VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HWSVMR0.cpp@ 19286

Last change on this file since 19286 was 19286, checked in by vboxsync, 15 years ago

VMM,VBoxDbg: SMP refactoring, part 1.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 94.8 KB
Line 
1/* $Id: HWSVMR0.cpp 19286 2009-05-01 12:41:07Z vboxsync $ */
2/** @file
3 * HWACCM SVM - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_HWACCM
27#include <VBox/hwaccm.h>
28#include "HWACCMInternal.h"
29#include <VBox/vm.h>
30#include <VBox/x86.h>
31#include <VBox/hwacc_svm.h>
32#include <VBox/pgm.h>
33#include <VBox/pdm.h>
34#include <VBox/err.h>
35#include <VBox/log.h>
36#include <VBox/selm.h>
37#include <VBox/iom.h>
38#include <VBox/dis.h>
39#include <VBox/dbgf.h>
40#include <VBox/disopcode.h>
41#include <iprt/param.h>
42#include <iprt/assert.h>
43#include <iprt/asm.h>
44#include <iprt/cpuset.h>
45#include <iprt/mp.h>
46#include "HWSVMR0.h"
47
48/*******************************************************************************
49* Internal Functions *
50*******************************************************************************/
51static int SVMR0InterpretInvpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID);
52
53/*******************************************************************************
54* Global Variables *
55*******************************************************************************/
56/* IO operation lookup arrays. */
57static uint32_t const g_aIOSize[4] = {1, 2, 0, 4};
58
59/**
60 * Sets up and activates AMD-V on the current CPU
61 *
62 * @returns VBox status code.
63 * @param pCpu CPU info struct
64 * @param pVM The VM to operate on. (can be NULL after a resume!!)
65 * @param pvPageCpu Pointer to the global cpu page
66 * @param pPageCpuPhys Physical address of the global cpu page
67 */
68VMMR0DECL(int) SVMR0EnableCpu(PHWACCM_CPUINFO pCpu, PVM pVM, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
69{
70 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
71 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
72
73 /* We must turn on AMD-V and setup the host state physical address, as those MSRs are per-cpu/core. */
74
75#if defined(LOG_ENABLED) && !defined(DEBUG_bird)
76 SUPR0Printf("SVMR0EnableCpu cpu %d page (%x) %x\n", pCpu->idCpu, pvPageCpu, (uint32_t)pPageCpuPhys);
77#endif
78
79 /* Turn on AMD-V in the EFER MSR. */
80 uint64_t val = ASMRdMsr(MSR_K6_EFER);
81 if (!(val & MSR_K6_EFER_SVME))
82 ASMWrMsr(MSR_K6_EFER, val | MSR_K6_EFER_SVME);
83
84 /* Write the physical page address where the CPU will store the host state while executing the VM. */
85 ASMWrMsr(MSR_K8_VM_HSAVE_PA, pPageCpuPhys);
86
87 return VINF_SUCCESS;
88}
89
90/**
91 * Deactivates AMD-V on the current CPU
92 *
93 * @returns VBox status code.
94 * @param pCpu CPU info struct
95 * @param pvPageCpu Pointer to the global cpu page
96 * @param pPageCpuPhys Physical address of the global cpu page
97 */
98VMMR0DECL(int) SVMR0DisableCpu(PHWACCM_CPUINFO pCpu, void *pvPageCpu, RTHCPHYS pPageCpuPhys)
99{
100 AssertReturn(pPageCpuPhys, VERR_INVALID_PARAMETER);
101 AssertReturn(pvPageCpu, VERR_INVALID_PARAMETER);
102
103#if defined(LOG_ENABLED) && !defined(DEBUG_bird)
104 SUPR0Printf("SVMR0DisableCpu cpu %d\n", pCpu->idCpu);
105#endif
106
107 /* Turn off AMD-V in the EFER MSR. */
108 uint64_t val = ASMRdMsr(MSR_K6_EFER);
109 ASMWrMsr(MSR_K6_EFER, val & ~MSR_K6_EFER_SVME);
110
111 /* Invalidate host state physical address. */
112 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
113
114 return VINF_SUCCESS;
115}
116
117/**
118 * Does Ring-0 per VM AMD-V init.
119 *
120 * @returns VBox status code.
121 * @param pVM The VM to operate on.
122 */
123VMMR0DECL(int) SVMR0InitVM(PVM pVM)
124{
125 int rc;
126
127 pVM->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
128 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
129 pVM->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
130
131 /* Allocate one page for the host context */
132 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjVMCBHost, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
133 if (RT_FAILURE(rc))
134 return rc;
135
136 pVM->hwaccm.s.svm.pVMCBHost = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjVMCBHost);
137 pVM->hwaccm.s.svm.pVMCBHostPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjVMCBHost, 0);
138 ASMMemZeroPage(pVM->hwaccm.s.svm.pVMCBHost);
139
140 /* Allocate 12 KB for the IO bitmap (doesn't seem to be a way to convince SVM not to use it) */
141 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjIOBitmap, 3 << PAGE_SHIFT, true /* executable R0 mapping */);
142 if (RT_FAILURE(rc))
143 return rc;
144
145 pVM->hwaccm.s.svm.pIOBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjIOBitmap);
146 pVM->hwaccm.s.svm.pIOBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjIOBitmap, 0);
147 /* Set all bits to intercept all IO accesses. */
148 ASMMemFill32(pVM->hwaccm.s.svm.pIOBitmap, PAGE_SIZE*3, 0xffffffff);
149
150 /* Allocate 8 KB for the MSR bitmap (doesn't seem to be a way to convince SVM not to use it) */
151 rc = RTR0MemObjAllocCont(&pVM->hwaccm.s.svm.pMemObjMSRBitmap, 2 << PAGE_SHIFT, true /* executable R0 mapping */);
152 if (RT_FAILURE(rc))
153 return rc;
154
155 pVM->hwaccm.s.svm.pMSRBitmap = RTR0MemObjAddress(pVM->hwaccm.s.svm.pMemObjMSRBitmap);
156 pVM->hwaccm.s.svm.pMSRBitmapPhys = RTR0MemObjGetPagePhysAddr(pVM->hwaccm.s.svm.pMemObjMSRBitmap, 0);
157 /* Set all bits to intercept all MSR accesses. */
158 ASMMemFill32(pVM->hwaccm.s.svm.pMSRBitmap, PAGE_SIZE*2, 0xffffffff);
159
160 /* Erratum 170 which requires a forced TLB flush for each world switch:
161 * See http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
162 *
163 * All BH-G1/2 and DH-G1/2 models include a fix:
164 * Athlon X2: 0x6b 1/2
165 * 0x68 1/2
166 * Athlon 64: 0x7f 1
167 * 0x6f 2
168 * Sempron: 0x7f 1/2
169 * 0x6f 2
170 * 0x6c 2
171 * 0x7c 2
172 * Turion 64: 0x68 2
173 *
174 */
175 uint32_t u32Dummy;
176 uint32_t u32Version, u32Family, u32Model, u32Stepping, u32BaseFamily;
177 ASMCpuId(1, &u32Version, &u32Dummy, &u32Dummy, &u32Dummy);
178 u32BaseFamily= (u32Version >> 8) & 0xf;
179 u32Family = u32BaseFamily + (u32BaseFamily == 0xf ? ((u32Version >> 20) & 0x7f) : 0);
180 u32Model = ((u32Version >> 4) & 0xf);
181 u32Model = u32Model | ((u32BaseFamily == 0xf ? (u32Version >> 16) & 0x0f : 0) << 4);
182 u32Stepping = u32Version & 0xf;
183 if ( u32Family == 0xf
184 && !((u32Model == 0x68 || u32Model == 0x6b || u32Model == 0x7f) && u32Stepping >= 1)
185 && !((u32Model == 0x6f || u32Model == 0x6c || u32Model == 0x7c) && u32Stepping >= 2))
186 {
187 Log(("SVMR0InitVM: AMD cpu with erratum 170 family %x model %x stepping %x\n", u32Family, u32Model, u32Stepping));
188 pVM->hwaccm.s.svm.fAlwaysFlushTLB = true;
189 }
190
191 /* Allocate VMCBs for all guest CPUs. */
192 for (unsigned i=0;i<pVM->cCPUs;i++)
193 {
194 pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
195
196 /* Allocate one page for the VM control block (VMCB). */
197 rc = RTR0MemObjAllocCont(&pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, 1 << PAGE_SHIFT, true /* executable R0 mapping */);
198 if (RT_FAILURE(rc))
199 return rc;
200
201 pVM->aCpus[i].hwaccm.s.svm.pVMCB = RTR0MemObjAddress(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB);
202 pVM->aCpus[i].hwaccm.s.svm.pVMCBPhys = RTR0MemObjGetPagePhysAddr(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, 0);
203 ASMMemZeroPage(pVM->aCpus[i].hwaccm.s.svm.pVMCB);
204 }
205
206 return VINF_SUCCESS;
207}
208
209/**
210 * Does Ring-0 per VM AMD-V termination.
211 *
212 * @returns VBox status code.
213 * @param pVM The VM to operate on.
214 */
215VMMR0DECL(int) SVMR0TermVM(PVM pVM)
216{
217 for (unsigned i=0;i<pVM->cCPUs;i++)
218 {
219 if (pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB != NIL_RTR0MEMOBJ)
220 {
221 RTR0MemObjFree(pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB, false);
222 pVM->aCpus[i].hwaccm.s.svm.pVMCB = 0;
223 pVM->aCpus[i].hwaccm.s.svm.pVMCBPhys = 0;
224 pVM->aCpus[i].hwaccm.s.svm.pMemObjVMCB = NIL_RTR0MEMOBJ;
225 }
226 }
227 if (pVM->hwaccm.s.svm.pMemObjVMCBHost != NIL_RTR0MEMOBJ)
228 {
229 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjVMCBHost, false);
230 pVM->hwaccm.s.svm.pVMCBHost = 0;
231 pVM->hwaccm.s.svm.pVMCBHostPhys = 0;
232 pVM->hwaccm.s.svm.pMemObjVMCBHost = NIL_RTR0MEMOBJ;
233 }
234 if (pVM->hwaccm.s.svm.pMemObjIOBitmap != NIL_RTR0MEMOBJ)
235 {
236 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjIOBitmap, false);
237 pVM->hwaccm.s.svm.pIOBitmap = 0;
238 pVM->hwaccm.s.svm.pIOBitmapPhys = 0;
239 pVM->hwaccm.s.svm.pMemObjIOBitmap = NIL_RTR0MEMOBJ;
240 }
241 if (pVM->hwaccm.s.svm.pMemObjMSRBitmap != NIL_RTR0MEMOBJ)
242 {
243 RTR0MemObjFree(pVM->hwaccm.s.svm.pMemObjMSRBitmap, false);
244 pVM->hwaccm.s.svm.pMSRBitmap = 0;
245 pVM->hwaccm.s.svm.pMSRBitmapPhys = 0;
246 pVM->hwaccm.s.svm.pMemObjMSRBitmap = NIL_RTR0MEMOBJ;
247 }
248 return VINF_SUCCESS;
249}
250
251/**
252 * Sets up AMD-V for the specified VM
253 *
254 * @returns VBox status code.
255 * @param pVM The VM to operate on.
256 */
257VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
258{
259 int rc = VINF_SUCCESS;
260 SVM_VMCB *pVMCB;
261
262 AssertReturn(pVM, VERR_INVALID_PARAMETER);
263
264 Assert(pVM->hwaccm.s.svm.fSupported);
265
266 for (unsigned i=0;i<pVM->cCPUs;i++)
267 {
268 pVMCB = (SVM_VMCB *)pVM->aCpus[i].hwaccm.s.svm.pVMCB;
269 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
270
271 /* Program the control fields. Most of them never have to be changed again. */
272 /* CR0/3/4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
273 /* Note: CR0 & CR4 can be safely read when guest and shadow copies are identical. */
274 if (!pVM->hwaccm.s.fNestedPaging)
275 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
276 else
277 pVMCB->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
278
279 /*
280 * CR0/3/4 writes must be intercepted for obvious reasons.
281 */
282 if (!pVM->hwaccm.s.fNestedPaging)
283 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(3) | RT_BIT(4);
284 else
285 pVMCB->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4) | RT_BIT(8);
286
287 /* Intercept all DRx reads and writes by default. Changed later on. */
288 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
289 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
290
291 /* Currently we don't care about DRx reads or writes. DRx registers are trashed.
292 * All breakpoints are automatically cleared when the VM exits.
293 */
294
295 pVMCB->ctrl.u32InterceptException = HWACCM_SVM_TRAP_MASK;
296#ifndef DEBUG
297 if (pVM->hwaccm.s.fNestedPaging)
298 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_PF); /* no longer need to intercept #PF. */
299#endif
300
301 pVMCB->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR
302 | SVM_CTRL1_INTERCEPT_VINTR
303 | SVM_CTRL1_INTERCEPT_NMI
304 | SVM_CTRL1_INTERCEPT_SMI
305 | SVM_CTRL1_INTERCEPT_INIT
306 | SVM_CTRL1_INTERCEPT_RDPMC
307 | SVM_CTRL1_INTERCEPT_CPUID
308 | SVM_CTRL1_INTERCEPT_RSM
309 | SVM_CTRL1_INTERCEPT_HLT
310 | SVM_CTRL1_INTERCEPT_INOUT_BITMAP
311 | SVM_CTRL1_INTERCEPT_MSR_SHADOW
312 | SVM_CTRL1_INTERCEPT_INVLPG
313 | SVM_CTRL1_INTERCEPT_INVLPGA /* AMD only */
314 | SVM_CTRL1_INTERCEPT_TASK_SWITCH
315 | SVM_CTRL1_INTERCEPT_SHUTDOWN /* fatal */
316 | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Legacy FPU FERR handling. */
317 ;
318 /* With nested paging we don't care about invlpg anymore. */
319 if (pVM->hwaccm.s.fNestedPaging)
320 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_INVLPG;
321
322 pVMCB->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* required */
323 | SVM_CTRL2_INTERCEPT_VMMCALL
324 | SVM_CTRL2_INTERCEPT_VMLOAD
325 | SVM_CTRL2_INTERCEPT_VMSAVE
326 | SVM_CTRL2_INTERCEPT_STGI
327 | SVM_CTRL2_INTERCEPT_CLGI
328 | SVM_CTRL2_INTERCEPT_SKINIT
329 | SVM_CTRL2_INTERCEPT_WBINVD
330 | SVM_CTRL2_INTERCEPT_MWAIT_UNCOND; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */
331 ;
332 Log(("pVMCB->ctrl.u32InterceptException = %x\n", pVMCB->ctrl.u32InterceptException));
333 Log(("pVMCB->ctrl.u32InterceptCtrl1 = %x\n", pVMCB->ctrl.u32InterceptCtrl1));
334 Log(("pVMCB->ctrl.u32InterceptCtrl2 = %x\n", pVMCB->ctrl.u32InterceptCtrl2));
335
336 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
337 pVMCB->ctrl.IntCtrl.n.u1VIrqMasking = 1;
338 /* Ignore the priority in the TPR; just deliver it when we tell it to. */
339 pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
340
341 /* Set IO and MSR bitmap addresses. */
342 pVMCB->ctrl.u64IOPMPhysAddr = pVM->hwaccm.s.svm.pIOBitmapPhys;
343 pVMCB->ctrl.u64MSRPMPhysAddr = pVM->hwaccm.s.svm.pMSRBitmapPhys;
344
345 /* No LBR virtualization. */
346 pVMCB->ctrl.u64LBRVirt = 0;
347
348 /** The ASID must start at 1; the host uses 0. */
349 pVMCB->ctrl.TLBCtrl.n.u32ASID = 1;
350
351 /** Setup the PAT msr (nested paging only) */
352 pVMCB->guest.u64GPAT = 0x0007040600070406ULL;
353 }
354 return rc;
355}
356
357
358/**
359 * Injects an event (trap or external interrupt)
360 *
361 * @param pVM The VM to operate on.
362 * @param pVMCB SVM control block
363 * @param pCtx CPU Context
364 * @param pIntInfo SVM interrupt info
365 */
366inline void SVMR0InjectEvent(PVM pVM, SVM_VMCB *pVMCB, CPUMCTX *pCtx, SVM_EVENT* pEvent)
367{
368#ifdef VBOX_STRICT
369 if (pEvent->n.u8Vector == 0xE)
370 Log(("SVM: Inject int %d at %RGv error code=%02x CR2=%RGv intInfo=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode, (RTGCPTR)pCtx->cr2, pEvent->au64[0]));
371 else
372 if (pEvent->n.u8Vector < 0x20)
373 Log(("SVM: Inject int %d at %RGv error code=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode));
374 else
375 {
376 Log(("INJ-EI: %x at %RGv\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip));
377 Assert(!VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_INHIBIT_INTERRUPTS));
378 Assert(pCtx->eflags.u32 & X86_EFL_IF);
379 }
380#endif
381
382 /* Set event injection state. */
383 pVMCB->ctrl.EventInject.au64[0] = pEvent->au64[0];
384}
385
386
387/**
388 * Checks for pending guest interrupts and injects them
389 *
390 * @returns VBox status code.
391 * @param pVM The VM to operate on.
392 * @param pVCpu The VM CPU to operate on.
393 * @param pVMCB SVM control block
394 * @param pCtx CPU Context
395 */
396static int SVMR0CheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, SVM_VMCB *pVMCB, CPUMCTX *pCtx)
397{
398 int rc;
399
400 /* Dispatch any pending interrupts. (injected before, but a VM exit occurred prematurely) */
401 if (pVCpu->hwaccm.s.Event.fPending)
402 {
403 SVM_EVENT Event;
404
405 Log(("Reinjecting event %08x %08x at %RGv\n", pVCpu->hwaccm.s.Event.intInfo, pVCpu->hwaccm.s.Event.errCode, (RTGCPTR)pCtx->rip));
406 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntReinject);
407 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
408 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
409
410 pVCpu->hwaccm.s.Event.fPending = false;
411 return VINF_SUCCESS;
412 }
413
414 if (pVM->hwaccm.s.fInjectNMI)
415 {
416 SVM_EVENT Event;
417
418 Event.n.u8Vector = X86_XCPT_NMI;
419 Event.n.u1Valid = 1;
420 Event.n.u32ErrorCode = 0;
421 Event.n.u3Type = SVM_EVENT_NMI;
422
423 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
424 pVM->hwaccm.s.fInjectNMI = false;
425 return VINF_SUCCESS;
426 }
427
428 /* When external interrupts are pending, we should exit the VM when IF is set. */
429 if ( !TRPMHasTrap(pVCpu)
430 && VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)))
431 {
432 if ( !(pCtx->eflags.u32 & X86_EFL_IF)
433 || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
434 {
435 if (!pVMCB->ctrl.IntCtrl.n.u1VIrqValid)
436 {
437 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
438 LogFlow(("Enable irq window exit!\n"));
439 else
440 Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS -> irq window exit\n", (RTGCPTR)pCtx->rip));
441
442 /** @todo use virtual interrupt method to inject a pending irq; dispatched as soon as guest.IF is set. */
443 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
444 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 1;
445 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0; /* don't care */
446 }
447 }
448 else
449 {
450 uint8_t u8Interrupt;
451
452 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
453 Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc\n", u8Interrupt, u8Interrupt, rc));
454 if (RT_SUCCESS(rc))
455 {
456 rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT);
457 AssertRC(rc);
458 }
459 else
460 {
461 /* Can only happen in rare cases where a pending interrupt is cleared behind our back */
462 Assert(!VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)));
463 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchGuestIrq);
464 /* Just continue */
465 }
466 }
467 }
468
469#ifdef VBOX_STRICT
470 if (TRPMHasTrap(pVCpu))
471 {
472 uint8_t u8Vector;
473 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, 0, 0, 0);
474 AssertRC(rc);
475 }
476#endif
477
478 if ( pCtx->eflags.u32 & X86_EFL_IF
479 && (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
480 && TRPMHasTrap(pVCpu)
481 )
482 {
483 uint8_t u8Vector;
484 int rc;
485 TRPMEVENT enmType;
486 SVM_EVENT Event;
487 RTGCUINT u32ErrorCode;
488
489 Event.au64[0] = 0;
490
491 /* If a new event is pending, then dispatch it now. */
492 rc = TRPMQueryTrapAll(pVCpu, &u8Vector, &enmType, &u32ErrorCode, 0);
493 AssertRC(rc);
494 Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP);
495 Assert(enmType != TRPM_SOFTWARE_INT);
496
497 /* Clear the pending trap. */
498 rc = TRPMResetTrap(pVCpu);
499 AssertRC(rc);
500
501 Event.n.u8Vector = u8Vector;
502 Event.n.u1Valid = 1;
503 Event.n.u32ErrorCode = u32ErrorCode;
504
505 if (enmType == TRPM_TRAP)
506 {
507 switch (u8Vector) {
508 case 8:
509 case 10:
510 case 11:
511 case 12:
512 case 13:
513 case 14:
514 case 17:
515 /* Valid error codes. */
516 Event.n.u1ErrorCodeValid = 1;
517 break;
518 default:
519 break;
520 }
521 if (u8Vector == X86_XCPT_NMI)
522 Event.n.u3Type = SVM_EVENT_NMI;
523 else
524 Event.n.u3Type = SVM_EVENT_EXCEPTION;
525 }
526 else
527 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
528
529 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatIntInject);
530 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
531 } /* if (interrupts can be dispatched) */
532
533 return VINF_SUCCESS;
534}
535
536/**
537 * Save the host state
538 *
539 * @returns VBox status code.
540 * @param pVM The VM to operate on.
541 * @param pVCpu The VM CPU to operate on.
542 */
543VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
544{
545 NOREF(pVM);
546 NOREF(pVCpu);
547 /* Nothing to do here. */
548 return VINF_SUCCESS;
549}
550
551/**
552 * Loads the guest state
553 *
554 * NOTE: Don't do anything here that can cause a jump back to ring 3!!!!!
555 *
556 * @returns VBox status code.
557 * @param pVM The VM to operate on.
558 * @param pVCpu The VM CPU to operate on.
559 * @param pCtx Guest context
560 */
561VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
562{
563 RTGCUINTPTR val;
564 SVM_VMCB *pVMCB;
565
566 if (pVM == NULL)
567 return VERR_INVALID_PARAMETER;
568
569 /* Setup AMD SVM. */
570 Assert(pVM->hwaccm.s.svm.fSupported);
571
572 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
573 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
574
575 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
576 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_SEGMENT_REGS)
577 {
578 SVM_WRITE_SELREG(CS, cs);
579 SVM_WRITE_SELREG(SS, ss);
580 SVM_WRITE_SELREG(DS, ds);
581 SVM_WRITE_SELREG(ES, es);
582 SVM_WRITE_SELREG(FS, fs);
583 SVM_WRITE_SELREG(GS, gs);
584 }
585
586 /* Guest CPU context: LDTR. */
587 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_LDTR)
588 {
589 SVM_WRITE_SELREG(LDTR, ldtr);
590 }
591
592 /* Guest CPU context: TR. */
593 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_TR)
594 {
595 SVM_WRITE_SELREG(TR, tr);
596 }
597
598 /* Guest CPU context: GDTR. */
599 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_GDTR)
600 {
601 pVMCB->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
602 pVMCB->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
603 }
604
605 /* Guest CPU context: IDTR. */
606 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_IDTR)
607 {
608 pVMCB->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
609 pVMCB->guest.IDTR.u64Base = pCtx->idtr.pIdt;
610 }
611
612 /*
613 * Sysenter MSRs (unconditional)
614 */
615 pVMCB->guest.u64SysEnterCS = pCtx->SysEnter.cs;
616 pVMCB->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
617 pVMCB->guest.u64SysEnterESP = pCtx->SysEnter.esp;
618
619 /* Control registers */
620 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR0)
621 {
622 val = pCtx->cr0;
623 if (!CPUMIsGuestFPUStateActive(pVCpu))
624 {
625 /* Always use #NM exceptions to load the FPU/XMM state on demand. */
626 val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP;
627 }
628 else
629 {
630 /** @todo check if we support the old style mess correctly. */
631 if (!(val & X86_CR0_NE))
632 {
633 Log(("Forcing X86_CR0_NE!!!\n"));
634
635 /* Also catch floating point exceptions as we need to report them to the guest in a different way. */
636 if (!pVCpu->hwaccm.s.fFPUOldStyleOverride)
637 {
638 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
639 pVCpu->hwaccm.s.fFPUOldStyleOverride = true;
640 }
641 }
642 val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */
643 }
644 /* Always enable caching. */
645 val &= ~(X86_CR0_CD|X86_CR0_NW);
646
647 /* Note: WP is not relevant in nested paging mode as we catch accesses on the (guest) physical level. */
648 /* Note: In nested paging mode the guest is allowed to run with paging disabled; the guest physical to host physical translation will remain active. */
649 if (!pVM->hwaccm.s.fNestedPaging)
650 {
651 val |= X86_CR0_PG; /* Paging is always enabled; even when the guest is running in real mode or PE without paging. */
652 val |= X86_CR0_WP; /* Must set this as we rely on protect various pages and supervisor writes must be caught. */
653 }
654 pVMCB->guest.u64CR0 = val;
655 }
656 /* CR2 as well */
657 pVMCB->guest.u64CR2 = pCtx->cr2;
658
659 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR3)
660 {
661 /* Save our shadow CR3 register. */
662 if (pVM->hwaccm.s.fNestedPaging)
663 {
664 PGMMODE enmShwPagingMode;
665
666#if HC_ARCH_BITS == 32
667 if (CPUMIsGuestInLongModeEx(pCtx))
668 enmShwPagingMode = PGMMODE_AMD64_NX;
669 else
670#endif
671 enmShwPagingMode = PGMGetHostMode(pVM);
672
673 pVMCB->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
674 Assert(pVMCB->ctrl.u64NestedPagingCR3);
675 pVMCB->guest.u64CR3 = pCtx->cr3;
676 }
677 else
678 {
679 pVMCB->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
680 Assert(pVMCB->guest.u64CR3 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
681 }
682 }
683
684 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_CR4)
685 {
686 val = pCtx->cr4;
687 if (!pVM->hwaccm.s.fNestedPaging)
688 {
689 switch(pVCpu->hwaccm.s.enmShadowMode)
690 {
691 case PGMMODE_REAL:
692 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
693 AssertFailed();
694 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
695
696 case PGMMODE_32_BIT: /* 32-bit paging. */
697 val &= ~X86_CR4_PAE;
698 break;
699
700 case PGMMODE_PAE: /* PAE paging. */
701 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
702 /** @todo use normal 32 bits paging */
703 val |= X86_CR4_PAE;
704 break;
705
706 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
707 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
708#ifdef VBOX_ENABLE_64_BITS_GUESTS
709 break;
710#else
711 AssertFailed();
712 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
713#endif
714
715 default: /* shut up gcc */
716 AssertFailed();
717 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
718 }
719 }
720 pVMCB->guest.u64CR4 = val;
721 }
722
723 /* Debug registers. */
724 if (pVCpu->hwaccm.s.fContextUseFlags & HWACCM_CHANGED_GUEST_DEBUG)
725 {
726 pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */
727 pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */
728
729 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
730 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
731 pCtx->dr[7] |= 0x400; /* must be one */
732
733 pVMCB->guest.u64DR7 = pCtx->dr[7];
734 pVMCB->guest.u64DR6 = pCtx->dr[6];
735
736 /* Sync the debug state now if any breakpoint is armed. */
737 if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD))
738 && !CPUMIsGuestDebugStateActive(pVCpu)
739 && !DBGFIsStepping(pVCpu))
740 {
741 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxArmed);
742
743 /* Disable drx move intercepts. */
744 pVMCB->ctrl.u16InterceptRdDRx = 0;
745 pVMCB->ctrl.u16InterceptWrDRx = 0;
746
747 /* Save the host and load the guest debug state. */
748 int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
749 AssertRC(rc);
750 }
751 }
752
753 /* EIP, ESP and EFLAGS */
754 pVMCB->guest.u64RIP = pCtx->rip;
755 pVMCB->guest.u64RSP = pCtx->rsp;
756 pVMCB->guest.u64RFlags = pCtx->eflags.u32;
757
758 /* Set CPL */
759 pVMCB->guest.u8CPL = pCtx->csHid.Attr.n.u2Dpl;
760
761 /* RAX/EAX too, as VMRUN uses RAX as an implicit parameter. */
762 pVMCB->guest.u64RAX = pCtx->rax;
763
764 /* vmrun will fail without MSR_K6_EFER_SVME. */
765 pVMCB->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
766
767 /* 64 bits guest mode? */
768 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
769 {
770#if !defined(VBOX_ENABLE_64_BITS_GUESTS)
771 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
772#elif HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
773 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
774#else
775# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
776 if (!pVM->hwaccm.s.fAllow64BitGuests)
777 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
778# endif
779 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun64;
780#endif
781 /* Unconditionally update these as wrmsr might have changed them. (HWACCM_CHANGED_GUEST_SEGMENT_REGS will not be set) */
782 pVMCB->guest.FS.u64Base = pCtx->fsHid.u64Base;
783 pVMCB->guest.GS.u64Base = pCtx->gsHid.u64Base;
784 }
785 else
786 {
787 /* Filter out the MSR_K6_LME bit or else AMD-V expects amd64 shadow paging. */
788 pVMCB->guest.u64EFER &= ~MSR_K6_EFER_LME;
789
790 pVCpu->hwaccm.s.svm.pfnVMRun = SVMR0VMRun;
791 }
792
793 /* TSC offset. */
794 if (TMCpuTickCanUseRealTSC(pVCpu, &pVMCB->ctrl.u64TSCOffset))
795 {
796 pVMCB->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
797 pVMCB->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
798 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCOffset);
799 }
800 else
801 {
802 pVMCB->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
803 pVMCB->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
804 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatTSCIntercept);
805 }
806
807 /* Sync the various msrs for 64 bits mode. */
808 pVMCB->guest.u64STAR = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */
809 pVMCB->guest.u64LSTAR = pCtx->msrLSTAR; /* 64 bits mode syscall rip */
810 pVMCB->guest.u64CSTAR = pCtx->msrCSTAR; /* compatibility mode syscall rip */
811 pVMCB->guest.u64SFMASK = pCtx->msrSFMASK; /* syscall flag mask */
812 pVMCB->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE; /* swapgs exchange value */
813
814#ifdef DEBUG
815 /* Intercept X86_XCPT_DB if stepping is enabled */
816 if (DBGFIsStepping(pVCpu))
817 pVMCB->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_DB);
818 else
819 pVMCB->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_DB);
820#endif
821
822 /* Done. */
823 pVCpu->hwaccm.s.fContextUseFlags &= ~HWACCM_CHANGED_ALL_GUEST;
824
825 return VINF_SUCCESS;
826}
827
828
829/**
830 * Runs guest code in an AMD-V VM.
831 *
832 * @returns VBox status code.
833 * @param pVM The VM to operate on.
834 * @param pVCpu The VM CPU to operate on.
835 * @param pCtx Guest context
836 */
837VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
838{
839 int rc = VINF_SUCCESS;
840 uint64_t exitCode = (uint64_t)SVM_EXIT_INVALID;
841 SVM_VMCB *pVMCB;
842 bool fSyncTPR = false;
843 unsigned cResume = 0;
844 uint8_t u8LastVTPR;
845 PHWACCM_CPUINFO pCpu = 0;
846#ifdef VBOX_STRICT
847 RTCPUID idCpuCheck;
848#endif
849
850 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatEntry, x);
851
852 pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
853 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
854
855 /* We can jump to this point to resume execution after determining that a VM-exit is innocent.
856 */
857ResumeExecution:
858 Assert(!HWACCMR0SuspendPending());
859
860 /* Safety precaution; looping for too long here can have a very bad effect on the host */
861 if (++cResume > HWACCM_MAX_RESUME_LOOPS)
862 {
863 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitMaxResume);
864 rc = VINF_EM_RAW_INTERRUPT;
865 goto end;
866 }
867
868 /* Check for irq inhibition due to instruction fusing (sti, mov ss). */
869 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
870 {
871 Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu)));
872 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
873 {
874 /* Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here.
875 * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might
876 * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could
877 * break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think.
878 */
879 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
880 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
881 pVMCB->ctrl.u64IntShadow = 0;
882 }
883 }
884 else
885 {
886 /* Irq inhibition is no longer active; clear the corresponding SVM state. */
887 pVMCB->ctrl.u64IntShadow = 0;
888 }
889
890 /* Check for pending actions that force us to go back to ring 3. */
891#ifdef DEBUG
892 /* Intercept X86_XCPT_DB if stepping is enabled */
893 if (!DBGFIsStepping(pVCpu))
894#endif
895 {
896 if ( VM_FF_ISPENDING(pVM, VM_FF_HWACCM_TO_R3_MASK)
897 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HWACCM_TO_R3_MASK))
898 {
899 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
900 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatSwitchToR3);
901 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
902 rc = RT_UNLIKELY(VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
903 goto end;
904 }
905 }
906
907 /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */
908 if (VM_FF_ISPENDING(pVM, VM_FF_REQUEST))
909 {
910 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
911 rc = VINF_EM_PENDING_REQUEST;
912 goto end;
913 }
914
915 /* When external interrupts are pending, we should exit the VM when IF is set. */
916 /* Note! *After* VM_FF_INHIBIT_INTERRUPTS check!!! */
917 rc = SVMR0CheckPendingInterrupt(pVM, pVCpu, pVMCB, pCtx);
918 if (RT_FAILURE(rc))
919 {
920 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
921 goto end;
922 }
923
924 /* TPR caching using CR8 is only available in 64 bits mode */
925 /* Note the 32 bits exception for AMD (X86_CPUID_AMD_FEATURE_ECX_CR8L), but that appears missing in Intel CPUs */
926 /* Note: we can't do this in LoadGuestState as PDMApicGetTPR can jump back to ring 3 (lock)!!!!!!!! */
927 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
928 {
929 bool fPending;
930
931 /* TPR caching in CR8 */
932 int rc = PDMApicGetTPR(pVM, &u8LastVTPR, &fPending);
933 AssertRC(rc);
934 pVMCB->ctrl.IntCtrl.n.u8VTPR = u8LastVTPR;
935
936 if (fPending)
937 {
938 /* A TPR change could activate a pending interrupt, so catch cr8 writes. */
939 pVMCB->ctrl.u16InterceptWrCRx |= RT_BIT(8);
940 }
941 else
942 /* No interrupts are pending, so we don't need to be explicitely notified.
943 * There are enough world switches for detecting pending interrupts.
944 */
945 pVMCB->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
946
947 fSyncTPR = !fPending;
948 }
949
950 /* All done! Let's start VM execution. */
951 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatInGC, x);
952
953 /* Enable nested paging if necessary (disabled each time after #VMEXIT). */
954 pVMCB->ctrl.NestedPaging.n.u1NestedPaging = pVM->hwaccm.s.fNestedPaging;
955
956#ifdef LOG_ENABLED
957 pCpu = HWACCMR0GetCurrentCpu();
958 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
959 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
960 {
961 if (pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu)
962 Log(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hwaccm.s.idLastCpu, pCpu->idCpu));
963 else
964 Log(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
965 }
966 if (pCpu->fFlushTLB)
967 Log(("Force TLB flush: first time cpu %d is used -> flush\n", pCpu->idCpu));
968#endif
969
970 /*
971 * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3!
972 * (until the actual world switch)
973 */
974
975#ifdef VBOX_STRICT
976 idCpuCheck = RTMpCpuId();
977#endif
978
979 /* Load the guest state; *must* be here as it sets up the shadow cr0 for lazy fpu syncing! */
980 rc = SVMR0LoadGuestState(pVM, pVCpu, pCtx);
981 if (rc != VINF_SUCCESS)
982 {
983 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatEntry, x);
984 goto end;
985 }
986
987 pCpu = HWACCMR0GetCurrentCpu();
988 /* Force a TLB flush for the first world switch if the current cpu differs from the one we ran on last. */
989 /* Note that this can happen both for start and resume due to long jumps back to ring 3. */
990 if ( pVCpu->hwaccm.s.idLastCpu != pCpu->idCpu
991 /* if the tlb flush count has changed, another VM has flushed the TLB of this cpu, so we can't use our current ASID anymore. */
992 || pVCpu->hwaccm.s.cTLBFlushes != pCpu->cTLBFlushes)
993 {
994 /* Force a TLB flush on VM entry. */
995 pVCpu->hwaccm.s.fForceTLBFlush = true;
996 }
997 else
998 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
999
1000 pVCpu->hwaccm.s.idLastCpu = pCpu->idCpu;
1001
1002 /* Make sure we flush the TLB when required. Switch ASID to achieve the same thing, but without actually flushing the whole TLB (which is expensive). */
1003 if ( pVCpu->hwaccm.s.fForceTLBFlush
1004 && !pVM->hwaccm.s.svm.fAlwaysFlushTLB)
1005 {
1006 if ( ++pCpu->uCurrentASID >= pVM->hwaccm.s.uMaxASID
1007 || pCpu->fFlushTLB)
1008 {
1009 pCpu->fFlushTLB = false;
1010 pCpu->uCurrentASID = 1; /* start at 1; host uses 0 */
1011 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = 1; /* wrap around; flush TLB */
1012 pCpu->cTLBFlushes++;
1013 }
1014 else
1015 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushASID);
1016
1017 pVCpu->hwaccm.s.cTLBFlushes = pCpu->cTLBFlushes;
1018 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID;
1019 }
1020 else
1021 {
1022 Assert(!pCpu->fFlushTLB || pVM->hwaccm.s.svm.fAlwaysFlushTLB);
1023
1024 /* We never increase uCurrentASID in the fAlwaysFlushTLB (erratum 170) case. */
1025 if (!pCpu->uCurrentASID || !pVCpu->hwaccm.s.uCurrentASID)
1026 pVCpu->hwaccm.s.uCurrentASID = pCpu->uCurrentASID = 1;
1027
1028 Assert(!pVM->hwaccm.s.svm.fAlwaysFlushTLB || pVCpu->hwaccm.s.fForceTLBFlush);
1029 pVMCB->ctrl.TLBCtrl.n.u1TLBFlush = pVCpu->hwaccm.s.fForceTLBFlush;
1030 }
1031 AssertMsg(pVCpu->hwaccm.s.cTLBFlushes == pCpu->cTLBFlushes, ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hwaccm.s.cTLBFlushes, pCpu->cTLBFlushes));
1032 AssertMsg(pCpu->uCurrentASID >= 1 && pCpu->uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d uCurrentASID = %x\n", pCpu->idCpu, pCpu->uCurrentASID));
1033 AssertMsg(pVCpu->hwaccm.s.uCurrentASID >= 1 && pVCpu->hwaccm.s.uCurrentASID < pVM->hwaccm.s.uMaxASID, ("cpu%d VM uCurrentASID = %x\n", pCpu->idCpu, pVCpu->hwaccm.s.uCurrentASID));
1034 pVMCB->ctrl.TLBCtrl.n.u32ASID = pVCpu->hwaccm.s.uCurrentASID;
1035
1036#ifdef VBOX_WITH_STATISTICS
1037 if (pVMCB->ctrl.TLBCtrl.n.u1TLBFlush)
1038 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBWorldSwitch);
1039 else
1040 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatNoFlushTLBWorldSwitch);
1041#endif
1042
1043 /* In case we execute a goto ResumeExecution later on. */
1044 pVCpu->hwaccm.s.fResumeVM = true;
1045 pVCpu->hwaccm.s.fForceTLBFlush = pVM->hwaccm.s.svm.fAlwaysFlushTLB;
1046
1047 Assert(sizeof(pVCpu->hwaccm.s.svm.pVMCBPhys) == 8);
1048 Assert(pVMCB->ctrl.IntCtrl.n.u1VIrqMasking);
1049 Assert(pVMCB->ctrl.u64IOPMPhysAddr == pVM->hwaccm.s.svm.pIOBitmapPhys);
1050 Assert(pVMCB->ctrl.u64MSRPMPhysAddr == pVM->hwaccm.s.svm.pMSRBitmapPhys);
1051 Assert(pVMCB->ctrl.u64LBRVirt == 0);
1052
1053#ifdef VBOX_STRICT
1054 Assert(idCpuCheck == RTMpCpuId());
1055#endif
1056 TMNotifyStartOfExecution(pVCpu);
1057 pVCpu->hwaccm.s.svm.pfnVMRun(pVM->hwaccm.s.svm.pVMCBHostPhys, pVCpu->hwaccm.s.svm.pVMCBPhys, pCtx, pVM, pVCpu);
1058 TMNotifyEndOfExecution(pVCpu);
1059 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatInGC, x);
1060
1061 /*
1062 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1063 * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING 3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE
1064 * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1065 */
1066
1067 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatExit1, x);
1068
1069 /* Reason for the VM exit */
1070 exitCode = pVMCB->ctrl.u64ExitCode;
1071
1072 if (exitCode == (uint64_t)SVM_EXIT_INVALID) /* Invalid guest state. */
1073 {
1074 HWACCMDumpRegs(pVM, pVCpu, pCtx);
1075#ifdef DEBUG
1076 Log(("ctrl.u16InterceptRdCRx %x\n", pVMCB->ctrl.u16InterceptRdCRx));
1077 Log(("ctrl.u16InterceptWrCRx %x\n", pVMCB->ctrl.u16InterceptWrCRx));
1078 Log(("ctrl.u16InterceptRdDRx %x\n", pVMCB->ctrl.u16InterceptRdDRx));
1079 Log(("ctrl.u16InterceptWrDRx %x\n", pVMCB->ctrl.u16InterceptWrDRx));
1080 Log(("ctrl.u32InterceptException %x\n", pVMCB->ctrl.u32InterceptException));
1081 Log(("ctrl.u32InterceptCtrl1 %x\n", pVMCB->ctrl.u32InterceptCtrl1));
1082 Log(("ctrl.u32InterceptCtrl2 %x\n", pVMCB->ctrl.u32InterceptCtrl2));
1083 Log(("ctrl.u64IOPMPhysAddr %RX64\n", pVMCB->ctrl.u64IOPMPhysAddr));
1084 Log(("ctrl.u64MSRPMPhysAddr %RX64\n", pVMCB->ctrl.u64MSRPMPhysAddr));
1085 Log(("ctrl.u64TSCOffset %RX64\n", pVMCB->ctrl.u64TSCOffset));
1086
1087 Log(("ctrl.TLBCtrl.u32ASID %x\n", pVMCB->ctrl.TLBCtrl.n.u32ASID));
1088 Log(("ctrl.TLBCtrl.u1TLBFlush %x\n", pVMCB->ctrl.TLBCtrl.n.u1TLBFlush));
1089 Log(("ctrl.TLBCtrl.u7Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u7Reserved));
1090 Log(("ctrl.TLBCtrl.u24Reserved %x\n", pVMCB->ctrl.TLBCtrl.n.u24Reserved));
1091
1092 Log(("ctrl.IntCtrl.u8VTPR %x\n", pVMCB->ctrl.IntCtrl.n.u8VTPR));
1093 Log(("ctrl.IntCtrl.u1VIrqValid %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqValid));
1094 Log(("ctrl.IntCtrl.u7Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved));
1095 Log(("ctrl.IntCtrl.u4VIrqPriority %x\n", pVMCB->ctrl.IntCtrl.n.u4VIrqPriority));
1096 Log(("ctrl.IntCtrl.u1IgnoreTPR %x\n", pVMCB->ctrl.IntCtrl.n.u1IgnoreTPR));
1097 Log(("ctrl.IntCtrl.u3Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u3Reserved));
1098 Log(("ctrl.IntCtrl.u1VIrqMasking %x\n", pVMCB->ctrl.IntCtrl.n.u1VIrqMasking));
1099 Log(("ctrl.IntCtrl.u7Reserved2 %x\n", pVMCB->ctrl.IntCtrl.n.u7Reserved2));
1100 Log(("ctrl.IntCtrl.u8VIrqVector %x\n", pVMCB->ctrl.IntCtrl.n.u8VIrqVector));
1101 Log(("ctrl.IntCtrl.u24Reserved %x\n", pVMCB->ctrl.IntCtrl.n.u24Reserved));
1102
1103 Log(("ctrl.u64IntShadow %RX64\n", pVMCB->ctrl.u64IntShadow));
1104 Log(("ctrl.u64ExitCode %RX64\n", pVMCB->ctrl.u64ExitCode));
1105 Log(("ctrl.u64ExitInfo1 %RX64\n", pVMCB->ctrl.u64ExitInfo1));
1106 Log(("ctrl.u64ExitInfo2 %RX64\n", pVMCB->ctrl.u64ExitInfo2));
1107 Log(("ctrl.ExitIntInfo.u8Vector %x\n", pVMCB->ctrl.ExitIntInfo.n.u8Vector));
1108 Log(("ctrl.ExitIntInfo.u3Type %x\n", pVMCB->ctrl.ExitIntInfo.n.u3Type));
1109 Log(("ctrl.ExitIntInfo.u1ErrorCodeValid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
1110 Log(("ctrl.ExitIntInfo.u19Reserved %x\n", pVMCB->ctrl.ExitIntInfo.n.u19Reserved));
1111 Log(("ctrl.ExitIntInfo.u1Valid %x\n", pVMCB->ctrl.ExitIntInfo.n.u1Valid));
1112 Log(("ctrl.ExitIntInfo.u32ErrorCode %x\n", pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode));
1113 Log(("ctrl.NestedPaging %RX64\n", pVMCB->ctrl.NestedPaging.au64));
1114 Log(("ctrl.EventInject.u8Vector %x\n", pVMCB->ctrl.EventInject.n.u8Vector));
1115 Log(("ctrl.EventInject.u3Type %x\n", pVMCB->ctrl.EventInject.n.u3Type));
1116 Log(("ctrl.EventInject.u1ErrorCodeValid %x\n", pVMCB->ctrl.EventInject.n.u1ErrorCodeValid));
1117 Log(("ctrl.EventInject.u19Reserved %x\n", pVMCB->ctrl.EventInject.n.u19Reserved));
1118 Log(("ctrl.EventInject.u1Valid %x\n", pVMCB->ctrl.EventInject.n.u1Valid));
1119 Log(("ctrl.EventInject.u32ErrorCode %x\n", pVMCB->ctrl.EventInject.n.u32ErrorCode));
1120
1121 Log(("ctrl.u64NestedPagingCR3 %RX64\n", pVMCB->ctrl.u64NestedPagingCR3));
1122 Log(("ctrl.u64LBRVirt %RX64\n", pVMCB->ctrl.u64LBRVirt));
1123
1124 Log(("guest.CS.u16Sel %04X\n", pVMCB->guest.CS.u16Sel));
1125 Log(("guest.CS.u16Attr %04X\n", pVMCB->guest.CS.u16Attr));
1126 Log(("guest.CS.u32Limit %X\n", pVMCB->guest.CS.u32Limit));
1127 Log(("guest.CS.u64Base %RX64\n", pVMCB->guest.CS.u64Base));
1128 Log(("guest.DS.u16Sel %04X\n", pVMCB->guest.DS.u16Sel));
1129 Log(("guest.DS.u16Attr %04X\n", pVMCB->guest.DS.u16Attr));
1130 Log(("guest.DS.u32Limit %X\n", pVMCB->guest.DS.u32Limit));
1131 Log(("guest.DS.u64Base %RX64\n", pVMCB->guest.DS.u64Base));
1132 Log(("guest.ES.u16Sel %04X\n", pVMCB->guest.ES.u16Sel));
1133 Log(("guest.ES.u16Attr %04X\n", pVMCB->guest.ES.u16Attr));
1134 Log(("guest.ES.u32Limit %X\n", pVMCB->guest.ES.u32Limit));
1135 Log(("guest.ES.u64Base %RX64\n", pVMCB->guest.ES.u64Base));
1136 Log(("guest.FS.u16Sel %04X\n", pVMCB->guest.FS.u16Sel));
1137 Log(("guest.FS.u16Attr %04X\n", pVMCB->guest.FS.u16Attr));
1138 Log(("guest.FS.u32Limit %X\n", pVMCB->guest.FS.u32Limit));
1139 Log(("guest.FS.u64Base %RX64\n", pVMCB->guest.FS.u64Base));
1140 Log(("guest.GS.u16Sel %04X\n", pVMCB->guest.GS.u16Sel));
1141 Log(("guest.GS.u16Attr %04X\n", pVMCB->guest.GS.u16Attr));
1142 Log(("guest.GS.u32Limit %X\n", pVMCB->guest.GS.u32Limit));
1143 Log(("guest.GS.u64Base %RX64\n", pVMCB->guest.GS.u64Base));
1144
1145 Log(("guest.GDTR.u32Limit %X\n", pVMCB->guest.GDTR.u32Limit));
1146 Log(("guest.GDTR.u64Base %RX64\n", pVMCB->guest.GDTR.u64Base));
1147
1148 Log(("guest.LDTR.u16Sel %04X\n", pVMCB->guest.LDTR.u16Sel));
1149 Log(("guest.LDTR.u16Attr %04X\n", pVMCB->guest.LDTR.u16Attr));
1150 Log(("guest.LDTR.u32Limit %X\n", pVMCB->guest.LDTR.u32Limit));
1151 Log(("guest.LDTR.u64Base %RX64\n", pVMCB->guest.LDTR.u64Base));
1152
1153 Log(("guest.IDTR.u32Limit %X\n", pVMCB->guest.IDTR.u32Limit));
1154 Log(("guest.IDTR.u64Base %RX64\n", pVMCB->guest.IDTR.u64Base));
1155
1156 Log(("guest.TR.u16Sel %04X\n", pVMCB->guest.TR.u16Sel));
1157 Log(("guest.TR.u16Attr %04X\n", pVMCB->guest.TR.u16Attr));
1158 Log(("guest.TR.u32Limit %X\n", pVMCB->guest.TR.u32Limit));
1159 Log(("guest.TR.u64Base %RX64\n", pVMCB->guest.TR.u64Base));
1160
1161 Log(("guest.u8CPL %X\n", pVMCB->guest.u8CPL));
1162 Log(("guest.u64CR0 %RX64\n", pVMCB->guest.u64CR0));
1163 Log(("guest.u64CR2 %RX64\n", pVMCB->guest.u64CR2));
1164 Log(("guest.u64CR3 %RX64\n", pVMCB->guest.u64CR3));
1165 Log(("guest.u64CR4 %RX64\n", pVMCB->guest.u64CR4));
1166 Log(("guest.u64DR6 %RX64\n", pVMCB->guest.u64DR6));
1167 Log(("guest.u64DR7 %RX64\n", pVMCB->guest.u64DR7));
1168
1169 Log(("guest.u64RIP %RX64\n", pVMCB->guest.u64RIP));
1170 Log(("guest.u64RSP %RX64\n", pVMCB->guest.u64RSP));
1171 Log(("guest.u64RAX %RX64\n", pVMCB->guest.u64RAX));
1172 Log(("guest.u64RFlags %RX64\n", pVMCB->guest.u64RFlags));
1173
1174 Log(("guest.u64SysEnterCS %RX64\n", pVMCB->guest.u64SysEnterCS));
1175 Log(("guest.u64SysEnterEIP %RX64\n", pVMCB->guest.u64SysEnterEIP));
1176 Log(("guest.u64SysEnterESP %RX64\n", pVMCB->guest.u64SysEnterESP));
1177
1178 Log(("guest.u64EFER %RX64\n", pVMCB->guest.u64EFER));
1179 Log(("guest.u64STAR %RX64\n", pVMCB->guest.u64STAR));
1180 Log(("guest.u64LSTAR %RX64\n", pVMCB->guest.u64LSTAR));
1181 Log(("guest.u64CSTAR %RX64\n", pVMCB->guest.u64CSTAR));
1182 Log(("guest.u64SFMASK %RX64\n", pVMCB->guest.u64SFMASK));
1183 Log(("guest.u64KernelGSBase %RX64\n", pVMCB->guest.u64KernelGSBase));
1184 Log(("guest.u64GPAT %RX64\n", pVMCB->guest.u64GPAT));
1185 Log(("guest.u64DBGCTL %RX64\n", pVMCB->guest.u64DBGCTL));
1186 Log(("guest.u64BR_FROM %RX64\n", pVMCB->guest.u64BR_FROM));
1187 Log(("guest.u64BR_TO %RX64\n", pVMCB->guest.u64BR_TO));
1188 Log(("guest.u64LASTEXCPFROM %RX64\n", pVMCB->guest.u64LASTEXCPFROM));
1189 Log(("guest.u64LASTEXCPTO %RX64\n", pVMCB->guest.u64LASTEXCPTO));
1190
1191#endif
1192 rc = VERR_SVM_UNABLE_TO_START_VM;
1193 goto end;
1194 }
1195
1196 /* Let's first sync back eip, esp, and eflags. */
1197 pCtx->rip = pVMCB->guest.u64RIP;
1198 pCtx->rsp = pVMCB->guest.u64RSP;
1199 pCtx->eflags.u32 = pVMCB->guest.u64RFlags;
1200 /* eax is saved/restore across the vmrun instruction */
1201 pCtx->rax = pVMCB->guest.u64RAX;
1202
1203 pCtx->msrKERNELGSBASE = pVMCB->guest.u64KernelGSBase; /* swapgs exchange value */
1204
1205 /* Can be updated behind our back in the nested paging case. */
1206 pCtx->cr2 = pVMCB->guest.u64CR2;
1207
1208 /* Guest CPU context: ES, CS, SS, DS, FS, GS. */
1209 SVM_READ_SELREG(SS, ss);
1210 SVM_READ_SELREG(CS, cs);
1211 SVM_READ_SELREG(DS, ds);
1212 SVM_READ_SELREG(ES, es);
1213 SVM_READ_SELREG(FS, fs);
1214 SVM_READ_SELREG(GS, gs);
1215
1216 /*
1217 * System MSRs
1218 */
1219 pCtx->SysEnter.cs = pVMCB->guest.u64SysEnterCS;
1220 pCtx->SysEnter.eip = pVMCB->guest.u64SysEnterEIP;
1221 pCtx->SysEnter.esp = pVMCB->guest.u64SysEnterESP;
1222
1223 /* Remaining guest CPU context: TR, IDTR, GDTR, LDTR; must sync everything otherwise we can get out of sync when jumping to ring 3. */
1224 SVM_READ_SELREG(LDTR, ldtr);
1225 SVM_READ_SELREG(TR, tr);
1226
1227 pCtx->gdtr.cbGdt = pVMCB->guest.GDTR.u32Limit;
1228 pCtx->gdtr.pGdt = pVMCB->guest.GDTR.u64Base;
1229
1230 pCtx->idtr.cbIdt = pVMCB->guest.IDTR.u32Limit;
1231 pCtx->idtr.pIdt = pVMCB->guest.IDTR.u64Base;
1232
1233 /* Note: no reason to sync back the CRx and DRx registers. They can't be changed by the guest. */
1234 /* Note: only in the nested paging case can CR3 & CR4 be changed by the guest. */
1235 if ( pVM->hwaccm.s.fNestedPaging
1236 && pCtx->cr3 != pVMCB->guest.u64CR3)
1237 {
1238 CPUMSetGuestCR3(pVCpu, pVMCB->guest.u64CR3);
1239 PGMUpdateCR3(pVCpu, pVMCB->guest.u64CR3);
1240 }
1241
1242 /* Note! NOW IT'S SAFE FOR LOGGING! */
1243
1244 /* Take care of instruction fusing (sti, mov ss) (see 15.20.5 Interrupt Shadows) */
1245 if (pVMCB->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1246 {
1247 Log(("uInterruptState %x rip=%RGv\n", pVMCB->ctrl.u64IntShadow, (RTGCPTR)pCtx->rip));
1248 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
1249 }
1250 else
1251 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1252
1253 Log2(("exitCode = %x\n", exitCode));
1254
1255 /* Sync back DR6 as it could have been changed by hitting breakpoints. */
1256 pCtx->dr[6] = pVMCB->guest.u64DR6;
1257 /* DR7.GD can be cleared by debug exceptions, so sync it back as well. */
1258 pCtx->dr[7] = pVMCB->guest.u64DR7;
1259
1260 /* Check if an injected event was interrupted prematurely. */
1261 pVCpu->hwaccm.s.Event.intInfo = pVMCB->ctrl.ExitIntInfo.au64[0];
1262 if ( pVMCB->ctrl.ExitIntInfo.n.u1Valid
1263 && pVMCB->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT /* we don't care about 'int xx' as the instruction will be restarted. */)
1264 {
1265 Log(("Pending inject %RX64 at %RGv exit=%08x\n", pVCpu->hwaccm.s.Event.intInfo, (RTGCPTR)pCtx->rip, exitCode));
1266
1267#ifdef LOG_ENABLED
1268 SVM_EVENT Event;
1269 Event.au64[0] = pVCpu->hwaccm.s.Event.intInfo;
1270
1271 if ( exitCode == SVM_EXIT_EXCEPTION_E
1272 && Event.n.u8Vector == 0xE)
1273 {
1274 Log(("Double fault!\n"));
1275 }
1276#endif
1277
1278 pVCpu->hwaccm.s.Event.fPending = true;
1279 /* Error code present? (redundant) */
1280 if (pVMCB->ctrl.ExitIntInfo.n.u1ErrorCodeValid)
1281 {
1282 pVCpu->hwaccm.s.Event.errCode = pVMCB->ctrl.ExitIntInfo.n.u32ErrorCode;
1283 }
1284 else
1285 pVCpu->hwaccm.s.Event.errCode = 0;
1286 }
1287#ifdef VBOX_WITH_STATISTICS
1288 if (exitCode == SVM_EXIT_NPF)
1289 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitReasonNPF);
1290 else
1291 STAM_COUNTER_INC(&pVCpu->hwaccm.s.paStatExitReasonR0[exitCode & MASK_EXITREASON_STAT]);
1292#endif
1293
1294 if (fSyncTPR)
1295 {
1296 rc = PDMApicSetTPR(pVM, pVMCB->ctrl.IntCtrl.n.u8VTPR);
1297 AssertRC(rc);
1298 }
1299
1300 /* Deal with the reason of the VM-exit. */
1301 switch (exitCode)
1302 {
1303 case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3:
1304 case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7:
1305 case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_A: case SVM_EXIT_EXCEPTION_B:
1306 case SVM_EXIT_EXCEPTION_C: case SVM_EXIT_EXCEPTION_D: case SVM_EXIT_EXCEPTION_E: case SVM_EXIT_EXCEPTION_F:
1307 case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11: case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13:
1308 case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17:
1309 case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B:
1310 case SVM_EXIT_EXCEPTION_1C: case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
1311 {
1312 /* Pending trap. */
1313 SVM_EVENT Event;
1314 uint32_t vector = exitCode - SVM_EXIT_EXCEPTION_0;
1315
1316 Log2(("Hardware/software interrupt %d\n", vector));
1317 switch (vector)
1318 {
1319 case X86_XCPT_DB:
1320 {
1321 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDB);
1322
1323 /* Note that we don't support guest and host-initiated debugging at the same time. */
1324 Assert(DBGFIsStepping(pVCpu));
1325
1326 rc = DBGFR0Trap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pCtx->dr[6]);
1327 if (rc == VINF_EM_RAW_GUEST_TRAP)
1328 {
1329 Log(("Trap %x (debug) at %016RX64\n", vector, pCtx->rip));
1330
1331 /* Reinject the exception. */
1332 Event.au64[0] = 0;
1333 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1334 Event.n.u1Valid = 1;
1335 Event.n.u8Vector = X86_XCPT_DB;
1336
1337 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1338
1339 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1340 goto ResumeExecution;
1341 }
1342 /* Return to ring 3 to deal with the debug exit code. */
1343 break;
1344 }
1345
1346 case X86_XCPT_NM:
1347 {
1348 Log(("#NM fault at %RGv\n", (RTGCPTR)pCtx->rip));
1349
1350 /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */
1351 /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */
1352 rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx);
1353 if (rc == VINF_SUCCESS)
1354 {
1355 Assert(CPUMIsGuestFPUStateActive(pVCpu));
1356 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowNM);
1357
1358 /* Continue execution. */
1359 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1360 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1361
1362 goto ResumeExecution;
1363 }
1364
1365 Log(("Forward #NM fault to the guest\n"));
1366 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNM);
1367
1368 Event.au64[0] = 0;
1369 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1370 Event.n.u1Valid = 1;
1371 Event.n.u8Vector = X86_XCPT_NM;
1372
1373 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1374 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1375 goto ResumeExecution;
1376 }
1377
1378 case X86_XCPT_PF: /* Page fault */
1379 {
1380 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1381 RTGCUINTPTR uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1382
1383#ifdef DEBUG
1384 if (pVM->hwaccm.s.fNestedPaging)
1385 { /* A genuine pagefault.
1386 * Forward the trap to the guest by injecting the exception and resuming execution.
1387 */
1388 Log(("Guest page fault at %RGv cr2=%RGv error code %x rsp=%RGv\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode, (RTGCPTR)pCtx->rsp));
1389 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1390
1391 /* Now we must update CR2. */
1392 pCtx->cr2 = uFaultAddress;
1393
1394 Event.au64[0] = 0;
1395 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1396 Event.n.u1Valid = 1;
1397 Event.n.u8Vector = X86_XCPT_PF;
1398 Event.n.u1ErrorCodeValid = 1;
1399 Event.n.u32ErrorCode = errCode;
1400
1401 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1402
1403 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1404 goto ResumeExecution;
1405 }
1406#endif
1407 Assert(!pVM->hwaccm.s.fNestedPaging);
1408
1409 Log2(("Page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1410 /* Exit qualification contains the linear address of the page fault. */
1411 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
1412 TRPMSetErrorCode(pVCpu, errCode);
1413 TRPMSetFaultAddress(pVCpu, uFaultAddress);
1414
1415 /* Forward it to our trap handler first, in case our shadow pages are out of sync. */
1416 rc = PGMTrap0eHandler(pVCpu, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
1417 Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
1418 if (rc == VINF_SUCCESS)
1419 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1420 Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1421 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1422
1423 TRPMResetTrap(pVCpu);
1424
1425 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1426 goto ResumeExecution;
1427 }
1428 else
1429 if (rc == VINF_EM_RAW_GUEST_TRAP)
1430 { /* A genuine pagefault.
1431 * Forward the trap to the guest by injecting the exception and resuming execution.
1432 */
1433 Log2(("Forward page fault to the guest\n"));
1434 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestPF);
1435 /* The error code might have been changed. */
1436 errCode = TRPMGetErrorCode(pVCpu);
1437
1438 TRPMResetTrap(pVCpu);
1439
1440 /* Now we must update CR2. */
1441 pCtx->cr2 = uFaultAddress;
1442
1443 Event.au64[0] = 0;
1444 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1445 Event.n.u1Valid = 1;
1446 Event.n.u8Vector = X86_XCPT_PF;
1447 Event.n.u1ErrorCodeValid = 1;
1448 Event.n.u32ErrorCode = errCode;
1449
1450 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1451
1452 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1453 goto ResumeExecution;
1454 }
1455#ifdef VBOX_STRICT
1456 if (rc != VINF_EM_RAW_EMULATE_INSTR && rc != VINF_EM_RAW_EMULATE_IO_BLOCK)
1457 LogFlow(("PGMTrap0eHandler failed with %d\n", rc));
1458#endif
1459 /* Need to go back to the recompiler to emulate the instruction. */
1460 TRPMResetTrap(pVCpu);
1461 break;
1462 }
1463
1464 case X86_XCPT_MF: /* Floating point exception. */
1465 {
1466 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestMF);
1467 if (!(pCtx->cr0 & X86_CR0_NE))
1468 {
1469 /* old style FPU error reporting needs some extra work. */
1470 /** @todo don't fall back to the recompiler, but do it manually. */
1471 rc = VINF_EM_RAW_EMULATE_INSTR;
1472 break;
1473 }
1474 Log(("Trap %x at %RGv\n", vector, (RTGCPTR)pCtx->rip));
1475
1476 Event.au64[0] = 0;
1477 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1478 Event.n.u1Valid = 1;
1479 Event.n.u8Vector = X86_XCPT_MF;
1480
1481 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1482
1483 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1484 goto ResumeExecution;
1485 }
1486
1487#ifdef VBOX_STRICT
1488 case X86_XCPT_GP: /* General protection failure exception.*/
1489 case X86_XCPT_UD: /* Unknown opcode exception. */
1490 case X86_XCPT_DE: /* Divide error. */
1491 case X86_XCPT_SS: /* Stack segment exception. */
1492 case X86_XCPT_NP: /* Segment not present exception. */
1493 {
1494 Event.au64[0] = 0;
1495 Event.n.u3Type = SVM_EVENT_EXCEPTION;
1496 Event.n.u1Valid = 1;
1497 Event.n.u8Vector = vector;
1498
1499 switch(vector)
1500 {
1501 case X86_XCPT_GP:
1502 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestGP);
1503 Event.n.u1ErrorCodeValid = 1;
1504 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1505 break;
1506 case X86_XCPT_DE:
1507 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestDE);
1508 break;
1509 case X86_XCPT_UD:
1510 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestUD);
1511 break;
1512 case X86_XCPT_SS:
1513 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestSS);
1514 Event.n.u1ErrorCodeValid = 1;
1515 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1516 break;
1517 case X86_XCPT_NP:
1518 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitGuestNP);
1519 Event.n.u1ErrorCodeValid = 1;
1520 Event.n.u32ErrorCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1521 break;
1522 }
1523 Log(("Trap %x at %RGv esi=%x\n", vector, (RTGCPTR)pCtx->rip, pCtx->esi));
1524 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1525
1526 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1527 goto ResumeExecution;
1528 }
1529#endif
1530 default:
1531 AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector));
1532 rc = VERR_EM_INTERNAL_ERROR;
1533 break;
1534
1535 } /* switch (vector) */
1536 break;
1537 }
1538
1539 case SVM_EXIT_NPF:
1540 {
1541 /* EXITINFO1 contains fault errorcode; EXITINFO2 contains the guest physical address causing the fault. */
1542 uint32_t errCode = pVMCB->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */
1543 RTGCPHYS uFaultAddress = pVMCB->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */
1544 PGMMODE enmShwPagingMode;
1545
1546 Assert(pVM->hwaccm.s.fNestedPaging);
1547 Log(("Nested page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1548 /* Exit qualification contains the linear address of the page fault. */
1549 TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP);
1550 TRPMSetErrorCode(pVCpu, errCode);
1551 TRPMSetFaultAddress(pVCpu, uFaultAddress);
1552
1553 /* Handle the pagefault trap for the nested shadow table. */
1554#if HC_ARCH_BITS == 32
1555 if (CPUMIsGuestInLongModeEx(pCtx))
1556 enmShwPagingMode = PGMMODE_AMD64_NX;
1557 else
1558#endif
1559 enmShwPagingMode = PGMGetHostMode(pVM);
1560
1561 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmShwPagingMode, errCode, CPUMCTX2CORE(pCtx), uFaultAddress);
1562 Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, rc));
1563 if (rc == VINF_SUCCESS)
1564 { /* We've successfully synced our shadow pages, so let's just continue execution. */
1565 Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode));
1566 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitShadowPF);
1567
1568 TRPMResetTrap(pVCpu);
1569
1570 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1571 goto ResumeExecution;
1572 }
1573
1574#ifdef VBOX_STRICT
1575 if (rc != VINF_EM_RAW_EMULATE_INSTR)
1576 LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", rc));
1577#endif
1578 /* Need to go back to the recompiler to emulate the instruction. */
1579 TRPMResetTrap(pVCpu);
1580 break;
1581 }
1582
1583 case SVM_EXIT_VINTR:
1584 /* A virtual interrupt is about to be delivered, which means IF=1. */
1585 Log(("SVM_EXIT_VINTR IF=%d\n", pCtx->eflags.Bits.u1IF));
1586 pVMCB->ctrl.IntCtrl.n.u1VIrqValid = 0;
1587 pVMCB->ctrl.IntCtrl.n.u8VIrqVector = 0;
1588 goto ResumeExecution;
1589
1590 case SVM_EXIT_FERR_FREEZE:
1591 case SVM_EXIT_INTR:
1592 case SVM_EXIT_NMI:
1593 case SVM_EXIT_SMI:
1594 case SVM_EXIT_INIT:
1595 /* External interrupt; leave to allow it to be dispatched again. */
1596 rc = VINF_EM_RAW_INTERRUPT;
1597 break;
1598
1599 case SVM_EXIT_WBINVD:
1600 case SVM_EXIT_INVD: /* Guest software attempted to execute INVD. */
1601 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvd);
1602 /* Skip instruction and continue directly. */
1603 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1604 /* Continue execution.*/
1605 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1606 goto ResumeExecution;
1607
1608 case SVM_EXIT_CPUID: /* Guest software attempted to execute CPUID. */
1609 {
1610 Log2(("SVM: Cpuid at %RGv for %x\n", (RTGCPTR)pCtx->rip, pCtx->eax));
1611 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCpuid);
1612 rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
1613 if (rc == VINF_SUCCESS)
1614 {
1615 /* Update EIP and continue execution. */
1616 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1617 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1618 goto ResumeExecution;
1619 }
1620 AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", rc));
1621 rc = VINF_EM_RAW_EMULATE_INSTR;
1622 break;
1623 }
1624
1625 case SVM_EXIT_RDTSC: /* Guest software attempted to execute RDTSC. */
1626 {
1627 Log2(("SVM: Rdtsc\n"));
1628 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
1629 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
1630 if (rc == VINF_SUCCESS)
1631 {
1632 /* Update EIP and continue execution. */
1633 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1634 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1635 goto ResumeExecution;
1636 }
1637 rc = VINF_EM_RAW_EMULATE_INSTR;
1638 break;
1639 }
1640
1641 case SVM_EXIT_RDPMC: /* Guest software attempted to execute RDPMC. */
1642 {
1643 Log2(("SVM: Rdpmc %x\n", pCtx->ecx));
1644 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdpmc);
1645 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
1646 if (rc == VINF_SUCCESS)
1647 {
1648 /* Update EIP and continue execution. */
1649 pCtx->rip += 2; /* Note! hardcoded opcode size! */
1650 goto ResumeExecution;
1651 }
1652 rc = VINF_EM_RAW_EMULATE_INSTR;
1653 break;
1654 }
1655
1656 case SVM_EXIT_RDTSCP: /* Guest software attempted to execute RDTSCP. */
1657 {
1658 Log2(("SVM: Rdtscp\n"));
1659 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitRdtsc);
1660 rc = EMInterpretRdtscp(pVM, pVCpu, pCtx);
1661 if (rc == VINF_SUCCESS)
1662 {
1663 /* Update EIP and continue execution. */
1664 pCtx->rip += 3; /* Note! hardcoded opcode size! */
1665 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1666 goto ResumeExecution;
1667 }
1668 AssertMsgFailed(("EMU: rdtscp failed with %Rrc\n", rc));
1669 rc = VINF_EM_RAW_EMULATE_INSTR;
1670 break;
1671 }
1672
1673 case SVM_EXIT_INVLPG: /* Guest software attempted to execute INVPG. */
1674 {
1675 Log2(("SVM: invlpg\n"));
1676 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitInvpg);
1677
1678 Assert(!pVM->hwaccm.s.fNestedPaging);
1679
1680 /* Truly a pita. Why can't SVM give the same information as VT-x? */
1681 rc = SVMR0InterpretInvpg(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVMCB->ctrl.TLBCtrl.n.u32ASID);
1682 if (rc == VINF_SUCCESS)
1683 {
1684 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageInvlpg);
1685 goto ResumeExecution; /* eip already updated */
1686 }
1687 break;
1688 }
1689
1690 case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3:
1691 case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7:
1692 case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11:
1693 case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15:
1694 {
1695 uint32_t cbSize;
1696
1697 Log2(("SVM: %RGv mov cr%d, \n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_CR0));
1698 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxWrite[exitCode - SVM_EXIT_WRITE_CR0]);
1699 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
1700
1701 switch (exitCode - SVM_EXIT_WRITE_CR0)
1702 {
1703 case 0:
1704 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR0;
1705 break;
1706 case 2:
1707 break;
1708 case 3:
1709 Assert(!pVM->hwaccm.s.fNestedPaging);
1710 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR3;
1711 break;
1712 case 4:
1713 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_CR4;
1714 break;
1715 case 8:
1716 break;
1717 default:
1718 AssertFailed();
1719 }
1720 /* Check if a sync operation is pending. */
1721 if ( rc == VINF_SUCCESS /* don't bother if we are going to ring 3 anyway */
1722 && VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
1723 {
1724 rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
1725 AssertRC(rc);
1726
1727 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBCRxChange);
1728
1729 /* Must be set by PGMSyncCR3 */
1730 Assert(rc != VINF_SUCCESS || PGMGetGuestMode(pVCpu) <= PGMMODE_PROTECTED || pVCpu->hwaccm.s.fForceTLBFlush);
1731 }
1732 if (rc == VINF_SUCCESS)
1733 {
1734 /* EIP has been updated already. */
1735
1736 /* Only resume if successful. */
1737 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1738 goto ResumeExecution;
1739 }
1740 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1741 break;
1742 }
1743
1744 case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3:
1745 case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7:
1746 case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11:
1747 case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15:
1748 {
1749 uint32_t cbSize;
1750
1751 Log2(("SVM: %RGv mov x, cr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_CR0));
1752 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitCRxRead[exitCode - SVM_EXIT_READ_CR0]);
1753 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
1754 if (rc == VINF_SUCCESS)
1755 {
1756 /* EIP has been updated already. */
1757
1758 /* Only resume if successful. */
1759 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1760 goto ResumeExecution;
1761 }
1762 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1763 break;
1764 }
1765
1766 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
1767 case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7:
1768 case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11:
1769 case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
1770 {
1771 uint32_t cbSize;
1772
1773 Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_DR0));
1774 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxWrite);
1775
1776 if (!DBGFIsStepping(pVCpu))
1777 {
1778 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
1779
1780 /* Disable drx move intercepts. */
1781 pVMCB->ctrl.u16InterceptRdDRx = 0;
1782 pVMCB->ctrl.u16InterceptWrDRx = 0;
1783
1784 /* Save the host and load the guest debug state. */
1785 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
1786 AssertRC(rc);
1787
1788 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1789 goto ResumeExecution;
1790 }
1791
1792 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
1793 if (rc == VINF_SUCCESS)
1794 {
1795 /* EIP has been updated already. */
1796 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
1797
1798 /* Only resume if successful. */
1799 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1800 goto ResumeExecution;
1801 }
1802 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1803 break;
1804 }
1805
1806 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
1807 case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7:
1808 case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11:
1809 case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
1810 {
1811 uint32_t cbSize;
1812
1813 Log2(("SVM: %RGv mov x, dr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_DR0));
1814 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitDRxRead);
1815
1816 if (!DBGFIsStepping(pVCpu))
1817 {
1818 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxContextSwitch);
1819
1820 /* Disable drx move intercepts. */
1821 pVMCB->ctrl.u16InterceptRdDRx = 0;
1822 pVMCB->ctrl.u16InterceptWrDRx = 0;
1823
1824 /* Save the host and load the guest debug state. */
1825 rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */);
1826 AssertRC(rc);
1827
1828 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1829 goto ResumeExecution;
1830 }
1831
1832 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
1833 if (rc == VINF_SUCCESS)
1834 {
1835 /* EIP has been updated already. */
1836
1837 /* Only resume if successful. */
1838 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1839 goto ResumeExecution;
1840 }
1841 Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
1842 break;
1843 }
1844
1845 /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */
1846 case SVM_EXIT_IOIO: /* I/O instruction. */
1847 {
1848 SVM_IOIO_EXIT IoExitInfo;
1849 uint32_t uIOSize, uAndVal;
1850
1851 IoExitInfo.au32[0] = pVMCB->ctrl.u64ExitInfo1;
1852
1853 /** @todo could use a lookup table here */
1854 if (IoExitInfo.n.u1OP8)
1855 {
1856 uIOSize = 1;
1857 uAndVal = 0xff;
1858 }
1859 else
1860 if (IoExitInfo.n.u1OP16)
1861 {
1862 uIOSize = 2;
1863 uAndVal = 0xffff;
1864 }
1865 else
1866 if (IoExitInfo.n.u1OP32)
1867 {
1868 uIOSize = 4;
1869 uAndVal = 0xffffffff;
1870 }
1871 else
1872 {
1873 AssertFailed(); /* should be fatal. */
1874 rc = VINF_EM_RAW_EMULATE_INSTR;
1875 break;
1876 }
1877
1878 if (IoExitInfo.n.u1STR)
1879 {
1880 /* ins/outs */
1881 DISCPUSTATE Cpu;
1882
1883 /* Disassemble manually to deal with segment prefixes. */
1884 rc = EMInterpretDisasOne(pVM, pVCpu, CPUMCTX2CORE(pCtx), &Cpu, NULL);
1885 if (rc == VINF_SUCCESS)
1886 {
1887 if (IoExitInfo.n.u1Type == 0)
1888 {
1889 Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1890 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringWrite);
1891 rc = IOMInterpretOUTSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, Cpu.prefix, uIOSize);
1892 }
1893 else
1894 {
1895 Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
1896 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOStringRead);
1897 rc = IOMInterpretINSEx(pVM, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, Cpu.prefix, uIOSize);
1898 }
1899 }
1900 else
1901 rc = VINF_EM_RAW_EMULATE_INSTR;
1902 }
1903 else
1904 {
1905 /* normal in/out */
1906 Assert(!IoExitInfo.n.u1REP);
1907
1908 if (IoExitInfo.n.u1Type == 0)
1909 {
1910 Log2(("IOMIOPortWrite %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize));
1911 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIOWrite);
1912 rc = IOMIOPortWrite(pVM, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
1913 }
1914 else
1915 {
1916 uint32_t u32Val = 0;
1917
1918 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatExitIORead);
1919 rc = IOMIOPortRead(pVM, IoExitInfo.n.u16Port, &u32Val, uIOSize);
1920 if (IOM_SUCCESS(rc))
1921 {
1922 /* Write back to the EAX register. */
1923 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
1924 Log2(("IOMIOPortRead %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, u32Val & uAndVal, uIOSize));
1925 }
1926 }
1927 }
1928 /*
1929 * Handled the I/O return codes.
1930 * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.)
1931 */
1932 if (IOM_SUCCESS(rc))
1933 {
1934 /* Update EIP and continue execution. */
1935 pCtx->rip = pVMCB->ctrl.u64ExitInfo2; /* RIP/EIP of the next instruction is saved in EXITINFO2. */
1936 if (RT_LIKELY(rc == VINF_SUCCESS))
1937 {
1938 /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
1939 if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
1940 {
1941 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatDRxIOCheck);
1942 for (unsigned i=0;i<4;i++)
1943 {
1944 unsigned uBPLen = g_aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)];
1945
1946 if ( (IoExitInfo.n.u16Port >= pCtx->dr[i] && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen)
1947 && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
1948 && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
1949 {
1950 SVM_EVENT Event;
1951
1952 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1953
1954 /* Clear all breakpoint status flags and set the one we just hit. */
1955 pCtx->dr[6] &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3);
1956 pCtx->dr[6] |= (uint64_t)RT_BIT(i);
1957
1958 /* Note: AMD64 Architecture Programmer's Manual 13.1:
1959 * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared by software after
1960 * the contents have been read.
1961 */
1962 pVMCB->guest.u64DR6 = pCtx->dr[6];
1963
1964 /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
1965 pCtx->dr[7] &= ~X86_DR7_GD;
1966
1967 /* Paranoia. */
1968 pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */
1969 pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */
1970 pCtx->dr[7] |= 0x400; /* must be one */
1971
1972 pVMCB->guest.u64DR7 = pCtx->dr[7];
1973
1974 /* Inject the exception. */
1975 Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip));
1976
1977 Event.au64[0] = 0;
1978 Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */
1979 Event.n.u1Valid = 1;
1980 Event.n.u8Vector = X86_XCPT_DB;
1981
1982 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
1983
1984 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1985 goto ResumeExecution;
1986 }
1987 }
1988 }
1989
1990 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
1991 goto ResumeExecution;
1992 }
1993 Log2(("EM status from IO at %RGv %x size %d: %Rrc\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize, rc));
1994 break;
1995 }
1996
1997#ifdef VBOX_STRICT
1998 if (rc == VINF_IOM_HC_IOPORT_READ)
1999 Assert(IoExitInfo.n.u1Type != 0);
2000 else if (rc == VINF_IOM_HC_IOPORT_WRITE)
2001 Assert(IoExitInfo.n.u1Type == 0);
2002 else
2003 AssertMsg(RT_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
2004#endif
2005 Log2(("Failed IO at %RGv %x size %d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize));
2006 break;
2007 }
2008
2009 case SVM_EXIT_HLT:
2010 /** Check if external interrupts are pending; if so, don't switch back. */
2011 pCtx->rip++; /* skip hlt */
2012 if ( pCtx->eflags.Bits.u1IF
2013 && VMCPU_FF_ISPENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC)))
2014 goto ResumeExecution;
2015
2016 rc = VINF_EM_HALT;
2017 break;
2018
2019 case SVM_EXIT_RSM:
2020 case SVM_EXIT_INVLPGA:
2021 case SVM_EXIT_VMRUN:
2022 case SVM_EXIT_VMMCALL:
2023 case SVM_EXIT_VMLOAD:
2024 case SVM_EXIT_VMSAVE:
2025 case SVM_EXIT_STGI:
2026 case SVM_EXIT_CLGI:
2027 case SVM_EXIT_SKINIT:
2028 {
2029 /* Unsupported instructions. */
2030 SVM_EVENT Event;
2031
2032 Event.au64[0] = 0;
2033 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2034 Event.n.u1Valid = 1;
2035 Event.n.u8Vector = X86_XCPT_UD;
2036
2037 Log(("Forced #UD trap at %RGv\n", (RTGCPTR)pCtx->rip));
2038 SVMR0InjectEvent(pVM, pVMCB, pCtx, &Event);
2039
2040 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
2041 goto ResumeExecution;
2042 }
2043
2044 /* Emulate in ring 3. */
2045 case SVM_EXIT_MSR:
2046 {
2047 uint32_t cbSize;
2048
2049 /* Note: the intel manual claims there's a REX version of RDMSR that's slightly different, so we play safe by completely disassembling the instruction. */
2050 Log(("SVM: %s\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr"));
2051 rc = EMInterpretInstruction(pVM, pVCpu, CPUMCTX2CORE(pCtx), 0, &cbSize);
2052 if (rc == VINF_SUCCESS)
2053 {
2054 /* EIP has been updated already. */
2055
2056 /* Only resume if successful. */
2057 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
2058 goto ResumeExecution;
2059 }
2060 AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (pVMCB->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr", rc));
2061 break;
2062 }
2063
2064 case SVM_EXIT_MONITOR:
2065 case SVM_EXIT_PAUSE:
2066 case SVM_EXIT_MWAIT_UNCOND:
2067 case SVM_EXIT_MWAIT_ARMED:
2068 case SVM_EXIT_TASK_SWITCH: /* can change CR3; emulate */
2069 rc = VINF_EM_RAW_EXCEPTION_PRIVILEGED;
2070 break;
2071
2072 case SVM_EXIT_SHUTDOWN:
2073 rc = VINF_EM_RESET; /* Triple fault equals a reset. */
2074 break;
2075
2076 case SVM_EXIT_IDTR_READ:
2077 case SVM_EXIT_GDTR_READ:
2078 case SVM_EXIT_LDTR_READ:
2079 case SVM_EXIT_TR_READ:
2080 case SVM_EXIT_IDTR_WRITE:
2081 case SVM_EXIT_GDTR_WRITE:
2082 case SVM_EXIT_LDTR_WRITE:
2083 case SVM_EXIT_TR_WRITE:
2084 case SVM_EXIT_CR0_SEL_WRITE:
2085 default:
2086 /* Unexpected exit codes. */
2087 rc = VERR_EM_INTERNAL_ERROR;
2088 AssertMsgFailed(("Unexpected exit code %x\n", exitCode)); /* Can't happen. */
2089 break;
2090 }
2091
2092end:
2093
2094 /* Signal changes for the recompiler. */
2095 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS);
2096
2097 /* If we executed vmrun and an external irq was pending, then we don't have to do a full sync the next time. */
2098 if (exitCode == SVM_EXIT_INTR)
2099 {
2100 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatPendingHostIrq);
2101 /* On the next entry we'll only sync the host context. */
2102 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_HOST_CONTEXT;
2103 }
2104 else
2105 {
2106 /* On the next entry we'll sync everything. */
2107 /** @todo we can do better than this */
2108 /* Not in the VINF_PGM_CHANGE_MODE though! */
2109 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_ALL;
2110 }
2111
2112 /* translate into a less severe return code */
2113 if (rc == VERR_EM_INTERPRETER)
2114 rc = VINF_EM_RAW_EMULATE_INSTR;
2115
2116 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatExit1, x);
2117 return rc;
2118}
2119
2120/**
2121 * Enters the AMD-V session
2122 *
2123 * @returns VBox status code.
2124 * @param pVM The VM to operate on.
2125 * @param pVCpu The VM CPU to operate on.
2126 * @param pCpu CPU info struct
2127 */
2128VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHWACCM_CPUINFO pCpu)
2129{
2130 Assert(pVM->hwaccm.s.svm.fSupported);
2131
2132 LogFlow(("SVMR0Enter cpu%d last=%d asid=%d\n", pCpu->idCpu, pVCpu->hwaccm.s.idLastCpu, pVCpu->hwaccm.s.uCurrentASID));
2133 pVCpu->hwaccm.s.fResumeVM = false;
2134
2135 /* Force to reload LDTR, so we'll execute VMLoad to load additional guest state. */
2136 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_LDTR;
2137
2138 return VINF_SUCCESS;
2139}
2140
2141
2142/**
2143 * Leaves the AMD-V session
2144 *
2145 * @returns VBox status code.
2146 * @param pVM The VM to operate on.
2147 * @param pVCpu The VM CPU to operate on.
2148 * @param pCtx CPU context
2149 */
2150VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2151{
2152 SVM_VMCB *pVMCB = (SVM_VMCB *)pVCpu->hwaccm.s.svm.pVMCB;
2153
2154 Assert(pVM->hwaccm.s.svm.fSupported);
2155
2156 /* Save the guest debug state if necessary. */
2157 if (CPUMIsGuestDebugStateActive(pVCpu))
2158 {
2159 CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, false /* skip DR6 */);
2160
2161 /* Intercept all DRx reads and writes again. Changed later on. */
2162 pVMCB->ctrl.u16InterceptRdDRx = 0xFFFF;
2163 pVMCB->ctrl.u16InterceptWrDRx = 0xFFFF;
2164
2165 /* Resync the debug registers the next time. */
2166 pVCpu->hwaccm.s.fContextUseFlags |= HWACCM_CHANGED_GUEST_DEBUG;
2167 }
2168 else
2169 Assert(pVMCB->ctrl.u16InterceptRdDRx == 0xFFFF && pVMCB->ctrl.u16InterceptWrDRx == 0xFFFF);
2170
2171 return VINF_SUCCESS;
2172}
2173
2174
2175static int svmR0InterpretInvlPg(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2176{
2177 OP_PARAMVAL param1;
2178 RTGCPTR addr;
2179
2180 int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->param1, &param1, PARAM_SOURCE);
2181 if(RT_FAILURE(rc))
2182 return VERR_EM_INTERPRETER;
2183
2184 switch(param1.type)
2185 {
2186 case PARMTYPE_IMMEDIATE:
2187 case PARMTYPE_ADDRESS:
2188 if(!(param1.flags & (PARAM_VAL32|PARAM_VAL64)))
2189 return VERR_EM_INTERPRETER;
2190 addr = param1.val.val64;
2191 break;
2192
2193 default:
2194 return VERR_EM_INTERPRETER;
2195 }
2196
2197 /** @todo is addr always a flat linear address or ds based
2198 * (in absence of segment override prefixes)????
2199 */
2200 rc = PGMInvalidatePage(pVCpu, addr);
2201 if (RT_SUCCESS(rc))
2202 {
2203 /* Manually invalidate the page for the VM's TLB. */
2204 Log(("SVMR0InvlpgA %RGv ASID=%d\n", addr, uASID));
2205 SVMR0InvlpgA(addr, uASID);
2206 return VINF_SUCCESS;
2207 }
2208 Assert(rc == VERR_REM_FLUSHED_PAGES_OVERFLOW);
2209 return rc;
2210}
2211
2212/**
2213 * Interprets INVLPG
2214 *
2215 * @returns VBox status code.
2216 * @retval VINF_* Scheduling instructions.
2217 * @retval VERR_EM_INTERPRETER Something we can't cope with.
2218 * @retval VERR_* Fatal errors.
2219 *
2220 * @param pVM The VM handle.
2221 * @param pRegFrame The register frame.
2222 * @param ASID Tagged TLB id for the guest
2223 *
2224 * Updates the EIP if an instruction was executed successfully.
2225 */
2226static int SVMR0InterpretInvpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, uint32_t uASID)
2227{
2228 /*
2229 * Only allow 32 & 64 bits code.
2230 */
2231 DISCPUMODE enmMode = SELMGetCpuModeFromSelector(pVM, pRegFrame->eflags, pRegFrame->cs, &pRegFrame->csHid);
2232 if (enmMode != CPUMODE_16BIT)
2233 {
2234 RTGCPTR pbCode;
2235 int rc = SELMValidateAndConvertCSAddr(pVM, pRegFrame->eflags, pRegFrame->ss, pRegFrame->cs, &pRegFrame->csHid, (RTGCPTR)pRegFrame->rip, &pbCode);
2236 if (RT_SUCCESS(rc))
2237 {
2238 uint32_t cbOp;
2239 DISCPUSTATE Cpu;
2240
2241 Cpu.mode = enmMode;
2242 rc = EMInterpretDisasOneEx(pVM, pVCpu, pbCode, pRegFrame, &Cpu, &cbOp);
2243 Assert(RT_FAILURE(rc) || Cpu.pCurInstr->opcode == OP_INVLPG);
2244 if (RT_SUCCESS(rc) && Cpu.pCurInstr->opcode == OP_INVLPG)
2245 {
2246 Assert(cbOp == Cpu.opsize);
2247 rc = svmR0InterpretInvlPg(pVCpu, &Cpu, pRegFrame, uASID);
2248 if (RT_SUCCESS(rc))
2249 {
2250 pRegFrame->rip += cbOp; /* Move on to the next instruction. */
2251 }
2252 return rc;
2253 }
2254 }
2255 }
2256 return VERR_EM_INTERPRETER;
2257}
2258
2259
2260/**
2261 * Invalidates a guest page
2262 *
2263 * @returns VBox status code.
2264 * @param pVM The VM to operate on.
2265 * @param pVCpu The VM CPU to operate on.
2266 * @param GCVirt Page to invalidate
2267 */
2268VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
2269{
2270 bool fFlushPending = pVM->hwaccm.s.svm.fAlwaysFlushTLB | pVCpu->hwaccm.s.fForceTLBFlush;
2271
2272 /* Skip it if a TLB flush is already pending. */
2273 if (!fFlushPending)
2274 {
2275 SVM_VMCB *pVMCB;
2276
2277 Log2(("SVMR0InvalidatePage %RGv\n", GCVirt));
2278 AssertReturn(pVM, VERR_INVALID_PARAMETER);
2279 Assert(pVM->hwaccm.s.svm.fSupported);
2280
2281 /* @todo SMP */
2282 pVMCB = (SVM_VMCB *)pVM->aCpus[0].hwaccm.s.svm.pVMCB;
2283 AssertMsgReturn(pVMCB, ("Invalid pVMCB\n"), VERR_EM_INTERNAL_ERROR);
2284
2285 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushPageManual);
2286#if HC_ARCH_BITS == 32
2287 /* If we get a flush in 64 bits guest mode, then force a full TLB flush. Invlpga takes only 32 bits addresses. */
2288 if (CPUMIsGuestInLongMode(pVCpu))
2289 pVCpu->hwaccm.s.fForceTLBFlush = true;
2290 else
2291#endif
2292 SVMR0InvlpgA(GCVirt, pVMCB->ctrl.TLBCtrl.n.u32ASID);
2293 }
2294 return VINF_SUCCESS;
2295}
2296
2297
2298/**
2299 * Invalidates a guest page by physical address
2300 *
2301 * @returns VBox status code.
2302 * @param pVM The VM to operate on.
2303 * @param pVCpu The VM CPU to operate on.
2304 * @param GCPhys Page to invalidate
2305 */
2306VMMR0DECL(int) SVMR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
2307{
2308 Assert(pVM->hwaccm.s.fNestedPaging);
2309 /* invlpga only invalidates TLB entries for guest virtual addresses; we have no choice but to force a TLB flush here. */
2310 pVCpu->hwaccm.s.fForceTLBFlush = true;
2311 STAM_COUNTER_INC(&pVCpu->hwaccm.s.StatFlushTLBInvlpga);
2312 return VINF_SUCCESS;
2313}
2314
2315#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2316/**
2317 * Prepares for and executes VMRUN (64 bits guests from a 32 bits hosts).
2318 *
2319 * @returns VBox status code.
2320 * @param pVMCBHostPhys Physical address of host VMCB.
2321 * @param pVMCBPhys Physical address of the VMCB.
2322 * @param pCtx Guest context.
2323 * @param pVM The VM to operate on.
2324 * @param pVCpu The VMCPU to operate on.
2325 */
2326DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS pVMCBHostPhys, RTHCPHYS pVMCBPhys, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
2327{
2328 uint32_t aParam[4];
2329
2330 aParam[0] = (uint32_t)(pVMCBHostPhys); /* Param 1: pVMCBHostPhys - Lo. */
2331 aParam[1] = (uint32_t)(pVMCBHostPhys >> 32); /* Param 1: pVMCBHostPhys - Hi. */
2332 aParam[2] = (uint32_t)(pVMCBPhys); /* Param 2: pVMCBPhys - Lo. */
2333 aParam[3] = (uint32_t)(pVMCBPhys >> 32); /* Param 2: pVMCBPhys - Hi. */
2334
2335 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, pVM->hwaccm.s.pfnSVMGCVMRun64, 4, &aParam[0]);
2336}
2337
2338/**
2339 * Executes the specified handler in 64 mode
2340 *
2341 * @returns VBox status code.
2342 * @param pVM The VM to operate on.
2343 * @param pVCpu The VMCPU to operate on.
2344 * @param pCtx Guest context
2345 * @param pfnHandler RC handler
2346 * @param cbParam Number of parameters
2347 * @param paParam Array of 32 bits parameters
2348 */
2349VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTRCPTR pfnHandler, uint32_t cbParam, uint32_t *paParam)
2350{
2351 int rc;
2352 RTHCUINTREG uFlags;
2353
2354 /* @todo This code is not guest SMP safe (hyper stack) */
2355 AssertReturn(pVM->cCPUs == 1, VERR_ACCESS_DENIED);
2356 Assert(pfnHandler);
2357
2358 uFlags = ASMIntDisableFlags();
2359
2360 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVM));
2361 CPUMSetHyperEIP(pVCpu, pfnHandler);
2362 for (int i=(int)cbParam-1;i>=0;i--)
2363 CPUMPushHyper(pVCpu, paParam[i]);
2364
2365 STAM_PROFILE_ADV_START(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
2366 /* Call switcher. */
2367 rc = pVM->hwaccm.s.pfnHost32ToGuest64R0(pVM);
2368 STAM_PROFILE_ADV_STOP(&pVCpu->hwaccm.s.StatWorldSwitch3264, z);
2369
2370 ASMSetFlags(uFlags);
2371 return rc;
2372}
2373
2374#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette