/* $Id: CPUM.cpp 106061 2024-09-16 14:03:52Z vboxsync $ */ /** @file * CPUM - CPU Monitor / Manager. */ /* * Copyright (C) 2006-2024 Oracle and/or its affiliates. * * This file is part of VirtualBox base platform packages, as * available from https://www.virtualbox.org. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation, in version 3 of the * License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * SPDX-License-Identifier: GPL-3.0-only */ /** @page pg_cpum CPUM - CPU Monitor / Manager * * The CPU Monitor / Manager keeps track of all the CPU registers. It is * also responsible for lazy FPU handling and some of the context loading * in raw mode. * * There are three CPU contexts, the most important one is the guest one (GC). * When running in raw-mode (RC) there is a special hyper context for the VMM * part that floats around inside the guest address space. When running in * raw-mode, CPUM also maintains a host context for saving and restoring * registers across world switches. This latter is done in cooperation with the * world switcher (@see pg_vmm). * * @see grp_cpum * * @section sec_cpum_fpu FPU / SSE / AVX / ++ state. * * TODO: proper write up, currently just some notes. * * The ring-0 FPU handling per OS: * * - 64-bit Windows uses XMM registers in the kernel as part of the calling * convention (Visual C++ doesn't seem to have a way to disable * generating such code either), so CR0.TS/EM are always zero from what I * can tell. We are also forced to always load/save the guest XMM0-XMM15 * registers when entering/leaving guest context. Interrupt handlers * using FPU/SSE will offically have call save and restore functions * exported by the kernel, if the really really have to use the state. * * - 32-bit windows does lazy FPU handling, I think, probably including * lazying saving. The Windows Internals book states that it's a bad * idea to use the FPU in kernel space. However, it looks like it will * restore the FPU state of the current thread in case of a kernel \#NM. * Interrupt handlers should be same as for 64-bit. * * - Darwin allows taking \#NM in kernel space, restoring current thread's * state if I read the code correctly. It saves the FPU state of the * outgoing thread, and uses CR0.TS to lazily load the state of the * incoming one. No idea yet how the FPU is treated by interrupt * handlers, i.e. whether they are allowed to disable the state or * something. * * - Linux also allows \#NM in kernel space (don't know since when), and * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy * loads the incoming unless configured to agressivly load it. Interrupt * handlers can ask whether they're allowed to use the FPU, and may * freely trash the state if Linux thinks it has saved the thread's state * already. This is a problem. * * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel * context. When switching threads, the kernel will save the state of * the outgoing thread and lazy load the incoming one using CR0.TS. * There are a few routines in seeblk.s which uses the SSE unit in ring-0 * to do stuff, HAT are among the users. The routines there will * manually clear CR0.TS and save the XMM registers they use only if * CR0.TS was zero upon entry. They will skip it when not, because as * mentioned above, the FPU state is saved when switching away from a * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to * preserve. This is a problem if we restore CR0.TS to 1 after loading * the guest state. * * - FreeBSD - no idea yet. * * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading, * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM & * FPU states. * * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while * saving and restoring the host and guest states. The motivation for this * change is that we want to be able to emulate SSE instruction in ring-0 (IEM). * * Starting with that change, we will leave CR0.TS=EM=0 after saving the host * state and only restore it once we've restore the host FPU state. This has the * accidental side effect of triggering Solaris to preserve XMM registers in * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS. * * * @section sec_cpum_logging Logging Level Assignments. * * Following log level assignments: * - Log6 is used for FPU state management. * - Log7 is used for FPU state actualization. * */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_CPUM #define CPUM_WITH_NONCONST_HOST_FEATURES #include #include #include #include #include #include #include #include #include #include #include #include #include #include "CPUMInternal.h" #include #include #include #include #include #include #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64) # include #endif #include #include #include #include #include #include /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** * This was used in the saved state up to the early life of version 14. * * It indicates that we may have some out-of-sync hidden segement registers. * It is only relevant for raw-mode. */ #define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12) /** For saved state only: Block injection of non-maskable interrupts to the guest. * @note This flag was moved to CPUMCTX::eflags.uBoth in v7.0.4. */ #define CPUM_OLD_VMCPU_FF_BLOCK_NMIS RT_BIT_64(25) /********************************************************************************************************************************* * Structures and Typedefs * *********************************************************************************************************************************/ /** * What kind of cpu info dump to perform. */ typedef enum CPUMDUMPTYPE { CPUMDUMPTYPE_TERSE, CPUMDUMPTYPE_DEFAULT, CPUMDUMPTYPE_VERBOSE } CPUMDUMPTYPE; /** Pointer to a cpu info dump type. */ typedef CPUMDUMPTYPE *PCPUMDUMPTYPE; /** * Map of variable-range MTRRs. */ typedef struct CPUMMTRRMAP { /** The index of the next available MTRR. */ uint8_t idxMtrr; /** The number of usable MTRRs. */ uint8_t cMtrrs; /** Alignment padding. */ uint16_t uAlign; /** The number of bytes to map via these MTRRs (not including UC regions). */ uint64_t cbToMap; /** The number of bytes mapped via these MTRRs (not including UC regions). */ uint64_t cbMapped; /** The variable-range MTRRs. */ X86MTRRVAR aMtrrs[CPUMCTX_MAX_MTRRVAR_COUNT]; } CPUMMTRRMAP; /** Pointer to a CPUM variable-range MTRR structure. */ typedef CPUMMTRRMAP *PCPUMMTRRMAP; /** Pointer to a const CPUM variable-range MTRR structure. */ typedef CPUMMTRRMAP const *PCCPUMMTRRMAP; /********************************************************************************************************************************* * Internal Functions * *********************************************************************************************************************************/ static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass); static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM); static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM); static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass); static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM); static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64) /** Host CPU features. */ DECL_HIDDEN_DATA(CPUHOSTFEATURES) g_CpumHostFeatures; #endif /** Saved state field descriptors for CPUMCTX. */ static const SSMFIELD g_aCpumCtxFields[] = { SSMFIELD_ENTRY( CPUMCTX, rdi), SSMFIELD_ENTRY( CPUMCTX, rsi), SSMFIELD_ENTRY( CPUMCTX, rbp), SSMFIELD_ENTRY( CPUMCTX, rax), SSMFIELD_ENTRY( CPUMCTX, rbx), SSMFIELD_ENTRY( CPUMCTX, rdx), SSMFIELD_ENTRY( CPUMCTX, rcx), SSMFIELD_ENTRY( CPUMCTX, rsp), SSMFIELD_ENTRY( CPUMCTX, rflags), SSMFIELD_ENTRY( CPUMCTX, rip), SSMFIELD_ENTRY( CPUMCTX, r8), SSMFIELD_ENTRY( CPUMCTX, r9), SSMFIELD_ENTRY( CPUMCTX, r10), SSMFIELD_ENTRY( CPUMCTX, r11), SSMFIELD_ENTRY( CPUMCTX, r12), SSMFIELD_ENTRY( CPUMCTX, r13), SSMFIELD_ENTRY( CPUMCTX, r14), SSMFIELD_ENTRY( CPUMCTX, r15), SSMFIELD_ENTRY( CPUMCTX, es.Sel), SSMFIELD_ENTRY( CPUMCTX, es.ValidSel), SSMFIELD_ENTRY( CPUMCTX, es.fFlags), SSMFIELD_ENTRY( CPUMCTX, es.u64Base), SSMFIELD_ENTRY( CPUMCTX, es.u32Limit), SSMFIELD_ENTRY( CPUMCTX, es.Attr), SSMFIELD_ENTRY( CPUMCTX, cs.Sel), SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel), SSMFIELD_ENTRY( CPUMCTX, cs.fFlags), SSMFIELD_ENTRY( CPUMCTX, cs.u64Base), SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit), SSMFIELD_ENTRY( CPUMCTX, cs.Attr), SSMFIELD_ENTRY( CPUMCTX, ss.Sel), SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel), SSMFIELD_ENTRY( CPUMCTX, ss.fFlags), SSMFIELD_ENTRY( CPUMCTX, ss.u64Base), SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit), SSMFIELD_ENTRY( CPUMCTX, ss.Attr), SSMFIELD_ENTRY( CPUMCTX, ds.Sel), SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel), SSMFIELD_ENTRY( CPUMCTX, ds.fFlags), SSMFIELD_ENTRY( CPUMCTX, ds.u64Base), SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit), SSMFIELD_ENTRY( CPUMCTX, ds.Attr), SSMFIELD_ENTRY( CPUMCTX, fs.Sel), SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel), SSMFIELD_ENTRY( CPUMCTX, fs.fFlags), SSMFIELD_ENTRY( CPUMCTX, fs.u64Base), SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit), SSMFIELD_ENTRY( CPUMCTX, fs.Attr), SSMFIELD_ENTRY( CPUMCTX, gs.Sel), SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel), SSMFIELD_ENTRY( CPUMCTX, gs.fFlags), SSMFIELD_ENTRY( CPUMCTX, gs.u64Base), SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit), SSMFIELD_ENTRY( CPUMCTX, gs.Attr), SSMFIELD_ENTRY( CPUMCTX, cr0), SSMFIELD_ENTRY( CPUMCTX, cr2), SSMFIELD_ENTRY( CPUMCTX, cr3), SSMFIELD_ENTRY( CPUMCTX, cr4), SSMFIELD_ENTRY( CPUMCTX, dr[0]), SSMFIELD_ENTRY( CPUMCTX, dr[1]), SSMFIELD_ENTRY( CPUMCTX, dr[2]), SSMFIELD_ENTRY( CPUMCTX, dr[3]), SSMFIELD_ENTRY( CPUMCTX, dr[6]), SSMFIELD_ENTRY( CPUMCTX, dr[7]), SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt), SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt), SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt), SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt), SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs), SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip), SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp), SSMFIELD_ENTRY( CPUMCTX, msrEFER), SSMFIELD_ENTRY( CPUMCTX, msrSTAR), SSMFIELD_ENTRY( CPUMCTX, msrPAT), SSMFIELD_ENTRY( CPUMCTX, msrLSTAR), SSMFIELD_ENTRY( CPUMCTX, msrCSTAR), SSMFIELD_ENTRY( CPUMCTX, msrSFMASK), SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE), SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel), SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel), SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags), SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base), SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit), SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr), SSMFIELD_ENTRY( CPUMCTX, tr.Sel), SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel), SSMFIELD_ENTRY( CPUMCTX, tr.fFlags), SSMFIELD_ENTRY( CPUMCTX, tr.u64Base), SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit), SSMFIELD_ENTRY( CPUMCTX, tr.Attr), SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE), SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE), SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE), SSMFIELD_ENTRY_TERM() }; /** Saved state field descriptors for SVM nested hardware-virtualization * Host State. */ static const SSMFIELD g_aSvmHwvirtHostState[] = { SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr), SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0), SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4), SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3), SSMFIELD_ENTRY( SVMHOSTSTATE, uRip), SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp), SSMFIELD_ENTRY( SVMHOSTSTATE, uRax), SSMFIELD_ENTRY( SVMHOSTSTATE, rflags), SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel), SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel), SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags), SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base), SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit), SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr), SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel), SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel), SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags), SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base), SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit), SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr), SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel), SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel), SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags), SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base), SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit), SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr), SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel), SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel), SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags), SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base), SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit), SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr), SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt), SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt), SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt), SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt), SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding), SSMFIELD_ENTRY_TERM() }; /** Saved state field descriptors for VMX nested hardware-virtualization * VMCS. */ static const SSMFIELD g_aVmxHwvirtVmcs[] = { SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId), SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort), SSMFIELD_ENTRY( VMXVVMCS, fVmcsState), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0), SSMFIELD_ENTRY_VER( VMXVVMCS, u32RestoreProcCtls2, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_4), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, u16Reserved0), SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError), SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason), SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo), SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode), SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo), SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode), SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen), SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2), SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1), SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual), SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx), SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi), SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi), SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip), SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved5), SSMFIELD_ENTRY( VMXVVMCS, u16Vpid), SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector), SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex), SSMFIELD_ENTRY_VER( VMXVVMCS, u16HlatPrefixSize, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0), SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls), SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls), SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap), SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask), SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch), SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount), SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls), SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount), SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount), SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls), SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount), SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo), SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode), SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen), SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold), SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2), SSMFIELD_ENTRY( VMXVVMCS, u32PleGap), SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1), SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA), SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB), SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap), SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore), SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad), SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad), SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr), SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml), SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset), SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic), SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess), SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc), SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls), SSMFIELD_ENTRY( VMXVVMCS, u64EptPtr), SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0), SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1), SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2), SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3), SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList), SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap), SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap), SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo), SSMFIELD_ENTRY( VMXVVMCS, u64XssExitBitmap), SSMFIELD_ENTRY( VMXVVMCS, u64EnclsExitBitmap), SSMFIELD_ENTRY( VMXVVMCS, u64SppTablePtr), SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier), SSMFIELD_ENTRY_VER( VMXVVMCS, u64ProcCtls3, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2), SSMFIELD_ENTRY_VER( VMXVVMCS, u64EnclvExitBitmap, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2), SSMFIELD_ENTRY_VER( VMXVVMCS, u64PconfigExitBitmap, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3), SSMFIELD_ENTRY_VER( VMXVVMCS, u64HlatPtr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3), SSMFIELD_ENTRY_VER( VMXVVMCS, u64ExitCtls2, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0), SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask), SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask), SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow), SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow), SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0), SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1), SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2), SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved4), SSMFIELD_ENTRY( VMXVVMCS, HostEs), SSMFIELD_ENTRY( VMXVVMCS, HostCs), SSMFIELD_ENTRY( VMXVVMCS, HostSs), SSMFIELD_ENTRY( VMXVVMCS, HostDs), SSMFIELD_ENTRY( VMXVVMCS, HostFs), SSMFIELD_ENTRY( VMXVVMCS, HostGs), SSMFIELD_ENTRY( VMXVVMCS, HostTr), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2), SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4), SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr), SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr), SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr), SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3), SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0), SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3), SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4), SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase), SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase), SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase), SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase), SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase), SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp), SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip), SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp), SSMFIELD_ENTRY( VMXVVMCS, u64HostRip), SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2), SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2), SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved7), SSMFIELD_ENTRY( VMXVVMCS, GuestEs), SSMFIELD_ENTRY( VMXVVMCS, GuestCs), SSMFIELD_ENTRY( VMXVVMCS, GuestSs), SSMFIELD_ENTRY( VMXVVMCS, GuestDs), SSMFIELD_ENTRY( VMXVVMCS, GuestFs), SSMFIELD_ENTRY( VMXVVMCS, GuestGs), SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr), SSMFIELD_ENTRY( VMXVVMCS, GuestTr), SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus), SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1), SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit), SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit), SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit), SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit), SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit), SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit), SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit), SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit), SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit), SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit), SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr), SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr), SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr), SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr), SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr), SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr), SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr), SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr), SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState), SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState), SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase), SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS), SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3), SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr), SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr), SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr), SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr), SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr), SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0), SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1), SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2), SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3), SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr), SSMFIELD_ENTRY( VMXVVMCS, u64GuestRtitCtlMsr), SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2), SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0), SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3), SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4), SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase), SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase), SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase), SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase), SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase), SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase), SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase), SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase), SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase), SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase), SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7), SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp), SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip), SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags), SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpts), SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp), SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip), SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2), SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2), SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2), SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved6), SSMFIELD_ENTRY_TERM() }; /** Saved state field descriptors for CPUMCTX. */ static const SSMFIELD g_aCpumX87Fields[] = { SSMFIELD_ENTRY( X86FXSTATE, FCW), SSMFIELD_ENTRY( X86FXSTATE, FSW), SSMFIELD_ENTRY( X86FXSTATE, FTW), SSMFIELD_ENTRY( X86FXSTATE, FOP), SSMFIELD_ENTRY( X86FXSTATE, FPUIP), SSMFIELD_ENTRY( X86FXSTATE, CS), SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1), SSMFIELD_ENTRY( X86FXSTATE, FPUDP), SSMFIELD_ENTRY( X86FXSTATE, DS), SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2), SSMFIELD_ENTRY( X86FXSTATE, MXCSR), SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK), SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]), SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */ SSMFIELD_ENTRY_TERM() }; /** Saved state field descriptors for X86XSAVEHDR. */ static const SSMFIELD g_aCpumXSaveHdrFields[] = { SSMFIELD_ENTRY( X86XSAVEHDR, bmXState), SSMFIELD_ENTRY_TERM() }; /** Saved state field descriptors for X86XSAVEYMMHI. */ static const SSMFIELD g_aCpumYmmHiFields[] = { SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]), SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]), SSMFIELD_ENTRY_TERM() }; /** Saved state field descriptors for X86XSAVEBNDREGS. */ static const SSMFIELD g_aCpumBndRegsFields[] = { SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]), SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]), SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]), SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]), SSMFIELD_ENTRY_TERM() }; /** Saved state field descriptors for X86XSAVEBNDCFG. */ static const SSMFIELD g_aCpumBndCfgFields[] = { SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig), SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus), SSMFIELD_ENTRY_TERM() }; #if 0 /** @todo */ /** Saved state field descriptors for X86XSAVEOPMASK. */ static const SSMFIELD g_aCpumOpmaskFields[] = { SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]), SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]), SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]), SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]), SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]), SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]), SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]), SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]), SSMFIELD_ENTRY_TERM() }; #endif /** Saved state field descriptors for X86XSAVEZMMHI256. */ static const SSMFIELD g_aCpumZmmHi256Fields[] = { SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]), SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]), SSMFIELD_ENTRY_TERM() }; /** Saved state field descriptors for X86XSAVEZMM16HI. */ static const SSMFIELD g_aCpumZmm16HiFields[] = { SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]), SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]), SSMFIELD_ENTRY_TERM() }; /** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector * registeres changed. */ static const SSMFIELD g_aCpumX87FieldsMem[] = { SSMFIELD_ENTRY( X86FXSTATE, FCW), SSMFIELD_ENTRY( X86FXSTATE, FSW), SSMFIELD_ENTRY( X86FXSTATE, FTW), SSMFIELD_ENTRY( X86FXSTATE, FOP), SSMFIELD_ENTRY( X86FXSTATE, FPUIP), SSMFIELD_ENTRY( X86FXSTATE, CS), SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1), SSMFIELD_ENTRY( X86FXSTATE, FPUDP), SSMFIELD_ENTRY( X86FXSTATE, DS), SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2), SSMFIELD_ENTRY( X86FXSTATE, MXCSR), SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK), SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]), SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest), SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware), }; /** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector * registeres changed. */ static const SSMFIELD g_aCpumCtxFieldsMem[] = { SSMFIELD_ENTRY( CPUMCTX, rdi), SSMFIELD_ENTRY( CPUMCTX, rsi), SSMFIELD_ENTRY( CPUMCTX, rbp), SSMFIELD_ENTRY( CPUMCTX, rax), SSMFIELD_ENTRY( CPUMCTX, rbx), SSMFIELD_ENTRY( CPUMCTX, rdx), SSMFIELD_ENTRY( CPUMCTX, rcx), SSMFIELD_ENTRY( CPUMCTX, rsp), SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)), SSMFIELD_ENTRY( CPUMCTX, ss.Sel), SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, gs.Sel), SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, fs.Sel), SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, es.Sel), SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, ds.Sel), SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, cs.Sel), SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3), SSMFIELD_ENTRY( CPUMCTX, rflags), SSMFIELD_ENTRY( CPUMCTX, rip), SSMFIELD_ENTRY( CPUMCTX, r8), SSMFIELD_ENTRY( CPUMCTX, r9), SSMFIELD_ENTRY( CPUMCTX, r10), SSMFIELD_ENTRY( CPUMCTX, r11), SSMFIELD_ENTRY( CPUMCTX, r12), SSMFIELD_ENTRY( CPUMCTX, r13), SSMFIELD_ENTRY( CPUMCTX, r14), SSMFIELD_ENTRY( CPUMCTX, r15), SSMFIELD_ENTRY( CPUMCTX, es.u64Base), SSMFIELD_ENTRY( CPUMCTX, es.u32Limit), SSMFIELD_ENTRY( CPUMCTX, es.Attr), SSMFIELD_ENTRY( CPUMCTX, cs.u64Base), SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit), SSMFIELD_ENTRY( CPUMCTX, cs.Attr), SSMFIELD_ENTRY( CPUMCTX, ss.u64Base), SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit), SSMFIELD_ENTRY( CPUMCTX, ss.Attr), SSMFIELD_ENTRY( CPUMCTX, ds.u64Base), SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit), SSMFIELD_ENTRY( CPUMCTX, ds.Attr), SSMFIELD_ENTRY( CPUMCTX, fs.u64Base), SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit), SSMFIELD_ENTRY( CPUMCTX, fs.Attr), SSMFIELD_ENTRY( CPUMCTX, gs.u64Base), SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit), SSMFIELD_ENTRY( CPUMCTX, gs.Attr), SSMFIELD_ENTRY( CPUMCTX, cr0), SSMFIELD_ENTRY( CPUMCTX, cr2), SSMFIELD_ENTRY( CPUMCTX, cr3), SSMFIELD_ENTRY( CPUMCTX, cr4), SSMFIELD_ENTRY( CPUMCTX, dr[0]), SSMFIELD_ENTRY( CPUMCTX, dr[1]), SSMFIELD_ENTRY( CPUMCTX, dr[2]), SSMFIELD_ENTRY( CPUMCTX, dr[3]), SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)), SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)), SSMFIELD_ENTRY( CPUMCTX, dr[6]), SSMFIELD_ENTRY( CPUMCTX, dr[7]), SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt), SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt), SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt), SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt), SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel), SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, tr.Sel), SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs), SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip), SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp), SSMFIELD_ENTRY( CPUMCTX, msrEFER), SSMFIELD_ENTRY( CPUMCTX, msrSTAR), SSMFIELD_ENTRY( CPUMCTX, msrPAT), SSMFIELD_ENTRY( CPUMCTX, msrLSTAR), SSMFIELD_ENTRY( CPUMCTX, msrCSTAR), SSMFIELD_ENTRY( CPUMCTX, msrSFMASK), SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE), SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base), SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit), SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr), SSMFIELD_ENTRY( CPUMCTX, tr.u64Base), SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit), SSMFIELD_ENTRY( CPUMCTX, tr.Attr), SSMFIELD_ENTRY_TERM() }; /** Saved state field descriptors for CPUMCTX_VER1_6. */ static const SSMFIELD g_aCpumX87FieldsV16[] = { SSMFIELD_ENTRY( X86FXSTATE, FCW), SSMFIELD_ENTRY( X86FXSTATE, FSW), SSMFIELD_ENTRY( X86FXSTATE, FTW), SSMFIELD_ENTRY( X86FXSTATE, FOP), SSMFIELD_ENTRY( X86FXSTATE, FPUIP), SSMFIELD_ENTRY( X86FXSTATE, CS), SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1), SSMFIELD_ENTRY( X86FXSTATE, FPUDP), SSMFIELD_ENTRY( X86FXSTATE, DS), SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2), SSMFIELD_ENTRY( X86FXSTATE, MXCSR), SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK), SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]), SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]), SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]), SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest), SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware), SSMFIELD_ENTRY_TERM() }; /** Saved state field descriptors for CPUMCTX_VER1_6. */ static const SSMFIELD g_aCpumCtxFieldsV16[] = { SSMFIELD_ENTRY( CPUMCTX, rdi), SSMFIELD_ENTRY( CPUMCTX, rsi), SSMFIELD_ENTRY( CPUMCTX, rbp), SSMFIELD_ENTRY( CPUMCTX, rax), SSMFIELD_ENTRY( CPUMCTX, rbx), SSMFIELD_ENTRY( CPUMCTX, rdx), SSMFIELD_ENTRY( CPUMCTX, rcx), SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp), SSMFIELD_ENTRY( CPUMCTX, ss.Sel), SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)), SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/), SSMFIELD_ENTRY( CPUMCTX, gs.Sel), SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, fs.Sel), SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, es.Sel), SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, ds.Sel), SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, cs.Sel), SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3), SSMFIELD_ENTRY( CPUMCTX, rflags), SSMFIELD_ENTRY( CPUMCTX, rip), SSMFIELD_ENTRY( CPUMCTX, r8), SSMFIELD_ENTRY( CPUMCTX, r9), SSMFIELD_ENTRY( CPUMCTX, r10), SSMFIELD_ENTRY( CPUMCTX, r11), SSMFIELD_ENTRY( CPUMCTX, r12), SSMFIELD_ENTRY( CPUMCTX, r13), SSMFIELD_ENTRY( CPUMCTX, r14), SSMFIELD_ENTRY( CPUMCTX, r15), SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base), SSMFIELD_ENTRY( CPUMCTX, es.u32Limit), SSMFIELD_ENTRY( CPUMCTX, es.Attr), SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base), SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit), SSMFIELD_ENTRY( CPUMCTX, cs.Attr), SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base), SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit), SSMFIELD_ENTRY( CPUMCTX, ss.Attr), SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base), SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit), SSMFIELD_ENTRY( CPUMCTX, ds.Attr), SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base), SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit), SSMFIELD_ENTRY( CPUMCTX, fs.Attr), SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base), SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit), SSMFIELD_ENTRY( CPUMCTX, gs.Attr), SSMFIELD_ENTRY( CPUMCTX, cr0), SSMFIELD_ENTRY( CPUMCTX, cr2), SSMFIELD_ENTRY( CPUMCTX, cr3), SSMFIELD_ENTRY( CPUMCTX, cr4), SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)), SSMFIELD_ENTRY( CPUMCTX, dr[0]), SSMFIELD_ENTRY( CPUMCTX, dr[1]), SSMFIELD_ENTRY( CPUMCTX, dr[2]), SSMFIELD_ENTRY( CPUMCTX, dr[3]), SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)), SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)), SSMFIELD_ENTRY( CPUMCTX, dr[6]), SSMFIELD_ENTRY( CPUMCTX, dr[7]), SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt), SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt), SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)), SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)), SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt), SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt), SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)), SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)), SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel), SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, tr.Sel), SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)), SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs), SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip), SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp), SSMFIELD_ENTRY( CPUMCTX, msrEFER), SSMFIELD_ENTRY( CPUMCTX, msrSTAR), SSMFIELD_ENTRY( CPUMCTX, msrPAT), SSMFIELD_ENTRY( CPUMCTX, msrLSTAR), SSMFIELD_ENTRY( CPUMCTX, msrCSTAR), SSMFIELD_ENTRY( CPUMCTX, msrSFMASK), SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)), SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)), SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE), SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base), SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit), SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr), SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base), SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit), SSMFIELD_ENTRY( CPUMCTX, tr.Attr), SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2), SSMFIELD_ENTRY_TERM() }; #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64) /** * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs. * * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers * (last instruction pointer, last data pointer, last opcode) except when the ES * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't * clear these registers there is potential, local FPU leakage from a process * using the FPU to another. * * See AMD Instruction Reference for FXSAVE, FXRSTOR. * * @param pVM The cross context VM structure. */ static void cpumR3CheckLeakyFpu(PVM pVM) { uint32_t u32CpuVersion = ASMCpuId_EAX(1); uint32_t const u32Family = u32CpuVersion >> 8; if ( u32Family >= 6 /* K7 and higher */ && (ASMIsAmdCpu() || ASMIsHygonCpu()) ) { uint32_t cExt = ASMCpuId_EAX(0x80000000); if (RTX86IsValidExtRange(cExt)) { uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001); if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR) { for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; pVCpu->cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY; } Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n")); } } } } #endif /** * Initialize the SVM hardware virtualization state. * * @param pVM The cross context VM structure. */ static void cpumR3InitSvmHwVirtState(PVM pVM) { LogRel(("CPUM: AMD-V nested-guest init\n")); for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; PCPUMCTX pCtx = &pVCpu->cpum.s.Guest; /* Initialize that SVM hardware virtualization is available. */ pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_SVM; AssertCompile(sizeof(pCtx->hwvirt.svm.Vmcb) == SVM_VMCB_PAGES * X86_PAGE_SIZE); AssertCompile(sizeof(pCtx->hwvirt.svm.abMsrBitmap) == SVM_MSRPM_PAGES * X86_PAGE_SIZE); AssertCompile(sizeof(pCtx->hwvirt.svm.abIoBitmap) == SVM_IOPM_PAGES * X86_PAGE_SIZE); /* Initialize non-zero values. */ pCtx->hwvirt.svm.GCPhysVmcb = NIL_RTGCPHYS; } } /** * Resets per-VCPU SVM hardware virtualization state. * * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu) { PCPUMCTX pCtx = &pVCpu->cpum.s.Guest; Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM); RT_ZERO(pCtx->hwvirt.svm.Vmcb); RT_ZERO(pCtx->hwvirt.svm.HostState); RT_ZERO(pCtx->hwvirt.svm.abMsrBitmap); RT_ZERO(pCtx->hwvirt.svm.abIoBitmap); pCtx->hwvirt.svm.uMsrHSavePa = 0; pCtx->hwvirt.svm.uPrevPauseTick = 0; pCtx->hwvirt.svm.GCPhysVmcb = NIL_RTGCPHYS; pCtx->hwvirt.svm.cPauseFilter = 0; pCtx->hwvirt.svm.cPauseFilterThreshold = 0; pCtx->hwvirt.svm.fInterceptEvents = false; } /** * Initializes the VMX hardware virtualization state. * * @param pVM The cross context VM structure. */ static void cpumR3InitVmxHwVirtState(PVM pVM) { LogRel(("CPUM: VT-x nested-guest init\n")); for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; PCPUMCTX pCtx = &pVCpu->cpum.s.Guest; /* Initialize that VMX hardware virtualization is available. */ pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX; AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_PAGES * X86_PAGE_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_PAGES * X86_PAGE_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_PAGES * X86_PAGE_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == (VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES) * X86_PAGE_SIZE); AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE); /* Initialize non-zero values. */ pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS; pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS; pCtx->hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; } } /** * Resets per-VCPU VMX hardware virtualization state. * * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu) { PCPUMCTX pCtx = &pVCpu->cpum.s.Guest; Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX); RT_ZERO(pCtx->hwvirt.vmx.Vmcs); RT_ZERO(pCtx->hwvirt.vmx.ShadowVmcs); RT_ZERO(pCtx->hwvirt.vmx.abVmreadBitmap); RT_ZERO(pCtx->hwvirt.vmx.abVmwriteBitmap); RT_ZERO(pCtx->hwvirt.vmx.aEntryMsrLoadArea); RT_ZERO(pCtx->hwvirt.vmx.aExitMsrStoreArea); RT_ZERO(pCtx->hwvirt.vmx.aExitMsrLoadArea); RT_ZERO(pCtx->hwvirt.vmx.abMsrBitmap); RT_ZERO(pCtx->hwvirt.vmx.abIoBitmap); pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS; pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS; pCtx->hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; pCtx->hwvirt.vmx.fInVmxRootMode = false; pCtx->hwvirt.vmx.fInVmxNonRootMode = false; /* Don't reset diagnostics here. */ pCtx->hwvirt.vmx.fInterceptEvents = false; pCtx->hwvirt.vmx.fNmiUnblockingIret = false; pCtx->hwvirt.vmx.uFirstPauseLoopTick = 0; pCtx->hwvirt.vmx.uPrevPauseTick = 0; pCtx->hwvirt.vmx.uEntryTick = 0; pCtx->hwvirt.vmx.offVirtApicWrite = 0; pCtx->hwvirt.vmx.fVirtNmiBlocking = false; /* Stop any VMX-preemption timer. */ CPUMStopGuestVmxPremptTimer(pVCpu); /* Clear all nested-guest FFs. */ VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK); } /** * Displays the host and guest VMX features. * * @param pVM The cross context VM structure. * @param pHlp The info helper functions. * @param pszArgs "terse", "default" or "verbose". */ static DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { RT_NOREF(pszArgs); PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures; PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures; if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI) { #define VMXFEATDUMP(a_szDesc, a_Var) \ pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var) pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n"); pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n"); VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx); /* Basic. */ VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo); /* Pin-based controls. */ VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit); VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit); VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi); VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer); VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt); /* Processor-based controls. */ VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit); VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting); VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit); VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit); VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit); VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit); VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit); VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit); VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit); VMXFEATDUMP("TertiaryExecCtls - Activate tertiary controls ", fVmxTertiaryExecCtls); VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit); VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit); VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow); VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit); VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit); VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit); VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps); VMXFEATDUMP("MonitorTrapFlag - Monitor Trap Flag ", fVmxMonitorTrapFlag); VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps); VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit); VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit); VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls); /* Secondary processor-based controls. */ VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess); VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt); VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit); VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp); VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode); VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid); VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit); VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest); VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt); VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery); VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit); VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit); VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid); VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc); VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing); VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit); VMXFEATDUMP("PML - Page-Modification Log ", fVmxPml); VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe); VMXFEATDUMP("ConcealVmxFromPt - Conceal VMX from Processor Trace ", fVmxConcealVmxFromPt); VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors); VMXFEATDUMP("PasidTranslate - PASID translation ", fVmxPasidTranslate); VMXFEATDUMP("ModeBasedExecuteEpt - Mode-based execute permissions ", fVmxModeBasedExecuteEpt); VMXFEATDUMP("SppEpt - Sub-page page write permissions for EPT ", fVmxSppEpt); VMXFEATDUMP("PtEpt - Processor Trace address' translatable by EPT ", fVmxPtEpt); VMXFEATDUMP("UseTscScaling - Use TSC scaling ", fVmxUseTscScaling); VMXFEATDUMP("UserWaitPause - Enable TPAUSE, UMONITOR and UMWAIT ", fVmxUserWaitPause); VMXFEATDUMP("Pconfig - Enable PCONFIG ", fVmxPconfig); VMXFEATDUMP("EnclvExit - ENCLV exiting ", fVmxEnclvExit); VMXFEATDUMP("BusLockDetect - VMM Bus-Lock detection ", fVmxBusLockDetect); VMXFEATDUMP("InstrTimeout - Instruction timeout ", fVmxInstrTimeout); /* Tertiary processor-based controls. */ VMXFEATDUMP("LoadIwKeyExit - LOADIWKEY exiting ", fVmxLoadIwKeyExit); VMXFEATDUMP("HLAT - Hypervisor-managed linear-address translation ", fVmxHlat); VMXFEATDUMP("EptPagingWrite - EPT paging-write ", fVmxEptPagingWrite); VMXFEATDUMP("GstPagingVerify - Guest-paging verification ", fVmxGstPagingVerify); VMXFEATDUMP("IpiVirt - IPI virtualization ", fVmxIpiVirt); VMXFEATDUMP("VirtSpecCtrl - Virtualize IA32_SPEC_CTRL ", fVmxVirtSpecCtrl); /* VM-entry controls. */ VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls); VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest); VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr); VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr); /* VM-exit controls. */ VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls); VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize); VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt); VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr); VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr); VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr); VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr); VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer); VMXFEATDUMP("SecondaryExitCtls - Secondary VM-exit controls ", fVmxSecondaryExitCtls); /* Miscellaneous data. */ VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma); VMXFEATDUMP("IntelPt - Intel Processor Trace in VMX operation ", fVmxPt); VMXFEATDUMP("VmwriteAll - VMWRITE to any supported VMCS field ", fVmxVmwriteAll); VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt); #undef VMXFEATDUMP } else pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n"); } /** * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM * or NEM) is allowed. * * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false * otherwise. * @param pVM The cross context VM structure. */ static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM) { AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n")); #ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API) return true; #else NOREF(pVM); #endif return false; } /** * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs. * * @param pVM The cross context VM structure. * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX * and no hardware-assisted nested-guest execution is * possible for this VM. * @param pGuestFeatures The guest features to use (only VMX features are * accessed). * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs. * * @remarks This function ASSUMES the VMX guest-features are already exploded! */ static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs) { bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM); Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs); Assert(pGuestFeatures->fVmx); /* Basic information. */ uint8_t const fTrueVmxMsrs = 1; { uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID ) | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE ) | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode ) | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 ) | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB ) | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo) | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, fTrueVmxMsrs ); pGuestVmxMsrs->u64Basic = u64Basic; } /* Pin-based VM-execution controls. */ { uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT ) | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT ) | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT ) | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT) | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT ); uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1; uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1; AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0, fAllowed1, fFeatures)); pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1); /* True pin-based VM-execution controls. */ if (fTrueVmxMsrs) { /* VMX_PIN_CTLS_DEFAULT1 contains MB1 reserved bits and must be reserved MB1 in true pin-based controls as well. */ pGuestVmxMsrs->TruePinCtls.u = pGuestVmxMsrs->PinCtls.u; } } /* Processor-based VM-execution controls. */ { uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT ) | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT) | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT ) | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT ) | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT ) | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT ) | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT ) | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT ) | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT ) | (pGuestFeatures->fVmxTertiaryExecCtls << VMX_BF_PROC_CTLS_USE_TERTIARY_CTLS_SHIFT ) | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT ) | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT ) | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT ) | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT ) | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT ) | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT ) | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT ) | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT ) | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT ) | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT ) | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT ) | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT); uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1; uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1; AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0, fAllowed1, fFeatures)); pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1); /* True processor-based VM-execution controls. */ if (fTrueVmxMsrs) { /* VMX_PROC_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved. */ uint32_t const fTrueAllowed0 = VMX_PROC_CTLS_DEFAULT1 & ~( VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_MASK | VMX_BF_PROC_CTLS_CR3_STORE_EXIT_MASK); uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0; pGuestVmxMsrs->TrueProcCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1); } } /* Secondary processor-based VM-execution controls. */ if (pGuestFeatures->fVmxSecondaryExecCtls) { uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT ) | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT ) | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT ) | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT ) | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT ) | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT ) | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT ) | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT ) | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT ) | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT ) | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT ) | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT ) | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT ) | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT ) | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT ) | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT ) | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT ) | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT ) | (pGuestFeatures->fVmxConcealVmxFromPt << VMX_BF_PROC_CTLS2_CONCEAL_VMX_FROM_PT_SHIFT) | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT ) | (pGuestFeatures->fVmxPasidTranslate << VMX_BF_PROC_CTLS2_PASID_TRANSLATE_SHIFT ) | (pGuestFeatures->fVmxModeBasedExecuteEpt << VMX_BF_PROC_CTLS2_MODE_BASED_EPT_PERM_SHIFT) | (pGuestFeatures->fVmxSppEpt << VMX_BF_PROC_CTLS2_SPP_EPT_SHIFT ) | (pGuestFeatures->fVmxPtEpt << VMX_BF_PROC_CTLS2_PT_EPT_SHIFT ) | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT ) | (pGuestFeatures->fVmxUserWaitPause << VMX_BF_PROC_CTLS2_USER_WAIT_PAUSE_SHIFT ) | (pGuestFeatures->fVmxPconfig << VMX_BF_PROC_CTLS2_PCONFIG_SHIFT ) | (pGuestFeatures->fVmxEnclvExit << VMX_BF_PROC_CTLS2_ENCLV_EXIT_SHIFT ) | (pGuestFeatures->fVmxBusLockDetect << VMX_BF_PROC_CTLS2_BUSLOCK_DETECT_SHIFT ) | (pGuestFeatures->fVmxInstrTimeout << VMX_BF_PROC_CTLS2_INSTR_TIMEOUT_SHIFT ); uint32_t const fAllowed0 = 0; uint32_t const fAllowed1 = fFeatures; pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1); } /* Tertiary processor-based VM-execution controls. */ if (pGuestFeatures->fVmxTertiaryExecCtls) { pGuestVmxMsrs->u64ProcCtls3 = (pGuestFeatures->fVmxLoadIwKeyExit << VMX_BF_PROC_CTLS3_LOADIWKEY_EXIT_SHIFT) | (pGuestFeatures->fVmxHlat << VMX_BF_PROC_CTLS3_HLAT_SHIFT) | (pGuestFeatures->fVmxEptPagingWrite << VMX_BF_PROC_CTLS3_EPT_PAGING_WRITE_SHIFT) | (pGuestFeatures->fVmxGstPagingVerify << VMX_BF_PROC_CTLS3_GST_PAGING_VERIFY_SHIFT) | (pGuestFeatures->fVmxIpiVirt << VMX_BF_PROC_CTLS3_IPI_VIRT_SHIFT) | (pGuestFeatures->fVmxVirtSpecCtrl << VMX_BF_PROC_CTLS3_VIRT_SPEC_CTRL_SHIFT); } /* VM-exit controls. */ { uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT ) | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT) | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT ) | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT ) | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT ) | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT ) | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT ) | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT ) | (pGuestFeatures->fVmxSecondaryExitCtls << VMX_BF_EXIT_CTLS_USE_SECONDARY_CTLS_SHIFT ); /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */ uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1; uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1; AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0, fAllowed1, fFeatures)); pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1); /* True VM-exit controls. */ if (fTrueVmxMsrs) { /* VMX_EXIT_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved */ uint32_t const fTrueAllowed0 = VMX_EXIT_CTLS_DEFAULT1 & ~VMX_BF_EXIT_CTLS_SAVE_DEBUG_MASK; uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0; pGuestVmxMsrs->TrueExitCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1); } } /* VM-entry controls. */ { uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT ) | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT) | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT ) | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT ); uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1; uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1; AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0, fAllowed1, fFeatures)); pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1); /* True VM-entry controls. */ if (fTrueVmxMsrs) { /* VMX_ENTRY_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved */ uint32_t const fTrueAllowed0 = VMX_ENTRY_CTLS_DEFAULT1 & ~( VMX_BF_ENTRY_CTLS_LOAD_DEBUG_MASK | VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_MASK | VMX_BF_ENTRY_CTLS_ENTRY_SMM_MASK | VMX_BF_ENTRY_CTLS_DEACTIVATE_DUAL_MON_MASK); uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0; pGuestVmxMsrs->TrueEntryCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1); } } /* Miscellaneous data. */ { uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0; uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX); uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK; pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT ) | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma ) | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState ) | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxPt ) | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 ) | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT ) | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs ) | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 ) | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll ) | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt) | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID ); } /* CR0 Fixed-0 (we report this fixed value regardless of whether UX is supported as it does on real hardware). */ pGuestVmxMsrs->u64Cr0Fixed0 = VMX_V_CR0_FIXED0; /* CR0 Fixed-1. */ { /* * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff. * This is different from CR4 fixed-1 bits which are reported as per the * CPU features and/or micro-architecture/generation. Why? Ask Intel. */ pGuestVmxMsrs->u64Cr0Fixed1 = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : VMX_V_CR0_FIXED1; /* Make sure the CR0 MB1 bits are not clear. */ Assert((pGuestVmxMsrs->u64Cr0Fixed1 & pGuestVmxMsrs->u64Cr0Fixed0) == pGuestVmxMsrs->u64Cr0Fixed0); } /* CR4 Fixed-0. */ pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0; /* CR4 Fixed-1. */ { pGuestVmxMsrs->u64Cr4Fixed1 = CPUMGetGuestCR4ValidMask(pVM) & pHostVmxMsrs->u64Cr4Fixed1; /* Make sure the CR4 MB1 bits are not clear. */ Assert((pGuestVmxMsrs->u64Cr4Fixed1 & pGuestVmxMsrs->u64Cr4Fixed0) == pGuestVmxMsrs->u64Cr4Fixed0); /* Make sure bits that must always be set are set. */ Assert(pGuestVmxMsrs->u64Cr4Fixed1 & X86_CR4_PAE); Assert(pGuestVmxMsrs->u64Cr4Fixed1 & X86_CR4_VMXE); } /* VMCS Enumeration. */ pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT; /* VPID and EPT Capabilities. */ if (pGuestFeatures->fVmxEpt) { /* * INVVPID instruction always causes a VM-exit unconditionally, so we are free to fake * and emulate any INVVPID flush type. However, it only makes sense to expose the types * when INVVPID instruction is supported just to be more compatible with guest * hypervisors that may make assumptions by only looking at this MSR even though they * are technically supposed to refer to VMX_PROC_CTLS2_VPID first. * * See Intel spec. 25.1.2 "Instructions That Cause VM Exits Unconditionally". * See Intel spec. 30.3 "VMX Instructions". */ uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64EptVpidCaps : UINT64_MAX; uint8_t const fVpid = pGuestFeatures->fVmxVpid; uint8_t const fExecOnly = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EXEC_ONLY); uint8_t const fPml4 = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4); uint8_t const fMemTypeUc = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_UC); uint8_t const fMemTypeWb = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_WB); uint8_t const f2MPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDE_2M); uint8_t const fInvept = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT); /** @todo Nested VMX: Support accessed/dirty bits, see @bugref{10092#c25}. */ /* uint8_t const fAccessDirty = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY); */ uint8_t const fEptSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX); uint8_t const fEptAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX); uint8_t const fVpidIndiv = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR); uint8_t const fVpidSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX); uint8_t const fVpidAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX); uint8_t const fVpidSingleGlobal = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS); pGuestVmxMsrs->u64EptVpidCaps = RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EXEC_ONLY, fExecOnly) | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4, fPml4) | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_UC, fMemTypeUc) | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_WB, fMemTypeWb) | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDE_2M, f2MPage) //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDPTE_1G, 0) | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT, fInvept) //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY, 0) //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION, 0) //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_SUPER_SHW_STACK, 0) | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX, fEptSingle) | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX, fEptAll) | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID, fVpid) | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR, fVpid & fVpidIndiv) | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX, fVpid & fVpidSingle) | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX, fVpid & fVpidAll) | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS, fVpid & fVpidSingleGlobal); } /* VM Functions. */ if (pGuestFeatures->fVmxVmFunc) pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1); } /** * Checks whether the given guest CPU VMX features are compatible with the provided * base features. * * @returns @c true if compatible, @c false otherwise. * @param pVM The cross context VM structure. * @param pBase The base VMX CPU features. * @param pGst The guest VMX CPU features. * * @remarks Only VMX feature bits are examined. */ static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst) { if (!cpumR3IsHwAssistNstGstExecAllowed(pVM)) return false; #define CPUM_VMX_FEAT_SHIFT(a_pFeat, a_FeatName, a_cShift) ((uint64_t)(a_pFeat->a_FeatName) << (a_cShift)) #define CPUM_VMX_MAKE_FEATURES_1(a_pFeat) ( CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInsOutInfo , 0) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExtIntExit , 1) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxNmiExit , 2) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtNmi , 3) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPreemptTimer , 4) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPostedInt , 5) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxIntWindowExit , 6) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxTscOffsetting , 7) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxHltExit , 8) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInvlpgExit , 9) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMwaitExit , 10) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdpmcExit , 12) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdtscExit , 13) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr3LoadExit , 14) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr3StoreExit , 15) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxTertiaryExecCtls , 16) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr8LoadExit , 17) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr8StoreExit , 18) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseTprShadow , 19) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxNmiWindowExit , 20) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMovDRxExit , 21) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUncondIoExit , 22) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseIoBitmaps , 23) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMonitorTrapFlag , 24) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseMsrBitmaps , 25) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMonitorExit , 26) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPauseExit , 27) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSecondaryExecCtls , 28) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtApicAccess , 29) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEpt , 30) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxDescTableExit , 31) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdtscp , 32) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtX2ApicMode , 33) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVpid , 34) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxWbinvdExit , 35) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUnrestrictedGuest , 36) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxApicRegVirt , 37) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtIntDelivery , 38) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPauseLoopExit , 39) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdrandExit , 40) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInvpcid , 41) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmFunc , 42) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmcsShadowing , 43) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdseedExit , 44) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPml , 45) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEptXcptVe , 46) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxConcealVmxFromPt , 47) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxXsavesXrstors , 48) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPasidTranslate , 49) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxModeBasedExecuteEpt, 50) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSppEpt , 51) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPtEpt , 52) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseTscScaling , 53) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUserWaitPause , 54) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPconfig , 55) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEnclvExit , 56) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxBusLockDetect , 57) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInstrTimeout , 58) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxLoadIwKeyExit , 59) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxHlat , 60) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEptPagingWrite , 61) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxGstPagingVerify , 62) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxIpiVirt , 63)) #define CPUM_VMX_MAKE_FEATURES_2(a_pFeat) ( CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtSpecCtrl , 0) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadDebugCtls , 1) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxIa32eModeGuest , 2) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadEferMsr , 3) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadPatMsr , 4) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveDebugCtls , 5) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxHostAddrSpaceSize , 6) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitAckExtInt , 7) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSavePatMsr , 8) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitLoadPatMsr , 9) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveEferMsr , 10) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitLoadEferMsr , 12) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSavePreemptTimer , 13) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSecondaryExitCtls , 14) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveEferLma , 15) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPt , 16) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmwriteAll , 17) \ | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryInjectSoftInt , 18)) /* Check first set of feature bits. */ { uint64_t const fBase = CPUM_VMX_MAKE_FEATURES_1(pBase); uint64_t const fGst = CPUM_VMX_MAKE_FEATURES_1(pGst); if ((fBase | fGst) != fBase) { uint64_t const fDiff = fBase ^ fGst; LogRel(("CPUM: VMX features (1) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n", fBase, fGst, fDiff)); return false; } } /* Check second set of feature bits. */ { uint64_t const fBase = CPUM_VMX_MAKE_FEATURES_2(pBase); uint64_t const fGst = CPUM_VMX_MAKE_FEATURES_2(pGst); if ((fBase | fGst) != fBase) { uint64_t const fDiff = fBase ^ fGst; LogRel(("CPUM: VMX features (2) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n", fBase, fGst, fDiff)); return false; } } #undef CPUM_VMX_FEAT_SHIFT #undef CPUM_VMX_MAKE_FEATURES_1 #undef CPUM_VMX_MAKE_FEATURES_2 return true; } /** * Initializes VMX guest features and MSRs. * * @param pVM The cross context VM structure. * @param pCpumCfg The CPUM CFGM configuration node. * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX * and no hardware-assisted nested-guest execution is * possible for this VM. * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs. */ void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCFGMNODE pCpumCfg, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs) { Assert(pVM); Assert(pCpumCfg); Assert(pGuestVmxMsrs); /* * Query VMX features from CFGM. */ bool fVmxPreemptTimer; bool fVmxEpt; bool fVmxUnrestrictedGuest; { /** @cfgm{/CPUM/NestedVmxPreemptTimer, bool, true} * Whether to expose the VMX-preemption timer feature to the guest (if also * supported by the host hardware). When disabled will prevent exposing the * VMX-preemption timer feature to the guest even if the host supports it. * * @todo Currently disabled, see @bugref{9180#c108}. */ int rc = CFGMR3QueryBoolDef(pCpumCfg, "NestedVmxPreemptTimer", &fVmxPreemptTimer, false); AssertLogRelRCReturnVoid(rc); #ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT /** @cfgm{/CPUM/NestedVmxEpt, bool, true} * Whether to expose the EPT feature to the guest. The default is true. * When disabled will automatically prevent exposing features that rely * on it. This is dependent upon nested paging being enabled for the VM. */ rc = CFGMR3QueryBoolDef(pCpumCfg, "NestedVmxEpt", &fVmxEpt, true); AssertLogRelRCReturnVoid(rc); /** @cfgm{/CPUM/NestedVmxUnrestrictedGuest, bool, true} * Whether to expose the Unrestricted Guest feature to the guest. The * default is the same a /CPUM/Nested/VmxEpt. When disabled will * automatically prevent exposing features that rely on it. */ rc = CFGMR3QueryBoolDef(pCpumCfg, "NestedVmxUnrestrictedGuest", &fVmxUnrestrictedGuest, fVmxEpt); AssertLogRelRCReturnVoid(rc); #else fVmxEpt = fVmxUnrestrictedGuest = false; #endif } if (fVmxEpt) { const char *pszWhy = NULL; if (!VM_IS_HM_ENABLED(pVM) && !VM_IS_EXEC_ENGINE_IEM(pVM)) pszWhy = "execution engine is neither HM nor IEM"; else if (VM_IS_HM_ENABLED(pVM) && !HMIsNestedPagingActive(pVM)) pszWhy = "nested paging is not enabled for the VM or it is not supported by the host"; else if (VM_IS_HM_ENABLED(pVM) && !pVM->cpum.s.HostFeatures.fNoExecute) pszWhy = "NX is not available on the host"; if (pszWhy) { LogRel(("CPUM: Warning! EPT not exposed to the guest because %s\n", pszWhy)); fVmxEpt = false; } } else if (fVmxUnrestrictedGuest) { LogRel(("CPUM: Warning! Can't expose \"Unrestricted Guest\" to the guest when EPT is not exposed!\n")); fVmxUnrestrictedGuest = false; } /* * Initialize the set of VMX features we emulate. * * Note! Some bits might be reported as 1 always if they fall under the * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}. */ CPUMFEATURES EmuFeat; RT_ZERO(EmuFeat); EmuFeat.fVmx = 1; EmuFeat.fVmxInsOutInfo = 1; EmuFeat.fVmxExtIntExit = 1; EmuFeat.fVmxNmiExit = 1; EmuFeat.fVmxVirtNmi = 1; EmuFeat.fVmxPreemptTimer = fVmxPreemptTimer; EmuFeat.fVmxPostedInt = 0; EmuFeat.fVmxIntWindowExit = 1; EmuFeat.fVmxTscOffsetting = 1; EmuFeat.fVmxHltExit = 1; EmuFeat.fVmxInvlpgExit = 1; EmuFeat.fVmxMwaitExit = 1; EmuFeat.fVmxRdpmcExit = 1; EmuFeat.fVmxRdtscExit = 1; EmuFeat.fVmxCr3LoadExit = 1; EmuFeat.fVmxCr3StoreExit = 1; EmuFeat.fVmxTertiaryExecCtls = 0; EmuFeat.fVmxCr8LoadExit = 1; EmuFeat.fVmxCr8StoreExit = 1; EmuFeat.fVmxUseTprShadow = 1; EmuFeat.fVmxNmiWindowExit = 1; EmuFeat.fVmxMovDRxExit = 1; EmuFeat.fVmxUncondIoExit = 1; EmuFeat.fVmxUseIoBitmaps = 1; EmuFeat.fVmxMonitorTrapFlag = 0; EmuFeat.fVmxUseMsrBitmaps = 1; EmuFeat.fVmxMonitorExit = 1; EmuFeat.fVmxPauseExit = 1; EmuFeat.fVmxSecondaryExecCtls = 1; EmuFeat.fVmxVirtApicAccess = 1; EmuFeat.fVmxEpt = fVmxEpt; EmuFeat.fVmxDescTableExit = 1; EmuFeat.fVmxRdtscp = 1; EmuFeat.fVmxVirtX2ApicMode = 0; EmuFeat.fVmxVpid = 1; EmuFeat.fVmxWbinvdExit = 1; EmuFeat.fVmxUnrestrictedGuest = fVmxUnrestrictedGuest; EmuFeat.fVmxApicRegVirt = 0; EmuFeat.fVmxVirtIntDelivery = 0; EmuFeat.fVmxPauseLoopExit = 1; EmuFeat.fVmxRdrandExit = 1; EmuFeat.fVmxInvpcid = 1; EmuFeat.fVmxVmFunc = 0; EmuFeat.fVmxVmcsShadowing = 0; EmuFeat.fVmxRdseedExit = 1; EmuFeat.fVmxPml = 0; EmuFeat.fVmxEptXcptVe = 0; EmuFeat.fVmxConcealVmxFromPt = 0; EmuFeat.fVmxXsavesXrstors = 0; EmuFeat.fVmxPasidTranslate = 0; EmuFeat.fVmxModeBasedExecuteEpt = 0; EmuFeat.fVmxSppEpt = 0; EmuFeat.fVmxPtEpt = 0; EmuFeat.fVmxUseTscScaling = 0; EmuFeat.fVmxUserWaitPause = 0; EmuFeat.fVmxPconfig = 0; EmuFeat.fVmxEnclvExit = 0; EmuFeat.fVmxBusLockDetect = 0; EmuFeat.fVmxInstrTimeout = 0; EmuFeat.fVmxLoadIwKeyExit = 0; EmuFeat.fVmxHlat = 0; EmuFeat.fVmxEptPagingWrite = 0; EmuFeat.fVmxGstPagingVerify = 0; EmuFeat.fVmxIpiVirt = 0; EmuFeat.fVmxVirtSpecCtrl = 0; EmuFeat.fVmxEntryLoadDebugCtls = 1; EmuFeat.fVmxIa32eModeGuest = 1; EmuFeat.fVmxEntryLoadEferMsr = 1; EmuFeat.fVmxEntryLoadPatMsr = 1; EmuFeat.fVmxExitSaveDebugCtls = 1; EmuFeat.fVmxHostAddrSpaceSize = 1; EmuFeat.fVmxExitAckExtInt = 1; EmuFeat.fVmxExitSavePatMsr = 1; EmuFeat.fVmxExitLoadPatMsr = 1; EmuFeat.fVmxExitSaveEferMsr = 1; EmuFeat.fVmxExitLoadEferMsr = 1; EmuFeat.fVmxSavePreemptTimer = 0 & fVmxPreemptTimer; /* Cannot be enabled if VMX-preemption timer is disabled. */ EmuFeat.fVmxSecondaryExitCtls = 0; EmuFeat.fVmxExitSaveEferLma = 1 | fVmxUnrestrictedGuest; /* Cannot be disabled if unrestricted guest is enabled. */ EmuFeat.fVmxPt = 0; EmuFeat.fVmxVmwriteAll = 0; /** @todo NSTVMX: enable this when nested VMCS shadowing is enabled. */ EmuFeat.fVmxEntryInjectSoftInt = 1; /* * Merge guest features. * * When hardware-assisted VMX may be used, any feature we emulate must also be supported * by the hardware, hence we merge our emulated features with the host features below. */ PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat; PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures; Assert(pBaseFeat->fVmx); #define CPUMVMX_SET_GST_FEAT(a_Feat) \ do { \ pGuestFeat->a_Feat = (pBaseFeat->a_Feat & EmuFeat.a_Feat); \ } while (0) CPUMVMX_SET_GST_FEAT(fVmxInsOutInfo); CPUMVMX_SET_GST_FEAT(fVmxExtIntExit); CPUMVMX_SET_GST_FEAT(fVmxNmiExit); CPUMVMX_SET_GST_FEAT(fVmxVirtNmi); CPUMVMX_SET_GST_FEAT(fVmxPreemptTimer); CPUMVMX_SET_GST_FEAT(fVmxPostedInt); CPUMVMX_SET_GST_FEAT(fVmxIntWindowExit); CPUMVMX_SET_GST_FEAT(fVmxTscOffsetting); CPUMVMX_SET_GST_FEAT(fVmxHltExit); CPUMVMX_SET_GST_FEAT(fVmxInvlpgExit); CPUMVMX_SET_GST_FEAT(fVmxMwaitExit); CPUMVMX_SET_GST_FEAT(fVmxRdpmcExit); CPUMVMX_SET_GST_FEAT(fVmxRdtscExit); CPUMVMX_SET_GST_FEAT(fVmxCr3LoadExit); CPUMVMX_SET_GST_FEAT(fVmxCr3StoreExit); CPUMVMX_SET_GST_FEAT(fVmxTertiaryExecCtls); CPUMVMX_SET_GST_FEAT(fVmxCr8LoadExit); CPUMVMX_SET_GST_FEAT(fVmxCr8StoreExit); CPUMVMX_SET_GST_FEAT(fVmxUseTprShadow); CPUMVMX_SET_GST_FEAT(fVmxNmiWindowExit); CPUMVMX_SET_GST_FEAT(fVmxMovDRxExit); CPUMVMX_SET_GST_FEAT(fVmxUncondIoExit); CPUMVMX_SET_GST_FEAT(fVmxUseIoBitmaps); CPUMVMX_SET_GST_FEAT(fVmxMonitorTrapFlag); CPUMVMX_SET_GST_FEAT(fVmxUseMsrBitmaps); CPUMVMX_SET_GST_FEAT(fVmxMonitorExit); CPUMVMX_SET_GST_FEAT(fVmxPauseExit); CPUMVMX_SET_GST_FEAT(fVmxSecondaryExecCtls); CPUMVMX_SET_GST_FEAT(fVmxVirtApicAccess); CPUMVMX_SET_GST_FEAT(fVmxEpt); CPUMVMX_SET_GST_FEAT(fVmxDescTableExit); CPUMVMX_SET_GST_FEAT(fVmxRdtscp); CPUMVMX_SET_GST_FEAT(fVmxVirtX2ApicMode); CPUMVMX_SET_GST_FEAT(fVmxVpid); CPUMVMX_SET_GST_FEAT(fVmxWbinvdExit); CPUMVMX_SET_GST_FEAT(fVmxUnrestrictedGuest); CPUMVMX_SET_GST_FEAT(fVmxApicRegVirt); CPUMVMX_SET_GST_FEAT(fVmxVirtIntDelivery); CPUMVMX_SET_GST_FEAT(fVmxPauseLoopExit); CPUMVMX_SET_GST_FEAT(fVmxRdrandExit); CPUMVMX_SET_GST_FEAT(fVmxInvpcid); CPUMVMX_SET_GST_FEAT(fVmxVmFunc); CPUMVMX_SET_GST_FEAT(fVmxVmcsShadowing); CPUMVMX_SET_GST_FEAT(fVmxRdseedExit); CPUMVMX_SET_GST_FEAT(fVmxPml); CPUMVMX_SET_GST_FEAT(fVmxEptXcptVe); CPUMVMX_SET_GST_FEAT(fVmxConcealVmxFromPt); CPUMVMX_SET_GST_FEAT(fVmxXsavesXrstors); CPUMVMX_SET_GST_FEAT(fVmxPasidTranslate); CPUMVMX_SET_GST_FEAT(fVmxModeBasedExecuteEpt); CPUMVMX_SET_GST_FEAT(fVmxSppEpt); CPUMVMX_SET_GST_FEAT(fVmxPtEpt); CPUMVMX_SET_GST_FEAT(fVmxUseTscScaling); CPUMVMX_SET_GST_FEAT(fVmxUserWaitPause); CPUMVMX_SET_GST_FEAT(fVmxPconfig); CPUMVMX_SET_GST_FEAT(fVmxEnclvExit); CPUMVMX_SET_GST_FEAT(fVmxBusLockDetect); CPUMVMX_SET_GST_FEAT(fVmxInstrTimeout); CPUMVMX_SET_GST_FEAT(fVmxLoadIwKeyExit); CPUMVMX_SET_GST_FEAT(fVmxHlat); CPUMVMX_SET_GST_FEAT(fVmxEptPagingWrite); CPUMVMX_SET_GST_FEAT(fVmxGstPagingVerify); CPUMVMX_SET_GST_FEAT(fVmxIpiVirt); CPUMVMX_SET_GST_FEAT(fVmxVirtSpecCtrl); CPUMVMX_SET_GST_FEAT(fVmxEntryLoadDebugCtls); CPUMVMX_SET_GST_FEAT(fVmxIa32eModeGuest); CPUMVMX_SET_GST_FEAT(fVmxEntryLoadEferMsr); CPUMVMX_SET_GST_FEAT(fVmxEntryLoadPatMsr); CPUMVMX_SET_GST_FEAT(fVmxExitSaveDebugCtls); CPUMVMX_SET_GST_FEAT(fVmxHostAddrSpaceSize); CPUMVMX_SET_GST_FEAT(fVmxExitAckExtInt); CPUMVMX_SET_GST_FEAT(fVmxExitSavePatMsr); CPUMVMX_SET_GST_FEAT(fVmxExitLoadPatMsr); CPUMVMX_SET_GST_FEAT(fVmxExitSaveEferMsr); CPUMVMX_SET_GST_FEAT(fVmxExitLoadEferMsr); CPUMVMX_SET_GST_FEAT(fVmxSavePreemptTimer); CPUMVMX_SET_GST_FEAT(fVmxSecondaryExitCtls); CPUMVMX_SET_GST_FEAT(fVmxExitSaveEferLma); CPUMVMX_SET_GST_FEAT(fVmxPt); CPUMVMX_SET_GST_FEAT(fVmxVmwriteAll); CPUMVMX_SET_GST_FEAT(fVmxEntryInjectSoftInt); #undef CPUMVMX_SET_GST_FEAT #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) /* Don't expose VMX preemption timer if host is subject to VMX-preemption timer erratum. */ if ( pGuestFeat->fVmxPreemptTimer && HMIsSubjectToVmxPreemptTimerErratum()) { LogRel(("CPUM: Warning! VMX-preemption timer not exposed to guest due to host CPU erratum\n")); pGuestFeat->fVmxPreemptTimer = 0; pGuestFeat->fVmxSavePreemptTimer = 0; } #endif /* Sanity checking. */ if (!pGuestFeat->fVmxSecondaryExecCtls) { Assert(!pGuestFeat->fVmxVirtApicAccess); Assert(!pGuestFeat->fVmxEpt); Assert(!pGuestFeat->fVmxDescTableExit); Assert(!pGuestFeat->fVmxRdtscp); Assert(!pGuestFeat->fVmxVirtX2ApicMode); Assert(!pGuestFeat->fVmxVpid); Assert(!pGuestFeat->fVmxWbinvdExit); Assert(!pGuestFeat->fVmxUnrestrictedGuest); Assert(!pGuestFeat->fVmxApicRegVirt); Assert(!pGuestFeat->fVmxVirtIntDelivery); Assert(!pGuestFeat->fVmxPauseLoopExit); Assert(!pGuestFeat->fVmxRdrandExit); Assert(!pGuestFeat->fVmxInvpcid); Assert(!pGuestFeat->fVmxVmFunc); Assert(!pGuestFeat->fVmxVmcsShadowing); Assert(!pGuestFeat->fVmxRdseedExit); Assert(!pGuestFeat->fVmxPml); Assert(!pGuestFeat->fVmxEptXcptVe); Assert(!pGuestFeat->fVmxConcealVmxFromPt); Assert(!pGuestFeat->fVmxXsavesXrstors); Assert(!pGuestFeat->fVmxModeBasedExecuteEpt); Assert(!pGuestFeat->fVmxSppEpt); Assert(!pGuestFeat->fVmxPtEpt); Assert(!pGuestFeat->fVmxUseTscScaling); Assert(!pGuestFeat->fVmxUserWaitPause); Assert(!pGuestFeat->fVmxEnclvExit); } else if (pGuestFeat->fVmxUnrestrictedGuest) { /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */ Assert(pGuestFeat->fVmxExitSaveEferLma); /* Unrestricted guest execution requires EPT. See Intel spec. 25.2.1.1 "VM-Execution Control Fields". */ Assert(pGuestFeat->fVmxEpt); } if (!pGuestFeat->fVmxTertiaryExecCtls) { Assert(!pGuestFeat->fVmxLoadIwKeyExit); Assert(!pGuestFeat->fVmxHlat); Assert(!pGuestFeat->fVmxEptPagingWrite); Assert(!pGuestFeat->fVmxGstPagingVerify); Assert(!pGuestFeat->fVmxIpiVirt); Assert(!pGuestFeat->fVmxVirtSpecCtrl); } /* * Finally initialize the VMX guest MSRs. */ cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs); } /** * Gets the host hardware-virtualization MSRs. * * @returns VBox status code. * @param pMsrs Where to store the MSRs. */ static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs) { Assert(pMsrs); uint32_t fCaps = 0; int rc = SUPR3QueryVTCaps(&fCaps); if (RT_SUCCESS(rc)) { if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V)) { SUPHWVIRTMSRS HwvirtMsrs; rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */); if (RT_SUCCESS(rc)) { if (fCaps & SUPVTCAPS_VT_X) HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx); else HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm); return VINF_SUCCESS; } LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc)); return rc; } LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n")); return VERR_INTERNAL_ERROR_5; } LogRel(("CPUM: No hardware-virtualization capability detected\n")); return VINF_SUCCESS; } /** * @callback_method_impl{FNTMTIMERINT, * Callback that fires when the nested VMX-preemption timer expired.} */ static DECLCALLBACK(void) cpumR3VmxPreemptTimerCallback(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser) { RT_NOREF(pVM, hTimer); PVMCPU pVCpu = (PVMCPUR3)pvUser; AssertPtr(pVCpu); VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER); } /** * Initializes the CPUM. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) CPUMR3Init(PVM pVM) { LogFlow(("CPUMR3Init\n")); /* * Assert alignment, sizes and tables. */ AssertCompileMemberAlignment(VM, cpum.s, 32); AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding)); AssertCompileSizeAlignment(CPUMCTX, 64); AssertCompileSizeAlignment(CPUMCTXMSRS, 64); AssertCompileSizeAlignment(CPUMHOSTCTX, 64); AssertCompileMemberAlignment(VM, cpum, 64); AssertCompileMemberAlignment(VMCPU, cpum.s, 64); #ifdef VBOX_STRICT int rc2 = cpumR3MsrStrictInitChecks(); AssertRCReturn(rc2, rc2); #endif /* * Gather info about the host CPU. */ #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64) if (!ASMHasCpuId()) { LogRel(("The CPU doesn't support CPUID!\n")); return VERR_UNSUPPORTED_CPU; } pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask(); #endif CPUMMSRS HostMsrs; RT_ZERO(HostMsrs); int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs); AssertLogRelRCReturn(rc, rc); #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64) /* Use the host features detected by CPUMR0ModuleInit if available. */ if (pVM->cpum.s.HostFeatures.enmCpuVendor != CPUMCPUVENDOR_INVALID) g_CpumHostFeatures.s = pVM->cpum.s.HostFeatures; else { PCPUMCPUIDLEAF paLeaves; uint32_t cLeaves; rc = CPUMCpuIdCollectLeavesX86(&paLeaves, &cLeaves); AssertLogRelRCReturn(rc, rc); rc = cpumCpuIdExplodeFeaturesX86(paLeaves, cLeaves, &HostMsrs, &g_CpumHostFeatures.s); RTMemFree(paLeaves); AssertLogRelRCReturn(rc, rc); } pVM->cpum.s.HostFeatures = g_CpumHostFeatures.s; pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor; #elif defined(RT_ARCH_ARM64) /** @todo we shouldn't be using the x86/AMD64 CPUMFEATURES for HostFeatures, * but it's too much work to fix that now. So, instead we just set * the bits we think are important for CPUMR3CpuId... This must * correspond to what IEM can emulate on ARM64. */ pVM->cpum.s.HostFeatures.fCmpXchg8b = true; pVM->cpum.s.HostFeatures.fCmpXchg16b = true; pVM->cpum.s.HostFeatures.fPopCnt = true; pVM->cpum.s.HostFeatures.fAbm = true; pVM->cpum.s.HostFeatures.fBmi1 = true; pVM->cpum.s.HostFeatures.fBmi2 = true; pVM->cpum.s.HostFeatures.fAdx = true; pVM->cpum.s.HostFeatures.fSse = true; pVM->cpum.s.HostFeatures.fSse2 = true; pVM->cpum.s.HostFeatures.fSse3 = true; pVM->cpum.s.HostFeatures.fSse41 = true; pVM->cpum.s.HostFeatures.fSse42 = true; pVM->cpum.s.HostFeatures.fLahfSahf = true; pVM->cpum.s.HostFeatures.fMovBe = true; pVM->cpum.s.HostFeatures.fXSaveRstor = true; pVM->cpum.s.HostFeatures.fOpSysXSaveRstor = true; /** @todo r=aeichner Keep AVX/AVX2 disabled for now, too many missing instruction emulations. */ # if 1 pVM->cpum.s.HostFeatures.cbMaxExtendedState = RT_UOFFSETOF(X86XSAVEAREA, u.YmmHi); # else pVM->cpum.s.HostFeatures.cbMaxExtendedState = RT_UOFFSETOF(X86XSAVEAREA, u.YmmHi) + sizeof(X86XSAVEYMMHI); pVM->cpum.s.HostFeatures.fAvx = false; pVM->cpum.s.HostFeatures.fAvx2 = false; # endif /* We must strongly discourage the guest from doing unnecessary stuff with the page tables to avoid exploits, as that's expensive and doesn't apply to us. */ pVM->cpum.s.HostFeatures.fArchRdclNo = true; pVM->cpum.s.HostFeatures.fArchIbrsAll = true; //pVM->cpum.s.HostFeatures.fArchRsbOverride = true; pVM->cpum.s.HostFeatures.fArchVmmNeedNotFlushL1d = true; pVM->cpum.s.HostFeatures.fArchMdsNo = true; VMCC_FOR_EACH_VMCPU_STMT(pVM, pVCpu->cpum.s.GuestMsrs.msr.ArchCaps = MSR_IA32_ARCH_CAP_F_RDCL_NO | MSR_IA32_ARCH_CAP_F_IBRS_ALL //| MSR_IA32_ARCH_CAP_F_RSBO | MSR_IA32_ARCH_CAP_F_VMM_NEED_NOT_FLUSH_L1D | MSR_IA32_ARCH_CAP_F_SSB_NO | MSR_IA32_ARCH_CAP_F_MDS_NO | MSR_IA32_ARCH_CAP_F_IF_PSCHANGE_MC_NO //| MSR_IA32_ARCH_CAP_F_TSX_CTRL //| MSR_IA32_ARCH_CAP_F_TAA_NO //| MSR_IA32_ARCH_CAP_F_MISC_PACKAGE_CTRLS //| MSR_IA32_ARCH_CAP_F_ENERGY_FILTERING_CTL //| MSR_IA32_ARCH_CAP_F_DOITM | MSR_IA32_ARCH_CAP_F_SBDR_SSDP_NO | MSR_IA32_ARCH_CAP_F_FBSDP_NO | MSR_IA32_ARCH_CAP_F_PSDP_NO //| MSR_IA32_ARCH_CAP_F_FB_CLEAR //| MSR_IA32_ARCH_CAP_F_FB_CLEAR_CTRL //| MSR_IA32_ARCH_CAP_F_RRSBA | MSR_IA32_ARCH_CAP_F_BHI_NO //| MSR_IA32_ARCH_CAP_F_XAPIC_DISABLE_STATUS //| MSR_IA32_ARCH_CAP_F_OVERCLOCKING_STATUS | MSR_IA32_ARCH_CAP_F_PBRSB_NO //| MSR_IA32_ARCH_CAP_F_GDS_CTRL | MSR_IA32_ARCH_CAP_F_GDS_NO | MSR_IA32_ARCH_CAP_F_RFDS_NO //| MSR_IA32_ARCH_CAP_F_RFDS_CLEAR ); #endif /* * Check that the CPU supports the minimum features we require. */ #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) if (!pVM->cpum.s.HostFeatures.fFxSaveRstor) return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction."); if (!pVM->cpum.s.HostFeatures.fMmx) return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX."); if (!pVM->cpum.s.HostFeatures.fTsc) return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC."); #endif /* * Setup the CR4 AND and OR masks used in the raw-mode switcher. */ pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME; pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR; /* * Figure out which XSAVE/XRSTOR features are available on the host. */ uint64_t fXcr0Host = 0; uint64_t fXStateHostMask = 0; #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64) if ( pVM->cpum.s.HostFeatures.fXSaveRstor && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor) { fXStateHostMask = fXcr0Host = ASMGetXcr0(); fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI; AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE), ("%#llx\n", fXStateHostMask), fXStateHostMask = 0); } #elif defined(RT_ARCH_ARM64) /** @todo r=aeichner Keep AVX/AVX2 disabled for now, too many missing instruction emulations. */ fXStateHostMask = XSAVE_C_X87 | XSAVE_C_SSE /*| XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI*/; #endif pVM->cpum.s.fXStateHostMask = fXStateHostMask; LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n", pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host)); /* * Initialize the host XSAVE/XRSTOR mask. */ uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState; cbMaxXState = RT_ALIGN(cbMaxXState, 128); AssertLogRelReturn( pVM->cpum.s.HostFeatures.cbMaxExtendedState >= sizeof(X86FXSTATE) && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Host.abXState) && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Guest.abXState) , VERR_CPUM_IPE_2); for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = pVM->apCpusR3[i]; pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask; pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE; } /* * Register saved state data item. */ rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM), NULL, cpumR3LiveExec, NULL, NULL, cpumR3SaveExec, NULL, cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone); if (RT_FAILURE(rc)) return rc; /* * Register info handlers and registers with the debugger facility. */ DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS); DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS); DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.", &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS); DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS); DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS); DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS); DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo); DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.", &cpumR3InfoVmxFeatures); rc = cpumR3DbgInit(pVM); if (RT_FAILURE(rc)) return rc; #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64) /* * Check if we need to workaround partial/leaky FPU handling. */ cpumR3CheckLeakyFpu(pVM); #endif /* * Initialize the Guest CPUID and MSR states. */ rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs); if (RT_FAILURE(rc)) return rc; /* * Generate the RFLAGS cookie. */ pVM->cpum.s.fReservedRFlagsCookie = RTRandU64() & ~(CPUMX86EFLAGS_HW_MASK_64 | CPUMX86EFLAGS_INT_MASK_64); /* * Init the VMX/SVM state. * * This must be done after initializing CPUID/MSR features as we access the * the VMX/SVM guest features below. * * In the case of nested VT-x, we also need to create the per-VCPU * VMX preemption timers. */ if (pVM->cpum.s.GuestFeatures.fVmx) cpumR3InitVmxHwVirtState(pVM); else if (pVM->cpum.s.GuestFeatures.fSvm) cpumR3InitSvmHwVirtState(pVM); else Assert(pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE); /* * Initialize the general guest CPU state. */ CPUMR3Reset(pVM); return VINF_SUCCESS; } /** * Applies relocations to data and code managed by this * component. This function will be called at init and * whenever the VMM need to relocate it self inside the GC. * * The CPUM will update the addresses used by the switcher. * * @param pVM The cross context VM structure. */ VMMR3DECL(void) CPUMR3Relocate(PVM pVM) { RT_NOREF(pVM); } /** * Terminates the CPUM. * * Termination means cleaning up and freeing all resources, * the VM it self is at this point powered off or suspended. * * @returns VBox status code. * @param pVM The cross context VM structure. */ VMMR3DECL(int) CPUMR3Term(PVM pVM) { #ifdef VBOX_WITH_CRASHDUMP_MAGIC for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic)); pVCpu->cpum.s.uMagic = 0; pvCpu->cpum.s.Guest.dr[5] = 0; } #endif if (pVM->cpum.s.GuestFeatures.fVmx) { for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; if (pVCpu->cpum.s.hNestedVmxPreemptTimer != NIL_TMTIMERHANDLE) { int rc = TMR3TimerDestroy(pVM, pVCpu->cpum.s.hNestedVmxPreemptTimer); AssertRC(rc); pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE; } } } return VINF_SUCCESS; } /** * Resets a virtual CPU. * * Used by CPUMR3Reset and CPU hot plugging. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure of the CPU that is * being reset. This may differ from the current EMT. */ VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu) { /** @todo anything different for VCPU > 0? */ PCPUMCTX pCtx = &pVCpu->cpum.s.Guest; /* * Initialize everything to ZERO first. */ uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM; RT_BZERO(pCtx, RT_UOFFSETOF(CPUMCTX, aoffXState)); pVCpu->cpum.s.fUseFlags = fUseFlags; pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010 pCtx->eip = 0x0000fff0; pCtx->edx = 0x00000600; /* P6 processor */ Assert((pVM->cpum.s.fReservedRFlagsCookie & (X86_EFL_LIVE_MASK | X86_EFL_RAZ_LO_MASK | X86_EFL_RA1_MASK)) == 0); pCtx->rflags.uBoth = pVM->cpum.s.fReservedRFlagsCookie | X86_EFL_RA1_MASK; pCtx->cs.Sel = 0xf000; pCtx->cs.ValidSel = 0xf000; pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->cs.u64Base = UINT64_C(0xffff0000); pCtx->cs.u32Limit = 0x0000ffff; pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */ pCtx->cs.Attr.n.u1Present = 1; pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC; pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->ds.u32Limit = 0x0000ffff; pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */ pCtx->ds.Attr.n.u1Present = 1; pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC; pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->es.u32Limit = 0x0000ffff; pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */ pCtx->es.Attr.n.u1Present = 1; pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC; pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->fs.u32Limit = 0x0000ffff; pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */ pCtx->fs.Attr.n.u1Present = 1; pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC; pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->gs.u32Limit = 0x0000ffff; pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */ pCtx->gs.Attr.n.u1Present = 1; pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC; pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->ss.u32Limit = 0x0000ffff; pCtx->ss.Attr.n.u1Present = 1; pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */ pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC; pCtx->idtr.cbIdt = 0xffff; pCtx->gdtr.cbGdt = 0xffff; pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->ldtr.u32Limit = 0xffff; pCtx->ldtr.Attr.n.u1Present = 1; pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT; pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID; pCtx->tr.u32Limit = 0xffff; pCtx->tr.Attr.n.u1Present = 1; pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */ pCtx->dr[6] = X86_DR6_INIT_VAL; pCtx->dr[7] = X86_DR7_INIT_VAL; PX86FXSTATE pFpuCtx = &pCtx->XState.x87; pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */ pFpuCtx->FCW = 0x37f; /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1. IA-32 Processor States Following Power-up, Reset, or INIT */ pFpuCtx->MXCSR = 0x1F80; pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */ pCtx->aXcr[0] = XSAVE_C_X87; if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr)) { /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR as we don't know what happened before. (Bother optimize later?) */ pCtx->XState.Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE; } /* * MSRs. */ /* Init PAT MSR */ pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL; /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State. * The Intel docs don't mention it. */ Assert(!pCtx->msrEFER); /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really is supposed to be here, just trying provide useful/sensible values. */ PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE); if (pRange) { pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0) | MSR_IA32_MISC_ENABLE_FAST_STRINGS; pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL; pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable; } /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */ /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be * called from each EMT while we're getting called by CPUMR3Reset() * iteratively on the same thread. Fix later. */ #if 0 /** @todo r=bird: This we will do in TM, not here. */ /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */ CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0); #endif /* C-state control. Guesses. */ pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28); /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2, * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical * functionality. The default value must be different due to incompatible write mask. */ if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch)) pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */ else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah) pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */ /* * Hardware virtualization state. */ CPUMSetGuestGif(pCtx, true); Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */ if (pVM->cpum.s.GuestFeatures.fVmx) cpumR3ResetVmxHwVirtState(pVCpu); else if (pVM->cpum.s.GuestFeatures.fSvm) cpumR3ResetSvmHwVirtState(pVCpu); } /** * Resets the CPU. * * @param pVM The cross context VM structure. */ VMMR3DECL(void) CPUMR3Reset(PVM pVM) { for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; CPUMR3ResetCpu(pVM, pVCpu); #ifdef VBOX_WITH_CRASHDUMP_MAGIC /* Magic marker for searching in crash dumps. */ strcpy((char *)pVCpu->.cpum.s.aMagic, "CPUMCPU Magic"); pVCpu->cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF); pVCpu->cpum.s.Guest->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF); #endif } } /** * Pass 0 live exec callback. * * @returns VINF_SSM_DONT_CALL_AGAIN. * @param pVM The cross context VM structure. * @param pSSM The saved state handle. * @param uPass The pass (0). */ static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass) { AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS); cpumR3SaveCpuId(pVM, pSSM); return VINF_SSM_DONT_CALL_AGAIN; } /** * Execute state save operation. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pSSM SSM operation handle. */ static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM) { /* * Save. */ SSMR3PutU32(pSSM, pVM->cCpus); SSMR3PutU32(pSSM, sizeof(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr)); CPUMCTX DummyHyperCtx; RT_ZERO(DummyHyperCtx); for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU const pVCpu = pVM->apCpusR3[idCpu]; PCPUMCTX const pGstCtx = &pVCpu->cpum.s.Guest; /** @todo ditch this the next time we change the saved state. */ SSMR3PutStructEx(pSSM, &DummyHyperCtx, sizeof(DummyHyperCtx), 0, g_aCpumCtxFields, NULL); uint64_t const fSavedRFlags = pGstCtx->rflags.uBoth; pGstCtx->rflags.uBoth &= CPUMX86EFLAGS_HW_MASK_64; /* Temporarily clear the non-hardware bits in RFLAGS while saving. */ SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL); pGstCtx->rflags.uBoth = fSavedRFlags; SSMR3PutStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL); if (pGstCtx->fXStateMask != 0) SSMR3PutStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr), 0, g_aCpumXSaveHdrFields, NULL); if (pGstCtx->fXStateMask & XSAVE_C_YMM) { PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI); SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL); } if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS) { PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS); SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL); } if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR) { PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG); SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL); } if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256) { PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256); SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL); } if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI) { PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI); SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL); } SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[0].u); SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[1].u); SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[2].u); SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[3].u); if (pVM->cpum.s.GuestFeatures.fSvm) { SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa); SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb); SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick); SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter); SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold); SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents); SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */); SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb)); SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap)); SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap)); /* This is saved in the old VMCPUM_FF format. Change if more flags are added. */ SSMR3PutU32(pSSM, pGstCtx->hwvirt.fSavedInhibit & CPUMCTX_INHIBIT_NMI ? CPUM_OLD_VMCPU_FF_BLOCK_NMIS : 0); SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif); } if (pVM->cpum.s.GuestFeatures.fVmx) { SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon); SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs); SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs); SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode); SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode); SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents); SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret); SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs), 0, g_aVmxHwvirtVmcs, NULL); SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs), 0, g_aVmxHwvirtVmcs, NULL); SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap)); SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap)); SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea)); SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea)); SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea)); SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap)); SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap)); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick); SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite); SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking); SSMR3PutU64(pSSM, MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON); /* Deprecated since 2021/09/22. Value kept backwards compatibile with 6.1.26. */ SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3); SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64ExitCtls2); } SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags); SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged); AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t)); SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr)); } cpumR3SaveCpuId(pVM, pSSM); return VINF_SUCCESS; } /** * @callback_method_impl{FNSSMINTLOADPREP} */ static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM) { NOREF(pSSM); pVM->cpum.s.fPendingRestore = true; return VINF_SUCCESS; } /** * @callback_method_impl{FNSSMINTLOADEXEC} */ static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass) { int rc; /* Only for AssertRCReturn use. */ /* * Validate version. */ if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_4 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3 && uVersion != CPUM_SAVED_STATE_VERSION_PAE_PDPES && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT && uVersion != CPUM_SAVED_STATE_VERSION_MEM && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6) { AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion)); return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } if (uPass == SSM_PASS_FINAL) { /* * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for * really old SSM file versions.) */ if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6) SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32)); else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0) SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR)); /* * Figure x86 and ctx field definitions to use for older states. */ uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED; PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields; PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields; if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6) { paCpumCtx1Fields = g_aCpumX87FieldsV16; paCpumCtx2Fields = g_aCpumCtxFieldsV16; } else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM) { paCpumCtx1Fields = g_aCpumX87FieldsMem; paCpumCtx2Fields = g_aCpumCtxFieldsMem; } /* * The hyper state used to preceed the CPU count. Starting with * XSAVE it was moved down till after we've got the count. */ CPUMCTX HyperCtxIgnored; if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE) { for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { X86FXSTATE Ign; SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL); SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL); } } if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR) { uint32_t cCpus; rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc); AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus), VERR_SSM_UNEXPECTED_DATA); } AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0 || pVM->cCpus == 1, ("cCpus=%u\n", pVM->cCpus), VERR_SSM_UNEXPECTED_DATA); uint32_t cbMsrs = 0; if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE) { rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc); AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs), VERR_SSM_UNEXPECTED_DATA); AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs), VERR_SSM_UNEXPECTED_DATA); } /* * Do the per-CPU restoring. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest; if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE) { /* * The XSAVE saved state layout moved the hyper state down here. */ rc = SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored), 0, g_aCpumCtxFields, NULL); AssertRCReturn(rc, rc); /* * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state. */ rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL); rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL); AssertRCReturn(rc, rc); /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */ if (pGstCtx->fXStateMask != 0) { AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask), ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n", pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask), VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK); AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87, ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK); AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM, ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK); AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI), ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK); } /* Check that the XCR0 mask is valid (invalid results in #GP). */ AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0); if (pGstCtx->aXcr[0] != XSAVE_C_X87) { AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)), ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask), VERR_CPUM_INVALID_XCR0); AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK); AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK); AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI), ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK); } /* Check that the XCR1 is zero, as we don't implement it yet. */ AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED); /* * Restore the individual extended state components we support. */ if (pGstCtx->fXStateMask != 0) { rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr), 0, g_aCpumXSaveHdrFields, NULL); AssertRCReturn(rc, rc); AssertLogRelMsgReturn(!(pGstCtx->XState.Hdr.bmXState & ~pGstCtx->fXStateMask), ("bmXState=%#RX64 fXStateMask=%#RX64\n", pGstCtx->XState.Hdr.bmXState, pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_HDR); } if (pGstCtx->fXStateMask & XSAVE_C_YMM) { PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI); SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL); } if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS) { PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS); SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL); } if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR) { PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG); SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL); } if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256) { PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256); SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL); } if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI) { PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI); SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL); } if (uVersion >= CPUM_SAVED_STATE_VERSION_PAE_PDPES) { SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[0].u); SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[1].u); SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[2].u); SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[3].u); } if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM) { if (pVM->cpum.s.GuestFeatures.fSvm) { SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa); SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick); SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter); SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold); SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents); SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */); SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb)); SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap)); SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap)); uint32_t fSavedLocalFFs = 0; rc = SSMR3GetU32(pSSM, &fSavedLocalFFs); AssertRCReturn(rc, rc); Assert(fSavedLocalFFs == 0 || fSavedLocalFFs == CPUM_OLD_VMCPU_FF_BLOCK_NMIS); pGstCtx->hwvirt.fSavedInhibit = fSavedLocalFFs & CPUM_OLD_VMCPU_FF_BLOCK_NMIS ? CPUMCTX_INHIBIT_NMI : 0; SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif); } } if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX) { if (pVM->cpum.s.GuestFeatures.fVmx) { SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon); SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs); SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs); SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode); SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode); SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents); SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret); SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs), 0, g_aVmxHwvirtVmcs, NULL); SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs), 0, g_aVmxHwvirtVmcs, NULL); SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap)); SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap)); SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea)); SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea)); SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea)); SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap)); SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap)); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick); SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite); SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking); SSMR3Skip(pSSM, sizeof(uint64_t)); /* Unused - used to be IA32_FEATURE_CONTROL, see @bugref{10106}. */ SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc); SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps); if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2) SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3); if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_3) SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64ExitCtls2); } } } else { /* * Pre XSAVE saved state. */ SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL); SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL); } /* * Restore a couple of flags and the MSRs. */ uint32_t fIgnoredUsedFlags = 0; rc = SSMR3GetU32(pSSM, &fIgnoredUsedFlags); /* we're recalc the two relevant flags after loading state. */ AssertRCReturn(rc, rc); SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged); rc = VINF_SUCCESS; if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE) rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs); else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0) { SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */ rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t)); } AssertRCReturn(rc, rc); /* Deal with the reusing of reserved RFLAGS bits. */ pGstCtx->rflags.uBoth |= pVM->cpum.s.fReservedRFlagsCookie; /* REM and other may have cleared must-be-one fields in DR6 and DR7, fix these. */ pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK); pGstCtx->dr[6] |= X86_DR6_RA1_MASK; pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK); pGstCtx->dr[7] |= X86_DR7_RA1_MASK; } /* Older states does not have the internal selector register flags and valid selector value. Supply those. */ if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM) { for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; bool const fValid = true /*!VM_IS_RAW_MODE_ENABLED(pVM)*/ || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID)); PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest); if (fValid) { for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++) { paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID; paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel; } pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID; pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel; } else { for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++) { paSelReg[iSelReg].fFlags = 0; paSelReg[iSelReg].ValidSel = 0; } /* This might not be 104% correct, but I think it's close enough for all practical purposes... (REM always loaded LDTR registers.) */ pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID; pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel; } pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID; pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel; } } /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */ if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM) for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID; } /* * A quick sanity check. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA); AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA); AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA); AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA); AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA); AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA); } } pVM->cpum.s.fPendingRestore = false; /* * Guest CPUIDs (and VMX MSR features). */ if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2) { CPUMMSRS GuestMsrs; RT_ZERO(GuestMsrs); CPUMFEATURES BaseFeatures; bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx; if (fVmxGstFeat) { /* * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state. * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features * here so we can compare them for compatibility after exploding guest features. */ BaseFeatures = pVM->cpum.s.GuestFeatures; /* Use the VMX MSR features from the saved state while exploding guest features. */ GuestMsrs.hwvirt.vmx = pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.vmx.Msrs; } /* Load CPUID and explode guest features. */ rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs); if (fVmxGstFeat) { /* * Check if the exploded VMX features from the saved state are compatible with the host-derived features * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with * VMX features presented to the guest. */ bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures); if (!fIsCompat) return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO; } return rc; } return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion); } /** * @callback_method_impl{FNSSMINTLOADDONE} */ static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM) { if (RT_FAILURE(SSMR3HandleGetStatus(pSSM))) return VINF_SUCCESS; /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */ if (pVM->cpum.s.fPendingRestore) { LogRel(("CPUM: Missing state!\n")); return VERR_INTERNAL_ERROR_2; } bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM); for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; /* Notify PGM of the NXE states in case they've changed. */ PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE)); /* During init. this is done in CPUMR3InitCompleted(). */ if (fSupportsLongMode) pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE; /* Recalc the CPUM_USE_DEBUG_REGS_HYPER value. */ CPUMRecalcHyperDRx(pVCpu, UINT8_MAX); } return VINF_SUCCESS; } /** * Checks if the CPUM state restore is still pending. * * @returns true / false. * @param pVM The cross context VM structure. */ VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM) { return pVM->cpum.s.fPendingRestore; } /** * Gets the variable-range MTRR physical address mask given an address range. * * @returns The MTRR physical address mask. * @param pVM The cross context VM structure. * @param GCPhysFirst The first guest-physical address of the memory range * (inclusive). * @param GCPhysLast The last guest-physical address of the memory range * (inclusive). */ static uint64_t cpumR3GetVarMtrrMask(PVM pVM, RTGCPHYS GCPhysFirst, RTGCPHYS GCPhysLast) { RTGCPHYS const GCPhysLength = GCPhysLast - GCPhysFirst; uint64_t const fInvPhysMask = ~(RT_BIT_64(pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth) - 1U); RTGCPHYS const GCPhysMask = (~(GCPhysLength - 1) & ~fInvPhysMask) & X86_PAGE_BASE_MASK; #ifdef VBOX_STRICT AssertMsg(GCPhysLast == ((GCPhysFirst | ~GCPhysMask) & ~fInvPhysMask), ("last=%RGp first=%RGp mask=%RGp inv_mask=%RGp\n", GCPhysLast, GCPhysFirst, GCPhysMask, fInvPhysMask)); AssertMsg(((GCPhysLast & GCPhysMask) == (GCPhysFirst & GCPhysMask)), ("last=%RGp first=%RGp mask=%RGp inv_mask=%RGp\n", GCPhysLast, GCPhysFirst, GCPhysMask, fInvPhysMask)); AssertMsg(((GCPhysLast + 1) & GCPhysMask) != (GCPhysFirst & GCPhysMask), ("last=%RGp first=%RGp mask=%RGp inv_mask=%RGp\n", GCPhysLast, GCPhysFirst, GCPhysMask, fInvPhysMask)); uint64_t const cbRange = GCPhysLast - GCPhysFirst + 1; AssertMsg(cbRange >= _4K, ("last=%RGp first=%RGp mask=%RGp inv_mask=%RGp cb=%RU64\n", GCPhysLast, GCPhysFirst, GCPhysMask, fInvPhysMask, cbRange)); AssertMsg(RT_IS_POWER_OF_TWO(cbRange), ("last=%RGp first=%RGp mask=%RGp inv_mask=%RGp cb=%RU64\n", GCPhysLast, GCPhysFirst, GCPhysMask, fInvPhysMask, cbRange)); AssertMsg(GCPhysFirst == 0 || cbRange <= GCPhysFirst, ("last=%RGp first=%RGp mask=%RGp inv_mask=%RGp cb=%RU64\n", GCPhysLast, GCPhysFirst, GCPhysMask, fInvPhysMask, cbRange)); #endif return GCPhysMask; } /** * Gets the first and last guest-physical address for the given variable-range * MTRR. * * @param pVM The cross context VM structure. * @param pMtrrVar The variable-range MTRR. * @param pGCPhysFirst Where to store the first guest-physical address of the * memory range (inclusive). * @param pGCPhysLast Where to store the last guest-physical address of the * memory range (inclusive). */ static void cpumR3GetVarMtrrAddrs(PVM pVM, PCX86MTRRVAR pMtrrVar, PRTGCPHYS pGCPhysFirst, PRTGCPHYS pGCPhysLast) { Assert(pMtrrVar); Assert(pGCPhysFirst); Assert(pGCPhysLast); uint64_t const fInvPhysMask = ~(RT_BIT_64(pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth) - 1U); RTGCPHYS const GCPhysMask = pMtrrVar->MtrrPhysMask & X86_PAGE_BASE_MASK; RTGCPHYS const GCPhysFirst = pMtrrVar->MtrrPhysBase & X86_PAGE_BASE_MASK; RTGCPHYS const GCPhysLast = (GCPhysFirst | ~GCPhysMask) & ~fInvPhysMask; Assert((GCPhysLast & GCPhysMask) == (GCPhysFirst & GCPhysMask)); Assert(((GCPhysLast + 1) & GCPhysMask) != (GCPhysFirst & GCPhysMask)); *pGCPhysFirst = GCPhysFirst; *pGCPhysLast = GCPhysLast; } /** * Gets the previous power of two for a given value. * * @returns Previous power of two. * @param uVal The value (must not be zero). */ static uint64_t cpumR3GetPrevPowerOfTwo(uint64_t uVal) { Assert(uVal > 1); uint8_t const cBits = sizeof(uVal) << 3; return RT_BIT_64(cBits - 1 - ASMCountLeadingZerosU64(uVal)); } /** * Gets the next power of two for a given value. * * @returns Next power of two. * @param uVal The value (must not be zero). */ static uint64_t cpumR3GetNextPowerOfTwo(uint64_t uVal) { Assert(uVal > 1); uint8_t const cBits = sizeof(uVal) << 3; return RT_BIT_64(cBits - ASMCountLeadingZerosU64(uVal)); } /** * Gets the MTRR memory type description. * * @returns The MTRR memory type description. * @param fType The MTRR memory type. */ static const char *cpumR3GetVarMtrrMemType(uint8_t fType) { switch (fType) { case X86_MTRR_MT_UC: return "UC"; case X86_MTRR_MT_WC: return "WC"; case X86_MTRR_MT_WT: return "WT"; case X86_MTRR_MT_WP: return "WP"; case X86_MTRR_MT_WB: return "WB"; default: return "--"; } } /** * Adds a memory region to the given MTRR map. * * @returns VBox status code. * @retval VINF_SUCCESS when the map could accommodate a memory region being * added. * @retval VERR_OUT_OF_RESOURCES when the map ran out of room while adding the * memory region. * * @param pVM The cross context VM structure. * @param pMtrrMap The variable-range MTRR map to add to. * @param GCPhysFirst The first guest-physical address in the memory region. * @param GCPhysLast The last guest-physical address in the memory region. * @param fType The MTRR memory type of the memory region being added. */ static int cpumR3MtrrMapAddRegion(PVM pVM, PCPUMMTRRMAP pMtrrMap, RTGCPHYS GCPhysFirst, RTGCPHYS GCPhysLast, uint8_t fType) { Assert(fType < 7 && fType != 2 && fType != 3); if (pMtrrMap->idxMtrr < pMtrrMap->cMtrrs) { /* * We must ensure the physical-address does not exceed the maximum guest-physical address width. * Otherwise, the MTRR physical mask computation gets totally busted rather than returning 0 to * indicate such mapping is impossible. */ RTGCPHYS const GCPhysLastMax = RT_BIT_64(pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth) - 1U; if (GCPhysLast <= GCPhysLastMax) { pMtrrMap->aMtrrs[pMtrrMap->idxMtrr].MtrrPhysBase = GCPhysFirst | fType; pMtrrMap->aMtrrs[pMtrrMap->idxMtrr].MtrrPhysMask = cpumR3GetVarMtrrMask(pVM, GCPhysFirst, GCPhysLast) | MSR_IA32_MTRR_PHYSMASK_VALID; ++pMtrrMap->idxMtrr; uint64_t const cbRange = GCPhysLast - GCPhysFirst + 1; if (fType != X86_MTRR_MT_UC) pMtrrMap->cbMapped += cbRange; else { Assert(pMtrrMap->cbMapped >= cbRange); pMtrrMap->cbMapped -= cbRange; } return VINF_SUCCESS; } } return VERR_OUT_OF_RESOURCES; } /** * Adds an MTRR to the given MTRR map. * * @returns VBox status code. * @retval VINF_SUCCESS when the map could accommodate the MTRR being added. * @retval VERR_OUT_OF_RESOURCES when the map ran out of room while adding the * MTRR. * * @param pVM The cross context VM structure. * @param pMtrrMap The variable-range MTRR map to add to. * @param pVarMtrr The variable-range MTRR to add from. */ static int cpumR3MtrrMapAddMtrr(PVM pVM, PCPUMMTRRMAP pMtrrMap, PCX86MTRRVAR pVarMtrr) { RTGCPHYS GCPhysFirst; RTGCPHYS GCPhysLast; cpumR3GetVarMtrrAddrs(pVM, pVarMtrr, &GCPhysFirst, &GCPhysLast); uint8_t const fType = pVarMtrr->MtrrPhysBase & MSR_IA32_MTRR_PHYSBASE_MT_MASK; return cpumR3MtrrMapAddRegion(pVM, pMtrrMap, GCPhysFirst, GCPhysLast, fType); } /** * Adds a source MTRR map to the given destination MTRR map. * * @returns VBox status code. * @retval VINF_SUCCESS when the map could fully accommodate the map being added. * @retval VERR_OUT_OF_RESOURCES when the map ran out of room while adding the * specified map. * * @param pVM The cross context VM structure. * @param pMtrrMapDst The variable-range MTRR map to add to (destination). * @param pMtrrMapSrc The variable-range MTRR map to add from (source). */ static int cpumR3MtrrMapAddMap(PVM pVM, PCPUMMTRRMAP pMtrrMapDst, PCCPUMMTRRMAP pMtrrMapSrc) { Assert(pMtrrMapDst); Assert(pMtrrMapSrc); for (uint8_t i = 0 ; i < pMtrrMapSrc->idxMtrr; i++) { int const rc = cpumR3MtrrMapAddMtrr(pVM, pMtrrMapDst, &pMtrrMapSrc->aMtrrs[i]); if (RT_FAILURE(rc)) return rc; } return VINF_SUCCESS; } /** * Maps memory using an additive method using variable-range MTRRs. * * The additive method fits as many valid MTRR WB (write-back) sub-regions to map * the specified memory size. For instance, 3584 MB is mapped as 2048 MB, 1024 MB * and 512 MB of WB memory, requiring 3 MTRRs. * * @returns VBox status code. * @retval VINF_SUCCESS when the requested memory could be fully mapped within the * given number of MTRRs. * @retval VERR_OUT_OF_RESOURCES when the requested memory could not be fully * mapped within the given number of MTRRs. * * @param pVM The cross context VM structure. * @param GCPhysRegionFirst The guest-physical address in the region being * mapped. * @param cb The number of bytes being mapped. * @param pMtrrMap The variable-range MTRR map to populate. */ static int cpumR3MapMtrrsAdditive(PVM pVM, RTGCPHYS GCPhysRegionFirst, uint64_t cb, PCPUMMTRRMAP pMtrrMap) { Assert(pMtrrMap); Assert(pMtrrMap->cMtrrs > 1); Assert(cb >= _4K); Assert(!(GCPhysRegionFirst & X86_PAGE_4K_OFFSET_MASK)); uint64_t cbLeft = cb; uint64_t offRegion = GCPhysRegionFirst; while (cbLeft > 0) { uint64_t const cbRegion = !RT_IS_POWER_OF_TWO(cbLeft) ? cpumR3GetPrevPowerOfTwo(cbLeft) : cbLeft; Log3(("CPUM: MTRR: Add[%u]: %' Rhcb (%RU64 bytes)\n", pMtrrMap->idxMtrr, cbRegion, cbRegion)); int const rc = cpumR3MtrrMapAddRegion(pVM, pMtrrMap, offRegion, offRegion + cbRegion - 1, X86_MTRR_MT_WB); if (RT_FAILURE(rc)) return rc; cbLeft -= RT_MIN(cbRegion, cbLeft); offRegion += cbRegion; } return VINF_SUCCESS; } /** * Maps memory using a subtractive method using variable-range MTRRs. * * The subtractive method rounds up the memory region using WB (write-back) memory * type and then "subtracts" sub-regions using UC (uncacheable) memory type. For * instance, 3584 MB is mapped as 4096 MB of WB minus 512 MB of UC, requiring 2 * MTRRs. * * @returns VBox status code. * @retval VINF_SUCCESS when the requested memory could be fully mapped within the * given number of MTRRs. * @retval VERR_OUT_OF_RESOURCES when the requested memory could not be fully * mapped within the given number of MTRRs. * * @param pVM The cross context VM structure. * @param GCPhysRegionFirst The guest-physical address in the region being * mapped. * @param cb The number of bytes being mapped. * @param pMtrrMap The variable-range MTRR map to populate. */ static int cpumR3MapMtrrsSubtractive(PVM pVM, RTGCPHYS GCPhysRegionFirst, uint64_t cb, PCPUMMTRRMAP pMtrrMap) { Assert(pMtrrMap); Assert(pMtrrMap->cMtrrs > 1); Assert(cb >= _4K); Assert(!(GCPhysRegionFirst & X86_PAGE_4K_OFFSET_MASK)); uint64_t const cbRegion = !RT_IS_POWER_OF_TWO(cb) ? cpumR3GetNextPowerOfTwo(cb) : cb; Assert(cbRegion >= cb); Log3(("CPUM: MTRR: Sub[%u]: %' Rhcb (%RU64 bytes) [WB]\n", pMtrrMap->idxMtrr, cbRegion, cbRegion)); int rc = cpumR3MtrrMapAddRegion(pVM, pMtrrMap, GCPhysRegionFirst, GCPhysRegionFirst + cbRegion - 1, X86_MTRR_MT_WB); if (RT_FAILURE(rc)) return rc; uint64_t cbLeft = cbRegion - cb; RTGCPHYS offRegion = GCPhysRegionFirst + cbRegion; while (cbLeft > 0) { uint64_t const cbSubRegion = cpumR3GetPrevPowerOfTwo(cbLeft); Log3(("CPUM: MTRR: Sub[%u]: %' Rhcb (%RU64 bytes) [UC]\n", pMtrrMap->idxMtrr, cbSubRegion, cbSubRegion)); rc = cpumR3MtrrMapAddRegion(pVM, pMtrrMap, offRegion - cbSubRegion, offRegion - 1, X86_MTRR_MT_UC); if (RT_FAILURE(rc)) return rc; cbLeft -= RT_MIN(cbSubRegion, cbLeft); offRegion -= cbSubRegion; } return rc; } /** * Optimally maps RAM when it's not necessarily aligned to a power of two using * variable-range MTRRs. * * @returns VBox status code. * @retval VINF_SUCCESS when the requested memory could be fully mapped within the * given number of MTRRs. * @retval VERR_OUT_OF_RESOURCES when the requested memory could not be fully * mapped within the given number of MTRRs. * * @param pVM The cross context VM structure. * @param GCPhysRegionFirst The guest-physical address in the region being * mapped. * @param cb The number of bytes being mapped. * @param pMtrrMap The variable-range MTRR map to populate. */ static int cpumR3MapMtrrsOptimal(PVM pVM, RTGCPHYS GCPhysRegionFirst, uint64_t cb, PCPUMMTRRMAP pMtrrMap) { Assert(pMtrrMap); Assert(pMtrrMap->cMtrrs > 1); Assert(cb >= _4K); Assert(!(GCPhysRegionFirst & X86_PAGE_4K_OFFSET_MASK)); /* * Additive method. */ CPUMMTRRMAP MtrrMapAdd; RT_ZERO(MtrrMapAdd); MtrrMapAdd.cMtrrs = pMtrrMap->cMtrrs; MtrrMapAdd.cbToMap = cb; int rcAdd; { rcAdd = cpumR3MapMtrrsAdditive(pVM, GCPhysRegionFirst, cb, &MtrrMapAdd); if (RT_SUCCESS(rcAdd)) { Assert(MtrrMapAdd.idxMtrr > 0); Assert(MtrrMapAdd.idxMtrr <= MtrrMapAdd.cMtrrs); Assert(MtrrMapAdd.cbMapped == MtrrMapAdd.cbToMap); Log3(("CPUM: MTRR: Mapped %u regions using additive method\n", MtrrMapAdd.idxMtrr)); /* * If we were able to map memory using 2 or fewer MTRRs, don't bother with trying * to map using the subtractive method as that requires at least 2 MTRRs anyway. */ if (MtrrMapAdd.idxMtrr <= 2) return cpumR3MtrrMapAddMap(pVM, pMtrrMap, &MtrrMapAdd); } else Log3(("CPUM: MTRR: Partially mapped %u regions using additive method\n", MtrrMapAdd.idxMtrr)); } /* * Subtractive method. */ CPUMMTRRMAP MtrrMapSub; RT_ZERO(MtrrMapSub); MtrrMapSub.cMtrrs = pMtrrMap->cMtrrs; MtrrMapSub.cbToMap = cb; int rcSub; { rcSub = cpumR3MapMtrrsSubtractive(pVM, GCPhysRegionFirst, cb, &MtrrMapSub); if (RT_SUCCESS(rcSub)) { Assert(MtrrMapSub.idxMtrr > 0); Assert(MtrrMapSub.idxMtrr <= MtrrMapSub.cMtrrs); Assert(MtrrMapSub.cbMapped == MtrrMapSub.cbToMap); Log3(("CPUM: MTRR: Mapped %u regions using subtractive method\n", MtrrMapSub.idxMtrr)); } else Log3(("CPUM: MTRR: Partially mapped %u regions using subtractive method\n", MtrrMapAdd.idxMtrr)); } /* * Pick whichever method requires fewer MTRRs to map the memory. */ PCCPUMMTRRMAP pMtrrMapOptimal; if ( RT_SUCCESS(rcAdd) && RT_SUCCESS(rcSub)) { Assert(MtrrMapAdd.cbMapped == MtrrMapSub.cbMapped); if (MtrrMapSub.idxMtrr < MtrrMapAdd.idxMtrr) pMtrrMapOptimal = &MtrrMapSub; else pMtrrMapOptimal = &MtrrMapAdd; } else if (RT_SUCCESS(rcAdd)) pMtrrMapOptimal = &MtrrMapAdd; else if (RT_SUCCESS(rcSub)) pMtrrMapOptimal = &MtrrMapSub; else { /* * If both methods fail, use the additive method as it gives partially mapped * memory as opposed to memory that isn't present. */ pMtrrMapOptimal = &MtrrMapAdd; } int const rc = cpumR3MtrrMapAddMap(pVM, pMtrrMap, pMtrrMapOptimal); if ( RT_SUCCESS(rc) && pMtrrMapOptimal->cbMapped == pMtrrMapOptimal->cbToMap) /* Required to distinguish full vs overflow state. */ return VINF_SUCCESS; return VERR_OUT_OF_RESOURCES; } /** * Maps RAM above 4GB using variable-range MTRRs. * * @returns VBox status code. * @retval VINF_SUCCESS when the requested memory could be fully mapped within the * given number of MTRRs. * @retval VERR_OUT_OF_RESOURCES when the requested memory could not be fully * mapped within the given number of MTRRs. * * @param pVM The cross context VM structure. * @param cb The number of bytes above 4GB to map. * @param pMtrrMap The variable-range MTRR map to populate. */ static int cpumR3MapMtrrsAbove4GB(PVM pVM, uint64_t cb, PCPUMMTRRMAP pMtrrMap) { Assert(pMtrrMap); Assert(pMtrrMap->cMtrrs > 1); Assert(cb >= _4K); /* * Map regions at incremental powers of two offsets and sizes. * Note: We cannot map an 8GB region in a 4GB offset. */ uint64_t cbLeft = cb; uint64_t offRegion = _4G; while (cbLeft > offRegion) { uint64_t const cbRegion = offRegion; Log3(("CPUM: MTRR: [%u]: %' Rhcb (%RU64 bytes)\n", pMtrrMap->idxMtrr, cbRegion, cbRegion)); int const rc = cpumR3MtrrMapAddRegion(pVM, pMtrrMap, offRegion, offRegion + cbRegion - 1, X86_MTRR_MT_WB); if (RT_FAILURE(rc)) return rc; offRegion <<= 1; cbLeft -= RT_MIN(cbRegion, cbLeft); } /* * Optimally try and map any remaining memory that is smaller than * the last power of two offset (size) above. */ if (cbLeft > 0) { Assert(pMtrrMap->cMtrrs - pMtrrMap->idxMtrr > 0); return cpumR3MapMtrrsOptimal(pVM, offRegion, cbLeft, pMtrrMap); } return VINF_SUCCESS; } /** * Maps guest RAM via MTRRs. * * @returns VBox status code. * @param pVM The cross context VM structure. */ static int cpumR3MapMtrrs(PVM pVM) { /* * The RAM size configured for the VM does NOT include the RAM hole! * We cannot make ANY assumptions about the RAM size or the RAM hole size * of the VM since it is configurable by the user. Hence, we must check for * atypical sizes. */ uint64_t cbRam; int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam); if (RT_FAILURE(rc)) { LogRel(("CPUM: Cannot map RAM via MTRRs since the RAM size is not configured for the VM\n")); return VINF_SUCCESS; } if (!(cbRam & ~X86_PAGE_4K_BASE_MASK)) { /* likely */ } else { LogRel(("CPUM: WARNING! RAM size %u bytes is not 4K aligned, using %u bytes\n", cbRam, cbRam & X86_PAGE_4K_BASE_MASK)); cbRam &= X86_PAGE_4K_BASE_MASK; } /* * Map the RAM below 1MB. */ if (cbRam >= _1M) { for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PCPUMCTXMSRS pCtxMsrs = &pVM->apCpusR3[idCpu]->cpum.s.GuestMsrs; pCtxMsrs->msr.MtrrFix64K_00000 = 0x0606060606060606; pCtxMsrs->msr.MtrrFix16K_80000 = 0x0606060606060606; pCtxMsrs->msr.MtrrFix16K_A0000 = 0; pCtxMsrs->msr.MtrrFix4K_C0000 = 0x0505050505050505; pCtxMsrs->msr.MtrrFix4K_C8000 = 0x0505050505050505; pCtxMsrs->msr.MtrrFix4K_D0000 = 0x0505050505050505; pCtxMsrs->msr.MtrrFix4K_D8000 = 0x0505050505050505; pCtxMsrs->msr.MtrrFix4K_E0000 = 0x0505050505050505; pCtxMsrs->msr.MtrrFix4K_E8000 = 0x0505050505050505; pCtxMsrs->msr.MtrrFix4K_F0000 = 0x0505050505050505; pCtxMsrs->msr.MtrrFix4K_F8000 = 0x0505050505050505; } LogRel(("CPUM: Mapped %' Rhcb (%RU64 bytes) of RAM using fixed-range MTRRs\n", _1M, _1M)); } else { LogRel(("CPUM: WARNING! Cannot map RAM via MTRRs since the RAM size is below 1 MiB\n")); return VINF_SUCCESS; } if (cbRam > _1M + _4K) { /* likely */ } else { LogRel(("CPUM: WARNING! Cannot map RAM above 1M via MTRRs since the RAM size above 1M is below 4K\n")); return VINF_SUCCESS; } /* * Check if there is at least 1 MTRR available in addition to MTRRs reserved * for use by software for mapping guest memory, see @bugref{10498#c34}. * * Intel Pentium Pro Processor's BIOS Writers Guide and our EFI code reserves * 2 MTRRs for use by software and thus we reserve the same here. */ uint8_t const cMtrrsMax = pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr.MtrrCap & MSR_IA32_MTRR_CAP_VCNT_MASK; uint8_t const cMtrrsRsvd = 2; if (cMtrrsMax < cMtrrsRsvd + 1) { LogRel(("CPUM: WARNING! Variable-range MTRRs (%u) insufficient to map RAM since %u of them are reserved for software\n", cMtrrsMax, cMtrrsRsvd)); return VINF_SUCCESS; } CPUMMTRRMAP MtrrMap; RT_ZERO(MtrrMap); uint8_t const cMtrrsMappable = cMtrrsMax - cMtrrsRsvd; Assert(cMtrrsMappable > 0); /* Paranoia. */ AssertLogRelMsgReturn(cMtrrsMappable <= RT_ELEMENTS(MtrrMap.aMtrrs), ("Mappable variable-range MTRRs (%u) exceed MTRRs available (%u)\n", cMtrrsMappable, RT_ELEMENTS(MtrrMap.aMtrrs)), VERR_CPUM_IPE_1); MtrrMap.cMtrrs = cMtrrsMappable; MtrrMap.cbToMap = cbRam; /* * Get the RAM hole size configured for the VM. * Since MM has already validated it, we only debug assert the same constraints here. * * Although it is not required by the MTRR mapping code that the RAM hole size be a * power of 2, it is highly recommended to keep it this way in order to drastically * reduce the number of MTRRs used. */ uint32_t const cbRamHole = MMR3PhysGet4GBRamHoleSize(pVM); AssertMsg(cbRamHole <= 4032U * _1M, ("RAM hole size (%RU32 bytes) is too large\n", cbRamHole)); AssertMsg(cbRamHole > 16 * _1M, ("RAM hole size (%RU32 bytes) is too small\n", cbRamHole)); AssertMsg(!(cbRamHole & (_4M - 1)), ("RAM hole size (%RU32 bytes) must be 4MB aligned\n", cbRamHole)); /* * Paranoia. * Ensure the maximum physical-address width can accommodate the specified RAM size. */ RTGCPHYS const GCPhysEndMax = RT_BIT_64(pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth); RTGCPHYS const GCPhysEnd = cbRam + cbRamHole; if (GCPhysEnd <= GCPhysEndMax) { /* likely */ } else { LogRel(("CPUM: WARNING! Cannot fully map RAM of %' Rhcb (%RU64 bytes) as it exceeds maximum physical-address (%#RX64)\n", GCPhysEnd, GCPhysEnd, GCPhysEndMax - 1)); } /* * Map the RAM (and RAM hole) below 4GB. */ uint64_t const cbBelow4GB = RT_MIN(cbRam, (uint64_t)_4G - cbRamHole); rc = cpumR3MapMtrrsOptimal(pVM, 0 /* GCPhysFirst */, cbBelow4GB, &MtrrMap); if (RT_SUCCESS(rc)) { Assert(MtrrMap.idxMtrr > 0); Assert(MtrrMap.idxMtrr <= MtrrMap.cMtrrs); Assert(MtrrMap.cbMapped == cbBelow4GB); /* * Map the RAM above 4GB. */ uint64_t const cbAbove4GB = cbRam + cbRamHole > _4G ? cbRam + cbRamHole - _4G : 0; if (cbAbove4GB) { rc = cpumR3MapMtrrsAbove4GB(pVM, cbAbove4GB, &MtrrMap); if (RT_SUCCESS(rc)) Assert(MtrrMap.cbMapped == MtrrMap.cbToMap); } LogRel(("CPUM: Mapped %' Rhcb (%RU64 bytes) of RAM using %u variable-range MTRRs\n", MtrrMap.cbMapped, MtrrMap.cbMapped, MtrrMap.idxMtrr)); } /* * Check if we ran out of MTRRs while mapping the memory. */ if (MtrrMap.cbMapped < cbRam) { Assert(rc == VERR_OUT_OF_RESOURCES); Assert(MtrrMap.idxMtrr == cMtrrsMappable); Assert(MtrrMap.idxMtrr == MtrrMap.cMtrrs); uint64_t const cbLost = cbRam - MtrrMap.cbMapped; LogRel(("CPUM: WARNING! Could not map %' Rhcb (%RU64 bytes) of RAM using %u variable-range MTRRs\n", cbLost, cbLost, MtrrMap.cMtrrs)); } /* * Copy mapped MTRRs to all VCPUs. */ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PCPUMCTXMSRS pCtxMsrs = &pVM->apCpusR3[idCpu]->cpum.s.GuestMsrs; Assert(sizeof(pCtxMsrs->msr.aMtrrVarMsrs) == sizeof(MtrrMap.aMtrrs)); memcpy(&pCtxMsrs->msr.aMtrrVarMsrs[0], &MtrrMap.aMtrrs[0], sizeof(MtrrMap.aMtrrs)); } return VINF_SUCCESS; } /** * Formats the EFLAGS value into mnemonics. * * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.) * @param efl The EFLAGS value with both guest hardware and VBox * internal bits included. */ static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl) { /* * Format the flags. */ static const struct { const char *pszSet; const char *pszClear; uint32_t fFlag; } s_aFlags[] = { { "vip",NULL, X86_EFL_VIP }, { "vif",NULL, X86_EFL_VIF }, { "ac", NULL, X86_EFL_AC }, { "vm", NULL, X86_EFL_VM }, { "rf", NULL, X86_EFL_RF }, { "nt", NULL, X86_EFL_NT }, { "ov", "nv", X86_EFL_OF }, { "dn", "up", X86_EFL_DF }, { "ei", "di", X86_EFL_IF }, { "tf", NULL, X86_EFL_TF }, { "nt", "pl", X86_EFL_SF }, { "nz", "zr", X86_EFL_ZF }, { "ac", "na", X86_EFL_AF }, { "po", "pe", X86_EFL_PF }, { "cy", "nc", X86_EFL_CF }, { "inh-ss", NULL, CPUMCTX_INHIBIT_SHADOW_SS }, { "inh-sti", NULL, CPUMCTX_INHIBIT_SHADOW_STI }, { "inh-nmi", NULL, CPUMCTX_INHIBIT_NMI }, }; char *psz = pszEFlags; for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++) { const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear; if (pszAdd) { strcpy(psz, pszAdd); psz += strlen(pszAdd); *psz++ = ' '; } } psz[-1] = '\0'; } /** * Formats a full register dump. * * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @param pHlp Output functions. * @param enmType The dump type. * @param pszPrefix Register name prefix. */ static void cpumR3InfoOne(PVM pVM, PCVMCPU pVCpu, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix) { PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest; /* * Format the EFLAGS. */ char szEFlags[80]; cpumR3InfoFormatFlags(&szEFlags[0], pCtx->eflags.uBoth); /* * Format the registers. */ uint32_t const efl = pCtx->eflags.u; switch (enmType) { case CPUMDUMPTYPE_TERSE: if (CPUMIsGuestIn64BitCodeEx(pCtx)) pHlp->pfnPrintf(pHlp, "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n" "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n" "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n" "%sr14=%016RX64 %sr15=%016RX64\n" "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n" "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n", pszPrefix, pCtx->rax, pszPrefix, pCtx->rbx, pszPrefix, pCtx->rcx, pszPrefix, pCtx->rdx, pszPrefix, pCtx->rsi, pszPrefix, pCtx->rdi, pszPrefix, pCtx->r8, pszPrefix, pCtx->r9, pszPrefix, pCtx->r10, pszPrefix, pCtx->r11, pszPrefix, pCtx->r12, pszPrefix, pCtx->r13, pszPrefix, pCtx->r14, pszPrefix, pCtx->r15, pszPrefix, pCtx->rip, pszPrefix, pCtx->rsp, pszPrefix, pCtx->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags, pszPrefix, pCtx->cs.Sel, pszPrefix, pCtx->ss.Sel, pszPrefix, pCtx->ds.Sel, pszPrefix, pCtx->es.Sel, pszPrefix, pCtx->fs.Sel, pszPrefix, pCtx->gs.Sel, pszPrefix, efl); else pHlp->pfnPrintf(pHlp, "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n" "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n" "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n", pszPrefix, pCtx->eax, pszPrefix, pCtx->ebx, pszPrefix, pCtx->ecx, pszPrefix, pCtx->edx, pszPrefix, pCtx->esi, pszPrefix, pCtx->edi, pszPrefix, pCtx->eip, pszPrefix, pCtx->esp, pszPrefix, pCtx->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags, pszPrefix, pCtx->cs.Sel, pszPrefix, pCtx->ss.Sel, pszPrefix, pCtx->ds.Sel, pszPrefix, pCtx->es.Sel, pszPrefix, pCtx->fs.Sel, pszPrefix, pCtx->gs.Sel, pszPrefix, efl); break; case CPUMDUMPTYPE_DEFAULT: if (CPUMIsGuestIn64BitCodeEx(pCtx)) pHlp->pfnPrintf(pHlp, "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n" "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n" "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n" "%sr14=%016RX64 %sr15=%016RX64\n" "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n" "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n" "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n" , pszPrefix, pCtx->rax, pszPrefix, pCtx->rbx, pszPrefix, pCtx->rcx, pszPrefix, pCtx->rdx, pszPrefix, pCtx->rsi, pszPrefix, pCtx->rdi, pszPrefix, pCtx->r8, pszPrefix, pCtx->r9, pszPrefix, pCtx->r10, pszPrefix, pCtx->r11, pszPrefix, pCtx->r12, pszPrefix, pCtx->r13, pszPrefix, pCtx->r14, pszPrefix, pCtx->r15, pszPrefix, pCtx->rip, pszPrefix, pCtx->rsp, pszPrefix, pCtx->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags, pszPrefix, pCtx->cs.Sel, pszPrefix, pCtx->ss.Sel, pszPrefix, pCtx->ds.Sel, pszPrefix, pCtx->es.Sel, pszPrefix, pCtx->fs.Sel, pszPrefix, pCtx->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4, pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel); else pHlp->pfnPrintf(pHlp, "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n" "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n" "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n" "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n" , pszPrefix, pCtx->eax, pszPrefix, pCtx->ebx, pszPrefix, pCtx->ecx, pszPrefix, pCtx->edx, pszPrefix, pCtx->esi, pszPrefix, pCtx->edi, pszPrefix, pCtx->eip, pszPrefix, pCtx->esp, pszPrefix, pCtx->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags, pszPrefix, pCtx->cs.Sel, pszPrefix, pCtx->ss.Sel, pszPrefix, pCtx->ds.Sel, pszPrefix, pCtx->es.Sel, pszPrefix, pCtx->fs.Sel, pszPrefix, pCtx->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4, pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel); break; case CPUMDUMPTYPE_VERBOSE: if (CPUMIsGuestIn64BitCodeEx(pCtx)) pHlp->pfnPrintf(pHlp, "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n" "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n" "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n" "%sr14=%016RX64 %sr15=%016RX64\n" "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n" "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n" "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n" "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n" "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n" "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n" "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n" "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n" "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n" "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n" "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n" "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n" "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n" "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n" , pszPrefix, pCtx->rax, pszPrefix, pCtx->rbx, pszPrefix, pCtx->rcx, pszPrefix, pCtx->rdx, pszPrefix, pCtx->rsi, pszPrefix, pCtx->rdi, pszPrefix, pCtx->r8, pszPrefix, pCtx->r9, pszPrefix, pCtx->r10, pszPrefix, pCtx->r11, pszPrefix, pCtx->r12, pszPrefix, pCtx->r13, pszPrefix, pCtx->r14, pszPrefix, pCtx->r15, pszPrefix, pCtx->rip, pszPrefix, pCtx->rsp, pszPrefix, pCtx->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags, pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3], pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7], pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl, pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u, pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u, pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp); else pHlp->pfnPrintf(pHlp, "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n" "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n" "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n" "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n" "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n" "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n" "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n" "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n" "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n" "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n" "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n" "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n" , pszPrefix, pCtx->eax, pszPrefix, pCtx->ebx, pszPrefix, pCtx->ecx, pszPrefix, pCtx->edx, pszPrefix, pCtx->esi, pszPrefix, pCtx->edi, pszPrefix, pCtx->eip, pszPrefix, pCtx->esp, pszPrefix, pCtx->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags, pszPrefix, pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3], pszPrefix, pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7], pszPrefix, pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4, pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl, pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u, pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u, pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp); pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n", pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1], pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask); { PCX86FXSTATE pFpuCtx = &pCtx->XState.x87; pHlp->pfnPrintf(pHlp, "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n" "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n" , pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP, pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK, pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1, pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2 ); /* * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses, * not (FP)R0-7 as Intel SDM suggests. */ unsigned iShift = (pFpuCtx->FSW >> 11) & 7; for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++) { unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs); unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3; char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+'; unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63); uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff); int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff; iExponent -= 16383; /* subtract bias */ /** @todo This isn't entirenly correct and needs more work! */ pHlp->pfnPrintf(pHlp, "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)", pszPrefix, iST, pszPrefix, iFPR, pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0], uTag, chSign, iInteger, u64Fraction, iExponent); if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7]) pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n", pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]); else pHlp->pfnPrintf(pHlp, "\n"); } /* XMM/YMM/ZMM registers. */ if (pCtx->fXStateMask & XSAVE_C_YMM) { PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI); if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256)) for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++) pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n", pszPrefix, i, i < 10 ? " " : "", pYmmHiCtx->aYmmHi[i].au32[3], pYmmHiCtx->aYmmHi[i].au32[2], pYmmHiCtx->aYmmHi[i].au32[1], pYmmHiCtx->aYmmHi[i].au32[0], pFpuCtx->aXMM[i].au32[3], pFpuCtx->aXMM[i].au32[2], pFpuCtx->aXMM[i].au32[1], pFpuCtx->aXMM[i].au32[0]); else { PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256); for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++) pHlp->pfnPrintf(pHlp, "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n", pszPrefix, i, i < 10 ? " " : "", pZmmHi256->aHi256Regs[i].au32[7], pZmmHi256->aHi256Regs[i].au32[6], pZmmHi256->aHi256Regs[i].au32[5], pZmmHi256->aHi256Regs[i].au32[4], pZmmHi256->aHi256Regs[i].au32[3], pZmmHi256->aHi256Regs[i].au32[2], pZmmHi256->aHi256Regs[i].au32[1], pZmmHi256->aHi256Regs[i].au32[0], pYmmHiCtx->aYmmHi[i].au32[3], pYmmHiCtx->aYmmHi[i].au32[2], pYmmHiCtx->aYmmHi[i].au32[1], pYmmHiCtx->aYmmHi[i].au32[0], pFpuCtx->aXMM[i].au32[3], pFpuCtx->aXMM[i].au32[2], pFpuCtx->aXMM[i].au32[1], pFpuCtx->aXMM[i].au32[0]); PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI); for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++) pHlp->pfnPrintf(pHlp, "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n", pszPrefix, i + 16, pZmm16Hi->aRegs[i].au32[15], pZmm16Hi->aRegs[i].au32[14], pZmm16Hi->aRegs[i].au32[13], pZmm16Hi->aRegs[i].au32[12], pZmm16Hi->aRegs[i].au32[11], pZmm16Hi->aRegs[i].au32[10], pZmm16Hi->aRegs[i].au32[9], pZmm16Hi->aRegs[i].au32[8], pZmm16Hi->aRegs[i].au32[7], pZmm16Hi->aRegs[i].au32[6], pZmm16Hi->aRegs[i].au32[5], pZmm16Hi->aRegs[i].au32[4], pZmm16Hi->aRegs[i].au32[3], pZmm16Hi->aRegs[i].au32[2], pZmm16Hi->aRegs[i].au32[1], pZmm16Hi->aRegs[i].au32[0]); } } else for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++) pHlp->pfnPrintf(pHlp, i & 1 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n" : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ", pszPrefix, i, i < 10 ? " " : "", pFpuCtx->aXMM[i].au32[3], pFpuCtx->aXMM[i].au32[2], pFpuCtx->aXMM[i].au32[1], pFpuCtx->aXMM[i].au32[0]); if (pCtx->fXStateMask & XSAVE_C_OPMASK) { PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK); for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4) pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n", pszPrefix, i + 0, pOpMask->aKRegs[i + 0], pszPrefix, i + 1, pOpMask->aKRegs[i + 1], pszPrefix, i + 2, pOpMask->aKRegs[i + 2], pszPrefix, i + 3, pOpMask->aKRegs[i + 3]); } if (pCtx->fXStateMask & XSAVE_C_BNDREGS) { PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS); for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2) pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n", pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound, pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound); } if (pCtx->fXStateMask & XSAVE_C_BNDCSR) { PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG); pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n", pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus); } for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++) if (pFpuCtx->au32RsrvdRest[i]) pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n", pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) ); } pHlp->pfnPrintf(pHlp, "%sEFER =%016RX64\n" "%sPAT =%016RX64\n" "%sSTAR =%016RX64\n" "%sCSTAR =%016RX64\n" "%sLSTAR =%016RX64\n" "%sSFMASK =%016RX64\n" "%sKERNELGSBASE =%016RX64\n", pszPrefix, pCtx->msrEFER, pszPrefix, pCtx->msrPAT, pszPrefix, pCtx->msrSTAR, pszPrefix, pCtx->msrCSTAR, pszPrefix, pCtx->msrLSTAR, pszPrefix, pCtx->msrSFMASK, pszPrefix, pCtx->msrKERNELGSBASE); if (CPUMIsGuestInPAEModeEx(pCtx)) for (unsigned i = 0; i < RT_ELEMENTS(pCtx->aPaePdpes); i++) pHlp->pfnPrintf(pHlp, "%sPAE PDPTE %u =%016RX64\n", pszPrefix, i, pCtx->aPaePdpes[i]); /* * MTRRs. */ if (pVM->cpum.s.GuestFeatures.fMtrr) { pHlp->pfnPrintf(pHlp, "%sMTRR_CAP =%016RX64\n" "%sMTRR_DEF_TYPE =%016RX64\n" "%sMTRR_FIX64K_00000 =%016RX64\n" "%sMTRR_FIX16K_80000 =%016RX64\n" "%sMTRR_FIX16K_A0000 =%016RX64\n" "%sMTRR_FIX4K_C0000 =%016RX64\n" "%sMTRR_FIX4K_C8000 =%016RX64\n" "%sMTRR_FIX4K_D0000 =%016RX64\n" "%sMTRR_FIX4K_D8000 =%016RX64\n" "%sMTRR_FIX4K_E0000 =%016RX64\n" "%sMTRR_FIX4K_E8000 =%016RX64\n" "%sMTRR_FIX4K_F0000 =%016RX64\n" "%sMTRR_FIX4K_F8000 =%016RX64\n", pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrCap, pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrDefType, pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix64K_00000, pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_80000, pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_A0000, pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C0000, pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C8000, pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D0000, pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D8000, pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E0000, pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E8000, pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F0000, pszPrefix, pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F8000); for (uint8_t iRange = 0; iRange < RT_ELEMENTS(pVCpu->cpum.s.GuestMsrs.msr.aMtrrVarMsrs); iRange++) { PCX86MTRRVAR pMtrrVar = &pVCpu->cpum.s.GuestMsrs.msr.aMtrrVarMsrs[iRange]; bool const fIsValid = RT_BOOL(pMtrrVar->MtrrPhysMask & MSR_IA32_MTRR_PHYSMASK_VALID); if (fIsValid) { RTGCPHYS GCPhysFirst; RTGCPHYS GCPhysLast; cpumR3GetVarMtrrAddrs(pVM, pMtrrVar, &GCPhysFirst, &GCPhysLast); uint8_t const fType = pMtrrVar->MtrrPhysBase & MSR_IA32_MTRR_PHYSBASE_MT_MASK; const char *pszType = cpumR3GetVarMtrrMemType(fType); uint64_t const cbRange = GCPhysLast - GCPhysFirst + 1; pHlp->pfnPrintf(pHlp, "%sMTRR_PHYSBASE[%2u] =%016RX64 First=%016RX64 %6RU64 MB [%s]\n" "%sMTRR_PHYSMASK[%2u] =%016RX64 Last =%016RX64 %6RU64 MB [%RU64 MB]\n", pszPrefix, iRange, pMtrrVar->MtrrPhysBase, GCPhysFirst, GCPhysFirst / _1M, pszType, pszPrefix, iRange, pMtrrVar->MtrrPhysMask, GCPhysLast, GCPhysLast / _1M, cbRange / (uint64_t)_1M); } else pHlp->pfnPrintf(pHlp, "%sMTRR_PHYSBASE[%2u] =%016RX64\n" "%sMTRR_PHYSMASK[%2u] =%016RX64\n", pszPrefix, iRange, pMtrrVar->MtrrPhysBase, pszPrefix, iRange, pMtrrVar->MtrrPhysMask); } } break; } } /** * Display all cpu states and any other cpum info. * * @param pVM The cross context VM structure. * @param pHlp The info helper functions. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { cpumR3InfoGuest(pVM, pHlp, pszArgs); cpumR3InfoGuestInstr(pVM, pHlp, pszArgs); cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs); cpumR3InfoHyper(pVM, pHlp, pszArgs); cpumR3InfoHost(pVM, pHlp, pszArgs); } /** * Parses the info argument. * * The argument starts with 'verbose', 'terse' or 'default' and then * continues with the comment string. * * @param pszArgs The pointer to the argument string. * @param penmType Where to store the dump type request. * @param ppszComment Where to store the pointer to the comment string. */ static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment) { if (!pszArgs) { *penmType = CPUMDUMPTYPE_DEFAULT; *ppszComment = ""; } else { if (!strncmp(pszArgs, RT_STR_TUPLE("verbose"))) { pszArgs += 7; *penmType = CPUMDUMPTYPE_VERBOSE; } else if (!strncmp(pszArgs, RT_STR_TUPLE("terse"))) { pszArgs += 5; *penmType = CPUMDUMPTYPE_TERSE; } else if (!strncmp(pszArgs, RT_STR_TUPLE("default"))) { pszArgs += 7; *penmType = CPUMDUMPTYPE_DEFAULT; } else *penmType = CPUMDUMPTYPE_DEFAULT; *ppszComment = RTStrStripL(pszArgs); } } /** * Display the guest cpu state. * * @param pVM The cross context VM structure. * @param pHlp The info helper functions. * @param pszArgs Arguments. */ static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { CPUMDUMPTYPE enmType; const char *pszComment; cpumR3InfoParseArg(pszArgs, &enmType, &pszComment); PCVMCPU pVCpu = VMMGetCpu(pVM); if (!pVCpu) pVCpu = pVM->apCpusR3[0]; pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment); cpumR3InfoOne(pVM, pVCpu, pHlp, enmType, ""); } /** * Displays an SVM VMCB control area. * * @param pHlp The info helper functions. * @param pVmcbCtrl Pointer to a SVM VMCB controls area. * @param pszPrefix Caller specified string prefix. */ static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix) { AssertReturnVoid(pHlp); AssertReturnVoid(pVmcbCtrl); pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx); pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx); pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx); pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx); pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt); pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl); pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold); pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount); pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr); pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr); pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset); pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix); pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID); pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush); pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix); pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR); pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending); pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector); pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif); pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio); pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR); pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking); pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable); pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable); pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix); pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow); pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask); pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode); pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1); pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2); pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix); pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid); pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector); pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type); pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid); pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode); pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix); pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging); pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev); pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs); pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix); pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid); pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector); pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type); pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid); pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode); pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3); pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix); pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt); pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload); pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits); pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP); pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched); pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr); pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix); pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr); pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr); pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr); pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr); pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId); } /** * Helper for dumping the SVM VMCB selector registers. * * @param pHlp The info helper functions. * @param pSel Pointer to the SVM selector register. * @param pszName Name of the selector. * @param pszPrefix Caller specified string prefix. */ DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix) { /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */ pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix, pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr); } /** * Helper for dumping the SVM VMCB GDTR/IDTR registers. * * @param pHlp The info helper functions. * @param pXdtr Pointer to the descriptor table register. * @param pszName Name of the descriptor table register. * @param pszPrefix Caller specified string prefix. */ DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix) { /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */ pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit); } /** * Displays an SVM VMCB state-save area. * * @param pHlp The info helper functions. * @param pVmcbStateSave Pointer to a SVM VMCB controls area. * @param pszPrefix Caller specified string prefix. */ static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix) { AssertReturnVoid(pHlp); AssertReturnVoid(pVmcbStateSave); char szEFlags[80]; cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags); cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix); cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix); cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix); cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix); cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix); cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix); cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix); cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix); cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix); cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix); pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL); pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER); pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4); pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3); pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0); pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7); pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6); pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags); pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP); pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP); pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX); pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR); pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR); pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR); pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK); pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase); pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS); pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP); pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP); pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2); pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT); pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL); pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM); pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO); pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM); pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO); } /** * Displays a virtual-VMCS. * * @param pVCpu The cross context virtual CPU structure. * @param pHlp The info helper functions. * @param pVmcs Pointer to a virtual VMCS. * @param pszPrefix Caller specified string prefix. */ static void cpumR3InfoVmxVmcs(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix) { AssertReturnVoid(pHlp); AssertReturnVoid(pVmcs); /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */ #define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \ do { \ (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \ (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \ } while (0) #define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \ do { \ (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \ (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \ } while (0) #define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \ do { \ (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \ (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \ (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \ } while (0) #define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \ do { \ (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \ (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \ } while (0) /* Header. */ { pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix); pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId); pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, VMXGetAbortDesc(pVmcs->enmVmxAbort)); pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, VMXGetVmcsStateDesc(pVmcs->fVmcsState)); } /* Control fields. */ { /* 16-bit. */ pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix); pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid); pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector); pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex); pHlp->pfnPrintf(pHlp, " %sHLAT prefix size = %#RX16\n", pszPrefix, pVmcs->u16HlatPrefixSize); /* 32-bit. */ pHlp->pfnPrintf(pHlp, " %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls); pHlp->pfnPrintf(pHlp, " %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls); pHlp->pfnPrintf(pHlp, " %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2); pHlp->pfnPrintf(pHlp, " %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls); pHlp->pfnPrintf(pHlp, " %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls); pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap); pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask); pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch); pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount); pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount); pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount); pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount); pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo); { uint32_t const fInfo = pVmcs->u32EntryIntInfo; uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo); pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo)); pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetEntryIntInfoTypeDesc(uType)); pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo)); pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo)); pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo)); } pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode); pHlp->pfnPrintf(pHlp, " %sVM-entry instr length = %u byte(s)\n", pszPrefix, pVmcs->u32EntryInstrLen); pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold); pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap); pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow); /* 64-bit. */ pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u); pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u); pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u); pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u); pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u); pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u); pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u); pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u); pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u); pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u); pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u); pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u); pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u); pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptPtr.u); pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u); pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u); pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u); pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u); pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u); pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u); pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u); pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u); pHlp->pfnPrintf(pHlp, " %sXSS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssExitBitmap.u); pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclsExitBitmap.u); pHlp->pfnPrintf(pHlp, " %sSPP-table ptr = %#RX64\n", pszPrefix, pVmcs->u64SppTablePtr.u); pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u); pHlp->pfnPrintf(pHlp, " %sTertiary processor ctls = %#RX64\n", pszPrefix, pVmcs->u64ProcCtls3.u); pHlp->pfnPrintf(pHlp, " %sENCLV-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclvExitBitmap.u); pHlp->pfnPrintf(pHlp, " %sPCONFIG-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64PconfigExitBitmap.u); pHlp->pfnPrintf(pHlp, " %sHLAT ptr = %#RX64\n", pszPrefix, pVmcs->u64HlatPtr.u); pHlp->pfnPrintf(pHlp, " %sSecondary VM-exit controls = %#RX64\n", pszPrefix, pVmcs->u64ExitCtls2.u); /* Natural width. */ pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u); pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u); pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u); pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u); pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u); pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u); pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u); pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u); } /* Guest state. */ { char szEFlags[80]; cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u); pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix); /* 16-bit. */ CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "CS", pszPrefix); CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "SS", pszPrefix); CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "ES", pszPrefix); CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "DS", pszPrefix); CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "FS", pszPrefix); CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "GS", pszPrefix); CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "LDTR", pszPrefix); CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "TR", pszPrefix); CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix); CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix); pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus); pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex); /* 32-bit. */ pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState); pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState); pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase); pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS); pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer); /* 64-bit. */ pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u); pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u); pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u); pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u); pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u); pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u); pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u); pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u); pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u); pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u); pHlp->pfnPrintf(pHlp, " %sRTIT_CTL = %#RX64\n", pszPrefix, pVmcs->u64GuestRtitCtlMsr.u); pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64GuestPkrsMsr.u); /* Natural width. */ pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u); pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u); pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u); pHlp->pfnPrintf(pHlp, " %sDR7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u); pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u); pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u); pHlp->pfnPrintf(pHlp, " %sRFLAGS = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags); pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpts.u); pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u); pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u); pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64GuestSCetMsr.u); pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64GuestSsp.u); pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64GuestIntrSspTableAddrMsr.u); } /* Host state. */ { pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix); /* 16-bit. */ pHlp->pfnPrintf(pHlp, " %sCS = %#RX16\n", pszPrefix, pVmcs->HostCs); pHlp->pfnPrintf(pHlp, " %sSS = %#RX16\n", pszPrefix, pVmcs->HostSs); pHlp->pfnPrintf(pHlp, " %sDS = %#RX16\n", pszPrefix, pVmcs->HostDs); pHlp->pfnPrintf(pHlp, " %sES = %#RX16\n", pszPrefix, pVmcs->HostEs); CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "FS", pszPrefix); CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "GS", pszPrefix); CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "TR", pszPrefix); CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix); CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix); /* 32-bit. */ pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs); /* 64-bit. */ pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u); pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u); pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u); pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64HostPkrsMsr.u); /* Natural width. */ pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u); pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u); pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u); pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u); pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u); pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u); pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u); pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64HostSCetMsr.u); pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64HostSsp.u); pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64HostIntrSspTableAddrMsr.u); } /* Read-only fields. */ { pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix); /* 16-bit (none currently). */ /* 32-bit. */ pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason)); pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u); pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError); pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo); { uint32_t const fInfo = pVmcs->u32RoExitIntInfo; uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo); pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo)); pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetExitIntInfoTypeDesc(uType)); pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo)); pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo)); pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo)); } pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode); pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo); { uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo; uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo); pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo)); pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetIdtVectoringInfoTypeDesc(uType)); pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo)); pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo)); } pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode); pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u byte(s)\n", pszPrefix, pVmcs->u32RoExitInstrLen); pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo); /* 64-bit. */ pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u); /* Natural width. */ pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u); pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u); pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u); pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u); pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u); } #ifdef DEBUG_ramshankar if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW) { void *pvPage = RTMemTmpAllocZ(VMX_V_VIRT_APIC_SIZE); Assert(pvPage); RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u; int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pvPage, GCPhysVirtApic, VMX_V_VIRT_APIC_SIZE); if (RT_SUCCESS(rc)) { pHlp->pfnPrintf(pHlp, " %sVirtual-APIC page\n", pszPrefix); pHlp->pfnPrintf(pHlp, "%.*Rhxs\n", VMX_V_VIRT_APIC_SIZE, pvPage); pHlp->pfnPrintf(pHlp, "\n"); } RTMemTmpFree(pvPage); } #else NOREF(pVCpu); #endif #undef CPUMVMX_DUMP_HOST_XDTR #undef CPUMVMX_DUMP_HOST_FS_GS_TR #undef CPUMVMX_DUMP_GUEST_SEGREG #undef CPUMVMX_DUMP_GUEST_XDTR } /** * Display the guest's hardware-virtualization cpu state. * * @param pVM The cross context VM structure. * @param pHlp The info helper functions. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { RT_NOREF(pszArgs); PVMCPU pVCpu = VMMGetCpu(pVM); if (!pVCpu) pVCpu = pVM->apCpusR3[0]; PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest; bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm; bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx; pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu); pHlp->pfnPrintf(pHlp, "fSavedInhibit = %#RX32\n", pCtx->hwvirt.fSavedInhibit); pHlp->pfnPrintf(pHlp, "In nested-guest hwvirt mode = %RTbool\n", CPUMIsGuestInNestedHwvirtMode(pCtx)); if (fSvm) { pHlp->pfnPrintf(pHlp, "SVM hwvirt state:\n"); pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif); char szEFlags[80]; cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u); pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa); pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb); pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n"); cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.Vmcb.ctrl, " " /* pszPrefix */); pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n"); cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.Vmcb.guest, " " /* pszPrefix */); pHlp->pfnPrintf(pHlp, " HostState:\n"); pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr); pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0); pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4); pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3); pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip); pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp); pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax); pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags); PCCPUMSELREG pSelEs = &pCtx->hwvirt.svm.HostState.es; pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n", pSelEs->Sel, pSelEs->u64Base, pSelEs->u32Limit, pSelEs->Attr.u); PCCPUMSELREG pSelCs = &pCtx->hwvirt.svm.HostState.cs; pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n", pSelCs->Sel, pSelCs->u64Base, pSelCs->u32Limit, pSelCs->Attr.u); PCCPUMSELREG pSelSs = &pCtx->hwvirt.svm.HostState.ss; pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n", pSelSs->Sel, pSelSs->u64Base, pSelSs->u32Limit, pSelSs->Attr.u); PCCPUMSELREG pSelDs = &pCtx->hwvirt.svm.HostState.ds; pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n", pSelDs->Sel, pSelDs->u64Base, pSelDs->u32Limit, pSelDs->Attr.u); pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt, pCtx->hwvirt.svm.HostState.gdtr.cbGdt); pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt, pCtx->hwvirt.svm.HostState.idtr.cbIdt); pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter); pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold); pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents); } else if (fVmx) { pHlp->pfnPrintf(pHlp, "VMX hwvirt state:\n"); pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon); pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs); pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs); pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag)); pHlp->pfnPrintf(pHlp, " uDiagAux = %#RX64\n", pCtx->hwvirt.vmx.uDiagAux); pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, VMXGetAbortDesc(pCtx->hwvirt.vmx.enmAbort)); pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux); pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode); pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode); pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents); pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret); pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick); pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick); pHlp->pfnPrintf(pHlp, " uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick); pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite); pHlp->pfnPrintf(pHlp, " fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking); pHlp->pfnPrintf(pHlp, " VMCS cache:\n"); cpumR3InfoVmxVmcs(pVCpu, pHlp, &pCtx->hwvirt.vmx.Vmcs, " " /* pszPrefix */); } else pHlp->pfnPrintf(pHlp, "Hwvirt state disabled.\n"); #undef CPUMHWVIRTDUMP_NONE #undef CPUMHWVIRTDUMP_COMMON #undef CPUMHWVIRTDUMP_SVM #undef CPUMHWVIRTDUMP_VMX #undef CPUMHWVIRTDUMP_LAST #undef CPUMHWVIRTDUMP_ALL } /** * Display the current guest instruction * * @param pVM The cross context VM structure. * @param pHlp The info helper functions. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { NOREF(pszArgs); PVMCPU pVCpu = VMMGetCpu(pVM); if (!pVCpu) pVCpu = pVM->apCpusR3[0]; char szInstruction[256]; szInstruction[0] = '\0'; DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction)); pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction); } /** * Display the hypervisor cpu state. * * @param pVM The cross context VM structure. * @param pHlp The info helper functions. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { PVMCPU pVCpu = VMMGetCpu(pVM); if (!pVCpu) pVCpu = pVM->apCpusR3[0]; CPUMDUMPTYPE enmType; const char *pszComment; cpumR3InfoParseArg(pszArgs, &enmType, &pszComment); pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment); pHlp->pfnPrintf(pHlp, ".dr0=%016RX64 .dr1=%016RX64 .dr2=%016RX64 .dr3=%016RX64\n" ".dr4=%016RX64 .dr5=%016RX64 .dr6=%016RX64 .dr7=%016RX64\n", pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[4], pVCpu->cpum.s.Hyper.dr[5], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7]); pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask); } /** * Display the host cpu state. * * @param pVM The cross context VM structure. * @param pHlp The info helper functions. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { CPUMDUMPTYPE enmType; const char *pszComment; cpumR3InfoParseArg(pszArgs, &enmType, &pszComment); pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment); PVMCPU pVCpu = VMMGetCpu(pVM); if (!pVCpu) pVCpu = pVM->apCpusR3[0]; PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host; /* * Format the EFLAGS. */ uint64_t efl = pCtx->rflags; char szEFlags[80]; cpumR3InfoFormatFlags(&szEFlags[0], efl); /* * Format the registers. */ pHlp->pfnPrintf(pHlp, "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n" "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n" "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n" " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n" "r11=%016RX64 r12=%016RX64 r13=%016RX64\n" "r14=%016RX64 r15=%016RX64\n" "iopl=%d %31s\n" "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n" "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n" "cr4=%016RX64 ldtr=%04x tr=%04x\n" "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n" "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n" "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n" "SysEnter={cs=%04x eip=%08x esp=%08x}\n" "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n" , /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx, pCtx->rdx,*/ pCtx->rsi, pCtx->rdi, /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp, /*pCtx->r8, pCtx->r9,*/ pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13, pCtx->r14, pCtx->r15, X86_EFL_GET_IOPL(efl), szEFlags, pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl, pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4, pCtx->ldtr, pCtx->tr, pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7, pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp, pCtx->FSbase, pCtx->GSbase, pCtx->efer); } /** * Structure used when disassembling and instructions in DBGF. * This is used so the reader function can get the stuff it needs. */ typedef struct CPUMDISASSTATE { /** Pointer to the CPU structure. */ PDISSTATE pDis; /** Pointer to the VM. */ PVM pVM; /** Pointer to the VMCPU. */ PVMCPU pVCpu; /** Pointer to the first byte in the segment. */ RTGCUINTPTR GCPtrSegBase; /** Pointer to the byte after the end of the segment. (might have wrapped!) */ RTGCUINTPTR GCPtrSegEnd; /** The size of the segment minus 1. */ RTGCUINTPTR cbSegLimit; /** Pointer to the current page - R3 Ptr. */ void const *pvPageR3; /** Pointer to the current page - GC Ptr. */ RTGCPTR pvPageGC; /** The lock information that PGMPhysReleasePageMappingLock needs. */ PGMPAGEMAPLOCK PageMapLock; /** Whether the PageMapLock is valid or not. */ bool fLocked; /** 64 bits mode or not. */ bool f64Bits; } CPUMDISASSTATE, *PCPUMDISASSTATE; /** * @callback_method_impl{FNDISREADBYTES} */ static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead) { PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser; for (;;) { RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase; /* * Need to update the page translation? */ if ( !pState->pvPageR3 || (GCPtr >> GUEST_PAGE_SHIFT) != (pState->pvPageGC >> GUEST_PAGE_SHIFT)) { /* translate the address */ pState->pvPageGC = GCPtr & ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK; /* Release mapping lock previously acquired. */ if (pState->fLocked) PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock); int rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock); if (RT_SUCCESS(rc)) pState->fLocked = true; else { pState->fLocked = false; pState->pvPageR3 = NULL; return rc; } } /* * Check the segment limit. */ if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit) return VERR_OUT_OF_SELECTOR_BOUNDS; /* * Calc how much we can read. */ uint32_t cb = GUEST_PAGE_SIZE - (GCPtr & GUEST_PAGE_OFFSET_MASK); if (!pState->f64Bits) { RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr; if (cb > cbSeg && cbSeg) cb = cbSeg; } if (cb > cbMaxRead) cb = cbMaxRead; /* * Read and advance or exit. */ memcpy(&pDis->Instr.ab[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & GUEST_PAGE_OFFSET_MASK), cb); offInstr += (uint8_t)cb; if (cb >= cbMinRead) { pDis->cbCachedInstr = offInstr; return VINF_SUCCESS; } cbMinRead -= (uint8_t)cb; cbMaxRead -= (uint8_t)cb; } } /** * Disassemble an instruction and return the information in the provided structure. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure. * @param pCtx Pointer to the guest CPU context. * @param GCPtrPC Program counter (relative to CS) to disassemble from. * @param pDis Disassembly state. * @param pszPrefix String prefix for logging (debug only). * */ VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISSTATE pDis, const char *pszPrefix) { CPUMDISASSTATE State; int rc; const PGMMODE enmMode = PGMGetGuestMode(pVCpu); State.pDis = pDis; State.pvPageGC = 0; State.pvPageR3 = NULL; State.pVM = pVM; State.pVCpu = pVCpu; State.fLocked = false; State.f64Bits = false; /* * Get selector information. */ DISCPUMODE enmDisCpuMode; if ( (pCtx->cr0 & X86_CR0_PE) && pCtx->eflags.Bits.u1VM == 0) { if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs)) return VERR_CPUM_HIDDEN_CS_LOAD_ERROR; State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long; State.GCPtrSegBase = pCtx->cs.u64Base; State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base; State.cbSegLimit = pCtx->cs.u32Limit; enmDisCpuMode = (State.f64Bits) ? DISCPUMODE_64BIT : pCtx->cs.Attr.n.u1DefBig ? DISCPUMODE_32BIT : DISCPUMODE_16BIT; } else { /* real or V86 mode */ enmDisCpuMode = DISCPUMODE_16BIT; State.GCPtrSegBase = pCtx->cs.Sel * 16; State.GCPtrSegEnd = 0xFFFFFFFF; State.cbSegLimit = 0xFFFFFFFF; } /* * Disassemble the instruction. */ uint32_t cbInstr; #ifndef LOG_ENABLED RT_NOREF_PV(pszPrefix); rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pDis, &cbInstr); if (RT_SUCCESS(rc)) { #else char szOutput[160]; rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pDis, &cbInstr, szOutput, sizeof(szOutput)); if (RT_SUCCESS(rc)) { /* log it */ if (pszPrefix) Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput)); else Log(("%s", szOutput)); #endif rc = VINF_SUCCESS; } else Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc)); /* Release mapping lock acquired in cpumR3DisasInstrRead. */ if (State.fLocked) PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock); return rc; } /** * API for controlling a few of the CPU features found in CR4. * * Currently only X86_CR4_TSD is accepted as input. * * @returns VBox status code. * * @param pVM The cross context VM structure. * @param fOr The CR4 OR mask. * @param fAnd The CR4 AND mask. */ VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd) { AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER); AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER); pVM->cpum.s.CR4.OrMask &= fAnd; pVM->cpum.s.CR4.OrMask |= fOr; return VINF_SUCCESS; } /** * Called when the ring-3 init phase completes. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param enmWhat Which init phase. */ VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat) { switch (enmWhat) { case VMINITCOMPLETED_RING3: { /* * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs. * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}. */ bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM); for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */ if (fSupportsLongMode) pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE; } /* Register statistic counters for MSRs. */ cpumR3MsrRegStats(pVM); /* There shouldn't be any more calls to CPUMR3SetGuestCpuIdFeature and CPUMR3ClearGuestCpuIdFeature now, so do some final CPUID polishing (NX). */ cpumR3CpuIdRing3InitDone(pVM); /* Create VMX-preemption timer for nested guests if required. Must be done here as CPUM is initialized before TM. */ if (pVM->cpum.s.GuestFeatures.fVmx) { for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++) { PVMCPU pVCpu = pVM->apCpusR3[idCpu]; char szName[32]; RTStrPrintf(szName, sizeof(szName), "Nested VMX-preemption %u", idCpu); int rc = TMR3TimerCreate(pVM, TMCLOCK_VIRTUAL_SYNC, cpumR3VmxPreemptTimerCallback, pVCpu, TMTIMER_FLAGS_RING0, szName, &pVCpu->cpum.s.hNestedVmxPreemptTimer); AssertLogRelRCReturn(rc, rc); } } /* * Map guest RAM via MTRRs. */ if (pVM->cpum.s.fMtrrRead) { int const rc = cpumR3MapMtrrs(pVM); if (RT_SUCCESS(rc)) { /* likely */ } else return rc; } break; } default: break; } return VINF_SUCCESS; } /** * Called when the ring-0 init phases completed. * * @param pVM The cross context VM structure. */ VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM) { /* * Enable log buffering as we're going to log a lot of lines. */ bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/); /* * Log the cpuid. */ RTCPUSET OnlineSet; LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n", (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(), RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) )); RTCPUID cCores = RTMpGetCoreCount(); if (cCores) LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores)); LogRel(("************************* CPUID dump ************************\n")); DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp()); LogRel(("\n")); DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */ LogRel(("******************** End of CPUID dump **********************\n")); /* * Log VT-x extended features. * * SVM features are currently all covered under CPUID so there is nothing * to do here for SVM. */ if (pVM->cpum.s.HostFeatures.fVmx) { LogRel(("*********************** VT-x features ***********************\n")); DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp()); LogRel(("\n")); LogRel(("******************* End of VT-x features ********************\n")); } /* * Restore the log buffering state to what it was previously. */ RTLogRelSetBuffering(fOldBuffered); } /** * Marks the guest debug state as active. * * @param pVCpu The cross context virtual CPU structure. * * @note This is used solely by NEM (hence the name) to set the correct flags here * without loading the host's DRx registers, which is not possible from ring-3 anyway. * The specific NEM backends have to make sure to load the correct values. */ VMMR3_INT_DECL(void) CPUMR3NemActivateGuestDebugState(PVMCPUCC pVCpu) { ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_HYPER); ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_GUEST); } /** * Marks the hyper debug state as active. * * @param pVCpu The cross context virtual CPU structure. * * @note This is used solely by NEM (hence the name) to set the correct flags here * without loading the host's DRx registers, which is not possible from ring-3 anyway. * The specific NEM backends have to make sure to load the correct values. */ VMMR3_INT_DECL(void) CPUMR3NemActivateHyperDebugState(PVMCPUCC pVCpu) { /* * Make sure the hypervisor values are up to date. */ CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */); ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_GUEST); ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_HYPER); }