VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWVMXR0.cpp@ 44821

Last change on this file since 44821 was 44791, checked in by vboxsync, 12 years ago

VMM/VMMR0: HM bits.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 221.7 KB
Line 
1/* $Id: HWVMXR0.cpp 44791 2013-02-21 17:31:39Z vboxsync $ */
2/** @file
3 * HM VMX (VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <iprt/asm-amd64-x86.h>
24#include <VBox/vmm/hm.h>
25#include <VBox/vmm/pgm.h>
26#include <VBox/vmm/dbgf.h>
27#include <VBox/vmm/dbgftrace.h>
28#include <VBox/vmm/selm.h>
29#include <VBox/vmm/iom.h>
30#ifdef VBOX_WITH_REM
31# include <VBox/vmm/rem.h>
32#endif
33#include <VBox/vmm/tm.h>
34#include "HMInternal.h"
35#include <VBox/vmm/vm.h>
36#include <VBox/vmm/pdmapi.h>
37#include <VBox/err.h>
38#include <VBox/log.h>
39#include <iprt/assert.h>
40#include <iprt/param.h>
41#include <iprt/string.h>
42#include <iprt/time.h>
43#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
44# include <iprt/thread.h>
45#endif
46#include <iprt/x86.h>
47#include "HWVMXR0.h"
48
49#include "dtrace/VBoxVMM.h"
50
51
52/*******************************************************************************
53* Defined Constants And Macros *
54*******************************************************************************/
55#if defined(RT_ARCH_AMD64)
56# define VMX_IS_64BIT_HOST_MODE() (true)
57#elif defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
58# define VMX_IS_64BIT_HOST_MODE() (g_fVMXIs64bitHost != 0)
59#else
60# define VMX_IS_64BIT_HOST_MODE() (false)
61#endif
62
63
64/*******************************************************************************
65* Global Variables *
66*******************************************************************************/
67/* IO operation lookup arrays. */
68static uint32_t const g_aIOSize[4] = {1, 2, 0, 4};
69static uint32_t const g_aIOOpAnd[4] = {0xff, 0xffff, 0, 0xffffffff};
70
71#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
72/** See HMR0A.asm. */
73extern "C" uint32_t g_fVMXIs64bitHost;
74#endif
75
76
77/*******************************************************************************
78* Local Functions *
79*******************************************************************************/
80static DECLCALLBACK(void) hmR0VmxSetupTLBEPT(PVM pVM, PVMCPU pVCpu);
81static DECLCALLBACK(void) hmR0VmxSetupTLBVPID(PVM pVM, PVMCPU pVCpu);
82static DECLCALLBACK(void) hmR0VmxSetupTLBBoth(PVM pVM, PVMCPU pVCpu);
83static DECLCALLBACK(void) hmR0VmxSetupTLBDummy(PVM pVM, PVMCPU pVCpu);
84static void hmR0VmxFlushEPT(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush);
85static void hmR0VmxFlushVPID(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr);
86static void hmR0VmxUpdateExceptionBitmap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
87static void hmR0VmxSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite);
88static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rc, PCPUMCTX pCtx);
89
90
91/**
92 * Updates error from VMCS to HMCPU's lasterror record.
93 *
94 * @param pVM Pointer to the VM.
95 * @param pVCpu Pointer to the VMCPU.
96 * @param rc The error code.
97 */
98static void hmR0VmxCheckError(PVM pVM, PVMCPU pVCpu, int rc)
99{
100 if (rc == VERR_VMX_GENERIC)
101 {
102 RTCCUINTREG instrError;
103
104 VMXReadVmcs(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError);
105 pVCpu->hm.s.vmx.lasterror.u32InstrError = instrError;
106 }
107 pVM->hm.s.lLastError = rc;
108}
109
110
111/**
112 * Sets up and activates VT-x on the current CPU.
113 *
114 * @returns VBox status code.
115 * @param pCpu Pointer to the CPU info struct.
116 * @param pVM Pointer to the VM. (can be NULL after a resume!!)
117 * @param pvCpuPage Pointer to the global CPU page.
118 * @param HCPhysCpuPage Physical address of the global CPU page.
119 * @param fEnabledByHost Set if SUPR0EnableVTx or similar was used to enable
120 * VT-x/AMD-V on the host.
121 */
122VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
123{
124 if (!fEnabledByHost)
125 {
126 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
127 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
128
129 if (pVM)
130 {
131 /* Set revision dword at the beginning of the VMXON structure. */
132 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.msr.vmx_basic_info);
133 }
134
135 /** @todo we should unmap the two pages from the virtual address space in order to prevent accidental corruption.
136 * (which can have very bad consequences!!!)
137 */
138
139 /** @todo r=bird: Why is this code different than the probing code earlier
140 * on? It just sets VMXE if needed and doesn't check that it isn't
141 * set. Mac OS X host_vmxoff may leave this set and we'll fail here
142 * and debug-assert in the calling code. This is what caused the
143 * "regression" after backing out the SUPR0EnableVTx code hours before
144 * 4.2.0GA (reboot fixed the issue). I've changed here to do the same
145 * as the init code. */
146 uint64_t uCr4 = ASMGetCR4();
147 if (!(uCr4 & X86_CR4_VMXE))
148 ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE); /* Make sure the VMX instructions don't cause #UD faults. */
149
150 /*
151 * Enter VM root mode.
152 */
153 int rc = VMXEnable(HCPhysCpuPage);
154 if (RT_FAILURE(rc))
155 {
156 ASMSetCR4(uCr4);
157 return VERR_VMX_VMXON_FAILED;
158 }
159 }
160
161 /*
162 * Flush all VPIDs (in case we or any other hypervisor have been using VPIDs) so that
163 * we can avoid an explicit flush while using new VPIDs. We would still need to flush
164 * each time while reusing a VPID after hitting the MaxASID limit once.
165 */
166 if ( pVM
167 && pVM->hm.s.vmx.fVpid
168 && (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS))
169 {
170 hmR0VmxFlushVPID(pVM, NULL /* pvCpu */, VMX_FLUSH_VPID_ALL_CONTEXTS, 0 /* GCPtr */);
171 pCpu->fFlushAsidBeforeUse = false;
172 }
173 else
174 pCpu->fFlushAsidBeforeUse = true;
175
176 /*
177 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
178 */
179 ++pCpu->cTlbFlushes;
180
181 return VINF_SUCCESS;
182}
183
184
185/**
186 * Deactivates VT-x on the current CPU.
187 *
188 * @returns VBox status code.
189 * @param pCpu Pointer to the CPU info struct.
190 * @param pvCpuPage Pointer to the global CPU page.
191 * @param HCPhysCpuPage Physical address of the global CPU page.
192 */
193VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
194{
195 AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
196 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
197 NOREF(pCpu);
198
199 /* If we're somehow not in VMX root mode, then we shouldn't dare leaving it. */
200 if (!(ASMGetCR4() & X86_CR4_VMXE))
201 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
202
203 /* Leave VMX Root Mode. */
204 VMXDisable();
205
206 /* And clear the X86_CR4_VMXE bit. */
207 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
208 return VINF_SUCCESS;
209}
210
211
212/**
213 * Does Ring-0 per VM VT-x initialization.
214 *
215 * @returns VBox status code.
216 * @param pVM Pointer to the VM.
217 */
218VMMR0DECL(int) VMXR0InitVM(PVM pVM)
219{
220 int rc;
221
222#ifdef LOG_ENABLED
223 SUPR0Printf("VMXR0InitVM %p\n", pVM);
224#endif
225
226 pVM->hm.s.vmx.hMemObjApicAccess = NIL_RTR0MEMOBJ;
227
228 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
229 {
230 /* Allocate one page for the APIC physical page (serves for filtering accesses). */
231 rc = RTR0MemObjAllocCont(&pVM->hm.s.vmx.hMemObjApicAccess, PAGE_SIZE, false /* fExecutable */);
232 AssertRC(rc);
233 if (RT_FAILURE(rc))
234 return rc;
235
236 pVM->hm.s.vmx.pbApicAccess = (uint8_t *)RTR0MemObjAddress(pVM->hm.s.vmx.hMemObjApicAccess);
237 pVM->hm.s.vmx.HCPhysApicAccess = RTR0MemObjGetPagePhysAddr(pVM->hm.s.vmx.hMemObjApicAccess, 0);
238 ASMMemZero32(pVM->hm.s.vmx.pbApicAccess, PAGE_SIZE);
239 }
240 else
241 {
242 pVM->hm.s.vmx.hMemObjApicAccess = 0;
243 pVM->hm.s.vmx.pbApicAccess = 0;
244 pVM->hm.s.vmx.HCPhysApicAccess = 0;
245 }
246
247#ifdef VBOX_WITH_CRASHDUMP_MAGIC
248 {
249 rc = RTR0MemObjAllocCont(&pVM->hm.s.vmx.hMemObjScratch, PAGE_SIZE, false /* fExecutable */);
250 AssertRC(rc);
251 if (RT_FAILURE(rc))
252 return rc;
253
254 pVM->hm.s.vmx.pScratch = (uint8_t *)RTR0MemObjAddress(pVM->hm.s.vmx.hMemObjScratch);
255 pVM->hm.s.vmx.pScratchPhys = RTR0MemObjGetPagePhysAddr(pVM->hm.s.vmx.hMemObjScratch, 0);
256
257 ASMMemZero32(pVM->hm.s.vmx.pbScratch, PAGE_SIZE);
258 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
259 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xDEADBEEFDEADBEEF);
260 }
261#endif
262
263 /* Allocate VMCSs for all guest CPUs. */
264 for (VMCPUID i = 0; i < pVM->cCpus; i++)
265 {
266 PVMCPU pVCpu = &pVM->aCpus[i];
267
268 pVCpu->hm.s.vmx.hMemObjVmcs = NIL_RTR0MEMOBJ;
269
270 /* Allocate one page for the VM control structure (VMCS). */
271 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjVmcs, PAGE_SIZE, false /* fExecutable */);
272 AssertRC(rc);
273 if (RT_FAILURE(rc))
274 return rc;
275
276 pVCpu->hm.s.vmx.pvVmcs = RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjVmcs);
277 pVCpu->hm.s.vmx.HCPhysVmcs = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjVmcs, 0);
278 ASMMemZeroPage(pVCpu->hm.s.vmx.pvVmcs);
279
280 pVCpu->hm.s.vmx.cr0_mask = 0;
281 pVCpu->hm.s.vmx.cr4_mask = 0;
282
283 /* Allocate one page for the virtual APIC page for TPR caching. */
284 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjVirtApic, PAGE_SIZE, false /* fExecutable */);
285 AssertRC(rc);
286 if (RT_FAILURE(rc))
287 return rc;
288
289 pVCpu->hm.s.vmx.pbVirtApic = (uint8_t *)RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjVirtApic);
290 pVCpu->hm.s.vmx.HCPhysVirtApic = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjVirtApic, 0);
291 ASMMemZeroPage(pVCpu->hm.s.vmx.pbVirtApic);
292
293 /* Allocate the MSR bitmap if this feature is supported. */
294 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
295 {
296 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, PAGE_SIZE, false /* fExecutable */);
297 AssertRC(rc);
298 if (RT_FAILURE(rc))
299 return rc;
300
301 pVCpu->hm.s.vmx.pvMsrBitmap = (uint8_t *)RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjMsrBitmap);
302 pVCpu->hm.s.vmx.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjMsrBitmap, 0);
303 memset(pVCpu->hm.s.vmx.pvMsrBitmap, 0xff, PAGE_SIZE);
304 }
305
306#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
307 /* Allocate one page for the guest MSR load area (for preloading guest MSRs during the world switch). */
308 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjGuestMsr, PAGE_SIZE, false /* fExecutable */);
309 AssertRC(rc);
310 if (RT_FAILURE(rc))
311 return rc;
312
313 pVCpu->hm.s.vmx.pvGuestMsr = (uint8_t *)RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjGuestMsr);
314 pVCpu->hm.s.vmx.HCPhysGuestMsr = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjGuestMsr, 0);
315 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf));
316 memset(pVCpu->hm.s.vmx.pvGuestMsr, 0, PAGE_SIZE);
317
318 /* Allocate one page for the host MSR load area (for restoring host MSRs after the world switch back). */
319 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.vmx.hMemObjHostMsr, PAGE_SIZE, false /* fExecutable */);
320 AssertRC(rc);
321 if (RT_FAILURE(rc))
322 return rc;
323
324 pVCpu->hm.s.vmx.pvHostMsr = (uint8_t *)RTR0MemObjAddress(pVCpu->hm.s.vmx.hMemObjHostMsr);
325 pVCpu->hm.s.vmx.HCPhysHostMsr = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.vmx.hMemObjHostMsr, 0);
326 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf));
327 memset(pVCpu->hm.s.vmx.pvHostMsr, 0, PAGE_SIZE);
328#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
329
330 /* Current guest paging mode. */
331 pVCpu->hm.s.vmx.enmLastSeenGuestMode = PGMMODE_REAL;
332
333#ifdef LOG_ENABLED
334 SUPR0Printf("VMXR0InitVM %x VMCS=%x (%x)\n", pVM, pVCpu->hm.s.vmx.pvVmcs, (uint32_t)pVCpu->hm.s.vmx.HCPhysVmcs);
335#endif
336 }
337
338 return VINF_SUCCESS;
339}
340
341
342/**
343 * Does Ring-0 per VM VT-x termination.
344 *
345 * @returns VBox status code.
346 * @param pVM Pointer to the VM.
347 */
348VMMR0DECL(int) VMXR0TermVM(PVM pVM)
349{
350 for (VMCPUID i = 0; i < pVM->cCpus; i++)
351 {
352 PVMCPU pVCpu = &pVM->aCpus[i];
353
354 if (pVCpu->hm.s.vmx.hMemObjVmcs != NIL_RTR0MEMOBJ)
355 {
356 RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjVmcs, false);
357 pVCpu->hm.s.vmx.hMemObjVmcs = NIL_RTR0MEMOBJ;
358 pVCpu->hm.s.vmx.pvVmcs = 0;
359 pVCpu->hm.s.vmx.HCPhysVmcs = 0;
360 }
361 if (pVCpu->hm.s.vmx.hMemObjVirtApic != NIL_RTR0MEMOBJ)
362 {
363 RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjVirtApic, false);
364 pVCpu->hm.s.vmx.hMemObjVirtApic = NIL_RTR0MEMOBJ;
365 pVCpu->hm.s.vmx.pbVirtApic = 0;
366 pVCpu->hm.s.vmx.HCPhysVirtApic = 0;
367 }
368 if (pVCpu->hm.s.vmx.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
369 {
370 RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjMsrBitmap, false);
371 pVCpu->hm.s.vmx.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
372 pVCpu->hm.s.vmx.pvMsrBitmap = 0;
373 pVCpu->hm.s.vmx.HCPhysMsrBitmap = 0;
374 }
375#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
376 if (pVCpu->hm.s.vmx.hMemObjHostMsr != NIL_RTR0MEMOBJ)
377 {
378 RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjHostMsr, false);
379 pVCpu->hm.s.vmx.hMemObjHostMsr = NIL_RTR0MEMOBJ;
380 pVCpu->hm.s.vmx.pvHostMsr = 0;
381 pVCpu->hm.s.vmx.HCPhysHostMsr = 0;
382 }
383 if (pVCpu->hm.s.vmx.hMemObjGuestMsr != NIL_RTR0MEMOBJ)
384 {
385 RTR0MemObjFree(pVCpu->hm.s.vmx.hMemObjGuestMsr, false);
386 pVCpu->hm.s.vmx.hMemObjGuestMsr = NIL_RTR0MEMOBJ;
387 pVCpu->hm.s.vmx.pvGuestMsr = 0;
388 pVCpu->hm.s.vmx.HCPhysGuestMsr = 0;
389 }
390#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
391 }
392 if (pVM->hm.s.vmx.hMemObjApicAccess != NIL_RTR0MEMOBJ)
393 {
394 RTR0MemObjFree(pVM->hm.s.vmx.hMemObjApicAccess, false);
395 pVM->hm.s.vmx.hMemObjApicAccess = NIL_RTR0MEMOBJ;
396 pVM->hm.s.vmx.pbApicAccess = 0;
397 pVM->hm.s.vmx.HCPhysApicAccess = 0;
398 }
399#ifdef VBOX_WITH_CRASHDUMP_MAGIC
400 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
401 {
402 ASMMemZero32(pVM->hm.s.vmx.pScratch, PAGE_SIZE);
403 RTR0MemObjFree(pVM->hm.s.vmx.hMemObjScratch, false);
404 pVM->hm.s.vmx.hMemObjScratch = NIL_RTR0MEMOBJ;
405 pVM->hm.s.vmx.pScratch = 0;
406 pVM->hm.s.vmx.pScratchPhys = 0;
407 }
408#endif
409 return VINF_SUCCESS;
410}
411
412
413/**
414 * Sets up VT-x for the specified VM.
415 *
416 * @returns VBox status code.
417 * @param pVM Pointer to the VM.
418 */
419VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
420{
421 int rc = VINF_SUCCESS;
422 uint32_t val;
423
424 AssertReturn(pVM, VERR_INVALID_PARAMETER);
425
426 /* Initialize these always, see hmR3InitFinalizeR0().*/
427 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NONE;
428 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NONE;
429
430 /* Determine optimal flush type for EPT. */
431 if (pVM->hm.s.fNestedPaging)
432 {
433 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
434 {
435 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
436 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_SINGLE_CONTEXT;
437 else if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
438 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_ALL_CONTEXTS;
439 else
440 {
441 /*
442 * Should never really happen. EPT is supported but no suitable flush types supported.
443 * We cannot ignore EPT at this point as we've already setup Unrestricted Guest execution.
444 */
445 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
446 return VERR_VMX_GENERIC;
447 }
448 }
449 else
450 {
451 /*
452 * Should never really happen. EPT is supported but INVEPT instruction is not supported.
453 */
454 pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
455 return VERR_VMX_GENERIC;
456 }
457 }
458
459 /* Determine optimal flush type for VPID. */
460 if (pVM->hm.s.vmx.fVpid)
461 {
462 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
463 {
464 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
465 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_SINGLE_CONTEXT;
466 else if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
467 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_ALL_CONTEXTS;
468 else
469 {
470 /*
471 * Neither SINGLE nor ALL context flush types for VPID supported by the CPU.
472 * We do not handle other flush type combinations, ignore VPID capabilities.
473 */
474 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
475 Log(("VMXR0SetupVM: Only VMX_FLUSH_VPID_INDIV_ADDR supported. Ignoring VPID.\n"));
476 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
477 Log(("VMXR0SetupVM: Only VMX_FLUSH_VPID_SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
478 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
479 pVM->hm.s.vmx.fVpid = false;
480 }
481 }
482 else
483 {
484 /*
485 * Should not really happen. EPT is supported but INVEPT is not supported.
486 * Ignore VPID capabilities as our code relies on using INVEPT for selective flushing.
487 */
488 Log(("VMXR0SetupVM: VPID supported without INVEPT support. Ignoring VPID.\n"));
489 pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
490 pVM->hm.s.vmx.fVpid = false;
491 }
492 }
493
494 for (VMCPUID i = 0; i < pVM->cCpus; i++)
495 {
496 PVMCPU pVCpu = &pVM->aCpus[i];
497
498 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
499
500 /* Set revision dword at the beginning of the VMCS structure. */
501 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.msr.vmx_basic_info);
502
503 /*
504 * Clear and activate the VMCS.
505 */
506 Log(("HCPhysVmcs = %RHp\n", pVCpu->hm.s.vmx.HCPhysVmcs));
507 rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
508 if (RT_FAILURE(rc))
509 goto vmx_end;
510
511 rc = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
512 if (RT_FAILURE(rc))
513 goto vmx_end;
514
515 /*
516 * VMX_VMCS_CTRL_PIN_EXEC_CONTROLS
517 * Set required bits to one and zero according to the MSR capabilities.
518 */
519 val = pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0;
520 val |= VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_EXT_INT_EXIT /* External interrupts */
521 | VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_NMI_EXIT; /* Non-maskable interrupts */
522
523 /*
524 * Enable the VMX preemption timer.
525 */
526 if (pVM->hm.s.vmx.fUsePreemptTimer)
527 val |= VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_PREEMPT_TIMER;
528 val &= pVM->hm.s.vmx.msr.vmx_pin_ctls.n.allowed1;
529
530 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PIN_EXEC_CONTROLS, val);
531 AssertRC(rc);
532
533 /*
534 * VMX_VMCS_CTRL_PROC_EXEC_CONTROLS
535 * Set required bits to one and zero according to the MSR capabilities.
536 */
537 val = pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0;
538 /* Program which event cause VM-exits and which features we want to use. */
539 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_HLT_EXIT
540 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_TSC_OFFSET
541 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT
542 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_UNCOND_IO_EXIT
543 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDPMC_EXIT
544 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MONITOR_EXIT
545 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MWAIT_EXIT; /* don't execute mwait or else we'll idle inside
546 the guest (host thinks the cpu load is high) */
547
548 /* Without nested paging we should intercept invlpg and cr3 mov instructions. */
549 if (!pVM->hm.s.fNestedPaging)
550 {
551 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INVLPG_EXIT
552 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
553 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
554 }
555
556 /*
557 * VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MWAIT_EXIT might cause a vmlaunch
558 * failure with an invalid control fields error. (combined with some other exit reasons)
559 */
560 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
561 {
562 /* CR8 reads from the APIC shadow page; writes cause an exit is they lower the TPR below the threshold */
563 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW;
564 Assert(pVM->hm.s.vmx.pbApicAccess);
565 }
566 else
567 /* Exit on CR8 reads & writes in case the TPR shadow feature isn't present. */
568 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_LOAD_EXIT;
569
570 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
571 {
572 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
573 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS;
574 }
575
576 /* We will use the secondary control if it's present. */
577 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
578
579 /* Mask away the bits that the CPU doesn't support */
580 /** @todo make sure they don't conflict with the above requirements. */
581 val &= pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1;
582 pVCpu->hm.s.vmx.u32ProcCtls = val;
583
584 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, val);
585 AssertRC(rc);
586
587 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
588 {
589 /*
590 * VMX_VMCS_CTRL_PROC_EXEC_CONTROLS2
591 * Set required bits to one and zero according to the MSR capabilities.
592 */
593 val = pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.disallowed0;
594 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT;
595
596 if (pVM->hm.s.fNestedPaging)
597 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT;
598
599 if (pVM->hm.s.vmx.fVpid)
600 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID;
601
602 if (pVM->hm.s.fHasIoApic)
603 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC;
604
605 if (pVM->hm.s.vmx.fUnrestrictedGuest)
606 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST;
607
608 if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
609 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP;
610
611 /* Mask away the bits that the CPU doesn't support */
612 /** @todo make sure they don't conflict with the above requirements. */
613 val &= pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1;
614 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
615 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS2, val);
616 AssertRC(rc);
617 }
618
619 /*
620 * VMX_VMCS_CTRL_CR3_TARGET_COUNT
621 * Set required bits to one and zero according to the MSR capabilities.
622 */
623 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
624 AssertRC(rc);
625
626 /*
627 * Forward all exception except #NM & #PF to the guest.
628 * We always need to check pagefaults since our shadow page table can be out of sync.
629 * And we always lazily sync the FPU & XMM state. .
630 */
631
632 /** @todo Possible optimization:
633 * Keep the FPU and XMM state current in the EM thread. That way there's no need to
634 * lazily sync anything, but the downside is that we can't use the FPU stack or XMM
635 * registers ourselves of course.
636 *
637 * Note: only possible if the current state is actually ours (X86_CR0_TS flag)
638 */
639
640 /*
641 * Don't filter page faults, all of them should cause a world switch.
642 */
643 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
644 AssertRC(rc);
645 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
646 AssertRC(rc);
647
648 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
649 AssertRC(rc);
650 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
651 AssertRC(rc);
652 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
653 AssertRC(rc);
654
655 /*
656 * Set the MSR bitmap address.
657 */
658 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
659 {
660 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
661
662 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
663 AssertRC(rc);
664
665 /*
666 * Allow the guest to directly modify these MSRs; they are loaded/stored automatically
667 * using MSR-load/store areas in the VMCS.
668 */
669 hmR0VmxSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_CS, true, true);
670 hmR0VmxSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_ESP, true, true);
671 hmR0VmxSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_EIP, true, true);
672 hmR0VmxSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
673 hmR0VmxSetMSRPermission(pVCpu, MSR_K6_STAR, true, true);
674 hmR0VmxSetMSRPermission(pVCpu, MSR_K8_SF_MASK, true, true);
675 hmR0VmxSetMSRPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, true, true);
676 hmR0VmxSetMSRPermission(pVCpu, MSR_K8_GS_BASE, true, true);
677 hmR0VmxSetMSRPermission(pVCpu, MSR_K8_FS_BASE, true, true);
678 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
679 hmR0VmxSetMSRPermission(pVCpu, MSR_K8_TSC_AUX, true, true);
680 }
681
682#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
683 /*
684 * Set the guest & host MSR load/store physical addresses.
685 */
686 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
687 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
688 AssertRC(rc);
689 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
690 AssertRC(rc);
691 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
692 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
693 AssertRC(rc);
694#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
695
696 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
697 AssertRC(rc);
698 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
699 AssertRC(rc);
700 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
701 AssertRC(rc);
702
703 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
704 {
705 Assert(pVM->hm.s.vmx.hMemObjApicAccess);
706 /* Optional */
707 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
708 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
709
710 if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
711 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
712
713 AssertRC(rc);
714 }
715
716 /* Set link pointer to -1. Not currently used. */
717 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, 0xFFFFFFFFFFFFFFFFULL);
718 AssertRC(rc);
719
720 /*
721 * Clear VMCS, marking it inactive. Clear implementation specific data and writing back
722 * VMCS data back to memory.
723 */
724 rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
725 AssertRC(rc);
726
727 /*
728 * Configure the VMCS read cache.
729 */
730 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
731
732 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_RIP);
733 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_RSP);
734 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_RFLAGS);
735 VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE);
736 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_CTRL_CR0_READ_SHADOW);
737 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_CR0);
738 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_CTRL_CR4_READ_SHADOW);
739 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_CR4);
740 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_DR7);
741 VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_SYSENTER_CS);
742 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
743 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
744 VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_GDTR_LIMIT);
745 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_GDTR_BASE);
746 VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_GUEST_IDTR_LIMIT);
747 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_IDTR_BASE);
748
749 VMX_SETUP_SELREG(ES, pCache);
750 VMX_SETUP_SELREG(SS, pCache);
751 VMX_SETUP_SELREG(CS, pCache);
752 VMX_SETUP_SELREG(DS, pCache);
753 VMX_SETUP_SELREG(FS, pCache);
754 VMX_SETUP_SELREG(GS, pCache);
755 VMX_SETUP_SELREG(LDTR, pCache);
756 VMX_SETUP_SELREG(TR, pCache);
757
758 /*
759 * Status code VMCS reads.
760 */
761 VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_REASON);
762 VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_VM_INSTR_ERROR);
763 VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_INSTR_LENGTH);
764 VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE);
765 VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO);
766 VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_EXIT_INSTR_INFO);
767 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
768 VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_IDT_INFO);
769 VMXSetupCachedReadVmcs(pCache, VMX_VMCS32_RO_IDT_ERROR_CODE);
770
771 if (pVM->hm.s.fNestedPaging)
772 {
773 VMXSetupCachedReadVmcs(pCache, VMX_VMCS_GUEST_CR3);
774 VMXSetupCachedReadVmcs(pCache, VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL);
775 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
776 }
777 else
778 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
779 } /* for each VMCPU */
780
781 /*
782 * Setup the right TLB function based on CPU capabilities.
783 */
784 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
785 pVM->hm.s.vmx.pfnFlushTaggedTlb = hmR0VmxSetupTLBBoth;
786 else if (pVM->hm.s.fNestedPaging)
787 pVM->hm.s.vmx.pfnFlushTaggedTlb = hmR0VmxSetupTLBEPT;
788 else if (pVM->hm.s.vmx.fVpid)
789 pVM->hm.s.vmx.pfnFlushTaggedTlb = hmR0VmxSetupTLBVPID;
790 else
791 pVM->hm.s.vmx.pfnFlushTaggedTlb = hmR0VmxSetupTLBDummy;
792
793vmx_end:
794 hmR0VmxCheckError(pVM, &pVM->aCpus[0], rc);
795 return rc;
796}
797
798
799/**
800 * Sets the permission bits for the specified MSR.
801 *
802 * @param pVCpu Pointer to the VMCPU.
803 * @param ulMSR The MSR value.
804 * @param fRead Whether reading is allowed.
805 * @param fWrite Whether writing is allowed.
806 */
807static void hmR0VmxSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite)
808{
809 unsigned ulBit;
810 uint8_t *pvMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
811
812 /*
813 * Layout:
814 * 0x000 - 0x3ff - Low MSR read bits
815 * 0x400 - 0x7ff - High MSR read bits
816 * 0x800 - 0xbff - Low MSR write bits
817 * 0xc00 - 0xfff - High MSR write bits
818 */
819 if (ulMSR <= 0x00001FFF)
820 {
821 /* Pentium-compatible MSRs */
822 ulBit = ulMSR;
823 }
824 else if ( ulMSR >= 0xC0000000
825 && ulMSR <= 0xC0001FFF)
826 {
827 /* AMD Sixth Generation x86 Processor MSRs */
828 ulBit = (ulMSR - 0xC0000000);
829 pvMsrBitmap += 0x400;
830 }
831 else
832 {
833 AssertFailed();
834 return;
835 }
836
837 Assert(ulBit <= 0x1fff);
838 if (fRead)
839 ASMBitClear(pvMsrBitmap, ulBit);
840 else
841 ASMBitSet(pvMsrBitmap, ulBit);
842
843 if (fWrite)
844 ASMBitClear(pvMsrBitmap + 0x800, ulBit);
845 else
846 ASMBitSet(pvMsrBitmap + 0x800, ulBit);
847}
848
849
850/**
851 * Injects an event (trap or external interrupt).
852 *
853 * @returns VBox status code. Note that it may return VINF_EM_RESET to
854 * indicate a triple fault when injecting X86_XCPT_DF.
855 *
856 * @param pVM Pointer to the VM.
857 * @param pVCpu Pointer to the VMCPU.
858 * @param pCtx Pointer to the guest CPU Context.
859 * @param intInfo VMX interrupt info.
860 * @param cbInstr Opcode length of faulting instruction.
861 * @param errCode Error code (optional).
862 */
863static int hmR0VmxInjectEvent(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t intInfo, uint32_t cbInstr, uint32_t errCode)
864{
865 int rc;
866 uint32_t iGate = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo);
867
868#ifdef VBOX_WITH_STATISTICS
869 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[iGate & MASK_INJECT_IRQ_STAT]);
870#endif
871
872#ifdef VBOX_STRICT
873 if (iGate == 0xE)
874 {
875 LogFlow(("hmR0VmxInjectEvent: Injecting interrupt %d at %RGv error code=%08x CR2=%RGv intInfo=%08x\n", iGate,
876 (RTGCPTR)pCtx->rip, errCode, pCtx->cr2, intInfo));
877 }
878 else if (iGate < 0x20)
879 {
880 LogFlow(("hmR0VmxInjectEvent: Injecting interrupt %d at %RGv error code=%08x\n", iGate, (RTGCPTR)pCtx->rip,
881 errCode));
882 }
883 else
884 {
885 LogFlow(("INJ-EI: %x at %RGv\n", iGate, (RTGCPTR)pCtx->rip));
886 Assert( VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT
887 || !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
888 Assert( VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT
889 || pCtx->eflags.u32 & X86_EFL_IF);
890 }
891#endif
892
893 if ( CPUMIsGuestInRealModeEx(pCtx)
894 && pVM->hm.s.vmx.pRealModeTSS)
895 {
896 RTGCPHYS GCPhysHandler;
897 uint16_t offset, ip;
898 RTSEL sel;
899
900 /*
901 * Injecting events doesn't work right with real mode emulation.
902 * (#GP if we try to inject external hardware interrupts)
903 * Inject the interrupt or trap directly instead.
904 *
905 * ASSUMES no access handlers for the bits we read or write below (should be safe).
906 */
907 Log(("Manual interrupt/trap '%x' inject (real mode)\n", iGate));
908
909 /*
910 * Check if the interrupt handler is present.
911 */
912 if (iGate * 4 + 3 > pCtx->idtr.cbIdt)
913 {
914 Log(("IDT cbIdt violation\n"));
915 if (iGate != X86_XCPT_DF)
916 {
917 uint32_t intInfo2;
918
919 intInfo2 = (iGate == X86_XCPT_GP) ? (uint32_t)X86_XCPT_DF : (uint32_t)X86_XCPT_GP;
920 intInfo2 |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
921 intInfo2 |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
922 intInfo2 |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
923
924 return hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo2, 0, 0 /* no error code according to the Intel docs */);
925 }
926 Log(("Triple fault -> reset the VM!\n"));
927 return VINF_EM_RESET;
928 }
929 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT
930 || iGate == 3 /* Both #BP and #OF point to the instruction after. */
931 || iGate == 4)
932 {
933 ip = pCtx->ip + cbInstr;
934 }
935 else
936 ip = pCtx->ip;
937
938 /*
939 * Read the selector:offset pair of the interrupt handler.
940 */
941 GCPhysHandler = (RTGCPHYS)pCtx->idtr.pIdt + iGate * 4;
942 rc = PGMPhysSimpleReadGCPhys(pVM, &offset, GCPhysHandler, sizeof(offset)); AssertRC(rc);
943 rc = PGMPhysSimpleReadGCPhys(pVM, &sel, GCPhysHandler + 2, sizeof(sel)); AssertRC(rc);
944
945 LogFlow(("IDT handler %04X:%04X\n", sel, offset));
946
947 /*
948 * Construct the stack frame.
949 */
950 /** @todo Check stack limit. */
951 pCtx->sp -= 2;
952 LogFlow(("ss:sp %04X:%04X eflags=%x\n", pCtx->ss.Sel, pCtx->sp, pCtx->eflags.u));
953 rc = PGMPhysSimpleWriteGCPhys(pVM, pCtx->ss.u64Base + pCtx->sp, &pCtx->eflags, sizeof(uint16_t)); AssertRC(rc);
954 pCtx->sp -= 2;
955 LogFlow(("ss:sp %04X:%04X cs=%x\n", pCtx->ss.Sel, pCtx->sp, pCtx->cs.Sel));
956 rc = PGMPhysSimpleWriteGCPhys(pVM, pCtx->ss.u64Base + pCtx->sp, &pCtx->cs, sizeof(uint16_t)); AssertRC(rc);
957 pCtx->sp -= 2;
958 LogFlow(("ss:sp %04X:%04X ip=%x\n", pCtx->ss.Sel, pCtx->sp, ip));
959 rc = PGMPhysSimpleWriteGCPhys(pVM, pCtx->ss.u64Base + pCtx->sp, &ip, sizeof(ip)); AssertRC(rc);
960
961 /*
962 * Update the CPU state for executing the handler.
963 */
964 pCtx->rip = offset;
965 pCtx->cs.Sel = sel;
966 pCtx->cs.u64Base = sel << 4;
967 pCtx->eflags.u &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
968
969 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SEGMENT_REGS;
970 return VINF_SUCCESS;
971 }
972
973 /*
974 * Set event injection state.
975 */
976 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, intInfo | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT));
977 rc |= VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
978 rc |= VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, errCode);
979
980 AssertRC(rc);
981 return rc;
982}
983
984
985/**
986 * Checks for pending guest interrupts and injects them.
987 *
988 * @returns VBox status code.
989 * @param pVM Pointer to the VM.
990 * @param pVCpu Pointer to the VMCPU.
991 * @param pCtx Pointer to the guest CPU context.
992 */
993static int hmR0VmxCheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, CPUMCTX *pCtx)
994{
995 int rc;
996
997 /*
998 * Dispatch any pending interrupts (injected before, but a VM exit occurred prematurely).
999 */
1000 if (pVCpu->hm.s.Event.fPending)
1001 {
1002 Log(("CPU%d: Reinjecting event %RX64 %08x at %RGv cr2=%RX64\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntrInfo,
1003 pVCpu->hm.s.Event.u32ErrCode, (RTGCPTR)pCtx->rip, pCtx->cr2));
1004 STAM_COUNTER_INC(&pVCpu->hm.s.StatIntReinject);
1005 rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, pVCpu->hm.s.Event.u64IntrInfo, 0, pVCpu->hm.s.Event.u32ErrCode);
1006 AssertRC(rc);
1007
1008 pVCpu->hm.s.Event.fPending = false;
1009 return VINF_SUCCESS;
1010 }
1011
1012 /*
1013 * If an active trap is already pending, we must forward it first!
1014 */
1015 if (!TRPMHasTrap(pVCpu))
1016 {
1017 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI))
1018 {
1019 RTGCUINTPTR intInfo;
1020
1021 Log(("CPU%d: injecting #NMI\n", pVCpu->idCpu));
1022
1023 intInfo = X86_XCPT_NMI;
1024 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
1025 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
1026
1027 rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo, 0, 0);
1028 AssertRC(rc);
1029
1030 return VINF_SUCCESS;
1031 }
1032
1033 /** @todo SMI interrupts. */
1034
1035 /*
1036 * When external interrupts are pending, we should exit the VM when IF is set.
1037 */
1038 if (VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)))
1039 {
1040 if (!(pCtx->eflags.u32 & X86_EFL_IF))
1041 {
1042 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INT_WINDOW_EXIT))
1043 {
1044 LogFlow(("Enable irq window exit!\n"));
1045 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INT_WINDOW_EXIT;
1046 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
1047 AssertRC(rc);
1048 }
1049 /* else nothing to do but wait */
1050 }
1051 else if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1052 {
1053 uint8_t u8Interrupt;
1054
1055 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
1056 Log(("CPU%d: Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc cs:rip=%04X:%RGv\n", pVCpu->idCpu,
1057 u8Interrupt, u8Interrupt, rc, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
1058 if (RT_SUCCESS(rc))
1059 {
1060 rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT);
1061 AssertRC(rc);
1062 }
1063 else
1064 {
1065 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
1066 Assert(!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)));
1067 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
1068 /* Just continue */
1069 }
1070 }
1071 else
1072 Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS!!\n", (RTGCPTR)pCtx->rip));
1073 }
1074 }
1075
1076#ifdef VBOX_STRICT
1077 if (TRPMHasTrap(pVCpu))
1078 {
1079 uint8_t u8Vector;
1080 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, 0, 0, 0);
1081 AssertRC(rc);
1082 }
1083#endif
1084
1085 if ( (pCtx->eflags.u32 & X86_EFL_IF)
1086 && (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1087 && TRPMHasTrap(pVCpu)
1088 )
1089 {
1090 uint8_t u8Vector;
1091 TRPMEVENT enmType;
1092 RTGCUINTPTR intInfo;
1093 RTGCUINT errCode;
1094
1095 /*
1096 * If a new event is pending, dispatch it now.
1097 */
1098 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, &enmType, &errCode, 0);
1099 AssertRC(rc);
1100 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
1101 Assert(enmType != TRPM_SOFTWARE_INT);
1102
1103 /*
1104 * Clear the pending trap.
1105 */
1106 rc = TRPMResetTrap(pVCpu);
1107 AssertRC(rc);
1108
1109 intInfo = u8Vector;
1110 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
1111
1112 if (enmType == TRPM_TRAP)
1113 {
1114 switch (u8Vector)
1115 {
1116 case X86_XCPT_DF:
1117 case X86_XCPT_TS:
1118 case X86_XCPT_NP:
1119 case X86_XCPT_SS:
1120 case X86_XCPT_GP:
1121 case X86_XCPT_PF:
1122 case X86_XCPT_AC:
1123 {
1124 /** @todo r=ramshankar: setting this bit would blow up for real-mode guests with
1125 * unrestricted guest execution. */
1126 /* Valid error codes. */
1127 intInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
1128 break;
1129 }
1130
1131 default:
1132 break;
1133 }
1134
1135 if ( u8Vector == X86_XCPT_BP
1136 || u8Vector == X86_XCPT_OF)
1137 {
1138 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
1139 }
1140 else
1141 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
1142 }
1143 else
1144 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
1145
1146 STAM_COUNTER_INC(&pVCpu->hm.s.StatIntInject);
1147 rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo, 0, errCode);
1148 AssertRC(rc);
1149 } /* if (interrupts can be dispatched) */
1150
1151 return VINF_SUCCESS;
1152}
1153
1154/**
1155 * Checks for pending VMX events and converts them to TRPM. Before we execute any instruction
1156 * outside of VMX, any pending VMX event must be converted so that it can be delivered properly.
1157 *
1158 * @returns VBox status code.
1159 * @param pVCpu Pointer to the VMCPU.
1160 */
1161static int hmR0VmxCheckPendingEvent(PVMCPU pVCpu)
1162{
1163 if (pVCpu->hm.s.Event.fPending)
1164 {
1165 TRPMEVENT enmTrapType;
1166
1167 /* If a trap was already pending, we did something wrong! */
1168 Assert((TRPMQueryTrap(pVCpu, NULL, NULL) == VERR_TRPM_NO_ACTIVE_TRAP));
1169
1170 /*
1171 * Clear the pending event and move it over to TRPM for the rest
1172 * of the world to see.
1173 */
1174 pVCpu->hm.s.Event.fPending = false;
1175 switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo))
1176 {
1177 case VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT:
1178 case VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI:
1179 enmTrapType = TRPM_HARDWARE_INT;
1180 break;
1181 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT:
1182 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /** @todo Is classifying #BP, #OF as TRPM_SOFTWARE_INT correct? */
1183 case VMX_EXIT_INTERRUPTION_INFO_TYPE_DB_XCPT:
1184 enmTrapType = TRPM_SOFTWARE_INT;
1185 break;
1186 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
1187 enmTrapType = TRPM_TRAP;
1188 break;
1189 default:
1190 enmTrapType = TRPM_32BIT_HACK; /* Can't get here. */
1191 AssertFailed();
1192 }
1193 TRPMAssertTrap(pVCpu, VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVCpu->hm.s.Event.u64IntrInfo), enmTrapType);
1194 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo))
1195 TRPMSetErrorCode(pVCpu, pVCpu->hm.s.Event.u32ErrCode);
1196 //@todo: Is there any situation where we need to call TRPMSetFaultAddress()?
1197 }
1198 return VINF_SUCCESS;
1199}
1200
1201/**
1202 * Save the host state into the VMCS.
1203 *
1204 * @returns VBox status code.
1205 * @param pVM Pointer to the VM.
1206 * @param pVCpu Pointer to the VMCPU.
1207 */
1208VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
1209{
1210 int rc = VINF_SUCCESS;
1211 NOREF(pVM);
1212
1213 /*
1214 * Host CPU Context.
1215 */
1216 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_CONTEXT)
1217 {
1218 RTIDTR idtr;
1219 RTGDTR gdtr;
1220 RTSEL SelTR;
1221 PCX86DESCHC pDesc;
1222 uintptr_t trBase;
1223 RTSEL cs;
1224 RTSEL ss;
1225 uint64_t cr3;
1226
1227 /*
1228 * Control registers.
1229 */
1230 rc = VMXWriteVmcs(VMX_VMCS_HOST_CR0, ASMGetCR0());
1231 Log2(("VMX_VMCS_HOST_CR0 %08x\n", ASMGetCR0()));
1232#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
1233 if (VMX_IS_64BIT_HOST_MODE())
1234 {
1235 cr3 = hmR0Get64bitCR3();
1236 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_CR3, cr3);
1237 }
1238 else
1239#endif
1240 {
1241 cr3 = ASMGetCR3();
1242 rc |= VMXWriteVmcs(VMX_VMCS_HOST_CR3, cr3);
1243 }
1244 Log2(("VMX_VMCS_HOST_CR3 %08RX64\n", cr3));
1245 rc |= VMXWriteVmcs(VMX_VMCS_HOST_CR4, ASMGetCR4());
1246 Log2(("VMX_VMCS_HOST_CR4 %08x\n", ASMGetCR4()));
1247 AssertRC(rc);
1248
1249 /*
1250 * Selector registers.
1251 */
1252#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
1253 if (VMX_IS_64BIT_HOST_MODE())
1254 {
1255 cs = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelCS;
1256 ss = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelSS;
1257 }
1258 else
1259 {
1260 /* sysenter loads LDT cs & ss, VMX doesn't like this. Load the GDT ones (safe). */
1261 cs = (RTSEL)(uintptr_t)&SUPR0AbsKernelCS;
1262 ss = (RTSEL)(uintptr_t)&SUPR0AbsKernelSS;
1263 }
1264#else
1265 cs = ASMGetCS();
1266 ss = ASMGetSS();
1267#endif
1268 Assert(!(cs & X86_SEL_LDT)); Assert((cs & X86_SEL_RPL) == 0);
1269 Assert(!(ss & X86_SEL_LDT)); Assert((ss & X86_SEL_RPL) == 0);
1270 rc = VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_CS, cs);
1271 /* Note: VMX is (again) very picky about the RPL of the selectors here; we'll restore them manually. */
1272 rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_DS, 0);
1273 rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_ES, 0);
1274#if HC_ARCH_BITS == 32
1275 if (!VMX_IS_64BIT_HOST_MODE())
1276 {
1277 rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_FS, 0);
1278 rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_GS, 0);
1279 }
1280#endif
1281 rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_SS, ss);
1282 SelTR = ASMGetTR();
1283 rc |= VMXWriteVmcs(VMX_VMCS16_HOST_FIELD_TR, SelTR);
1284 AssertRC(rc);
1285 Log2(("VMX_VMCS_HOST_FIELD_CS %08x (%08x)\n", cs, ASMGetSS()));
1286 Log2(("VMX_VMCS_HOST_FIELD_DS 00000000 (%08x)\n", ASMGetDS()));
1287 Log2(("VMX_VMCS_HOST_FIELD_ES 00000000 (%08x)\n", ASMGetES()));
1288 Log2(("VMX_VMCS_HOST_FIELD_FS 00000000 (%08x)\n", ASMGetFS()));
1289 Log2(("VMX_VMCS_HOST_FIELD_GS 00000000 (%08x)\n", ASMGetGS()));
1290 Log2(("VMX_VMCS_HOST_FIELD_SS %08x (%08x)\n", ss, ASMGetSS()));
1291 Log2(("VMX_VMCS_HOST_FIELD_TR %08x\n", ASMGetTR()));
1292
1293 /*
1294 * GDTR & IDTR.
1295 */
1296#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
1297 if (VMX_IS_64BIT_HOST_MODE())
1298 {
1299 X86XDTR64 gdtr64, idtr64;
1300 hmR0Get64bitGdtrAndIdtr(&gdtr64, &idtr64);
1301 rc = VMXWriteVmcs64(VMX_VMCS_HOST_GDTR_BASE, gdtr64.uAddr);
1302 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_IDTR_BASE, idtr64.uAddr);
1303 AssertRC(rc);
1304 Log2(("VMX_VMCS_HOST_GDTR_BASE %RX64\n", gdtr64.uAddr));
1305 Log2(("VMX_VMCS_HOST_IDTR_BASE %RX64\n", idtr64.uAddr));
1306 gdtr.cbGdt = gdtr64.cb;
1307 gdtr.pGdt = (uintptr_t)gdtr64.uAddr;
1308 }
1309 else
1310#endif
1311 {
1312 ASMGetGDTR(&gdtr);
1313 rc = VMXWriteVmcs(VMX_VMCS_HOST_GDTR_BASE, gdtr.pGdt);
1314 ASMGetIDTR(&idtr);
1315 rc |= VMXWriteVmcs(VMX_VMCS_HOST_IDTR_BASE, idtr.pIdt);
1316 AssertRC(rc);
1317 Log2(("VMX_VMCS_HOST_GDTR_BASE %RHv\n", gdtr.pGdt));
1318 Log2(("VMX_VMCS_HOST_IDTR_BASE %RHv\n", idtr.pIdt));
1319 }
1320
1321 /*
1322 * Save the base address of the TR selector.
1323 */
1324 if (SelTR > gdtr.cbGdt)
1325 {
1326 AssertMsgFailed(("Invalid TR selector %x. GDTR.cbGdt=%x\n", SelTR, gdtr.cbGdt));
1327 return VERR_VMX_INVALID_HOST_STATE;
1328 }
1329
1330 pDesc = (PCX86DESCHC)(gdtr.pGdt + (SelTR & X86_SEL_MASK));
1331#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
1332 if (VMX_IS_64BIT_HOST_MODE())
1333 {
1334 uint64_t trBase64 = X86DESC64_BASE((PX86DESC64)pDesc);
1335 rc = VMXWriteVmcs64(VMX_VMCS_HOST_TR_BASE, trBase64);
1336 Log2(("VMX_VMCS_HOST_TR_BASE %RX64\n", trBase64));
1337 AssertRC(rc);
1338 }
1339 else
1340#endif
1341 {
1342#if HC_ARCH_BITS == 64
1343 trBase = X86DESC64_BASE(pDesc);
1344#else
1345 trBase = X86DESC_BASE(pDesc);
1346#endif
1347 rc = VMXWriteVmcs(VMX_VMCS_HOST_TR_BASE, trBase);
1348 AssertRC(rc);
1349 Log2(("VMX_VMCS_HOST_TR_BASE %RHv\n", trBase));
1350 }
1351
1352 /*
1353 * FS base and GS base.
1354 */
1355#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1356 if (VMX_IS_64BIT_HOST_MODE())
1357 {
1358 Log2(("MSR_K8_FS_BASE = %RX64\n", ASMRdMsr(MSR_K8_FS_BASE)));
1359 Log2(("MSR_K8_GS_BASE = %RX64\n", ASMRdMsr(MSR_K8_GS_BASE)));
1360 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, ASMRdMsr(MSR_K8_FS_BASE));
1361 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, ASMRdMsr(MSR_K8_GS_BASE));
1362 }
1363#endif
1364 AssertRC(rc);
1365
1366 /*
1367 * Sysenter MSRs.
1368 */
1369 /** @todo expensive!! */
1370 rc = VMXWriteVmcs(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
1371 Log2(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_CS)));
1372#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
1373 if (VMX_IS_64BIT_HOST_MODE())
1374 {
1375 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_EIP)));
1376 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_ESP)));
1377 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
1378 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
1379 }
1380 else
1381 {
1382 rc |= VMXWriteVmcs(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
1383 rc |= VMXWriteVmcs(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
1384 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP)));
1385 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP)));
1386 }
1387#elif HC_ARCH_BITS == 32
1388 rc |= VMXWriteVmcs(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
1389 rc |= VMXWriteVmcs(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
1390 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP)));
1391 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP)));
1392#else
1393 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_EIP)));
1394 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_ESP)));
1395 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
1396 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
1397#endif
1398 AssertRC(rc);
1399
1400
1401#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
1402 /*
1403 * Store all host MSRs in the VM-Exit load area, so they will be reloaded after
1404 * the world switch back to the host.
1405 */
1406 PVMXMSR pMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvHostMsr;
1407 unsigned idxMsr = 0;
1408
1409 uint32_t u32HostExtFeatures = ASMCpuId_EDX(0x80000001);
1410 if (u32HostExtFeatures & (X86_CPUID_EXT_FEATURE_EDX_NX | X86_CPUID_EXT_FEATURE_EDX_LONG_MODE))
1411 {
1412 pMsr->u32IndexMSR = MSR_K6_EFER;
1413 pMsr->u32Reserved = 0;
1414# if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1415 if (CPUMIsGuestInLongMode(pVCpu))
1416 {
1417 /* Must match the EFER value in our 64 bits switcher. */
1418 pMsr->u64Value = ASMRdMsr(MSR_K6_EFER) | MSR_K6_EFER_LME | MSR_K6_EFER_SCE | MSR_K6_EFER_NXE;
1419 }
1420 else
1421# endif
1422 pMsr->u64Value = ASMRdMsr(MSR_K6_EFER);
1423 pMsr++; idxMsr++;
1424 }
1425
1426# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1427 if (VMX_IS_64BIT_HOST_MODE())
1428 {
1429 pMsr->u32IndexMSR = MSR_K6_STAR;
1430 pMsr->u32Reserved = 0;
1431 pMsr->u64Value = ASMRdMsr(MSR_K6_STAR); /* legacy syscall eip, cs & ss */
1432 pMsr++; idxMsr++;
1433 pMsr->u32IndexMSR = MSR_K8_LSTAR;
1434 pMsr->u32Reserved = 0;
1435 pMsr->u64Value = ASMRdMsr(MSR_K8_LSTAR); /* 64 bits mode syscall rip */
1436 pMsr++; idxMsr++;
1437 pMsr->u32IndexMSR = MSR_K8_SF_MASK;
1438 pMsr->u32Reserved = 0;
1439 pMsr->u64Value = ASMRdMsr(MSR_K8_SF_MASK); /* syscall flag mask */
1440 pMsr++; idxMsr++;
1441
1442 /* The KERNEL_GS_BASE MSR doesn't work reliably with auto load/store. See @bugref{6208} */
1443#if 0
1444 pMsr->u32IndexMSR = MSR_K8_KERNEL_GS_BASE;
1445 pMsr->u32Reserved = 0;
1446 pMsr->u64Value = ASMRdMsr(MSR_K8_KERNEL_GS_BASE); /* swapgs exchange value */
1447 pMsr++; idxMsr++;
1448#endif
1449 }
1450# endif
1451
1452 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
1453 {
1454 pMsr->u32IndexMSR = MSR_K8_TSC_AUX;
1455 pMsr->u32Reserved = 0;
1456 pMsr->u64Value = ASMRdMsr(MSR_K8_TSC_AUX);
1457 pMsr++; idxMsr++;
1458 }
1459
1460 /** @todo r=ramshankar: check IA32_VMX_MISC bits 27:25 for valid idxMsr
1461 * range. */
1462 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, idxMsr);
1463 AssertRC(rc);
1464#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
1465
1466 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
1467 }
1468 return rc;
1469}
1470
1471
1472/**
1473 * Loads the 4 PDPEs into the guest state when nested paging is used and the
1474 * guest operates in PAE mode.
1475 *
1476 * @returns VBox status code.
1477 * @param pVCpu Pointer to the VMCPU.
1478 * @param pCtx Pointer to the guest CPU context.
1479 */
1480static int hmR0VmxLoadPaePdpes(PVMCPU pVCpu, PCPUMCTX pCtx)
1481{
1482 if (CPUMIsGuestInPAEModeEx(pCtx))
1483 {
1484 X86PDPE aPdpes[4];
1485 int rc = PGMGstGetPaePdpes(pVCpu, &aPdpes[0]);
1486 AssertRCReturn(rc, rc);
1487
1488 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, aPdpes[0].u); AssertRCReturn(rc, rc);
1489 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, aPdpes[1].u); AssertRCReturn(rc, rc);
1490 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, aPdpes[2].u); AssertRCReturn(rc, rc);
1491 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, aPdpes[3].u); AssertRCReturn(rc, rc);
1492 }
1493 return VINF_SUCCESS;
1494}
1495
1496
1497/**
1498 * Saves the 4 PDPEs into the guest state when nested paging is used and the
1499 * guest operates in PAE mode.
1500 *
1501 * @returns VBox status code.
1502 * @param pVCpu Pointer to the VM CPU.
1503 * @param pCtx Pointer to the guest CPU context.
1504 *
1505 * @remarks Tell PGM about CR3 changes before calling this helper.
1506 */
1507static int hmR0VmxSavePaePdpes(PVMCPU pVCpu, PCPUMCTX pCtx)
1508{
1509 if (CPUMIsGuestInPAEModeEx(pCtx))
1510 {
1511 int rc;
1512 X86PDPE aPdpes[4];
1513 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &aPdpes[0].u); AssertRCReturn(rc, rc);
1514 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &aPdpes[1].u); AssertRCReturn(rc, rc);
1515 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &aPdpes[2].u); AssertRCReturn(rc, rc);
1516 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &aPdpes[3].u); AssertRCReturn(rc, rc);
1517
1518 rc = PGMGstUpdatePaePdpes(pVCpu, &aPdpes[0]);
1519 AssertRCReturn(rc, rc);
1520 }
1521 return VINF_SUCCESS;
1522}
1523
1524
1525/**
1526 * Update the exception bitmap according to the current CPU state.
1527 *
1528 * @param pVM Pointer to the VM.
1529 * @param pVCpu Pointer to the VMCPU.
1530 * @param pCtx Pointer to the guest CPU context.
1531 */
1532static void hmR0VmxUpdateExceptionBitmap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1533{
1534 uint32_t u32TrapMask;
1535 Assert(pCtx);
1536
1537 /*
1538 * Set up a mask for intercepting traps.
1539 */
1540 /** @todo Do we really need to always intercept #DB? */
1541 u32TrapMask = RT_BIT(X86_XCPT_DB)
1542 | RT_BIT(X86_XCPT_NM)
1543#ifdef VBOX_ALWAYS_TRAP_PF
1544 | RT_BIT(X86_XCPT_PF)
1545#endif
1546#ifdef VBOX_STRICT
1547 | RT_BIT(X86_XCPT_BP)
1548 | RT_BIT(X86_XCPT_DB)
1549 | RT_BIT(X86_XCPT_DE)
1550 | RT_BIT(X86_XCPT_NM)
1551 | RT_BIT(X86_XCPT_UD)
1552 | RT_BIT(X86_XCPT_NP)
1553 | RT_BIT(X86_XCPT_SS)
1554 | RT_BIT(X86_XCPT_GP)
1555 | RT_BIT(X86_XCPT_MF)
1556#endif
1557 ;
1558
1559 /*
1560 * Without nested paging, #PF must be intercepted to implement shadow paging.
1561 */
1562 /** @todo NP state won't change so maybe we should build the initial trap mask up front? */
1563 if (!pVM->hm.s.fNestedPaging)
1564 u32TrapMask |= RT_BIT(X86_XCPT_PF);
1565
1566 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1567 if (!(pCtx->cr0 & X86_CR0_NE))
1568 u32TrapMask |= RT_BIT(X86_XCPT_MF);
1569
1570#ifdef VBOX_STRICT
1571 Assert(u32TrapMask & RT_BIT(X86_XCPT_GP));
1572#endif
1573
1574 /*
1575 * Intercept all exceptions in real mode as none of them can be injected directly (#GP otherwise).
1576 */
1577 /** @todo Despite the claim to intercept everything, with NP we do not intercept #PF. Should we? */
1578 if ( CPUMIsGuestInRealModeEx(pCtx)
1579 && pVM->hm.s.vmx.pRealModeTSS)
1580 {
1581 u32TrapMask |= RT_BIT(X86_XCPT_DE)
1582 | RT_BIT(X86_XCPT_DB)
1583 | RT_BIT(X86_XCPT_NMI)
1584 | RT_BIT(X86_XCPT_BP)
1585 | RT_BIT(X86_XCPT_OF)
1586 | RT_BIT(X86_XCPT_BR)
1587 | RT_BIT(X86_XCPT_UD)
1588 | RT_BIT(X86_XCPT_DF)
1589 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN)
1590 | RT_BIT(X86_XCPT_TS)
1591 | RT_BIT(X86_XCPT_NP)
1592 | RT_BIT(X86_XCPT_SS)
1593 | RT_BIT(X86_XCPT_GP)
1594 | RT_BIT(X86_XCPT_MF)
1595 | RT_BIT(X86_XCPT_AC)
1596 | RT_BIT(X86_XCPT_MC)
1597 | RT_BIT(X86_XCPT_XF)
1598 ;
1599 }
1600
1601 int rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32TrapMask);
1602 AssertRC(rc);
1603}
1604
1605
1606/**
1607 * Loads a minimal guest state.
1608 *
1609 * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
1610 *
1611 * @param pVM Pointer to the VM.
1612 * @param pVCpu Pointer to the VMCPU.
1613 * @param pCtx Pointer to the guest CPU context.
1614 */
1615VMMR0DECL(void) VMXR0LoadMinimalGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1616{
1617 int rc;
1618 X86EFLAGS eflags;
1619
1620 Assert(!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_ALL_GUEST));
1621
1622 /*
1623 * Load EIP, ESP and EFLAGS.
1624 */
1625 rc = VMXWriteVmcs64(VMX_VMCS_GUEST_RIP, pCtx->rip);
1626 rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_RSP, pCtx->rsp);
1627 AssertRC(rc);
1628
1629 /*
1630 * Bits 22-31, 15, 5 & 3 must be zero. Bit 1 must be 1.
1631 */
1632 eflags = pCtx->eflags;
1633 eflags.u32 &= VMX_EFLAGS_RESERVED_0;
1634 eflags.u32 |= VMX_EFLAGS_RESERVED_1;
1635
1636 /*
1637 * Check if real mode emulation using v86 mode.
1638 */
1639 if ( CPUMIsGuestInRealModeEx(pCtx)
1640 && pVM->hm.s.vmx.pRealModeTSS)
1641 {
1642 pVCpu->hm.s.vmx.RealMode.eflags = eflags;
1643
1644 eflags.Bits.u1VM = 1;
1645 eflags.Bits.u2IOPL = 0; /* must always be 0 or else certain instructions won't cause faults. */
1646 }
1647 rc = VMXWriteVmcs(VMX_VMCS_GUEST_RFLAGS, eflags.u32);
1648 AssertRC(rc);
1649}
1650
1651
1652/**
1653 * Loads the guest state.
1654 *
1655 * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
1656 *
1657 * @returns VBox status code.
1658 * @param pVM Pointer to the VM.
1659 * @param pVCpu Pointer to the VMCPU.
1660 * @param pCtx Pointer to the guest CPU context.
1661 */
1662VMMR0DECL(int) VMXR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1663{
1664 int rc = VINF_SUCCESS;
1665 RTGCUINTPTR val;
1666
1667 /*
1668 * VMX_VMCS_CTRL_ENTRY_CONTROLS
1669 * Set required bits to one and zero according to the MSR capabilities.
1670 */
1671 val = pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0;
1672
1673 /*
1674 * Load guest debug controls (DR7 & IA32_DEBUGCTL_MSR).
1675 * Forced to 1 on the 'first' VT-x capable CPUs; this actually includes the newest Nehalem CPUs
1676 */
1677 val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_LOAD_DEBUG;
1678
1679 if (CPUMIsGuestInLongModeEx(pCtx))
1680 val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_IA32E_MODE_GUEST;
1681 /* else Must be zero when AMD64 is not available. */
1682
1683 /*
1684 * Mask away the bits that the CPU doesn't support.
1685 */
1686 val &= pVM->hm.s.vmx.msr.vmx_entry.n.allowed1;
1687 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_CONTROLS, val);
1688 AssertRC(rc);
1689
1690 /*
1691 * VMX_VMCS_CTRL_EXIT_CONTROLS
1692 * Set required bits to one and zero according to the MSR capabilities.
1693 */
1694 val = pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0;
1695
1696 /*
1697 * Save debug controls (DR7 & IA32_DEBUGCTL_MSR)
1698 * Forced to 1 on the 'first' VT-x capable CPUs; this actually includes the newest Nehalem CPUs
1699 */
1700 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_SAVE_DEBUG;
1701
1702#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1703 if (VMX_IS_64BIT_HOST_MODE())
1704 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_ADDR_SPACE_SIZE;
1705 /* else Must be zero when AMD64 is not available. */
1706#elif HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1707 if (CPUMIsGuestInLongModeEx(pCtx))
1708 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_ADDR_SPACE_SIZE; /* our switcher goes to long mode */
1709 else
1710 Assert(!(val & VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_ADDR_SPACE_SIZE));
1711#endif
1712 val &= pVM->hm.s.vmx.msr.vmx_exit.n.allowed1;
1713
1714 /*
1715 * Don't acknowledge external interrupts on VM-exit.
1716 */
1717 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_CONTROLS, val);
1718 AssertRC(rc);
1719
1720 /*
1721 * Guest CPU context: ES, CS, SS, DS, FS, GS.
1722 */
1723 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
1724 {
1725 if (pVM->hm.s.vmx.pRealModeTSS)
1726 {
1727 PGMMODE enmGuestMode = PGMGetGuestMode(pVCpu);
1728 if (pVCpu->hm.s.vmx.enmLastSeenGuestMode != enmGuestMode)
1729 {
1730 /*
1731 * Correct weird requirements for switching to protected mode.
1732 */
1733 if ( pVCpu->hm.s.vmx.enmLastSeenGuestMode == PGMMODE_REAL
1734 && enmGuestMode >= PGMMODE_PROTECTED)
1735 {
1736#ifdef VBOX_WITH_REM
1737 /*
1738 * Flush the recompiler code cache as it's not unlikely the guest will rewrite code
1739 * it will later execute in real mode (OpenBSD 4.0 is one such example)
1740 */
1741 REMFlushTBs(pVM);
1742#endif
1743
1744 /*
1745 * DPL of all hidden selector registers must match the current CPL (0).
1746 */
1747 pCtx->cs.Attr.n.u2Dpl = 0;
1748 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_RW_ACC;
1749
1750 pCtx->ds.Attr.n.u2Dpl = 0;
1751 pCtx->es.Attr.n.u2Dpl = 0;
1752 pCtx->fs.Attr.n.u2Dpl = 0;
1753 pCtx->gs.Attr.n.u2Dpl = 0;
1754 pCtx->ss.Attr.n.u2Dpl = 0;
1755 }
1756 pVCpu->hm.s.vmx.enmLastSeenGuestMode = enmGuestMode;
1757 }
1758 }
1759
1760 VMX_WRITE_SELREG(ES, es);
1761 AssertRC(rc);
1762
1763 VMX_WRITE_SELREG(CS, cs);
1764 AssertRC(rc);
1765
1766 VMX_WRITE_SELREG(SS, ss);
1767 AssertRC(rc);
1768
1769 VMX_WRITE_SELREG(DS, ds);
1770 AssertRC(rc);
1771
1772 VMX_WRITE_SELREG(FS, fs);
1773 AssertRC(rc);
1774
1775 VMX_WRITE_SELREG(GS, gs);
1776 AssertRC(rc);
1777 }
1778
1779 /*
1780 * Guest CPU context: LDTR.
1781 */
1782 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
1783 {
1784 if (pCtx->ldtr.Sel == 0)
1785 {
1786 rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_LDTR, 0);
1787 rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_LDTR_LIMIT, 0);
1788 rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_LDTR_BASE, 0); /* @todo removing "64" in the function should be the same. */
1789 /* Note: vmlaunch will fail with 0 or just 0x02. No idea why. */
1790 rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, 0x82 /* present, LDT */);
1791 }
1792 else
1793 {
1794 rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_LDTR, pCtx->ldtr.Sel);
1795 rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit);
1796 rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base); /* @todo removing "64" and it should be the same */
1797 rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, pCtx->ldtr.Attr.u);
1798 }
1799 AssertRC(rc);
1800 }
1801
1802 /*
1803 * Guest CPU context: TR.
1804 */
1805 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
1806 {
1807 /*
1808 * Real mode emulation using v86 mode with CR4.VME (interrupt redirection
1809 * using the int bitmap in the TSS).
1810 */
1811 if ( CPUMIsGuestInRealModeEx(pCtx)
1812 && pVM->hm.s.vmx.pRealModeTSS)
1813 {
1814 RTGCPHYS GCPhys;
1815
1816 /* We convert it here every time as PCI regions could be reconfigured. */
1817 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
1818 AssertRC(rc);
1819
1820 rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_TR, 0);
1821 rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_TR_LIMIT, HM_VTX_TSS_SIZE);
1822 rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_TR_BASE, GCPhys /* phys = virt in this mode */);
1823
1824 X86DESCATTR attr;
1825
1826 attr.u = 0;
1827 attr.n.u1Present = 1;
1828 attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
1829 val = attr.u;
1830 }
1831 else
1832 {
1833 rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_TR, pCtx->tr.Sel);
1834 rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_TR_LIMIT, pCtx->tr.u32Limit);
1835 rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_TR_BASE, pCtx->tr.u64Base);
1836
1837 val = pCtx->tr.Attr.u;
1838
1839 /* The TSS selector must be busy (REM bugs? see defect #XXXX). */
1840 if (!(val & X86_SEL_TYPE_SYS_TSS_BUSY_MASK))
1841 {
1842 if (val & 0xf)
1843 val |= X86_SEL_TYPE_SYS_TSS_BUSY_MASK;
1844 else
1845 /* Default if no TR selector has been set (otherwise vmlaunch will fail!) */
1846 val = (val & ~0xF) | X86_SEL_TYPE_SYS_386_TSS_BUSY;
1847 }
1848 AssertMsg((val & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY || (val & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY,
1849 ("%#x\n", val));
1850 }
1851 rc |= VMXWriteVmcs(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, val);
1852 AssertRC(rc);
1853 }
1854
1855 /*
1856 * Guest CPU context: GDTR.
1857 */
1858 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
1859 {
1860 rc = VMXWriteVmcs(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
1861 rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
1862 AssertRC(rc);
1863 }
1864
1865 /*
1866 * Guest CPU context: IDTR.
1867 */
1868 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
1869 {
1870 rc = VMXWriteVmcs(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
1871 rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
1872 AssertRC(rc);
1873 }
1874
1875 /*
1876 * Sysenter MSRs.
1877 */
1878 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_MSR)
1879 {
1880 rc = VMXWriteVmcs(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
1881 rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
1882 rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
1883 AssertRC(rc);
1884 }
1885
1886 /*
1887 * Guest CPU context: Control registers.
1888 */
1889 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
1890 {
1891 val = pCtx->cr0;
1892 rc = VMXWriteVmcs(VMX_VMCS_CTRL_CR0_READ_SHADOW, val);
1893 Log2(("Guest CR0-shadow %08x\n", val));
1894 if (CPUMIsGuestFPUStateActive(pVCpu) == false)
1895 {
1896 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
1897 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
1898 }
1899 else
1900 {
1901 /** @todo check if we support the old style mess correctly. */
1902 if (!(val & X86_CR0_NE))
1903 Log(("Forcing X86_CR0_NE!!!\n"));
1904
1905 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
1906 }
1907 /* Protected mode & paging are always enabled; we use them for emulating real and protected mode without paging too. */
1908 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
1909 val |= X86_CR0_PE | X86_CR0_PG;
1910
1911 if (pVM->hm.s.fNestedPaging)
1912 {
1913 if (CPUMIsGuestInPagedProtectedModeEx(pCtx))
1914 {
1915 /* Disable CR3 read/write monitoring as we don't need it for EPT. */
1916 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
1917 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT);
1918 }
1919 else
1920 {
1921 /* Reenable CR3 read/write monitoring as our identity mapped page table is active. */
1922 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
1923 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
1924 }
1925 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
1926 AssertRC(rc);
1927 }
1928 else
1929 {
1930 /* Note: We must also set this as we rely on protecting various pages for which supervisor writes must be caught. */
1931 val |= X86_CR0_WP;
1932 }
1933
1934 /* Always enable caching. */
1935 val &= ~(X86_CR0_CD|X86_CR0_NW);
1936
1937 rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_CR0, val);
1938 Log2(("Guest CR0 %08x\n", val));
1939
1940 /*
1941 * CR0 flags owned by the host; if the guests attempts to change them, then the VM will exit.
1942 */
1943 val = X86_CR0_PE /* Must monitor this bit (assumptions are made for real mode emulation) */
1944 | X86_CR0_WP /* Must monitor this bit (it must always be enabled). */
1945 | X86_CR0_PG /* Must monitor this bit (assumptions are made for real mode & protected mode without paging emulation) */
1946 | X86_CR0_CD /* Bit not restored during VM-exit! */
1947 | X86_CR0_NW /* Bit not restored during VM-exit! */
1948 | X86_CR0_NE;
1949
1950 /*
1951 * When the guest's FPU state is active, then we no longer care about the FPU related bits.
1952 */
1953 if (CPUMIsGuestFPUStateActive(pVCpu) == false)
1954 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_MP;
1955
1956 pVCpu->hm.s.vmx.cr0_mask = val;
1957
1958 rc |= VMXWriteVmcs(VMX_VMCS_CTRL_CR0_MASK, val);
1959 Log2(("Guest CR0-mask %08x\n", val));
1960 AssertRC(rc);
1961 }
1962
1963 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
1964 {
1965 rc = VMXWriteVmcs(VMX_VMCS_CTRL_CR4_READ_SHADOW, pCtx->cr4);
1966 Log2(("Guest CR4-shadow %08x\n", pCtx->cr4));
1967 /* Set the required bits in cr4 too (currently X86_CR4_VMXE). */
1968 val = pCtx->cr4 | (uint32_t)pVM->hm.s.vmx.msr.vmx_cr4_fixed0;
1969
1970 if (!pVM->hm.s.fNestedPaging)
1971 {
1972 switch (pVCpu->hm.s.enmShadowMode)
1973 {
1974 case PGMMODE_REAL: /* Real mode -> emulated using v86 mode */
1975 case PGMMODE_PROTECTED: /* Protected mode, no paging -> emulated using identity mapping. */
1976 case PGMMODE_32_BIT: /* 32-bit paging. */
1977 val &= ~X86_CR4_PAE;
1978 break;
1979
1980 case PGMMODE_PAE: /* PAE paging. */
1981 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1982 /** Must use PAE paging as we could use physical memory > 4 GB */
1983 val |= X86_CR4_PAE;
1984 break;
1985
1986 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1987 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1988#ifdef VBOX_ENABLE_64_BITS_GUESTS
1989 break;
1990#else
1991 AssertFailed();
1992 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1993#endif
1994 default: /* shut up gcc */
1995 AssertFailed();
1996 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1997 }
1998 }
1999 else if ( !CPUMIsGuestInPagedProtectedModeEx(pCtx)
2000 && !pVM->hm.s.vmx.fUnrestrictedGuest)
2001 {
2002 /* We use 4 MB pages in our identity mapping page table for real and protected mode without paging. */
2003 val |= X86_CR4_PSE;
2004 /* Our identity mapping is a 32 bits page directory. */
2005 val &= ~X86_CR4_PAE;
2006 }
2007
2008 /*
2009 * Turn off VME if we're in emulated real mode.
2010 */
2011 if ( CPUMIsGuestInRealModeEx(pCtx)
2012 && pVM->hm.s.vmx.pRealModeTSS)
2013 {
2014 val &= ~X86_CR4_VME;
2015 }
2016
2017 rc |= VMXWriteVmcs64(VMX_VMCS_GUEST_CR4, val);
2018 Log2(("Guest CR4 %08x\n", val));
2019
2020 /*
2021 * CR4 flags owned by the host; if the guests attempts to change them, then the VM will exit.
2022 */
2023 val = 0
2024 | X86_CR4_VME
2025 | X86_CR4_PAE
2026 | X86_CR4_PGE
2027 | X86_CR4_PSE
2028 | X86_CR4_VMXE;
2029 pVCpu->hm.s.vmx.cr4_mask = val;
2030
2031 rc |= VMXWriteVmcs(VMX_VMCS_CTRL_CR4_MASK, val);
2032 Log2(("Guest CR4-mask %08x\n", val));
2033 AssertRC(rc);
2034 }
2035
2036#if 0
2037 /* Enable single stepping if requested and CPU supports it. */
2038 if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MONITOR_TRAP_FLAG)
2039 if (DBGFIsStepping(pVCpu))
2040 {
2041 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MONITOR_TRAP_FLAG;
2042 rc = VMXWriteVmcs(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
2043 AssertRC(rc);
2044 }
2045#endif
2046
2047 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
2048 {
2049 if (pVM->hm.s.fNestedPaging)
2050 {
2051 Assert(PGMGetHyperCR3(pVCpu));
2052 pVCpu->hm.s.vmx.GCPhysEPTP = PGMGetHyperCR3(pVCpu);
2053
2054 Assert(!(pVCpu->hm.s.vmx.GCPhysEPTP & 0xfff));
2055 /** @todo Check the IA32_VMX_EPT_VPID_CAP MSR for other supported memory types. */
2056 pVCpu->hm.s.vmx.GCPhysEPTP |= VMX_EPT_MEMTYPE_WB
2057 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
2058
2059 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.GCPhysEPTP);
2060 AssertRC(rc);
2061
2062 if ( !CPUMIsGuestInPagedProtectedModeEx(pCtx)
2063 && !pVM->hm.s.vmx.fUnrestrictedGuest)
2064 {
2065 RTGCPHYS GCPhys;
2066
2067 /* We convert it here every time as PCI regions could be reconfigured. */
2068 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
2069 AssertMsgRC(rc, ("pNonPagingModeEPTPageTable = %RGv\n", pVM->hm.s.vmx.pNonPagingModeEPTPageTable));
2070
2071 /*
2072 * We use our identity mapping page table here as we need to map guest virtual to
2073 * guest physical addresses; EPT will take care of the translation to host physical addresses.
2074 */
2075 val = GCPhys;
2076 }
2077 else
2078 {
2079 /* Save the real guest CR3 in VMX_VMCS_GUEST_CR3 */
2080 val = pCtx->cr3;
2081 rc = hmR0VmxLoadPaePdpes(pVCpu, pCtx);
2082 AssertRCReturn(rc, rc);
2083 }
2084 }
2085 else
2086 {
2087 val = PGMGetHyperCR3(pVCpu);
2088 Assert(val || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
2089 }
2090
2091 /* Save our shadow CR3 register. */
2092 rc = VMXWriteVmcs64(VMX_VMCS_GUEST_CR3, val);
2093 AssertRC(rc);
2094 }
2095
2096 /*
2097 * Guest CPU context: Debug registers.
2098 */
2099 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG)
2100 {
2101 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
2102 pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
2103
2104 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
2105 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
2106 pCtx->dr[7] |= 0x400; /* must be one */
2107
2108 /* Resync DR7 */
2109 rc = VMXWriteVmcs64(VMX_VMCS_GUEST_DR7, pCtx->dr[7]);
2110 AssertRC(rc);
2111
2112#ifdef DEBUG
2113 /* Sync the hypervisor debug state now if any breakpoint is armed. */
2114 if ( CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK|X86_DR7_GD)
2115 && !CPUMIsHyperDebugStateActive(pVCpu)
2116 && !DBGFIsStepping(pVCpu))
2117 {
2118 /* Save the host and load the hypervisor debug state. */
2119 rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
2120 AssertRC(rc);
2121
2122 /* DRx intercepts remain enabled. */
2123
2124 /* Override dr7 with the hypervisor value. */
2125 rc = VMXWriteVmcs64(VMX_VMCS_GUEST_DR7, CPUMGetHyperDR7(pVCpu));
2126 AssertRC(rc);
2127 }
2128 else
2129#endif
2130 /* Sync the debug state now if any breakpoint is armed. */
2131 if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
2132 && !CPUMIsGuestDebugStateActive(pVCpu)
2133 && !DBGFIsStepping(pVCpu))
2134 {
2135 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
2136
2137 /* Disable DRx move intercepts. */
2138 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
2139 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
2140 AssertRC(rc);
2141
2142 /* Save the host and load the guest debug state. */
2143 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
2144 AssertRC(rc);
2145 }
2146
2147 /* IA32_DEBUGCTL MSR. */
2148 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0);
2149 AssertRC(rc);
2150
2151 /** @todo do we really ever need this? */
2152 rc |= VMXWriteVmcs(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2153 AssertRC(rc);
2154 }
2155
2156 /*
2157 * 64-bit guest mode.
2158 */
2159 if (CPUMIsGuestInLongModeEx(pCtx))
2160 {
2161#if !defined(VBOX_ENABLE_64_BITS_GUESTS)
2162 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
2163#elif HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2164 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
2165#else
2166# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2167 if (!pVM->hm.s.fAllow64BitGuests)
2168 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
2169# endif
2170 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
2171#endif
2172 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_MSR)
2173 {
2174 /* Update these as wrmsr might have changed them. */
2175 rc = VMXWriteVmcs64(VMX_VMCS_GUEST_FS_BASE, pCtx->fs.u64Base);
2176 AssertRC(rc);
2177 rc = VMXWriteVmcs64(VMX_VMCS_GUEST_GS_BASE, pCtx->gs.u64Base);
2178 AssertRC(rc);
2179 }
2180 }
2181 else
2182 {
2183 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
2184 }
2185
2186 hmR0VmxUpdateExceptionBitmap(pVM, pVCpu, pCtx);
2187
2188#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
2189 /*
2190 * Store all guest MSRs in the VM-entry load area, so they will be loaded
2191 * during VM-entry and restored into the VM-exit store area during VM-exit.
2192 */
2193 PVMXMSR pMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvGuestMsr;
2194 unsigned idxMsr = 0;
2195
2196 uint32_t u32GstExtFeatures;
2197 uint32_t u32Temp;
2198 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Temp, &u32Temp, &u32Temp, &u32GstExtFeatures);
2199
2200 if (u32GstExtFeatures & (X86_CPUID_EXT_FEATURE_EDX_NX | X86_CPUID_EXT_FEATURE_EDX_LONG_MODE))
2201 {
2202 pMsr->u32IndexMSR = MSR_K6_EFER;
2203 pMsr->u32Reserved = 0;
2204 pMsr->u64Value = pCtx->msrEFER;
2205 /* VT-x will complain if only MSR_K6_EFER_LME is set. */
2206 if (!CPUMIsGuestInLongModeEx(pCtx))
2207 pMsr->u64Value &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
2208 pMsr++; idxMsr++;
2209
2210 if (u32GstExtFeatures & X86_CPUID_EXT_FEATURE_EDX_LONG_MODE)
2211 {
2212 pMsr->u32IndexMSR = MSR_K8_LSTAR;
2213 pMsr->u32Reserved = 0;
2214 pMsr->u64Value = pCtx->msrLSTAR; /* 64 bits mode syscall rip */
2215 pMsr++; idxMsr++;
2216 pMsr->u32IndexMSR = MSR_K6_STAR;
2217 pMsr->u32Reserved = 0;
2218 pMsr->u64Value = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */
2219 pMsr++; idxMsr++;
2220 pMsr->u32IndexMSR = MSR_K8_SF_MASK;
2221 pMsr->u32Reserved = 0;
2222 pMsr->u64Value = pCtx->msrSFMASK; /* syscall flag mask */
2223 pMsr++; idxMsr++;
2224
2225 /* The KERNEL_GS_BASE MSR doesn't work reliably with auto load/store. See @bugref{6208} */
2226#if 0
2227 pMsr->u32IndexMSR = MSR_K8_KERNEL_GS_BASE;
2228 pMsr->u32Reserved = 0;
2229 pMsr->u64Value = pCtx->msrKERNELGSBASE; /* swapgs exchange value */
2230 pMsr++; idxMsr++;
2231#endif
2232 }
2233 }
2234
2235 if ( pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP
2236 && (u32GstExtFeatures & X86_CPUID_EXT_FEATURE_EDX_RDTSCP))
2237 {
2238 pMsr->u32IndexMSR = MSR_K8_TSC_AUX;
2239 pMsr->u32Reserved = 0;
2240 rc = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pMsr->u64Value);
2241 AssertRC(rc);
2242 pMsr++; idxMsr++;
2243 }
2244
2245 pVCpu->hm.s.vmx.cGuestMsrs = idxMsr;
2246
2247 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, idxMsr);
2248 AssertRC(rc);
2249
2250 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, idxMsr);
2251 AssertRC(rc);
2252#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
2253
2254 bool fOffsettedTsc;
2255 if (pVM->hm.s.vmx.fUsePreemptTimer)
2256 {
2257 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVCpu, &fOffsettedTsc, &pVCpu->hm.s.vmx.u64TSCOffset);
2258
2259 /* Make sure the returned values have sane upper and lower boundaries. */
2260 uint64_t u64CpuHz = SUPGetCpuHzFromGIP(g_pSUPGlobalInfoPage);
2261
2262 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64 of a second */
2263 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
2264
2265 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
2266 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
2267 rc = VMXWriteVmcs(VMX_VMCS32_GUEST_PREEMPTION_TIMER_VALUE, cPreemptionTickCount);
2268 AssertRC(rc);
2269 }
2270 else
2271 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset);
2272
2273 if (fOffsettedTsc)
2274 {
2275 uint64_t u64CurTSC = ASMReadTSC();
2276 if (u64CurTSC + pVCpu->hm.s.vmx.u64TSCOffset >= TMCpuTickGetLastSeen(pVCpu))
2277 {
2278 /* Note: VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
2279 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset);
2280 AssertRC(rc);
2281
2282 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
2283 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
2284 AssertRC(rc);
2285 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
2286 }
2287 else
2288 {
2289 /* Fall back to rdtsc, rdtscp emulation as we would otherwise pass decreasing tsc values to the guest. */
2290 LogFlow(("TSC %RX64 offset %RX64 time=%RX64 last=%RX64 (diff=%RX64, virt_tsc=%RX64)\n", u64CurTSC,
2291 pVCpu->hm.s.vmx.u64TSCOffset, u64CurTSC + pVCpu->hm.s.vmx.u64TSCOffset,
2292 TMCpuTickGetLastSeen(pVCpu), TMCpuTickGetLastSeen(pVCpu) - u64CurTSC - pVCpu->hm.s.vmx.u64TSCOffset,
2293 TMCpuTickGet(pVCpu)));
2294 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
2295 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
2296 AssertRC(rc);
2297 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
2298 }
2299 }
2300 else
2301 {
2302 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
2303 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
2304 AssertRC(rc);
2305 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
2306 }
2307
2308 /* Done with the major changes */
2309 pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_ALL_GUEST;
2310
2311 /* Minimal guest state update (ESP, EIP, EFLAGS mostly) */
2312 VMXR0LoadMinimalGuestState(pVM, pVCpu, pCtx);
2313 return rc;
2314}
2315
2316
2317/**
2318 * Syncs back the guest state from VMCS.
2319 *
2320 * @returns VBox status code.
2321 * @param pVM Pointer to the VM.
2322 * @param pVCpu Pointer to the VMCPU.
2323 * @param pCtx Pointer to the guest CPU context.
2324 */
2325DECLINLINE(int) VMXR0SaveGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2326{
2327 RTGCUINTREG val, valShadow;
2328 RTGCUINTPTR uInterruptState;
2329 int rc;
2330
2331 /* First sync back EIP, ESP, and EFLAGS. */
2332 rc = VMXReadCachedVmcs(VMX_VMCS_GUEST_RIP, &val);
2333 AssertRC(rc);
2334 pCtx->rip = val;
2335 rc = VMXReadCachedVmcs(VMX_VMCS_GUEST_RSP, &val);
2336 AssertRC(rc);
2337 pCtx->rsp = val;
2338 rc = VMXReadCachedVmcs(VMX_VMCS_GUEST_RFLAGS, &val);
2339 AssertRC(rc);
2340 pCtx->eflags.u32 = val;
2341
2342 /* Take care of instruction fusing (sti, mov ss) */
2343 rc |= VMXReadCachedVmcs(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &val);
2344 uInterruptState = val;
2345 if (uInterruptState != 0)
2346 {
2347 Assert(uInterruptState <= 2); /* only sti & mov ss */
2348 Log(("uInterruptState %x eip=%RGv\n", (uint32_t)uInterruptState, pCtx->rip));
2349 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
2350 }
2351 else
2352 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2353
2354 /* Control registers. */
2355 VMXReadCachedVmcs(VMX_VMCS_CTRL_CR0_READ_SHADOW, &valShadow);
2356 VMXReadCachedVmcs(VMX_VMCS_GUEST_CR0, &val);
2357 val = (valShadow & pVCpu->hm.s.vmx.cr0_mask) | (val & ~pVCpu->hm.s.vmx.cr0_mask);
2358 CPUMSetGuestCR0(pVCpu, val);
2359
2360 VMXReadCachedVmcs(VMX_VMCS_CTRL_CR4_READ_SHADOW, &valShadow);
2361 VMXReadCachedVmcs(VMX_VMCS_GUEST_CR4, &val);
2362 val = (valShadow & pVCpu->hm.s.vmx.cr4_mask) | (val & ~pVCpu->hm.s.vmx.cr4_mask);
2363 CPUMSetGuestCR4(pVCpu, val);
2364
2365 /*
2366 * No reason to sync back the CRx registers. They can't be changed by the guest unless in
2367 * the nested paging case where CR3 & CR4 can be changed by the guest.
2368 */
2369 if ( pVM->hm.s.fNestedPaging
2370 && CPUMIsGuestInPagedProtectedModeEx(pCtx)) /** @todo check if we will always catch mode switches and such... */
2371 {
2372 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
2373
2374 /* Can be updated behind our back in the nested paging case. */
2375 CPUMSetGuestCR2(pVCpu, pCache->cr2);
2376
2377 VMXReadCachedVmcs(VMX_VMCS_GUEST_CR3, &val);
2378
2379 if (val != pCtx->cr3)
2380 {
2381 CPUMSetGuestCR3(pVCpu, val);
2382 PGMUpdateCR3(pVCpu, val);
2383 }
2384 rc = hmR0VmxSavePaePdpes(pVCpu, pCtx);
2385 AssertRCReturn(rc, rc);
2386 }
2387
2388 /* Sync back DR7. */
2389 VMXReadCachedVmcs(VMX_VMCS_GUEST_DR7, &val);
2390 pCtx->dr[7] = val;
2391
2392 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
2393 VMX_READ_SELREG(ES, es);
2394 VMX_READ_SELREG(SS, ss);
2395 VMX_READ_SELREG(CS, cs);
2396 VMX_READ_SELREG(DS, ds);
2397 VMX_READ_SELREG(FS, fs);
2398 VMX_READ_SELREG(GS, gs);
2399
2400 /* System MSRs */
2401 VMXReadCachedVmcs(VMX_VMCS32_GUEST_SYSENTER_CS, &val);
2402 pCtx->SysEnter.cs = val;
2403 VMXReadCachedVmcs(VMX_VMCS_GUEST_SYSENTER_EIP, &val);
2404 pCtx->SysEnter.eip = val;
2405 VMXReadCachedVmcs(VMX_VMCS_GUEST_SYSENTER_ESP, &val);
2406 pCtx->SysEnter.esp = val;
2407
2408 /* Misc. registers; must sync everything otherwise we can get out of sync when jumping to ring 3. */
2409 VMX_READ_SELREG(LDTR, ldtr);
2410
2411 VMXReadCachedVmcs(VMX_VMCS32_GUEST_GDTR_LIMIT, &val);
2412 pCtx->gdtr.cbGdt = val;
2413 VMXReadCachedVmcs(VMX_VMCS_GUEST_GDTR_BASE, &val);
2414 pCtx->gdtr.pGdt = val;
2415
2416 VMXReadCachedVmcs(VMX_VMCS32_GUEST_IDTR_LIMIT, &val);
2417 pCtx->idtr.cbIdt = val;
2418 VMXReadCachedVmcs(VMX_VMCS_GUEST_IDTR_BASE, &val);
2419 pCtx->idtr.pIdt = val;
2420
2421 /* Real mode emulation using v86 mode. */
2422 if ( CPUMIsGuestInRealModeEx(pCtx)
2423 && pVM->hm.s.vmx.pRealModeTSS)
2424 {
2425 /* Hide our emulation flags */
2426 pCtx->eflags.Bits.u1VM = 0;
2427
2428 /* Restore original IOPL setting as we always use 0. */
2429 pCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.eflags.Bits.u2IOPL;
2430
2431 /* Force a TR resync every time in case we switch modes. */
2432 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_TR;
2433 }
2434 else
2435 {
2436 /* In real mode we have a fake TSS, so only sync it back when it's supposed to be valid. */
2437 VMX_READ_SELREG(TR, tr);
2438 }
2439
2440#ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
2441 /*
2442 * Save the possibly changed MSRs that we automatically restore and save during a world switch.
2443 */
2444 for (unsigned i = 0; i < pVCpu->hm.s.vmx.cGuestMsrs; i++)
2445 {
2446 PVMXMSR pMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvGuestMsr;
2447 pMsr += i;
2448
2449 switch (pMsr->u32IndexMSR)
2450 {
2451 case MSR_K8_LSTAR:
2452 pCtx->msrLSTAR = pMsr->u64Value;
2453 break;
2454 case MSR_K6_STAR:
2455 pCtx->msrSTAR = pMsr->u64Value;
2456 break;
2457 case MSR_K8_SF_MASK:
2458 pCtx->msrSFMASK = pMsr->u64Value;
2459 break;
2460 /* The KERNEL_GS_BASE MSR doesn't work reliably with auto load/store. See @bugref{6208} */
2461#if 0
2462 case MSR_K8_KERNEL_GS_BASE:
2463 pCtx->msrKERNELGSBASE = pMsr->u64Value;
2464 break;
2465#endif
2466 case MSR_K8_TSC_AUX:
2467 CPUMSetGuestMsr(pVCpu, MSR_K8_TSC_AUX, pMsr->u64Value);
2468 break;
2469
2470 case MSR_K6_EFER:
2471 /* EFER can't be changed without causing a VM-exit. */
2472 /* Assert(pCtx->msrEFER == pMsr->u64Value); */
2473 break;
2474
2475 default:
2476 AssertFailed();
2477 return VERR_HM_UNEXPECTED_LD_ST_MSR;
2478 }
2479 }
2480#endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
2481 return VINF_SUCCESS;
2482}
2483
2484
2485/**
2486 * Dummy placeholder for TLB flush handling before VM-entry. Used in the case
2487 * where neither EPT nor VPID is supported by the CPU.
2488 *
2489 * @param pVM Pointer to the VM.
2490 * @param pVCpu Pointer to the VMCPU.
2491 */
2492static DECLCALLBACK(void) hmR0VmxSetupTLBDummy(PVM pVM, PVMCPU pVCpu)
2493{
2494 NOREF(pVM);
2495 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
2496 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
2497 pVCpu->hm.s.TlbShootdown.cPages = 0;
2498 return;
2499}
2500
2501
2502/**
2503 * Setup the tagged TLB for EPT+VPID.
2504 *
2505 * @param pVM Pointer to the VM.
2506 * @param pVCpu Pointer to the VMCPU.
2507 */
2508static DECLCALLBACK(void) hmR0VmxSetupTLBBoth(PVM pVM, PVMCPU pVCpu)
2509{
2510 PHMGLOBLCPUINFO pCpu;
2511
2512 Assert(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid);
2513
2514 pCpu = HMR0GetCurrentCpu();
2515
2516 /*
2517 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last
2518 * This can happen both for start & resume due to long jumps back to ring-3.
2519 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
2520 * or the host Cpu is online after a suspend/resume, so we cannot reuse the current ASID anymore.
2521 */
2522 bool fNewAsid = false;
2523 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2524 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2525 {
2526 pVCpu->hm.s.fForceTLBFlush = true;
2527 fNewAsid = true;
2528 }
2529
2530 /*
2531 * Check for explicit TLB shootdowns.
2532 */
2533 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2534 pVCpu->hm.s.fForceTLBFlush = true;
2535
2536 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2537
2538 if (pVCpu->hm.s.fForceTLBFlush)
2539 {
2540 if (fNewAsid)
2541 {
2542 ++pCpu->uCurrentAsid;
2543 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2544 {
2545 pCpu->uCurrentAsid = 1; /* start at 1; host uses 0 */
2546 pCpu->cTlbFlushes++;
2547 pCpu->fFlushAsidBeforeUse = true;
2548 }
2549
2550 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2551 if (pCpu->fFlushAsidBeforeUse)
2552 hmR0VmxFlushVPID(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
2553 }
2554 else
2555 {
2556 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2557 hmR0VmxFlushVPID(pVM, pVCpu, VMX_FLUSH_VPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2558 else
2559 hmR0VmxFlushEPT(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2560 }
2561
2562 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2563 pVCpu->hm.s.fForceTLBFlush = false;
2564 }
2565 else
2566 {
2567 AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid,
2568 ("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n",
2569 pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes,
2570 pCpu->uCurrentAsid, pCpu->cTlbFlushes));
2571
2572 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
2573 * not be executed. See hmQueueInvlPage() where it is commented
2574 * out. Support individual entry flushing someday. */
2575 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
2576 {
2577 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
2578
2579 /*
2580 * Flush individual guest entries using VPID from the TLB or as little as possible with EPT
2581 * as supported by the CPU.
2582 */
2583 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2584 {
2585 for (unsigned i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
2586 hmR0VmxFlushVPID(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
2587 }
2588 else
2589 hmR0VmxFlushEPT(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2590 }
2591 else
2592 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
2593 }
2594
2595 pVCpu->hm.s.TlbShootdown.cPages = 0;
2596 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
2597
2598 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2599 ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2600 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2601 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
2602 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2603 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2604
2605 /* Update VMCS with the VPID. */
2606 int rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
2607 AssertRC(rc);
2608}
2609
2610
2611/**
2612 * Setup the tagged TLB for EPT only.
2613 *
2614 * @returns VBox status code.
2615 * @param pVM Pointer to the VM.
2616 * @param pVCpu Pointer to the VMCPU.
2617 */
2618static DECLCALLBACK(void) hmR0VmxSetupTLBEPT(PVM pVM, PVMCPU pVCpu)
2619{
2620 PHMGLOBLCPUINFO pCpu;
2621
2622 Assert(pVM->hm.s.fNestedPaging);
2623 Assert(!pVM->hm.s.vmx.fVpid);
2624
2625 pCpu = HMR0GetCurrentCpu();
2626
2627 /*
2628 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last
2629 * This can happen both for start & resume due to long jumps back to ring-3.
2630 * A change in the TLB flush count implies the host Cpu is online after a suspend/resume.
2631 */
2632 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2633 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2634 {
2635 pVCpu->hm.s.fForceTLBFlush = true;
2636 }
2637
2638 /*
2639 * Check for explicit TLB shootdown flushes.
2640 */
2641 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2642 pVCpu->hm.s.fForceTLBFlush = true;
2643
2644 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2645 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2646
2647 if (pVCpu->hm.s.fForceTLBFlush)
2648 hmR0VmxFlushEPT(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2649 else
2650 {
2651 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
2652 * not be executed. See hmQueueInvlPage() where it is commented
2653 * out. Support individual entry flushing someday. */
2654 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
2655 {
2656 /*
2657 * We cannot flush individual entries without VPID support. Flush using EPT.
2658 */
2659 STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
2660 hmR0VmxFlushEPT(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2661 }
2662 }
2663 pVCpu->hm.s.TlbShootdown.cPages= 0;
2664 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
2665
2666#ifdef VBOX_WITH_STATISTICS
2667 /** @todo r=ramshankar: this is not accurate anymore with the VPID+EPT
2668 * handling. Should be fixed later. */
2669 if (pVCpu->hm.s.fForceTLBFlush)
2670 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2671 else
2672 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
2673#endif
2674}
2675
2676
2677/**
2678 * Setup the tagged TLB for VPID.
2679 *
2680 * @returns VBox status code.
2681 * @param pVM Pointer to the VM.
2682 * @param pVCpu Pointer to the VMCPU.
2683 */
2684static DECLCALLBACK(void) hmR0VmxSetupTLBVPID(PVM pVM, PVMCPU pVCpu)
2685{
2686 PHMGLOBLCPUINFO pCpu;
2687
2688 Assert(pVM->hm.s.vmx.fVpid);
2689 Assert(!pVM->hm.s.fNestedPaging);
2690
2691 pCpu = HMR0GetCurrentCpu();
2692
2693 /*
2694 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last
2695 * This can happen both for start & resume due to long jumps back to ring-3.
2696 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
2697 * or the host Cpu is online after a suspend/resume, so we cannot reuse the current ASID anymore.
2698 */
2699 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2700 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2701 {
2702 /* Force a TLB flush on VM entry. */
2703 pVCpu->hm.s.fForceTLBFlush = true;
2704 }
2705
2706 /*
2707 * Check for explicit TLB shootdown flushes.
2708 */
2709 if (VMCPU_FF_TESTANDCLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2710 pVCpu->hm.s.fForceTLBFlush = true;
2711
2712 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2713
2714 if (pVCpu->hm.s.fForceTLBFlush)
2715 {
2716 ++pCpu->uCurrentAsid;
2717 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2718 {
2719 pCpu->uCurrentAsid = 1; /* start at 1; host uses 0 */
2720 pCpu->cTlbFlushes++;
2721 pCpu->fFlushAsidBeforeUse = true;
2722 }
2723
2724 pVCpu->hm.s.fForceTLBFlush = false;
2725 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2726 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2727 if (pCpu->fFlushAsidBeforeUse)
2728 hmR0VmxFlushVPID(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
2729 }
2730 else
2731 {
2732 AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid,
2733 ("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n",
2734 pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes,
2735 pCpu->uCurrentAsid, pCpu->cTlbFlushes));
2736
2737 /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
2738 * not be executed. See hmQueueInvlPage() where it is commented
2739 * out. Support individual entry flushing someday. */
2740 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
2741 {
2742 /*
2743 * Flush individual guest entries using VPID from the TLB or as little as possible with EPT
2744 * as supported by the CPU.
2745 */
2746 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2747 {
2748 for (unsigned i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
2749 hmR0VmxFlushVPID(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
2750 }
2751 else
2752 hmR0VmxFlushVPID(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
2753 }
2754 }
2755 pVCpu->hm.s.TlbShootdown.cPages = 0;
2756 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
2757
2758 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2759 ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2760 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2761 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
2762 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2763 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2764
2765 int rc = VMXWriteVmcs(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
2766 AssertRC(rc);
2767
2768# ifdef VBOX_WITH_STATISTICS
2769 /** @todo r=ramshankar: this is not accurate anymore with EPT+VPID handling.
2770 * Should be fixed later. */
2771 if (pVCpu->hm.s.fForceTLBFlush)
2772 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2773 else
2774 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
2775# endif
2776}
2777
2778
2779/**
2780 * Runs guest code in a VT-x VM.
2781 *
2782 * @returns VBox status code.
2783 * @param pVM Pointer to the VM.
2784 * @param pVCpu Pointer to the VMCPU.
2785 * @param pCtx Pointer to the guest CPU context.
2786 */
2787VMMR0DECL(int) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2788{
2789 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
2790 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
2791 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
2792
2793 VBOXSTRICTRC rc = VINF_SUCCESS;
2794 int rc2;
2795 RTGCUINTREG val;
2796 RTGCUINTREG exitReason = (RTGCUINTREG)VMX_EXIT_INVALID;
2797 RTGCUINTREG instrError, cbInstr;
2798 RTGCUINTPTR exitQualification = 0;
2799 RTGCUINTPTR intInfo = 0; /* shut up buggy gcc 4 */
2800 RTGCUINTPTR errCode, instrInfo;
2801 bool fSetupTPRCaching = false;
2802 uint64_t u64OldLSTAR = 0;
2803 uint8_t u8LastTPR = 0;
2804 RTCCUINTREG uOldEFlags = ~(RTCCUINTREG)0;
2805 unsigned cResume = 0;
2806#ifdef VBOX_STRICT
2807 RTCPUID idCpuCheck;
2808 bool fWasInLongMode = false;
2809#endif
2810#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
2811 uint64_t u64LastTime = RTTimeMilliTS();
2812#endif
2813
2814 Assert(!(pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2815 || (pVCpu->hm.s.vmx.pbVirtApic && pVM->hm.s.vmx.pbApicAccess));
2816
2817 /*
2818 * Check if we need to use TPR shadowing.
2819 */
2820 if ( CPUMIsGuestInLongModeEx(pCtx)
2821 || ( (( pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2822 || pVM->hm.s.fTRPPatchingAllowed)
2823 && pVM->hm.s.fHasIoApic)
2824 )
2825 {
2826 fSetupTPRCaching = true;
2827 }
2828
2829 Log2(("\nE"));
2830
2831 /* This is not ideal, but if we don't clear the event injection in the VMCS right here,
2832 * we may end up injecting some stale event into a VM, including injecting an event that
2833 * originated before a VM reset *after* the VM has been reset. See @bugref{6220}.
2834 */
2835 VMXWriteVmcs(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0);
2836
2837#ifdef VBOX_STRICT
2838 {
2839 RTCCUINTREG val2;
2840
2841 rc2 = VMXReadVmcs(VMX_VMCS32_CTRL_PIN_EXEC_CONTROLS, &val2);
2842 AssertRC(rc2);
2843 Log2(("VMX_VMCS_CTRL_PIN_EXEC_CONTROLS = %08x\n", val2));
2844
2845 /* allowed zero */
2846 if ((val2 & pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0) != pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0)
2847 Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC_CONTROLS: zero\n"));
2848
2849 /* allowed one */
2850 if ((val2 & ~pVM->hm.s.vmx.msr.vmx_pin_ctls.n.allowed1) != 0)
2851 Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC_CONTROLS: one\n"));
2852
2853 rc2 = VMXReadVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, &val2);
2854 AssertRC(rc2);
2855 Log2(("VMX_VMCS_CTRL_PROC_EXEC_CONTROLS = %08x\n", val2));
2856
2857 /*
2858 * Must be set according to the MSR, but can be cleared if nested paging is used.
2859 */
2860 if (pVM->hm.s.fNestedPaging)
2861 {
2862 val2 |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INVLPG_EXIT
2863 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
2864 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
2865 }
2866
2867 /* allowed zero */
2868 if ((val2 & pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0) != pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0)
2869 Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC_CONTROLS: zero\n"));
2870
2871 /* allowed one */
2872 if ((val2 & ~pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1) != 0)
2873 Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC_CONTROLS: one\n"));
2874
2875 rc2 = VMXReadVmcs(VMX_VMCS32_CTRL_ENTRY_CONTROLS, &val2);
2876 AssertRC(rc2);
2877 Log2(("VMX_VMCS_CTRL_ENTRY_CONTROLS = %08x\n", val2));
2878
2879 /* allowed zero */
2880 if ((val2 & pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0) != pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0)
2881 Log(("Invalid VMX_VMCS_CTRL_ENTRY_CONTROLS: zero\n"));
2882
2883 /* allowed one */
2884 if ((val2 & ~pVM->hm.s.vmx.msr.vmx_entry.n.allowed1) != 0)
2885 Log(("Invalid VMX_VMCS_CTRL_ENTRY_CONTROLS: one\n"));
2886
2887 rc2 = VMXReadVmcs(VMX_VMCS32_CTRL_EXIT_CONTROLS, &val2);
2888 AssertRC(rc2);
2889 Log2(("VMX_VMCS_CTRL_EXIT_CONTROLS = %08x\n", val2));
2890
2891 /* allowed zero */
2892 if ((val2 & pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0) != pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0)
2893 Log(("Invalid VMX_VMCS_CTRL_EXIT_CONTROLS: zero\n"));
2894
2895 /* allowed one */
2896 if ((val2 & ~pVM->hm.s.vmx.msr.vmx_exit.n.allowed1) != 0)
2897 Log(("Invalid VMX_VMCS_CTRL_EXIT_CONTROLS: one\n"));
2898 }
2899 fWasInLongMode = CPUMIsGuestInLongModeEx(pCtx);
2900#endif /* VBOX_STRICT */
2901
2902#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2903 pVCpu->hm.s.vmx.VMCSCache.u64TimeEntry = RTTimeNanoTS();
2904#endif
2905
2906 /*
2907 * We can jump to this point to resume execution after determining that a VM-exit is innocent.
2908 */
2909ResumeExecution:
2910 if (!STAM_REL_PROFILE_ADV_IS_RUNNING(&pVCpu->hm.s.StatEntry))
2911 STAM_REL_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit2, &pVCpu->hm.s.StatEntry, x);
2912 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
2913 ("Expected %d, I'm %d; cResume=%d exitReason=%RGv exitQualification=%RGv\n",
2914 (int)pVCpu->hm.s.idEnteredCpu, (int)RTMpCpuId(), cResume, exitReason, exitQualification));
2915 Assert(!HMR0SuspendPending());
2916 /* Not allowed to switch modes without reloading the host state (32->64 switcher)!! */
2917 Assert(fWasInLongMode == CPUMIsGuestInLongModeEx(pCtx));
2918
2919 /*
2920 * Safety precaution; looping for too long here can have a very bad effect on the host.
2921 */
2922 if (RT_UNLIKELY(++cResume > pVM->hm.s.cMaxResumeLoops))
2923 {
2924 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
2925 rc = VINF_EM_RAW_INTERRUPT;
2926 goto end;
2927 }
2928
2929 /*
2930 * Check for IRQ inhibition due to instruction fusing (sti, mov ss).
2931 */
2932 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2933 {
2934 Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu)));
2935 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2936 {
2937 /*
2938 * Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
2939 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
2940 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
2941 * break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think.
2942 */
2943 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2944 /* Irq inhibition is no longer active; clear the corresponding VMX state. */
2945 rc2 = VMXWriteVmcs(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, 0);
2946 AssertRC(rc2);
2947 }
2948 }
2949 else
2950 {
2951 /* Irq inhibition is no longer active; clear the corresponding VMX state. */
2952 rc2 = VMXWriteVmcs(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, 0);
2953 AssertRC(rc2);
2954 }
2955
2956#ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0
2957 if (RT_UNLIKELY((cResume & 0xf) == 0))
2958 {
2959 uint64_t u64CurTime = RTTimeMilliTS();
2960
2961 if (RT_UNLIKELY(u64CurTime > u64LastTime))
2962 {
2963 u64LastTime = u64CurTime;
2964 TMTimerPollVoid(pVM, pVCpu);
2965 }
2966 }
2967#endif
2968
2969 /*
2970 * Check for pending actions that force us to go back to ring-3.
2971 */
2972 if ( VM_FF_ISPENDING(pVM, VM_FF_HM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA)
2973 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_REQUEST))
2974 {
2975 /* Check if a sync operation is pending. */
2976 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
2977 {
2978 rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2979 if (rc != VINF_SUCCESS)
2980 {
2981 AssertRC(VBOXSTRICTRC_VAL(rc));
2982 Log(("Pending pool sync is forcing us back to ring 3; rc=%d\n", VBOXSTRICTRC_VAL(rc)));
2983 goto end;
2984 }
2985 }
2986
2987#ifdef DEBUG
2988 /* Intercept X86_XCPT_DB if stepping is enabled */
2989 if (!DBGFIsStepping(pVCpu))
2990#endif
2991 {
2992 if ( VM_FF_ISPENDING(pVM, VM_FF_HM_TO_R3_MASK)
2993 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2994 {
2995 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchToR3);
2996 rc = RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
2997 goto end;
2998 }
2999 }
3000
3001 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
3002 if ( VM_FF_ISPENDING(pVM, VM_FF_REQUEST)
3003 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_REQUEST))
3004 {
3005 rc = VINF_EM_PENDING_REQUEST;
3006 goto end;
3007 }
3008
3009 /* Check if a pgm pool flush is in progress. */
3010 if (VM_FF_ISPENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
3011 {
3012 rc = VINF_PGM_POOL_FLUSH_PENDING;
3013 goto end;
3014 }
3015
3016 /* Check if DMA work is pending (2nd+ run). */
3017 if (VM_FF_ISPENDING(pVM, VM_FF_PDM_DMA) && cResume > 1)
3018 {
3019 rc = VINF_EM_RAW_TO_R3;
3020 goto end;
3021 }
3022 }
3023
3024#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
3025 /*
3026 * Exit to ring-3 preemption/work is pending.
3027 *
3028 * Interrupts are disabled before the call to make sure we don't miss any interrupt
3029 * that would flag preemption (IPI, timer tick, ++). (Would've been nice to do this
3030 * further down, but hmR0VmxCheckPendingInterrupt makes that impossible.)
3031 *
3032 * Note! Interrupts must be disabled done *before* we check for TLB flushes; TLB
3033 * shootdowns rely on this.
3034 */
3035 uOldEFlags = ASMIntDisableFlags();
3036 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
3037 {
3038 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptPending);
3039 rc = VINF_EM_RAW_INTERRUPT;
3040 goto end;
3041 }
3042 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
3043#endif
3044
3045 /*
3046 * When external interrupts are pending, we should exit the VM when IF is set.
3047 * Note: *After* VM_FF_INHIBIT_INTERRUPTS check!
3048 */
3049 rc = hmR0VmxCheckPendingInterrupt(pVM, pVCpu, pCtx);
3050 if (RT_FAILURE(rc))
3051 goto end;
3052
3053 /** @todo check timers?? */
3054
3055 /*
3056 * TPR caching using CR8 is only available in 64-bit mode.
3057 * Note: The 32-bit exception for AMD (X86_CPUID_AMD_FEATURE_ECX_CR8L), but this appears missing in Intel CPUs.
3058 * Note: We can't do this in LoadGuestState() as PDMApicGetTPR can jump back to ring-3 (lock)!! (no longer true) .
3059 */
3060 /** @todo query and update the TPR only when it could have been changed (mmio
3061 * access & wrsmr (x2apic) */
3062 if (fSetupTPRCaching)
3063 {
3064 /* TPR caching in CR8 */
3065 bool fPending;
3066
3067 rc2 = PDMApicGetTPR(pVCpu, &u8LastTPR, &fPending);
3068 AssertRC(rc2);
3069 /* The TPR can be found at offset 0x80 in the APIC mmio page. */
3070 pVCpu->hm.s.vmx.pbVirtApic[0x80] = u8LastTPR;
3071
3072 /*
3073 * Two options here:
3074 * - external interrupt pending, but masked by the TPR value.
3075 * -> a CR8 update that lower the current TPR value should cause an exit
3076 * - no pending interrupts
3077 * -> We don't need to be explicitely notified. There are enough world switches for detecting pending interrupts.
3078 */
3079
3080 /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
3081 rc = VMXWriteVmcs(VMX_VMCS32_CTRL_TPR_THRESHOLD, (fPending) ? (u8LastTPR >> 4) : 0);
3082 AssertRC(VBOXSTRICTRC_VAL(rc));
3083
3084 if (pVM->hm.s.fTPRPatchingActive)
3085 {
3086 Assert(!CPUMIsGuestInLongModeEx(pCtx));
3087 /* Our patch code uses LSTAR for TPR caching. */
3088 pCtx->msrLSTAR = u8LastTPR;
3089
3090 /** @todo r=ramshankar: we should check for MSR-bitmap support here. */
3091 if (fPending)
3092 {
3093 /* A TPR change could activate a pending interrupt, so catch lstar writes. */
3094 hmR0VmxSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, false);
3095 }
3096 else
3097 {
3098 /*
3099 * No interrupts are pending, so we don't need to be explicitely notified.
3100 * There are enough world switches for detecting pending interrupts.
3101 */
3102 hmR0VmxSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true);
3103 }
3104 }
3105 }
3106
3107#ifdef LOG_ENABLED
3108 if ( pVM->hm.s.fNestedPaging
3109 || pVM->hm.s.vmx.fVpid)
3110 {
3111 PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
3112 if (pVCpu->hm.s.idLastCpu != pCpu->idCpu)
3113 {
3114 LogFlow(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hm.s.idLastCpu,
3115 pCpu->idCpu));
3116 }
3117 else if (pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
3118 {
3119 LogFlow(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hm.s.cTlbFlushes,
3120 pCpu->cTlbFlushes));
3121 }
3122 else if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH))
3123 LogFlow(("Manual TLB flush\n"));
3124 }
3125#endif
3126#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3127 PGMRZDynMapFlushAutoSet(pVCpu);
3128#endif
3129
3130 /*
3131 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING-3!
3132 * (until the actual world switch)
3133 */
3134#ifdef VBOX_STRICT
3135 idCpuCheck = RTMpCpuId();
3136#endif
3137#ifdef LOG_ENABLED
3138 VMMR0LogFlushDisable(pVCpu);
3139#endif
3140
3141 /*
3142 * Save the host state first.
3143 */
3144 if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_CONTEXT)
3145 {
3146 rc = VMXR0SaveHostState(pVM, pVCpu);
3147 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3148 {
3149 VMMR0LogFlushEnable(pVCpu);
3150 goto end;
3151 }
3152 }
3153
3154 /*
3155 * Load the guest state.
3156 */
3157 if (!pVCpu->hm.s.fContextUseFlags)
3158 {
3159 VMXR0LoadMinimalGuestState(pVM, pVCpu, pCtx);
3160 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
3161 }
3162 else
3163 {
3164 rc = VMXR0LoadGuestState(pVM, pVCpu, pCtx);
3165 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3166 {
3167 VMMR0LogFlushEnable(pVCpu);
3168 goto end;
3169 }
3170 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
3171 }
3172
3173#ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
3174 /*
3175 * Disable interrupts to make sure a poke will interrupt execution.
3176 * This must be done *before* we check for TLB flushes; TLB shootdowns rely on this.
3177 */
3178 uOldEFlags = ASMIntDisableFlags();
3179 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
3180#endif
3181
3182 /* Non-register state Guest Context */
3183 /** @todo change me according to cpu state */
3184 rc2 = VMXWriteVmcs(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
3185 AssertRC(rc2);
3186
3187 /* Set TLB flush state as checked until we return from the world switch. */
3188 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
3189 /* Deal with tagged TLB setup and invalidation. */
3190 pVM->hm.s.vmx.pfnFlushTaggedTlb(pVM, pVCpu);
3191
3192 /*
3193 * Manual save and restore:
3194 * - General purpose registers except RIP, RSP
3195 *
3196 * Trashed:
3197 * - CR2 (we don't care)
3198 * - LDTR (reset to 0)
3199 * - DRx (presumably not changed at all)
3200 * - DR7 (reset to 0x400)
3201 * - EFLAGS (reset to RT_BIT(1); not relevant)
3202 */
3203
3204 /* All done! Let's start VM execution. */
3205 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
3206 Assert(idCpuCheck == RTMpCpuId());
3207
3208#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3209 pVCpu->hm.s.vmx.VMCSCache.cResume = cResume;
3210 pVCpu->hm.s.vmx.VMCSCache.u64TimeSwitch = RTTimeNanoTS();
3211#endif
3212
3213 /*
3214 * Save the current TPR value in the LSTAR MSR so our patches can access it.
3215 */
3216 if (pVM->hm.s.fTPRPatchingActive)
3217 {
3218 Assert(pVM->hm.s.fTPRPatchingActive);
3219 u64OldLSTAR = ASMRdMsr(MSR_K8_LSTAR);
3220 ASMWrMsr(MSR_K8_LSTAR, u8LastTPR);
3221 }
3222
3223 TMNotifyStartOfExecution(pVCpu);
3224
3225#ifndef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
3226 /*
3227 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
3228 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
3229 */
3230 if ( (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
3231 && !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT))
3232 {
3233 pVCpu->hm.s.u64HostTSCAux = ASMRdMsr(MSR_K8_TSC_AUX);
3234 uint64_t u64GuestTSCAux = 0;
3235 rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTSCAux);
3236 AssertRC(rc2);
3237 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTSCAux);
3238 }
3239#endif
3240
3241#ifdef VBOX_WITH_KERNEL_USING_XMM
3242 rc = hmR0VMXStartVMWrapXMM(pVCpu->hm.s.fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
3243#else
3244 rc = pVCpu->hm.s.vmx.pfnStartVM(pVCpu->hm.s.fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
3245#endif
3246 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false);
3247 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits);
3248
3249 /* Possibly the last TSC value seen by the guest (too high) (only when we're in TSC offset mode). */
3250 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT))
3251 {
3252#ifndef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
3253 /* Restore host's TSC_AUX. */
3254 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
3255 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTSCAux);
3256#endif
3257
3258 TMCpuTickSetLastSeen(pVCpu,
3259 ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */);
3260 }
3261
3262 TMNotifyEndOfExecution(pVCpu);
3263 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
3264 Assert(!(ASMGetFlags() & X86_EFL_IF));
3265
3266 /*
3267 * Restore the host LSTAR MSR if the guest could have changed it.
3268 */
3269 if (pVM->hm.s.fTPRPatchingActive)
3270 {
3271 Assert(pVM->hm.s.fTPRPatchingActive);
3272 pVCpu->hm.s.vmx.pbVirtApic[0x80] = pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
3273 ASMWrMsr(MSR_K8_LSTAR, u64OldLSTAR);
3274 }
3275
3276 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
3277 ASMSetFlags(uOldEFlags);
3278#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
3279 uOldEFlags = ~(RTCCUINTREG)0;
3280#endif
3281
3282 AssertMsg(!pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries, ("pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries=%d\n",
3283 pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries));
3284
3285 /* In case we execute a goto ResumeExecution later on. */
3286 pVCpu->hm.s.fResumeVM = true;
3287 pVCpu->hm.s.fForceTLBFlush = false;
3288
3289 /*
3290 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3291 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
3292 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3293 */
3294
3295 if (RT_UNLIKELY(rc != VINF_SUCCESS))
3296 {
3297 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
3298 VMMR0LogFlushEnable(pVCpu);
3299 goto end;
3300 }
3301
3302 /* Success. Query the guest state and figure out what has happened. */
3303
3304 /* Investigate why there was a VM-exit. */
3305 rc2 = VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_REASON, &exitReason);
3306 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[exitReason & MASK_EXITREASON_STAT]);
3307
3308 exitReason &= 0xffff; /* bit 0-15 contain the exit code. */
3309 rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError);
3310 rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &cbInstr);
3311 rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &intInfo);
3312 /* might not be valid; depends on VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID. */
3313 rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &errCode);
3314 rc2 |= VMXReadCachedVmcs(VMX_VMCS32_RO_EXIT_INSTR_INFO, &instrInfo);
3315 rc2 |= VMXReadCachedVmcs(VMX_VMCS_RO_EXIT_QUALIFICATION, &exitQualification);
3316 AssertRC(rc2);
3317
3318 /*
3319 * Sync back the guest state.
3320 */
3321 rc2 = VMXR0SaveGuestState(pVM, pVCpu, pCtx);
3322 AssertRC(rc2);
3323
3324 /* Note! NOW IT'S SAFE FOR LOGGING! */
3325 VMMR0LogFlushEnable(pVCpu);
3326 Log2(("Raw exit reason %08x\n", exitReason));
3327#if ARCH_BITS == 64 /* for the time being */
3328 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pCtx, exitReason);
3329#endif
3330
3331 /*
3332 * Check if an injected event was interrupted prematurely.
3333 */
3334 rc2 = VMXReadCachedVmcs(VMX_VMCS32_RO_IDT_INFO, &val);
3335 AssertRC(rc2);
3336 pVCpu->hm.s.Event.u64IntrInfo = VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(val);
3337 if ( VMX_EXIT_INTERRUPTION_INFO_VALID(pVCpu->hm.s.Event.u64IntrInfo)
3338 /* Ignore 'int xx' as they'll be restarted anyway. */
3339 && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo) != VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT
3340 /* Ignore software exceptions (such as int3) as they'll reoccur when we restart the instruction anyway. */
3341 && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo) != VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
3342 {
3343 Assert(!pVCpu->hm.s.Event.fPending);
3344 pVCpu->hm.s.Event.fPending = true;
3345 /* Error code present? */
3346 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo))
3347 {
3348 rc2 = VMXReadCachedVmcs(VMX_VMCS32_RO_IDT_ERROR_CODE, &val);
3349 AssertRC(rc2);
3350 pVCpu->hm.s.Event.u32ErrCode = val;
3351 Log(("Pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv pending error=%RX64\n",
3352 pVCpu->hm.s.Event.u64IntrInfo, (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification, val));
3353 }
3354 else
3355 {
3356 Log(("Pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv\n", pVCpu->hm.s.Event.u64IntrInfo,
3357 (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification));
3358 pVCpu->hm.s.Event.u32ErrCode = 0;
3359 }
3360 }
3361#ifdef VBOX_STRICT
3362 else if ( VMX_EXIT_INTERRUPTION_INFO_VALID(pVCpu->hm.s.Event.u64IntrInfo)
3363 /* Ignore software exceptions (such as int3) as they're reoccur when we restart the instruction anyway. */
3364 && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
3365 {
3366 Log(("Ignore pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv\n",
3367 pVCpu->hm.s.Event.u64IntrInfo, (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification));
3368 }
3369
3370 if (exitReason == VMX_EXIT_ERR_INVALID_GUEST_STATE)
3371 HMDumpRegs(pVM, pVCpu, pCtx);
3372#endif
3373
3374 Log2(("E%d: New EIP=%x:%RGv\n", (uint32_t)exitReason, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3375 Log2(("Exit reason %d, exitQualification %RGv\n", (uint32_t)exitReason, exitQualification));
3376 Log2(("instrInfo=%d instrError=%d instr length=%d\n", (uint32_t)instrInfo, (uint32_t)instrError, (uint32_t)cbInstr));
3377 Log2(("Interruption error code %d\n", (uint32_t)errCode));
3378 Log2(("IntInfo = %08x\n", (uint32_t)intInfo));
3379
3380 /*
3381 * Sync back the TPR if it was changed.
3382 */
3383 if ( fSetupTPRCaching
3384 && u8LastTPR != pVCpu->hm.s.vmx.pbVirtApic[0x80])
3385 {
3386 rc2 = PDMApicSetTPR(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[0x80]);
3387 AssertRC(rc2);
3388 }
3389
3390#ifdef DBGFTRACE_ENABLED /** @todo DTrace later. */
3391 RTTraceBufAddMsgF(pVM->CTX_SUFF(hTraceBuf), "vmexit %08x %016RX64 at %04:%08RX64 %RX64",
3392 exitReason, (uint64_t)exitQualification, pCtx->cs.Sel, pCtx->rip, (uint64_t)intInfo);
3393#endif
3394 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
3395
3396 /* Some cases don't need a complete resync of the guest CPU state; handle them here. */
3397 Assert(rc == VINF_SUCCESS); /* might consider VERR_IPE_UNINITIALIZED_STATUS here later... */
3398 switch (exitReason)
3399 {
3400 case VMX_EXIT_XCPT_NMI: /* 0 Exception or non-maskable interrupt (NMI). */
3401 case VMX_EXIT_EXT_INT: /* 1 External interrupt. */
3402 {
3403 uint32_t vector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo);
3404
3405 if (!VMX_EXIT_INTERRUPTION_INFO_VALID(intInfo))
3406 {
3407 Assert(exitReason == VMX_EXIT_EXT_INT);
3408 /* External interrupt; leave to allow it to be dispatched again. */
3409 rc = VINF_EM_RAW_INTERRUPT;
3410 break;
3411 }
3412 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExit2Sub3, y3);
3413 switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo))
3414 {
3415 case VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI: /* Non-maskable interrupt. */
3416 /* External interrupt; leave to allow it to be dispatched again. */
3417 rc = VINF_EM_RAW_INTERRUPT;
3418 break;
3419
3420 case VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT: /* External hardware interrupt. */
3421 AssertFailed(); /* can't come here; fails the first check. */
3422 break;
3423
3424 case VMX_EXIT_INTERRUPTION_INFO_TYPE_DB_XCPT: /* Unknown why we get this type for #DB */
3425 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
3426 Assert(vector == 1 || vector == 3 || vector == 4);
3427 /* no break */
3428 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT: /* Hardware exception. */
3429 Log2(("Hardware/software interrupt %d\n", vector));
3430 switch (vector)
3431 {
3432 case X86_XCPT_NM:
3433 {
3434 Log(("#NM fault at %RGv error code %x\n", (RTGCPTR)pCtx->rip, errCode));
3435
3436 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
3437 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
3438 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
3439 if (rc == VINF_SUCCESS)
3440 {
3441 Assert(CPUMIsGuestFPUStateActive(pVCpu));
3442
3443 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
3444
3445 /* Continue execution. */
3446 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
3447
3448 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
3449 goto ResumeExecution;
3450 }
3451
3452 Log(("Forward #NM fault to the guest\n"));
3453 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
3454 rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
3455 cbInstr, 0);
3456 AssertRC(rc2);
3457 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
3458 goto ResumeExecution;
3459 }
3460
3461 case X86_XCPT_PF: /* Page fault */
3462 {
3463#ifdef VBOX_ALWAYS_TRAP_PF
3464 if (pVM->hm.s.fNestedPaging)
3465 {
3466 /*
3467 * A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution.
3468 */
3469 Log(("Guest page fault at %RGv cr2=%RGv error code %RGv rsp=%RGv\n", (RTGCPTR)pCtx->rip, exitQualification,
3470 errCode, (RTGCPTR)pCtx->rsp));
3471
3472 Assert(CPUMIsGuestInPagedProtectedModeEx(pCtx));
3473
3474 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
3475
3476 /* Now we must update CR2. */
3477 pCtx->cr2 = exitQualification;
3478 rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
3479 cbInstr, errCode);
3480 AssertRC(rc2);
3481
3482 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
3483 goto ResumeExecution;
3484 }
3485#else
3486 Assert(!pVM->hm.s.fNestedPaging);
3487#endif
3488
3489#ifdef VBOX_HM_WITH_GUEST_PATCHING
3490 /* Shortcut for APIC TPR reads and writes; 32 bits guests only */
3491 if ( pVM->hm.s.fTRPPatchingAllowed
3492 && pVM->hm.s.pGuestPatchMem
3493 && (exitQualification & 0xfff) == 0x080
3494 && !(errCode & X86_TRAP_PF_P) /* not present */
3495 && CPUMGetGuestCPL(pVCpu) == 0
3496 && !CPUMIsGuestInLongModeEx(pCtx)
3497 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
3498 {
3499 RTGCPHYS GCPhysApicBase, GCPhys;
3500 GCPhysApicBase = pCtx->msrApicBase;
3501 GCPhysApicBase &= PAGE_BASE_GC_MASK;
3502
3503 rc = PGMGstGetPage(pVCpu, (RTGCPTR)exitQualification, NULL, &GCPhys);
3504 if ( rc == VINF_SUCCESS
3505 && GCPhys == GCPhysApicBase)
3506 {
3507 /* Only attempt to patch the instruction once. */
3508 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
3509 if (!pPatch)
3510 {
3511 rc = VINF_EM_HM_PATCH_TPR_INSTR;
3512 break;
3513 }
3514 }
3515 }
3516#endif
3517
3518 Log2(("Page fault at %RGv error code %x\n", exitQualification, errCode));
3519 /* Exit qualification contains the linear address of the page fault. */
3520 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
3521 TRPMSetErrorCode(pVCpu, errCode);
3522 TRPMSetFaultAddress(pVCpu, exitQualification);
3523
3524 /* Shortcut for APIC TPR reads and writes. */
3525 if ( (exitQualification & 0xfff) == 0x080
3526 && !(errCode & X86_TRAP_PF_P) /* not present */
3527 && fSetupTPRCaching
3528 && (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
3529 {
3530 RTGCPHYS GCPhysApicBase, GCPhys;
3531 GCPhysApicBase = pCtx->msrApicBase;
3532 GCPhysApicBase &= PAGE_BASE_GC_MASK;
3533
3534 rc = PGMGstGetPage(pVCpu, (RTGCPTR)exitQualification, NULL, &GCPhys);
3535 if ( rc == VINF_SUCCESS
3536 && GCPhys == GCPhysApicBase)
3537 {
3538 Log(("Enable VT-x virtual APIC access filtering\n"));
3539 rc2 = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess,
3540 X86_PTE_RW | X86_PTE_P);
3541 AssertRC(rc2);
3542 }
3543 }
3544
3545 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
3546 rc = PGMTrap0eHandler(pVCpu, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)exitQualification);
3547 Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
3548
3549 if (rc == VINF_SUCCESS)
3550 { /* We've successfully synced our shadow pages, so let's just continue execution. */
3551 Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, exitQualification ,errCode));
3552 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
3553
3554 TRPMResetTrap(pVCpu);
3555 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
3556 goto ResumeExecution;
3557 }
3558 else if (rc == VINF_EM_RAW_GUEST_TRAP)
3559 {
3560 /*
3561 * A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution.
3562 */
3563 Log2(("Forward page fault to the guest\n"));
3564
3565 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
3566 /* The error code might have been changed. */
3567 errCode = TRPMGetErrorCode(pVCpu);
3568
3569 TRPMResetTrap(pVCpu);
3570
3571 /* Now we must update CR2. */
3572 pCtx->cr2 = exitQualification;
3573 rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
3574 cbInstr, errCode);
3575 AssertRC(rc2);
3576
3577 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
3578 goto ResumeExecution;
3579 }
3580#ifdef VBOX_STRICT
3581 if (rc != VINF_EM_RAW_EMULATE_INSTR && rc != VINF_EM_RAW_EMULATE_IO_BLOCK)
3582 Log2(("PGMTrap0eHandler failed with %d\n", VBOXSTRICTRC_VAL(rc)));
3583#endif
3584 /* Need to go back to the recompiler to emulate the instruction. */
3585 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
3586 TRPMResetTrap(pVCpu);
3587
3588 /* If event delivery caused the #PF (shadow or not), tell TRPM. */
3589 hmR0VmxCheckPendingEvent(pVCpu);
3590 break;
3591 }
3592
3593 case X86_XCPT_MF: /* Floating point exception. */
3594 {
3595 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
3596 if (!(pCtx->cr0 & X86_CR0_NE))
3597 {
3598 /* old style FPU error reporting needs some extra work. */
3599 /** @todo don't fall back to the recompiler, but do it manually. */
3600 rc = VINF_EM_RAW_EMULATE_INSTR;
3601 break;
3602 }
3603 Log(("Trap %x at %04X:%RGv\n", vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3604 rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
3605 cbInstr, errCode);
3606 AssertRC(rc2);
3607
3608 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
3609 goto ResumeExecution;
3610 }
3611
3612 case X86_XCPT_DB: /* Debug exception. */
3613 {
3614 uint64_t uDR6;
3615
3616 /*
3617 * DR6, DR7.GD and IA32_DEBUGCTL.LBR are not updated yet.
3618 *
3619 * Exit qualification bits:
3620 * 3:0 B0-B3 which breakpoint condition was met
3621 * 12:4 Reserved (0)
3622 * 13 BD - debug register access detected
3623 * 14 BS - single step execution or branch taken
3624 * 63:15 Reserved (0)
3625 */
3626 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
3627
3628 /* Note that we don't support guest and host-initiated debugging at the same time. */
3629
3630 uDR6 = X86_DR6_INIT_VAL;
3631 uDR6 |= (exitQualification & (X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3|X86_DR6_BD|X86_DR6_BS));
3632 rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), uDR6);
3633 if (rc == VINF_EM_RAW_GUEST_TRAP)
3634 {
3635 /* Update DR6 here. */
3636 pCtx->dr[6] = uDR6;
3637
3638 /* Resync DR6 if the debug state is active. */
3639 if (CPUMIsGuestDebugStateActive(pVCpu))
3640 ASMSetDR6(pCtx->dr[6]);
3641
3642 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
3643 pCtx->dr[7] &= ~X86_DR7_GD;
3644
3645 /* Paranoia. */
3646 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
3647 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
3648 pCtx->dr[7] |= 0x400; /* must be one */
3649
3650 /* Resync DR7 */
3651 rc2 = VMXWriteVmcs64(VMX_VMCS_GUEST_DR7, pCtx->dr[7]);
3652 AssertRC(rc2);
3653
3654 Log(("Trap %x (debug) at %RGv exit qualification %RX64 dr6=%x dr7=%x\n", vector, (RTGCPTR)pCtx->rip,
3655 exitQualification, (uint32_t)pCtx->dr[6], (uint32_t)pCtx->dr[7]));
3656 rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
3657 cbInstr, errCode);
3658 AssertRC(rc2);
3659
3660 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
3661 goto ResumeExecution;
3662 }
3663 /* Return to ring 3 to deal with the debug exit code. */
3664 Log(("Debugger hardware BP at %04x:%RGv (rc=%Rrc)\n", pCtx->cs.Sel, pCtx->rip, VBOXSTRICTRC_VAL(rc)));
3665 break;
3666 }
3667
3668 case X86_XCPT_BP: /* Breakpoint. */
3669 {
3670 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
3671 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx));
3672 if (rc == VINF_EM_RAW_GUEST_TRAP)
3673 {
3674 Log(("Guest #BP at %04x:%RGv\n", pCtx->cs.Sel, pCtx->rip));
3675 rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
3676 cbInstr, errCode);
3677 AssertRC(rc2);
3678 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
3679 goto ResumeExecution;
3680 }
3681 if (rc == VINF_SUCCESS)
3682 {
3683 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
3684 goto ResumeExecution;
3685 }
3686 Log(("Debugger BP at %04x:%RGv (rc=%Rrc)\n", pCtx->cs.Sel, pCtx->rip, VBOXSTRICTRC_VAL(rc)));
3687 break;
3688 }
3689
3690 case X86_XCPT_GP: /* General protection failure exception. */
3691 {
3692 uint32_t cbOp;
3693 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
3694
3695 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
3696#ifdef VBOX_STRICT
3697 if ( !CPUMIsGuestInRealModeEx(pCtx)
3698 || !pVM->hm.s.vmx.pRealModeTSS)
3699 {
3700 Log(("Trap %x at %04X:%RGv errorCode=%RGv\n", vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip, errCode));
3701 rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
3702 cbInstr, errCode);
3703 AssertRC(rc2);
3704 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
3705 goto ResumeExecution;
3706 }
3707#endif
3708 Assert(CPUMIsGuestInRealModeEx(pCtx));
3709
3710 LogFlow(("Real mode X86_XCPT_GP instruction emulation at %x:%RGv\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3711
3712 rc2 = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
3713 if (RT_SUCCESS(rc2))
3714 {
3715 bool fUpdateRIP = true;
3716
3717 rc = VINF_SUCCESS;
3718 Assert(cbOp == pDis->cbInstr);
3719 switch (pDis->pCurInstr->uOpcode)
3720 {
3721 case OP_CLI:
3722 pCtx->eflags.Bits.u1IF = 0;
3723 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
3724 break;
3725
3726 case OP_STI:
3727 pCtx->eflags.Bits.u1IF = 1;
3728 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip + pDis->cbInstr);
3729 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
3730 rc2 = VMXWriteVmcs(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE,
3731 VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
3732 AssertRC(rc2);
3733 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
3734 break;
3735
3736 case OP_HLT:
3737 fUpdateRIP = false;
3738 rc = VINF_EM_HALT;
3739 pCtx->rip += pDis->cbInstr;
3740 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
3741 break;
3742
3743 case OP_POPF:
3744 {
3745 RTGCPTR GCPtrStack;
3746 uint32_t cbParm;
3747 uint32_t uMask;
3748 X86EFLAGS eflags;
3749
3750 if (pDis->fPrefix & DISPREFIX_OPSIZE)
3751 {
3752 cbParm = 4;
3753 uMask = 0xffffffff;
3754 }
3755 else
3756 {
3757 cbParm = 2;
3758 uMask = 0xffff;
3759 }
3760
3761 rc2 = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pCtx), pCtx->esp & uMask, 0, &GCPtrStack);
3762 if (RT_FAILURE(rc2))
3763 {
3764 rc = VERR_EM_INTERPRETER;
3765 break;
3766 }
3767 eflags.u = 0;
3768 rc2 = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &eflags.u, cbParm);
3769 if (RT_FAILURE(rc2))
3770 {
3771 rc = VERR_EM_INTERPRETER;
3772 break;
3773 }
3774 LogFlow(("POPF %x -> %RGv mask=%x\n", eflags.u, pCtx->rsp, uMask));
3775 pCtx->eflags.u = (pCtx->eflags.u & ~(X86_EFL_POPF_BITS & uMask))
3776 | (eflags.u & X86_EFL_POPF_BITS & uMask);
3777 /* RF cleared when popped in real mode; see pushf description in AMD manual. */
3778 pCtx->eflags.Bits.u1RF = 0;
3779 pCtx->esp += cbParm;
3780 pCtx->esp &= uMask;
3781
3782 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
3783 break;
3784 }
3785
3786 case OP_PUSHF:
3787 {
3788 RTGCPTR GCPtrStack;
3789 uint32_t cbParm;
3790 uint32_t uMask;
3791 X86EFLAGS eflags;
3792
3793 if (pDis->fPrefix & DISPREFIX_OPSIZE)
3794 {
3795 cbParm = 4;
3796 uMask = 0xffffffff;
3797 }
3798 else
3799 {
3800 cbParm = 2;
3801 uMask = 0xffff;
3802 }
3803
3804 rc2 = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pCtx), (pCtx->esp - cbParm) & uMask, 0,
3805 &GCPtrStack);
3806 if (RT_FAILURE(rc2))
3807 {
3808 rc = VERR_EM_INTERPRETER;
3809 break;
3810 }
3811 eflags = pCtx->eflags;
3812 /* RF & VM cleared when pushed in real mode; see pushf description in AMD manual. */
3813 eflags.Bits.u1RF = 0;
3814 eflags.Bits.u1VM = 0;
3815
3816 rc2 = PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &eflags.u, cbParm);
3817 if (RT_FAILURE(rc2))
3818 {
3819 rc = VERR_EM_INTERPRETER;
3820 break;
3821 }
3822 LogFlow(("PUSHF %x -> %RGv\n", eflags.u, GCPtrStack));
3823 pCtx->esp -= cbParm;
3824 pCtx->esp &= uMask;
3825 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
3826 break;
3827 }
3828
3829 case OP_IRET:
3830 {
3831 RTGCPTR GCPtrStack;
3832 uint32_t uMask = 0xffff;
3833 uint16_t aIretFrame[3];
3834
3835 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
3836 {
3837 rc = VERR_EM_INTERPRETER;
3838 break;
3839 }
3840
3841 rc2 = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pCtx), pCtx->esp & uMask, 0, &GCPtrStack);
3842 if (RT_FAILURE(rc2))
3843 {
3844 rc = VERR_EM_INTERPRETER;
3845 break;
3846 }
3847 rc2 = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame));
3848 if (RT_FAILURE(rc2))
3849 {
3850 rc = VERR_EM_INTERPRETER;
3851 break;
3852 }
3853 pCtx->ip = aIretFrame[0];
3854 pCtx->cs.Sel = aIretFrame[1];
3855 pCtx->cs.ValidSel = aIretFrame[1];
3856 pCtx->cs.u64Base = (uint32_t)pCtx->cs.Sel << 4;
3857 pCtx->eflags.u = (pCtx->eflags.u & ~(X86_EFL_POPF_BITS & uMask))
3858 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
3859 pCtx->sp += sizeof(aIretFrame);
3860
3861 LogFlow(("iret to %04x:%x\n", pCtx->cs.Sel, pCtx->ip));
3862 fUpdateRIP = false;
3863 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
3864 break;
3865 }
3866
3867 case OP_INT:
3868 {
3869 uint32_t intInfo2;
3870
3871 LogFlow(("Realmode: INT %x\n", pDis->Param1.uValue & 0xff));
3872 intInfo2 = pDis->Param1.uValue & 0xff;
3873 intInfo2 |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
3874 intInfo2 |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
3875
3876 rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo2, cbOp, 0);
3877 AssertRC(VBOXSTRICTRC_VAL(rc));
3878 fUpdateRIP = false;
3879 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
3880 break;
3881 }
3882
3883 case OP_INTO:
3884 {
3885 if (pCtx->eflags.Bits.u1OF)
3886 {
3887 uint32_t intInfo2;
3888
3889 LogFlow(("Realmode: INTO\n"));
3890 intInfo2 = X86_XCPT_OF;
3891 intInfo2 |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
3892 intInfo2 |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
3893
3894 rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo2, cbOp, 0);
3895 AssertRC(VBOXSTRICTRC_VAL(rc));
3896 fUpdateRIP = false;
3897 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
3898 }
3899 break;
3900 }
3901
3902 case OP_INT3:
3903 {
3904 uint32_t intInfo2;
3905
3906 LogFlow(("Realmode: INT 3\n"));
3907 intInfo2 = 3;
3908 intInfo2 |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
3909 intInfo2 |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
3910
3911 rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, intInfo2, cbOp, 0);
3912 AssertRC(VBOXSTRICTRC_VAL(rc));
3913 fUpdateRIP = false;
3914 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
3915 break;
3916 }
3917
3918 default:
3919 rc = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pCtx), 0, EMCODETYPE_SUPERVISOR);
3920 fUpdateRIP = false;
3921 break;
3922 }
3923
3924 if (rc == VINF_SUCCESS)
3925 {
3926 if (fUpdateRIP)
3927 pCtx->rip += cbOp; /* Move on to the next instruction. */
3928
3929 /*
3930 * LIDT, LGDT can end up here. In the future CRx changes as well. Just reload the
3931 * whole context to be done with it.
3932 */
3933 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL;
3934
3935 /* Only resume if successful. */
3936 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
3937 goto ResumeExecution;
3938 }
3939 }
3940 else
3941 rc = VERR_EM_INTERPRETER;
3942
3943 AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
3944 ("Unexpected rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
3945 break;
3946 }
3947
3948#ifdef VBOX_STRICT
3949 case X86_XCPT_XF: /* SIMD exception. */
3950 case X86_XCPT_DE: /* Divide error. */
3951 case X86_XCPT_UD: /* Unknown opcode exception. */
3952 case X86_XCPT_SS: /* Stack segment exception. */
3953 case X86_XCPT_NP: /* Segment not present exception. */
3954 {
3955 switch (vector)
3956 {
3957 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break;
3958 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break;
3959 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break;
3960 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break;
3961 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break;
3962 }
3963
3964 Log(("Trap %x at %04X:%RGv\n", vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3965 rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
3966 cbInstr, errCode);
3967 AssertRC(rc2);
3968
3969 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
3970 goto ResumeExecution;
3971 }
3972#endif
3973 default:
3974 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
3975 if ( CPUMIsGuestInRealModeEx(pCtx)
3976 && pVM->hm.s.vmx.pRealModeTSS)
3977 {
3978 Log(("Real Mode Trap %x at %04x:%04X error code %x\n", vector, pCtx->cs.Sel, pCtx->eip, errCode));
3979 rc = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
3980 cbInstr, errCode);
3981 AssertRC(VBOXSTRICTRC_VAL(rc)); /* Strict RC check below. */
3982
3983 /* Go back to ring-3 in case of a triple fault. */
3984 if ( vector == X86_XCPT_DF
3985 && rc == VINF_EM_RESET)
3986 {
3987 break;
3988 }
3989
3990 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
3991 goto ResumeExecution;
3992 }
3993 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
3994 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
3995 break;
3996 } /* switch (vector) */
3997
3998 break;
3999
4000 default:
4001 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_CODE;
4002 AssertMsgFailed(("Unexpected interruption code %x\n", intInfo));
4003 break;
4004 }
4005
4006 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub3, y3);
4007 break;
4008 }
4009
4010 /*
4011 * 48 EPT violation. An attempt to access memory with a guest-physical address was disallowed
4012 * by the configuration of the EPT paging structures.
4013 */
4014 case VMX_EXIT_EPT_VIOLATION:
4015 {
4016 RTGCPHYS GCPhys;
4017
4018 Assert(pVM->hm.s.fNestedPaging);
4019
4020 rc2 = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
4021 AssertRC(rc2);
4022 Assert(((exitQualification >> 7) & 3) != 2);
4023
4024 /* Determine the kind of violation. */
4025 errCode = 0;
4026 if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
4027 errCode |= X86_TRAP_PF_ID;
4028
4029 if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
4030 errCode |= X86_TRAP_PF_RW;
4031
4032 /* If the page is present, then it's a page level protection fault. */
4033 if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
4034 errCode |= X86_TRAP_PF_P;
4035 else
4036 {
4037 /* Shortcut for APIC TPR reads and writes. */
4038 if ( (GCPhys & 0xfff) == 0x080
4039 && GCPhys > 0x1000000 /* to skip VGA frame buffer accesses */
4040 && fSetupTPRCaching
4041 && (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
4042 {
4043 RTGCPHYS GCPhysApicBase;
4044 GCPhysApicBase = pCtx->msrApicBase;
4045 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4046 if (GCPhys == GCPhysApicBase + 0x80)
4047 {
4048 Log(("Enable VT-x virtual APIC access filtering\n"));
4049 rc2 = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess,
4050 X86_PTE_RW | X86_PTE_P);
4051 AssertRC(rc2);
4052 }
4053 }
4054 }
4055 Log(("EPT Page fault %x at %RGp error code %x\n", (uint32_t)exitQualification, GCPhys, errCode));
4056
4057 /* GCPhys contains the guest physical address of the page fault. */
4058 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
4059 TRPMSetErrorCode(pVCpu, errCode);
4060 TRPMSetFaultAddress(pVCpu, GCPhys);
4061
4062 /* Handle the pagefault trap for the nested shadow table. */
4063 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, errCode, CPUMCTX2CORE(pCtx), GCPhys);
4064
4065 /*
4066 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment below, @bugref{6043}.
4067 */
4068 if ( rc == VINF_SUCCESS
4069 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4070 || rc == VERR_PAGE_NOT_PRESENT)
4071 {
4072 /* We've successfully synced our shadow pages, so let's just continue execution. */
4073 Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, exitQualification , errCode));
4074 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
4075
4076 TRPMResetTrap(pVCpu);
4077 goto ResumeExecution;
4078 }
4079
4080#ifdef VBOX_STRICT
4081 if (rc != VINF_EM_RAW_EMULATE_INSTR)
4082 LogFlow(("PGMTrap0eHandlerNestedPaging at %RGv failed with %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
4083#endif
4084 /* Need to go back to the recompiler to emulate the instruction. */
4085 TRPMResetTrap(pVCpu);
4086 break;
4087 }
4088
4089 case VMX_EXIT_EPT_MISCONFIG:
4090 {
4091 RTGCPHYS GCPhys;
4092
4093 Assert(pVM->hm.s.fNestedPaging);
4094
4095 rc2 = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
4096 AssertRC(rc2);
4097 Log(("VMX_EXIT_EPT_MISCONFIG for %RGp\n", GCPhys));
4098
4099 /* Shortcut for APIC TPR reads and writes. */
4100 if ( (GCPhys & 0xfff) == 0x080
4101 && GCPhys > 0x1000000 /* to skip VGA frame buffer accesses */
4102 && fSetupTPRCaching
4103 && (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
4104 {
4105 RTGCPHYS GCPhysApicBase = pCtx->msrApicBase;
4106 GCPhysApicBase &= PAGE_BASE_GC_MASK;
4107 if (GCPhys == GCPhysApicBase + 0x80)
4108 {
4109 Log(("Enable VT-x virtual APIC access filtering\n"));
4110 rc2 = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess,
4111 X86_PTE_RW | X86_PTE_P);
4112 AssertRC(rc2);
4113 }
4114 }
4115
4116 rc = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
4117
4118 /*
4119 * If we succeed, resume execution.
4120 * Or, if fail in interpreting the instruction because we couldn't get the guest physical address
4121 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
4122 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
4123 * weird case. See @bugref{6043}.
4124 */
4125 if ( rc == VINF_SUCCESS
4126 || rc == VERR_PAGE_TABLE_NOT_PRESENT
4127 || rc == VERR_PAGE_NOT_PRESENT)
4128 {
4129 Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhys, (RTGCPTR)pCtx->rip));
4130 goto ResumeExecution;
4131 }
4132
4133 Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> %Rrc\n", GCPhys, (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc)));
4134 break;
4135 }
4136
4137 case VMX_EXIT_INT_WINDOW: /* 7 Interrupt window exiting. */
4138 /* Clear VM-exit on IF=1 change. */
4139 LogFlow(("VMX_EXIT_INT_WINDOW %RGv pending=%d IF=%d\n", (RTGCPTR)pCtx->rip,
4140 VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)), pCtx->eflags.Bits.u1IF));
4141 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INT_WINDOW_EXIT;
4142 rc2 = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
4143 AssertRC(rc2);
4144 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
4145 goto ResumeExecution; /* we check for pending guest interrupts there */
4146
4147 case VMX_EXIT_WBINVD: /* 54 Guest software attempted to execute WBINVD. (conditional) */
4148 case VMX_EXIT_INVD: /* 13 Guest software attempted to execute INVD. (unconditional) */
4149 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
4150 /* Skip instruction and continue directly. */
4151 pCtx->rip += cbInstr;
4152 /* Continue execution.*/
4153 goto ResumeExecution;
4154
4155 case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */
4156 {
4157 Log2(("VMX: Cpuid %x\n", pCtx->eax));
4158 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
4159 rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4160 if (rc == VINF_SUCCESS)
4161 {
4162 /* Update EIP and continue execution. */
4163 Assert(cbInstr == 2);
4164 pCtx->rip += cbInstr;
4165 goto ResumeExecution;
4166 }
4167 AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
4168 rc = VINF_EM_RAW_EMULATE_INSTR;
4169 break;
4170 }
4171
4172 case VMX_EXIT_RDPMC: /* 15 Guest software attempted to execute RDPMC. */
4173 {
4174 Log2(("VMX: Rdpmc %x\n", pCtx->ecx));
4175 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
4176 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4177 if (rc == VINF_SUCCESS)
4178 {
4179 /* Update EIP and continue execution. */
4180 Assert(cbInstr == 2);
4181 pCtx->rip += cbInstr;
4182 goto ResumeExecution;
4183 }
4184 rc = VINF_EM_RAW_EMULATE_INSTR;
4185 break;
4186 }
4187
4188 case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */
4189 {
4190 Log2(("VMX: Rdtsc\n"));
4191 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
4192 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4193 if (rc == VINF_SUCCESS)
4194 {
4195 /* Update EIP and continue execution. */
4196 Assert(cbInstr == 2);
4197 pCtx->rip += cbInstr;
4198 goto ResumeExecution;
4199 }
4200 rc = VINF_EM_RAW_EMULATE_INSTR;
4201 break;
4202 }
4203
4204 case VMX_EXIT_RDTSCP: /* 51 Guest software attempted to execute RDTSCP. */
4205 {
4206 Log2(("VMX: Rdtscp\n"));
4207 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
4208 rc = EMInterpretRdtscp(pVM, pVCpu, pCtx);
4209 if (rc == VINF_SUCCESS)
4210 {
4211 /* Update EIP and continue execution. */
4212 Assert(cbInstr == 3);
4213 pCtx->rip += cbInstr;
4214 goto ResumeExecution;
4215 }
4216 rc = VINF_EM_RAW_EMULATE_INSTR;
4217 break;
4218 }
4219
4220 case VMX_EXIT_INVLPG: /* 14 Guest software attempted to execute INVLPG. */
4221 {
4222 Log2(("VMX: invlpg\n"));
4223 Assert(!pVM->hm.s.fNestedPaging);
4224
4225 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
4226 rc = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx), exitQualification);
4227 if (rc == VINF_SUCCESS)
4228 {
4229 /* Update EIP and continue execution. */
4230 pCtx->rip += cbInstr;
4231 goto ResumeExecution;
4232 }
4233 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: invlpg %RGv failed with %Rrc\n", exitQualification, VBOXSTRICTRC_VAL(rc)));
4234 break;
4235 }
4236
4237 case VMX_EXIT_MONITOR: /* 39 Guest software attempted to execute MONITOR. */
4238 {
4239 Log2(("VMX: monitor\n"));
4240
4241 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
4242 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4243 if (rc == VINF_SUCCESS)
4244 {
4245 /* Update EIP and continue execution. */
4246 pCtx->rip += cbInstr;
4247 goto ResumeExecution;
4248 }
4249 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: monitor failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
4250 break;
4251 }
4252
4253 case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */
4254 /* When an interrupt is pending, we'll let MSR_K8_LSTAR writes fault in our TPR patch code. */
4255 if ( pVM->hm.s.fTPRPatchingActive
4256 && pCtx->ecx == MSR_K8_LSTAR)
4257 {
4258 Assert(!CPUMIsGuestInLongModeEx(pCtx));
4259 if ((pCtx->eax & 0xff) != u8LastTPR)
4260 {
4261 Log(("VMX: Faulting MSR_K8_LSTAR write with new TPR value %x\n", pCtx->eax & 0xff));
4262
4263 /* Our patch code uses LSTAR for TPR caching. */
4264 rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
4265 AssertRC(rc2);
4266 }
4267
4268 /* Skip the instruction and continue. */
4269 pCtx->rip += cbInstr; /* wrmsr = [0F 30] */
4270
4271 /* Only resume if successful. */
4272 goto ResumeExecution;
4273 }
4274 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_MSR;
4275 /* no break */
4276 case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */
4277 {
4278 STAM_COUNTER_INC((exitReason == VMX_EXIT_RDMSR) ? &pVCpu->hm.s.StatExitRdmsr : &pVCpu->hm.s.StatExitWrmsr);
4279
4280 Log2(("VMX: %s\n", (exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr"));
4281 rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0);
4282 if (rc == VINF_SUCCESS)
4283 {
4284 /* EIP has been updated already. */
4285 /* Only resume if successful. */
4286 goto ResumeExecution;
4287 }
4288 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n",
4289 (exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr", VBOXSTRICTRC_VAL(rc)));
4290 break;
4291 }
4292
4293 case VMX_EXIT_MOV_CRX: /* 28 Control-register accesses. */
4294 {
4295 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExit2Sub2, y2);
4296
4297 switch (VMX_EXIT_QUALIFICATION_CRX_ACCESS(exitQualification))
4298 {
4299 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE:
4300 {
4301 Log2(("VMX: %RGv mov cr%d, x\n", (RTGCPTR)pCtx->rip, VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)));
4302 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)]);
4303 rc = EMInterpretCRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
4304 VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification),
4305 VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification));
4306 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification))
4307 {
4308 case 0:
4309 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0 | HM_CHANGED_GUEST_CR3;
4310 break;
4311 case 2:
4312 break;
4313 case 3:
4314 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestInPagedProtectedModeEx(pCtx));
4315 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
4316 break;
4317 case 4:
4318 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
4319 break;
4320 case 8:
4321 /* CR8 contains the APIC TPR */
4322 Assert(!(pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1
4323 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW));
4324 break;
4325
4326 default:
4327 AssertFailed();
4328 break;
4329 }
4330 break;
4331 }
4332
4333 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ:
4334 {
4335 Log2(("VMX: mov x, crx\n"));
4336 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)]);
4337
4338 Assert( !pVM->hm.s.fNestedPaging
4339 || !CPUMIsGuestInPagedProtectedModeEx(pCtx)
4340 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification) != DISCREG_CR3);
4341
4342 /* CR8 reads only cause an exit when the TPR shadow feature isn't present. */
4343 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification) != 8
4344 || !(pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW));
4345
4346 rc = EMInterpretCRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
4347 VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification),
4348 VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification));
4349 break;
4350 }
4351
4352 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS:
4353 {
4354 Log2(("VMX: clts\n"));
4355 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
4356 rc = EMInterpretCLTS(pVM, pVCpu);
4357 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4358 break;
4359 }
4360
4361 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW:
4362 {
4363 Log2(("VMX: lmsw %x\n", VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification)));
4364 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
4365 rc = EMInterpretLMSW(pVM, pVCpu, CPUMCTX2CORE(pCtx), VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification));
4366 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
4367 break;
4368 }
4369 }
4370
4371 /* Update EIP if no error occurred. */
4372 if (RT_SUCCESS(rc))
4373 pCtx->rip += cbInstr;
4374
4375 if (rc == VINF_SUCCESS)
4376 {
4377 /* Only resume if successful. */
4378 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub2, y2);
4379 goto ResumeExecution;
4380 }
4381 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
4382 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub2, y2);
4383 break;
4384 }
4385
4386 case VMX_EXIT_MOV_DRX: /* 29 Debug-register accesses. */
4387 {
4388 if ( !DBGFIsStepping(pVCpu)
4389 && !CPUMIsHyperDebugStateActive(pVCpu))
4390 {
4391 /* Disable DRx move intercepts. */
4392 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
4393 rc2 = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
4394 AssertRC(rc2);
4395
4396 /* Save the host and load the guest debug state. */
4397 rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
4398 AssertRC(rc2);
4399
4400#ifdef LOG_ENABLED
4401 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
4402 {
4403 Log(("VMX_EXIT_MOV_DRX: write DR%d genreg %d\n", VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification),
4404 VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification)));
4405 }
4406 else
4407 Log(("VMX_EXIT_MOV_DRX: read DR%d\n", VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification)));
4408#endif
4409
4410#ifdef VBOX_WITH_STATISTICS
4411 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
4412 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
4413 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
4414 else
4415 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
4416#endif
4417
4418 goto ResumeExecution;
4419 }
4420
4421 /** @todo clear VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT after the first
4422 * time and restore DRx registers afterwards */
4423 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
4424 {
4425 Log2(("VMX: mov DRx%d, genreg%d\n", VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification),
4426 VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification)));
4427 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
4428 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
4429 VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification),
4430 VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification));
4431 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
4432 Log2(("DR7=%08x\n", pCtx->dr[7]));
4433 }
4434 else
4435 {
4436 Log2(("VMX: mov x, DRx\n"));
4437 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
4438 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
4439 VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification),
4440 VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification));
4441 }
4442 /* Update EIP if no error occurred. */
4443 if (RT_SUCCESS(rc))
4444 pCtx->rip += cbInstr;
4445
4446 if (rc == VINF_SUCCESS)
4447 {
4448 /* Only resume if successful. */
4449 goto ResumeExecution;
4450 }
4451 Assert(rc == VERR_EM_INTERPRETER);
4452 break;
4453 }
4454
4455 /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
4456 case VMX_EXIT_IO_INSTR: /* 30 I/O instruction. */
4457 {
4458 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExit2Sub1, y1);
4459 uint32_t uPort;
4460 uint32_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(exitQualification);
4461 bool fIOWrite = (VMX_EXIT_QUALIFICATION_IO_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
4462
4463 /** @todo necessary to make the distinction? */
4464 if (VMX_EXIT_QUALIFICATION_IO_ENCODING(exitQualification) == VMX_EXIT_QUALIFICATION_IO_ENCODING_DX)
4465 uPort = pCtx->edx & 0xffff;
4466 else
4467 uPort = VMX_EXIT_QUALIFICATION_IO_PORT(exitQualification); /* Immediate encoding. */
4468
4469 if (RT_UNLIKELY(uIOWidth == 2 || uIOWidth >= 4)) /* paranoia */
4470 {
4471 rc = fIOWrite ? VINF_IOM_R3_IOPORT_WRITE : VINF_IOM_R3_IOPORT_READ;
4472 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub1, y1);
4473 break;
4474 }
4475
4476 uint32_t cbSize = g_aIOSize[uIOWidth];
4477 if (VMX_EXIT_QUALIFICATION_IO_STRING(exitQualification))
4478 {
4479 /* ins/outs */
4480 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
4481
4482 /* Disassemble manually to deal with segment prefixes. */
4483 /** @todo VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR contains the flat pointer
4484 * operand of the instruction. */
4485 /** @todo VMX_VMCS32_RO_EXIT_INSTR_INFO also contains segment prefix info. */
4486 rc2 = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
4487 if (RT_SUCCESS(rc))
4488 {
4489 if (fIOWrite)
4490 {
4491 Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, uPort, cbSize));
4492 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
4493 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), uPort, pDis->fPrefix, (DISCPUMODE)pDis->uAddrMode, cbSize);
4494 }
4495 else
4496 {
4497 Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, uPort, cbSize));
4498 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
4499 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), uPort, pDis->fPrefix, (DISCPUMODE)pDis->uAddrMode, cbSize);
4500 }
4501 }
4502 else
4503 rc = VINF_EM_RAW_EMULATE_INSTR;
4504 }
4505 else
4506 {
4507 /* Normal in/out */
4508 uint32_t uAndVal = g_aIOOpAnd[uIOWidth];
4509
4510 Assert(!VMX_EXIT_QUALIFICATION_IO_REP(exitQualification));
4511
4512 if (fIOWrite)
4513 {
4514 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
4515 rc = IOMIOPortWrite(pVM, uPort, pCtx->eax & uAndVal, cbSize);
4516 if (rc == VINF_IOM_R3_IOPORT_WRITE)
4517 HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pCtx->rip + cbInstr, uPort, uAndVal, cbSize);
4518 }
4519 else
4520 {
4521 uint32_t u32Val = 0;
4522
4523 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
4524 rc = IOMIOPortRead(pVM, uPort, &u32Val, cbSize);
4525 if (IOM_SUCCESS(rc))
4526 {
4527 /* Write back to the EAX register. */
4528 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
4529 }
4530 else
4531 if (rc == VINF_IOM_R3_IOPORT_READ)
4532 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pCtx->rip + cbInstr, uPort, uAndVal, cbSize);
4533 }
4534 }
4535
4536 /*
4537 * Handled the I/O return codes.
4538 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
4539 */
4540 if (IOM_SUCCESS(rc))
4541 {
4542 /* Update EIP and continue execution. */
4543 pCtx->rip += cbInstr;
4544 if (RT_LIKELY(rc == VINF_SUCCESS))
4545 {
4546 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
4547 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
4548 {
4549 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
4550 for (unsigned i = 0; i < 4; i++)
4551 {
4552 unsigned uBPLen = g_aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
4553
4554 if ( (uPort >= pCtx->dr[i] && uPort < pCtx->dr[i] + uBPLen)
4555 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
4556 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
4557 {
4558 uint64_t uDR6;
4559
4560 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4561
4562 uDR6 = ASMGetDR6();
4563
4564 /* Clear all breakpoint status flags and set the one we just hit. */
4565 uDR6 &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
4566 uDR6 |= (uint64_t)RT_BIT(i);
4567
4568 /*
4569 * Note: AMD64 Architecture Programmer's Manual 13.1:
4570 * Bits 15:13 of the DR6 register is never cleared by the processor and must
4571 * be cleared by software after the contents have been read.
4572 */
4573 ASMSetDR6(uDR6);
4574
4575 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
4576 pCtx->dr[7] &= ~X86_DR7_GD;
4577
4578 /* Paranoia. */
4579 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
4580 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
4581 pCtx->dr[7] |= 0x400; /* must be one */
4582
4583 /* Resync DR7 */
4584 rc2 = VMXWriteVmcs64(VMX_VMCS_GUEST_DR7, pCtx->dr[7]);
4585 AssertRC(rc2);
4586
4587 /* Construct inject info. */
4588 intInfo = X86_XCPT_DB;
4589 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
4590 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
4591
4592 Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
4593 rc2 = hmR0VmxInjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo),
4594 0 /* cbInstr */, 0 /* errCode */);
4595 AssertRC(rc2);
4596
4597 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub1, y1);
4598 goto ResumeExecution;
4599 }
4600 }
4601 }
4602 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub1, y1);
4603 goto ResumeExecution;
4604 }
4605 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub1, y1);
4606 break;
4607 }
4608
4609#ifdef VBOX_STRICT
4610 if (rc == VINF_IOM_R3_IOPORT_READ)
4611 Assert(!fIOWrite);
4612 else if (rc == VINF_IOM_R3_IOPORT_WRITE)
4613 Assert(fIOWrite);
4614 else
4615 {
4616 AssertMsg( RT_FAILURE(rc)
4617 || rc == VINF_EM_RAW_EMULATE_INSTR
4618 || rc == VINF_EM_RAW_GUEST_TRAP
4619 || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rc)));
4620 }
4621#endif
4622 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2Sub1, y1);
4623 break;
4624 }
4625
4626 case VMX_EXIT_TPR_BELOW_THRESHOLD: /* 43 TPR below threshold. Guest software executed MOV to CR8. */
4627 LogFlow(("VMX_EXIT_TPR_BELOW_THRESHOLD\n"));
4628 /* RIP is already set to the next instruction and the TPR has been synced back. Just resume. */
4629 goto ResumeExecution;
4630
4631 case VMX_EXIT_APIC_ACCESS: /* 44 APIC access. Guest software attempted to access memory at a physical address
4632 on the APIC-access page. */
4633 {
4634 LogFlow(("VMX_EXIT_APIC_ACCESS\n"));
4635 unsigned uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(exitQualification);
4636
4637 switch (uAccessType)
4638 {
4639 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
4640 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
4641 {
4642 RTGCPHYS GCPhys = pCtx->msrApicBase;
4643 GCPhys &= PAGE_BASE_GC_MASK;
4644 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(exitQualification);
4645
4646 LogFlow(("Apic access at %RGp\n", GCPhys));
4647 rc = IOMMMIOPhysHandler(pVM, (uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ) ? 0 : X86_TRAP_PF_RW,
4648 CPUMCTX2CORE(pCtx), GCPhys);
4649 if (rc == VINF_SUCCESS)
4650 goto ResumeExecution; /* rip already updated */
4651 break;
4652 }
4653
4654 default:
4655 rc = VINF_EM_RAW_EMULATE_INSTR;
4656 break;
4657 }
4658 break;
4659 }
4660
4661 case VMX_EXIT_PREEMPTION_TIMER: /* 52 VMX-preemption timer expired. The preemption timer counted down to zero. */
4662 if (!TMTimerPollBool(pVM, pVCpu))
4663 goto ResumeExecution;
4664 rc = VINF_EM_RAW_TIMER_PENDING;
4665 break;
4666
4667 default:
4668 /* The rest is handled after syncing the entire CPU state. */
4669 break;
4670 }
4671
4672
4673 /*
4674 * Note: The guest state is not entirely synced back at this stage!
4675 */
4676
4677 /* Investigate why there was a VM-exit. (part 2) */
4678 switch (exitReason)
4679 {
4680 case VMX_EXIT_XCPT_NMI: /* 0 Exception or non-maskable interrupt (NMI). */
4681 case VMX_EXIT_EXT_INT: /* 1 External interrupt. */
4682 case VMX_EXIT_EPT_VIOLATION:
4683 case VMX_EXIT_EPT_MISCONFIG: /* 49 EPT misconfig is used by the PGM/MMIO optimizations. */
4684 case VMX_EXIT_PREEMPTION_TIMER: /* 52 VMX-preemption timer expired. The preemption timer counted down to zero. */
4685 /* Already handled above. */
4686 break;
4687
4688 case VMX_EXIT_TRIPLE_FAULT: /* 2 Triple fault. */
4689 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
4690 break;
4691
4692 case VMX_EXIT_INIT_SIGNAL: /* 3 INIT signal. */
4693 case VMX_EXIT_SIPI: /* 4 Start-up IPI (SIPI). */
4694 rc = VINF_EM_RAW_INTERRUPT;
4695 AssertFailed(); /* Can't happen. Yet. */
4696 break;
4697
4698 case VMX_EXIT_IO_SMI: /* 5 I/O system-management interrupt (SMI). */
4699 case VMX_EXIT_SMI: /* 6 Other SMI. */
4700 rc = VINF_EM_RAW_INTERRUPT;
4701 AssertFailed(); /* Can't happen afaik. */
4702 break;
4703
4704 case VMX_EXIT_TASK_SWITCH: /* 9 Task switch: too complicated to emulate, so fall back to the recompiler */
4705 Log(("VMX_EXIT_TASK_SWITCH: exit=%RX64\n", exitQualification));
4706 if ( (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(exitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
4707 && pVCpu->hm.s.Event.fPending)
4708 {
4709 /* Caused by an injected interrupt. */
4710 pVCpu->hm.s.Event.fPending = false;
4711
4712 Log(("VMX_EXIT_TASK_SWITCH: reassert trap %d\n", VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVCpu->hm.s.Event.u64IntrInfo)));
4713 Assert(!VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo));
4714 //@todo: Why do we assume this had to be a hardware interrupt? What about software interrupts or exceptions?
4715 rc2 = TRPMAssertTrap(pVCpu, VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVCpu->hm.s.Event.u64IntrInfo), TRPM_HARDWARE_INT);
4716 AssertRC(rc2);
4717 }
4718 /* else Exceptions and software interrupts can just be restarted. */
4719 rc = VERR_EM_INTERPRETER;
4720 break;
4721
4722 case VMX_EXIT_HLT: /* 12 Guest software attempted to execute HLT. */
4723 /* Check if external interrupts are pending; if so, don't switch back. */
4724 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
4725 pCtx->rip++; /* skip hlt */
4726 if (EMShouldContinueAfterHalt(pVCpu, pCtx))
4727 goto ResumeExecution;
4728
4729 rc = VINF_EM_HALT;
4730 break;
4731
4732 case VMX_EXIT_MWAIT: /* 36 Guest software executed MWAIT. */
4733 Log2(("VMX: mwait\n"));
4734 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
4735 rc = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4736 if ( rc == VINF_EM_HALT
4737 || rc == VINF_SUCCESS)
4738 {
4739 /* Update EIP and continue execution. */
4740 pCtx->rip += cbInstr;
4741
4742 /* Check if external interrupts are pending; if so, don't switch back. */
4743 if ( rc == VINF_SUCCESS
4744 || ( rc == VINF_EM_HALT
4745 && EMShouldContinueAfterHalt(pVCpu, pCtx))
4746 )
4747 goto ResumeExecution;
4748 }
4749 AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_EM_HALT, ("EMU: mwait failed with %Rrc\n", VBOXSTRICTRC_VAL(rc)));
4750 break;
4751
4752 case VMX_EXIT_RSM: /* 17 Guest software attempted to execute RSM in SMM. */
4753 AssertFailed(); /* can't happen. */
4754 rc = VERR_EM_INTERPRETER;
4755 break;
4756
4757 case VMX_EXIT_MTF: /* 37 Exit due to Monitor Trap Flag. */
4758 LogFlow(("VMX_EXIT_MTF at %RGv\n", (RTGCPTR)pCtx->rip));
4759 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MONITOR_TRAP_FLAG;
4760 rc2 = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
4761 AssertRC(rc2);
4762 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
4763#if 0
4764 DBGFDoneStepping(pVCpu);
4765#endif
4766 rc = VINF_EM_DBG_STOP;
4767 break;
4768
4769 case VMX_EXIT_VMCALL: /* 18 Guest software executed VMCALL. */
4770 case VMX_EXIT_VMCLEAR: /* 19 Guest software executed VMCLEAR. */
4771 case VMX_EXIT_VMLAUNCH: /* 20 Guest software executed VMLAUNCH. */
4772 case VMX_EXIT_VMPTRLD: /* 21 Guest software executed VMPTRLD. */
4773 case VMX_EXIT_VMPTRST: /* 22 Guest software executed VMPTRST. */
4774 case VMX_EXIT_VMREAD: /* 23 Guest software executed VMREAD. */
4775 case VMX_EXIT_VMRESUME: /* 24 Guest software executed VMRESUME. */
4776 case VMX_EXIT_VMWRITE: /* 25 Guest software executed VMWRITE. */
4777 case VMX_EXIT_VMXOFF: /* 26 Guest software executed VMXOFF. */
4778 case VMX_EXIT_VMXON: /* 27 Guest software executed VMXON. */
4779 /** @todo inject #UD immediately */
4780 rc = VERR_EM_INTERPRETER;
4781 break;
4782
4783 case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */
4784 case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */
4785 case VMX_EXIT_INVLPG: /* 14 Guest software attempted to execute INVLPG. */
4786 case VMX_EXIT_MOV_CRX: /* 28 Control-register accesses. */
4787 case VMX_EXIT_MOV_DRX: /* 29 Debug-register accesses. */
4788 case VMX_EXIT_IO_INSTR: /* 30 I/O instruction. */
4789 case VMX_EXIT_RDPMC: /* 15 Guest software attempted to execute RDPMC. */
4790 case VMX_EXIT_RDTSCP: /* 51 Guest software attempted to execute RDTSCP. */
4791 /* already handled above */
4792 AssertMsg( rc == VINF_PGM_CHANGE_MODE
4793 || rc == VINF_EM_RAW_INTERRUPT
4794 || rc == VERR_EM_INTERPRETER
4795 || rc == VINF_EM_RAW_EMULATE_INSTR
4796 || rc == VINF_PGM_SYNC_CR3
4797 || rc == VINF_IOM_R3_IOPORT_READ
4798 || rc == VINF_IOM_R3_IOPORT_WRITE
4799 || rc == VINF_EM_RAW_GUEST_TRAP
4800 || rc == VINF_TRPM_XCPT_DISPATCHED
4801 || rc == VINF_EM_RESCHEDULE_REM,
4802 ("rc = %d\n", VBOXSTRICTRC_VAL(rc)));
4803 break;
4804
4805 case VMX_EXIT_TPR_BELOW_THRESHOLD: /* 43 TPR below threshold. Guest software executed MOV to CR8. */
4806 case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */
4807 case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */
4808 case VMX_EXIT_PAUSE: /* 40 Guest software attempted to execute PAUSE. */
4809 case VMX_EXIT_MONITOR: /* 39 Guest software attempted to execute MONITOR. */
4810 case VMX_EXIT_APIC_ACCESS: /* 44 APIC access. Guest software attempted to access memory at a physical address
4811 on the APIC-access page. */
4812 {
4813 /*
4814 * If we decided to emulate them here, then we must sync the MSRs that could have been changed (sysenter, FS/GS base)
4815 */
4816 rc = VERR_EM_INTERPRETER;
4817 break;
4818 }
4819
4820 case VMX_EXIT_INT_WINDOW: /* 7 Interrupt window. */
4821 Assert(rc == VINF_EM_RAW_INTERRUPT);
4822 break;
4823
4824 case VMX_EXIT_ERR_INVALID_GUEST_STATE: /* 33 VM-entry failure due to invalid guest state. */
4825 {
4826#ifdef VBOX_STRICT
4827 RTCCUINTREG val2 = 0;
4828
4829 Log(("VMX_EXIT_ERR_INVALID_GUEST_STATE\n"));
4830
4831 VMXReadVmcs(VMX_VMCS_GUEST_RIP, &val2);
4832 Log(("Old eip %RGv new %RGv\n", (RTGCPTR)pCtx->rip, (RTGCPTR)val2));
4833
4834 VMXReadVmcs(VMX_VMCS_GUEST_CR0, &val2);
4835 Log(("VMX_VMCS_GUEST_CR0 %RX64\n", (uint64_t)val2));
4836
4837 VMXReadVmcs(VMX_VMCS_GUEST_CR3, &val2);
4838 Log(("VMX_VMCS_GUEST_CR3 %RX64\n", (uint64_t)val2));
4839
4840 VMXReadVmcs(VMX_VMCS_GUEST_CR4, &val2);
4841 Log(("VMX_VMCS_GUEST_CR4 %RX64\n", (uint64_t)val2));
4842
4843 VMXReadVmcs(VMX_VMCS_GUEST_RFLAGS, &val2);
4844 Log(("VMX_VMCS_GUEST_RFLAGS %08x\n", val2));
4845
4846 VMX_LOG_SELREG(CS, "CS", val2);
4847 VMX_LOG_SELREG(DS, "DS", val2);
4848 VMX_LOG_SELREG(ES, "ES", val2);
4849 VMX_LOG_SELREG(FS, "FS", val2);
4850 VMX_LOG_SELREG(GS, "GS", val2);
4851 VMX_LOG_SELREG(SS, "SS", val2);
4852 VMX_LOG_SELREG(TR, "TR", val2);
4853 VMX_LOG_SELREG(LDTR, "LDTR", val2);
4854
4855 VMXReadVmcs(VMX_VMCS_GUEST_GDTR_BASE, &val2);
4856 Log(("VMX_VMCS_GUEST_GDTR_BASE %RX64\n", (uint64_t)val2));
4857 VMXReadVmcs(VMX_VMCS_GUEST_IDTR_BASE, &val2);
4858 Log(("VMX_VMCS_GUEST_IDTR_BASE %RX64\n", (uint64_t)val2));
4859#endif /* VBOX_STRICT */
4860 rc = VERR_VMX_INVALID_GUEST_STATE;
4861 break;
4862 }
4863
4864 case VMX_EXIT_ERR_MSR_LOAD: /* 34 VM-entry failure due to MSR loading. */
4865 case VMX_EXIT_ERR_MACHINE_CHECK: /* 41 VM-entry failure due to machine-check. */
4866 default:
4867 rc = VERR_VMX_UNEXPECTED_EXIT_CODE;
4868 AssertMsgFailed(("Unexpected exit code %d\n", exitReason)); /* Can't happen. */
4869 break;
4870
4871 }
4872
4873end:
4874 /* We now going back to ring-3, so clear the action flag. */
4875 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
4876
4877 /*
4878 * Signal changes for the recompiler.
4879 */
4880 CPUMSetChangedFlags(pVCpu,
4881 CPUM_CHANGED_SYSENTER_MSR
4882 | CPUM_CHANGED_LDTR
4883 | CPUM_CHANGED_GDTR
4884 | CPUM_CHANGED_IDTR
4885 | CPUM_CHANGED_TR
4886 | CPUM_CHANGED_HIDDEN_SEL_REGS);
4887
4888 /*
4889 * If we executed vmlaunch/vmresume and an external IRQ was pending, then we don't have to do a full sync the next time.
4890 */
4891 if ( exitReason == VMX_EXIT_EXT_INT
4892 && !VMX_EXIT_INTERRUPTION_INFO_VALID(intInfo))
4893 {
4894 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
4895 /* On the next entry we'll only sync the host context. */
4896 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
4897 }
4898 else
4899 {
4900 /* On the next entry we'll sync everything. */
4901 /** @todo we can do better than this */
4902 /* Not in the VINF_PGM_CHANGE_MODE though! */
4903 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL;
4904 }
4905
4906 /* Translate into a less severe return code */
4907 if (rc == VERR_EM_INTERPRETER)
4908 rc = VINF_EM_RAW_EMULATE_INSTR;
4909 else if (rc == VERR_VMX_INVALID_VMCS_PTR)
4910 {
4911 /* Try to extract more information about what might have gone wrong here. */
4912 VMXGetActivateVMCS(&pVCpu->hm.s.vmx.lasterror.u64VMCSPhys);
4913 pVCpu->hm.s.vmx.lasterror.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
4914 pVCpu->hm.s.vmx.lasterror.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
4915 pVCpu->hm.s.vmx.lasterror.idCurrentCpu = RTMpCpuId();
4916 }
4917
4918 /* Just set the correct state here instead of trying to catch every goto above. */
4919 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC);
4920
4921#ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
4922 /* Restore interrupts if we exited after disabling them. */
4923 if (uOldEFlags != ~(RTCCUINTREG)0)
4924 ASMSetFlags(uOldEFlags);
4925#endif
4926
4927 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
4928 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
4929 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
4930 Log2(("X"));
4931 return VBOXSTRICTRC_TODO(rc);
4932}
4933
4934
4935/**
4936 * Enters the VT-x session.
4937 *
4938 * @returns VBox status code.
4939 * @param pVM Pointer to the VM.
4940 * @param pVCpu Pointer to the VMCPU.
4941 * @param pCpu Pointer to the CPU info struct.
4942 */
4943VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
4944{
4945 Assert(pVM->hm.s.vmx.fSupported);
4946 NOREF(pCpu);
4947
4948 unsigned cr4 = ASMGetCR4();
4949 if (!(cr4 & X86_CR4_VMXE))
4950 {
4951 AssertMsgFailed(("X86_CR4_VMXE should be set!\n"));
4952 return VERR_VMX_X86_CR4_VMXE_CLEARED;
4953 }
4954
4955 /* Activate the VMCS. */
4956 int rc = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
4957 if (RT_FAILURE(rc))
4958 return rc;
4959
4960 pVCpu->hm.s.fResumeVM = false;
4961 return VINF_SUCCESS;
4962}
4963
4964
4965/**
4966 * Leaves the VT-x session.
4967 *
4968 * @returns VBox status code.
4969 * @param pVM Pointer to the VM.
4970 * @param pVCpu Pointer to the VMCPU.
4971 * @param pCtx Pointer to the guests CPU context.
4972 */
4973VMMR0DECL(int) VMXR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4974{
4975 Assert(pVM->hm.s.vmx.fSupported);
4976
4977#ifdef DEBUG
4978 if (CPUMIsHyperDebugStateActive(pVCpu))
4979 {
4980 CPUMR0LoadHostDebugState(pVM, pVCpu);
4981 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT);
4982 }
4983 else
4984#endif
4985
4986 /*
4987 * Save the guest debug state if necessary.
4988 */
4989 if (CPUMIsGuestDebugStateActive(pVCpu))
4990 {
4991 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, true /* save DR6 */);
4992
4993 /* Enable DRx move intercepts again. */
4994 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
4995 int rc = VMXWriteVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, pVCpu->hm.s.vmx.u32ProcCtls);
4996 AssertRC(rc);
4997
4998 /* Resync the debug registers the next time. */
4999 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
5000 }
5001 else
5002 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT);
5003
5004 /*
5005 * Clear VMCS, marking it inactive, clearing implementation-specific data and writing
5006 * VMCS data back to memory.
5007 */
5008 int rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
5009 AssertRC(rc);
5010
5011 return VINF_SUCCESS;
5012}
5013
5014
5015/**
5016 * Flush the TLB using EPT.
5017 *
5018 * @returns VBox status code.
5019 * @param pVM Pointer to the VM.
5020 * @param pVCpu Pointer to the VMCPU.
5021 * @param enmFlush Type of flush.
5022 */
5023static void hmR0VmxFlushEPT(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush)
5024{
5025 uint64_t descriptor[2];
5026
5027 LogFlow(("hmR0VmxFlushEPT %d\n", enmFlush));
5028 Assert(pVM->hm.s.fNestedPaging);
5029 descriptor[0] = pVCpu->hm.s.vmx.GCPhysEPTP;
5030 descriptor[1] = 0; /* MBZ. Intel spec. 33.3 VMX Instructions */
5031 int rc = VMXR0InvEPT(enmFlush, &descriptor[0]);
5032 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %x %RGv failed with %d\n", enmFlush, pVCpu->hm.s.vmx.GCPhysEPTP, rc));
5033#ifdef VBOX_WITH_STATISTICS
5034 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
5035#endif
5036}
5037
5038
5039/**
5040 * Flush the TLB using VPID.
5041 *
5042 * @returns VBox status code.
5043 * @param pVM Pointer to the VM.
5044 * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
5045 * enmFlush).
5046 * @param enmFlush Type of flush.
5047 * @param GCPtr Virtual address of the page to flush (can be 0 depending
5048 * on @a enmFlush).
5049 */
5050static void hmR0VmxFlushVPID(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr)
5051{
5052 uint64_t descriptor[2];
5053
5054 Assert(pVM->hm.s.vmx.fVpid);
5055 if (enmFlush == VMX_FLUSH_VPID_ALL_CONTEXTS)
5056 {
5057 descriptor[0] = 0;
5058 descriptor[1] = 0;
5059 }
5060 else
5061 {
5062 AssertPtr(pVCpu);
5063 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
5064 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
5065 descriptor[0] = pVCpu->hm.s.uCurrentAsid;
5066 descriptor[1] = GCPtr;
5067 }
5068 int rc = VMXR0InvVPID(enmFlush, &descriptor[0]); NOREF(rc);
5069 AssertMsg(rc == VINF_SUCCESS,
5070 ("VMXR0InvVPID %x %x %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
5071#ifdef VBOX_WITH_STATISTICS
5072 if (pVCpu)
5073 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
5074#endif
5075}
5076
5077
5078/**
5079 * Invalidates a guest page by guest virtual address. Only relevant for
5080 * EPT/VPID, otherwise there is nothing really to invalidate.
5081 *
5082 * @returns VBox status code.
5083 * @param pVM Pointer to the VM.
5084 * @param pVCpu Pointer to the VMCPU.
5085 * @param GCVirt Guest virtual address of the page to invalidate.
5086 */
5087VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
5088{
5089 bool fFlushPending = VMCPU_FF_ISSET(pVCpu, VMCPU_FF_TLB_FLUSH);
5090
5091 Log2(("VMXR0InvalidatePage %RGv\n", GCVirt));
5092
5093 if (!fFlushPending)
5094 {
5095 /*
5096 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
5097 * See @bugref{6043} and @bugref{6177}
5098 *
5099 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VMENTRY in hmR0VmxSetupTLB*() as this
5100 * function maybe called in a loop with individual addresses.
5101 */
5102 if (pVM->hm.s.vmx.fVpid)
5103 {
5104 /* If we can flush just this page do it, otherwise flush as little as possible. */
5105 if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
5106 hmR0VmxFlushVPID(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, GCVirt);
5107 else
5108 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
5109 }
5110 else if (pVM->hm.s.fNestedPaging)
5111 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
5112 }
5113
5114 return VINF_SUCCESS;
5115}
5116
5117
5118/**
5119 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
5120 * otherwise there is nothing really to invalidate.
5121 *
5122 * NOTE: Assumes the current instruction references this physical page though a virtual address!!
5123 *
5124 * @returns VBox status code.
5125 * @param pVM Pointer to the VM.
5126 * @param pVCpu Pointer to the VMCPU.
5127 * @param GCPhys Guest physical address of the page to invalidate.
5128 */
5129VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
5130{
5131 LogFlow(("VMXR0InvalidatePhysPage %RGp\n", GCPhys));
5132
5133 /*
5134 * We cannot flush a page by guest-physical address. invvpid takes only a linear address
5135 * while invept only flushes by EPT not individual addresses. We update the force flag here
5136 * and flush before VMENTRY in hmR0VmxSetupTLB*(). This function might be called in a loop.
5137 */
5138 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
5139 return VINF_SUCCESS;
5140}
5141
5142
5143/**
5144 * Report world switch error and dump some useful debug info.
5145 *
5146 * @param pVM Pointer to the VM.
5147 * @param pVCpu Pointer to the VMCPU.
5148 * @param rc Return code.
5149 * @param pCtx Pointer to the current guest CPU context (not updated).
5150 */
5151static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rc, PCPUMCTX pCtx)
5152{
5153 NOREF(pVM);
5154
5155 switch (VBOXSTRICTRC_VAL(rc))
5156 {
5157 case VERR_VMX_INVALID_VMXON_PTR:
5158 AssertFailed();
5159 break;
5160
5161 case VERR_VMX_UNABLE_TO_START_VM:
5162 case VERR_VMX_UNABLE_TO_RESUME_VM:
5163 {
5164 int rc2;
5165 RTCCUINTREG exitReason, instrError;
5166
5167 rc2 = VMXReadVmcs(VMX_VMCS32_RO_EXIT_REASON, &exitReason);
5168 rc2 |= VMXReadVmcs(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError);
5169 AssertRC(rc2);
5170 if (rc2 == VINF_SUCCESS)
5171 {
5172 Log(("Unable to start/resume VM for reason: %x. Instruction error %x\n", (uint32_t)exitReason,
5173 (uint32_t)instrError));
5174 Log(("Current stack %08x\n", &rc2));
5175
5176 pVCpu->hm.s.vmx.lasterror.u32InstrError = instrError;
5177 pVCpu->hm.s.vmx.lasterror.u32ExitReason = exitReason;
5178
5179#ifdef VBOX_STRICT
5180 RTGDTR gdtr;
5181 PCX86DESCHC pDesc;
5182 RTCCUINTREG val;
5183
5184 ASMGetGDTR(&gdtr);
5185
5186 VMXReadVmcs(VMX_VMCS_GUEST_RIP, &val);
5187 Log(("Old eip %RGv new %RGv\n", (RTGCPTR)pCtx->rip, (RTGCPTR)val));
5188 VMXReadVmcs(VMX_VMCS32_CTRL_PIN_EXEC_CONTROLS, &val);
5189 Log(("VMX_VMCS_CTRL_PIN_EXEC_CONTROLS %08x\n", val));
5190 VMXReadVmcs(VMX_VMCS32_CTRL_PROC_EXEC_CONTROLS, &val);
5191 Log(("VMX_VMCS_CTRL_PROC_EXEC_CONTROLS %08x\n", val));
5192 VMXReadVmcs(VMX_VMCS32_CTRL_ENTRY_CONTROLS, &val);
5193 Log(("VMX_VMCS_CTRL_ENTRY_CONTROLS %08x\n", val));
5194 VMXReadVmcs(VMX_VMCS32_CTRL_EXIT_CONTROLS, &val);
5195 Log(("VMX_VMCS_CTRL_EXIT_CONTROLS %08x\n", val));
5196
5197 VMXReadVmcs(VMX_VMCS_HOST_CR0, &val);
5198 Log(("VMX_VMCS_HOST_CR0 %08x\n", val));
5199 VMXReadVmcs(VMX_VMCS_HOST_CR3, &val);
5200 Log(("VMX_VMCS_HOST_CR3 %08x\n", val));
5201 VMXReadVmcs(VMX_VMCS_HOST_CR4, &val);
5202 Log(("VMX_VMCS_HOST_CR4 %08x\n", val));
5203
5204 VMXReadVmcs(VMX_VMCS16_HOST_FIELD_CS, &val);
5205 Log(("VMX_VMCS_HOST_FIELD_CS %08x\n", val));
5206 VMXReadVmcs(VMX_VMCS_GUEST_RFLAGS, &val);
5207 Log(("VMX_VMCS_GUEST_RFLAGS %08x\n", val));
5208
5209 if (val < gdtr.cbGdt)
5210 {
5211 pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
5212 HMR0DumpDescriptor(pDesc, val, "CS: ");
5213 }
5214
5215 VMXReadVmcs(VMX_VMCS16_HOST_FIELD_DS, &val);
5216 Log(("VMX_VMCS_HOST_FIELD_DS %08x\n", val));
5217 if (val < gdtr.cbGdt)
5218 {
5219 pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
5220 HMR0DumpDescriptor(pDesc, val, "DS: ");
5221 }
5222
5223 VMXReadVmcs(VMX_VMCS16_HOST_FIELD_ES, &val);
5224 Log(("VMX_VMCS_HOST_FIELD_ES %08x\n", val));
5225 if (val < gdtr.cbGdt)
5226 {
5227 pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
5228 HMR0DumpDescriptor(pDesc, val, "ES: ");
5229 }
5230
5231 VMXReadVmcs(VMX_VMCS16_HOST_FIELD_FS, &val);
5232 Log(("VMX_VMCS16_HOST_FIELD_FS %08x\n", val));
5233 if (val < gdtr.cbGdt)
5234 {
5235 pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
5236 HMR0DumpDescriptor(pDesc, val, "FS: ");
5237 }
5238
5239 VMXReadVmcs(VMX_VMCS16_HOST_FIELD_GS, &val);
5240 Log(("VMX_VMCS16_HOST_FIELD_GS %08x\n", val));
5241 if (val < gdtr.cbGdt)
5242 {
5243 pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
5244 HMR0DumpDescriptor(pDesc, val, "GS: ");
5245 }
5246
5247 VMXReadVmcs(VMX_VMCS16_HOST_FIELD_SS, &val);
5248 Log(("VMX_VMCS16_HOST_FIELD_SS %08x\n", val));
5249 if (val < gdtr.cbGdt)
5250 {
5251 pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
5252 HMR0DumpDescriptor(pDesc, val, "SS: ");
5253 }
5254
5255 VMXReadVmcs(VMX_VMCS16_HOST_FIELD_TR, &val);
5256 Log(("VMX_VMCS16_HOST_FIELD_TR %08x\n", val));
5257 if (val < gdtr.cbGdt)
5258 {
5259 pDesc = (PCX86DESCHC)(gdtr.pGdt + (val & X86_SEL_MASK));
5260 HMR0DumpDescriptor(pDesc, val, "TR: ");
5261 }
5262
5263 VMXReadVmcs(VMX_VMCS_HOST_TR_BASE, &val);
5264 Log(("VMX_VMCS_HOST_TR_BASE %RHv\n", val));
5265 VMXReadVmcs(VMX_VMCS_HOST_GDTR_BASE, &val);
5266 Log(("VMX_VMCS_HOST_GDTR_BASE %RHv\n", val));
5267 VMXReadVmcs(VMX_VMCS_HOST_IDTR_BASE, &val);
5268 Log(("VMX_VMCS_HOST_IDTR_BASE %RHv\n", val));
5269 VMXReadVmcs(VMX_VMCS32_HOST_SYSENTER_CS, &val);
5270 Log(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", val));
5271 VMXReadVmcs(VMX_VMCS_HOST_SYSENTER_EIP, &val);
5272 Log(("VMX_VMCS_HOST_SYSENTER_EIP %RHv\n", val));
5273 VMXReadVmcs(VMX_VMCS_HOST_SYSENTER_ESP, &val);
5274 Log(("VMX_VMCS_HOST_SYSENTER_ESP %RHv\n", val));
5275 VMXReadVmcs(VMX_VMCS_HOST_RSP, &val);
5276 Log(("VMX_VMCS_HOST_RSP %RHv\n", val));
5277 VMXReadVmcs(VMX_VMCS_HOST_RIP, &val);
5278 Log(("VMX_VMCS_HOST_RIP %RHv\n", val));
5279# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
5280 if (VMX_IS_64BIT_HOST_MODE())
5281 {
5282 Log(("MSR_K6_EFER = %RX64\n", ASMRdMsr(MSR_K6_EFER)));
5283 Log(("MSR_K6_STAR = %RX64\n", ASMRdMsr(MSR_K6_STAR)));
5284 Log(("MSR_K8_LSTAR = %RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5285 Log(("MSR_K8_CSTAR = %RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5286 Log(("MSR_K8_SF_MASK = %RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5287 Log(("MSR_K8_KERNEL_GS_BASE = %RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5288 }
5289# endif
5290#endif /* VBOX_STRICT */
5291 }
5292 break;
5293 }
5294
5295 default:
5296 /* impossible */
5297 AssertMsgFailed(("%Rrc (%#x)\n", VBOXSTRICTRC_VAL(rc), VBOXSTRICTRC_VAL(rc)));
5298 break;
5299 }
5300}
5301
5302
5303#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
5304/**
5305 * Prepares for and executes VMLAUNCH (64 bits guest mode).
5306 *
5307 * @returns VBox status code.
5308 * @param fResume Whether to vmlauch/vmresume.
5309 * @param pCtx Pointer to the guest CPU context.
5310 * @param pCache Pointer to the VMCS cache.
5311 * @param pVM Pointer to the VM.
5312 * @param pVCpu Pointer to the VMCPU.
5313 */
5314DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5315{
5316 uint32_t aParam[6];
5317 PHMGLOBLCPUINFO pCpu;
5318 RTHCPHYS HCPhysCpuPage;
5319 int rc;
5320
5321 pCpu = HMR0GetCurrentCpu();
5322 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
5323
5324#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5325 pCache->uPos = 1;
5326 pCache->interPD = PGMGetInterPaeCR3(pVM);
5327 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5328#endif
5329
5330#ifdef DEBUG
5331 pCache->TestIn.HCPhysCpuPage= 0;
5332 pCache->TestIn.HCPhysVmcs = 0;
5333 pCache->TestIn.pCache = 0;
5334 pCache->TestOut.HCPhysVmcs = 0;
5335 pCache->TestOut.pCache = 0;
5336 pCache->TestOut.pCtx = 0;
5337 pCache->TestOut.eflags = 0;
5338#endif
5339
5340 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5341 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
5342 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5343 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
5344 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5345 aParam[5] = 0;
5346
5347#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5348 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5349 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5350#endif
5351 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hm.s.pfnVMXGCStartVM64, 6, &aParam[0]);
5352
5353#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5354 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5355 Assert(pCtx->dr[4] == 10);
5356 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5357#endif
5358
5359#ifdef DEBUG
5360 AssertMsg(pCache->TestIn.HCPhysCpuPage== HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5361 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5362 pVCpu->hm.s.vmx.HCPhysVmcs));
5363 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5364 pCache->TestOut.HCPhysVmcs));
5365 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5366 pCache->TestOut.pCache));
5367 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5368 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5369 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5370 pCache->TestOut.pCtx));
5371 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5372#endif
5373 return rc;
5374}
5375
5376
5377# ifdef VBOX_STRICT
5378static bool hmR0VmxIsValidReadField(uint32_t idxField)
5379{
5380 switch (idxField)
5381 {
5382 case VMX_VMCS_GUEST_RIP:
5383 case VMX_VMCS_GUEST_RSP:
5384 case VMX_VMCS_GUEST_RFLAGS:
5385 case VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE:
5386 case VMX_VMCS_CTRL_CR0_READ_SHADOW:
5387 case VMX_VMCS_GUEST_CR0:
5388 case VMX_VMCS_CTRL_CR4_READ_SHADOW:
5389 case VMX_VMCS_GUEST_CR4:
5390 case VMX_VMCS_GUEST_DR7:
5391 case VMX_VMCS32_GUEST_SYSENTER_CS:
5392 case VMX_VMCS_GUEST_SYSENTER_EIP:
5393 case VMX_VMCS_GUEST_SYSENTER_ESP:
5394 case VMX_VMCS32_GUEST_GDTR_LIMIT:
5395 case VMX_VMCS_GUEST_GDTR_BASE:
5396 case VMX_VMCS32_GUEST_IDTR_LIMIT:
5397 case VMX_VMCS_GUEST_IDTR_BASE:
5398 case VMX_VMCS16_GUEST_FIELD_CS:
5399 case VMX_VMCS32_GUEST_CS_LIMIT:
5400 case VMX_VMCS_GUEST_CS_BASE:
5401 case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
5402 case VMX_VMCS16_GUEST_FIELD_DS:
5403 case VMX_VMCS32_GUEST_DS_LIMIT:
5404 case VMX_VMCS_GUEST_DS_BASE:
5405 case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
5406 case VMX_VMCS16_GUEST_FIELD_ES:
5407 case VMX_VMCS32_GUEST_ES_LIMIT:
5408 case VMX_VMCS_GUEST_ES_BASE:
5409 case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
5410 case VMX_VMCS16_GUEST_FIELD_FS:
5411 case VMX_VMCS32_GUEST_FS_LIMIT:
5412 case VMX_VMCS_GUEST_FS_BASE:
5413 case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
5414 case VMX_VMCS16_GUEST_FIELD_GS:
5415 case VMX_VMCS32_GUEST_GS_LIMIT:
5416 case VMX_VMCS_GUEST_GS_BASE:
5417 case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
5418 case VMX_VMCS16_GUEST_FIELD_SS:
5419 case VMX_VMCS32_GUEST_SS_LIMIT:
5420 case VMX_VMCS_GUEST_SS_BASE:
5421 case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
5422 case VMX_VMCS16_GUEST_FIELD_LDTR:
5423 case VMX_VMCS32_GUEST_LDTR_LIMIT:
5424 case VMX_VMCS_GUEST_LDTR_BASE:
5425 case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
5426 case VMX_VMCS16_GUEST_FIELD_TR:
5427 case VMX_VMCS32_GUEST_TR_LIMIT:
5428 case VMX_VMCS_GUEST_TR_BASE:
5429 case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
5430 case VMX_VMCS32_RO_EXIT_REASON:
5431 case VMX_VMCS32_RO_VM_INSTR_ERROR:
5432 case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
5433 case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE:
5434 case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
5435 case VMX_VMCS32_RO_EXIT_INSTR_INFO:
5436 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5437 case VMX_VMCS32_RO_IDT_INFO:
5438 case VMX_VMCS32_RO_IDT_ERROR_CODE:
5439 case VMX_VMCS_GUEST_CR3:
5440 case VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL:
5441 return true;
5442 }
5443 return false;
5444}
5445
5446
5447static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5448{
5449 switch (idxField)
5450 {
5451 case VMX_VMCS_GUEST_LDTR_BASE:
5452 case VMX_VMCS_GUEST_TR_BASE:
5453 case VMX_VMCS_GUEST_GDTR_BASE:
5454 case VMX_VMCS_GUEST_IDTR_BASE:
5455 case VMX_VMCS_GUEST_SYSENTER_EIP:
5456 case VMX_VMCS_GUEST_SYSENTER_ESP:
5457 case VMX_VMCS_GUEST_CR0:
5458 case VMX_VMCS_GUEST_CR4:
5459 case VMX_VMCS_GUEST_CR3:
5460 case VMX_VMCS_GUEST_DR7:
5461 case VMX_VMCS_GUEST_RIP:
5462 case VMX_VMCS_GUEST_RSP:
5463 case VMX_VMCS_GUEST_CS_BASE:
5464 case VMX_VMCS_GUEST_DS_BASE:
5465 case VMX_VMCS_GUEST_ES_BASE:
5466 case VMX_VMCS_GUEST_FS_BASE:
5467 case VMX_VMCS_GUEST_GS_BASE:
5468 case VMX_VMCS_GUEST_SS_BASE:
5469 return true;
5470 }
5471 return false;
5472}
5473# endif /* VBOX_STRICT */
5474
5475
5476/**
5477 * Executes the specified handler in 64-bit mode.
5478 *
5479 * @returns VBox status code.
5480 * @param pVM Pointer to the VM.
5481 * @param pVCpu Pointer to the VMCPU.
5482 * @param pCtx Pointer to the guest CPU context.
5483 * @param pfnHandler Pointer to the RC handler function.
5484 * @param cbParam Number of parameters.
5485 * @param paParam Array of 32-bit parameters.
5486 */
5487VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTRCPTR pfnHandler, uint32_t cbParam,
5488 uint32_t *paParam)
5489{
5490 int rc, rc2;
5491 PHMGLOBLCPUINFO pCpu;
5492 RTHCPHYS HCPhysCpuPage;
5493 RTHCUINTREG uOldEFlags;
5494
5495 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5496 Assert(pfnHandler);
5497 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5498 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5499
5500#ifdef VBOX_STRICT
5501 for (unsigned i=0;i<pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries;i++)
5502 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5503
5504 for (unsigned i=0;i<pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries;i++)
5505 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5506#endif
5507
5508 /* Disable interrupts. */
5509 uOldEFlags = ASMIntDisableFlags();
5510
5511#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5512 RTCPUID idHostCpu = RTMpCpuId();
5513 CPUMR0SetLApic(pVM, idHostCpu);
5514#endif
5515
5516 pCpu = HMR0GetCurrentCpu();
5517 HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
5518
5519 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5520 VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
5521
5522 /* Leave VMX Root Mode. */
5523 VMXDisable();
5524
5525 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
5526
5527 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5528 CPUMSetHyperEIP(pVCpu, pfnHandler);
5529 for (int i=(int)cbParam-1;i>=0;i--)
5530 CPUMPushHyper(pVCpu, paParam[i]);
5531
5532 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5533
5534 /* Call switcher. */
5535 rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
5536 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5537
5538 /* Make sure the VMX instructions don't cause #UD faults. */
5539 ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE);
5540
5541 /* Enter VMX Root Mode */
5542 rc2 = VMXEnable(HCPhysCpuPage);
5543 if (RT_FAILURE(rc2))
5544 {
5545 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
5546 ASMSetFlags(uOldEFlags);
5547 return VERR_VMX_VMXON_FAILED;
5548 }
5549
5550 rc2 = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
5551 AssertRC(rc2);
5552 Assert(!(ASMGetFlags() & X86_EFL_IF));
5553 ASMSetFlags(uOldEFlags);
5554 return rc;
5555}
5556#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
5557
5558
5559#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
5560/**
5561 * Executes VMWRITE.
5562 *
5563 * @returns VBox status code
5564 * @param pVCpu Pointer to the VMCPU.
5565 * @param idxField VMCS field index.
5566 * @param u64Val 16, 32 or 64 bits value.
5567 */
5568VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5569{
5570 int rc;
5571 switch (idxField)
5572 {
5573 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5574 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5575 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5576 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5577 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5578 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5579 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5580 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
5581 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5582 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5583 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5584 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5585 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5586 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5587 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5588 case VMX_VMCS64_GUEST_EFER_FULL:
5589 case VMX_VMCS64_CTRL_EPTP_FULL:
5590 /* These fields consist of two parts, which are both writable in 32 bits mode. */
5591 rc = VMXWriteVmcs32(idxField, u64Val);
5592 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32ULL));
5593 AssertRC(rc);
5594 return rc;
5595
5596 case VMX_VMCS_GUEST_LDTR_BASE:
5597 case VMX_VMCS_GUEST_TR_BASE:
5598 case VMX_VMCS_GUEST_GDTR_BASE:
5599 case VMX_VMCS_GUEST_IDTR_BASE:
5600 case VMX_VMCS_GUEST_SYSENTER_EIP:
5601 case VMX_VMCS_GUEST_SYSENTER_ESP:
5602 case VMX_VMCS_GUEST_CR0:
5603 case VMX_VMCS_GUEST_CR4:
5604 case VMX_VMCS_GUEST_CR3:
5605 case VMX_VMCS_GUEST_DR7:
5606 case VMX_VMCS_GUEST_RIP:
5607 case VMX_VMCS_GUEST_RSP:
5608 case VMX_VMCS_GUEST_CS_BASE:
5609 case VMX_VMCS_GUEST_DS_BASE:
5610 case VMX_VMCS_GUEST_ES_BASE:
5611 case VMX_VMCS_GUEST_FS_BASE:
5612 case VMX_VMCS_GUEST_GS_BASE:
5613 case VMX_VMCS_GUEST_SS_BASE:
5614 /* Queue a 64 bits value as we can't set it in 32 bits host mode. */
5615 if (u64Val >> 32ULL)
5616 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5617 else
5618 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
5619
5620 return rc;
5621
5622 default:
5623 AssertMsgFailed(("Unexpected field %x\n", idxField));
5624 return VERR_INVALID_PARAMETER;
5625 }
5626}
5627
5628
5629/**
5630 * Cache VMCS writes for running 64 bits guests on 32 bits hosts.
5631 *
5632 * @param pVCpu Pointer to the VMCPU.
5633 * @param idxField VMCS field index.
5634 * @param u64Val 16, 32 or 64 bits value.
5635 */
5636VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5637{
5638 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5639
5640 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5641 ("entries=%x\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5642
5643 /* Make sure there are no duplicates. */
5644 for (unsigned i = 0; i < pCache->Write.cValidEntries; i++)
5645 {
5646 if (pCache->Write.aField[i] == idxField)
5647 {
5648 pCache->Write.aFieldVal[i] = u64Val;
5649 return VINF_SUCCESS;
5650 }
5651 }
5652
5653 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5654 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5655 pCache->Write.cValidEntries++;
5656 return VINF_SUCCESS;
5657}
5658
5659#endif /* HC_ARCH_BITS == 32 && !VBOX_WITH_HYBRID_32BIT_KERNEL */
5660
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette