VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWVMXR0.cpp@ 18768

Last change on this file since 18768 was 18666, checked in by vboxsync, 16 years ago

VMM: Clean out the VBOX_WITH_NEW_PHYS_CODE #ifdefs. (part 2)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 164.0 KB
Line 
1/* $Id: HWVMXR0.cpp 18666 2009-04-02 23:10:12Z vboxsync $ */
2/** @file
3 * HWACCM VMX - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_HWACCM
27#include <VBox/hwaccm.h>
28#include "HWACCMInternal.h"
29#include <VBox/vm.h>
30#include <VBox/x86.h>
31#include <VBox/pgm.h>
32#include <VBox/pdm.h>
33#include <VBox/err.h>
34#include <VBox/log.h>
35#include <VBox/selm.h>
36#include <VBox/iom.h>
37#include <VBox/rem.h>
38#include <iprt/param.h>
39#include <iprt/assert.h>
40#include <iprt/asm.h>
41#include <iprt/string.h>
42#include "HWVMXR0.h"
43
44/*******************************************************************************
45* Defined Constants And Macros *
46*******************************************************************************/
47#if defined(RT_ARCH_AMD64)
48# define VMX_IS_64BIT_HOST_MODE() (true)
49#elif defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
50# define VMX_IS_64BIT_HOST_MODE() (g_fVMXIs64bitHost != 0)
51#else
52# define VMX_IS_64BIT_HOST_MODE() (false)
53#endif
54
55/*******************************************************************************
56* Global Variables *
57*******************************************************************************/
58/* IO operation lookup arrays. */
59static uint32_t const g_aIOSize[4] = {1, 2, 0, 4};
60static uint32_t const g_aIOOpAnd[4] = {0xff, 0xffff, 0, 0xffffffff};
61
62#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
63/** See HWACCMR0A.asm. */
64extern "C" uint32_t g_fVMXIs64bitHost;
65#endif
66
67/*******************************************************************************
68* Local Functions *
69*******************************************************************************/
70static void VMXR0ReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rc, PCPUMCTX pCtx);
71static void vmxR0SetupTLBEPT(PVM pVM, PVMCPU pVCpu);
72static void vmxR0SetupTLBVPID(PVM pVM, PVMCPU pVCpu);
73static void vmxR0SetupTLBDummy(PVM pVM, PVMCPU pVCpu);
74static void vmxR0FlushEPT(PVM pVM, PVMCPU pVCpu, VMX_FLUSH enmFlush, RTGCPHYS GCPhys);
75static void vmxR0FlushVPID(PVM pVM, PVMCPU pVCpu, VMX_FLUSH enmFlush, RTGCPTR GCPtr);
76static void vmxR0UpdateExceptionBitmap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
77#ifdef VBOX_STRICT
78static bool vmxR0IsValidReadField(uint32_t idxField);
79static bool vmxR0IsValidWriteField(uint32_t idxField);
80#endif
81
82static void VMXR0CheckError(PVM pVM, PVMCPU pVCpu, int rc)
83{
84 if (rc == VERR_VMX_GENERIC)
85 {
86 RTCCUINTREG instrError;
87
88 VMXReadVMCS(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError);
89 pVCpu->hwaccm.s.vmx.lasterror.ulInstrError = instrError;
90 }
91 pVM->hwaccm.s.lLastError = rc;
92}
93
94/**
95 * Sets up and activates VT-x on the current CPU
96 *
97 * @returns VBox status code.
98 * @param pCpu CPU info struct
99 * @param pVM The VM to operate on. (can be NULL after a resume!!)
100 * @param pvPageCpu Pointer to the global cpu page
101 * @param pPageCpuPhys Physical address of the global cpu page
102 */
103VMMR0DECL(int) VMXR0EnableCpu(PHWACCM_CPUINFO pCpu, PVM pVM, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
104{
105 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
106 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
107
108#ifdef LOG_ENABLED
109 SUPR0Printf("VMXR0EnableCpu cpu %d page (%x) %x\n", pCpu->idCpu, pvPageCpu, (uint32_t)pPageCpuPhys);
110#endif
111 if (pVM)
112 {
113 /* Set revision dword at the beginning of the VMXON structure. */
114 *(uint32_t *)pvPageCpu = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hwaccm.s.vmx.msr.vmx_basic_info);
115 }
116
117 /** @todo we should unmap the two pages from the virtual address space in order to prevent accidental corruption.
118 * (which can have very bad consequences!!!)
119 */
120
121 /* Make sure the VMX instructions don't cause #UD faults. */
122 ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE);
123
124 /* Enter VMX Root Mode */
125 int rc = VMXEnable(pPageCpuPhys);
126 if (RT_FAILURE(rc))
127 {
128 if (pVM)
129 VMXR0CheckError(pVM, &pVM->aCpus[0], rc);
130 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
131 return VERR_VMX_VMXON_FAILED;
132 }
133 return VINF_SUCCESS;
134}
135
136/**
137 * Deactivates VT-x on the current CPU
138 *
139 * @returns VBox status code.
140 * @param pCpu CPU info struct
141 * @param pvPageCpu Pointer to the global cpu page
142 * @param pPageCpuPhys Physical address of the global cpu page
143 */
144VMMR0DECL(int) VMXR0DisableCpu(PHWACCM_CPUINFO pCpu, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
145{
146 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
147 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
148
149 /* Leave VMX Root Mode. */
150 VMXDisable();
151
152 /* And clear the X86_CR4_VMXE bit */
153 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
154
155#ifdef LOG_ENABLED
156 SUPR0Printf("VMXR0DisableCpu cpu %d\n", pCpu->idCpu);
157#endif
158 return VINF_SUCCESS;
159}
160
161/**
162 * Does Ring-0 per VM VT-x init.
163 *
164 * @returns VBox status code.
165 * @param pVM The VM to operate on.
166 */
167VMMR0DECL(int) VMXR0InitVM(PVM pVM)
168{
169 int rc;
170
171#ifdef LOG_ENABLED
172 SUPR0Printf("VMXR0InitVM %x\n", pVM);
173#endif
174
175 pVM->hwaccm.s.vmx.pMemObjAPIC = NIL_RTR0MEMOBJ;
176
177 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
178 {
179 /* Allocate one page for the virtual APIC mmio cache. */
180 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.vmx.pMemObjAPIC, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
181 AssertRC(rc);
182 if (RT_FAILURE(rc))
183 return rc;
184
185 pVM->hwaccm.s.vmx.pAPIC = (uint8_t *)RTR0MemObjAddress(pVM->hwaccm.s.vmx.pMemObjAPIC);
186 pVM->hwaccm.s.vmx.pAPICPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.vmx.pMemObjAPIC, 0);
187 ASMMemZero32(pVM->hwaccm.s.vmx.pAPIC, PAGE_SIZE);
188 }
189 else
190 {
191 pVM->hwaccm.s.vmx.pMemObjAPIC = 0;
192 pVM->hwaccm.s.vmx.pAPIC = 0;
193 pVM->hwaccm.s.vmx.pAPICPhys = 0;
194 }
195
196 /* Allocate the MSR bitmap if this feature is supported. */
197 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
198 {
199 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.vmx.pMemObjMSRBitmap, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
200 AssertRC(rc);
201 if (RT_FAILURE(rc))
202 return rc;
203
204 pVM->hwaccm.s.vmx.pMSRBitmap = (uint8_t *)RTR0MemObjAddress(pVM->hwaccm.s.vmx.pMemObjMSRBitmap);
205 pVM->hwaccm.s.vmx.pMSRBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.vmx.pMemObjMSRBitmap, 0);
206 memset(pVM->hwaccm.s.vmx.pMSRBitmap, 0xff, PAGE_SIZE);
207 }
208
209#ifdef VBOX_WITH_CRASHDUMP_MAGIC
210 {
211 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.vmx.pMemObjScratch, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
212 AssertRC(rc);
213 if (RT_FAILURE(rc))
214 return rc;
215
216 pVM->hwaccm.s.vmx.pScratch = (uint8_t *)RTR0MemObjAddress(pVM->hwaccm.s.vmx.pMemObjScratch);
217 pVM->hwaccm.s.vmx.pScratchPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.vmx.pMemObjScratch, 0);
218
219 ASMMemZero32(pVM->hwaccm.s.vmx.pScratch, PAGE_SIZE);
220 strcpy((char *)pVM->hwaccm.s.vmx.pScratch, "SCRATCH Magic");
221 *(uint64_t *)(pVM->hwaccm.s.vmx.pScratch + 16) = UINT64_C(0xDEADBEEFDEADBEEF);
222 }
223#endif
224
225 /* Allocate VMCBs for all guest CPUs. */
226 for (unsigned i=0;i<pVM->cCPUs;i++)
227 {
228 PVMCPU pVCpu = &pVM->aCpus[i];
229
230 pVCpu->hwaccm.s.vmx.pMemObjVMCS = NIL_RTR0MEMOBJ;
231
232 /* Allocate one page for the VM control structure (VMCS). */
233 rc = RTR0MemObjAllocCont(&pVCpu->hwaccm.s.vmx.pMemObjVMCS, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
234 AssertRC(rc);
235 if (RT_FAILURE(rc))
236 return rc;
237
238 pVCpu->hwaccm.s.vmx.pVMCS = RTR0MemObjAddress(pVCpu->hwaccm.s.vmx.pMemObjVMCS);
239 pVCpu->hwaccm.s.vmx.pVMCSPhys = RTR0MemObjGetPagePhysAddr(pVCpu->hwaccm.s.vmx.pMemObjVMCS, 0);
240 ASMMemZero32(pVCpu->hwaccm.s.vmx.pVMCS, PAGE_SIZE);
241
242 pVCpu->hwaccm.s.vmx.cr0_mask = 0;
243 pVCpu->hwaccm.s.vmx.cr4_mask = 0;
244
245 /* Current guest paging mode. */
246 pVCpu->hwaccm.s.vmx.enmLastSeenGuestMode = PGMMODE_REAL;
247
248#ifdef LOG_ENABLED
249 SUPR0Printf("VMXR0InitVM %x VMCS=%x (%x)\n", pVM, pVCpu->hwaccm.s.vmx.pVMCS, (uint32_t)pVCpu->hwaccm.s.vmx.pVMCSPhys);
250#endif
251 }
252
253 return VINF_SUCCESS;
254}
255
256/**
257 * Does Ring-0 per VM VT-x termination.
258 *
259 * @returns VBox status code.
260 * @param pVM The VM to operate on.
261 */
262VMMR0DECL(int) VMXR0TermVM(PVM pVM)
263{
264 for (unsigned i=0;i<pVM->cCPUs;i++)
265 {
266 if (pVM->aCpus[i].hwaccm.s.vmx.pMemObjVMCS != NIL_RTR0MEMOBJ)
267 {
268 RTR0MemObjFree(pVM->aCpus[i].hwaccm.s.vmx.pMemObjVMCS, false);
269 pVM->aCpus[i].hwaccm.s.vmx.pMemObjVMCS = NIL_RTR0MEMOBJ;
270 pVM->aCpus[i].hwaccm.s.vmx.pVMCS = 0;
271 pVM->aCpus[i].hwaccm.s.vmx.pVMCSPhys = 0;
272 }
273 }
274 if (pVM->hwaccm.s.vmx.pMemObjAPIC != NIL_RTR0MEMOBJ)
275 {
276 RTR0MemObjFree(pVM->hwaccm.s.vmx.pMemObjAPIC, false);
277 pVM->hwaccm.s.vmx.pMemObjAPIC = NIL_RTR0MEMOBJ;
278 pVM->hwaccm.s.vmx.pAPIC = 0;
279 pVM->hwaccm.s.vmx.pAPICPhys = 0;
280 }
281 if (pVM->hwaccm.s.vmx.pMemObjMSRBitmap != NIL_RTR0MEMOBJ)
282 {
283 RTR0MemObjFree(pVM->hwaccm.s.vmx.pMemObjMSRBitmap, false);
284 pVM->hwaccm.s.vmx.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
285 pVM->hwaccm.s.vmx.pMSRBitmap = 0;
286 pVM->hwaccm.s.vmx.pMSRBitmapPhys = 0;
287 }
288#ifdef VBOX_WITH_CRASHDUMP_MAGIC
289 if (pVM->hwaccm.s.vmx.pMemObjScratch != NIL_RTR0MEMOBJ)
290 {
291 ASMMemZero32(pVM->hwaccm.s.vmx.pScratch, PAGE_SIZE);
292 RTR0MemObjFree(pVM->hwaccm.s.vmx.pMemObjScratch, false);
293 pVM->hwaccm.s.vmx.pMemObjScratch = NIL_RTR0MEMOBJ;
294 pVM->hwaccm.s.vmx.pScratch = 0;
295 pVM->hwaccm.s.vmx.pScratchPhys = 0;
296 }
297#endif
298 return VINF_SUCCESS;
299}
300
301/**
302 * Sets up VT-x for the specified VM
303 *
304 * @returns VBox status code.
305 * @param pVM The VM to operate on.
306 */
307VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
308{
309 int rc = VINF_SUCCESS;
310 uint32_t val;
311
312 AssertReturn(pVM, VERR_INVALID_PARAMETER);
313
314 for (unsigned i=0;i<pVM->cCPUs;i++)
315 {
316 PVMCPU pVCpu = &pVM->aCpus[i];
317
318 Assert(pVCpu->hwaccm.s.vmx.pVMCS);
319
320 /* Set revision dword at the beginning of the VMCS structure. */
321 *(uint32_t *)pVCpu->hwaccm.s.vmx.pVMCS = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hwaccm.s.vmx.msr.vmx_basic_info);
322
323 /* Clear VM Control Structure. */
324 Log(("pVMCSPhys = %RHp\n", pVCpu->hwaccm.s.vmx.pVMCSPhys));
325 rc = VMXClearVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
326 if (RT_FAILURE(rc))
327 goto vmx_end;
328
329 /* Activate the VM Control Structure. */
330 rc = VMXActivateVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
331 if (RT_FAILURE(rc))
332 goto vmx_end;
333
334 /* VMX_VMCS_CTRL_PIN_EXEC_CONTROLS
335 * Set required bits to one and zero according to the MSR capabilities.
336 */
337 val = pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.disallowed0;
338 /* External and non-maskable interrupts cause VM-exits. */
339 val = val | VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_EXT_INT_EXIT | VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_NMI_EXIT;
340 val &= pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.allowed1;
341
342 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PIN_EXEC_CONTROLS, val);
343 AssertRC(rc);
344
345 /* VMX_VMCS_CTRL_PROC_EXEC_CONTROLS
346 * Set required bits to one and zero according to the MSR capabilities.
347 */
348 val = pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.disallowed0;
349 /* Program which event cause VM-exits and which features we want to use. */
350 val = val | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_HLT_EXIT
351 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_TSC_OFFSET
352 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT
353 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_UNCOND_IO_EXIT
354 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDPMC_EXIT
355 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MWAIT_EXIT; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */
356
357 /* Without nested paging we should intercept invlpg and cr3 mov instructions. */
358 if (!pVM->hwaccm.s.fNestedPaging)
359 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INVLPG_EXIT
360 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
361 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
362
363 /* Note: VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MWAIT_EXIT might cause a vmlaunch failure with an invalid control fields error. (combined with some other exit reasons) */
364 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
365 {
366 /* CR8 reads from the APIC shadow page; writes cause an exit is they lower the TPR below the threshold */
367 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW;
368 Assert(pVM->hwaccm.s.vmx.pAPIC);
369 }
370 else
371 /* Exit on CR8 reads & writes in case the TPR shadow feature isn't present. */
372 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_LOAD_EXIT;
373
374#ifdef VBOX_WITH_VTX_MSR_BITMAPS
375 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
376 {
377 Assert(pVM->hwaccm.s.vmx.pMSRBitmapPhys);
378 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS;
379 }
380#endif
381
382 /* We will use the secondary control if it's present. */
383 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
384
385 /* Mask away the bits that the CPU doesn't support */
386 /** @todo make sure they don't conflict with the above requirements. */
387 val &= pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1;
388 pVCpu->hwaccm.s.vmx.proc_ctls = val;
389
390 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, val);
391 AssertRC(rc);
392
393 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
394 {
395 /* VMX_VMCS_CTRL_PROC_EXEC_CONTROLS2
396 * Set required bits to one and zero according to the MSR capabilities.
397 */
398 val = pVM->hwaccm.s.vmx.msr.vmx_proc_ctls2.n.disallowed0;
399 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT;
400
401#ifdef HWACCM_VTX_WITH_EPT
402 if (pVM->hwaccm.s.fNestedPaging)
403 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT;
404#endif /* HWACCM_VTX_WITH_EPT */
405#ifdef HWACCM_VTX_WITH_VPID
406 else
407 if (pVM->hwaccm.s.vmx.fVPID)
408 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID;
409#endif /* HWACCM_VTX_WITH_VPID */
410
411 /* Mask away the bits that the CPU doesn't support */
412 /** @todo make sure they don't conflict with the above requirements. */
413 val &= pVM->hwaccm.s.vmx.msr.vmx_proc_ctls2.n.allowed1;
414
415 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS2, val);
416 AssertRC(rc);
417 }
418
419 /* VMX_VMCS_CTRL_CR3_TARGET_COUNT
420 * Set required bits to one and zero according to the MSR capabilities.
421 */
422 rc = VMXWriteVMCS(VMX_VMCS_CTRL_CR3_TARGET_COUNT, 0);
423 AssertRC(rc);
424
425 /* Forward all exception except #NM & #PF to the guest.
426 * We always need to check pagefaults since our shadow page table can be out of sync.
427 * And we always lazily sync the FPU & XMM state.
428 */
429
430 /** @todo Possible optimization:
431 * Keep the FPU and XMM state current in the EM thread. That way there's no need to
432 * lazily sync anything, but the downside is that we can't use the FPU stack or XMM
433 * registers ourselves of course.
434 *
435 * Note: only possible if the current state is actually ours (X86_CR0_TS flag)
436 */
437
438 /* Don't filter page faults; all of them should cause a switch. */
439 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PAGEFAULT_ERROR_MASK, 0);
440 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_PAGEFAULT_ERROR_MATCH, 0);
441 AssertRC(rc);
442
443 /* Init TSC offset to zero. */
444 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_TSC_OFFSET_FULL, 0);
445 AssertRC(rc);
446
447 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_IO_BITMAP_A_FULL, 0);
448 AssertRC(rc);
449
450 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_IO_BITMAP_B_FULL, 0);
451 AssertRC(rc);
452
453 /* Set the MSR bitmap address. */
454 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
455 {
456 /* Optional */
457 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_MSR_BITMAP_FULL, pVM->hwaccm.s.vmx.pMSRBitmapPhys);
458 AssertRC(rc);
459 }
460
461 /* Clear MSR controls. */
462 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_VMEXIT_MSR_STORE_FULL, 0);
463 rc |= VMXWriteVMCS64(VMX_VMCS_CTRL_VMEXIT_MSR_LOAD_FULL, 0);
464 rc |= VMXWriteVMCS64(VMX_VMCS_CTRL_VMENTRY_MSR_LOAD_FULL, 0);
465 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_EXIT_MSR_STORE_COUNT, 0);
466 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_EXIT_MSR_LOAD_COUNT, 0);
467 AssertRC(rc);
468
469 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
470 {
471 Assert(pVM->hwaccm.s.vmx.pMemObjAPIC);
472 /* Optional */
473 rc = VMXWriteVMCS(VMX_VMCS_CTRL_TPR_THRESHOLD, 0);
474 rc |= VMXWriteVMCS64(VMX_VMCS_CTRL_VAPIC_PAGEADDR_FULL, pVM->hwaccm.s.vmx.pAPICPhys);
475 AssertRC(rc);
476 }
477
478 /* Set link pointer to -1. Not currently used. */
479 rc = VMXWriteVMCS64(VMX_VMCS_GUEST_LINK_PTR_FULL, 0xFFFFFFFFFFFFFFFFULL);
480 AssertRC(rc);
481
482 /* Clear VM Control Structure. Marking it inactive, clearing implementation specific data and writing back VMCS data to memory. */
483 rc = VMXClearVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
484 AssertRC(rc);
485
486 /* Configure the VMCS read cache. */
487 PVMCSCACHE pCache = &pVCpu->hwaccm.s.vmx.VMCSCache;
488
489 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_RIP);
490 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_RSP);
491 VMXSetupCachedReadVMCS(pCache, VMX_VMCS_GUEST_RFLAGS);
492 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE);
493 VMXSetupCachedReadVMCS(pCache, VMX_VMCS_CTRL_CR0_READ_SHADOW);
494 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_CR0);
495 VMXSetupCachedReadVMCS(pCache, VMX_VMCS_CTRL_CR4_READ_SHADOW);
496 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_CR4);
497 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_DR7);
498 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_GUEST_SYSENTER_CS);
499 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_SYSENTER_EIP);
500 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_SYSENTER_ESP);
501 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_GUEST_GDTR_LIMIT);
502 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_GDTR_BASE);
503 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_GUEST_IDTR_LIMIT);
504 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_IDTR_BASE);
505
506 VMX_SETUP_SELREG(ES, pCache);
507 VMX_SETUP_SELREG(SS, pCache);
508 VMX_SETUP_SELREG(CS, pCache);
509 VMX_SETUP_SELREG(DS, pCache);
510 VMX_SETUP_SELREG(FS, pCache);
511 VMX_SETUP_SELREG(GS, pCache);
512 VMX_SETUP_SELREG(LDTR, pCache);
513 VMX_SETUP_SELREG(TR, pCache);
514
515 /* Status code VMCS reads. */
516 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_EXIT_REASON);
517 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_VM_INSTR_ERROR);
518 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_EXIT_INSTR_LENGTH);
519 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_EXIT_INTERRUPTION_ERRCODE);
520 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO);
521 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_EXIT_INSTR_INFO);
522 VMXSetupCachedReadVMCS(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
523 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_IDT_INFO);
524 VMXSetupCachedReadVMCS(pCache, VMX_VMCS32_RO_IDT_ERRCODE);
525
526 if (pVM->hwaccm.s.fNestedPaging)
527 {
528 VMXSetupCachedReadVMCS(pCache, VMX_VMCS64_GUEST_CR3);
529 VMXSetupCachedReadVMCS(pCache, VMX_VMCS_EXIT_PHYS_ADDR_FULL);
530 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
531 }
532 else
533 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
534 } /* for each VMCPU */
535
536 /* Choose the right TLB setup function. */
537 if (pVM->hwaccm.s.fNestedPaging)
538 {
539 pVM->hwaccm.s.vmx.pfnSetupTaggedTLB = vmxR0SetupTLBEPT;
540
541 /* Default values for flushing. */
542 pVM->hwaccm.s.vmx.enmFlushPage = VMX_FLUSH_ALL_CONTEXTS;
543 pVM->hwaccm.s.vmx.enmFlushContext = VMX_FLUSH_ALL_CONTEXTS;
544
545 /* If the capabilities specify we can do more, then make use of it. */
546 if (pVM->hwaccm.s.vmx.msr.vmx_eptcaps & MSR_IA32_VMX_EPT_CAPS_INVEPT_CAPS_INDIV)
547 pVM->hwaccm.s.vmx.enmFlushPage = VMX_FLUSH_PAGE;
548 else
549 if (pVM->hwaccm.s.vmx.msr.vmx_eptcaps & MSR_IA32_VMX_EPT_CAPS_INVEPT_CAPS_CONTEXT)
550 pVM->hwaccm.s.vmx.enmFlushPage = VMX_FLUSH_SINGLE_CONTEXT;
551
552 if (pVM->hwaccm.s.vmx.msr.vmx_eptcaps & MSR_IA32_VMX_EPT_CAPS_INVEPT_CAPS_CONTEXT)
553 pVM->hwaccm.s.vmx.enmFlushContext = VMX_FLUSH_SINGLE_CONTEXT;
554 }
555#ifdef HWACCM_VTX_WITH_VPID
556 else
557 if (pVM->hwaccm.s.vmx.fVPID)
558 {
559 pVM->hwaccm.s.vmx.pfnSetupTaggedTLB = vmxR0SetupTLBVPID;
560
561 /* Default values for flushing. */
562 pVM->hwaccm.s.vmx.enmFlushPage = VMX_FLUSH_ALL_CONTEXTS;
563 pVM->hwaccm.s.vmx.enmFlushContext = VMX_FLUSH_ALL_CONTEXTS;
564
565 /* If the capabilities specify we can do more, then make use of it. */
566 if (pVM->hwaccm.s.vmx.msr.vmx_eptcaps & MSR_IA32_VMX_EPT_CAPS_INVVPID_CAPS_INDIV)
567 pVM->hwaccm.s.vmx.enmFlushPage = VMX_FLUSH_PAGE;
568 else
569 if (pVM->hwaccm.s.vmx.msr.vmx_eptcaps & MSR_IA32_VMX_EPT_CAPS_INVVPID_CAPS_CONTEXT)
570 pVM->hwaccm.s.vmx.enmFlushPage = VMX_FLUSH_SINGLE_CONTEXT;
571
572 if (pVM->hwaccm.s.vmx.msr.vmx_eptcaps & MSR_IA32_VMX_EPT_CAPS_INVVPID_CAPS_CONTEXT)
573 pVM->hwaccm.s.vmx.enmFlushContext = VMX_FLUSH_SINGLE_CONTEXT;
574 }
575#endif /* HWACCM_VTX_WITH_VPID */
576 else
577 pVM->hwaccm.s.vmx.pfnSetupTaggedTLB = vmxR0SetupTLBDummy;
578
579vmx_end:
580 VMXR0CheckError(pVM, &pVM->aCpus[0], rc);
581 return rc;
582}
583
584
585/**
586 * Injects an event (trap or external interrupt)
587 *
588 * @returns VBox status code.
589 * @param pVM The VM to operate on.
590 * @param pVCpu The VMCPU to operate on.
591 * @param pCtx CPU Context
592 * @param intInfo VMX interrupt info
593 * @param cbInstr Opcode length of faulting instruction
594 * @param errCode Error code (optional)
595 */
596static int VMXR0InjectEvent(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t intInfo, uint32_t cbInstr, uint32_t errCode)
597{
598 int rc;
599 uint32_t iGate = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo);
600
601#ifdef VBOX_STRICT
602 if (iGate == 0xE)
603 LogFlow(("VMXR0InjectEvent: Injecting interrupt %d at %RGv error code=%08x CR2=%RGv intInfo=%08x\n", iGate, (RTGCPTR)pCtx->rip, errCode, pCtx->cr2, intInfo));
604 else
605 if (iGate < 0x20)
606 LogFlow(("VMXR0InjectEvent: Injecting interrupt %d at %RGv error code=%08x\n", iGate, (RTGCPTR)pCtx->rip, errCode));
607 else
608 {
609 LogFlow(("INJ-EI: %x at %RGv\n", iGate, (RTGCPTR)pCtx->rip));
610 Assert(VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW || !VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS));
611 Assert(VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW || pCtx->eflags.u32 & X86_EFL_IF);
612 }
613#endif
614
615#ifdef HWACCM_VMX_EMULATE_REALMODE
616 if (CPUMIsGuestInRealModeEx(pCtx))
617 {
618 RTGCPHYS GCPhysHandler;
619 uint16_t offset, ip;
620 RTSEL sel;
621
622 /* Injecting events doesn't work right with real mode emulation.
623 * (#GP if we try to inject external hardware interrupts)
624 * Inject the interrupt or trap directly instead.
625 *
626 * ASSUMES no access handlers for the bits we read or write below (should be safe).
627 */
628 Log(("Manual interrupt/trap '%x' inject (real mode)\n", iGate));
629
630 /* Check if the interrupt handler is present. */
631 if (iGate * 4 + 3 > pCtx->idtr.cbIdt)
632 {
633 Log(("IDT cbIdt violation\n"));
634 if (iGate != X86_XCPT_DF)
635 {
636 RTGCUINTPTR intInfo;
637
638 intInfo = (iGate == X86_XCPT_GP) ? (uint32_t)X86_XCPT_DF : iGate;
639 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
640 intInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
641 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HWEXCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
642
643 return VMXR0InjectEvent(pVM, pVCpu, pCtx, intInfo, 0, 0 /* no error code according to the Intel docs */);
644 }
645 Log(("Triple fault -> reset the VM!\n"));
646 return VINF_EM_RESET;
647 }
648 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW
649 || iGate == 3 /* Both #BP and #OF point to the instruction after. */
650 || iGate == 4)
651 {
652 ip = pCtx->ip + cbInstr;
653 }
654 else
655 ip = pCtx->ip;
656
657 /* Read the selector:offset pair of the interrupt handler. */
658 GCPhysHandler = (RTGCPHYS)pCtx->idtr.pIdt + iGate * 4;
659 rc = PGMPhysSimpleReadGCPhys(pVM, &offset, GCPhysHandler, sizeof(offset)); AssertRC(rc);
660 rc = PGMPhysSimpleReadGCPhys(pVM, &sel, GCPhysHandler + 2, sizeof(sel)); AssertRC(rc);
661
662 LogFlow(("IDT handler %04X:%04X\n", sel, offset));
663
664 /* Construct the stack frame. */
665 /** @todo should check stack limit. */
666 pCtx->sp -= 2;
667 LogFlow(("ss:sp %04X:%04X eflags=%x\n", pCtx->ss, pCtx->sp, pCtx->eflags.u));
668 rc = PGMPhysSimpleWriteGCPhys(pVM, pCtx->ssHid.u64Base + pCtx->sp, &pCtx->eflags, sizeof(uint16_t)); AssertRC(rc);
669 pCtx->sp -= 2;
670 LogFlow(("ss:sp %04X:%04X cs=%x\n", pCtx->ss, pCtx->sp, pCtx->cs));
671 rc = PGMPhysSimpleWriteGCPhys(pVM, pCtx->ssHid.u64Base + pCtx->sp, &pCtx->cs, sizeof(uint16_t)); AssertRC(rc);
672 pCtx->sp -= 2;
673 LogFlow(("ss:sp %04X:%04X ip=%x\n", pCtx->ss, pCtx->sp, ip));
674 rc = PGMPhysSimpleWriteGCPhys(pVM, pCtx->ssHid.u64Base + pCtx->sp, &ip, sizeof(ip)); AssertRC(rc);
675
676 /* Update the CPU state for executing the handler. */
677 pCtx->rip = offset;
678 pCtx->cs = sel;
679 pCtx->csHid.u64Base = sel << 4;
680 pCtx->eflags.u &= ~(X86_EFL_IF|X86_EFL_TF|X86_EFL_RF|X86_EFL_AC);
681
682 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_SEGMENT_REGS;
683 return VINF_SUCCESS;
684 }
685#endif /* HWACCM_VMX_EMULATE_REALMODE */
686
687 /* Set event injection state. */
688 rc = VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_IRQ_INFO, intInfo | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT));
689
690 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
691 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE, errCode);
692
693 AssertRC(rc);
694 return rc;
695}
696
697
698/**
699 * Checks for pending guest interrupts and injects them
700 *
701 * @returns VBox status code.
702 * @param pVM The VM to operate on.
703 * @param pVCpu The VMCPU to operate on.
704 * @param pCtx CPU Context
705 */
706static int VMXR0CheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, CPUMCTX *pCtx)
707{
708 int rc;
709
710 /* Dispatch any pending interrupts. (injected before, but a VM exit occurred prematurely) */
711 if (pVCpu->hwaccm.s.Event.fPending)
712 {
713 Log(("Reinjecting event %RX64 %08x at %RGv cr2=%RX64\n", pVCpu->hwaccm.s.Event.intInfo, pVCpu->hwaccm.s.Event.errCode, (RTGCPTR)pCtx->rip, pCtx->cr2));
714 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntReinject);
715 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, pVCpu->hwaccm.s.Event.intInfo, 0, pVCpu->hwaccm.s.Event.errCode);
716 AssertRC(rc);
717
718 pVCpu->hwaccm.s.Event.fPending = false;
719 return VINF_SUCCESS;
720 }
721
722 if (pVM->hwaccm.s.fInjectNMI)
723 {
724 RTGCUINTPTR intInfo;
725
726 intInfo = X86_XCPT_NMI;
727 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
728 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
729
730 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, intInfo, 0, 0);
731 AssertRC(rc);
732
733 pVM->hwaccm.s.fInjectNMI = false;
734 return VINF_SUCCESS;
735 }
736
737 /* When external interrupts are pending, we should exit the VM when IF is set. */
738 if ( !TRPMHasTrap(pVM)
739 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
740 {
741 if (!(pCtx->eflags.u32 & X86_EFL_IF))
742 {
743 if (!(pVCpu->hwaccm.s.vmx.proc_ctls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_IRQ_WINDOW_EXIT))
744 {
745 LogFlow(("Enable irq window exit!\n"));
746 pVCpu->hwaccm.s.vmx.proc_ctls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_IRQ_WINDOW_EXIT;
747 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
748 AssertRC(rc);
749 }
750 /* else nothing to do but wait */
751 }
752 else
753 if (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
754 {
755 uint8_t u8Interrupt;
756
757 rc = PDMGetInterrupt(pVM, &u8Interrupt);
758 Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc cs:rip=%04X:%RGv\n", u8Interrupt, u8Interrupt, rc, pCtx->cs, (RTGCPTR)pCtx->rip));
759 if (RT_SUCCESS(rc))
760 {
761 rc = TRPMAssertTrap(pVM, u8Interrupt, TRPM_HARDWARE_INT);
762 AssertRC(rc);
763 }
764 else
765 {
766 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
767 Assert(!VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)));
768 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchGuestIrq);
769 /* Just continue */
770 }
771 }
772 else
773 Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS!!\n", (RTGCPTR)pCtx->rip));
774 }
775
776#ifdef VBOX_STRICT
777 if (TRPMHasTrap(pVM))
778 {
779 uint8_t u8Vector;
780 rc = TRPMQueryTrapAll(pVM, &u8Vector, 0, 0, 0);
781 AssertRC(rc);
782 }
783#endif
784
785 if ( pCtx->eflags.u32 & X86_EFL_IF
786 && (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
787 && TRPMHasTrap(pVM)
788 )
789 {
790 uint8_t u8Vector;
791 int rc;
792 TRPMEVENT enmType;
793 RTGCUINTPTR intInfo;
794 RTGCUINT errCode;
795
796 /* If a new event is pending, then dispatch it now. */
797 rc = TRPMQueryTrapAll(pVM, &u8Vector, &enmType, &errCode, 0);
798 AssertRC(rc);
799 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
800 Assert(enmType != TRPM_SOFTWARE_INT);
801
802 /* Clear the pending trap. */
803 rc = TRPMResetTrap(pVM);
804 AssertRC(rc);
805
806 intInfo = u8Vector;
807 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
808
809 if (enmType == TRPM_TRAP)
810 {
811 switch (u8Vector) {
812 case 8:
813 case 10:
814 case 11:
815 case 12:
816 case 13:
817 case 14:
818 case 17:
819 /* Valid error codes. */
820 intInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
821 break;
822 default:
823 break;
824 }
825 if (u8Vector == X86_XCPT_BP || u8Vector == X86_XCPT_OF)
826 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SWEXCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
827 else
828 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HWEXCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
829 }
830 else
831 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
832
833 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntInject);
834 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, intInfo, 0, errCode);
835 AssertRC(rc);
836 } /* if (interrupts can be dispatched) */
837
838 return VINF_SUCCESS;
839}
840
841/**
842 * Save the host state
843 *
844 * @returns VBox status code.
845 * @param pVM The VM to operate on.
846 * @param pVCpu The VMCPU to operate on.
847 */
848VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
849{
850 int rc = VINF_SUCCESS;
851
852 /*
853 * Host CPU Context
854 */
855 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_HOST_CONTEXT)
856 {
857 RTIDTR idtr;
858 RTGDTR gdtr;
859 RTSEL SelTR;
860 PX86DESCHC pDesc;
861 uintptr_t trBase;
862 RTSEL cs;
863 RTSEL ss;
864 uint64_t cr3;
865
866 /* Control registers */
867 rc = VMXWriteVMCS(VMX_VMCS_HOST_CR0, ASMGetCR0());
868#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
869 if (VMX_IS_64BIT_HOST_MODE())
870 {
871 cr3 = hwaccmR0Get64bitCR3();
872 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_CR3, cr3);
873 }
874 else
875#endif
876 {
877 cr3 = ASMGetCR3();
878 rc |= VMXWriteVMCS(VMX_VMCS_HOST_CR3, cr3);
879 }
880 rc |= VMXWriteVMCS(VMX_VMCS_HOST_CR4, ASMGetCR4());
881 AssertRC(rc);
882 Log2(("VMX_VMCS_HOST_CR0 %08x\n", ASMGetCR0()));
883 Log2(("VMX_VMCS_HOST_CR3 %08RX64\n", cr3));
884 Log2(("VMX_VMCS_HOST_CR4 %08x\n", ASMGetCR4()));
885
886 /* Selector registers. */
887#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
888 if (VMX_IS_64BIT_HOST_MODE())
889 {
890 cs = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelCS;
891 ss = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelSS;
892 }
893 else
894 {
895 /* sysenter loads LDT cs & ss, VMX doesn't like this. Load the GDT ones (safe). */
896 cs = (RTSEL)(uintptr_t)&SUPR0AbsKernelCS;
897 ss = (RTSEL)(uintptr_t)&SUPR0AbsKernelSS;
898 }
899#else
900 cs = ASMGetCS();
901 ss = ASMGetSS();
902#endif
903 Assert(!(cs & X86_SEL_LDT)); Assert((cs & X86_SEL_RPL) == 0);
904 Assert(!(ss & X86_SEL_LDT)); Assert((ss & X86_SEL_RPL) == 0);
905 rc = VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_CS, cs);
906 /* Note: VMX is (again) very picky about the RPL of the selectors here; we'll restore them manually. */
907 rc |= VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_DS, 0);
908 rc |= VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_ES, 0);
909#if HC_ARCH_BITS == 32
910 if (!VMX_IS_64BIT_HOST_MODE())
911 {
912 rc |= VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_FS, 0);
913 rc |= VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_GS, 0);
914 }
915#endif
916 rc |= VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_SS, ss);
917 SelTR = ASMGetTR();
918 rc |= VMXWriteVMCS(VMX_VMCS16_HOST_FIELD_TR, SelTR);
919 AssertRC(rc);
920 Log2(("VMX_VMCS_HOST_FIELD_CS %08x (%08x)\n", cs, ASMGetSS()));
921 Log2(("VMX_VMCS_HOST_FIELD_DS 00000000 (%08x)\n", ASMGetDS()));
922 Log2(("VMX_VMCS_HOST_FIELD_ES 00000000 (%08x)\n", ASMGetES()));
923 Log2(("VMX_VMCS_HOST_FIELD_FS 00000000 (%08x)\n", ASMGetFS()));
924 Log2(("VMX_VMCS_HOST_FIELD_GS 00000000 (%08x)\n", ASMGetGS()));
925 Log2(("VMX_VMCS_HOST_FIELD_SS %08x (%08x)\n", ss, ASMGetSS()));
926 Log2(("VMX_VMCS_HOST_FIELD_TR %08x\n", ASMGetTR()));
927
928 /* GDTR & IDTR */
929#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
930 if (VMX_IS_64BIT_HOST_MODE())
931 {
932 X86XDTR64 gdtr64, idtr64;
933 hwaccmR0Get64bitGDTRandIDTR(&gdtr64, &idtr64);
934 rc = VMXWriteVMCS64(VMX_VMCS_HOST_GDTR_BASE, gdtr64.uAddr);
935 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_IDTR_BASE, gdtr64.uAddr);
936 AssertRC(rc);
937 Log2(("VMX_VMCS_HOST_GDTR_BASE %RX64\n", gdtr64.uAddr));
938 Log2(("VMX_VMCS_HOST_IDTR_BASE %RX64\n", idtr64.uAddr));
939 gdtr.cbGdt = gdtr64.cb;
940 gdtr.pGdt = (uintptr_t)gdtr64.uAddr;
941 }
942 else
943#endif
944 {
945 ASMGetGDTR(&gdtr);
946 rc = VMXWriteVMCS(VMX_VMCS_HOST_GDTR_BASE, gdtr.pGdt);
947 ASMGetIDTR(&idtr);
948 rc |= VMXWriteVMCS(VMX_VMCS_HOST_IDTR_BASE, idtr.pIdt);
949 AssertRC(rc);
950 Log2(("VMX_VMCS_HOST_GDTR_BASE %RHv\n", gdtr.pGdt));
951 Log2(("VMX_VMCS_HOST_IDTR_BASE %RHv\n", idtr.pIdt));
952 }
953
954
955 /* Save the base address of the TR selector. */
956 if (SelTR > gdtr.cbGdt)
957 {
958 AssertMsgFailed(("Invalid TR selector %x. GDTR.cbGdt=%x\n", SelTR, gdtr.cbGdt));
959 return VERR_VMX_INVALID_HOST_STATE;
960 }
961
962#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
963 if (VMX_IS_64BIT_HOST_MODE())
964 {
965 pDesc = &((PX86DESCHC)gdtr.pGdt)[SelTR >> X86_SEL_SHIFT_HC]; /// ????
966 uint64_t trBase64 = X86DESC64_BASE(*(PX86DESC64)pDesc);
967 rc = VMXWriteVMCS64(VMX_VMCS_HOST_TR_BASE, trBase64);
968 Log2(("VMX_VMCS_HOST_TR_BASE %RX64\n", trBase64));
969 AssertRC(rc);
970 }
971 else
972#endif
973 {
974 pDesc = &((PX86DESCHC)gdtr.pGdt)[SelTR >> X86_SEL_SHIFT_HC];
975#if HC_ARCH_BITS == 64
976 trBase = X86DESC64_BASE(*pDesc);
977#else
978 trBase = X86DESC_BASE(*pDesc);
979#endif
980 rc = VMXWriteVMCS(VMX_VMCS_HOST_TR_BASE, trBase);
981 AssertRC(rc);
982 Log2(("VMX_VMCS_HOST_TR_BASE %RHv\n", trBase));
983 }
984
985 /* FS and GS base. */
986#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
987 if (VMX_IS_64BIT_HOST_MODE())
988 {
989 Log2(("MSR_K8_FS_BASE = %RX64\n", ASMRdMsr(MSR_K8_FS_BASE)));
990 Log2(("MSR_K8_GS_BASE = %RX64\n", ASMRdMsr(MSR_K8_GS_BASE)));
991 rc = VMXWriteVMCS64(VMX_VMCS_HOST_FS_BASE, ASMRdMsr(MSR_K8_FS_BASE));
992 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_GS_BASE, ASMRdMsr(MSR_K8_GS_BASE));
993 }
994#endif
995 AssertRC(rc);
996
997 /* Sysenter MSRs. */
998 /** @todo expensive!! */
999 rc = VMXWriteVMCS(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
1000 Log2(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_CS)));
1001#ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
1002 if (VMX_IS_64BIT_HOST_MODE())
1003 {
1004 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_EIP)));
1005 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_ESP)));
1006 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
1007 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
1008 }
1009 else
1010 {
1011 rc |= VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
1012 rc |= VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
1013 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP)));
1014 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP)));
1015 }
1016#elif HC_ARCH_BITS == 32
1017 rc |= VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
1018 rc |= VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
1019 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP)));
1020 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX32\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP)));
1021#else
1022 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_EIP)));
1023 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %RX64\n", ASMRdMsr(MSR_IA32_SYSENTER_ESP)));
1024 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
1025 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
1026#endif
1027 AssertRC(rc);
1028
1029#if 0 /* @todo deal with 32/64 */
1030 /* Restore the host EFER - on CPUs that support it. */
1031 if (pVM->hwaccm.s.vmx.msr.vmx_exit.n.allowed1 & VMX_VMCS_CTRL_EXIT_CONTROLS_LOAD_HOST_EFER_MSR)
1032 {
1033 uint64_t msrEFER = ASMRdMsr(MSR_IA32_EFER);
1034 rc = VMXWriteVMCS64(VMX_VMCS_HOST_FIELD_EFER_FULL, msrEFER);
1035 AssertRC(rc);
1036 }
1037#endif
1038 pVCpu->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_HOST_CONTEXT;
1039 }
1040 return rc;
1041}
1042
1043/**
1044 * Prefetch the 4 PDPT pointers (PAE and nested paging only)
1045 *
1046 * @param pVM The VM to operate on.
1047 * @param pVCpu The VMCPU to operate on.
1048 * @param pCtx Guest context
1049 */
1050static void vmxR0PrefetchPAEPdptrs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1051{
1052 if (CPUMIsGuestInPAEModeEx(pCtx))
1053 {
1054 X86PDPE Pdpe;
1055
1056 for (unsigned i=0;i<4;i++)
1057 {
1058 Pdpe = PGMGstGetPaePDPtr(pVM, i);
1059 int rc = VMXWriteVMCS64(VMX_VMCS_GUEST_PDPTR0_FULL + i*2, Pdpe.u);
1060 AssertRC(rc);
1061 }
1062 }
1063}
1064
1065/**
1066 * Update the exception bitmap according to the current CPU state
1067 *
1068 * @param pVM The VM to operate on.
1069 * @param pVCpu The VMCPU to operate on.
1070 * @param pCtx Guest context
1071 */
1072static void vmxR0UpdateExceptionBitmap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1073{
1074 uint32_t u32TrapMask;
1075 Assert(pCtx);
1076
1077 u32TrapMask = HWACCM_VMX_TRAP_MASK;
1078#ifndef DEBUG
1079 if (pVM->hwaccm.s.fNestedPaging)
1080 u32TrapMask &= ~RT_BIT(X86_XCPT_PF); /* no longer need to intercept #PF. */
1081#endif
1082
1083 /* Also catch floating point exceptions as we need to report them to the guest in a different way. */
1084 if ( CPUMIsGuestFPUStateActive(pVCpu) == true
1085 && !(pCtx->cr0 & X86_CR0_NE)
1086 && !pVCpu->hwaccm.s.fFPUOldStyleOverride)
1087 {
1088 u32TrapMask |= RT_BIT(X86_XCPT_MF);
1089 pVCpu->hwaccm.s.fFPUOldStyleOverride = true;
1090 }
1091
1092#ifdef DEBUG /* till after branching, enable it by default then. */
1093 /* Intercept X86_XCPT_DB if stepping is enabled */
1094 if (DBGFIsStepping(pVM))
1095 u32TrapMask |= RT_BIT(X86_XCPT_DB);
1096 /** @todo Don't trap it unless the debugger has armed breakpoints. */
1097 u32TrapMask |= RT_BIT(X86_XCPT_BP);
1098#endif
1099
1100#ifdef VBOX_STRICT
1101 Assert(u32TrapMask & RT_BIT(X86_XCPT_GP));
1102#endif
1103
1104# ifdef HWACCM_VMX_EMULATE_REALMODE
1105 /* Intercept all exceptions in real mode as none of them can be injected directly (#GP otherwise). */
1106 if (CPUMIsGuestInRealModeEx(pCtx) && pVM->hwaccm.s.vmx.pRealModeTSS)
1107 u32TrapMask |= HWACCM_VMX_TRAP_MASK_REALMODE;
1108# endif /* HWACCM_VMX_EMULATE_REALMODE */
1109
1110 int rc = VMXWriteVMCS(VMX_VMCS_CTRL_EXCEPTION_BITMAP, u32TrapMask);
1111 AssertRC(rc);
1112}
1113
1114/**
1115 * Loads the guest state
1116 *
1117 * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
1118 *
1119 * @returns VBox status code.
1120 * @param pVM The VM to operate on.
1121 * @param pVCpu The VMCPU to operate on.
1122 * @param pCtx Guest context
1123 */
1124VMMR0DECL(int) VMXR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1125{
1126 int rc = VINF_SUCCESS;
1127 RTGCUINTPTR val;
1128 X86EFLAGS eflags;
1129
1130 /* VMX_VMCS_CTRL_ENTRY_CONTROLS
1131 * Set required bits to one and zero according to the MSR capabilities.
1132 */
1133 val = pVM->hwaccm.s.vmx.msr.vmx_entry.n.disallowed0;
1134 /* Load guest debug controls (dr7 & IA32_DEBUGCTL_MSR) (forced to 1 on the 'first' VT-x capable CPUs; this actually includes the newest Nehalem CPUs) */
1135 val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_LOAD_DEBUG;
1136#if 0 /* @todo deal with 32/64 */
1137 /* Required for the EFER write below, not supported on all CPUs. */
1138 val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_LOAD_GUEST_EFER_MSR;
1139#endif
1140 /* 64 bits guest mode? */
1141 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1142 val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_IA64_MODE;
1143 /* else Must be zero when AMD64 is not available. */
1144
1145 /* Mask away the bits that the CPU doesn't support */
1146 val &= pVM->hwaccm.s.vmx.msr.vmx_entry.n.allowed1;
1147 rc = VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_CONTROLS, val);
1148 AssertRC(rc);
1149
1150 /* VMX_VMCS_CTRL_EXIT_CONTROLS
1151 * Set required bits to one and zero according to the MSR capabilities.
1152 */
1153 val = pVM->hwaccm.s.vmx.msr.vmx_exit.n.disallowed0;
1154
1155 /* Save debug controls (dr7 & IA32_DEBUGCTL_MSR) (forced to 1 on the 'first' VT-x capable CPUs; this actually includes the newest Nehalem CPUs) */
1156#if 0 /* @todo deal with 32/64 */
1157 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_SAVE_DEBUG | VMX_VMCS_CTRL_EXIT_CONTROLS_LOAD_HOST_EFER_MSR;
1158#else
1159 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_SAVE_DEBUG;
1160#endif
1161
1162#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1163 if (VMX_IS_64BIT_HOST_MODE())
1164 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_AMD64;
1165 /* else: Must be zero when AMD64 is not available. */
1166#elif HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1167 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1168 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_AMD64; /* our switcher goes to long mode */
1169 else
1170 Assert(!(val & VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_AMD64));
1171#endif
1172 val &= pVM->hwaccm.s.vmx.msr.vmx_exit.n.allowed1;
1173 /* Don't acknowledge external interrupts on VM-exit. */
1174 rc = VMXWriteVMCS(VMX_VMCS_CTRL_EXIT_CONTROLS, val);
1175 AssertRC(rc);
1176
1177 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1178 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_SEGMENT_REGS)
1179 {
1180#ifdef HWACCM_VMX_EMULATE_REALMODE
1181 if (pVM->hwaccm.s.vmx.pRealModeTSS)
1182 {
1183 PGMMODE enmGuestMode = PGMGetGuestMode(pVM);
1184 if (pVCpu->hwaccm.s.vmx.enmLastSeenGuestMode != enmGuestMode)
1185 {
1186 /* Correct weird requirements for switching to protected mode. */
1187 if ( pVCpu->hwaccm.s.vmx.enmLastSeenGuestMode == PGMMODE_REAL
1188 && enmGuestMode >= PGMMODE_PROTECTED)
1189 {
1190 /* Flush the recompiler code cache as it's not unlikely
1191 * the guest will rewrite code it will later execute in real
1192 * mode (OpenBSD 4.0 is one such example)
1193 */
1194 REMFlushTBs(pVM);
1195
1196 /* DPL of all hidden selector registers must match the current CPL (0). */
1197 pCtx->csHid.Attr.n.u2Dpl = 0;
1198 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_RW_ACC;
1199
1200 pCtx->dsHid.Attr.n.u2Dpl = 0;
1201 pCtx->esHid.Attr.n.u2Dpl = 0;
1202 pCtx->fsHid.Attr.n.u2Dpl = 0;
1203 pCtx->gsHid.Attr.n.u2Dpl = 0;
1204 pCtx->ssHid.Attr.n.u2Dpl = 0;
1205
1206 /* The limit must correspond to the granularity bit. */
1207 if (!pCtx->csHid.Attr.n.u1Granularity)
1208 pCtx->csHid.u32Limit &= 0xffff;
1209 if (!pCtx->dsHid.Attr.n.u1Granularity)
1210 pCtx->dsHid.u32Limit &= 0xffff;
1211 if (!pCtx->esHid.Attr.n.u1Granularity)
1212 pCtx->esHid.u32Limit &= 0xffff;
1213 if (!pCtx->fsHid.Attr.n.u1Granularity)
1214 pCtx->fsHid.u32Limit &= 0xffff;
1215 if (!pCtx->gsHid.Attr.n.u1Granularity)
1216 pCtx->gsHid.u32Limit &= 0xffff;
1217 if (!pCtx->ssHid.Attr.n.u1Granularity)
1218 pCtx->ssHid.u32Limit &= 0xffff;
1219 }
1220 else
1221 /* Switching from protected mode to real mode. */
1222 if ( pVCpu->hwaccm.s.vmx.enmLastSeenGuestMode >= PGMMODE_PROTECTED
1223 && enmGuestMode == PGMMODE_REAL)
1224 {
1225 /* The limit must also be set to 0xffff. */
1226 pCtx->csHid.u32Limit = 0xffff;
1227 pCtx->dsHid.u32Limit = 0xffff;
1228 pCtx->esHid.u32Limit = 0xffff;
1229 pCtx->fsHid.u32Limit = 0xffff;
1230 pCtx->gsHid.u32Limit = 0xffff;
1231 pCtx->ssHid.u32Limit = 0xffff;
1232
1233 Assert(pCtx->csHid.u64Base <= 0xfffff);
1234 Assert(pCtx->dsHid.u64Base <= 0xfffff);
1235 Assert(pCtx->esHid.u64Base <= 0xfffff);
1236 Assert(pCtx->fsHid.u64Base <= 0xfffff);
1237 Assert(pCtx->gsHid.u64Base <= 0xfffff);
1238 }
1239 pVCpu->hwaccm.s.vmx.enmLastSeenGuestMode = enmGuestMode;
1240 }
1241 else
1242 /* VT-x will fail with a guest invalid state otherwise... (CPU state after a reset) */
1243 if ( CPUMIsGuestInRealModeEx(pCtx)
1244 && pCtx->csHid.u64Base == 0xffff0000)
1245 {
1246 pCtx->csHid.u64Base = 0xf0000;
1247 pCtx->cs = 0xf000;
1248 }
1249 }
1250#endif /* HWACCM_VMX_EMULATE_REALMODE */
1251
1252 VMX_WRITE_SELREG(ES, es);
1253 AssertRC(rc);
1254
1255 VMX_WRITE_SELREG(CS, cs);
1256 AssertRC(rc);
1257
1258 VMX_WRITE_SELREG(SS, ss);
1259 AssertRC(rc);
1260
1261 VMX_WRITE_SELREG(DS, ds);
1262 AssertRC(rc);
1263
1264 /* The base values in the hidden fs & gs registers are not in sync with the msrs; they are cut to 32 bits. */
1265 VMX_WRITE_SELREG(FS, fs);
1266 AssertRC(rc);
1267
1268 VMX_WRITE_SELREG(GS, gs);
1269 AssertRC(rc);
1270 }
1271
1272 /* Guest CPU context: LDTR. */
1273 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_LDTR)
1274 {
1275 if (pCtx->ldtr == 0)
1276 {
1277 rc = VMXWriteVMCS(VMX_VMCS16_GUEST_FIELD_LDTR, 0);
1278 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_LDTR_LIMIT, 0);
1279 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_LDTR_BASE, 0);
1280 /* Note: vmlaunch will fail with 0 or just 0x02. No idea why. */
1281 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, 0x82 /* present, LDT */);
1282 }
1283 else
1284 {
1285 rc = VMXWriteVMCS(VMX_VMCS16_GUEST_FIELD_LDTR, pCtx->ldtr);
1286 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtrHid.u32Limit);
1287 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_LDTR_BASE, pCtx->ldtrHid.u64Base);
1288 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, pCtx->ldtrHid.Attr.u);
1289 }
1290 AssertRC(rc);
1291 }
1292 /* Guest CPU context: TR. */
1293 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_TR)
1294 {
1295#ifdef HWACCM_VMX_EMULATE_REALMODE
1296 /* Real mode emulation using v86 mode with CR4.VME (interrupt redirection using the int bitmap in the TSS) */
1297 if (CPUMIsGuestInRealModeEx(pCtx))
1298 {
1299 RTGCPHYS GCPhys;
1300
1301 /* We convert it here every time as pci regions could be reconfigured. */
1302 rc = PDMVMMDevHeapR3ToGCPhys(pVM, pVM->hwaccm.s.vmx.pRealModeTSS, &GCPhys);
1303 AssertRC(rc);
1304
1305 rc = VMXWriteVMCS(VMX_VMCS16_GUEST_FIELD_TR, 0);
1306 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_TR_LIMIT, HWACCM_VTX_TSS_SIZE);
1307 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_TR_BASE, GCPhys /* phys = virt in this mode */);
1308
1309 X86DESCATTR attr;
1310
1311 attr.u = 0;
1312 attr.n.u1Present = 1;
1313 attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
1314 val = attr.u;
1315 }
1316 else
1317#endif /* HWACCM_VMX_EMULATE_REALMODE */
1318 {
1319 rc = VMXWriteVMCS(VMX_VMCS16_GUEST_FIELD_TR, pCtx->tr);
1320 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_TR_LIMIT, pCtx->trHid.u32Limit);
1321 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_TR_BASE, pCtx->trHid.u64Base);
1322
1323 val = pCtx->trHid.Attr.u;
1324
1325 /* The TSS selector must be busy. */
1326 if ((val & 0xF) == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
1327 val = (val & ~0xF) | X86_SEL_TYPE_SYS_286_TSS_BUSY;
1328 else
1329 /* Default even if no TR selector has been set (otherwise vmlaunch will fail!) */
1330 val = (val & ~0xF) | X86_SEL_TYPE_SYS_386_TSS_BUSY;
1331
1332 }
1333 rc |= VMXWriteVMCS(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, val);
1334 AssertRC(rc);
1335 }
1336 /* Guest CPU context: GDTR. */
1337 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_GDTR)
1338 {
1339 rc = VMXWriteVMCS(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
1340 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
1341 AssertRC(rc);
1342 }
1343 /* Guest CPU context: IDTR. */
1344 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_IDTR)
1345 {
1346 rc = VMXWriteVMCS(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
1347 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
1348 AssertRC(rc);
1349 }
1350
1351 /*
1352 * Sysenter MSRs (unconditional)
1353 */
1354 rc = VMXWriteVMCS(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
1355 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
1356 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
1357 AssertRC(rc);
1358
1359 /* Control registers */
1360 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR0)
1361 {
1362 val = pCtx->cr0;
1363 rc = VMXWriteVMCS(VMX_VMCS_CTRL_CR0_READ_SHADOW, val);
1364 Log2(("Guest CR0-shadow %08x\n", val));
1365 if (CPUMIsGuestFPUStateActive(pVCpu) == false)
1366 {
1367 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
1368 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
1369 }
1370 else
1371 {
1372 /** @todo check if we support the old style mess correctly. */
1373 if (!(val & X86_CR0_NE))
1374 Log(("Forcing X86_CR0_NE!!!\n"));
1375
1376 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
1377 }
1378 /* Note: protected mode & paging are always enabled; we use them for emulating real and protected mode without paging too. */
1379 val |= X86_CR0_PE | X86_CR0_PG;
1380 if (pVM->hwaccm.s.fNestedPaging)
1381 {
1382 if (CPUMIsGuestInPagedProtectedModeEx(pCtx))
1383 {
1384 /* Disable cr3 read/write monitoring as we don't need it for EPT. */
1385 pVCpu->hwaccm.s.vmx.proc_ctls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
1386 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT);
1387 }
1388 else
1389 {
1390 /* Reenable cr3 read/write monitoring as our identity mapped page table is active. */
1391 pVCpu->hwaccm.s.vmx.proc_ctls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
1392 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
1393 }
1394 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
1395 AssertRC(rc);
1396 }
1397 else
1398 {
1399 /* Note: We must also set this as we rely on protecting various pages for which supervisor writes must be caught. */
1400 val |= X86_CR0_WP;
1401 }
1402
1403 /* Always enable caching. */
1404 val &= ~(X86_CR0_CD|X86_CR0_NW);
1405
1406 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_CR0, val);
1407 Log2(("Guest CR0 %08x\n", val));
1408 /* CR0 flags owned by the host; if the guests attempts to change them, then
1409 * the VM will exit.
1410 */
1411 val = X86_CR0_PE /* Must monitor this bit (assumptions are made for real mode emulation) */
1412 | X86_CR0_WP /* Must monitor this bit (it must always be enabled). */
1413 | X86_CR0_PG /* Must monitor this bit (assumptions are made for real mode & protected mode without paging emulation) */
1414 | X86_CR0_TS
1415 | X86_CR0_ET /* Bit not restored during VM-exit! */
1416 | X86_CR0_CD /* Bit not restored during VM-exit! */
1417 | X86_CR0_NW /* Bit not restored during VM-exit! */
1418 | X86_CR0_NE
1419 | X86_CR0_MP;
1420 pVCpu->hwaccm.s.vmx.cr0_mask = val;
1421
1422 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_CR0_MASK, val);
1423 Log2(("Guest CR0-mask %08x\n", val));
1424 AssertRC(rc);
1425 }
1426 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR4)
1427 {
1428 /* CR4 */
1429 rc = VMXWriteVMCS(VMX_VMCS_CTRL_CR4_READ_SHADOW, pCtx->cr4);
1430 Log2(("Guest CR4-shadow %08x\n", pCtx->cr4));
1431 /* Set the required bits in cr4 too (currently X86_CR4_VMXE). */
1432 val = pCtx->cr4 | (uint32_t)pVM->hwaccm.s.vmx.msr.vmx_cr4_fixed0;
1433
1434 if (!pVM->hwaccm.s.fNestedPaging)
1435 {
1436 switch(pVCpu->hwaccm.s.enmShadowMode)
1437 {
1438 case PGMMODE_REAL: /* Real mode -> emulated using v86 mode */
1439 case PGMMODE_PROTECTED: /* Protected mode, no paging -> emulated using identity mapping. */
1440 case PGMMODE_32_BIT: /* 32-bit paging. */
1441 val &= ~X86_CR4_PAE;
1442 break;
1443
1444 case PGMMODE_PAE: /* PAE paging. */
1445 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1446 /** @todo use normal 32 bits paging */
1447 val |= X86_CR4_PAE;
1448 break;
1449
1450 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1451 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1452#ifdef VBOX_ENABLE_64_BITS_GUESTS
1453 break;
1454#else
1455 AssertFailed();
1456 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1457#endif
1458 default: /* shut up gcc */
1459 AssertFailed();
1460 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1461 }
1462 }
1463 else
1464 if (!CPUMIsGuestInPagedProtectedModeEx(pCtx))
1465 {
1466 /* We use 4 MB pages in our identity mapping page table for real and protected mode without paging. */
1467 val |= X86_CR4_PSE;
1468 /* Our identity mapping is a 32 bits page directory. */
1469 val &= ~X86_CR4_PAE;
1470 }
1471
1472 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_CR4, val);
1473 Log2(("Guest CR4 %08x\n", val));
1474 /* CR4 flags owned by the host; if the guests attempts to change them, then
1475 * the VM will exit.
1476 */
1477 val = 0
1478 | X86_CR4_PAE
1479 | X86_CR4_PGE
1480 | X86_CR4_PSE
1481 | X86_CR4_VMXE;
1482 pVCpu->hwaccm.s.vmx.cr4_mask = val;
1483
1484 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_CR4_MASK, val);
1485 Log2(("Guest CR4-mask %08x\n", val));
1486 AssertRC(rc);
1487 }
1488
1489 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR3)
1490 {
1491 if (pVM->hwaccm.s.fNestedPaging)
1492 {
1493 Assert(PGMGetHyperCR3(pVM));
1494 pVCpu->hwaccm.s.vmx.GCPhysEPTP = PGMGetHyperCR3(pVM);
1495
1496 Assert(!(pVCpu->hwaccm.s.vmx.GCPhysEPTP & 0xfff));
1497 /** @todo Check the IA32_VMX_EPT_VPID_CAP MSR for other supported memory types. */
1498 pVCpu->hwaccm.s.vmx.GCPhysEPTP |= VMX_EPT_MEMTYPE_WB
1499 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
1500
1501 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_EPTP_FULL, pVCpu->hwaccm.s.vmx.GCPhysEPTP);
1502 AssertRC(rc);
1503
1504 if (!CPUMIsGuestInPagedProtectedModeEx(pCtx))
1505 {
1506 RTGCPHYS GCPhys;
1507
1508 /* We convert it here every time as pci regions could be reconfigured. */
1509 rc = PDMVMMDevHeapR3ToGCPhys(pVM, pVM->hwaccm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
1510 AssertRC(rc);
1511
1512 /* We use our identity mapping page table here as we need to map guest virtual to guest physical addresses; EPT will
1513 * take care of the translation to host physical addresses.
1514 */
1515 val = GCPhys;
1516 }
1517 else
1518 {
1519 /* Save the real guest CR3 in VMX_VMCS_GUEST_CR3 */
1520 val = pCtx->cr3;
1521 /* Prefetch the four PDPT entries in PAE mode. */
1522 vmxR0PrefetchPAEPdptrs(pVM, pVCpu, pCtx);
1523 }
1524 }
1525 else
1526 {
1527 val = PGMGetHyperCR3(pVM);
1528 Assert(val || VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL));
1529 }
1530
1531 /* Save our shadow CR3 register. */
1532 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_CR3, val);
1533 AssertRC(rc);
1534 }
1535
1536 /* Debug registers. */
1537 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_DEBUG)
1538 {
1539 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
1540 pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
1541
1542 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
1543 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
1544 pCtx->dr[7] |= 0x400; /* must be one */
1545
1546 /* Resync DR7 */
1547 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_DR7, pCtx->dr[7]);
1548 AssertRC(rc);
1549
1550 /* Sync the debug state now if any breakpoint is armed. */
1551 if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
1552 && !CPUMIsGuestDebugStateActive(pVM)
1553 && !DBGFIsStepping(pVM))
1554 {
1555 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxArmed);
1556
1557 /* Disable drx move intercepts. */
1558 pVCpu->hwaccm.s.vmx.proc_ctls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
1559 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
1560 AssertRC(rc);
1561
1562 /* Save the host and load the guest debug state. */
1563 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
1564 AssertRC(rc);
1565 }
1566
1567 /* IA32_DEBUGCTL MSR. */
1568 rc = VMXWriteVMCS64(VMX_VMCS_GUEST_DEBUGCTL_FULL, 0);
1569 AssertRC(rc);
1570
1571 /** @todo do we really ever need this? */
1572 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_DEBUG_EXCEPTIONS, 0);
1573 AssertRC(rc);
1574 }
1575
1576 /* EIP, ESP and EFLAGS */
1577 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_RIP, pCtx->rip);
1578 rc |= VMXWriteVMCS64(VMX_VMCS64_GUEST_RSP, pCtx->rsp);
1579 AssertRC(rc);
1580
1581 /* Bits 22-31, 15, 5 & 3 must be zero. Bit 1 must be 1. */
1582 eflags = pCtx->eflags;
1583 eflags.u32 &= VMX_EFLAGS_RESERVED_0;
1584 eflags.u32 |= VMX_EFLAGS_RESERVED_1;
1585
1586#ifdef HWACCM_VMX_EMULATE_REALMODE
1587 /* Real mode emulation using v86 mode. */
1588 if (CPUMIsGuestInRealModeEx(pCtx))
1589 {
1590 pVCpu->hwaccm.s.vmx.RealMode.eflags = eflags;
1591
1592 eflags.Bits.u1VM = 1;
1593 eflags.Bits.u2IOPL = 0; /* must always be 0 or else certain instructions won't cause faults. */
1594 }
1595#endif /* HWACCM_VMX_EMULATE_REALMODE */
1596 rc = VMXWriteVMCS(VMX_VMCS_GUEST_RFLAGS, eflags.u32);
1597 AssertRC(rc);
1598
1599 /* TSC offset. */
1600 uint64_t u64TSCOffset;
1601
1602 if (TMCpuTickCanUseRealTSC(pVM, &u64TSCOffset))
1603 {
1604 /* Note: VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT takes precedence over TSC_OFFSET */
1605 rc = VMXWriteVMCS64(VMX_VMCS_CTRL_TSC_OFFSET_FULL, u64TSCOffset);
1606 AssertRC(rc);
1607
1608 pVCpu->hwaccm.s.vmx.proc_ctls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
1609 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
1610 AssertRC(rc);
1611 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCOffset);
1612 }
1613 else
1614 {
1615 pVCpu->hwaccm.s.vmx.proc_ctls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
1616 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
1617 AssertRC(rc);
1618 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCIntercept);
1619 }
1620
1621 /* 64 bits guest mode? */
1622 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1623 {
1624#if !defined(VBOX_ENABLE_64_BITS_GUESTS)
1625 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1626#elif HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1627 pVCpu->hwaccm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
1628#else
1629# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
1630 if (!pVM->hwaccm.s.fAllow64BitGuests)
1631 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1632# endif
1633 pVCpu->hwaccm.s.vmx.pfnStartVM = VMXR0StartVM64;
1634#endif
1635 /* Unconditionally update these as wrmsr might have changed them. */
1636 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_FS_BASE, pCtx->fsHid.u64Base);
1637 AssertRC(rc);
1638 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_GS_BASE, pCtx->gsHid.u64Base);
1639 AssertRC(rc);
1640 }
1641 else
1642 {
1643 pVCpu->hwaccm.s.vmx.pfnStartVM = VMXR0StartVM32;
1644 }
1645
1646#if 0 /* @todo deal with 32/64 */
1647 /* Unconditionally update the guest EFER - on CPUs that supports it. */
1648 if (pVM->hwaccm.s.vmx.msr.vmx_entry.n.allowed1 & VMX_VMCS_CTRL_ENTRY_CONTROLS_LOAD_GUEST_EFER_MSR)
1649 {
1650 rc = VMXWriteVMCS64(VMX_VMCS_GUEST_EFER_FULL, pCtx->msrEFER);
1651 AssertRC(rc);
1652 }
1653#endif
1654
1655 vmxR0UpdateExceptionBitmap(pVM, pVCpu, pCtx);
1656
1657 /* Done. */
1658 pVCpu->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_ALL_GUEST;
1659
1660 return rc;
1661}
1662
1663/**
1664 * Syncs back the guest state
1665 *
1666 * @returns VBox status code.
1667 * @param pVM The VM to operate on.
1668 * @param pVCpu The VMCPU to operate on.
1669 * @param pCtx Guest context
1670 */
1671DECLINLINE(int) VMXR0SaveGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1672{
1673 RTGCUINTREG val, valShadow;
1674 RTGCUINTPTR uInterruptState;
1675 int rc;
1676
1677 /* Let's first sync back eip, esp, and eflags. */
1678 rc = VMXReadCachedVMCS(VMX_VMCS64_GUEST_RIP, &val);
1679 AssertRC(rc);
1680 pCtx->rip = val;
1681 rc = VMXReadCachedVMCS(VMX_VMCS64_GUEST_RSP, &val);
1682 AssertRC(rc);
1683 pCtx->rsp = val;
1684 rc = VMXReadCachedVMCS(VMX_VMCS_GUEST_RFLAGS, &val);
1685 AssertRC(rc);
1686 pCtx->eflags.u32 = val;
1687
1688 /* Take care of instruction fusing (sti, mov ss) */
1689 rc |= VMXReadCachedVMCS(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &val);
1690 uInterruptState = val;
1691 if (uInterruptState != 0)
1692 {
1693 Assert(uInterruptState <= 2); /* only sti & mov ss */
1694 Log(("uInterruptState %x eip=%RGv\n", uInterruptState, pCtx->rip));
1695 EMSetInhibitInterruptsPC(pVM, pCtx->rip);
1696 }
1697 else
1698 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
1699
1700 /* Control registers. */
1701 VMXReadCachedVMCS(VMX_VMCS_CTRL_CR0_READ_SHADOW, &valShadow);
1702 VMXReadCachedVMCS(VMX_VMCS64_GUEST_CR0, &val);
1703 val = (valShadow & pVCpu->hwaccm.s.vmx.cr0_mask) | (val & ~pVCpu->hwaccm.s.vmx.cr0_mask);
1704 CPUMSetGuestCR0(pVM, val);
1705
1706 VMXReadCachedVMCS(VMX_VMCS_CTRL_CR4_READ_SHADOW, &valShadow);
1707 VMXReadCachedVMCS(VMX_VMCS64_GUEST_CR4, &val);
1708 val = (valShadow & pVCpu->hwaccm.s.vmx.cr4_mask) | (val & ~pVCpu->hwaccm.s.vmx.cr4_mask);
1709 CPUMSetGuestCR4(pVM, val);
1710
1711 /* Note: no reason to sync back the CRx registers. They can't be changed by the guest. */
1712 /* Note: only in the nested paging case can CR3 & CR4 be changed by the guest. */
1713 if ( pVM->hwaccm.s.fNestedPaging
1714 && CPUMIsGuestInPagedProtectedModeEx(pCtx))
1715 {
1716 PVMCSCACHE pCache = &pVCpu->hwaccm.s.vmx.VMCSCache;
1717
1718 /* Can be updated behind our back in the nested paging case. */
1719 CPUMSetGuestCR2(pVM, pCache->cr2);
1720
1721 VMXReadCachedVMCS(VMX_VMCS64_GUEST_CR3, &val);
1722
1723 if (val != pCtx->cr3)
1724 {
1725 CPUMSetGuestCR3(pVM, val);
1726 PGMUpdateCR3(pVM, val);
1727 }
1728 /* Prefetch the four PDPT entries in PAE mode. */
1729 vmxR0PrefetchPAEPdptrs(pVM, pVCpu, pCtx);
1730 }
1731
1732 /* Sync back DR7 here. */
1733 VMXReadCachedVMCS(VMX_VMCS64_GUEST_DR7, &val);
1734 pCtx->dr[7] = val;
1735
1736 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1737 VMX_READ_SELREG(ES, es);
1738 VMX_READ_SELREG(SS, ss);
1739 VMX_READ_SELREG(CS, cs);
1740 VMX_READ_SELREG(DS, ds);
1741 VMX_READ_SELREG(FS, fs);
1742 VMX_READ_SELREG(GS, gs);
1743
1744 /*
1745 * System MSRs
1746 */
1747 VMXReadCachedVMCS(VMX_VMCS32_GUEST_SYSENTER_CS, &val);
1748 pCtx->SysEnter.cs = val;
1749 VMXReadCachedVMCS(VMX_VMCS64_GUEST_SYSENTER_EIP, &val);
1750 pCtx->SysEnter.eip = val;
1751 VMXReadCachedVMCS(VMX_VMCS64_GUEST_SYSENTER_ESP, &val);
1752 pCtx->SysEnter.esp = val;
1753
1754 /* Misc. registers; must sync everything otherwise we can get out of sync when jumping to ring 3. */
1755 VMX_READ_SELREG(LDTR, ldtr);
1756
1757 VMXReadCachedVMCS(VMX_VMCS32_GUEST_GDTR_LIMIT, &val);
1758 pCtx->gdtr.cbGdt = val;
1759 VMXReadCachedVMCS(VMX_VMCS64_GUEST_GDTR_BASE, &val);
1760 pCtx->gdtr.pGdt = val;
1761
1762 VMXReadCachedVMCS(VMX_VMCS32_GUEST_IDTR_LIMIT, &val);
1763 pCtx->idtr.cbIdt = val;
1764 VMXReadCachedVMCS(VMX_VMCS64_GUEST_IDTR_BASE, &val);
1765 pCtx->idtr.pIdt = val;
1766
1767#ifdef HWACCM_VMX_EMULATE_REALMODE
1768 /* Real mode emulation using v86 mode. */
1769 if (CPUMIsGuestInRealModeEx(pCtx))
1770 {
1771 /* Hide our emulation flags */
1772 pCtx->eflags.Bits.u1VM = 0;
1773
1774 /* Restore original IOPL setting as we always use 0. */
1775 pCtx->eflags.Bits.u2IOPL = pVCpu->hwaccm.s.vmx.RealMode.eflags.Bits.u2IOPL;
1776
1777 /* Force a TR resync every time in case we switch modes. */
1778 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_TR;
1779 }
1780 else
1781#endif /* HWACCM_VMX_EMULATE_REALMODE */
1782 {
1783 /* In real mode we have a fake TSS, so only sync it back when it's supposed to be valid. */
1784 VMX_READ_SELREG(TR, tr);
1785 }
1786 return VINF_SUCCESS;
1787}
1788
1789/**
1790 * Dummy placeholder
1791 *
1792 * @param pVM The VM to operate on.
1793 * @param pVCpu The VMCPU to operate on.
1794 */
1795static void vmxR0SetupTLBDummy(PVM pVM, PVMCPU pVCpu)
1796{
1797 NOREF(pVM);
1798 NOREF(pVCpu);
1799 return;
1800}
1801
1802/**
1803 * Setup the tagged TLB for EPT
1804 *
1805 * @returns VBox status code.
1806 * @param pVM The VM to operate on.
1807 * @param pVCpu The VMCPU to operate on.
1808 */
1809static void vmxR0SetupTLBEPT(PVM pVM, PVMCPU pVCpu)
1810{
1811 PHWACCM_CPUINFO pCpu;
1812
1813 Assert(pVM->hwaccm.s.fNestedPaging);
1814 Assert(!pVM->hwaccm.s.vmx.fVPID);
1815
1816 /* Deal with tagged TLBs if VPID or EPT is supported. */
1817 pCpu = HWACCMR0GetCurrentCpu();
1818 /* Force a TLB flush for the first world switch if the current cpu differs from the one we ran on last. */
1819 /* Note that this can happen both for start and resume due to long jumps back to ring 3. */
1820 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
1821 /* if the tlb flush count has changed, another VM has flushed the TLB of this cpu, so we can't use our current ASID anymore. */
1822 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
1823 {
1824 /* Force a TLB flush on VM entry. */
1825 pVCpu->hwaccm.s.fForceTLBFlush = true;
1826 }
1827 else
1828 Assert(!pCpu->fFlushTLB);
1829
1830 pVCpu->hwaccm.s.idLastCpu = pCpu->idCpu;
1831 pCpu->fFlushTLB = false;
1832
1833 if (pVCpu->hwaccm.s.fForceTLBFlush)
1834 vmxR0FlushEPT(pVM, pVCpu, pVM->hwaccm.s.vmx.enmFlushContext, 0);
1835
1836#ifdef VBOX_WITH_STATISTICS
1837 if (pVCpu->hwaccm.s.fForceTLBFlush)
1838 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBWorldSwitch);
1839 else
1840 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatNoFlushTLBWorldSwitch);
1841#endif
1842}
1843
1844#ifdef HWACCM_VTX_WITH_VPID
1845/**
1846 * Setup the tagged TLB for VPID
1847 *
1848 * @returns VBox status code.
1849 * @param pVM The VM to operate on.
1850 * @param pVCpu The VMCPU to operate on.
1851 */
1852static void vmxR0SetupTLBVPID(PVM pVM, PVMCPU pVCpu)
1853{
1854 PHWACCM_CPUINFO pCpu;
1855
1856 Assert(pVM->hwaccm.s.vmx.fVPID);
1857 Assert(!pVM->hwaccm.s.fNestedPaging);
1858
1859 /* Deal with tagged TLBs if VPID or EPT is supported. */
1860 pCpu = HWACCMR0GetCurrentCpu();
1861 /* Force a TLB flush for the first world switch if the current cpu differs from the one we ran on last. */
1862 /* Note that this can happen both for start and resume due to long jumps back to ring 3. */
1863 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
1864 /* if the tlb flush count has changed, another VM has flushed the TLB of this cpu, so we can't use our current ASID anymore. */
1865 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
1866 {
1867 /* Force a TLB flush on VM entry. */
1868 pVCpu->hwaccm.s.fForceTLBFlush = true;
1869 }
1870 else
1871 Assert(!pCpu->fFlushTLB);
1872
1873 pVCpu->hwaccm.s.idLastCpu = pCpu->idCpu;
1874
1875 /* Make sure we flush the TLB when required. Switch ASID to achieve the same thing, but without actually flushing the whole TLB (which is expensive). */
1876 if (pVCpu->hwaccm.s.fForceTLBFlush)
1877 {
1878 if ( ++pCpu->uCurrentASID >= pVM->hwaccm.s.uMaxASID
1879 || pCpu->fFlushTLB)
1880 {
1881 pCpu->fFlushTLB = false;
1882 pCpu->uCurrentASID = 1; /* start at 1; host uses 0 */
1883 pCpu->cTLBFlushes++;
1884 }
1885 else
1886 {
1887 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushASID);
1888 pVCpu->hwaccm.s.fForceTLBFlush = false;
1889 }
1890
1891 pVCpu->hwaccm.s.cTLBFlushes = pCpu->cTLBFlushes;
1892 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID;
1893 }
1894 else
1895 {
1896 Assert(!pCpu->fFlushTLB);
1897
1898 if (!pCpu->uCurrentASID || !pVCpu->hwaccm.s.uCurrentASID)
1899 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID = 1;
1900 }
1901 AssertMsg(pVCpu->hwaccm.s.cTLBFlushes == pCpu->cTLBFlushes, ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
1902 AssertMsg(pCpu->uCurrentASID >= 1 && pCpu->uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d uCurrentASID = %x\n", pCpu->idCpu, pCpu->uCurrentASID));
1903 AssertMsg(pVCpu->hwaccm.s.uCurrentASID >= 1 && pVCpu->hwaccm.s.uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d VM uCurrentASID = %x\n", pCpu->idCpu, pVCpu->hwaccm.s.uCurrentASID));
1904
1905 int rc = VMXWriteVMCS(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hwaccm.s.uCurrentASID);
1906 AssertRC(rc);
1907
1908 if (pVCpu->hwaccm.s.fForceTLBFlush)
1909 vmxR0FlushVPID(pVM, pVCpu, pVM->hwaccm.s.vmx.enmFlushContext, 0);
1910
1911#ifdef VBOX_WITH_STATISTICS
1912 if (pVCpu->hwaccm.s.fForceTLBFlush)
1913 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBWorldSwitch);
1914 else
1915 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatNoFlushTLBWorldSwitch);
1916#endif
1917}
1918#endif /* HWACCM_VTX_WITH_VPID */
1919
1920/**
1921 * Runs guest code in a VT-x VM.
1922 *
1923 * @returns VBox status code.
1924 * @param pVM The VM to operate on.
1925 * @param pVCpu The VMCPU to operate on.
1926 * @param pCtx Guest context
1927 */
1928VMMR0DECL(int) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1929{
1930 int rc = VINF_SUCCESS;
1931 RTGCUINTREG val;
1932 RTGCUINTREG exitReason, instrError, cbInstr;
1933 RTGCUINTPTR exitQualification;
1934 RTGCUINTPTR intInfo = 0; /* shut up buggy gcc 4 */
1935 RTGCUINTPTR errCode, instrInfo;
1936 bool fSyncTPR = false;
1937 PHWACCM_CPUINFO pCpu = 0;
1938 unsigned cResume = 0;
1939#ifdef VBOX_STRICT
1940 RTCPUID idCpuCheck;
1941#endif
1942#ifdef VBOX_WITH_STATISTICS
1943 bool fStatEntryStarted = true;
1944 bool fStatExit2Started = false;
1945#endif
1946
1947 Log2(("\nE"));
1948
1949 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatEntry, x);
1950
1951#ifdef VBOX_STRICT
1952 {
1953 RTCCUINTREG val;
1954
1955 rc = VMXReadVMCS(VMX_VMCS_CTRL_PIN_EXEC_CONTROLS, &val);
1956 AssertRC(rc);
1957 Log2(("VMX_VMCS_CTRL_PIN_EXEC_CONTROLS = %08x\n", val));
1958
1959 /* allowed zero */
1960 if ((val & pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.disallowed0)
1961 Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC_CONTROLS: zero\n"));
1962
1963 /* allowed one */
1964 if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.allowed1) != 0)
1965 Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC_CONTROLS: one\n"));
1966
1967 rc = VMXReadVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, &val);
1968 AssertRC(rc);
1969 Log2(("VMX_VMCS_CTRL_PROC_EXEC_CONTROLS = %08x\n", val));
1970
1971 /* Must be set according to the MSR, but can be cleared in case of EPT. */
1972 if (pVM->hwaccm.s.fNestedPaging)
1973 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INVLPG_EXIT
1974 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_LOAD_EXIT
1975 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR3_STORE_EXIT;
1976
1977 /* allowed zero */
1978 if ((val & pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.disallowed0)
1979 Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC_CONTROLS: zero\n"));
1980
1981 /* allowed one */
1982 if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1) != 0)
1983 Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC_CONTROLS: one\n"));
1984
1985 rc = VMXReadVMCS(VMX_VMCS_CTRL_ENTRY_CONTROLS, &val);
1986 AssertRC(rc);
1987 Log2(("VMX_VMCS_CTRL_ENTRY_CONTROLS = %08x\n", val));
1988
1989 /* allowed zero */
1990 if ((val & pVM->hwaccm.s.vmx.msr.vmx_entry.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_entry.n.disallowed0)
1991 Log(("Invalid VMX_VMCS_CTRL_ENTRY_CONTROLS: zero\n"));
1992
1993 /* allowed one */
1994 if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_entry.n.allowed1) != 0)
1995 Log(("Invalid VMX_VMCS_CTRL_ENTRY_CONTROLS: one\n"));
1996
1997 rc = VMXReadVMCS(VMX_VMCS_CTRL_EXIT_CONTROLS, &val);
1998 AssertRC(rc);
1999 Log2(("VMX_VMCS_CTRL_EXIT_CONTROLS = %08x\n", val));
2000
2001 /* allowed zero */
2002 if ((val & pVM->hwaccm.s.vmx.msr.vmx_exit.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_exit.n.disallowed0)
2003 Log(("Invalid VMX_VMCS_CTRL_EXIT_CONTROLS: zero\n"));
2004
2005 /* allowed one */
2006 if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_exit.n.allowed1) != 0)
2007 Log(("Invalid VMX_VMCS_CTRL_EXIT_CONTROLS: one\n"));
2008 }
2009#endif
2010
2011#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2012 pVCpu->hwaccm.s.vmx.VMCSCache.u64TimeEntry = RTTimeNanoTS();
2013#endif
2014
2015 /* We can jump to this point to resume execution after determining that a VM-exit is innocent.
2016 */
2017ResumeExecution:
2018 STAM_STATS({
2019 if (fStatExit2Started) { STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2, y); fStatExit2Started = false; }
2020 if (!fStatEntryStarted) { STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatEntry, x); fStatEntryStarted = true; }
2021 });
2022 AssertMsg(pVCpu->hwaccm.s.idEnteredCpu == RTMpCpuId(),
2023 ("Expected %d, I'm %d; cResume=%d exitReason=%RGv exitQualification=%RGv\n",
2024 (int)pVCpu->hwaccm.s.idEnteredCpu, (int)RTMpCpuId(), cResume, exitReason, exitQualification));
2025 Assert(!HWACCMR0SuspendPending());
2026
2027 /* Safety precaution; looping for too long here can have a very bad effect on the host */
2028 if (++cResume > HWACCM_MAX_RESUME_LOOPS)
2029 {
2030 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMaxResume);
2031 rc = VINF_EM_RAW_INTERRUPT;
2032 goto end;
2033 }
2034
2035 /* Check for irq inhibition due to instruction fusing (sti, mov ss). */
2036 if (VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
2037 {
2038 Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVM)));
2039 if (pCtx->rip != EMGetInhibitInterruptsPC(pVM))
2040 {
2041 /* Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
2042 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
2043 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
2044 * break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think.
2045 */
2046 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
2047 /* Irq inhibition is no longer active; clear the corresponding VMX state. */
2048 rc = VMXWriteVMCS(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, 0);
2049 AssertRC(rc);
2050 }
2051 }
2052 else
2053 {
2054 /* Irq inhibition is no longer active; clear the corresponding VMX state. */
2055 rc = VMXWriteVMCS(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, 0);
2056 AssertRC(rc);
2057 }
2058
2059 /* Check for pending actions that force us to go back to ring 3. */
2060 if (VM_FF_ISPENDING(pVM, VM_FF_HWACCM_TO_R3_MASK))
2061 {
2062 VM_FF_CLEAR(pVM, VM_FF_TO_R3);
2063 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchToR3);
2064 rc = RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
2065 goto end;
2066 }
2067 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
2068 if (VM_FF_ISPENDING(pVM, VM_FF_REQUEST))
2069 {
2070 rc = VINF_EM_PENDING_REQUEST;
2071 goto end;
2072 }
2073
2074 /* When external interrupts are pending, we should exit the VM when IF is set. */
2075 /* Note! *After* VM_FF_INHIBIT_INTERRUPTS check!!! */
2076 rc = VMXR0CheckPendingInterrupt(pVM, pVCpu, pCtx);
2077 if (RT_FAILURE(rc))
2078 goto end;
2079
2080 /** @todo check timers?? */
2081
2082 /* TPR caching using CR8 is only available in 64 bits mode */
2083 /* Note the 32 bits exception for AMD (X86_CPUID_AMD_FEATURE_ECX_CR8L), but that appears missing in Intel CPUs */
2084 /* Note: we can't do this in LoadGuestState as PDMApicGetTPR can jump back to ring 3 (lock)!!!!! */
2085 /**
2086 * @todo reduce overhead
2087 */
2088 if ( (pCtx->msrEFER & MSR_K6_EFER_LMA)
2089 && pVM->hwaccm.s.vmx.pAPIC)
2090 {
2091 /* TPR caching in CR8 */
2092 uint8_t u8TPR;
2093 bool fPending;
2094
2095 int rc = PDMApicGetTPR(pVM, &u8TPR, &fPending);
2096 AssertRC(rc);
2097 /* The TPR can be found at offset 0x80 in the APIC mmio page. */
2098 pVM->hwaccm.s.vmx.pAPIC[0x80] = u8TPR << 4; /* bits 7-4 contain the task priority */
2099
2100 /* Two options here:
2101 * - external interrupt pending, but masked by the TPR value.
2102 * -> a CR8 update that lower the current TPR value should cause an exit
2103 * - no pending interrupts
2104 * -> We don't need to be explicitely notified. There are enough world switches for detecting pending interrupts.
2105 */
2106 rc = VMXWriteVMCS(VMX_VMCS_CTRL_TPR_THRESHOLD, (fPending) ? u8TPR : 0);
2107 AssertRC(rc);
2108
2109 /* Always sync back the TPR; we should optimize this though */ /** @todo optimize TPR sync. */
2110 fSyncTPR = true;
2111 }
2112
2113#if defined(HWACCM_VTX_WITH_EPT) && defined(LOG_ENABLED)
2114 if ( pVM->hwaccm.s.fNestedPaging
2115# ifdef HWACCM_VTX_WITH_VPID
2116 || pVM->hwaccm.s.vmx.fVPID
2117# endif /* HWACCM_VTX_WITH_VPID */
2118 )
2119 {
2120 pCpu = HWACCMR0GetCurrentCpu();
2121 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
2122 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
2123 {
2124 if (pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu)
2125 Log(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hwaccm.s.idLastCpu, pCpu->idCpu));
2126 else
2127 Log(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
2128 }
2129 if (pCpu->fFlushTLB)
2130 Log(("Force TLB flush: first time cpu %d is used -> flush\n", pCpu->idCpu));
2131 else
2132 if (pVCpu->hwaccm.s.fForceTLBFlush)
2133 LogFlow(("Manual TLB flush\n"));
2134 }
2135#endif
2136#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2137 PGMDynMapFlushAutoSet(pVCpu);
2138#endif
2139
2140 /*
2141 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
2142 * (until the actual world switch)
2143 */
2144#ifdef VBOX_STRICT
2145 idCpuCheck = RTMpCpuId();
2146#endif
2147#ifdef LOG_LOGGING
2148 VMMR0LogFlushDisable(pVCpu);
2149#endif
2150 /* Save the host state first. */
2151 rc = VMXR0SaveHostState(pVM, pVCpu);
2152 if (rc != VINF_SUCCESS)
2153 goto end;
2154 /* Load the guest state */
2155 rc = VMXR0LoadGuestState(pVM, pVCpu, pCtx);
2156 if (rc != VINF_SUCCESS)
2157 goto end;
2158
2159 /* Deal with tagged TLB setup and invalidation. */
2160 pVM->hwaccm.s.vmx.pfnSetupTaggedTLB(pVM, pVCpu);
2161
2162 /* Non-register state Guest Context */
2163 /** @todo change me according to cpu state */
2164 rc = VMXWriteVMCS(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_CMS_GUEST_ACTIVITY_ACTIVE);
2165 AssertRC(rc);
2166
2167 STAM_STATS({ STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x); fStatEntryStarted = false; });
2168
2169 /* Manual save and restore:
2170 * - General purpose registers except RIP, RSP
2171 *
2172 * Trashed:
2173 * - CR2 (we don't care)
2174 * - LDTR (reset to 0)
2175 * - DRx (presumably not changed at all)
2176 * - DR7 (reset to 0x400)
2177 * - EFLAGS (reset to RT_BIT(1); not relevant)
2178 *
2179 */
2180
2181
2182 /* All done! Let's start VM execution. */
2183 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatInGC, z);
2184#ifdef VBOX_STRICT
2185 Assert(idCpuCheck == RTMpCpuId());
2186#endif
2187
2188#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2189 pVCpu->hwaccm.s.vmx.VMCSCache.cResume = cResume;
2190 pVCpu->hwaccm.s.vmx.VMCSCache.u64TimeSwitch = RTTimeNanoTS();
2191#endif
2192
2193 TMNotifyStartOfExecution(pVM);
2194 rc = pVCpu->hwaccm.s.vmx.pfnStartVM(pVCpu->hwaccm.s.fResumeVM, pCtx, &pVCpu->hwaccm.s.vmx.VMCSCache, pVM, pVCpu);
2195 TMNotifyEndOfExecution(pVM);
2196
2197 AssertMsg(!pVCpu->hwaccm.s.vmx.VMCSCache.Write.cValidEntries, ("pVCpu->hwaccm.s.vmx.VMCSCache.Write.cValidEntries=%d\n", pVCpu->hwaccm.s.vmx.VMCSCache.Write.cValidEntries));
2198
2199 /* In case we execute a goto ResumeExecution later on. */
2200 pVCpu->hwaccm.s.fResumeVM = true;
2201 pVCpu->hwaccm.s.fForceTLBFlush = false;
2202
2203 /*
2204 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2205 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
2206 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2207 */
2208 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatInGC, z);
2209 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit1, v);
2210
2211 if (rc != VINF_SUCCESS)
2212 {
2213 VMXR0ReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
2214 goto end;
2215 }
2216
2217 /* Success. Query the guest state and figure out what has happened. */
2218
2219 /* Investigate why there was a VM-exit. */
2220 rc = VMXReadCachedVMCS(VMX_VMCS32_RO_EXIT_REASON, &exitReason);
2221 STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatExitReasonR0[exitReason & MASK_EXITREASON_STAT]);
2222
2223 exitReason &= 0xffff; /* bit 0-15 contain the exit code. */
2224 rc |= VMXReadCachedVMCS(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError);
2225 rc |= VMXReadCachedVMCS(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &cbInstr);
2226 rc |= VMXReadCachedVMCS(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &intInfo);
2227 /* might not be valid; depends on VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID. */
2228 rc |= VMXReadCachedVMCS(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERRCODE, &errCode);
2229 rc |= VMXReadCachedVMCS(VMX_VMCS32_RO_EXIT_INSTR_INFO, &instrInfo);
2230 rc |= VMXReadCachedVMCS(VMX_VMCS_RO_EXIT_QUALIFICATION, &exitQualification);
2231 AssertRC(rc);
2232
2233 /* Sync back the guest state */
2234 rc = VMXR0SaveGuestState(pVM, pVCpu, pCtx);
2235 AssertRC(rc);
2236
2237 /* Note! NOW IT'S SAFE FOR LOGGING! */
2238#ifdef LOG_LOGGING
2239 VMMR0LogFlushEnable(pVCpu);
2240#endif
2241 Log2(("Raw exit reason %08x\n", exitReason));
2242
2243 /* Check if an injected event was interrupted prematurely. */
2244 rc = VMXReadCachedVMCS(VMX_VMCS32_RO_IDT_INFO, &val);
2245 AssertRC(rc);
2246 pVCpu->hwaccm.s.Event.intInfo = VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(val);
2247 if ( VMX_EXIT_INTERRUPTION_INFO_VALID(pVCpu->hwaccm.s.Event.intInfo)
2248 /* Ignore 'int xx' as they'll be restarted anyway. */
2249 && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hwaccm.s.Event.intInfo) != VMX_EXIT_INTERRUPTION_INFO_TYPE_SW
2250 /* Ignore software exceptions (such as int3) as they're reoccur when we restart the instruction anyway. */
2251 && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hwaccm.s.Event.intInfo) != VMX_EXIT_INTERRUPTION_INFO_TYPE_SWEXCPT)
2252 {
2253 pVCpu->hwaccm.s.Event.fPending = true;
2254 /* Error code present? */
2255 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVCpu->hwaccm.s.Event.intInfo))
2256 {
2257 rc = VMXReadCachedVMCS(VMX_VMCS32_RO_IDT_ERRCODE, &val);
2258 AssertRC(rc);
2259 pVCpu->hwaccm.s.Event.errCode = val;
2260 Log(("Pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv pending error=%RX64\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification, val));
2261 }
2262 else
2263 {
2264 Log(("Pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification));
2265 pVCpu->hwaccm.s.Event.errCode = 0;
2266 }
2267 }
2268#ifdef VBOX_STRICT
2269 else
2270 if ( VMX_EXIT_INTERRUPTION_INFO_VALID(pVCpu->hwaccm.s.Event.intInfo)
2271 /* Ignore software exceptions (such as int3) as they're reoccur when we restart the instruction anyway. */
2272 && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hwaccm.s.Event.intInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_SWEXCPT)
2273 {
2274 Log(("Ignore pending inject %RX64 at %RGv exit=%08x intInfo=%08x exitQualification=%RGv\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitReason, intInfo, exitQualification));
2275 }
2276
2277 if (exitReason == VMX_EXIT_ERR_INVALID_GUEST_STATE)
2278 HWACCMDumpRegs(pVM, pCtx);
2279#endif
2280
2281 Log2(("E%d: New EIP=%RGv\n", exitReason, (RTGCPTR)pCtx->rip));
2282 Log2(("Exit reason %d, exitQualification %RGv\n", (uint32_t)exitReason, exitQualification));
2283 Log2(("instrInfo=%d instrError=%d instr length=%d\n", (uint32_t)instrInfo, (uint32_t)instrError, (uint32_t)cbInstr));
2284 Log2(("Interruption error code %d\n", (uint32_t)errCode));
2285 Log2(("IntInfo = %08x\n", (uint32_t)intInfo));
2286
2287 if (fSyncTPR)
2288 {
2289 rc = PDMApicSetTPR(pVM, pVM->hwaccm.s.vmx.pAPIC[0x80] >> 4);
2290 AssertRC(rc);
2291 }
2292
2293 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, v);
2294 STAM_STATS({ STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit2, y); fStatExit2Started = true; });
2295
2296 /* Some cases don't need a complete resync of the guest CPU state; handle them here. */
2297 switch (exitReason)
2298 {
2299 case VMX_EXIT_EXCEPTION: /* 0 Exception or non-maskable interrupt (NMI). */
2300 case VMX_EXIT_EXTERNAL_IRQ: /* 1 External interrupt. */
2301 {
2302 uint32_t vector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo);
2303
2304 if (!VMX_EXIT_INTERRUPTION_INFO_VALID(intInfo))
2305 {
2306 Assert(exitReason == VMX_EXIT_EXTERNAL_IRQ);
2307 /* External interrupt; leave to allow it to be dispatched again. */
2308 rc = VINF_EM_RAW_INTERRUPT;
2309 break;
2310 }
2311 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2312 switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo))
2313 {
2314 case VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI: /* Non-maskable interrupt. */
2315 /* External interrupt; leave to allow it to be dispatched again. */
2316 rc = VINF_EM_RAW_INTERRUPT;
2317 break;
2318
2319 case VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT: /* External hardware interrupt. */
2320 AssertFailed(); /* can't come here; fails the first check. */
2321 break;
2322
2323 case VMX_EXIT_INTERRUPTION_INFO_TYPE_DBEXCPT: /* Unknown why we get this type for #DB */
2324 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SWEXCPT: /* Software exception. (#BP or #OF) */
2325 Assert(vector == 1 || vector == 3 || vector == 4);
2326 /* no break */
2327 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HWEXCPT: /* Hardware exception. */
2328 Log2(("Hardware/software interrupt %d\n", vector));
2329 switch (vector)
2330 {
2331 case X86_XCPT_NM:
2332 {
2333 Log(("#NM fault at %RGv error code %x\n", (RTGCPTR)pCtx->rip, errCode));
2334
2335 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
2336 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
2337 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
2338 if (rc == VINF_SUCCESS)
2339 {
2340 Assert(CPUMIsGuestFPUStateActive(pVCpu));
2341
2342 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowNM);
2343
2344 /* Continue execution. */
2345 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
2346
2347 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2348 goto ResumeExecution;
2349 }
2350
2351 Log(("Forward #NM fault to the guest\n"));
2352 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNM);
2353 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, 0);
2354 AssertRC(rc);
2355 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2356 goto ResumeExecution;
2357 }
2358
2359 case X86_XCPT_PF: /* Page fault */
2360 {
2361#ifdef DEBUG
2362 if (pVM->hwaccm.s.fNestedPaging)
2363 { /* A genuine pagefault.
2364 * Forward the trap to the guest by injecting the exception and resuming execution.
2365 */
2366 Log(("Guest page fault at %RGv cr2=%RGv error code %x rsp=%RGv\n", (RTGCPTR)pCtx->rip, exitQualification, errCode, (RTGCPTR)pCtx->rsp));
2367
2368 Assert(CPUMIsGuestInPagedProtectedModeEx(pCtx));
2369
2370 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
2371
2372 /* Now we must update CR2. */
2373 pCtx->cr2 = exitQualification;
2374 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2375 AssertRC(rc);
2376
2377 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2378 goto ResumeExecution;
2379 }
2380#endif
2381 Assert(!pVM->hwaccm.s.fNestedPaging);
2382
2383 Log2(("Page fault at %RGv error code %x\n", exitQualification, errCode));
2384 /* Exit qualification contains the linear address of the page fault. */
2385 TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP);
2386 TRPMSetErrorCode(pVM, errCode);
2387 TRPMSetFaultAddress(pVM, exitQualification);
2388
2389 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
2390 rc = PGMTrap0eHandler(pVM, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)exitQualification);
2391 Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
2392 if (rc == VINF_SUCCESS)
2393 { /* We've successfully synced our shadow pages, so let's just continue execution. */
2394 Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, exitQualification ,errCode));
2395 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
2396
2397 TRPMResetTrap(pVM);
2398
2399 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2400 goto ResumeExecution;
2401 }
2402 else
2403 if (rc == VINF_EM_RAW_GUEST_TRAP)
2404 { /* A genuine pagefault.
2405 * Forward the trap to the guest by injecting the exception and resuming execution.
2406 */
2407 Log2(("Forward page fault to the guest\n"));
2408
2409 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
2410 /* The error code might have been changed. */
2411 errCode = TRPMGetErrorCode(pVM);
2412
2413 TRPMResetTrap(pVM);
2414
2415 /* Now we must update CR2. */
2416 pCtx->cr2 = exitQualification;
2417 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2418 AssertRC(rc);
2419
2420 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2421 goto ResumeExecution;
2422 }
2423#ifdef VBOX_STRICT
2424 if (rc != VINF_EM_RAW_EMULATE_INSTR && rc != VINF_EM_RAW_EMULATE_IO_BLOCK)
2425 Log2(("PGMTrap0eHandler failed with %d\n", rc));
2426#endif
2427 /* Need to go back to the recompiler to emulate the instruction. */
2428 TRPMResetTrap(pVM);
2429 break;
2430 }
2431
2432 case X86_XCPT_MF: /* Floating point exception. */
2433 {
2434 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestMF);
2435 if (!(pCtx->cr0 & X86_CR0_NE))
2436 {
2437 /* old style FPU error reporting needs some extra work. */
2438 /** @todo don't fall back to the recompiler, but do it manually. */
2439 rc = VINF_EM_RAW_EMULATE_INSTR;
2440 break;
2441 }
2442 Log(("Trap %x at %04X:%RGv\n", vector, pCtx->cs, (RTGCPTR)pCtx->rip));
2443 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2444 AssertRC(rc);
2445
2446 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2447 goto ResumeExecution;
2448 }
2449
2450 case X86_XCPT_DB: /* Debug exception. */
2451 {
2452 uint64_t uDR6;
2453
2454 /* DR6, DR7.GD and IA32_DEBUGCTL.LBR are not updated yet.
2455 *
2456 * Exit qualification bits:
2457 * 3:0 B0-B3 which breakpoint condition was met
2458 * 12:4 Reserved (0)
2459 * 13 BD - debug register access detected
2460 * 14 BS - single step execution or branch taken
2461 * 63:15 Reserved (0)
2462 */
2463 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDB);
2464
2465 /* Note that we don't support guest and host-initiated debugging at the same time. */
2466 Assert(DBGFIsStepping(pVM) || CPUMIsGuestInRealModeEx(pCtx));
2467
2468 uDR6 = X86_DR6_INIT_VAL;
2469 uDR6 |= (exitQualification & (X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3|X86_DR6_BD|X86_DR6_BS));
2470 rc = DBGFR0Trap01Handler(pVM, CPUMCTX2CORE(pCtx), uDR6);
2471 if (rc == VINF_EM_RAW_GUEST_TRAP)
2472 {
2473 /** @todo this isn't working, but we'll never get here normally. */
2474
2475 /* Update DR6 here. */
2476 pCtx->dr[6] = uDR6;
2477
2478 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
2479 pCtx->dr[7] &= ~X86_DR7_GD;
2480
2481 /* Paranoia. */
2482 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
2483 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
2484 pCtx->dr[7] |= 0x400; /* must be one */
2485
2486 /* Resync DR7 */
2487 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_DR7, pCtx->dr[7]);
2488 AssertRC(rc);
2489
2490 Log(("Trap %x (debug) at %RGv exit qualification %RX64\n", vector, (RTGCPTR)pCtx->rip, exitQualification));
2491 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2492 AssertRC(rc);
2493
2494 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2495 goto ResumeExecution;
2496 }
2497 /* Return to ring 3 to deal with the debug exit code. */
2498 break;
2499 }
2500
2501#ifdef DEBUG /* till after branching, enable by default after that. */
2502 case X86_XCPT_BP: /* Breakpoint. */
2503 {
2504 rc = DBGFR0Trap03Handler(pVM, CPUMCTX2CORE(pCtx));
2505 if (rc == VINF_EM_RAW_GUEST_TRAP)
2506 {
2507 Log(("Guest #BP at %04x:%RGv\n", pCtx->cs, pCtx->rip));
2508 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2509 AssertRC(rc);
2510 goto ResumeExecution;
2511 }
2512 if (rc == VINF_SUCCESS)
2513 goto ResumeExecution;
2514 Log(("Debugger BP at %04x:%RGv (rc=%Rrc)\n", pCtx->cs, pCtx->rip, rc));
2515 break;
2516 }
2517#endif
2518
2519 case X86_XCPT_GP: /* General protection failure exception.*/
2520 {
2521 uint32_t cbOp;
2522 uint32_t cbSize;
2523 DISCPUSTATE Cpu;
2524
2525 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestGP);
2526#ifdef VBOX_STRICT
2527 if (!CPUMIsGuestInRealModeEx(pCtx))
2528 {
2529 Log(("Trap %x at %04X:%RGv errorCode=%x\n", vector, pCtx->cs, (RTGCPTR)pCtx->rip, errCode));
2530 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2531 AssertRC(rc);
2532 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2533 goto ResumeExecution;
2534 }
2535#endif
2536 Assert(CPUMIsGuestInRealModeEx(pCtx));
2537
2538 LogFlow(("Real mode X86_XCPT_GP instruction emulation at %RGv\n", (RTGCPTR)pCtx->rip));
2539
2540 rc = EMInterpretDisasOne(pVM, CPUMCTX2CORE(pCtx), &Cpu, &cbOp);
2541 if (RT_SUCCESS(rc))
2542 {
2543 bool fUpdateRIP = true;
2544
2545 Assert(cbOp == Cpu.opsize);
2546 switch (Cpu.pCurInstr->opcode)
2547 {
2548 case OP_CLI:
2549 pCtx->eflags.Bits.u1IF = 0;
2550 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCli);
2551 break;
2552
2553 case OP_STI:
2554 pCtx->eflags.Bits.u1IF = 1;
2555 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitSti);
2556 break;
2557
2558 case OP_HLT:
2559 fUpdateRIP = false;
2560 rc = VINF_EM_HALT;
2561 pCtx->rip += Cpu.opsize;
2562 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitHlt);
2563 break;
2564
2565 case OP_POPF:
2566 {
2567 RTGCPTR GCPtrStack;
2568 uint32_t cbParm;
2569 uint32_t uMask;
2570 X86EFLAGS eflags;
2571
2572 if (Cpu.prefix & PREFIX_OPSIZE)
2573 {
2574 cbParm = 4;
2575 uMask = 0xffffffff;
2576 }
2577 else
2578 {
2579 cbParm = 2;
2580 uMask = 0xffff;
2581 }
2582
2583 rc = SELMToFlatEx(pVM, DIS_SELREG_SS, CPUMCTX2CORE(pCtx), pCtx->esp & uMask, 0, &GCPtrStack);
2584 if (RT_FAILURE(rc))
2585 {
2586 rc = VERR_EM_INTERPRETER;
2587 break;
2588 }
2589 eflags.u = 0;
2590 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &eflags.u, cbParm);
2591 if (RT_FAILURE(rc))
2592 {
2593 rc = VERR_EM_INTERPRETER;
2594 break;
2595 }
2596 LogFlow(("POPF %x -> %RGv mask=%x\n", eflags.u, pCtx->rsp, uMask));
2597 pCtx->eflags.u = (pCtx->eflags.u & ~(X86_EFL_POPF_BITS & uMask)) | (eflags.u & X86_EFL_POPF_BITS & uMask);
2598 /* RF cleared when popped in real mode; see pushf description in AMD manual. */
2599 pCtx->eflags.Bits.u1RF = 0;
2600 pCtx->esp += cbParm;
2601 pCtx->esp &= uMask;
2602
2603 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitPopf);
2604 break;
2605 }
2606
2607 case OP_PUSHF:
2608 {
2609 RTGCPTR GCPtrStack;
2610 uint32_t cbParm;
2611 uint32_t uMask;
2612 X86EFLAGS eflags;
2613
2614 if (Cpu.prefix & PREFIX_OPSIZE)
2615 {
2616 cbParm = 4;
2617 uMask = 0xffffffff;
2618 }
2619 else
2620 {
2621 cbParm = 2;
2622 uMask = 0xffff;
2623 }
2624
2625 rc = SELMToFlatEx(pVM, DIS_SELREG_SS, CPUMCTX2CORE(pCtx), (pCtx->esp - cbParm) & uMask, 0, &GCPtrStack);
2626 if (RT_FAILURE(rc))
2627 {
2628 rc = VERR_EM_INTERPRETER;
2629 break;
2630 }
2631 eflags = pCtx->eflags;
2632 /* RF & VM cleared when pushed in real mode; see pushf description in AMD manual. */
2633 eflags.Bits.u1RF = 0;
2634 eflags.Bits.u1VM = 0;
2635
2636 rc = PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &eflags.u, cbParm);
2637 if (RT_FAILURE(rc))
2638 {
2639 rc = VERR_EM_INTERPRETER;
2640 break;
2641 }
2642 LogFlow(("PUSHF %x -> %RGv\n", eflags.u, GCPtrStack));
2643 pCtx->esp -= cbParm;
2644 pCtx->esp &= uMask;
2645 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitPushf);
2646 break;
2647 }
2648
2649 case OP_IRET:
2650 {
2651 RTGCPTR GCPtrStack;
2652 uint32_t uMask = 0xffff;
2653 uint16_t aIretFrame[3];
2654
2655 if (Cpu.prefix & (PREFIX_OPSIZE | PREFIX_ADDRSIZE))
2656 {
2657 rc = VERR_EM_INTERPRETER;
2658 break;
2659 }
2660
2661 rc = SELMToFlatEx(pVM, DIS_SELREG_SS, CPUMCTX2CORE(pCtx), pCtx->esp & uMask, 0, &GCPtrStack);
2662 if (RT_FAILURE(rc))
2663 {
2664 rc = VERR_EM_INTERPRETER;
2665 break;
2666 }
2667 rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame));
2668 if (RT_FAILURE(rc))
2669 {
2670 rc = VERR_EM_INTERPRETER;
2671 break;
2672 }
2673 pCtx->ip = aIretFrame[0];
2674 pCtx->cs = aIretFrame[1];
2675 pCtx->csHid.u64Base = pCtx->cs << 4;
2676 pCtx->eflags.u = (pCtx->eflags.u & ~(X86_EFL_POPF_BITS & uMask)) | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
2677 pCtx->sp += sizeof(aIretFrame);
2678
2679 LogFlow(("iret to %04x:%x\n", pCtx->cs, pCtx->ip));
2680 fUpdateRIP = false;
2681 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIret);
2682 break;
2683 }
2684
2685 case OP_INT:
2686 {
2687 RTGCUINTPTR intInfo;
2688
2689 LogFlow(("Realmode: INT %x\n", Cpu.param1.parval & 0xff));
2690 intInfo = Cpu.param1.parval & 0xff;
2691 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
2692 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
2693
2694 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, intInfo, cbOp, 0);
2695 AssertRC(rc);
2696 fUpdateRIP = false;
2697 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInt);
2698 break;
2699 }
2700
2701 case OP_INTO:
2702 {
2703 if (pCtx->eflags.Bits.u1OF)
2704 {
2705 RTGCUINTPTR intInfo;
2706
2707 LogFlow(("Realmode: INTO\n"));
2708 intInfo = X86_XCPT_OF;
2709 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
2710 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
2711
2712 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, intInfo, cbOp, 0);
2713 AssertRC(rc);
2714 fUpdateRIP = false;
2715 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInt);
2716 }
2717 break;
2718 }
2719
2720 case OP_INT3:
2721 {
2722 RTGCUINTPTR intInfo;
2723
2724 LogFlow(("Realmode: INT 3\n"));
2725 intInfo = 3;
2726 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
2727 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
2728
2729 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, intInfo, cbOp, 0);
2730 AssertRC(rc);
2731 fUpdateRIP = false;
2732 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInt);
2733 break;
2734 }
2735
2736 default:
2737 rc = EMInterpretInstructionCPU(pVM, &Cpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
2738 break;
2739 }
2740
2741 if (rc == VINF_SUCCESS)
2742 {
2743 if (fUpdateRIP)
2744 pCtx->rip += cbOp; /* Move on to the next instruction. */
2745
2746 /* lidt, lgdt can end up here. In the future crx changes as well. Just reload the whole context to be done with it. */
2747 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
2748
2749 /* Only resume if successful. */
2750 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2751 goto ResumeExecution;
2752 }
2753 }
2754 else
2755 rc = VERR_EM_INTERPRETER;
2756
2757 AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT, ("Unexpected rc=%Rrc\n", rc));
2758 break;
2759 }
2760
2761#ifdef VBOX_STRICT
2762 case X86_XCPT_DE: /* Divide error. */
2763 case X86_XCPT_UD: /* Unknown opcode exception. */
2764 case X86_XCPT_SS: /* Stack segment exception. */
2765 case X86_XCPT_NP: /* Segment not present exception. */
2766 {
2767 switch(vector)
2768 {
2769 case X86_XCPT_DE:
2770 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDE);
2771 break;
2772 case X86_XCPT_UD:
2773 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestUD);
2774 break;
2775 case X86_XCPT_SS:
2776 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestSS);
2777 break;
2778 case X86_XCPT_NP:
2779 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNP);
2780 break;
2781 }
2782
2783 Log(("Trap %x at %04X:%RGv\n", vector, pCtx->cs, (RTGCPTR)pCtx->rip));
2784 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2785 AssertRC(rc);
2786
2787 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2788 goto ResumeExecution;
2789 }
2790#endif
2791 default:
2792#ifdef HWACCM_VMX_EMULATE_REALMODE
2793 if (CPUMIsGuestInRealModeEx(pCtx))
2794 {
2795 Log(("Real Mode Trap %x at %04x:%04X error code %x\n", vector, pCtx->cs, pCtx->eip, errCode));
2796 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
2797 AssertRC(rc);
2798
2799 /* Go back to ring 3 in case of a triple fault. */
2800 if ( vector == X86_XCPT_DF
2801 && rc == VINF_EM_RESET)
2802 break;
2803
2804 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2805 goto ResumeExecution;
2806 }
2807#endif
2808 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
2809 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
2810 break;
2811 } /* switch (vector) */
2812
2813 break;
2814
2815 default:
2816 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_CODE;
2817 AssertMsgFailed(("Unexpected interuption code %x\n", intInfo));
2818 break;
2819 }
2820
2821 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub3, y3);
2822 break;
2823 }
2824
2825 case VMX_EXIT_EPT_VIOLATION: /* 48 EPT violation. An attempt to access memory with a guest-physical address was disallowed by the configuration of the EPT paging structures. */
2826 {
2827 RTGCPHYS GCPhys;
2828
2829 Assert(pVM->hwaccm.s.fNestedPaging);
2830
2831 rc = VMXReadVMCS64(VMX_VMCS_EXIT_PHYS_ADDR_FULL, &GCPhys);
2832 AssertRC(rc);
2833 Assert(((exitQualification >> 7) & 3) != 2);
2834
2835 /* Determine the kind of violation. */
2836 errCode = 0;
2837 if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
2838 errCode |= X86_TRAP_PF_ID;
2839
2840 if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
2841 errCode |= X86_TRAP_PF_RW;
2842
2843 /* If the page is present, then it's a page level protection fault. */
2844 if (exitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
2845 errCode |= X86_TRAP_PF_P;
2846
2847 Log(("EPT Page fault %x at %RGp error code %x\n", (uint32_t)exitQualification, GCPhys, errCode));
2848
2849 /* GCPhys contains the guest physical address of the page fault. */
2850 TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP);
2851 TRPMSetErrorCode(pVM, errCode);
2852 TRPMSetFaultAddress(pVM, GCPhys);
2853
2854 /* Handle the pagefault trap for the nested shadow table. */
2855 rc = PGMR0Trap0eHandlerNestedPaging(pVM, PGMMODE_EPT, errCode, CPUMCTX2CORE(pCtx), GCPhys);
2856 Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
2857 if (rc == VINF_SUCCESS)
2858 { /* We've successfully synced our shadow pages, so let's just continue execution. */
2859 Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, exitQualification , errCode));
2860 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitReasonNPF);
2861
2862 TRPMResetTrap(pVM);
2863
2864 goto ResumeExecution;
2865 }
2866
2867#ifdef VBOX_STRICT
2868 if (rc != VINF_EM_RAW_EMULATE_INSTR)
2869 LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", rc));
2870#endif
2871 /* Need to go back to the recompiler to emulate the instruction. */
2872 TRPMResetTrap(pVM);
2873 break;
2874 }
2875
2876 case VMX_EXIT_EPT_MISCONFIG:
2877 {
2878 RTGCPHYS GCPhys;
2879
2880 Assert(pVM->hwaccm.s.fNestedPaging);
2881
2882 rc = VMXReadVMCS64(VMX_VMCS_EXIT_PHYS_ADDR_FULL, &GCPhys);
2883 AssertRC(rc);
2884
2885 Log(("VMX_EXIT_EPT_MISCONFIG for %VGp\n", GCPhys));
2886 break;
2887 }
2888
2889 case VMX_EXIT_IRQ_WINDOW: /* 7 Interrupt window. */
2890 /* Clear VM-exit on IF=1 change. */
2891 LogFlow(("VMX_EXIT_IRQ_WINDOW %RGv pending=%d IF=%d\n", (RTGCPTR)pCtx->rip, VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)), pCtx->eflags.Bits.u1IF));
2892 pVCpu->hwaccm.s.vmx.proc_ctls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_IRQ_WINDOW_EXIT;
2893 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
2894 AssertRC(rc);
2895 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIrqWindow);
2896 goto ResumeExecution; /* we check for pending guest interrupts there */
2897
2898 case VMX_EXIT_WBINVD: /* 54 Guest software attempted to execute WBINVD. (conditional) */
2899 case VMX_EXIT_INVD: /* 13 Guest software attempted to execute INVD. (unconditional) */
2900 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvd);
2901 /* Skip instruction and continue directly. */
2902 pCtx->rip += cbInstr;
2903 /* Continue execution.*/
2904 goto ResumeExecution;
2905
2906 case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */
2907 {
2908 Log2(("VMX: Cpuid %x\n", pCtx->eax));
2909 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCpuid);
2910 rc = EMInterpretCpuId(pVM, CPUMCTX2CORE(pCtx));
2911 if (rc == VINF_SUCCESS)
2912 {
2913 /* Update EIP and continue execution. */
2914 Assert(cbInstr == 2);
2915 pCtx->rip += cbInstr;
2916 goto ResumeExecution;
2917 }
2918 AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", rc));
2919 rc = VINF_EM_RAW_EMULATE_INSTR;
2920 break;
2921 }
2922
2923 case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */
2924 {
2925 Log2(("VMX: Rdtsc\n"));
2926 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
2927 rc = EMInterpretRdtsc(pVM, CPUMCTX2CORE(pCtx));
2928 if (rc == VINF_SUCCESS)
2929 {
2930 /* Update EIP and continue execution. */
2931 Assert(cbInstr == 2);
2932 pCtx->rip += cbInstr;
2933 goto ResumeExecution;
2934 }
2935 AssertMsgFailed(("EMU: rdtsc failed with %Rrc\n", rc));
2936 rc = VINF_EM_RAW_EMULATE_INSTR;
2937 break;
2938 }
2939
2940 case VMX_EXIT_INVPG: /* 14 Guest software attempted to execute INVPG. */
2941 {
2942 Log2(("VMX: invlpg\n"));
2943 Assert(!pVM->hwaccm.s.fNestedPaging);
2944
2945 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvpg);
2946 rc = EMInterpretInvlpg(pVM, CPUMCTX2CORE(pCtx), exitQualification);
2947 if (rc == VINF_SUCCESS)
2948 {
2949 /* Update EIP and continue execution. */
2950 pCtx->rip += cbInstr;
2951 goto ResumeExecution;
2952 }
2953 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: invlpg %RGv failed with %Rrc\n", exitQualification, rc));
2954 break;
2955 }
2956
2957 case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */
2958 case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */
2959 {
2960 uint32_t cbSize;
2961
2962 /* Note: the intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2963 Log2(("VMX: %s\n", (exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr"));
2964 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
2965 if (rc == VINF_SUCCESS)
2966 {
2967 /* EIP has been updated already. */
2968
2969 /* Only resume if successful. */
2970 goto ResumeExecution;
2971 }
2972 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr", rc));
2973 break;
2974 }
2975
2976 case VMX_EXIT_CRX_MOVE: /* 28 Control-register accesses. */
2977 {
2978 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit2Sub2, y2);
2979
2980 switch (VMX_EXIT_QUALIFICATION_CRX_ACCESS(exitQualification))
2981 {
2982 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE:
2983 Log2(("VMX: %RGv mov cr%d, x\n", (RTGCPTR)pCtx->rip, VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)));
2984 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)]);
2985 rc = EMInterpretCRxWrite(pVM, CPUMCTX2CORE(pCtx),
2986 VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification),
2987 VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification));
2988
2989 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification))
2990 {
2991 case 0:
2992 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0 | HWACCM_CHANGED_GUEST_CR3;
2993 break;
2994 case 2:
2995 break;
2996 case 3:
2997 Assert(!pVM->hwaccm.s.fNestedPaging || !CPUMIsGuestInPagedProtectedModeEx(pCtx));
2998 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR3;
2999 break;
3000 case 4:
3001 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR4;
3002 break;
3003 case 8:
3004 /* CR8 contains the APIC TPR */
3005 Assert(!(pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW));
3006 break;
3007
3008 default:
3009 AssertFailed();
3010 break;
3011 }
3012 /* Check if a sync operation is pending. */
3013 if ( rc == VINF_SUCCESS /* don't bother if we are going to ring 3 anyway */
3014 && VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL))
3015 {
3016 rc = PGMSyncCR3(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
3017 AssertRC(rc);
3018 }
3019 break;
3020
3021 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ:
3022 Log2(("VMX: mov x, crx\n"));
3023 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)]);
3024
3025 Assert(!pVM->hwaccm.s.fNestedPaging || !CPUMIsGuestInPagedProtectedModeEx(pCtx) || VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification) != USE_REG_CR3);
3026
3027 /* CR8 reads only cause an exit when the TPR shadow feature isn't present. */
3028 Assert(VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification) != 8 || !(pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW));
3029
3030 rc = EMInterpretCRxRead(pVM, CPUMCTX2CORE(pCtx),
3031 VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification),
3032 VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification));
3033 break;
3034
3035 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS:
3036 Log2(("VMX: clts\n"));
3037 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCLTS);
3038 rc = EMInterpretCLTS(pVM);
3039 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
3040 break;
3041
3042 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW:
3043 Log2(("VMX: lmsw %x\n", VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification)));
3044 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitLMSW);
3045 rc = EMInterpretLMSW(pVM, CPUMCTX2CORE(pCtx), VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification));
3046 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
3047 break;
3048 }
3049
3050 /* Update EIP if no error occurred. */
3051 if (RT_SUCCESS(rc))
3052 pCtx->rip += cbInstr;
3053
3054 if (rc == VINF_SUCCESS)
3055 {
3056 /* Only resume if successful. */
3057 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub2, y2);
3058 goto ResumeExecution;
3059 }
3060 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
3061 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub2, y2);
3062 break;
3063 }
3064
3065 case VMX_EXIT_DRX_MOVE: /* 29 Debug-register accesses. */
3066 {
3067 if (!DBGFIsStepping(pVM))
3068 {
3069 /* Disable drx move intercepts. */
3070 pVCpu->hwaccm.s.vmx.proc_ctls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
3071 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
3072 AssertRC(rc);
3073
3074 /* Save the host and load the guest debug state. */
3075 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
3076 AssertRC(rc);
3077
3078#ifdef VBOX_WITH_STATISTICS
3079 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
3080 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
3081 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxWrite);
3082 else
3083 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
3084#endif
3085
3086 goto ResumeExecution;
3087 }
3088
3089 /** @todo clear VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT after the first time and restore drx registers afterwards */
3090 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
3091 {
3092 Log2(("VMX: mov drx%d, genreg%d\n", VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification), VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification)));
3093 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxWrite);
3094 rc = EMInterpretDRxWrite(pVM, CPUMCTX2CORE(pCtx),
3095 VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification),
3096 VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification));
3097 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
3098 Log2(("DR7=%08x\n", pCtx->dr[7]));
3099 }
3100 else
3101 {
3102 Log2(("VMX: mov x, drx\n"));
3103 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
3104 rc = EMInterpretDRxRead(pVM, CPUMCTX2CORE(pCtx),
3105 VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification),
3106 VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification));
3107 }
3108 /* Update EIP if no error occurred. */
3109 if (RT_SUCCESS(rc))
3110 pCtx->rip += cbInstr;
3111
3112 if (rc == VINF_SUCCESS)
3113 {
3114 /* Only resume if successful. */
3115 goto ResumeExecution;
3116 }
3117 Assert(rc == VERR_EM_INTERPRETER);
3118 break;
3119 }
3120
3121 /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
3122 case VMX_EXIT_PORT_IO: /* 30 I/O instruction. */
3123 {
3124 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit2Sub1, y1);
3125 uint32_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(exitQualification);
3126 uint32_t uPort;
3127 bool fIOWrite = (VMX_EXIT_QUALIFICATION_IO_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
3128
3129 /** @todo necessary to make the distinction? */
3130 if (VMX_EXIT_QUALIFICATION_IO_ENCODING(exitQualification) == VMX_EXIT_QUALIFICATION_IO_ENCODING_DX)
3131 {
3132 uPort = pCtx->edx & 0xffff;
3133 }
3134 else
3135 uPort = VMX_EXIT_QUALIFICATION_IO_PORT(exitQualification); /* Immediate encoding. */
3136
3137 /* paranoia */
3138 if (RT_UNLIKELY(uIOWidth == 2 || uIOWidth >= 4))
3139 {
3140 rc = fIOWrite ? VINF_IOM_HC_IOPORT_WRITE : VINF_IOM_HC_IOPORT_READ;
3141 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub1, y1);
3142 break;
3143 }
3144
3145 uint32_t cbSize = g_aIOSize[uIOWidth];
3146
3147 if (VMX_EXIT_QUALIFICATION_IO_STRING(exitQualification))
3148 {
3149 /* ins/outs */
3150 DISCPUSTATE Cpu;
3151
3152 /* Disassemble manually to deal with segment prefixes. */
3153 /** @todo VMX_VMCS_EXIT_GUEST_LINEAR_ADDR contains the flat pointer operand of the instruction. */
3154 /** @todo VMX_VMCS32_RO_EXIT_INSTR_INFO also contains segment prefix info. */
3155 rc = EMInterpretDisasOne(pVM, CPUMCTX2CORE(pCtx), &Cpu, NULL);
3156 if (rc == VINF_SUCCESS)
3157 {
3158 if (fIOWrite)
3159 {
3160 Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, uPort, cbSize));
3161 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringWrite);
3162 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), uPort, Cpu.prefix, cbSize);
3163 }
3164 else
3165 {
3166 Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, uPort, cbSize));
3167 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringRead);
3168 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), uPort, Cpu.prefix, cbSize);
3169 }
3170 }
3171 else
3172 rc = VINF_EM_RAW_EMULATE_INSTR;
3173 }
3174 else
3175 {
3176 /* normal in/out */
3177 uint32_t uAndVal = g_aIOOpAnd[uIOWidth];
3178
3179 Assert(!VMX_EXIT_QUALIFICATION_IO_REP(exitQualification));
3180
3181 if (fIOWrite)
3182 {
3183 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOWrite);
3184 rc = IOMIOPortWrite(pVM, uPort, pCtx->eax & uAndVal, cbSize);
3185 }
3186 else
3187 {
3188 uint32_t u32Val = 0;
3189
3190 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIORead);
3191 rc = IOMIOPortRead(pVM, uPort, &u32Val, cbSize);
3192 if (IOM_SUCCESS(rc))
3193 {
3194 /* Write back to the EAX register. */
3195 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
3196 }
3197 }
3198 }
3199 /*
3200 * Handled the I/O return codes.
3201 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
3202 */
3203 if (IOM_SUCCESS(rc))
3204 {
3205 /* Update EIP and continue execution. */
3206 pCtx->rip += cbInstr;
3207 if (RT_LIKELY(rc == VINF_SUCCESS))
3208 {
3209 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
3210 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
3211 {
3212 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxIOCheck);
3213 for (unsigned i=0;i<4;i++)
3214 {
3215 unsigned uBPLen = g_aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
3216
3217 if ( (uPort >= pCtx->dr[i] && uPort < pCtx->dr[i] + uBPLen)
3218 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
3219 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
3220 {
3221 uint64_t uDR6;
3222
3223 Assert(CPUMIsGuestDebugStateActive(pVM));
3224
3225 uDR6 = ASMGetDR6();
3226
3227 /* Clear all breakpoint status flags and set the one we just hit. */
3228 uDR6 &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
3229 uDR6 |= (uint64_t)RT_BIT(i);
3230
3231 /* Note: AMD64 Architecture Programmer's Manual 13.1:
3232 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared by software after
3233 * the contents have been read.
3234 */
3235 ASMSetDR6(uDR6);
3236
3237 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
3238 pCtx->dr[7] &= ~X86_DR7_GD;
3239
3240 /* Paranoia. */
3241 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
3242 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
3243 pCtx->dr[7] |= 0x400; /* must be one */
3244
3245 /* Resync DR7 */
3246 rc = VMXWriteVMCS64(VMX_VMCS64_GUEST_DR7, pCtx->dr[7]);
3247 AssertRC(rc);
3248
3249 /* Construct inject info. */
3250 intInfo = X86_XCPT_DB;
3251 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
3252 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HWEXCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
3253
3254 Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
3255 rc = VMXR0InjectEvent(pVM, pVCpu, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), 0, 0);
3256 AssertRC(rc);
3257
3258 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub1, y1);
3259 goto ResumeExecution;
3260 }
3261 }
3262 }
3263
3264 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub1, y1);
3265 goto ResumeExecution;
3266 }
3267 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub1, y1);
3268 break;
3269 }
3270
3271#ifdef VBOX_STRICT
3272 if (rc == VINF_IOM_HC_IOPORT_READ)
3273 Assert(!fIOWrite);
3274 else if (rc == VINF_IOM_HC_IOPORT_WRITE)
3275 Assert(fIOWrite);
3276 else
3277 AssertMsg(RT_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
3278#endif
3279 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2Sub1, y1);
3280 break;
3281 }
3282
3283 case VMX_EXIT_TPR: /* 43 TPR below threshold. Guest software executed MOV to CR8. */
3284 LogFlow(("VMX_EXIT_TPR\n"));
3285 /* RIP is already set to the next instruction and the TPR has been synced back. Just resume. */
3286 goto ResumeExecution;
3287
3288 case VMX_EXIT_PREEMPTION_TIMER: /* 52 VMX-preemption timer expired. The preemption timer counted down to zero. */
3289 goto ResumeExecution;
3290
3291 default:
3292 /* The rest is handled after syncing the entire CPU state. */
3293 break;
3294 }
3295
3296 /* Note: the guest state isn't entirely synced back at this stage. */
3297
3298 /* Investigate why there was a VM-exit. (part 2) */
3299 switch (exitReason)
3300 {
3301 case VMX_EXIT_EXCEPTION: /* 0 Exception or non-maskable interrupt (NMI). */
3302 case VMX_EXIT_EXTERNAL_IRQ: /* 1 External interrupt. */
3303 case VMX_EXIT_EPT_VIOLATION:
3304 case VMX_EXIT_PREEMPTION_TIMER: /* 52 VMX-preemption timer expired. The preemption timer counted down to zero. */
3305 /* Already handled above. */
3306 break;
3307
3308 case VMX_EXIT_TRIPLE_FAULT: /* 2 Triple fault. */
3309 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
3310 break;
3311
3312 case VMX_EXIT_INIT_SIGNAL: /* 3 INIT signal. */
3313 case VMX_EXIT_SIPI: /* 4 Start-up IPI (SIPI). */
3314 rc = VINF_EM_RAW_INTERRUPT;
3315 AssertFailed(); /* Can't happen. Yet. */
3316 break;
3317
3318 case VMX_EXIT_IO_SMI_IRQ: /* 5 I/O system-management interrupt (SMI). */
3319 case VMX_EXIT_SMI_IRQ: /* 6 Other SMI. */
3320 rc = VINF_EM_RAW_INTERRUPT;
3321 AssertFailed(); /* Can't happen afaik. */
3322 break;
3323
3324 case VMX_EXIT_TASK_SWITCH: /* 9 Task switch. */
3325 rc = VERR_EM_INTERPRETER;
3326 break;
3327
3328 case VMX_EXIT_HLT: /* 12 Guest software attempted to execute HLT. */
3329 /** Check if external interrupts are pending; if so, don't switch back. */
3330 pCtx->rip++; /* skip hlt */
3331 if ( pCtx->eflags.Bits.u1IF
3332 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
3333 goto ResumeExecution;
3334
3335 rc = VINF_EM_HALT;
3336 break;
3337
3338 case VMX_EXIT_RSM: /* 17 Guest software attempted to execute RSM in SMM. */
3339 AssertFailed(); /* can't happen. */
3340 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
3341 break;
3342
3343 case VMX_EXIT_VMCALL: /* 18 Guest software executed VMCALL. */
3344 case VMX_EXIT_VMCLEAR: /* 19 Guest software executed VMCLEAR. */
3345 case VMX_EXIT_VMLAUNCH: /* 20 Guest software executed VMLAUNCH. */
3346 case VMX_EXIT_VMPTRLD: /* 21 Guest software executed VMPTRLD. */
3347 case VMX_EXIT_VMPTRST: /* 22 Guest software executed VMPTRST. */
3348 case VMX_EXIT_VMREAD: /* 23 Guest software executed VMREAD. */
3349 case VMX_EXIT_VMRESUME: /* 24 Guest software executed VMRESUME. */
3350 case VMX_EXIT_VMWRITE: /* 25 Guest software executed VMWRITE. */
3351 case VMX_EXIT_VMXOFF: /* 26 Guest software executed VMXOFF. */
3352 case VMX_EXIT_VMXON: /* 27 Guest software executed VMXON. */
3353 /** @todo inject #UD immediately */
3354 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
3355 break;
3356
3357 case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */
3358 case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */
3359 case VMX_EXIT_INVPG: /* 14 Guest software attempted to execute INVPG. */
3360 case VMX_EXIT_CRX_MOVE: /* 28 Control-register accesses. */
3361 case VMX_EXIT_DRX_MOVE: /* 29 Debug-register accesses. */
3362 case VMX_EXIT_PORT_IO: /* 30 I/O instruction. */
3363 /* already handled above */
3364 AssertMsg( rc == VINF_PGM_CHANGE_MODE
3365 || rc == VINF_EM_RAW_INTERRUPT
3366 || rc == VERR_EM_INTERPRETER
3367 || rc == VINF_EM_RAW_EMULATE_INSTR
3368 || rc == VINF_PGM_SYNC_CR3
3369 || rc == VINF_IOM_HC_IOPORT_READ
3370 || rc == VINF_IOM_HC_IOPORT_WRITE
3371 || rc == VINF_EM_RAW_GUEST_TRAP
3372 || rc == VINF_TRPM_XCPT_DISPATCHED
3373 || rc == VINF_EM_RESCHEDULE_REM,
3374 ("rc = %d\n", rc));
3375 break;
3376
3377 case VMX_EXIT_TPR: /* 43 TPR below threshold. Guest software executed MOV to CR8. */
3378 case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */
3379 case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */
3380 /* Note: If we decide to emulate them here, then we must sync the MSRs that could have been changed (sysenter, fs/gs base)!!! */
3381 rc = VERR_EM_INTERPRETER;
3382 break;
3383
3384 case VMX_EXIT_RDPMC: /* 15 Guest software attempted to execute RDPMC. */
3385 case VMX_EXIT_MWAIT: /* 36 Guest software executed MWAIT. */
3386 case VMX_EXIT_MONITOR: /* 39 Guest software attempted to execute MONITOR. */
3387 case VMX_EXIT_PAUSE: /* 40 Guest software attempted to execute PAUSE. */
3388 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
3389 break;
3390
3391 case VMX_EXIT_IRQ_WINDOW: /* 7 Interrupt window. */
3392 Assert(rc == VINF_EM_RAW_INTERRUPT);
3393 break;
3394
3395 case VMX_EXIT_ERR_INVALID_GUEST_STATE: /* 33 VM-entry failure due to invalid guest state. */
3396 {
3397#ifdef VBOX_STRICT
3398 RTCCUINTREG val = 0;
3399
3400 Log(("VMX_EXIT_ERR_INVALID_GUEST_STATE\n"));
3401
3402 VMXReadVMCS(VMX_VMCS64_GUEST_RIP, &val);
3403 Log(("Old eip %RGv new %RGv\n", (RTGCPTR)pCtx->rip, (RTGCPTR)val));
3404
3405 VMXReadVMCS(VMX_VMCS64_GUEST_CR0, &val);
3406 Log(("VMX_VMCS_GUEST_CR0 %RX64\n", (uint64_t)val));
3407
3408 VMXReadVMCS(VMX_VMCS64_GUEST_CR3, &val);
3409 Log(("VMX_VMCS_GUEST_CR3 %RX64\n", (uint64_t)val));
3410
3411 VMXReadVMCS(VMX_VMCS64_GUEST_CR4, &val);
3412 Log(("VMX_VMCS_GUEST_CR4 %RX64\n", (uint64_t)val));
3413
3414 VMXReadVMCS(VMX_VMCS_GUEST_RFLAGS, &val);
3415 Log(("VMX_VMCS_GUEST_RFLAGS %08x\n", val));
3416
3417 VMX_LOG_SELREG(CS, "CS");
3418 VMX_LOG_SELREG(DS, "DS");
3419 VMX_LOG_SELREG(ES, "ES");
3420 VMX_LOG_SELREG(FS, "FS");
3421 VMX_LOG_SELREG(GS, "GS");
3422 VMX_LOG_SELREG(SS, "SS");
3423 VMX_LOG_SELREG(TR, "TR");
3424 VMX_LOG_SELREG(LDTR, "LDTR");
3425
3426 VMXReadVMCS(VMX_VMCS64_GUEST_GDTR_BASE, &val);
3427 Log(("VMX_VMCS_GUEST_GDTR_BASE %RX64\n", (uint64_t)val));
3428 VMXReadVMCS(VMX_VMCS64_GUEST_IDTR_BASE, &val);
3429 Log(("VMX_VMCS_GUEST_IDTR_BASE %RX64\n", (uint64_t)val));
3430#endif /* VBOX_STRICT */
3431 rc = VERR_VMX_INVALID_GUEST_STATE;
3432 break;
3433 }
3434
3435 case VMX_EXIT_ERR_MSR_LOAD: /* 34 VM-entry failure due to MSR loading. */
3436 case VMX_EXIT_ERR_MACHINE_CHECK: /* 41 VM-entry failure due to machine-check. */
3437 default:
3438 rc = VERR_VMX_UNEXPECTED_EXIT_CODE;
3439 AssertMsgFailed(("Unexpected exit code %d\n", exitReason)); /* Can't happen. */
3440 break;
3441
3442 }
3443end:
3444
3445 /* Signal changes for the recompiler. */
3446 CPUMSetChangedFlags(pVM, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS);
3447
3448 /* If we executed vmlaunch/vmresume and an external irq was pending, then we don't have to do a full sync the next time. */
3449 if ( exitReason == VMX_EXIT_EXTERNAL_IRQ
3450 && !VMX_EXIT_INTERRUPTION_INFO_VALID(intInfo))
3451 {
3452 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatPendingHostIrq);
3453 /* On the next entry we'll only sync the host context. */
3454 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_HOST_CONTEXT;
3455 }
3456 else
3457 {
3458 /* On the next entry we'll sync everything. */
3459 /** @todo we can do better than this */
3460 /* Not in the VINF_PGM_CHANGE_MODE though! */
3461 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
3462 }
3463
3464 /* translate into a less severe return code */
3465 if (rc == VERR_EM_INTERPRETER)
3466 rc = VINF_EM_RAW_EMULATE_INSTR;
3467 else
3468 /* Try to extract more information about what might have gone wrong here. */
3469 if (rc == VERR_VMX_INVALID_VMCS_PTR)
3470 {
3471 VMXGetActivateVMCS(&pVCpu->hwaccm.s.vmx.lasterror.u64VMCSPhys);
3472 pVCpu->hwaccm.s.vmx.lasterror.ulVMCSRevision = *(uint32_t *)pVCpu->hwaccm.s.vmx.pVMCS;
3473 pVCpu->hwaccm.s.vmx.lasterror.idEnteredCpu = pVCpu->hwaccm.s.idEnteredCpu;
3474 pVCpu->hwaccm.s.vmx.lasterror.idCurrentCpu = RTMpCpuId();
3475 }
3476
3477 STAM_STATS({
3478 if (fStatExit2Started) STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit2, y);
3479 else if (fStatEntryStarted) STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
3480 });
3481 Log2(("X"));
3482 return rc;
3483}
3484
3485
3486/**
3487 * Enters the VT-x session
3488 *
3489 * @returns VBox status code.
3490 * @param pVM The VM to operate on.
3491 * @param pVCpu The VMCPU to operate on.
3492 * @param pCpu CPU info struct
3493 */
3494VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHWACCM_CPUINFO pCpu)
3495{
3496 Assert(pVM->hwaccm.s.vmx.fSupported);
3497
3498 unsigned cr4 = ASMGetCR4();
3499 if (!(cr4 & X86_CR4_VMXE))
3500 {
3501 AssertMsgFailed(("X86_CR4_VMXE should be set!\n"));
3502 return VERR_VMX_X86_CR4_VMXE_CLEARED;
3503 }
3504
3505 /* Activate the VM Control Structure. */
3506 int rc = VMXActivateVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
3507 if (RT_FAILURE(rc))
3508 return rc;
3509
3510 pVCpu->hwaccm.s.fResumeVM = false;
3511 return VINF_SUCCESS;
3512}
3513
3514
3515/**
3516 * Leaves the VT-x session
3517 *
3518 * @returns VBox status code.
3519 * @param pVM The VM to operate on.
3520 * @param pVCpu The VMCPU to operate on.
3521 * @param pCtx CPU context
3522 */
3523VMMR0DECL(int) VMXR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3524{
3525 Assert(pVM->hwaccm.s.vmx.fSupported);
3526
3527 /* Save the guest debug state if necessary. */
3528 if (CPUMIsGuestDebugStateActive(pVM))
3529 {
3530 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, true /* save DR6 */);
3531
3532 /* Enable drx move intercepts again. */
3533 pVCpu->hwaccm.s.vmx.proc_ctls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT;
3534 int rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVCpu->hwaccm.s.vmx.proc_ctls);
3535 AssertRC(rc);
3536
3537 /* Resync the debug registers the next time. */
3538 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
3539 }
3540 else
3541 Assert(pVCpu->hwaccm.s.vmx.proc_ctls & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT);
3542
3543 /* Clear VM Control Structure. Marking it inactive, clearing implementation specific data and writing back VMCS data to memory. */
3544 int rc = VMXClearVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
3545 AssertRC(rc);
3546
3547 return VINF_SUCCESS;
3548}
3549
3550/**
3551 * Flush the TLB (EPT)
3552 *
3553 * @returns VBox status code.
3554 * @param pVM The VM to operate on.
3555 * @param pVCpu The VM CPU to operate on.
3556 * @param enmFlush Type of flush
3557 * @param GCPhys Physical address of the page to flush
3558 */
3559static void vmxR0FlushEPT(PVM pVM, PVMCPU pVCpu, VMX_FLUSH enmFlush, RTGCPHYS GCPhys)
3560{
3561 uint64_t descriptor[2];
3562
3563 LogFlow(("vmxR0FlushEPT %d %RGv\n", enmFlush, GCPhys));
3564 Assert(pVM->hwaccm.s.fNestedPaging);
3565 descriptor[0] = pVCpu->hwaccm.s.vmx.GCPhysEPTP;
3566 descriptor[1] = GCPhys;
3567 int rc = VMXR0InvEPT(enmFlush, &descriptor[0]);
3568 AssertRC(rc);
3569}
3570
3571#ifdef HWACCM_VTX_WITH_VPID
3572/**
3573 * Flush the TLB (EPT)
3574 *
3575 * @returns VBox status code.
3576 * @param pVM The VM to operate on.
3577 * @param pVCpu The VM CPU to operate on.
3578 * @param enmFlush Type of flush
3579 * @param GCPtr Virtual address of the page to flush
3580 */
3581static void vmxR0FlushVPID(PVM pVM, PVMCPU pVCpu, VMX_FLUSH enmFlush, RTGCPTR GCPtr)
3582{
3583#if HC_ARCH_BITS == 32
3584 /* If we get a flush in 64 bits guest mode, then force a full TLB flush. Invvpid probably takes only 32 bits addresses. (@todo) */
3585 if ( CPUMIsGuestInLongMode(pVM)
3586 && !VMX_IS_64BIT_HOST_MODE())
3587 {
3588 pVCpu->hwaccm.s.fForceTLBFlush = true;
3589 }
3590 else
3591#endif
3592 {
3593 uint64_t descriptor[2];
3594
3595 Assert(pVM->hwaccm.s.vmx.fVPID);
3596 descriptor[0] = pVCpu->hwaccm.s.uCurrentASID;
3597 descriptor[1] = GCPtr;
3598 int rc = VMXR0InvVPID(enmFlush, &descriptor[0]);
3599 AssertRC(rc);
3600 }
3601}
3602#endif /* HWACCM_VTX_WITH_VPID */
3603
3604/**
3605 * Invalidates a guest page
3606 *
3607 * @returns VBox status code.
3608 * @param pVM The VM to operate on.
3609 * @param pVCpu The VM CPU to operate on.
3610 * @param GCVirt Page to invalidate
3611 */
3612VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
3613{
3614 bool fFlushPending = pVCpu->hwaccm.s.fForceTLBFlush;
3615
3616 Log2(("VMXR0InvalidatePage %RGv\n", GCVirt));
3617
3618 /* Only relevant if we want to use VPID.
3619 * In the nested paging case we still see such calls, but
3620 * can safely ignore them. (e.g. after cr3 updates)
3621 */
3622#ifdef HWACCM_VTX_WITH_VPID
3623 /* Skip it if a TLB flush is already pending. */
3624 if ( !fFlushPending
3625 && pVM->hwaccm.s.vmx.fVPID)
3626 vmxR0FlushVPID(pVM, pVCpu, pVM->hwaccm.s.vmx.enmFlushPage, GCVirt);
3627#endif /* HWACCM_VTX_WITH_VPID */
3628
3629 return VINF_SUCCESS;
3630}
3631
3632/**
3633 * Invalidates a guest page by physical address
3634 *
3635 * NOTE: Assumes the current instruction references this physical page though a virtual address!!
3636 *
3637 * @returns VBox status code.
3638 * @param pVM The VM to operate on.
3639 * @param pVCpu The VM CPU to operate on.
3640 * @param GCPhys Page to invalidate
3641 */
3642VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
3643{
3644 bool fFlushPending = pVCpu->hwaccm.s.fForceTLBFlush;
3645
3646 Assert(pVM->hwaccm.s.fNestedPaging);
3647
3648 LogFlow(("VMXR0InvalidatePhysPage %RGp\n", GCPhys));
3649
3650 /* Skip it if a TLB flush is already pending. */
3651 if (!fFlushPending)
3652 vmxR0FlushEPT(pVM, pVCpu, pVM->hwaccm.s.vmx.enmFlushPage, GCPhys);
3653
3654 return VINF_SUCCESS;
3655}
3656
3657/**
3658 * Report world switch error and dump some useful debug info
3659 *
3660 * @param pVM The VM to operate on.
3661 * @param pVCpu The VMCPU to operate on.
3662 * @param rc Return code
3663 * @param pCtx Current CPU context (not updated)
3664 */
3665static void VMXR0ReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rc, PCPUMCTX pCtx)
3666{
3667 switch (rc)
3668 {
3669 case VERR_VMX_INVALID_VMXON_PTR:
3670 AssertFailed();
3671 break;
3672
3673 case VERR_VMX_UNABLE_TO_START_VM:
3674 case VERR_VMX_UNABLE_TO_RESUME_VM:
3675 {
3676 int rc;
3677 RTCCUINTREG exitReason, instrError;
3678
3679 rc = VMXReadVMCS(VMX_VMCS32_RO_EXIT_REASON, &exitReason);
3680 rc |= VMXReadVMCS(VMX_VMCS32_RO_VM_INSTR_ERROR, &instrError);
3681 AssertRC(rc);
3682 if (rc == VINF_SUCCESS)
3683 {
3684 Log(("Unable to start/resume VM for reason: %x. Instruction error %x\n", (uint32_t)exitReason, (uint32_t)instrError));
3685 Log(("Current stack %08x\n", &rc));
3686
3687 pVCpu->hwaccm.s.vmx.lasterror.ulInstrError = instrError;
3688 pVCpu->hwaccm.s.vmx.lasterror.ulExitReason = exitReason;
3689
3690#ifdef VBOX_STRICT
3691 RTGDTR gdtr;
3692 PX86DESCHC pDesc;
3693 RTCCUINTREG val;
3694
3695 ASMGetGDTR(&gdtr);
3696
3697 VMXReadVMCS(VMX_VMCS64_GUEST_RIP, &val);
3698 Log(("Old eip %RGv new %RGv\n", (RTGCPTR)pCtx->rip, (RTGCPTR)val));
3699 VMXReadVMCS(VMX_VMCS_CTRL_PIN_EXEC_CONTROLS, &val);
3700 Log(("VMX_VMCS_CTRL_PIN_EXEC_CONTROLS %08x\n", val));
3701 VMXReadVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, &val);
3702 Log(("VMX_VMCS_CTRL_PROC_EXEC_CONTROLS %08x\n", val));
3703 VMXReadVMCS(VMX_VMCS_CTRL_ENTRY_CONTROLS, &val);
3704 Log(("VMX_VMCS_CTRL_ENTRY_CONTROLS %08x\n", val));
3705 VMXReadVMCS(VMX_VMCS_CTRL_EXIT_CONTROLS, &val);
3706 Log(("VMX_VMCS_CTRL_EXIT_CONTROLS %08x\n", val));
3707
3708 VMXReadVMCS(VMX_VMCS_HOST_CR0, &val);
3709 Log(("VMX_VMCS_HOST_CR0 %08x\n", val));
3710
3711 VMXReadVMCS(VMX_VMCS_HOST_CR3, &val);
3712 Log(("VMX_VMCS_HOST_CR3 %08x\n", val));
3713
3714 VMXReadVMCS(VMX_VMCS_HOST_CR4, &val);
3715 Log(("VMX_VMCS_HOST_CR4 %08x\n", val));
3716
3717 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_CS, &val);
3718 Log(("VMX_VMCS_HOST_FIELD_CS %08x\n", val));
3719
3720 VMXReadVMCS(VMX_VMCS_GUEST_RFLAGS, &val);
3721 Log(("VMX_VMCS_GUEST_RFLAGS %08x\n", val));
3722
3723 if (val < gdtr.cbGdt)
3724 {
3725 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3726 HWACCMR0DumpDescriptor(pDesc, val, "CS: ");
3727 }
3728
3729 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_DS, &val);
3730 Log(("VMX_VMCS_HOST_FIELD_DS %08x\n", val));
3731 if (val < gdtr.cbGdt)
3732 {
3733 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3734 HWACCMR0DumpDescriptor(pDesc, val, "DS: ");
3735 }
3736
3737 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_ES, &val);
3738 Log(("VMX_VMCS_HOST_FIELD_ES %08x\n", val));
3739 if (val < gdtr.cbGdt)
3740 {
3741 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3742 HWACCMR0DumpDescriptor(pDesc, val, "ES: ");
3743 }
3744
3745 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_FS, &val);
3746 Log(("VMX_VMCS16_HOST_FIELD_FS %08x\n", val));
3747 if (val < gdtr.cbGdt)
3748 {
3749 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3750 HWACCMR0DumpDescriptor(pDesc, val, "FS: ");
3751 }
3752
3753 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_GS, &val);
3754 Log(("VMX_VMCS16_HOST_FIELD_GS %08x\n", val));
3755 if (val < gdtr.cbGdt)
3756 {
3757 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3758 HWACCMR0DumpDescriptor(pDesc, val, "GS: ");
3759 }
3760
3761 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_SS, &val);
3762 Log(("VMX_VMCS16_HOST_FIELD_SS %08x\n", val));
3763 if (val < gdtr.cbGdt)
3764 {
3765 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3766 HWACCMR0DumpDescriptor(pDesc, val, "SS: ");
3767 }
3768
3769 VMXReadVMCS(VMX_VMCS16_HOST_FIELD_TR, &val);
3770 Log(("VMX_VMCS16_HOST_FIELD_TR %08x\n", val));
3771 if (val < gdtr.cbGdt)
3772 {
3773 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
3774 HWACCMR0DumpDescriptor(pDesc, val, "TR: ");
3775 }
3776
3777 VMXReadVMCS(VMX_VMCS_HOST_TR_BASE, &val);
3778 Log(("VMX_VMCS_HOST_TR_BASE %RHv\n", val));
3779
3780 VMXReadVMCS(VMX_VMCS_HOST_GDTR_BASE, &val);
3781 Log(("VMX_VMCS_HOST_GDTR_BASE %RHv\n", val));
3782 VMXReadVMCS(VMX_VMCS_HOST_IDTR_BASE, &val);
3783 Log(("VMX_VMCS_HOST_IDTR_BASE %RHv\n", val));
3784
3785 VMXReadVMCS(VMX_VMCS32_HOST_SYSENTER_CS, &val);
3786 Log(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", val));
3787
3788 VMXReadVMCS(VMX_VMCS_HOST_SYSENTER_EIP, &val);
3789 Log(("VMX_VMCS_HOST_SYSENTER_EIP %RHv\n", val));
3790
3791 VMXReadVMCS(VMX_VMCS_HOST_SYSENTER_ESP, &val);
3792 Log(("VMX_VMCS_HOST_SYSENTER_ESP %RHv\n", val));
3793
3794 VMXReadVMCS(VMX_VMCS_HOST_RSP, &val);
3795 Log(("VMX_VMCS_HOST_RSP %RHv\n", val));
3796 VMXReadVMCS(VMX_VMCS_HOST_RIP, &val);
3797 Log(("VMX_VMCS_HOST_RIP %RHv\n", val));
3798
3799# if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3800 if (VMX_IS_64BIT_HOST_MODE())
3801 {
3802 Log(("MSR_K6_EFER = %RX64\n", ASMRdMsr(MSR_K6_EFER)));
3803 Log(("MSR_K6_STAR = %RX64\n", ASMRdMsr(MSR_K6_STAR)));
3804 Log(("MSR_K8_LSTAR = %RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
3805 Log(("MSR_K8_CSTAR = %RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
3806 Log(("MSR_K8_SF_MASK = %RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
3807 }
3808# endif
3809#endif /* VBOX_STRICT */
3810 }
3811 break;
3812 }
3813
3814 default:
3815 /* impossible */
3816 AssertMsgFailed(("%Rrc (%#x)\n", rc, rc));
3817 break;
3818 }
3819}
3820
3821#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
3822/**
3823 * Prepares for and executes VMLAUNCH (64 bits guest mode)
3824 *
3825 * @returns VBox status code
3826 * @param fResume vmlauch/vmresume
3827 * @param pCtx Guest context
3828 * @param pCache VMCS cache
3829 * @param pVM The VM to operate on.
3830 * @param pVCpu The VMCPU to operate on.
3831 */
3832DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
3833{
3834 uint32_t aParam[6];
3835 PHWACCM_CPUINFO pCpu;
3836 RTHCPHYS pPageCpuPhys;
3837 int rc;
3838
3839 pCpu = HWACCMR0GetCurrentCpu();
3840 pPageCpuPhys = RTR0MemObjGetPagePhysAddr(pCpu->pMemObj, 0);
3841
3842#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3843 pCache->uPos = 1;
3844 pCache->interPD = PGMGetInterPaeCR3(pVM);
3845 pCache->pSwitcher = (uint64_t)pVM->hwaccm.s.pfnHost32ToGuest64R0;
3846#endif
3847
3848#ifdef DEBUG
3849 pCache->TestIn.pPageCpuPhys = 0;
3850 pCache->TestIn.pVMCSPhys = 0;
3851 pCache->TestIn.pCache = 0;
3852 pCache->TestOut.pVMCSPhys = 0;
3853 pCache->TestOut.pCache = 0;
3854 pCache->TestOut.pCtx = 0;
3855 pCache->TestOut.eflags = 0;
3856#endif
3857
3858 aParam[0] = (uint32_t)(pPageCpuPhys); /* Param 1: VMXON physical address - Lo. */
3859 aParam[1] = (uint32_t)(pPageCpuPhys >> 32); /* Param 1: VMXON physical address - Hi. */
3860 aParam[2] = (uint32_t)(pVCpu->hwaccm.s.vmx.pVMCSPhys); /* Param 2: VMCS physical address - Lo. */
3861 aParam[3] = (uint32_t)(pVCpu->hwaccm.s.vmx.pVMCSPhys >> 32); /* Param 2: VMCS physical address - Hi. */
3862 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hwaccm.s.vmx.VMCSCache);
3863 aParam[5] = 0;
3864
3865#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3866 pCtx->dr[4] = pVM->hwaccm.s.vmx.pScratchPhys + 16 + 8;
3867 *(uint32_t *)(pVM->hwaccm.s.vmx.pScratch + 16 + 8) = 1;
3868#endif
3869 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnVMXGCStartVM64, 6, &aParam[0]);
3870
3871#ifdef VBOX_WITH_CRASHDUMP_MAGIC
3872 Assert(*(uint32_t *)(pVM->hwaccm.s.vmx.pScratch + 16 + 8) == 5);
3873 Assert(pCtx->dr[4] == 10);
3874 *(uint32_t *)(pVM->hwaccm.s.vmx.pScratch + 16 + 8) = 0xff;
3875#endif
3876
3877#ifdef DEBUG
3878 AssertMsg(pCache->TestIn.pPageCpuPhys == pPageCpuPhys, ("%RHp vs %RHp\n", pCache->TestIn.pPageCpuPhys, pPageCpuPhys));
3879 AssertMsg(pCache->TestIn.pVMCSPhys == pVCpu->hwaccm.s.vmx.pVMCSPhys, ("%RHp vs %RHp\n", pCache->TestIn.pVMCSPhys, pVCpu->hwaccm.s.vmx.pVMCSPhys));
3880 AssertMsg(pCache->TestIn.pVMCSPhys == pCache->TestOut.pVMCSPhys, ("%RHp vs %RHp\n", pCache->TestIn.pVMCSPhys, pCache->TestOut.pVMCSPhys));
3881 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache, pCache->TestOut.pCache));
3882 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hwaccm.s.vmx.VMCSCache), ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hwaccm.s.vmx.VMCSCache)));
3883 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx, pCache->TestOut.pCtx));
3884 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
3885#endif
3886 return rc;
3887}
3888
3889/**
3890 * Executes the specified handler in 64 mode
3891 *
3892 * @returns VBox status code.
3893 * @param pVM The VM to operate on.
3894 * @param pVCpu The VMCPU to operate on.
3895 * @param pCtx Guest context
3896 * @param pfnHandler RC handler
3897 * @param cbParam Number of parameters
3898 * @param paParam Array of 32 bits parameters
3899 */
3900VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTRCPTR pfnHandler, uint32_t cbParam, uint32_t *paParam)
3901{
3902 int rc, rc2;
3903 PHWACCM_CPUINFO pCpu;
3904 RTHCPHYS pPageCpuPhys;
3905
3906 /* @todo This code is not guest SMP safe (hyper context) */
3907 AssertReturn(pVM->cCPUs == 1, VERR_ACCESS_DENIED);
3908 AssertReturn(pVM->hwaccm.s.pfnHost32ToGuest64R0, VERR_INTERNAL_ERROR);
3909 Assert(pVCpu->hwaccm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hwaccm.s.vmx.VMCSCache.Write.aField));
3910 Assert(pVCpu->hwaccm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hwaccm.s.vmx.VMCSCache.Read.aField));
3911
3912#ifdef VBOX_STRICT
3913 for (unsigned i=0;i<pVCpu->hwaccm.s.vmx.VMCSCache.Write.cValidEntries;i++)
3914 Assert(vmxR0IsValidWriteField(pVCpu->hwaccm.s.vmx.VMCSCache.Write.aField[i]));
3915
3916 for (unsigned i=0;i<pVCpu->hwaccm.s.vmx.VMCSCache.Read.cValidEntries;i++)
3917 Assert(vmxR0IsValidReadField(pVCpu->hwaccm.s.vmx.VMCSCache.Read.aField[i]));
3918#endif
3919
3920 pCpu = HWACCMR0GetCurrentCpu();
3921 pPageCpuPhys = RTR0MemObjGetPagePhysAddr(pCpu->pMemObj, 0);
3922
3923 /* Clear VM Control Structure. Marking it inactive, clearing implementation specific data and writing back VMCS data to memory. */
3924 VMXClearVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
3925
3926 /* Leave VMX Root Mode. */
3927 VMXDisable();
3928
3929 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
3930
3931 CPUMSetHyperESP(pVM, VMMGetStackRC(pVM));
3932 CPUMSetHyperEIP(pVM, pfnHandler);
3933 for (int i=(int)cbParam-1;i>=0;i--)
3934 CPUMPushHyper(pVM, paParam[i]);
3935
3936 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
3937 /* Call switcher. */
3938 rc = pVM->hwaccm.s.pfnHost32ToGuest64R0(pVM);
3939 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
3940
3941 /* Make sure the VMX instructions don't cause #UD faults. */
3942 ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE);
3943
3944 /* Enter VMX Root Mode */
3945 rc2 = VMXEnable(pPageCpuPhys);
3946 if (RT_FAILURE(rc2))
3947 {
3948 if (pVM)
3949 VMXR0CheckError(pVM, pVCpu, rc2);
3950 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
3951 return VERR_VMX_VMXON_FAILED;
3952 }
3953
3954 rc2 = VMXActivateVMCS(pVCpu->hwaccm.s.vmx.pVMCSPhys);
3955 AssertRCReturn(rc2, rc2);
3956#ifdef RT_OS_WINDOWS
3957 Assert(ASMGetFlags() & X86_EFL_IF);
3958#else
3959 Assert(!(ASMGetFlags() & X86_EFL_IF));
3960#endif
3961 return rc;
3962}
3963
3964#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
3965
3966
3967#if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
3968/**
3969 * Executes VMWRITE
3970 *
3971 * @returns VBox status code
3972 * @param pVCpu The VMCPU to operate on.
3973 * @param idxField VMCS index
3974 * @param u64Val 16, 32 or 64 bits value
3975 */
3976VMMR0DECL(int) VMXWriteVMCS64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
3977{
3978 int rc;
3979
3980 switch (idxField)
3981 {
3982 case VMX_VMCS_CTRL_TSC_OFFSET_FULL:
3983 case VMX_VMCS_CTRL_IO_BITMAP_A_FULL:
3984 case VMX_VMCS_CTRL_IO_BITMAP_B_FULL:
3985 case VMX_VMCS_CTRL_MSR_BITMAP_FULL:
3986 case VMX_VMCS_CTRL_VMEXIT_MSR_STORE_FULL:
3987 case VMX_VMCS_CTRL_VMEXIT_MSR_LOAD_FULL:
3988 case VMX_VMCS_CTRL_VMENTRY_MSR_LOAD_FULL:
3989 case VMX_VMCS_CTRL_VAPIC_PAGEADDR_FULL:
3990 case VMX_VMCS_GUEST_LINK_PTR_FULL:
3991 case VMX_VMCS_GUEST_PDPTR0_FULL:
3992 case VMX_VMCS_GUEST_PDPTR1_FULL:
3993 case VMX_VMCS_GUEST_PDPTR2_FULL:
3994 case VMX_VMCS_GUEST_PDPTR3_FULL:
3995 case VMX_VMCS_GUEST_DEBUGCTL_FULL:
3996 case VMX_VMCS_GUEST_EFER_FULL:
3997 case VMX_VMCS_CTRL_EPTP_FULL:
3998 /* These fields consist of two parts, which are both writable in 32 bits mode. */
3999 rc = VMXWriteVMCS32(idxField, u64Val);
4000 rc |= VMXWriteVMCS32(idxField + 1, (uint32_t)(u64Val >> 32ULL));
4001 AssertRC(rc);
4002 return rc;
4003
4004 case VMX_VMCS64_GUEST_LDTR_BASE:
4005 case VMX_VMCS64_GUEST_TR_BASE:
4006 case VMX_VMCS64_GUEST_GDTR_BASE:
4007 case VMX_VMCS64_GUEST_IDTR_BASE:
4008 case VMX_VMCS64_GUEST_SYSENTER_EIP:
4009 case VMX_VMCS64_GUEST_SYSENTER_ESP:
4010 case VMX_VMCS64_GUEST_CR0:
4011 case VMX_VMCS64_GUEST_CR4:
4012 case VMX_VMCS64_GUEST_CR3:
4013 case VMX_VMCS64_GUEST_DR7:
4014 case VMX_VMCS64_GUEST_RIP:
4015 case VMX_VMCS64_GUEST_RSP:
4016 case VMX_VMCS64_GUEST_CS_BASE:
4017 case VMX_VMCS64_GUEST_DS_BASE:
4018 case VMX_VMCS64_GUEST_ES_BASE:
4019 case VMX_VMCS64_GUEST_FS_BASE:
4020 case VMX_VMCS64_GUEST_GS_BASE:
4021 case VMX_VMCS64_GUEST_SS_BASE:
4022 /* Queue a 64 bits value as we can't set it in 32 bits host mode. */
4023 if (u64Val >> 32ULL)
4024 rc = VMXWriteCachedVMCSEx(pVCpu, idxField, u64Val);
4025 else
4026 rc = VMXWriteVMCS32(idxField, (uint32_t)u64Val);
4027
4028 return rc;
4029
4030 default:
4031 AssertMsgFailed(("Unexpected field %x\n", idxField));
4032 return VERR_INVALID_PARAMETER;
4033 }
4034}
4035
4036/**
4037 * Cache VMCS writes for performance reasons (Darwin) and for running 64 bits guests on 32 bits hosts.
4038 *
4039 * @param pVCpu The VMCPU to operate on.
4040 * @param idxField VMCS field
4041 * @param u64Val Value
4042 */
4043VMMR0DECL(int) VMXWriteCachedVMCSEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
4044{
4045 PVMCSCACHE pCache = &pVCpu->hwaccm.s.vmx.VMCSCache;
4046
4047 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1, ("entries=%x\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
4048
4049 /* Make sure there are no duplicates. */
4050 for (unsigned i=0;i<pCache->Write.cValidEntries;i++)
4051 {
4052 if (pCache->Write.aField[i] == idxField)
4053 {
4054 pCache->Write.aFieldVal[i] = u64Val;
4055 return VINF_SUCCESS;
4056 }
4057 }
4058
4059 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
4060 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
4061 pCache->Write.cValidEntries++;
4062 return VINF_SUCCESS;
4063}
4064
4065#endif /* HC_ARCH_BITS == 32 && !VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
4066
4067#ifdef VBOX_STRICT
4068static bool vmxR0IsValidReadField(uint32_t idxField)
4069{
4070 switch(idxField)
4071 {
4072 case VMX_VMCS64_GUEST_RIP:
4073 case VMX_VMCS64_GUEST_RSP:
4074 case VMX_VMCS_GUEST_RFLAGS:
4075 case VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE:
4076 case VMX_VMCS_CTRL_CR0_READ_SHADOW:
4077 case VMX_VMCS64_GUEST_CR0:
4078 case VMX_VMCS_CTRL_CR4_READ_SHADOW:
4079 case VMX_VMCS64_GUEST_CR4:
4080 case VMX_VMCS64_GUEST_DR7:
4081 case VMX_VMCS32_GUEST_SYSENTER_CS:
4082 case VMX_VMCS64_GUEST_SYSENTER_EIP:
4083 case VMX_VMCS64_GUEST_SYSENTER_ESP:
4084 case VMX_VMCS32_GUEST_GDTR_LIMIT:
4085 case VMX_VMCS64_GUEST_GDTR_BASE:
4086 case VMX_VMCS32_GUEST_IDTR_LIMIT:
4087 case VMX_VMCS64_GUEST_IDTR_BASE:
4088 case VMX_VMCS16_GUEST_FIELD_CS:
4089 case VMX_VMCS32_GUEST_CS_LIMIT:
4090 case VMX_VMCS64_GUEST_CS_BASE:
4091 case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
4092 case VMX_VMCS16_GUEST_FIELD_DS:
4093 case VMX_VMCS32_GUEST_DS_LIMIT:
4094 case VMX_VMCS64_GUEST_DS_BASE:
4095 case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
4096 case VMX_VMCS16_GUEST_FIELD_ES:
4097 case VMX_VMCS32_GUEST_ES_LIMIT:
4098 case VMX_VMCS64_GUEST_ES_BASE:
4099 case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
4100 case VMX_VMCS16_GUEST_FIELD_FS:
4101 case VMX_VMCS32_GUEST_FS_LIMIT:
4102 case VMX_VMCS64_GUEST_FS_BASE:
4103 case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
4104 case VMX_VMCS16_GUEST_FIELD_GS:
4105 case VMX_VMCS32_GUEST_GS_LIMIT:
4106 case VMX_VMCS64_GUEST_GS_BASE:
4107 case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
4108 case VMX_VMCS16_GUEST_FIELD_SS:
4109 case VMX_VMCS32_GUEST_SS_LIMIT:
4110 case VMX_VMCS64_GUEST_SS_BASE:
4111 case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
4112 case VMX_VMCS16_GUEST_FIELD_LDTR:
4113 case VMX_VMCS32_GUEST_LDTR_LIMIT:
4114 case VMX_VMCS64_GUEST_LDTR_BASE:
4115 case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
4116 case VMX_VMCS16_GUEST_FIELD_TR:
4117 case VMX_VMCS32_GUEST_TR_LIMIT:
4118 case VMX_VMCS64_GUEST_TR_BASE:
4119 case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
4120 case VMX_VMCS32_RO_EXIT_REASON:
4121 case VMX_VMCS32_RO_VM_INSTR_ERROR:
4122 case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
4123 case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERRCODE:
4124 case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
4125 case VMX_VMCS32_RO_EXIT_INSTR_INFO:
4126 case VMX_VMCS_RO_EXIT_QUALIFICATION:
4127 case VMX_VMCS32_RO_IDT_INFO:
4128 case VMX_VMCS32_RO_IDT_ERRCODE:
4129 case VMX_VMCS64_GUEST_CR3:
4130 case VMX_VMCS_EXIT_PHYS_ADDR_FULL:
4131 return true;
4132 }
4133 return false;
4134}
4135
4136static bool vmxR0IsValidWriteField(uint32_t idxField)
4137{
4138 switch(idxField)
4139 {
4140 case VMX_VMCS64_GUEST_LDTR_BASE:
4141 case VMX_VMCS64_GUEST_TR_BASE:
4142 case VMX_VMCS64_GUEST_GDTR_BASE:
4143 case VMX_VMCS64_GUEST_IDTR_BASE:
4144 case VMX_VMCS64_GUEST_SYSENTER_EIP:
4145 case VMX_VMCS64_GUEST_SYSENTER_ESP:
4146 case VMX_VMCS64_GUEST_CR0:
4147 case VMX_VMCS64_GUEST_CR4:
4148 case VMX_VMCS64_GUEST_CR3:
4149 case VMX_VMCS64_GUEST_DR7:
4150 case VMX_VMCS64_GUEST_RIP:
4151 case VMX_VMCS64_GUEST_RSP:
4152 case VMX_VMCS64_GUEST_CS_BASE:
4153 case VMX_VMCS64_GUEST_DS_BASE:
4154 case VMX_VMCS64_GUEST_ES_BASE:
4155 case VMX_VMCS64_GUEST_FS_BASE:
4156 case VMX_VMCS64_GUEST_GS_BASE:
4157 case VMX_VMCS64_GUEST_SS_BASE:
4158 return true;
4159 }
4160 return false;
4161}
4162
4163#endif
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette