VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/NEMR0Native-win.cpp@ 92386

Last change on this file since 92386 was 92194, checked in by vboxsync, 3 years ago

VMM/NEM: Fixed windows 10 regression from r147403. bugref:10118

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 137.5 KB
Line 
1/* $Id: NEMR0Native-win.cpp 92194 2021-11-03 15:06:02Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-0 Windows backend.
4 */
5
6/*
7 * Copyright (C) 2018-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_NEM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/nt/nt.h>
25#include <iprt/nt/hyperv.h>
26#include <iprt/nt/vid.h>
27#include <winerror.h>
28
29#include <VBox/vmm/nem.h>
30#include <VBox/vmm/iem.h>
31#include <VBox/vmm/em.h>
32#include <VBox/vmm/apic.h>
33#include <VBox/vmm/pdm.h>
34#include <VBox/vmm/dbgftrace.h>
35#include "NEMInternal.h"
36#include <VBox/vmm/gvm.h>
37#include <VBox/vmm/vmcc.h>
38#include <VBox/vmm/gvmm.h>
39#include <VBox/param.h>
40
41#include <iprt/ctype.h>
42#include <iprt/critsect.h>
43#include <iprt/dbg.h>
44#include <iprt/mem.h>
45#include <iprt/memobj.h>
46#include <iprt/string.h>
47#include <iprt/time.h>
48#define PIMAGE_NT_HEADERS32 PIMAGE_NT_HEADERS32_PECOFF
49#include <iprt/formats/pecoff.h>
50
51
52/* Assert compile context sanity. */
53#ifndef RT_OS_WINDOWS
54# error "Windows only file!"
55#endif
56#ifndef RT_ARCH_AMD64
57# error "AMD64 only file!"
58#endif
59
60
61/*********************************************************************************************************************************
62* Internal Functions *
63*********************************************************************************************************************************/
64typedef uint32_t DWORD; /* for winerror.h constants */
65
66
67/*********************************************************************************************************************************
68* Global Variables *
69*********************************************************************************************************************************/
70#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
71static uint64_t (*g_pfnHvlInvokeHypercall)(uint64_t uCallInfo, uint64_t HCPhysInput, uint64_t HCPhysOutput);
72
73/**
74 * WinHvr.sys!WinHvDepositMemory
75 *
76 * This API will try allocates cPages on IdealNode and deposit it to the
77 * hypervisor for use with the given partition. The memory will be freed when
78 * VID.SYS calls WinHvWithdrawAllMemory when the partition is cleanedup.
79 *
80 * Apparently node numbers above 64 has a different meaning.
81 */
82static NTSTATUS (*g_pfnWinHvDepositMemory)(uintptr_t idPartition, size_t cPages, uintptr_t IdealNode, size_t *pcActuallyAdded);
83#endif
84
85RT_C_DECLS_BEGIN
86/**
87 * The WinHvGetPartitionProperty function we intercept in VID.SYS to get the
88 * Hyper-V partition ID.
89 *
90 * This is used from assembly.
91 */
92NTSTATUS WinHvGetPartitionProperty(uintptr_t idPartition, HV_PARTITION_PROPERTY_CODE enmProperty, PHV_PARTITION_PROPERTY puValue);
93decltype(WinHvGetPartitionProperty) *g_pfnWinHvGetPartitionProperty;
94RT_C_DECLS_END
95
96/** @name VID.SYS image details.
97 * @{ */
98#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
99static uint8_t *g_pbVidSys = NULL;
100static uintptr_t g_cbVidSys = 0;
101static PIMAGE_NT_HEADERS g_pVidSysHdrs = NULL;
102/** Pointer to the import thunk entry in VID.SYS for WinHvGetPartitionProperty if we found it. */
103static decltype(WinHvGetPartitionProperty) **g_ppfnVidSysWinHvGetPartitionProperty = NULL;
104
105/** Critical section protecting the WinHvGetPartitionProperty hacking. */
106static RTCRITSECT g_VidSysCritSect;
107#endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
108RT_C_DECLS_BEGIN
109/** The partition ID passed to WinHvGetPartitionProperty by VID.SYS. */
110HV_PARTITION_ID g_idVidSysFoundPartition = HV_PARTITION_ID_INVALID;
111/** The thread which is currently looking for a partition ID. */
112RTNATIVETHREAD g_hVidSysMatchThread = NIL_RTNATIVETHREAD;
113/** The property code we expect in WinHvGetPartitionProperty. */
114VID_PARTITION_PROPERTY_CODE g_enmVidSysMatchProperty = INT64_MAX;
115/* NEMR0NativeA-win.asm: */
116extern uint8_t g_abNemR0WinHvrWinHvGetPartitionProperty_OriginalProlog[64];
117RT_C_DECLS_END
118/** @} */
119
120
121
122/*********************************************************************************************************************************
123* Internal Functions *
124*********************************************************************************************************************************/
125NEM_TMPL_STATIC int nemR0WinMapPages(PGVM pGVM, PGVMCPU pGVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
126 uint32_t cPages, uint32_t fFlags);
127NEM_TMPL_STATIC int nemR0WinUnmapPages(PGVM pGVM, PGVMCPU pGVCpu, RTGCPHYS GCPhys, uint32_t cPages);
128#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
129NEM_TMPL_STATIC int nemR0WinExportState(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx);
130NEM_TMPL_STATIC int nemR0WinImportState(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx, uint64_t fWhat, bool fCanUpdateCr3);
131NEM_TMPL_STATIC int nemR0WinQueryCpuTick(PGVM pGVM, PGVMCPU pGVCpu, uint64_t *pcTicks, uint32_t *pcAux);
132NEM_TMPL_STATIC int nemR0WinResumeCpuTickOnAll(PGVM pGVM, PGVMCPU pGVCpu, uint64_t uPausedTscValue);
133#endif
134DECLINLINE(NTSTATUS) nemR0NtPerformIoControl(PGVM pGVM, PGVMCPU pGVCpu, uint32_t uFunction, void *pvInput, uint32_t cbInput,
135 void *pvOutput, uint32_t cbOutput);
136
137/* NEMR0NativeA-win.asm: */
138DECLASM(NTSTATUS) nemR0VidSysWinHvGetPartitionProperty(uintptr_t idPartition, HV_PARTITION_PROPERTY_CODE enmProperty,
139 PHV_PARTITION_PROPERTY puValue);
140DECLASM(NTSTATUS) nemR0WinHvrWinHvGetPartitionProperty(uintptr_t idPartition, HV_PARTITION_PROPERTY_CODE enmProperty,
141 PHV_PARTITION_PROPERTY puValue);
142
143
144/*
145 * Instantate the code we share with ring-0.
146 */
147#ifdef NEM_WIN_WITH_RING0_RUNLOOP
148# define NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
149#else
150# undef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API
151#endif
152#include "../VMMAll/NEMAllNativeTemplate-win.cpp.h"
153
154
155/**
156 * Module initialization for NEM.
157 */
158VMMR0_INT_DECL(int) NEMR0Init(void)
159{
160#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
161 return RTCritSectInit(&g_VidSysCritSect);
162#else
163 return VINF_SUCCESS;
164#endif
165}
166
167
168/**
169 * Module termination for NEM.
170 */
171VMMR0_INT_DECL(void) NEMR0Term(void)
172{
173#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
174 RTCritSectDelete(&g_VidSysCritSect);
175#endif
176}
177
178#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
179
180/**
181 * Worker for NEMR0InitVM that allocates a hypercall page.
182 *
183 * @returns VBox status code.
184 * @param pHypercallData The hypercall data page to initialize.
185 */
186static int nemR0InitHypercallData(PNEMR0HYPERCALLDATA pHypercallData)
187{
188 int rc = RTR0MemObjAllocPage(&pHypercallData->hMemObj, PAGE_SIZE, false /*fExecutable*/);
189 if (RT_SUCCESS(rc))
190 {
191 pHypercallData->HCPhysPage = RTR0MemObjGetPagePhysAddr(pHypercallData->hMemObj, 0 /*iPage*/);
192 AssertStmt(pHypercallData->HCPhysPage != NIL_RTHCPHYS, rc = VERR_INTERNAL_ERROR_3);
193 pHypercallData->pbPage = (uint8_t *)RTR0MemObjAddress(pHypercallData->hMemObj);
194 AssertStmt(pHypercallData->pbPage, rc = VERR_INTERNAL_ERROR_3);
195 if (RT_SUCCESS(rc))
196 return VINF_SUCCESS;
197
198 /* bail out */
199 RTR0MemObjFree(pHypercallData->hMemObj, true /*fFreeMappings*/);
200 }
201 pHypercallData->hMemObj = NIL_RTR0MEMOBJ;
202 pHypercallData->HCPhysPage = NIL_RTHCPHYS;
203 pHypercallData->pbPage = NULL;
204 return rc;
205}
206
207
208/**
209 * Worker for NEMR0CleanupVM and NEMR0InitVM that cleans up a hypercall page.
210 *
211 * @param pHypercallData The hypercall data page to uninitialize.
212 */
213static void nemR0DeleteHypercallData(PNEMR0HYPERCALLDATA pHypercallData)
214{
215 /* Check pbPage here since it's NULL, whereas the hMemObj can be either
216 NIL_RTR0MEMOBJ or 0 (they aren't necessarily the same). */
217 if (pHypercallData->pbPage != NULL)
218 {
219 RTR0MemObjFree(pHypercallData->hMemObj, true /*fFreeMappings*/);
220 pHypercallData->pbPage = NULL;
221 }
222 pHypercallData->hMemObj = NIL_RTR0MEMOBJ;
223 pHypercallData->HCPhysPage = NIL_RTHCPHYS;
224}
225
226
227static int nemR0StrICmp(const char *psz1, const char *psz2)
228{
229 for (;;)
230 {
231 char ch1 = *psz1++;
232 char ch2 = *psz2++;
233 if ( ch1 != ch2
234 && RT_C_TO_LOWER(ch1) != RT_C_TO_LOWER(ch2))
235 return ch1 - ch2;
236 if (!ch1)
237 return 0;
238 }
239}
240
241
242/**
243 * Worker for nemR0PrepareForVidSysIntercept().
244 */
245static void nemR0PrepareForVidSysInterceptInner(void)
246{
247 uint32_t const cbImage = g_cbVidSys;
248 uint8_t * const pbImage = g_pbVidSys;
249 PIMAGE_NT_HEADERS const pNtHdrs = g_pVidSysHdrs;
250 uintptr_t const offEndNtHdrs = (uintptr_t)(pNtHdrs + 1) - (uintptr_t)pbImage;
251
252# define CHECK_LOG_RET(a_Expr, a_LogRel) do { \
253 if (RT_LIKELY(a_Expr)) { /* likely */ } \
254 else \
255 { \
256 LogRel(a_LogRel); \
257 return; \
258 } \
259 } while (0)
260
261 //__try
262 {
263 /*
264 * Get and validate the import directory entry.
265 */
266 CHECK_LOG_RET( pNtHdrs->OptionalHeader.NumberOfRvaAndSizes > IMAGE_DIRECTORY_ENTRY_IMPORT
267 || pNtHdrs->OptionalHeader.NumberOfRvaAndSizes <= IMAGE_NUMBEROF_DIRECTORY_ENTRIES * 4,
268 ("NEMR0: vid.sys: NumberOfRvaAndSizes is out of range: %#x\n", pNtHdrs->OptionalHeader.NumberOfRvaAndSizes));
269
270 IMAGE_DATA_DIRECTORY const ImportDir = pNtHdrs->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];
271 CHECK_LOG_RET( ImportDir.Size >= sizeof(IMAGE_IMPORT_DESCRIPTOR)
272 && ImportDir.VirtualAddress >= offEndNtHdrs /* ASSUMES NT headers before imports */
273 && (uint64_t)ImportDir.VirtualAddress + ImportDir.Size <= cbImage,
274 ("NEMR0: vid.sys: Bad import directory entry: %#x LB %#x (cbImage=%#x, offEndNtHdrs=%#zx)\n",
275 ImportDir.VirtualAddress, ImportDir.Size, cbImage, offEndNtHdrs));
276
277 /*
278 * Walk the import descriptor table looking for NTDLL.DLL.
279 */
280 for (PIMAGE_IMPORT_DESCRIPTOR pImps = (PIMAGE_IMPORT_DESCRIPTOR)&pbImage[ImportDir.VirtualAddress];
281 pImps->Name != 0 && pImps->FirstThunk != 0;
282 pImps++)
283 {
284 CHECK_LOG_RET(pImps->Name < cbImage, ("NEMR0: vid.sys: Bad import directory entry name: %#x", pImps->Name));
285 const char *pszModName = (const char *)&pbImage[pImps->Name];
286 if (nemR0StrICmp(pszModName, "winhvr.sys"))
287 continue;
288 CHECK_LOG_RET(pImps->FirstThunk < cbImage && pImps->FirstThunk >= offEndNtHdrs,
289 ("NEMR0: vid.sys: Bad FirstThunk: %#x", pImps->FirstThunk));
290 CHECK_LOG_RET( pImps->u.OriginalFirstThunk == 0
291 || (pImps->u.OriginalFirstThunk >= offEndNtHdrs && pImps->u.OriginalFirstThunk < cbImage),
292 ("NEMR0: vid.sys: Bad OriginalFirstThunk: %#x", pImps->u.OriginalFirstThunk));
293
294 /*
295 * Walk the thunks table(s) looking for WinHvGetPartitionProperty.
296 */
297 uintptr_t *puFirstThunk = (uintptr_t *)&pbImage[pImps->FirstThunk]; /* update this. */
298 if ( pImps->u.OriginalFirstThunk != 0
299 && pImps->u.OriginalFirstThunk != pImps->FirstThunk)
300 {
301 uintptr_t const *puOrgThunk = (uintptr_t const *)&pbImage[pImps->u.OriginalFirstThunk]; /* read from this. */
302 uintptr_t cLeft = (cbImage - (RT_MAX(pImps->FirstThunk, pImps->u.OriginalFirstThunk)))
303 / sizeof(*puFirstThunk);
304 while (cLeft-- > 0 && *puOrgThunk != 0)
305 {
306 if (!(*puOrgThunk & IMAGE_ORDINAL_FLAG64))
307 {
308 CHECK_LOG_RET(*puOrgThunk >= offEndNtHdrs && *puOrgThunk < cbImage,
309 ("NEMR0: vid.sys: Bad thunk entry: %#x", *puOrgThunk));
310
311 const char *pszSymbol = (const char *)&pbImage[*puOrgThunk + 2];
312 if (strcmp(pszSymbol, "WinHvGetPartitionProperty") == 0)
313 g_ppfnVidSysWinHvGetPartitionProperty = (decltype(WinHvGetPartitionProperty) **)puFirstThunk;
314 }
315
316 puOrgThunk++;
317 puFirstThunk++;
318 }
319 }
320 else
321 {
322 /* No original thunk table, so scan the resolved symbols for a match
323 with the WinHvGetPartitionProperty address. */
324 uintptr_t const uNeedle = (uintptr_t)g_pfnWinHvGetPartitionProperty;
325 uintptr_t cLeft = (cbImage - pImps->FirstThunk) / sizeof(*puFirstThunk);
326 while (cLeft-- > 0 && *puFirstThunk != 0)
327 {
328 if (*puFirstThunk == uNeedle)
329 g_ppfnVidSysWinHvGetPartitionProperty = (decltype(WinHvGetPartitionProperty) **)puFirstThunk;
330 puFirstThunk++;
331 }
332 }
333 }
334
335 /* Report the findings: */
336 if (g_ppfnVidSysWinHvGetPartitionProperty)
337 LogRel(("NEMR0: vid.sys: Found WinHvGetPartitionProperty import thunk at %p (value %p vs %p)\n",
338 g_ppfnVidSysWinHvGetPartitionProperty,*g_ppfnVidSysWinHvGetPartitionProperty, g_pfnWinHvGetPartitionProperty));
339 else
340 LogRel(("NEMR0: vid.sys: Did not find WinHvGetPartitionProperty!\n"));
341 }
342 //__except(EXCEPTION_EXECUTE_HANDLER)
343 //{
344 // return;
345 //}
346# undef CHECK_LOG_RET
347}
348
349
350/**
351 * Worker for NEMR0InitVM that prepares for intercepting stuff in VID.SYS.
352 */
353static void nemR0PrepareForVidSysIntercept(RTDBGKRNLINFO hKrnlInfo)
354{
355 /*
356 * Resolve the symbols we need first.
357 */
358 int rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, "vid.sys", "__ImageBase", (void **)&g_pbVidSys);
359 if (RT_SUCCESS(rc))
360 {
361 rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, "vid.sys", "__ImageSize", (void **)&g_cbVidSys);
362 if (RT_SUCCESS(rc))
363 {
364 rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, "vid.sys", "__ImageNtHdrs", (void **)&g_pVidSysHdrs);
365 if (RT_SUCCESS(rc))
366 {
367 rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, "winhvr.sys", "WinHvGetPartitionProperty",
368 (void **)&g_pfnWinHvGetPartitionProperty);
369 if (RT_SUCCESS(rc))
370 {
371 /*
372 * Now locate the import thunk entry for WinHvGetPartitionProperty in vid.sys.
373 */
374 nemR0PrepareForVidSysInterceptInner();
375 }
376 else
377 LogRel(("NEMR0: Failed to find winhvr.sys!WinHvGetPartitionProperty (%Rrc)\n", rc));
378 }
379 else
380 LogRel(("NEMR0: Failed to find vid.sys!__ImageNtHdrs (%Rrc)\n", rc));
381 }
382 else
383 LogRel(("NEMR0: Failed to find vid.sys!__ImageSize (%Rrc)\n", rc));
384 }
385 else
386 LogRel(("NEMR0: Failed to find vid.sys!__ImageBase (%Rrc)\n", rc));
387}
388
389#endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
390
391
392/**
393 * Called by NEMR3Init to make sure we've got what we need.
394 *
395 * @returns VBox status code.
396 * @param pGVM The ring-0 VM handle.
397 * @thread EMT(0)
398 */
399VMMR0_INT_DECL(int) NEMR0InitVM(PGVM pGVM)
400{
401 AssertCompile(sizeof(pGVM->nemr0.s) <= sizeof(pGVM->nemr0.padding));
402 AssertCompile(sizeof(pGVM->aCpus[0].nemr0.s) <= sizeof(pGVM->aCpus[0].nemr0.padding));
403
404 int rc = GVMMR0ValidateGVMandEMT(pGVM, 0);
405 AssertRCReturn(rc, rc);
406
407#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
408 /*
409 * We want to perform hypercalls here. The NT kernel started to expose a very low
410 * level interface to do this thru somewhere between build 14271 and 16299. Since
411 * we need build 17134 to get anywhere at all, the exact build is not relevant here.
412 *
413 * We also need to deposit memory to the hypervisor for use with partition (page
414 * mapping structures, stuff).
415 */
416 RTDBGKRNLINFO hKrnlInfo;
417 rc = RTR0DbgKrnlInfoOpen(&hKrnlInfo, 0);
418 if (RT_SUCCESS(rc))
419 {
420 rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, NULL, "HvlInvokeHypercall", (void **)&g_pfnHvlInvokeHypercall);
421 if (RT_FAILURE(rc))
422 rc = VERR_NEM_MISSING_KERNEL_API_1;
423 if (RT_SUCCESS(rc))
424 {
425 rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, "winhvr.sys", "WinHvDepositMemory", (void **)&g_pfnWinHvDepositMemory);
426 if (RT_FAILURE(rc))
427 rc = rc == VERR_MODULE_NOT_FOUND ? VERR_NEM_MISSING_KERNEL_API_2 : VERR_NEM_MISSING_KERNEL_API_3;
428 }
429
430 /*
431 * Since late 2021 we may also need to do some nasty trickery with vid.sys to get
432 * the partition ID. So, ge the necessary info while we have a hKrnlInfo instance.
433 */
434 if (RT_SUCCESS(rc))
435 nemR0PrepareForVidSysIntercept(hKrnlInfo);
436
437 RTR0DbgKrnlInfoRelease(hKrnlInfo);
438 if (RT_SUCCESS(rc))
439 {
440 /*
441 * Allocate a page for non-EMT threads to use for hypercalls (update
442 * statistics and such) and a critical section protecting it.
443 */
444 rc = RTCritSectInit(&pGVM->nemr0.s.HypercallDataCritSect);
445 if (RT_SUCCESS(rc))
446 {
447 rc = nemR0InitHypercallData(&pGVM->nemr0.s.HypercallData);
448 if (RT_SUCCESS(rc))
449 {
450 /*
451 * Allocate a page for each VCPU to place hypercall data on.
452 */
453 for (VMCPUID i = 0; i < pGVM->cCpus; i++)
454 {
455 rc = nemR0InitHypercallData(&pGVM->aCpus[i].nemr0.s.HypercallData);
456 if (RT_FAILURE(rc))
457 {
458 while (i-- > 0)
459 nemR0DeleteHypercallData(&pGVM->aCpus[i].nemr0.s.HypercallData);
460 break;
461 }
462 }
463 if (RT_SUCCESS(rc))
464 {
465 /*
466 * So far, so good.
467 */
468 return rc;
469 }
470
471 /*
472 * Bail out.
473 */
474 nemR0DeleteHypercallData(&pGVM->nemr0.s.HypercallData);
475 }
476 RTCritSectDelete(&pGVM->nemr0.s.HypercallDataCritSect);
477 }
478 }
479 }
480#endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
481
482 return rc;
483}
484
485#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
486
487/**
488 * Perform an I/O control operation on the partition handle (VID.SYS).
489 *
490 * @returns NT status code.
491 * @param pGVM The ring-0 VM structure.
492 * @param pGVCpu The global (ring-0) CPU structure of the calling EMT.
493 * @param uFunction The function to perform.
494 * @param pvInput The input buffer. This must point within the VM
495 * structure so we can easily convert to a ring-3
496 * pointer if necessary.
497 * @param cbInput The size of the input. @a pvInput must be NULL when
498 * zero.
499 * @param pvOutput The output buffer. This must also point within the
500 * VM structure for ring-3 pointer magic.
501 * @param cbOutput The size of the output. @a pvOutput must be NULL
502 * when zero.
503 * @thread EMT(pGVCpu)
504 */
505DECLINLINE(NTSTATUS) nemR0NtPerformIoControl(PGVM pGVM, PGVMCPU pGVCpu, uint32_t uFunction, void *pvInput, uint32_t cbInput,
506 void *pvOutput, uint32_t cbOutput)
507{
508# ifdef RT_STRICT
509 /*
510 * Input and output parameters are part of the VM CPU structure.
511 */
512 VMCPU_ASSERT_EMT(pGVCpu);
513 if (pvInput)
514 AssertReturn(((uintptr_t)pvInput + cbInput) - (uintptr_t)pGVCpu <= sizeof(*pGVCpu), VERR_INVALID_PARAMETER);
515 if (pvOutput)
516 AssertReturn(((uintptr_t)pvOutput + cbOutput) - (uintptr_t)pGVCpu <= sizeof(*pGVCpu), VERR_INVALID_PARAMETER);
517# endif
518
519 int32_t rcNt = STATUS_UNSUCCESSFUL;
520 int rc = SUPR0IoCtlPerform(pGVM->nemr0.s.pIoCtlCtx, uFunction,
521 pvInput,
522 pvInput ? (uintptr_t)pvInput + pGVCpu->nemr0.s.offRing3ConversionDelta : NIL_RTR3PTR,
523 cbInput,
524 pvOutput,
525 pvOutput ? (uintptr_t)pvOutput + pGVCpu->nemr0.s.offRing3ConversionDelta : NIL_RTR3PTR,
526 cbOutput,
527 &rcNt);
528 if (RT_SUCCESS(rc) || !NT_SUCCESS((NTSTATUS)rcNt))
529 return (NTSTATUS)rcNt;
530 return STATUS_UNSUCCESSFUL;
531}
532
533
534/**
535 * Here is something that we really do not wish to do, but find us force do to
536 * right now as we cannot rewrite the memory management of VBox 6.1 in time for
537 * windows 11.
538 *
539 * @returns VBox status code.
540 * @param pGVM The ring-0 VM structure.
541 * @param pahMemObjs Array of 6 memory objects that the caller will release.
542 * ASSUMES that they are initialized to NIL.
543 */
544static int nemR0InitVMPart2DontWannaDoTheseUglyPartitionIdFallbacks(PGVM pGVM, PRTR0MEMOBJ pahMemObjs)
545{
546 /*
547 * Check preconditions:
548 */
549 if ( !g_ppfnVidSysWinHvGetPartitionProperty
550 || (uintptr_t)g_ppfnVidSysWinHvGetPartitionProperty & (sizeof(uintptr_t) - 1))
551 {
552 LogRel(("NEMR0: g_ppfnVidSysWinHvGetPartitionProperty is NULL or misaligned (%p), partition ID fallback not possible.\n",
553 g_ppfnVidSysWinHvGetPartitionProperty));
554 return VERR_NEM_INIT_FAILED;
555 }
556 if (!g_pfnWinHvGetPartitionProperty)
557 {
558 LogRel(("NEMR0: g_pfnWinHvGetPartitionProperty is NULL, partition ID fallback not possible.\n"));
559 return VERR_NEM_INIT_FAILED;
560 }
561 if (!pGVM->nem.s.IoCtlGetPartitionProperty.uFunction)
562 {
563 LogRel(("NEMR0: IoCtlGetPartitionProperty.uFunction is 0, partition ID fallback not possible.\n"));
564 return VERR_NEM_INIT_FAILED;
565 }
566
567 /*
568 * Create an alias for the thunk table entry because its very likely to be read-only.
569 */
570 int rc = RTR0MemObjLockKernel(&pahMemObjs[0], g_ppfnVidSysWinHvGetPartitionProperty, sizeof(uintptr_t), RTMEM_PROT_READ);
571 if (RT_FAILURE(rc))
572 {
573 LogRel(("NEMR0: RTR0MemObjLockKernel failed on VID.SYS thunk table entry: %Rrc\n", rc));
574 return rc;
575 }
576
577 rc = RTR0MemObjEnterPhys(&pahMemObjs[1], RTR0MemObjGetPagePhysAddr(pahMemObjs[0], 0), PAGE_SIZE, RTMEM_CACHE_POLICY_DONT_CARE);
578 if (RT_FAILURE(rc))
579 {
580 LogRel(("NEMR0: RTR0MemObjEnterPhys failed on VID.SYS thunk table entry: %Rrc\n", rc));
581 return rc;
582 }
583
584 rc = RTR0MemObjMapKernel(&pahMemObjs[2], pahMemObjs[1], (void *)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
585 if (RT_FAILURE(rc))
586 {
587 LogRel(("NEMR0: RTR0MemObjMapKernel failed on VID.SYS thunk table entry: %Rrc\n", rc));
588 return rc;
589 }
590
591 decltype(WinHvGetPartitionProperty) **ppfnThunkAlias
592 = (decltype(WinHvGetPartitionProperty) **)( (uintptr_t)RTR0MemObjAddress(pahMemObjs[2])
593 | ((uintptr_t)g_ppfnVidSysWinHvGetPartitionProperty & PAGE_OFFSET_MASK));
594 LogRel(("NEMR0: ppfnThunkAlias=%p *ppfnThunkAlias=%p; original: %p & %p, phys %RHp\n", ppfnThunkAlias, *ppfnThunkAlias,
595 g_ppfnVidSysWinHvGetPartitionProperty, *g_ppfnVidSysWinHvGetPartitionProperty,
596 RTR0MemObjGetPagePhysAddr(pahMemObjs[0], 0) ));
597
598 /*
599 * Create an alias for the target code in WinHvr.sys as there is a very decent
600 * chance we have to patch it.
601 */
602 rc = RTR0MemObjLockKernel(&pahMemObjs[3], g_pfnWinHvGetPartitionProperty, sizeof(uintptr_t), RTMEM_PROT_READ);
603 if (RT_FAILURE(rc))
604 {
605 LogRel(("NEMR0: RTR0MemObjLockKernel failed on WinHvGetPartitionProperty (%p): %Rrc\n", g_pfnWinHvGetPartitionProperty, rc));
606 return rc;
607 }
608
609 rc = RTR0MemObjEnterPhys(&pahMemObjs[4], RTR0MemObjGetPagePhysAddr(pahMemObjs[3], 0), PAGE_SIZE, RTMEM_CACHE_POLICY_DONT_CARE);
610 if (RT_FAILURE(rc))
611 {
612 LogRel(("NEMR0: RTR0MemObjEnterPhys failed on WinHvGetPartitionProperty: %Rrc\n", rc));
613 return rc;
614 }
615
616 rc = RTR0MemObjMapKernel(&pahMemObjs[5], pahMemObjs[4], (void *)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
617 if (RT_FAILURE(rc))
618 {
619 LogRel(("NEMR0: RTR0MemObjMapKernel failed on WinHvGetPartitionProperty: %Rrc\n", rc));
620 return rc;
621 }
622
623 uint8_t *pbTargetAlias = (uint8_t *)( (uintptr_t)RTR0MemObjAddress(pahMemObjs[5])
624 | ((uintptr_t)g_pfnWinHvGetPartitionProperty & PAGE_OFFSET_MASK));
625 LogRel(("NEMR0: pbTargetAlias=%p %.16Rhxs; original: %p %.16Rhxs, phys %RHp\n", pbTargetAlias, pbTargetAlias,
626 g_pfnWinHvGetPartitionProperty, g_pfnWinHvGetPartitionProperty, RTR0MemObjGetPagePhysAddr(pahMemObjs[3], 0) ));
627
628 /*
629 * Analyse the target functions prologue to figure out how much we should copy
630 * when patching it. We repeat this every time because we don't want to get
631 * tripped up by someone else doing the same stuff as we're doing here.
632 * We need at least 12 bytes for the patch sequence (MOV RAX, QWORD; JMP RAX)
633 */
634 union
635 {
636 uint8_t ab[48]; /**< Must be equal or smallar than g_abNemR0WinHvrWinHvGetPartitionProperty_OriginalProlog */
637 int64_t ai64[6];
638 } Org;
639 memcpy(Org.ab, g_pfnWinHvGetPartitionProperty, sizeof(Org)); /** @todo ASSUMES 48 valid bytes start at function... */
640
641 uint32_t offJmpBack = 0;
642 uint32_t const cbMinJmpPatch = 12;
643 DISSTATE Dis;
644 while (offJmpBack < cbMinJmpPatch && offJmpBack < sizeof(Org) - 16)
645 {
646 uint32_t cbInstr = 1;
647 rc = DISInstr(&Org.ab[offJmpBack], DISCPUMODE_64BIT, &Dis, &cbInstr);
648 if (RT_FAILURE(rc))
649 {
650 LogRel(("NEMR0: DISInstr failed %#x bytes into WinHvGetPartitionProperty: %Rrc (%.48Rhxs)\n",
651 offJmpBack, rc, Org.ab));
652 break;
653 }
654 if (Dis.pCurInstr->fOpType & DISOPTYPE_CONTROLFLOW)
655 {
656 LogRel(("NEMR0: Control flow instruction %#x bytes into WinHvGetPartitionProperty prologue: %.48Rhxs\n",
657 offJmpBack, Org.ab));
658 break;
659 }
660 if (Dis.ModRM.Bits.Mod == 0 && Dis.ModRM.Bits.Rm == 5 /* wrt RIP */)
661 {
662 LogRel(("NEMR0: RIP relative addressing %#x bytes into WinHvGetPartitionProperty prologue: %.48Rhxs\n",
663 offJmpBack, Org.ab));
664 break;
665 }
666 offJmpBack += cbInstr;
667 }
668
669 uintptr_t const cbLeftInPage = PAGE_SIZE - ((uintptr_t)g_pfnWinHvGetPartitionProperty & PAGE_OFFSET_MASK);
670 if (cbLeftInPage < 16 && offJmpBack >= cbMinJmpPatch)
671 {
672 LogRel(("NEMR0: WinHvGetPartitionProperty patching not possible do the page crossing: %p (%#zx)\n",
673 g_pfnWinHvGetPartitionProperty, cbLeftInPage));
674 offJmpBack = 0;
675 }
676 if (offJmpBack >= cbMinJmpPatch)
677 LogRel(("NEMR0: offJmpBack=%#x for WinHvGetPartitionProperty (%p: %.48Rhxs)\n",
678 offJmpBack, g_pfnWinHvGetPartitionProperty, Org.ab));
679 else
680 offJmpBack = 0;
681 rc = VINF_SUCCESS;
682
683 /*
684 * Now enter serialization lock and get on with it...
685 */
686 PVMCPUCC const pVCpu0 = &pGVM->aCpus[0];
687 NTSTATUS rcNt;
688 RTCritSectEnter(&g_VidSysCritSect);
689
690 /*
691 * First attempt, patching the import table entry.
692 */
693 g_idVidSysFoundPartition = HV_PARTITION_ID_INVALID;
694 g_hVidSysMatchThread = RTThreadNativeSelf();
695 g_enmVidSysMatchProperty = pVCpu0->nem.s.uIoCtlBuf.GetProp.enmProperty = HvPartitionPropertyProcessorVendor;
696 pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue = 0;
697
698 void *pvOld = NULL;
699 if (ASMAtomicCmpXchgExPtr(ppfnThunkAlias, (void *)(uintptr_t)nemR0VidSysWinHvGetPartitionProperty,
700 (void *)(uintptr_t)g_pfnWinHvGetPartitionProperty, &pvOld))
701 {
702 LogRel(("NEMR0: after switch to %p: ppfnThunkAlias=%p *ppfnThunkAlias=%p; original: %p & %p\n",
703 nemR0VidSysWinHvGetPartitionProperty, ppfnThunkAlias, *ppfnThunkAlias,
704 g_ppfnVidSysWinHvGetPartitionProperty, *g_ppfnVidSysWinHvGetPartitionProperty));
705
706 rcNt = nemR0NtPerformIoControl(pGVM, pVCpu0, pGVM->nemr0.s.IoCtlGetPartitionProperty.uFunction,
707 &pVCpu0->nem.s.uIoCtlBuf.GetProp.enmProperty,
708 sizeof(pVCpu0->nem.s.uIoCtlBuf.GetProp.enmProperty),
709 &pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue,
710 sizeof(pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue));
711 ASMAtomicWritePtr(ppfnThunkAlias, (void *)(uintptr_t)g_pfnWinHvGetPartitionProperty);
712 HV_PARTITION_ID idHvPartition = g_idVidSysFoundPartition;
713
714 LogRel(("NEMR0: WinHvGetPartitionProperty trick #1 yielded: rcNt=%#x idHvPartition=%#RX64 uValue=%#RX64\n",
715 rcNt, idHvPartition, pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue));
716 pGVM->nemr0.s.idHvPartition = idHvPartition;
717 }
718 else
719 {
720 LogRel(("NEMR0: Unexpected WinHvGetPartitionProperty pointer in VID.SYS: %p, expected %p\n",
721 pvOld, g_pfnWinHvGetPartitionProperty));
722 rc = VERR_NEM_INIT_FAILED;
723 }
724
725 /*
726 * If that didn't succeed, try patching the winhvr.sys code.
727 */
728 if ( pGVM->nemr0.s.idHvPartition == HV_PARTITION_ID_INVALID
729 && offJmpBack >= cbMinJmpPatch)
730 {
731 g_idVidSysFoundPartition = HV_PARTITION_ID_INVALID;
732 g_hVidSysMatchThread = RTThreadNativeSelf();
733 g_enmVidSysMatchProperty = pVCpu0->nem.s.uIoCtlBuf.GetProp.enmProperty = HvPartitionPropertyProcessorVendor;
734 pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue = 0;
735
736 /*
737 * Prepare the hook area.
738 */
739 uint8_t *pbDst = g_abNemR0WinHvrWinHvGetPartitionProperty_OriginalProlog;
740 memcpy(pbDst, (uint8_t const *)(uintptr_t)g_pfnWinHvGetPartitionProperty, offJmpBack);
741 pbDst += offJmpBack;
742
743 *pbDst++ = 0x48; /* mov rax, imm64 */
744 *pbDst++ = 0xb8;
745 *(uint64_t *)pbDst = (uintptr_t)g_pfnWinHvGetPartitionProperty + offJmpBack;
746 pbDst += sizeof(uint64_t);
747 *pbDst++ = 0xff; /* jmp rax */
748 *pbDst++ = 0xe0;
749 *pbDst++ = 0xcc; /* int3 */
750
751 /*
752 * Patch the original. We use cmpxchg16b here to avoid concurrency problems
753 * (this also makes sure we don't trample over someone else doing similar
754 * patching at the same time).
755 */
756 union
757 {
758 uint8_t ab[16];
759 uint64_t au64[2];
760 } Patch;
761 memcpy(Patch.ab, Org.ab, sizeof(Patch));
762 pbDst = Patch.ab;
763 *pbDst++ = 0x48; /* mov rax, imm64 */
764 *pbDst++ = 0xb8;
765 *(uint64_t *)pbDst = (uintptr_t)nemR0WinHvrWinHvGetPartitionProperty;
766 pbDst += sizeof(uint64_t);
767 *pbDst++ = 0xff; /* jmp rax */
768 *pbDst++ = 0xe0;
769
770 int64_t ai64CmpCopy[2] = { Org.ai64[0], Org.ai64[1] }; /* paranoia */
771 if (_InterlockedCompareExchange128((__int64 volatile *)pbTargetAlias, Patch.au64[1], Patch.au64[0], ai64CmpCopy) != 0)
772 {
773 rcNt = nemR0NtPerformIoControl(pGVM, pVCpu0, pGVM->nemr0.s.IoCtlGetPartitionProperty.uFunction,
774 &pVCpu0->nem.s.uIoCtlBuf.GetProp.enmProperty,
775 sizeof(pVCpu0->nem.s.uIoCtlBuf.GetProp.enmProperty),
776 &pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue,
777 sizeof(pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue));
778
779 for (uint32_t cFailures = 0; cFailures < 10; cFailures++)
780 {
781 ai64CmpCopy[0] = Patch.au64[0]; /* paranoia */
782 ai64CmpCopy[1] = Patch.au64[1];
783 if (_InterlockedCompareExchange128((__int64 volatile *)pbTargetAlias, Org.ai64[1], Org.ai64[0], ai64CmpCopy) != 0)
784 {
785 if (cFailures > 0)
786 LogRel(("NEMR0: Succeeded on try #%u.\n", cFailures));
787 break;
788 }
789 LogRel(("NEMR0: Patch restore failure #%u: %.16Rhxs, expected %.16Rhxs\n",
790 cFailures + 1, &ai64CmpCopy[0], &Patch.au64[0]));
791 RTThreadSleep(1000);
792 }
793
794 HV_PARTITION_ID idHvPartition = g_idVidSysFoundPartition;
795 LogRel(("NEMR0: WinHvGetPartitionProperty trick #2 yielded: rcNt=%#x idHvPartition=%#RX64 uValue=%#RX64\n",
796 rcNt, idHvPartition, pVCpu0->nem.s.uIoCtlBuf.GetProp.uValue));
797 pGVM->nemr0.s.idHvPartition = idHvPartition;
798
799 }
800 else
801 {
802 LogRel(("NEMR0: Failed to install WinHvGetPartitionProperty patch: %.16Rhxs, expected %.16Rhxs\n",
803 &ai64CmpCopy[0], &Org.ai64[0]));
804 rc = VERR_NEM_INIT_FAILED;
805 }
806 }
807
808 RTCritSectLeave(&g_VidSysCritSect);
809
810 return rc;
811}
812
813#endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
814
815/**
816 * 2nd part of the initialization, after we've got a partition handle.
817 *
818 * @returns VBox status code.
819 * @param pGVM The ring-0 VM handle.
820 * @thread EMT(0)
821 */
822VMMR0_INT_DECL(int) NEMR0InitVMPart2(PGVM pGVM)
823{
824 int rc = GVMMR0ValidateGVMandEMT(pGVM, 0);
825 AssertRCReturn(rc, rc);
826 SUPR0Printf("NEMR0InitVMPart2\n"); LogRel(("2: NEMR0InitVMPart2\n"));
827#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
828# ifdef NEM_WIN_WITH_RING0_RUNLOOP
829 Assert(pGVM->nemr0.s.fMayUseRing0Runloop == false);
830# endif
831
832 /*
833 * Copy and validate the I/O control information from ring-3.
834 */
835 NEMWINIOCTL Copy = pGVM->nem.s.IoCtlGetHvPartitionId;
836 AssertLogRelReturn(Copy.uFunction != 0, VERR_NEM_INIT_FAILED);
837 AssertLogRelReturn(Copy.cbInput == 0, VERR_NEM_INIT_FAILED);
838 AssertLogRelReturn(Copy.cbOutput == sizeof(HV_PARTITION_ID), VERR_NEM_INIT_FAILED);
839 pGVM->nemr0.s.IoCtlGetHvPartitionId = Copy;
840
841 Copy = pGVM->nem.s.IoCtlGetPartitionProperty;
842 AssertLogRelReturn(Copy.uFunction != 0, VERR_NEM_INIT_FAILED);
843 AssertLogRelReturn(Copy.cbInput == sizeof(VID_PARTITION_PROPERTY_CODE), VERR_NEM_INIT_FAILED);
844 AssertLogRelReturn(Copy.cbOutput == sizeof(HV_PARTITION_PROPERTY), VERR_NEM_INIT_FAILED);
845 pGVM->nemr0.s.IoCtlGetPartitionProperty = Copy;
846
847# ifdef NEM_WIN_WITH_RING0_RUNLOOP
848 pGVM->nemr0.s.fMayUseRing0Runloop = pGVM->nem.s.fUseRing0Runloop;
849
850 Copy = pGVM->nem.s.IoCtlStartVirtualProcessor;
851 AssertLogRelStmt(Copy.uFunction != 0, rc = VERR_NEM_INIT_FAILED);
852 AssertLogRelStmt(Copy.cbInput == sizeof(HV_VP_INDEX), rc = VERR_NEM_INIT_FAILED);
853 AssertLogRelStmt(Copy.cbOutput == 0, rc = VERR_NEM_INIT_FAILED);
854 AssertLogRelStmt(Copy.uFunction != pGVM->nemr0.s.IoCtlGetHvPartitionId.uFunction, rc = VERR_NEM_INIT_FAILED);
855 if (RT_SUCCESS(rc))
856 pGVM->nemr0.s.IoCtlStartVirtualProcessor = Copy;
857
858 Copy = pGVM->nem.s.IoCtlStopVirtualProcessor;
859 AssertLogRelStmt(Copy.uFunction != 0, rc = VERR_NEM_INIT_FAILED);
860 AssertLogRelStmt(Copy.cbInput == sizeof(HV_VP_INDEX), rc = VERR_NEM_INIT_FAILED);
861 AssertLogRelStmt(Copy.cbOutput == 0, rc = VERR_NEM_INIT_FAILED);
862 AssertLogRelStmt(Copy.uFunction != pGVM->nemr0.s.IoCtlGetHvPartitionId.uFunction, rc = VERR_NEM_INIT_FAILED);
863 AssertLogRelStmt(Copy.uFunction != pGVM->nemr0.s.IoCtlStartVirtualProcessor.uFunction, rc = VERR_NEM_INIT_FAILED);
864 if (RT_SUCCESS(rc))
865 pGVM->nemr0.s.IoCtlStopVirtualProcessor = Copy;
866
867 Copy = pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext;
868 AssertLogRelStmt(Copy.uFunction != 0, rc = VERR_NEM_INIT_FAILED);
869 AssertLogRelStmt( Copy.cbInput == sizeof(VID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT)
870 || Copy.cbInput == RT_OFFSETOF(VID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT, cMillies),
871 rc = VERR_NEM_INIT_FAILED);
872 AssertLogRelStmt(Copy.cbOutput == 0, VERR_NEM_INIT_FAILED);
873 AssertLogRelStmt(Copy.uFunction != pGVM->nemr0.s.IoCtlGetHvPartitionId.uFunction, rc = VERR_NEM_INIT_FAILED);
874 AssertLogRelStmt(Copy.uFunction != pGVM->nemr0.s.IoCtlStartVirtualProcessor.uFunction, rc = VERR_NEM_INIT_FAILED);
875 AssertLogRelStmt(Copy.uFunction != pGVM->nemr0.s.IoCtlStopVirtualProcessor.uFunction, rc = VERR_NEM_INIT_FAILED);
876 if (RT_SUCCESS(rc))
877 pGVM->nemr0.s.IoCtlMessageSlotHandleAndGetNext = Copy;
878# endif
879
880 if ( RT_SUCCESS(rc)
881 || !pGVM->nem.s.fUseRing0Runloop)
882 {
883 /*
884 * Setup of an I/O control context for the partition handle for later use.
885 */
886 rc = SUPR0IoCtlSetupForHandle(pGVM->pSession, pGVM->nem.s.hPartitionDevice, 0, &pGVM->nemr0.s.pIoCtlCtx);
887 AssertLogRelRCReturn(rc, rc);
888 for (VMCPUID idCpu = 0; idCpu < pGVM->cCpus; idCpu++)
889 {
890 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
891 pGVCpu->nemr0.s.offRing3ConversionDelta = (uintptr_t)pGVM->aCpus[idCpu].pVCpuR3 - (uintptr_t)pGVCpu;
892 }
893
894 /*
895 * Get the partition ID.
896 */
897 PVMCPUCC pVCpu0 = &pGVM->aCpus[0];
898 NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pVCpu0, pGVM->nemr0.s.IoCtlGetHvPartitionId.uFunction, NULL, 0,
899 &pVCpu0->nem.s.uIoCtlBuf.idPartition, sizeof(pVCpu0->nem.s.uIoCtlBuf.idPartition));
900# if 0
901 AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("IoCtlGetHvPartitionId failed: %#x\n", rcNt), VERR_NEM_INIT_FAILED);
902 pGVM->nemr0.s.idHvPartition = pVCpu0->nem.s.uIoCtlBuf.idPartition;
903# else
904 /*
905 * Since 2021 (Win11) the above I/O control doesn't work on exo-partitions
906 * so we have to go to extremes to get at it. Sigh.
907 */
908 if ( !NT_SUCCESS(rcNt)
909 || pVCpu0->nem.s.uIoCtlBuf.idPartition == HV_PARTITION_ID_INVALID)
910 {
911 LogRel(("IoCtlGetHvPartitionId failed: r0=%#RX64, r3=%#RX64, rcNt=%#x\n",
912 pGVM->nemr0.s.idHvPartition, pGVM->nem.s.idHvPartition, rcNt));
913
914 RTR0MEMOBJ ahMemObjs[6]
915 = { NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ, NIL_RTR0MEMOBJ };
916 rc = nemR0InitVMPart2DontWannaDoTheseUglyPartitionIdFallbacks(pGVM, ahMemObjs);
917 size_t i = RT_ELEMENTS(ahMemObjs);
918 while (i-- > 0)
919 RTR0MemObjFree(ahMemObjs[i], false /*fFreeMappings*/);
920 }
921 else
922 pGVM->nemr0.s.idHvPartition = pVCpu0->nem.s.uIoCtlBuf.idPartition;
923
924 if (pGVM->nem.s.idHvPartition == HV_PARTITION_ID_INVALID)
925 pGVM->nem.s.idHvPartition = pGVM->nemr0.s.idHvPartition;
926# endif
927 AssertLogRelMsgReturn(pGVM->nemr0.s.idHvPartition == pGVM->nem.s.idHvPartition,
928 ("idHvPartition mismatch: r0=%#RX64, r3=%#RX64\n", pGVM->nemr0.s.idHvPartition, pGVM->nem.s.idHvPartition),
929 VERR_NEM_INIT_FAILED);
930 if (RT_SUCCESS(rc) && pGVM->nemr0.s.idHvPartition == HV_PARTITION_ID_INVALID)
931 rc = VERR_NEM_INIT_FAILED;
932 }
933#endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
934
935 return rc;
936}
937
938
939/**
940 * Cleanup the NEM parts of the VM in ring-0.
941 *
942 * This is always called and must deal the state regardless of whether
943 * NEMR0InitVM() was called or not. So, take care here.
944 *
945 * @param pGVM The ring-0 VM handle.
946 */
947VMMR0_INT_DECL(void) NEMR0CleanupVM(PGVM pGVM)
948{
949#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
950 pGVM->nemr0.s.idHvPartition = HV_PARTITION_ID_INVALID;
951
952 /* Clean up I/O control context. */
953 if (pGVM->nemr0.s.pIoCtlCtx)
954 {
955 int rc = SUPR0IoCtlCleanup(pGVM->nemr0.s.pIoCtlCtx);
956 AssertRC(rc);
957 pGVM->nemr0.s.pIoCtlCtx = NULL;
958 }
959
960 /* Free the hypercall pages. */
961 VMCPUID i = pGVM->cCpus;
962 while (i-- > 0)
963 nemR0DeleteHypercallData(&pGVM->aCpus[i].nemr0.s.HypercallData);
964
965 /* The non-EMT one too. */
966 if (RTCritSectIsInitialized(&pGVM->nemr0.s.HypercallDataCritSect))
967 RTCritSectDelete(&pGVM->nemr0.s.HypercallDataCritSect);
968 nemR0DeleteHypercallData(&pGVM->nemr0.s.HypercallData);
969#else
970 RT_NOREF(pGVM);
971#endif
972}
973
974
975#if 0 /* for debugging GPA unmapping. */
976static int nemR3WinDummyReadGpa(PGVM pGVM, PGVMCPU pGVCpu, RTGCPHYS GCPhys)
977{
978 PHV_INPUT_READ_GPA pIn = (PHV_INPUT_READ_GPA)pGVCpu->nemr0.s.pbHypercallData;
979 PHV_OUTPUT_READ_GPA pOut = (PHV_OUTPUT_READ_GPA)(pIn + 1);
980 pIn->PartitionId = pGVM->nemr0.s.idHvPartition;
981 pIn->VpIndex = pGVCpu->idCpu;
982 pIn->ByteCount = 0x10;
983 pIn->BaseGpa = GCPhys;
984 pIn->ControlFlags.AsUINT64 = 0;
985 pIn->ControlFlags.CacheType = HvCacheTypeX64WriteCombining;
986 memset(pOut, 0xfe, sizeof(*pOut));
987 uint64_t volatile uResult = g_pfnHvlInvokeHypercall(HvCallReadGpa, pGVCpu->nemr0.s.HCPhysHypercallData,
988 pGVCpu->nemr0.s.HCPhysHypercallData + sizeof(*pIn));
989 LogRel(("nemR3WinDummyReadGpa: %RGp -> %#RX64; code=%u rsvd=%u abData=%.16Rhxs\n",
990 GCPhys, uResult, pOut->AccessResult.ResultCode, pOut->AccessResult.Reserved, pOut->Data));
991 __debugbreak();
992
993 return uResult != 0 ? VERR_READ_ERROR : VINF_SUCCESS;
994}
995#endif
996
997
998#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
999/**
1000 * Worker for NEMR0MapPages and others.
1001 */
1002NEM_TMPL_STATIC int nemR0WinMapPages(PGVM pGVM, PGVMCPU pGVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
1003 uint32_t cPages, uint32_t fFlags)
1004{
1005 /*
1006 * Validate.
1007 */
1008 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1);
1009
1010 AssertReturn(cPages > 0, VERR_OUT_OF_RANGE);
1011 AssertReturn(cPages <= NEM_MAX_MAP_PAGES, VERR_OUT_OF_RANGE);
1012 AssertReturn(!(fFlags & ~(HV_MAP_GPA_MAYBE_ACCESS_MASK & ~HV_MAP_GPA_DUNNO_ACCESS)), VERR_INVALID_FLAGS);
1013 AssertMsgReturn(!(GCPhysDst & X86_PAGE_OFFSET_MASK), ("GCPhysDst=%RGp\n", GCPhysDst), VERR_OUT_OF_RANGE);
1014 AssertReturn(GCPhysDst < _1E, VERR_OUT_OF_RANGE);
1015 if (GCPhysSrc != GCPhysDst)
1016 {
1017 AssertMsgReturn(!(GCPhysSrc & X86_PAGE_OFFSET_MASK), ("GCPhysSrc=%RGp\n", GCPhysSrc), VERR_OUT_OF_RANGE);
1018 AssertReturn(GCPhysSrc < _1E, VERR_OUT_OF_RANGE);
1019 }
1020
1021 /*
1022 * Compose and make the hypercall.
1023 * Ring-3 is not allowed to fill in the host physical addresses of the call.
1024 */
1025 for (uint32_t iTries = 0;; iTries++)
1026 {
1027 RTGCPHYS GCPhysSrcTmp = GCPhysSrc;
1028 HV_INPUT_MAP_GPA_PAGES *pMapPages = (HV_INPUT_MAP_GPA_PAGES *)pGVCpu->nemr0.s.HypercallData.pbPage;
1029 AssertPtrReturn(pMapPages, VERR_INTERNAL_ERROR_3);
1030 pMapPages->TargetPartitionId = pGVM->nemr0.s.idHvPartition;
1031 pMapPages->TargetGpaBase = GCPhysDst >> X86_PAGE_SHIFT;
1032 pMapPages->MapFlags = fFlags;
1033 pMapPages->u32ExplicitPadding = 0;
1034
1035 for (uint32_t iPage = 0; iPage < cPages; iPage++, GCPhysSrcTmp += X86_PAGE_SIZE)
1036 {
1037 RTHCPHYS HCPhys = NIL_RTGCPHYS;
1038 int rc = PGMPhysGCPhys2HCPhys(pGVM, GCPhysSrcTmp, &HCPhys);
1039 AssertRCReturn(rc, rc);
1040 pMapPages->PageList[iPage] = HCPhys >> X86_PAGE_SHIFT;
1041 }
1042
1043 uint64_t uResult = g_pfnHvlInvokeHypercall(HvCallMapGpaPages | ((uint64_t)cPages << 32),
1044 pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0);
1045 Log6(("NEMR0MapPages: %RGp/%RGp L %u prot %#x -> %#RX64\n",
1046 GCPhysDst, GCPhysSrcTmp - cPages * X86_PAGE_SIZE, cPages, fFlags, uResult));
1047 if (uResult == ((uint64_t)cPages << 32))
1048 return VINF_SUCCESS;
1049
1050 /*
1051 * If the partition is out of memory, try donate another 512 pages to
1052 * it (2MB). VID.SYS does multiples of 512 pages, nothing smaller.
1053 */
1054 if ( uResult != HV_STATUS_INSUFFICIENT_MEMORY
1055 || iTries > 16
1056 || g_pfnWinHvDepositMemory == NULL)
1057 {
1058 LogRel(("g_pfnHvlInvokeHypercall/MapGpaPages -> %#RX64\n", uResult));
1059 return VERR_NEM_MAP_PAGES_FAILED;
1060 }
1061
1062 size_t cPagesAdded = 0;
1063 NTSTATUS rcNt = g_pfnWinHvDepositMemory(pGVM->nemr0.s.idHvPartition, 512, 0, &cPagesAdded);
1064 if (!cPagesAdded)
1065 {
1066 LogRel(("g_pfnWinHvDepositMemory -> %#x / %#RX64\n", rcNt, uResult));
1067 return VERR_NEM_MAP_PAGES_FAILED;
1068 }
1069 }
1070}
1071#endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
1072
1073
1074/**
1075 * Maps pages into the guest physical address space.
1076 *
1077 * Generally the caller will be under the PGM lock already, so no extra effort
1078 * is needed to make sure all changes happens under it.
1079 *
1080 * @returns VBox status code.
1081 * @param pGVM The ring-0 VM handle.
1082 * @param idCpu The calling EMT. Necessary for getting the
1083 * hypercall page and arguments.
1084 * @thread EMT(idCpu)
1085 */
1086VMMR0_INT_DECL(int) NEMR0MapPages(PGVM pGVM, VMCPUID idCpu)
1087{
1088#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1089 /*
1090 * Unpack the call.
1091 */
1092 int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
1093 if (RT_SUCCESS(rc))
1094 {
1095 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
1096
1097 RTGCPHYS const GCPhysSrc = pGVCpu->nem.s.Hypercall.MapPages.GCPhysSrc;
1098 RTGCPHYS const GCPhysDst = pGVCpu->nem.s.Hypercall.MapPages.GCPhysDst;
1099 uint32_t const cPages = pGVCpu->nem.s.Hypercall.MapPages.cPages;
1100 HV_MAP_GPA_FLAGS const fFlags = pGVCpu->nem.s.Hypercall.MapPages.fFlags;
1101
1102 /*
1103 * Do the work.
1104 */
1105 rc = nemR0WinMapPages(pGVM, pGVCpu, GCPhysSrc, GCPhysDst, cPages, fFlags);
1106 }
1107 return rc;
1108#else
1109 RT_NOREF(pGVM, idCpu);
1110 return VERR_NOT_IMPLEMENTED;
1111#endif
1112}
1113
1114
1115#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1116/**
1117 * Worker for NEMR0UnmapPages and others.
1118 */
1119NEM_TMPL_STATIC int nemR0WinUnmapPages(PGVM pGVM, PGVMCPU pGVCpu, RTGCPHYS GCPhys, uint32_t cPages)
1120{
1121 /*
1122 * Validate input.
1123 */
1124 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1);
1125
1126 AssertReturn(cPages > 0, VERR_OUT_OF_RANGE);
1127 AssertReturn(cPages <= NEM_MAX_UNMAP_PAGES, VERR_OUT_OF_RANGE);
1128 AssertMsgReturn(!(GCPhys & X86_PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_OUT_OF_RANGE);
1129 AssertReturn(GCPhys < _1E, VERR_OUT_OF_RANGE);
1130
1131 /*
1132 * Compose and make the hypercall.
1133 */
1134 HV_INPUT_UNMAP_GPA_PAGES *pUnmapPages = (HV_INPUT_UNMAP_GPA_PAGES *)pGVCpu->nemr0.s.HypercallData.pbPage;
1135 AssertPtrReturn(pUnmapPages, VERR_INTERNAL_ERROR_3);
1136 pUnmapPages->TargetPartitionId = pGVM->nemr0.s.idHvPartition;
1137 pUnmapPages->TargetGpaBase = GCPhys >> X86_PAGE_SHIFT;
1138 pUnmapPages->fFlags = 0;
1139
1140 uint64_t uResult = g_pfnHvlInvokeHypercall(HvCallUnmapGpaPages | ((uint64_t)cPages << 32),
1141 pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0);
1142 Log6(("NEMR0UnmapPages: %RGp L %u -> %#RX64\n", GCPhys, cPages, uResult));
1143 if (uResult == ((uint64_t)cPages << 32))
1144 {
1145# if 1 /* Do we need to do this? Hopefully not... */
1146 uint64_t volatile uR = g_pfnHvlInvokeHypercall(HvCallUncommitGpaPages | ((uint64_t)cPages << 32),
1147 pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0);
1148 AssertMsg(uR == ((uint64_t)cPages << 32), ("uR=%#RX64\n", uR)); NOREF(uR);
1149# endif
1150 return VINF_SUCCESS;
1151 }
1152
1153 LogRel(("g_pfnHvlInvokeHypercall/UnmapGpaPages -> %#RX64\n", uResult));
1154 return VERR_NEM_UNMAP_PAGES_FAILED;
1155}
1156#endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
1157
1158
1159/**
1160 * Unmaps pages from the guest physical address space.
1161 *
1162 * Generally the caller will be under the PGM lock already, so no extra effort
1163 * is needed to make sure all changes happens under it.
1164 *
1165 * @returns VBox status code.
1166 * @param pGVM The ring-0 VM handle.
1167 * @param idCpu The calling EMT. Necessary for getting the
1168 * hypercall page and arguments.
1169 * @thread EMT(idCpu)
1170 */
1171VMMR0_INT_DECL(int) NEMR0UnmapPages(PGVM pGVM, VMCPUID idCpu)
1172{
1173#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
1174 /*
1175 * Unpack the call.
1176 */
1177 int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
1178 if (RT_SUCCESS(rc))
1179 {
1180 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
1181
1182 RTGCPHYS const GCPhys = pGVCpu->nem.s.Hypercall.UnmapPages.GCPhys;
1183 uint32_t const cPages = pGVCpu->nem.s.Hypercall.UnmapPages.cPages;
1184
1185 /*
1186 * Do the work.
1187 */
1188 rc = nemR0WinUnmapPages(pGVM, pGVCpu, GCPhys, cPages);
1189 }
1190 return rc;
1191#else
1192 RT_NOREF(pGVM, idCpu);
1193 return VERR_NOT_IMPLEMENTED;
1194#endif
1195}
1196
1197
1198#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
1199/**
1200 * Worker for NEMR0ExportState.
1201 *
1202 * Intention is to use it internally later.
1203 *
1204 * @returns VBox status code.
1205 * @param pGVM The ring-0 VM handle.
1206 * @param pGVCpu The ring-0 VCPU handle.
1207 * @param pCtx The CPU context structure to import into.
1208 */
1209NEM_TMPL_STATIC int nemR0WinExportState(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx)
1210{
1211 HV_INPUT_SET_VP_REGISTERS *pInput = (HV_INPUT_SET_VP_REGISTERS *)pGVCpu->nemr0.s.HypercallData.pbPage;
1212 AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3);
1213 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1);
1214
1215 pInput->PartitionId = pGVM->nemr0.s.idHvPartition;
1216 pInput->VpIndex = pGVCpu->idCpu;
1217 pInput->RsvdZ = 0;
1218
1219 uint64_t const fWhat = ~pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK);
1220 if ( !fWhat
1221 && pGVCpu->nem.s.fCurrentInterruptWindows == pGVCpu->nem.s.fDesiredInterruptWindows)
1222 return VINF_SUCCESS;
1223 uintptr_t iReg = 0;
1224
1225 /* GPRs */
1226 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
1227 {
1228 if (fWhat & CPUMCTX_EXTRN_RAX)
1229 {
1230 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1231 pInput->Elements[iReg].Name = HvX64RegisterRax;
1232 pInput->Elements[iReg].Value.Reg64 = pCtx->rax;
1233 iReg++;
1234 }
1235 if (fWhat & CPUMCTX_EXTRN_RCX)
1236 {
1237 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1238 pInput->Elements[iReg].Name = HvX64RegisterRcx;
1239 pInput->Elements[iReg].Value.Reg64 = pCtx->rcx;
1240 iReg++;
1241 }
1242 if (fWhat & CPUMCTX_EXTRN_RDX)
1243 {
1244 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1245 pInput->Elements[iReg].Name = HvX64RegisterRdx;
1246 pInput->Elements[iReg].Value.Reg64 = pCtx->rdx;
1247 iReg++;
1248 }
1249 if (fWhat & CPUMCTX_EXTRN_RBX)
1250 {
1251 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1252 pInput->Elements[iReg].Name = HvX64RegisterRbx;
1253 pInput->Elements[iReg].Value.Reg64 = pCtx->rbx;
1254 iReg++;
1255 }
1256 if (fWhat & CPUMCTX_EXTRN_RSP)
1257 {
1258 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1259 pInput->Elements[iReg].Name = HvX64RegisterRsp;
1260 pInput->Elements[iReg].Value.Reg64 = pCtx->rsp;
1261 iReg++;
1262 }
1263 if (fWhat & CPUMCTX_EXTRN_RBP)
1264 {
1265 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1266 pInput->Elements[iReg].Name = HvX64RegisterRbp;
1267 pInput->Elements[iReg].Value.Reg64 = pCtx->rbp;
1268 iReg++;
1269 }
1270 if (fWhat & CPUMCTX_EXTRN_RSI)
1271 {
1272 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1273 pInput->Elements[iReg].Name = HvX64RegisterRsi;
1274 pInput->Elements[iReg].Value.Reg64 = pCtx->rsi;
1275 iReg++;
1276 }
1277 if (fWhat & CPUMCTX_EXTRN_RDI)
1278 {
1279 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1280 pInput->Elements[iReg].Name = HvX64RegisterRdi;
1281 pInput->Elements[iReg].Value.Reg64 = pCtx->rdi;
1282 iReg++;
1283 }
1284 if (fWhat & CPUMCTX_EXTRN_R8_R15)
1285 {
1286 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1287 pInput->Elements[iReg].Name = HvX64RegisterR8;
1288 pInput->Elements[iReg].Value.Reg64 = pCtx->r8;
1289 iReg++;
1290 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1291 pInput->Elements[iReg].Name = HvX64RegisterR9;
1292 pInput->Elements[iReg].Value.Reg64 = pCtx->r9;
1293 iReg++;
1294 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1295 pInput->Elements[iReg].Name = HvX64RegisterR10;
1296 pInput->Elements[iReg].Value.Reg64 = pCtx->r10;
1297 iReg++;
1298 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1299 pInput->Elements[iReg].Name = HvX64RegisterR11;
1300 pInput->Elements[iReg].Value.Reg64 = pCtx->r11;
1301 iReg++;
1302 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1303 pInput->Elements[iReg].Name = HvX64RegisterR12;
1304 pInput->Elements[iReg].Value.Reg64 = pCtx->r12;
1305 iReg++;
1306 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1307 pInput->Elements[iReg].Name = HvX64RegisterR13;
1308 pInput->Elements[iReg].Value.Reg64 = pCtx->r13;
1309 iReg++;
1310 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1311 pInput->Elements[iReg].Name = HvX64RegisterR14;
1312 pInput->Elements[iReg].Value.Reg64 = pCtx->r14;
1313 iReg++;
1314 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1315 pInput->Elements[iReg].Name = HvX64RegisterR15;
1316 pInput->Elements[iReg].Value.Reg64 = pCtx->r15;
1317 iReg++;
1318 }
1319 }
1320
1321 /* RIP & Flags */
1322 if (fWhat & CPUMCTX_EXTRN_RIP)
1323 {
1324 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1325 pInput->Elements[iReg].Name = HvX64RegisterRip;
1326 pInput->Elements[iReg].Value.Reg64 = pCtx->rip;
1327 iReg++;
1328 }
1329 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
1330 {
1331 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1332 pInput->Elements[iReg].Name = HvX64RegisterRflags;
1333 pInput->Elements[iReg].Value.Reg64 = pCtx->rflags.u;
1334 iReg++;
1335 }
1336
1337 /* Segments */
1338# define COPY_OUT_SEG(a_idx, a_enmName, a_SReg) \
1339 do { \
1340 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[a_idx]); \
1341 pInput->Elements[a_idx].Name = a_enmName; \
1342 pInput->Elements[a_idx].Value.Segment.Base = (a_SReg).u64Base; \
1343 pInput->Elements[a_idx].Value.Segment.Limit = (a_SReg).u32Limit; \
1344 pInput->Elements[a_idx].Value.Segment.Selector = (a_SReg).Sel; \
1345 pInput->Elements[a_idx].Value.Segment.Attributes = (a_SReg).Attr.u; \
1346 } while (0)
1347 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
1348 {
1349 if (fWhat & CPUMCTX_EXTRN_CS)
1350 {
1351 COPY_OUT_SEG(iReg, HvX64RegisterCs, pCtx->cs);
1352 iReg++;
1353 }
1354 if (fWhat & CPUMCTX_EXTRN_ES)
1355 {
1356 COPY_OUT_SEG(iReg, HvX64RegisterEs, pCtx->es);
1357 iReg++;
1358 }
1359 if (fWhat & CPUMCTX_EXTRN_SS)
1360 {
1361 COPY_OUT_SEG(iReg, HvX64RegisterSs, pCtx->ss);
1362 iReg++;
1363 }
1364 if (fWhat & CPUMCTX_EXTRN_DS)
1365 {
1366 COPY_OUT_SEG(iReg, HvX64RegisterDs, pCtx->ds);
1367 iReg++;
1368 }
1369 if (fWhat & CPUMCTX_EXTRN_FS)
1370 {
1371 COPY_OUT_SEG(iReg, HvX64RegisterFs, pCtx->fs);
1372 iReg++;
1373 }
1374 if (fWhat & CPUMCTX_EXTRN_GS)
1375 {
1376 COPY_OUT_SEG(iReg, HvX64RegisterGs, pCtx->gs);
1377 iReg++;
1378 }
1379 }
1380
1381 /* Descriptor tables & task segment. */
1382 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
1383 {
1384 if (fWhat & CPUMCTX_EXTRN_LDTR)
1385 {
1386 COPY_OUT_SEG(iReg, HvX64RegisterLdtr, pCtx->ldtr);
1387 iReg++;
1388 }
1389 if (fWhat & CPUMCTX_EXTRN_TR)
1390 {
1391 COPY_OUT_SEG(iReg, HvX64RegisterTr, pCtx->tr);
1392 iReg++;
1393 }
1394
1395 if (fWhat & CPUMCTX_EXTRN_IDTR)
1396 {
1397 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1398 pInput->Elements[iReg].Value.Table.Pad[0] = 0;
1399 pInput->Elements[iReg].Value.Table.Pad[1] = 0;
1400 pInput->Elements[iReg].Value.Table.Pad[2] = 0;
1401 pInput->Elements[iReg].Name = HvX64RegisterIdtr;
1402 pInput->Elements[iReg].Value.Table.Limit = pCtx->idtr.cbIdt;
1403 pInput->Elements[iReg].Value.Table.Base = pCtx->idtr.pIdt;
1404 iReg++;
1405 }
1406 if (fWhat & CPUMCTX_EXTRN_GDTR)
1407 {
1408 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1409 pInput->Elements[iReg].Value.Table.Pad[0] = 0;
1410 pInput->Elements[iReg].Value.Table.Pad[1] = 0;
1411 pInput->Elements[iReg].Value.Table.Pad[2] = 0;
1412 pInput->Elements[iReg].Name = HvX64RegisterGdtr;
1413 pInput->Elements[iReg].Value.Table.Limit = pCtx->gdtr.cbGdt;
1414 pInput->Elements[iReg].Value.Table.Base = pCtx->gdtr.pGdt;
1415 iReg++;
1416 }
1417 }
1418
1419 /* Control registers. */
1420 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
1421 {
1422 if (fWhat & CPUMCTX_EXTRN_CR0)
1423 {
1424 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1425 pInput->Elements[iReg].Name = HvX64RegisterCr0;
1426 pInput->Elements[iReg].Value.Reg64 = pCtx->cr0;
1427 iReg++;
1428 }
1429 if (fWhat & CPUMCTX_EXTRN_CR2)
1430 {
1431 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1432 pInput->Elements[iReg].Name = HvX64RegisterCr2;
1433 pInput->Elements[iReg].Value.Reg64 = pCtx->cr2;
1434 iReg++;
1435 }
1436 if (fWhat & CPUMCTX_EXTRN_CR3)
1437 {
1438 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1439 pInput->Elements[iReg].Name = HvX64RegisterCr3;
1440 pInput->Elements[iReg].Value.Reg64 = pCtx->cr3;
1441 iReg++;
1442 }
1443 if (fWhat & CPUMCTX_EXTRN_CR4)
1444 {
1445 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1446 pInput->Elements[iReg].Name = HvX64RegisterCr4;
1447 pInput->Elements[iReg].Value.Reg64 = pCtx->cr4;
1448 iReg++;
1449 }
1450 }
1451 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1452 {
1453 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1454 pInput->Elements[iReg].Name = HvX64RegisterCr8;
1455 pInput->Elements[iReg].Value.Reg64 = CPUMGetGuestCR8(pGVCpu);
1456 iReg++;
1457 }
1458
1459 /** @todo does HvX64RegisterXfem mean XCR0? What about the related MSR. */
1460
1461 /* Debug registers. */
1462/** @todo fixme. Figure out what the hyper-v version of KVM_SET_GUEST_DEBUG would be. */
1463 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1464 {
1465 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1466 pInput->Elements[iReg].Name = HvX64RegisterDr0;
1467 //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR0(pGVCpu);
1468 pInput->Elements[iReg].Value.Reg64 = pCtx->dr[0];
1469 iReg++;
1470 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1471 pInput->Elements[iReg].Name = HvX64RegisterDr1;
1472 //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR1(pGVCpu);
1473 pInput->Elements[iReg].Value.Reg64 = pCtx->dr[1];
1474 iReg++;
1475 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1476 pInput->Elements[iReg].Name = HvX64RegisterDr2;
1477 //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR2(pGVCpu);
1478 pInput->Elements[iReg].Value.Reg64 = pCtx->dr[2];
1479 iReg++;
1480 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1481 pInput->Elements[iReg].Name = HvX64RegisterDr3;
1482 //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR3(pGVCpu);
1483 pInput->Elements[iReg].Value.Reg64 = pCtx->dr[3];
1484 iReg++;
1485 }
1486 if (fWhat & CPUMCTX_EXTRN_DR6)
1487 {
1488 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1489 pInput->Elements[iReg].Name = HvX64RegisterDr6;
1490 //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR6(pGVCpu);
1491 pInput->Elements[iReg].Value.Reg64 = pCtx->dr[6];
1492 iReg++;
1493 }
1494 if (fWhat & CPUMCTX_EXTRN_DR7)
1495 {
1496 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1497 pInput->Elements[iReg].Name = HvX64RegisterDr7;
1498 //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR7(pGVCpu);
1499 pInput->Elements[iReg].Value.Reg64 = pCtx->dr[7];
1500 iReg++;
1501 }
1502
1503 /* Floating point state. */
1504 if (fWhat & CPUMCTX_EXTRN_X87)
1505 {
1506 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1507 pInput->Elements[iReg].Name = HvX64RegisterFpMmx0;
1508 pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[0].au64[0];
1509 pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[0].au64[1];
1510 iReg++;
1511 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1512 pInput->Elements[iReg].Name = HvX64RegisterFpMmx1;
1513 pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[1].au64[0];
1514 pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[1].au64[1];
1515 iReg++;
1516 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1517 pInput->Elements[iReg].Name = HvX64RegisterFpMmx2;
1518 pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[2].au64[0];
1519 pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[2].au64[1];
1520 iReg++;
1521 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1522 pInput->Elements[iReg].Name = HvX64RegisterFpMmx3;
1523 pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[3].au64[0];
1524 pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[3].au64[1];
1525 iReg++;
1526 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1527 pInput->Elements[iReg].Name = HvX64RegisterFpMmx4;
1528 pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[4].au64[0];
1529 pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[4].au64[1];
1530 iReg++;
1531 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1532 pInput->Elements[iReg].Name = HvX64RegisterFpMmx5;
1533 pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[5].au64[0];
1534 pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[5].au64[1];
1535 iReg++;
1536 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1537 pInput->Elements[iReg].Name = HvX64RegisterFpMmx6;
1538 pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[6].au64[0];
1539 pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[6].au64[1];
1540 iReg++;
1541 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1542 pInput->Elements[iReg].Name = HvX64RegisterFpMmx7;
1543 pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->XState.x87.aRegs[7].au64[0];
1544 pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->XState.x87.aRegs[7].au64[1];
1545 iReg++;
1546
1547 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1548 pInput->Elements[iReg].Name = HvX64RegisterFpControlStatus;
1549 pInput->Elements[iReg].Value.FpControlStatus.FpControl = pCtx->XState.x87.FCW;
1550 pInput->Elements[iReg].Value.FpControlStatus.FpStatus = pCtx->XState.x87.FSW;
1551 pInput->Elements[iReg].Value.FpControlStatus.FpTag = pCtx->XState.x87.FTW;
1552 pInput->Elements[iReg].Value.FpControlStatus.Reserved = pCtx->XState.x87.FTW >> 8;
1553 pInput->Elements[iReg].Value.FpControlStatus.LastFpOp = pCtx->XState.x87.FOP;
1554 pInput->Elements[iReg].Value.FpControlStatus.LastFpRip = (pCtx->XState.x87.FPUIP)
1555 | ((uint64_t)pCtx->XState.x87.CS << 32)
1556 | ((uint64_t)pCtx->XState.x87.Rsrvd1 << 48);
1557 iReg++;
1558/** @todo we've got trouble if if we try write just SSE w/o X87. */
1559 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1560 pInput->Elements[iReg].Name = HvX64RegisterXmmControlStatus;
1561 pInput->Elements[iReg].Value.XmmControlStatus.LastFpRdp = (pCtx->XState.x87.FPUDP)
1562 | ((uint64_t)pCtx->XState.x87.DS << 32)
1563 | ((uint64_t)pCtx->XState.x87.Rsrvd2 << 48);
1564 pInput->Elements[iReg].Value.XmmControlStatus.XmmStatusControl = pCtx->XState.x87.MXCSR;
1565 pInput->Elements[iReg].Value.XmmControlStatus.XmmStatusControlMask = pCtx->XState.x87.MXCSR_MASK; /** @todo ??? (Isn't this an output field?) */
1566 iReg++;
1567 }
1568
1569 /* Vector state. */
1570 if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
1571 {
1572 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1573 pInput->Elements[iReg].Name = HvX64RegisterXmm0;
1574 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[0].uXmm.s.Lo;
1575 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[0].uXmm.s.Hi;
1576 iReg++;
1577 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1578 pInput->Elements[iReg].Name = HvX64RegisterXmm1;
1579 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[1].uXmm.s.Lo;
1580 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[1].uXmm.s.Hi;
1581 iReg++;
1582 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1583 pInput->Elements[iReg].Name = HvX64RegisterXmm2;
1584 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[2].uXmm.s.Lo;
1585 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[2].uXmm.s.Hi;
1586 iReg++;
1587 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1588 pInput->Elements[iReg].Name = HvX64RegisterXmm3;
1589 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[3].uXmm.s.Lo;
1590 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[3].uXmm.s.Hi;
1591 iReg++;
1592 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1593 pInput->Elements[iReg].Name = HvX64RegisterXmm4;
1594 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[4].uXmm.s.Lo;
1595 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[4].uXmm.s.Hi;
1596 iReg++;
1597 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1598 pInput->Elements[iReg].Name = HvX64RegisterXmm5;
1599 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[5].uXmm.s.Lo;
1600 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[5].uXmm.s.Hi;
1601 iReg++;
1602 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1603 pInput->Elements[iReg].Name = HvX64RegisterXmm6;
1604 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[6].uXmm.s.Lo;
1605 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[6].uXmm.s.Hi;
1606 iReg++;
1607 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1608 pInput->Elements[iReg].Name = HvX64RegisterXmm7;
1609 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[7].uXmm.s.Lo;
1610 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[7].uXmm.s.Hi;
1611 iReg++;
1612 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1613 pInput->Elements[iReg].Name = HvX64RegisterXmm8;
1614 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[8].uXmm.s.Lo;
1615 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[8].uXmm.s.Hi;
1616 iReg++;
1617 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1618 pInput->Elements[iReg].Name = HvX64RegisterXmm9;
1619 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[9].uXmm.s.Lo;
1620 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[9].uXmm.s.Hi;
1621 iReg++;
1622 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1623 pInput->Elements[iReg].Name = HvX64RegisterXmm10;
1624 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[10].uXmm.s.Lo;
1625 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[10].uXmm.s.Hi;
1626 iReg++;
1627 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1628 pInput->Elements[iReg].Name = HvX64RegisterXmm11;
1629 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[11].uXmm.s.Lo;
1630 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[11].uXmm.s.Hi;
1631 iReg++;
1632 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1633 pInput->Elements[iReg].Name = HvX64RegisterXmm12;
1634 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[12].uXmm.s.Lo;
1635 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[12].uXmm.s.Hi;
1636 iReg++;
1637 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1638 pInput->Elements[iReg].Name = HvX64RegisterXmm13;
1639 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[13].uXmm.s.Lo;
1640 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[13].uXmm.s.Hi;
1641 iReg++;
1642 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1643 pInput->Elements[iReg].Name = HvX64RegisterXmm14;
1644 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[14].uXmm.s.Lo;
1645 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[14].uXmm.s.Hi;
1646 iReg++;
1647 HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]);
1648 pInput->Elements[iReg].Name = HvX64RegisterXmm15;
1649 pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->XState.x87.aXMM[15].uXmm.s.Lo;
1650 pInput->Elements[iReg].Value.Reg128.High64 = pCtx->XState.x87.aXMM[15].uXmm.s.Hi;
1651 iReg++;
1652 }
1653
1654 /* MSRs */
1655 // HvX64RegisterTsc - don't touch
1656 if (fWhat & CPUMCTX_EXTRN_EFER)
1657 {
1658 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1659 pInput->Elements[iReg].Name = HvX64RegisterEfer;
1660 pInput->Elements[iReg].Value.Reg64 = pCtx->msrEFER;
1661 iReg++;
1662 }
1663 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1664 {
1665 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1666 pInput->Elements[iReg].Name = HvX64RegisterKernelGsBase;
1667 pInput->Elements[iReg].Value.Reg64 = pCtx->msrKERNELGSBASE;
1668 iReg++;
1669 }
1670 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1671 {
1672 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1673 pInput->Elements[iReg].Name = HvX64RegisterSysenterCs;
1674 pInput->Elements[iReg].Value.Reg64 = pCtx->SysEnter.cs;
1675 iReg++;
1676 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1677 pInput->Elements[iReg].Name = HvX64RegisterSysenterEip;
1678 pInput->Elements[iReg].Value.Reg64 = pCtx->SysEnter.eip;
1679 iReg++;
1680 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1681 pInput->Elements[iReg].Name = HvX64RegisterSysenterEsp;
1682 pInput->Elements[iReg].Value.Reg64 = pCtx->SysEnter.esp;
1683 iReg++;
1684 }
1685 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1686 {
1687 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1688 pInput->Elements[iReg].Name = HvX64RegisterStar;
1689 pInput->Elements[iReg].Value.Reg64 = pCtx->msrSTAR;
1690 iReg++;
1691 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1692 pInput->Elements[iReg].Name = HvX64RegisterLstar;
1693 pInput->Elements[iReg].Value.Reg64 = pCtx->msrLSTAR;
1694 iReg++;
1695 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1696 pInput->Elements[iReg].Name = HvX64RegisterCstar;
1697 pInput->Elements[iReg].Value.Reg64 = pCtx->msrCSTAR;
1698 iReg++;
1699 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1700 pInput->Elements[iReg].Name = HvX64RegisterSfmask;
1701 pInput->Elements[iReg].Value.Reg64 = pCtx->msrSFMASK;
1702 iReg++;
1703 }
1704 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1705 {
1706 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1707 pInput->Elements[iReg].Name = HvX64RegisterApicBase;
1708 pInput->Elements[iReg].Value.Reg64 = APICGetBaseMsrNoCheck(pGVCpu);
1709 iReg++;
1710 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1711 pInput->Elements[iReg].Name = HvX64RegisterPat;
1712 pInput->Elements[iReg].Value.Reg64 = pCtx->msrPAT;
1713 iReg++;
1714# if 0 /** @todo HvX64RegisterMtrrCap is read only? Seems it's not even readable. */
1715 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1716 pInput->Elements[iReg].Name = HvX64RegisterMtrrCap;
1717 pInput->Elements[iReg].Value.Reg64 = CPUMGetGuestIa32MtrrCap(pGVCpu);
1718 iReg++;
1719# endif
1720
1721 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pGVCpu);
1722
1723 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1724 pInput->Elements[iReg].Name = HvX64RegisterMtrrDefType;
1725 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrDefType;
1726 iReg++;
1727
1728 /** @todo we dont keep state for HvX64RegisterMtrrPhysBaseX and HvX64RegisterMtrrPhysMaskX */
1729
1730 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1731 pInput->Elements[iReg].Name = HvX64RegisterMtrrFix64k00000;
1732 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix64K_00000;
1733 iReg++;
1734 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1735 pInput->Elements[iReg].Name = HvX64RegisterMtrrFix16k80000;
1736 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix16K_80000;
1737 iReg++;
1738 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1739 pInput->Elements[iReg].Name = HvX64RegisterMtrrFix16kA0000;
1740 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix16K_A0000;
1741 iReg++;
1742 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1743 pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kC0000;
1744 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_C0000;
1745 iReg++;
1746 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1747 pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kC8000;
1748 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_C8000;
1749 iReg++;
1750 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1751 pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kD0000;
1752 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_D0000;
1753 iReg++;
1754 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1755 pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kD8000;
1756 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_D8000;
1757 iReg++;
1758 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1759 pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kE0000;
1760 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_E0000;
1761 iReg++;
1762 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1763 pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kE8000;
1764 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_E8000;
1765 iReg++;
1766 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1767 pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kF0000;
1768 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_F0000;
1769 iReg++;
1770 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1771 pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kF8000;
1772 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_F8000;
1773 iReg++;
1774 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1775 pInput->Elements[iReg].Name = HvX64RegisterTscAux;
1776 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.TscAux;
1777 iReg++;
1778
1779# if 0 /** @todo Why can't we write these on Intel systems? Not that we really care... */
1780 const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM);
1781 if (enmCpuVendor != CPUMCPUVENDOR_AMD)
1782 {
1783 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1784 pInput->Elements[iReg].Name = HvX64RegisterIa32MiscEnable;
1785 pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MiscEnable;
1786 iReg++;
1787 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1788 pInput->Elements[iReg].Name = HvX64RegisterIa32FeatureControl;
1789 pInput->Elements[iReg].Value.Reg64 = CPUMGetGuestIa32FeatureControl(pGVCpu);
1790 iReg++;
1791 }
1792# endif
1793 }
1794
1795 /* event injection (clear it). */
1796 if (fWhat & CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)
1797 {
1798 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1799 pInput->Elements[iReg].Name = HvRegisterPendingInterruption;
1800 pInput->Elements[iReg].Value.Reg64 = 0;
1801 iReg++;
1802 }
1803
1804 /* Interruptibility state. This can get a little complicated since we get
1805 half of the state via HV_X64_VP_EXECUTION_STATE. */
1806 if ( (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
1807 == (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI) )
1808 {
1809 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1810 pInput->Elements[iReg].Name = HvRegisterInterruptState;
1811 pInput->Elements[iReg].Value.Reg64 = 0;
1812 if ( VMCPU_FF_IS_SET(pGVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
1813 && EMGetInhibitInterruptsPC(pGVCpu) == pCtx->rip)
1814 pInput->Elements[iReg].Value.InterruptState.InterruptShadow = 1;
1815 if (VMCPU_FF_IS_SET(pGVCpu, VMCPU_FF_BLOCK_NMIS))
1816 pInput->Elements[iReg].Value.InterruptState.NmiMasked = 1;
1817 iReg++;
1818 }
1819 else if (fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT)
1820 {
1821 if ( pGVCpu->nem.s.fLastInterruptShadow
1822 || ( VMCPU_FF_IS_SET(pGVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
1823 && EMGetInhibitInterruptsPC(pGVCpu) == pCtx->rip))
1824 {
1825 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1826 pInput->Elements[iReg].Name = HvRegisterInterruptState;
1827 pInput->Elements[iReg].Value.Reg64 = 0;
1828 if ( VMCPU_FF_IS_SET(pGVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
1829 && EMGetInhibitInterruptsPC(pGVCpu) == pCtx->rip)
1830 pInput->Elements[iReg].Value.InterruptState.InterruptShadow = 1;
1831 /** @todo Retrieve NMI state, currently assuming it's zero. (yes this may happen on I/O) */
1832 //if (VMCPU_FF_IS_ANY_SET(pGVCpu, VMCPU_FF_BLOCK_NMIS))
1833 // pInput->Elements[iReg].Value.InterruptState.NmiMasked = 1;
1834 iReg++;
1835 }
1836 }
1837 else
1838 Assert(!(fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI));
1839
1840 /* Interrupt windows. Always set if active as Hyper-V seems to be forgetful. */
1841 uint8_t const fDesiredIntWin = pGVCpu->nem.s.fDesiredInterruptWindows;
1842 if ( fDesiredIntWin
1843 || pGVCpu->nem.s.fCurrentInterruptWindows != fDesiredIntWin)
1844 {
1845 pGVCpu->nem.s.fCurrentInterruptWindows = pGVCpu->nem.s.fDesiredInterruptWindows;
1846 HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]);
1847 pInput->Elements[iReg].Name = HvX64RegisterDeliverabilityNotifications;
1848 pInput->Elements[iReg].Value.DeliverabilityNotifications.AsUINT64 = fDesiredIntWin;
1849 Assert(pInput->Elements[iReg].Value.DeliverabilityNotifications.NmiNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_NMI));
1850 Assert(pInput->Elements[iReg].Value.DeliverabilityNotifications.InterruptNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_REGULAR));
1851 Assert(pInput->Elements[iReg].Value.DeliverabilityNotifications.InterruptPriority == (fDesiredIntWin & NEM_WIN_INTW_F_PRIO_MASK) >> NEM_WIN_INTW_F_PRIO_SHIFT);
1852 iReg++;
1853 }
1854
1855 /// @todo HvRegisterPendingEvent0
1856 /// @todo HvRegisterPendingEvent1
1857
1858 /*
1859 * Set the registers.
1860 */
1861 Assert((uintptr_t)&pInput->Elements[iReg] - (uintptr_t)pGVCpu->nemr0.s.HypercallData.pbPage < PAGE_SIZE); /* max is 127 */
1862
1863 /*
1864 * Make the hypercall.
1865 */
1866 uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallSetVpRegisters, iReg),
1867 pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0 /*GCPhysOutput*/);
1868 AssertLogRelMsgReturn(uResult == HV_MAKE_CALL_REP_RET(iReg),
1869 ("uResult=%RX64 iRegs=%#x\n", uResult, iReg),
1870 VERR_NEM_SET_REGISTERS_FAILED);
1871 //LogFlow(("nemR0WinExportState: uResult=%#RX64 iReg=%zu fWhat=%#018RX64 fExtrn=%#018RX64 -> %#018RX64\n", uResult, iReg, fWhat, pCtx->fExtrn,
1872 // pCtx->fExtrn | CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK | CPUMCTX_EXTRN_KEEPER_NEM ));
1873 pCtx->fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK | CPUMCTX_EXTRN_KEEPER_NEM;
1874 return VINF_SUCCESS;
1875}
1876#endif /* NEM_WIN_WITH_RING0_RUNLOOP || NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
1877
1878
1879/**
1880 * Export the state to the native API (out of CPUMCTX).
1881 *
1882 * @returns VBox status code
1883 * @param pGVM The ring-0 VM handle.
1884 * @param idCpu The calling EMT. Necessary for getting the
1885 * hypercall page and arguments.
1886 */
1887VMMR0_INT_DECL(int) NEMR0ExportState(PGVM pGVM, VMCPUID idCpu)
1888{
1889#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
1890 /*
1891 * Validate the call.
1892 */
1893 int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
1894 if (RT_SUCCESS(rc))
1895 {
1896 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
1897 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1);
1898
1899 /*
1900 * Call worker.
1901 */
1902 rc = nemR0WinExportState(pGVM, pGVCpu, &pGVCpu->cpum.GstCtx);
1903 }
1904 return rc;
1905#else
1906 RT_NOREF(pGVM, idCpu);
1907 return VERR_NOT_IMPLEMENTED;
1908#endif
1909}
1910
1911
1912#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
1913/**
1914 * Worker for NEMR0ImportState.
1915 *
1916 * Intention is to use it internally later.
1917 *
1918 * @returns VBox status code.
1919 * @param pGVM The ring-0 VM handle.
1920 * @param pGVCpu The ring-0 VCPU handle.
1921 * @param pCtx The CPU context structure to import into.
1922 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
1923 * @param fCanUpdateCr3 Whether it's safe to update CR3 or not.
1924 */
1925NEM_TMPL_STATIC int nemR0WinImportState(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx, uint64_t fWhat, bool fCanUpdateCr3)
1926{
1927 HV_INPUT_GET_VP_REGISTERS *pInput = (HV_INPUT_GET_VP_REGISTERS *)pGVCpu->nemr0.s.HypercallData.pbPage;
1928 AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3);
1929 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1);
1930 Assert(pCtx == &pGVCpu->cpum.GstCtx);
1931
1932 fWhat &= pCtx->fExtrn;
1933
1934 pInput->PartitionId = pGVM->nemr0.s.idHvPartition;
1935 pInput->VpIndex = pGVCpu->idCpu;
1936 pInput->fFlags = 0;
1937
1938 /* GPRs */
1939 uintptr_t iReg = 0;
1940 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
1941 {
1942 if (fWhat & CPUMCTX_EXTRN_RAX)
1943 pInput->Names[iReg++] = HvX64RegisterRax;
1944 if (fWhat & CPUMCTX_EXTRN_RCX)
1945 pInput->Names[iReg++] = HvX64RegisterRcx;
1946 if (fWhat & CPUMCTX_EXTRN_RDX)
1947 pInput->Names[iReg++] = HvX64RegisterRdx;
1948 if (fWhat & CPUMCTX_EXTRN_RBX)
1949 pInput->Names[iReg++] = HvX64RegisterRbx;
1950 if (fWhat & CPUMCTX_EXTRN_RSP)
1951 pInput->Names[iReg++] = HvX64RegisterRsp;
1952 if (fWhat & CPUMCTX_EXTRN_RBP)
1953 pInput->Names[iReg++] = HvX64RegisterRbp;
1954 if (fWhat & CPUMCTX_EXTRN_RSI)
1955 pInput->Names[iReg++] = HvX64RegisterRsi;
1956 if (fWhat & CPUMCTX_EXTRN_RDI)
1957 pInput->Names[iReg++] = HvX64RegisterRdi;
1958 if (fWhat & CPUMCTX_EXTRN_R8_R15)
1959 {
1960 pInput->Names[iReg++] = HvX64RegisterR8;
1961 pInput->Names[iReg++] = HvX64RegisterR9;
1962 pInput->Names[iReg++] = HvX64RegisterR10;
1963 pInput->Names[iReg++] = HvX64RegisterR11;
1964 pInput->Names[iReg++] = HvX64RegisterR12;
1965 pInput->Names[iReg++] = HvX64RegisterR13;
1966 pInput->Names[iReg++] = HvX64RegisterR14;
1967 pInput->Names[iReg++] = HvX64RegisterR15;
1968 }
1969 }
1970
1971 /* RIP & Flags */
1972 if (fWhat & CPUMCTX_EXTRN_RIP)
1973 pInput->Names[iReg++] = HvX64RegisterRip;
1974 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
1975 pInput->Names[iReg++] = HvX64RegisterRflags;
1976
1977 /* Segments */
1978 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
1979 {
1980 if (fWhat & CPUMCTX_EXTRN_CS)
1981 pInput->Names[iReg++] = HvX64RegisterCs;
1982 if (fWhat & CPUMCTX_EXTRN_ES)
1983 pInput->Names[iReg++] = HvX64RegisterEs;
1984 if (fWhat & CPUMCTX_EXTRN_SS)
1985 pInput->Names[iReg++] = HvX64RegisterSs;
1986 if (fWhat & CPUMCTX_EXTRN_DS)
1987 pInput->Names[iReg++] = HvX64RegisterDs;
1988 if (fWhat & CPUMCTX_EXTRN_FS)
1989 pInput->Names[iReg++] = HvX64RegisterFs;
1990 if (fWhat & CPUMCTX_EXTRN_GS)
1991 pInput->Names[iReg++] = HvX64RegisterGs;
1992 }
1993
1994 /* Descriptor tables and the task segment. */
1995 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
1996 {
1997 if (fWhat & CPUMCTX_EXTRN_LDTR)
1998 pInput->Names[iReg++] = HvX64RegisterLdtr;
1999 if (fWhat & CPUMCTX_EXTRN_TR)
2000 pInput->Names[iReg++] = HvX64RegisterTr;
2001 if (fWhat & CPUMCTX_EXTRN_IDTR)
2002 pInput->Names[iReg++] = HvX64RegisterIdtr;
2003 if (fWhat & CPUMCTX_EXTRN_GDTR)
2004 pInput->Names[iReg++] = HvX64RegisterGdtr;
2005 }
2006
2007 /* Control registers. */
2008 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2009 {
2010 if (fWhat & CPUMCTX_EXTRN_CR0)
2011 pInput->Names[iReg++] = HvX64RegisterCr0;
2012 if (fWhat & CPUMCTX_EXTRN_CR2)
2013 pInput->Names[iReg++] = HvX64RegisterCr2;
2014 if (fWhat & CPUMCTX_EXTRN_CR3)
2015 pInput->Names[iReg++] = HvX64RegisterCr3;
2016 if (fWhat & CPUMCTX_EXTRN_CR4)
2017 pInput->Names[iReg++] = HvX64RegisterCr4;
2018 }
2019 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
2020 pInput->Names[iReg++] = HvX64RegisterCr8;
2021
2022 /* Debug registers. */
2023 if (fWhat & CPUMCTX_EXTRN_DR7)
2024 pInput->Names[iReg++] = HvX64RegisterDr7;
2025 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
2026 {
2027 if (!(fWhat & CPUMCTX_EXTRN_DR7) && (pCtx->fExtrn & CPUMCTX_EXTRN_DR7))
2028 {
2029 fWhat |= CPUMCTX_EXTRN_DR7;
2030 pInput->Names[iReg++] = HvX64RegisterDr7;
2031 }
2032 pInput->Names[iReg++] = HvX64RegisterDr0;
2033 pInput->Names[iReg++] = HvX64RegisterDr1;
2034 pInput->Names[iReg++] = HvX64RegisterDr2;
2035 pInput->Names[iReg++] = HvX64RegisterDr3;
2036 }
2037 if (fWhat & CPUMCTX_EXTRN_DR6)
2038 pInput->Names[iReg++] = HvX64RegisterDr6;
2039
2040 /* Floating point state. */
2041 if (fWhat & CPUMCTX_EXTRN_X87)
2042 {
2043 pInput->Names[iReg++] = HvX64RegisterFpMmx0;
2044 pInput->Names[iReg++] = HvX64RegisterFpMmx1;
2045 pInput->Names[iReg++] = HvX64RegisterFpMmx2;
2046 pInput->Names[iReg++] = HvX64RegisterFpMmx3;
2047 pInput->Names[iReg++] = HvX64RegisterFpMmx4;
2048 pInput->Names[iReg++] = HvX64RegisterFpMmx5;
2049 pInput->Names[iReg++] = HvX64RegisterFpMmx6;
2050 pInput->Names[iReg++] = HvX64RegisterFpMmx7;
2051 pInput->Names[iReg++] = HvX64RegisterFpControlStatus;
2052 }
2053 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
2054 pInput->Names[iReg++] = HvX64RegisterXmmControlStatus;
2055
2056 /* Vector state. */
2057 if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
2058 {
2059 pInput->Names[iReg++] = HvX64RegisterXmm0;
2060 pInput->Names[iReg++] = HvX64RegisterXmm1;
2061 pInput->Names[iReg++] = HvX64RegisterXmm2;
2062 pInput->Names[iReg++] = HvX64RegisterXmm3;
2063 pInput->Names[iReg++] = HvX64RegisterXmm4;
2064 pInput->Names[iReg++] = HvX64RegisterXmm5;
2065 pInput->Names[iReg++] = HvX64RegisterXmm6;
2066 pInput->Names[iReg++] = HvX64RegisterXmm7;
2067 pInput->Names[iReg++] = HvX64RegisterXmm8;
2068 pInput->Names[iReg++] = HvX64RegisterXmm9;
2069 pInput->Names[iReg++] = HvX64RegisterXmm10;
2070 pInput->Names[iReg++] = HvX64RegisterXmm11;
2071 pInput->Names[iReg++] = HvX64RegisterXmm12;
2072 pInput->Names[iReg++] = HvX64RegisterXmm13;
2073 pInput->Names[iReg++] = HvX64RegisterXmm14;
2074 pInput->Names[iReg++] = HvX64RegisterXmm15;
2075 }
2076
2077 /* MSRs */
2078 // HvX64RegisterTsc - don't touch
2079 if (fWhat & CPUMCTX_EXTRN_EFER)
2080 pInput->Names[iReg++] = HvX64RegisterEfer;
2081 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2082 pInput->Names[iReg++] = HvX64RegisterKernelGsBase;
2083 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2084 {
2085 pInput->Names[iReg++] = HvX64RegisterSysenterCs;
2086 pInput->Names[iReg++] = HvX64RegisterSysenterEip;
2087 pInput->Names[iReg++] = HvX64RegisterSysenterEsp;
2088 }
2089 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2090 {
2091 pInput->Names[iReg++] = HvX64RegisterStar;
2092 pInput->Names[iReg++] = HvX64RegisterLstar;
2093 pInput->Names[iReg++] = HvX64RegisterCstar;
2094 pInput->Names[iReg++] = HvX64RegisterSfmask;
2095 }
2096
2097# ifdef LOG_ENABLED
2098 const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM);
2099# endif
2100 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
2101 {
2102 pInput->Names[iReg++] = HvX64RegisterApicBase; /// @todo APIC BASE
2103 pInput->Names[iReg++] = HvX64RegisterPat;
2104# if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */
2105 pInput->Names[iReg++] = HvX64RegisterMtrrCap;
2106# endif
2107 pInput->Names[iReg++] = HvX64RegisterMtrrDefType;
2108 pInput->Names[iReg++] = HvX64RegisterMtrrFix64k00000;
2109 pInput->Names[iReg++] = HvX64RegisterMtrrFix16k80000;
2110 pInput->Names[iReg++] = HvX64RegisterMtrrFix16kA0000;
2111 pInput->Names[iReg++] = HvX64RegisterMtrrFix4kC0000;
2112 pInput->Names[iReg++] = HvX64RegisterMtrrFix4kC8000;
2113 pInput->Names[iReg++] = HvX64RegisterMtrrFix4kD0000;
2114 pInput->Names[iReg++] = HvX64RegisterMtrrFix4kD8000;
2115 pInput->Names[iReg++] = HvX64RegisterMtrrFix4kE0000;
2116 pInput->Names[iReg++] = HvX64RegisterMtrrFix4kE8000;
2117 pInput->Names[iReg++] = HvX64RegisterMtrrFix4kF0000;
2118 pInput->Names[iReg++] = HvX64RegisterMtrrFix4kF8000;
2119 pInput->Names[iReg++] = HvX64RegisterTscAux;
2120# if 0 /** @todo why can't we read HvX64RegisterIa32MiscEnable? */
2121 if (enmCpuVendor != CPUMCPUVENDOR_AMD)
2122 pInput->Names[iReg++] = HvX64RegisterIa32MiscEnable;
2123# endif
2124# ifdef LOG_ENABLED
2125 if (enmCpuVendor != CPUMCPUVENDOR_AMD && enmCpuVendor != CPUMCPUVENDOR_HYGON)
2126 pInput->Names[iReg++] = HvX64RegisterIa32FeatureControl;
2127# endif
2128 }
2129
2130 /* Interruptibility. */
2131 if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
2132 {
2133 pInput->Names[iReg++] = HvRegisterInterruptState;
2134 pInput->Names[iReg++] = HvX64RegisterRip;
2135 }
2136
2137 /* event injection */
2138 pInput->Names[iReg++] = HvRegisterPendingInterruption;
2139 pInput->Names[iReg++] = HvRegisterPendingEvent0;
2140 pInput->Names[iReg++] = HvRegisterPendingEvent1;
2141 size_t const cRegs = iReg;
2142 size_t const cbInput = RT_ALIGN_Z(RT_UOFFSETOF_DYN(HV_INPUT_GET_VP_REGISTERS, Names[cRegs]), 32);
2143
2144 HV_REGISTER_VALUE *paValues = (HV_REGISTER_VALUE *)((uint8_t *)pInput + cbInput);
2145 Assert((uintptr_t)&paValues[cRegs] - (uintptr_t)pGVCpu->nemr0.s.HypercallData.pbPage < PAGE_SIZE); /* (max is around 168 registers) */
2146 RT_BZERO(paValues, cRegs * sizeof(paValues[0]));
2147
2148 /*
2149 * Make the hypercall.
2150 */
2151 uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallGetVpRegisters, cRegs),
2152 pGVCpu->nemr0.s.HypercallData.HCPhysPage,
2153 pGVCpu->nemr0.s.HypercallData.HCPhysPage + cbInput);
2154 AssertLogRelMsgReturn(uResult == HV_MAKE_CALL_REP_RET(cRegs),
2155 ("uResult=%RX64 cRegs=%#x\n", uResult, cRegs),
2156 VERR_NEM_GET_REGISTERS_FAILED);
2157 //LogFlow(("nemR0WinImportState: uResult=%#RX64 iReg=%zu fWhat=%#018RX64 fExtr=%#018RX64\n", uResult, cRegs, fWhat, pCtx->fExtrn));
2158
2159 /*
2160 * Copy information to the CPUM context.
2161 */
2162 iReg = 0;
2163
2164 /* GPRs */
2165 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
2166 {
2167 if (fWhat & CPUMCTX_EXTRN_RAX)
2168 {
2169 Assert(pInput->Names[iReg] == HvX64RegisterRax);
2170 pCtx->rax = paValues[iReg++].Reg64;
2171 }
2172 if (fWhat & CPUMCTX_EXTRN_RCX)
2173 {
2174 Assert(pInput->Names[iReg] == HvX64RegisterRcx);
2175 pCtx->rcx = paValues[iReg++].Reg64;
2176 }
2177 if (fWhat & CPUMCTX_EXTRN_RDX)
2178 {
2179 Assert(pInput->Names[iReg] == HvX64RegisterRdx);
2180 pCtx->rdx = paValues[iReg++].Reg64;
2181 }
2182 if (fWhat & CPUMCTX_EXTRN_RBX)
2183 {
2184 Assert(pInput->Names[iReg] == HvX64RegisterRbx);
2185 pCtx->rbx = paValues[iReg++].Reg64;
2186 }
2187 if (fWhat & CPUMCTX_EXTRN_RSP)
2188 {
2189 Assert(pInput->Names[iReg] == HvX64RegisterRsp);
2190 pCtx->rsp = paValues[iReg++].Reg64;
2191 }
2192 if (fWhat & CPUMCTX_EXTRN_RBP)
2193 {
2194 Assert(pInput->Names[iReg] == HvX64RegisterRbp);
2195 pCtx->rbp = paValues[iReg++].Reg64;
2196 }
2197 if (fWhat & CPUMCTX_EXTRN_RSI)
2198 {
2199 Assert(pInput->Names[iReg] == HvX64RegisterRsi);
2200 pCtx->rsi = paValues[iReg++].Reg64;
2201 }
2202 if (fWhat & CPUMCTX_EXTRN_RDI)
2203 {
2204 Assert(pInput->Names[iReg] == HvX64RegisterRdi);
2205 pCtx->rdi = paValues[iReg++].Reg64;
2206 }
2207 if (fWhat & CPUMCTX_EXTRN_R8_R15)
2208 {
2209 Assert(pInput->Names[iReg] == HvX64RegisterR8);
2210 Assert(pInput->Names[iReg + 7] == HvX64RegisterR15);
2211 pCtx->r8 = paValues[iReg++].Reg64;
2212 pCtx->r9 = paValues[iReg++].Reg64;
2213 pCtx->r10 = paValues[iReg++].Reg64;
2214 pCtx->r11 = paValues[iReg++].Reg64;
2215 pCtx->r12 = paValues[iReg++].Reg64;
2216 pCtx->r13 = paValues[iReg++].Reg64;
2217 pCtx->r14 = paValues[iReg++].Reg64;
2218 pCtx->r15 = paValues[iReg++].Reg64;
2219 }
2220 }
2221
2222 /* RIP & Flags */
2223 if (fWhat & CPUMCTX_EXTRN_RIP)
2224 {
2225 Assert(pInput->Names[iReg] == HvX64RegisterRip);
2226 pCtx->rip = paValues[iReg++].Reg64;
2227 }
2228 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
2229 {
2230 Assert(pInput->Names[iReg] == HvX64RegisterRflags);
2231 pCtx->rflags.u = paValues[iReg++].Reg64;
2232 }
2233
2234 /* Segments */
2235# define COPY_BACK_SEG(a_idx, a_enmName, a_SReg) \
2236 do { \
2237 Assert(pInput->Names[a_idx] == a_enmName); \
2238 (a_SReg).u64Base = paValues[a_idx].Segment.Base; \
2239 (a_SReg).u32Limit = paValues[a_idx].Segment.Limit; \
2240 (a_SReg).ValidSel = (a_SReg).Sel = paValues[a_idx].Segment.Selector; \
2241 (a_SReg).Attr.u = paValues[a_idx].Segment.Attributes; \
2242 (a_SReg).fFlags = CPUMSELREG_FLAGS_VALID; \
2243 } while (0)
2244 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
2245 {
2246 if (fWhat & CPUMCTX_EXTRN_CS)
2247 {
2248 COPY_BACK_SEG(iReg, HvX64RegisterCs, pCtx->cs);
2249 iReg++;
2250 }
2251 if (fWhat & CPUMCTX_EXTRN_ES)
2252 {
2253 COPY_BACK_SEG(iReg, HvX64RegisterEs, pCtx->es);
2254 iReg++;
2255 }
2256 if (fWhat & CPUMCTX_EXTRN_SS)
2257 {
2258 COPY_BACK_SEG(iReg, HvX64RegisterSs, pCtx->ss);
2259 iReg++;
2260 }
2261 if (fWhat & CPUMCTX_EXTRN_DS)
2262 {
2263 COPY_BACK_SEG(iReg, HvX64RegisterDs, pCtx->ds);
2264 iReg++;
2265 }
2266 if (fWhat & CPUMCTX_EXTRN_FS)
2267 {
2268 COPY_BACK_SEG(iReg, HvX64RegisterFs, pCtx->fs);
2269 iReg++;
2270 }
2271 if (fWhat & CPUMCTX_EXTRN_GS)
2272 {
2273 COPY_BACK_SEG(iReg, HvX64RegisterGs, pCtx->gs);
2274 iReg++;
2275 }
2276 }
2277 /* Descriptor tables and the task segment. */
2278 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
2279 {
2280 if (fWhat & CPUMCTX_EXTRN_LDTR)
2281 {
2282 COPY_BACK_SEG(iReg, HvX64RegisterLdtr, pCtx->ldtr);
2283 iReg++;
2284 }
2285 if (fWhat & CPUMCTX_EXTRN_TR)
2286 {
2287 /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
2288 avoid to trigger sanity assertions around the code, always fix this. */
2289 COPY_BACK_SEG(iReg, HvX64RegisterTr, pCtx->tr);
2290 switch (pCtx->tr.Attr.n.u4Type)
2291 {
2292 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
2293 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
2294 break;
2295 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
2296 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
2297 break;
2298 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
2299 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
2300 break;
2301 }
2302 iReg++;
2303 }
2304 if (fWhat & CPUMCTX_EXTRN_IDTR)
2305 {
2306 Assert(pInput->Names[iReg] == HvX64RegisterIdtr);
2307 pCtx->idtr.cbIdt = paValues[iReg].Table.Limit;
2308 pCtx->idtr.pIdt = paValues[iReg].Table.Base;
2309 iReg++;
2310 }
2311 if (fWhat & CPUMCTX_EXTRN_GDTR)
2312 {
2313 Assert(pInput->Names[iReg] == HvX64RegisterGdtr);
2314 pCtx->gdtr.cbGdt = paValues[iReg].Table.Limit;
2315 pCtx->gdtr.pGdt = paValues[iReg].Table.Base;
2316 iReg++;
2317 }
2318 }
2319
2320 /* Control registers. */
2321 bool fMaybeChangedMode = false;
2322 bool fUpdateCr3 = false;
2323 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
2324 {
2325 if (fWhat & CPUMCTX_EXTRN_CR0)
2326 {
2327 Assert(pInput->Names[iReg] == HvX64RegisterCr0);
2328 if (pCtx->cr0 != paValues[iReg].Reg64)
2329 {
2330 CPUMSetGuestCR0(pGVCpu, paValues[iReg].Reg64);
2331 fMaybeChangedMode = true;
2332 }
2333 iReg++;
2334 }
2335 if (fWhat & CPUMCTX_EXTRN_CR2)
2336 {
2337 Assert(pInput->Names[iReg] == HvX64RegisterCr2);
2338 pCtx->cr2 = paValues[iReg].Reg64;
2339 iReg++;
2340 }
2341 if (fWhat & CPUMCTX_EXTRN_CR3)
2342 {
2343 Assert(pInput->Names[iReg] == HvX64RegisterCr3);
2344 if (pCtx->cr3 != paValues[iReg].Reg64)
2345 {
2346 CPUMSetGuestCR3(pGVCpu, paValues[iReg].Reg64);
2347 fUpdateCr3 = true;
2348 }
2349 iReg++;
2350 }
2351 if (fWhat & CPUMCTX_EXTRN_CR4)
2352 {
2353 Assert(pInput->Names[iReg] == HvX64RegisterCr4);
2354 if (pCtx->cr4 != paValues[iReg].Reg64)
2355 {
2356 CPUMSetGuestCR4(pGVCpu, paValues[iReg].Reg64);
2357 fMaybeChangedMode = true;
2358 }
2359 iReg++;
2360 }
2361 }
2362 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
2363 {
2364 Assert(pInput->Names[iReg] == HvX64RegisterCr8);
2365 APICSetTpr(pGVCpu, (uint8_t)paValues[iReg].Reg64 << 4);
2366 iReg++;
2367 }
2368
2369 /* Debug registers. */
2370 if (fWhat & CPUMCTX_EXTRN_DR7)
2371 {
2372 Assert(pInput->Names[iReg] == HvX64RegisterDr7);
2373 if (pCtx->dr[7] != paValues[iReg].Reg64)
2374 CPUMSetGuestDR7(pGVCpu, paValues[iReg].Reg64);
2375 pCtx->fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
2376 iReg++;
2377 }
2378 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
2379 {
2380 Assert(pInput->Names[iReg] == HvX64RegisterDr0);
2381 Assert(pInput->Names[iReg+3] == HvX64RegisterDr3);
2382 if (pCtx->dr[0] != paValues[iReg].Reg64)
2383 CPUMSetGuestDR0(pGVCpu, paValues[iReg].Reg64);
2384 iReg++;
2385 if (pCtx->dr[1] != paValues[iReg].Reg64)
2386 CPUMSetGuestDR1(pGVCpu, paValues[iReg].Reg64);
2387 iReg++;
2388 if (pCtx->dr[2] != paValues[iReg].Reg64)
2389 CPUMSetGuestDR2(pGVCpu, paValues[iReg].Reg64);
2390 iReg++;
2391 if (pCtx->dr[3] != paValues[iReg].Reg64)
2392 CPUMSetGuestDR3(pGVCpu, paValues[iReg].Reg64);
2393 iReg++;
2394 }
2395 if (fWhat & CPUMCTX_EXTRN_DR6)
2396 {
2397 Assert(pInput->Names[iReg] == HvX64RegisterDr6);
2398 if (pCtx->dr[6] != paValues[iReg].Reg64)
2399 CPUMSetGuestDR6(pGVCpu, paValues[iReg].Reg64);
2400 iReg++;
2401 }
2402
2403 /* Floating point state. */
2404 if (fWhat & CPUMCTX_EXTRN_X87)
2405 {
2406 Assert(pInput->Names[iReg] == HvX64RegisterFpMmx0);
2407 Assert(pInput->Names[iReg + 7] == HvX64RegisterFpMmx7);
2408 pCtx->XState.x87.aRegs[0].au64[0] = paValues[iReg].Fp.AsUINT128.Low64;
2409 pCtx->XState.x87.aRegs[0].au64[1] = paValues[iReg].Fp.AsUINT128.High64;
2410 iReg++;
2411 pCtx->XState.x87.aRegs[1].au64[0] = paValues[iReg].Fp.AsUINT128.Low64;
2412 pCtx->XState.x87.aRegs[1].au64[1] = paValues[iReg].Fp.AsUINT128.High64;
2413 iReg++;
2414 pCtx->XState.x87.aRegs[2].au64[0] = paValues[iReg].Fp.AsUINT128.Low64;
2415 pCtx->XState.x87.aRegs[2].au64[1] = paValues[iReg].Fp.AsUINT128.High64;
2416 iReg++;
2417 pCtx->XState.x87.aRegs[3].au64[0] = paValues[iReg].Fp.AsUINT128.Low64;
2418 pCtx->XState.x87.aRegs[3].au64[1] = paValues[iReg].Fp.AsUINT128.High64;
2419 iReg++;
2420 pCtx->XState.x87.aRegs[4].au64[0] = paValues[iReg].Fp.AsUINT128.Low64;
2421 pCtx->XState.x87.aRegs[4].au64[1] = paValues[iReg].Fp.AsUINT128.High64;
2422 iReg++;
2423 pCtx->XState.x87.aRegs[5].au64[0] = paValues[iReg].Fp.AsUINT128.Low64;
2424 pCtx->XState.x87.aRegs[5].au64[1] = paValues[iReg].Fp.AsUINT128.High64;
2425 iReg++;
2426 pCtx->XState.x87.aRegs[6].au64[0] = paValues[iReg].Fp.AsUINT128.Low64;
2427 pCtx->XState.x87.aRegs[6].au64[1] = paValues[iReg].Fp.AsUINT128.High64;
2428 iReg++;
2429 pCtx->XState.x87.aRegs[7].au64[0] = paValues[iReg].Fp.AsUINT128.Low64;
2430 pCtx->XState.x87.aRegs[7].au64[1] = paValues[iReg].Fp.AsUINT128.High64;
2431 iReg++;
2432
2433 Assert(pInput->Names[iReg] == HvX64RegisterFpControlStatus);
2434 pCtx->XState.x87.FCW = paValues[iReg].FpControlStatus.FpControl;
2435 pCtx->XState.x87.FSW = paValues[iReg].FpControlStatus.FpStatus;
2436 pCtx->XState.x87.FTW = paValues[iReg].FpControlStatus.FpTag
2437 /*| (paValues[iReg].FpControlStatus.Reserved << 8)*/;
2438 pCtx->XState.x87.FOP = paValues[iReg].FpControlStatus.LastFpOp;
2439 pCtx->XState.x87.FPUIP = (uint32_t)paValues[iReg].FpControlStatus.LastFpRip;
2440 pCtx->XState.x87.CS = (uint16_t)(paValues[iReg].FpControlStatus.LastFpRip >> 32);
2441 pCtx->XState.x87.Rsrvd1 = (uint16_t)(paValues[iReg].FpControlStatus.LastFpRip >> 48);
2442 iReg++;
2443 }
2444
2445 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
2446 {
2447 Assert(pInput->Names[iReg] == HvX64RegisterXmmControlStatus);
2448 if (fWhat & CPUMCTX_EXTRN_X87)
2449 {
2450 pCtx->XState.x87.FPUDP = (uint32_t)paValues[iReg].XmmControlStatus.LastFpRdp;
2451 pCtx->XState.x87.DS = (uint16_t)(paValues[iReg].XmmControlStatus.LastFpRdp >> 32);
2452 pCtx->XState.x87.Rsrvd2 = (uint16_t)(paValues[iReg].XmmControlStatus.LastFpRdp >> 48);
2453 }
2454 pCtx->XState.x87.MXCSR = paValues[iReg].XmmControlStatus.XmmStatusControl;
2455 pCtx->XState.x87.MXCSR_MASK = paValues[iReg].XmmControlStatus.XmmStatusControlMask; /** @todo ??? (Isn't this an output field?) */
2456 iReg++;
2457 }
2458
2459 /* Vector state. */
2460 if (fWhat & CPUMCTX_EXTRN_SSE_AVX)
2461 {
2462 Assert(pInput->Names[iReg] == HvX64RegisterXmm0);
2463 Assert(pInput->Names[iReg+15] == HvX64RegisterXmm15);
2464 pCtx->XState.x87.aXMM[0].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2465 pCtx->XState.x87.aXMM[0].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2466 iReg++;
2467 pCtx->XState.x87.aXMM[1].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2468 pCtx->XState.x87.aXMM[1].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2469 iReg++;
2470 pCtx->XState.x87.aXMM[2].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2471 pCtx->XState.x87.aXMM[2].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2472 iReg++;
2473 pCtx->XState.x87.aXMM[3].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2474 pCtx->XState.x87.aXMM[3].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2475 iReg++;
2476 pCtx->XState.x87.aXMM[4].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2477 pCtx->XState.x87.aXMM[4].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2478 iReg++;
2479 pCtx->XState.x87.aXMM[5].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2480 pCtx->XState.x87.aXMM[5].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2481 iReg++;
2482 pCtx->XState.x87.aXMM[6].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2483 pCtx->XState.x87.aXMM[6].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2484 iReg++;
2485 pCtx->XState.x87.aXMM[7].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2486 pCtx->XState.x87.aXMM[7].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2487 iReg++;
2488 pCtx->XState.x87.aXMM[8].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2489 pCtx->XState.x87.aXMM[8].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2490 iReg++;
2491 pCtx->XState.x87.aXMM[9].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2492 pCtx->XState.x87.aXMM[9].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2493 iReg++;
2494 pCtx->XState.x87.aXMM[10].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2495 pCtx->XState.x87.aXMM[10].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2496 iReg++;
2497 pCtx->XState.x87.aXMM[11].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2498 pCtx->XState.x87.aXMM[11].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2499 iReg++;
2500 pCtx->XState.x87.aXMM[12].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2501 pCtx->XState.x87.aXMM[12].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2502 iReg++;
2503 pCtx->XState.x87.aXMM[13].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2504 pCtx->XState.x87.aXMM[13].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2505 iReg++;
2506 pCtx->XState.x87.aXMM[14].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2507 pCtx->XState.x87.aXMM[14].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2508 iReg++;
2509 pCtx->XState.x87.aXMM[15].uXmm.s.Lo = paValues[iReg].Reg128.Low64;
2510 pCtx->XState.x87.aXMM[15].uXmm.s.Hi = paValues[iReg].Reg128.High64;
2511 iReg++;
2512 }
2513
2514
2515 /* MSRs */
2516 // HvX64RegisterTsc - don't touch
2517 if (fWhat & CPUMCTX_EXTRN_EFER)
2518 {
2519 Assert(pInput->Names[iReg] == HvX64RegisterEfer);
2520 if (paValues[iReg].Reg64 != pCtx->msrEFER)
2521 {
2522 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrEFER, paValues[iReg].Reg64));
2523 if ((paValues[iReg].Reg64 ^ pCtx->msrEFER) & MSR_K6_EFER_NXE)
2524 PGMNotifyNxeChanged(pGVCpu, RT_BOOL(paValues[iReg].Reg64 & MSR_K6_EFER_NXE));
2525 pCtx->msrEFER = paValues[iReg].Reg64;
2526 fMaybeChangedMode = true;
2527 }
2528 iReg++;
2529 }
2530 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
2531 {
2532 Assert(pInput->Names[iReg] == HvX64RegisterKernelGsBase);
2533 if (pCtx->msrKERNELGSBASE != paValues[iReg].Reg64)
2534 Log7(("NEM/%u: MSR KERNELGSBASE changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrKERNELGSBASE, paValues[iReg].Reg64));
2535 pCtx->msrKERNELGSBASE = paValues[iReg].Reg64;
2536 iReg++;
2537 }
2538 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
2539 {
2540 Assert(pInput->Names[iReg] == HvX64RegisterSysenterCs);
2541 if (pCtx->SysEnter.cs != paValues[iReg].Reg64)
2542 Log7(("NEM/%u: MSR SYSENTER.CS changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->SysEnter.cs, paValues[iReg].Reg64));
2543 pCtx->SysEnter.cs = paValues[iReg].Reg64;
2544 iReg++;
2545
2546 Assert(pInput->Names[iReg] == HvX64RegisterSysenterEip);
2547 if (pCtx->SysEnter.eip != paValues[iReg].Reg64)
2548 Log7(("NEM/%u: MSR SYSENTER.EIP changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->SysEnter.eip, paValues[iReg].Reg64));
2549 pCtx->SysEnter.eip = paValues[iReg].Reg64;
2550 iReg++;
2551
2552 Assert(pInput->Names[iReg] == HvX64RegisterSysenterEsp);
2553 if (pCtx->SysEnter.esp != paValues[iReg].Reg64)
2554 Log7(("NEM/%u: MSR SYSENTER.ESP changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->SysEnter.esp, paValues[iReg].Reg64));
2555 pCtx->SysEnter.esp = paValues[iReg].Reg64;
2556 iReg++;
2557 }
2558 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
2559 {
2560 Assert(pInput->Names[iReg] == HvX64RegisterStar);
2561 if (pCtx->msrSTAR != paValues[iReg].Reg64)
2562 Log7(("NEM/%u: MSR STAR changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrSTAR, paValues[iReg].Reg64));
2563 pCtx->msrSTAR = paValues[iReg].Reg64;
2564 iReg++;
2565
2566 Assert(pInput->Names[iReg] == HvX64RegisterLstar);
2567 if (pCtx->msrLSTAR != paValues[iReg].Reg64)
2568 Log7(("NEM/%u: MSR LSTAR changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrLSTAR, paValues[iReg].Reg64));
2569 pCtx->msrLSTAR = paValues[iReg].Reg64;
2570 iReg++;
2571
2572 Assert(pInput->Names[iReg] == HvX64RegisterCstar);
2573 if (pCtx->msrCSTAR != paValues[iReg].Reg64)
2574 Log7(("NEM/%u: MSR CSTAR changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrCSTAR, paValues[iReg].Reg64));
2575 pCtx->msrCSTAR = paValues[iReg].Reg64;
2576 iReg++;
2577
2578 Assert(pInput->Names[iReg] == HvX64RegisterSfmask);
2579 if (pCtx->msrSFMASK != paValues[iReg].Reg64)
2580 Log7(("NEM/%u: MSR SFMASK changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrSFMASK, paValues[iReg].Reg64));
2581 pCtx->msrSFMASK = paValues[iReg].Reg64;
2582 iReg++;
2583 }
2584 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
2585 {
2586 Assert(pInput->Names[iReg] == HvX64RegisterApicBase);
2587 const uint64_t uOldBase = APICGetBaseMsrNoCheck(pGVCpu);
2588 if (paValues[iReg].Reg64 != uOldBase)
2589 {
2590 Log7(("NEM/%u: MSR APICBase changed %RX64 -> %RX64 (%RX64)\n",
2591 pGVCpu->idCpu, uOldBase, paValues[iReg].Reg64, paValues[iReg].Reg64 ^ uOldBase));
2592 int rc2 = APICSetBaseMsr(pGVCpu, paValues[iReg].Reg64);
2593 AssertLogRelMsg(rc2 == VINF_SUCCESS, ("rc2=%Rrc [%#RX64]\n", rc2, paValues[iReg].Reg64));
2594 }
2595 iReg++;
2596
2597 Assert(pInput->Names[iReg] == HvX64RegisterPat);
2598 if (pCtx->msrPAT != paValues[iReg].Reg64)
2599 Log7(("NEM/%u: MSR PAT changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtx->msrPAT, paValues[iReg].Reg64));
2600 pCtx->msrPAT = paValues[iReg].Reg64;
2601 iReg++;
2602
2603# if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */
2604 Assert(pInput->Names[iReg] == HvX64RegisterMtrrCap);
2605 if (paValues[iReg].Reg64 != CPUMGetGuestIa32MtrrCap(pGVCpu))
2606 Log7(("NEM/%u: MSR MTRR_CAP changed %RX64 -> %RX64 (!!)\n", pGVCpu->idCpu, CPUMGetGuestIa32MtrrCap(pGVCpu), paValues[iReg].Reg64));
2607 iReg++;
2608# endif
2609
2610 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pGVCpu);
2611 Assert(pInput->Names[iReg] == HvX64RegisterMtrrDefType);
2612 if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrDefType )
2613 Log7(("NEM/%u: MSR MTRR_DEF_TYPE changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrDefType, paValues[iReg].Reg64));
2614 pCtxMsrs->msr.MtrrDefType = paValues[iReg].Reg64;
2615 iReg++;
2616
2617 /** @todo we dont keep state for HvX64RegisterMtrrPhysBaseX and HvX64RegisterMtrrPhysMaskX */
2618
2619 Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix64k00000);
2620 if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix64K_00000 )
2621 Log7(("NEM/%u: MSR MTRR_FIX16K_00000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix64K_00000, paValues[iReg].Reg64));
2622 pCtxMsrs->msr.MtrrFix64K_00000 = paValues[iReg].Reg64;
2623 iReg++;
2624
2625 Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix16k80000);
2626 if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix16K_80000 )
2627 Log7(("NEM/%u: MSR MTRR_FIX16K_80000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix16K_80000, paValues[iReg].Reg64));
2628 pCtxMsrs->msr.MtrrFix16K_80000 = paValues[iReg].Reg64;
2629 iReg++;
2630
2631 Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix16kA0000);
2632 if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix16K_A0000 )
2633 Log7(("NEM/%u: MSR MTRR_FIX16K_A0000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix16K_A0000, paValues[iReg].Reg64));
2634 pCtxMsrs->msr.MtrrFix16K_A0000 = paValues[iReg].Reg64;
2635 iReg++;
2636
2637 Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kC0000);
2638 if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_C0000 )
2639 Log7(("NEM/%u: MSR MTRR_FIX16K_C0000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_C0000, paValues[iReg].Reg64));
2640 pCtxMsrs->msr.MtrrFix4K_C0000 = paValues[iReg].Reg64;
2641 iReg++;
2642
2643 Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kC8000);
2644 if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_C8000 )
2645 Log7(("NEM/%u: MSR MTRR_FIX16K_C8000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_C8000, paValues[iReg].Reg64));
2646 pCtxMsrs->msr.MtrrFix4K_C8000 = paValues[iReg].Reg64;
2647 iReg++;
2648
2649 Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kD0000);
2650 if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_D0000 )
2651 Log7(("NEM/%u: MSR MTRR_FIX16K_D0000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_D0000, paValues[iReg].Reg64));
2652 pCtxMsrs->msr.MtrrFix4K_D0000 = paValues[iReg].Reg64;
2653 iReg++;
2654
2655 Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kD8000);
2656 if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_D8000 )
2657 Log7(("NEM/%u: MSR MTRR_FIX16K_D8000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_D8000, paValues[iReg].Reg64));
2658 pCtxMsrs->msr.MtrrFix4K_D8000 = paValues[iReg].Reg64;
2659 iReg++;
2660
2661 Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kE0000);
2662 if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_E0000 )
2663 Log7(("NEM/%u: MSR MTRR_FIX16K_E0000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_E0000, paValues[iReg].Reg64));
2664 pCtxMsrs->msr.MtrrFix4K_E0000 = paValues[iReg].Reg64;
2665 iReg++;
2666
2667 Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kE8000);
2668 if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_E8000 )
2669 Log7(("NEM/%u: MSR MTRR_FIX16K_E8000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_E8000, paValues[iReg].Reg64));
2670 pCtxMsrs->msr.MtrrFix4K_E8000 = paValues[iReg].Reg64;
2671 iReg++;
2672
2673 Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kF0000);
2674 if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_F0000 )
2675 Log7(("NEM/%u: MSR MTRR_FIX16K_F0000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_F0000, paValues[iReg].Reg64));
2676 pCtxMsrs->msr.MtrrFix4K_F0000 = paValues[iReg].Reg64;
2677 iReg++;
2678
2679 Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kF8000);
2680 if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_F8000 )
2681 Log7(("NEM/%u: MSR MTRR_FIX16K_F8000 changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_F8000, paValues[iReg].Reg64));
2682 pCtxMsrs->msr.MtrrFix4K_F8000 = paValues[iReg].Reg64;
2683 iReg++;
2684
2685 Assert(pInput->Names[iReg] == HvX64RegisterTscAux);
2686 if (paValues[iReg].Reg64 != pCtxMsrs->msr.TscAux )
2687 Log7(("NEM/%u: MSR TSC_AUX changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.TscAux, paValues[iReg].Reg64));
2688 pCtxMsrs->msr.TscAux = paValues[iReg].Reg64;
2689 iReg++;
2690
2691# if 0 /** @todo why can't we even read HvX64RegisterIa32MiscEnable? */
2692 if (enmCpuVendor != CPUMCPUVENDOR_AMD)
2693 {
2694 Assert(pInput->Names[iReg] == HvX64RegisterIa32MiscEnable);
2695 if (paValues[iReg].Reg64 != pCtxMsrs->msr.MiscEnable)
2696 Log7(("NEM/%u: MSR MISC_ENABLE changed %RX64 -> %RX64\n", pGVCpu->idCpu, pCtxMsrs->msr.MiscEnable, paValues[iReg].Reg64));
2697 pCtxMsrs->msr.MiscEnable = paValues[iReg].Reg64;
2698 iReg++;
2699 }
2700# endif
2701# ifdef LOG_ENABLED
2702 if (enmCpuVendor != CPUMCPUVENDOR_AMD && enmCpuVendor != CPUMCPUVENDOR_HYGON)
2703 {
2704 Assert(pInput->Names[iReg] == HvX64RegisterIa32FeatureControl);
2705 uint64_t const uFeatCtrl = CPUMGetGuestIa32FeatCtrl(pVCpu);
2706 if (paValues[iReg].Reg64 != uFeatCtrl)
2707 Log7(("NEM/%u: MSR FEATURE_CONTROL changed %RX64 -> %RX64 (!!)\n", pGVCpu->idCpu, uFeatCtrl, paValues[iReg].Reg64));
2708 iReg++;
2709 }
2710# endif
2711 }
2712
2713 /* Interruptibility. */
2714 if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
2715 {
2716 Assert(pInput->Names[iReg] == HvRegisterInterruptState);
2717 Assert(pInput->Names[iReg + 1] == HvX64RegisterRip);
2718
2719 if (!(pCtx->fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT))
2720 {
2721 pGVCpu->nem.s.fLastInterruptShadow = paValues[iReg].InterruptState.InterruptShadow;
2722 if (paValues[iReg].InterruptState.InterruptShadow)
2723 EMSetInhibitInterruptsPC(pGVCpu, paValues[iReg + 1].Reg64);
2724 else
2725 VMCPU_FF_CLEAR(pGVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2726 }
2727
2728 if (!(pCtx->fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI))
2729 {
2730 if (paValues[iReg].InterruptState.NmiMasked)
2731 VMCPU_FF_SET(pGVCpu, VMCPU_FF_BLOCK_NMIS);
2732 else
2733 VMCPU_FF_CLEAR(pGVCpu, VMCPU_FF_BLOCK_NMIS);
2734 }
2735
2736 fWhat |= CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI;
2737 iReg += 2;
2738 }
2739
2740 /* Event injection. */
2741 /// @todo HvRegisterPendingInterruption
2742 Assert(pInput->Names[iReg] == HvRegisterPendingInterruption);
2743 if (paValues[iReg].PendingInterruption.InterruptionPending)
2744 {
2745 Log7(("PendingInterruption: type=%u vector=%#x errcd=%RTbool/%#x instr-len=%u nested=%u\n",
2746 paValues[iReg].PendingInterruption.InterruptionType, paValues[iReg].PendingInterruption.InterruptionVector,
2747 paValues[iReg].PendingInterruption.DeliverErrorCode, paValues[iReg].PendingInterruption.ErrorCode,
2748 paValues[iReg].PendingInterruption.InstructionLength, paValues[iReg].PendingInterruption.NestedEvent));
2749 AssertMsg((paValues[iReg].PendingInterruption.AsUINT64 & UINT64_C(0xfc00)) == 0,
2750 ("%#RX64\n", paValues[iReg].PendingInterruption.AsUINT64));
2751 }
2752
2753 /// @todo HvRegisterPendingEvent0
2754 /// @todo HvRegisterPendingEvent1
2755
2756 /* Almost done, just update extrn flags and maybe change PGM mode. */
2757 pCtx->fExtrn &= ~fWhat;
2758 if (!(pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT))))
2759 pCtx->fExtrn = 0;
2760
2761 /* Typical. */
2762 if (!fMaybeChangedMode && !fUpdateCr3)
2763 return VINF_SUCCESS;
2764
2765 /*
2766 * Slow.
2767 */
2768 int rc = VINF_SUCCESS;
2769 if (fMaybeChangedMode)
2770 {
2771 rc = PGMChangeMode(pGVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
2772 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
2773 }
2774
2775 if (fUpdateCr3)
2776 {
2777 if (fCanUpdateCr3)
2778 {
2779 LogFlow(("nemR0WinImportState: -> PGMUpdateCR3!\n"));
2780 rc = PGMUpdateCR3(pGVCpu, pCtx->cr3, false /*fPdpesMapped*/);
2781 if (rc == VINF_SUCCESS)
2782 { /* likely */ }
2783 else
2784 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
2785 }
2786 else
2787 {
2788 LogFlow(("nemR0WinImportState: -> VERR_NEM_FLUSH_TLB!\n"));
2789 rc = VERR_NEM_FLUSH_TLB; /* Calling PGMFlushTLB w/o long jump setup doesn't work, ring-3 does it. */
2790 }
2791 }
2792
2793 return rc;
2794}
2795#endif /* NEM_WIN_WITH_RING0_RUNLOOP || NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
2796
2797
2798/**
2799 * Import the state from the native API (back to CPUMCTX).
2800 *
2801 * @returns VBox status code
2802 * @param pGVM The ring-0 VM handle.
2803 * @param idCpu The calling EMT. Necessary for getting the
2804 * hypercall page and arguments.
2805 * @param fWhat What to import, CPUMCTX_EXTRN_XXX. Set
2806 * CPUMCTX_EXTERN_ALL for everything.
2807 */
2808VMMR0_INT_DECL(int) NEMR0ImportState(PGVM pGVM, VMCPUID idCpu, uint64_t fWhat)
2809{
2810#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
2811 /*
2812 * Validate the call.
2813 */
2814 int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
2815 if (RT_SUCCESS(rc))
2816 {
2817 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
2818 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1);
2819
2820 /*
2821 * Call worker.
2822 */
2823 rc = nemR0WinImportState(pGVM, pGVCpu, &pGVCpu->cpum.GstCtx, fWhat, false /*fCanUpdateCr3*/);
2824 }
2825 return rc;
2826#else
2827 RT_NOREF(pGVM, idCpu, fWhat);
2828 return VERR_NOT_IMPLEMENTED;
2829#endif
2830}
2831
2832
2833#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
2834/**
2835 * Worker for NEMR0QueryCpuTick and the ring-0 NEMHCQueryCpuTick.
2836 *
2837 * @returns VBox status code.
2838 * @param pGVM The ring-0 VM handle.
2839 * @param pGVCpu The ring-0 VCPU handle.
2840 * @param pcTicks Where to return the current CPU tick count.
2841 * @param pcAux Where to return the hyper-V TSC_AUX value. Optional.
2842 */
2843NEM_TMPL_STATIC int nemR0WinQueryCpuTick(PGVM pGVM, PGVMCPU pGVCpu, uint64_t *pcTicks, uint32_t *pcAux)
2844{
2845 /*
2846 * Hypercall parameters.
2847 */
2848 HV_INPUT_GET_VP_REGISTERS *pInput = (HV_INPUT_GET_VP_REGISTERS *)pGVCpu->nemr0.s.HypercallData.pbPage;
2849 AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3);
2850 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1);
2851
2852 pInput->PartitionId = pGVM->nemr0.s.idHvPartition;
2853 pInput->VpIndex = pGVCpu->idCpu;
2854 pInput->fFlags = 0;
2855 pInput->Names[0] = HvX64RegisterTsc;
2856 pInput->Names[1] = HvX64RegisterTscAux;
2857
2858 size_t const cbInput = RT_ALIGN_Z(RT_UOFFSETOF(HV_INPUT_GET_VP_REGISTERS, Names[2]), 32);
2859 HV_REGISTER_VALUE *paValues = (HV_REGISTER_VALUE *)((uint8_t *)pInput + cbInput);
2860 RT_BZERO(paValues, sizeof(paValues[0]) * 2);
2861
2862 /*
2863 * Make the hypercall.
2864 */
2865 uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallGetVpRegisters, 2),
2866 pGVCpu->nemr0.s.HypercallData.HCPhysPage,
2867 pGVCpu->nemr0.s.HypercallData.HCPhysPage + cbInput);
2868 AssertLogRelMsgReturn(uResult == HV_MAKE_CALL_REP_RET(2), ("uResult=%RX64 cRegs=%#x\n", uResult, 2),
2869 VERR_NEM_GET_REGISTERS_FAILED);
2870
2871 /*
2872 * Get results.
2873 */
2874 *pcTicks = paValues[0].Reg64;
2875 if (pcAux)
2876 *pcAux = paValues[0].Reg32;
2877 return VINF_SUCCESS;
2878}
2879#endif /* NEM_WIN_WITH_RING0_RUNLOOP || NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
2880
2881
2882/**
2883 * Queries the TSC and TSC_AUX values, putting the results in .
2884 *
2885 * @returns VBox status code
2886 * @param pGVM The ring-0 VM handle.
2887 * @param idCpu The calling EMT. Necessary for getting the
2888 * hypercall page and arguments.
2889 */
2890VMMR0_INT_DECL(int) NEMR0QueryCpuTick(PGVM pGVM, VMCPUID idCpu)
2891{
2892#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
2893 /*
2894 * Validate the call.
2895 */
2896 int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
2897 if (RT_SUCCESS(rc))
2898 {
2899 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
2900 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1);
2901
2902 /*
2903 * Call worker.
2904 */
2905 pGVCpu->nem.s.Hypercall.QueryCpuTick.cTicks = 0;
2906 pGVCpu->nem.s.Hypercall.QueryCpuTick.uAux = 0;
2907 rc = nemR0WinQueryCpuTick(pGVM, pGVCpu, &pGVCpu->nem.s.Hypercall.QueryCpuTick.cTicks,
2908 &pGVCpu->nem.s.Hypercall.QueryCpuTick.uAux);
2909 }
2910 return rc;
2911#else
2912 RT_NOREF(pGVM, idCpu);
2913 return VERR_NOT_IMPLEMENTED;
2914#endif
2915}
2916
2917
2918#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
2919/**
2920 * Worker for NEMR0ResumeCpuTickOnAll and the ring-0 NEMHCResumeCpuTickOnAll.
2921 *
2922 * @returns VBox status code.
2923 * @param pGVM The ring-0 VM handle.
2924 * @param pGVCpu The ring-0 VCPU handle.
2925 * @param uPausedTscValue The TSC value at the time of pausing.
2926 */
2927NEM_TMPL_STATIC int nemR0WinResumeCpuTickOnAll(PGVM pGVM, PGVMCPU pGVCpu, uint64_t uPausedTscValue)
2928{
2929 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1);
2930
2931 /*
2932 * Set up the hypercall parameters.
2933 */
2934 HV_INPUT_SET_VP_REGISTERS *pInput = (HV_INPUT_SET_VP_REGISTERS *)pGVCpu->nemr0.s.HypercallData.pbPage;
2935 AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3);
2936
2937 pInput->PartitionId = pGVM->nemr0.s.idHvPartition;
2938 pInput->VpIndex = 0;
2939 pInput->RsvdZ = 0;
2940 pInput->Elements[0].Name = HvX64RegisterTsc;
2941 pInput->Elements[0].Pad0 = 0;
2942 pInput->Elements[0].Pad1 = 0;
2943 pInput->Elements[0].Value.Reg128.High64 = 0;
2944 pInput->Elements[0].Value.Reg64 = uPausedTscValue;
2945
2946 /*
2947 * Disable interrupts and do the first virtual CPU.
2948 */
2949 RTCCINTREG const fSavedFlags = ASMIntDisableFlags();
2950 uint64_t const uFirstTsc = ASMReadTSC();
2951 uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallSetVpRegisters, 1),
2952 pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0 /* no output */);
2953 AssertLogRelMsgReturnStmt(uResult == HV_MAKE_CALL_REP_RET(1), ("uResult=%RX64 uTsc=%#RX64\n", uResult, uPausedTscValue),
2954 ASMSetFlags(fSavedFlags), VERR_NEM_SET_TSC);
2955
2956 /*
2957 * Do secondary processors, adjusting for elapsed TSC and keeping finger crossed
2958 * that we don't introduce too much drift here.
2959 */
2960 for (VMCPUID iCpu = 1; iCpu < pGVM->cCpus; iCpu++)
2961 {
2962 Assert(pInput->PartitionId == pGVM->nemr0.s.idHvPartition);
2963 Assert(pInput->RsvdZ == 0);
2964 Assert(pInput->Elements[0].Name == HvX64RegisterTsc);
2965 Assert(pInput->Elements[0].Pad0 == 0);
2966 Assert(pInput->Elements[0].Pad1 == 0);
2967 Assert(pInput->Elements[0].Value.Reg128.High64 == 0);
2968
2969 pInput->VpIndex = iCpu;
2970 const uint64_t offDelta = (ASMReadTSC() - uFirstTsc);
2971 pInput->Elements[0].Value.Reg64 = uPausedTscValue + offDelta;
2972
2973 uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallSetVpRegisters, 1),
2974 pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0 /* no output */);
2975 AssertLogRelMsgReturnStmt(uResult == HV_MAKE_CALL_REP_RET(1),
2976 ("uResult=%RX64 uTsc=%#RX64 + %#RX64\n", uResult, uPausedTscValue, offDelta),
2977 ASMSetFlags(fSavedFlags), VERR_NEM_SET_TSC);
2978 }
2979
2980 /*
2981 * Done.
2982 */
2983 ASMSetFlags(fSavedFlags);
2984 return VINF_SUCCESS;
2985}
2986#endif /* NEM_WIN_WITH_RING0_RUNLOOP || NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
2987
2988
2989/**
2990 * Sets the TSC register to @a uPausedTscValue on all CPUs.
2991 *
2992 * @returns VBox status code
2993 * @param pGVM The ring-0 VM handle.
2994 * @param idCpu The calling EMT. Necessary for getting the
2995 * hypercall page and arguments.
2996 * @param uPausedTscValue The TSC value at the time of pausing.
2997 */
2998VMMR0_INT_DECL(int) NEMR0ResumeCpuTickOnAll(PGVM pGVM, VMCPUID idCpu, uint64_t uPausedTscValue)
2999{
3000#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS)
3001 /*
3002 * Validate the call.
3003 */
3004 int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
3005 if (RT_SUCCESS(rc))
3006 {
3007 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
3008 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1);
3009
3010 /*
3011 * Call worker.
3012 */
3013 pGVCpu->nem.s.Hypercall.QueryCpuTick.cTicks = 0;
3014 pGVCpu->nem.s.Hypercall.QueryCpuTick.uAux = 0;
3015 rc = nemR0WinResumeCpuTickOnAll(pGVM, pGVCpu, uPausedTscValue);
3016 }
3017 return rc;
3018#else
3019 RT_NOREF(pGVM, idCpu, uPausedTscValue);
3020 return VERR_NOT_IMPLEMENTED;
3021#endif
3022}
3023
3024
3025VMMR0_INT_DECL(VBOXSTRICTRC) NEMR0RunGuestCode(PGVM pGVM, VMCPUID idCpu)
3026{
3027#ifdef NEM_WIN_WITH_RING0_RUNLOOP
3028 if (pGVM->nemr0.s.fMayUseRing0Runloop)
3029 return nemHCWinRunGC(pGVM, &pGVM->aCpus[idCpu]);
3030 return VERR_NEM_RING3_ONLY;
3031#else
3032 RT_NOREF(pGVM, idCpu);
3033 return VERR_NOT_IMPLEMENTED;
3034#endif
3035}
3036
3037
3038/**
3039 * Updates statistics in the VM structure.
3040 *
3041 * @returns VBox status code.
3042 * @param pGVM The ring-0 VM handle.
3043 * @param idCpu The calling EMT, or NIL. Necessary for getting the hypercall
3044 * page and arguments.
3045 */
3046VMMR0_INT_DECL(int) NEMR0UpdateStatistics(PGVM pGVM, VMCPUID idCpu)
3047{
3048#ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
3049 /*
3050 * Validate the call.
3051 */
3052 int rc;
3053 if (idCpu == NIL_VMCPUID)
3054 rc = GVMMR0ValidateGVM(pGVM);
3055 else
3056 rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
3057 if (RT_SUCCESS(rc))
3058 {
3059 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1);
3060
3061 PNEMR0HYPERCALLDATA pHypercallData = idCpu != NIL_VMCPUID
3062 ? &pGVM->aCpus[idCpu].nemr0.s.HypercallData
3063 : &pGVM->nemr0.s.HypercallData;
3064 if ( RT_VALID_PTR(pHypercallData->pbPage)
3065 && pHypercallData->HCPhysPage != NIL_RTHCPHYS)
3066 {
3067 if (idCpu == NIL_VMCPUID)
3068 rc = RTCritSectEnter(&pGVM->nemr0.s.HypercallDataCritSect);
3069 if (RT_SUCCESS(rc))
3070 {
3071 /*
3072 * Query the memory statistics for the partition.
3073 */
3074 HV_INPUT_GET_MEMORY_BALANCE *pInput = (HV_INPUT_GET_MEMORY_BALANCE *)pHypercallData->pbPage;
3075 pInput->TargetPartitionId = pGVM->nemr0.s.idHvPartition;
3076 pInput->ProximityDomainInfo.Flags.ProximityPreferred = 0;
3077 pInput->ProximityDomainInfo.Flags.ProxyimityInfoValid = 0;
3078 pInput->ProximityDomainInfo.Flags.Reserved = 0;
3079 pInput->ProximityDomainInfo.Id = 0;
3080
3081 HV_OUTPUT_GET_MEMORY_BALANCE *pOutput = (HV_OUTPUT_GET_MEMORY_BALANCE *)(pInput + 1);
3082 RT_ZERO(*pOutput);
3083
3084 uint64_t uResult = g_pfnHvlInvokeHypercall(HvCallGetMemoryBalance,
3085 pHypercallData->HCPhysPage,
3086 pHypercallData->HCPhysPage + sizeof(*pInput));
3087 if (uResult == HV_STATUS_SUCCESS)
3088 {
3089 pGVM->nem.s.R0Stats.cPagesAvailable = pOutput->PagesAvailable;
3090 pGVM->nem.s.R0Stats.cPagesInUse = pOutput->PagesInUse;
3091 rc = VINF_SUCCESS;
3092 }
3093 else
3094 {
3095 LogRel(("HvCallGetMemoryBalance -> %#RX64 (%#RX64 %#RX64)!!\n",
3096 uResult, pOutput->PagesAvailable, pOutput->PagesInUse));
3097 rc = VERR_NEM_IPE_0;
3098 }
3099
3100 if (idCpu == NIL_VMCPUID)
3101 RTCritSectLeave(&pGVM->nemr0.s.HypercallDataCritSect);
3102 }
3103 }
3104 else
3105 rc = VERR_WRONG_ORDER;
3106 }
3107 return rc;
3108#else
3109 RT_NOREF(pGVM, idCpu);
3110 return VINF_SUCCESS;
3111#endif
3112}
3113
3114
3115/**
3116 * Debug only interface for poking around and exploring Hyper-V stuff.
3117 *
3118 * @param pGVM The ring-0 VM handle.
3119 * @param idCpu The calling EMT.
3120 * @param u64Arg What to query. 0 == registers.
3121 */
3122VMMR0_INT_DECL(int) NEMR0DoExperiment(PGVM pGVM, VMCPUID idCpu, uint64_t u64Arg)
3123{
3124#if defined(DEBUG_bird) && defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES)
3125 /*
3126 * Resolve CPU structures.
3127 */
3128 int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
3129 if (RT_SUCCESS(rc))
3130 {
3131 AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API_1);
3132
3133 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
3134 if (u64Arg == 0)
3135 {
3136 /*
3137 * Query register.
3138 */
3139 HV_INPUT_GET_VP_REGISTERS *pInput = (HV_INPUT_GET_VP_REGISTERS *)pGVCpu->nemr0.s.HypercallData.pbPage;
3140 AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3);
3141
3142 size_t const cbInput = RT_ALIGN_Z(RT_UOFFSETOF(HV_INPUT_GET_VP_REGISTERS, Names[1]), 32);
3143 HV_REGISTER_VALUE *paValues = (HV_REGISTER_VALUE *)((uint8_t *)pInput + cbInput);
3144 RT_BZERO(paValues, sizeof(paValues[0]) * 1);
3145
3146 pInput->PartitionId = pGVM->nemr0.s.idHvPartition;
3147 pInput->VpIndex = pGVCpu->idCpu;
3148 pInput->fFlags = 0;
3149 pInput->Names[0] = (HV_REGISTER_NAME)pGVCpu->nem.s.Hypercall.Experiment.uItem;
3150
3151 uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallGetVpRegisters, 1),
3152 pGVCpu->nemr0.s.HypercallData.HCPhysPage,
3153 pGVCpu->nemr0.s.HypercallData.HCPhysPage + cbInput);
3154 pGVCpu->nem.s.Hypercall.Experiment.fSuccess = uResult == HV_MAKE_CALL_REP_RET(1);
3155 pGVCpu->nem.s.Hypercall.Experiment.uStatus = uResult;
3156 pGVCpu->nem.s.Hypercall.Experiment.uLoValue = paValues[0].Reg128.Low64;
3157 pGVCpu->nem.s.Hypercall.Experiment.uHiValue = paValues[0].Reg128.High64;
3158 rc = VINF_SUCCESS;
3159 }
3160 else if (u64Arg == 1)
3161 {
3162 /*
3163 * Query partition property.
3164 */
3165 HV_INPUT_GET_PARTITION_PROPERTY *pInput = (HV_INPUT_GET_PARTITION_PROPERTY *)pGVCpu->nemr0.s.HypercallData.pbPage;
3166 AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3);
3167
3168 size_t const cbInput = RT_ALIGN_Z(sizeof(*pInput), 32);
3169 HV_OUTPUT_GET_PARTITION_PROPERTY *pOutput = (HV_OUTPUT_GET_PARTITION_PROPERTY *)((uint8_t *)pInput + cbInput);
3170 pOutput->PropertyValue = 0;
3171
3172 pInput->PartitionId = pGVM->nemr0.s.idHvPartition;
3173 pInput->PropertyCode = (HV_PARTITION_PROPERTY_CODE)pGVCpu->nem.s.Hypercall.Experiment.uItem;
3174 pInput->uPadding = 0;
3175
3176 uint64_t uResult = g_pfnHvlInvokeHypercall(HvCallGetPartitionProperty,
3177 pGVCpu->nemr0.s.HypercallData.HCPhysPage,
3178 pGVCpu->nemr0.s.HypercallData.HCPhysPage + cbInput);
3179 pGVCpu->nem.s.Hypercall.Experiment.fSuccess = uResult == HV_STATUS_SUCCESS;
3180 pGVCpu->nem.s.Hypercall.Experiment.uStatus = uResult;
3181 pGVCpu->nem.s.Hypercall.Experiment.uLoValue = pOutput->PropertyValue;
3182 pGVCpu->nem.s.Hypercall.Experiment.uHiValue = 0;
3183 rc = VINF_SUCCESS;
3184 }
3185 else if (u64Arg == 2)
3186 {
3187 /*
3188 * Set register.
3189 */
3190 HV_INPUT_SET_VP_REGISTERS *pInput = (HV_INPUT_SET_VP_REGISTERS *)pGVCpu->nemr0.s.HypercallData.pbPage;
3191 AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3);
3192 RT_BZERO(pInput, RT_UOFFSETOF(HV_INPUT_SET_VP_REGISTERS, Elements[1]));
3193
3194 pInput->PartitionId = pGVM->nemr0.s.idHvPartition;
3195 pInput->VpIndex = pGVCpu->idCpu;
3196 pInput->RsvdZ = 0;
3197 pInput->Elements[0].Name = (HV_REGISTER_NAME)pGVCpu->nem.s.Hypercall.Experiment.uItem;
3198 pInput->Elements[0].Value.Reg128.High64 = pGVCpu->nem.s.Hypercall.Experiment.uHiValue;
3199 pInput->Elements[0].Value.Reg128.Low64 = pGVCpu->nem.s.Hypercall.Experiment.uLoValue;
3200
3201 uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallSetVpRegisters, 1),
3202 pGVCpu->nemr0.s.HypercallData.HCPhysPage, 0);
3203 pGVCpu->nem.s.Hypercall.Experiment.fSuccess = uResult == HV_MAKE_CALL_REP_RET(1);
3204 pGVCpu->nem.s.Hypercall.Experiment.uStatus = uResult;
3205 rc = VINF_SUCCESS;
3206 }
3207 else
3208 rc = VERR_INVALID_FUNCTION;
3209 }
3210 return rc;
3211#else /* !DEBUG_bird */
3212 RT_NOREF(pGVM, idCpu, u64Arg);
3213 return VERR_NOT_SUPPORTED;
3214#endif /* !DEBUG_bird */
3215}
3216
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette