VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWVMXR0.cpp@ 11347

Last change on this file since 11347 was 10886, checked in by vboxsync, 16 years ago

Fixes for syncing back sysenter MSRs.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 85.3 KB
Line 
1/* $Id: HWVMXR0.cpp 10886 2008-07-25 11:30:55Z vboxsync $ */
2/** @file
3 * HWACCM VMX - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_HWACCM
27#include <VBox/hwaccm.h>
28#include "HWACCMInternal.h"
29#include <VBox/vm.h>
30#include <VBox/x86.h>
31#include <VBox/pgm.h>
32#include <VBox/pdm.h>
33#include <VBox/err.h>
34#include <VBox/log.h>
35#include <VBox/selm.h>
36#include <VBox/iom.h>
37#include <iprt/param.h>
38#include <iprt/assert.h>
39#include <iprt/asm.h>
40#include <iprt/string.h>
41#include "HWVMXR0.h"
42
43
44/* IO operation lookup arrays. */
45static uint32_t aIOSize[4] = {1, 2, 0, 4};
46static uint32_t aIOOpAnd[4] = {0xff, 0xffff, 0, 0xffffffff};
47
48
49static void VMXR0CheckError(PVM pVM, int rc)
50{
51 if (rc == VERR_VMX_GENERIC)
52 {
53 RTCCUINTREG instrError;
54
55 VMXReadVMCS(VMX_VMCS_RO_VM_INSTR_ERROR, &instrError);
56 pVM->hwaccm.s.vmx.ulLastInstrError = instrError;
57 }
58 pVM->hwaccm.s.lLastError = rc;
59}
60
61/**
62 * Sets up and activates VT-x on the current CPU
63 *
64 * @returns VBox status code.
65 * @param pCpu CPU info struct
66 * @param pVM The VM to operate on.
67 * @param pvPageCpu Pointer to the global cpu page
68 * @param pPageCpuPhys Physical address of the global cpu page
69 */
70HWACCMR0DECL(int) VMXR0EnableCpu(PHWACCM_CPUINFO pCpu, PVM pVM, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
71{
72 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
73 AssertReturn(pVM, VERR_INVALID_PARAMETER);
74 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
75
76 /* Setup Intel VMX. */
77 Assert(pVM->hwaccm.s.vmx.fSupported);
78
79#ifdef LOG_ENABLED
80 SUPR0Printf("VMXR0EnableCpu cpu %d page (%x) %x\n", pCpu->idCpu, pvPageCpu, (uint32_t)pPageCpuPhys);
81#endif
82 /* Set revision dword at the beginning of the VMXON structure. */
83 *(uint32_t *)pvPageCpu = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hwaccm.s.vmx.msr.vmx_basic_info);
84
85 /* @todo we should unmap the two pages from the virtual address space in order to prevent accidental corruption.
86 * (which can have very bad consequences!!!)
87 */
88
89 /* Make sure the VMX instructions don't cause #UD faults. */
90 ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE);
91
92 /* Enter VMX Root Mode */
93 int rc = VMXEnable(pPageCpuPhys);
94 if (VBOX_FAILURE(rc))
95 {
96 VMXR0CheckError(pVM, rc);
97 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
98 return VERR_VMX_VMXON_FAILED;
99 }
100 return VINF_SUCCESS;
101}
102
103/**
104 * Deactivates VT-x on the current CPU
105 *
106 * @returns VBox status code.
107 * @param pCpu CPU info struct
108 * @param pvPageCpu Pointer to the global cpu page
109 * @param pPageCpuPhys Physical address of the global cpu page
110 */
111HWACCMR0DECL(int) VMXR0DisableCpu(PHWACCM_CPUINFO pCpu, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
112{
113 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
114 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
115
116 /* Leave VMX Root Mode. */
117 VMXDisable();
118
119 /* And clear the X86_CR4_VMXE bit */
120 ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
121
122#ifdef LOG_ENABLED
123 SUPR0Printf("VMXR0DisableCpu cpu %d\n", pCpu->idCpu);
124#endif
125 return VINF_SUCCESS;
126}
127
128/**
129 * Does Ring-0 per VM VT-x init.
130 *
131 * @returns VBox status code.
132 * @param pVM The VM to operate on.
133 */
134HWACCMR0DECL(int) VMXR0InitVM(PVM pVM)
135{
136 int rc;
137
138#ifdef LOG_ENABLED
139 SUPR0Printf("VMXR0InitVM %x\n", pVM);
140#endif
141 pVM->hwaccm.s.vmx.pMemObjVMCS = NIL_RTR0MEMOBJ;
142 pVM->hwaccm.s.vmx.pMemObjAPIC = NIL_RTR0MEMOBJ;
143 pVM->hwaccm.s.vmx.pMemObjRealModeTSS = NIL_RTR0MEMOBJ;
144
145
146 /* Allocate one page for the VM control structure (VMCS). */
147 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.vmx.pMemObjVMCS, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
148 AssertRC(rc);
149 if (RT_FAILURE(rc))
150 return rc;
151
152 pVM->hwaccm.s.vmx.pVMCS = RTR0MemObjAddress(pVM->hwaccm.s.vmx.pMemObjVMCS);
153 pVM->hwaccm.s.vmx.pVMCSPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.vmx.pMemObjVMCS, 0);
154 ASMMemZero32(pVM->hwaccm.s.vmx.pVMCS, PAGE_SIZE);
155
156 /* Allocate one page for the TSS we need for real mode emulation. */
157 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.vmx.pMemObjRealModeTSS, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
158 AssertRC(rc);
159 if (RT_FAILURE(rc))
160 return rc;
161
162 pVM->hwaccm.s.vmx.pRealModeTSS = (PVBOXTSS)RTR0MemObjAddress(pVM->hwaccm.s.vmx.pMemObjRealModeTSS);
163 pVM->hwaccm.s.vmx.pRealModeTSSPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.vmx.pMemObjRealModeTSS, 0);
164
165 /* The I/O bitmap starts right after the virtual interrupt redirection bitmap. Outside the TSS on purpose; the CPU will not check it
166 * for I/O operations. */
167 ASMMemZero32(pVM->hwaccm.s.vmx.pRealModeTSS, PAGE_SIZE);
168 pVM->hwaccm.s.vmx.pRealModeTSS->offIoBitmap = sizeof(*pVM->hwaccm.s.vmx.pRealModeTSS);
169 /* Bit set to 0 means redirection enabled. */
170 memset(pVM->hwaccm.s.vmx.pRealModeTSS->IntRedirBitmap, 0x0, sizeof(pVM->hwaccm.s.vmx.pRealModeTSS->IntRedirBitmap));
171
172 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
173 {
174 /* Allocate one page for the virtual APIC mmio cache. */
175 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.vmx.pMemObjAPIC, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
176 AssertRC(rc);
177 if (RT_FAILURE(rc))
178 return rc;
179
180 pVM->hwaccm.s.vmx.pAPIC = (uint8_t *)RTR0MemObjAddress(pVM->hwaccm.s.vmx.pMemObjAPIC);
181 pVM->hwaccm.s.vmx.pAPICPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.vmx.pMemObjAPIC, 0);
182 ASMMemZero32(pVM->hwaccm.s.vmx.pAPIC, PAGE_SIZE);
183 }
184 else
185 {
186 pVM->hwaccm.s.vmx.pMemObjAPIC = 0;
187 pVM->hwaccm.s.vmx.pAPIC = 0;
188 pVM->hwaccm.s.vmx.pAPICPhys = 0;
189 }
190
191#ifdef LOG_ENABLED
192 SUPR0Printf("VMXR0InitVM %x VMCS=%x (%x) RealModeTSS=%x (%x)\n", pVM, pVM->hwaccm.s.vmx.pVMCS, (uint32_t)pVM->hwaccm.s.vmx.pVMCSPhys, pVM->hwaccm.s.vmx.pRealModeTSS, (uint32_t)pVM->hwaccm.s.vmx.pRealModeTSSPhys);
193#endif
194 return VINF_SUCCESS;
195}
196
197/**
198 * Does Ring-0 per VM VT-x termination.
199 *
200 * @returns VBox status code.
201 * @param pVM The VM to operate on.
202 */
203HWACCMR0DECL(int) VMXR0TermVM(PVM pVM)
204{
205 if (pVM->hwaccm.s.vmx.pMemObjVMCS != NIL_RTR0MEMOBJ)
206 {
207 RTR0MemObjFree(pVM->hwaccm.s.vmx.pMemObjVMCS, false);
208 pVM->hwaccm.s.vmx.pMemObjVMCS = NIL_RTR0MEMOBJ;
209 pVM->hwaccm.s.vmx.pVMCS = 0;
210 pVM->hwaccm.s.vmx.pVMCSPhys = 0;
211 }
212 if (pVM->hwaccm.s.vmx.pMemObjRealModeTSS != NIL_RTR0MEMOBJ)
213 {
214 RTR0MemObjFree(pVM->hwaccm.s.vmx.pMemObjRealModeTSS, false);
215 pVM->hwaccm.s.vmx.pMemObjRealModeTSS = NIL_RTR0MEMOBJ;
216 pVM->hwaccm.s.vmx.pRealModeTSS = 0;
217 pVM->hwaccm.s.vmx.pRealModeTSSPhys = 0;
218 }
219 if (pVM->hwaccm.s.vmx.pMemObjAPIC != NIL_RTR0MEMOBJ)
220 {
221 RTR0MemObjFree(pVM->hwaccm.s.vmx.pMemObjAPIC, false);
222 pVM->hwaccm.s.vmx.pMemObjAPIC = NIL_RTR0MEMOBJ;
223 pVM->hwaccm.s.vmx.pAPIC = 0;
224 pVM->hwaccm.s.vmx.pAPICPhys = 0;
225 }
226 return VINF_SUCCESS;
227}
228
229/**
230 * Sets up VT-x for the specified VM
231 *
232 * @returns VBox status code.
233 * @param pVM The VM to operate on.
234 */
235HWACCMR0DECL(int) VMXR0SetupVM(PVM pVM)
236{
237 int rc = VINF_SUCCESS;
238 uint32_t val;
239
240 AssertReturn(pVM, VERR_INVALID_PARAMETER);
241 Assert(pVM->hwaccm.s.vmx.pVMCS);
242
243 /* Set revision dword at the beginning of the VMCS structure. */
244 *(uint32_t *)pVM->hwaccm.s.vmx.pVMCS = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hwaccm.s.vmx.msr.vmx_basic_info);
245
246 /* Clear VM Control Structure. */
247 Log(("pVMCSPhys = %VHp\n", pVM->hwaccm.s.vmx.pVMCSPhys));
248 rc = VMXClearVMCS(pVM->hwaccm.s.vmx.pVMCSPhys);
249 if (VBOX_FAILURE(rc))
250 goto vmx_end;
251
252 /* Activate the VM Control Structure. */
253 rc = VMXActivateVMCS(pVM->hwaccm.s.vmx.pVMCSPhys);
254 if (VBOX_FAILURE(rc))
255 goto vmx_end;
256
257 /* VMX_VMCS_CTRL_PIN_EXEC_CONTROLS
258 * Set required bits to one and zero according to the MSR capabilities.
259 */
260 val = pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.disallowed0;
261 /* External and non-maskable interrupts cause VM-exits. */
262 val = val | VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_EXT_INT_EXIT | VMX_VMCS_CTRL_PIN_EXEC_CONTROLS_NMI_EXIT;
263 val &= pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.allowed1;
264
265 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PIN_EXEC_CONTROLS, val);
266 AssertRC(rc);
267
268 /* VMX_VMCS_CTRL_PROC_EXEC_CONTROLS
269 * Set required bits to one and zero according to the MSR capabilities.
270 */
271 val = pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.disallowed0;
272 /* Program which event cause VM-exits and which features we want to use. */
273 val = val | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_HLT_EXIT
274 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_TSC_OFFSET
275 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_INVLPG_EXIT
276 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT
277 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_UNCOND_IO_EXIT
278 | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MWAIT_EXIT; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */
279
280 /** @note VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MWAIT_EXIT might cause a vmlaunch failure with an invalid control fields error. (combined with some other exit reasons) */
281
282#if HC_ARCH_BITS == 64
283 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
284 {
285 /* CR8 reads from the APIC shadow page; writes cause an exit is they lower the TPR below the threshold */
286 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW;
287 Assert(pVM->hwaccm.s.vmx.pAPIC);
288 }
289 else
290 /* Exit on CR8 reads & writes in case the TPR shadow feature isn't present. */
291 val |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_CR8_LOAD_EXIT;
292#endif
293 /* Mask away the bits that the CPU doesn't support */
294 /** @todo make sure they don't conflict with the above requirements. */
295 val &= pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1;
296 pVM->hwaccm.s.vmx.proc_ctls = val;
297
298 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, val);
299 AssertRC(rc);
300
301 /* VMX_VMCS_CTRL_CR3_TARGET_COUNT
302 * Set required bits to one and zero according to the MSR capabilities.
303 */
304 rc = VMXWriteVMCS(VMX_VMCS_CTRL_CR3_TARGET_COUNT, 0);
305 AssertRC(rc);
306
307 /* VMX_VMCS_CTRL_EXIT_CONTROLS
308 * Set required bits to one and zero according to the MSR capabilities.
309 */
310 val = pVM->hwaccm.s.vmx.msr.vmx_exit.n.disallowed0;
311#if HC_ARCH_BITS == 64
312 val |= VMX_VMCS_CTRL_EXIT_CONTROLS_HOST_AMD64;
313#else
314 /* else Must be zero when AMD64 is not available. */
315#endif
316 val &= pVM->hwaccm.s.vmx.msr.vmx_exit.n.allowed1;
317 /* Don't acknowledge external interrupts on VM-exit. */
318 rc = VMXWriteVMCS(VMX_VMCS_CTRL_EXIT_CONTROLS, val);
319 AssertRC(rc);
320
321 /* Forward all exception except #NM & #PF to the guest.
322 * We always need to check pagefaults since our shadow page table can be out of sync.
323 * And we always lazily sync the FPU & XMM state.
324 */
325
326 /*
327 * @todo Possible optimization:
328 * Keep the FPU and XMM state current in the EM thread. That way there's no need to
329 * lazily sync anything, but the downside is that we can't use the FPU stack or XMM
330 * registers ourselves of course.
331 *
332 * @note only possible if the current state is actually ours (X86_CR0_TS flag)
333 */
334 rc = VMXWriteVMCS(VMX_VMCS_CTRL_EXCEPTION_BITMAP, HWACCM_VMX_TRAP_MASK);
335 AssertRC(rc);
336
337 /* Don't filter page faults; all of them should cause a switch. */
338 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PAGEFAULT_ERROR_MASK, 0);
339 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_PAGEFAULT_ERROR_MATCH, 0);
340 AssertRC(rc);
341
342 /* Init TSC offset to zero. */
343 rc = VMXWriteVMCS(VMX_VMCS_CTRL_TSC_OFFSET_FULL, 0);
344#if HC_ARCH_BITS == 32
345 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_TSC_OFFSET_HIGH, 0);
346#endif
347 AssertRC(rc);
348
349 rc = VMXWriteVMCS(VMX_VMCS_CTRL_IO_BITMAP_A_FULL, 0);
350#if HC_ARCH_BITS == 32
351 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_IO_BITMAP_A_HIGH, 0);
352#endif
353 AssertRC(rc);
354
355 rc = VMXWriteVMCS(VMX_VMCS_CTRL_IO_BITMAP_B_FULL, 0);
356#if HC_ARCH_BITS == 32
357 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_IO_BITMAP_B_HIGH, 0);
358#endif
359 AssertRC(rc);
360
361 /* Clear MSR controls. */
362 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_MSR_BITMAPS)
363 {
364 /* Optional */
365 rc = VMXWriteVMCS(VMX_VMCS_CTRL_MSR_BITMAP_FULL, 0);
366#if HC_ARCH_BITS == 32
367 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_MSR_BITMAP_HIGH, 0);
368#endif
369 AssertRC(rc);
370 }
371 rc = VMXWriteVMCS(VMX_VMCS_CTRL_VMEXIT_MSR_STORE_FULL, 0);
372 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VMEXIT_MSR_LOAD_FULL, 0);
373 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VMENTRY_MSR_LOAD_FULL, 0);
374#if HC_ARCH_BITS == 32
375 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VMEXIT_MSR_STORE_HIGH, 0);
376 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VMEXIT_MSR_LOAD_HIGH, 0);
377 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VMEXIT_MSR_LOAD_HIGH, 0);
378#endif
379 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_EXIT_MSR_STORE_COUNT, 0);
380 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_EXIT_MSR_LOAD_COUNT, 0);
381 AssertRC(rc);
382
383 if (pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW)
384 {
385 Assert(pVM->hwaccm.s.vmx.pMemObjAPIC);
386 /* Optional */
387 rc = VMXWriteVMCS(VMX_VMCS_CTRL_TPR_THRESHOLD, 0);
388 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VAPIC_PAGEADDR_FULL, pVM->hwaccm.s.vmx.pAPICPhys);
389#if HC_ARCH_BITS == 32
390 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_VAPIC_PAGEADDR_HIGH, pVM->hwaccm.s.vmx.pAPICPhys >> 32);
391#endif
392 AssertRC(rc);
393 }
394
395 /* Set link pointer to -1. Not currently used. */
396#if HC_ARCH_BITS == 32
397 rc = VMXWriteVMCS(VMX_VMCS_GUEST_LINK_PTR_FULL, 0xFFFFFFFF);
398 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LINK_PTR_HIGH, 0xFFFFFFFF);
399#else
400 rc = VMXWriteVMCS(VMX_VMCS_GUEST_LINK_PTR_FULL, 0xFFFFFFFFFFFFFFFF);
401#endif
402 AssertRC(rc);
403
404 /* Clear VM Control Structure. Marking it inactive, clearing implementation specific data and writing back VMCS data to memory. */
405 rc = VMXClearVMCS(pVM->hwaccm.s.vmx.pVMCSPhys);
406 AssertRC(rc);
407
408vmx_end:
409 VMXR0CheckError(pVM, rc);
410 return rc;
411}
412
413
414/**
415 * Injects an event (trap or external interrupt)
416 *
417 * @returns VBox status code.
418 * @param pVM The VM to operate on.
419 * @param pCtx CPU Context
420 * @param intInfo VMX interrupt info
421 * @param cbInstr Opcode length of faulting instruction
422 * @param errCode Error code (optional)
423 */
424static int VMXR0InjectEvent(PVM pVM, CPUMCTX *pCtx, uint32_t intInfo, uint32_t cbInstr, uint32_t errCode)
425{
426 int rc;
427
428#ifdef VBOX_STRICT
429 uint32_t iGate = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo);
430 if (iGate == 0xE)
431 Log2(("VMXR0InjectEvent: Injecting interrupt %d at %VGv error code=%08x CR2=%08x intInfo=%08x\n", iGate, pCtx->rip, errCode, pCtx->cr2, intInfo));
432 else
433 if (iGate < 0x20)
434 Log2(("VMXR0InjectEvent: Injecting interrupt %d at %VGv error code=%08x\n", iGate, pCtx->rip, errCode));
435 else
436 {
437 Log2(("INJ-EI: %x at %VGv\n", iGate, pCtx->rip));
438 Assert(!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS));
439 Assert(pCtx->eflags.u32 & X86_EFL_IF);
440 }
441#endif
442
443 /* Set event injection state. */
444 rc = VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_IRQ_INFO,
445 intInfo | (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT)
446 );
447
448 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
449 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_EXCEPTION_ERRCODE, errCode);
450
451 AssertRC(rc);
452 return rc;
453}
454
455
456/**
457 * Checks for pending guest interrupts and injects them
458 *
459 * @returns VBox status code.
460 * @param pVM The VM to operate on.
461 * @param pCtx CPU Context
462 */
463static int VMXR0CheckPendingInterrupt(PVM pVM, CPUMCTX *pCtx)
464{
465 int rc;
466
467 /* Dispatch any pending interrupts. (injected before, but a VM exit occurred prematurely) */
468 if (pVM->hwaccm.s.Event.fPending)
469 {
470 Log(("Reinjecting event %VX64 %08x at %VGv cr2=%RX64\n", pVM->hwaccm.s.Event.intInfo, pVM->hwaccm.s.Event.errCode, pCtx->rip, pCtx->cr2));
471 STAM_COUNTER_INC(&pVM->hwaccm.s.StatIntReinject);
472 rc = VMXR0InjectEvent(pVM, pCtx, pVM->hwaccm.s.Event.intInfo, 0, pVM->hwaccm.s.Event.errCode);
473 AssertRC(rc);
474
475 pVM->hwaccm.s.Event.fPending = false;
476 return VINF_SUCCESS;
477 }
478
479 /* When external interrupts are pending, we should exit the VM when IF is set. */
480 if ( !TRPMHasTrap(pVM)
481 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
482 {
483 if (!(pCtx->eflags.u32 & X86_EFL_IF))
484 {
485 Log2(("Enable irq window exit!\n"));
486 pVM->hwaccm.s.vmx.proc_ctls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_IRQ_WINDOW_EXIT;
487 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVM->hwaccm.s.vmx.proc_ctls);
488 AssertRC(rc);
489 }
490 else
491 if (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
492 {
493 uint8_t u8Interrupt;
494
495 rc = PDMGetInterrupt(pVM, &u8Interrupt);
496 Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Vrc\n", u8Interrupt, u8Interrupt, rc));
497 if (VBOX_SUCCESS(rc))
498 {
499 rc = TRPMAssertTrap(pVM, u8Interrupt, TRPM_HARDWARE_INT);
500 AssertRC(rc);
501 }
502 else
503 {
504 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
505 Assert(!VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)));
506 STAM_COUNTER_INC(&pVM->hwaccm.s.StatSwitchGuestIrq);
507 /* Just continue */
508 }
509 }
510 else
511 Log(("Pending interrupt blocked at %VGv by VM_FF_INHIBIT_INTERRUPTS!!\n", pCtx->rip));
512 }
513
514#ifdef VBOX_STRICT
515 if (TRPMHasTrap(pVM))
516 {
517 uint8_t u8Vector;
518 rc = TRPMQueryTrapAll(pVM, &u8Vector, 0, 0, 0);
519 AssertRC(rc);
520 }
521#endif
522
523 if ( pCtx->eflags.u32 & X86_EFL_IF
524 && (!VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
525 && TRPMHasTrap(pVM)
526 )
527 {
528 uint8_t u8Vector;
529 int rc;
530 TRPMEVENT enmType;
531 RTGCUINTPTR intInfo;
532 RTGCUINT errCode;
533
534 /* If a new event is pending, then dispatch it now. */
535 rc = TRPMQueryTrapAll(pVM, &u8Vector, &enmType, &errCode, 0);
536 AssertRC(rc);
537 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
538 Assert(enmType != TRPM_SOFTWARE_INT);
539
540 /* Clear the pending trap. */
541 rc = TRPMResetTrap(pVM);
542 AssertRC(rc);
543
544 intInfo = u8Vector;
545 intInfo |= (1 << VMX_EXIT_INTERRUPTION_INFO_VALID_SHIFT);
546
547 if (enmType == TRPM_TRAP)
548 {
549 switch (u8Vector) {
550 case 8:
551 case 10:
552 case 11:
553 case 12:
554 case 13:
555 case 14:
556 case 17:
557 /* Valid error codes. */
558 intInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
559 break;
560 default:
561 break;
562 }
563 if (u8Vector == X86_XCPT_BP || u8Vector == X86_XCPT_OF)
564 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SWEXCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
565 else
566 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HWEXCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
567 }
568 else
569 intInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
570
571 STAM_COUNTER_INC(&pVM->hwaccm.s.StatIntInject);
572 rc = VMXR0InjectEvent(pVM, pCtx, intInfo, 0, errCode);
573 AssertRC(rc);
574 } /* if (interrupts can be dispatched) */
575
576 return VINF_SUCCESS;
577}
578
579/**
580 * Save the host state
581 *
582 * @returns VBox status code.
583 * @param pVM The VM to operate on.
584 */
585HWACCMR0DECL(int) VMXR0SaveHostState(PVM pVM)
586{
587 int rc = VINF_SUCCESS;
588
589 /*
590 * Host CPU Context
591 */
592 if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_HOST_CONTEXT)
593 {
594 RTIDTR idtr;
595 RTGDTR gdtr;
596 RTSEL SelTR;
597 PX86DESCHC pDesc;
598 uintptr_t trBase;
599
600 /* Control registers */
601 rc = VMXWriteVMCS(VMX_VMCS_HOST_CR0, ASMGetCR0());
602 rc |= VMXWriteVMCS(VMX_VMCS_HOST_CR3, ASMGetCR3());
603 rc |= VMXWriteVMCS(VMX_VMCS_HOST_CR4, ASMGetCR4());
604 AssertRC(rc);
605 Log2(("VMX_VMCS_HOST_CR0 %08x\n", ASMGetCR0()));
606 Log2(("VMX_VMCS_HOST_CR3 %VHp\n", ASMGetCR3()));
607 Log2(("VMX_VMCS_HOST_CR4 %08x\n", ASMGetCR4()));
608
609 /* Selector registers. */
610 rc = VMXWriteVMCS(VMX_VMCS_HOST_FIELD_CS, ASMGetCS());
611 /** @note VMX is (again) very picky about the RPL of the selectors here; we'll restore them manually. */
612 rc |= VMXWriteVMCS(VMX_VMCS_HOST_FIELD_DS, 0);
613 rc |= VMXWriteVMCS(VMX_VMCS_HOST_FIELD_ES, 0);
614#if HC_ARCH_BITS == 32
615 rc |= VMXWriteVMCS(VMX_VMCS_HOST_FIELD_FS, 0);
616 rc |= VMXWriteVMCS(VMX_VMCS_HOST_FIELD_GS, 0);
617#endif
618 rc |= VMXWriteVMCS(VMX_VMCS_HOST_FIELD_SS, ASMGetSS());
619 SelTR = ASMGetTR();
620 rc |= VMXWriteVMCS(VMX_VMCS_HOST_FIELD_TR, SelTR);
621 AssertRC(rc);
622 Log2(("VMX_VMCS_HOST_FIELD_CS %08x\n", ASMGetCS()));
623 Log2(("VMX_VMCS_HOST_FIELD_DS %08x\n", ASMGetDS()));
624 Log2(("VMX_VMCS_HOST_FIELD_ES %08x\n", ASMGetES()));
625 Log2(("VMX_VMCS_HOST_FIELD_FS %08x\n", ASMGetFS()));
626 Log2(("VMX_VMCS_HOST_FIELD_GS %08x\n", ASMGetGS()));
627 Log2(("VMX_VMCS_HOST_FIELD_SS %08x\n", ASMGetSS()));
628 Log2(("VMX_VMCS_HOST_FIELD_TR %08x\n", ASMGetTR()));
629
630 /* GDTR & IDTR */
631 ASMGetGDTR(&gdtr);
632 rc = VMXWriteVMCS(VMX_VMCS_HOST_GDTR_BASE, gdtr.pGdt);
633 ASMGetIDTR(&idtr);
634 rc |= VMXWriteVMCS(VMX_VMCS_HOST_IDTR_BASE, idtr.pIdt);
635 AssertRC(rc);
636 Log2(("VMX_VMCS_HOST_GDTR_BASE %VHv\n", gdtr.pGdt));
637 Log2(("VMX_VMCS_HOST_IDTR_BASE %VHv\n", idtr.pIdt));
638
639 /* Save the base address of the TR selector. */
640 if (SelTR > gdtr.cbGdt)
641 {
642 AssertMsgFailed(("Invalid TR selector %x. GDTR.cbGdt=%x\n", SelTR, gdtr.cbGdt));
643 return VERR_VMX_INVALID_HOST_STATE;
644 }
645
646 pDesc = &((PX86DESCHC)gdtr.pGdt)[SelTR >> X86_SEL_SHIFT_HC];
647#if HC_ARCH_BITS == 64
648 trBase = X86DESC64_BASE(*pDesc);
649#else
650 trBase = X86DESC_BASE(*pDesc);
651#endif
652 rc = VMXWriteVMCS(VMX_VMCS_HOST_TR_BASE, trBase);
653 AssertRC(rc);
654 Log2(("VMX_VMCS_HOST_TR_BASE %VHv\n", trBase));
655
656 /* FS and GS base. */
657#if HC_ARCH_BITS == 64
658 Log2(("MSR_K8_FS_BASE = %VHv\n", ASMRdMsr(MSR_K8_FS_BASE)));
659 Log2(("MSR_K8_GS_BASE = %VHv\n", ASMRdMsr(MSR_K8_GS_BASE)));
660 rc = VMXWriteVMCS64(VMX_VMCS_HOST_FS_BASE, ASMRdMsr(MSR_K8_FS_BASE));
661 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_GS_BASE, ASMRdMsr(MSR_K8_GS_BASE));
662#endif
663 AssertRC(rc);
664
665 /* Sysenter MSRs. */
666 /** @todo expensive!! */
667 rc = VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
668 Log2(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_CS)));
669#if HC_ARCH_BITS == 32
670 rc |= VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
671 rc |= VMXWriteVMCS(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
672 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %VHv\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP)));
673 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %VHv\n", ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP)));
674#else
675 Log2(("VMX_VMCS_HOST_SYSENTER_EIP %VHv\n", ASMRdMsr(MSR_IA32_SYSENTER_EIP)));
676 Log2(("VMX_VMCS_HOST_SYSENTER_ESP %VHv\n", ASMRdMsr(MSR_IA32_SYSENTER_ESP)));
677 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
678 rc |= VMXWriteVMCS64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
679#endif
680 AssertRC(rc);
681
682 pVM->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_HOST_CONTEXT;
683 }
684 return rc;
685}
686
687
688/**
689 * Loads the guest state
690 *
691 * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
692 *
693 * @returns VBox status code.
694 * @param pVM The VM to operate on.
695 * @param pCtx Guest context
696 */
697HWACCMR0DECL(int) VMXR0LoadGuestState(PVM pVM, CPUMCTX *pCtx)
698{
699 int rc = VINF_SUCCESS;
700 RTGCUINTPTR val;
701 X86EFLAGS eflags;
702
703 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
704 if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_SEGMENT_REGS)
705 {
706 VMX_WRITE_SELREG(ES, es);
707 AssertRC(rc);
708
709 VMX_WRITE_SELREG(CS, cs);
710 AssertRC(rc);
711
712 VMX_WRITE_SELREG(SS, ss);
713 AssertRC(rc);
714
715 VMX_WRITE_SELREG(DS, ds);
716 AssertRC(rc);
717
718 /* The base values in the hidden fs & gs registers are not in sync with the msrs; they are cut to 32 bits. */
719 VMX_WRITE_SELREG(FS, fs);
720 AssertRC(rc);
721
722 VMX_WRITE_SELREG(GS, gs);
723 AssertRC(rc);
724 }
725
726 /* Guest CPU context: LDTR. */
727 if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_LDTR)
728 {
729 if (pCtx->ldtr == 0)
730 {
731 rc = VMXWriteVMCS(VMX_VMCS_GUEST_FIELD_LDTR, 0);
732 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LDTR_LIMIT, 0);
733 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LDTR_BASE, 0);
734 /** @note vmlaunch will fail with 0 or just 0x02. No idea why. */
735 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x82 /* present, LDT */);
736 }
737 else
738 {
739 rc = VMXWriteVMCS(VMX_VMCS_GUEST_FIELD_LDTR, pCtx->ldtr);
740 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LDTR_LIMIT, pCtx->ldtrHid.u32Limit);
741 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtrHid.u64Base);
742 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_LDTR_ACCESS_RIGHTS, pCtx->ldtrHid.Attr.u);
743 }
744 AssertRC(rc);
745 }
746 /* Guest CPU context: TR. */
747 if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_TR)
748 {
749 rc = VMXWriteVMCS(VMX_VMCS_GUEST_FIELD_TR, pCtx->tr);
750
751 /* Real mode emulation using v86 mode with CR4.VME (interrupt redirection using the int bitmap in the TSS) */
752 if (!(pCtx->cr0 & X86_CR0_PROTECTION_ENABLE))
753 {
754 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_TR_LIMIT, sizeof(*pVM->hwaccm.s.vmx.pRealModeTSS));
755 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_TR_BASE, 0);
756 }
757 else
758 {
759 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_TR_LIMIT, pCtx->trHid.u32Limit);
760 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_TR_BASE, pCtx->trHid.u64Base);
761 }
762 val = pCtx->trHid.Attr.u;
763
764 /* The TSS selector must be busy. */
765 if ((val & 0xF) == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
766 val = (val & ~0xF) | X86_SEL_TYPE_SYS_286_TSS_BUSY;
767 else
768 /* Default even if no TR selector has been set (otherwise vmlaunch will fail!) */
769 val = (val & ~0xF) | X86_SEL_TYPE_SYS_386_TSS_BUSY;
770
771 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_TR_ACCESS_RIGHTS, val);
772 AssertRC(rc);
773 }
774 /* Guest CPU context: GDTR. */
775 if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_GDTR)
776 {
777 rc = VMXWriteVMCS(VMX_VMCS_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt);
778 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt);
779 AssertRC(rc);
780 }
781 /* Guest CPU context: IDTR. */
782 if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_IDTR)
783 {
784 rc = VMXWriteVMCS(VMX_VMCS_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt);
785 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt);
786 AssertRC(rc);
787 }
788
789 /*
790 * Sysenter MSRs (unconditional)
791 */
792 rc = VMXWriteVMCS(VMX_VMCS_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
793 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
794 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
795 AssertRC(rc);
796
797 /* Control registers */
798 if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR0)
799 {
800 val = pCtx->cr0;
801 rc = VMXWriteVMCS(VMX_VMCS_CTRL_CR0_READ_SHADOW, val);
802 Log2(("Guest CR0-shadow %08x\n", val));
803 if (CPUMIsGuestFPUStateActive(pVM) == false)
804 {
805 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
806 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
807 }
808 else
809 {
810 /** @todo check if we support the old style mess correctly. */
811 if (!(val & X86_CR0_NE))
812 {
813 Log(("Forcing X86_CR0_NE!!!\n"));
814
815 /* Also catch floating point exceptions as we need to report them to the guest in a different way. */
816 if (!pVM->hwaccm.s.fFPUOldStyleOverride)
817 {
818 rc = VMXWriteVMCS(VMX_VMCS_CTRL_EXCEPTION_BITMAP, HWACCM_VMX_TRAP_MASK | RT_BIT(X86_XCPT_MF));
819 AssertRC(rc);
820 pVM->hwaccm.s.fFPUOldStyleOverride = true;
821 }
822 }
823
824 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
825 }
826 /* Note: protected mode & paging are always enabled; we use them for emulating real and protected mode without paging too. */
827 val |= X86_CR0_PE | X86_CR0_PG;
828 /* Note: We must also set this as we rely on protecting various pages for which supervisor writes must be caught. */
829 val |= X86_CR0_WP;
830
831 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_CR0, val);
832 Log2(("Guest CR0 %08x\n", val));
833 /* CR0 flags owned by the host; if the guests attempts to change them, then
834 * the VM will exit.
835 */
836 val = X86_CR0_PE /* Must monitor this bit (assumptions are made for real mode emulation) */
837 | X86_CR0_WP /* Must monitor this bit (it must always be enabled). */
838 | X86_CR0_PG /* Must monitor this bit (assumptions are made for real mode & protected mode without paging emulation) */
839 | X86_CR0_TS
840 | X86_CR0_ET
841 | X86_CR0_NE
842 | X86_CR0_MP;
843 pVM->hwaccm.s.vmx.cr0_mask = val;
844
845 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_CR0_MASK, val);
846 Log2(("Guest CR0-mask %08x\n", val));
847 AssertRC(rc);
848 }
849 if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR4)
850 {
851 /* CR4 */
852 rc = VMXWriteVMCS(VMX_VMCS_CTRL_CR4_READ_SHADOW, pCtx->cr4);
853 Log2(("Guest CR4-shadow %08x\n", pCtx->cr4));
854 /* Set the required bits in cr4 too (currently X86_CR4_VMXE). */
855 val = pCtx->cr4 | (uint32_t)pVM->hwaccm.s.vmx.msr.vmx_cr4_fixed0;
856 switch(pVM->hwaccm.s.enmShadowMode)
857 {
858 case PGMMODE_REAL: /* Real mode -> emulated using v86 mode */
859 case PGMMODE_PROTECTED: /* Protected mode, no paging -> emulated using identity mapping. */
860 case PGMMODE_32_BIT: /* 32-bit paging. */
861 break;
862
863 case PGMMODE_PAE: /* PAE paging. */
864 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
865 /** @todo use normal 32 bits paging */
866 val |= X86_CR4_PAE;
867 break;
868
869 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
870 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
871#ifdef VBOX_ENABLE_64_BITS_GUESTS
872 break;
873#else
874 AssertFailed();
875 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
876#endif
877 default: /* shut up gcc */
878 AssertFailed();
879 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
880 }
881 /* Real mode emulation using v86 mode with CR4.VME (interrupt redirection using the int bitmap in the TSS) */
882 if (!(pCtx->cr0 & X86_CR0_PROTECTION_ENABLE))
883 val |= X86_CR4_VME;
884
885 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_CR4, val);
886 Log2(("Guest CR4 %08x\n", val));
887 /* CR4 flags owned by the host; if the guests attempts to change them, then
888 * the VM will exit.
889 */
890 val = X86_CR4_PAE
891 | X86_CR4_PGE
892 | X86_CR4_PSE
893 | X86_CR4_VMXE;
894 pVM->hwaccm.s.vmx.cr4_mask = val;
895
896 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_CR4_MASK, val);
897 Log2(("Guest CR4-mask %08x\n", val));
898 AssertRC(rc);
899 }
900
901 if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR3)
902 {
903 /* Save our shadow CR3 register. */
904 val = PGMGetHyperCR3(pVM);
905 Assert(val);
906 rc = VMXWriteVMCS(VMX_VMCS_GUEST_CR3, val);
907 AssertRC(rc);
908 }
909
910 /* Debug registers. */
911 if (pVM->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_DEBUG)
912 {
913 val = pCtx->dr7 & 0xffffffff; /* upper 32 bits reserved */
914 val &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
915 val |= 0x400; /* must be one */
916 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_DR7, val);
917 AssertRC(rc);
918
919 /* IA32_DEBUGCTL MSR. */
920 rc = VMXWriteVMCS(VMX_VMCS_GUEST_DEBUGCTL_FULL, 0);
921 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_DEBUGCTL_HIGH, 0);
922 AssertRC(rc);
923
924 /** @todo do we really ever need this? */
925 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_DEBUG_EXCEPTIONS, 0);
926 AssertRC(rc);
927 }
928
929 /* EIP, ESP and EFLAGS */
930 rc = VMXWriteVMCS(VMX_VMCS_GUEST_RIP, pCtx->rip);
931 rc |= VMXWriteVMCS(VMX_VMCS_GUEST_RSP, pCtx->rsp);
932 AssertRC(rc);
933
934 /* Bits 22-31, 15, 5 & 3 must be zero. Bit 1 must be 1. */
935 eflags = pCtx->eflags;
936 eflags.u32 &= VMX_EFLAGS_RESERVED_0;
937 eflags.u32 |= VMX_EFLAGS_RESERVED_1;
938
939 /* Real mode emulation using v86 mode with CR4.VME (interrupt redirection using the int bitmap in the TSS) */
940 if (!(pCtx->cr0 & X86_CR0_PROTECTION_ENABLE))
941 {
942 eflags.Bits.u1VM = 1;
943 eflags.Bits.u1VIF = pCtx->eflags.Bits.u1IF;
944 eflags.Bits.u2IOPL = 3;
945 }
946
947 rc = VMXWriteVMCS(VMX_VMCS_GUEST_RFLAGS, eflags.u32);
948 AssertRC(rc);
949
950 /** TSC offset. */
951 uint64_t u64TSCOffset;
952
953 if (TMCpuTickCanUseRealTSC(pVM, &u64TSCOffset))
954 {
955 /* Note: VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT takes precedence over TSC_OFFSET */
956#if HC_ARCH_BITS == 64
957 rc = VMXWriteVMCS(VMX_VMCS_CTRL_TSC_OFFSET_FULL, u64TSCOffset);
958#else
959 rc = VMXWriteVMCS(VMX_VMCS_CTRL_TSC_OFFSET_FULL, (uint32_t)u64TSCOffset);
960 rc |= VMXWriteVMCS(VMX_VMCS_CTRL_TSC_OFFSET_HIGH, (uint32_t)(u64TSCOffset >> 32ULL));
961#endif
962 AssertRC(rc);
963
964 pVM->hwaccm.s.vmx.proc_ctls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
965 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVM->hwaccm.s.vmx.proc_ctls);
966 AssertRC(rc);
967 STAM_COUNTER_INC(&pVM->hwaccm.s.StatTSCOffset);
968 }
969 else
970 {
971 pVM->hwaccm.s.vmx.proc_ctls |= VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_RDTSC_EXIT;
972 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVM->hwaccm.s.vmx.proc_ctls);
973 AssertRC(rc);
974 STAM_COUNTER_INC(&pVM->hwaccm.s.StatTSCIntercept);
975 }
976
977 /* VMX_VMCS_CTRL_ENTRY_CONTROLS
978 * Set required bits to one and zero according to the MSR capabilities.
979 */
980 val = pVM->hwaccm.s.vmx.msr.vmx_entry.n.disallowed0;
981 /* 64 bits guest mode? */
982 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
983 val |= VMX_VMCS_CTRL_ENTRY_CONTROLS_IA64_MODE;
984 /* else Must be zero when AMD64 is not available. */
985
986 /* Mask away the bits that the CPU doesn't support */
987 val &= pVM->hwaccm.s.vmx.msr.vmx_entry.n.allowed1;
988 rc = VMXWriteVMCS(VMX_VMCS_CTRL_ENTRY_CONTROLS, val);
989 AssertRC(rc);
990
991 /* 64 bits guest mode? */
992 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
993 {
994#if !defined(VBOX_WITH_64_BITS_GUESTS) || HC_ARCH_BITS != 64
995 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
996#else
997 pVM->hwaccm.s.vmx.pfnStartVM = VMXR0StartVM64;
998#endif
999 /* Unconditionally update these as wrmsr might have changed them. */
1000 rc = VMXWriteVMCS(VMX_VMCS_GUEST_FS_BASE, pCtx->fsHid.u64Base);
1001 AssertRC(rc);
1002 rc = VMXWriteVMCS(VMX_VMCS_GUEST_GS_BASE, pCtx->gsHid.u64Base);
1003 AssertRC(rc);
1004 }
1005 else
1006 {
1007 pVM->hwaccm.s.vmx.pfnStartVM = VMXR0StartVM32;
1008 }
1009
1010 /* Done. */
1011 pVM->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_ALL_GUEST;
1012
1013 return rc;
1014}
1015
1016/**
1017 * Runs guest code in a VT-x VM.
1018 *
1019 * @returns VBox status code.
1020 * @param pVM The VM to operate on.
1021 * @param pCtx Guest context
1022 */
1023HWACCMR0DECL(int) VMXR0RunGuestCode(PVM pVM, CPUMCTX *pCtx)
1024{
1025 int rc = VINF_SUCCESS;
1026 RTCCUINTREG val, valShadow;
1027 RTCCUINTREG exitReason, instrError, cbInstr;
1028 RTGCUINTPTR exitQualification;
1029 RTGCUINTPTR intInfo = 0; /* shut up buggy gcc 4 */
1030 RTGCUINTPTR errCode, instrInfo, uInterruptState;
1031 bool fGuestStateSynced = false;
1032 bool fSyncTPR = false;
1033 unsigned cResume = 0;
1034#ifdef VBOX_STRICT
1035 RTCPUID idCpuCheck;
1036#endif
1037
1038 Log2(("\nE"));
1039
1040 STAM_PROFILE_ADV_START(&pVM->hwaccm.s.StatEntry, x);
1041
1042#ifdef VBOX_STRICT
1043 rc = VMXReadVMCS(VMX_VMCS_CTRL_PIN_EXEC_CONTROLS, &val);
1044 AssertRC(rc);
1045 Log2(("VMX_VMCS_CTRL_PIN_EXEC_CONTROLS = %08x\n", val));
1046
1047 /* allowed zero */
1048 if ((val & pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.disallowed0)
1049 Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC_CONTROLS: zero\n"));
1050
1051 /* allowed one */
1052 if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_pin_ctls.n.allowed1) != 0)
1053 Log(("Invalid VMX_VMCS_CTRL_PIN_EXEC_CONTROLS: one\n"));
1054
1055 rc = VMXReadVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, &val);
1056 AssertRC(rc);
1057 Log2(("VMX_VMCS_CTRL_PROC_EXEC_CONTROLS = %08x\n", val));
1058
1059 /* allowed zero */
1060 if ((val & pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.disallowed0)
1061 Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC_CONTROLS: zero\n"));
1062
1063 /* allowed one */
1064 if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1) != 0)
1065 Log(("Invalid VMX_VMCS_CTRL_PROC_EXEC_CONTROLS: one\n"));
1066
1067 rc = VMXReadVMCS(VMX_VMCS_CTRL_ENTRY_CONTROLS, &val);
1068 AssertRC(rc);
1069 Log2(("VMX_VMCS_CTRL_ENTRY_CONTROLS = %08x\n", val));
1070
1071 /* allowed zero */
1072 if ((val & pVM->hwaccm.s.vmx.msr.vmx_entry.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_entry.n.disallowed0)
1073 Log(("Invalid VMX_VMCS_CTRL_ENTRY_CONTROLS: zero\n"));
1074
1075 /* allowed one */
1076 if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_entry.n.allowed1) != 0)
1077 Log(("Invalid VMX_VMCS_CTRL_ENTRY_CONTROLS: one\n"));
1078
1079 rc = VMXReadVMCS(VMX_VMCS_CTRL_EXIT_CONTROLS, &val);
1080 AssertRC(rc);
1081 Log2(("VMX_VMCS_CTRL_EXIT_CONTROLS = %08x\n", val));
1082
1083 /* allowed zero */
1084 if ((val & pVM->hwaccm.s.vmx.msr.vmx_exit.n.disallowed0) != pVM->hwaccm.s.vmx.msr.vmx_exit.n.disallowed0)
1085 Log(("Invalid VMX_VMCS_CTRL_EXIT_CONTROLS: zero\n"));
1086
1087 /* allowed one */
1088 if ((val & ~pVM->hwaccm.s.vmx.msr.vmx_exit.n.allowed1) != 0)
1089 Log(("Invalid VMX_VMCS_CTRL_EXIT_CONTROLS: one\n"));
1090#endif
1091
1092#if 0
1093 /*
1094 * Check if debug registers are armed.
1095 */
1096 uint32_t u32DR7 = ASMGetDR7();
1097 if (u32DR7 & X86_DR7_ENABLED_MASK)
1098 {
1099 pVM->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HOST;
1100 }
1101 else
1102 pVM->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HOST;
1103#endif
1104
1105 /* We can jump to this point to resume execution after determining that a VM-exit is innocent.
1106 */
1107ResumeExecution:
1108 /* Safety precaution; looping for too long here can have a very bad effect on the host */
1109 if (++cResume > HWACCM_MAX_RESUME_LOOPS)
1110 {
1111 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitMaxResume);
1112 rc = VINF_EM_RAW_INTERRUPT;
1113 goto end;
1114 }
1115
1116 /* Check for irq inhibition due to instruction fusing (sti, mov ss). */
1117 if (VM_FF_ISSET(pVM, VM_FF_INHIBIT_INTERRUPTS))
1118 {
1119 Log(("VM_FF_INHIBIT_INTERRUPTS at %VGv successor %VGv\n", pCtx->rip, EMGetInhibitInterruptsPC(pVM)));
1120 if (pCtx->rip != EMGetInhibitInterruptsPC(pVM))
1121 {
1122 /** @note we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
1123 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
1124 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
1125 * break the guest. Sounds very unlikely, but such timing sensitive problem are not as rare as you might think.
1126 */
1127 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
1128 /* Irq inhibition is no longer active; clear the corresponding VMX state. */
1129 rc = VMXWriteVMCS(VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE, 0);
1130 AssertRC(rc);
1131 }
1132 }
1133 else
1134 {
1135 /* Irq inhibition is no longer active; clear the corresponding VMX state. */
1136 rc = VMXWriteVMCS(VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE, 0);
1137 AssertRC(rc);
1138 }
1139
1140 /* Check for pending actions that force us to go back to ring 3. */
1141 if (VM_FF_ISPENDING(pVM, VM_FF_TO_R3 | VM_FF_TIMER))
1142 {
1143 VM_FF_CLEAR(pVM, VM_FF_TO_R3);
1144 STAM_COUNTER_INC(&pVM->hwaccm.s.StatSwitchToR3);
1145 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatEntry, x);
1146 rc = VINF_EM_RAW_TO_R3;
1147 goto end;
1148 }
1149 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
1150 if (VM_FF_ISPENDING(pVM, VM_FF_REQUEST))
1151 {
1152 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatEntry, x);
1153 rc = VINF_EM_PENDING_REQUEST;
1154 goto end;
1155 }
1156
1157 /* When external interrupts are pending, we should exit the VM when IF is set. */
1158 /** @note *after* VM_FF_INHIBIT_INTERRUPTS check!!! */
1159 rc = VMXR0CheckPendingInterrupt(pVM, pCtx);
1160 if (VBOX_FAILURE(rc))
1161 {
1162 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatEntry, x);
1163 goto end;
1164 }
1165
1166 /** @todo check timers?? */
1167
1168 /* TPR caching using CR8 is only available in 64 bits mode */
1169 /* Note the 32 bits exception for AMD (X86_CPUID_AMD_FEATURE_ECX_CR8L), but that appears missing in Intel CPUs */
1170 /* Note: we can't do this in LoadGuestState as PDMApicGetTPR can jump back to ring 3 (lock)!!!!! */
1171 /*
1172 * @todo reduce overhead
1173 */
1174 if ( (pCtx->msrEFER & MSR_K6_EFER_LMA)
1175 && pVM->hwaccm.s.vmx.pAPIC)
1176 {
1177 /* TPR caching in CR8 */
1178 uint8_t u8TPR;
1179 bool fPending;
1180
1181 int rc = PDMApicGetTPR(pVM, &u8TPR, &fPending);
1182 AssertRC(rc);
1183 /* The TPR can be found at offset 0x80 in the APIC mmio page. */
1184 pVM->hwaccm.s.vmx.pAPIC[0x80] = u8TPR << 4; /* bits 7-4 contain the task priority */
1185
1186 /* Two options here:
1187 * - external interrupt pending, but masked by the TPR value.
1188 * -> CR8 updates that lower the TPR value to below the current value should cause an exit
1189 * - no pending interrupts
1190 * -> We don't need to be explicitely notified. There are enough world switches for detecting pending interrupts.
1191 */
1192 rc = VMXWriteVMCS(VMX_VMCS_CTRL_TPR_THRESHOLD, (fPending) ? u8TPR : 0);
1193 AssertRC(rc);
1194
1195 fSyncTPR = !fPending;
1196 }
1197
1198 /*
1199 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
1200 * (until the actual world switch)
1201 */
1202#ifdef VBOX_STRICT
1203 idCpuCheck = RTMpCpuId();
1204#endif
1205 /* Save the host state first. */
1206 rc = VMXR0SaveHostState(pVM);
1207 if (rc != VINF_SUCCESS)
1208 {
1209 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatEntry, x);
1210 goto end;
1211 }
1212 /* Load the guest state */
1213 rc = VMXR0LoadGuestState(pVM, pCtx);
1214 if (rc != VINF_SUCCESS)
1215 {
1216 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatEntry, x);
1217 goto end;
1218 }
1219 fGuestStateSynced = true;
1220
1221 /* Non-register state Guest Context */
1222 /** @todo change me according to cpu state */
1223 rc = VMXWriteVMCS(VMX_VMCS_GUEST_ACTIVITY_STATE, VMX_CMS_GUEST_ACTIVITY_ACTIVE);
1224 AssertRC(rc);
1225
1226 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatEntry, x);
1227
1228 /* Manual save and restore:
1229 * - General purpose registers except RIP, RSP
1230 *
1231 * Trashed:
1232 * - CR2 (we don't care)
1233 * - LDTR (reset to 0)
1234 * - DRx (presumably not changed at all)
1235 * - DR7 (reset to 0x400)
1236 * - EFLAGS (reset to RT_BIT(1); not relevant)
1237 *
1238 */
1239
1240 /* All done! Let's start VM execution. */
1241 STAM_PROFILE_ADV_START(&pVM->hwaccm.s.StatInGC, x);
1242#ifdef VBOX_STRICT
1243 Assert(idCpuCheck == RTMpCpuId());
1244#endif
1245 rc = pVM->hwaccm.s.vmx.pfnStartVM(pVM->hwaccm.s.vmx.fResumeVM, pCtx);
1246
1247 /* In case we execute a goto ResumeExecution later on. */
1248 pVM->hwaccm.s.vmx.fResumeVM = true;
1249
1250 /**
1251 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1252 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
1253 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1254 */
1255
1256 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatInGC, x);
1257 STAM_PROFILE_ADV_START(&pVM->hwaccm.s.StatExit, x);
1258
1259 switch (rc)
1260 {
1261 case VINF_SUCCESS:
1262 break;
1263
1264 case VERR_VMX_INVALID_VMXON_PTR:
1265 AssertFailed();
1266 goto end;
1267
1268 case VERR_VMX_UNABLE_TO_START_VM:
1269 case VERR_VMX_UNABLE_TO_RESUME_VM:
1270 {
1271#ifdef VBOX_STRICT
1272 int rc1;
1273
1274 rc1 = VMXReadVMCS(VMX_VMCS_RO_EXIT_REASON, &exitReason);
1275 rc1 |= VMXReadVMCS(VMX_VMCS_RO_VM_INSTR_ERROR, &instrError);
1276 AssertRC(rc1);
1277 if (rc1 == VINF_SUCCESS)
1278 {
1279 RTGDTR gdtr;
1280 PX86DESCHC pDesc;
1281
1282 ASMGetGDTR(&gdtr);
1283
1284 Log(("Unable to start/resume VM for reason: %x. Instruction error %x\n", (uint32_t)exitReason, (uint32_t)instrError));
1285 Log(("Current stack %08x\n", &rc1));
1286
1287
1288 VMXReadVMCS(VMX_VMCS_GUEST_RIP, &val);
1289 Log(("Old eip %VGv new %VGv\n", pCtx->rip, (RTGCPTR)val));
1290 VMXReadVMCS(VMX_VMCS_CTRL_PIN_EXEC_CONTROLS, &val);
1291 Log(("VMX_VMCS_CTRL_PIN_EXEC_CONTROLS %08x\n", val));
1292 VMXReadVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, &val);
1293 Log(("VMX_VMCS_CTRL_PROC_EXEC_CONTROLS %08x\n", val));
1294 VMXReadVMCS(VMX_VMCS_CTRL_ENTRY_CONTROLS, &val);
1295 Log(("VMX_VMCS_CTRL_ENTRY_CONTROLS %08x\n", val));
1296 VMXReadVMCS(VMX_VMCS_CTRL_EXIT_CONTROLS, &val);
1297 Log(("VMX_VMCS_CTRL_EXIT_CONTROLS %08x\n", val));
1298
1299 VMXReadVMCS(VMX_VMCS_HOST_CR0, &val);
1300 Log(("VMX_VMCS_HOST_CR0 %08x\n", val));
1301
1302 VMXReadVMCS(VMX_VMCS_HOST_CR3, &val);
1303 Log(("VMX_VMCS_HOST_CR3 %VHp\n", val));
1304
1305 VMXReadVMCS(VMX_VMCS_HOST_CR4, &val);
1306 Log(("VMX_VMCS_HOST_CR4 %08x\n", val));
1307
1308 VMXReadVMCS(VMX_VMCS_HOST_FIELD_CS, &val);
1309 Log(("VMX_VMCS_HOST_FIELD_CS %08x\n", val));
1310 if (val < gdtr.cbGdt)
1311 {
1312 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
1313 HWACCMR0DumpDescriptor(pDesc, val, "CS: ");
1314 }
1315
1316 VMXReadVMCS(VMX_VMCS_HOST_FIELD_DS, &val);
1317 Log(("VMX_VMCS_HOST_FIELD_DS %08x\n", val));
1318 if (val < gdtr.cbGdt)
1319 {
1320 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
1321 HWACCMR0DumpDescriptor(pDesc, val, "DS: ");
1322 }
1323
1324 VMXReadVMCS(VMX_VMCS_HOST_FIELD_ES, &val);
1325 Log(("VMX_VMCS_HOST_FIELD_ES %08x\n", val));
1326 if (val < gdtr.cbGdt)
1327 {
1328 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
1329 HWACCMR0DumpDescriptor(pDesc, val, "ES: ");
1330 }
1331
1332 VMXReadVMCS(VMX_VMCS_HOST_FIELD_FS, &val);
1333 Log(("VMX_VMCS_HOST_FIELD_FS %08x\n", val));
1334 if (val < gdtr.cbGdt)
1335 {
1336 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
1337 HWACCMR0DumpDescriptor(pDesc, val, "FS: ");
1338 }
1339
1340 VMXReadVMCS(VMX_VMCS_HOST_FIELD_GS, &val);
1341 Log(("VMX_VMCS_HOST_FIELD_GS %08x\n", val));
1342 if (val < gdtr.cbGdt)
1343 {
1344 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
1345 HWACCMR0DumpDescriptor(pDesc, val, "GS: ");
1346 }
1347
1348 VMXReadVMCS(VMX_VMCS_HOST_FIELD_SS, &val);
1349 Log(("VMX_VMCS_HOST_FIELD_SS %08x\n", val));
1350 if (val < gdtr.cbGdt)
1351 {
1352 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
1353 HWACCMR0DumpDescriptor(pDesc, val, "SS: ");
1354 }
1355
1356 VMXReadVMCS(VMX_VMCS_HOST_FIELD_TR, &val);
1357 Log(("VMX_VMCS_HOST_FIELD_TR %08x\n", val));
1358 if (val < gdtr.cbGdt)
1359 {
1360 pDesc = &((PX86DESCHC)gdtr.pGdt)[val >> X86_SEL_SHIFT_HC];
1361 HWACCMR0DumpDescriptor(pDesc, val, "TR: ");
1362 }
1363
1364 VMXReadVMCS(VMX_VMCS_HOST_TR_BASE, &val);
1365 Log(("VMX_VMCS_HOST_TR_BASE %VHv\n", val));
1366
1367 VMXReadVMCS(VMX_VMCS_HOST_GDTR_BASE, &val);
1368 Log(("VMX_VMCS_HOST_GDTR_BASE %VHv\n", val));
1369 VMXReadVMCS(VMX_VMCS_HOST_IDTR_BASE, &val);
1370 Log(("VMX_VMCS_HOST_IDTR_BASE %VHv\n", val));
1371
1372 VMXReadVMCS(VMX_VMCS_HOST_SYSENTER_CS, &val);
1373 Log(("VMX_VMCS_HOST_SYSENTER_CS %08x\n", val));
1374
1375 VMXReadVMCS(VMX_VMCS_HOST_SYSENTER_EIP, &val);
1376 Log(("VMX_VMCS_HOST_SYSENTER_EIP %VHv\n", val));
1377
1378 VMXReadVMCS(VMX_VMCS_HOST_SYSENTER_ESP, &val);
1379 Log(("VMX_VMCS_HOST_SYSENTER_ESP %VHv\n", val));
1380
1381 VMXReadVMCS(VMX_VMCS_HOST_RSP, &val);
1382 Log(("VMX_VMCS_HOST_RSP %VHv\n", val));
1383 VMXReadVMCS(VMX_VMCS_HOST_RIP, &val);
1384 Log(("VMX_VMCS_HOST_RIP %VHv\n", val));
1385
1386#if HC_ARCH_BITS == 64
1387 Log(("MSR_K6_EFER = %VX64\n", ASMRdMsr(MSR_K6_EFER)));
1388 Log(("MSR_K6_STAR = %VX64\n", ASMRdMsr(MSR_K6_STAR)));
1389 Log(("MSR_K8_LSTAR = %VX64\n", ASMRdMsr(MSR_K8_LSTAR)));
1390 Log(("MSR_K8_CSTAR = %VX64\n", ASMRdMsr(MSR_K8_CSTAR)));
1391 Log(("MSR_K8_SF_MASK = %VX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
1392#endif
1393 }
1394#endif /* VBOX_STRICT */
1395 goto end;
1396 }
1397
1398 default:
1399 /* impossible */
1400 AssertFailed();
1401 goto end;
1402 }
1403 /* Success. Query the guest state and figure out what has happened. */
1404
1405 /* Investigate why there was a VM-exit. */
1406 rc = VMXReadVMCS(VMX_VMCS_RO_EXIT_REASON, &exitReason);
1407 STAM_COUNTER_INC(&pVM->hwaccm.s.pStatExitReasonR0[exitReason & MASK_EXITREASON_STAT]);
1408
1409 exitReason &= 0xffff; /* bit 0-15 contain the exit code. */
1410 rc |= VMXReadVMCS(VMX_VMCS_RO_VM_INSTR_ERROR, &instrError);
1411 rc |= VMXReadVMCS(VMX_VMCS_RO_EXIT_INSTR_LENGTH, &cbInstr);
1412 rc |= VMXReadVMCS(VMX_VMCS_RO_EXIT_INTERRUPTION_INFO, &val);
1413 intInfo = val;
1414 rc |= VMXReadVMCS(VMX_VMCS_RO_EXIT_INTERRUPTION_ERRCODE, &val);
1415 errCode = val; /* might not be valid; depends on VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID. */
1416 rc |= VMXReadVMCS(VMX_VMCS_RO_EXIT_INSTR_INFO, &val);
1417 instrInfo = val;
1418 rc |= VMXReadVMCS(VMX_VMCS_RO_EXIT_QUALIFICATION, &val);
1419 exitQualification = val;
1420 AssertRC(rc);
1421
1422 /* Let's first sync back eip, esp, and eflags. */
1423 rc = VMXReadVMCS(VMX_VMCS_GUEST_RIP, &val);
1424 AssertRC(rc);
1425 pCtx->rip = val;
1426 rc = VMXReadVMCS(VMX_VMCS_GUEST_RSP, &val);
1427 AssertRC(rc);
1428 pCtx->rsp = val;
1429 rc = VMXReadVMCS(VMX_VMCS_GUEST_RFLAGS, &val);
1430 AssertRC(rc);
1431 pCtx->eflags.u32 = val;
1432
1433 /* Take care of instruction fusing (sti, mov ss) */
1434 rc |= VMXReadVMCS(VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE, &val);
1435 uInterruptState = val;
1436 if (uInterruptState != 0)
1437 {
1438 Assert(uInterruptState <= 2); /* only sti & mov ss */
1439 Log(("uInterruptState %x eip=%VGv\n", uInterruptState, pCtx->rip));
1440 EMSetInhibitInterruptsPC(pVM, pCtx->rip);
1441 }
1442 else
1443 VM_FF_CLEAR(pVM, VM_FF_INHIBIT_INTERRUPTS);
1444
1445 /* Real mode emulation using v86 mode with CR4.VME (interrupt redirection using the int bitmap in the TSS) */
1446 if (!(pCtx->cr0 & X86_CR0_PROTECTION_ENABLE))
1447 {
1448 /* Hide our emulation flags */
1449 pCtx->eflags.Bits.u1VM = 0;
1450 pCtx->eflags.Bits.u1IF = pCtx->eflags.Bits.u1VIF;
1451 pCtx->eflags.Bits.u1VIF = 0;
1452 pCtx->eflags.Bits.u2IOPL = 0;
1453 }
1454
1455 /* Control registers. */
1456 VMXReadVMCS(VMX_VMCS_CTRL_CR0_READ_SHADOW, &valShadow);
1457 VMXReadVMCS(VMX_VMCS_GUEST_CR0, &val);
1458 val = (valShadow & pVM->hwaccm.s.vmx.cr0_mask) | (val & ~pVM->hwaccm.s.vmx.cr0_mask);
1459 CPUMSetGuestCR0(pVM, val);
1460
1461 VMXReadVMCS(VMX_VMCS_CTRL_CR4_READ_SHADOW, &valShadow);
1462 VMXReadVMCS(VMX_VMCS_GUEST_CR4, &val);
1463 val = (valShadow & pVM->hwaccm.s.vmx.cr4_mask) | (val & ~pVM->hwaccm.s.vmx.cr4_mask);
1464 CPUMSetGuestCR4(pVM, val);
1465
1466 CPUMSetGuestCR2(pVM, ASMGetCR2());
1467
1468 VMXReadVMCS(VMX_VMCS_GUEST_DR7, &val);
1469 CPUMSetGuestDR7(pVM, val);
1470
1471 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1472 VMX_READ_SELREG(ES, es);
1473 VMX_READ_SELREG(SS, ss);
1474 VMX_READ_SELREG(CS, cs);
1475 VMX_READ_SELREG(DS, ds);
1476 VMX_READ_SELREG(FS, fs);
1477 VMX_READ_SELREG(GS, gs);
1478
1479 /*
1480 * System MSRs
1481 */
1482 VMXReadVMCS(VMX_VMCS_GUEST_SYSENTER_CS, &val);
1483 pCtx->SysEnter.cs = val;
1484 VMXReadVMCS(VMX_VMCS_GUEST_SYSENTER_EIP, &val);
1485 pCtx->SysEnter.eip = val;
1486 VMXReadVMCS(VMX_VMCS_GUEST_SYSENTER_ESP, &val);
1487 pCtx->SysEnter.esp = val;
1488
1489 /** @note NOW IT'S SAFE FOR LOGGING! */
1490 Log2(("Raw exit reason %08x\n", exitReason));
1491
1492 /* Check if an injected event was interrupted prematurely. */
1493 rc = VMXReadVMCS(VMX_VMCS_RO_IDT_INFO, &val);
1494 AssertRC(rc);
1495 pVM->hwaccm.s.Event.intInfo = VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(val);
1496 if ( VMX_EXIT_INTERRUPTION_INFO_VALID(pVM->hwaccm.s.Event.intInfo)
1497 && VMX_EXIT_INTERRUPTION_INFO_TYPE(pVM->hwaccm.s.Event.intInfo) != VMX_EXIT_INTERRUPTION_INFO_TYPE_SW)
1498 {
1499 pVM->hwaccm.s.Event.fPending = true;
1500 /* Error code present? */
1501 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVM->hwaccm.s.Event.intInfo))
1502 {
1503 rc = VMXReadVMCS(VMX_VMCS_RO_IDT_ERRCODE, &val);
1504 AssertRC(rc);
1505 pVM->hwaccm.s.Event.errCode = val;
1506 Log(("Pending inject %VX64 at %VGv exit=%08x intInfo=%08x exitQualification=%08x pending error=%RX64\n", pVM->hwaccm.s.Event.intInfo, pCtx->rip, exitReason, intInfo, exitQualification, val));
1507 }
1508 else
1509 {
1510 Log(("Pending inject %VX64 at %VGv exit=%08x intInfo=%08x exitQualification=%08x\n", pVM->hwaccm.s.Event.intInfo, pCtx->rip, exitReason, intInfo, exitQualification));
1511 pVM->hwaccm.s.Event.errCode = 0;
1512 }
1513 }
1514
1515#ifdef VBOX_STRICT
1516 if (exitReason == VMX_EXIT_ERR_INVALID_GUEST_STATE)
1517 HWACCMDumpRegs(pVM, pCtx);
1518#endif
1519
1520 Log2(("E%d", exitReason));
1521 Log2(("Exit reason %d, exitQualification %08x\n", exitReason, exitQualification));
1522 Log2(("instrInfo=%d instrError=%d instr length=%d\n", instrInfo, instrError, cbInstr));
1523 Log2(("Interruption error code %d\n", errCode));
1524 Log2(("IntInfo = %08x\n", intInfo));
1525 Log2(("New EIP=%VGv\n", pCtx->rip));
1526
1527 if (fSyncTPR)
1528 {
1529 rc = PDMApicSetTPR(pVM, pVM->hwaccm.s.vmx.pAPIC[0x80] >> 4);
1530 AssertRC(rc);
1531 }
1532
1533 /* Some cases don't need a complete resync of the guest CPU state; handle them here. */
1534 switch (exitReason)
1535 {
1536 case VMX_EXIT_EXCEPTION: /* 0 Exception or non-maskable interrupt (NMI). */
1537 case VMX_EXIT_EXTERNAL_IRQ: /* 1 External interrupt. */
1538 {
1539 uint32_t vector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(intInfo);
1540
1541 if (!VMX_EXIT_INTERRUPTION_INFO_VALID(intInfo))
1542 {
1543 Assert(exitReason == VMX_EXIT_EXTERNAL_IRQ);
1544 /* External interrupt; leave to allow it to be dispatched again. */
1545 rc = VINF_EM_RAW_INTERRUPT;
1546 break;
1547 }
1548 switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(intInfo))
1549 {
1550 case VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI: /* Non-maskable interrupt. */
1551 /* External interrupt; leave to allow it to be dispatched again. */
1552 rc = VINF_EM_RAW_INTERRUPT;
1553 break;
1554
1555 case VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT: /* External hardware interrupt. */
1556 AssertFailed(); /* can't come here; fails the first check. */
1557 break;
1558
1559 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SWEXCPT: /* Software exception. (#BP or #OF) */
1560 Assert(vector == 3 || vector == 4);
1561 /* no break */
1562 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HWEXCPT: /* Hardware exception. */
1563 Log2(("Hardware/software interrupt %d\n", vector));
1564 switch (vector)
1565 {
1566 case X86_XCPT_NM:
1567 {
1568 Log(("#NM fault at %VGv error code %x\n", pCtx->rip, errCode));
1569
1570 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
1571 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
1572 rc = CPUMR0LoadGuestFPU(pVM, pCtx);
1573 if (rc == VINF_SUCCESS)
1574 {
1575 Assert(CPUMIsGuestFPUStateActive(pVM));
1576
1577 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitShadowNM);
1578
1579 /* Continue execution. */
1580 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1581 pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1582
1583 goto ResumeExecution;
1584 }
1585
1586 Log(("Forward #NM fault to the guest\n"));
1587 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestNM);
1588 rc = VMXR0InjectEvent(pVM, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, 0);
1589 AssertRC(rc);
1590 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1591 goto ResumeExecution;
1592 }
1593
1594 case X86_XCPT_PF: /* Page fault */
1595 {
1596 Log2(("Page fault at %VGv error code %x\n", exitQualification ,errCode));
1597 /* Exit qualification contains the linear address of the page fault. */
1598 TRPMAssertTrap(pVM, X86_XCPT_PF, TRPM_TRAP);
1599 TRPMSetErrorCode(pVM, errCode);
1600 TRPMSetFaultAddress(pVM, exitQualification);
1601
1602 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
1603 rc = PGMTrap0eHandler(pVM, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)exitQualification);
1604 Log2(("PGMTrap0eHandler %VGv returned %Vrc\n", pCtx->rip, rc));
1605 if (rc == VINF_SUCCESS)
1606 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1607 Log2(("Shadow page fault at %VGv cr2=%VGv error code %x\n", pCtx->rip, exitQualification ,errCode));
1608 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitShadowPF);
1609
1610 TRPMResetTrap(pVM);
1611
1612 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1613 goto ResumeExecution;
1614 }
1615 else
1616 if (rc == VINF_EM_RAW_GUEST_TRAP)
1617 { /* A genuine pagefault.
1618 * Forward the trap to the guest by injecting the exception and resuming execution.
1619 */
1620 Log2(("Forward page fault to the guest\n"));
1621 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestPF);
1622 /* The error code might have been changed. */
1623 errCode = TRPMGetErrorCode(pVM);
1624
1625 TRPMResetTrap(pVM);
1626
1627 /* Now we must update CR2. */
1628 pCtx->cr2 = exitQualification;
1629 rc = VMXR0InjectEvent(pVM, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
1630 AssertRC(rc);
1631
1632 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1633 goto ResumeExecution;
1634 }
1635#ifdef VBOX_STRICT
1636 if (rc != VINF_EM_RAW_EMULATE_INSTR)
1637 Log2(("PGMTrap0eHandler failed with %d\n", rc));
1638#endif
1639 /* Need to go back to the recompiler to emulate the instruction. */
1640 TRPMResetTrap(pVM);
1641 break;
1642 }
1643
1644 case X86_XCPT_MF: /* Floating point exception. */
1645 {
1646 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestMF);
1647 if (!(pCtx->cr0 & X86_CR0_NE))
1648 {
1649 /* old style FPU error reporting needs some extra work. */
1650 /** @todo don't fall back to the recompiler, but do it manually. */
1651 rc = VINF_EM_RAW_EMULATE_INSTR;
1652 break;
1653 }
1654 Log(("Trap %x at %VGv\n", vector, pCtx->rip));
1655 rc = VMXR0InjectEvent(pVM, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
1656 AssertRC(rc);
1657
1658 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1659 goto ResumeExecution;
1660 }
1661
1662#ifdef VBOX_STRICT
1663 case X86_XCPT_GP: /* General protection failure exception.*/
1664 case X86_XCPT_UD: /* Unknown opcode exception. */
1665 case X86_XCPT_DE: /* Debug exception. */
1666 case X86_XCPT_SS: /* Stack segment exception. */
1667 case X86_XCPT_NP: /* Segment not present exception. */
1668 {
1669 switch(vector)
1670 {
1671 case X86_XCPT_DE:
1672 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestDE);
1673 break;
1674 case X86_XCPT_UD:
1675 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestUD);
1676 break;
1677 case X86_XCPT_SS:
1678 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestSS);
1679 break;
1680 case X86_XCPT_NP:
1681 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestNP);
1682 break;
1683 case X86_XCPT_GP:
1684 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitGuestGP);
1685 break;
1686 }
1687
1688 Log(("Trap %x at %VGv\n", vector, pCtx->rip));
1689 rc = VMXR0InjectEvent(pVM, pCtx, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(intInfo), cbInstr, errCode);
1690 AssertRC(rc);
1691
1692 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1693 goto ResumeExecution;
1694 }
1695#endif
1696 default:
1697 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
1698 rc = VERR_EM_INTERNAL_ERROR;
1699 break;
1700 } /* switch (vector) */
1701
1702 break;
1703
1704 default:
1705 rc = VERR_EM_INTERNAL_ERROR;
1706 AssertFailed();
1707 break;
1708 }
1709
1710 break;
1711 }
1712
1713 case VMX_EXIT_IRQ_WINDOW: /* 7 Interrupt window. */
1714 /* Clear VM-exit on IF=1 change. */
1715 Log2(("VMX_EXIT_IRQ_WINDOW %VGv\n", pCtx->rip));
1716 pVM->hwaccm.s.vmx.proc_ctls &= ~VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_IRQ_WINDOW_EXIT;
1717 rc = VMXWriteVMCS(VMX_VMCS_CTRL_PROC_EXEC_CONTROLS, pVM->hwaccm.s.vmx.proc_ctls);
1718 AssertRC(rc);
1719 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitIrqWindow);
1720 goto ResumeExecution; /* we check for pending guest interrupts there */
1721
1722 case VMX_EXIT_INVD: /* 13 Guest software attempted to execute INVD. */
1723 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitInvd);
1724 /* Skip instruction and continue directly. */
1725 pCtx->rip += cbInstr;
1726 /* Continue execution.*/
1727 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1728 goto ResumeExecution;
1729
1730 case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */
1731 {
1732 Log2(("VMX: Cpuid %x\n", pCtx->eax));
1733 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitCpuid);
1734 rc = EMInterpretCpuId(pVM, CPUMCTX2CORE(pCtx));
1735 if (rc == VINF_SUCCESS)
1736 {
1737 /* Update EIP and continue execution. */
1738 Assert(cbInstr == 2);
1739 pCtx->rip += cbInstr;
1740 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1741 goto ResumeExecution;
1742 }
1743 AssertMsgFailed(("EMU: cpuid failed with %Vrc\n", rc));
1744 rc = VINF_EM_RAW_EMULATE_INSTR;
1745 break;
1746 }
1747
1748 case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */
1749 {
1750 Log2(("VMX: Rdtsc\n"));
1751 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitRdtsc);
1752 rc = EMInterpretRdtsc(pVM, CPUMCTX2CORE(pCtx));
1753 if (rc == VINF_SUCCESS)
1754 {
1755 /* Update EIP and continue execution. */
1756 Assert(cbInstr == 2);
1757 pCtx->rip += cbInstr;
1758 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1759 goto ResumeExecution;
1760 }
1761 AssertMsgFailed(("EMU: rdtsc failed with %Vrc\n", rc));
1762 rc = VINF_EM_RAW_EMULATE_INSTR;
1763 break;
1764 }
1765
1766 case VMX_EXIT_INVPG: /* 14 Guest software attempted to execute INVPG. */
1767 {
1768 Log2(("VMX: invlpg\n"));
1769 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitInvpg);
1770 rc = EMInterpretInvlpg(pVM, CPUMCTX2CORE(pCtx), exitQualification);
1771 if (rc == VINF_SUCCESS)
1772 {
1773 /* Update EIP and continue execution. */
1774 pCtx->rip += cbInstr;
1775 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1776 goto ResumeExecution;
1777 }
1778 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: invlpg %VGv failed with %Vrc\n", exitQualification, rc));
1779 break;
1780 }
1781
1782 case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */
1783 case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */
1784 {
1785 uint32_t cbSize;
1786
1787 /* Note: the intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
1788 Log2(("VMX: %s\n", (exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr"));
1789 rc = EMInterpretInstruction(pVM, CPUMCTX2CORE(pCtx), 0, &cbSize);
1790 if (rc == VINF_SUCCESS)
1791 {
1792 /* EIP has been updated already. */
1793
1794 /* Only resume if successful. */
1795 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1796 goto ResumeExecution;
1797 }
1798 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Vrc\n", (exitReason == VMX_EXIT_RDMSR) ? "rdmsr" : "wrmsr", rc));
1799 break;
1800 }
1801
1802 case VMX_EXIT_CRX_MOVE: /* 28 Control-register accesses. */
1803 {
1804 switch (VMX_EXIT_QUALIFICATION_CRX_ACCESS(exitQualification))
1805 {
1806 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE:
1807 Log2(("VMX: %VGv mov cr%d, x\n", pCtx->rip, VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification)));
1808 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitCRxWrite);
1809 rc = EMInterpretCRxWrite(pVM, CPUMCTX2CORE(pCtx),
1810 VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification),
1811 VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification));
1812
1813 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification))
1814 {
1815 case 0:
1816 pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1817 break;
1818 case 2:
1819 break;
1820 case 3:
1821 pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR3;
1822 break;
1823 case 4:
1824 pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR4;
1825 break;
1826 case 8:
1827 /* CR8 contains the APIC TPR */
1828 Assert(!(pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW));
1829 break;
1830
1831 default:
1832 AssertFailed();
1833 break;
1834 }
1835 /* Check if a sync operation is pending. */
1836 if ( rc == VINF_SUCCESS /* don't bother if we are going to ring 3 anyway */
1837 && VM_FF_ISPENDING(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL))
1838 {
1839 rc = PGMSyncCR3(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM), VM_FF_ISSET(pVM, VM_FF_PGM_SYNC_CR3));
1840 AssertRC(rc);
1841 }
1842 break;
1843
1844 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ:
1845 Log2(("VMX: mov x, crx\n"));
1846 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitCRxRead);
1847
1848 /* CR8 reads only cause an exit when the TPR shadow feature isn't present. */
1849 Assert(VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification) != 8 || !(pVM->hwaccm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_USE_TPR_SHADOW));
1850
1851 rc = EMInterpretCRxRead(pVM, CPUMCTX2CORE(pCtx),
1852 VMX_EXIT_QUALIFICATION_CRX_GENREG(exitQualification),
1853 VMX_EXIT_QUALIFICATION_CRX_REGISTER(exitQualification));
1854 break;
1855
1856 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS:
1857 Log2(("VMX: clts\n"));
1858 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitCLTS);
1859 rc = EMInterpretCLTS(pVM);
1860 pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1861 break;
1862
1863 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW:
1864 Log2(("VMX: lmsw %x\n", VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification)));
1865 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitLMSW);
1866 rc = EMInterpretLMSW(pVM, VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(exitQualification));
1867 pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1868 break;
1869 }
1870
1871 /* Update EIP if no error occurred. */
1872 if (VBOX_SUCCESS(rc))
1873 pCtx->rip += cbInstr;
1874
1875 if (rc == VINF_SUCCESS)
1876 {
1877 /* Only resume if successful. */
1878 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1879 goto ResumeExecution;
1880 }
1881 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1882 break;
1883 }
1884
1885 case VMX_EXIT_DRX_MOVE: /* 29 Debug-register accesses. */
1886 {
1887 /** @todo clear VMX_VMCS_CTRL_PROC_EXEC_CONTROLS_MOV_DR_EXIT after the first time and restore drx registers afterwards */
1888 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
1889 {
1890 Log2(("VMX: mov drx%d, genreg%d\n", VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification), VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification)));
1891 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitDRxWrite);
1892 rc = EMInterpretDRxWrite(pVM, CPUMCTX2CORE(pCtx),
1893 VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification),
1894 VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification));
1895 Log2(("DR7=%08x\n", pCtx->dr7));
1896 }
1897 else
1898 {
1899 Log2(("VMX: mov x, drx\n"));
1900 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitDRxRead);
1901 rc = EMInterpretDRxRead(pVM, CPUMCTX2CORE(pCtx),
1902 VMX_EXIT_QUALIFICATION_DRX_GENREG(exitQualification),
1903 VMX_EXIT_QUALIFICATION_DRX_REGISTER(exitQualification));
1904 }
1905 /* Update EIP if no error occurred. */
1906 if (VBOX_SUCCESS(rc))
1907 pCtx->rip += cbInstr;
1908
1909 if (rc == VINF_SUCCESS)
1910 {
1911 /* Only resume if successful. */
1912 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1913 goto ResumeExecution;
1914 }
1915 Assert(rc == VERR_EM_INTERPRETER);
1916 break;
1917 }
1918
1919 /** @note We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
1920 case VMX_EXIT_PORT_IO: /* 30 I/O instruction. */
1921 {
1922 uint32_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(exitQualification);
1923 uint32_t uPort;
1924 bool fIOWrite = (VMX_EXIT_QUALIFICATION_IO_DIRECTION(exitQualification) == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
1925
1926 /** @todo necessary to make the distinction? */
1927 if (VMX_EXIT_QUALIFICATION_IO_ENCODING(exitQualification) == VMX_EXIT_QUALIFICATION_IO_ENCODING_DX)
1928 {
1929 uPort = pCtx->edx & 0xffff;
1930 }
1931 else
1932 uPort = VMX_EXIT_QUALIFICATION_IO_PORT(exitQualification); /* Immediate encoding. */
1933
1934 /* paranoia */
1935 if (RT_UNLIKELY(uIOWidth == 2 || uIOWidth >= 4))
1936 {
1937 rc = fIOWrite ? VINF_IOM_HC_IOPORT_WRITE : VINF_IOM_HC_IOPORT_READ;
1938 break;
1939 }
1940
1941 uint32_t cbSize = aIOSize[uIOWidth];
1942
1943 if (VMX_EXIT_QUALIFICATION_IO_STRING(exitQualification))
1944 {
1945 /* ins/outs */
1946 uint32_t prefix = 0;
1947 if (VMX_EXIT_QUALIFICATION_IO_REP(exitQualification))
1948 prefix |= PREFIX_REP;
1949
1950 if (fIOWrite)
1951 {
1952 Log2(("IOMInterpretOUTSEx %VGv %x size=%d\n", pCtx->rip, uPort, cbSize));
1953 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitIOStringWrite);
1954 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), uPort, prefix, cbSize);
1955 }
1956 else
1957 {
1958 Log2(("IOMInterpretINSEx %VGv %x size=%d\n", pCtx->rip, uPort, cbSize));
1959 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitIOStringRead);
1960 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), uPort, prefix, cbSize);
1961 }
1962 }
1963 else
1964 {
1965 /* normal in/out */
1966 uint32_t uAndVal = aIOOpAnd[uIOWidth];
1967
1968 Assert(!VMX_EXIT_QUALIFICATION_IO_REP(exitQualification));
1969
1970 if (fIOWrite)
1971 {
1972 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitIOWrite);
1973 rc = IOMIOPortWrite(pVM, uPort, pCtx->eax & uAndVal, cbSize);
1974 }
1975 else
1976 {
1977 uint32_t u32Val = 0;
1978
1979 STAM_COUNTER_INC(&pVM->hwaccm.s.StatExitIORead);
1980 rc = IOMIOPortRead(pVM, uPort, &u32Val, cbSize);
1981 if (IOM_SUCCESS(rc))
1982 {
1983 /* Write back to the EAX register. */
1984 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
1985 }
1986 }
1987 }
1988 /*
1989 * Handled the I/O return codes.
1990 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
1991 */
1992 if (IOM_SUCCESS(rc))
1993 {
1994 /* Update EIP and continue execution. */
1995 pCtx->rip += cbInstr;
1996 if (RT_LIKELY(rc == VINF_SUCCESS))
1997 {
1998 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
1999 goto ResumeExecution;
2000 }
2001 break;
2002 }
2003
2004#ifdef VBOX_STRICT
2005 if (rc == VINF_IOM_HC_IOPORT_READ)
2006 Assert(!fIOWrite);
2007 else if (rc == VINF_IOM_HC_IOPORT_WRITE)
2008 Assert(fIOWrite);
2009 else
2010 AssertMsg(VBOX_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Vrc\n", rc));
2011#endif
2012 break;
2013 }
2014
2015 case VMX_EXIT_TPR: /* 43 TPR below threshold. Guest software executed MOV to CR8. */
2016 LogFlow(("VMX_EXIT_TPR\n"));
2017 /* RIP is already set to the next instruction and the TPR has been synced back. Just resume. */
2018 goto ResumeExecution;
2019
2020 default:
2021 /* The rest is handled after syncing the entire CPU state. */
2022 break;
2023 }
2024
2025 /* Note: the guest state isn't entirely synced back at this stage. */
2026
2027 /* Investigate why there was a VM-exit. (part 2) */
2028 switch (exitReason)
2029 {
2030 case VMX_EXIT_EXCEPTION: /* 0 Exception or non-maskable interrupt (NMI). */
2031 case VMX_EXIT_EXTERNAL_IRQ: /* 1 External interrupt. */
2032 /* Already handled above. */
2033 break;
2034
2035 case VMX_EXIT_TRIPLE_FAULT: /* 2 Triple fault. */
2036 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
2037 break;
2038
2039 case VMX_EXIT_INIT_SIGNAL: /* 3 INIT signal. */
2040 case VMX_EXIT_SIPI: /* 4 Start-up IPI (SIPI). */
2041 rc = VINF_EM_RAW_INTERRUPT;
2042 AssertFailed(); /* Can't happen. Yet. */
2043 break;
2044
2045 case VMX_EXIT_IO_SMI_IRQ: /* 5 I/O system-management interrupt (SMI). */
2046 case VMX_EXIT_SMI_IRQ: /* 6 Other SMI. */
2047 rc = VINF_EM_RAW_INTERRUPT;
2048 AssertFailed(); /* Can't happen afaik. */
2049 break;
2050
2051 case VMX_EXIT_TASK_SWITCH: /* 9 Task switch. */
2052 rc = VERR_EM_INTERPRETER;
2053 break;
2054
2055 case VMX_EXIT_HLT: /* 12 Guest software attempted to execute HLT. */
2056 /** Check if external interrupts are pending; if so, don't switch back. */
2057 pCtx->rip++; /* skip hlt */
2058 if ( pCtx->eflags.Bits.u1IF
2059 && VM_FF_ISPENDING(pVM, (VM_FF_INTERRUPT_APIC|VM_FF_INTERRUPT_PIC)))
2060 goto ResumeExecution;
2061
2062 rc = VINF_EM_HALT;
2063 break;
2064
2065 case VMX_EXIT_RSM: /* 17 Guest software attempted to execute RSM in SMM. */
2066 AssertFailed(); /* can't happen. */
2067 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
2068 break;
2069
2070 case VMX_EXIT_VMCALL: /* 18 Guest software executed VMCALL. */
2071 case VMX_EXIT_VMCLEAR: /* 19 Guest software executed VMCLEAR. */
2072 case VMX_EXIT_VMLAUNCH: /* 20 Guest software executed VMLAUNCH. */
2073 case VMX_EXIT_VMPTRLD: /* 21 Guest software executed VMPTRLD. */
2074 case VMX_EXIT_VMPTRST: /* 22 Guest software executed VMPTRST. */
2075 case VMX_EXIT_VMREAD: /* 23 Guest software executed VMREAD. */
2076 case VMX_EXIT_VMRESUME: /* 24 Guest software executed VMRESUME. */
2077 case VMX_EXIT_VMWRITE: /* 25 Guest software executed VMWRITE. */
2078 case VMX_EXIT_VMXOFF: /* 26 Guest software executed VMXOFF. */
2079 case VMX_EXIT_VMXON: /* 27 Guest software executed VMXON. */
2080 /** @todo inject #UD immediately */
2081 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
2082 break;
2083
2084 case VMX_EXIT_CPUID: /* 10 Guest software attempted to execute CPUID. */
2085 case VMX_EXIT_RDTSC: /* 16 Guest software attempted to execute RDTSC. */
2086 case VMX_EXIT_INVPG: /* 14 Guest software attempted to execute INVPG. */
2087 case VMX_EXIT_CRX_MOVE: /* 28 Control-register accesses. */
2088 case VMX_EXIT_DRX_MOVE: /* 29 Debug-register accesses. */
2089 case VMX_EXIT_PORT_IO: /* 30 I/O instruction. */
2090 /* already handled above */
2091 AssertMsg( rc == VINF_PGM_CHANGE_MODE
2092 || rc == VINF_EM_RAW_INTERRUPT
2093 || rc == VERR_EM_INTERPRETER
2094 || rc == VINF_EM_RAW_EMULATE_INSTR
2095 || rc == VINF_PGM_SYNC_CR3
2096 || rc == VINF_IOM_HC_IOPORT_READ
2097 || rc == VINF_IOM_HC_IOPORT_WRITE
2098 || rc == VINF_EM_RAW_GUEST_TRAP
2099 || rc == VINF_TRPM_XCPT_DISPATCHED
2100 || rc == VINF_EM_RESCHEDULE_REM,
2101 ("rc = %d\n", rc));
2102 break;
2103
2104 case VMX_EXIT_TPR: /* 43 TPR below threshold. Guest software executed MOV to CR8. */
2105 case VMX_EXIT_RDMSR: /* 31 RDMSR. Guest software attempted to execute RDMSR. */
2106 case VMX_EXIT_WRMSR: /* 32 WRMSR. Guest software attempted to execute WRMSR. */
2107 /* Note: If we decide to emulate them here, then we must sync the MSRs that could have been changed (sysenter, fs/gs base)!!! */
2108 rc = VERR_EM_INTERPRETER;
2109 break;
2110
2111 case VMX_EXIT_RDPMC: /* 15 Guest software attempted to execute RDPMC. */
2112 case VMX_EXIT_MWAIT: /* 36 Guest software executed MWAIT. */
2113 case VMX_EXIT_MONITOR: /* 39 Guest software attempted to execute MONITOR. */
2114 case VMX_EXIT_PAUSE: /* 40 Guest software attempted to execute PAUSE. */
2115 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
2116 break;
2117
2118 case VMX_EXIT_IRQ_WINDOW: /* 7 Interrupt window. */
2119 Assert(rc == VINF_EM_RAW_INTERRUPT);
2120 break;
2121
2122 case VMX_EXIT_ERR_INVALID_GUEST_STATE: /* 33 VM-entry failure due to invalid guest state. */
2123 {
2124#ifdef VBOX_STRICT
2125 Log(("VMX_EXIT_ERR_INVALID_GUEST_STATE\n"));
2126
2127 VMXReadVMCS(VMX_VMCS_GUEST_RIP, &val);
2128 Log(("Old eip %VGv new %VGv\n", pCtx->rip, (RTGCPTR)val));
2129
2130 VMXReadVMCS(VMX_VMCS_GUEST_CR0, &val);
2131 Log(("VMX_VMCS_GUEST_CR0 %RX64\n", val));
2132
2133 VMXReadVMCS(VMX_VMCS_GUEST_CR3, &val);
2134 Log(("VMX_VMCS_HOST_CR3 %VGp\n", val));
2135
2136 VMXReadVMCS(VMX_VMCS_GUEST_CR4, &val);
2137 Log(("VMX_VMCS_GUEST_CR4 %RX64\n", val));
2138
2139 VMX_LOG_SELREG(CS, "CS");
2140 VMX_LOG_SELREG(DS, "DS");
2141 VMX_LOG_SELREG(ES, "ES");
2142 VMX_LOG_SELREG(FS, "FS");
2143 VMX_LOG_SELREG(GS, "GS");
2144 VMX_LOG_SELREG(SS, "SS");
2145 VMX_LOG_SELREG(TR, "TR");
2146 VMX_LOG_SELREG(LDTR, "LDTR");
2147
2148 VMXReadVMCS(VMX_VMCS_GUEST_GDTR_BASE, &val);
2149 Log(("VMX_VMCS_GUEST_GDTR_BASE %VGv\n", val));
2150 VMXReadVMCS(VMX_VMCS_GUEST_IDTR_BASE, &val);
2151 Log(("VMX_VMCS_GUEST_IDTR_BASE %VGv\n", val));
2152#endif /* VBOX_STRICT */
2153 rc = VERR_EM_INTERNAL_ERROR;
2154 break;
2155 }
2156
2157 case VMX_EXIT_ERR_MSR_LOAD: /* 34 VM-entry failure due to MSR loading. */
2158 case VMX_EXIT_ERR_MACHINE_CHECK: /* 41 VM-entry failure due to machine-check. */
2159 default:
2160 rc = VERR_EM_INTERNAL_ERROR;
2161 AssertMsgFailed(("Unexpected exit code %d\n", exitReason)); /* Can't happen. */
2162 break;
2163
2164 }
2165end:
2166 if (fGuestStateSynced)
2167 {
2168 /* Remaining guest CPU context: TR, IDTR, GDTR, LDTR. */
2169 VMX_READ_SELREG(LDTR, ldtr);
2170 VMX_READ_SELREG(TR, tr);
2171
2172 VMXReadVMCS(VMX_VMCS_GUEST_GDTR_LIMIT, &val);
2173 pCtx->gdtr.cbGdt = val;
2174 VMXReadVMCS(VMX_VMCS_GUEST_GDTR_BASE, &val);
2175 pCtx->gdtr.pGdt = val;
2176
2177 VMXReadVMCS(VMX_VMCS_GUEST_IDTR_LIMIT, &val);
2178 pCtx->idtr.cbIdt = val;
2179 VMXReadVMCS(VMX_VMCS_GUEST_IDTR_BASE, &val);
2180 pCtx->idtr.pIdt = val;
2181 }
2182
2183 /* Signal changes for the recompiler. */
2184 CPUMSetChangedFlags(pVM, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS);
2185
2186 /* If we executed vmlaunch/vmresume and an external irq was pending, then we don't have to do a full sync the next time. */
2187 if ( exitReason == VMX_EXIT_EXTERNAL_IRQ
2188 && !VMX_EXIT_INTERRUPTION_INFO_VALID(intInfo))
2189 {
2190 STAM_COUNTER_INC(&pVM->hwaccm.s.StatPendingHostIrq);
2191 /* On the next entry we'll only sync the host context. */
2192 pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_HOST_CONTEXT;
2193 }
2194 else
2195 {
2196 /* On the next entry we'll sync everything. */
2197 /** @todo we can do better than this */
2198 pVM->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
2199 }
2200
2201 /* translate into a less severe return code */
2202 if (rc == VERR_EM_INTERPRETER)
2203 rc = VINF_EM_RAW_EMULATE_INSTR;
2204
2205 STAM_PROFILE_ADV_STOP(&pVM->hwaccm.s.StatExit, x);
2206 Log2(("X"));
2207 return rc;
2208}
2209
2210
2211/**
2212 * Enters the VT-x session
2213 *
2214 * @returns VBox status code.
2215 * @param pVM The VM to operate on.
2216 * @param pCpu CPU info struct
2217 */
2218HWACCMR0DECL(int) VMXR0Enter(PVM pVM, PHWACCM_CPUINFO pCpu)
2219{
2220 Assert(pVM->hwaccm.s.vmx.fSupported);
2221
2222 unsigned cr4 = ASMGetCR4();
2223 if (!(cr4 & X86_CR4_VMXE))
2224 {
2225 AssertMsgFailed(("X86_CR4_VMXE should be set!\n"));
2226 return VERR_VMX_X86_CR4_VMXE_CLEARED;
2227 }
2228
2229 /* Activate the VM Control Structure. */
2230 int rc = VMXActivateVMCS(pVM->hwaccm.s.vmx.pVMCSPhys);
2231 if (VBOX_FAILURE(rc))
2232 return rc;
2233
2234 pVM->hwaccm.s.vmx.fResumeVM = false;
2235 return VINF_SUCCESS;
2236}
2237
2238
2239/**
2240 * Leaves the VT-x session
2241 *
2242 * @returns VBox status code.
2243 * @param pVM The VM to operate on.
2244 */
2245HWACCMR0DECL(int) VMXR0Leave(PVM pVM)
2246{
2247 Assert(pVM->hwaccm.s.vmx.fSupported);
2248
2249 /* Clear VM Control Structure. Marking it inactive, clearing implementation specific data and writing back VMCS data to memory. */
2250 int rc = VMXClearVMCS(pVM->hwaccm.s.vmx.pVMCSPhys);
2251 AssertRC(rc);
2252
2253 return VINF_SUCCESS;
2254}
2255
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette