERR_CPUM_INVALID_XSAVE_HDR);
1931 }
1932 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
1933 {
1934 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
1935 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
1936 }
1937 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
1938 {
1939 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
1940 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
1941 }
1942 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
1943 {
1944 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
1945 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
1946 }
1947 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
1948 {
1949 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
1950 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
1951 }
1952 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
1953 {
1954 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
1955 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
1956 }
1957 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
1958 {
1959 if (pVM->cpum.ro.GuestFeatures.fSvm)
1960 {
1961 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
1962 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
1963 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
1964 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
1965 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
1966 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
1967 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
1968 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
1969 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
1970 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
1971 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
1972 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
1973 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
1974 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
1975 }
1976 }
1977 }
1978 else
1979 {
1980 /*
1981 * Pre XSAVE saved state.
1982 */
1983 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
1984 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
1985 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
1986 }
1987
1988 /*
1989 * Restore a couple of flags and the MSRs.
1990 */
1991 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
1992 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
1993
1994 rc = VINF_SUCCESS;
1995 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
1996 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
1997 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
1998 {
1999 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2000 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2001 }
2002 AssertRCReturn(rc, rc);
2003
2004 /* REM and other may have cleared must-be-one fields in DR6 and
2005 DR7, fix these. */
2006 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2007 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2008 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2009 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2010 }
2011
2012 /* Older states does not have the internal selector register flags
2013 and valid selector value. Supply those. */
2014 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2015 {
2016 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2017 {
2018 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2019 bool const fValid = !VM_IS_RAW_MODE_ENABLED(pVM)
2020 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2021 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2022 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2023 if (fValid)
2024 {
2025 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2026 {
2027 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2028 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2029 }
2030
2031 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2032 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2033 }
2034 else
2035 {
2036 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2037 {
2038 paSelReg[iSelReg].fFlags = 0;
2039 paSelReg[iSelReg].ValidSel = 0;
2040 }
2041
2042 /* This might not be 104% correct, but I think it's close
2043 enough for all practical purposes... (REM always loaded
2044 LDTR registers.) */
2045 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2046 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2047 }
2048 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2049 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2050 }
2051 }
2052
2053 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2054 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2055 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2056 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2057 pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2058
2059 /*
2060 * A quick sanity check.
2061 */
2062 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2063 {
2064 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2065 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2066 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2067 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2068 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2069 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2070 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2071 }
2072 }
2073
2074 pVM->cpum.s.fPendingRestore = false;
2075
2076 /*
2077 * Guest CPUIDs.
2078 */
2079 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
2080 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2081 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
2082}
2083
2084
2085/**
2086 * @callback_method_impl{FNSSMINTLOADDONE}
2087 */
2088static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2089{
2090 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2091 return VINF_SUCCESS;
2092
2093 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2094 if (pVM->cpum.s.fPendingRestore)
2095 {
2096 LogRel(("CPUM: Missing state!\n"));
2097 return VERR_INTERNAL_ERROR_2;
2098 }
2099
2100 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
2101 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2102 {
2103 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2104
2105 /* Notify PGM of the NXE states in case they've changed. */
2106 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2107
2108 /* During init. this is done in CPUMR3InitCompleted(). */
2109 if (fSupportsLongMode)
2110 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
2111 }
2112 return VINF_SUCCESS;
2113}
2114
2115
2116/**
2117 * Checks if the CPUM state restore is still pending.
2118 *
2119 * @returns true / false.
2120 * @param pVM The cross context VM structure.
2121 */
2122VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2123{
2124 return pVM->cpum.s.fPendingRestore;
2125}
2126
2127
2128/**
2129 * Formats the EFLAGS value into mnemonics.
2130 *
2131 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2132 * @param efl The EFLAGS value.
2133 */
2134static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2135{
2136 /*
2137 * Format the flags.
2138 */
2139 static const struct
2140 {
2141 const char *pszSet; const char *pszClear; uint32_t fFlag;
2142 } s_aFlags[] =
2143 {
2144 { "vip",NULL, X86_EFL_VIP },
2145 { "vif",NULL, X86_EFL_VIF },
2146 { "ac", NULL, X86_EFL_AC },
2147 { "vm", NULL, X86_EFL_VM },
2148 { "rf", NULL, X86_EFL_RF },
2149 { "nt", NULL, X86_EFL_NT },
2150 { "ov", "nv", X86_EFL_OF },
2151 { "dn", "up", X86_EFL_DF },
2152 { "ei", "di", X86_EFL_IF },
2153 { "tf", NULL, X86_EFL_TF },
2154 { "nt", "pl", X86_EFL_SF },
2155 { "nz", "zr", X86_EFL_ZF },
2156 { "ac", "na", X86_EFL_AF },
2157 { "po", "pe", X86_EFL_PF },
2158 { "cy", "nc", X86_EFL_CF },
2159 };
2160 char *psz = pszEFlags;
2161 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2162 {
2163 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2164 if (pszAdd)
2165 {
2166 strcpy(psz, pszAdd);
2167 psz += strlen(pszAdd);
2168 *psz++ = ' ';
2169 }
2170 }
2171 psz[-1] = '\0';
2172}
2173
2174
2175/**
2176 * Formats a full register dump.
2177 *
2178 * @param pVM The cross context VM structure.
2179 * @param pCtx The context to format.
2180 * @param pCtxCore The context core to format.
2181 * @param pHlp Output functions.
2182 * @param enmType The dump type.
2183 * @param pszPrefix Register name prefix.
2184 */
2185static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
2186 const char *pszPrefix)
2187{
2188 NOREF(pVM);
2189
2190 /*
2191 * Format the EFLAGS.
2192 */
2193 uint32_t efl = pCtxCore->eflags.u32;
2194 char szEFlags[80];
2195 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2196
2197 /*
2198 * Format the registers.
2199 */
2200 switch (enmType)
2201 {
2202 case CPUMDUMPTYPE_TERSE:
2203 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2204 pHlp->pfnPrintf(pHlp,
2205 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2206 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2207 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2208 "%sr14=%016RX64 %sr15=%016RX64\n"
2209 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2210 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2211 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2212 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2213 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2214 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2215 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2216 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2217 else
2218 pHlp->pfnPrintf(pHlp,
2219 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2220 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2221 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2222 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2223 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2224 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2225 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2226 break;
2227
2228 case CPUMDUMPTYPE_DEFAULT:
2229 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2230 pHlp->pfnPrintf(pHlp,
2231 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2232 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2233 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2234 "%sr14=%016RX64 %sr15=%016RX64\n"
2235 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2236 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2237 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2238 ,
2239 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2240 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2241 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2242 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2243 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2244 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2245 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2246 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2247 else
2248 pHlp->pfnPrintf(pHlp,
2249 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2250 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2251 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2252 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2253 ,
2254 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2255 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2256 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2257 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2258 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2259 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2260 break;
2261
2262 case CPUMDUMPTYPE_VERBOSE:
2263 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2264 pHlp->pfnPrintf(pHlp,
2265 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2266 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2267 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2268 "%sr14=%016RX64 %sr15=%016RX64\n"
2269 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2270 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2271 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2272 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2273 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2274 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2275 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2276 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2277 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2278 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2279 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2280 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2281 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2282 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2283 ,
2284 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2285 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2286 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2287 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2288 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
2289 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
2290 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
2291 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
2292 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
2293 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
2294 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2295 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2296 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2297 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2298 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2299 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2300 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2301 else
2302 pHlp->pfnPrintf(pHlp,
2303 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2304 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2305 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2306 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2307 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2308 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2309 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2310 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2311 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2312 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2313 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2314 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2315 ,
2316 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2317 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2318 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2319 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2320 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2321 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2322 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2323 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2324 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2325 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2326 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2327 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2328
2329 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
2330 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
2331 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
2332 if (pCtx->CTX_SUFF(pXState))
2333 {
2334 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
2335 pHlp->pfnPrintf(pHlp,
2336 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2337 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2338 ,
2339 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
2340 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
2341 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
2342 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
2343 );
2344 /*
2345 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
2346 * not (FP)R0-7 as Intel SDM suggests.
2347 */
2348 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
2349 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
2350 {
2351 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
2352 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
2353 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
2354 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
2355 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
2356 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
2357 iExponent -= 16383; /* subtract bias */
2358 /** @todo This isn't entirenly correct and needs more work! */
2359 pHlp->pfnPrintf(pHlp,
2360 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
2361 pszPrefix, iST, pszPrefix, iFPR,
2362 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
2363 uTag, chSign, iInteger, u64Fraction, iExponent);
2364 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
2365 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2366 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
2367 else
2368 pHlp->pfnPrintf(pHlp, "\n");
2369 }
2370
2371 /* XMM/YMM/ZMM registers. */
2372 if (pCtx->fXStateMask & XSAVE_C_YMM)
2373 {
2374 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2375 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
2376 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2377 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2378 pszPrefix, i, i < 10 ? " " : "",
2379 pYmmHiCtx->aYmmHi[i].au32[3],
2380 pYmmHiCtx->aYmmHi[i].au32[2],
2381 pYmmHiCtx->aYmmHi[i].au32[1],
2382 pYmmHiCtx->aYmmHi[i].au32[0],
2383 pFpuCtx->aXMM[i].au32[3],
2384 pFpuCtx->aXMM[i].au32[2],
2385 pFpuCtx->aXMM[i].au32[1],
2386 pFpuCtx->aXMM[i].au32[0]);
2387 else
2388 {
2389 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2390 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2391 pHlp->pfnPrintf(pHlp,
2392 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2393 pszPrefix, i, i < 10 ? " " : "",
2394 pZmmHi256->aHi256Regs[i].au32[7],
2395 pZmmHi256->aHi256Regs[i].au32[6],
2396 pZmmHi256->aHi256Regs[i].au32[5],
2397 pZmmHi256->aHi256Regs[i].au32[4],
2398 pZmmHi256->aHi256Regs[i].au32[3],
2399 pZmmHi256->aHi256Regs[i].au32[2],
2400 pZmmHi256->aHi256Regs[i].au32[1],
2401 pZmmHi256->aHi256Regs[i].au32[0],
2402 pYmmHiCtx->aYmmHi[i].au32[3],
2403 pYmmHiCtx->aYmmHi[i].au32[2],
2404 pYmmHiCtx->aYmmHi[i].au32[1],
2405 pYmmHiCtx->aYmmHi[i].au32[0],
2406 pFpuCtx->aXMM[i].au32[3],
2407 pFpuCtx->aXMM[i].au32[2],
2408 pFpuCtx->aXMM[i].au32[1],
2409 pFpuCtx->aXMM[i].au32[0]);
2410
2411 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2412 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
2413 pHlp->pfnPrintf(pHlp,
2414 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
2415 pszPrefix, i + 16,
2416 pZmm16Hi->aRegs[i].au32[15],
2417 pZmm16Hi->aRegs[i].au32[14],
2418 pZmm16Hi->aRegs[i].au32[13],
2419 pZmm16Hi->aRegs[i].au32[12],
2420 pZmm16Hi->aRegs[i].au32[11],
2421 pZmm16Hi->aRegs[i].au32[10],
2422 pZmm16Hi->aRegs[i].au32[9],
2423 pZmm16Hi->aRegs[i].au32[8],
2424 pZmm16Hi->aRegs[i].au32[7],
2425 pZmm16Hi->aRegs[i].au32[6],
2426 pZmm16Hi->aRegs[i].au32[5],
2427 pZmm16Hi->aRegs[i].au32[4],
2428 pZmm16Hi->aRegs[i].au32[3],
2429 pZmm16Hi->aRegs[i].au32[2],
2430 pZmm16Hi->aRegs[i].au32[1],
2431 pZmm16Hi->aRegs[i].au32[0]);
2432 }
2433 }
2434 else
2435 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
2436 pHlp->pfnPrintf(pHlp,
2437 i & 1
2438 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2439 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2440 pszPrefix, i, i < 10 ? " " : "",
2441 pFpuCtx->aXMM[i].au32[3],
2442 pFpuCtx->aXMM[i].au32[2],
2443 pFpuCtx->aXMM[i].au32[1],
2444 pFpuCtx->aXMM[i].au32[0]);
2445
2446 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
2447 {
2448 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
2449 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
2450 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
2451 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
2452 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
2453 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
2454 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
2455 }
2456
2457 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
2458 {
2459 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2460 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
2461 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
2462 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
2463 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
2464 }
2465
2466 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
2467 {
2468 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2469 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
2470 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
2471 }
2472
2473 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
2474 if (pFpuCtx->au32RsrvdRest[i])
2475 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
2476 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
2477 }
2478
2479 pHlp->pfnPrintf(pHlp,
2480 "%sEFER =%016RX64\n"
2481 "%sPAT =%016RX64\n"
2482 "%sSTAR =%016RX64\n"
2483 "%sCSTAR =%016RX64\n"
2484 "%sLSTAR =%016RX64\n"
2485 "%sSFMASK =%016RX64\n"
2486 "%sKERNELGSBASE =%016RX64\n",
2487 pszPrefix, pCtx->msrEFER,
2488 pszPrefix, pCtx->msrPAT,
2489 pszPrefix, pCtx->msrSTAR,
2490 pszPrefix, pCtx->msrCSTAR,
2491 pszPrefix, pCtx->msrLSTAR,
2492 pszPrefix, pCtx->msrSFMASK,
2493 pszPrefix, pCtx->msrKERNELGSBASE);
2494 break;
2495 }
2496}
2497
2498
2499/**
2500 * Display all cpu states and any other cpum info.
2501 *
2502 * @param pVM The cross context VM structure.
2503 * @param pHlp The info helper functions.
2504 * @param pszArgs Arguments, ignored.
2505 */
2506static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2507{
2508 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2509 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2510 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
2511 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2512 cpumR3InfoHost(pVM, pHlp, pszArgs);
2513}
2514
2515
2516/**
2517 * Parses the info argument.
2518 *
2519 * The argument starts with 'verbose', 'terse' or 'default' and then
2520 * continues with the comment string.
2521 *
2522 * @param pszArgs The pointer to the argument string.
2523 * @param penmType Where to store the dump type request.
2524 * @param ppszComment Where to store the pointer to the comment string.
2525 */
2526static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2527{
2528 if (!pszArgs)
2529 {
2530 *penmType = CPUMDUMPTYPE_DEFAULT;
2531 *ppszComment = "";
2532 }
2533 else
2534 {
2535 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
2536 {
2537 pszArgs += 7;
2538 *penmType = CPUMDUMPTYPE_VERBOSE;
2539 }
2540 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
2541 {
2542 pszArgs += 5;
2543 *penmType = CPUMDUMPTYPE_TERSE;
2544 }
2545 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
2546 {
2547 pszArgs += 7;
2548 *penmType = CPUMDUMPTYPE_DEFAULT;
2549 }
2550 else
2551 *penmType = CPUMDUMPTYPE_DEFAULT;
2552 *ppszComment = RTStrStripL(pszArgs);
2553 }
2554}
2555
2556
2557/**
2558 * Display the guest cpu state.
2559 *
2560 * @param pVM The cross context VM structure.
2561 * @param pHlp The info helper functions.
2562 * @param pszArgs Arguments.
2563 */
2564static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2565{
2566 CPUMDUMPTYPE enmType;
2567 const char *pszComment;
2568 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2569
2570 PVMCPU pVCpu = VMMGetCpu(pVM);
2571 if (!pVCpu)
2572 pVCpu = &pVM->aCpus[0];
2573
2574 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2575
2576 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2577 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2578}
2579
2580
2581/**
2582 * Displays an SVM VMCB control area.
2583 *
2584 * @param pHlp The info helper functions.
2585 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
2586 * @param pszPrefix Caller specified string prefix.
2587 */
2588static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
2589{
2590 AssertReturnVoid(pHlp);
2591 AssertReturnVoid(pVmcbCtrl);
2592
2593 pHlp->pfnPrintf(pHlp, "%su16InterceptRdCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
2594 pHlp->pfnPrintf(pHlp, "%su16InterceptWrCRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
2595 pHlp->pfnPrintf(pHlp, "%su16InterceptRdDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
2596 pHlp->pfnPrintf(pHlp, "%su16InterceptWrDRx = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
2597 pHlp->pfnPrintf(pHlp, "%su32InterceptXcpt = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
2598 pHlp->pfnPrintf(pHlp, "%su64InterceptCtrl = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
2599 pHlp->pfnPrintf(pHlp, "%su16PauseFilterThreshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
2600 pHlp->pfnPrintf(pHlp, "%su16PauseFilterCount = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
2601 pHlp->pfnPrintf(pHlp, "%su64IOPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
2602 pHlp->pfnPrintf(pHlp, "%su64MSRPMPhysAddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
2603 pHlp->pfnPrintf(pHlp, "%su64TSCOffset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
2604 pHlp->pfnPrintf(pHlp, "%sTLBCtrl\n", pszPrefix);
2605 pHlp->pfnPrintf(pHlp, "%s u32ASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
2606 pHlp->pfnPrintf(pHlp, "%s u8TLBFlush = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
2607 pHlp->pfnPrintf(pHlp, "%sIntCtrl\n", pszPrefix);
2608 pHlp->pfnPrintf(pHlp, "%s u8VTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
2609 pHlp->pfnPrintf(pHlp, "%s u1VIrqPending = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
2610 pHlp->pfnPrintf(pHlp, "%s u1VGif = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
2611 pHlp->pfnPrintf(pHlp, "%s u4VIntrPrio = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
2612 pHlp->pfnPrintf(pHlp, "%s u1IgnoreTPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
2613 pHlp->pfnPrintf(pHlp, "%s u1VIntrMasking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
2614 pHlp->pfnPrintf(pHlp, "%s u1VGifEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
2615 pHlp->pfnPrintf(pHlp, "%s u1AvicEnable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
2616 pHlp->pfnPrintf(pHlp, "%s u8VIntrVector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
2617 pHlp->pfnPrintf(pHlp, "%sIntShadow\n", pszPrefix);
2618 pHlp->pfnPrintf(pHlp, "%s u1IntShadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
2619 pHlp->pfnPrintf(pHlp, "%s u1GuestIntMask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
2620 pHlp->pfnPrintf(pHlp, "%su64ExitCode = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
2621 pHlp->pfnPrintf(pHlp, "%su64ExitInfo1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
2622 pHlp->pfnPrintf(pHlp, "%su64ExitInfo2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
2623 pHlp->pfnPrintf(pHlp, "%sExitIntInfo\n", pszPrefix);
2624 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
2625 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
2626 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
2627 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
2628 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
2629 pHlp->pfnPrintf(pHlp, "%sNestedPaging and SEV\n", pszPrefix);
2630 pHlp->pfnPrintf(pHlp, "%s u1NestedPaging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
2631 pHlp->pfnPrintf(pHlp, "%s u1Sev = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
2632 pHlp->pfnPrintf(pHlp, "%s u1SevEs = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
2633 pHlp->pfnPrintf(pHlp, "%sAvicBar\n", pszPrefix);
2634 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
2635 pHlp->pfnPrintf(pHlp, "%sEventInject\n", pszPrefix);
2636 pHlp->pfnPrintf(pHlp, "%s EventInject\n", pszPrefix);
2637 pHlp->pfnPrintf(pHlp, "%s u8Vector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
2638 pHlp->pfnPrintf(pHlp, "%s u3Type = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
2639 pHlp->pfnPrintf(pHlp, "%s u1ErrorCodeValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
2640 pHlp->pfnPrintf(pHlp, "%s u1Valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
2641 pHlp->pfnPrintf(pHlp, "%s u32ErrorCode = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
2642 pHlp->pfnPrintf(pHlp, "%su64NestedPagingCR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
2643 pHlp->pfnPrintf(pHlp, "%sLBR virtualization\n", pszPrefix);
2644 pHlp->pfnPrintf(pHlp, "%s u1LbrVirt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
2645 pHlp->pfnPrintf(pHlp, "%s u1VirtVmsaveVmload = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
2646 pHlp->pfnPrintf(pHlp, "%su32VmcbCleanBits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
2647 pHlp->pfnPrintf(pHlp, "%su64NextRIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
2648 pHlp->pfnPrintf(pHlp, "%scbInstrFetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
2649 pHlp->pfnPrintf(pHlp, "%sabInstr = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
2650 pHlp->pfnPrintf(pHlp, "%sAvicBackingPagePtr\n", pszPrefix);
2651 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
2652 pHlp->pfnPrintf(pHlp, "%sAvicLogicalTablePtr\n", pszPrefix);
2653 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
2654 pHlp->pfnPrintf(pHlp, "%sAvicPhysicalTablePtr\n", pszPrefix);
2655 pHlp->pfnPrintf(pHlp, "%s u8LastGuestCoreId = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
2656 pHlp->pfnPrintf(pHlp, "%s u40Addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
2657}
2658
2659
2660/**
2661 * Helper for dumping the SVM VMCB selector registers.
2662 *
2663 * @param pHlp The info helper functions.
2664 * @param pSel Pointer to the SVM selector register.
2665 * @param pszName Name of the selector.
2666 * @param pszPrefix Caller specified string prefix.
2667 */
2668DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
2669{
2670 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
2671 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
2672 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
2673}
2674
2675
2676/**
2677 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
2678 *
2679 * @param pHlp The info helper functions.
2680 * @param pXdtr Pointer to the descriptor table register.
2681 * @param pszName Name of the descriptor table register.
2682 * @param pszPrefix Caller specified string prefix.
2683 */
2684DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
2685{
2686 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
2687 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
2688}
2689
2690
2691/**
2692 * Displays an SVM VMCB state-save area.
2693 *
2694 * @param pHlp The info helper functions.
2695 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
2696 * @param pszPrefix Caller specified string prefix.
2697 */
2698static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
2699{
2700 AssertReturnVoid(pHlp);
2701 AssertReturnVoid(pVmcbStateSave);
2702
2703 char szEFlags[80];
2704 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
2705
2706 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
2707 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
2708 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
2709 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
2710 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
2711 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
2712 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
2713 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
2714 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
2715 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
2716 pHlp->pfnPrintf(pHlp, "%su8CPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
2717 pHlp->pfnPrintf(pHlp, "%su64EFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
2718 pHlp->pfnPrintf(pHlp, "%su64CR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
2719 pHlp->pfnPrintf(pHlp, "%su64CR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
2720 pHlp->pfnPrintf(pHlp, "%su64CR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
2721 pHlp->pfnPrintf(pHlp, "%su64DR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
2722 pHlp->pfnPrintf(pHlp, "%su64DR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
2723 pHlp->pfnPrintf(pHlp, "%su64RFlags = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
2724 pHlp->pfnPrintf(pHlp, "%su64RIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
2725 pHlp->pfnPrintf(pHlp, "%su64RSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
2726 pHlp->pfnPrintf(pHlp, "%su64RAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
2727 pHlp->pfnPrintf(pHlp, "%su64STAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
2728 pHlp->pfnPrintf(pHlp, "%su64LSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
2729 pHlp->pfnPrintf(pHlp, "%su64CSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
2730 pHlp->pfnPrintf(pHlp, "%su64SFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
2731 pHlp->pfnPrintf(pHlp, "%su64KernelGSBase = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
2732 pHlp->pfnPrintf(pHlp, "%su64SysEnterCS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
2733 pHlp->pfnPrintf(pHlp, "%su64SysEnterEIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
2734 pHlp->pfnPrintf(pHlp, "%su64SysEnterESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
2735 pHlp->pfnPrintf(pHlp, "%su64CR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
2736 pHlp->pfnPrintf(pHlp, "%su64PAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
2737 pHlp->pfnPrintf(pHlp, "%su64DBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
2738 pHlp->pfnPrintf(pHlp, "%su64BR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
2739 pHlp->pfnPrintf(pHlp, "%su64BR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
2740 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPFROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
2741 pHlp->pfnPrintf(pHlp, "%su64LASTEXCPTO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
2742}
2743
2744
2745/**
2746 * Display the guest's hardware-virtualization cpu state.
2747 *
2748 * @param pVM The cross context VM structure.
2749 * @param pHlp The info helper functions.
2750 * @param pszArgs Arguments, ignored.
2751 */
2752static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2753{
2754 RT_NOREF(pszArgs);
2755
2756 PVMCPU pVCpu = VMMGetCpu(pVM);
2757 if (!pVCpu)
2758 pVCpu = &pVM->aCpus[0];
2759
2760 /*
2761 * Figure out what to dump.
2762 *
2763 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
2764 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
2765 * dump hwvirt. state when the guest CPU is executing a nested-guest.
2766 */
2767 /** @todo perhaps make this configurable through pszArgs, depending on how much
2768 * noise we wish to accept when nested hwvirt. isn't used. */
2769#define CPUMHWVIRTDUMP_NONE (0)
2770#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
2771#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
2772#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
2773#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
2774
2775 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2776 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
2777 uint8_t const idxHwvirtState = CPUMIsGuestInSvmNestedHwVirtMode(pCtx) ? CPUMHWVIRTDUMP_SVM
2778 : CPUMIsGuestInVmxNestedHwVirtMode(pCtx) ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE;
2779 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
2780 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
2781 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
2782 uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
2783
2784 /*
2785 * Dump it.
2786 */
2787 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
2788
2789 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
2790 {
2791 pHlp->pfnPrintf(pHlp, "fGif = %RTbool\n", pCtx->hwvirt.fGif);
2792 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
2793 }
2794 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
2795 ":" : "");
2796 if (fDumpState & CPUMHWVIRTDUMP_SVM)
2797 {
2798 char szEFlags[80];
2799 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
2800
2801 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
2802 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
2803 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
2804 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
2805 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
2806 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
2807 pHlp->pfnPrintf(pHlp, " HostState:\n");
2808 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
2809 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
2810 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
2811 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
2812 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
2813 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
2814 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
2815 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
2816 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
2817 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2818 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2819 pSel = &pCtx->hwvirt.svm.HostState.cs;
2820 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2821 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2822 pSel = &pCtx->hwvirt.svm.HostState.ss;
2823 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2824 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2825 pSel = &pCtx->hwvirt.svm.HostState.ds;
2826 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
2827 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
2828 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
2829 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
2830 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
2831 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
2832 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
2833 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
2834 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
2835 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
2836 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
2837 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
2838 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
2839 }
2840
2841 /** @todo Intel. */
2842#if 0
2843 if (fDumpState & CPUMHWVIRTDUMP_VMX)
2844 {
2845 }
2846#endif
2847
2848#undef CPUMHWVIRTDUMP_NONE
2849#undef CPUMHWVIRTDUMP_COMMON
2850#undef CPUMHWVIRTDUMP_SVM
2851#undef CPUMHWVIRTDUMP_VMX
2852#undef CPUMHWVIRTDUMP_LAST
2853#undef CPUMHWVIRTDUMP_ALL
2854}
2855
2856/**
2857 * Display the current guest instruction
2858 *
2859 * @param pVM The cross context VM structure.
2860 * @param pHlp The info helper functions.
2861 * @param pszArgs Arguments, ignored.
2862 */
2863static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2864{
2865 NOREF(pszArgs);
2866
2867 PVMCPU pVCpu = VMMGetCpu(pVM);
2868 if (!pVCpu)
2869 pVCpu = &pVM->aCpus[0];
2870
2871 char szInstruction[256];
2872 szInstruction[0] = '\0';
2873 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2874 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
2875}
2876
2877
2878/**
2879 * Display the hypervisor cpu state.
2880 *
2881 * @param pVM The cross context VM structure.
2882 * @param pHlp The info helper functions.
2883 * @param pszArgs Arguments, ignored.
2884 */
2885static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2886{
2887 PVMCPU pVCpu = VMMGetCpu(pVM);
2888 if (!pVCpu)
2889 pVCpu = &pVM->aCpus[0];
2890
2891 CPUMDUMPTYPE enmType;
2892 const char *pszComment;
2893 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2894 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2895 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
2896 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2897}
2898
2899
2900/**
2901 * Display the host cpu state.
2902 *
2903 * @param pVM The cross context VM structure.
2904 * @param pHlp The info helper functions.
2905 * @param pszArgs Arguments, ignored.
2906 */
2907static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2908{
2909 CPUMDUMPTYPE enmType;
2910 const char *pszComment;
2911 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2912 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2913
2914 PVMCPU pVCpu = VMMGetCpu(pVM);
2915 if (!pVCpu)
2916 pVCpu = &pVM->aCpus[0];
2917 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
2918
2919 /*
2920 * Format the EFLAGS.
2921 */
2922#if HC_ARCH_BITS == 32
2923 uint32_t efl = pCtx->eflags.u32;
2924#else
2925 uint64_t efl = pCtx->rflags;
2926#endif
2927 char szEFlags[80];
2928 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2929
2930 /*
2931 * Format the registers.
2932 */
2933#if HC_ARCH_BITS == 32
2934 pHlp->pfnPrintf(pHlp,
2935 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2936 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2937 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2938 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2939 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2940 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2941 ,
2942 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2943 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2944 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
2945 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2946 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2947 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
2948 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2949#else
2950 pHlp->pfnPrintf(pHlp,
2951 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2952 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2953 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2954 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2955 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2956 "r14=%016RX64 r15=%016RX64\n"
2957 "iopl=%d %31s\n"
2958 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2959 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2960 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2961 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2962 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2963 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2964 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2965 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2966 ,
2967 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2968 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2969 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2970 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2971 pCtx->r11, pCtx->r12, pCtx->r13,
2972 pCtx->r14, pCtx->r15,
2973 X86_EFL_GET_IOPL(efl), szEFlags,
2974 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
2975 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2976 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2977 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2978 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2979 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2980 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2981 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2982#endif
2983}
2984
2985/**
2986 * Structure used when disassembling and instructions in DBGF.
2987 * This is used so the reader function can get the stuff it needs.
2988 */
2989typedef struct CPUMDISASSTATE
2990{
2991 /** Pointer to the CPU structure. */
2992 PDISCPUSTATE pCpu;
2993 /** Pointer to the VM. */
2994 PVM pVM;
2995 /** Pointer to the VMCPU. */
2996 PVMCPU pVCpu;
2997 /** Pointer to the first byte in the segment. */
2998 RTGCUINTPTR GCPtrSegBase;
2999 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3000 RTGCUINTPTR GCPtrSegEnd;
3001 /** The size of the segment minus 1. */
3002 RTGCUINTPTR cbSegLimit;
3003 /** Pointer to the current page - R3 Ptr. */
3004 void const *pvPageR3;
3005 /** Pointer to the current page - GC Ptr. */
3006 RTGCPTR pvPageGC;
3007 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3008 PGMPAGEMAPLOCK PageMapLock;
3009 /** Whether the PageMapLock is valid or not. */
3010 bool fLocked;
3011 /** 64 bits mode or not. */
3012 bool f64Bits;
3013} CPUMDISASSTATE, *PCPUMDISASSTATE;
3014
3015
3016/**
3017 * @callback_method_impl{FNDISREADBYTES}
3018 */
3019static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
3020{
3021 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
3022 for (;;)
3023 {
3024 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
3025
3026 /*
3027 * Need to update the page translation?
3028 */
3029 if ( !pState->pvPageR3
3030 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3031 {
3032 int rc = VINF_SUCCESS;
3033
3034 /* translate the address */
3035 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3036 if ( VM_IS_RAW_MODE_ENABLED(pState->pVM)
3037 && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
3038 {
3039 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3040 if (!pState->pvPageR3)
3041 rc = VERR_INVALID_POINTER;
3042 }
3043 else
3044 {
3045 /* Release mapping lock previously acquired. */
3046 if (pState->fLocked)
3047 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3048 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3049 pState->fLocked = RT_SUCCESS_NP(rc);
3050 }
3051 if (RT_FAILURE(rc))
3052 {
3053 pState->pvPageR3 = NULL;
3054 return rc;
3055 }
3056 }
3057
3058 /*
3059 * Check the segment limit.
3060 */
3061 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
3062 return VERR_OUT_OF_SELECTOR_BOUNDS;
3063
3064 /*
3065 * Calc how much we can read.
3066 */
3067 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3068 if (!pState->f64Bits)
3069 {
3070 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3071 if (cb > cbSeg && cbSeg)
3072 cb = cbSeg;
3073 }
3074 if (cb > cbMaxRead)
3075 cb = cbMaxRead;
3076
3077 /*
3078 * Read and advance or exit.
3079 */
3080 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3081 offInstr += (uint8_t)cb;
3082 if (cb >= cbMinRead)
3083 {
3084 pDis->cbCachedInstr = offInstr;
3085 return VINF_SUCCESS;
3086 }
3087 cbMinRead -= (uint8_t)cb;
3088 cbMaxRead -= (uint8_t)cb;
3089 }
3090}
3091
3092
3093/**
3094 * Disassemble an instruction and return the information in the provided structure.
3095 *
3096 * @returns VBox status code.
3097 * @param pVM The cross context VM structure.
3098 * @param pVCpu The cross context virtual CPU structure.
3099 * @param pCtx Pointer to the guest CPU context.
3100 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3101 * @param pCpu Disassembly state.
3102 * @param pszPrefix String prefix for logging (debug only).
3103 *
3104 */
3105VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
3106 const char *pszPrefix)
3107{
3108 CPUMDISASSTATE State;
3109 int rc;
3110
3111 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3112 State.pCpu = pCpu;
3113 State.pvPageGC = 0;
3114 State.pvPageR3 = NULL;
3115 State.pVM = pVM;
3116 State.pVCpu = pVCpu;
3117 State.fLocked = false;
3118 State.f64Bits = false;
3119
3120 /*
3121 * Get selector information.
3122 */
3123 DISCPUMODE enmDisCpuMode;
3124 if ( (pCtx->cr0 & X86_CR0_PE)
3125 && pCtx->eflags.Bits.u1VM == 0)
3126 {
3127 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3128 {
3129# ifdef VBOX_WITH_RAW_MODE_NOT_R0
3130 CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
3131# endif
3132 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
3133 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
3134 }
3135 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
3136 State.GCPtrSegBase = pCtx->cs.u64Base;
3137 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
3138 State.cbSegLimit = pCtx->cs.u32Limit;
3139 enmDisCpuMode = (State.f64Bits)
3140 ? DISCPUMODE_64BIT
3141 : pCtx->cs.Attr.n.u1DefBig
3142 ? DISCPUMODE_32BIT
3143 : DISCPUMODE_16BIT;
3144 }
3145 else
3146 {
3147 /* real or V86 mode */
3148 enmDisCpuMode = DISCPUMODE_16BIT;
3149 State.GCPtrSegBase = pCtx->cs.Sel * 16;
3150 State.GCPtrSegEnd = 0xFFFFFFFF;
3151 State.cbSegLimit = 0xFFFFFFFF;
3152 }
3153
3154 /*
3155 * Disassemble the instruction.
3156 */
3157 uint32_t cbInstr;
3158#ifndef LOG_ENABLED
3159 RT_NOREF_PV(pszPrefix);
3160 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
3161 if (RT_SUCCESS(rc))
3162 {
3163#else
3164 char szOutput[160];
3165 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
3166 pCpu, &cbInstr, szOutput, sizeof(szOutput));
3167 if (RT_SUCCESS(rc))
3168 {
3169 /* log it */
3170 if (pszPrefix)
3171 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3172 else
3173 Log(("%s", szOutput));
3174#endif
3175 rc = VINF_SUCCESS;
3176 }
3177 else
3178 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
3179
3180 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3181 if (State.fLocked)
3182 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3183
3184 return rc;
3185}
3186
3187
3188
3189/**
3190 * API for controlling a few of the CPU features found in CR4.
3191 *
3192 * Currently only X86_CR4_TSD is accepted as input.
3193 *
3194 * @returns VBox status code.
3195 *
3196 * @param pVM The cross context VM structure.
3197 * @param fOr The CR4 OR mask.
3198 * @param fAnd The CR4 AND mask.
3199 */
3200VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3201{
3202 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3203 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3204
3205 pVM->cpum.s.CR4.OrMask &= fAnd;
3206 pVM->cpum.s.CR4.OrMask |= fOr;
3207
3208 return VINF_SUCCESS;
3209}
3210
3211
3212/**
3213 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
3214 *
3215 * Only REM should ever call this function!
3216 *
3217 * @returns The changed flags.
3218 * @param pVCpu The cross context virtual CPU structure.
3219 * @param puCpl Where to return the current privilege level (CPL).
3220 */
3221VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
3222{
3223 Assert(!pVCpu->cpum.s.fRawEntered);
3224 Assert(!pVCpu->cpum.s.fRemEntered);
3225
3226 /*
3227 * Get the CPL first.
3228 */
3229 *puCpl = CPUMGetGuestCPL(pVCpu);
3230
3231 /*
3232 * Get and reset the flags.
3233 */
3234 uint32_t fFlags = pVCpu->cpum.s.fChanged;
3235 pVCpu->cpum.s.fChanged = 0;
3236
3237 /** @todo change the switcher to use the fChanged flags. */
3238 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
3239 {
3240 fFlags |= CPUM_CHANGED_FPU_REM;
3241 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
3242 }
3243
3244 pVCpu->cpum.s.fRemEntered = true;
3245 return fFlags;
3246}
3247
3248
3249/**
3250 * Leaves REM.
3251 *
3252 * @param pVCpu The cross context virtual CPU structure.
3253 * @param fNoOutOfSyncSels This is @c false if there are out of sync
3254 * registers.
3255 */
3256VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
3257{
3258 Assert(!pVCpu->cpum.s.fRawEntered);
3259 Assert(pVCpu->cpum.s.fRemEntered);
3260
3261 RT_NOREF_PV(fNoOutOfSyncSels);
3262
3263 pVCpu->cpum.s.fRemEntered = false;
3264}
3265
3266
3267/**
3268 * Called when the ring-3 init phase completes.
3269 *
3270 * @returns VBox status code.
3271 * @param pVM The cross context VM structure.
3272 * @param enmWhat Which init phase.
3273 */
3274VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
3275{
3276 switch (enmWhat)
3277 {
3278 case VMINITCOMPLETED_RING3:
3279 {
3280 /*
3281 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
3282 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
3283 */
3284 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3285 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3286 {
3287 PVMCPU pVCpu = &pVM->aCpus[i];
3288 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
3289 if (fSupportsLongMode)
3290 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3291 }
3292
3293 cpumR3MsrRegStats(pVM);
3294 break;
3295 }
3296
3297 case VMINITCOMPLETED_HM:
3298 {
3299 /*
3300 * Currently, nested VMX/SVM both derives their guest VMX/SVM CPUID bit from the host
3301 * CPUID bit. This could be later changed if we need to support nested-VMX on CPUs
3302 * that are not capable of VMX.
3303 */
3304 if (pVM->cpum.s.GuestFeatures.fVmx)
3305 {
3306 Assert( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL
3307 || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_VIA);
3308 cpumR3InitVmxCpuFeatures(pVM);
3309 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
3310 }
3311
3312 if (pVM->cpum.s.GuestFeatures.fVmx)
3313 LogRel(("CPUM: Enabled guest VMX support\n"));
3314 else if (pVM->cpum.s.GuestFeatures.fSvm)
3315 LogRel(("CPUM: Enabled guest SVM support\n"));
3316 break;
3317 }
3318
3319 default:
3320 break;
3321 }
3322 return VINF_SUCCESS;
3323}
3324
3325
3326/**
3327 * Called when the ring-0 init phases completed.
3328 *
3329 * @param pVM The cross context VM structure.
3330 */
3331VMMR3DECL(void) CPUMR3LogCpuIds(PVM pVM)
3332{
3333 /*
3334 * Log the cpuid.
3335 */
3336 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
3337 RTCPUSET OnlineSet;
3338 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
3339 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
3340 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
3341 RTCPUID cCores = RTMpGetCoreCount();
3342 if (cCores)
3343 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
3344 LogRel(("************************* CPUID dump ************************\n"));
3345 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
3346 LogRel(("\n"));
3347 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
3348 RTLogRelSetBuffering(fOldBuffered);
3349 LogRel(("******************** End of CPUID dump **********************\n"));
3350}
3351
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette