/* $Id: HWSVMR0.cpp 47513 2013-08-01 16:35:12Z vboxsync $ */ /** @file * HM SVM (AMD-V) - Host Context Ring-0. */ /* * Copyright (C) 2006-2013 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_HM #include #include #include #include #include #include #include #include #include "HMInternal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION # include #endif #include #include "HMSVMR0.h" #include "dtrace/VBoxVMM.h" /******************************************************************************* * Internal Functions * *******************************************************************************/ static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame); static int hmR0SvmEmulateTprVMMCall(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx); static void hmR0SvmSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite); /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ /** Convert hidden selector attribute word between VMX and SVM formats. */ #define SVM_HIDSEGATTR_VMX2SVM(a) (a & 0xFF) | ((a & 0xF000) >> 4) #define SVM_HIDSEGATTR_SVM2VMX(a) (a & 0xFF) | ((a & 0x0F00) << 4) #define SVM_WRITE_SELREG(REG, reg) \ do \ { \ Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \ Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \ pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \ pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \ pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \ pVmcb->guest.REG.u16Attr = SVM_HIDSEGATTR_VMX2SVM(pCtx->reg.Attr.u); \ } while (0) #define SVM_READ_SELREG(REG, reg) \ do \ { \ pCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \ pCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \ pCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \ pCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \ pCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \ pCtx->reg.Attr.u = SVM_HIDSEGATTR_SVM2VMX(pVmcb->guest.REG.u16Attr); \ } while (0) /******************************************************************************* * Global Variables * *******************************************************************************/ /* IO operation lookup arrays. */ static uint32_t const g_aIOSize[8] = {0, 1, 2, 0, 4, 0, 0, 0}; static uint32_t const g_aIOOpAnd[8] = {0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0}; /** * Sets up and activates AMD-V on the current CPU. * * @returns VBox status code. * @param pCpu Pointer to the CPU info struct. * @param pVM Pointer to the VM (can be NULL after a resume!). * @param pvCpuPage Pointer to the global CPU page. * @param HCPhysCpuPage Physical address of the global CPU page. */ VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost) { AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER); AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER); AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER); /* * We must turn on AMD-V and setup the host state physical address, as those MSRs are per cpu/core. */ uint64_t fEfer = ASMRdMsr(MSR_K6_EFER); if (fEfer & MSR_K6_EFER_SVME) { /* * If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */ if ( pVM && pVM->hm.s.svm.fIgnoreInUseError) { pCpu->fIgnoreAMDVInUseError = true; } if (!pCpu->fIgnoreAMDVInUseError) return VERR_SVM_IN_USE; } /* Turn on AMD-V in the EFER MSR. */ ASMWrMsr(MSR_K6_EFER, fEfer | MSR_K6_EFER_SVME); /* Write the physical page address where the CPU will store the host state while executing the VM. */ ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage); /* * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB() * to flush the TLB with before using a new ASID. */ pCpu->fFlushAsidBeforeUse = true; /* * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */ ++pCpu->cTlbFlushes; return VINF_SUCCESS; } /** * Deactivates AMD-V on the current CPU. * * @returns VBox status code. * @param pCpu Pointer to the CPU info struct. * @param pvCpuPage Pointer to the global CPU page. * @param HCPhysCpuPage Physical address of the global CPU page. */ VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage) { AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER); AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER); NOREF(pCpu); /* Turn off AMD-V in the EFER MSR. */ uint64_t fEfer = ASMRdMsr(MSR_K6_EFER); ASMWrMsr(MSR_K6_EFER, fEfer & ~MSR_K6_EFER_SVME); /* Invalidate host state physical address. */ ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0); return VINF_SUCCESS; } /** * Does global AMD-V initialization (called during module initialization). * * @returns VBox status code. */ VMMR0DECL(int) SVMR0GlobalInit(void) { return VINF_SUCCESS; } /** * Does global VT-x termination (called during module termination). */ VMMR0DECL(void) SVMR0GlobalTerm(void) { } /** * Does Ring-0 per VM AMD-V init. * * @returns VBox status code. * @param pVM Pointer to the VM. */ VMMR0DECL(int) SVMR0InitVM(PVM pVM) { int rc; pVM->hm.s.svm.hMemObjIOBitmap = NIL_RTR0MEMOBJ; /* Allocate 12 KB for the IO bitmap (doesn't seem to be a way to convince SVM not to use it) */ rc = RTR0MemObjAllocCont(&pVM->hm.s.svm.hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */); if (RT_FAILURE(rc)) return rc; pVM->hm.s.svm.pvIOBitmap = RTR0MemObjAddress(pVM->hm.s.svm.hMemObjIOBitmap); pVM->hm.s.svm.HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(pVM->hm.s.svm.hMemObjIOBitmap, 0); /* Set all bits to intercept all IO accesses. */ ASMMemFill32(pVM->hm.s.svm.pvIOBitmap, 3 << PAGE_SHIFT, 0xffffffff); /* Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch. */ uint32_t u32Family; uint32_t u32Model; uint32_t u32Stepping; if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping)) { Log(("SVMR0InitVM: AMD cpu with erratum 170 family %x model %x stepping %x\n", u32Family, u32Model, u32Stepping)); pVM->hm.s.svm.fAlwaysFlushTLB = true; } /* Allocate VMCBs for all guest CPUs. */ for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ; pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ; pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ; /* Allocate one page for the host context */ rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */); if (RT_FAILURE(rc)) return rc; pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost); pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0); Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G); ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost); /* Allocate one page for the VM control block (VMCB). */ rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */); if (RT_FAILURE(rc)) return rc; pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb); pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0); Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G); ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb); /* Allocate 8 KB for the MSR bitmap (doesn't seem to be a way to convince SVM not to use it) */ rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */); if (RT_FAILURE(rc)) return rc; pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap); pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0); /* Set all bits to intercept all MSR accesses. */ ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff); } return VINF_SUCCESS; } /** * Does Ring-0 per VM AMD-V termination. * * @returns VBox status code. * @param pVM Pointer to the VM. */ VMMR0DECL(int) SVMR0TermVM(PVM pVM) { for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false); pVCpu->hm.s.svm.pvVmcbHost = 0; pVCpu->hm.s.svm.HCPhysVmcbHost = 0; pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ; } if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false); pVCpu->hm.s.svm.pvVmcb = 0; pVCpu->hm.s.svm.HCPhysVmcb = 0; pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ; } if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false); pVCpu->hm.s.svm.pvMsrBitmap = 0; pVCpu->hm.s.svm.HCPhysMsrBitmap = 0; pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ; } } if (pVM->hm.s.svm.hMemObjIOBitmap != NIL_RTR0MEMOBJ) { RTR0MemObjFree(pVM->hm.s.svm.hMemObjIOBitmap, false); pVM->hm.s.svm.pvIOBitmap = 0; pVM->hm.s.svm.HCPhysIOBitmap = 0; pVM->hm.s.svm.hMemObjIOBitmap = NIL_RTR0MEMOBJ; } return VINF_SUCCESS; } /** * Sets up AMD-V for the specified VM. * * @returns VBox status code. * @param pVM Pointer to the VM. */ VMMR0DECL(int) SVMR0SetupVM(PVM pVM) { int rc = VINF_SUCCESS; AssertReturn(pVM, VERR_INVALID_PARAMETER); Assert(pVM->hm.s.svm.fSupported); for (VMCPUID i = 0; i < pVM->cCpus; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb; AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB); /* * Program the control fields. Most of them never have to be changed again. * CR0/4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. * Note: CR0 & CR4 can be safely read when guest and shadow copies are identical. */ pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4); /* CR0/4 writes must be intercepted for obvious reasons. */ pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4); /* Intercept all DRx reads and writes by default. Changed later on. */ pVmcb->ctrl.u16InterceptRdDRx = 0xFFFF; pVmcb->ctrl.u16InterceptWrDRx = 0xFFFF; /* Intercept traps; only #NM is always intercepted. */ pVmcb->ctrl.u32InterceptException = RT_BIT(X86_XCPT_NM); #ifdef VBOX_ALWAYS_TRAP_PF pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF); #endif #ifdef VBOX_STRICT pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_DB) | RT_BIT(X86_XCPT_DE) | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_MF) ; #endif /* Set up instruction and miscellaneous intercepts. */ pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR | SVM_CTRL1_INTERCEPT_VINTR | SVM_CTRL1_INTERCEPT_NMI | SVM_CTRL1_INTERCEPT_SMI | SVM_CTRL1_INTERCEPT_INIT | SVM_CTRL1_INTERCEPT_RDPMC | SVM_CTRL1_INTERCEPT_CPUID | SVM_CTRL1_INTERCEPT_RSM | SVM_CTRL1_INTERCEPT_HLT | SVM_CTRL1_INTERCEPT_INOUT_BITMAP | SVM_CTRL1_INTERCEPT_MSR_SHADOW | SVM_CTRL1_INTERCEPT_INVLPGA /* AMD only */ | SVM_CTRL1_INTERCEPT_SHUTDOWN /* fatal */ | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Legacy FPU FERR handling. */ ; pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* required */ | SVM_CTRL2_INTERCEPT_VMMCALL | SVM_CTRL2_INTERCEPT_VMLOAD | SVM_CTRL2_INTERCEPT_VMSAVE | SVM_CTRL2_INTERCEPT_STGI | SVM_CTRL2_INTERCEPT_CLGI | SVM_CTRL2_INTERCEPT_SKINIT | SVM_CTRL2_INTERCEPT_WBINVD | SVM_CTRL2_INTERCEPT_MONITOR | SVM_CTRL2_INTERCEPT_MWAIT; /* don't execute mwait or else we'll idle inside the guest (host thinks the cpu load is high) */ Log(("pVmcb->ctrl.u32InterceptException = %x\n", pVmcb->ctrl.u32InterceptException)); Log(("pVmcb->ctrl.u32InterceptCtrl1 = %x\n", pVmcb->ctrl.u32InterceptCtrl1)); Log(("pVmcb->ctrl.u32InterceptCtrl2 = %x\n", pVmcb->ctrl.u32InterceptCtrl2)); /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */ pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1; /* Ignore the priority in the TPR; just deliver it when we tell it to. */ pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1; /* Set IO and MSR bitmap addresses. */ pVmcb->ctrl.u64IOPMPhysAddr = pVM->hm.s.svm.HCPhysIOBitmap; pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap; /* No LBR virtualization. */ pVmcb->ctrl.u64LBRVirt = 0; /* The ASID must start at 1; the host uses 0. */ pVmcb->ctrl.TLBCtrl.n.u32ASID = 1; /* * Setup the PAT MSR (nested paging only) * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB, * so choose type 6 for all PAT slots. */ pVmcb->guest.u64GPAT = 0x0006060606060606ULL; /* If nested paging is not in use, additional intercepts have to be set up. */ if (!pVM->hm.s.fNestedPaging) { /* CR3 reads/writes must be intercepted; our shadow values are different from guest's. */ pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3); pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3); /* * We must also intercept: * - INVLPG (must go through shadow paging) * - task switches (may change CR3/EFLAGS/LDT) */ pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG | SVM_CTRL1_INTERCEPT_TASK_SWITCH; /* Page faults must be intercepted to implement shadow paging. */ pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF); } /* * The following MSRs are saved automatically by vmload/vmsave, so we allow the guest * to modify them directly. */ hmR0SvmSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true); hmR0SvmSetMSRPermission(pVCpu, MSR_K8_CSTAR, true, true); hmR0SvmSetMSRPermission(pVCpu, MSR_K6_STAR, true, true); hmR0SvmSetMSRPermission(pVCpu, MSR_K8_SF_MASK, true, true); hmR0SvmSetMSRPermission(pVCpu, MSR_K8_FS_BASE, true, true); hmR0SvmSetMSRPermission(pVCpu, MSR_K8_GS_BASE, true, true); hmR0SvmSetMSRPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, true, true); hmR0SvmSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_CS, true, true); hmR0SvmSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_ESP, true, true); hmR0SvmSetMSRPermission(pVCpu, MSR_IA32_SYSENTER_EIP, true, true); } return rc; } /** * Sets the permission bits for the specified MSR. * * @param pVCpu Pointer to the VMCPU. * @param ulMSR MSR value. * @param fRead Whether reading is allowed. * @param fWrite Whether writing is allowed. */ static void hmR0SvmSetMSRPermission(PVMCPU pVCpu, unsigned ulMSR, bool fRead, bool fWrite) { unsigned ulBit; uint8_t *pvMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap; if (ulMSR <= 0x00001FFF) { /* Pentium-compatible MSRs */ ulBit = ulMSR * 2; } else if ( ulMSR >= 0xC0000000 && ulMSR <= 0xC0001FFF) { /* AMD Sixth Generation x86 Processor MSRs and SYSCALL */ ulBit = (ulMSR - 0xC0000000) * 2; pvMsrBitmap += 0x800; } else if ( ulMSR >= 0xC0010000 && ulMSR <= 0xC0011FFF) { /* AMD Seventh and Eighth Generation Processor MSRs */ ulBit = (ulMSR - 0xC0001000) * 2; pvMsrBitmap += 0x1000; } else { AssertFailed(); return; } Assert(ulBit < 16 * 1024 - 1); if (fRead) ASMBitClear(pvMsrBitmap, ulBit); else ASMBitSet(pvMsrBitmap, ulBit); if (fWrite) ASMBitClear(pvMsrBitmap, ulBit + 1); else ASMBitSet(pvMsrBitmap, ulBit + 1); } /** * Posts a pending event (trap or external interrupt). An injected event should only * be written to the VMCB immediately before VMRUN, otherwise we might have stale events * injected across VM resets and suchlike. See @bugref{6220}. * * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. * @param pIntInfo Pointer to the SVM interrupt info. */ DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, SVMEVENT *pEvent) { #ifdef VBOX_STRICT Log(("SVM: Set pending event: intInfo=%016llx\n", pEvent->u)); #endif /* If there's an event pending already, we're in trouble... */ Assert(!pVCpu->hm.s.Event.fPending); /* Set pending event state. */ pVCpu->hm.s.Event.u64IntrInfo = pEvent->u; pVCpu->hm.s.Event.fPending = true; } /** * Injects an event (trap or external interrupt). * * @param pVCpu Pointer to the VMCPU. * @param pVmcb Pointer to the VMCB. * @param pCtx Pointer to the guest CPU context. * @param pIntInfo Pointer to the SVM interrupt info. */ DECLINLINE(void) hmR0SvmInjectEvent(PVMCPU pVCpu, PSVMVMCB pVmcb, CPUMCTX *pCtx, SVMEVENT *pEvent) { #ifdef VBOX_WITH_STATISTICS STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]); #endif #ifdef VBOX_STRICT if (pEvent->n.u8Vector == 0xE) { Log(("SVM: Inject int %d at %RGv error code=%02x CR2=%RGv intInfo=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode, (RTGCPTR)pCtx->cr2, pEvent->u)); } else if (pEvent->n.u8Vector < 0x20) Log(("SVM: Inject int %d at %RGv error code=%08x\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip, pEvent->n.u32ErrorCode)); else { Log(("INJ-EI: %x at %RGv\n", pEvent->n.u8Vector, (RTGCPTR)pCtx->rip)); Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)); Assert(pCtx->eflags.u32 & X86_EFL_IF); } #endif /* Set event injection state. */ pVmcb->ctrl.EventInject.u = pEvent->u; } /** * Checks for pending guest interrupts and injects them. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pVmcb Pointer to the VMCB. * @param pCtx Pointer to the guest CPU Context. */ static int hmR0SvmCheckPendingInterrupt(PVM pVM, PVMCPU pVCpu, PSVMVMCB pVmcb, CPUMCTX *pCtx) { int rc; NOREF(pVM); /* * Dispatch any pending interrupts (injected before, but a VM-exit occurred prematurely). */ if (pVCpu->hm.s.Event.fPending) { SVMEVENT Event; Log(("Reinjecting event %08x %08x at %RGv\n", pVCpu->hm.s.Event.u64IntrInfo, pVCpu->hm.s.Event.u32ErrCode, (RTGCPTR)pCtx->rip)); STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect); Event.u = pVCpu->hm.s.Event.u64IntrInfo; hmR0SvmInjectEvent(pVCpu, pVmcb, pCtx, &Event); pVCpu->hm.s.Event.fPending = false; return VINF_SUCCESS; } /* * If an active trap is already pending, we must forward it first! */ if (!TRPMHasTrap(pVCpu)) { if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI)) { SVMEVENT Event; Log(("CPU%d: injecting #NMI\n", pVCpu->idCpu)); Event.n.u8Vector = X86_XCPT_NMI; Event.n.u1Valid = 1; Event.n.u32ErrorCode = 0; Event.n.u3Type = SVM_EVENT_NMI; hmR0SvmInjectEvent(pVCpu, pVmcb, pCtx, &Event); STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt); return VINF_SUCCESS; } /** @todo SMI interrupts. */ /* * When external interrupts are pending, we should exit the VM when IF is set. */ if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC))) { if ( !(pCtx->eflags.u32 & X86_EFL_IF) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) { if (!pVmcb->ctrl.IntCtrl.n.u1VIrqValid) { if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) LogFlow(("Enable irq window exit!\n")); else { Log(("Pending interrupt blocked at %RGv by VM_FF_INHIBIT_INTERRUPTS -> irq window exit\n", (RTGCPTR)pCtx->rip)); } /** @todo Use virtual interrupt method to inject a pending IRQ; dispatched as * soon as guest.IF is set. */ pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR; pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* don't care */ } } else { uint8_t u8Interrupt; rc = PDMGetInterrupt(pVCpu, &u8Interrupt); Log(("Dispatch interrupt: u8Interrupt=%x (%d) rc=%Rrc\n", u8Interrupt, u8Interrupt, rc)); if (RT_SUCCESS(rc)) { rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT); AssertRC(rc); } else { /* Can only happen in rare cases where a pending interrupt is cleared behind our back */ Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC|VMCPU_FF_INTERRUPT_PIC))); STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq); /* Just continue */ } } } } #ifdef VBOX_STRICT if (TRPMHasTrap(pVCpu)) { uint8_t u8Vector; rc = TRPMQueryTrapAll(pVCpu, &u8Vector, 0, NULL, NULL, NULL); AssertRC(rc); } #endif if ( (pCtx->eflags.u32 & X86_EFL_IF) && (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) && TRPMHasTrap(pVCpu) ) { uint8_t u8Vector; TRPMEVENT enmType; SVMEVENT Event; RTGCUINT u32ErrorCode; Event.u = 0; /* If a new event is pending, then dispatch it now. */ rc = TRPMQueryTrapAll(pVCpu, &u8Vector, &enmType, &u32ErrorCode, NULL, NULL); AssertRC(rc); Assert(pCtx->eflags.Bits.u1IF == 1 || enmType == TRPM_TRAP); Assert(enmType != TRPM_SOFTWARE_INT); /* Clear the pending trap. */ rc = TRPMResetTrap(pVCpu); AssertRC(rc); Event.n.u8Vector = u8Vector; Event.n.u1Valid = 1; Event.n.u32ErrorCode = u32ErrorCode; if (enmType == TRPM_TRAP) { switch (u8Vector) { case X86_XCPT_DF: case X86_XCPT_TS: case X86_XCPT_NP: case X86_XCPT_SS: case X86_XCPT_GP: case X86_XCPT_PF: case X86_XCPT_AC: /* Valid error codes. */ Event.n.u1ErrorCodeValid = 1; break; default: break; } if (u8Vector == X86_XCPT_NMI) Event.n.u3Type = SVM_EVENT_NMI; else Event.n.u3Type = SVM_EVENT_EXCEPTION; STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt); } else { Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ; STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt); } hmR0SvmInjectEvent(pVCpu, pVmcb, pCtx, &Event); } /* if (interrupts can be dispatched) */ return VINF_SUCCESS; } /** * Save the host state. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. */ VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu) { NOREF(pVM); NOREF(pVCpu); /* Nothing to do here. */ return VINF_SUCCESS; } /** * Loads the guest state. * * NOTE: Don't do anything here that can cause a jump back to ring-3!!! * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. */ VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x); RTGCUINTPTR val; PSVMVMCB pVmcb; if (pVM == NULL) return VERR_INVALID_PARAMETER; /* Setup AMD SVM. */ Assert(pVM->hm.s.svm.fSupported); pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb; AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB); /* Guest CPU context: ES, CS, SS, DS, FS, GS. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS) { SVM_WRITE_SELREG(CS, cs); SVM_WRITE_SELREG(SS, ss); SVM_WRITE_SELREG(DS, ds); SVM_WRITE_SELREG(ES, es); SVM_WRITE_SELREG(FS, fs); SVM_WRITE_SELREG(GS, gs); } /* Guest CPU context: LDTR. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR) { SVM_WRITE_SELREG(LDTR, ldtr); } /* Guest CPU context: TR. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR) { SVM_WRITE_SELREG(TR, tr); } /* Guest CPU context: GDTR. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR) { pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt; pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt; } /* Guest CPU context: IDTR. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR) { pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt; pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt; } /* * Sysenter MSRs (unconditional) */ pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs; pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip; pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp; /* Control registers */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0) { val = pCtx->cr0; if (!CPUMIsGuestFPUStateActive(pVCpu)) { /* Always use #NM exceptions to load the FPU/XMM state on demand. */ val |= X86_CR0_TS | X86_CR0_ET | X86_CR0_NE | X86_CR0_MP; } else { /** @todo check if we support the old style mess correctly. */ if (!(val & X86_CR0_NE)) { Log(("Forcing X86_CR0_NE!!!\n")); /* Also catch floating point exceptions as we need to report them to the guest in a different way. */ pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF); } val |= X86_CR0_NE; /* always turn on the native mechanism to report FPU errors (old style uses interrupts) */ } /* Always enable caching. */ val &= ~(X86_CR0_CD|X86_CR0_NW); /* * Note: WP is not relevant in nested paging mode as we catch accesses on the (guest) physical level. * Note: In nested paging mode, the guest is allowed to run with paging disabled; the guest-physical to host-physical * translation will remain active. */ if (!pVM->hm.s.fNestedPaging) { val |= X86_CR0_PG; /* Paging is always enabled; even when the guest is running in real mode or PE without paging. */ val |= X86_CR0_WP; /* Must set this as we rely on protecting various pages and supervisor writes must be caught. */ } pVmcb->guest.u64CR0 = val; } /* CR2 as well */ pVmcb->guest.u64CR2 = pCtx->cr2; if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3) { /* Save our shadow CR3 register. */ if (pVM->hm.s.fNestedPaging) { PGMMODE enmShwPagingMode; #if HC_ARCH_BITS == 32 if (CPUMIsGuestInLongModeEx(pCtx)) enmShwPagingMode = PGMMODE_AMD64_NX; else #endif enmShwPagingMode = PGMGetHostMode(pVM); pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode); Assert(pVmcb->ctrl.u64NestedPagingCR3); pVmcb->guest.u64CR3 = pCtx->cr3; } else { pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu); Assert(pVmcb->guest.u64CR3 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)); } } if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4) { val = pCtx->cr4; if (!pVM->hm.s.fNestedPaging) { switch (pVCpu->hm.s.enmShadowMode) { case PGMMODE_REAL: case PGMMODE_PROTECTED: /* Protected mode, no paging. */ AssertFailed(); return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; case PGMMODE_32_BIT: /* 32-bit paging. */ val &= ~X86_CR4_PAE; break; case PGMMODE_PAE: /* PAE paging. */ case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */ /** Must use PAE paging as we could use physical memory > 4 GB */ val |= X86_CR4_PAE; break; case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */ case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */ #ifdef VBOX_ENABLE_64_BITS_GUESTS break; #else AssertFailed(); return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; #endif default: /* shut up gcc */ AssertFailed(); return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; } } pVmcb->guest.u64CR4 = val; } /* Debug registers. */ if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG) { pCtx->dr[6] |= X86_DR6_INIT_VAL; /* set all reserved bits to 1. */ pCtx->dr[6] &= ~RT_BIT(12); /* must be zero. */ pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */ pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */ pCtx->dr[7] |= 0x400; /* must be one */ pVmcb->guest.u64DR7 = pCtx->dr[7]; pVmcb->guest.u64DR6 = pCtx->dr[6]; #ifdef DEBUG /* Sync the hypervisor debug state now if any breakpoint is armed. */ if ( CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK|X86_DR7_GD) && !CPUMIsHyperDebugStateActive(pVCpu) && !DBGFIsStepping(pVCpu)) { /* Save the host and load the hypervisor debug state. */ int rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */); AssertRC(rc); /* DRx intercepts remain enabled. */ /* Override dr6 & dr7 with the hypervisor values. */ pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu); pVmcb->guest.u64DR6 = CPUMGetHyperDR6(pVCpu); } else #endif /* Sync the debug state now if any breakpoint is armed. */ if ( (pCtx->dr[7] & (X86_DR7_ENABLED_MASK|X86_DR7_GD)) && !CPUMIsGuestDebugStateActive(pVCpu) && !DBGFIsStepping(pVCpu)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed); /* Disable drx move intercepts. */ pVmcb->ctrl.u16InterceptRdDRx = 0; pVmcb->ctrl.u16InterceptWrDRx = 0; /* Save the host and load the guest debug state. */ int rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */); AssertRC(rc); } } /* EIP, ESP and EFLAGS */ pVmcb->guest.u64RIP = pCtx->rip; pVmcb->guest.u64RSP = pCtx->rsp; pVmcb->guest.u64RFlags = pCtx->eflags.u32; /* Set CPL */ pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl; /* RAX/EAX too, as VMRUN uses RAX as an implicit parameter. */ pVmcb->guest.u64RAX = pCtx->rax; /* vmrun will fail without MSR_K6_EFER_SVME. */ pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME; /* 64 bits guest mode? */ if (CPUMIsGuestInLongModeEx(pCtx)) { #if !defined(VBOX_ENABLE_64_BITS_GUESTS) return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; #elif HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64; #else # ifdef VBOX_WITH_HYBRID_32BIT_KERNEL if (!pVM->hm.s.fAllow64BitGuests) return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE; # endif pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64; #endif /* Unconditionally update these as wrmsr might have changed them. (HM_CHANGED_GUEST_SEGMENT_REGS will not be set) */ pVmcb->guest.FS.u64Base = pCtx->fs.u64Base; pVmcb->guest.GS.u64Base = pCtx->gs.u64Base; } else { /* Filter out the MSR_K6_LME bit or else AMD-V expects amd64 shadow paging. */ pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME; pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun; } /* TSC offset. */ if (TMCpuTickCanUseRealTSC(pVCpu, &pVmcb->ctrl.u64TSCOffset)) { uint64_t u64CurTSC = ASMReadTSC(); if (u64CurTSC + pVmcb->ctrl.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu)) { pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC; pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP; STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset); } else { /* Fall back to rdtsc emulation as we would otherwise pass decreasing tsc values to the guest. */ LogFlow(("TSC %RX64 offset %RX64 time=%RX64 last=%RX64 (diff=%RX64, virt_tsc=%RX64)\n", u64CurTSC, pVmcb->ctrl.u64TSCOffset, u64CurTSC + pVmcb->ctrl.u64TSCOffset, TMCpuTickGetLastSeen(pVCpu), TMCpuTickGetLastSeen(pVCpu) - u64CurTSC - pVmcb->ctrl.u64TSCOffset, TMCpuTickGet(pVCpu))); pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC; pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP; STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow); } } else { pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC; pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP; STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept); } /* Sync the various MSRs for 64-bit mode. */ pVmcb->guest.u64STAR = pCtx->msrSTAR; /* legacy syscall eip, cs & ss */ pVmcb->guest.u64LSTAR = pCtx->msrLSTAR; /* 64-bit mode syscall rip */ pVmcb->guest.u64CSTAR = pCtx->msrCSTAR; /* compatibility mode syscall rip */ pVmcb->guest.u64SFMASK = pCtx->msrSFMASK; /* syscall flag mask */ pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE; /* SWAPGS exchange value */ #ifdef DEBUG /* Intercept X86_XCPT_DB if stepping is enabled */ if ( DBGFIsStepping(pVCpu) || CPUMIsHyperDebugStateActive(pVCpu)) pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_DB); else pVmcb->ctrl.u32InterceptException &= ~RT_BIT(X86_XCPT_DB); #endif /* Done. */ pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_ALL_GUEST; STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x); return VINF_SUCCESS; } /** * Setup TLB for ASID. * * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. */ static void hmR0SvmSetupTLB(PVM pVM, PVMCPU pVCpu) { PHMGLOBLCPUINFO pCpu; AssertPtr(pVM); AssertPtr(pVCpu); PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb; pCpu = HMR0GetCurrentCpu(); /* * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last. * This can happen both for start & resume due to long jumps back to ring-3. * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB, * so we cannot reuse the ASIDs without flushing. */ bool fNewAsid = false; if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes) { pVCpu->hm.s.fForceTLBFlush = true; fNewAsid = true; } /* * Set TLB flush state as checked until we return from the world switch. */ ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* * Check for TLB shootdown flushes. */ if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) pVCpu->hm.s.fForceTLBFlush = true; pVCpu->hm.s.idLastCpu = pCpu->idCpu; pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING; if (RT_UNLIKELY(pVM->hm.s.svm.fAlwaysFlushTLB)) { /* * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad. */ pCpu->uCurrentAsid = 1; pVCpu->hm.s.uCurrentAsid = 1; pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes; pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE; } else if (pVCpu->hm.s.fForceTLBFlush) { if (fNewAsid) { ++pCpu->uCurrentAsid; bool fHitASIDLimit = false; if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid) { pCpu->uCurrentAsid = 1; /* start at 1; host uses 0 */ pCpu->cTlbFlushes++; fHitASIDLimit = true; if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID) { pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT; pCpu->fFlushAsidBeforeUse = true; } else { pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE; pCpu->fFlushAsidBeforeUse = false; } } if ( !fHitASIDLimit && pCpu->fFlushAsidBeforeUse) { if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID) pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT; else { pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE; pCpu->fFlushAsidBeforeUse = false; } } pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid; pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes; } else { if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID) pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT; else pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE; } pVCpu->hm.s.fForceTLBFlush = false; } else { /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should * not be executed. See hmQueueInvlPage() where it is commented * out. Support individual entry flushing someday. */ if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN)) { /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */ STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown); for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++) SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID); } } pVCpu->hm.s.TlbShootdown.cPages = 0; VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN); /* Update VMCB with the ASID. */ pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid; AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes, ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes)); AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid, ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid)); AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid, ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid)); #ifdef VBOX_WITH_STATISTICS if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING) STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS) { STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid); } else STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch); #endif } /** * Runs guest code in an AMD-V VM. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. */ VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x); STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1); STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2); VBOXSTRICTRC rc = VINF_SUCCESS; int rc2; uint64_t exitCode = (uint64_t)SVM_EXIT_INVALID; PSVMVMCB pVmcb = NULL; bool fSyncTPR = false; unsigned cResume = 0; uint8_t u8LastTPR = 0; /* Initialized for potentially stupid compilers. */ uint32_t u32HostExtFeatures = 0; PHMGLOBLCPUINFO pCpu = 0; RTCCUINTREG uOldEFlags = ~(RTCCUINTREG)0; #ifdef VBOX_STRICT RTCPUID idCpuCheck; #endif #ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0 uint64_t u64LastTime = RTTimeMilliTS(); #endif pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb; AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB); /* * We can jump to this point to resume execution after determining that a VM-exit is innocent. */ ResumeExecution: if (!STAM_PROFILE_ADV_IS_RUNNING(&pVCpu->hm.s.StatEntry)) STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit2, &pVCpu->hm.s.StatEntry, x); Assert(!HMR0SuspendPending()); /* * Safety precaution; looping for too long here can have a very bad effect on the host. */ if (RT_UNLIKELY(++cResume > pVM->hm.s.cMaxResumeLoops)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume); rc = VINF_EM_RAW_INTERRUPT; goto end; } /* * Check for IRQ inhibition due to instruction fusing (sti, mov ss). */ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) { Log(("VM_FF_INHIBIT_INTERRUPTS at %RGv successor %RGv\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu))); if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu)) { /* * Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here. * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could * break the guest. Sounds very unlikely, but such timing sensitive problems are not as rare as you might think. */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); /* Irq inhibition is no longer active; clear the corresponding SVM state. */ pVmcb->ctrl.u64IntShadow = 0; } } else { /* Irq inhibition is no longer active; clear the corresponding SVM state. */ pVmcb->ctrl.u64IntShadow = 0; } #ifdef VBOX_HIGH_RES_TIMERS_HACK_IN_RING0 if (RT_UNLIKELY((cResume & 0xf) == 0)) { uint64_t u64CurTime = RTTimeMilliTS(); if (RT_UNLIKELY(u64CurTime > u64LastTime)) { u64LastTime = u64CurTime; TMTimerPollVoid(pVM, pVCpu); } } #endif /* * Check for pending actions that force us to go back to ring-3. */ if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA) || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_REQUEST)) { /* Check if a sync operation is pending. */ if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)) { rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)); AssertRC(VBOXSTRICTRC_VAL(rc)); if (rc != VINF_SUCCESS) { Log(("Pending pool sync is forcing us back to ring 3; rc=%d\n", VBOXSTRICTRC_VAL(rc))); goto end; } } #ifdef DEBUG /* Intercept X86_XCPT_DB if stepping is enabled */ if (!DBGFIsStepping(pVCpu)) #endif { if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK) || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF); rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3; goto end; } } /* Pending request packets might contain actions that need immediate attention, such as pending hardware interrupts. */ if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST) || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST)) { rc = VINF_EM_PENDING_REQUEST; goto end; } /* Check if a pgm pool flush is in progress. */ if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING)) { rc = VINF_PGM_POOL_FLUSH_PENDING; goto end; } /* Check if DMA work is pending (2nd+ run). */ if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA) && cResume > 1) { rc = VINF_EM_RAW_TO_R3; goto end; } } #ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION /* * Exit to ring-3 preemption/work is pending. * * Interrupts are disabled before the call to make sure we don't miss any interrupt * that would flag preemption (IPI, timer tick, ++). (Would've been nice to do this * further down, but hmR0SvmCheckPendingInterrupt makes that impossible.) * * Note! Interrupts must be disabled done *before* we check for TLB flushes; TLB * shootdowns rely on this. */ uOldEFlags = ASMIntDisableFlags(); if (RTThreadPreemptIsPending(NIL_RTTHREAD)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq); rc = VINF_EM_RAW_INTERRUPT; goto end; } VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); #endif /* * When external interrupts are pending, we should exit the VM when IF is set. * Note: *After* VM_FF_INHIBIT_INTERRUPTS check!! */ rc = hmR0SvmCheckPendingInterrupt(pVM, pVCpu, pVmcb, pCtx); if (RT_FAILURE(rc)) goto end; /* * TPR caching using CR8 is only available in 64-bit mode or with 32-bit guests when X86_CPUID_AMD_FEATURE_ECX_CR8L is * supported. * Note: we can't do this in LoddGuestState as PDMApicGetTPR can jump back to ring 3 (lock)! (no longer true) */ /** @todo query and update the TPR only when it could have been changed (mmio access) */ if (pVM->hm.s.fHasIoApic) { /* TPR caching in CR8 */ bool fPending; rc2 = PDMApicGetTPR(pVCpu, &u8LastTPR, &fPending, NULL /* pu8PendingIrq */); AssertRC(rc2); if (pVM->hm.s.fTPRPatchingActive) { /* Our patch code uses LSTAR for TPR caching. */ pCtx->msrLSTAR = u8LastTPR; if (fPending) { /* A TPR change could activate a pending interrupt, so catch lstar writes. */ hmR0SvmSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, false); } else { /* * No interrupts are pending, so we don't need to be explicitely notified. * There are enough world switches for detecting pending interrupts. */ hmR0SvmSetMSRPermission(pVCpu, MSR_K8_LSTAR, true, true); } } else { /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */ pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8LastTPR >> 4); if (fPending) { /* A TPR change could activate a pending interrupt, so catch cr8 writes. */ pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8); } else { /* * No interrupts are pending, so we don't need to be explicitly notified. * There are enough world switches for detecting pending interrupts. */ pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8); } } fSyncTPR = !fPending; } /* All done! Let's start VM execution. */ /* Enable nested paging if necessary (disabled each time after #VMEXIT). */ pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging; #ifdef LOG_ENABLED pCpu = HMR0GetCurrentCpu(); if (pVCpu->hm.s.idLastCpu != pCpu->idCpu) LogFlow(("Force TLB flush due to rescheduling to a different cpu (%d vs %d)\n", pVCpu->hm.s.idLastCpu, pCpu->idCpu)); else if (pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes) LogFlow(("Force TLB flush due to changed TLB flush count (%x vs %x)\n", pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes)); else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH)) LogFlow(("Manual TLB flush\n")); #endif /* * NOTE: DO NOT DO ANYTHING AFTER THIS POINT THAT MIGHT JUMP BACK TO RING 3! * (until the actual world switch) */ #ifdef VBOX_STRICT idCpuCheck = RTMpCpuId(); #endif VMMR0LogFlushDisable(pVCpu); /* * Load the guest state; *must* be here as it sets up the shadow CR0 for lazy FPU syncing! */ rc = SVMR0LoadGuestState(pVM, pVCpu, pCtx); if (RT_UNLIKELY(rc != VINF_SUCCESS)) { VMMR0LogFlushEnable(pVCpu); goto end; } #ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION /* * Disable interrupts to make sure a poke will interrupt execution. * This must be done *before* we check for TLB flushes; TLB shootdowns rely on this. */ uOldEFlags = ASMIntDisableFlags(); VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); #endif /* Setup TLB control and ASID in the VMCB. */ hmR0SvmSetupTLB(pVM, pVCpu); /* In case we execute a goto ResumeExecution later on. */ pVCpu->hm.s.fResumeVM = true; pVCpu->hm.s.fForceTLBFlush = pVM->hm.s.svm.fAlwaysFlushTLB; Assert(sizeof(pVCpu->hm.s.svm.HCPhysVmcb) == 8); Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking); Assert(pVmcb->ctrl.u64IOPMPhysAddr == pVM->hm.s.svm.HCPhysIOBitmap); Assert(pVmcb->ctrl.u64MSRPMPhysAddr == pVCpu->hm.s.svm.HCPhysMsrBitmap); Assert(pVmcb->ctrl.u64LBRVirt == 0); #ifdef VBOX_STRICT Assert(idCpuCheck == RTMpCpuId()); #endif TMNotifyStartOfExecution(pVCpu); STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x); /* * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}. */ u32HostExtFeatures = pVM->hm.s.cpuid.u32AMDFeatureEDX; if ( (u32HostExtFeatures & X86_CPUID_EXT_FEATURE_EDX_RDTSCP) && !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP)) { pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX); uint64_t u64GuestTscAux = 0; rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTscAux); AssertRC(rc2); ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux); } #ifdef VBOX_WITH_KERNEL_USING_XMM HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu, pVCpu->hm.s.svm.pfnVMRun); #else pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu); #endif ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Possibly the last TSC value seen by the guest (too high) (only when we're in TSC offset mode). */ if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC)) { /* Restore host's TSC_AUX. */ if (u32HostExtFeatures & X86_CPUID_EXT_FEATURE_EDX_RDTSCP) ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux); TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */); } STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x); TMNotifyEndOfExecution(pVCpu); VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM); ASMSetFlags(uOldEFlags); #ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION uOldEFlags = ~(RTCCUINTREG)0; #endif /* * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! * IMPORTANT: WE CAN'T DO ANY LOGGING OR OPERATIONS THAT CAN DO A LONGJMP BACK TO RING-3 *BEFORE* WE'VE SYNCED BACK (MOST OF) THE GUEST STATE * !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! */ /* Reason for the VM exit */ exitCode = pVmcb->ctrl.u64ExitCode; if (RT_UNLIKELY(exitCode == (uint64_t)SVM_EXIT_INVALID)) /* Invalid guest state. */ { HMDumpRegs(pVM, pVCpu, pCtx); #ifdef DEBUG Log(("ctrl.u16InterceptRdCRx %x\n", pVmcb->ctrl.u16InterceptRdCRx)); Log(("ctrl.u16InterceptWrCRx %x\n", pVmcb->ctrl.u16InterceptWrCRx)); Log(("ctrl.u16InterceptRdDRx %x\n", pVmcb->ctrl.u16InterceptRdDRx)); Log(("ctrl.u16InterceptWrDRx %x\n", pVmcb->ctrl.u16InterceptWrDRx)); Log(("ctrl.u32InterceptException %x\n", pVmcb->ctrl.u32InterceptException)); Log(("ctrl.u32InterceptCtrl1 %x\n", pVmcb->ctrl.u32InterceptCtrl1)); Log(("ctrl.u32InterceptCtrl2 %x\n", pVmcb->ctrl.u32InterceptCtrl2)); Log(("ctrl.u64IOPMPhysAddr %RX64\n", pVmcb->ctrl.u64IOPMPhysAddr)); Log(("ctrl.u64MSRPMPhysAddr %RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr)); Log(("ctrl.u64TSCOffset %RX64\n", pVmcb->ctrl.u64TSCOffset)); Log(("ctrl.TLBCtrl.u32ASID %x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID)); Log(("ctrl.TLBCtrl.u8TLBFlush %x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush)); Log(("ctrl.TLBCtrl.u24Reserved %x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved)); Log(("ctrl.IntCtrl.u8VTPR %x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR)); Log(("ctrl.IntCtrl.u1VIrqValid %x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid)); Log(("ctrl.IntCtrl.u7Reserved %x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved)); Log(("ctrl.IntCtrl.u4VIrqPriority %x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority)); Log(("ctrl.IntCtrl.u1IgnoreTPR %x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR)); Log(("ctrl.IntCtrl.u3Reserved %x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved)); Log(("ctrl.IntCtrl.u1VIrqMasking %x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking)); Log(("ctrl.IntCtrl.u6Reserved %x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved)); Log(("ctrl.IntCtrl.u8VIrqVector %x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector)); Log(("ctrl.IntCtrl.u24Reserved %x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved)); Log(("ctrl.u64IntShadow %RX64\n", pVmcb->ctrl.u64IntShadow)); Log(("ctrl.u64ExitCode %RX64\n", pVmcb->ctrl.u64ExitCode)); Log(("ctrl.u64ExitInfo1 %RX64\n", pVmcb->ctrl.u64ExitInfo1)); Log(("ctrl.u64ExitInfo2 %RX64\n", pVmcb->ctrl.u64ExitInfo2)); Log(("ctrl.ExitIntInfo.u8Vector %x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector)); Log(("ctrl.ExitIntInfo.u3Type %x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type)); Log(("ctrl.ExitIntInfo.u1ErrorCodeValid %x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid)); Log(("ctrl.ExitIntInfo.u19Reserved %x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved)); Log(("ctrl.ExitIntInfo.u1Valid %x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid)); Log(("ctrl.ExitIntInfo.u32ErrorCode %x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode)); Log(("ctrl.NestedPaging %RX64\n", pVmcb->ctrl.NestedPaging.u)); Log(("ctrl.EventInject.u8Vector %x\n", pVmcb->ctrl.EventInject.n.u8Vector)); Log(("ctrl.EventInject.u3Type %x\n", pVmcb->ctrl.EventInject.n.u3Type)); Log(("ctrl.EventInject.u1ErrorCodeValid %x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid)); Log(("ctrl.EventInject.u19Reserved %x\n", pVmcb->ctrl.EventInject.n.u19Reserved)); Log(("ctrl.EventInject.u1Valid %x\n", pVmcb->ctrl.EventInject.n.u1Valid)); Log(("ctrl.EventInject.u32ErrorCode %x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode)); Log(("ctrl.u64NestedPagingCR3 %RX64\n", pVmcb->ctrl.u64NestedPagingCR3)); Log(("ctrl.u64LBRVirt %RX64\n", pVmcb->ctrl.u64LBRVirt)); Log(("guest.CS.u16Sel %04X\n", pVmcb->guest.CS.u16Sel)); Log(("guest.CS.u16Attr %04X\n", pVmcb->guest.CS.u16Attr)); Log(("guest.CS.u32Limit %X\n", pVmcb->guest.CS.u32Limit)); Log(("guest.CS.u64Base %RX64\n", pVmcb->guest.CS.u64Base)); Log(("guest.DS.u16Sel %04X\n", pVmcb->guest.DS.u16Sel)); Log(("guest.DS.u16Attr %04X\n", pVmcb->guest.DS.u16Attr)); Log(("guest.DS.u32Limit %X\n", pVmcb->guest.DS.u32Limit)); Log(("guest.DS.u64Base %RX64\n", pVmcb->guest.DS.u64Base)); Log(("guest.ES.u16Sel %04X\n", pVmcb->guest.ES.u16Sel)); Log(("guest.ES.u16Attr %04X\n", pVmcb->guest.ES.u16Attr)); Log(("guest.ES.u32Limit %X\n", pVmcb->guest.ES.u32Limit)); Log(("guest.ES.u64Base %RX64\n", pVmcb->guest.ES.u64Base)); Log(("guest.FS.u16Sel %04X\n", pVmcb->guest.FS.u16Sel)); Log(("guest.FS.u16Attr %04X\n", pVmcb->guest.FS.u16Attr)); Log(("guest.FS.u32Limit %X\n", pVmcb->guest.FS.u32Limit)); Log(("guest.FS.u64Base %RX64\n", pVmcb->guest.FS.u64Base)); Log(("guest.GS.u16Sel %04X\n", pVmcb->guest.GS.u16Sel)); Log(("guest.GS.u16Attr %04X\n", pVmcb->guest.GS.u16Attr)); Log(("guest.GS.u32Limit %X\n", pVmcb->guest.GS.u32Limit)); Log(("guest.GS.u64Base %RX64\n", pVmcb->guest.GS.u64Base)); Log(("guest.GDTR.u32Limit %X\n", pVmcb->guest.GDTR.u32Limit)); Log(("guest.GDTR.u64Base %RX64\n", pVmcb->guest.GDTR.u64Base)); Log(("guest.LDTR.u16Sel %04X\n", pVmcb->guest.LDTR.u16Sel)); Log(("guest.LDTR.u16Attr %04X\n", pVmcb->guest.LDTR.u16Attr)); Log(("guest.LDTR.u32Limit %X\n", pVmcb->guest.LDTR.u32Limit)); Log(("guest.LDTR.u64Base %RX64\n", pVmcb->guest.LDTR.u64Base)); Log(("guest.IDTR.u32Limit %X\n", pVmcb->guest.IDTR.u32Limit)); Log(("guest.IDTR.u64Base %RX64\n", pVmcb->guest.IDTR.u64Base)); Log(("guest.TR.u16Sel %04X\n", pVmcb->guest.TR.u16Sel)); Log(("guest.TR.u16Attr %04X\n", pVmcb->guest.TR.u16Attr)); Log(("guest.TR.u32Limit %X\n", pVmcb->guest.TR.u32Limit)); Log(("guest.TR.u64Base %RX64\n", pVmcb->guest.TR.u64Base)); Log(("guest.u8CPL %X\n", pVmcb->guest.u8CPL)); Log(("guest.u64CR0 %RX64\n", pVmcb->guest.u64CR0)); Log(("guest.u64CR2 %RX64\n", pVmcb->guest.u64CR2)); Log(("guest.u64CR3 %RX64\n", pVmcb->guest.u64CR3)); Log(("guest.u64CR4 %RX64\n", pVmcb->guest.u64CR4)); Log(("guest.u64DR6 %RX64\n", pVmcb->guest.u64DR6)); Log(("guest.u64DR7 %RX64\n", pVmcb->guest.u64DR7)); Log(("guest.u64RIP %RX64\n", pVmcb->guest.u64RIP)); Log(("guest.u64RSP %RX64\n", pVmcb->guest.u64RSP)); Log(("guest.u64RAX %RX64\n", pVmcb->guest.u64RAX)); Log(("guest.u64RFlags %RX64\n", pVmcb->guest.u64RFlags)); Log(("guest.u64SysEnterCS %RX64\n", pVmcb->guest.u64SysEnterCS)); Log(("guest.u64SysEnterEIP %RX64\n", pVmcb->guest.u64SysEnterEIP)); Log(("guest.u64SysEnterESP %RX64\n", pVmcb->guest.u64SysEnterESP)); Log(("guest.u64EFER %RX64\n", pVmcb->guest.u64EFER)); Log(("guest.u64STAR %RX64\n", pVmcb->guest.u64STAR)); Log(("guest.u64LSTAR %RX64\n", pVmcb->guest.u64LSTAR)); Log(("guest.u64CSTAR %RX64\n", pVmcb->guest.u64CSTAR)); Log(("guest.u64SFMASK %RX64\n", pVmcb->guest.u64SFMASK)); Log(("guest.u64KernelGSBase %RX64\n", pVmcb->guest.u64KernelGSBase)); Log(("guest.u64GPAT %RX64\n", pVmcb->guest.u64GPAT)); Log(("guest.u64DBGCTL %RX64\n", pVmcb->guest.u64DBGCTL)); Log(("guest.u64BR_FROM %RX64\n", pVmcb->guest.u64BR_FROM)); Log(("guest.u64BR_TO %RX64\n", pVmcb->guest.u64BR_TO)); Log(("guest.u64LASTEXCPFROM %RX64\n", pVmcb->guest.u64LASTEXCPFROM)); Log(("guest.u64LASTEXCPTO %RX64\n", pVmcb->guest.u64LASTEXCPTO)); #endif rc = VERR_SVM_UNABLE_TO_START_VM; VMMR0LogFlushEnable(pVCpu); goto end; } /* Let's first sync back EIP, ESP, and EFLAGS. */ pCtx->rip = pVmcb->guest.u64RIP; pCtx->rsp = pVmcb->guest.u64RSP; pCtx->eflags.u32 = pVmcb->guest.u64RFlags; /* eax is saved/restore across the vmrun instruction */ pCtx->rax = pVmcb->guest.u64RAX; /* * Save all the MSRs that can be changed by the guest without causing a world switch. * FS & GS base are saved with SVM_READ_SELREG. */ pCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */ pCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */ pCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */ pCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */ pCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */ pCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS; pCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP; pCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP; /* Can be updated behind our back in the nested paging case. */ pCtx->cr2 = pVmcb->guest.u64CR2; /* Guest CPU context: ES, CS, SS, DS, FS, GS. */ SVM_READ_SELREG(SS, ss); SVM_READ_SELREG(CS, cs); SVM_READ_SELREG(DS, ds); SVM_READ_SELREG(ES, es); SVM_READ_SELREG(FS, fs); SVM_READ_SELREG(GS, gs); /* * Correct the hidden CS granularity flag. Haven't seen it being wrong in any other * register (yet). */ if ( !pCtx->cs.Attr.n.u1Granularity && pCtx->cs.Attr.n.u1Present && pCtx->cs.u32Limit > UINT32_C(0xfffff)) { Assert((pCtx->cs.u32Limit & 0xfff) == 0xfff); pCtx->cs.Attr.n.u1Granularity = 1; } #define SVM_ASSERT_SEL_GRANULARITY(reg) \ AssertMsg( !pCtx->reg.Attr.n.u1Present \ || ( pCtx->reg.Attr.n.u1Granularity \ ? (pCtx->reg.u32Limit & 0xfff) == 0xfff \ : pCtx->reg.u32Limit <= 0xfffff), \ ("%#x %#x %#llx\n", pCtx->reg.u32Limit, pCtx->reg.Attr.u, pCtx->reg.u64Base)) SVM_ASSERT_SEL_GRANULARITY(ss); SVM_ASSERT_SEL_GRANULARITY(cs); SVM_ASSERT_SEL_GRANULARITY(ds); SVM_ASSERT_SEL_GRANULARITY(es); SVM_ASSERT_SEL_GRANULARITY(fs); SVM_ASSERT_SEL_GRANULARITY(gs); #undef SVM_ASSERT_SEL_GRANULARITY /* * Correct the hidden SS DPL field. It can be wrong on certain CPUs * sometimes (seen it on AMD Fusion CPUs with 64-bit guests). The CPU * always uses the CPL field in the VMCB instead of the DPL in the hidden * SS (chapter AMD spec. 15.5.1 Basic operation). */ Assert(!(pVmcb->guest.u8CPL & ~0x3)); pCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3; /* * Remaining guest CPU context: TR, IDTR, GDTR, LDTR; * must sync everything otherwise we can get out of sync when jumping back to ring-3. */ SVM_READ_SELREG(LDTR, ldtr); SVM_READ_SELREG(TR, tr); pCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit; pCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base; pCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit; pCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base; /* * No reason to sync back the CRx and DRx registers as they cannot be changed by the guest * unless in the nested paging case where CR3 can be changed by the guest. */ if ( pVM->hm.s.fNestedPaging && pCtx->cr3 != pVmcb->guest.u64CR3) { CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3); PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3); } /* Note! NOW IT'S SAFE FOR LOGGING! */ VMMR0LogFlushEnable(pVCpu); /* Take care of instruction fusing (sti, mov ss) (see AMD spec. 15.20.5 Interrupt Shadows) */ if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE) { Log(("uInterruptState %x rip=%RGv\n", pVmcb->ctrl.u64IntShadow, (RTGCPTR)pCtx->rip)); EMSetInhibitInterruptsPC(pVCpu, pCtx->rip); } else VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); Log2(("exitCode = %x\n", exitCode)); /* Sync back DR6 as it could have been changed by hitting breakpoints. */ pCtx->dr[6] = pVmcb->guest.u64DR6; /* DR7.GD can be cleared by debug exceptions, so sync it back as well. */ pCtx->dr[7] = pVmcb->guest.u64DR7; /* Check if an injected event was interrupted prematurely. */ pVCpu->hm.s.Event.u64IntrInfo = pVmcb->ctrl.ExitIntInfo.u; if ( pVmcb->ctrl.ExitIntInfo.n.u1Valid /* we don't care about 'int xx' as the instruction will be restarted. */ && pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT) { Log(("Pending inject %RX64 at %RGv exit=%08x\n", pVCpu->hm.s.Event.u64IntrInfo, (RTGCPTR)pCtx->rip, exitCode)); #ifdef LOG_ENABLED SVMEVENT Event; Event.u = pVCpu->hm.s.Event.u64IntrInfo; if ( exitCode == SVM_EXIT_EXCEPTION_E && Event.n.u8Vector == 0xE) { Log(("Double fault!\n")); } #endif pVCpu->hm.s.Event.fPending = true; /* Error code present? (redundant) */ if (pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid) pVCpu->hm.s.Event.u32ErrCode = pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode; else pVCpu->hm.s.Event.u32ErrCode = 0; } #ifdef VBOX_WITH_STATISTICS if (exitCode == SVM_EXIT_NPF) STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); else STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[exitCode & MASK_EXITREASON_STAT]); #endif /* Sync back the TPR if it was changed. */ if (fSyncTPR) { if (pVM->hm.s.fTPRPatchingActive) { if ((pCtx->msrLSTAR & 0xff) != u8LastTPR) { /* Our patch code uses LSTAR for TPR caching. */ rc2 = PDMApicSetTPR(pVCpu, pCtx->msrLSTAR & 0xff); AssertRC(rc2); } } else { if ((uint8_t)(u8LastTPR >> 4) != pVmcb->ctrl.IntCtrl.n.u8VTPR) { /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */ rc2 = PDMApicSetTPR(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4); AssertRC(rc2); } } } #ifdef DBGFTRACE_ENABLED /** @todo DTrace */ RTTraceBufAddMsgF(pVM->CTX_SUFF(hTraceBuf), "vmexit %08x at %04:%08RX64 %RX64 %RX64 %RX64", exitCode, pCtx->cs.Sel, pCtx->rip, pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2, pVmcb->ctrl.ExitIntInfo.u); #endif #if ARCH_BITS == 64 /* for the time being */ VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, exitCode, pVmcb->ctrl.u64ExitInfo1, pVmcb->ctrl.u64ExitInfo2, pVmcb->ctrl.ExitIntInfo.u, UINT64_MAX); #endif STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x); /* Deal with the reason of the VM-exit. */ switch (exitCode) { case SVM_EXIT_EXCEPTION_0: case SVM_EXIT_EXCEPTION_1: case SVM_EXIT_EXCEPTION_2: case SVM_EXIT_EXCEPTION_3: case SVM_EXIT_EXCEPTION_4: case SVM_EXIT_EXCEPTION_5: case SVM_EXIT_EXCEPTION_6: case SVM_EXIT_EXCEPTION_7: case SVM_EXIT_EXCEPTION_8: case SVM_EXIT_EXCEPTION_9: case SVM_EXIT_EXCEPTION_A: case SVM_EXIT_EXCEPTION_B: case SVM_EXIT_EXCEPTION_C: case SVM_EXIT_EXCEPTION_D: case SVM_EXIT_EXCEPTION_E: case SVM_EXIT_EXCEPTION_F: case SVM_EXIT_EXCEPTION_10: case SVM_EXIT_EXCEPTION_11: case SVM_EXIT_EXCEPTION_12: case SVM_EXIT_EXCEPTION_13: case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16: case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19: case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B: case SVM_EXIT_EXCEPTION_1C: case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F: { /* Pending trap. */ SVMEVENT Event; uint32_t vector = exitCode - SVM_EXIT_EXCEPTION_0; Log2(("Hardware/software interrupt %d\n", vector)); switch (vector) { case X86_XCPT_DB: { STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); /* Note that we don't support guest and host-initiated debugging at the same time. */ Assert(DBGFIsStepping(pVCpu) || CPUMIsHyperDebugStateActive(pVCpu)); rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pCtx->dr[6]); if (rc == VINF_EM_RAW_GUEST_TRAP) { Log(("Trap %x (debug) at %016RX64\n", vector, pCtx->rip)); /* Reinject the exception. */ Event.u = 0; Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */ Event.n.u1Valid = 1; Event.n.u8Vector = X86_XCPT_DB; hmR0SvmSetPendingEvent(pVCpu, &Event); goto ResumeExecution; } /* Return to ring 3 to deal with the debug exit code. */ Log(("Debugger hardware BP at %04x:%RGv (rc=%Rrc)\n", pCtx->cs.Sel, pCtx->rip, VBOXSTRICTRC_VAL(rc))); break; } case X86_XCPT_NM: { Log(("#NM fault at %RGv\n", (RTGCPTR)pCtx->rip)); /** @todo don't intercept #NM exceptions anymore when we've activated the guest FPU state. */ /* If we sync the FPU/XMM state on-demand, then we can continue execution as if nothing has happened. */ rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pCtx); if (rc == VINF_SUCCESS) { Assert(CPUMIsGuestFPUStateActive(pVCpu)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM); /* Continue execution. */ pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0; goto ResumeExecution; } Log(("Forward #NM fault to the guest\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM); Event.u = 0; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u1Valid = 1; Event.n.u8Vector = X86_XCPT_NM; hmR0SvmSetPendingEvent(pVCpu, &Event); goto ResumeExecution; } case X86_XCPT_PF: /* Page fault */ { uint32_t errCode = pVmcb->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */ RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */ #ifdef VBOX_ALWAYS_TRAP_PF if (pVM->hm.s.fNestedPaging) { /* * A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution. */ Log(("Guest page fault at %04X:%RGv cr2=%RGv error code %x rsp=%RGv\n", pCtx->cs, (RTGCPTR)pCtx->rip, uFaultAddress, errCode, (RTGCPTR)pCtx->rsp)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); /* Now we must update CR2. */ pCtx->cr2 = uFaultAddress; Event.u = 0; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u1Valid = 1; Event.n.u8Vector = X86_XCPT_PF; Event.n.u1ErrorCodeValid = 1; Event.n.u32ErrorCode = errCode; hmR0SvmSetPendingEvent(pVCpu, &Event); goto ResumeExecution; } #endif Assert(!pVM->hm.s.fNestedPaging); #ifdef VBOX_HM_WITH_GUEST_PATCHING /* Shortcut for APIC TPR reads and writes; 32 bits guests only */ if ( pVM->hm.s.fTRPPatchingAllowed && (uFaultAddress & 0xfff) == 0x080 && !(errCode & X86_TRAP_PF_P) /* not present */ && CPUMGetGuestCPL(pVCpu) == 0 && !CPUMIsGuestInLongModeEx(pCtx) && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches)) { RTGCPHYS GCPhysApicBase, GCPhys; GCPhysApicBase = pCtx->msrApicBase; GCPhysApicBase &= PAGE_BASE_GC_MASK; rc = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL, &GCPhys); if ( rc == VINF_SUCCESS && GCPhys == GCPhysApicBase) { /* Only attempt to patch the instruction once. */ PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip); if (!pPatch) { rc = VINF_EM_HM_PATCH_TPR_INSTR; break; } } } #endif Log2(("Page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode)); /* Exit qualification contains the linear address of the page fault. */ TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP); TRPMSetErrorCode(pVCpu, errCode); TRPMSetFaultAddress(pVCpu, uFaultAddress); /* Forward it to our trap handler first, in case our shadow pages are out of sync. */ rc = PGMTrap0eHandler(pVCpu, errCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress); Log2(("PGMTrap0eHandler %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc))); if (rc == VINF_SUCCESS) { /* We've successfully synced our shadow pages, so let's just continue execution. */ Log2(("Shadow page fault at %RGv cr2=%RGv error code %x\n", (RTGCPTR)pCtx->rip, uFaultAddress, errCode)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF); TRPMResetTrap(pVCpu); goto ResumeExecution; } else if (rc == VINF_EM_RAW_GUEST_TRAP) { /* * A genuine pagefault. Forward the trap to the guest by injecting the exception and resuming execution. */ Log2(("Forward page fault to the guest\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); /* The error code might have been changed. */ errCode = TRPMGetErrorCode(pVCpu); TRPMResetTrap(pVCpu); /* Now we must update CR2. */ pCtx->cr2 = uFaultAddress; Event.u = 0; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u1Valid = 1; Event.n.u8Vector = X86_XCPT_PF; Event.n.u1ErrorCodeValid = 1; Event.n.u32ErrorCode = errCode; hmR0SvmSetPendingEvent(pVCpu, &Event); goto ResumeExecution; } #ifdef VBOX_STRICT if (rc != VINF_EM_RAW_EMULATE_INSTR && rc != VINF_EM_RAW_EMULATE_IO_BLOCK) LogFlow(("PGMTrap0eHandler failed with %d\n", VBOXSTRICTRC_VAL(rc))); #endif /* Need to go back to the recompiler to emulate the instruction. */ TRPMResetTrap(pVCpu); break; } case X86_XCPT_MF: /* Floating point exception. */ { STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); if (!(pCtx->cr0 & X86_CR0_NE)) { /* old style FPU error reporting needs some extra work. */ /** @todo don't fall back to the recompiler, but do it manually. */ rc = VINF_EM_RAW_EMULATE_INSTR; break; } Log(("Trap %x at %RGv\n", vector, (RTGCPTR)pCtx->rip)); Event.u = 0; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u1Valid = 1; Event.n.u8Vector = X86_XCPT_MF; hmR0SvmSetPendingEvent(pVCpu, &Event); goto ResumeExecution; } #ifdef VBOX_STRICT case X86_XCPT_BP: /* Breakpoint. */ case X86_XCPT_GP: /* General protection failure exception.*/ case X86_XCPT_UD: /* Unknown opcode exception. */ case X86_XCPT_DE: /* Divide error. */ case X86_XCPT_SS: /* Stack segment exception. */ case X86_XCPT_NP: /* Segment not present exception. */ { Event.u = 0; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u1Valid = 1; Event.n.u8Vector = vector; switch (vector) { case X86_XCPT_GP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); Event.n.u1ErrorCodeValid = 1; Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */ break; case X86_XCPT_BP: /** Saves the wrong EIP on the stack (pointing to the int3 instead of the next instruction. */ break; case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break; case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break; case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); Event.n.u1ErrorCodeValid = 1; Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */ break; case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); Event.n.u1ErrorCodeValid = 1; Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */ break; } Log(("Trap %x at %04x:%RGv esi=%x\n", vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip, pCtx->esi)); hmR0SvmSetPendingEvent(pVCpu, &Event); goto ResumeExecution; } #endif default: AssertMsgFailed(("Unexpected vm-exit caused by exception %x\n", vector)); rc = VERR_SVM_UNEXPECTED_XCPT_EXIT; break; } /* switch (vector) */ break; } case SVM_EXIT_NPF: { /* EXITINFO1 contains fault errorcode; EXITINFO2 contains the guest physical address causing the fault. */ uint32_t errCode = pVmcb->ctrl.u64ExitInfo1; /* EXITINFO1 = error code */ RTGCPHYS GCPhysFault = pVmcb->ctrl.u64ExitInfo2; /* EXITINFO2 = fault address */ PGMMODE enmShwPagingMode; Assert(pVM->hm.s.fNestedPaging); LogFlow(("Nested page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, GCPhysFault, errCode)); #ifdef VBOX_HM_WITH_GUEST_PATCHING /* Shortcut for APIC TPR reads and writes; 32 bits guests only */ if ( pVM->hm.s.fTRPPatchingAllowed && (GCPhysFault & PAGE_OFFSET_MASK) == 0x080 && ( !(errCode & X86_TRAP_PF_P) /* not present */ || (errCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD) /* mmio optimization */) && CPUMGetGuestCPL(pVCpu) == 0 && !CPUMIsGuestInLongModeEx(pCtx) && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches)) { RTGCPHYS GCPhysApicBase = pCtx->msrApicBase; GCPhysApicBase &= PAGE_BASE_GC_MASK; if (GCPhysFault == GCPhysApicBase + 0x80) { /* Only attempt to patch the instruction once. */ PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip); if (!pPatch) { rc = VINF_EM_HM_PATCH_TPR_INSTR; break; } } } #endif /* Handle the pagefault trap for the nested shadow table. */ #if HC_ARCH_BITS == 32 /** @todo shadow this in a variable. */ if (CPUMIsGuestInLongModeEx(pCtx)) enmShwPagingMode = PGMMODE_AMD64_NX; else #endif enmShwPagingMode = PGMGetHostMode(pVM); /* MMIO optimization */ Assert((errCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD); if ((errCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) { rc = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmShwPagingMode, CPUMCTX2CORE(pCtx), GCPhysFault, errCode); /* * If we succeed, resume execution. * Or, if fail in interpreting the instruction because we couldn't get the guest physical address * of the page containing the instruction via the guest's page tables (we would invalidate the guest page * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this * weird case. See @bugref{6043}. */ if ( rc == VINF_SUCCESS || rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT) { Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhysFault, (RTGCPTR)pCtx->rip)); goto ResumeExecution; } Log2(("PGMR0Trap0eHandlerNPMisconfig(,,,%RGp) at %RGv -> resume\n", GCPhysFault, (RTGCPTR)pCtx->rip)); break; } /* Exit qualification contains the linear address of the page fault. */ TRPMAssertTrap(pVCpu, X86_XCPT_PF, TRPM_TRAP); TRPMSetErrorCode(pVCpu, errCode); TRPMSetFaultAddress(pVCpu, GCPhysFault); rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmShwPagingMode, errCode, CPUMCTX2CORE(pCtx), GCPhysFault); Log2(("PGMR0Trap0eHandlerNestedPaging %RGv returned %Rrc\n", (RTGCPTR)pCtx->rip, VBOXSTRICTRC_VAL(rc))); /* * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */ if ( rc == VINF_SUCCESS || rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT) { /* We've successfully synced our shadow pages, so let's just continue execution. */ Log2(("Shadow page fault at %RGv cr2=%RGp error code %x\n", (RTGCPTR)pCtx->rip, GCPhysFault, errCode)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF); TRPMResetTrap(pVCpu); goto ResumeExecution; } #ifdef VBOX_STRICT if (rc != VINF_EM_RAW_EMULATE_INSTR) LogFlow(("PGMTrap0eHandlerNestedPaging failed with %d\n", VBOXSTRICTRC_VAL(rc))); #endif /* Need to go back to the recompiler to emulate the instruction. */ TRPMResetTrap(pVCpu); break; } case SVM_EXIT_VINTR: /* A virtual interrupt is about to be delivered, which means IF=1. */ Log(("SVM_EXIT_VINTR IF=%d\n", pCtx->eflags.Bits.u1IF)); pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; goto ResumeExecution; case SVM_EXIT_INTR: case SVM_EXIT_FERR_FREEZE: case SVM_EXIT_NMI: case SVM_EXIT_SMI: case SVM_EXIT_INIT: if (exitCode == SVM_EXIT_INTR) STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt); else if (exitCode == SVM_EXIT_NMI) STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmi); /* External interrupt; leave to allow it to be dispatched again. */ rc = VINF_EM_RAW_INTERRUPT; break; case SVM_EXIT_WBINVD: case SVM_EXIT_INVD: /* Guest software attempted to execute INVD. */ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd); /* Skip instruction and continue directly. */ pCtx->rip += 2; /* Note! hardcoded opcode size! */ /* Continue execution.*/ goto ResumeExecution; case SVM_EXIT_CPUID: /* Guest software attempted to execute CPUID. */ { Log2(("SVM: Cpuid at %RGv for %x\n", (RTGCPTR)pCtx->rip, pCtx->eax)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid); rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx)); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ pCtx->rip += 2; /* Note! hardcoded opcode size! */ goto ResumeExecution; } AssertMsgFailed(("EMU: cpuid failed with %Rrc\n", VBOXSTRICTRC_VAL(rc))); rc = VINF_EM_RAW_EMULATE_INSTR; break; } case SVM_EXIT_RDTSC: /* Guest software attempted to execute RDTSC. */ { Log2(("SVM: Rdtsc\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc); rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx)); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ pCtx->rip += 2; /* Note! hardcoded opcode size! */ goto ResumeExecution; } rc = VINF_EM_RAW_EMULATE_INSTR; break; } case SVM_EXIT_RDPMC: /* Guest software attempted to execute RDPMC. */ { Log2(("SVM: Rdpmc %x\n", pCtx->ecx)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc); rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx)); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ pCtx->rip += 2; /* Note! hardcoded opcode size! */ goto ResumeExecution; } rc = VINF_EM_RAW_EMULATE_INSTR; break; } case SVM_EXIT_RDTSCP: /* Guest software attempted to execute RDTSCP. */ { Log2(("SVM: Rdtscp\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp); rc = EMInterpretRdtscp(pVM, pVCpu, pCtx); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ pCtx->rip += 3; /* Note! hardcoded opcode size! */ goto ResumeExecution; } AssertMsgFailed(("EMU: rdtscp failed with %Rrc\n", VBOXSTRICTRC_VAL(rc))); rc = VINF_EM_RAW_EMULATE_INSTR; break; } case SVM_EXIT_INVLPG: /* Guest software attempted to execute INVLPG. */ { Log2(("SVM: invlpg\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg); Assert(!pVM->hm.s.fNestedPaging); /* Truly a pita. Why can't SVM give the same information as VT-x? */ rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx)); if (rc == VINF_SUCCESS) { goto ResumeExecution; /* eip already updated */ } break; } case SVM_EXIT_WRITE_CR0: case SVM_EXIT_WRITE_CR1: case SVM_EXIT_WRITE_CR2: case SVM_EXIT_WRITE_CR3: case SVM_EXIT_WRITE_CR4: case SVM_EXIT_WRITE_CR5: case SVM_EXIT_WRITE_CR6: case SVM_EXIT_WRITE_CR7: case SVM_EXIT_WRITE_CR8: case SVM_EXIT_WRITE_CR9: case SVM_EXIT_WRITE_CR10: case SVM_EXIT_WRITE_CR11: case SVM_EXIT_WRITE_CR12: case SVM_EXIT_WRITE_CR13: case SVM_EXIT_WRITE_CR14: case SVM_EXIT_WRITE_CR15: { Log2(("SVM: %RGv mov cr%d, \n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_CR0)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[exitCode - SVM_EXIT_WRITE_CR0]); rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0); switch (exitCode - SVM_EXIT_WRITE_CR0) { case 0: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0; break; case 2: break; case 3: Assert(!pVM->hm.s.fNestedPaging); pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3; break; case 4: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4; break; case 8: break; default: AssertFailed(); } if (rc == VINF_SUCCESS) { /* EIP has been updated already. */ /* Only resume if successful. */ goto ResumeExecution; } Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3); break; } case SVM_EXIT_READ_CR0: case SVM_EXIT_READ_CR1: case SVM_EXIT_READ_CR2: case SVM_EXIT_READ_CR3: case SVM_EXIT_READ_CR4: case SVM_EXIT_READ_CR5: case SVM_EXIT_READ_CR6: case SVM_EXIT_READ_CR7: case SVM_EXIT_READ_CR8: case SVM_EXIT_READ_CR9: case SVM_EXIT_READ_CR10: case SVM_EXIT_READ_CR11: case SVM_EXIT_READ_CR12: case SVM_EXIT_READ_CR13: case SVM_EXIT_READ_CR14: case SVM_EXIT_READ_CR15: { Log2(("SVM: %RGv mov x, cr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_CR0)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[exitCode - SVM_EXIT_READ_CR0]); rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0); if (rc == VINF_SUCCESS) { /* EIP has been updated already. */ /* Only resume if successful. */ goto ResumeExecution; } Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3); break; } case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3: case SVM_EXIT_WRITE_DR4: case SVM_EXIT_WRITE_DR5: case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9: case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13: case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15: { Log2(("SVM: %RGv mov dr%d, x\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_WRITE_DR0)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite); if ( !DBGFIsStepping(pVCpu) && !CPUMIsHyperDebugStateActive(pVCpu)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch); /* Disable drx move intercepts. */ pVmcb->ctrl.u16InterceptRdDRx = 0; pVmcb->ctrl.u16InterceptWrDRx = 0; /* Save the host and load the guest debug state. */ rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */); AssertRC(rc2); goto ResumeExecution; } rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0); if (rc == VINF_SUCCESS) { /* EIP has been updated already. */ pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG; /* Only resume if successful. */ goto ResumeExecution; } Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3); break; } case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3: case SVM_EXIT_READ_DR4: case SVM_EXIT_READ_DR5: case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9: case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13: case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15: { Log2(("SVM: %RGv mov x, dr%d\n", (RTGCPTR)pCtx->rip, exitCode - SVM_EXIT_READ_DR0)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead); if (!DBGFIsStepping(pVCpu)) { STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch); /* Disable DRx move intercepts. */ pVmcb->ctrl.u16InterceptRdDRx = 0; pVmcb->ctrl.u16InterceptWrDRx = 0; /* Save the host and load the guest debug state. */ rc2 = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, false /* exclude DR6 */); AssertRC(rc2); goto ResumeExecution; } rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0); if (rc == VINF_SUCCESS) { /* EIP has been updated already. */ /* Only resume if successful. */ goto ResumeExecution; } Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3); break; } /* Note: We'll get a #GP if the IO instruction isn't allowed (IOPL or TSS bitmap); no need to double check. */ case SVM_EXIT_IOIO: /* I/O instruction. */ { SVMIOIOEXIT IoExitInfo; IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1; unsigned uIdx = (IoExitInfo.u >> 4) & 0x7; uint32_t uIOSize = g_aIOSize[uIdx]; uint32_t uAndVal = g_aIOOpAnd[uIdx]; if (RT_UNLIKELY(!uIOSize)) { AssertFailed(); /* should be fatal. */ rc = VINF_EM_RAW_EMULATE_INSTR; /** @todo r=ramshankar: would this really fall back to the recompiler and work? */ break; } if (IoExitInfo.n.u1STR) { /* ins/outs */ PDISCPUSTATE pDis = &pVCpu->hm.s.DisState; /* Disassemble manually to deal with segment prefixes. */ rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL); if (rc == VINF_SUCCESS) { if (IoExitInfo.n.u1Type == 0) { Log2(("IOMInterpretOUTSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite); rc = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix, (DISCPUMODE)pDis->uAddrMode, uIOSize); } else { Log2(("IOMInterpretINSEx %RGv %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead); rc = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix, (DISCPUMODE)pDis->uAddrMode, uIOSize); } } else rc = VINF_EM_RAW_EMULATE_INSTR; } else { /* Normal in/out */ Assert(!IoExitInfo.n.u1REP); if (IoExitInfo.n.u1Type == 0) { Log2(("IOMIOPortWrite %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize)); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite); rc = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize); if (rc == VINF_IOM_R3_IOPORT_WRITE) { HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize); } } else { uint32_t u32Val = 0; STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead); rc = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, uIOSize); if (IOM_SUCCESS(rc)) { /* Write back to the EAX register. */ pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal); Log2(("IOMIOPortRead %RGv %x %x size=%d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, u32Val & uAndVal, uIOSize)); } else if (rc == VINF_IOM_R3_IOPORT_READ) { HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize); } } } /* * Handled the I/O return codes. * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.) */ if (IOM_SUCCESS(rc)) { /* Update EIP and continue execution. */ pCtx->rip = pVmcb->ctrl.u64ExitInfo2; /* RIP/EIP of the next instruction is saved in EXITINFO2. */ if (RT_LIKELY(rc == VINF_SUCCESS)) { /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */ if (pCtx->dr[7] & X86_DR7_ENABLED_MASK) { /* IO operation lookup arrays. */ static uint32_t const aIOSize[4] = { 1, 2, 0, 4 }; STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck); for (unsigned i = 0; i < 4; i++) { unsigned uBPLen = aIOSize[X86_DR7_GET_LEN(pCtx->dr[7], i)]; if ( (IoExitInfo.n.u16Port >= pCtx->dr[i] && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen) && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i))) && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO)) { SVMEVENT Event; Assert(CPUMIsGuestDebugStateActive(pVCpu)); /* Clear all breakpoint status flags and set the one we just hit. */ pCtx->dr[6] &= ~(X86_DR6_B0|X86_DR6_B1|X86_DR6_B2|X86_DR6_B3); pCtx->dr[6] |= (uint64_t)RT_BIT(i); /* * Note: AMD64 Architecture Programmer's Manual 13.1: * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared * by software after the contents have been read. */ pVmcb->guest.u64DR6 = pCtx->dr[6]; /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */ pCtx->dr[7] &= ~X86_DR7_GD; /* Paranoia. */ pCtx->dr[7] &= 0xffffffff; /* upper 32 bits reserved */ pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* must be zero */ pCtx->dr[7] |= 0x400; /* must be one */ pVmcb->guest.u64DR7 = pCtx->dr[7]; /* Inject the exception. */ Log(("Inject IO debug trap at %RGv\n", (RTGCPTR)pCtx->rip)); Event.u = 0; Event.n.u3Type = SVM_EVENT_EXCEPTION; /* trap or fault */ Event.n.u1Valid = 1; Event.n.u8Vector = X86_XCPT_DB; hmR0SvmSetPendingEvent(pVCpu, &Event); goto ResumeExecution; } } } goto ResumeExecution; } Log2(("EM status from IO at %RGv %x size %d: %Rrc\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize, VBOXSTRICTRC_VAL(rc))); break; } #ifdef VBOX_STRICT if (rc == VINF_IOM_R3_IOPORT_READ) Assert(IoExitInfo.n.u1Type != 0); else if (rc == VINF_IOM_R3_IOPORT_WRITE) Assert(IoExitInfo.n.u1Type == 0); else { AssertMsg( RT_FAILURE(rc) || rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rc))); } #endif Log2(("Failed IO at %RGv %x size %d\n", (RTGCPTR)pCtx->rip, IoExitInfo.n.u16Port, uIOSize)); break; } case SVM_EXIT_HLT: /* Check if external interrupts are pending; if so, don't switch back. */ STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt); pCtx->rip++; /* skip hlt */ if (EMShouldContinueAfterHalt(pVCpu, pCtx)) goto ResumeExecution; rc = VINF_EM_HALT; break; case SVM_EXIT_MWAIT: Log2(("SVM: mwait\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait); rc = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx)); if ( rc == VINF_EM_HALT || rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ pCtx->rip += 3; /* Note: hardcoded opcode size assumption! */ /* Check if external interrupts are pending; if so, don't switch back. */ if ( rc == VINF_SUCCESS || ( rc == VINF_EM_HALT && EMShouldContinueAfterHalt(pVCpu, pCtx)) ) goto ResumeExecution; } AssertMsg(rc == VERR_EM_INTERPRETER || rc == VINF_EM_HALT, ("EMU: mwait failed with %Rrc\n", VBOXSTRICTRC_VAL(rc))); break; case SVM_EXIT_MONITOR: { Log2(("SVM: monitor\n")); STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor); rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx)); if (rc == VINF_SUCCESS) { /* Update EIP and continue execution. */ pCtx->rip += 3; /* Note: hardcoded opcode size assumption! */ goto ResumeExecution; } AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: monitor failed with %Rrc\n", VBOXSTRICTRC_VAL(rc))); break; } case SVM_EXIT_VMMCALL: rc = hmR0SvmEmulateTprVMMCall(pVM, pVCpu, pCtx); if (rc == VINF_SUCCESS) { goto ResumeExecution; /* rip already updated. */ } /* no break */ case SVM_EXIT_RSM: case SVM_EXIT_INVLPGA: case SVM_EXIT_VMRUN: case SVM_EXIT_VMLOAD: case SVM_EXIT_VMSAVE: case SVM_EXIT_STGI: case SVM_EXIT_CLGI: case SVM_EXIT_SKINIT: { /* Unsupported instructions. */ SVMEVENT Event; Event.u = 0; Event.n.u3Type = SVM_EVENT_EXCEPTION; Event.n.u1Valid = 1; Event.n.u8Vector = X86_XCPT_UD; Log(("Forced #UD trap at %RGv\n", (RTGCPTR)pCtx->rip)); hmR0SvmSetPendingEvent(pVCpu, &Event); goto ResumeExecution; } /* Emulate in ring-3. */ case SVM_EXIT_MSR: { /* When an interrupt is pending, we'll let MSR_K8_LSTAR writes fault in our TPR patch code. */ if ( pVM->hm.s.fTPRPatchingActive && pCtx->ecx == MSR_K8_LSTAR && pVmcb->ctrl.u64ExitInfo1 == 1 /* wrmsr */) { if ((pCtx->eax & 0xff) != u8LastTPR) { Log(("SVM: Faulting MSR_K8_LSTAR write with new TPR value %x\n", pCtx->eax & 0xff)); /* Our patch code uses LSTAR for TPR caching. */ rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff); AssertRC(rc2); } /* Skip the instruction and continue. */ pCtx->rip += 2; /* wrmsr = [0F 30] */ /* Only resume if successful. */ goto ResumeExecution; } /* * The Intel spec. claims there's an REX version of RDMSR that's slightly different, * so we play safe by completely disassembling the instruction. */ STAM_COUNTER_INC((pVmcb->ctrl.u64ExitInfo1 == 0) ? &pVCpu->hm.s.StatExitRdmsr : &pVCpu->hm.s.StatExitWrmsr); Log(("SVM: %s\n", (pVmcb->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr")); rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0); if (rc == VINF_SUCCESS) { /* EIP has been updated already. */ /* Only resume if successful. */ goto ResumeExecution; } AssertMsg(rc == VERR_EM_INTERPRETER, ("EMU: %s failed with %Rrc\n", (pVmcb->ctrl.u64ExitInfo1 == 0) ? "rdmsr" : "wrmsr", VBOXSTRICTRC_VAL(rc))); break; } case SVM_EXIT_TASK_SWITCH: /* too complicated to emulate, so fall back to the recompiler */ Log(("SVM_EXIT_TASK_SWITCH: exit2=%RX64\n", pVmcb->ctrl.u64ExitInfo2)); if ( !(pVmcb->ctrl.u64ExitInfo2 & (SVM_EXIT2_TASK_SWITCH_IRET | SVM_EXIT2_TASK_SWITCH_JMP)) && pVCpu->hm.s.Event.fPending) { SVMEVENT Event; Event.u = pVCpu->hm.s.Event.u64IntrInfo; /* Caused by an injected interrupt. */ pVCpu->hm.s.Event.fPending = false; switch (Event.n.u3Type) { case SVM_EVENT_EXTERNAL_IRQ: case SVM_EVENT_NMI: Log(("SVM_EXIT_TASK_SWITCH: reassert trap %d\n", Event.n.u8Vector)); Assert(!Event.n.u1ErrorCodeValid); rc2 = TRPMAssertTrap(pVCpu, Event.n.u8Vector, TRPM_HARDWARE_INT); AssertRC(rc2); break; default: /* Exceptions and software interrupts can just be restarted. */ break; } } rc = VERR_EM_INTERPRETER; break; case SVM_EXIT_PAUSE: case SVM_EXIT_MWAIT_ARMED: rc = VERR_EM_INTERPRETER; break; case SVM_EXIT_SHUTDOWN: rc = VINF_EM_RESET; /* Triple fault equals a reset. */ break; case SVM_EXIT_IDTR_READ: case SVM_EXIT_GDTR_READ: case SVM_EXIT_LDTR_READ: case SVM_EXIT_TR_READ: case SVM_EXIT_IDTR_WRITE: case SVM_EXIT_GDTR_WRITE: case SVM_EXIT_LDTR_WRITE: case SVM_EXIT_TR_WRITE: case SVM_EXIT_CR0_SEL_WRITE: default: /* Unexpected exit codes. */ rc = VERR_SVM_UNEXPECTED_EXIT; AssertMsgFailed(("Unexpected exit code %x\n", exitCode)); /* Can't happen. */ break; } end: /* * We are now going back to ring-3, so clear the forced action flag. */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3); /* * Signal changes to the recompiler. */ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_LDTR | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_TR | CPUM_CHANGED_HIDDEN_SEL_REGS); /* * If we executed vmrun and an external IRQ was pending, then we don't have to do a full sync the next time. */ if (exitCode == SVM_EXIT_INTR) { /* On the next entry we'll only sync the host context. */ pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT; } else { /* On the next entry we'll sync everything. */ /** @todo we can do better than this */ /* Not in the VINF_PGM_CHANGE_MODE though! */ pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST; } /* Translate into a less severe return code */ if (rc == VERR_EM_INTERPRETER) rc = VINF_EM_RAW_EMULATE_INSTR; /* Just set the correct state here instead of trying to catch every goto above. */ VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC); #ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION /* Restore interrupts if we exitted after disabling them. */ if (uOldEFlags != ~(RTCCUINTREG)0) ASMSetFlags(uOldEFlags); #endif STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x); return VBOXSTRICTRC_TODO(rc); } /** * Emulate simple mov tpr instruction. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. */ static int hmR0SvmEmulateTprVMMCall(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { int rc; LogFlow(("Emulated VMMCall TPR access replacement at %RGv\n", pCtx->rip)); for (;;) { bool fPending; uint8_t u8Tpr; PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip); if (!pPatch) break; switch (pPatch->enmType) { case HMTPRINSTR_READ: /* TPR caching in CR8 */ rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */); AssertRC(rc); rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr); AssertRC(rc); LogFlow(("Emulated read successfully\n")); pCtx->rip += pPatch->cbOp; break; case HMTPRINSTR_WRITE_REG: case HMTPRINSTR_WRITE_IMM: /* Fetch the new TPR value */ if (pPatch->enmType == HMTPRINSTR_WRITE_REG) { uint32_t val; rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &val); AssertRC(rc); u8Tpr = val; } else u8Tpr = (uint8_t)pPatch->uSrcOperand; rc = PDMApicSetTPR(pVCpu, u8Tpr); AssertRC(rc); LogFlow(("Emulated write successfully\n")); pCtx->rip += pPatch->cbOp; break; default: AssertMsgFailedReturn(("Unexpected type %d\n", pPatch->enmType), VERR_SVM_UNEXPECTED_PATCH_TYPE); } } return VINF_SUCCESS; } /** * Enters the AMD-V session. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCpu Pointer to the CPU info struct. */ VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu) { Assert(pVM->hm.s.svm.fSupported); LogFlow(("SVMR0Enter cpu%d last=%d asid=%d\n", pCpu->idCpu, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.uCurrentAsid)); pVCpu->hm.s.fResumeVM = false; /* Force to reload LDTR, so we'll execute VMLoad to load additional guest state. */ pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_LDTR; /** @todo r=ramshankar: I can't understand what effect this will have. Probably a left over? */ return VINF_SUCCESS; } /** * Leaves the AMD-V session. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. */ VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb; Assert(pVM->hm.s.svm.fSupported); #ifdef DEBUG if (CPUMIsHyperDebugStateActive(pVCpu)) { CPUMR0LoadHostDebugState(pVM, pVCpu); } else #endif /* Save the guest debug state if necessary. */ if (CPUMIsGuestDebugStateActive(pVCpu)) { CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, false /* skip DR6 */); /* Intercept all DRx reads and writes again. Changed later on. */ pVmcb->ctrl.u16InterceptRdDRx = 0xFFFF; pVmcb->ctrl.u16InterceptWrDRx = 0xFFFF; /* Resync the debug registers the next time. */ pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG; } else Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xFFFF && pVmcb->ctrl.u16InterceptWrDRx == 0xFFFF); return VINF_SUCCESS; } /** * Worker for Interprets INVLPG. * * @return VBox status code. * @param pVCpu Pointer to the VMCPU. * @param pCpu Pointer to the CPU info struct. * @param pRegFrame Pointer to the register frame. */ static int hmR0svmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame) { DISQPVPARAMVAL param1; RTGCPTR addr; int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, ¶m1, DISQPVWHICH_SRC); if (RT_FAILURE(rc)) return VERR_EM_INTERPRETER; switch (param1.type) { case DISQPV_TYPE_IMMEDIATE: case DISQPV_TYPE_ADDRESS: if (!(param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64))) return VERR_EM_INTERPRETER; addr = param1.val.val64; break; default: return VERR_EM_INTERPRETER; } /** @todo is addr always a flat linear address or ds based * (in absence of segment override prefixes)???? */ rc = PGMInvalidatePage(pVCpu, addr); if (RT_SUCCESS(rc)) return VINF_SUCCESS; AssertRC(rc); return rc; } /** * Interprets INVLPG. * * @returns VBox status code. * @retval VINF_* Scheduling instructions. * @retval VERR_EM_INTERPRETER Something we can't cope with. * @retval VERR_* Fatal errors. * * @param pVM Pointer to the VM. * @param pRegFrame Pointer to the register frame. * * @remarks Updates the EIP if an instruction was executed successfully. */ static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame) { /* * Only allow 32 & 64 bit code. */ if (CPUMGetGuestCodeBits(pVCpu) != 16) { PDISSTATE pDis = &pVCpu->hm.s.DisState; int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL); if (RT_SUCCESS(rc) && pDis->pCurInstr->uOpcode == OP_INVLPG) { rc = hmR0svmInterpretInvlPgEx(pVCpu, pDis, pRegFrame); if (RT_SUCCESS(rc)) pRegFrame->rip += pDis->cbInstr; /* Move on to the next instruction. */ return rc; } } return VERR_EM_INTERPRETER; } /** * Invalidates a guest page by guest virtual address. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param GCVirt Guest virtual address of the page to invalidate. */ VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt) { bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB | VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH); /* Skip it if a TLB flush is already pending. */ if (!fFlushPending) { PSVMVMCB pVmcb; Log2(("SVMR0InvalidatePage %RGv\n", GCVirt)); AssertReturn(pVM, VERR_INVALID_PARAMETER); Assert(pVM->hm.s.svm.fSupported); pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb; AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB); #if HC_ARCH_BITS == 32 /* If we get a flush in 64 bits guest mode, then force a full TLB flush. Invlpga takes only 32 bits addresses. */ if (CPUMIsGuestInLongMode(pVCpu)) VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH); else #endif { SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID); STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt); } } return VINF_SUCCESS; } #if 0 /* obsolete, but left here for clarification. */ /** * Invalidates a guest page by physical address. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param GCPhys Guest physical address of the page to invalidate. */ VMMR0DECL(int) SVMR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys) { Assert(pVM->hm.s.fNestedPaging); /* invlpga only invalidates TLB entries for guest virtual addresses; we have no choice but to force a TLB flush here. */ VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH); STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys); return VINF_SUCCESS; } #endif #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) /** * Prepares for and executes VMRUN (64-bit guests from a 32-bit host). * * @returns VBox status code. * @param HCPhysVmcbHost Physical address of host VMCB. * @param HCPhysVmcb Physical address of the VMCB. * @param pCtx Pointer to the guest CPU context. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. */ DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu) { uint32_t aParam[4]; aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */ aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */ aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */ aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */ return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, 4, &aParam[0]); } /** * Executes the specified handler in 64-bit mode. * * @returns VBox status code. * @param pVM Pointer to the VM. * @param pVCpu Pointer to the VMCPU. * @param pCtx Pointer to the guest CPU context. * @param enmOp The operation to perform. * @param cbParam Number of parameters. * @param paParam Array of 32-bit parameters. */ VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam, uint32_t *paParam) { int rc; RTHCUINTREG uOldEFlags; AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER); Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END); /* Disable interrupts. */ uOldEFlags = ASMIntDisableFlags(); #ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI RTCPUID idHostCpu = RTMpCpuId(); CPUMR0SetLApic(pVM, idHostCpu); #endif CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu)); CPUMSetHyperEIP(pVCpu, enmOp); for (int i = (int)cbParam - 1; i >= 0; i--) CPUMPushHyper(pVCpu, paParam[i]); STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z); /* Call switcher. */ rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum)); STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z); ASMSetFlags(uOldEFlags); return rc; } #endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */