VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 82968

Last change on this file since 82968 was 82968, checked in by vboxsync, 5 years ago

Copyright year updates by scm.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 721.1 KB
Line 
1/* $Id: HMVMXR0.cpp 82968 2020-02-04 10:35:17Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27#include <iprt/mem.h>
28#include <iprt/mp.h>
29
30#include <VBox/vmm/pdmapi.h>
31#include <VBox/vmm/dbgf.h>
32#include <VBox/vmm/iem.h>
33#include <VBox/vmm/iom.h>
34#include <VBox/vmm/tm.h>
35#include <VBox/vmm/em.h>
36#include <VBox/vmm/gim.h>
37#include <VBox/vmm/apic.h>
38#include "HMInternal.h"
39#include <VBox/vmm/vmcc.h>
40#include <VBox/vmm/hmvmxinline.h>
41#include "HMVMXR0.h"
42#include "dtrace/VBoxVMM.h"
43
44#ifdef DEBUG_ramshankar
45# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
46# define HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
47# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_CLEAN_TRANSIENT
50# define HMVMX_ALWAYS_CHECK_GUEST_STATE
51# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
52# define HMVMX_ALWAYS_TRAP_PF
53# define HMVMX_ALWAYS_FLUSH_TLB
54# define HMVMX_ALWAYS_SWAP_EFER
55#endif
56
57
58/*********************************************************************************************************************************
59* Defined Constants And Macros *
60*********************************************************************************************************************************/
61/** Use the function table. */
62#define HMVMX_USE_FUNCTION_TABLE
63
64/** Determine which tagged-TLB flush handler to use. */
65#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
66#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
67#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
68#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
69
70/**
71 * Flags to skip redundant reads of some common VMCS fields that are not part of
72 * the guest-CPU or VCPU state but are needed while handling VM-exits.
73 */
74#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
75#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
76#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
77#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
78#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
79#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
80#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
81#define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
82#define HMVMX_READ_GUEST_PHYSICAL_ADDR RT_BIT_32(8)
83#define HMVMX_READ_GUEST_PENDING_DBG_XCPTS RT_BIT_32(9)
84
85/** All the VMCS fields required for processing of exception/NMI VM-exits. */
86#define HMVMX_READ_XCPT_INFO ( HMVMX_READ_EXIT_INTERRUPTION_INFO \
87 | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE \
88 | HMVMX_READ_EXIT_INSTR_LEN \
89 | HMVMX_READ_IDT_VECTORING_INFO \
90 | HMVMX_READ_IDT_VECTORING_ERROR_CODE)
91
92/** Assert that all the given fields have been read from the VMCS. */
93#ifdef VBOX_STRICT
94# define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) \
95 do { \
96 uint32_t const fVmcsFieldRead = ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead); \
97 Assert((fVmcsFieldRead & (a_fReadFields)) == (a_fReadFields)); \
98 } while (0)
99#else
100# define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) do { } while (0)
101#endif
102
103/**
104 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
105 * guest using hardware-assisted VMX.
106 *
107 * This excludes state like GPRs (other than RSP) which are always are
108 * swapped and restored across the world-switch and also registers like EFER,
109 * MSR which cannot be modified by the guest without causing a VM-exit.
110 */
111#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
112 | CPUMCTX_EXTRN_RFLAGS \
113 | CPUMCTX_EXTRN_RSP \
114 | CPUMCTX_EXTRN_SREG_MASK \
115 | CPUMCTX_EXTRN_TABLE_MASK \
116 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
117 | CPUMCTX_EXTRN_SYSCALL_MSRS \
118 | CPUMCTX_EXTRN_SYSENTER_MSRS \
119 | CPUMCTX_EXTRN_TSC_AUX \
120 | CPUMCTX_EXTRN_OTHER_MSRS \
121 | CPUMCTX_EXTRN_CR0 \
122 | CPUMCTX_EXTRN_CR3 \
123 | CPUMCTX_EXTRN_CR4 \
124 | CPUMCTX_EXTRN_DR7 \
125 | CPUMCTX_EXTRN_HWVIRT \
126 | CPUMCTX_EXTRN_HM_VMX_MASK)
127
128/**
129 * Exception bitmap mask for real-mode guests (real-on-v86).
130 *
131 * We need to intercept all exceptions manually except:
132 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
133 * due to bugs in Intel CPUs.
134 * - \#PF need not be intercepted even in real-mode if we have nested paging
135 * support.
136 */
137#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
138 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
139 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
140 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
141 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
142 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
143 | RT_BIT(X86_XCPT_XF))
144
145/** Maximum VM-instruction error number. */
146#define HMVMX_INSTR_ERROR_MAX 28
147
148/** Profiling macro. */
149#ifdef HM_PROFILE_EXIT_DISPATCH
150# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
151# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
152#else
153# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
154# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
155#endif
156
157/** Assert that preemption is disabled or covered by thread-context hooks. */
158#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
159 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
160
161/** Assert that we haven't migrated CPUs when thread-context hooks are not
162 * used. */
163#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
164 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
165 ("Illegal migration! Entered on CPU %u Current %u\n", \
166 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
167
168/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
169 * context. */
170#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
171 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
172 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
173
174/** Log the VM-exit reason with an easily visible marker to identify it in a
175 * potential sea of logging data. */
176#define HMVMX_LOG_EXIT(a_pVCpu, a_uExitReason) \
177 do { \
178 Log4(("VM-exit: vcpu[%RU32] %85s -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu, \
179 HMGetVmxExitName(a_uExitReason))); \
180 } while (0) \
181
182
183/*********************************************************************************************************************************
184* Structures and Typedefs *
185*********************************************************************************************************************************/
186/**
187 * VMX per-VCPU transient state.
188 *
189 * A state structure for holding miscellaneous information across
190 * VMX non-root operation and restored after the transition.
191 *
192 * Note: The members are ordered and aligned such that the most
193 * frequently used ones (in the guest execution loop) fall within
194 * the first cache line.
195 */
196typedef struct VMXTRANSIENT
197{
198 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
199 uint32_t fVmcsFieldsRead;
200 /** The guest's TPR value used for TPR shadowing. */
201 uint8_t u8GuestTpr;
202 uint8_t abAlignment0[3];
203
204 /** Whether the VM-exit was caused by a page-fault during delivery of an
205 * external interrupt or NMI. */
206 bool fVectoringPF;
207 /** Whether the VM-exit was caused by a page-fault during delivery of a
208 * contributory exception or a page-fault. */
209 bool fVectoringDoublePF;
210 /** Whether the VM-entry failed or not. */
211 bool fVMEntryFailed;
212 /** Whether the TSC_AUX MSR needs to be removed from the auto-load/store MSR
213 * area after VM-exit. */
214 bool fRemoveTscAuxMsr;
215 /** Whether TSC-offsetting and VMX-preemption timer was updated before VM-entry. */
216 bool fUpdatedTscOffsettingAndPreemptTimer;
217 /** Whether we are currently executing a nested-guest. */
218 bool fIsNestedGuest;
219 /** Whether the guest debug state was active at the time of VM-exit. */
220 bool fWasGuestDebugStateActive;
221 /** Whether the hyper debug state was active at the time of VM-exit. */
222 bool fWasHyperDebugStateActive;
223
224 /** The basic VM-exit reason. */
225 uint32_t uExitReason;
226 /** The VM-exit interruption error code. */
227 uint32_t uExitIntErrorCode;
228
229 /** The host's rflags/eflags. */
230 RTCCUINTREG fEFlags;
231
232 /** The VM-exit exit code qualification. */
233 uint64_t uExitQual;
234
235 /** The VMCS info. object. */
236 PVMXVMCSINFO pVmcsInfo;
237
238 /** The VM-exit interruption-information field. */
239 uint32_t uExitIntInfo;
240 /** The VM-exit instruction-length field. */
241 uint32_t cbExitInstr;
242
243 /** The VM-exit instruction-information field. */
244 VMXEXITINSTRINFO ExitInstrInfo;
245 /** IDT-vectoring information field. */
246 uint32_t uIdtVectoringInfo;
247
248 /** IDT-vectoring error code. */
249 uint32_t uIdtVectoringErrorCode;
250 uint32_t u32Alignment0;
251
252 /** The Guest-linear address. */
253 uint64_t uGuestLinearAddr;
254
255 /** The Guest-physical address. */
256 uint64_t uGuestPhysicalAddr;
257
258 /** The Guest pending-debug exceptions. */
259 uint64_t uGuestPendingDbgXcpts;
260
261 /** The VM-entry interruption-information field. */
262 uint32_t uEntryIntInfo;
263 /** The VM-entry exception error code field. */
264 uint32_t uEntryXcptErrorCode;
265
266 /** The VM-entry instruction length field. */
267 uint32_t cbEntryInstr;
268} VMXTRANSIENT;
269AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
270AssertCompileMemberAlignment(VMXTRANSIENT, fVmcsFieldsRead, 8);
271AssertCompileMemberAlignment(VMXTRANSIENT, fVectoringPF, 8);
272AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, 8);
273AssertCompileMemberAlignment(VMXTRANSIENT, fEFlags, 8);
274AssertCompileMemberAlignment(VMXTRANSIENT, uExitQual, 8);
275AssertCompileMemberAlignment(VMXTRANSIENT, pVmcsInfo, 8);
276AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, 8);
277AssertCompileMemberAlignment(VMXTRANSIENT, ExitInstrInfo, 8);
278AssertCompileMemberAlignment(VMXTRANSIENT, uIdtVectoringErrorCode, 8);
279AssertCompileMemberAlignment(VMXTRANSIENT, uGuestLinearAddr, 8);
280AssertCompileMemberAlignment(VMXTRANSIENT, uGuestPhysicalAddr, 8);
281AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, 8);
282AssertCompileMemberAlignment(VMXTRANSIENT, cbEntryInstr, 8);
283/** Pointer to VMX transient state. */
284typedef VMXTRANSIENT *PVMXTRANSIENT;
285/** Pointer to a const VMX transient state. */
286typedef const VMXTRANSIENT *PCVMXTRANSIENT;
287
288/**
289 * VMX page allocation information.
290 */
291typedef struct
292{
293 uint32_t fValid; /**< Whether to allocate this page (e.g, based on a CPU feature). */
294 uint32_t uPadding0; /**< Padding to ensure array of these structs are aligned to a multiple of 8. */
295 PRTHCPHYS pHCPhys; /**< Where to store the host-physical address of the allocation. */
296 PRTR0PTR ppVirt; /**< Where to store the host-virtual address of the allocation. */
297} VMXPAGEALLOCINFO;
298/** Pointer to VMX page-allocation info. */
299typedef VMXPAGEALLOCINFO *PVMXPAGEALLOCINFO;
300/** Pointer to a const VMX page-allocation info. */
301typedef const VMXPAGEALLOCINFO *PCVMXPAGEALLOCINFO;
302AssertCompileSizeAlignment(VMXPAGEALLOCINFO, 8);
303
304/**
305 * Memory operand read or write access.
306 */
307typedef enum VMXMEMACCESS
308{
309 VMXMEMACCESS_READ = 0,
310 VMXMEMACCESS_WRITE = 1
311} VMXMEMACCESS;
312
313/**
314 * VMX VM-exit handler.
315 *
316 * @returns Strict VBox status code (i.e. informational status codes too).
317 * @param pVCpu The cross context virtual CPU structure.
318 * @param pVmxTransient The VMX-transient structure.
319 */
320#ifndef HMVMX_USE_FUNCTION_TABLE
321typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
322#else
323typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
324/** Pointer to VM-exit handler. */
325typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
326#endif
327
328/**
329 * VMX VM-exit handler, non-strict status code.
330 *
331 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
332 *
333 * @returns VBox status code, no informational status code returned.
334 * @param pVCpu The cross context virtual CPU structure.
335 * @param pVmxTransient The VMX-transient structure.
336 *
337 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
338 * use of that status code will be replaced with VINF_EM_SOMETHING
339 * later when switching over to IEM.
340 */
341#ifndef HMVMX_USE_FUNCTION_TABLE
342typedef int FNVMXEXITHANDLERNSRC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
343#else
344typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
345#endif
346
347
348/*********************************************************************************************************************************
349* Internal Functions *
350*********************************************************************************************************************************/
351#ifndef HMVMX_USE_FUNCTION_TABLE
352DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
353# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
354# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
355#else
356# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
357# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
358#endif
359#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
360DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
361#endif
362
363static int hmR0VmxImportGuestState(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat);
364
365/** @name VM-exit handler prototypes.
366 * @{
367 */
368static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
369static FNVMXEXITHANDLER hmR0VmxExitExtInt;
370static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
371static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
372static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
373static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
374static FNVMXEXITHANDLER hmR0VmxExitCpuid;
375static FNVMXEXITHANDLER hmR0VmxExitGetsec;
376static FNVMXEXITHANDLER hmR0VmxExitHlt;
377static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
378static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
379static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
380static FNVMXEXITHANDLER hmR0VmxExitVmcall;
381#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
382static FNVMXEXITHANDLER hmR0VmxExitVmclear;
383static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
384static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
385static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
386static FNVMXEXITHANDLER hmR0VmxExitVmread;
387static FNVMXEXITHANDLER hmR0VmxExitVmresume;
388static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
389static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
390static FNVMXEXITHANDLER hmR0VmxExitVmxon;
391static FNVMXEXITHANDLER hmR0VmxExitInvvpid;
392#endif
393static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
394static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
395static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
396static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
397static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
398static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
399static FNVMXEXITHANDLER hmR0VmxExitMwait;
400static FNVMXEXITHANDLER hmR0VmxExitMtf;
401static FNVMXEXITHANDLER hmR0VmxExitMonitor;
402static FNVMXEXITHANDLER hmR0VmxExitPause;
403static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
404static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
405static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
406static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
407static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
408static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
409static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
410static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
411static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
412static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
413static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
414static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUnexpected;
415/** @} */
416
417#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
418/** @name Nested-guest VM-exit handler prototypes.
419 * @{
420 */
421static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmiNested;
422static FNVMXEXITHANDLER hmR0VmxExitTripleFaultNested;
423static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindowNested;
424static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindowNested;
425static FNVMXEXITHANDLER hmR0VmxExitTaskSwitchNested;
426static FNVMXEXITHANDLER hmR0VmxExitHltNested;
427static FNVMXEXITHANDLER hmR0VmxExitInvlpgNested;
428static FNVMXEXITHANDLER hmR0VmxExitRdpmcNested;
429static FNVMXEXITHANDLER hmR0VmxExitVmreadVmwriteNested;
430static FNVMXEXITHANDLER hmR0VmxExitRdtscNested;
431static FNVMXEXITHANDLER hmR0VmxExitMovCRxNested;
432static FNVMXEXITHANDLER hmR0VmxExitMovDRxNested;
433static FNVMXEXITHANDLER hmR0VmxExitIoInstrNested;
434static FNVMXEXITHANDLER hmR0VmxExitRdmsrNested;
435static FNVMXEXITHANDLER hmR0VmxExitWrmsrNested;
436static FNVMXEXITHANDLER hmR0VmxExitMwaitNested;
437static FNVMXEXITHANDLER hmR0VmxExitMtfNested;
438static FNVMXEXITHANDLER hmR0VmxExitMonitorNested;
439static FNVMXEXITHANDLER hmR0VmxExitPauseNested;
440static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThresholdNested;
441static FNVMXEXITHANDLER hmR0VmxExitApicAccessNested;
442static FNVMXEXITHANDLER hmR0VmxExitApicWriteNested;
443static FNVMXEXITHANDLER hmR0VmxExitVirtEoiNested;
444static FNVMXEXITHANDLER hmR0VmxExitRdtscpNested;
445static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvdNested;
446static FNVMXEXITHANDLER hmR0VmxExitInvpcidNested;
447static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestStateNested;
448static FNVMXEXITHANDLER hmR0VmxExitInstrNested;
449static FNVMXEXITHANDLER hmR0VmxExitInstrWithInfoNested;
450/** @} */
451#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
452
453
454/*********************************************************************************************************************************
455* Global Variables *
456*********************************************************************************************************************************/
457#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
458/**
459 * Array of all VMCS fields.
460 * Any fields added to the VT-x spec. should be added here.
461 *
462 * Currently only used to derive shadow VMCS fields for hardware-assisted execution
463 * of nested-guests.
464 */
465static const uint32_t g_aVmcsFields[] =
466{
467 /* 16-bit control fields. */
468 VMX_VMCS16_VPID,
469 VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR,
470 VMX_VMCS16_EPTP_INDEX,
471
472 /* 16-bit guest-state fields. */
473 VMX_VMCS16_GUEST_ES_SEL,
474 VMX_VMCS16_GUEST_CS_SEL,
475 VMX_VMCS16_GUEST_SS_SEL,
476 VMX_VMCS16_GUEST_DS_SEL,
477 VMX_VMCS16_GUEST_FS_SEL,
478 VMX_VMCS16_GUEST_GS_SEL,
479 VMX_VMCS16_GUEST_LDTR_SEL,
480 VMX_VMCS16_GUEST_TR_SEL,
481 VMX_VMCS16_GUEST_INTR_STATUS,
482 VMX_VMCS16_GUEST_PML_INDEX,
483
484 /* 16-bits host-state fields. */
485 VMX_VMCS16_HOST_ES_SEL,
486 VMX_VMCS16_HOST_CS_SEL,
487 VMX_VMCS16_HOST_SS_SEL,
488 VMX_VMCS16_HOST_DS_SEL,
489 VMX_VMCS16_HOST_FS_SEL,
490 VMX_VMCS16_HOST_GS_SEL,
491 VMX_VMCS16_HOST_TR_SEL,
492
493 /* 64-bit control fields. */
494 VMX_VMCS64_CTRL_IO_BITMAP_A_FULL,
495 VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH,
496 VMX_VMCS64_CTRL_IO_BITMAP_B_FULL,
497 VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH,
498 VMX_VMCS64_CTRL_MSR_BITMAP_FULL,
499 VMX_VMCS64_CTRL_MSR_BITMAP_HIGH,
500 VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL,
501 VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH,
502 VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL,
503 VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH,
504 VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL,
505 VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH,
506 VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL,
507 VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH,
508 VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL,
509 VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH,
510 VMX_VMCS64_CTRL_TSC_OFFSET_FULL,
511 VMX_VMCS64_CTRL_TSC_OFFSET_HIGH,
512 VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL,
513 VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH,
514 VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL,
515 VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH,
516 VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL,
517 VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH,
518 VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL,
519 VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH,
520 VMX_VMCS64_CTRL_EPTP_FULL,
521 VMX_VMCS64_CTRL_EPTP_HIGH,
522 VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL,
523 VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH,
524 VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL,
525 VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH,
526 VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL,
527 VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH,
528 VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL,
529 VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH,
530 VMX_VMCS64_CTRL_EPTP_LIST_FULL,
531 VMX_VMCS64_CTRL_EPTP_LIST_HIGH,
532 VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL,
533 VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH,
534 VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL,
535 VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH,
536 VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_FULL,
537 VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_HIGH,
538 VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL,
539 VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH,
540 VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL,
541 VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH,
542 VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL,
543 VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH,
544
545 /* 64-bit read-only data fields. */
546 VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL,
547 VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH,
548
549 /* 64-bit guest-state fields. */
550 VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL,
551 VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH,
552 VMX_VMCS64_GUEST_DEBUGCTL_FULL,
553 VMX_VMCS64_GUEST_DEBUGCTL_HIGH,
554 VMX_VMCS64_GUEST_PAT_FULL,
555 VMX_VMCS64_GUEST_PAT_HIGH,
556 VMX_VMCS64_GUEST_EFER_FULL,
557 VMX_VMCS64_GUEST_EFER_HIGH,
558 VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL,
559 VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH,
560 VMX_VMCS64_GUEST_PDPTE0_FULL,
561 VMX_VMCS64_GUEST_PDPTE0_HIGH,
562 VMX_VMCS64_GUEST_PDPTE1_FULL,
563 VMX_VMCS64_GUEST_PDPTE1_HIGH,
564 VMX_VMCS64_GUEST_PDPTE2_FULL,
565 VMX_VMCS64_GUEST_PDPTE2_HIGH,
566 VMX_VMCS64_GUEST_PDPTE3_FULL,
567 VMX_VMCS64_GUEST_PDPTE3_HIGH,
568 VMX_VMCS64_GUEST_BNDCFGS_FULL,
569 VMX_VMCS64_GUEST_BNDCFGS_HIGH,
570
571 /* 64-bit host-state fields. */
572 VMX_VMCS64_HOST_PAT_FULL,
573 VMX_VMCS64_HOST_PAT_HIGH,
574 VMX_VMCS64_HOST_EFER_FULL,
575 VMX_VMCS64_HOST_EFER_HIGH,
576 VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL,
577 VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH,
578
579 /* 32-bit control fields. */
580 VMX_VMCS32_CTRL_PIN_EXEC,
581 VMX_VMCS32_CTRL_PROC_EXEC,
582 VMX_VMCS32_CTRL_EXCEPTION_BITMAP,
583 VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK,
584 VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH,
585 VMX_VMCS32_CTRL_CR3_TARGET_COUNT,
586 VMX_VMCS32_CTRL_EXIT,
587 VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT,
588 VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT,
589 VMX_VMCS32_CTRL_ENTRY,
590 VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT,
591 VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO,
592 VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE,
593 VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH,
594 VMX_VMCS32_CTRL_TPR_THRESHOLD,
595 VMX_VMCS32_CTRL_PROC_EXEC2,
596 VMX_VMCS32_CTRL_PLE_GAP,
597 VMX_VMCS32_CTRL_PLE_WINDOW,
598
599 /* 32-bits read-only fields. */
600 VMX_VMCS32_RO_VM_INSTR_ERROR,
601 VMX_VMCS32_RO_EXIT_REASON,
602 VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO,
603 VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE,
604 VMX_VMCS32_RO_IDT_VECTORING_INFO,
605 VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE,
606 VMX_VMCS32_RO_EXIT_INSTR_LENGTH,
607 VMX_VMCS32_RO_EXIT_INSTR_INFO,
608
609 /* 32-bit guest-state fields. */
610 VMX_VMCS32_GUEST_ES_LIMIT,
611 VMX_VMCS32_GUEST_CS_LIMIT,
612 VMX_VMCS32_GUEST_SS_LIMIT,
613 VMX_VMCS32_GUEST_DS_LIMIT,
614 VMX_VMCS32_GUEST_FS_LIMIT,
615 VMX_VMCS32_GUEST_GS_LIMIT,
616 VMX_VMCS32_GUEST_LDTR_LIMIT,
617 VMX_VMCS32_GUEST_TR_LIMIT,
618 VMX_VMCS32_GUEST_GDTR_LIMIT,
619 VMX_VMCS32_GUEST_IDTR_LIMIT,
620 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
621 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
622 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
623 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
624 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
625 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS,
626 VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS,
627 VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS,
628 VMX_VMCS32_GUEST_INT_STATE,
629 VMX_VMCS32_GUEST_ACTIVITY_STATE,
630 VMX_VMCS32_GUEST_SMBASE,
631 VMX_VMCS32_GUEST_SYSENTER_CS,
632 VMX_VMCS32_PREEMPT_TIMER_VALUE,
633
634 /* 32-bit host-state fields. */
635 VMX_VMCS32_HOST_SYSENTER_CS,
636
637 /* Natural-width control fields. */
638 VMX_VMCS_CTRL_CR0_MASK,
639 VMX_VMCS_CTRL_CR4_MASK,
640 VMX_VMCS_CTRL_CR0_READ_SHADOW,
641 VMX_VMCS_CTRL_CR4_READ_SHADOW,
642 VMX_VMCS_CTRL_CR3_TARGET_VAL0,
643 VMX_VMCS_CTRL_CR3_TARGET_VAL1,
644 VMX_VMCS_CTRL_CR3_TARGET_VAL2,
645 VMX_VMCS_CTRL_CR3_TARGET_VAL3,
646
647 /* Natural-width read-only data fields. */
648 VMX_VMCS_RO_EXIT_QUALIFICATION,
649 VMX_VMCS_RO_IO_RCX,
650 VMX_VMCS_RO_IO_RSI,
651 VMX_VMCS_RO_IO_RDI,
652 VMX_VMCS_RO_IO_RIP,
653 VMX_VMCS_RO_GUEST_LINEAR_ADDR,
654
655 /* Natural-width guest-state field */
656 VMX_VMCS_GUEST_CR0,
657 VMX_VMCS_GUEST_CR3,
658 VMX_VMCS_GUEST_CR4,
659 VMX_VMCS_GUEST_ES_BASE,
660 VMX_VMCS_GUEST_CS_BASE,
661 VMX_VMCS_GUEST_SS_BASE,
662 VMX_VMCS_GUEST_DS_BASE,
663 VMX_VMCS_GUEST_FS_BASE,
664 VMX_VMCS_GUEST_GS_BASE,
665 VMX_VMCS_GUEST_LDTR_BASE,
666 VMX_VMCS_GUEST_TR_BASE,
667 VMX_VMCS_GUEST_GDTR_BASE,
668 VMX_VMCS_GUEST_IDTR_BASE,
669 VMX_VMCS_GUEST_DR7,
670 VMX_VMCS_GUEST_RSP,
671 VMX_VMCS_GUEST_RIP,
672 VMX_VMCS_GUEST_RFLAGS,
673 VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS,
674 VMX_VMCS_GUEST_SYSENTER_ESP,
675 VMX_VMCS_GUEST_SYSENTER_EIP,
676
677 /* Natural-width host-state fields */
678 VMX_VMCS_HOST_CR0,
679 VMX_VMCS_HOST_CR3,
680 VMX_VMCS_HOST_CR4,
681 VMX_VMCS_HOST_FS_BASE,
682 VMX_VMCS_HOST_GS_BASE,
683 VMX_VMCS_HOST_TR_BASE,
684 VMX_VMCS_HOST_GDTR_BASE,
685 VMX_VMCS_HOST_IDTR_BASE,
686 VMX_VMCS_HOST_SYSENTER_ESP,
687 VMX_VMCS_HOST_SYSENTER_EIP,
688 VMX_VMCS_HOST_RSP,
689 VMX_VMCS_HOST_RIP
690};
691#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
692
693static const uint32_t g_aVmcsSegBase[] =
694{
695 VMX_VMCS_GUEST_ES_BASE,
696 VMX_VMCS_GUEST_CS_BASE,
697 VMX_VMCS_GUEST_SS_BASE,
698 VMX_VMCS_GUEST_DS_BASE,
699 VMX_VMCS_GUEST_FS_BASE,
700 VMX_VMCS_GUEST_GS_BASE
701};
702static const uint32_t g_aVmcsSegSel[] =
703{
704 VMX_VMCS16_GUEST_ES_SEL,
705 VMX_VMCS16_GUEST_CS_SEL,
706 VMX_VMCS16_GUEST_SS_SEL,
707 VMX_VMCS16_GUEST_DS_SEL,
708 VMX_VMCS16_GUEST_FS_SEL,
709 VMX_VMCS16_GUEST_GS_SEL
710};
711static const uint32_t g_aVmcsSegLimit[] =
712{
713 VMX_VMCS32_GUEST_ES_LIMIT,
714 VMX_VMCS32_GUEST_CS_LIMIT,
715 VMX_VMCS32_GUEST_SS_LIMIT,
716 VMX_VMCS32_GUEST_DS_LIMIT,
717 VMX_VMCS32_GUEST_FS_LIMIT,
718 VMX_VMCS32_GUEST_GS_LIMIT
719};
720static const uint32_t g_aVmcsSegAttr[] =
721{
722 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
723 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
724 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
725 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
726 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
727 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS
728};
729AssertCompile(RT_ELEMENTS(g_aVmcsSegSel) == X86_SREG_COUNT);
730AssertCompile(RT_ELEMENTS(g_aVmcsSegLimit) == X86_SREG_COUNT);
731AssertCompile(RT_ELEMENTS(g_aVmcsSegBase) == X86_SREG_COUNT);
732AssertCompile(RT_ELEMENTS(g_aVmcsSegAttr) == X86_SREG_COUNT);
733
734#ifdef HMVMX_USE_FUNCTION_TABLE
735/**
736 * VMX_EXIT dispatch table.
737 */
738static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
739{
740 /* 0 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
741 /* 1 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
742 /* 2 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
743 /* 3 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitErrUnexpected,
744 /* 4 VMX_EXIT_SIPI */ hmR0VmxExitErrUnexpected,
745 /* 5 VMX_EXIT_IO_SMI */ hmR0VmxExitErrUnexpected,
746 /* 6 VMX_EXIT_SMI */ hmR0VmxExitErrUnexpected,
747 /* 7 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
748 /* 8 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
749 /* 9 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
750 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
751 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
752 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
753 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
754 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
755 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
756 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
757 /* 17 VMX_EXIT_RSM */ hmR0VmxExitErrUnexpected,
758 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
759#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
760 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
761 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
762 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
763 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
764 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
765 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
766 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
767 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
768 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
769#else
770 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
771 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
772 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
773 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
774 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
775 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
776 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
777 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
778 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
779#endif
780 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
781 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
782 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
783 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
784 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
785 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
786 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrUnexpected,
787 /* 35 UNDEFINED */ hmR0VmxExitErrUnexpected,
788 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
789 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
790 /* 38 UNDEFINED */ hmR0VmxExitErrUnexpected,
791 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
792 /* 40 VMX_EXIT_PAUSE */ hmR0VmxExitPause,
793 /* 41 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUnexpected,
794 /* 42 UNDEFINED */ hmR0VmxExitErrUnexpected,
795 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
796 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
797 /* 45 VMX_EXIT_VIRTUALIZED_EOI */ hmR0VmxExitErrUnexpected,
798 /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ hmR0VmxExitErrUnexpected,
799 /* 47 VMX_EXIT_LDTR_TR_ACCESS */ hmR0VmxExitErrUnexpected,
800 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
801 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
802 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
803 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
804 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
805#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
806 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitInvvpid,
807#else
808 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
809#endif
810 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
811 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
812 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUnexpected,
813 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitErrUnexpected,
814 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
815 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitErrUnexpected,
816 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUnexpected,
817 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUnexpected,
818 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUnexpected,
819 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitErrUnexpected,
820 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitErrUnexpected,
821 /* 65 UNDEFINED */ hmR0VmxExitErrUnexpected,
822 /* 66 VMX_EXIT_SPP_EVENT */ hmR0VmxExitErrUnexpected,
823 /* 67 VMX_EXIT_UMWAIT */ hmR0VmxExitErrUnexpected,
824 /* 68 VMX_EXIT_TPAUSE */ hmR0VmxExitErrUnexpected,
825};
826#endif /* HMVMX_USE_FUNCTION_TABLE */
827
828#if defined(VBOX_STRICT) && defined(LOG_ENABLED)
829static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
830{
831 /* 0 */ "(Not Used)",
832 /* 1 */ "VMCALL executed in VMX root operation.",
833 /* 2 */ "VMCLEAR with invalid physical address.",
834 /* 3 */ "VMCLEAR with VMXON pointer.",
835 /* 4 */ "VMLAUNCH with non-clear VMCS.",
836 /* 5 */ "VMRESUME with non-launched VMCS.",
837 /* 6 */ "VMRESUME after VMXOFF",
838 /* 7 */ "VM-entry with invalid control fields.",
839 /* 8 */ "VM-entry with invalid host state fields.",
840 /* 9 */ "VMPTRLD with invalid physical address.",
841 /* 10 */ "VMPTRLD with VMXON pointer.",
842 /* 11 */ "VMPTRLD with incorrect revision identifier.",
843 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
844 /* 13 */ "VMWRITE to read-only VMCS component.",
845 /* 14 */ "(Not Used)",
846 /* 15 */ "VMXON executed in VMX root operation.",
847 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
848 /* 17 */ "VM-entry with non-launched executing VMCS.",
849 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
850 /* 19 */ "VMCALL with non-clear VMCS.",
851 /* 20 */ "VMCALL with invalid VM-exit control fields.",
852 /* 21 */ "(Not Used)",
853 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
854 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
855 /* 24 */ "VMCALL with invalid SMM-monitor features.",
856 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
857 /* 26 */ "VM-entry with events blocked by MOV SS.",
858 /* 27 */ "(Not Used)",
859 /* 28 */ "Invalid operand to INVEPT/INVVPID."
860};
861#endif /* VBOX_STRICT && LOG_ENABLED */
862
863
864/**
865 * Checks if the given MSR is part of the lastbranch-from-IP MSR stack.
866 * @returns @c true if it's part of LBR stack, @c false otherwise.
867 *
868 * @param pVM The cross context VM structure.
869 * @param idMsr The MSR.
870 * @param pidxMsr Where to store the index of the MSR in the LBR MSR array.
871 * Optional, can be NULL.
872 *
873 * @remarks Must only be called when LBR is enabled.
874 */
875DECL_FORCE_INLINE(bool) hmR0VmxIsLbrBranchFromMsr(PCVM pVM, uint32_t idMsr, uint32_t *pidxMsr)
876{
877 Assert(pVM->hm.s.vmx.fLbr);
878 Assert(pVM->hm.s.vmx.idLbrFromIpMsrFirst);
879 uint32_t const cLbrStack = pVM->hm.s.vmx.idLbrFromIpMsrLast - pVM->hm.s.vmx.idLbrFromIpMsrFirst + 1;
880 uint32_t const idxMsr = idMsr - pVM->hm.s.vmx.idLbrFromIpMsrFirst;
881 if (idxMsr < cLbrStack)
882 {
883 if (pidxMsr)
884 *pidxMsr = idxMsr;
885 return true;
886 }
887 return false;
888}
889
890
891/**
892 * Checks if the given MSR is part of the lastbranch-to-IP MSR stack.
893 * @returns @c true if it's part of LBR stack, @c false otherwise.
894 *
895 * @param pVM The cross context VM structure.
896 * @param idMsr The MSR.
897 * @param pidxMsr Where to store the index of the MSR in the LBR MSR array.
898 * Optional, can be NULL.
899 *
900 * @remarks Must only be called when LBR is enabled and when lastbranch-to-IP MSRs
901 * are supported by the CPU (see hmR0VmxSetupLbrMsrRange).
902 */
903DECL_FORCE_INLINE(bool) hmR0VmxIsLbrBranchToMsr(PCVM pVM, uint32_t idMsr, uint32_t *pidxMsr)
904{
905 Assert(pVM->hm.s.vmx.fLbr);
906 if (pVM->hm.s.vmx.idLbrToIpMsrFirst)
907 {
908 uint32_t const cLbrStack = pVM->hm.s.vmx.idLbrToIpMsrLast - pVM->hm.s.vmx.idLbrToIpMsrFirst + 1;
909 uint32_t const idxMsr = idMsr - pVM->hm.s.vmx.idLbrToIpMsrFirst;
910 if (idxMsr < cLbrStack)
911 {
912 if (pidxMsr)
913 *pidxMsr = idxMsr;
914 return true;
915 }
916 }
917 return false;
918}
919
920
921/**
922 * Gets the CR0 guest/host mask.
923 *
924 * These bits typically does not change through the lifetime of a VM. Any bit set in
925 * this mask is owned by the host/hypervisor and would cause a VM-exit when modified
926 * by the guest.
927 *
928 * @returns The CR0 guest/host mask.
929 * @param pVCpu The cross context virtual CPU structure.
930 */
931static uint64_t hmR0VmxGetFixedCr0Mask(PCVMCPUCC pVCpu)
932{
933 /*
934 * Modifications to CR0 bits that VT-x ignores saving/restoring (CD, ET, NW) and
935 * to CR0 bits that we require for shadow paging (PG) by the guest must cause VM-exits.
936 *
937 * Furthermore, modifications to any bits that are reserved/unspecified currently
938 * by the Intel spec. must also cause a VM-exit. This prevents unpredictable behavior
939 * when future CPUs specify and use currently reserved/unspecified bits.
940 */
941 /** @todo Avoid intercepting CR0.PE with unrestricted guest execution. Fix PGM
942 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
943 * and @bugref{6944}. */
944 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
945 return ( X86_CR0_PE
946 | X86_CR0_NE
947 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
948 | X86_CR0_PG
949 | VMX_EXIT_HOST_CR0_IGNORE_MASK);
950}
951
952
953/**
954 * Gets the CR4 guest/host mask.
955 *
956 * These bits typically does not change through the lifetime of a VM. Any bit set in
957 * this mask is owned by the host/hypervisor and would cause a VM-exit when modified
958 * by the guest.
959 *
960 * @returns The CR4 guest/host mask.
961 * @param pVCpu The cross context virtual CPU structure.
962 */
963static uint64_t hmR0VmxGetFixedCr4Mask(PCVMCPUCC pVCpu)
964{
965 /*
966 * We construct a mask of all CR4 bits that the guest can modify without causing
967 * a VM-exit. Then invert this mask to obtain all CR4 bits that should cause
968 * a VM-exit when the guest attempts to modify them when executing using
969 * hardware-assisted VMX.
970 *
971 * When a feature is not exposed to the guest (and may be present on the host),
972 * we want to intercept guest modifications to the bit so we can emulate proper
973 * behavior (e.g., #GP).
974 *
975 * Furthermore, only modifications to those bits that don't require immediate
976 * emulation is allowed. For e.g., PCIDE is excluded because the behavior
977 * depends on CR3 which might not always be the guest value while executing
978 * using hardware-assisted VMX.
979 */
980 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
981 bool const fFsGsBase = pVM->cpum.ro.GuestFeatures.fFsGsBase;
982 bool const fXSaveRstor = pVM->cpum.ro.GuestFeatures.fXSaveRstor;
983 bool const fFxSaveRstor = pVM->cpum.ro.GuestFeatures.fFxSaveRstor;
984
985 /*
986 * Paranoia.
987 * Ensure features exposed to the guest are present on the host.
988 */
989 Assert(!fFsGsBase || pVM->cpum.ro.HostFeatures.fFsGsBase);
990 Assert(!fXSaveRstor || pVM->cpum.ro.HostFeatures.fXSaveRstor);
991 Assert(!fFxSaveRstor || pVM->cpum.ro.HostFeatures.fFxSaveRstor);
992
993 uint64_t const fGstMask = ( X86_CR4_PVI
994 | X86_CR4_TSD
995 | X86_CR4_DE
996 | X86_CR4_MCE
997 | X86_CR4_PCE
998 | X86_CR4_OSXMMEEXCPT
999 | (fFsGsBase ? X86_CR4_FSGSBASE : 0)
1000 | (fXSaveRstor ? X86_CR4_OSXSAVE : 0)
1001 | (fFxSaveRstor ? X86_CR4_OSFXSR : 0));
1002 return ~fGstMask;
1003}
1004
1005
1006/**
1007 * Returns whether the the VM-exit MSR-store area differs from the VM-exit MSR-load
1008 * area.
1009 *
1010 * @returns @c true if it's different, @c false otherwise.
1011 * @param pVmcsInfo The VMCS info. object.
1012 */
1013DECL_FORCE_INLINE(bool) hmR0VmxIsSeparateExitMsrStoreAreaVmcs(PCVMXVMCSINFO pVmcsInfo)
1014{
1015 return RT_BOOL( pVmcsInfo->pvGuestMsrStore != pVmcsInfo->pvGuestMsrLoad
1016 && pVmcsInfo->pvGuestMsrStore);
1017}
1018
1019
1020/**
1021 * Sets the given Processor-based VM-execution controls.
1022 *
1023 * @param pVmxTransient The VMX-transient structure.
1024 * @param uProcCtls The Processor-based VM-execution controls to set.
1025 */
1026static void hmR0VmxSetProcCtlsVmcs(PVMXTRANSIENT pVmxTransient, uint32_t uProcCtls)
1027{
1028 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1029 if ((pVmcsInfo->u32ProcCtls & uProcCtls) != uProcCtls)
1030 {
1031 pVmcsInfo->u32ProcCtls |= uProcCtls;
1032 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
1033 AssertRC(rc);
1034 }
1035}
1036
1037
1038/**
1039 * Removes the given Processor-based VM-execution controls.
1040 *
1041 * @param pVCpu The cross context virtual CPU structure.
1042 * @param pVmxTransient The VMX-transient structure.
1043 * @param uProcCtls The Processor-based VM-execution controls to remove.
1044 *
1045 * @remarks When executing a nested-guest, this will not remove any of the specified
1046 * controls if the nested hypervisor has set any one of them.
1047 */
1048static void hmR0VmxRemoveProcCtlsVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uProcCtls)
1049{
1050 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1051 if (pVmcsInfo->u32ProcCtls & uProcCtls)
1052 {
1053#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1054 bool const fRemoveCtls = !pVmxTransient->fIsNestedGuest
1055 ? true
1056 : !CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, uProcCtls);
1057#else
1058 NOREF(pVCpu);
1059 bool const fRemoveCtls = true;
1060#endif
1061 if (fRemoveCtls)
1062 {
1063 pVmcsInfo->u32ProcCtls &= ~uProcCtls;
1064 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
1065 AssertRC(rc);
1066 }
1067 }
1068}
1069
1070
1071/**
1072 * Sets the TSC offset for the current VMCS.
1073 *
1074 * @param uTscOffset The TSC offset to set.
1075 * @param pVmcsInfo The VMCS info. object.
1076 */
1077static void hmR0VmxSetTscOffsetVmcs(PVMXVMCSINFO pVmcsInfo, uint64_t uTscOffset)
1078{
1079 if (pVmcsInfo->u64TscOffset != uTscOffset)
1080 {
1081 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
1082 AssertRC(rc);
1083 pVmcsInfo->u64TscOffset = uTscOffset;
1084 }
1085}
1086
1087
1088/**
1089 * Adds one or more exceptions to the exception bitmap and commits it to the current
1090 * VMCS.
1091 *
1092 * @param pVmxTransient The VMX-transient structure.
1093 * @param uXcptMask The exception(s) to add.
1094 */
1095static void hmR0VmxAddXcptInterceptMask(PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
1096{
1097 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1098 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
1099 if ((uXcptBitmap & uXcptMask) != uXcptMask)
1100 {
1101 uXcptBitmap |= uXcptMask;
1102 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
1103 AssertRC(rc);
1104 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
1105 }
1106}
1107
1108
1109/**
1110 * Adds an exception to the exception bitmap and commits it to the current VMCS.
1111 *
1112 * @param pVmxTransient The VMX-transient structure.
1113 * @param uXcpt The exception to add.
1114 */
1115static void hmR0VmxAddXcptIntercept(PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
1116{
1117 Assert(uXcpt <= X86_XCPT_LAST);
1118 hmR0VmxAddXcptInterceptMask(pVmxTransient, RT_BIT_32(uXcpt));
1119}
1120
1121
1122/**
1123 * Remove one or more exceptions from the exception bitmap and commits it to the
1124 * current VMCS.
1125 *
1126 * This takes care of not removing the exception intercept if a nested-guest
1127 * requires the exception to be intercepted.
1128 *
1129 * @returns VBox status code.
1130 * @param pVCpu The cross context virtual CPU structure.
1131 * @param pVmxTransient The VMX-transient structure.
1132 * @param uXcptMask The exception(s) to remove.
1133 */
1134static int hmR0VmxRemoveXcptInterceptMask(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
1135{
1136 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1137 uint32_t u32XcptBitmap = pVmcsInfo->u32XcptBitmap;
1138 if (u32XcptBitmap & uXcptMask)
1139 {
1140#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1141 if (!pVmxTransient->fIsNestedGuest)
1142 { /* likely */ }
1143 else
1144 {
1145 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1146 uXcptMask &= ~pVmcsNstGst->u32XcptBitmap;
1147 }
1148#endif
1149#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
1150 uXcptMask &= ~( RT_BIT(X86_XCPT_BP)
1151 | RT_BIT(X86_XCPT_DE)
1152 | RT_BIT(X86_XCPT_NM)
1153 | RT_BIT(X86_XCPT_TS)
1154 | RT_BIT(X86_XCPT_UD)
1155 | RT_BIT(X86_XCPT_NP)
1156 | RT_BIT(X86_XCPT_SS)
1157 | RT_BIT(X86_XCPT_GP)
1158 | RT_BIT(X86_XCPT_PF)
1159 | RT_BIT(X86_XCPT_MF));
1160#elif defined(HMVMX_ALWAYS_TRAP_PF)
1161 uXcptMask &= ~RT_BIT(X86_XCPT_PF);
1162#endif
1163 if (uXcptMask)
1164 {
1165 /* Validate we are not removing any essential exception intercepts. */
1166 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || !(uXcptMask & RT_BIT(X86_XCPT_PF)));
1167 NOREF(pVCpu);
1168 Assert(!(uXcptMask & RT_BIT(X86_XCPT_DB)));
1169 Assert(!(uXcptMask & RT_BIT(X86_XCPT_AC)));
1170
1171 /* Remove it from the exception bitmap. */
1172 u32XcptBitmap &= ~uXcptMask;
1173
1174 /* Commit and update the cache if necessary. */
1175 if (pVmcsInfo->u32XcptBitmap != u32XcptBitmap)
1176 {
1177 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
1178 AssertRC(rc);
1179 pVmcsInfo->u32XcptBitmap = u32XcptBitmap;
1180 }
1181 }
1182 }
1183 return VINF_SUCCESS;
1184}
1185
1186
1187/**
1188 * Remove an exceptions from the exception bitmap and commits it to the current
1189 * VMCS.
1190 *
1191 * @returns VBox status code.
1192 * @param pVCpu The cross context virtual CPU structure.
1193 * @param pVmxTransient The VMX-transient structure.
1194 * @param uXcpt The exception to remove.
1195 */
1196static int hmR0VmxRemoveXcptIntercept(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
1197{
1198 return hmR0VmxRemoveXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT(uXcpt));
1199}
1200
1201
1202/**
1203 * Loads the VMCS specified by the VMCS info. object.
1204 *
1205 * @returns VBox status code.
1206 * @param pVmcsInfo The VMCS info. object.
1207 *
1208 * @remarks Can be called with interrupts disabled.
1209 */
1210static int hmR0VmxLoadVmcs(PVMXVMCSINFO pVmcsInfo)
1211{
1212 Assert(pVmcsInfo->HCPhysVmcs != 0 && pVmcsInfo->HCPhysVmcs != NIL_RTHCPHYS);
1213 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1214
1215 int rc = VMXLoadVmcs(pVmcsInfo->HCPhysVmcs);
1216 if (RT_SUCCESS(rc))
1217 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
1218 return rc;
1219}
1220
1221
1222/**
1223 * Clears the VMCS specified by the VMCS info. object.
1224 *
1225 * @returns VBox status code.
1226 * @param pVmcsInfo The VMCS info. object.
1227 *
1228 * @remarks Can be called with interrupts disabled.
1229 */
1230static int hmR0VmxClearVmcs(PVMXVMCSINFO pVmcsInfo)
1231{
1232 Assert(pVmcsInfo->HCPhysVmcs != 0 && pVmcsInfo->HCPhysVmcs != NIL_RTHCPHYS);
1233 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1234
1235 int rc = VMXClearVmcs(pVmcsInfo->HCPhysVmcs);
1236 if (RT_SUCCESS(rc))
1237 pVmcsInfo->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
1238 return rc;
1239}
1240
1241
1242#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1243/**
1244 * Loads the shadow VMCS specified by the VMCS info. object.
1245 *
1246 * @returns VBox status code.
1247 * @param pVmcsInfo The VMCS info. object.
1248 *
1249 * @remarks Can be called with interrupts disabled.
1250 */
1251static int hmR0VmxLoadShadowVmcs(PVMXVMCSINFO pVmcsInfo)
1252{
1253 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1254 Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
1255
1256 int rc = VMXLoadVmcs(pVmcsInfo->HCPhysShadowVmcs);
1257 if (RT_SUCCESS(rc))
1258 pVmcsInfo->fShadowVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
1259 return rc;
1260}
1261
1262
1263/**
1264 * Clears the shadow VMCS specified by the VMCS info. object.
1265 *
1266 * @returns VBox status code.
1267 * @param pVmcsInfo The VMCS info. object.
1268 *
1269 * @remarks Can be called with interrupts disabled.
1270 */
1271static int hmR0VmxClearShadowVmcs(PVMXVMCSINFO pVmcsInfo)
1272{
1273 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1274 Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
1275
1276 int rc = VMXClearVmcs(pVmcsInfo->HCPhysShadowVmcs);
1277 if (RT_SUCCESS(rc))
1278 pVmcsInfo->fShadowVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
1279 return rc;
1280}
1281
1282
1283/**
1284 * Switches from and to the specified VMCSes.
1285 *
1286 * @returns VBox status code.
1287 * @param pVmcsInfoFrom The VMCS info. object we are switching from.
1288 * @param pVmcsInfoTo The VMCS info. object we are switching to.
1289 *
1290 * @remarks Called with interrupts disabled.
1291 */
1292static int hmR0VmxSwitchVmcs(PVMXVMCSINFO pVmcsInfoFrom, PVMXVMCSINFO pVmcsInfoTo)
1293{
1294 /*
1295 * Clear the VMCS we are switching out if it has not already been cleared.
1296 * This will sync any CPU internal data back to the VMCS.
1297 */
1298 if (pVmcsInfoFrom->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
1299 {
1300 int rc = hmR0VmxClearVmcs(pVmcsInfoFrom);
1301 if (RT_SUCCESS(rc))
1302 {
1303 /*
1304 * The shadow VMCS, if any, would not be active at this point since we
1305 * would have cleared it while importing the virtual hardware-virtualization
1306 * state as part the VMLAUNCH/VMRESUME VM-exit. Hence, there's no need to
1307 * clear the shadow VMCS here, just assert for safety.
1308 */
1309 Assert(!pVmcsInfoFrom->pvShadowVmcs || pVmcsInfoFrom->fShadowVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR);
1310 }
1311 else
1312 return rc;
1313 }
1314
1315 /*
1316 * Clear the VMCS we are switching to if it has not already been cleared.
1317 * This will initialize the VMCS launch state to "clear" required for loading it.
1318 *
1319 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
1320 */
1321 if (pVmcsInfoTo->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
1322 {
1323 int rc = hmR0VmxClearVmcs(pVmcsInfoTo);
1324 if (RT_SUCCESS(rc))
1325 { /* likely */ }
1326 else
1327 return rc;
1328 }
1329
1330 /*
1331 * Finally, load the VMCS we are switching to.
1332 */
1333 return hmR0VmxLoadVmcs(pVmcsInfoTo);
1334}
1335
1336
1337/**
1338 * Switches between the guest VMCS and the nested-guest VMCS as specified by the
1339 * caller.
1340 *
1341 * @returns VBox status code.
1342 * @param pVCpu The cross context virtual CPU structure.
1343 * @param fSwitchToNstGstVmcs Whether to switch to the nested-guest VMCS (pass
1344 * true) or guest VMCS (pass false).
1345 */
1346static int hmR0VmxSwitchToGstOrNstGstVmcs(PVMCPUCC pVCpu, bool fSwitchToNstGstVmcs)
1347{
1348 /* Ensure we have synced everything from the guest-CPU context to the VMCS before switching. */
1349 HMVMX_CPUMCTX_ASSERT(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
1350
1351 PVMXVMCSINFO pVmcsInfoFrom;
1352 PVMXVMCSINFO pVmcsInfoTo;
1353 if (fSwitchToNstGstVmcs)
1354 {
1355 pVmcsInfoFrom = &pVCpu->hm.s.vmx.VmcsInfo;
1356 pVmcsInfoTo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
1357 }
1358 else
1359 {
1360 pVmcsInfoFrom = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
1361 pVmcsInfoTo = &pVCpu->hm.s.vmx.VmcsInfo;
1362 }
1363
1364 /*
1365 * Disable interrupts to prevent being preempted while we switch the current VMCS as the
1366 * preemption hook code path acquires the current VMCS.
1367 */
1368 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1369
1370 int rc = hmR0VmxSwitchVmcs(pVmcsInfoFrom, pVmcsInfoTo);
1371 if (RT_SUCCESS(rc))
1372 {
1373 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = fSwitchToNstGstVmcs;
1374
1375 /*
1376 * If we are switching to a VMCS that was executed on a different host CPU or was
1377 * never executed before, flag that we need to export the host state before executing
1378 * guest/nested-guest code using hardware-assisted VMX.
1379 *
1380 * This could probably be done in a preemptible context since the preemption hook
1381 * will flag the necessary change in host context. However, since preemption is
1382 * already disabled and to avoid making assumptions about host specific code in
1383 * RTMpCpuId when called with preemption enabled, we'll do this while preemption is
1384 * disabled.
1385 */
1386 if (pVmcsInfoTo->idHostCpuState == RTMpCpuId())
1387 { /* likely */ }
1388 else
1389 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE);
1390
1391 ASMSetFlags(fEFlags);
1392
1393 /*
1394 * We use a different VM-exit MSR-store areas for the guest and nested-guest. Hence,
1395 * flag that we need to update the host MSR values there. Even if we decide in the
1396 * future to share the VM-exit MSR-store area page between the guest and nested-guest,
1397 * if its content differs, we would have to update the host MSRs anyway.
1398 */
1399 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
1400 }
1401 else
1402 ASMSetFlags(fEFlags);
1403 return rc;
1404}
1405#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
1406
1407
1408/**
1409 * Updates the VM's last error record.
1410 *
1411 * If there was a VMX instruction error, reads the error data from the VMCS and
1412 * updates VCPU's last error record as well.
1413 *
1414 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1415 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
1416 * VERR_VMX_INVALID_VMCS_FIELD.
1417 * @param rc The error code.
1418 */
1419static void hmR0VmxUpdateErrorRecord(PVMCPUCC pVCpu, int rc)
1420{
1421 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
1422 || rc == VERR_VMX_UNABLE_TO_START_VM)
1423 {
1424 AssertPtrReturnVoid(pVCpu);
1425 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
1426 }
1427 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
1428}
1429
1430
1431#ifdef VBOX_STRICT
1432/**
1433 * Reads the VM-entry interruption-information field from the VMCS into the VMX
1434 * transient structure.
1435 *
1436 * @param pVmxTransient The VMX-transient structure.
1437 */
1438DECLINLINE(void) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
1439{
1440 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
1441 AssertRC(rc);
1442}
1443
1444
1445/**
1446 * Reads the VM-entry exception error code field from the VMCS into
1447 * the VMX transient structure.
1448 *
1449 * @param pVmxTransient The VMX-transient structure.
1450 */
1451DECLINLINE(void) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1452{
1453 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
1454 AssertRC(rc);
1455}
1456
1457
1458/**
1459 * Reads the VM-entry exception error code field from the VMCS into
1460 * the VMX transient structure.
1461 *
1462 * @param pVmxTransient The VMX-transient structure.
1463 */
1464DECLINLINE(void) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
1465{
1466 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
1467 AssertRC(rc);
1468}
1469#endif /* VBOX_STRICT */
1470
1471
1472/**
1473 * Reads the VM-exit interruption-information field from the VMCS into the VMX
1474 * transient structure.
1475 *
1476 * @param pVmxTransient The VMX-transient structure.
1477 */
1478DECLINLINE(void) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
1479{
1480 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
1481 {
1482 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
1483 AssertRC(rc);
1484 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
1485 }
1486}
1487
1488
1489/**
1490 * Reads the VM-exit interruption error code from the VMCS into the VMX
1491 * transient structure.
1492 *
1493 * @param pVmxTransient The VMX-transient structure.
1494 */
1495DECLINLINE(void) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1496{
1497 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
1498 {
1499 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
1500 AssertRC(rc);
1501 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
1502 }
1503}
1504
1505
1506/**
1507 * Reads the VM-exit instruction length field from the VMCS into the VMX
1508 * transient structure.
1509 *
1510 * @param pVmxTransient The VMX-transient structure.
1511 */
1512DECLINLINE(void) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
1513{
1514 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
1515 {
1516 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbExitInstr);
1517 AssertRC(rc);
1518 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
1519 }
1520}
1521
1522
1523/**
1524 * Reads the VM-exit instruction-information field from the VMCS into
1525 * the VMX transient structure.
1526 *
1527 * @param pVmxTransient The VMX-transient structure.
1528 */
1529DECLINLINE(void) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
1530{
1531 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
1532 {
1533 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
1534 AssertRC(rc);
1535 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
1536 }
1537}
1538
1539
1540/**
1541 * Reads the Exit Qualification from the VMCS into the VMX transient structure.
1542 *
1543 * @param pVmxTransient The VMX-transient structure.
1544 */
1545DECLINLINE(void) hmR0VmxReadExitQualVmcs(PVMXTRANSIENT pVmxTransient)
1546{
1547 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
1548 {
1549 int rc = VMXReadVmcsNw(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual);
1550 AssertRC(rc);
1551 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
1552 }
1553}
1554
1555
1556/**
1557 * Reads the Guest-linear address from the VMCS into the VMX transient structure.
1558 *
1559 * @param pVmxTransient The VMX-transient structure.
1560 */
1561DECLINLINE(void) hmR0VmxReadGuestLinearAddrVmcs(PVMXTRANSIENT pVmxTransient)
1562{
1563 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
1564 {
1565 int rc = VMXReadVmcsNw(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr);
1566 AssertRC(rc);
1567 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
1568 }
1569}
1570
1571
1572/**
1573 * Reads the Guest-physical address from the VMCS into the VMX transient structure.
1574 *
1575 * @param pVmxTransient The VMX-transient structure.
1576 */
1577DECLINLINE(void) hmR0VmxReadGuestPhysicalAddrVmcs(PVMXTRANSIENT pVmxTransient)
1578{
1579 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_PHYSICAL_ADDR))
1580 {
1581 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &pVmxTransient->uGuestPhysicalAddr);
1582 AssertRC(rc);
1583 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_PHYSICAL_ADDR;
1584 }
1585}
1586
1587#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1588/**
1589 * Reads the Guest pending-debug exceptions from the VMCS into the VMX transient
1590 * structure.
1591 *
1592 * @param pVmxTransient The VMX-transient structure.
1593 */
1594DECLINLINE(void) hmR0VmxReadGuestPendingDbgXctps(PVMXTRANSIENT pVmxTransient)
1595{
1596 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_PENDING_DBG_XCPTS))
1597 {
1598 int rc = VMXReadVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &pVmxTransient->uGuestPendingDbgXcpts);
1599 AssertRC(rc);
1600 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_PENDING_DBG_XCPTS;
1601 }
1602}
1603#endif
1604
1605/**
1606 * Reads the IDT-vectoring information field from the VMCS into the VMX
1607 * transient structure.
1608 *
1609 * @param pVmxTransient The VMX-transient structure.
1610 *
1611 * @remarks No-long-jump zone!!!
1612 */
1613DECLINLINE(void) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
1614{
1615 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
1616 {
1617 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
1618 AssertRC(rc);
1619 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
1620 }
1621}
1622
1623
1624/**
1625 * Reads the IDT-vectoring error code from the VMCS into the VMX
1626 * transient structure.
1627 *
1628 * @param pVmxTransient The VMX-transient structure.
1629 */
1630DECLINLINE(void) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1631{
1632 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
1633 {
1634 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
1635 AssertRC(rc);
1636 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
1637 }
1638}
1639
1640#ifdef HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
1641/**
1642 * Reads all relevant read-only VMCS fields into the VMX transient structure.
1643 *
1644 * @param pVmxTransient The VMX-transient structure.
1645 */
1646static void hmR0VmxReadAllRoFieldsVmcs(PVMXTRANSIENT pVmxTransient)
1647{
1648 int rc = VMXReadVmcsNw(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual);
1649 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbExitInstr);
1650 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
1651 rc |= VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
1652 rc |= VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
1653 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
1654 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
1655 rc |= VMXReadVmcsNw(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr);
1656 rc |= VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &pVmxTransient->uGuestPhysicalAddr);
1657 AssertRC(rc);
1658 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION
1659 | HMVMX_READ_EXIT_INSTR_LEN
1660 | HMVMX_READ_EXIT_INSTR_INFO
1661 | HMVMX_READ_IDT_VECTORING_INFO
1662 | HMVMX_READ_IDT_VECTORING_ERROR_CODE
1663 | HMVMX_READ_EXIT_INTERRUPTION_INFO
1664 | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
1665 | HMVMX_READ_GUEST_LINEAR_ADDR
1666 | HMVMX_READ_GUEST_PHYSICAL_ADDR;
1667}
1668#endif
1669
1670/**
1671 * Enters VMX root mode operation on the current CPU.
1672 *
1673 * @returns VBox status code.
1674 * @param pHostCpu The HM physical-CPU structure.
1675 * @param pVM The cross context VM structure. Can be
1676 * NULL, after a resume.
1677 * @param HCPhysCpuPage Physical address of the VMXON region.
1678 * @param pvCpuPage Pointer to the VMXON region.
1679 */
1680static int hmR0VmxEnterRootMode(PHMPHYSCPU pHostCpu, PVMCC pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
1681{
1682 Assert(pHostCpu);
1683 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
1684 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
1685 Assert(pvCpuPage);
1686 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1687
1688 if (pVM)
1689 {
1690 /* Write the VMCS revision identifier to the VMXON region. */
1691 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
1692 }
1693
1694 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
1695 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1696
1697 /* Enable the VMX bit in CR4 if necessary. */
1698 RTCCUINTREG const uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
1699
1700 /* Record whether VMXE was already prior to us enabling it above. */
1701 pHostCpu->fVmxeAlreadyEnabled = RT_BOOL(uOldCr4 & X86_CR4_VMXE);
1702
1703 /* Enter VMX root mode. */
1704 int rc = VMXEnable(HCPhysCpuPage);
1705 if (RT_FAILURE(rc))
1706 {
1707 /* Restore CR4.VMXE if it was not set prior to our attempt to set it above. */
1708 if (!pHostCpu->fVmxeAlreadyEnabled)
1709 SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
1710
1711 if (pVM)
1712 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
1713 }
1714
1715 /* Restore interrupts. */
1716 ASMSetFlags(fEFlags);
1717 return rc;
1718}
1719
1720
1721/**
1722 * Exits VMX root mode operation on the current CPU.
1723 *
1724 * @returns VBox status code.
1725 * @param pHostCpu The HM physical-CPU structure.
1726 */
1727static int hmR0VmxLeaveRootMode(PHMPHYSCPU pHostCpu)
1728{
1729 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1730
1731 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
1732 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1733
1734 /* If we're for some reason not in VMX root mode, then don't leave it. */
1735 RTCCUINTREG const uHostCr4 = ASMGetCR4();
1736
1737 int rc;
1738 if (uHostCr4 & X86_CR4_VMXE)
1739 {
1740 /* Exit VMX root mode and clear the VMX bit in CR4. */
1741 VMXDisable();
1742
1743 /* Clear CR4.VMXE only if it was clear prior to use setting it. */
1744 if (!pHostCpu->fVmxeAlreadyEnabled)
1745 SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
1746
1747 rc = VINF_SUCCESS;
1748 }
1749 else
1750 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
1751
1752 /* Restore interrupts. */
1753 ASMSetFlags(fEFlags);
1754 return rc;
1755}
1756
1757
1758/**
1759 * Allocates pages specified as specified by an array of VMX page allocation info
1760 * objects.
1761 *
1762 * The pages contents are zero'd after allocation.
1763 *
1764 * @returns VBox status code.
1765 * @param hMemObj The ring-0 memory object associated with the allocation.
1766 * @param paAllocInfo The pointer to the first element of the VMX
1767 * page-allocation info object array.
1768 * @param cEntries The number of elements in the @a paAllocInfo array.
1769 */
1770static int hmR0VmxPagesAllocZ(RTR0MEMOBJ hMemObj, PVMXPAGEALLOCINFO paAllocInfo, uint32_t cEntries)
1771{
1772 /* Figure out how many pages to allocate. */
1773 uint32_t cPages = 0;
1774 for (uint32_t iPage = 0; iPage < cEntries; iPage++)
1775 cPages += !!paAllocInfo[iPage].fValid;
1776
1777 /* Allocate the pages. */
1778 if (cPages)
1779 {
1780 size_t const cbPages = cPages << X86_PAGE_4K_SHIFT;
1781 int rc = RTR0MemObjAllocPage(&hMemObj, cbPages, false /* fExecutable */);
1782 if (RT_FAILURE(rc))
1783 return rc;
1784
1785 /* Zero the contents and assign each page to the corresponding VMX page-allocation entry. */
1786 void *pvFirstPage = RTR0MemObjAddress(hMemObj);
1787 ASMMemZero32(pvFirstPage, cbPages);
1788
1789 uint32_t iPage = 0;
1790 for (uint32_t i = 0; i < cEntries; i++)
1791 if (paAllocInfo[i].fValid)
1792 {
1793 RTHCPHYS const HCPhysPage = RTR0MemObjGetPagePhysAddr(hMemObj, iPage);
1794 void *pvPage = (void *)((uintptr_t)pvFirstPage + (iPage << X86_PAGE_4K_SHIFT));
1795 Assert(HCPhysPage && HCPhysPage != NIL_RTHCPHYS);
1796 AssertPtr(pvPage);
1797
1798 Assert(paAllocInfo[iPage].pHCPhys);
1799 Assert(paAllocInfo[iPage].ppVirt);
1800 *paAllocInfo[iPage].pHCPhys = HCPhysPage;
1801 *paAllocInfo[iPage].ppVirt = pvPage;
1802
1803 /* Move to next page. */
1804 ++iPage;
1805 }
1806
1807 /* Make sure all valid (requested) pages have been assigned. */
1808 Assert(iPage == cPages);
1809 }
1810 return VINF_SUCCESS;
1811}
1812
1813
1814/**
1815 * Frees pages allocated using hmR0VmxPagesAllocZ.
1816 *
1817 * @param hMemObj The ring-0 memory object associated with the allocation.
1818 */
1819DECL_FORCE_INLINE(void) hmR0VmxPagesFree(RTR0MEMOBJ hMemObj)
1820{
1821 /* We can cleanup wholesale since it's all one allocation. */
1822 RTR0MemObjFree(hMemObj, true /* fFreeMappings */);
1823}
1824
1825
1826/**
1827 * Initializes a VMCS info. object.
1828 *
1829 * @param pVmcsInfo The VMCS info. object.
1830 */
1831static void hmR0VmxVmcsInfoInit(PVMXVMCSINFO pVmcsInfo)
1832{
1833 memset(pVmcsInfo, 0, sizeof(*pVmcsInfo));
1834
1835 Assert(pVmcsInfo->hMemObj == NIL_RTR0MEMOBJ);
1836 pVmcsInfo->HCPhysVmcs = NIL_RTHCPHYS;
1837 pVmcsInfo->HCPhysShadowVmcs = NIL_RTHCPHYS;
1838 pVmcsInfo->HCPhysMsrBitmap = NIL_RTHCPHYS;
1839 pVmcsInfo->HCPhysGuestMsrLoad = NIL_RTHCPHYS;
1840 pVmcsInfo->HCPhysGuestMsrStore = NIL_RTHCPHYS;
1841 pVmcsInfo->HCPhysHostMsrLoad = NIL_RTHCPHYS;
1842 pVmcsInfo->HCPhysVirtApic = NIL_RTHCPHYS;
1843 pVmcsInfo->HCPhysEPTP = NIL_RTHCPHYS;
1844 pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
1845 pVmcsInfo->idHostCpuState = NIL_RTCPUID;
1846 pVmcsInfo->idHostCpuExec = NIL_RTCPUID;
1847}
1848
1849
1850/**
1851 * Frees the VT-x structures for a VMCS info. object.
1852 *
1853 * @param pVmcsInfo The VMCS info. object.
1854 */
1855static void hmR0VmxVmcsInfoFree(PVMXVMCSINFO pVmcsInfo)
1856{
1857 if (pVmcsInfo->hMemObj != NIL_RTR0MEMOBJ)
1858 {
1859 hmR0VmxPagesFree(pVmcsInfo->hMemObj);
1860 hmR0VmxVmcsInfoInit(pVmcsInfo);
1861 }
1862}
1863
1864
1865/**
1866 * Allocates the VT-x structures for a VMCS info. object.
1867 *
1868 * @returns VBox status code.
1869 * @param pVCpu The cross context virtual CPU structure.
1870 * @param pVmcsInfo The VMCS info. object.
1871 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
1872 *
1873 * @remarks The caller is expected to take care of any and all allocation failures.
1874 * This function will not perform any cleanup for failures half-way
1875 * through.
1876 */
1877static int hmR0VmxAllocVmcsInfo(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
1878{
1879 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1880
1881 bool const fMsrBitmaps = RT_BOOL(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS);
1882 bool const fShadowVmcs = !fIsNstGstVmcs ? pVM->hm.s.vmx.fUseVmcsShadowing : pVM->cpum.ro.GuestFeatures.fVmxVmcsShadowing;
1883 Assert(!pVM->cpum.ro.GuestFeatures.fVmxVmcsShadowing); /* VMCS shadowing is not yet exposed to the guest. */
1884 VMXPAGEALLOCINFO aAllocInfo[] = {
1885 { true, 0 /* Unused */, &pVmcsInfo->HCPhysVmcs, &pVmcsInfo->pvVmcs },
1886 { true, 0 /* Unused */, &pVmcsInfo->HCPhysGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad },
1887 { true, 0 /* Unused */, &pVmcsInfo->HCPhysHostMsrLoad, &pVmcsInfo->pvHostMsrLoad },
1888 { fMsrBitmaps, 0 /* Unused */, &pVmcsInfo->HCPhysMsrBitmap, &pVmcsInfo->pvMsrBitmap },
1889 { fShadowVmcs, 0 /* Unused */, &pVmcsInfo->HCPhysShadowVmcs, &pVmcsInfo->pvShadowVmcs },
1890 };
1891
1892 int rc = hmR0VmxPagesAllocZ(pVmcsInfo->hMemObj, &aAllocInfo[0], RT_ELEMENTS(aAllocInfo));
1893 if (RT_FAILURE(rc))
1894 return rc;
1895
1896 /*
1897 * We use the same page for VM-entry MSR-load and VM-exit MSR store areas.
1898 * Because they contain a symmetric list of guest MSRs to load on VM-entry and store on VM-exit.
1899 */
1900 AssertCompile(RT_ELEMENTS(aAllocInfo) > 0);
1901 Assert(pVmcsInfo->HCPhysGuestMsrLoad != NIL_RTHCPHYS);
1902 pVmcsInfo->pvGuestMsrStore = pVmcsInfo->pvGuestMsrLoad;
1903 pVmcsInfo->HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrLoad;
1904
1905 /*
1906 * Get the virtual-APIC page rather than allocating them again.
1907 */
1908 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
1909 {
1910 if (!fIsNstGstVmcs)
1911 {
1912 if (PDMHasApic(pVM))
1913 {
1914 rc = APICGetApicPageForCpu(pVCpu, &pVmcsInfo->HCPhysVirtApic, (PRTR0PTR)&pVmcsInfo->pbVirtApic, NULL /*pR3Ptr*/);
1915 if (RT_FAILURE(rc))
1916 return rc;
1917 Assert(pVmcsInfo->pbVirtApic);
1918 Assert(pVmcsInfo->HCPhysVirtApic && pVmcsInfo->HCPhysVirtApic != NIL_RTHCPHYS);
1919 }
1920 }
1921 else
1922 {
1923 pVmcsInfo->pbVirtApic = (uint8_t *)CPUMGetGuestVmxVirtApicPage(&pVCpu->cpum.GstCtx, &pVmcsInfo->HCPhysVirtApic);
1924 Assert(pVmcsInfo->pbVirtApic);
1925 Assert(pVmcsInfo->HCPhysVirtApic && pVmcsInfo->HCPhysVirtApic != NIL_RTHCPHYS);
1926 }
1927 }
1928
1929 return VINF_SUCCESS;
1930}
1931
1932
1933/**
1934 * Free all VT-x structures for the VM.
1935 *
1936 * @returns IPRT status code.
1937 * @param pVM The cross context VM structure.
1938 */
1939static void hmR0VmxStructsFree(PVMCC pVM)
1940{
1941 hmR0VmxPagesFree(pVM->hm.s.vmx.hMemObj);
1942#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1943 if (pVM->hm.s.vmx.fUseVmcsShadowing)
1944 {
1945 RTMemFree(pVM->hm.s.vmx.paShadowVmcsFields);
1946 RTMemFree(pVM->hm.s.vmx.paShadowVmcsRoFields);
1947 }
1948#endif
1949
1950 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1951 {
1952 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
1953 hmR0VmxVmcsInfoFree(&pVCpu->hm.s.vmx.VmcsInfo);
1954#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1955 if (pVM->cpum.ro.GuestFeatures.fVmx)
1956 hmR0VmxVmcsInfoFree(&pVCpu->hm.s.vmx.VmcsInfoNstGst);
1957#endif
1958 }
1959}
1960
1961
1962/**
1963 * Allocate all VT-x structures for the VM.
1964 *
1965 * @returns IPRT status code.
1966 * @param pVM The cross context VM structure.
1967 *
1968 * @remarks This functions will cleanup on memory allocation failures.
1969 */
1970static int hmR0VmxStructsAlloc(PVMCC pVM)
1971{
1972 /*
1973 * Sanity check the VMCS size reported by the CPU as we assume 4KB allocations.
1974 * The VMCS size cannot be more than 4096 bytes.
1975 *
1976 * See Intel spec. Appendix A.1 "Basic VMX Information".
1977 */
1978 uint32_t const cbVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE);
1979 if (cbVmcs <= X86_PAGE_4K_SIZE)
1980 { /* likely */ }
1981 else
1982 {
1983 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE;
1984 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1985 }
1986
1987 /*
1988 * Allocate per-VM VT-x structures.
1989 */
1990 bool const fVirtApicAccess = RT_BOOL(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1991 bool const fUseVmcsShadowing = pVM->hm.s.vmx.fUseVmcsShadowing;
1992 VMXPAGEALLOCINFO aAllocInfo[] = {
1993 { fVirtApicAccess, 0 /* Unused */, &pVM->hm.s.vmx.HCPhysApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess },
1994 { fUseVmcsShadowing, 0 /* Unused */, &pVM->hm.s.vmx.HCPhysVmreadBitmap, &pVM->hm.s.vmx.pvVmreadBitmap },
1995 { fUseVmcsShadowing, 0 /* Unused */, &pVM->hm.s.vmx.HCPhysVmwriteBitmap, &pVM->hm.s.vmx.pvVmwriteBitmap },
1996#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1997 { true, 0 /* Unused */, &pVM->hm.s.vmx.HCPhysScratch, &(PRTR0PTR)pVM->hm.s.vmx.pbScratch },
1998#endif
1999 };
2000
2001 int rc = hmR0VmxPagesAllocZ(pVM->hm.s.vmx.hMemObj, &aAllocInfo[0], RT_ELEMENTS(aAllocInfo));
2002 if (RT_FAILURE(rc))
2003 goto cleanup;
2004
2005#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2006 /* Allocate the shadow VMCS-fields array. */
2007 if (fUseVmcsShadowing)
2008 {
2009 Assert(!pVM->hm.s.vmx.cShadowVmcsFields);
2010 Assert(!pVM->hm.s.vmx.cShadowVmcsRoFields);
2011 pVM->hm.s.vmx.paShadowVmcsFields = (uint32_t *)RTMemAllocZ(sizeof(g_aVmcsFields));
2012 pVM->hm.s.vmx.paShadowVmcsRoFields = (uint32_t *)RTMemAllocZ(sizeof(g_aVmcsFields));
2013 if (RT_LIKELY( pVM->hm.s.vmx.paShadowVmcsFields
2014 && pVM->hm.s.vmx.paShadowVmcsRoFields))
2015 { /* likely */ }
2016 else
2017 {
2018 rc = VERR_NO_MEMORY;
2019 goto cleanup;
2020 }
2021 }
2022#endif
2023
2024 /*
2025 * Allocate per-VCPU VT-x structures.
2026 */
2027 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2028 {
2029 /* Allocate the guest VMCS structures. */
2030 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
2031 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
2032 if (RT_FAILURE(rc))
2033 goto cleanup;
2034
2035#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2036 /* Allocate the nested-guest VMCS structures, when the VMX feature is exposed to the guest. */
2037 if (pVM->cpum.ro.GuestFeatures.fVmx)
2038 {
2039 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
2040 if (RT_FAILURE(rc))
2041 goto cleanup;
2042 }
2043#endif
2044 }
2045
2046 return VINF_SUCCESS;
2047
2048cleanup:
2049 hmR0VmxStructsFree(pVM);
2050 Assert(rc != VINF_SUCCESS);
2051 return rc;
2052}
2053
2054
2055/**
2056 * Pre-initializes non-zero fields in VMX structures that will be allocated.
2057 *
2058 * @param pVM The cross context VM structure.
2059 */
2060static void hmR0VmxStructsInit(PVMCC pVM)
2061{
2062 /* Paranoia. */
2063 Assert(pVM->hm.s.vmx.pbApicAccess == NULL);
2064#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2065 Assert(pVM->hm.s.vmx.pbScratch == NULL);
2066#endif
2067
2068 /*
2069 * Initialize members up-front so we can cleanup en masse on allocation failures.
2070 */
2071#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2072 pVM->hm.s.vmx.HCPhysScratch = NIL_RTHCPHYS;
2073#endif
2074 pVM->hm.s.vmx.HCPhysApicAccess = NIL_RTHCPHYS;
2075 pVM->hm.s.vmx.HCPhysVmreadBitmap = NIL_RTHCPHYS;
2076 pVM->hm.s.vmx.HCPhysVmwriteBitmap = NIL_RTHCPHYS;
2077 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2078 {
2079 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
2080 hmR0VmxVmcsInfoInit(&pVCpu->hm.s.vmx.VmcsInfo);
2081 hmR0VmxVmcsInfoInit(&pVCpu->hm.s.vmx.VmcsInfoNstGst);
2082 }
2083}
2084
2085#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2086/**
2087 * Returns whether an MSR at the given MSR-bitmap offset is intercepted or not.
2088 *
2089 * @returns @c true if the MSR is intercepted, @c false otherwise.
2090 * @param pvMsrBitmap The MSR bitmap.
2091 * @param offMsr The MSR byte offset.
2092 * @param iBit The bit offset from the byte offset.
2093 */
2094DECLINLINE(bool) hmR0VmxIsMsrBitSet(const void *pvMsrBitmap, uint16_t offMsr, int32_t iBit)
2095{
2096 uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
2097 Assert(pbMsrBitmap);
2098 Assert(offMsr + (iBit >> 3) <= X86_PAGE_4K_SIZE);
2099 return ASMBitTest(pbMsrBitmap + offMsr, iBit);
2100}
2101#endif
2102
2103/**
2104 * Sets the permission bits for the specified MSR in the given MSR bitmap.
2105 *
2106 * If the passed VMCS is a nested-guest VMCS, this function ensures that the
2107 * read/write intercept is cleared from the MSR bitmap used for hardware-assisted
2108 * VMX execution of the nested-guest, only if nested-guest is also not intercepting
2109 * the read/write access of this MSR.
2110 *
2111 * @param pVCpu The cross context virtual CPU structure.
2112 * @param pVmcsInfo The VMCS info. object.
2113 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2114 * @param idMsr The MSR value.
2115 * @param fMsrpm The MSR permissions (see VMXMSRPM_XXX). This must
2116 * include both a read -and- a write permission!
2117 *
2118 * @sa CPUMGetVmxMsrPermission.
2119 * @remarks Can be called with interrupts disabled.
2120 */
2121static void hmR0VmxSetMsrPermission(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs, uint32_t idMsr, uint32_t fMsrpm)
2122{
2123 uint8_t *pbMsrBitmap = (uint8_t *)pVmcsInfo->pvMsrBitmap;
2124 Assert(pbMsrBitmap);
2125 Assert(VMXMSRPM_IS_FLAG_VALID(fMsrpm));
2126
2127 /*
2128 * MSR-bitmap Layout:
2129 * Byte index MSR range Interpreted as
2130 * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
2131 * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
2132 * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
2133 * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
2134 *
2135 * A bit corresponding to an MSR within the above range causes a VM-exit
2136 * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
2137 * the MSR range, it always cause a VM-exit.
2138 *
2139 * See Intel spec. 24.6.9 "MSR-Bitmap Address".
2140 */
2141 uint16_t const offBitmapRead = 0;
2142 uint16_t const offBitmapWrite = 0x800;
2143 uint16_t offMsr;
2144 int32_t iBit;
2145 if (idMsr <= UINT32_C(0x00001fff))
2146 {
2147 offMsr = 0;
2148 iBit = idMsr;
2149 }
2150 else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
2151 {
2152 offMsr = 0x400;
2153 iBit = idMsr - UINT32_C(0xc0000000);
2154 }
2155 else
2156 AssertMsgFailedReturnVoid(("Invalid MSR %#RX32\n", idMsr));
2157
2158 /*
2159 * Set the MSR read permission.
2160 */
2161 uint16_t const offMsrRead = offBitmapRead + offMsr;
2162 Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
2163 if (fMsrpm & VMXMSRPM_ALLOW_RD)
2164 {
2165#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2166 bool const fClear = !fIsNstGstVmcs ? true
2167 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrRead, iBit);
2168#else
2169 RT_NOREF2(pVCpu, fIsNstGstVmcs);
2170 bool const fClear = true;
2171#endif
2172 if (fClear)
2173 ASMBitClear(pbMsrBitmap + offMsrRead, iBit);
2174 }
2175 else
2176 ASMBitSet(pbMsrBitmap + offMsrRead, iBit);
2177
2178 /*
2179 * Set the MSR write permission.
2180 */
2181 uint16_t const offMsrWrite = offBitmapWrite + offMsr;
2182 Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
2183 if (fMsrpm & VMXMSRPM_ALLOW_WR)
2184 {
2185#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2186 bool const fClear = !fIsNstGstVmcs ? true
2187 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrWrite, iBit);
2188#else
2189 RT_NOREF2(pVCpu, fIsNstGstVmcs);
2190 bool const fClear = true;
2191#endif
2192 if (fClear)
2193 ASMBitClear(pbMsrBitmap + offMsrWrite, iBit);
2194 }
2195 else
2196 ASMBitSet(pbMsrBitmap + offMsrWrite, iBit);
2197}
2198
2199
2200/**
2201 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
2202 * area.
2203 *
2204 * @returns VBox status code.
2205 * @param pVCpu The cross context virtual CPU structure.
2206 * @param pVmcsInfo The VMCS info. object.
2207 * @param cMsrs The number of MSRs.
2208 */
2209static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t cMsrs)
2210{
2211 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
2212 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
2213 if (RT_LIKELY(cMsrs < cMaxSupportedMsrs))
2214 {
2215 /* Commit the MSR counts to the VMCS and update the cache. */
2216 if (pVmcsInfo->cEntryMsrLoad != cMsrs)
2217 {
2218 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs); AssertRC(rc);
2219 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs); AssertRC(rc);
2220 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs); AssertRC(rc);
2221 pVmcsInfo->cEntryMsrLoad = cMsrs;
2222 pVmcsInfo->cExitMsrStore = cMsrs;
2223 pVmcsInfo->cExitMsrLoad = cMsrs;
2224 }
2225 return VINF_SUCCESS;
2226 }
2227
2228 LogRel(("Auto-load/store MSR count exceeded! cMsrs=%u MaxSupported=%u\n", cMsrs, cMaxSupportedMsrs));
2229 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
2230 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2231}
2232
2233
2234/**
2235 * Adds a new (or updates the value of an existing) guest/host MSR
2236 * pair to be swapped during the world-switch as part of the
2237 * auto-load/store MSR area in the VMCS.
2238 *
2239 * @returns VBox status code.
2240 * @param pVCpu The cross context virtual CPU structure.
2241 * @param pVmxTransient The VMX-transient structure.
2242 * @param idMsr The MSR.
2243 * @param uGuestMsrValue Value of the guest MSR.
2244 * @param fSetReadWrite Whether to set the guest read/write access of this
2245 * MSR (thus not causing a VM-exit).
2246 * @param fUpdateHostMsr Whether to update the value of the host MSR if
2247 * necessary.
2248 */
2249static int hmR0VmxAddAutoLoadStoreMsr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t idMsr, uint64_t uGuestMsrValue,
2250 bool fSetReadWrite, bool fUpdateHostMsr)
2251{
2252 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
2253 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
2254 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2255 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
2256 uint32_t i;
2257
2258 /* Paranoia. */
2259 Assert(pGuestMsrLoad);
2260
2261 LogFlowFunc(("pVCpu=%p idMsr=%#RX32 uGestMsrValue=%#RX64\n", pVCpu, idMsr, uGuestMsrValue));
2262
2263 /* Check if the MSR already exists in the VM-entry MSR-load area. */
2264 for (i = 0; i < cMsrs; i++)
2265 {
2266 if (pGuestMsrLoad[i].u32Msr == idMsr)
2267 break;
2268 }
2269
2270 bool fAdded = false;
2271 if (i == cMsrs)
2272 {
2273 /* The MSR does not exist, bump the MSR count to make room for the new MSR. */
2274 ++cMsrs;
2275 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
2276 AssertMsgRCReturn(rc, ("Insufficient space to add MSR to VM-entry MSR-load/store area %u\n", idMsr), rc);
2277
2278 /* Set the guest to read/write this MSR without causing VM-exits. */
2279 if ( fSetReadWrite
2280 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
2281 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_ALLOW_RD_WR);
2282
2283 Log4Func(("Added MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
2284 fAdded = true;
2285 }
2286
2287 /* Update the MSR value for the newly added or already existing MSR. */
2288 pGuestMsrLoad[i].u32Msr = idMsr;
2289 pGuestMsrLoad[i].u64Value = uGuestMsrValue;
2290
2291 /* Create the corresponding slot in the VM-exit MSR-store area if we use a different page. */
2292 if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
2293 {
2294 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2295 pGuestMsrStore[i].u32Msr = idMsr;
2296 pGuestMsrStore[i].u64Value = uGuestMsrValue;
2297 }
2298
2299 /* Update the corresponding slot in the host MSR area. */
2300 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2301 Assert(pHostMsr != pVmcsInfo->pvGuestMsrLoad);
2302 Assert(pHostMsr != pVmcsInfo->pvGuestMsrStore);
2303 pHostMsr[i].u32Msr = idMsr;
2304
2305 /*
2306 * Only if the caller requests to update the host MSR value AND we've newly added the
2307 * MSR to the host MSR area do we actually update the value. Otherwise, it will be
2308 * updated by hmR0VmxUpdateAutoLoadHostMsrs().
2309 *
2310 * We do this for performance reasons since reading MSRs may be quite expensive.
2311 */
2312 if (fAdded)
2313 {
2314 if (fUpdateHostMsr)
2315 {
2316 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2317 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2318 pHostMsr[i].u64Value = ASMRdMsr(idMsr);
2319 }
2320 else
2321 {
2322 /* Someone else can do the work. */
2323 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
2324 }
2325 }
2326 return VINF_SUCCESS;
2327}
2328
2329
2330/**
2331 * Removes a guest/host MSR pair to be swapped during the world-switch from the
2332 * auto-load/store MSR area in the VMCS.
2333 *
2334 * @returns VBox status code.
2335 * @param pVCpu The cross context virtual CPU structure.
2336 * @param pVmxTransient The VMX-transient structure.
2337 * @param idMsr The MSR.
2338 */
2339static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t idMsr)
2340{
2341 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
2342 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
2343 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2344 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
2345
2346 LogFlowFunc(("pVCpu=%p idMsr=%#RX32\n", pVCpu, idMsr));
2347
2348 for (uint32_t i = 0; i < cMsrs; i++)
2349 {
2350 /* Find the MSR. */
2351 if (pGuestMsrLoad[i].u32Msr == idMsr)
2352 {
2353 /*
2354 * If it's the last MSR, we only need to reduce the MSR count.
2355 * If it's -not- the last MSR, copy the last MSR in place of it and reduce the MSR count.
2356 */
2357 if (i < cMsrs - 1)
2358 {
2359 /* Remove it from the VM-entry MSR-load area. */
2360 pGuestMsrLoad[i].u32Msr = pGuestMsrLoad[cMsrs - 1].u32Msr;
2361 pGuestMsrLoad[i].u64Value = pGuestMsrLoad[cMsrs - 1].u64Value;
2362
2363 /* Remove it from the VM-exit MSR-store area if it's in a different page. */
2364 if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
2365 {
2366 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2367 Assert(pGuestMsrStore[i].u32Msr == idMsr);
2368 pGuestMsrStore[i].u32Msr = pGuestMsrStore[cMsrs - 1].u32Msr;
2369 pGuestMsrStore[i].u64Value = pGuestMsrStore[cMsrs - 1].u64Value;
2370 }
2371
2372 /* Remove it from the VM-exit MSR-load area. */
2373 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2374 Assert(pHostMsr[i].u32Msr == idMsr);
2375 pHostMsr[i].u32Msr = pHostMsr[cMsrs - 1].u32Msr;
2376 pHostMsr[i].u64Value = pHostMsr[cMsrs - 1].u64Value;
2377 }
2378
2379 /* Reduce the count to reflect the removed MSR and bail. */
2380 --cMsrs;
2381 break;
2382 }
2383 }
2384
2385 /* Update the VMCS if the count changed (meaning the MSR was found and removed). */
2386 if (cMsrs != pVmcsInfo->cEntryMsrLoad)
2387 {
2388 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
2389 AssertRCReturn(rc, rc);
2390
2391 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
2392 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2393 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
2394
2395 Log4Func(("Removed MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
2396 return VINF_SUCCESS;
2397 }
2398
2399 return VERR_NOT_FOUND;
2400}
2401
2402
2403/**
2404 * Checks if the specified guest MSR is part of the VM-entry MSR-load area.
2405 *
2406 * @returns @c true if found, @c false otherwise.
2407 * @param pVmcsInfo The VMCS info. object.
2408 * @param idMsr The MSR to find.
2409 */
2410static bool hmR0VmxIsAutoLoadGuestMsr(PCVMXVMCSINFO pVmcsInfo, uint32_t idMsr)
2411{
2412 PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2413 uint32_t const cMsrs = pVmcsInfo->cEntryMsrLoad;
2414 Assert(pMsrs);
2415 Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
2416 for (uint32_t i = 0; i < cMsrs; i++)
2417 {
2418 if (pMsrs[i].u32Msr == idMsr)
2419 return true;
2420 }
2421 return false;
2422}
2423
2424
2425/**
2426 * Updates the value of all host MSRs in the VM-exit MSR-load area.
2427 *
2428 * @param pVCpu The cross context virtual CPU structure.
2429 * @param pVmcsInfo The VMCS info. object.
2430 *
2431 * @remarks No-long-jump zone!!!
2432 */
2433static void hmR0VmxUpdateAutoLoadHostMsrs(PCVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
2434{
2435 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2436
2437 PVMXAUTOMSR pHostMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2438 uint32_t const cMsrs = pVmcsInfo->cExitMsrLoad;
2439 Assert(pHostMsrLoad);
2440 Assert(sizeof(*pHostMsrLoad) * cMsrs <= X86_PAGE_4K_SIZE);
2441 LogFlowFunc(("pVCpu=%p cMsrs=%u\n", pVCpu, cMsrs));
2442 for (uint32_t i = 0; i < cMsrs; i++)
2443 {
2444 /*
2445 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
2446 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
2447 */
2448 if (pHostMsrLoad[i].u32Msr == MSR_K6_EFER)
2449 pHostMsrLoad[i].u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
2450 else
2451 pHostMsrLoad[i].u64Value = ASMRdMsr(pHostMsrLoad[i].u32Msr);
2452 }
2453}
2454
2455
2456/**
2457 * Saves a set of host MSRs to allow read/write passthru access to the guest and
2458 * perform lazy restoration of the host MSRs while leaving VT-x.
2459 *
2460 * @param pVCpu The cross context virtual CPU structure.
2461 *
2462 * @remarks No-long-jump zone!!!
2463 */
2464static void hmR0VmxLazySaveHostMsrs(PVMCPUCC pVCpu)
2465{
2466 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2467
2468 /*
2469 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap accesses in hmR0VmxSetupVmcsProcCtls().
2470 */
2471 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
2472 {
2473 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
2474 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2475 {
2476 pVCpu->hm.s.vmx.u64HostMsrLStar = ASMRdMsr(MSR_K8_LSTAR);
2477 pVCpu->hm.s.vmx.u64HostMsrStar = ASMRdMsr(MSR_K6_STAR);
2478 pVCpu->hm.s.vmx.u64HostMsrSfMask = ASMRdMsr(MSR_K8_SF_MASK);
2479 pVCpu->hm.s.vmx.u64HostMsrKernelGsBase = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
2480 }
2481 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
2482 }
2483}
2484
2485
2486/**
2487 * Checks whether the MSR belongs to the set of guest MSRs that we restore
2488 * lazily while leaving VT-x.
2489 *
2490 * @returns true if it does, false otherwise.
2491 * @param pVCpu The cross context virtual CPU structure.
2492 * @param idMsr The MSR to check.
2493 */
2494static bool hmR0VmxIsLazyGuestMsr(PCVMCPUCC pVCpu, uint32_t idMsr)
2495{
2496 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2497 {
2498 switch (idMsr)
2499 {
2500 case MSR_K8_LSTAR:
2501 case MSR_K6_STAR:
2502 case MSR_K8_SF_MASK:
2503 case MSR_K8_KERNEL_GS_BASE:
2504 return true;
2505 }
2506 }
2507 return false;
2508}
2509
2510
2511/**
2512 * Loads a set of guests MSRs to allow read/passthru to the guest.
2513 *
2514 * The name of this function is slightly confusing. This function does NOT
2515 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
2516 * common prefix for functions dealing with "lazy restoration" of the shared
2517 * MSRs.
2518 *
2519 * @param pVCpu The cross context virtual CPU structure.
2520 *
2521 * @remarks No-long-jump zone!!!
2522 */
2523static void hmR0VmxLazyLoadGuestMsrs(PVMCPUCC pVCpu)
2524{
2525 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2526 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2527
2528 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
2529 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2530 {
2531 /*
2532 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
2533 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
2534 * we can skip a few MSR writes.
2535 *
2536 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
2537 * guest MSR values in the guest-CPU context might be different to what's currently
2538 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
2539 * CPU, see @bugref{8728}.
2540 */
2541 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2542 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
2543 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostMsrKernelGsBase
2544 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostMsrLStar
2545 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostMsrStar
2546 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostMsrSfMask)
2547 {
2548#ifdef VBOX_STRICT
2549 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
2550 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
2551 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
2552 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
2553#endif
2554 }
2555 else
2556 {
2557 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
2558 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
2559 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
2560 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
2561 }
2562 }
2563 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
2564}
2565
2566
2567/**
2568 * Performs lazy restoration of the set of host MSRs if they were previously
2569 * loaded with guest MSR values.
2570 *
2571 * @param pVCpu The cross context virtual CPU structure.
2572 *
2573 * @remarks No-long-jump zone!!!
2574 * @remarks The guest MSRs should have been saved back into the guest-CPU
2575 * context by hmR0VmxImportGuestState()!!!
2576 */
2577static void hmR0VmxLazyRestoreHostMsrs(PVMCPUCC pVCpu)
2578{
2579 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2580 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2581
2582 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
2583 {
2584 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
2585 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2586 {
2587 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostMsrLStar);
2588 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostMsrStar);
2589 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostMsrSfMask);
2590 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostMsrKernelGsBase);
2591 }
2592 }
2593 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
2594}
2595
2596
2597/**
2598 * Verifies that our cached values of the VMCS fields are all consistent with
2599 * what's actually present in the VMCS.
2600 *
2601 * @returns VBox status code.
2602 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
2603 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
2604 * VMCS content. HMCPU error-field is
2605 * updated, see VMX_VCI_XXX.
2606 * @param pVCpu The cross context virtual CPU structure.
2607 * @param pVmcsInfo The VMCS info. object.
2608 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2609 */
2610static int hmR0VmxCheckCachedVmcsCtls(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
2611{
2612 const char * const pcszVmcs = fIsNstGstVmcs ? "Nested-guest VMCS" : "VMCS";
2613
2614 uint32_t u32Val;
2615 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
2616 AssertRC(rc);
2617 AssertMsgReturnStmt(pVmcsInfo->u32EntryCtls == u32Val,
2618 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32EntryCtls, u32Val),
2619 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
2620 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2621
2622 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
2623 AssertRC(rc);
2624 AssertMsgReturnStmt(pVmcsInfo->u32ExitCtls == u32Val,
2625 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ExitCtls, u32Val),
2626 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
2627 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2628
2629 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
2630 AssertRC(rc);
2631 AssertMsgReturnStmt(pVmcsInfo->u32PinCtls == u32Val,
2632 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32PinCtls, u32Val),
2633 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
2634 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2635
2636 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
2637 AssertRC(rc);
2638 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls == u32Val,
2639 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls, u32Val),
2640 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
2641 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2642
2643 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2644 {
2645 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
2646 AssertRC(rc);
2647 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls2 == u32Val,
2648 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls2, u32Val),
2649 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
2650 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2651 }
2652
2653 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
2654 AssertRC(rc);
2655 AssertMsgReturnStmt(pVmcsInfo->u32XcptBitmap == u32Val,
2656 ("%s exception bitmap mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32XcptBitmap, u32Val),
2657 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
2658 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2659
2660 uint64_t u64Val;
2661 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
2662 AssertRC(rc);
2663 AssertMsgReturnStmt(pVmcsInfo->u64TscOffset == u64Val,
2664 ("%s TSC offset mismatch: Cache=%#RX64 VMCS=%#RX64\n", pcszVmcs, pVmcsInfo->u64TscOffset, u64Val),
2665 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
2666 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2667
2668 NOREF(pcszVmcs);
2669 return VINF_SUCCESS;
2670}
2671
2672
2673#ifdef VBOX_STRICT
2674/**
2675 * Verifies that our cached host EFER MSR value has not changed since we cached it.
2676 *
2677 * @param pVCpu The cross context virtual CPU structure.
2678 * @param pVmcsInfo The VMCS info. object.
2679 */
2680static void hmR0VmxCheckHostEferMsr(PCVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
2681{
2682 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2683
2684 if (pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2685 {
2686 uint64_t const uHostEferMsr = ASMRdMsr(MSR_K6_EFER);
2687 uint64_t const uHostEferMsrCache = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
2688 uint64_t uVmcsEferMsrVmcs;
2689 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &uVmcsEferMsrVmcs);
2690 AssertRC(rc);
2691
2692 AssertMsgReturnVoid(uHostEferMsr == uVmcsEferMsrVmcs,
2693 ("EFER Host/VMCS mismatch! host=%#RX64 vmcs=%#RX64\n", uHostEferMsr, uVmcsEferMsrVmcs));
2694 AssertMsgReturnVoid(uHostEferMsr == uHostEferMsrCache,
2695 ("EFER Host/Cache mismatch! host=%#RX64 cache=%#RX64\n", uHostEferMsr, uHostEferMsrCache));
2696 }
2697}
2698
2699
2700/**
2701 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
2702 * VMCS are correct.
2703 *
2704 * @param pVCpu The cross context virtual CPU structure.
2705 * @param pVmcsInfo The VMCS info. object.
2706 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2707 */
2708static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
2709{
2710 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2711
2712 /* Read the various MSR-area counts from the VMCS. */
2713 uint32_t cEntryLoadMsrs;
2714 uint32_t cExitStoreMsrs;
2715 uint32_t cExitLoadMsrs;
2716 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cEntryLoadMsrs); AssertRC(rc);
2717 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cExitStoreMsrs); AssertRC(rc);
2718 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cExitLoadMsrs); AssertRC(rc);
2719
2720 /* Verify all the MSR counts are the same. */
2721 Assert(cEntryLoadMsrs == cExitStoreMsrs);
2722 Assert(cExitStoreMsrs == cExitLoadMsrs);
2723 uint32_t const cMsrs = cExitLoadMsrs;
2724
2725 /* Verify the MSR counts do not exceed the maximum count supported by the hardware. */
2726 Assert(cMsrs < VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc));
2727
2728 /* Verify the MSR counts are within the allocated page size. */
2729 Assert(sizeof(VMXAUTOMSR) * cMsrs <= X86_PAGE_4K_SIZE);
2730
2731 /* Verify the relevant contents of the MSR areas match. */
2732 PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2733 PCVMXAUTOMSR pGuestMsrStore = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2734 PCVMXAUTOMSR pHostMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2735 bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
2736 for (uint32_t i = 0; i < cMsrs; i++)
2737 {
2738 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
2739 if (fSeparateExitMsrStorePage)
2740 {
2741 AssertMsgReturnVoid(pGuestMsrLoad->u32Msr == pGuestMsrStore->u32Msr,
2742 ("GuestMsrLoad=%#RX32 GuestMsrStore=%#RX32 cMsrs=%u\n",
2743 pGuestMsrLoad->u32Msr, pGuestMsrStore->u32Msr, cMsrs));
2744 }
2745
2746 AssertMsgReturnVoid(pHostMsrLoad->u32Msr == pGuestMsrLoad->u32Msr,
2747 ("HostMsrLoad=%#RX32 GuestMsrLoad=%#RX32 cMsrs=%u\n",
2748 pHostMsrLoad->u32Msr, pGuestMsrLoad->u32Msr, cMsrs));
2749
2750 uint64_t const u64HostMsr = ASMRdMsr(pHostMsrLoad->u32Msr);
2751 AssertMsgReturnVoid(pHostMsrLoad->u64Value == u64HostMsr,
2752 ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
2753 pHostMsrLoad->u32Msr, pHostMsrLoad->u64Value, u64HostMsr, cMsrs));
2754
2755 /* Verify that cached host EFER MSR matches what's loaded the CPU. */
2756 bool const fIsEferMsr = RT_BOOL(pHostMsrLoad->u32Msr == MSR_K6_EFER);
2757 if (fIsEferMsr)
2758 {
2759 AssertMsgReturnVoid(u64HostMsr == pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer,
2760 ("Cached=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
2761 pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer, u64HostMsr, cMsrs));
2762 }
2763
2764 /* Verify that the accesses are as expected in the MSR bitmap for auto-load/store MSRs. */
2765 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2766 {
2767 uint32_t const fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, pGuestMsrLoad->u32Msr);
2768 if (fIsEferMsr)
2769 {
2770 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_RD), ("Passthru read for EFER MSR!?\n"));
2771 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_WR), ("Passthru write for EFER MSR!?\n"));
2772 }
2773 else
2774 {
2775 /* Verify LBR MSRs (used only for debugging) are intercepted. We don't passthru these MSRs to the guest yet. */
2776 PCVM pVM = pVCpu->CTX_SUFF(pVM);
2777 if ( pVM->hm.s.vmx.fLbr
2778 && ( hmR0VmxIsLbrBranchFromMsr(pVM, pGuestMsrLoad->u32Msr, NULL /* pidxMsr */)
2779 || hmR0VmxIsLbrBranchToMsr(pVM, pGuestMsrLoad->u32Msr, NULL /* pidxMsr */)
2780 || pGuestMsrLoad->u32Msr == pVM->hm.s.vmx.idLbrTosMsr))
2781 {
2782 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_MASK) == VMXMSRPM_EXIT_RD_WR,
2783 ("u32Msr=%#RX32 cMsrs=%u Passthru read/write for LBR MSRs!\n",
2784 pGuestMsrLoad->u32Msr, cMsrs));
2785 }
2786 else if (!fIsNstGstVmcs)
2787 {
2788 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_MASK) == VMXMSRPM_ALLOW_RD_WR,
2789 ("u32Msr=%#RX32 cMsrs=%u No passthru read/write!\n", pGuestMsrLoad->u32Msr, cMsrs));
2790 }
2791 else
2792 {
2793 /*
2794 * A nested-guest VMCS must -also- allow read/write passthrough for the MSR for us to
2795 * execute a nested-guest with MSR passthrough.
2796 *
2797 * Check if the nested-guest MSR bitmap allows passthrough, and if so, assert that we
2798 * allow passthrough too.
2799 */
2800 void const *pvMsrBitmapNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap);
2801 Assert(pvMsrBitmapNstGst);
2802 uint32_t const fMsrpmNstGst = CPUMGetVmxMsrPermission(pvMsrBitmapNstGst, pGuestMsrLoad->u32Msr);
2803 AssertMsgReturnVoid(fMsrpm == fMsrpmNstGst,
2804 ("u32Msr=%#RX32 cMsrs=%u Permission mismatch fMsrpm=%#x fMsrpmNstGst=%#x!\n",
2805 pGuestMsrLoad->u32Msr, cMsrs, fMsrpm, fMsrpmNstGst));
2806 }
2807 }
2808 }
2809
2810 /* Move to the next MSR. */
2811 pHostMsrLoad++;
2812 pGuestMsrLoad++;
2813 pGuestMsrStore++;
2814 }
2815}
2816#endif /* VBOX_STRICT */
2817
2818
2819/**
2820 * Flushes the TLB using EPT.
2821 *
2822 * @returns VBox status code.
2823 * @param pVCpu The cross context virtual CPU structure of the calling
2824 * EMT. Can be NULL depending on @a enmTlbFlush.
2825 * @param pVmcsInfo The VMCS info. object. Can be NULL depending on @a
2826 * enmTlbFlush.
2827 * @param enmTlbFlush Type of flush.
2828 *
2829 * @remarks Caller is responsible for making sure this function is called only
2830 * when NestedPaging is supported and providing @a enmTlbFlush that is
2831 * supported by the CPU.
2832 * @remarks Can be called with interrupts disabled.
2833 */
2834static void hmR0VmxFlushEpt(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, VMXTLBFLUSHEPT enmTlbFlush)
2835{
2836 uint64_t au64Descriptor[2];
2837 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
2838 au64Descriptor[0] = 0;
2839 else
2840 {
2841 Assert(pVCpu);
2842 Assert(pVmcsInfo);
2843 au64Descriptor[0] = pVmcsInfo->HCPhysEPTP;
2844 }
2845 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
2846
2847 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
2848 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %#RHp failed. rc=%Rrc\n", enmTlbFlush, au64Descriptor[0], rc));
2849
2850 if ( RT_SUCCESS(rc)
2851 && pVCpu)
2852 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
2853}
2854
2855
2856/**
2857 * Flushes the TLB using VPID.
2858 *
2859 * @returns VBox status code.
2860 * @param pVCpu The cross context virtual CPU structure of the calling
2861 * EMT. Can be NULL depending on @a enmTlbFlush.
2862 * @param enmTlbFlush Type of flush.
2863 * @param GCPtr Virtual address of the page to flush (can be 0 depending
2864 * on @a enmTlbFlush).
2865 *
2866 * @remarks Can be called with interrupts disabled.
2867 */
2868static void hmR0VmxFlushVpid(PVMCPUCC pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
2869{
2870 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
2871
2872 uint64_t au64Descriptor[2];
2873 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2874 {
2875 au64Descriptor[0] = 0;
2876 au64Descriptor[1] = 0;
2877 }
2878 else
2879 {
2880 AssertPtr(pVCpu);
2881 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2882 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2883 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
2884 au64Descriptor[1] = GCPtr;
2885 }
2886
2887 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
2888 AssertMsg(rc == VINF_SUCCESS,
2889 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
2890
2891 if ( RT_SUCCESS(rc)
2892 && pVCpu)
2893 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
2894 NOREF(rc);
2895}
2896
2897
2898/**
2899 * Invalidates a guest page by guest virtual address. Only relevant for EPT/VPID,
2900 * otherwise there is nothing really to invalidate.
2901 *
2902 * @returns VBox status code.
2903 * @param pVCpu The cross context virtual CPU structure.
2904 * @param GCVirt Guest virtual address of the page to invalidate.
2905 */
2906VMMR0DECL(int) VMXR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
2907{
2908 AssertPtr(pVCpu);
2909 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
2910
2911 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH))
2912 {
2913 /*
2914 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
2915 * the EPT case. See @bugref{6043} and @bugref{6177}.
2916 *
2917 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
2918 * as this function maybe called in a loop with individual addresses.
2919 */
2920 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2921 if (pVM->hm.s.vmx.fVpid)
2922 {
2923 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
2924 if (fVpidFlush)
2925 {
2926 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
2927 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
2928 }
2929 else
2930 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2931 }
2932 else if (pVM->hm.s.fNestedPaging)
2933 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2934 }
2935
2936 return VINF_SUCCESS;
2937}
2938
2939
2940/**
2941 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
2942 * case where neither EPT nor VPID is supported by the CPU.
2943 *
2944 * @param pHostCpu The HM physical-CPU structure.
2945 * @param pVCpu The cross context virtual CPU structure.
2946 *
2947 * @remarks Called with interrupts disabled.
2948 */
2949static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
2950{
2951 AssertPtr(pVCpu);
2952 AssertPtr(pHostCpu);
2953
2954 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
2955
2956 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2957 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2958 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2959 pVCpu->hm.s.fForceTLBFlush = false;
2960 return;
2961}
2962
2963
2964/**
2965 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
2966 *
2967 * @param pHostCpu The HM physical-CPU structure.
2968 * @param pVCpu The cross context virtual CPU structure.
2969 * @param pVmcsInfo The VMCS info. object.
2970 *
2971 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
2972 * nomenclature. The reason is, to avoid confusion in compare statements
2973 * since the host-CPU copies are named "ASID".
2974 *
2975 * @remarks Called with interrupts disabled.
2976 */
2977static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
2978{
2979#ifdef VBOX_WITH_STATISTICS
2980 bool fTlbFlushed = false;
2981# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
2982# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
2983 if (!fTlbFlushed) \
2984 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
2985 } while (0)
2986#else
2987# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
2988# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
2989#endif
2990
2991 AssertPtr(pVCpu);
2992 AssertPtr(pHostCpu);
2993 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2994
2995 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2996 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
2997 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
2998 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
2999
3000 /*
3001 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
3002 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
3003 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
3004 * cannot reuse the current ASID anymore.
3005 */
3006 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
3007 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
3008 {
3009 ++pHostCpu->uCurrentAsid;
3010 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
3011 {
3012 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
3013 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
3014 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
3015 }
3016
3017 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
3018 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
3019 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
3020
3021 /*
3022 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
3023 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
3024 */
3025 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
3026 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
3027 HMVMX_SET_TAGGED_TLB_FLUSHED();
3028 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
3029 }
3030 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
3031 {
3032 /*
3033 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
3034 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
3035 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
3036 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
3037 * mappings, see @bugref{6568}.
3038 *
3039 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
3040 */
3041 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
3042 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
3043 HMVMX_SET_TAGGED_TLB_FLUSHED();
3044 }
3045 else if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
3046 {
3047 /*
3048 * The nested-guest specifies its own guest-physical address to use as the APIC-access
3049 * address which requires flushing the TLB of EPT cached structures.
3050 *
3051 * See Intel spec. 28.3.3.4 "Guidelines for Use of the INVEPT Instruction".
3052 */
3053 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
3054 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
3055 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
3056 HMVMX_SET_TAGGED_TLB_FLUSHED();
3057 }
3058
3059
3060 pVCpu->hm.s.fForceTLBFlush = false;
3061 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
3062
3063 Assert(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu);
3064 Assert(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes);
3065 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
3066 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
3067 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
3068 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
3069 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
3070 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
3071 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
3072
3073 /* Update VMCS with the VPID. */
3074 int rc = VMXWriteVmcs16(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
3075 AssertRC(rc);
3076
3077#undef HMVMX_SET_TAGGED_TLB_FLUSHED
3078}
3079
3080
3081/**
3082 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
3083 *
3084 * @param pHostCpu The HM physical-CPU structure.
3085 * @param pVCpu The cross context virtual CPU structure.
3086 * @param pVmcsInfo The VMCS info. object.
3087 *
3088 * @remarks Called with interrupts disabled.
3089 */
3090static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
3091{
3092 AssertPtr(pVCpu);
3093 AssertPtr(pHostCpu);
3094 Assert(pHostCpu->idCpu != NIL_RTCPUID);
3095 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
3096 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
3097
3098 /*
3099 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
3100 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
3101 */
3102 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
3103 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
3104 {
3105 pVCpu->hm.s.fForceTLBFlush = true;
3106 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
3107 }
3108
3109 /* Check for explicit TLB flushes. */
3110 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
3111 {
3112 pVCpu->hm.s.fForceTLBFlush = true;
3113 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
3114 }
3115
3116 /* Check for TLB flushes while switching to/from a nested-guest. */
3117 if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
3118 {
3119 pVCpu->hm.s.fForceTLBFlush = true;
3120 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
3121 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
3122 }
3123
3124 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
3125 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
3126
3127 if (pVCpu->hm.s.fForceTLBFlush)
3128 {
3129 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
3130 pVCpu->hm.s.fForceTLBFlush = false;
3131 }
3132}
3133
3134
3135/**
3136 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
3137 *
3138 * @param pHostCpu The HM physical-CPU structure.
3139 * @param pVCpu The cross context virtual CPU structure.
3140 *
3141 * @remarks Called with interrupts disabled.
3142 */
3143static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
3144{
3145 AssertPtr(pVCpu);
3146 AssertPtr(pHostCpu);
3147 Assert(pHostCpu->idCpu != NIL_RTCPUID);
3148 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
3149 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
3150
3151 /*
3152 * Force a TLB flush for the first world switch if the current CPU differs from the one we
3153 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
3154 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
3155 * cannot reuse the current ASID anymore.
3156 */
3157 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
3158 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
3159 {
3160 pVCpu->hm.s.fForceTLBFlush = true;
3161 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
3162 }
3163
3164 /* Check for explicit TLB flushes. */
3165 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
3166 {
3167 /*
3168 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
3169 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
3170 * fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
3171 * include fExplicitFlush's too) - an obscure corner case.
3172 */
3173 pVCpu->hm.s.fForceTLBFlush = true;
3174 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
3175 }
3176
3177 /* Check for TLB flushes while switching to/from a nested-guest. */
3178 if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
3179 {
3180 pVCpu->hm.s.fForceTLBFlush = true;
3181 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
3182 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
3183 }
3184
3185 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3186 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
3187 if (pVCpu->hm.s.fForceTLBFlush)
3188 {
3189 ++pHostCpu->uCurrentAsid;
3190 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
3191 {
3192 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
3193 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
3194 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
3195 }
3196
3197 pVCpu->hm.s.fForceTLBFlush = false;
3198 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
3199 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
3200 if (pHostCpu->fFlushAsidBeforeUse)
3201 {
3202 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
3203 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
3204 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
3205 {
3206 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
3207 pHostCpu->fFlushAsidBeforeUse = false;
3208 }
3209 else
3210 {
3211 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
3212 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
3213 }
3214 }
3215 }
3216
3217 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
3218 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
3219 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
3220 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
3221 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
3222 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
3223 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
3224
3225 int rc = VMXWriteVmcs16(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
3226 AssertRC(rc);
3227}
3228
3229
3230/**
3231 * Flushes the guest TLB entry based on CPU capabilities.
3232 *
3233 * @param pHostCpu The HM physical-CPU structure.
3234 * @param pVCpu The cross context virtual CPU structure.
3235 * @param pVmcsInfo The VMCS info. object.
3236 *
3237 * @remarks Called with interrupts disabled.
3238 */
3239static void hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3240{
3241#ifdef HMVMX_ALWAYS_FLUSH_TLB
3242 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
3243#endif
3244 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3245 switch (pVM->hm.s.vmx.enmTlbFlushType)
3246 {
3247 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu, pVmcsInfo); break;
3248 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu, pVmcsInfo); break;
3249 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
3250 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
3251 default:
3252 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
3253 break;
3254 }
3255 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
3256}
3257
3258
3259/**
3260 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
3261 * TLB entries from the host TLB before VM-entry.
3262 *
3263 * @returns VBox status code.
3264 * @param pVM The cross context VM structure.
3265 */
3266static int hmR0VmxSetupTaggedTlb(PVMCC pVM)
3267{
3268 /*
3269 * Determine optimal flush type for nested paging.
3270 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup
3271 * unrestricted guest execution (see hmR3InitFinalizeR0()).
3272 */
3273 if (pVM->hm.s.fNestedPaging)
3274 {
3275 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
3276 {
3277 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
3278 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
3279 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
3280 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
3281 else
3282 {
3283 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
3284 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3285 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
3286 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3287 }
3288
3289 /* Make sure the write-back cacheable memory type for EPT is supported. */
3290 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
3291 {
3292 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3293 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
3294 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3295 }
3296
3297 /* EPT requires a page-walk length of 4. */
3298 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
3299 {
3300 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3301 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
3302 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3303 }
3304 }
3305 else
3306 {
3307 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
3308 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3309 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
3310 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3311 }
3312 }
3313
3314 /*
3315 * Determine optimal flush type for VPID.
3316 */
3317 if (pVM->hm.s.vmx.fVpid)
3318 {
3319 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
3320 {
3321 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
3322 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
3323 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
3324 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
3325 else
3326 {
3327 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
3328 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
3329 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
3330 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
3331 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
3332 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
3333 pVM->hm.s.vmx.fVpid = false;
3334 }
3335 }
3336 else
3337 {
3338 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
3339 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
3340 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
3341 pVM->hm.s.vmx.fVpid = false;
3342 }
3343 }
3344
3345 /*
3346 * Setup the handler for flushing tagged-TLBs.
3347 */
3348 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
3349 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
3350 else if (pVM->hm.s.fNestedPaging)
3351 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
3352 else if (pVM->hm.s.vmx.fVpid)
3353 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
3354 else
3355 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
3356 return VINF_SUCCESS;
3357}
3358
3359
3360/**
3361 * Sets up the LBR MSR ranges based on the host CPU.
3362 *
3363 * @returns VBox status code.
3364 * @param pVM The cross context VM structure.
3365 */
3366static int hmR0VmxSetupLbrMsrRange(PVMCC pVM)
3367{
3368 Assert(pVM->hm.s.vmx.fLbr);
3369 uint32_t idLbrFromIpMsrFirst;
3370 uint32_t idLbrFromIpMsrLast;
3371 uint32_t idLbrToIpMsrFirst;
3372 uint32_t idLbrToIpMsrLast;
3373 uint32_t idLbrTosMsr;
3374
3375 /*
3376 * Determine the LBR MSRs supported for this host CPU family and model.
3377 *
3378 * See Intel spec. 17.4.8 "LBR Stack".
3379 * See Intel "Model-Specific Registers" spec.
3380 */
3381 uint32_t const uFamilyModel = (pVM->cpum.ro.HostFeatures.uFamily << 8)
3382 | pVM->cpum.ro.HostFeatures.uModel;
3383 switch (uFamilyModel)
3384 {
3385 case 0x0f01: case 0x0f02:
3386 idLbrFromIpMsrFirst = MSR_P4_LASTBRANCH_0;
3387 idLbrFromIpMsrLast = MSR_P4_LASTBRANCH_3;
3388 idLbrToIpMsrFirst = 0x0;
3389 idLbrToIpMsrLast = 0x0;
3390 idLbrTosMsr = MSR_P4_LASTBRANCH_TOS;
3391 break;
3392
3393 case 0x065c: case 0x065f: case 0x064e: case 0x065e: case 0x068e:
3394 case 0x069e: case 0x0655: case 0x0666: case 0x067a: case 0x0667:
3395 case 0x066a: case 0x066c: case 0x067d: case 0x067e:
3396 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
3397 idLbrFromIpMsrLast = MSR_LASTBRANCH_31_FROM_IP;
3398 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
3399 idLbrToIpMsrLast = MSR_LASTBRANCH_31_TO_IP;
3400 idLbrTosMsr = MSR_LASTBRANCH_TOS;
3401 break;
3402
3403 case 0x063d: case 0x0647: case 0x064f: case 0x0656: case 0x063c:
3404 case 0x0645: case 0x0646: case 0x063f: case 0x062a: case 0x062d:
3405 case 0x063a: case 0x063e: case 0x061a: case 0x061e: case 0x061f:
3406 case 0x062e: case 0x0625: case 0x062c: case 0x062f:
3407 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
3408 idLbrFromIpMsrLast = MSR_LASTBRANCH_15_FROM_IP;
3409 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
3410 idLbrToIpMsrLast = MSR_LASTBRANCH_15_TO_IP;
3411 idLbrTosMsr = MSR_LASTBRANCH_TOS;
3412 break;
3413
3414 case 0x0617: case 0x061d: case 0x060f:
3415 idLbrFromIpMsrFirst = MSR_CORE2_LASTBRANCH_0_FROM_IP;
3416 idLbrFromIpMsrLast = MSR_CORE2_LASTBRANCH_3_FROM_IP;
3417 idLbrToIpMsrFirst = MSR_CORE2_LASTBRANCH_0_TO_IP;
3418 idLbrToIpMsrLast = MSR_CORE2_LASTBRANCH_3_TO_IP;
3419 idLbrTosMsr = MSR_CORE2_LASTBRANCH_TOS;
3420 break;
3421
3422 /* Atom and related microarchitectures we don't care about:
3423 case 0x0637: case 0x064a: case 0x064c: case 0x064d: case 0x065a:
3424 case 0x065d: case 0x061c: case 0x0626: case 0x0627: case 0x0635:
3425 case 0x0636: */
3426 /* All other CPUs: */
3427 default:
3428 {
3429 LogRelFunc(("Could not determine LBR stack size for the CPU model %#x\n", uFamilyModel));
3430 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_UNKNOWN;
3431 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3432 }
3433 }
3434
3435 /*
3436 * Validate.
3437 */
3438 uint32_t const cLbrStack = idLbrFromIpMsrLast - idLbrFromIpMsrFirst + 1;
3439 PCVMCPU pVCpu0 = VMCC_GET_CPU_0(pVM);
3440 AssertCompile( RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrFromIpMsr)
3441 == RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrToIpMsr));
3442 if (cLbrStack > RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrFromIpMsr))
3443 {
3444 LogRelFunc(("LBR stack size of the CPU (%u) exceeds our buffer size\n", cLbrStack));
3445 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_OVERFLOW;
3446 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3447 }
3448 NOREF(pVCpu0);
3449
3450 /*
3451 * Update the LBR info. to the VM struct. for use later.
3452 */
3453 pVM->hm.s.vmx.idLbrTosMsr = idLbrTosMsr;
3454 pVM->hm.s.vmx.idLbrFromIpMsrFirst = idLbrFromIpMsrFirst;
3455 pVM->hm.s.vmx.idLbrFromIpMsrLast = idLbrFromIpMsrLast;
3456
3457 pVM->hm.s.vmx.idLbrToIpMsrFirst = idLbrToIpMsrFirst;
3458 pVM->hm.s.vmx.idLbrToIpMsrLast = idLbrToIpMsrLast;
3459 return VINF_SUCCESS;
3460}
3461
3462
3463#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3464/**
3465 * Sets up the shadow VMCS fields arrays.
3466 *
3467 * This function builds arrays of VMCS fields to sync the shadow VMCS later while
3468 * executing the guest.
3469 *
3470 * @returns VBox status code.
3471 * @param pVM The cross context VM structure.
3472 */
3473static int hmR0VmxSetupShadowVmcsFieldsArrays(PVMCC pVM)
3474{
3475 /*
3476 * Paranoia. Ensure we haven't exposed the VMWRITE-All VMX feature to the guest
3477 * when the host does not support it.
3478 */
3479 bool const fGstVmwriteAll = pVM->cpum.ro.GuestFeatures.fVmxVmwriteAll;
3480 if ( !fGstVmwriteAll
3481 || (pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL))
3482 { /* likely. */ }
3483 else
3484 {
3485 LogRelFunc(("VMX VMWRITE-All feature exposed to the guest but host CPU does not support it!\n"));
3486 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_GST_HOST_VMWRITE_ALL;
3487 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3488 }
3489
3490 uint32_t const cVmcsFields = RT_ELEMENTS(g_aVmcsFields);
3491 uint32_t cRwFields = 0;
3492 uint32_t cRoFields = 0;
3493 for (uint32_t i = 0; i < cVmcsFields; i++)
3494 {
3495 VMXVMCSFIELD VmcsField;
3496 VmcsField.u = g_aVmcsFields[i];
3497
3498 /*
3499 * We will be writing "FULL" (64-bit) fields while syncing the shadow VMCS.
3500 * Therefore, "HIGH" (32-bit portion of 64-bit) fields must not be included
3501 * in the shadow VMCS fields array as they would be redundant.
3502 *
3503 * If the VMCS field depends on a CPU feature that is not exposed to the guest,
3504 * we must not include it in the shadow VMCS fields array. Guests attempting to
3505 * VMREAD/VMWRITE such VMCS fields would cause a VM-exit and we shall emulate
3506 * the required behavior.
3507 */
3508 if ( VmcsField.n.fAccessType == VMX_VMCSFIELD_ACCESS_FULL
3509 && CPUMIsGuestVmxVmcsFieldValid(pVM, VmcsField.u))
3510 {
3511 /*
3512 * Read-only fields are placed in a separate array so that while syncing shadow
3513 * VMCS fields later (which is more performance critical) we can avoid branches.
3514 *
3515 * However, if the guest can write to all fields (including read-only fields),
3516 * we treat it a as read/write field. Otherwise, writing to these fields would
3517 * cause a VMWRITE instruction error while syncing the shadow VMCS.
3518 */
3519 if ( fGstVmwriteAll
3520 || !VMXIsVmcsFieldReadOnly(VmcsField.u))
3521 pVM->hm.s.vmx.paShadowVmcsFields[cRwFields++] = VmcsField.u;
3522 else
3523 pVM->hm.s.vmx.paShadowVmcsRoFields[cRoFields++] = VmcsField.u;
3524 }
3525 }
3526
3527 /* Update the counts. */
3528 pVM->hm.s.vmx.cShadowVmcsFields = cRwFields;
3529 pVM->hm.s.vmx.cShadowVmcsRoFields = cRoFields;
3530 return VINF_SUCCESS;
3531}
3532
3533
3534/**
3535 * Sets up the VMREAD and VMWRITE bitmaps.
3536 *
3537 * @param pVM The cross context VM structure.
3538 */
3539static void hmR0VmxSetupVmreadVmwriteBitmaps(PVMCC pVM)
3540{
3541 /*
3542 * By default, ensure guest attempts to access any VMCS fields cause VM-exits.
3543 */
3544 uint32_t const cbBitmap = X86_PAGE_4K_SIZE;
3545 uint8_t *pbVmreadBitmap = (uint8_t *)pVM->hm.s.vmx.pvVmreadBitmap;
3546 uint8_t *pbVmwriteBitmap = (uint8_t *)pVM->hm.s.vmx.pvVmwriteBitmap;
3547 ASMMemFill32(pbVmreadBitmap, cbBitmap, UINT32_C(0xffffffff));
3548 ASMMemFill32(pbVmwriteBitmap, cbBitmap, UINT32_C(0xffffffff));
3549
3550 /*
3551 * Skip intercepting VMREAD/VMWRITE to guest read/write fields in the
3552 * VMREAD and VMWRITE bitmaps.
3553 */
3554 {
3555 uint32_t const *paShadowVmcsFields = pVM->hm.s.vmx.paShadowVmcsFields;
3556 uint32_t const cShadowVmcsFields = pVM->hm.s.vmx.cShadowVmcsFields;
3557 for (uint32_t i = 0; i < cShadowVmcsFields; i++)
3558 {
3559 uint32_t const uVmcsField = paShadowVmcsFields[i];
3560 Assert(!(uVmcsField & VMX_VMCSFIELD_RSVD_MASK));
3561 Assert(uVmcsField >> 3 < cbBitmap);
3562 ASMBitClear(pbVmreadBitmap + (uVmcsField >> 3), uVmcsField & 7);
3563 ASMBitClear(pbVmwriteBitmap + (uVmcsField >> 3), uVmcsField & 7);
3564 }
3565 }
3566
3567 /*
3568 * Skip intercepting VMREAD for guest read-only fields in the VMREAD bitmap
3569 * if the host supports VMWRITE to all supported VMCS fields.
3570 */
3571 if (pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL)
3572 {
3573 uint32_t const *paShadowVmcsRoFields = pVM->hm.s.vmx.paShadowVmcsRoFields;
3574 uint32_t const cShadowVmcsRoFields = pVM->hm.s.vmx.cShadowVmcsRoFields;
3575 for (uint32_t i = 0; i < cShadowVmcsRoFields; i++)
3576 {
3577 uint32_t const uVmcsField = paShadowVmcsRoFields[i];
3578 Assert(!(uVmcsField & VMX_VMCSFIELD_RSVD_MASK));
3579 Assert(uVmcsField >> 3 < cbBitmap);
3580 ASMBitClear(pbVmreadBitmap + (uVmcsField >> 3), uVmcsField & 7);
3581 }
3582 }
3583}
3584#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
3585
3586
3587/**
3588 * Sets up the virtual-APIC page address for the VMCS.
3589 *
3590 * @param pVmcsInfo The VMCS info. object.
3591 */
3592DECLINLINE(void) hmR0VmxSetupVmcsVirtApicAddr(PCVMXVMCSINFO pVmcsInfo)
3593{
3594 RTHCPHYS const HCPhysVirtApic = pVmcsInfo->HCPhysVirtApic;
3595 Assert(HCPhysVirtApic != NIL_RTHCPHYS);
3596 Assert(!(HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
3597 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
3598 AssertRC(rc);
3599}
3600
3601
3602/**
3603 * Sets up the MSR-bitmap address for the VMCS.
3604 *
3605 * @param pVmcsInfo The VMCS info. object.
3606 */
3607DECLINLINE(void) hmR0VmxSetupVmcsMsrBitmapAddr(PCVMXVMCSINFO pVmcsInfo)
3608{
3609 RTHCPHYS const HCPhysMsrBitmap = pVmcsInfo->HCPhysMsrBitmap;
3610 Assert(HCPhysMsrBitmap != NIL_RTHCPHYS);
3611 Assert(!(HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
3612 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, HCPhysMsrBitmap);
3613 AssertRC(rc);
3614}
3615
3616
3617/**
3618 * Sets up the APIC-access page address for the VMCS.
3619 *
3620 * @param pVCpu The cross context virtual CPU structure.
3621 */
3622DECLINLINE(void) hmR0VmxSetupVmcsApicAccessAddr(PVMCPUCC pVCpu)
3623{
3624 RTHCPHYS const HCPhysApicAccess = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysApicAccess;
3625 Assert(HCPhysApicAccess != NIL_RTHCPHYS);
3626 Assert(!(HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
3627 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
3628 AssertRC(rc);
3629}
3630
3631
3632#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3633/**
3634 * Sets up the VMREAD bitmap address for the VMCS.
3635 *
3636 * @param pVCpu The cross context virtual CPU structure.
3637 */
3638DECLINLINE(void) hmR0VmxSetupVmcsVmreadBitmapAddr(PVMCPUCC pVCpu)
3639{
3640 RTHCPHYS const HCPhysVmreadBitmap = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysVmreadBitmap;
3641 Assert(HCPhysVmreadBitmap != NIL_RTHCPHYS);
3642 Assert(!(HCPhysVmreadBitmap & 0xfff)); /* Bits 11:0 MBZ. */
3643 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL, HCPhysVmreadBitmap);
3644 AssertRC(rc);
3645}
3646
3647
3648/**
3649 * Sets up the VMWRITE bitmap address for the VMCS.
3650 *
3651 * @param pVCpu The cross context virtual CPU structure.
3652 */
3653DECLINLINE(void) hmR0VmxSetupVmcsVmwriteBitmapAddr(PVMCPUCC pVCpu)
3654{
3655 RTHCPHYS const HCPhysVmwriteBitmap = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysVmwriteBitmap;
3656 Assert(HCPhysVmwriteBitmap != NIL_RTHCPHYS);
3657 Assert(!(HCPhysVmwriteBitmap & 0xfff)); /* Bits 11:0 MBZ. */
3658 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL, HCPhysVmwriteBitmap);
3659 AssertRC(rc);
3660}
3661#endif
3662
3663
3664/**
3665 * Sets up the VM-entry MSR load, VM-exit MSR-store and VM-exit MSR-load addresses
3666 * in the VMCS.
3667 *
3668 * @returns VBox status code.
3669 * @param pVmcsInfo The VMCS info. object.
3670 */
3671DECLINLINE(int) hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(PVMXVMCSINFO pVmcsInfo)
3672{
3673 RTHCPHYS const HCPhysGuestMsrLoad = pVmcsInfo->HCPhysGuestMsrLoad;
3674 Assert(HCPhysGuestMsrLoad != NIL_RTHCPHYS);
3675 Assert(!(HCPhysGuestMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
3676
3677 RTHCPHYS const HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrStore;
3678 Assert(HCPhysGuestMsrStore != NIL_RTHCPHYS);
3679 Assert(!(HCPhysGuestMsrStore & 0xf)); /* Bits 3:0 MBZ. */
3680
3681 RTHCPHYS const HCPhysHostMsrLoad = pVmcsInfo->HCPhysHostMsrLoad;
3682 Assert(HCPhysHostMsrLoad != NIL_RTHCPHYS);
3683 Assert(!(HCPhysHostMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
3684
3685 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, HCPhysGuestMsrLoad); AssertRC(rc);
3686 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, HCPhysGuestMsrStore); AssertRC(rc);
3687 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, HCPhysHostMsrLoad); AssertRC(rc);
3688 return VINF_SUCCESS;
3689}
3690
3691
3692/**
3693 * Sets up MSR permissions in the MSR bitmap of a VMCS info. object.
3694 *
3695 * @param pVCpu The cross context virtual CPU structure.
3696 * @param pVmcsInfo The VMCS info. object.
3697 */
3698static void hmR0VmxSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3699{
3700 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
3701
3702 /*
3703 * By default, ensure guest attempts to access any MSR cause VM-exits.
3704 * This shall later be relaxed for specific MSRs as necessary.
3705 *
3706 * Note: For nested-guests, the entire bitmap will be merged prior to
3707 * executing the nested-guest using hardware-assisted VMX and hence there
3708 * is no need to perform this operation. See hmR0VmxMergeMsrBitmapNested.
3709 */
3710 Assert(pVmcsInfo->pvMsrBitmap);
3711 ASMMemFill32(pVmcsInfo->pvMsrBitmap, X86_PAGE_4K_SIZE, UINT32_C(0xffffffff));
3712
3713 /*
3714 * The guest can access the following MSRs (read, write) without causing
3715 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
3716 */
3717 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3718 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_CS, VMXMSRPM_ALLOW_RD_WR);
3719 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_ESP, VMXMSRPM_ALLOW_RD_WR);
3720 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_EIP, VMXMSRPM_ALLOW_RD_WR);
3721 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
3722 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_FS_BASE, VMXMSRPM_ALLOW_RD_WR);
3723
3724 /*
3725 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
3726 * associated with then. We never need to intercept access (writes need to be
3727 * executed without causing a VM-exit, reads will #GP fault anyway).
3728 *
3729 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
3730 * read/write them. We swap the the guest/host MSR value using the
3731 * auto-load/store MSR area.
3732 */
3733 if (pVM->cpum.ro.GuestFeatures.fIbpb)
3734 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_PRED_CMD, VMXMSRPM_ALLOW_RD_WR);
3735 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
3736 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_FLUSH_CMD, VMXMSRPM_ALLOW_RD_WR);
3737 if (pVM->cpum.ro.GuestFeatures.fIbrs)
3738 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SPEC_CTRL, VMXMSRPM_ALLOW_RD_WR);
3739
3740 /*
3741 * Allow full read/write access for the following MSRs (mandatory for VT-x)
3742 * required for 64-bit guests.
3743 */
3744 if (pVM->hm.s.fAllow64BitGuests)
3745 {
3746 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_LSTAR, VMXMSRPM_ALLOW_RD_WR);
3747 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K6_STAR, VMXMSRPM_ALLOW_RD_WR);
3748 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_SF_MASK, VMXMSRPM_ALLOW_RD_WR);
3749 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_KERNEL_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
3750 }
3751
3752 /*
3753 * IA32_EFER MSR is always intercepted, see @bugref{9180#c37}.
3754 */
3755#ifdef VBOX_STRICT
3756 Assert(pVmcsInfo->pvMsrBitmap);
3757 uint32_t const fMsrpmEfer = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K6_EFER);
3758 Assert(fMsrpmEfer == VMXMSRPM_EXIT_RD_WR);
3759#endif
3760}
3761
3762
3763/**
3764 * Sets up pin-based VM-execution controls in the VMCS.
3765 *
3766 * @returns VBox status code.
3767 * @param pVCpu The cross context virtual CPU structure.
3768 * @param pVmcsInfo The VMCS info. object.
3769 */
3770static int hmR0VmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3771{
3772 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3773 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0; /* Bits set here must always be set. */
3774 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
3775
3776 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
3777 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
3778
3779 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
3780 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
3781
3782 /* Enable the VMX-preemption timer. */
3783 if (pVM->hm.s.vmx.fUsePreemptTimer)
3784 {
3785 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
3786 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
3787 }
3788
3789#if 0
3790 /* Enable posted-interrupt processing. */
3791 if (pVM->hm.s.fPostedIntrs)
3792 {
3793 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
3794 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
3795 fVal |= VMX_PIN_CTLS_POSTED_INT;
3796 }
3797#endif
3798
3799 if ((fVal & fZap) != fVal)
3800 {
3801 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3802 pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0, fVal, fZap));
3803 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
3804 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3805 }
3806
3807 /* Commit it to the VMCS and update our cache. */
3808 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
3809 AssertRC(rc);
3810 pVmcsInfo->u32PinCtls = fVal;
3811
3812 return VINF_SUCCESS;
3813}
3814
3815
3816/**
3817 * Sets up secondary processor-based VM-execution controls in the VMCS.
3818 *
3819 * @returns VBox status code.
3820 * @param pVCpu The cross context virtual CPU structure.
3821 * @param pVmcsInfo The VMCS info. object.
3822 */
3823static int hmR0VmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3824{
3825 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3826 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
3827 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3828
3829 /* WBINVD causes a VM-exit. */
3830 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
3831 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
3832
3833 /* Enable EPT (aka nested-paging). */
3834 if (pVM->hm.s.fNestedPaging)
3835 fVal |= VMX_PROC_CTLS2_EPT;
3836
3837 /* Enable the INVPCID instruction if we expose it to the guest and is supported
3838 by the hardware. Without this, guest executing INVPCID would cause a #UD. */
3839 if ( pVM->cpum.ro.GuestFeatures.fInvpcid
3840 && (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
3841 fVal |= VMX_PROC_CTLS2_INVPCID;
3842
3843 /* Enable VPID. */
3844 if (pVM->hm.s.vmx.fVpid)
3845 fVal |= VMX_PROC_CTLS2_VPID;
3846
3847 /* Enable unrestricted guest execution. */
3848 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3849 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
3850
3851#if 0
3852 if (pVM->hm.s.fVirtApicRegs)
3853 {
3854 /* Enable APIC-register virtualization. */
3855 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
3856 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
3857
3858 /* Enable virtual-interrupt delivery. */
3859 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
3860 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
3861 }
3862#endif
3863
3864 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
3865 where the TPR shadow resides. */
3866 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
3867 * done dynamically. */
3868 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
3869 {
3870 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
3871 hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
3872 }
3873
3874 /* Enable the RDTSCP instruction if we expose it to the guest and is supported
3875 by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
3876 if ( pVM->cpum.ro.GuestFeatures.fRdTscP
3877 && (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
3878 fVal |= VMX_PROC_CTLS2_RDTSCP;
3879
3880 /* Enable Pause-Loop exiting. */
3881 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
3882 && pVM->hm.s.vmx.cPleGapTicks
3883 && pVM->hm.s.vmx.cPleWindowTicks)
3884 {
3885 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
3886
3887 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks); AssertRC(rc);
3888 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks); AssertRC(rc);
3889 }
3890
3891 if ((fVal & fZap) != fVal)
3892 {
3893 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3894 pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0, fVal, fZap));
3895 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
3896 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3897 }
3898
3899 /* Commit it to the VMCS and update our cache. */
3900 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
3901 AssertRC(rc);
3902 pVmcsInfo->u32ProcCtls2 = fVal;
3903
3904 return VINF_SUCCESS;
3905}
3906
3907
3908/**
3909 * Sets up processor-based VM-execution controls in the VMCS.
3910 *
3911 * @returns VBox status code.
3912 * @param pVCpu The cross context virtual CPU structure.
3913 * @param pVmcsInfo The VMCS info. object.
3914 */
3915static int hmR0VmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3916{
3917 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3918 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3919 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3920
3921 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
3922 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
3923 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
3924 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
3925 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
3926 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
3927 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
3928
3929 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
3930 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
3931 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
3932 {
3933 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
3934 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3935 }
3936
3937 /* Without nested paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
3938 if (!pVM->hm.s.fNestedPaging)
3939 {
3940 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
3941 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
3942 | VMX_PROC_CTLS_CR3_LOAD_EXIT
3943 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3944 }
3945
3946 /* Use TPR shadowing if supported by the CPU. */
3947 if ( PDMHasApic(pVM)
3948 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
3949 {
3950 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
3951 /* CR8 writes cause a VM-exit based on TPR threshold. */
3952 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
3953 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
3954 hmR0VmxSetupVmcsVirtApicAddr(pVmcsInfo);
3955 }
3956 else
3957 {
3958 /* Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is
3959 invalid on 32-bit Intel CPUs. Set this control only for 64-bit guests. */
3960 if (pVM->hm.s.fAllow64BitGuests)
3961 {
3962 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
3963 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
3964 }
3965 }
3966
3967 /* Use MSR-bitmaps if supported by the CPU. */
3968 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3969 {
3970 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
3971 hmR0VmxSetupVmcsMsrBitmapAddr(pVmcsInfo);
3972 }
3973
3974 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
3975 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3976 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
3977
3978 if ((fVal & fZap) != fVal)
3979 {
3980 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3981 pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0, fVal, fZap));
3982 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
3983 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3984 }
3985
3986 /* Commit it to the VMCS and update our cache. */
3987 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
3988 AssertRC(rc);
3989 pVmcsInfo->u32ProcCtls = fVal;
3990
3991 /* Set up MSR permissions that don't change through the lifetime of the VM. */
3992 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3993 hmR0VmxSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
3994
3995 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
3996 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3997 return hmR0VmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
3998
3999 /* Sanity check, should not really happen. */
4000 if (RT_LIKELY(!pVM->hm.s.vmx.fUnrestrictedGuest))
4001 { /* likely */ }
4002 else
4003 {
4004 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
4005 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4006 }
4007
4008 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
4009 return VINF_SUCCESS;
4010}
4011
4012
4013/**
4014 * Sets up miscellaneous (everything other than Pin, Processor and secondary
4015 * Processor-based VM-execution) control fields in the VMCS.
4016 *
4017 * @returns VBox status code.
4018 * @param pVCpu The cross context virtual CPU structure.
4019 * @param pVmcsInfo The VMCS info. object.
4020 */
4021static int hmR0VmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
4022{
4023#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4024 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUseVmcsShadowing)
4025 {
4026 hmR0VmxSetupVmcsVmreadBitmapAddr(pVCpu);
4027 hmR0VmxSetupVmcsVmwriteBitmapAddr(pVCpu);
4028 }
4029#endif
4030
4031 Assert(pVmcsInfo->u64VmcsLinkPtr == NIL_RTHCPHYS);
4032 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS);
4033 AssertRC(rc);
4034
4035 rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo);
4036 if (RT_SUCCESS(rc))
4037 {
4038 uint64_t const u64Cr0Mask = hmR0VmxGetFixedCr0Mask(pVCpu);
4039 uint64_t const u64Cr4Mask = hmR0VmxGetFixedCr4Mask(pVCpu);
4040
4041 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
4042 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
4043
4044 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
4045 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
4046
4047 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fLbr)
4048 {
4049 rc = VMXWriteVmcsNw(VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
4050 AssertRC(rc);
4051 }
4052 return VINF_SUCCESS;
4053 }
4054 else
4055 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
4056 return rc;
4057}
4058
4059
4060/**
4061 * Sets up the initial exception bitmap in the VMCS based on static conditions.
4062 *
4063 * We shall setup those exception intercepts that don't change during the
4064 * lifetime of the VM here. The rest are done dynamically while loading the
4065 * guest state.
4066 *
4067 * @param pVCpu The cross context virtual CPU structure.
4068 * @param pVmcsInfo The VMCS info. object.
4069 */
4070static void hmR0VmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
4071{
4072 /*
4073 * The following exceptions are always intercepted:
4074 *
4075 * #AC - To prevent the guest from hanging the CPU.
4076 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
4077 * recursive #DBs can cause a CPU hang.
4078 * #PF - To sync our shadow page tables when nested-paging is not used.
4079 */
4080 bool const fNestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
4081 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
4082 | RT_BIT(X86_XCPT_DB)
4083 | (fNestedPaging ? 0 : RT_BIT(X86_XCPT_PF));
4084
4085 /* Commit it to the VMCS. */
4086 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
4087 AssertRC(rc);
4088
4089 /* Update our cache of the exception bitmap. */
4090 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
4091}
4092
4093
4094#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4095/**
4096 * Sets up the VMCS for executing a nested-guest using hardware-assisted VMX.
4097 *
4098 * @returns VBox status code.
4099 * @param pVCpu The cross context virtual CPU structure.
4100 * @param pVmcsInfo The VMCS info. object.
4101 */
4102static int hmR0VmxSetupVmcsCtlsNested(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
4103{
4104 Assert(pVmcsInfo->u64VmcsLinkPtr == NIL_RTHCPHYS);
4105 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS);
4106 AssertRC(rc);
4107
4108 rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo);
4109 if (RT_SUCCESS(rc))
4110 {
4111 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4112 hmR0VmxSetupVmcsMsrBitmapAddr(pVmcsInfo);
4113
4114 /* Paranoia - We've not yet initialized these, they shall be done while merging the VMCS. */
4115 Assert(!pVmcsInfo->u64Cr0Mask);
4116 Assert(!pVmcsInfo->u64Cr4Mask);
4117 return VINF_SUCCESS;
4118 }
4119 else
4120 LogRelFunc(("Failed to set up the VMCS link pointer in the nested-guest VMCS. rc=%Rrc\n", rc));
4121 return rc;
4122}
4123#endif
4124
4125
4126/**
4127 * Sets up the VMCS for executing a guest (or nested-guest) using hardware-assisted
4128 * VMX.
4129 *
4130 * @returns VBox status code.
4131 * @param pVCpu The cross context virtual CPU structure.
4132 * @param pVmcsInfo The VMCS info. object.
4133 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
4134 */
4135static int hmR0VmxSetupVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
4136{
4137 Assert(pVmcsInfo->pvVmcs);
4138 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4139
4140 /* Set the CPU specified revision identifier at the beginning of the VMCS structure. */
4141 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4142 *(uint32_t *)pVmcsInfo->pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
4143 const char * const pszVmcs = fIsNstGstVmcs ? "nested-guest VMCS" : "guest VMCS";
4144
4145 LogFlowFunc(("\n"));
4146
4147 /*
4148 * Initialize the VMCS using VMCLEAR before loading the VMCS.
4149 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
4150 */
4151 int rc = hmR0VmxClearVmcs(pVmcsInfo);
4152 if (RT_SUCCESS(rc))
4153 {
4154 rc = hmR0VmxLoadVmcs(pVmcsInfo);
4155 if (RT_SUCCESS(rc))
4156 {
4157 if (!fIsNstGstVmcs)
4158 {
4159 rc = hmR0VmxSetupVmcsPinCtls(pVCpu, pVmcsInfo);
4160 if (RT_SUCCESS(rc))
4161 {
4162 rc = hmR0VmxSetupVmcsProcCtls(pVCpu, pVmcsInfo);
4163 if (RT_SUCCESS(rc))
4164 {
4165 rc = hmR0VmxSetupVmcsMiscCtls(pVCpu, pVmcsInfo);
4166 if (RT_SUCCESS(rc))
4167 {
4168 hmR0VmxSetupVmcsXcptBitmap(pVCpu, pVmcsInfo);
4169#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4170 /*
4171 * If a shadow VMCS is allocated for the VMCS info. object, initialize the
4172 * VMCS revision ID and shadow VMCS indicator bit. Also, clear the VMCS
4173 * making it fit for use when VMCS shadowing is later enabled.
4174 */
4175 if (pVmcsInfo->pvShadowVmcs)
4176 {
4177 VMXVMCSREVID VmcsRevId;
4178 VmcsRevId.u = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
4179 VmcsRevId.n.fIsShadowVmcs = 1;
4180 *(uint32_t *)pVmcsInfo->pvShadowVmcs = VmcsRevId.u;
4181 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
4182 if (RT_SUCCESS(rc))
4183 { /* likely */ }
4184 else
4185 LogRelFunc(("Failed to initialize shadow VMCS. rc=%Rrc\n", rc));
4186 }
4187#endif
4188 }
4189 else
4190 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
4191 }
4192 else
4193 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
4194 }
4195 else
4196 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
4197 }
4198 else
4199 {
4200#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4201 rc = hmR0VmxSetupVmcsCtlsNested(pVCpu, pVmcsInfo);
4202 if (RT_SUCCESS(rc))
4203 { /* likely */ }
4204 else
4205 LogRelFunc(("Failed to initialize nested-guest VMCS. rc=%Rrc\n", rc));
4206#else
4207 AssertFailed();
4208#endif
4209 }
4210 }
4211 else
4212 LogRelFunc(("Failed to load the %s. rc=%Rrc\n", rc, pszVmcs));
4213 }
4214 else
4215 LogRelFunc(("Failed to clear the %s. rc=%Rrc\n", rc, pszVmcs));
4216
4217 /* Sync any CPU internal VMCS data back into our VMCS in memory. */
4218 if (RT_SUCCESS(rc))
4219 {
4220 rc = hmR0VmxClearVmcs(pVmcsInfo);
4221 if (RT_SUCCESS(rc))
4222 { /* likely */ }
4223 else
4224 LogRelFunc(("Failed to clear the %s post setup. rc=%Rrc\n", rc, pszVmcs));
4225 }
4226
4227 /*
4228 * Update the last-error record both for failures and success, so we
4229 * can propagate the status code back to ring-3 for diagnostics.
4230 */
4231 hmR0VmxUpdateErrorRecord(pVCpu, rc);
4232 NOREF(pszVmcs);
4233 return rc;
4234}
4235
4236
4237/**
4238 * Does global VT-x initialization (called during module initialization).
4239 *
4240 * @returns VBox status code.
4241 */
4242VMMR0DECL(int) VMXR0GlobalInit(void)
4243{
4244#ifdef HMVMX_USE_FUNCTION_TABLE
4245 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
4246# ifdef VBOX_STRICT
4247 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
4248 Assert(g_apfnVMExitHandlers[i]);
4249# endif
4250#endif
4251 return VINF_SUCCESS;
4252}
4253
4254
4255/**
4256 * Does global VT-x termination (called during module termination).
4257 */
4258VMMR0DECL(void) VMXR0GlobalTerm()
4259{
4260 /* Nothing to do currently. */
4261}
4262
4263
4264/**
4265 * Sets up and activates VT-x on the current CPU.
4266 *
4267 * @returns VBox status code.
4268 * @param pHostCpu The HM physical-CPU structure.
4269 * @param pVM The cross context VM structure. Can be
4270 * NULL after a host resume operation.
4271 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
4272 * fEnabledByHost is @c true).
4273 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
4274 * @a fEnabledByHost is @c true).
4275 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
4276 * enable VT-x on the host.
4277 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
4278 */
4279VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
4280 PCSUPHWVIRTMSRS pHwvirtMsrs)
4281{
4282 AssertPtr(pHostCpu);
4283 AssertPtr(pHwvirtMsrs);
4284 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4285
4286 /* Enable VT-x if it's not already enabled by the host. */
4287 if (!fEnabledByHost)
4288 {
4289 int rc = hmR0VmxEnterRootMode(pHostCpu, pVM, HCPhysCpuPage, pvCpuPage);
4290 if (RT_FAILURE(rc))
4291 return rc;
4292 }
4293
4294 /*
4295 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
4296 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
4297 * invalidated when flushing by VPID.
4298 */
4299 if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
4300 {
4301 hmR0VmxFlushEpt(NULL /* pVCpu */, NULL /* pVmcsInfo */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
4302 pHostCpu->fFlushAsidBeforeUse = false;
4303 }
4304 else
4305 pHostCpu->fFlushAsidBeforeUse = true;
4306
4307 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
4308 ++pHostCpu->cTlbFlushes;
4309
4310 return VINF_SUCCESS;
4311}
4312
4313
4314/**
4315 * Deactivates VT-x on the current CPU.
4316 *
4317 * @returns VBox status code.
4318 * @param pHostCpu The HM physical-CPU structure.
4319 * @param pvCpuPage Pointer to the VMXON region.
4320 * @param HCPhysCpuPage Physical address of the VMXON region.
4321 *
4322 * @remarks This function should never be called when SUPR0EnableVTx() or
4323 * similar was used to enable VT-x on the host.
4324 */
4325VMMR0DECL(int) VMXR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
4326{
4327 RT_NOREF2(pvCpuPage, HCPhysCpuPage);
4328
4329 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4330 return hmR0VmxLeaveRootMode(pHostCpu);
4331}
4332
4333
4334/**
4335 * Does per-VM VT-x initialization.
4336 *
4337 * @returns VBox status code.
4338 * @param pVM The cross context VM structure.
4339 */
4340VMMR0DECL(int) VMXR0InitVM(PVMCC pVM)
4341{
4342 AssertPtr(pVM);
4343 LogFlowFunc(("pVM=%p\n", pVM));
4344
4345 hmR0VmxStructsInit(pVM);
4346 int rc = hmR0VmxStructsAlloc(pVM);
4347 if (RT_FAILURE(rc))
4348 {
4349 LogRelFunc(("Failed to allocated VMX structures. rc=%Rrc\n", rc));
4350 return rc;
4351 }
4352
4353 /* Setup the crash dump page. */
4354#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4355 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
4356 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
4357#endif
4358 return VINF_SUCCESS;
4359}
4360
4361
4362/**
4363 * Does per-VM VT-x termination.
4364 *
4365 * @returns VBox status code.
4366 * @param pVM The cross context VM structure.
4367 */
4368VMMR0DECL(int) VMXR0TermVM(PVMCC pVM)
4369{
4370 AssertPtr(pVM);
4371 LogFlowFunc(("pVM=%p\n", pVM));
4372
4373#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4374 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
4375 {
4376 Assert(pVM->hm.s.vmx.pvScratch);
4377 ASMMemZero32(pVM->hm.s.vmx.pvScratch, X86_PAGE_4K_SIZE);
4378 }
4379#endif
4380 hmR0VmxStructsFree(pVM);
4381 return VINF_SUCCESS;
4382}
4383
4384
4385/**
4386 * Sets up the VM for execution using hardware-assisted VMX.
4387 * This function is only called once per-VM during initialization.
4388 *
4389 * @returns VBox status code.
4390 * @param pVM The cross context VM structure.
4391 */
4392VMMR0DECL(int) VMXR0SetupVM(PVMCC pVM)
4393{
4394 AssertPtr(pVM);
4395 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4396
4397 LogFlowFunc(("pVM=%p\n", pVM));
4398
4399 /*
4400 * At least verify if VMX is enabled, since we can't check if we're in VMX root mode or not
4401 * without causing a #GP.
4402 */
4403 RTCCUINTREG const uHostCr4 = ASMGetCR4();
4404 if (RT_LIKELY(uHostCr4 & X86_CR4_VMXE))
4405 { /* likely */ }
4406 else
4407 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
4408
4409 /*
4410 * Without unrestricted guest execution, pRealModeTSS and pNonPagingModeEPTPageTable *must*
4411 * always be allocated. We no longer support the highly unlikely case of unrestricted guest
4412 * without pRealModeTSS, see hmR3InitFinalizeR0Intel().
4413 */
4414 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4415 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
4416 || !pVM->hm.s.vmx.pRealModeTSS))
4417 {
4418 LogRelFunc(("Invalid real-on-v86 state.\n"));
4419 return VERR_INTERNAL_ERROR;
4420 }
4421
4422 /* Initialize these always, see hmR3InitFinalizeR0().*/
4423 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
4424 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
4425
4426 /* Setup the tagged-TLB flush handlers. */
4427 int rc = hmR0VmxSetupTaggedTlb(pVM);
4428 if (RT_FAILURE(rc))
4429 {
4430 LogRelFunc(("Failed to setup tagged TLB. rc=%Rrc\n", rc));
4431 return rc;
4432 }
4433
4434 /* Determine LBR capabilities. */
4435 if (pVM->hm.s.vmx.fLbr)
4436 {
4437 rc = hmR0VmxSetupLbrMsrRange(pVM);
4438 if (RT_FAILURE(rc))
4439 {
4440 LogRelFunc(("Failed to setup LBR MSR range. rc=%Rrc\n", rc));
4441 return rc;
4442 }
4443 }
4444
4445#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4446 /* Setup the shadow VMCS fields array and VMREAD/VMWRITE bitmaps. */
4447 if (pVM->hm.s.vmx.fUseVmcsShadowing)
4448 {
4449 rc = hmR0VmxSetupShadowVmcsFieldsArrays(pVM);
4450 if (RT_SUCCESS(rc))
4451 hmR0VmxSetupVmreadVmwriteBitmaps(pVM);
4452 else
4453 {
4454 LogRelFunc(("Failed to setup shadow VMCS fields arrays. rc=%Rrc\n", rc));
4455 return rc;
4456 }
4457 }
4458#endif
4459
4460 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4461 {
4462 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
4463 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
4464
4465 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
4466 if (RT_SUCCESS(rc))
4467 {
4468#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4469 if (pVM->cpum.ro.GuestFeatures.fVmx)
4470 {
4471 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
4472 if (RT_SUCCESS(rc))
4473 { /* likely */ }
4474 else
4475 {
4476 LogRelFunc(("Nested-guest VMCS setup failed. rc=%Rrc\n", rc));
4477 return rc;
4478 }
4479 }
4480#endif
4481 }
4482 else
4483 {
4484 LogRelFunc(("VMCS setup failed. rc=%Rrc\n", rc));
4485 return rc;
4486 }
4487 }
4488
4489 return VINF_SUCCESS;
4490}
4491
4492
4493/**
4494 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
4495 * the VMCS.
4496 */
4497static void hmR0VmxExportHostControlRegs(void)
4498{
4499 int rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR0, ASMGetCR0()); AssertRC(rc);
4500 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR3, ASMGetCR3()); AssertRC(rc);
4501 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR4, ASMGetCR4()); AssertRC(rc);
4502}
4503
4504
4505/**
4506 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
4507 * the host-state area in the VMCS.
4508 *
4509 * @returns VBox status code.
4510 * @param pVCpu The cross context virtual CPU structure.
4511 */
4512static int hmR0VmxExportHostSegmentRegs(PVMCPUCC pVCpu)
4513{
4514/**
4515 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
4516 * requirements. See hmR0VmxExportHostSegmentRegs().
4517 */
4518#define VMXLOCAL_ADJUST_HOST_SEG(a_Seg, a_selValue) \
4519 if ((a_selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
4520 { \
4521 bool fValidSelector = true; \
4522 if ((a_selValue) & X86_SEL_LDT) \
4523 { \
4524 uint32_t const uAttr = ASMGetSegAttr(a_selValue); \
4525 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
4526 } \
4527 if (fValidSelector) \
4528 { \
4529 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##a_Seg; \
4530 pVCpu->hm.s.vmx.RestoreHost.uHostSel##a_Seg = (a_selValue); \
4531 } \
4532 (a_selValue) = 0; \
4533 }
4534
4535 /*
4536 * If we've executed guest code using hardware-assisted VMX, the host-state bits
4537 * will be messed up. We should -not- save the messed up state without restoring
4538 * the original host-state, see @bugref{7240}.
4539 *
4540 * This apparently can happen (most likely the FPU changes), deal with it rather than
4541 * asserting. Was observed booting Solaris 10u10 32-bit guest.
4542 */
4543 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
4544 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
4545 {
4546 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
4547 pVCpu->idCpu));
4548 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
4549 }
4550 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
4551
4552 /*
4553 * Host segment registers.
4554 */
4555 RTSEL uSelES = ASMGetES();
4556 RTSEL uSelCS = ASMGetCS();
4557 RTSEL uSelSS = ASMGetSS();
4558 RTSEL uSelDS = ASMGetDS();
4559 RTSEL uSelFS = ASMGetFS();
4560 RTSEL uSelGS = ASMGetGS();
4561 RTSEL uSelTR = ASMGetTR();
4562
4563 /*
4564 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
4565 * gain VM-entry and restore them before we get preempted.
4566 *
4567 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
4568 */
4569 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
4570 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
4571 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
4572 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
4573
4574 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
4575 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
4576 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
4577 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
4578 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
4579 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
4580 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
4581 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
4582 Assert(uSelCS);
4583 Assert(uSelTR);
4584
4585 /* Write these host selector fields into the host-state area in the VMCS. */
4586 int rc = VMXWriteVmcs16(VMX_VMCS16_HOST_CS_SEL, uSelCS); AssertRC(rc);
4587 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_SS_SEL, uSelSS); AssertRC(rc);
4588 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_DS_SEL, uSelDS); AssertRC(rc);
4589 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_ES_SEL, uSelES); AssertRC(rc);
4590 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_FS_SEL, uSelFS); AssertRC(rc);
4591 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_GS_SEL, uSelGS); AssertRC(rc);
4592 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_TR_SEL, uSelTR); AssertRC(rc);
4593
4594 /*
4595 * Host GDTR and IDTR.
4596 */
4597 RTGDTR Gdtr;
4598 RTIDTR Idtr;
4599 RT_ZERO(Gdtr);
4600 RT_ZERO(Idtr);
4601 ASMGetGDTR(&Gdtr);
4602 ASMGetIDTR(&Idtr);
4603 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt); AssertRC(rc);
4604 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt); AssertRC(rc);
4605
4606 /*
4607 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
4608 * them to the maximum limit (0xffff) on every VM-exit.
4609 */
4610 if (Gdtr.cbGdt != 0xffff)
4611 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
4612
4613 /*
4614 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
4615 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
4616 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
4617 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
4618 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
4619 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
4620 * at 0xffff on hosts where we are sure it won't cause trouble.
4621 */
4622#if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
4623 if (Idtr.cbIdt < 0x0fff)
4624#else
4625 if (Idtr.cbIdt != 0xffff)
4626#endif
4627 {
4628 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
4629 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
4630 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
4631 }
4632
4633 /*
4634 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
4635 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
4636 * RPL should be too in most cases.
4637 */
4638 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
4639 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
4640
4641 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
4642 uintptr_t const uTRBase = X86DESC64_BASE(pDesc);
4643
4644 /*
4645 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
4646 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
4647 * restoration if the host has something else. Task switching is not supported in 64-bit
4648 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
4649 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
4650 *
4651 * [1] See Intel spec. 3.5 "System Descriptor Types".
4652 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
4653 */
4654 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4655 Assert(pDesc->System.u4Type == 11);
4656 if ( pDesc->System.u16LimitLow != 0x67
4657 || pDesc->System.u4LimitHigh)
4658 {
4659 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
4660 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
4661 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
4662 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
4663 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
4664 }
4665
4666 /*
4667 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
4668 */
4669 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
4670 {
4671 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
4672 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
4673 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
4674 {
4675 /* The GDT is read-only but the writable GDT is available. */
4676 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
4677 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
4678 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
4679 AssertRCReturn(rc, rc);
4680 }
4681 }
4682
4683 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_TR_BASE, uTRBase);
4684 AssertRC(rc);
4685
4686 /*
4687 * Host FS base and GS base.
4688 */
4689 uint64_t const u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
4690 uint64_t const u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
4691 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_FS_BASE, u64FSBase); AssertRC(rc);
4692 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_GS_BASE, u64GSBase); AssertRC(rc);
4693
4694 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
4695 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
4696 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
4697 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
4698 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
4699
4700 return VINF_SUCCESS;
4701#undef VMXLOCAL_ADJUST_HOST_SEG
4702}
4703
4704
4705/**
4706 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
4707 * host-state area of the VMCS.
4708 *
4709 * These MSRs will be automatically restored on the host after every successful
4710 * VM-exit.
4711 *
4712 * @param pVCpu The cross context virtual CPU structure.
4713 *
4714 * @remarks No-long-jump zone!!!
4715 */
4716static void hmR0VmxExportHostMsrs(PVMCPUCC pVCpu)
4717{
4718 AssertPtr(pVCpu);
4719
4720 /*
4721 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
4722 * rather than swapping them on every VM-entry.
4723 */
4724 hmR0VmxLazySaveHostMsrs(pVCpu);
4725
4726 /*
4727 * Host Sysenter MSRs.
4728 */
4729 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS)); AssertRC(rc);
4730 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP)); AssertRC(rc);
4731 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP)); AssertRC(rc);
4732
4733 /*
4734 * Host EFER MSR.
4735 *
4736 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
4737 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
4738 */
4739 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4740 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4741 {
4742 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostMsrEfer);
4743 AssertRC(rc);
4744 }
4745
4746 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
4747 * hmR0VmxExportGuestEntryExitCtls(). */
4748}
4749
4750
4751/**
4752 * Figures out if we need to swap the EFER MSR which is particularly expensive.
4753 *
4754 * We check all relevant bits. For now, that's everything besides LMA/LME, as
4755 * these two bits are handled by VM-entry, see hmR0VMxExportGuestEntryExitCtls().
4756 *
4757 * @returns true if we need to load guest EFER, false otherwise.
4758 * @param pVCpu The cross context virtual CPU structure.
4759 * @param pVmxTransient The VMX-transient structure.
4760 *
4761 * @remarks Requires EFER, CR4.
4762 * @remarks No-long-jump zone!!!
4763 */
4764static bool hmR0VmxShouldSwapEferMsr(PCVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
4765{
4766#ifdef HMVMX_ALWAYS_SWAP_EFER
4767 RT_NOREF2(pVCpu, pVmxTransient);
4768 return true;
4769#else
4770 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4771 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4772 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostMsrEfer;
4773 uint64_t const u64GuestEfer = pCtx->msrEFER;
4774
4775# ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4776 /*
4777 * For nested-guests, we shall honor swapping the EFER MSR when requested by
4778 * the nested-guest.
4779 */
4780 if ( pVmxTransient->fIsNestedGuest
4781 && ( CPUMIsGuestVmxEntryCtlsSet(pCtx, VMX_ENTRY_CTLS_LOAD_EFER_MSR)
4782 || CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_SAVE_EFER_MSR)
4783 || CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_LOAD_EFER_MSR)))
4784 return true;
4785# else
4786 RT_NOREF(pVmxTransient);
4787#endif
4788
4789 /*
4790 * For 64-bit guests, if EFER.SCE bit differs, we need to swap the EFER MSR
4791 * to ensure that the guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
4792 */
4793 if ( CPUMIsGuestInLongModeEx(pCtx)
4794 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
4795 return true;
4796
4797 /*
4798 * If the guest uses PAE and EFER.NXE bit differs, we need to swap the EFER MSR
4799 * as it affects guest paging. 64-bit paging implies CR4.PAE as well.
4800 *
4801 * See Intel spec. 4.5 "IA-32e Paging".
4802 * See Intel spec. 4.1.1 "Three Paging Modes".
4803 *
4804 * Verify that we always intercept CR4.PAE and CR0.PG bits, so we don't need to
4805 * import CR4 and CR0 from the VMCS here as those bits are always up to date.
4806 */
4807 Assert(hmR0VmxGetFixedCr4Mask(pVCpu) & X86_CR4_PAE);
4808 Assert(hmR0VmxGetFixedCr0Mask(pVCpu) & X86_CR0_PG);
4809 if ( (pCtx->cr4 & X86_CR4_PAE)
4810 && (pCtx->cr0 & X86_CR0_PG))
4811 {
4812 /*
4813 * If nested paging is not used, verify that the guest paging mode matches the
4814 * shadow paging mode which is/will be placed in the VMCS (which is what will
4815 * actually be used while executing the guest and not the CR4 shadow value).
4816 */
4817 AssertMsg(pVM->hm.s.fNestedPaging || ( pVCpu->hm.s.enmShadowMode == PGMMODE_PAE
4818 || pVCpu->hm.s.enmShadowMode == PGMMODE_PAE_NX
4819 || pVCpu->hm.s.enmShadowMode == PGMMODE_AMD64
4820 || pVCpu->hm.s.enmShadowMode == PGMMODE_AMD64_NX),
4821 ("enmShadowMode=%u\n", pVCpu->hm.s.enmShadowMode));
4822 if ((u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
4823 {
4824 /* Verify that the host is NX capable. */
4825 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
4826 return true;
4827 }
4828 }
4829
4830 return false;
4831#endif
4832}
4833
4834
4835/**
4836 * Exports the guest state with appropriate VM-entry and VM-exit controls in the
4837 * VMCS.
4838 *
4839 * This is typically required when the guest changes paging mode.
4840 *
4841 * @returns VBox status code.
4842 * @param pVCpu The cross context virtual CPU structure.
4843 * @param pVmxTransient The VMX-transient structure.
4844 *
4845 * @remarks Requires EFER.
4846 * @remarks No-long-jump zone!!!
4847 */
4848static int hmR0VmxExportGuestEntryExitCtls(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
4849{
4850 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS)
4851 {
4852 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4853 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4854 bool const fGstInLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
4855
4856 /*
4857 * VMRUN function.
4858 * If the guest is in long mode, use the 64-bit guest handler, else the 32-bit guest handler.
4859 * The host is always 64-bit since we no longer support 32-bit hosts.
4860 */
4861 if (fGstInLongMode)
4862 {
4863#ifndef VBOX_WITH_64_BITS_GUESTS
4864 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4865#else
4866 Assert(pVM->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4867 pVmcsInfo->pfnStartVM = VMXR0StartVM64;
4868#endif
4869 }
4870 else
4871 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
4872
4873 /*
4874 * VM-entry controls.
4875 */
4876 {
4877 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4878 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4879
4880 /*
4881 * Load the guest debug controls (DR7 and IA32_DEBUGCTL MSR) on VM-entry.
4882 * The first VT-x capable CPUs only supported the 1-setting of this bit.
4883 *
4884 * For nested-guests, this is a mandatory VM-entry control. It's also
4885 * required because we do not want to leak host bits to the nested-guest.
4886 */
4887 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
4888
4889 /*
4890 * Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry.
4891 *
4892 * For nested-guests, the "IA-32e mode guest" control we initialize with what is
4893 * required to get the nested-guest working with hardware-assisted VMX execution.
4894 * It depends on the nested-guest's IA32_EFER.LMA bit. Remember, a nested hypervisor
4895 * can skip intercepting changes to the EFER MSR. This is why it it needs to be done
4896 * here rather than while merging the guest VMCS controls.
4897 */
4898 if (fGstInLongMode)
4899 {
4900 Assert(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME);
4901 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
4902 }
4903 else
4904 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
4905
4906 /*
4907 * If the CPU supports the newer VMCS controls for managing guest/host EFER, use it.
4908 *
4909 * For nested-guests, we use the "load IA32_EFER" if the hardware supports it,
4910 * regardless of whether the nested-guest VMCS specifies it because we are free to
4911 * load whatever MSRs we require and we do not need to modify the guest visible copy
4912 * of the VM-entry MSR load area.
4913 */
4914 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4915 && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
4916 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
4917 else
4918 Assert(!(fVal & VMX_ENTRY_CTLS_LOAD_EFER_MSR));
4919
4920 /*
4921 * The following should -not- be set (since we're not in SMM mode):
4922 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
4923 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
4924 */
4925
4926 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
4927 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
4928
4929 if ((fVal & fZap) == fVal)
4930 { /* likely */ }
4931 else
4932 {
4933 Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
4934 pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0, fVal, fZap));
4935 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
4936 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4937 }
4938
4939 /* Commit it to the VMCS. */
4940 if (pVmcsInfo->u32EntryCtls != fVal)
4941 {
4942 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
4943 AssertRC(rc);
4944 pVmcsInfo->u32EntryCtls = fVal;
4945 }
4946 }
4947
4948 /*
4949 * VM-exit controls.
4950 */
4951 {
4952 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4953 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4954
4955 /*
4956 * Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only
4957 * supported the 1-setting of this bit.
4958 *
4959 * For nested-guests, we set the "save debug controls" as the converse
4960 * "load debug controls" is mandatory for nested-guests anyway.
4961 */
4962 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
4963
4964 /*
4965 * Set the host long mode active (EFER.LMA) bit (which Intel calls
4966 * "Host address-space size") if necessary. On VM-exit, VT-x sets both the
4967 * host EFER.LMA and EFER.LME bit to this value. See assertion in
4968 * hmR0VmxExportHostMsrs().
4969 *
4970 * For nested-guests, we always set this bit as we do not support 32-bit
4971 * hosts.
4972 */
4973 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
4974
4975 /*
4976 * If the VMCS EFER MSR fields are supported by the hardware, we use it.
4977 *
4978 * For nested-guests, we should use the "save IA32_EFER" control if we also
4979 * used the "load IA32_EFER" control while exporting VM-entry controls.
4980 */
4981 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4982 && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
4983 {
4984 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
4985 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
4986 }
4987
4988 /*
4989 * Enable saving of the VMX-preemption timer value on VM-exit.
4990 * For nested-guests, currently not exposed/used.
4991 */
4992 if ( pVM->hm.s.vmx.fUsePreemptTimer
4993 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
4994 fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
4995
4996 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
4997 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
4998
4999 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
5000 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
5001 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
5002
5003 if ((fVal & fZap) == fVal)
5004 { /* likely */ }
5005 else
5006 {
5007 Log4Func(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%R#X32\n",
5008 pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0, fVal, fZap));
5009 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
5010 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
5011 }
5012
5013 /* Commit it to the VMCS. */
5014 if (pVmcsInfo->u32ExitCtls != fVal)
5015 {
5016 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
5017 AssertRC(rc);
5018 pVmcsInfo->u32ExitCtls = fVal;
5019 }
5020 }
5021
5022 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
5023 }
5024 return VINF_SUCCESS;
5025}
5026
5027
5028/**
5029 * Sets the TPR threshold in the VMCS.
5030 *
5031 * @param pVmcsInfo The VMCS info. object.
5032 * @param u32TprThreshold The TPR threshold (task-priority class only).
5033 */
5034DECLINLINE(void) hmR0VmxApicSetTprThreshold(PVMXVMCSINFO pVmcsInfo, uint32_t u32TprThreshold)
5035{
5036 Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
5037 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
5038 RT_NOREF(pVmcsInfo);
5039 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
5040 AssertRC(rc);
5041}
5042
5043
5044/**
5045 * Exports the guest APIC TPR state into the VMCS.
5046 *
5047 * @param pVCpu The cross context virtual CPU structure.
5048 * @param pVmxTransient The VMX-transient structure.
5049 *
5050 * @remarks No-long-jump zone!!!
5051 */
5052static void hmR0VmxExportGuestApicTpr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5053{
5054 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
5055 {
5056 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5057
5058 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5059 if (!pVmxTransient->fIsNestedGuest)
5060 {
5061 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
5062 && APICIsEnabled(pVCpu))
5063 {
5064 /*
5065 * Setup TPR shadowing.
5066 */
5067 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
5068 {
5069 bool fPendingIntr = false;
5070 uint8_t u8Tpr = 0;
5071 uint8_t u8PendingIntr = 0;
5072 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
5073 AssertRC(rc);
5074
5075 /*
5076 * If there are interrupts pending but masked by the TPR, instruct VT-x to
5077 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
5078 * priority of the pending interrupt so we can deliver the interrupt. If there
5079 * are no interrupts pending, set threshold to 0 to not cause any
5080 * TPR-below-threshold VM-exits.
5081 */
5082 uint32_t u32TprThreshold = 0;
5083 if (fPendingIntr)
5084 {
5085 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR
5086 (which is the Task-Priority Class). */
5087 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
5088 const uint8_t u8TprPriority = u8Tpr >> 4;
5089 if (u8PendingPriority <= u8TprPriority)
5090 u32TprThreshold = u8PendingPriority;
5091 }
5092
5093 hmR0VmxApicSetTprThreshold(pVmcsInfo, u32TprThreshold);
5094 }
5095 }
5096 }
5097 /* else: the TPR threshold has already been updated while merging the nested-guest VMCS. */
5098 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
5099 }
5100}
5101
5102
5103/**
5104 * Gets the guest interruptibility-state and updates related force-flags.
5105 *
5106 * @returns Guest's interruptibility-state.
5107 * @param pVCpu The cross context virtual CPU structure.
5108 *
5109 * @remarks No-long-jump zone!!!
5110 */
5111static uint32_t hmR0VmxGetGuestIntrStateAndUpdateFFs(PVMCPUCC pVCpu)
5112{
5113 /*
5114 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
5115 */
5116 uint32_t fIntrState = 0;
5117 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
5118 {
5119 /* If inhibition is active, RIP and RFLAGS should've been imported from the VMCS already. */
5120 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
5121
5122 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5123 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
5124 {
5125 if (pCtx->eflags.Bits.u1IF)
5126 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
5127 else
5128 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
5129 }
5130 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
5131 {
5132 /*
5133 * We can clear the inhibit force flag as even if we go back to the recompiler
5134 * without executing guest code in VT-x, the flag's condition to be cleared is
5135 * met and thus the cleared state is correct.
5136 */
5137 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
5138 }
5139 }
5140
5141 /*
5142 * Check if we should inhibit NMI delivery.
5143 */
5144 if (CPUMIsGuestNmiBlocking(pVCpu))
5145 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
5146
5147 /*
5148 * Validate.
5149 */
5150#ifdef VBOX_STRICT
5151 /* We don't support block-by-SMI yet.*/
5152 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI));
5153
5154 /* Block-by-STI must not be set when interrupts are disabled. */
5155 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
5156 {
5157 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
5158 Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_IF);
5159 }
5160#endif
5161
5162 return fIntrState;
5163}
5164
5165
5166/**
5167 * Exports the exception intercepts required for guest execution in the VMCS.
5168 *
5169 * @param pVCpu The cross context virtual CPU structure.
5170 * @param pVmxTransient The VMX-transient structure.
5171 *
5172 * @remarks No-long-jump zone!!!
5173 */
5174static void hmR0VmxExportGuestXcptIntercepts(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5175{
5176 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_XCPT_INTERCEPTS)
5177 {
5178 /* When executing a nested-guest, we do not need to trap GIM hypercalls by intercepting #UD. */
5179 if ( !pVmxTransient->fIsNestedGuest
5180 && pVCpu->hm.s.fGIMTrapXcptUD)
5181 hmR0VmxAddXcptIntercept(pVmxTransient, X86_XCPT_UD);
5182 else
5183 hmR0VmxRemoveXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD);
5184
5185 /* Other exception intercepts are handled elsewhere, e.g. while exporting guest CR0. */
5186 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_XCPT_INTERCEPTS);
5187 }
5188}
5189
5190
5191/**
5192 * Exports the guest's RIP into the guest-state area in the VMCS.
5193 *
5194 * @param pVCpu The cross context virtual CPU structure.
5195 *
5196 * @remarks No-long-jump zone!!!
5197 */
5198static void hmR0VmxExportGuestRip(PVMCPUCC pVCpu)
5199{
5200 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
5201 {
5202 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
5203
5204 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
5205 AssertRC(rc);
5206
5207 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
5208 Log4Func(("rip=%#RX64\n", pVCpu->cpum.GstCtx.rip));
5209 }
5210}
5211
5212
5213/**
5214 * Exports the guest's RSP into the guest-state area in the VMCS.
5215 *
5216 * @param pVCpu The cross context virtual CPU structure.
5217 *
5218 * @remarks No-long-jump zone!!!
5219 */
5220static void hmR0VmxExportGuestRsp(PVMCPUCC pVCpu)
5221{
5222 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
5223 {
5224 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
5225
5226 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
5227 AssertRC(rc);
5228
5229 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
5230 Log4Func(("rsp=%#RX64\n", pVCpu->cpum.GstCtx.rsp));
5231 }
5232}
5233
5234
5235/**
5236 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
5237 *
5238 * @param pVCpu The cross context virtual CPU structure.
5239 * @param pVmxTransient The VMX-transient structure.
5240 *
5241 * @remarks No-long-jump zone!!!
5242 */
5243static void hmR0VmxExportGuestRflags(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5244{
5245 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
5246 {
5247 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
5248
5249 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
5250 Let us assert it as such and use 32-bit VMWRITE. */
5251 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
5252 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
5253 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
5254 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
5255
5256 /*
5257 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
5258 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
5259 * can run the real-mode guest code under Virtual 8086 mode.
5260 */
5261 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5262 if (pVmcsInfo->RealMode.fRealOnV86Active)
5263 {
5264 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
5265 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
5266 Assert(!pVmxTransient->fIsNestedGuest);
5267 pVmcsInfo->RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
5268 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
5269 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
5270 }
5271
5272 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
5273 AssertRC(rc);
5274
5275 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
5276 Log4Func(("eflags=%#RX32\n", fEFlags.u32));
5277 }
5278}
5279
5280
5281#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5282/**
5283 * Copies the nested-guest VMCS to the shadow VMCS.
5284 *
5285 * @returns VBox status code.
5286 * @param pVCpu The cross context virtual CPU structure.
5287 * @param pVmcsInfo The VMCS info. object.
5288 *
5289 * @remarks No-long-jump zone!!!
5290 */
5291static int hmR0VmxCopyNstGstToShadowVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
5292{
5293 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5294 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5295
5296 /*
5297 * Disable interrupts so we don't get preempted while the shadow VMCS is the
5298 * current VMCS, as we may try saving guest lazy MSRs.
5299 *
5300 * Strictly speaking the lazy MSRs are not in the VMCS, but I'd rather not risk
5301 * calling the import VMCS code which is currently performing the guest MSR reads
5302 * (on 64-bit hosts) and accessing the auto-load/store MSR area on 32-bit hosts
5303 * and the rest of the VMX leave session machinery.
5304 */
5305 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
5306
5307 int rc = hmR0VmxLoadShadowVmcs(pVmcsInfo);
5308 if (RT_SUCCESS(rc))
5309 {
5310 /*
5311 * Copy all guest read/write VMCS fields.
5312 *
5313 * We don't check for VMWRITE failures here for performance reasons and
5314 * because they are not expected to fail, barring irrecoverable conditions
5315 * like hardware errors.
5316 */
5317 uint32_t const cShadowVmcsFields = pVM->hm.s.vmx.cShadowVmcsFields;
5318 for (uint32_t i = 0; i < cShadowVmcsFields; i++)
5319 {
5320 uint64_t u64Val;
5321 uint32_t const uVmcsField = pVM->hm.s.vmx.paShadowVmcsFields[i];
5322 IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val);
5323 VMXWriteVmcs64(uVmcsField, u64Val);
5324 }
5325
5326 /*
5327 * If the host CPU supports writing all VMCS fields, copy the guest read-only
5328 * VMCS fields, so the guest can VMREAD them without causing a VM-exit.
5329 */
5330 if (pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL)
5331 {
5332 uint32_t const cShadowVmcsRoFields = pVM->hm.s.vmx.cShadowVmcsRoFields;
5333 for (uint32_t i = 0; i < cShadowVmcsRoFields; i++)
5334 {
5335 uint64_t u64Val;
5336 uint32_t const uVmcsField = pVM->hm.s.vmx.paShadowVmcsRoFields[i];
5337 IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val);
5338 VMXWriteVmcs64(uVmcsField, u64Val);
5339 }
5340 }
5341
5342 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
5343 rc |= hmR0VmxLoadVmcs(pVmcsInfo);
5344 }
5345
5346 ASMSetFlags(fEFlags);
5347 return rc;
5348}
5349
5350
5351/**
5352 * Copies the shadow VMCS to the nested-guest VMCS.
5353 *
5354 * @returns VBox status code.
5355 * @param pVCpu The cross context virtual CPU structure.
5356 * @param pVmcsInfo The VMCS info. object.
5357 *
5358 * @remarks Called with interrupts disabled.
5359 */
5360static int hmR0VmxCopyShadowToNstGstVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
5361{
5362 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
5363 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5364 PVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5365
5366 int rc = hmR0VmxLoadShadowVmcs(pVmcsInfo);
5367 if (RT_SUCCESS(rc))
5368 {
5369 /*
5370 * Copy guest read/write fields from the shadow VMCS.
5371 * Guest read-only fields cannot be modified, so no need to copy them.
5372 *
5373 * We don't check for VMREAD failures here for performance reasons and
5374 * because they are not expected to fail, barring irrecoverable conditions
5375 * like hardware errors.
5376 */
5377 uint32_t const cShadowVmcsFields = pVM->hm.s.vmx.cShadowVmcsFields;
5378 for (uint32_t i = 0; i < cShadowVmcsFields; i++)
5379 {
5380 uint64_t u64Val;
5381 uint32_t const uVmcsField = pVM->hm.s.vmx.paShadowVmcsFields[i];
5382 VMXReadVmcs64(uVmcsField, &u64Val);
5383 IEMWriteVmxVmcsField(pVmcsNstGst, uVmcsField, u64Val);
5384 }
5385
5386 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
5387 rc |= hmR0VmxLoadVmcs(pVmcsInfo);
5388 }
5389 return rc;
5390}
5391
5392
5393/**
5394 * Enables VMCS shadowing for the given VMCS info. object.
5395 *
5396 * @param pVmcsInfo The VMCS info. object.
5397 *
5398 * @remarks No-long-jump zone!!!
5399 */
5400static void hmR0VmxEnableVmcsShadowing(PVMXVMCSINFO pVmcsInfo)
5401{
5402 uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2;
5403 if (!(uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING))
5404 {
5405 Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
5406 uProcCtls2 |= VMX_PROC_CTLS2_VMCS_SHADOWING;
5407 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2); AssertRC(rc);
5408 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, pVmcsInfo->HCPhysShadowVmcs); AssertRC(rc);
5409 pVmcsInfo->u32ProcCtls2 = uProcCtls2;
5410 pVmcsInfo->u64VmcsLinkPtr = pVmcsInfo->HCPhysShadowVmcs;
5411 Log4Func(("Enabled\n"));
5412 }
5413}
5414
5415
5416/**
5417 * Disables VMCS shadowing for the given VMCS info. object.
5418 *
5419 * @param pVmcsInfo The VMCS info. object.
5420 *
5421 * @remarks No-long-jump zone!!!
5422 */
5423static void hmR0VmxDisableVmcsShadowing(PVMXVMCSINFO pVmcsInfo)
5424{
5425 /*
5426 * We want all VMREAD and VMWRITE instructions to cause VM-exits, so we clear the
5427 * VMCS shadowing control. However, VM-entry requires the shadow VMCS indicator bit
5428 * to match the VMCS shadowing control if the VMCS link pointer is not NIL_RTHCPHYS.
5429 * Hence, we must also reset the VMCS link pointer to ensure VM-entry does not fail.
5430 *
5431 * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
5432 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5433 */
5434 uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2;
5435 if (uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
5436 {
5437 uProcCtls2 &= ~VMX_PROC_CTLS2_VMCS_SHADOWING;
5438 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2); AssertRC(rc);
5439 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS); AssertRC(rc);
5440 pVmcsInfo->u32ProcCtls2 = uProcCtls2;
5441 pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
5442 Log4Func(("Disabled\n"));
5443 }
5444}
5445#endif
5446
5447
5448/**
5449 * Exports the guest hardware-virtualization state.
5450 *
5451 * @returns VBox status code.
5452 * @param pVCpu The cross context virtual CPU structure.
5453 * @param pVmxTransient The VMX-transient structure.
5454 *
5455 * @remarks No-long-jump zone!!!
5456 */
5457static int hmR0VmxExportGuestHwvirtState(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5458{
5459 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_HWVIRT)
5460 {
5461#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5462 /*
5463 * Check if the VMX feature is exposed to the guest and if the host CPU supports
5464 * VMCS shadowing.
5465 */
5466 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUseVmcsShadowing)
5467 {
5468 /*
5469 * If the nested hypervisor has loaded a current VMCS and is in VMX root mode,
5470 * copy the nested hypervisor's current VMCS into the shadow VMCS and enable
5471 * VMCS shadowing to skip intercepting some or all VMREAD/VMWRITE VM-exits.
5472 *
5473 * We check for VMX root mode here in case the guest executes VMXOFF without
5474 * clearing the current VMCS pointer and our VMXOFF instruction emulation does
5475 * not clear the current VMCS pointer.
5476 */
5477 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5478 if ( CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx)
5479 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)
5480 && CPUMIsGuestVmxCurrentVmcsValid(&pVCpu->cpum.GstCtx))
5481 {
5482 /* Paranoia. */
5483 Assert(!pVmxTransient->fIsNestedGuest);
5484
5485 /*
5486 * For performance reasons, also check if the nested hypervisor's current VMCS
5487 * was newly loaded or modified before copying it to the shadow VMCS.
5488 */
5489 if (!pVCpu->hm.s.vmx.fCopiedNstGstToShadowVmcs)
5490 {
5491 int rc = hmR0VmxCopyNstGstToShadowVmcs(pVCpu, pVmcsInfo);
5492 AssertRCReturn(rc, rc);
5493 pVCpu->hm.s.vmx.fCopiedNstGstToShadowVmcs = true;
5494 }
5495 hmR0VmxEnableVmcsShadowing(pVmcsInfo);
5496 }
5497 else
5498 hmR0VmxDisableVmcsShadowing(pVmcsInfo);
5499 }
5500#else
5501 NOREF(pVmxTransient);
5502#endif
5503 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_HWVIRT);
5504 }
5505 return VINF_SUCCESS;
5506}
5507
5508
5509/**
5510 * Exports the guest CR0 control register into the guest-state area in the VMCS.
5511 *
5512 * The guest FPU state is always pre-loaded hence we don't need to bother about
5513 * sharing FPU related CR0 bits between the guest and host.
5514 *
5515 * @returns VBox status code.
5516 * @param pVCpu The cross context virtual CPU structure.
5517 * @param pVmxTransient The VMX-transient structure.
5518 *
5519 * @remarks No-long-jump zone!!!
5520 */
5521static int hmR0VmxExportGuestCR0(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5522{
5523 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
5524 {
5525 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5526 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5527
5528 uint64_t fSetCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed0;
5529 uint64_t const fZapCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
5530 if (pVM->hm.s.vmx.fUnrestrictedGuest)
5531 fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
5532 else
5533 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
5534
5535 if (!pVmxTransient->fIsNestedGuest)
5536 {
5537 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5538 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5539 uint64_t const u64ShadowCr0 = u64GuestCr0;
5540 Assert(!RT_HI_U32(u64GuestCr0));
5541
5542 /*
5543 * Setup VT-x's view of the guest CR0.
5544 */
5545 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
5546 if (pVM->hm.s.fNestedPaging)
5547 {
5548 if (CPUMIsGuestPagingEnabled(pVCpu))
5549 {
5550 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
5551 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
5552 | VMX_PROC_CTLS_CR3_STORE_EXIT);
5553 }
5554 else
5555 {
5556 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
5557 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
5558 | VMX_PROC_CTLS_CR3_STORE_EXIT;
5559 }
5560
5561 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
5562 if (pVM->hm.s.vmx.fUnrestrictedGuest)
5563 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
5564 }
5565 else
5566 {
5567 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
5568 u64GuestCr0 |= X86_CR0_WP;
5569 }
5570
5571 /*
5572 * Guest FPU bits.
5573 *
5574 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
5575 * using CR0.TS.
5576 *
5577 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
5578 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
5579 */
5580 u64GuestCr0 |= X86_CR0_NE;
5581
5582 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
5583 bool const fInterceptMF = !(u64ShadowCr0 & X86_CR0_NE);
5584
5585 /*
5586 * Update exception intercepts.
5587 */
5588 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
5589 if (pVmcsInfo->RealMode.fRealOnV86Active)
5590 {
5591 Assert(PDMVmmDevHeapIsEnabled(pVM));
5592 Assert(pVM->hm.s.vmx.pRealModeTSS);
5593 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
5594 }
5595 else
5596 {
5597 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
5598 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
5599 if (fInterceptMF)
5600 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
5601 }
5602
5603 /* Additional intercepts for debugging, define these yourself explicitly. */
5604#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
5605 uXcptBitmap |= 0
5606 | RT_BIT(X86_XCPT_BP)
5607 | RT_BIT(X86_XCPT_DE)
5608 | RT_BIT(X86_XCPT_NM)
5609 | RT_BIT(X86_XCPT_TS)
5610 | RT_BIT(X86_XCPT_UD)
5611 | RT_BIT(X86_XCPT_NP)
5612 | RT_BIT(X86_XCPT_SS)
5613 | RT_BIT(X86_XCPT_GP)
5614 | RT_BIT(X86_XCPT_PF)
5615 | RT_BIT(X86_XCPT_MF)
5616 ;
5617#elif defined(HMVMX_ALWAYS_TRAP_PF)
5618 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
5619#endif
5620 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
5621 uXcptBitmap |= RT_BIT(X86_XCPT_GP);
5622 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
5623
5624 /* Apply the hardware specified CR0 fixed bits and enable caching. */
5625 u64GuestCr0 |= fSetCr0;
5626 u64GuestCr0 &= fZapCr0;
5627 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
5628
5629 /* Commit the CR0 and related fields to the guest VMCS. */
5630 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR0, u64GuestCr0); AssertRC(rc);
5631 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0); AssertRC(rc);
5632 if (uProcCtls != pVmcsInfo->u32ProcCtls)
5633 {
5634 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5635 AssertRC(rc);
5636 }
5637 if (uXcptBitmap != pVmcsInfo->u32XcptBitmap)
5638 {
5639 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
5640 AssertRC(rc);
5641 }
5642
5643 /* Update our caches. */
5644 pVmcsInfo->u32ProcCtls = uProcCtls;
5645 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
5646
5647 Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
5648 }
5649 else
5650 {
5651 /*
5652 * With nested-guests, we may have extended the guest/host mask here since we
5653 * merged in the outer guest's mask. Thus, the merged mask can include more bits
5654 * (to read from the nested-guest CR0 read-shadow) than the nested hypervisor
5655 * originally supplied. We must copy those bits from the nested-guest CR0 into
5656 * the nested-guest CR0 read-shadow.
5657 */
5658 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5659 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5660 uint64_t const u64ShadowCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVmcsInfo->u64Cr0Mask);
5661 Assert(!RT_HI_U32(u64GuestCr0));
5662 Assert(u64GuestCr0 & X86_CR0_NE);
5663
5664 /* Apply the hardware specified CR0 fixed bits and enable caching. */
5665 u64GuestCr0 |= fSetCr0;
5666 u64GuestCr0 &= fZapCr0;
5667 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
5668
5669 /* Commit the CR0 and CR0 read-shadow to the nested-guest VMCS. */
5670 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR0, u64GuestCr0); AssertRC(rc);
5671 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0); AssertRC(rc);
5672
5673 Log4Func(("cr0=%#RX64 shadow=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
5674 }
5675
5676 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
5677 }
5678
5679 return VINF_SUCCESS;
5680}
5681
5682
5683/**
5684 * Exports the guest control registers (CR3, CR4) into the guest-state area
5685 * in the VMCS.
5686 *
5687 * @returns VBox strict status code.
5688 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
5689 * without unrestricted guest access and the VMMDev is not presently
5690 * mapped (e.g. EFI32).
5691 *
5692 * @param pVCpu The cross context virtual CPU structure.
5693 * @param pVmxTransient The VMX-transient structure.
5694 *
5695 * @remarks No-long-jump zone!!!
5696 */
5697static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5698{
5699 int rc = VINF_SUCCESS;
5700 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5701
5702 /*
5703 * Guest CR2.
5704 * It's always loaded in the assembler code. Nothing to do here.
5705 */
5706
5707 /*
5708 * Guest CR3.
5709 */
5710 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
5711 {
5712 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5713
5714 if (pVM->hm.s.fNestedPaging)
5715 {
5716 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5717 pVmcsInfo->HCPhysEPTP = PGMGetHyperCR3(pVCpu);
5718
5719 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
5720 Assert(pVmcsInfo->HCPhysEPTP != NIL_RTHCPHYS);
5721 Assert(!(pVmcsInfo->HCPhysEPTP & UINT64_C(0xfff0000000000000)));
5722 Assert(!(pVmcsInfo->HCPhysEPTP & 0xfff));
5723
5724 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
5725 pVmcsInfo->HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
5726 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
5727
5728 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
5729 AssertMsg( ((pVmcsInfo->HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
5730 && ((pVmcsInfo->HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
5731 ("EPTP %#RX64\n", pVmcsInfo->HCPhysEPTP));
5732 AssertMsg( !((pVmcsInfo->HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
5733 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
5734 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVmcsInfo->HCPhysEPTP));
5735
5736 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVmcsInfo->HCPhysEPTP);
5737 AssertRC(rc);
5738
5739 uint64_t u64GuestCr3;
5740 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5741 if ( pVM->hm.s.vmx.fUnrestrictedGuest
5742 || CPUMIsGuestPagingEnabledEx(pCtx))
5743 {
5744 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
5745 if (CPUMIsGuestInPAEModeEx(pCtx))
5746 {
5747 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
5748 AssertRC(rc);
5749 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u); AssertRC(rc);
5750 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u); AssertRC(rc);
5751 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u); AssertRC(rc);
5752 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u); AssertRC(rc);
5753 }
5754
5755 /*
5756 * The guest's view of its CR3 is unblemished with nested paging when the
5757 * guest is using paging or we have unrestricted guest execution to handle
5758 * the guest when it's not using paging.
5759 */
5760 u64GuestCr3 = pCtx->cr3;
5761 }
5762 else
5763 {
5764 /*
5765 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
5766 * thinks it accesses physical memory directly, we use our identity-mapped
5767 * page table to map guest-linear to guest-physical addresses. EPT takes care
5768 * of translating it to host-physical addresses.
5769 */
5770 RTGCPHYS GCPhys;
5771 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
5772
5773 /* We obtain it here every time as the guest could have relocated this PCI region. */
5774 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
5775 if (RT_SUCCESS(rc))
5776 { /* likely */ }
5777 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
5778 {
5779 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
5780 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
5781 }
5782 else
5783 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
5784
5785 u64GuestCr3 = GCPhys;
5786 }
5787
5788 Log4Func(("guest_cr3=%#RX64 (GstN)\n", u64GuestCr3));
5789 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR3, u64GuestCr3);
5790 AssertRC(rc);
5791 }
5792 else
5793 {
5794 Assert(!pVmxTransient->fIsNestedGuest);
5795 /* Non-nested paging case, just use the hypervisor's CR3. */
5796 RTHCPHYS const HCPhysGuestCr3 = PGMGetHyperCR3(pVCpu);
5797
5798 Log4Func(("guest_cr3=%#RX64 (HstN)\n", HCPhysGuestCr3));
5799 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR3, HCPhysGuestCr3);
5800 AssertRC(rc);
5801 }
5802
5803 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
5804 }
5805
5806 /*
5807 * Guest CR4.
5808 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
5809 */
5810 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
5811 {
5812 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5813 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5814
5815 uint64_t const fSetCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed0;
5816 uint64_t const fZapCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
5817
5818 /*
5819 * With nested-guests, we may have extended the guest/host mask here (since we
5820 * merged in the outer guest's mask, see hmR0VmxMergeVmcsNested). This means, the
5821 * mask can include more bits (to read from the nested-guest CR4 read-shadow) than
5822 * the nested hypervisor originally supplied. Thus, we should, in essence, copy
5823 * those bits from the nested-guest CR4 into the nested-guest CR4 read-shadow.
5824 */
5825 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5826 uint64_t u64GuestCr4 = pCtx->cr4;
5827 uint64_t const u64ShadowCr4 = !pVmxTransient->fIsNestedGuest
5828 ? pCtx->cr4
5829 : CPUMGetGuestVmxMaskedCr4(pCtx, pVmcsInfo->u64Cr4Mask);
5830 Assert(!RT_HI_U32(u64GuestCr4));
5831
5832 /*
5833 * Setup VT-x's view of the guest CR4.
5834 *
5835 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
5836 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
5837 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
5838 *
5839 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
5840 */
5841 if (pVmcsInfo->RealMode.fRealOnV86Active)
5842 {
5843 Assert(pVM->hm.s.vmx.pRealModeTSS);
5844 Assert(PDMVmmDevHeapIsEnabled(pVM));
5845 u64GuestCr4 &= ~(uint64_t)X86_CR4_VME;
5846 }
5847
5848 if (pVM->hm.s.fNestedPaging)
5849 {
5850 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
5851 && !pVM->hm.s.vmx.fUnrestrictedGuest)
5852 {
5853 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
5854 u64GuestCr4 |= X86_CR4_PSE;
5855 /* Our identity mapping is a 32-bit page directory. */
5856 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5857 }
5858 /* else use guest CR4.*/
5859 }
5860 else
5861 {
5862 Assert(!pVmxTransient->fIsNestedGuest);
5863
5864 /*
5865 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
5866 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
5867 */
5868 switch (pVCpu->hm.s.enmShadowMode)
5869 {
5870 case PGMMODE_REAL: /* Real-mode. */
5871 case PGMMODE_PROTECTED: /* Protected mode without paging. */
5872 case PGMMODE_32_BIT: /* 32-bit paging. */
5873 {
5874 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5875 break;
5876 }
5877
5878 case PGMMODE_PAE: /* PAE paging. */
5879 case PGMMODE_PAE_NX: /* PAE paging with NX. */
5880 {
5881 u64GuestCr4 |= X86_CR4_PAE;
5882 break;
5883 }
5884
5885 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
5886 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
5887 {
5888#ifdef VBOX_WITH_64_BITS_GUESTS
5889 /* For our assumption in hmR0VmxShouldSwapEferMsr. */
5890 Assert(u64GuestCr4 & X86_CR4_PAE);
5891 break;
5892#endif
5893 }
5894 default:
5895 AssertFailed();
5896 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
5897 }
5898 }
5899
5900 /* Apply the hardware specified CR4 fixed bits (mainly CR4.VMXE). */
5901 u64GuestCr4 |= fSetCr4;
5902 u64GuestCr4 &= fZapCr4;
5903
5904 /* Commit the CR4 and CR4 read-shadow to the guest VMCS. */
5905 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR4, u64GuestCr4); AssertRC(rc);
5906 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_READ_SHADOW, u64ShadowCr4); AssertRC(rc);
5907
5908 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
5909 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
5910
5911 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
5912
5913 Log4Func(("cr4=%#RX64 shadow=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr4, u64ShadowCr4, fSetCr4, fZapCr4));
5914 }
5915 return rc;
5916}
5917
5918
5919/**
5920 * Exports the guest debug registers into the guest-state area in the VMCS.
5921 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
5922 *
5923 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
5924 *
5925 * @returns VBox status code.
5926 * @param pVCpu The cross context virtual CPU structure.
5927 * @param pVmxTransient The VMX-transient structure.
5928 *
5929 * @remarks No-long-jump zone!!!
5930 */
5931static int hmR0VmxExportSharedDebugState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
5932{
5933 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
5934
5935 /** @todo NSTVMX: Figure out what we want to do with nested-guest instruction
5936 * stepping. */
5937 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5938 if (pVmxTransient->fIsNestedGuest)
5939 {
5940 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, CPUMGetGuestDR7(pVCpu));
5941 AssertRC(rc);
5942
5943 /* Always intercept Mov DRx accesses for the nested-guest for now. */
5944 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
5945 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
5946 AssertRC(rc);
5947 return VINF_SUCCESS;
5948 }
5949
5950#ifdef VBOX_STRICT
5951 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
5952 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5953 {
5954 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
5955 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
5956 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
5957 }
5958#endif
5959
5960 bool fSteppingDB = false;
5961 bool fInterceptMovDRx = false;
5962 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
5963 if (pVCpu->hm.s.fSingleInstruction)
5964 {
5965 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
5966 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5967 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
5968 {
5969 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
5970 Assert(fSteppingDB == false);
5971 }
5972 else
5973 {
5974 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
5975 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
5976 pVCpu->hm.s.fClearTrapFlag = true;
5977 fSteppingDB = true;
5978 }
5979 }
5980
5981 uint64_t u64GuestDr7;
5982 if ( fSteppingDB
5983 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
5984 {
5985 /*
5986 * Use the combined guest and host DRx values found in the hypervisor register set
5987 * because the hypervisor debugger has breakpoints active or someone is single stepping
5988 * on the host side without a monitor trap flag.
5989 *
5990 * Note! DBGF expects a clean DR6 state before executing guest code.
5991 */
5992 if (!CPUMIsHyperDebugStateActive(pVCpu))
5993 {
5994 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
5995 Assert(CPUMIsHyperDebugStateActive(pVCpu));
5996 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
5997 }
5998
5999 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
6000 u64GuestDr7 = CPUMGetHyperDR7(pVCpu);
6001 pVCpu->hm.s.fUsingHyperDR7 = true;
6002 fInterceptMovDRx = true;
6003 }
6004 else
6005 {
6006 /*
6007 * If the guest has enabled debug registers, we need to load them prior to
6008 * executing guest code so they'll trigger at the right time.
6009 */
6010 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6011 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
6012 {
6013 if (!CPUMIsGuestDebugStateActive(pVCpu))
6014 {
6015 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
6016 Assert(CPUMIsGuestDebugStateActive(pVCpu));
6017 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
6018 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
6019 }
6020 Assert(!fInterceptMovDRx);
6021 }
6022 else if (!CPUMIsGuestDebugStateActive(pVCpu))
6023 {
6024 /*
6025 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
6026 * must intercept #DB in order to maintain a correct DR6 guest value, and
6027 * because we need to intercept it to prevent nested #DBs from hanging the
6028 * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
6029 */
6030 fInterceptMovDRx = true;
6031 }
6032
6033 /* Update DR7 with the actual guest value. */
6034 u64GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
6035 pVCpu->hm.s.fUsingHyperDR7 = false;
6036 }
6037
6038 if (fInterceptMovDRx)
6039 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
6040 else
6041 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
6042
6043 /*
6044 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
6045 * monitor-trap flag and update our cache.
6046 */
6047 if (uProcCtls != pVmcsInfo->u32ProcCtls)
6048 {
6049 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
6050 AssertRC(rc);
6051 pVmcsInfo->u32ProcCtls = uProcCtls;
6052 }
6053
6054 /*
6055 * Update guest DR7.
6056 */
6057 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, u64GuestDr7);
6058 AssertRC(rc);
6059
6060 /*
6061 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
6062 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
6063 *
6064 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
6065 */
6066 if (fSteppingDB)
6067 {
6068 Assert(pVCpu->hm.s.fSingleInstruction);
6069 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
6070
6071 uint32_t fIntrState = 0;
6072 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
6073 AssertRC(rc);
6074
6075 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
6076 {
6077 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
6078 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
6079 AssertRC(rc);
6080 }
6081 }
6082
6083 return VINF_SUCCESS;
6084}
6085
6086
6087#ifdef VBOX_STRICT
6088/**
6089 * Strict function to validate segment registers.
6090 *
6091 * @param pVCpu The cross context virtual CPU structure.
6092 * @param pVmcsInfo The VMCS info. object.
6093 *
6094 * @remarks Will import guest CR0 on strict builds during validation of
6095 * segments.
6096 */
6097static void hmR0VmxValidateSegmentRegs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
6098{
6099 /*
6100 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
6101 *
6102 * The reason we check for attribute value 0 in this function and not just the unusable bit is
6103 * because hmR0VmxExportGuestSegReg() only updates the VMCS' copy of the value with the
6104 * unusable bit and doesn't change the guest-context value.
6105 */
6106 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6107 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6108 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
6109 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
6110 && ( !CPUMIsGuestInRealModeEx(pCtx)
6111 && !CPUMIsGuestInV86ModeEx(pCtx)))
6112 {
6113 /* Protected mode checks */
6114 /* CS */
6115 Assert(pCtx->cs.Attr.n.u1Present);
6116 Assert(!(pCtx->cs.Attr.u & 0xf00));
6117 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
6118 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
6119 || !(pCtx->cs.Attr.n.u1Granularity));
6120 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
6121 || (pCtx->cs.Attr.n.u1Granularity));
6122 /* CS cannot be loaded with NULL in protected mode. */
6123 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
6124 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
6125 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
6126 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
6127 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
6128 else
6129 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
6130 /* SS */
6131 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
6132 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
6133 if ( !(pCtx->cr0 & X86_CR0_PE)
6134 || pCtx->cs.Attr.n.u4Type == 3)
6135 {
6136 Assert(!pCtx->ss.Attr.n.u2Dpl);
6137 }
6138 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
6139 {
6140 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
6141 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
6142 Assert(pCtx->ss.Attr.n.u1Present);
6143 Assert(!(pCtx->ss.Attr.u & 0xf00));
6144 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
6145 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
6146 || !(pCtx->ss.Attr.n.u1Granularity));
6147 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
6148 || (pCtx->ss.Attr.n.u1Granularity));
6149 }
6150 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegReg(). */
6151 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
6152 {
6153 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6154 Assert(pCtx->ds.Attr.n.u1Present);
6155 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
6156 Assert(!(pCtx->ds.Attr.u & 0xf00));
6157 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
6158 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
6159 || !(pCtx->ds.Attr.n.u1Granularity));
6160 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
6161 || (pCtx->ds.Attr.n.u1Granularity));
6162 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6163 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
6164 }
6165 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
6166 {
6167 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6168 Assert(pCtx->es.Attr.n.u1Present);
6169 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
6170 Assert(!(pCtx->es.Attr.u & 0xf00));
6171 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
6172 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
6173 || !(pCtx->es.Attr.n.u1Granularity));
6174 Assert( !(pCtx->es.u32Limit & 0xfff00000)
6175 || (pCtx->es.Attr.n.u1Granularity));
6176 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6177 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
6178 }
6179 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
6180 {
6181 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6182 Assert(pCtx->fs.Attr.n.u1Present);
6183 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
6184 Assert(!(pCtx->fs.Attr.u & 0xf00));
6185 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
6186 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
6187 || !(pCtx->fs.Attr.n.u1Granularity));
6188 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
6189 || (pCtx->fs.Attr.n.u1Granularity));
6190 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6191 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
6192 }
6193 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
6194 {
6195 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6196 Assert(pCtx->gs.Attr.n.u1Present);
6197 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
6198 Assert(!(pCtx->gs.Attr.u & 0xf00));
6199 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
6200 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
6201 || !(pCtx->gs.Attr.n.u1Granularity));
6202 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
6203 || (pCtx->gs.Attr.n.u1Granularity));
6204 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6205 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
6206 }
6207 /* 64-bit capable CPUs. */
6208 Assert(!RT_HI_U32(pCtx->cs.u64Base));
6209 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
6210 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
6211 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
6212 }
6213 else if ( CPUMIsGuestInV86ModeEx(pCtx)
6214 || ( CPUMIsGuestInRealModeEx(pCtx)
6215 && !pVM->hm.s.vmx.fUnrestrictedGuest))
6216 {
6217 /* Real and v86 mode checks. */
6218 /* hmR0VmxExportGuestSegReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
6219 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
6220 if (pVmcsInfo->RealMode.fRealOnV86Active)
6221 {
6222 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3;
6223 u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
6224 }
6225 else
6226 {
6227 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
6228 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
6229 }
6230
6231 /* CS */
6232 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
6233 Assert(pCtx->cs.u32Limit == 0xffff);
6234 Assert(u32CSAttr == 0xf3);
6235 /* SS */
6236 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
6237 Assert(pCtx->ss.u32Limit == 0xffff);
6238 Assert(u32SSAttr == 0xf3);
6239 /* DS */
6240 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
6241 Assert(pCtx->ds.u32Limit == 0xffff);
6242 Assert(u32DSAttr == 0xf3);
6243 /* ES */
6244 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
6245 Assert(pCtx->es.u32Limit == 0xffff);
6246 Assert(u32ESAttr == 0xf3);
6247 /* FS */
6248 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
6249 Assert(pCtx->fs.u32Limit == 0xffff);
6250 Assert(u32FSAttr == 0xf3);
6251 /* GS */
6252 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
6253 Assert(pCtx->gs.u32Limit == 0xffff);
6254 Assert(u32GSAttr == 0xf3);
6255 /* 64-bit capable CPUs. */
6256 Assert(!RT_HI_U32(pCtx->cs.u64Base));
6257 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
6258 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
6259 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
6260 }
6261}
6262#endif /* VBOX_STRICT */
6263
6264
6265/**
6266 * Exports a guest segment register into the guest-state area in the VMCS.
6267 *
6268 * @returns VBox status code.
6269 * @param pVCpu The cross context virtual CPU structure.
6270 * @param pVmcsInfo The VMCS info. object.
6271 * @param iSegReg The segment register number (X86_SREG_XXX).
6272 * @param pSelReg Pointer to the segment selector.
6273 *
6274 * @remarks No-long-jump zone!!!
6275 */
6276static int hmR0VmxExportGuestSegReg(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, uint8_t iSegReg, PCCPUMSELREG pSelReg)
6277{
6278 Assert(iSegReg < X86_SREG_COUNT);
6279 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
6280 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
6281 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
6282 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
6283
6284 uint32_t u32Access = pSelReg->Attr.u;
6285 if (pVmcsInfo->RealMode.fRealOnV86Active)
6286 {
6287 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
6288 u32Access = 0xf3;
6289 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6290 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
6291 RT_NOREF_PV(pVCpu);
6292 }
6293 else
6294 {
6295 /*
6296 * The way to differentiate between whether this is really a null selector or was just
6297 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
6298 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
6299 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
6300 * NULL selectors loaded in protected-mode have their attribute as 0.
6301 */
6302 if (!u32Access)
6303 u32Access = X86DESCATTR_UNUSABLE;
6304 }
6305
6306 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
6307 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
6308 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
6309
6310 /*
6311 * Commit it to the VMCS.
6312 */
6313 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); AssertRC(rc);
6314 rc = VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); AssertRC(rc);
6315 rc = VMXWriteVmcsNw(idxBase, pSelReg->u64Base); AssertRC(rc);
6316 rc = VMXWriteVmcs32(idxAttr, u32Access); AssertRC(rc);
6317 return VINF_SUCCESS;
6318}
6319
6320
6321/**
6322 * Exports the guest segment registers, GDTR, IDTR, LDTR, TR into the guest-state
6323 * area in the VMCS.
6324 *
6325 * @returns VBox status code.
6326 * @param pVCpu The cross context virtual CPU structure.
6327 * @param pVmxTransient The VMX-transient structure.
6328 *
6329 * @remarks Will import guest CR0 on strict builds during validation of
6330 * segments.
6331 * @remarks No-long-jump zone!!!
6332 */
6333static int hmR0VmxExportGuestSegRegsXdtr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
6334{
6335 int rc = VERR_INTERNAL_ERROR_5;
6336 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6337 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6338 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
6339
6340 /*
6341 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
6342 */
6343 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
6344 {
6345 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
6346 {
6347 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
6348 if (pVmcsInfo->RealMode.fRealOnV86Active)
6349 pVmcsInfo->RealMode.AttrCS.u = pCtx->cs.Attr.u;
6350 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_CS, &pCtx->cs);
6351 AssertRC(rc);
6352 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
6353 }
6354
6355 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
6356 {
6357 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
6358 if (pVmcsInfo->RealMode.fRealOnV86Active)
6359 pVmcsInfo->RealMode.AttrSS.u = pCtx->ss.Attr.u;
6360 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_SS, &pCtx->ss);
6361 AssertRC(rc);
6362 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
6363 }
6364
6365 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
6366 {
6367 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
6368 if (pVmcsInfo->RealMode.fRealOnV86Active)
6369 pVmcsInfo->RealMode.AttrDS.u = pCtx->ds.Attr.u;
6370 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_DS, &pCtx->ds);
6371 AssertRC(rc);
6372 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
6373 }
6374
6375 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
6376 {
6377 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
6378 if (pVmcsInfo->RealMode.fRealOnV86Active)
6379 pVmcsInfo->RealMode.AttrES.u = pCtx->es.Attr.u;
6380 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_ES, &pCtx->es);
6381 AssertRC(rc);
6382 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
6383 }
6384
6385 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
6386 {
6387 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
6388 if (pVmcsInfo->RealMode.fRealOnV86Active)
6389 pVmcsInfo->RealMode.AttrFS.u = pCtx->fs.Attr.u;
6390 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_FS, &pCtx->fs);
6391 AssertRC(rc);
6392 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
6393 }
6394
6395 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
6396 {
6397 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
6398 if (pVmcsInfo->RealMode.fRealOnV86Active)
6399 pVmcsInfo->RealMode.AttrGS.u = pCtx->gs.Attr.u;
6400 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_GS, &pCtx->gs);
6401 AssertRC(rc);
6402 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
6403 }
6404
6405#ifdef VBOX_STRICT
6406 hmR0VmxValidateSegmentRegs(pVCpu, pVmcsInfo);
6407#endif
6408 Log4Func(("cs={%#04x base=%#RX64 limit=%#RX32 attr=%#RX32}\n", pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit,
6409 pCtx->cs.Attr.u));
6410 }
6411
6412 /*
6413 * Guest TR.
6414 */
6415 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
6416 {
6417 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
6418
6419 /*
6420 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
6421 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
6422 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
6423 */
6424 uint16_t u16Sel;
6425 uint32_t u32Limit;
6426 uint64_t u64Base;
6427 uint32_t u32AccessRights;
6428 if (!pVmcsInfo->RealMode.fRealOnV86Active)
6429 {
6430 u16Sel = pCtx->tr.Sel;
6431 u32Limit = pCtx->tr.u32Limit;
6432 u64Base = pCtx->tr.u64Base;
6433 u32AccessRights = pCtx->tr.Attr.u;
6434 }
6435 else
6436 {
6437 Assert(!pVmxTransient->fIsNestedGuest);
6438 Assert(pVM->hm.s.vmx.pRealModeTSS);
6439 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
6440
6441 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
6442 RTGCPHYS GCPhys;
6443 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
6444 AssertRCReturn(rc, rc);
6445
6446 X86DESCATTR DescAttr;
6447 DescAttr.u = 0;
6448 DescAttr.n.u1Present = 1;
6449 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
6450
6451 u16Sel = 0;
6452 u32Limit = HM_VTX_TSS_SIZE;
6453 u64Base = GCPhys;
6454 u32AccessRights = DescAttr.u;
6455 }
6456
6457 /* Validate. */
6458 Assert(!(u16Sel & RT_BIT(2)));
6459 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
6460 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
6461 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
6462 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
6463 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
6464 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
6465 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
6466 Assert( (u32Limit & 0xfff) == 0xfff
6467 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
6468 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
6469 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
6470
6471 rc = VMXWriteVmcs16(VMX_VMCS16_GUEST_TR_SEL, u16Sel); AssertRC(rc);
6472 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit); AssertRC(rc);
6473 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights); AssertRC(rc);
6474 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_TR_BASE, u64Base); AssertRC(rc);
6475
6476 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
6477 Log4Func(("tr base=%#RX64 limit=%#RX32\n", pCtx->tr.u64Base, pCtx->tr.u32Limit));
6478 }
6479
6480 /*
6481 * Guest GDTR.
6482 */
6483 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
6484 {
6485 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
6486
6487 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt); AssertRC(rc);
6488 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt); AssertRC(rc);
6489
6490 /* Validate. */
6491 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
6492
6493 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
6494 Log4Func(("gdtr base=%#RX64 limit=%#RX32\n", pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt));
6495 }
6496
6497 /*
6498 * Guest LDTR.
6499 */
6500 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
6501 {
6502 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
6503
6504 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
6505 uint32_t u32Access;
6506 if ( !pVmxTransient->fIsNestedGuest
6507 && !pCtx->ldtr.Attr.u)
6508 u32Access = X86DESCATTR_UNUSABLE;
6509 else
6510 u32Access = pCtx->ldtr.Attr.u;
6511
6512 rc = VMXWriteVmcs16(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel); AssertRC(rc);
6513 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit); AssertRC(rc);
6514 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access); AssertRC(rc);
6515 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base); AssertRC(rc);
6516
6517 /* Validate. */
6518 if (!(u32Access & X86DESCATTR_UNUSABLE))
6519 {
6520 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
6521 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
6522 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
6523 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
6524 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
6525 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
6526 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
6527 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
6528 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
6529 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
6530 }
6531
6532 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
6533 Log4Func(("ldtr base=%#RX64 limit=%#RX32\n", pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit));
6534 }
6535
6536 /*
6537 * Guest IDTR.
6538 */
6539 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
6540 {
6541 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
6542
6543 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt); AssertRC(rc);
6544 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt); AssertRC(rc);
6545
6546 /* Validate. */
6547 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
6548
6549 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
6550 Log4Func(("idtr base=%#RX64 limit=%#RX32\n", pCtx->idtr.pIdt, pCtx->idtr.cbIdt));
6551 }
6552
6553 return VINF_SUCCESS;
6554}
6555
6556
6557/**
6558 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
6559 * areas.
6560 *
6561 * These MSRs will automatically be loaded to the host CPU on every successful
6562 * VM-entry and stored from the host CPU on every successful VM-exit.
6563 *
6564 * We creates/updates MSR slots for the host MSRs in the VM-exit MSR-load area. The
6565 * actual host MSR values are not- updated here for performance reasons. See
6566 * hmR0VmxExportHostMsrs().
6567 *
6568 * We also exports the guest sysenter MSRs into the guest-state area in the VMCS.
6569 *
6570 * @returns VBox status code.
6571 * @param pVCpu The cross context virtual CPU structure.
6572 * @param pVmxTransient The VMX-transient structure.
6573 *
6574 * @remarks No-long-jump zone!!!
6575 */
6576static int hmR0VmxExportGuestMsrs(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
6577{
6578 AssertPtr(pVCpu);
6579 AssertPtr(pVmxTransient);
6580
6581 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6582 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6583
6584 /*
6585 * MSRs that we use the auto-load/store MSR area in the VMCS.
6586 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(),
6587 * nothing to do here. The host MSR values are updated when it's safe in
6588 * hmR0VmxLazySaveHostMsrs().
6589 *
6590 * For nested-guests, the guests MSRs from the VM-entry MSR-load area are already
6591 * loaded (into the guest-CPU context) by the VMLAUNCH/VMRESUME instruction
6592 * emulation. The merged MSR permission bitmap will ensure that we get VM-exits
6593 * for any MSR that are not part of the lazy MSRs so we do not need to place
6594 * those MSRs into the auto-load/store MSR area. Nothing to do here.
6595 */
6596 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
6597 {
6598 /* No auto-load/store MSRs currently. */
6599 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
6600 }
6601
6602 /*
6603 * Guest Sysenter MSRs.
6604 */
6605 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
6606 {
6607 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
6608
6609 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
6610 {
6611 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
6612 AssertRC(rc);
6613 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
6614 }
6615
6616 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
6617 {
6618 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
6619 AssertRC(rc);
6620 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
6621 }
6622
6623 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
6624 {
6625 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
6626 AssertRC(rc);
6627 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
6628 }
6629 }
6630
6631 /*
6632 * Guest/host EFER MSR.
6633 */
6634 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
6635 {
6636 /* Whether we are using the VMCS to swap the EFER MSR must have been
6637 determined earlier while exporting VM-entry/VM-exit controls. */
6638 Assert(!(ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS));
6639 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
6640
6641 if (hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
6642 {
6643 /*
6644 * EFER.LME is written by software, while EFER.LMA is set by the CPU to (CR0.PG & EFER.LME).
6645 * This means a guest can set EFER.LME=1 while CR0.PG=0 and EFER.LMA can remain 0.
6646 * VT-x requires that "IA-32e mode guest" VM-entry control must be identical to EFER.LMA
6647 * and to CR0.PG. Without unrestricted execution, CR0.PG (used for VT-x, not the shadow)
6648 * must always be 1. This forces us to effectively clear both EFER.LMA and EFER.LME until
6649 * the guest has also set CR0.PG=1. Otherwise, we would run into an invalid-guest state
6650 * during VM-entry.
6651 */
6652 uint64_t uGuestEferMsr = pCtx->msrEFER;
6653 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
6654 {
6655 if (!(pCtx->msrEFER & MSR_K6_EFER_LMA))
6656 uGuestEferMsr &= ~MSR_K6_EFER_LME;
6657 else
6658 Assert((pCtx->msrEFER & (MSR_K6_EFER_LMA | MSR_K6_EFER_LME)) == (MSR_K6_EFER_LMA | MSR_K6_EFER_LME));
6659 }
6660
6661 /*
6662 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
6663 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
6664 */
6665 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
6666 {
6667 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, uGuestEferMsr);
6668 AssertRC(rc);
6669 }
6670 else
6671 {
6672 /*
6673 * We shall use the auto-load/store MSR area only for loading the EFER MSR but we must
6674 * continue to intercept guest read and write accesses to it, see @bugref{7386#c16}.
6675 */
6676 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER, uGuestEferMsr,
6677 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6678 AssertRCReturn(rc, rc);
6679 }
6680
6681 Log4Func(("efer=%#RX64 shadow=%#RX64\n", uGuestEferMsr, pCtx->msrEFER));
6682 }
6683 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
6684 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER);
6685
6686 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
6687 }
6688
6689 /*
6690 * Other MSRs.
6691 */
6692 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_OTHER_MSRS)
6693 {
6694 /* Speculation Control (R/W). */
6695 HMVMX_CPUMCTX_ASSERT(pVCpu, HM_CHANGED_GUEST_OTHER_MSRS);
6696 if (pVM->cpum.ro.GuestFeatures.fIbrs)
6697 {
6698 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu),
6699 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6700 AssertRCReturn(rc, rc);
6701 }
6702
6703 /* Last Branch Record. */
6704 if (pVM->hm.s.vmx.fLbr)
6705 {
6706 uint32_t const idFromIpMsrStart = pVM->hm.s.vmx.idLbrFromIpMsrFirst;
6707 uint32_t const idToIpMsrStart = pVM->hm.s.vmx.idLbrToIpMsrFirst;
6708 uint32_t const cLbrStack = pVM->hm.s.vmx.idLbrFromIpMsrLast - pVM->hm.s.vmx.idLbrFromIpMsrFirst + 1;
6709 Assert(cLbrStack <= 32);
6710 for (uint32_t i = 0; i < cLbrStack; i++)
6711 {
6712 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, idFromIpMsrStart + i,
6713 pVmxTransient->pVmcsInfo->au64LbrFromIpMsr[i],
6714 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6715 AssertRCReturn(rc, rc);
6716
6717 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
6718 if (idToIpMsrStart != 0)
6719 {
6720 rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, idToIpMsrStart + i,
6721 pVmxTransient->pVmcsInfo->au64LbrToIpMsr[i],
6722 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6723 AssertRCReturn(rc, rc);
6724 }
6725 }
6726
6727 /* Add LBR top-of-stack MSR (which contains the index to the most recent record). */
6728 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, pVM->hm.s.vmx.idLbrTosMsr,
6729 pVmxTransient->pVmcsInfo->u64LbrTosMsr, false /* fSetReadWrite */,
6730 false /* fUpdateHostMsr */);
6731 AssertRCReturn(rc, rc);
6732 }
6733
6734 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
6735 }
6736
6737 return VINF_SUCCESS;
6738}
6739
6740
6741/**
6742 * Wrapper for running the guest code in VT-x.
6743 *
6744 * @returns VBox status code, no informational status codes.
6745 * @param pVCpu The cross context virtual CPU structure.
6746 * @param pVmxTransient The VMX-transient structure.
6747 *
6748 * @remarks No-long-jump zone!!!
6749 */
6750DECLINLINE(int) hmR0VmxRunGuest(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
6751{
6752 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
6753 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6754 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
6755
6756 /** @todo Add stats for VMRESUME vs VMLAUNCH. */
6757
6758 /*
6759 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
6760 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
6761 * callee-saved and thus the need for this XMM wrapper.
6762 *
6763 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
6764 */
6765 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
6766 bool const fResumeVM = RT_BOOL(pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_LAUNCHED);
6767 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6768#ifdef VBOX_WITH_KERNEL_USING_XMM
6769 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, NULL /*pvUnused*/, pVM, pVCpu, pVmcsInfo->pfnStartVM);
6770#else
6771 int rc = pVmcsInfo->pfnStartVM(fResumeVM, pCtx, NULL /*pvUnused*/, pVM, pVCpu);
6772#endif
6773 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
6774 return rc;
6775}
6776
6777
6778/**
6779 * Reports world-switch error and dumps some useful debug info.
6780 *
6781 * @param pVCpu The cross context virtual CPU structure.
6782 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
6783 * @param pVmxTransient The VMX-transient structure (only
6784 * exitReason updated).
6785 */
6786static void hmR0VmxReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
6787{
6788 Assert(pVCpu);
6789 Assert(pVmxTransient);
6790 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
6791
6792 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
6793 switch (rcVMRun)
6794 {
6795 case VERR_VMX_INVALID_VMXON_PTR:
6796 AssertFailed();
6797 break;
6798 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
6799 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
6800 {
6801 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
6802 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
6803 AssertRC(rc);
6804 hmR0VmxReadExitQualVmcs(pVmxTransient);
6805
6806 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
6807 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
6808 Cannot do it here as we may have been long preempted. */
6809
6810#ifdef VBOX_STRICT
6811 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
6812 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
6813 pVmxTransient->uExitReason));
6814 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
6815 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
6816 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
6817 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
6818 else
6819 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
6820 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
6821 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
6822
6823 static struct
6824 {
6825 /** Name of the field to log. */
6826 const char *pszName;
6827 /** The VMCS field. */
6828 uint32_t uVmcsField;
6829 /** Whether host support of this field needs to be checked. */
6830 bool fCheckSupport;
6831 } const s_aVmcsFields[] =
6832 {
6833 { "VMX_VMCS32_CTRL_PIN_EXEC", VMX_VMCS32_CTRL_PIN_EXEC, false },
6834 { "VMX_VMCS32_CTRL_PROC_EXEC", VMX_VMCS32_CTRL_PROC_EXEC, false },
6835 { "VMX_VMCS32_CTRL_PROC_EXEC2", VMX_VMCS32_CTRL_PROC_EXEC2, true },
6836 { "VMX_VMCS32_CTRL_ENTRY", VMX_VMCS32_CTRL_ENTRY, false },
6837 { "VMX_VMCS32_CTRL_EXIT", VMX_VMCS32_CTRL_EXIT, false },
6838 { "VMX_VMCS32_CTRL_CR3_TARGET_COUNT", VMX_VMCS32_CTRL_CR3_TARGET_COUNT, false },
6839 { "VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO", VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, false },
6840 { "VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE", VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, false },
6841 { "VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH", VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, false },
6842 { "VMX_VMCS32_CTRL_TPR_THRESHOLD", VMX_VMCS32_CTRL_TPR_THRESHOLD, false },
6843 { "VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT", VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, false },
6844 { "VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT", VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, false },
6845 { "VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT", VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, false },
6846 { "VMX_VMCS32_CTRL_EXCEPTION_BITMAP", VMX_VMCS32_CTRL_EXCEPTION_BITMAP, false },
6847 { "VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK", VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, false },
6848 { "VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH", VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, false },
6849 { "VMX_VMCS_CTRL_CR0_MASK", VMX_VMCS_CTRL_CR0_MASK, false },
6850 { "VMX_VMCS_CTRL_CR0_READ_SHADOW", VMX_VMCS_CTRL_CR0_READ_SHADOW, false },
6851 { "VMX_VMCS_CTRL_CR4_MASK", VMX_VMCS_CTRL_CR4_MASK, false },
6852 { "VMX_VMCS_CTRL_CR4_READ_SHADOW", VMX_VMCS_CTRL_CR4_READ_SHADOW, false },
6853 { "VMX_VMCS64_CTRL_EPTP_FULL", VMX_VMCS64_CTRL_EPTP_FULL, true },
6854 { "VMX_VMCS_GUEST_RIP", VMX_VMCS_GUEST_RIP, false },
6855 { "VMX_VMCS_GUEST_RSP", VMX_VMCS_GUEST_RSP, false },
6856 { "VMX_VMCS_GUEST_RFLAGS", VMX_VMCS_GUEST_RFLAGS, false },
6857 { "VMX_VMCS16_VPID", VMX_VMCS16_VPID, true, },
6858 { "VMX_VMCS_HOST_CR0", VMX_VMCS_HOST_CR0, false },
6859 { "VMX_VMCS_HOST_CR3", VMX_VMCS_HOST_CR3, false },
6860 { "VMX_VMCS_HOST_CR4", VMX_VMCS_HOST_CR4, false },
6861 /* The order of selector fields below are fixed! */
6862 { "VMX_VMCS16_HOST_ES_SEL", VMX_VMCS16_HOST_ES_SEL, false },
6863 { "VMX_VMCS16_HOST_CS_SEL", VMX_VMCS16_HOST_CS_SEL, false },
6864 { "VMX_VMCS16_HOST_SS_SEL", VMX_VMCS16_HOST_SS_SEL, false },
6865 { "VMX_VMCS16_HOST_DS_SEL", VMX_VMCS16_HOST_DS_SEL, false },
6866 { "VMX_VMCS16_HOST_FS_SEL", VMX_VMCS16_HOST_FS_SEL, false },
6867 { "VMX_VMCS16_HOST_GS_SEL", VMX_VMCS16_HOST_GS_SEL, false },
6868 { "VMX_VMCS16_HOST_TR_SEL", VMX_VMCS16_HOST_TR_SEL, false },
6869 /* End of ordered selector fields. */
6870 { "VMX_VMCS_HOST_TR_BASE", VMX_VMCS_HOST_TR_BASE, false },
6871 { "VMX_VMCS_HOST_GDTR_BASE", VMX_VMCS_HOST_GDTR_BASE, false },
6872 { "VMX_VMCS_HOST_IDTR_BASE", VMX_VMCS_HOST_IDTR_BASE, false },
6873 { "VMX_VMCS32_HOST_SYSENTER_CS", VMX_VMCS32_HOST_SYSENTER_CS, false },
6874 { "VMX_VMCS_HOST_SYSENTER_EIP", VMX_VMCS_HOST_SYSENTER_EIP, false },
6875 { "VMX_VMCS_HOST_SYSENTER_ESP", VMX_VMCS_HOST_SYSENTER_ESP, false },
6876 { "VMX_VMCS_HOST_RSP", VMX_VMCS_HOST_RSP, false },
6877 { "VMX_VMCS_HOST_RIP", VMX_VMCS_HOST_RIP, false }
6878 };
6879
6880 RTGDTR HostGdtr;
6881 ASMGetGDTR(&HostGdtr);
6882
6883 uint32_t const cVmcsFields = RT_ELEMENTS(s_aVmcsFields);
6884 for (uint32_t i = 0; i < cVmcsFields; i++)
6885 {
6886 uint32_t const uVmcsField = s_aVmcsFields[i].uVmcsField;
6887
6888 bool fSupported;
6889 if (!s_aVmcsFields[i].fCheckSupport)
6890 fSupported = true;
6891 else
6892 {
6893 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6894 switch (uVmcsField)
6895 {
6896 case VMX_VMCS64_CTRL_EPTP_FULL: fSupported = pVM->hm.s.fNestedPaging; break;
6897 case VMX_VMCS16_VPID: fSupported = pVM->hm.s.vmx.fVpid; break;
6898 case VMX_VMCS32_CTRL_PROC_EXEC2:
6899 fSupported = RT_BOOL(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
6900 break;
6901 default:
6902 AssertMsgFailedReturnVoid(("Failed to provide VMCS field support for %#RX32\n", uVmcsField));
6903 }
6904 }
6905
6906 if (fSupported)
6907 {
6908 uint8_t const uWidth = RT_BF_GET(uVmcsField, VMX_BF_VMCSFIELD_WIDTH);
6909 switch (uWidth)
6910 {
6911 case VMX_VMCSFIELD_WIDTH_16BIT:
6912 {
6913 uint16_t u16Val;
6914 rc = VMXReadVmcs16(uVmcsField, &u16Val);
6915 AssertRC(rc);
6916 Log4(("%-40s = %#RX16\n", s_aVmcsFields[i].pszName, u16Val));
6917
6918 if ( uVmcsField >= VMX_VMCS16_HOST_ES_SEL
6919 && uVmcsField <= VMX_VMCS16_HOST_TR_SEL)
6920 {
6921 if (u16Val < HostGdtr.cbGdt)
6922 {
6923 /* Order of selectors in s_apszSel is fixed and matches the order in s_aVmcsFields. */
6924 static const char * const s_apszSel[] = { "Host ES", "Host CS", "Host SS", "Host DS",
6925 "Host FS", "Host GS", "Host TR" };
6926 uint8_t const idxSel = RT_BF_GET(uVmcsField, VMX_BF_VMCSFIELD_INDEX);
6927 Assert(idxSel < RT_ELEMENTS(s_apszSel));
6928 PCX86DESCHC pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u16Val & X86_SEL_MASK));
6929 hmR0DumpDescriptor(pDesc, u16Val, s_apszSel[idxSel]);
6930 }
6931 else
6932 Log4((" Selector value exceeds GDT limit!\n"));
6933 }
6934 break;
6935 }
6936
6937 case VMX_VMCSFIELD_WIDTH_32BIT:
6938 {
6939 uint32_t u32Val;
6940 rc = VMXReadVmcs32(uVmcsField, &u32Val);
6941 AssertRC(rc);
6942 Log4(("%-40s = %#RX32\n", s_aVmcsFields[i].pszName, u32Val));
6943 break;
6944 }
6945
6946 case VMX_VMCSFIELD_WIDTH_64BIT:
6947 case VMX_VMCSFIELD_WIDTH_NATURAL:
6948 {
6949 uint64_t u64Val;
6950 rc = VMXReadVmcs64(uVmcsField, &u64Val);
6951 AssertRC(rc);
6952 Log4(("%-40s = %#RX64\n", s_aVmcsFields[i].pszName, u64Val));
6953 break;
6954 }
6955 }
6956 }
6957 }
6958
6959 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
6960 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
6961 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
6962 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
6963 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
6964 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
6965#endif /* VBOX_STRICT */
6966 break;
6967 }
6968
6969 default:
6970 /* Impossible */
6971 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
6972 break;
6973 }
6974}
6975
6976
6977/**
6978 * Sets up the usage of TSC-offsetting and updates the VMCS.
6979 *
6980 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
6981 * VMX-preemption timer.
6982 *
6983 * @returns VBox status code.
6984 * @param pVCpu The cross context virtual CPU structure.
6985 * @param pVmxTransient The VMX-transient structure.
6986 *
6987 * @remarks No-long-jump zone!!!
6988 */
6989static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
6990{
6991 bool fOffsettedTsc;
6992 bool fParavirtTsc;
6993 uint64_t uTscOffset;
6994 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6995 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
6996
6997 if (pVM->hm.s.vmx.fUsePreemptTimer)
6998 {
6999 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
7000
7001 /* Make sure the returned values have sane upper and lower boundaries. */
7002 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
7003 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
7004 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
7005 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
7006
7007 /** @todo r=ramshankar: We need to find a way to integrate nested-guest
7008 * preemption timers here. We probably need to clamp the preemption timer,
7009 * after converting the timer value to the host. */
7010 uint32_t const cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
7011 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
7012 AssertRC(rc);
7013 }
7014 else
7015 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
7016
7017 if (fParavirtTsc)
7018 {
7019 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
7020 information before every VM-entry, hence disable it for performance sake. */
7021#if 0
7022 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
7023 AssertRC(rc);
7024#endif
7025 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
7026 }
7027
7028 if ( fOffsettedTsc
7029 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
7030 {
7031 if (pVmxTransient->fIsNestedGuest)
7032 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
7033 hmR0VmxSetTscOffsetVmcs(pVmcsInfo, uTscOffset);
7034 hmR0VmxRemoveProcCtlsVmcs(pVCpu, pVmxTransient, VMX_PROC_CTLS_RDTSC_EXIT);
7035 }
7036 else
7037 {
7038 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
7039 hmR0VmxSetProcCtlsVmcs(pVmxTransient, VMX_PROC_CTLS_RDTSC_EXIT);
7040 }
7041}
7042
7043
7044/**
7045 * Gets the IEM exception flags for the specified vector and IDT vectoring /
7046 * VM-exit interruption info type.
7047 *
7048 * @returns The IEM exception flags.
7049 * @param uVector The event vector.
7050 * @param uVmxEventType The VMX event type.
7051 *
7052 * @remarks This function currently only constructs flags required for
7053 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
7054 * and CR2 aspects of an exception are not included).
7055 */
7056static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxEventType)
7057{
7058 uint32_t fIemXcptFlags;
7059 switch (uVmxEventType)
7060 {
7061 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7062 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7063 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
7064 break;
7065
7066 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7067 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
7068 break;
7069
7070 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7071 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
7072 break;
7073
7074 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
7075 {
7076 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
7077 if (uVector == X86_XCPT_BP)
7078 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
7079 else if (uVector == X86_XCPT_OF)
7080 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
7081 else
7082 {
7083 fIemXcptFlags = 0;
7084 AssertMsgFailed(("Unexpected vector for software exception. uVector=%#x", uVector));
7085 }
7086 break;
7087 }
7088
7089 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7090 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
7091 break;
7092
7093 default:
7094 fIemXcptFlags = 0;
7095 AssertMsgFailed(("Unexpected vector type! uVmxEventType=%#x uVector=%#x", uVmxEventType, uVector));
7096 break;
7097 }
7098 return fIemXcptFlags;
7099}
7100
7101
7102/**
7103 * Sets an event as a pending event to be injected into the guest.
7104 *
7105 * @param pVCpu The cross context virtual CPU structure.
7106 * @param u32IntInfo The VM-entry interruption-information field.
7107 * @param cbInstr The VM-entry instruction length in bytes (for
7108 * software interrupts, exceptions and privileged
7109 * software exceptions).
7110 * @param u32ErrCode The VM-entry exception error code.
7111 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
7112 * page-fault.
7113 */
7114DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPUCC pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
7115 RTGCUINTPTR GCPtrFaultAddress)
7116{
7117 Assert(!pVCpu->hm.s.Event.fPending);
7118 pVCpu->hm.s.Event.fPending = true;
7119 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
7120 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
7121 pVCpu->hm.s.Event.cbInstr = cbInstr;
7122 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
7123}
7124
7125
7126/**
7127 * Sets an external interrupt as pending-for-injection into the VM.
7128 *
7129 * @param pVCpu The cross context virtual CPU structure.
7130 * @param u8Interrupt The external interrupt vector.
7131 */
7132DECLINLINE(void) hmR0VmxSetPendingExtInt(PVMCPUCC pVCpu, uint8_t u8Interrupt)
7133{
7134 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, u8Interrupt)
7135 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
7136 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7137 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7138 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7139}
7140
7141
7142/**
7143 * Sets an NMI (\#NMI) exception as pending-for-injection into the VM.
7144 *
7145 * @param pVCpu The cross context virtual CPU structure.
7146 */
7147DECLINLINE(void) hmR0VmxSetPendingXcptNmi(PVMCPUCC pVCpu)
7148{
7149 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_NMI)
7150 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_NMI)
7151 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7152 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7153 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7154}
7155
7156
7157/**
7158 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
7159 *
7160 * @param pVCpu The cross context virtual CPU structure.
7161 */
7162DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPUCC pVCpu)
7163{
7164 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
7165 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7166 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
7167 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7168 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7169}
7170
7171
7172/**
7173 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
7174 *
7175 * @param pVCpu The cross context virtual CPU structure.
7176 */
7177DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPUCC pVCpu)
7178{
7179 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
7180 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7181 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7182 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7183 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7184}
7185
7186
7187/**
7188 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
7189 *
7190 * @param pVCpu The cross context virtual CPU structure.
7191 */
7192DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPUCC pVCpu)
7193{
7194 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
7195 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7196 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7197 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7198 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7199}
7200
7201
7202#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7203/**
7204 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
7205 *
7206 * @param pVCpu The cross context virtual CPU structure.
7207 * @param u32ErrCode The error code for the general-protection exception.
7208 */
7209DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPUCC pVCpu, uint32_t u32ErrCode)
7210{
7211 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
7212 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7213 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
7214 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7215 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
7216}
7217
7218
7219/**
7220 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
7221 *
7222 * @param pVCpu The cross context virtual CPU structure.
7223 * @param u32ErrCode The error code for the stack exception.
7224 */
7225DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPUCC pVCpu, uint32_t u32ErrCode)
7226{
7227 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
7228 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7229 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
7230 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7231 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
7232}
7233#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
7234
7235
7236/**
7237 * Fixes up attributes for the specified segment register.
7238 *
7239 * @param pVCpu The cross context virtual CPU structure.
7240 * @param pSelReg The segment register that needs fixing.
7241 * @param idxSel The VMCS field for the corresponding segment register.
7242 */
7243static void hmR0VmxFixUnusableSegRegAttr(PVMCPUCC pVCpu, PCPUMSELREG pSelReg, uint32_t idxSel)
7244{
7245 Assert(pSelReg->Attr.u & X86DESCATTR_UNUSABLE);
7246
7247 /*
7248 * If VT-x marks the segment as unusable, most other bits remain undefined:
7249 * - For CS the L, D and G bits have meaning.
7250 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
7251 * - For the remaining data segments no bits are defined.
7252 *
7253 * The present bit and the unusable bit has been observed to be set at the
7254 * same time (the selector was supposed to be invalid as we started executing
7255 * a V8086 interrupt in ring-0).
7256 *
7257 * What should be important for the rest of the VBox code, is that the P bit is
7258 * cleared. Some of the other VBox code recognizes the unusable bit, but
7259 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
7260 * safe side here, we'll strip off P and other bits we don't care about. If
7261 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
7262 *
7263 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
7264 */
7265#ifdef VBOX_STRICT
7266 uint32_t const uAttr = pSelReg->Attr.u;
7267#endif
7268
7269 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
7270 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
7271 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
7272
7273#ifdef VBOX_STRICT
7274 VMMRZCallRing3Disable(pVCpu);
7275 Log4Func(("Unusable %#x: sel=%#x attr=%#x -> %#x\n", idxSel, pSelReg->Sel, uAttr, pSelReg->Attr.u));
7276# ifdef DEBUG_bird
7277 AssertMsg((uAttr & ~X86DESCATTR_P) == pSelReg->Attr.u,
7278 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
7279 idxSel, uAttr, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
7280# endif
7281 VMMRZCallRing3Enable(pVCpu);
7282 NOREF(uAttr);
7283#endif
7284 RT_NOREF2(pVCpu, idxSel);
7285}
7286
7287
7288/**
7289 * Imports a guest segment register from the current VMCS into the guest-CPU
7290 * context.
7291 *
7292 * @param pVCpu The cross context virtual CPU structure.
7293 * @param iSegReg The segment register number (X86_SREG_XXX).
7294 *
7295 * @remarks Called with interrupts and/or preemption disabled.
7296 */
7297static void hmR0VmxImportGuestSegReg(PVMCPUCC pVCpu, uint8_t iSegReg)
7298{
7299 Assert(iSegReg < X86_SREG_COUNT);
7300
7301 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
7302 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
7303 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
7304 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
7305
7306 uint16_t u16Sel;
7307 uint64_t u64Base;
7308 uint32_t u32Limit, u32Attr;
7309 int rc = VMXReadVmcs16(idxSel, &u16Sel); AssertRC(rc);
7310 rc = VMXReadVmcs32(idxLimit, &u32Limit); AssertRC(rc);
7311 rc = VMXReadVmcs32(idxAttr, &u32Attr); AssertRC(rc);
7312 rc = VMXReadVmcsNw(idxBase, &u64Base); AssertRC(rc);
7313
7314 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
7315 pSelReg->Sel = u16Sel;
7316 pSelReg->ValidSel = u16Sel;
7317 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
7318 pSelReg->u32Limit = u32Limit;
7319 pSelReg->u64Base = u64Base;
7320 pSelReg->Attr.u = u32Attr;
7321 if (u32Attr & X86DESCATTR_UNUSABLE)
7322 hmR0VmxFixUnusableSegRegAttr(pVCpu, pSelReg, idxSel);
7323}
7324
7325
7326/**
7327 * Imports the guest LDTR from the current VMCS into the guest-CPU context.
7328 *
7329 * @param pVCpu The cross context virtual CPU structure.
7330 *
7331 * @remarks Called with interrupts and/or preemption disabled.
7332 */
7333static void hmR0VmxImportGuestLdtr(PVMCPUCC pVCpu)
7334{
7335 uint16_t u16Sel;
7336 uint64_t u64Base;
7337 uint32_t u32Limit, u32Attr;
7338 int rc = VMXReadVmcs16(VMX_VMCS16_GUEST_LDTR_SEL, &u16Sel); AssertRC(rc);
7339 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, &u32Limit); AssertRC(rc);
7340 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, &u32Attr); AssertRC(rc);
7341 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_LDTR_BASE, &u64Base); AssertRC(rc);
7342
7343 pVCpu->cpum.GstCtx.ldtr.Sel = u16Sel;
7344 pVCpu->cpum.GstCtx.ldtr.ValidSel = u16Sel;
7345 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
7346 pVCpu->cpum.GstCtx.ldtr.u32Limit = u32Limit;
7347 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
7348 pVCpu->cpum.GstCtx.ldtr.Attr.u = u32Attr;
7349 if (u32Attr & X86DESCATTR_UNUSABLE)
7350 hmR0VmxFixUnusableSegRegAttr(pVCpu, &pVCpu->cpum.GstCtx.ldtr, VMX_VMCS16_GUEST_LDTR_SEL);
7351}
7352
7353
7354/**
7355 * Imports the guest TR from the current VMCS into the guest-CPU context.
7356 *
7357 * @param pVCpu The cross context virtual CPU structure.
7358 *
7359 * @remarks Called with interrupts and/or preemption disabled.
7360 */
7361static void hmR0VmxImportGuestTr(PVMCPUCC pVCpu)
7362{
7363 uint16_t u16Sel;
7364 uint64_t u64Base;
7365 uint32_t u32Limit, u32Attr;
7366 int rc = VMXReadVmcs16(VMX_VMCS16_GUEST_TR_SEL, &u16Sel); AssertRC(rc);
7367 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, &u32Limit); AssertRC(rc);
7368 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, &u32Attr); AssertRC(rc);
7369 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_TR_BASE, &u64Base); AssertRC(rc);
7370
7371 pVCpu->cpum.GstCtx.tr.Sel = u16Sel;
7372 pVCpu->cpum.GstCtx.tr.ValidSel = u16Sel;
7373 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
7374 pVCpu->cpum.GstCtx.tr.u32Limit = u32Limit;
7375 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
7376 pVCpu->cpum.GstCtx.tr.Attr.u = u32Attr;
7377 /* TR is the only selector that can never be unusable. */
7378 Assert(!(u32Attr & X86DESCATTR_UNUSABLE));
7379}
7380
7381
7382/**
7383 * Imports the guest RIP from the VMCS back into the guest-CPU context.
7384 *
7385 * @param pVCpu The cross context virtual CPU structure.
7386 *
7387 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7388 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7389 * instead!!!
7390 */
7391static void hmR0VmxImportGuestRip(PVMCPUCC pVCpu)
7392{
7393 uint64_t u64Val;
7394 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7395 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
7396 {
7397 int rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RIP, &u64Val);
7398 AssertRC(rc);
7399
7400 pCtx->rip = u64Val;
7401 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
7402 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
7403 }
7404}
7405
7406
7407/**
7408 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
7409 *
7410 * @param pVCpu The cross context virtual CPU structure.
7411 * @param pVmcsInfo The VMCS info. object.
7412 *
7413 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7414 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7415 * instead!!!
7416 */
7417static void hmR0VmxImportGuestRFlags(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
7418{
7419 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7420 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
7421 {
7422 uint64_t u64Val;
7423 int rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RFLAGS, &u64Val);
7424 AssertRC(rc);
7425
7426 pCtx->rflags.u64 = u64Val;
7427 if (pVmcsInfo->RealMode.fRealOnV86Active)
7428 {
7429 pCtx->eflags.Bits.u1VM = 0;
7430 pCtx->eflags.Bits.u2IOPL = pVmcsInfo->RealMode.Eflags.Bits.u2IOPL;
7431 }
7432 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
7433 }
7434}
7435
7436
7437/**
7438 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
7439 * context.
7440 *
7441 * @param pVCpu The cross context virtual CPU structure.
7442 * @param pVmcsInfo The VMCS info. object.
7443 *
7444 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7445 * do not log!
7446 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7447 * instead!!!
7448 */
7449static void hmR0VmxImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
7450{
7451 uint32_t u32Val;
7452 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val); AssertRC(rc);
7453 if (!u32Val)
7454 {
7455 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7456 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7457 CPUMSetGuestNmiBlocking(pVCpu, false);
7458 }
7459 else
7460 {
7461 /*
7462 * We must import RIP here to set our EM interrupt-inhibited state.
7463 * We also import RFLAGS as our code that evaluates pending interrupts
7464 * before VM-entry requires it.
7465 */
7466 hmR0VmxImportGuestRip(pVCpu);
7467 hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7468
7469 if (u32Val & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
7470 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7471 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7472 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7473
7474 bool const fNmiBlocking = RT_BOOL(u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7475 CPUMSetGuestNmiBlocking(pVCpu, fNmiBlocking);
7476 }
7477}
7478
7479
7480/**
7481 * Worker for VMXR0ImportStateOnDemand.
7482 *
7483 * @returns VBox status code.
7484 * @param pVCpu The cross context virtual CPU structure.
7485 * @param pVmcsInfo The VMCS info. object.
7486 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7487 */
7488static int hmR0VmxImportGuestState(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat)
7489{
7490 int rc = VINF_SUCCESS;
7491 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7492 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7493 uint32_t u32Val;
7494
7495 /*
7496 * Note! This is hack to workaround a mysterious BSOD observed with release builds
7497 * on Windows 10 64-bit hosts. Profile and debug builds are not affected and
7498 * neither are other host platforms.
7499 *
7500 * Committing this temporarily as it prevents BSOD.
7501 *
7502 * Update: This is very likely a compiler optimization bug, see @bugref{9180}.
7503 */
7504#ifdef RT_OS_WINDOWS
7505 if (pVM == 0 || pVM == (void *)(uintptr_t)-1)
7506 return VERR_HM_IPE_1;
7507#endif
7508
7509 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
7510
7511 /*
7512 * We disable interrupts to make the updating of the state and in particular
7513 * the fExtrn modification atomic wrt to preemption hooks.
7514 */
7515 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
7516
7517 fWhat &= pCtx->fExtrn;
7518 if (fWhat)
7519 {
7520 do
7521 {
7522 if (fWhat & CPUMCTX_EXTRN_RIP)
7523 hmR0VmxImportGuestRip(pVCpu);
7524
7525 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
7526 hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7527
7528 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
7529 hmR0VmxImportGuestIntrState(pVCpu, pVmcsInfo);
7530
7531 if (fWhat & CPUMCTX_EXTRN_RSP)
7532 {
7533 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RSP, &pCtx->rsp);
7534 AssertRC(rc);
7535 }
7536
7537 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
7538 {
7539 bool const fRealOnV86Active = pVmcsInfo->RealMode.fRealOnV86Active;
7540 if (fWhat & CPUMCTX_EXTRN_CS)
7541 {
7542 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_CS);
7543 hmR0VmxImportGuestRip(pVCpu);
7544 if (fRealOnV86Active)
7545 pCtx->cs.Attr.u = pVmcsInfo->RealMode.AttrCS.u;
7546 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true /* fFlattened */);
7547 }
7548 if (fWhat & CPUMCTX_EXTRN_SS)
7549 {
7550 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_SS);
7551 if (fRealOnV86Active)
7552 pCtx->ss.Attr.u = pVmcsInfo->RealMode.AttrSS.u;
7553 }
7554 if (fWhat & CPUMCTX_EXTRN_DS)
7555 {
7556 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_DS);
7557 if (fRealOnV86Active)
7558 pCtx->ds.Attr.u = pVmcsInfo->RealMode.AttrDS.u;
7559 }
7560 if (fWhat & CPUMCTX_EXTRN_ES)
7561 {
7562 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_ES);
7563 if (fRealOnV86Active)
7564 pCtx->es.Attr.u = pVmcsInfo->RealMode.AttrES.u;
7565 }
7566 if (fWhat & CPUMCTX_EXTRN_FS)
7567 {
7568 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_FS);
7569 if (fRealOnV86Active)
7570 pCtx->fs.Attr.u = pVmcsInfo->RealMode.AttrFS.u;
7571 }
7572 if (fWhat & CPUMCTX_EXTRN_GS)
7573 {
7574 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_GS);
7575 if (fRealOnV86Active)
7576 pCtx->gs.Attr.u = pVmcsInfo->RealMode.AttrGS.u;
7577 }
7578 }
7579
7580 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
7581 {
7582 if (fWhat & CPUMCTX_EXTRN_LDTR)
7583 hmR0VmxImportGuestLdtr(pVCpu);
7584
7585 if (fWhat & CPUMCTX_EXTRN_GDTR)
7586 {
7587 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_GDTR_BASE, &pCtx->gdtr.pGdt); AssertRC(rc);
7588 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRC(rc);
7589 pCtx->gdtr.cbGdt = u32Val;
7590 }
7591
7592 /* Guest IDTR. */
7593 if (fWhat & CPUMCTX_EXTRN_IDTR)
7594 {
7595 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_IDTR_BASE, &pCtx->idtr.pIdt); AssertRC(rc);
7596 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRC(rc);
7597 pCtx->idtr.cbIdt = u32Val;
7598 }
7599
7600 /* Guest TR. */
7601 if (fWhat & CPUMCTX_EXTRN_TR)
7602 {
7603 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR,
7604 don't need to import that one. */
7605 if (!pVmcsInfo->RealMode.fRealOnV86Active)
7606 hmR0VmxImportGuestTr(pVCpu);
7607 }
7608 }
7609
7610 if (fWhat & CPUMCTX_EXTRN_DR7)
7611 {
7612 if (!pVCpu->hm.s.fUsingHyperDR7)
7613 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_DR7, &pCtx->dr[7]); AssertRC(rc);
7614 }
7615
7616 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
7617 {
7618 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip); AssertRC(rc);
7619 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp); AssertRC(rc);
7620 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRC(rc);
7621 pCtx->SysEnter.cs = u32Val;
7622 }
7623
7624 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
7625 {
7626 if ( pVM->hm.s.fAllow64BitGuests
7627 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7628 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
7629 }
7630
7631 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
7632 {
7633 if ( pVM->hm.s.fAllow64BitGuests
7634 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7635 {
7636 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
7637 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
7638 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
7639 }
7640 }
7641
7642 if (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
7643 {
7644 PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
7645 uint32_t const cMsrs = pVmcsInfo->cExitMsrStore;
7646 Assert(pMsrs);
7647 Assert(cMsrs <= VMX_MISC_MAX_MSRS(pVM->hm.s.vmx.Msrs.u64Misc));
7648 Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
7649 for (uint32_t i = 0; i < cMsrs; i++)
7650 {
7651 uint32_t const idMsr = pMsrs[i].u32Msr;
7652 switch (idMsr)
7653 {
7654 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsrs[i].u64Value); break;
7655 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsrs[i].u64Value); break;
7656 case MSR_K6_EFER: /* Can't be changed without causing a VM-exit */ break;
7657 default:
7658 {
7659 uint32_t idxLbrMsr;
7660 if (pVM->hm.s.vmx.fLbr)
7661 {
7662 if (hmR0VmxIsLbrBranchFromMsr(pVM, idMsr, &idxLbrMsr))
7663 {
7664 Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfo->au64LbrFromIpMsr));
7665 pVmcsInfo->au64LbrFromIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
7666 break;
7667 }
7668 else if (hmR0VmxIsLbrBranchToMsr(pVM, idMsr, &idxLbrMsr))
7669 {
7670 Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfo->au64LbrFromIpMsr));
7671 pVmcsInfo->au64LbrToIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
7672 break;
7673 }
7674 else if (idMsr == pVM->hm.s.vmx.idLbrTosMsr)
7675 {
7676 pVmcsInfo->u64LbrTosMsr = pMsrs[i].u64Value;
7677 break;
7678 }
7679 /* Fallthru (no break) */
7680 }
7681 pCtx->fExtrn = 0;
7682 pVCpu->hm.s.u32HMError = pMsrs->u32Msr;
7683 ASMSetFlags(fEFlags);
7684 AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", idMsr, cMsrs));
7685 return VERR_HM_UNEXPECTED_LD_ST_MSR;
7686 }
7687 }
7688 }
7689 }
7690
7691 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
7692 {
7693 if (fWhat & CPUMCTX_EXTRN_CR0)
7694 {
7695 uint64_t u64Cr0;
7696 uint64_t u64Shadow;
7697 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR0, &u64Cr0); AssertRC(rc);
7698 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow); AssertRC(rc);
7699#ifndef VBOX_WITH_NESTED_HWVIRT_VMX
7700 u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
7701 | (u64Shadow & pVmcsInfo->u64Cr0Mask);
7702#else
7703 if (!CPUMIsGuestInVmxNonRootMode(pCtx))
7704 {
7705 u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
7706 | (u64Shadow & pVmcsInfo->u64Cr0Mask);
7707 }
7708 else
7709 {
7710 /*
7711 * We've merged the guest and nested-guest's CR0 guest/host mask while executing
7712 * the nested-guest using hardware-assisted VMX. Accordingly we need to
7713 * re-construct CR0. See @bugref{9180#c95} for details.
7714 */
7715 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
7716 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7717 u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
7718 | (pVmcsNstGst->u64GuestCr0.u & pVmcsNstGst->u64Cr0Mask.u)
7719 | (u64Shadow & (pVmcsInfoGst->u64Cr0Mask & ~pVmcsNstGst->u64Cr0Mask.u));
7720 }
7721#endif
7722 VMMRZCallRing3Disable(pVCpu); /* May call into PGM which has Log statements. */
7723 CPUMSetGuestCR0(pVCpu, u64Cr0);
7724 VMMRZCallRing3Enable(pVCpu);
7725 }
7726
7727 if (fWhat & CPUMCTX_EXTRN_CR4)
7728 {
7729 uint64_t u64Cr4;
7730 uint64_t u64Shadow;
7731 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR4, &u64Cr4); AssertRC(rc);
7732 rc |= VMXReadVmcsNw(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow); AssertRC(rc);
7733#ifndef VBOX_WITH_NESTED_HWVIRT_VMX
7734 u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
7735 | (u64Shadow & pVmcsInfo->u64Cr4Mask);
7736#else
7737 if (!CPUMIsGuestInVmxNonRootMode(pCtx))
7738 {
7739 u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
7740 | (u64Shadow & pVmcsInfo->u64Cr4Mask);
7741 }
7742 else
7743 {
7744 /*
7745 * We've merged the guest and nested-guest's CR4 guest/host mask while executing
7746 * the nested-guest using hardware-assisted VMX. Accordingly we need to
7747 * re-construct CR4. See @bugref{9180#c95} for details.
7748 */
7749 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
7750 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7751 u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
7752 | (pVmcsNstGst->u64GuestCr4.u & pVmcsNstGst->u64Cr4Mask.u)
7753 | (u64Shadow & (pVmcsInfoGst->u64Cr4Mask & ~pVmcsNstGst->u64Cr4Mask.u));
7754 }
7755#endif
7756 pCtx->cr4 = u64Cr4;
7757 }
7758
7759 if (fWhat & CPUMCTX_EXTRN_CR3)
7760 {
7761 /* CR0.PG bit changes are always intercepted, so it's up to date. */
7762 if ( pVM->hm.s.vmx.fUnrestrictedGuest
7763 || ( pVM->hm.s.fNestedPaging
7764 && CPUMIsGuestPagingEnabledEx(pCtx)))
7765 {
7766 uint64_t u64Cr3;
7767 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR3, &u64Cr3); AssertRC(rc);
7768 if (pCtx->cr3 != u64Cr3)
7769 {
7770 pCtx->cr3 = u64Cr3;
7771 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
7772 }
7773
7774 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
7775 Note: CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date. */
7776 if (CPUMIsGuestInPAEModeEx(pCtx))
7777 {
7778 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u); AssertRC(rc);
7779 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u); AssertRC(rc);
7780 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u); AssertRC(rc);
7781 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u); AssertRC(rc);
7782 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
7783 }
7784 }
7785 }
7786 }
7787
7788#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7789 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
7790 {
7791 if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
7792 && !CPUMIsGuestInVmxNonRootMode(pCtx))
7793 {
7794 Assert(CPUMIsGuestInVmxRootMode(pCtx));
7795 rc = hmR0VmxCopyShadowToNstGstVmcs(pVCpu, pVmcsInfo);
7796 if (RT_SUCCESS(rc))
7797 { /* likely */ }
7798 else
7799 break;
7800 }
7801 }
7802#endif
7803 } while (0);
7804
7805 if (RT_SUCCESS(rc))
7806 {
7807 /* Update fExtrn. */
7808 pCtx->fExtrn &= ~fWhat;
7809
7810 /* If everything has been imported, clear the HM keeper bit. */
7811 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
7812 {
7813 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
7814 Assert(!pCtx->fExtrn);
7815 }
7816 }
7817 }
7818 else
7819 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
7820
7821 /*
7822 * Restore interrupts.
7823 */
7824 ASMSetFlags(fEFlags);
7825
7826 STAM_PROFILE_ADV_STOP(& pVCpu->hm.s.StatImportGuestState, x);
7827
7828 if (RT_SUCCESS(rc))
7829 { /* likely */ }
7830 else
7831 return rc;
7832
7833 /*
7834 * Honor any pending CR3 updates.
7835 *
7836 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> VMXR0CallRing3Callback()
7837 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
7838 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
7839 *
7840 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
7841 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
7842 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
7843 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
7844 *
7845 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
7846 */
7847 if (VMMRZCallRing3IsEnabled(pVCpu))
7848 {
7849 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
7850 {
7851 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
7852 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
7853 }
7854
7855 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
7856 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
7857
7858 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
7859 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
7860 }
7861
7862 return VINF_SUCCESS;
7863}
7864
7865
7866/**
7867 * Saves the guest state from the VMCS into the guest-CPU context.
7868 *
7869 * @returns VBox status code.
7870 * @param pVCpu The cross context virtual CPU structure.
7871 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7872 */
7873VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
7874{
7875 AssertPtr(pVCpu);
7876 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
7877 return hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fWhat);
7878}
7879
7880
7881/**
7882 * Check per-VM and per-VCPU force flag actions that require us to go back to
7883 * ring-3 for one reason or another.
7884 *
7885 * @returns Strict VBox status code (i.e. informational status codes too)
7886 * @retval VINF_SUCCESS if we don't have any actions that require going back to
7887 * ring-3.
7888 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
7889 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
7890 * interrupts)
7891 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
7892 * all EMTs to be in ring-3.
7893 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
7894 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
7895 * to the EM loop.
7896 *
7897 * @param pVCpu The cross context virtual CPU structure.
7898 * @param pVmxTransient The VMX-transient structure.
7899 * @param fStepping Whether we are single-stepping the guest using the
7900 * hypervisor debugger.
7901 *
7902 * @remarks This might cause nested-guest VM-exits, caller must check if the guest
7903 * is no longer in VMX non-root mode.
7904 */
7905static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, bool fStepping)
7906{
7907 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7908
7909 /*
7910 * Update pending interrupts into the APIC's IRR.
7911 */
7912 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7913 APICUpdatePendingInterrupts(pVCpu);
7914
7915 /*
7916 * Anything pending? Should be more likely than not if we're doing a good job.
7917 */
7918 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7919 if ( !fStepping
7920 ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
7921 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
7922 : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
7923 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
7924 return VINF_SUCCESS;
7925
7926 /* Pending PGM C3 sync. */
7927 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
7928 {
7929 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7930 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
7931 VBOXSTRICTRC rcStrict = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
7932 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
7933 if (rcStrict != VINF_SUCCESS)
7934 {
7935 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
7936 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
7937 return rcStrict;
7938 }
7939 }
7940
7941 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
7942 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
7943 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
7944 {
7945 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
7946 int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
7947 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
7948 return rc;
7949 }
7950
7951 /* Pending VM request packets, such as hardware interrupts. */
7952 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
7953 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
7954 {
7955 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq);
7956 Log4Func(("Pending VM request forcing us back to ring-3\n"));
7957 return VINF_EM_PENDING_REQUEST;
7958 }
7959
7960 /* Pending PGM pool flushes. */
7961 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
7962 {
7963 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush);
7964 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
7965 return VINF_PGM_POOL_FLUSH_PENDING;
7966 }
7967
7968 /* Pending DMA requests. */
7969 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
7970 {
7971 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma);
7972 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
7973 return VINF_EM_RAW_TO_R3;
7974 }
7975
7976#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7977 /*
7978 * Pending nested-guest events.
7979 *
7980 * Please note the priority of these events are specified and important.
7981 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
7982 * See Intel spec. 6.9 "Priority Among Simultaneous Exceptions And Interrupts".
7983 */
7984 if (pVmxTransient->fIsNestedGuest)
7985 {
7986 /* Pending nested-guest APIC-write. */
7987 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
7988 {
7989 Log4Func(("Pending nested-guest APIC-write\n"));
7990 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitApicWrite(pVCpu);
7991 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
7992 return rcStrict;
7993 }
7994
7995 /* Pending nested-guest monitor-trap flag (MTF). */
7996 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF))
7997 {
7998 Log4Func(("Pending nested-guest MTF\n"));
7999 VBOXSTRICTRC rcStrict = IEMExecVmxVmexit(pVCpu, VMX_EXIT_MTF, 0 /* uExitQual */);
8000 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8001 return rcStrict;
8002 }
8003
8004 /* Pending nested-guest VMX-preemption timer expired. */
8005 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER))
8006 {
8007 Log4Func(("Pending nested-guest MTF\n"));
8008 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitPreemptTimer(pVCpu);
8009 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8010 return rcStrict;
8011 }
8012 }
8013#else
8014 NOREF(pVmxTransient);
8015#endif
8016
8017 return VINF_SUCCESS;
8018}
8019
8020
8021/**
8022 * Converts any TRPM trap into a pending HM event. This is typically used when
8023 * entering from ring-3 (not longjmp returns).
8024 *
8025 * @param pVCpu The cross context virtual CPU structure.
8026 */
8027static void hmR0VmxTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
8028{
8029 Assert(TRPMHasTrap(pVCpu));
8030 Assert(!pVCpu->hm.s.Event.fPending);
8031
8032 uint8_t uVector;
8033 TRPMEVENT enmTrpmEvent;
8034 uint32_t uErrCode;
8035 RTGCUINTPTR GCPtrFaultAddress;
8036 uint8_t cbInstr;
8037 bool fIcebp;
8038
8039 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, &fIcebp);
8040 AssertRC(rc);
8041
8042 uint32_t u32IntInfo;
8043 u32IntInfo = uVector | VMX_IDT_VECTORING_INFO_VALID;
8044 u32IntInfo |= HMTrpmEventTypeToVmxEventType(uVector, enmTrpmEvent, fIcebp);
8045
8046 rc = TRPMResetTrap(pVCpu);
8047 AssertRC(rc);
8048 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
8049 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
8050
8051 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
8052}
8053
8054
8055/**
8056 * Converts the pending HM event into a TRPM trap.
8057 *
8058 * @param pVCpu The cross context virtual CPU structure.
8059 */
8060static void hmR0VmxPendingEventToTrpmTrap(PVMCPUCC pVCpu)
8061{
8062 Assert(pVCpu->hm.s.Event.fPending);
8063
8064 /* If a trap was already pending, we did something wrong! */
8065 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
8066
8067 uint32_t const u32IntInfo = pVCpu->hm.s.Event.u64IntInfo;
8068 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(u32IntInfo);
8069 TRPMEVENT const enmTrapType = HMVmxEventTypeToTrpmEventType(u32IntInfo);
8070
8071 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
8072
8073 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
8074 AssertRC(rc);
8075
8076 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8077 TRPMSetErrorCode(pVCpu, pVCpu->hm.s.Event.u32ErrCode);
8078
8079 if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(u32IntInfo))
8080 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
8081 else
8082 {
8083 uint8_t const uVectorType = VMX_IDT_VECTORING_INFO_TYPE(u32IntInfo);
8084 switch (uVectorType)
8085 {
8086 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
8087 TRPMSetTrapDueToIcebp(pVCpu);
8088 RT_FALL_THRU();
8089 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
8090 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
8091 {
8092 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
8093 || ( uVector == X86_XCPT_BP /* INT3 */
8094 || uVector == X86_XCPT_OF /* INTO */
8095 || uVector == X86_XCPT_DB /* INT1 (ICEBP) */),
8096 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
8097 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
8098 break;
8099 }
8100 }
8101 }
8102
8103 /* We're now done converting the pending event. */
8104 pVCpu->hm.s.Event.fPending = false;
8105}
8106
8107
8108/**
8109 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
8110 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
8111 *
8112 * @param pVCpu The cross context virtual CPU structure.
8113 * @param pVmcsInfo The VMCS info. object.
8114 */
8115static void hmR0VmxSetIntWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
8116{
8117 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8118 {
8119 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
8120 {
8121 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
8122 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8123 AssertRC(rc);
8124 }
8125 } /* else we will deliver interrupts whenever the guest Vm-exits next and is in a state to receive the interrupt. */
8126}
8127
8128
8129/**
8130 * Clears the interrupt-window exiting control in the VMCS.
8131 *
8132 * @param pVmcsInfo The VMCS info. object.
8133 */
8134DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
8135{
8136 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8137 {
8138 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
8139 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8140 AssertRC(rc);
8141 }
8142}
8143
8144
8145/**
8146 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
8147 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
8148 *
8149 * @param pVCpu The cross context virtual CPU structure.
8150 * @param pVmcsInfo The VMCS info. object.
8151 */
8152static void hmR0VmxSetNmiWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
8153{
8154 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8155 {
8156 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
8157 {
8158 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
8159 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8160 AssertRC(rc);
8161 Log4Func(("Setup NMI-window exiting\n"));
8162 }
8163 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
8164}
8165
8166
8167/**
8168 * Clears the NMI-window exiting control in the VMCS.
8169 *
8170 * @param pVmcsInfo The VMCS info. object.
8171 */
8172DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
8173{
8174 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8175 {
8176 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
8177 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8178 AssertRC(rc);
8179 }
8180}
8181
8182
8183/**
8184 * Does the necessary state syncing before returning to ring-3 for any reason
8185 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
8186 *
8187 * @returns VBox status code.
8188 * @param pVCpu The cross context virtual CPU structure.
8189 * @param fImportState Whether to import the guest state from the VMCS back
8190 * to the guest-CPU context.
8191 *
8192 * @remarks No-long-jmp zone!!!
8193 */
8194static int hmR0VmxLeave(PVMCPUCC pVCpu, bool fImportState)
8195{
8196 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8197 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8198
8199 RTCPUID const idCpu = RTMpCpuId();
8200 Log4Func(("HostCpuId=%u\n", idCpu));
8201
8202 /*
8203 * !!! IMPORTANT !!!
8204 * If you modify code here, check whether VMXR0CallRing3Callback() needs to be updated too.
8205 */
8206
8207 /* Save the guest state if necessary. */
8208 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8209 if (fImportState)
8210 {
8211 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8212 AssertRCReturn(rc, rc);
8213 }
8214
8215 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
8216 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8217 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
8218
8219 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
8220#ifdef VBOX_STRICT
8221 if (CPUMIsHyperDebugStateActive(pVCpu))
8222 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
8223#endif
8224 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8225 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
8226 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
8227
8228 /* Restore host-state bits that VT-x only restores partially. */
8229 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8230 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8231 {
8232 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
8233 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8234 }
8235 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8236
8237 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8238 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8239 {
8240 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
8241 if (!fImportState)
8242 {
8243 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
8244 AssertRCReturn(rc, rc);
8245 }
8246 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8247 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
8248 }
8249 else
8250 pVCpu->hm.s.vmx.fLazyMsrs = 0;
8251
8252 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8253 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8254
8255 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
8256 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
8257 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
8258 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
8259 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
8260 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
8261 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
8262 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
8263 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
8264 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8265
8266 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8267
8268 /** @todo This partially defeats the purpose of having preemption hooks.
8269 * The problem is, deregistering the hooks should be moved to a place that
8270 * lasts until the EMT is about to be destroyed not everytime while leaving HM
8271 * context.
8272 */
8273 int rc = hmR0VmxClearVmcs(pVmcsInfo);
8274 AssertRCReturn(rc, rc);
8275
8276#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8277 /*
8278 * A valid shadow VMCS is made active as part of VM-entry. It is necessary to
8279 * clear a shadow VMCS before allowing that VMCS to become active on another
8280 * logical processor. We may or may not be importing guest state which clears
8281 * it, so cover for it here.
8282 *
8283 * See Intel spec. 24.11.1 "Software Use of Virtual-Machine Control Structures".
8284 */
8285 if ( pVmcsInfo->pvShadowVmcs
8286 && pVmcsInfo->fShadowVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
8287 {
8288 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
8289 AssertRCReturn(rc, rc);
8290 }
8291
8292 /*
8293 * Flag that we need to re-export the host state if we switch to this VMCS before
8294 * executing guest or nested-guest code.
8295 */
8296 pVmcsInfo->idHostCpuState = NIL_RTCPUID;
8297#endif
8298
8299 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
8300 NOREF(idCpu);
8301 return VINF_SUCCESS;
8302}
8303
8304
8305/**
8306 * Leaves the VT-x session.
8307 *
8308 * @returns VBox status code.
8309 * @param pVCpu The cross context virtual CPU structure.
8310 *
8311 * @remarks No-long-jmp zone!!!
8312 */
8313static int hmR0VmxLeaveSession(PVMCPUCC pVCpu)
8314{
8315 HM_DISABLE_PREEMPT(pVCpu);
8316 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8317 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8318 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8319
8320 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
8321 and done this from the VMXR0ThreadCtxCallback(). */
8322 if (!pVCpu->hm.s.fLeaveDone)
8323 {
8324 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
8325 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
8326 pVCpu->hm.s.fLeaveDone = true;
8327 }
8328 Assert(!pVCpu->cpum.GstCtx.fExtrn);
8329
8330 /*
8331 * !!! IMPORTANT !!!
8332 * If you modify code here, make sure to check whether VMXR0CallRing3Callback() needs to be updated too.
8333 */
8334
8335 /* Deregister hook now that we've left HM context before re-enabling preemption. */
8336 /** @todo Deregistering here means we need to VMCLEAR always
8337 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
8338 * for calling VMMR0ThreadCtxHookDisable here! */
8339 VMMR0ThreadCtxHookDisable(pVCpu);
8340
8341 /* Leave HM context. This takes care of local init (term) and deregistering the longjmp-to-ring-3 callback. */
8342 int rc = HMR0LeaveCpu(pVCpu);
8343 HM_RESTORE_PREEMPT();
8344 return rc;
8345}
8346
8347
8348/**
8349 * Does the necessary state syncing before doing a longjmp to ring-3.
8350 *
8351 * @returns VBox status code.
8352 * @param pVCpu The cross context virtual CPU structure.
8353 *
8354 * @remarks No-long-jmp zone!!!
8355 */
8356DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPUCC pVCpu)
8357{
8358 return hmR0VmxLeaveSession(pVCpu);
8359}
8360
8361
8362/**
8363 * Take necessary actions before going back to ring-3.
8364 *
8365 * An action requires us to go back to ring-3. This function does the necessary
8366 * steps before we can safely return to ring-3. This is not the same as longjmps
8367 * to ring-3, this is voluntary and prepares the guest so it may continue
8368 * executing outside HM (recompiler/IEM).
8369 *
8370 * @returns VBox status code.
8371 * @param pVCpu The cross context virtual CPU structure.
8372 * @param rcExit The reason for exiting to ring-3. Can be
8373 * VINF_VMM_UNKNOWN_RING3_CALL.
8374 */
8375static int hmR0VmxExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit)
8376{
8377 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8378
8379 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8380 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
8381 {
8382 VMXGetCurrentVmcs(&pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs);
8383 pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVmcsInfo->pvVmcs;
8384 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
8385 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
8386 }
8387
8388 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
8389 VMMRZCallRing3Disable(pVCpu);
8390 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
8391
8392 /*
8393 * Convert any pending HM events back to TRPM due to premature exits to ring-3.
8394 * We need to do this only on returns to ring-3 and not for longjmps to ring3.
8395 *
8396 * This is because execution may continue from ring-3 and we would need to inject
8397 * the event from there (hence place it back in TRPM).
8398 */
8399 if (pVCpu->hm.s.Event.fPending)
8400 {
8401 hmR0VmxPendingEventToTrpmTrap(pVCpu);
8402 Assert(!pVCpu->hm.s.Event.fPending);
8403
8404 /* Clear the events from the VMCS. */
8405 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
8406 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
8407 }
8408#ifdef VBOX_STRICT
8409 /*
8410 * We check for rcExit here since for errors like VERR_VMX_UNABLE_TO_START_VM (which are
8411 * fatal), we don't care about verifying duplicate injection of events. Errors like
8412 * VERR_EM_INTERPRET are converted to their VINF_* counterparts -prior- to calling this
8413 * function so those should and will be checked below.
8414 */
8415 else if (RT_SUCCESS(rcExit))
8416 {
8417 /*
8418 * Ensure we don't accidentally clear a pending HM event without clearing the VMCS.
8419 * This can be pretty hard to debug otherwise, interrupts might get injected twice
8420 * occasionally, see @bugref{9180#c42}.
8421 *
8422 * However, if the VM-entry failed, any VM entry-interruption info. field would
8423 * be left unmodified as the event would not have been injected to the guest. In
8424 * such cases, don't assert, we're not going to continue guest execution anyway.
8425 */
8426 uint32_t uExitReason;
8427 uint32_t uEntryIntInfo;
8428 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8429 rc |= VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &uEntryIntInfo);
8430 AssertRC(rc);
8431 AssertMsg(VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason) || !VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo),
8432 ("uExitReason=%#RX32 uEntryIntInfo=%#RX32 rcExit=%d\n", uExitReason, uEntryIntInfo, VBOXSTRICTRC_VAL(rcExit)));
8433 }
8434#endif
8435
8436 /*
8437 * Clear the interrupt-window and NMI-window VMCS controls as we could have got
8438 * a VM-exit with higher priority than interrupt-window or NMI-window VM-exits
8439 * (e.g. TPR below threshold).
8440 */
8441 if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8442 {
8443 hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
8444 hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
8445 }
8446
8447 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
8448 and if we're injecting an event we should have a TRPM trap pending. */
8449 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8450#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
8451 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8452#endif
8453
8454 /* Save guest state and restore host state bits. */
8455 int rc = hmR0VmxLeaveSession(pVCpu);
8456 AssertRCReturn(rc, rc);
8457 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8458
8459 /* Thread-context hooks are unregistered at this point!!! */
8460 /* Ring-3 callback notifications are unregistered at this point!!! */
8461
8462 /* Sync recompiler state. */
8463 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
8464 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
8465 | CPUM_CHANGED_LDTR
8466 | CPUM_CHANGED_GDTR
8467 | CPUM_CHANGED_IDTR
8468 | CPUM_CHANGED_TR
8469 | CPUM_CHANGED_HIDDEN_SEL_REGS);
8470 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
8471 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
8472 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
8473
8474 Assert(!pVCpu->hm.s.fClearTrapFlag);
8475
8476 /* Update the exit-to-ring 3 reason. */
8477 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
8478
8479 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
8480 if ( rcExit != VINF_EM_RAW_INTERRUPT
8481 || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8482 {
8483 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMVMX_CPUMCTX_EXTRN_ALL));
8484 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8485 }
8486
8487 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
8488 VMMRZCallRing3Enable(pVCpu);
8489 return rc;
8490}
8491
8492
8493/**
8494 * VMMRZCallRing3() callback wrapper which saves the guest state before we
8495 * longjump to ring-3 and possibly get preempted.
8496 *
8497 * @returns VBox status code.
8498 * @param pVCpu The cross context virtual CPU structure.
8499 * @param enmOperation The operation causing the ring-3 longjump.
8500 */
8501VMMR0DECL(int) VMXR0CallRing3Callback(PVMCPUCC pVCpu, VMMCALLRING3 enmOperation)
8502{
8503 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
8504 {
8505 /*
8506 * !!! IMPORTANT !!!
8507 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
8508 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
8509 */
8510 VMMRZCallRing3RemoveNotification(pVCpu);
8511 VMMRZCallRing3Disable(pVCpu);
8512 HM_DISABLE_PREEMPT(pVCpu);
8513
8514 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8515 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8516 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8517 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8518
8519 /* Restore host-state bits that VT-x only restores partially. */
8520 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8521 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8522 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8523 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8524
8525 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8526 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8527 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8528
8529 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8530 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8531 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8532
8533 /* Clear the current VMCS data back to memory (shadow VMCS if any would have been
8534 cleared as part of importing the guest state above. */
8535 hmR0VmxClearVmcs(pVmcsInfo);
8536
8537 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
8538 VMMR0ThreadCtxHookDisable(pVCpu);
8539
8540 /* Leave HM context. This takes care of local init (term). */
8541 HMR0LeaveCpu(pVCpu);
8542 HM_RESTORE_PREEMPT();
8543 return VINF_SUCCESS;
8544 }
8545
8546 Assert(pVCpu);
8547 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8548 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8549
8550 VMMRZCallRing3Disable(pVCpu);
8551 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8552
8553 Log4Func(("-> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
8554
8555 int rc = hmR0VmxLongJmpToRing3(pVCpu);
8556 AssertRCReturn(rc, rc);
8557
8558 VMMRZCallRing3Enable(pVCpu);
8559 return VINF_SUCCESS;
8560}
8561
8562
8563/**
8564 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
8565 * stack.
8566 *
8567 * @returns Strict VBox status code (i.e. informational status codes too).
8568 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
8569 * @param pVCpu The cross context virtual CPU structure.
8570 * @param uValue The value to push to the guest stack.
8571 */
8572static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPUCC pVCpu, uint16_t uValue)
8573{
8574 /*
8575 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
8576 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
8577 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
8578 */
8579 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8580 if (pCtx->sp == 1)
8581 return VINF_EM_RESET;
8582 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
8583 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
8584 AssertRC(rc);
8585 return rc;
8586}
8587
8588
8589/**
8590 * Injects an event into the guest upon VM-entry by updating the relevant fields
8591 * in the VM-entry area in the VMCS.
8592 *
8593 * @returns Strict VBox status code (i.e. informational status codes too).
8594 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
8595 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
8596 *
8597 * @param pVCpu The cross context virtual CPU structure.
8598 * @param pVmxTransient The VMX-transient structure.
8599 * @param pEvent The event being injected.
8600 * @param pfIntrState Pointer to the VT-x guest-interruptibility-state. This
8601 * will be updated if necessary. This cannot not be NULL.
8602 * @param fStepping Whether we're single-stepping guest execution and should
8603 * return VINF_EM_DBG_STEPPED if the event is injected
8604 * directly (registers modified by us, not by hardware on
8605 * VM-entry).
8606 */
8607static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, PCHMEVENT pEvent, bool fStepping,
8608 uint32_t *pfIntrState)
8609{
8610 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
8611 AssertMsg(!RT_HI_U32(pEvent->u64IntInfo), ("%#RX64\n", pEvent->u64IntInfo));
8612 Assert(pfIntrState);
8613
8614 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8615 uint32_t u32IntInfo = pEvent->u64IntInfo;
8616 uint32_t const u32ErrCode = pEvent->u32ErrCode;
8617 uint32_t const cbInstr = pEvent->cbInstr;
8618 RTGCUINTPTR const GCPtrFault = pEvent->GCPtrFaultAddress;
8619 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
8620 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
8621
8622#ifdef VBOX_STRICT
8623 /*
8624 * Validate the error-code-valid bit for hardware exceptions.
8625 * No error codes for exceptions in real-mode.
8626 *
8627 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8628 */
8629 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8630 && !CPUMIsGuestInRealModeEx(pCtx))
8631 {
8632 switch (uVector)
8633 {
8634 case X86_XCPT_PF:
8635 case X86_XCPT_DF:
8636 case X86_XCPT_TS:
8637 case X86_XCPT_NP:
8638 case X86_XCPT_SS:
8639 case X86_XCPT_GP:
8640 case X86_XCPT_AC:
8641 AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
8642 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8643 RT_FALL_THRU();
8644 default:
8645 break;
8646 }
8647 }
8648
8649 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8650 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
8651 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
8652#endif
8653
8654 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8655
8656 /*
8657 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
8658 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
8659 * interrupt handler in the (real-mode) guest.
8660 *
8661 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
8662 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8663 */
8664 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
8665 {
8666 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
8667 {
8668 /*
8669 * For CPUs with unrestricted guest execution enabled and with the guest
8670 * in real-mode, we must not set the deliver-error-code bit.
8671 *
8672 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8673 */
8674 u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
8675 }
8676 else
8677 {
8678 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
8679 Assert(PDMVmmDevHeapIsEnabled(pVM));
8680 Assert(pVM->hm.s.vmx.pRealModeTSS);
8681 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
8682
8683 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
8684 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8685 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK
8686 | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
8687 AssertRCReturn(rc2, rc2);
8688
8689 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8690 size_t const cbIdtEntry = sizeof(X86IDTR16);
8691 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
8692 {
8693 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8694 if (uVector == X86_XCPT_DF)
8695 return VINF_EM_RESET;
8696
8697 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault.
8698 No error codes for exceptions in real-mode. */
8699 if (uVector == X86_XCPT_GP)
8700 {
8701 uint32_t const uXcptDfInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
8702 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8703 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8704 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8705 HMEVENT EventXcptDf;
8706 RT_ZERO(EventXcptDf);
8707 EventXcptDf.u64IntInfo = uXcptDfInfo;
8708 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptDf, fStepping, pfIntrState);
8709 }
8710
8711 /*
8712 * If we're injecting an event with no valid IDT entry, inject a #GP.
8713 * No error codes for exceptions in real-mode.
8714 *
8715 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8716 */
8717 uint32_t const uXcptGpInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
8718 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8719 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8720 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8721 HMEVENT EventXcptGp;
8722 RT_ZERO(EventXcptGp);
8723 EventXcptGp.u64IntInfo = uXcptGpInfo;
8724 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptGp, fStepping, pfIntrState);
8725 }
8726
8727 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8728 uint16_t uGuestIp = pCtx->ip;
8729 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
8730 {
8731 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8732 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8733 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8734 }
8735 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
8736 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8737
8738 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8739 X86IDTR16 IdtEntry;
8740 RTGCPHYS const GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
8741 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8742 AssertRCReturn(rc2, rc2);
8743
8744 /* Construct the stack frame for the interrupt/exception handler. */
8745 VBOXSTRICTRC rcStrict;
8746 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
8747 if (rcStrict == VINF_SUCCESS)
8748 {
8749 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
8750 if (rcStrict == VINF_SUCCESS)
8751 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
8752 }
8753
8754 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8755 if (rcStrict == VINF_SUCCESS)
8756 {
8757 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8758 pCtx->rip = IdtEntry.offSel;
8759 pCtx->cs.Sel = IdtEntry.uSel;
8760 pCtx->cs.ValidSel = IdtEntry.uSel;
8761 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8762 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
8763 && uVector == X86_XCPT_PF)
8764 pCtx->cr2 = GCPtrFault;
8765
8766 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
8767 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
8768 | HM_CHANGED_GUEST_RSP);
8769
8770 /*
8771 * If we delivered a hardware exception (other than an NMI) and if there was
8772 * block-by-STI in effect, we should clear it.
8773 */
8774 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
8775 {
8776 Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
8777 && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
8778 Log4Func(("Clearing inhibition due to STI\n"));
8779 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
8780 }
8781
8782 Log4(("Injected real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8783 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
8784
8785 /*
8786 * The event has been truly dispatched to the guest. Mark it as no longer pending so
8787 * we don't attempt to undo it if we are returning to ring-3 before executing guest code.
8788 */
8789 pVCpu->hm.s.Event.fPending = false;
8790
8791 /*
8792 * If we eventually support nested-guest execution without unrestricted guest execution,
8793 * we should set fInterceptEvents here.
8794 */
8795 Assert(!pVmxTransient->fIsNestedGuest);
8796
8797 /* If we're stepping and we've changed cs:rip above, bail out of the VMX R0 execution loop. */
8798 if (fStepping)
8799 rcStrict = VINF_EM_DBG_STEPPED;
8800 }
8801 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8802 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8803 return rcStrict;
8804 }
8805 }
8806
8807 /*
8808 * Validate.
8809 */
8810 Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8811 Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
8812
8813 /*
8814 * Inject the event into the VMCS.
8815 */
8816 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8817 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8818 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8819 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8820 AssertRC(rc);
8821
8822 /*
8823 * Update guest CR2 if this is a page-fault.
8824 */
8825 if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(u32IntInfo))
8826 pCtx->cr2 = GCPtrFault;
8827
8828 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
8829 return VINF_SUCCESS;
8830}
8831
8832
8833/**
8834 * Evaluates the event to be delivered to the guest and sets it as the pending
8835 * event.
8836 *
8837 * Toggling of interrupt force-flags here is safe since we update TRPM on premature
8838 * exits to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must
8839 * NOT restore these force-flags.
8840 *
8841 * @returns Strict VBox status code (i.e. informational status codes too).
8842 * @param pVCpu The cross context virtual CPU structure.
8843 * @param pVmxTransient The VMX-transient structure.
8844 * @param pfIntrState Where to store the VT-x guest-interruptibility state.
8845 */
8846static VBOXSTRICTRC hmR0VmxEvaluatePendingEvent(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t *pfIntrState)
8847{
8848 Assert(pfIntrState);
8849 Assert(!TRPMHasTrap(pVCpu));
8850
8851 /*
8852 * Compute/update guest-interruptibility state related FFs.
8853 * The FFs will be used below while evaluating events to be injected.
8854 */
8855 *pfIntrState = hmR0VmxGetGuestIntrStateAndUpdateFFs(pVCpu);
8856
8857 /*
8858 * Evaluate if a new event needs to be injected.
8859 * An event that's already pending has already performed all necessary checks.
8860 */
8861 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8862 bool const fIsNestedGuest = pVmxTransient->fIsNestedGuest;
8863 if ( !pVCpu->hm.s.Event.fPending
8864 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
8865 {
8866 /** @todo SMI. SMIs take priority over NMIs. */
8867
8868 /*
8869 * NMIs.
8870 * NMIs take priority over external interrupts.
8871 */
8872 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8873 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
8874 {
8875 /*
8876 * For a guest, the FF always indicates the guest's ability to receive an NMI.
8877 *
8878 * For a nested-guest, the FF always indicates the outer guest's ability to
8879 * receive an NMI while the guest-interruptibility state bit depends on whether
8880 * the nested-hypervisor is using virtual-NMIs.
8881 */
8882 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
8883 {
8884#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8885 if ( fIsNestedGuest
8886 && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_NMI_EXIT))
8887 return IEMExecVmxVmexitXcptNmi(pVCpu);
8888#endif
8889 hmR0VmxSetPendingXcptNmi(pVCpu);
8890 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
8891 Log4Func(("NMI pending injection\n"));
8892
8893 /* We've injected the NMI, bail. */
8894 return VINF_SUCCESS;
8895 }
8896 else if (!fIsNestedGuest)
8897 hmR0VmxSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
8898 }
8899
8900 /*
8901 * External interrupts (PIC/APIC).
8902 * Once PDMGetInterrupt() returns a valid interrupt we -must- deliver it.
8903 * We cannot re-request the interrupt from the controller again.
8904 */
8905 if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
8906 && !pVCpu->hm.s.fSingleInstruction)
8907 {
8908 Assert(!DBGFIsStepping(pVCpu));
8909 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
8910 AssertRC(rc);
8911
8912 if (pCtx->eflags.u32 & X86_EFL_IF)
8913 {
8914#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8915 if ( fIsNestedGuest
8916 && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT)
8917 && !CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_ACK_EXT_INT))
8918 {
8919 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, 0 /* uVector */, true /* fIntPending */);
8920 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8921 return rcStrict;
8922 }
8923#endif
8924 uint8_t u8Interrupt;
8925 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
8926 if (RT_SUCCESS(rc))
8927 {
8928#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8929 if ( fIsNestedGuest
8930 && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT)
8931 && CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_ACK_EXT_INT))
8932 {
8933 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, u8Interrupt, false /* fIntPending */);
8934 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8935 return rcStrict;
8936 }
8937#endif
8938 hmR0VmxSetPendingExtInt(pVCpu, u8Interrupt);
8939 Log4Func(("External interrupt (%#x) pending injection\n", u8Interrupt));
8940 }
8941 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
8942 {
8943 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
8944
8945 if ( !fIsNestedGuest
8946 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
8947 hmR0VmxApicSetTprThreshold(pVmcsInfo, u8Interrupt >> 4);
8948 /* else: for nested-guests, TPR threshold is picked up while merging VMCS controls. */
8949
8950 /*
8951 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
8952 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
8953 * need to re-set this force-flag here.
8954 */
8955 }
8956 else
8957 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
8958
8959 /* We've injected the interrupt or taken necessary action, bail. */
8960 return VINF_SUCCESS;
8961 }
8962 else if (!fIsNestedGuest)
8963 hmR0VmxSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
8964 }
8965 }
8966 else if (!fIsNestedGuest)
8967 {
8968 /*
8969 * An event is being injected or we are in an interrupt shadow. Check if another event is
8970 * pending. If so, instruct VT-x to cause a VM-exit as soon as the guest is ready to accept
8971 * the pending event.
8972 */
8973 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
8974 hmR0VmxSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
8975 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
8976 && !pVCpu->hm.s.fSingleInstruction)
8977 hmR0VmxSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
8978 }
8979 /* else: for nested-guests, NMI/interrupt-window exiting will be picked up when merging VMCS controls. */
8980
8981 return VINF_SUCCESS;
8982}
8983
8984
8985/**
8986 * Injects any pending events into the guest if the guest is in a state to
8987 * receive them.
8988 *
8989 * @returns Strict VBox status code (i.e. informational status codes too).
8990 * @param pVCpu The cross context virtual CPU structure.
8991 * @param pVmxTransient The VMX-transient structure.
8992 * @param fIntrState The VT-x guest-interruptibility state.
8993 * @param fStepping Whether we are single-stepping the guest using the
8994 * hypervisor debugger and should return
8995 * VINF_EM_DBG_STEPPED if the event was dispatched
8996 * directly.
8997 */
8998static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t fIntrState, bool fStepping)
8999{
9000 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9001 Assert(VMMRZCallRing3IsEnabled(pVCpu));
9002
9003#ifdef VBOX_STRICT
9004 /*
9005 * Verify guest-interruptibility state.
9006 *
9007 * We put this in a scoped block so we do not accidentally use fBlockSti or fBlockMovSS,
9008 * since injecting an event may modify the interruptibility state and we must thus always
9009 * use fIntrState.
9010 */
9011 {
9012 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
9013 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
9014 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
9015 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
9016 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
9017 Assert(!TRPMHasTrap(pVCpu));
9018 NOREF(fBlockMovSS); NOREF(fBlockSti);
9019 }
9020#endif
9021
9022 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
9023 if (pVCpu->hm.s.Event.fPending)
9024 {
9025 /*
9026 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
9027 * pending even while injecting an event and in this case, we want a VM-exit as soon as
9028 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
9029 *
9030 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
9031 */
9032 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
9033#ifdef VBOX_STRICT
9034 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
9035 {
9036 Assert(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
9037 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI));
9038 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
9039 }
9040 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
9041 {
9042 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI));
9043 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI));
9044 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
9045 }
9046#endif
9047 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
9048 uIntType));
9049
9050 /*
9051 * Inject the event and get any changes to the guest-interruptibility state.
9052 *
9053 * The guest-interruptibility state may need to be updated if we inject the event
9054 * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
9055 */
9056 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &pVCpu->hm.s.Event, fStepping, &fIntrState);
9057 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
9058
9059 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
9060 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
9061 else
9062 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
9063 }
9064
9065 /*
9066 * Deliver any pending debug exceptions if the guest is single-stepping using EFLAGS.TF and
9067 * is an interrupt shadow (block-by-STI or block-by-MOV SS).
9068 */
9069 if ( (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
9070 && !pVmxTransient->fIsNestedGuest)
9071 {
9072 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
9073
9074 if (!pVCpu->hm.s.fSingleInstruction)
9075 {
9076 /*
9077 * Set or clear the BS bit depending on whether the trap flag is active or not. We need
9078 * to do both since we clear the BS bit from the VMCS while exiting to ring-3.
9079 */
9080 Assert(!DBGFIsStepping(pVCpu));
9081 uint8_t const fTrapFlag = !!(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_TF);
9082 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, fTrapFlag << VMX_BF_VMCS_PENDING_DBG_XCPT_BS_SHIFT);
9083 AssertRC(rc);
9084 }
9085 else
9086 {
9087 /*
9088 * We must not deliver a debug exception when single-stepping over STI/Mov-SS in the
9089 * hypervisor debugger using EFLAGS.TF but rather clear interrupt inhibition. However,
9090 * we take care of this case in hmR0VmxExportSharedDebugState and also the case if
9091 * we use MTF, so just make sure it's called before executing guest-code.
9092 */
9093 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
9094 }
9095 }
9096 /* else: for nested-guest currently handling while merging controls. */
9097
9098 /*
9099 * Finally, update the guest-interruptibility state.
9100 *
9101 * This is required for the real-on-v86 software interrupt injection, for
9102 * pending debug exceptions as well as updates to the guest state from ring-3 (IEM).
9103 */
9104 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
9105 AssertRC(rc);
9106
9107 /*
9108 * There's no need to clear the VM-entry interruption-information field here if we're not
9109 * injecting anything. VT-x clears the valid bit on every VM-exit.
9110 *
9111 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
9112 */
9113
9114 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
9115 return rcStrict;
9116}
9117
9118
9119/**
9120 * Enters the VT-x session.
9121 *
9122 * @returns VBox status code.
9123 * @param pVCpu The cross context virtual CPU structure.
9124 */
9125VMMR0DECL(int) VMXR0Enter(PVMCPUCC pVCpu)
9126{
9127 AssertPtr(pVCpu);
9128 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
9129 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9130
9131 LogFlowFunc(("pVCpu=%p\n", pVCpu));
9132 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
9133 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
9134
9135#ifdef VBOX_STRICT
9136 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
9137 RTCCUINTREG uHostCr4 = ASMGetCR4();
9138 if (!(uHostCr4 & X86_CR4_VMXE))
9139 {
9140 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
9141 return VERR_VMX_X86_CR4_VMXE_CLEARED;
9142 }
9143#endif
9144
9145 /*
9146 * Load the appropriate VMCS as the current and active one.
9147 */
9148 PVMXVMCSINFO pVmcsInfo;
9149 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx);
9150 if (!fInNestedGuestMode)
9151 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfo;
9152 else
9153 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
9154 int rc = hmR0VmxLoadVmcs(pVmcsInfo);
9155 if (RT_SUCCESS(rc))
9156 {
9157 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = fInNestedGuestMode;
9158 pVCpu->hm.s.fLeaveDone = false;
9159 Log4Func(("Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
9160
9161 /*
9162 * Do the EMT scheduled L1D flush here if needed.
9163 */
9164 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
9165 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
9166 else if (pVCpu->CTX_SUFF(pVM)->hm.s.fMdsClearOnSched)
9167 hmR0MdsClear();
9168 }
9169 return rc;
9170}
9171
9172
9173/**
9174 * The thread-context callback (only on platforms which support it).
9175 *
9176 * @param enmEvent The thread-context event.
9177 * @param pVCpu The cross context virtual CPU structure.
9178 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
9179 * @thread EMT(pVCpu)
9180 */
9181VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
9182{
9183 AssertPtr(pVCpu);
9184 RT_NOREF1(fGlobalInit);
9185
9186 switch (enmEvent)
9187 {
9188 case RTTHREADCTXEVENT_OUT:
9189 {
9190 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9191 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
9192 VMCPU_ASSERT_EMT(pVCpu);
9193
9194 /* No longjmps (logger flushes, locks) in this fragile context. */
9195 VMMRZCallRing3Disable(pVCpu);
9196 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
9197
9198 /* Restore host-state (FPU, debug etc.) */
9199 if (!pVCpu->hm.s.fLeaveDone)
9200 {
9201 /*
9202 * Do -not- import the guest-state here as we might already be in the middle of importing
9203 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
9204 */
9205 hmR0VmxLeave(pVCpu, false /* fImportState */);
9206 pVCpu->hm.s.fLeaveDone = true;
9207 }
9208
9209 /* Leave HM context, takes care of local init (term). */
9210 int rc = HMR0LeaveCpu(pVCpu);
9211 AssertRC(rc);
9212
9213 /* Restore longjmp state. */
9214 VMMRZCallRing3Enable(pVCpu);
9215 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
9216 break;
9217 }
9218
9219 case RTTHREADCTXEVENT_IN:
9220 {
9221 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9222 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
9223 VMCPU_ASSERT_EMT(pVCpu);
9224
9225 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
9226 VMMRZCallRing3Disable(pVCpu);
9227 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
9228
9229 /* Initialize the bare minimum state required for HM. This takes care of
9230 initializing VT-x if necessary (onlined CPUs, local init etc.) */
9231 int rc = hmR0EnterCpu(pVCpu);
9232 AssertRC(rc);
9233 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
9234 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
9235
9236 /* Load the active VMCS as the current one. */
9237 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
9238 rc = hmR0VmxLoadVmcs(pVmcsInfo);
9239 AssertRC(rc);
9240 Log4Func(("Resumed: Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
9241 pVCpu->hm.s.fLeaveDone = false;
9242
9243 /* Do the EMT scheduled L1D flush if needed. */
9244 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
9245 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
9246
9247 /* Restore longjmp state. */
9248 VMMRZCallRing3Enable(pVCpu);
9249 break;
9250 }
9251
9252 default:
9253 break;
9254 }
9255}
9256
9257
9258/**
9259 * Exports the host state into the VMCS host-state area.
9260 * Sets up the VM-exit MSR-load area.
9261 *
9262 * The CPU state will be loaded from these fields on every successful VM-exit.
9263 *
9264 * @returns VBox status code.
9265 * @param pVCpu The cross context virtual CPU structure.
9266 *
9267 * @remarks No-long-jump zone!!!
9268 */
9269static int hmR0VmxExportHostState(PVMCPUCC pVCpu)
9270{
9271 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9272
9273 int rc = VINF_SUCCESS;
9274 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
9275 {
9276 hmR0VmxExportHostControlRegs();
9277
9278 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
9279 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9280
9281 hmR0VmxExportHostMsrs(pVCpu);
9282
9283 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
9284 }
9285 return rc;
9286}
9287
9288
9289/**
9290 * Saves the host state in the VMCS host-state.
9291 *
9292 * @returns VBox status code.
9293 * @param pVCpu The cross context virtual CPU structure.
9294 *
9295 * @remarks No-long-jump zone!!!
9296 */
9297VMMR0DECL(int) VMXR0ExportHostState(PVMCPUCC pVCpu)
9298{
9299 AssertPtr(pVCpu);
9300 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9301
9302 /*
9303 * Export the host state here while entering HM context.
9304 * When thread-context hooks are used, we might get preempted and have to re-save the host
9305 * state but most of the time we won't be, so do it here before we disable interrupts.
9306 */
9307 return hmR0VmxExportHostState(pVCpu);
9308}
9309
9310
9311/**
9312 * Exports the guest state into the VMCS guest-state area.
9313 *
9314 * The will typically be done before VM-entry when the guest-CPU state and the
9315 * VMCS state may potentially be out of sync.
9316 *
9317 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
9318 * VM-entry controls.
9319 * Sets up the appropriate VMX non-root function to execute guest code based on
9320 * the guest CPU mode.
9321 *
9322 * @returns VBox strict status code.
9323 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9324 * without unrestricted guest execution and the VMMDev is not presently
9325 * mapped (e.g. EFI32).
9326 *
9327 * @param pVCpu The cross context virtual CPU structure.
9328 * @param pVmxTransient The VMX-transient structure.
9329 *
9330 * @remarks No-long-jump zone!!!
9331 */
9332static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
9333{
9334 AssertPtr(pVCpu);
9335 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9336 LogFlowFunc(("pVCpu=%p\n", pVCpu));
9337
9338 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
9339
9340 /*
9341 * Determine real-on-v86 mode.
9342 * Used when the guest is in real-mode and unrestricted guest execution is not used.
9343 */
9344 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
9345 if ( pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
9346 || !CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
9347 pVmcsInfo->RealMode.fRealOnV86Active = false;
9348 else
9349 {
9350 Assert(!pVmxTransient->fIsNestedGuest);
9351 pVmcsInfo->RealMode.fRealOnV86Active = true;
9352 }
9353
9354 /*
9355 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
9356 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
9357 */
9358 int rc = hmR0VmxExportGuestEntryExitCtls(pVCpu, pVmxTransient);
9359 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9360
9361 rc = hmR0VmxExportGuestCR0(pVCpu, pVmxTransient);
9362 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9363
9364 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu, pVmxTransient);
9365 if (rcStrict == VINF_SUCCESS)
9366 { /* likely */ }
9367 else
9368 {
9369 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
9370 return rcStrict;
9371 }
9372
9373 rc = hmR0VmxExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
9374 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9375
9376 rc = hmR0VmxExportGuestMsrs(pVCpu, pVmxTransient);
9377 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9378
9379 hmR0VmxExportGuestApicTpr(pVCpu, pVmxTransient);
9380 hmR0VmxExportGuestXcptIntercepts(pVCpu, pVmxTransient);
9381 hmR0VmxExportGuestRip(pVCpu);
9382 hmR0VmxExportGuestRsp(pVCpu);
9383 hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9384
9385 rc = hmR0VmxExportGuestHwvirtState(pVCpu, pVmxTransient);
9386 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9387
9388 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
9389 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
9390 | HM_CHANGED_GUEST_CR2
9391 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
9392 | HM_CHANGED_GUEST_X87
9393 | HM_CHANGED_GUEST_SSE_AVX
9394 | HM_CHANGED_GUEST_OTHER_XSAVE
9395 | HM_CHANGED_GUEST_XCRx
9396 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
9397 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
9398 | HM_CHANGED_GUEST_TSC_AUX
9399 | HM_CHANGED_GUEST_OTHER_MSRS
9400 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
9401
9402 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
9403 return rc;
9404}
9405
9406
9407/**
9408 * Exports the state shared between the host and guest into the VMCS.
9409 *
9410 * @param pVCpu The cross context virtual CPU structure.
9411 * @param pVmxTransient The VMX-transient structure.
9412 *
9413 * @remarks No-long-jump zone!!!
9414 */
9415static void hmR0VmxExportSharedState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
9416{
9417 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9418 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9419
9420 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
9421 {
9422 int rc = hmR0VmxExportSharedDebugState(pVCpu, pVmxTransient);
9423 AssertRC(rc);
9424 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
9425
9426 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
9427 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
9428 hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9429 }
9430
9431 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
9432 {
9433 hmR0VmxLazyLoadGuestMsrs(pVCpu);
9434 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
9435 }
9436
9437 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
9438 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
9439}
9440
9441
9442/**
9443 * Worker for loading the guest-state bits in the inner VT-x execution loop.
9444 *
9445 * @returns Strict VBox status code (i.e. informational status codes too).
9446 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9447 * without unrestricted guest execution and the VMMDev is not presently
9448 * mapped (e.g. EFI32).
9449 *
9450 * @param pVCpu The cross context virtual CPU structure.
9451 * @param pVmxTransient The VMX-transient structure.
9452 *
9453 * @remarks No-long-jump zone!!!
9454 */
9455static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
9456{
9457 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9458 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9459 Assert(VMMR0IsLogFlushDisabled(pVCpu));
9460
9461#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
9462 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
9463#endif
9464
9465 /*
9466 * For many VM-exits only RIP/RSP/RFLAGS (and HWVIRT state when executing a nested-guest)
9467 * changes. First try to export only these without going through all other changed-flag checks.
9468 */
9469 VBOXSTRICTRC rcStrict;
9470 uint64_t const fCtxMask = HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE;
9471 uint64_t const fMinimalMask = HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT;
9472 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9473
9474 /* If only RIP/RSP/RFLAGS/HWVIRT changed, export only those (quicker, happens more often).*/
9475 if ( (fCtxChanged & fMinimalMask)
9476 && !(fCtxChanged & (fCtxMask & ~fMinimalMask)))
9477 {
9478 hmR0VmxExportGuestRip(pVCpu);
9479 hmR0VmxExportGuestRsp(pVCpu);
9480 hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9481 rcStrict = hmR0VmxExportGuestHwvirtState(pVCpu, pVmxTransient);
9482 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
9483 }
9484 /* If anything else also changed, go through the full export routine and export as required. */
9485 else if (fCtxChanged & fCtxMask)
9486 {
9487 rcStrict = hmR0VmxExportGuestState(pVCpu, pVmxTransient);
9488 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9489 { /* likely */}
9490 else
9491 {
9492 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("Failed to export guest state! rc=%Rrc\n",
9493 VBOXSTRICTRC_VAL(rcStrict)));
9494 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9495 return rcStrict;
9496 }
9497 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
9498 }
9499 /* Nothing changed, nothing to load here. */
9500 else
9501 rcStrict = VINF_SUCCESS;
9502
9503#ifdef VBOX_STRICT
9504 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
9505 uint64_t const fCtxChangedCur = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9506 AssertMsg(!(fCtxChangedCur & fCtxMask), ("fCtxChangedCur=%#RX64\n", fCtxChangedCur));
9507#endif
9508 return rcStrict;
9509}
9510
9511
9512/**
9513 * Tries to determine what part of the guest-state VT-x has deemed as invalid
9514 * and update error record fields accordingly.
9515 *
9516 * @returns VMX_IGS_* error codes.
9517 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
9518 * wrong with the guest state.
9519 *
9520 * @param pVCpu The cross context virtual CPU structure.
9521 * @param pVmcsInfo The VMCS info. object.
9522 *
9523 * @remarks This function assumes our cache of the VMCS controls
9524 * are valid, i.e. hmR0VmxCheckCachedVmcsCtls() succeeded.
9525 */
9526static uint32_t hmR0VmxCheckGuestState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
9527{
9528#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
9529#define HMVMX_CHECK_BREAK(expr, err) do { \
9530 if (!(expr)) { uError = (err); break; } \
9531 } while (0)
9532
9533 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
9534 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9535 uint32_t uError = VMX_IGS_ERROR;
9536 uint32_t u32IntrState = 0;
9537 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
9538 do
9539 {
9540 int rc;
9541
9542 /*
9543 * Guest-interruptibility state.
9544 *
9545 * Read this first so that any check that fails prior to those that actually
9546 * require the guest-interruptibility state would still reflect the correct
9547 * VMCS value and avoids causing further confusion.
9548 */
9549 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
9550 AssertRC(rc);
9551
9552 uint32_t u32Val;
9553 uint64_t u64Val;
9554
9555 /*
9556 * CR0.
9557 */
9558 /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */
9559 uint64_t fSetCr0 = (pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9560 uint64_t const fZapCr0 = (pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9561 /* Exceptions for unrestricted guest execution for CR0 fixed bits (PE, PG).
9562 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
9563 if (fUnrestrictedGuest)
9564 fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
9565
9566 uint64_t u64GuestCr0;
9567 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR0, &u64GuestCr0);
9568 AssertRC(rc);
9569 HMVMX_CHECK_BREAK((u64GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
9570 HMVMX_CHECK_BREAK(!(u64GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
9571 if ( !fUnrestrictedGuest
9572 && (u64GuestCr0 & X86_CR0_PG)
9573 && !(u64GuestCr0 & X86_CR0_PE))
9574 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
9575
9576 /*
9577 * CR4.
9578 */
9579 /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */
9580 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9581 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9582
9583 uint64_t u64GuestCr4;
9584 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR4, &u64GuestCr4);
9585 AssertRC(rc);
9586 HMVMX_CHECK_BREAK((u64GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
9587 HMVMX_CHECK_BREAK(!(u64GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
9588
9589 /*
9590 * IA32_DEBUGCTL MSR.
9591 */
9592 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
9593 AssertRC(rc);
9594 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9595 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
9596 {
9597 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
9598 }
9599 uint64_t u64DebugCtlMsr = u64Val;
9600
9601#ifdef VBOX_STRICT
9602 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
9603 AssertRC(rc);
9604 Assert(u32Val == pVmcsInfo->u32EntryCtls);
9605#endif
9606 bool const fLongModeGuest = RT_BOOL(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
9607
9608 /*
9609 * RIP and RFLAGS.
9610 */
9611 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RIP, &u64Val);
9612 AssertRC(rc);
9613 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
9614 if ( !fLongModeGuest
9615 || !pCtx->cs.Attr.n.u1Long)
9616 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
9617 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
9618 * must be identical if the "IA-32e mode guest" VM-entry
9619 * control is 1 and CS.L is 1. No check applies if the
9620 * CPU supports 64 linear-address bits. */
9621
9622 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
9623 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RFLAGS, &u64Val);
9624 AssertRC(rc);
9625 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
9626 VMX_IGS_RFLAGS_RESERVED);
9627 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9628 uint32_t const u32Eflags = u64Val;
9629
9630 if ( fLongModeGuest
9631 || ( fUnrestrictedGuest
9632 && !(u64GuestCr0 & X86_CR0_PE)))
9633 {
9634 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
9635 }
9636
9637 uint32_t u32EntryInfo;
9638 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
9639 AssertRC(rc);
9640 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo))
9641 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
9642
9643 /*
9644 * 64-bit checks.
9645 */
9646 if (fLongModeGuest)
9647 {
9648 HMVMX_CHECK_BREAK(u64GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
9649 HMVMX_CHECK_BREAK(u64GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
9650 }
9651
9652 if ( !fLongModeGuest
9653 && (u64GuestCr4 & X86_CR4_PCIDE))
9654 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
9655
9656 /** @todo CR3 field must be such that bits 63:52 and bits in the range
9657 * 51:32 beyond the processor's physical-address width are 0. */
9658
9659 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9660 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
9661 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
9662
9663 rc = VMXReadVmcsNw(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
9664 AssertRC(rc);
9665 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
9666
9667 rc = VMXReadVmcsNw(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
9668 AssertRC(rc);
9669 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
9670
9671 /*
9672 * PERF_GLOBAL MSR.
9673 */
9674 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
9675 {
9676 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
9677 AssertRC(rc);
9678 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
9679 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
9680 }
9681
9682 /*
9683 * PAT MSR.
9684 */
9685 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
9686 {
9687 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
9688 AssertRC(rc);
9689 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
9690 for (unsigned i = 0; i < 8; i++)
9691 {
9692 uint8_t u8Val = (u64Val & 0xff);
9693 if ( u8Val != 0 /* UC */
9694 && u8Val != 1 /* WC */
9695 && u8Val != 4 /* WT */
9696 && u8Val != 5 /* WP */
9697 && u8Val != 6 /* WB */
9698 && u8Val != 7 /* UC- */)
9699 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
9700 u64Val >>= 8;
9701 }
9702 }
9703
9704 /*
9705 * EFER MSR.
9706 */
9707 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
9708 {
9709 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
9710 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
9711 AssertRC(rc);
9712 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
9713 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
9714 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVmcsInfo->u32EntryCtls
9715 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
9716 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
9717 /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
9718 * iemVmxVmentryCheckGuestState(). */
9719 HMVMX_CHECK_BREAK( fUnrestrictedGuest
9720 || !(u64GuestCr0 & X86_CR0_PG)
9721 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
9722 VMX_IGS_EFER_LMA_LME_MISMATCH);
9723 }
9724
9725 /*
9726 * Segment registers.
9727 */
9728 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9729 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
9730 if (!(u32Eflags & X86_EFL_VM))
9731 {
9732 /* CS */
9733 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
9734 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
9735 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
9736 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
9737 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9738 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
9739 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9740 /* CS cannot be loaded with NULL in protected mode. */
9741 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
9742 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
9743 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
9744 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
9745 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
9746 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
9747 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
9748 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
9749 else
9750 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
9751
9752 /* SS */
9753 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9754 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
9755 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
9756 if ( !(pCtx->cr0 & X86_CR0_PE)
9757 || pCtx->cs.Attr.n.u4Type == 3)
9758 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
9759
9760 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
9761 {
9762 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
9763 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
9764 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
9765 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
9766 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
9767 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9768 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
9769 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9770 }
9771
9772 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSReg(). */
9773 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
9774 {
9775 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
9776 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
9777 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9778 || pCtx->ds.Attr.n.u4Type > 11
9779 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9780 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
9781 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
9782 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
9783 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9784 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
9785 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9786 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9787 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
9788 }
9789 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
9790 {
9791 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
9792 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
9793 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9794 || pCtx->es.Attr.n.u4Type > 11
9795 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9796 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
9797 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
9798 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
9799 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9800 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
9801 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9802 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9803 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
9804 }
9805 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
9806 {
9807 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
9808 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
9809 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9810 || pCtx->fs.Attr.n.u4Type > 11
9811 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
9812 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
9813 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
9814 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
9815 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9816 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
9817 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9818 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9819 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
9820 }
9821 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
9822 {
9823 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
9824 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
9825 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9826 || pCtx->gs.Attr.n.u4Type > 11
9827 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
9828 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
9829 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
9830 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
9831 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9832 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
9833 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9834 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9835 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
9836 }
9837 /* 64-bit capable CPUs. */
9838 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9839 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9840 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9841 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9842 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9843 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9844 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9845 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9846 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9847 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9848 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9849 }
9850 else
9851 {
9852 /* V86 mode checks. */
9853 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
9854 if (pVmcsInfo->RealMode.fRealOnV86Active)
9855 {
9856 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
9857 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
9858 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
9859 }
9860 else
9861 {
9862 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
9863 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
9864 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
9865 }
9866
9867 /* CS */
9868 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
9869 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
9870 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
9871 /* SS */
9872 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
9873 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
9874 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
9875 /* DS */
9876 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
9877 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
9878 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
9879 /* ES */
9880 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
9881 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
9882 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
9883 /* FS */
9884 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
9885 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
9886 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
9887 /* GS */
9888 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
9889 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
9890 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
9891 /* 64-bit capable CPUs. */
9892 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9893 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9894 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9895 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9896 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9897 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9898 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9899 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9900 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9901 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9902 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9903 }
9904
9905 /*
9906 * TR.
9907 */
9908 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
9909 /* 64-bit capable CPUs. */
9910 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
9911 if (fLongModeGuest)
9912 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
9913 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
9914 else
9915 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
9916 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
9917 VMX_IGS_TR_ATTR_TYPE_INVALID);
9918 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
9919 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
9920 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
9921 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
9922 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9923 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
9924 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9925 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
9926
9927 /*
9928 * GDTR and IDTR (64-bit capable checks).
9929 */
9930 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
9931 AssertRC(rc);
9932 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
9933
9934 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
9935 AssertRC(rc);
9936 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
9937
9938 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
9939 AssertRC(rc);
9940 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9941
9942 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
9943 AssertRC(rc);
9944 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9945
9946 /*
9947 * Guest Non-Register State.
9948 */
9949 /* Activity State. */
9950 uint32_t u32ActivityState;
9951 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
9952 AssertRC(rc);
9953 HMVMX_CHECK_BREAK( !u32ActivityState
9954 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
9955 VMX_IGS_ACTIVITY_STATE_INVALID);
9956 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
9957 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
9958
9959 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
9960 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9961 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
9962
9963 /** @todo Activity state and injecting interrupts. Left as a todo since we
9964 * currently don't use activity states but ACTIVE. */
9965
9966 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9967 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
9968
9969 /* Guest interruptibility-state. */
9970 HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
9971 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
9972 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9973 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
9974 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
9975 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9976 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
9977 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo))
9978 {
9979 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9980 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9981 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
9982 }
9983 else if (VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo))
9984 {
9985 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9986 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
9987 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9988 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
9989 }
9990 /** @todo Assumes the processor is not in SMM. */
9991 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9992 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
9993 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9994 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9995 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
9996 if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
9997 && VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo))
9998 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI), VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
9999
10000 /* Pending debug exceptions. */
10001 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
10002 AssertRC(rc);
10003 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
10004 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
10005 u32Val = u64Val; /* For pending debug exceptions checks below. */
10006
10007 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
10008 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
10009 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
10010 {
10011 if ( (u32Eflags & X86_EFL_TF)
10012 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
10013 {
10014 /* Bit 14 is PendingDebug.BS. */
10015 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
10016 }
10017 if ( !(u32Eflags & X86_EFL_TF)
10018 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
10019 {
10020 /* Bit 14 is PendingDebug.BS. */
10021 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
10022 }
10023 }
10024
10025 /* VMCS link pointer. */
10026 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
10027 AssertRC(rc);
10028 if (u64Val != UINT64_C(0xffffffffffffffff))
10029 {
10030 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
10031 /** @todo Bits beyond the processor's physical-address width MBZ. */
10032 /** @todo SMM checks. */
10033 Assert(pVmcsInfo->HCPhysShadowVmcs == u64Val);
10034 Assert(pVmcsInfo->pvShadowVmcs);
10035 VMXVMCSREVID VmcsRevId;
10036 VmcsRevId.u = *(uint32_t *)pVmcsInfo->pvShadowVmcs;
10037 HMVMX_CHECK_BREAK(VmcsRevId.n.u31RevisionId == RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID),
10038 VMX_IGS_VMCS_LINK_PTR_SHADOW_VMCS_ID_INVALID);
10039 HMVMX_CHECK_BREAK(VmcsRevId.n.fIsShadowVmcs == (uint32_t)!!(pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING),
10040 VMX_IGS_VMCS_LINK_PTR_NOT_SHADOW);
10041 }
10042
10043 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
10044 * not using nested paging? */
10045 if ( pVM->hm.s.fNestedPaging
10046 && !fLongModeGuest
10047 && CPUMIsGuestInPAEModeEx(pCtx))
10048 {
10049 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
10050 AssertRC(rc);
10051 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10052
10053 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
10054 AssertRC(rc);
10055 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10056
10057 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
10058 AssertRC(rc);
10059 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10060
10061 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
10062 AssertRC(rc);
10063 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10064 }
10065
10066 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
10067 if (uError == VMX_IGS_ERROR)
10068 uError = VMX_IGS_REASON_NOT_FOUND;
10069 } while (0);
10070
10071 pVCpu->hm.s.u32HMError = uError;
10072 pVCpu->hm.s.vmx.LastError.u32GuestIntrState = u32IntrState;
10073 return uError;
10074
10075#undef HMVMX_ERROR_BREAK
10076#undef HMVMX_CHECK_BREAK
10077}
10078
10079
10080/**
10081 * Map the APIC-access page for virtualizing APIC accesses.
10082 *
10083 * This can cause a longjumps to R3 due to the acquisition of the PGM lock. Hence,
10084 * this not done as part of exporting guest state, see @bugref{8721}.
10085 *
10086 * @returns VBox status code.
10087 * @param pVCpu The cross context virtual CPU structure.
10088 */
10089static int hmR0VmxMapHCApicAccessPage(PVMCPUCC pVCpu)
10090{
10091 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10092 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
10093
10094 Assert(PDMHasApic(pVM));
10095 Assert(u64MsrApicBase);
10096
10097 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
10098 Log4Func(("Mappping HC APIC-access page at %#RGp\n", GCPhysApicBase));
10099
10100 /* Unalias the existing mapping. */
10101 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
10102 AssertRCReturn(rc, rc);
10103
10104 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
10105 Assert(pVM->hm.s.vmx.HCPhysApicAccess != NIL_RTHCPHYS);
10106 rc = IOMR0MmioMapMmioHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
10107 AssertRCReturn(rc, rc);
10108
10109 /* Update the per-VCPU cache of the APIC base MSR. */
10110 pVCpu->hm.s.vmx.u64GstMsrApicBase = u64MsrApicBase;
10111 return VINF_SUCCESS;
10112}
10113
10114
10115/**
10116 * Worker function passed to RTMpOnSpecific() that is to be called on the target
10117 * CPU.
10118 *
10119 * @param idCpu The ID for the CPU the function is called on.
10120 * @param pvUser1 Null, not used.
10121 * @param pvUser2 Null, not used.
10122 */
10123static DECLCALLBACK(void) hmR0DispatchHostNmi(RTCPUID idCpu, void *pvUser1, void *pvUser2)
10124{
10125 RT_NOREF3(idCpu, pvUser1, pvUser2);
10126 VMXDispatchHostNmi();
10127}
10128
10129
10130/**
10131 * Dispatching an NMI on the host CPU that received it.
10132 *
10133 * @returns VBox status code.
10134 * @param pVCpu The cross context virtual CPU structure.
10135 * @param pVmcsInfo The VMCS info. object corresponding to the VMCS that was
10136 * executing when receiving the host NMI in VMX non-root
10137 * operation.
10138 */
10139static int hmR0VmxExitHostNmi(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
10140{
10141 RTCPUID const idCpu = pVmcsInfo->idHostCpuExec;
10142 Assert(idCpu != NIL_RTCPUID);
10143
10144 /*
10145 * We don't want to delay dispatching the NMI any more than we have to. However,
10146 * we have already chosen -not- to dispatch NMIs when interrupts were still disabled
10147 * after executing guest or nested-guest code for the following reasons:
10148 *
10149 * - We would need to perform VMREADs with interrupts disabled and is orders of
10150 * magnitude worse when we run as a nested hypervisor without VMCS shadowing
10151 * supported by the host hypervisor.
10152 *
10153 * - It affects the common VM-exit scenario and keeps interrupts disabled for a
10154 * longer period of time just for handling an edge case like host NMIs which do
10155 * not occur nearly as frequently as other VM-exits.
10156 *
10157 * Let's cover the most likely scenario first. Check if we are on the target CPU
10158 * and dispatch the NMI right away. This should be much faster than calling into
10159 * RTMpOnSpecific() machinery.
10160 */
10161 bool fDispatched = false;
10162 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
10163 if (idCpu == RTMpCpuId())
10164 {
10165 VMXDispatchHostNmi();
10166 fDispatched = true;
10167 }
10168 ASMSetFlags(fEFlags);
10169 if (fDispatched)
10170 {
10171 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
10172 return VINF_SUCCESS;
10173 }
10174
10175 /*
10176 * RTMpOnSpecific() waits until the worker function has run on the target CPU. So
10177 * there should be no race or recursion even if we are unlucky enough to be preempted
10178 * (to the target CPU) without dispatching the host NMI above.
10179 */
10180 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGCIpi);
10181 return RTMpOnSpecific(idCpu, &hmR0DispatchHostNmi, NULL /* pvUser1 */, NULL /* pvUser2 */);
10182}
10183
10184
10185#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10186/**
10187 * Merges the guest with the nested-guest MSR bitmap in preparation of executing the
10188 * nested-guest using hardware-assisted VMX.
10189 *
10190 * @param pVCpu The cross context virtual CPU structure.
10191 * @param pVmcsInfoNstGst The nested-guest VMCS info. object.
10192 * @param pVmcsInfoGst The guest VMCS info. object.
10193 */
10194static void hmR0VmxMergeMsrBitmapNested(PCVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfoNstGst, PCVMXVMCSINFO pVmcsInfoGst)
10195{
10196 uint32_t const cbMsrBitmap = X86_PAGE_4K_SIZE;
10197 uint64_t *pu64MsrBitmap = (uint64_t *)pVmcsInfoNstGst->pvMsrBitmap;
10198 Assert(pu64MsrBitmap);
10199
10200 /*
10201 * We merge the guest MSR bitmap with the nested-guest MSR bitmap such that any
10202 * MSR that is intercepted by the guest is also intercepted while executing the
10203 * nested-guest using hardware-assisted VMX.
10204 *
10205 * Note! If the nested-guest is not using an MSR bitmap, every MSR must cause a
10206 * nested-guest VM-exit even if the outer guest is not intercepting some
10207 * MSRs. We cannot assume the caller has initialized the nested-guest
10208 * MSR bitmap in this case.
10209 *
10210 * The nested hypervisor may also switch whether it uses MSR bitmaps for
10211 * each of its VM-entry, hence initializing it once per-VM while setting
10212 * up the nested-guest VMCS is not sufficient.
10213 */
10214 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
10215 if (pVmcsNstGst->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
10216 {
10217 uint64_t const *pu64MsrBitmapNstGst = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap);
10218 uint64_t const *pu64MsrBitmapGst = (uint64_t const *)pVmcsInfoGst->pvMsrBitmap;
10219 Assert(pu64MsrBitmapNstGst);
10220 Assert(pu64MsrBitmapGst);
10221
10222 uint32_t const cFrags = cbMsrBitmap / sizeof(uint64_t);
10223 for (uint32_t i = 0; i < cFrags; i++)
10224 pu64MsrBitmap[i] = pu64MsrBitmapNstGst[i] | pu64MsrBitmapGst[i];
10225 }
10226 else
10227 ASMMemFill32(pu64MsrBitmap, cbMsrBitmap, UINT32_C(0xffffffff));
10228}
10229
10230
10231/**
10232 * Merges the guest VMCS in to the nested-guest VMCS controls in preparation of
10233 * hardware-assisted VMX execution of the nested-guest.
10234 *
10235 * For a guest, we don't modify these controls once we set up the VMCS and hence
10236 * this function is never called.
10237 *
10238 * For nested-guests since the nested hypervisor provides these controls on every
10239 * nested-guest VM-entry and could potentially change them everytime we need to
10240 * merge them before every nested-guest VM-entry.
10241 *
10242 * @returns VBox status code.
10243 * @param pVCpu The cross context virtual CPU structure.
10244 */
10245static int hmR0VmxMergeVmcsNested(PVMCPUCC pVCpu)
10246{
10247 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10248 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
10249 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
10250 Assert(pVmcsNstGst);
10251
10252 /*
10253 * Merge the controls with the requirements of the guest VMCS.
10254 *
10255 * We do not need to validate the nested-guest VMX features specified in the nested-guest
10256 * VMCS with the features supported by the physical CPU as it's already done by the
10257 * VMLAUNCH/VMRESUME instruction emulation.
10258 *
10259 * This is because the VMX features exposed by CPUM (through CPUID/MSRs) to the guest are
10260 * derived from the VMX features supported by the physical CPU.
10261 */
10262
10263 /* Pin-based VM-execution controls. */
10264 uint32_t const u32PinCtls = pVmcsNstGst->u32PinCtls | pVmcsInfoGst->u32PinCtls;
10265
10266 /* Processor-based VM-execution controls. */
10267 uint32_t u32ProcCtls = (pVmcsNstGst->u32ProcCtls & ~VMX_PROC_CTLS_USE_IO_BITMAPS)
10268 | (pVmcsInfoGst->u32ProcCtls & ~( VMX_PROC_CTLS_INT_WINDOW_EXIT
10269 | VMX_PROC_CTLS_NMI_WINDOW_EXIT
10270 | VMX_PROC_CTLS_USE_TPR_SHADOW
10271 | VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
10272
10273 /* Secondary processor-based VM-execution controls. */
10274 uint32_t const u32ProcCtls2 = (pVmcsNstGst->u32ProcCtls2 & ~VMX_PROC_CTLS2_VPID)
10275 | (pVmcsInfoGst->u32ProcCtls2 & ~( VMX_PROC_CTLS2_VIRT_APIC_ACCESS
10276 | VMX_PROC_CTLS2_INVPCID
10277 | VMX_PROC_CTLS2_VMCS_SHADOWING
10278 | VMX_PROC_CTLS2_RDTSCP
10279 | VMX_PROC_CTLS2_XSAVES_XRSTORS
10280 | VMX_PROC_CTLS2_APIC_REG_VIRT
10281 | VMX_PROC_CTLS2_VIRT_INT_DELIVERY
10282 | VMX_PROC_CTLS2_VMFUNC));
10283
10284 /*
10285 * VM-entry controls:
10286 * These controls contains state that depends on the nested-guest state (primarily
10287 * EFER MSR) and is thus not constant between VMLAUNCH/VMRESUME and the nested-guest
10288 * VM-exit. Although the nested hypervisor cannot change it, we need to in order to
10289 * properly continue executing the nested-guest if the EFER MSR changes but does not
10290 * cause a nested-guest VM-exits.
10291 *
10292 * VM-exit controls:
10293 * These controls specify the host state on return. We cannot use the controls from
10294 * the nested hypervisor state as is as it would contain the guest state rather than
10295 * the host state. Since the host state is subject to change (e.g. preemption, trips
10296 * to ring-3, longjmp and rescheduling to a different host CPU) they are not constant
10297 * through VMLAUNCH/VMRESUME and the nested-guest VM-exit.
10298 *
10299 * VM-entry MSR-load:
10300 * The guest MSRs from the VM-entry MSR-load area are already loaded into the guest-CPU
10301 * context by the VMLAUNCH/VMRESUME instruction emulation.
10302 *
10303 * VM-exit MSR-store:
10304 * The VM-exit emulation will take care of populating the MSRs from the guest-CPU context
10305 * back into the VM-exit MSR-store area.
10306 *
10307 * VM-exit MSR-load areas:
10308 * This must contain the real host MSRs with hardware-assisted VMX execution. Hence, we
10309 * can entirely ignore what the nested hypervisor wants to load here.
10310 */
10311
10312 /*
10313 * Exception bitmap.
10314 *
10315 * We could remove #UD from the guest bitmap and merge it with the nested-guest bitmap
10316 * here (and avoid doing anything while exporting nested-guest state), but to keep the
10317 * code more flexible if intercepting exceptions become more dynamic in the future we do
10318 * it as part of exporting the nested-guest state.
10319 */
10320 uint32_t const u32XcptBitmap = pVmcsNstGst->u32XcptBitmap | pVmcsInfoGst->u32XcptBitmap;
10321
10322 /*
10323 * CR0/CR4 guest/host mask.
10324 *
10325 * Modifications by the nested-guest to CR0/CR4 bits owned by the host and the guest must
10326 * cause VM-exits, so we need to merge them here.
10327 */
10328 uint64_t const u64Cr0Mask = pVmcsNstGst->u64Cr0Mask.u | pVmcsInfoGst->u64Cr0Mask;
10329 uint64_t const u64Cr4Mask = pVmcsNstGst->u64Cr4Mask.u | pVmcsInfoGst->u64Cr4Mask;
10330
10331 /*
10332 * Page-fault error-code mask and match.
10333 *
10334 * Although we require unrestricted guest execution (and thereby nested-paging) for
10335 * hardware-assisted VMX execution of nested-guests and thus the outer guest doesn't
10336 * normally intercept #PFs, it might intercept them for debugging purposes.
10337 *
10338 * If the outer guest is not intercepting #PFs, we can use the nested-guest #PF filters.
10339 * If the outer guest is intercepting #PFs, we must intercept all #PFs.
10340 */
10341 uint32_t u32XcptPFMask;
10342 uint32_t u32XcptPFMatch;
10343 if (!(pVmcsInfoGst->u32XcptBitmap & RT_BIT(X86_XCPT_PF)))
10344 {
10345 u32XcptPFMask = pVmcsNstGst->u32XcptPFMask;
10346 u32XcptPFMatch = pVmcsNstGst->u32XcptPFMatch;
10347 }
10348 else
10349 {
10350 u32XcptPFMask = 0;
10351 u32XcptPFMatch = 0;
10352 }
10353
10354 /*
10355 * Pause-Loop exiting.
10356 */
10357 uint32_t const cPleGapTicks = RT_MIN(pVM->hm.s.vmx.cPleGapTicks, pVmcsNstGst->u32PleGap);
10358 uint32_t const cPleWindowTicks = RT_MIN(pVM->hm.s.vmx.cPleWindowTicks, pVmcsNstGst->u32PleWindow);
10359
10360 /*
10361 * Pending debug exceptions.
10362 * Currently just copy whatever the nested-guest provides us.
10363 */
10364 uint64_t const uPendingDbgXcpts = pVmcsNstGst->u64GuestPendingDbgXcpts.u;
10365
10366 /*
10367 * I/O Bitmap.
10368 *
10369 * We do not use the I/O bitmap that may be provided by the nested hypervisor as we always
10370 * intercept all I/O port accesses.
10371 */
10372 Assert(u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
10373 Assert(!(u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS));
10374
10375 /*
10376 * VMCS shadowing.
10377 *
10378 * We do not yet expose VMCS shadowing to the guest and thus VMCS shadowing should not be
10379 * enabled while executing the nested-guest.
10380 */
10381 Assert(!(u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING));
10382
10383 /*
10384 * APIC-access page.
10385 */
10386 RTHCPHYS HCPhysApicAccess;
10387 if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10388 {
10389 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
10390 RTGCPHYS const GCPhysApicAccess = pVmcsNstGst->u64AddrApicAccess.u;
10391
10392 /** @todo NSTVMX: This is not really correct but currently is required to make
10393 * things work. We need to re-enable the page handler when we fallback to
10394 * IEM execution of the nested-guest! */
10395 PGMHandlerPhysicalPageTempOff(pVM, GCPhysApicAccess, GCPhysApicAccess);
10396
10397 void *pvPage;
10398 PGMPAGEMAPLOCK PgLockApicAccess;
10399 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysApicAccess, &pvPage, &PgLockApicAccess);
10400 if (RT_SUCCESS(rc))
10401 {
10402 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysApicAccess, &HCPhysApicAccess);
10403 AssertMsgRCReturn(rc, ("Failed to get host-physical address for APIC-access page at %#RGp\n", GCPhysApicAccess), rc);
10404
10405 /** @todo Handle proper releasing of page-mapping lock later. */
10406 PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &PgLockApicAccess);
10407 }
10408 else
10409 return rc;
10410 }
10411 else
10412 HCPhysApicAccess = 0;
10413
10414 /*
10415 * Virtual-APIC page and TPR threshold.
10416 */
10417 RTHCPHYS HCPhysVirtApic;
10418 uint32_t u32TprThreshold;
10419 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10420 {
10421 Assert(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW);
10422 RTGCPHYS const GCPhysVirtApic = pVmcsNstGst->u64AddrVirtApic.u;
10423
10424 void *pvPage;
10425 PGMPAGEMAPLOCK PgLockVirtApic;
10426 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysVirtApic, &pvPage, &PgLockVirtApic);
10427 if (RT_SUCCESS(rc))
10428 {
10429 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysVirtApic, &HCPhysVirtApic);
10430 AssertMsgRCReturn(rc, ("Failed to get host-physical address for virtual-APIC page at %#RGp\n", GCPhysVirtApic), rc);
10431
10432 /** @todo Handle proper releasing of page-mapping lock later. */
10433 PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &PgLockVirtApic);
10434 }
10435 else
10436 return rc;
10437
10438 u32TprThreshold = pVmcsNstGst->u32TprThreshold;
10439 }
10440 else
10441 {
10442 HCPhysVirtApic = 0;
10443 u32TprThreshold = 0;
10444
10445 /*
10446 * We must make sure CR8 reads/write must cause VM-exits when TPR shadowing is not
10447 * used by the nested hypervisor. Preventing MMIO accesses to the physical APIC will
10448 * be taken care of by EPT/shadow paging.
10449 */
10450 if (pVM->hm.s.fAllow64BitGuests)
10451 {
10452 u32ProcCtls |= VMX_PROC_CTLS_CR8_STORE_EXIT
10453 | VMX_PROC_CTLS_CR8_LOAD_EXIT;
10454 }
10455 }
10456
10457 /*
10458 * Validate basic assumptions.
10459 */
10460 PVMXVMCSINFO pVmcsInfoNstGst = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
10461 Assert(pVM->hm.s.vmx.fAllowUnrestricted);
10462 Assert(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
10463 Assert(hmGetVmxActiveVmcsInfo(pVCpu) == pVmcsInfoNstGst);
10464
10465 /*
10466 * Commit it to the nested-guest VMCS.
10467 */
10468 int rc = VINF_SUCCESS;
10469 if (pVmcsInfoNstGst->u32PinCtls != u32PinCtls)
10470 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, u32PinCtls);
10471 if (pVmcsInfoNstGst->u32ProcCtls != u32ProcCtls)
10472 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, u32ProcCtls);
10473 if (pVmcsInfoNstGst->u32ProcCtls2 != u32ProcCtls2)
10474 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, u32ProcCtls2);
10475 if (pVmcsInfoNstGst->u32XcptBitmap != u32XcptBitmap)
10476 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
10477 if (pVmcsInfoNstGst->u64Cr0Mask != u64Cr0Mask)
10478 rc |= VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
10479 if (pVmcsInfoNstGst->u64Cr4Mask != u64Cr4Mask)
10480 rc |= VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
10481 if (pVmcsInfoNstGst->u32XcptPFMask != u32XcptPFMask)
10482 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, u32XcptPFMask);
10483 if (pVmcsInfoNstGst->u32XcptPFMatch != u32XcptPFMatch)
10484 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, u32XcptPFMatch);
10485 if ( !(u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
10486 && (u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
10487 {
10488 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
10489 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, cPleGapTicks);
10490 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, cPleWindowTicks);
10491 }
10492 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10493 {
10494 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
10495 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
10496 }
10497 if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10498 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
10499 rc |= VMXWriteVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, uPendingDbgXcpts);
10500 AssertRC(rc);
10501
10502 /*
10503 * Update the nested-guest VMCS cache.
10504 */
10505 pVmcsInfoNstGst->u32PinCtls = u32PinCtls;
10506 pVmcsInfoNstGst->u32ProcCtls = u32ProcCtls;
10507 pVmcsInfoNstGst->u32ProcCtls2 = u32ProcCtls2;
10508 pVmcsInfoNstGst->u32XcptBitmap = u32XcptBitmap;
10509 pVmcsInfoNstGst->u64Cr0Mask = u64Cr0Mask;
10510 pVmcsInfoNstGst->u64Cr4Mask = u64Cr4Mask;
10511 pVmcsInfoNstGst->u32XcptPFMask = u32XcptPFMask;
10512 pVmcsInfoNstGst->u32XcptPFMatch = u32XcptPFMatch;
10513 pVmcsInfoNstGst->HCPhysVirtApic = HCPhysVirtApic;
10514
10515 /*
10516 * We need to flush the TLB if we are switching the APIC-access page address.
10517 * See Intel spec. 28.3.3.4 "Guidelines for Use of the INVEPT Instruction".
10518 */
10519 if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10520 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = true;
10521
10522 /*
10523 * MSR bitmap.
10524 *
10525 * The MSR bitmap address has already been initialized while setting up the nested-guest
10526 * VMCS, here we need to merge the MSR bitmaps.
10527 */
10528 if (u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
10529 hmR0VmxMergeMsrBitmapNested(pVCpu, pVmcsInfoNstGst, pVmcsInfoGst);
10530
10531 return VINF_SUCCESS;
10532}
10533#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10534
10535
10536/**
10537 * Does the preparations before executing guest code in VT-x.
10538 *
10539 * This may cause longjmps to ring-3 and may even result in rescheduling to the
10540 * recompiler/IEM. We must be cautious what we do here regarding committing
10541 * guest-state information into the VMCS assuming we assuredly execute the
10542 * guest in VT-x mode.
10543 *
10544 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
10545 * the common-state (TRPM/forceflags), we must undo those changes so that the
10546 * recompiler/IEM can (and should) use them when it resumes guest execution.
10547 * Otherwise such operations must be done when we can no longer exit to ring-3.
10548 *
10549 * @returns Strict VBox status code (i.e. informational status codes too).
10550 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
10551 * have been disabled.
10552 * @retval VINF_VMX_VMEXIT if a nested-guest VM-exit occurs (e.g., while evaluating
10553 * pending events).
10554 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
10555 * double-fault into the guest.
10556 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
10557 * dispatched directly.
10558 * @retval VINF_* scheduling changes, we have to go back to ring-3.
10559 *
10560 * @param pVCpu The cross context virtual CPU structure.
10561 * @param pVmxTransient The VMX-transient structure.
10562 * @param fStepping Whether we are single-stepping the guest in the
10563 * hypervisor debugger. Makes us ignore some of the reasons
10564 * for returning to ring-3, and return VINF_EM_DBG_STEPPED
10565 * if event dispatching took place.
10566 */
10567static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
10568{
10569 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10570
10571 Log4Func(("fIsNested=%RTbool fStepping=%RTbool\n", pVmxTransient->fIsNestedGuest, fStepping));
10572
10573#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
10574 if (pVmxTransient->fIsNestedGuest)
10575 {
10576 RT_NOREF2(pVCpu, fStepping);
10577 Log2Func(("Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
10578 return VINF_EM_RESCHEDULE_REM;
10579 }
10580#endif
10581
10582#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
10583 PGMRZDynMapFlushAutoSet(pVCpu);
10584#endif
10585
10586 /*
10587 * Check and process force flag actions, some of which might require us to go back to ring-3.
10588 */
10589 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, pVmxTransient, fStepping);
10590 if (rcStrict == VINF_SUCCESS)
10591 {
10592 /* FFs don't get set all the time. */
10593#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10594 if ( pVmxTransient->fIsNestedGuest
10595 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
10596 {
10597 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
10598 return VINF_VMX_VMEXIT;
10599 }
10600#endif
10601 }
10602 else
10603 return rcStrict;
10604
10605 /*
10606 * Virtualize memory-mapped accesses to the physical APIC (may take locks).
10607 */
10608 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10609 if ( !pVCpu->hm.s.vmx.u64GstMsrApicBase
10610 && (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10611 && PDMHasApic(pVM))
10612 {
10613 int rc = hmR0VmxMapHCApicAccessPage(pVCpu);
10614 AssertRCReturn(rc, rc);
10615 }
10616
10617#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10618 /*
10619 * Merge guest VMCS controls with the nested-guest VMCS controls.
10620 *
10621 * Even if we have not executed the guest prior to this (e.g. when resuming from a
10622 * saved state), we should be okay with merging controls as we initialize the
10623 * guest VMCS controls as part of VM setup phase.
10624 */
10625 if ( pVmxTransient->fIsNestedGuest
10626 && !pVCpu->hm.s.vmx.fMergedNstGstCtls)
10627 {
10628 int rc = hmR0VmxMergeVmcsNested(pVCpu);
10629 AssertRCReturn(rc, rc);
10630 pVCpu->hm.s.vmx.fMergedNstGstCtls = true;
10631 }
10632#endif
10633
10634 /*
10635 * Evaluate events to be injected into the guest.
10636 *
10637 * Events in TRPM can be injected without inspecting the guest state.
10638 * If any new events (interrupts/NMI) are pending currently, we try to set up the
10639 * guest to cause a VM-exit the next time they are ready to receive the event.
10640 *
10641 * With nested-guests, evaluating pending events may cause VM-exits. Also, verify
10642 * that the event in TRPM that we will inject using hardware-assisted VMX is -not-
10643 * subject to interecption. Otherwise, we should have checked and injected them
10644 * manually elsewhere (IEM).
10645 */
10646 if (TRPMHasTrap(pVCpu))
10647 {
10648 Assert(!pVmxTransient->fIsNestedGuest || !CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx));
10649 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
10650 }
10651
10652 uint32_t fIntrState;
10653 rcStrict = hmR0VmxEvaluatePendingEvent(pVCpu, pVmxTransient, &fIntrState);
10654
10655#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10656 /*
10657 * While evaluating pending events if something failed (unlikely) or if we were
10658 * preparing to run a nested-guest but performed a nested-guest VM-exit, we should bail.
10659 */
10660 if (rcStrict != VINF_SUCCESS)
10661 return rcStrict;
10662 if ( pVmxTransient->fIsNestedGuest
10663 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
10664 {
10665 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
10666 return VINF_VMX_VMEXIT;
10667 }
10668#else
10669 Assert(rcStrict == VINF_SUCCESS);
10670#endif
10671
10672 /*
10673 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
10674 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
10675 * also result in triple-faulting the VM.
10676 *
10677 * With nested-guests, the above does not apply since unrestricted guest execution is a
10678 * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
10679 */
10680 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pVmxTransient, fIntrState, fStepping);
10681 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10682 { /* likely */ }
10683 else
10684 {
10685 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
10686 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
10687 return rcStrict;
10688 }
10689
10690 /*
10691 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
10692 * import CR3 themselves. We will need to update them here, as even as late as the above
10693 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
10694 * the below force flags to be set.
10695 */
10696 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
10697 {
10698 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
10699 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
10700 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
10701 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
10702 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
10703 }
10704 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
10705 {
10706 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
10707 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
10708 }
10709
10710#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10711 /* Paranoia. */
10712 Assert(!pVmxTransient->fIsNestedGuest || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
10713#endif
10714
10715 /*
10716 * No longjmps to ring-3 from this point on!!!
10717 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
10718 * This also disables flushing of the R0-logger instance (if any).
10719 */
10720 VMMRZCallRing3Disable(pVCpu);
10721
10722 /*
10723 * Export the guest state bits.
10724 *
10725 * We cannot perform longjmps while loading the guest state because we do not preserve the
10726 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
10727 * CPU migration.
10728 *
10729 * If we are injecting events to a real-on-v86 mode guest, we would have updated RIP and some segment
10730 * registers. Hence, exporting of the guest state needs to be done -after- injection of events.
10731 */
10732 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu, pVmxTransient);
10733 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10734 { /* likely */ }
10735 else
10736 {
10737 VMMRZCallRing3Enable(pVCpu);
10738 return rcStrict;
10739 }
10740
10741 /*
10742 * We disable interrupts so that we don't miss any interrupts that would flag preemption
10743 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
10744 * preemption disabled for a while. Since this is purely to aid the
10745 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
10746 * disable interrupt on NT.
10747 *
10748 * We need to check for force-flags that could've possible been altered since we last
10749 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
10750 * see @bugref{6398}).
10751 *
10752 * We also check a couple of other force-flags as a last opportunity to get the EMT back
10753 * to ring-3 before executing guest code.
10754 */
10755 pVmxTransient->fEFlags = ASMIntDisableFlags();
10756
10757 if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
10758 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
10759 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
10760 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
10761 {
10762 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
10763 {
10764#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10765 /*
10766 * If we are executing a nested-guest make sure that we should intercept subsequent
10767 * events. The one we are injecting might be part of VM-entry. This is mainly to keep
10768 * the VM-exit instruction emulation happy.
10769 */
10770 if (pVmxTransient->fIsNestedGuest)
10771 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, true);
10772#endif
10773
10774 /*
10775 * We've injected any pending events. This is really the point of no return (to ring-3).
10776 *
10777 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
10778 * returns from this function, so do -not- enable them here.
10779 */
10780 pVCpu->hm.s.Event.fPending = false;
10781 return VINF_SUCCESS;
10782 }
10783
10784 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
10785 rcStrict = VINF_EM_RAW_INTERRUPT;
10786 }
10787 else
10788 {
10789 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
10790 rcStrict = VINF_EM_RAW_TO_R3;
10791 }
10792
10793 ASMSetFlags(pVmxTransient->fEFlags);
10794 VMMRZCallRing3Enable(pVCpu);
10795
10796 return rcStrict;
10797}
10798
10799
10800/**
10801 * Final preparations before executing guest code using hardware-assisted VMX.
10802 *
10803 * We can no longer get preempted to a different host CPU and there are no returns
10804 * to ring-3. We ignore any errors that may happen from this point (e.g. VMWRITE
10805 * failures), this function is not intended to fail sans unrecoverable hardware
10806 * errors.
10807 *
10808 * @param pVCpu The cross context virtual CPU structure.
10809 * @param pVmxTransient The VMX-transient structure.
10810 *
10811 * @remarks Called with preemption disabled.
10812 * @remarks No-long-jump zone!!!
10813 */
10814static void hmR0VmxPreRunGuestCommitted(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
10815{
10816 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
10817 Assert(VMMR0IsLogFlushDisabled(pVCpu));
10818 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
10819 Assert(!pVCpu->hm.s.Event.fPending);
10820
10821 /*
10822 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
10823 */
10824 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
10825 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
10826
10827 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10828 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10829 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
10830 RTCPUID const idCurrentCpu = pHostCpu->idCpu;
10831
10832 if (!CPUMIsGuestFPUStateActive(pVCpu))
10833 {
10834 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10835 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
10836 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
10837 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10838 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
10839 }
10840
10841 /*
10842 * Re-export the host state bits as we may've been preempted (only happens when
10843 * thread-context hooks are used or when the VM start function changes) or if
10844 * the host CR0 is modified while loading the guest FPU state above.
10845 *
10846 * The 64-on-32 switcher saves the (64-bit) host state into the VMCS and if we
10847 * changed the switcher back to 32-bit, we *must* save the 32-bit host state here,
10848 * see @bugref{8432}.
10849 *
10850 * This may also happen when switching to/from a nested-guest VMCS without leaving
10851 * ring-0.
10852 */
10853 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
10854 {
10855 hmR0VmxExportHostState(pVCpu);
10856 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportHostState);
10857 }
10858 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
10859
10860 /*
10861 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
10862 */
10863 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
10864 hmR0VmxExportSharedState(pVCpu, pVmxTransient);
10865 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
10866
10867 /*
10868 * Store status of the shared guest/host debug state at the time of VM-entry.
10869 */
10870 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
10871 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
10872
10873 /*
10874 * Always cache the TPR-shadow if the virtual-APIC page exists, thereby skipping
10875 * more than one conditional check. The post-run side of our code shall determine
10876 * if it needs to sync. the virtual APIC TPR with the TPR-shadow.
10877 */
10878 if (pVmcsInfo->pbVirtApic)
10879 pVmxTransient->u8GuestTpr = pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR];
10880
10881 /*
10882 * Update the host MSRs values in the VM-exit MSR-load area.
10883 */
10884 if (!pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs)
10885 {
10886 if (pVmcsInfo->cExitMsrLoad > 0)
10887 hmR0VmxUpdateAutoLoadHostMsrs(pVCpu, pVmcsInfo);
10888 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = true;
10889 }
10890
10891 /*
10892 * Evaluate if we need to intercept guest RDTSC/P accesses. Set up the
10893 * VMX-preemption timer based on the next virtual sync clock deadline.
10894 */
10895 if ( !pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer
10896 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
10897 {
10898 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pVmxTransient);
10899 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = true;
10900 }
10901
10902 /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
10903 bool const fIsRdtscIntercepted = RT_BOOL(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT);
10904 if (!fIsRdtscIntercepted)
10905 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
10906 else
10907 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
10908
10909 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
10910 hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu, pVmcsInfo); /* Invalidate the appropriate guest entries from the TLB. */
10911 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
10912 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Record the error reporting info. with the current host CPU. */
10913 pVmcsInfo->idHostCpuState = idCurrentCpu; /* Record the CPU for which the host-state has been exported. */
10914 pVmcsInfo->idHostCpuExec = idCurrentCpu; /* Record the CPU on which we shall execute. */
10915
10916 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
10917
10918 TMNotifyStartOfExecution(pVM, pVCpu); /* Notify TM to resume its clocks when TSC is tied to execution,
10919 as we're about to start executing the guest. */
10920
10921 /*
10922 * Load the guest TSC_AUX MSR when we are not intercepting RDTSCP.
10923 *
10924 * This is done this late as updating the TSC offsetting/preemption timer above
10925 * figures out if we can skip intercepting RDTSCP by calculating the number of
10926 * host CPU ticks till the next virtual sync deadline (for the dynamic case).
10927 */
10928 if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
10929 && !fIsRdtscIntercepted)
10930 {
10931 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_TSC_AUX);
10932
10933 /* NB: Because we call hmR0VmxAddAutoLoadStoreMsr with fUpdateHostMsr=true,
10934 it's safe even after hmR0VmxUpdateAutoLoadHostMsrs has already been done. */
10935 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu),
10936 true /* fSetReadWrite */, true /* fUpdateHostMsr */);
10937 AssertRC(rc);
10938 Assert(!pVmxTransient->fRemoveTscAuxMsr);
10939 pVmxTransient->fRemoveTscAuxMsr = true;
10940 }
10941
10942#ifdef VBOX_STRICT
10943 Assert(pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs);
10944 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest);
10945 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo);
10946 AssertRC(hmR0VmxCheckCachedVmcsCtls(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest));
10947#endif
10948
10949#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
10950 /** @todo r=ramshankar: We can now probably use iemVmxVmentryCheckGuestState here.
10951 * Add a PVMXMSRS parameter to it, so that IEM can look at the host MSRs,
10952 * see @bugref{9180#c54}. */
10953 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
10954 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
10955 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
10956#endif
10957}
10958
10959
10960/**
10961 * First C routine invoked after running guest code using hardware-assisted VMX.
10962 *
10963 * @param pVCpu The cross context virtual CPU structure.
10964 * @param pVmxTransient The VMX-transient structure.
10965 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
10966 *
10967 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
10968 *
10969 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
10970 * unconditionally when it is safe to do so.
10971 */
10972static void hmR0VmxPostRunGuest(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
10973{
10974 uint64_t const uHostTsc = ASMReadTSC(); /** @todo We can do a lot better here, see @bugref{9180#c38}. */
10975
10976 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
10977 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
10978 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
10979 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
10980 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
10981 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
10982
10983 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10984 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
10985 {
10986 uint64_t uGstTsc;
10987 if (!pVmxTransient->fIsNestedGuest)
10988 uGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10989 else
10990 {
10991 uint64_t const uNstGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10992 uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uNstGstTsc);
10993 }
10994 TMCpuTickSetLastSeen(pVCpu, uGstTsc); /* Update TM with the guest TSC. */
10995 }
10996
10997 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
10998 TMNotifyEndOfExecution(pVCpu->CTX_SUFF(pVM), pVCpu); /* Notify TM that the guest is no longer running. */
10999 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
11000
11001 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Some host state messed up by VMX needs restoring. */
11002 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
11003#ifdef VBOX_STRICT
11004 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo); /* Verify that the host EFER MSR wasn't modified. */
11005#endif
11006 Assert(!ASMIntAreEnabled());
11007 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
11008 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
11009
11010#ifdef HMVMX_ALWAYS_CLEAN_TRANSIENT
11011 /*
11012 * Clean all the VMCS fields in the transient structure before reading
11013 * anything from the VMCS.
11014 */
11015 pVmxTransient->uExitReason = 0;
11016 pVmxTransient->uExitIntErrorCode = 0;
11017 pVmxTransient->uExitQual = 0;
11018 pVmxTransient->uGuestLinearAddr = 0;
11019 pVmxTransient->uExitIntInfo = 0;
11020 pVmxTransient->cbExitInstr = 0;
11021 pVmxTransient->ExitInstrInfo.u = 0;
11022 pVmxTransient->uEntryIntInfo = 0;
11023 pVmxTransient->uEntryXcptErrorCode = 0;
11024 pVmxTransient->cbEntryInstr = 0;
11025 pVmxTransient->uIdtVectoringInfo = 0;
11026 pVmxTransient->uIdtVectoringErrorCode = 0;
11027#endif
11028
11029 /*
11030 * Save the basic VM-exit reason and check if the VM-entry failed.
11031 * See Intel spec. 24.9.1 "Basic VM-exit Information".
11032 */
11033 uint32_t uExitReason;
11034 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
11035 AssertRC(rc);
11036 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
11037 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
11038
11039 /*
11040 * Log the VM-exit before logging anything else as otherwise it might be a
11041 * tad confusing what happens before and after the world-switch.
11042 */
11043 HMVMX_LOG_EXIT(pVCpu, uExitReason);
11044
11045 /*
11046 * Remove the TSC_AUX MSR from the auto-load/store MSR area and reset any MSR
11047 * bitmap permissions, if it was added before VM-entry.
11048 */
11049 if (pVmxTransient->fRemoveTscAuxMsr)
11050 {
11051 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX);
11052 pVmxTransient->fRemoveTscAuxMsr = false;
11053 }
11054
11055 /*
11056 * Check if VMLAUNCH/VMRESUME succeeded.
11057 * If this failed, we cause a guru meditation and cease further execution.
11058 *
11059 * However, if we are executing a nested-guest we might fail if we use the
11060 * fast path rather than fully emulating VMLAUNCH/VMRESUME instruction in IEM.
11061 */
11062 if (RT_LIKELY(rcVMRun == VINF_SUCCESS))
11063 {
11064 /*
11065 * Update the VM-exit history array here even if the VM-entry failed due to:
11066 * - Invalid guest state.
11067 * - MSR loading.
11068 * - Machine-check event.
11069 *
11070 * In any of the above cases we will still have a "valid" VM-exit reason
11071 * despite @a fVMEntryFailed being false.
11072 *
11073 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
11074 *
11075 * Note! We don't have CS or RIP at this point. Will probably address that later
11076 * by amending the history entry added here.
11077 */
11078 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
11079 UINT64_MAX, uHostTsc);
11080
11081 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
11082 {
11083 VMMRZCallRing3Enable(pVCpu);
11084
11085 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
11086 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
11087
11088#ifdef HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
11089 hmR0VmxReadAllRoFieldsVmcs(pVmxTransient);
11090#endif
11091
11092 /*
11093 * Import the guest-interruptibility state always as we need it while evaluating
11094 * injecting events on re-entry.
11095 *
11096 * We don't import CR0 (when unrestricted guest execution is unavailable) despite
11097 * checking for real-mode while exporting the state because all bits that cause
11098 * mode changes wrt CR0 are intercepted.
11099 */
11100 uint64_t const fImportMask = CPUMCTX_EXTRN_HM_VMX_INT_STATE
11101#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
11102 | HMVMX_CPUMCTX_EXTRN_ALL
11103#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
11104 | CPUMCTX_EXTRN_RFLAGS
11105#endif
11106 ;
11107 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImportMask);
11108 AssertRC(rc);
11109
11110 /*
11111 * Sync the TPR shadow with our APIC state.
11112 */
11113 if ( !pVmxTransient->fIsNestedGuest
11114 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
11115 {
11116 Assert(pVmcsInfo->pbVirtApic);
11117 if (pVmxTransient->u8GuestTpr != pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR])
11118 {
11119 rc = APICSetTpr(pVCpu, pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR]);
11120 AssertRC(rc);
11121 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
11122 }
11123 }
11124
11125 Assert(VMMRZCallRing3IsEnabled(pVCpu));
11126 return;
11127 }
11128 }
11129#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
11130 else if (pVmxTransient->fIsNestedGuest)
11131 AssertMsgFailed(("VMLAUNCH/VMRESUME failed but shouldn't happen when VMLAUNCH/VMRESUME was emulated in IEM!\n"));
11132#endif
11133 else
11134 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
11135
11136 VMMRZCallRing3Enable(pVCpu);
11137}
11138
11139
11140/**
11141 * Runs the guest code using hardware-assisted VMX the normal way.
11142 *
11143 * @returns VBox status code.
11144 * @param pVCpu The cross context virtual CPU structure.
11145 * @param pcLoops Pointer to the number of executed loops.
11146 */
11147static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
11148{
11149 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
11150 Assert(pcLoops);
11151 Assert(*pcLoops <= cMaxResumeLoops);
11152 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
11153
11154#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
11155 /*
11156 * Switch to the guest VMCS as we may have transitioned from executing the nested-guest
11157 * without leaving ring-0. Otherwise, if we came from ring-3 we would have loaded the
11158 * guest VMCS while entering the VMX ring-0 session.
11159 */
11160 if (pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs)
11161 {
11162 int rc = hmR0VmxSwitchToGstOrNstGstVmcs(pVCpu, false /* fSwitchToNstGstVmcs */);
11163 if (RT_SUCCESS(rc))
11164 { /* likely */ }
11165 else
11166 {
11167 LogRelFunc(("Failed to switch to the guest VMCS. rc=%Rrc\n", rc));
11168 return rc;
11169 }
11170 }
11171#endif
11172
11173 VMXTRANSIENT VmxTransient;
11174 RT_ZERO(VmxTransient);
11175 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
11176
11177 /* Paranoia. */
11178 Assert(VmxTransient.pVmcsInfo == &pVCpu->hm.s.vmx.VmcsInfo);
11179
11180 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
11181 for (;;)
11182 {
11183 Assert(!HMR0SuspendPending());
11184 HMVMX_ASSERT_CPU_SAFE(pVCpu);
11185 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
11186
11187 /*
11188 * Preparatory work for running nested-guest code, this may force us to
11189 * return to ring-3.
11190 *
11191 * Warning! This bugger disables interrupts on VINF_SUCCESS!
11192 */
11193 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
11194 if (rcStrict != VINF_SUCCESS)
11195 break;
11196
11197 /* Interrupts are disabled at this point! */
11198 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
11199 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
11200 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
11201 /* Interrupts are re-enabled at this point! */
11202
11203 /*
11204 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
11205 */
11206 if (RT_SUCCESS(rcRun))
11207 { /* very likely */ }
11208 else
11209 {
11210 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
11211 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
11212 return rcRun;
11213 }
11214
11215 /*
11216 * Profile the VM-exit.
11217 */
11218 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
11219 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
11220 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
11221 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
11222 HMVMX_START_EXIT_DISPATCH_PROF();
11223
11224 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
11225
11226 /*
11227 * Handle the VM-exit.
11228 */
11229#ifdef HMVMX_USE_FUNCTION_TABLE
11230 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
11231#else
11232 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient);
11233#endif
11234 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
11235 if (rcStrict == VINF_SUCCESS)
11236 {
11237 if (++(*pcLoops) <= cMaxResumeLoops)
11238 continue;
11239 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
11240 rcStrict = VINF_EM_RAW_INTERRUPT;
11241 }
11242 break;
11243 }
11244
11245 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
11246 return rcStrict;
11247}
11248
11249
11250#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
11251/**
11252 * Runs the nested-guest code using hardware-assisted VMX.
11253 *
11254 * @returns VBox status code.
11255 * @param pVCpu The cross context virtual CPU structure.
11256 * @param pcLoops Pointer to the number of executed loops.
11257 *
11258 * @sa hmR0VmxRunGuestCodeNormal.
11259 */
11260static VBOXSTRICTRC hmR0VmxRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
11261{
11262 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
11263 Assert(pcLoops);
11264 Assert(*pcLoops <= cMaxResumeLoops);
11265 Assert(CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
11266
11267 /*
11268 * Switch to the nested-guest VMCS as we may have transitioned from executing the
11269 * guest without leaving ring-0. Otherwise, if we came from ring-3 we would have
11270 * loaded the nested-guest VMCS while entering the VMX ring-0 session.
11271 */
11272 if (!pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs)
11273 {
11274 int rc = hmR0VmxSwitchToGstOrNstGstVmcs(pVCpu, true /* fSwitchToNstGstVmcs */);
11275 if (RT_SUCCESS(rc))
11276 { /* likely */ }
11277 else
11278 {
11279 LogRelFunc(("Failed to switch to the nested-guest VMCS. rc=%Rrc\n", rc));
11280 return rc;
11281 }
11282 }
11283
11284 VMXTRANSIENT VmxTransient;
11285 RT_ZERO(VmxTransient);
11286 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
11287 VmxTransient.fIsNestedGuest = true;
11288
11289 /* Paranoia. */
11290 Assert(VmxTransient.pVmcsInfo == &pVCpu->hm.s.vmx.VmcsInfoNstGst);
11291
11292 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
11293 for (;;)
11294 {
11295 Assert(!HMR0SuspendPending());
11296 HMVMX_ASSERT_CPU_SAFE(pVCpu);
11297 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
11298
11299 /*
11300 * Preparatory work for running guest code, this may force us to
11301 * return to ring-3.
11302 *
11303 * Warning! This bugger disables interrupts on VINF_SUCCESS!
11304 */
11305 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
11306 if (rcStrict != VINF_SUCCESS)
11307 break;
11308
11309 /* Interrupts are disabled at this point! */
11310 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
11311 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
11312 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
11313 /* Interrupts are re-enabled at this point! */
11314
11315 /*
11316 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
11317 */
11318 if (RT_SUCCESS(rcRun))
11319 { /* very likely */ }
11320 else
11321 {
11322 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
11323 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
11324 return rcRun;
11325 }
11326
11327 /*
11328 * Profile the VM-exit.
11329 */
11330 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
11331 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
11332 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll);
11333 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
11334 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
11335 HMVMX_START_EXIT_DISPATCH_PROF();
11336
11337 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
11338
11339 /*
11340 * Handle the VM-exit.
11341 */
11342 rcStrict = hmR0VmxHandleExitNested(pVCpu, &VmxTransient);
11343 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
11344 if (rcStrict == VINF_SUCCESS)
11345 {
11346 if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
11347 {
11348 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
11349 rcStrict = VINF_VMX_VMEXIT;
11350 }
11351 else
11352 {
11353 if (++(*pcLoops) <= cMaxResumeLoops)
11354 continue;
11355 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
11356 rcStrict = VINF_EM_RAW_INTERRUPT;
11357 }
11358 }
11359 else
11360 Assert(rcStrict != VINF_VMX_VMEXIT);
11361 break;
11362 }
11363
11364 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
11365 return rcStrict;
11366}
11367#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
11368
11369
11370/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
11371 * probes.
11372 *
11373 * The following few functions and associated structure contains the bloat
11374 * necessary for providing detailed debug events and dtrace probes as well as
11375 * reliable host side single stepping. This works on the principle of
11376 * "subclassing" the normal execution loop and workers. We replace the loop
11377 * method completely and override selected helpers to add necessary adjustments
11378 * to their core operation.
11379 *
11380 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
11381 * any performance for debug and analysis features.
11382 *
11383 * @{
11384 */
11385
11386/**
11387 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
11388 * the debug run loop.
11389 */
11390typedef struct VMXRUNDBGSTATE
11391{
11392 /** The RIP we started executing at. This is for detecting that we stepped. */
11393 uint64_t uRipStart;
11394 /** The CS we started executing with. */
11395 uint16_t uCsStart;
11396
11397 /** Whether we've actually modified the 1st execution control field. */
11398 bool fModifiedProcCtls : 1;
11399 /** Whether we've actually modified the 2nd execution control field. */
11400 bool fModifiedProcCtls2 : 1;
11401 /** Whether we've actually modified the exception bitmap. */
11402 bool fModifiedXcptBitmap : 1;
11403
11404 /** We desire the modified the CR0 mask to be cleared. */
11405 bool fClearCr0Mask : 1;
11406 /** We desire the modified the CR4 mask to be cleared. */
11407 bool fClearCr4Mask : 1;
11408 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
11409 uint32_t fCpe1Extra;
11410 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
11411 uint32_t fCpe1Unwanted;
11412 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
11413 uint32_t fCpe2Extra;
11414 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
11415 uint32_t bmXcptExtra;
11416 /** The sequence number of the Dtrace provider settings the state was
11417 * configured against. */
11418 uint32_t uDtraceSettingsSeqNo;
11419 /** VM-exits to check (one bit per VM-exit). */
11420 uint32_t bmExitsToCheck[3];
11421
11422 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
11423 uint32_t fProcCtlsInitial;
11424 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
11425 uint32_t fProcCtls2Initial;
11426 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
11427 uint32_t bmXcptInitial;
11428} VMXRUNDBGSTATE;
11429AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
11430typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
11431
11432
11433/**
11434 * Initializes the VMXRUNDBGSTATE structure.
11435 *
11436 * @param pVCpu The cross context virtual CPU structure of the
11437 * calling EMT.
11438 * @param pVmxTransient The VMX-transient structure.
11439 * @param pDbgState The debug state to initialize.
11440 */
11441static void hmR0VmxRunDebugStateInit(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11442{
11443 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
11444 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
11445
11446 pDbgState->fModifiedProcCtls = false;
11447 pDbgState->fModifiedProcCtls2 = false;
11448 pDbgState->fModifiedXcptBitmap = false;
11449 pDbgState->fClearCr0Mask = false;
11450 pDbgState->fClearCr4Mask = false;
11451 pDbgState->fCpe1Extra = 0;
11452 pDbgState->fCpe1Unwanted = 0;
11453 pDbgState->fCpe2Extra = 0;
11454 pDbgState->bmXcptExtra = 0;
11455 pDbgState->fProcCtlsInitial = pVmxTransient->pVmcsInfo->u32ProcCtls;
11456 pDbgState->fProcCtls2Initial = pVmxTransient->pVmcsInfo->u32ProcCtls2;
11457 pDbgState->bmXcptInitial = pVmxTransient->pVmcsInfo->u32XcptBitmap;
11458}
11459
11460
11461/**
11462 * Updates the VMSC fields with changes requested by @a pDbgState.
11463 *
11464 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
11465 * immediately before executing guest code, i.e. when interrupts are disabled.
11466 * We don't check status codes here as we cannot easily assert or return in the
11467 * latter case.
11468 *
11469 * @param pVCpu The cross context virtual CPU structure.
11470 * @param pVmxTransient The VMX-transient structure.
11471 * @param pDbgState The debug state.
11472 */
11473static void hmR0VmxPreRunGuestDebugStateApply(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11474{
11475 /*
11476 * Ensure desired flags in VMCS control fields are set.
11477 * (Ignoring write failure here, as we're committed and it's just debug extras.)
11478 *
11479 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
11480 * there should be no stale data in pCtx at this point.
11481 */
11482 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11483 if ( (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
11484 || (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Unwanted))
11485 {
11486 pVmcsInfo->u32ProcCtls |= pDbgState->fCpe1Extra;
11487 pVmcsInfo->u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
11488 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
11489 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVmcsInfo->u32ProcCtls));
11490 pDbgState->fModifiedProcCtls = true;
11491 }
11492
11493 if ((pVmcsInfo->u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
11494 {
11495 pVmcsInfo->u32ProcCtls2 |= pDbgState->fCpe2Extra;
11496 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVmcsInfo->u32ProcCtls2);
11497 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVmcsInfo->u32ProcCtls2));
11498 pDbgState->fModifiedProcCtls2 = true;
11499 }
11500
11501 if ((pVmcsInfo->u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
11502 {
11503 pVmcsInfo->u32XcptBitmap |= pDbgState->bmXcptExtra;
11504 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVmcsInfo->u32XcptBitmap);
11505 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVmcsInfo->u32XcptBitmap));
11506 pDbgState->fModifiedXcptBitmap = true;
11507 }
11508
11509 if (pDbgState->fClearCr0Mask && pVmcsInfo->u64Cr0Mask != 0)
11510 {
11511 pVmcsInfo->u64Cr0Mask = 0;
11512 VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, 0);
11513 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
11514 }
11515
11516 if (pDbgState->fClearCr4Mask && pVmcsInfo->u64Cr4Mask != 0)
11517 {
11518 pVmcsInfo->u64Cr4Mask = 0;
11519 VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, 0);
11520 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
11521 }
11522
11523 NOREF(pVCpu);
11524}
11525
11526
11527/**
11528 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
11529 * re-entry next time around.
11530 *
11531 * @returns Strict VBox status code (i.e. informational status codes too).
11532 * @param pVCpu The cross context virtual CPU structure.
11533 * @param pVmxTransient The VMX-transient structure.
11534 * @param pDbgState The debug state.
11535 * @param rcStrict The return code from executing the guest using single
11536 * stepping.
11537 */
11538static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState,
11539 VBOXSTRICTRC rcStrict)
11540{
11541 /*
11542 * Restore VM-exit control settings as we may not reenter this function the
11543 * next time around.
11544 */
11545 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11546
11547 /* We reload the initial value, trigger what we can of recalculations the
11548 next time around. From the looks of things, that's all that's required atm. */
11549 if (pDbgState->fModifiedProcCtls)
11550 {
11551 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
11552 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
11553 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
11554 AssertRC(rc2);
11555 pVmcsInfo->u32ProcCtls = pDbgState->fProcCtlsInitial;
11556 }
11557
11558 /* We're currently the only ones messing with this one, so just restore the
11559 cached value and reload the field. */
11560 if ( pDbgState->fModifiedProcCtls2
11561 && pVmcsInfo->u32ProcCtls2 != pDbgState->fProcCtls2Initial)
11562 {
11563 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
11564 AssertRC(rc2);
11565 pVmcsInfo->u32ProcCtls2 = pDbgState->fProcCtls2Initial;
11566 }
11567
11568 /* If we've modified the exception bitmap, we restore it and trigger
11569 reloading and partial recalculation the next time around. */
11570 if (pDbgState->fModifiedXcptBitmap)
11571 pVmcsInfo->u32XcptBitmap = pDbgState->bmXcptInitial;
11572
11573 return rcStrict;
11574}
11575
11576
11577/**
11578 * Configures VM-exit controls for current DBGF and DTrace settings.
11579 *
11580 * This updates @a pDbgState and the VMCS execution control fields to reflect
11581 * the necessary VM-exits demanded by DBGF and DTrace.
11582 *
11583 * @param pVCpu The cross context virtual CPU structure.
11584 * @param pVmxTransient The VMX-transient structure. May update
11585 * fUpdatedTscOffsettingAndPreemptTimer.
11586 * @param pDbgState The debug state.
11587 */
11588static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11589{
11590 /*
11591 * Take down the dtrace serial number so we can spot changes.
11592 */
11593 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
11594 ASMCompilerBarrier();
11595
11596 /*
11597 * We'll rebuild most of the middle block of data members (holding the
11598 * current settings) as we go along here, so start by clearing it all.
11599 */
11600 pDbgState->bmXcptExtra = 0;
11601 pDbgState->fCpe1Extra = 0;
11602 pDbgState->fCpe1Unwanted = 0;
11603 pDbgState->fCpe2Extra = 0;
11604 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
11605 pDbgState->bmExitsToCheck[i] = 0;
11606
11607 /*
11608 * Software interrupts (INT XXh) - no idea how to trigger these...
11609 */
11610 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
11611 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
11612 || VBOXVMM_INT_SOFTWARE_ENABLED())
11613 {
11614 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11615 }
11616
11617 /*
11618 * INT3 breakpoints - triggered by #BP exceptions.
11619 */
11620 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
11621 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11622
11623 /*
11624 * Exception bitmap and XCPT events+probes.
11625 */
11626 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
11627 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
11628 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
11629
11630 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
11631 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
11632 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11633 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
11634 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
11635 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
11636 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
11637 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
11638 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
11639 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
11640 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
11641 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
11642 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
11643 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
11644 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
11645 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
11646 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
11647 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
11648
11649 if (pDbgState->bmXcptExtra)
11650 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11651
11652 /*
11653 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
11654 *
11655 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
11656 * So, when adding/changing/removing please don't forget to update it.
11657 *
11658 * Some of the macros are picking up local variables to save horizontal space,
11659 * (being able to see it in a table is the lesser evil here).
11660 */
11661#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
11662 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
11663 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
11664#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
11665 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11666 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11667 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11668 } else do { } while (0)
11669#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
11670 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11671 { \
11672 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
11673 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11674 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11675 } else do { } while (0)
11676#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
11677 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11678 { \
11679 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
11680 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11681 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11682 } else do { } while (0)
11683#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
11684 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11685 { \
11686 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
11687 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11688 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11689 } else do { } while (0)
11690
11691 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
11692 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
11693 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
11694 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
11695 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
11696
11697 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
11698 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
11699 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
11700 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
11701 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
11702 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
11703 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
11704 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
11705 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
11706 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
11707 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
11708 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
11709 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
11710 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
11711 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
11712 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
11713 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
11714 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
11715 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
11716 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
11717 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
11718 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
11719 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
11720 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
11721 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
11722 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
11723 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
11724 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
11725 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
11726 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
11727 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
11728 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
11729 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
11730 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
11731 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
11732 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
11733
11734 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
11735 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11736 {
11737 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4
11738 | CPUMCTX_EXTRN_APIC_TPR);
11739 AssertRC(rc);
11740
11741#if 0 /** @todo fix me */
11742 pDbgState->fClearCr0Mask = true;
11743 pDbgState->fClearCr4Mask = true;
11744#endif
11745 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
11746 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
11747 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11748 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
11749 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
11750 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
11751 require clearing here and in the loop if we start using it. */
11752 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
11753 }
11754 else
11755 {
11756 if (pDbgState->fClearCr0Mask)
11757 {
11758 pDbgState->fClearCr0Mask = false;
11759 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
11760 }
11761 if (pDbgState->fClearCr4Mask)
11762 {
11763 pDbgState->fClearCr4Mask = false;
11764 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
11765 }
11766 }
11767 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
11768 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
11769
11770 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
11771 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
11772 {
11773 /** @todo later, need to fix handler as it assumes this won't usually happen. */
11774 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
11775 }
11776 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
11777 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
11778
11779 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
11780 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
11781 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
11782 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
11783 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
11784 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
11785 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
11786 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
11787#if 0 /** @todo too slow, fix handler. */
11788 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
11789#endif
11790 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
11791
11792 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
11793 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
11794 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
11795 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
11796 {
11797 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11798 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
11799 }
11800 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11801 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11802 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11803 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11804
11805 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
11806 || IS_EITHER_ENABLED(pVM, INSTR_STR)
11807 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
11808 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
11809 {
11810 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11811 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
11812 }
11813 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
11814 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
11815 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
11816 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
11817
11818 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
11819 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
11820 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
11821 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
11822 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
11823 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
11824 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
11825 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
11826 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
11827 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
11828 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
11829 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
11830 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
11831 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
11832 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
11833 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
11834 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
11835 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
11836 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
11837 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
11838 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
11839 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
11840
11841#undef IS_EITHER_ENABLED
11842#undef SET_ONLY_XBM_IF_EITHER_EN
11843#undef SET_CPE1_XBM_IF_EITHER_EN
11844#undef SET_CPEU_XBM_IF_EITHER_EN
11845#undef SET_CPE2_XBM_IF_EITHER_EN
11846
11847 /*
11848 * Sanitize the control stuff.
11849 */
11850 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
11851 if (pDbgState->fCpe2Extra)
11852 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
11853 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
11854 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0;
11855 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
11856 {
11857 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
11858 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
11859 }
11860
11861 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
11862 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
11863 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
11864 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
11865}
11866
11867
11868/**
11869 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
11870 * appropriate.
11871 *
11872 * The caller has checked the VM-exit against the
11873 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
11874 * already, so we don't have to do that either.
11875 *
11876 * @returns Strict VBox status code (i.e. informational status codes too).
11877 * @param pVCpu The cross context virtual CPU structure.
11878 * @param pVmxTransient The VMX-transient structure.
11879 * @param uExitReason The VM-exit reason.
11880 *
11881 * @remarks The name of this function is displayed by dtrace, so keep it short
11882 * and to the point. No longer than 33 chars long, please.
11883 */
11884static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
11885{
11886 /*
11887 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
11888 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
11889 *
11890 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
11891 * does. Must add/change/remove both places. Same ordering, please.
11892 *
11893 * Added/removed events must also be reflected in the next section
11894 * where we dispatch dtrace events.
11895 */
11896 bool fDtrace1 = false;
11897 bool fDtrace2 = false;
11898 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
11899 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
11900 uint32_t uEventArg = 0;
11901#define SET_EXIT(a_EventSubName) \
11902 do { \
11903 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11904 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11905 } while (0)
11906#define SET_BOTH(a_EventSubName) \
11907 do { \
11908 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
11909 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11910 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
11911 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11912 } while (0)
11913 switch (uExitReason)
11914 {
11915 case VMX_EXIT_MTF:
11916 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
11917
11918 case VMX_EXIT_XCPT_OR_NMI:
11919 {
11920 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
11921 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
11922 {
11923 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11924 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
11925 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
11926 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
11927 {
11928 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
11929 {
11930 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11931 uEventArg = pVmxTransient->uExitIntErrorCode;
11932 }
11933 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
11934 switch (enmEvent1)
11935 {
11936 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
11937 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
11938 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
11939 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
11940 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
11941 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
11942 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
11943 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
11944 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
11945 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
11946 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
11947 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
11948 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
11949 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
11950 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
11951 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
11952 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
11953 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
11954 default: break;
11955 }
11956 }
11957 else
11958 AssertFailed();
11959 break;
11960
11961 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
11962 uEventArg = idxVector;
11963 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
11964 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
11965 break;
11966 }
11967 break;
11968 }
11969
11970 case VMX_EXIT_TRIPLE_FAULT:
11971 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
11972 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
11973 break;
11974 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
11975 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
11976 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
11977 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
11978 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
11979
11980 /* Instruction specific VM-exits: */
11981 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
11982 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
11983 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
11984 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
11985 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
11986 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
11987 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
11988 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
11989 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
11990 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
11991 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
11992 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
11993 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
11994 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
11995 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
11996 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
11997 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
11998 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
11999 case VMX_EXIT_MOV_CRX:
12000 hmR0VmxReadExitQualVmcs(pVmxTransient);
12001 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
12002 SET_BOTH(CRX_READ);
12003 else
12004 SET_BOTH(CRX_WRITE);
12005 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
12006 break;
12007 case VMX_EXIT_MOV_DRX:
12008 hmR0VmxReadExitQualVmcs(pVmxTransient);
12009 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
12010 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
12011 SET_BOTH(DRX_READ);
12012 else
12013 SET_BOTH(DRX_WRITE);
12014 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
12015 break;
12016 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
12017 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
12018 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
12019 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
12020 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
12021 case VMX_EXIT_GDTR_IDTR_ACCESS:
12022 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12023 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
12024 {
12025 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
12026 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
12027 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
12028 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
12029 }
12030 break;
12031
12032 case VMX_EXIT_LDTR_TR_ACCESS:
12033 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12034 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
12035 {
12036 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
12037 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
12038 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
12039 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
12040 }
12041 break;
12042
12043 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
12044 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
12045 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
12046 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
12047 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
12048 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
12049 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
12050 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
12051 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
12052 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
12053 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
12054
12055 /* Events that aren't relevant at this point. */
12056 case VMX_EXIT_EXT_INT:
12057 case VMX_EXIT_INT_WINDOW:
12058 case VMX_EXIT_NMI_WINDOW:
12059 case VMX_EXIT_TPR_BELOW_THRESHOLD:
12060 case VMX_EXIT_PREEMPT_TIMER:
12061 case VMX_EXIT_IO_INSTR:
12062 break;
12063
12064 /* Errors and unexpected events. */
12065 case VMX_EXIT_INIT_SIGNAL:
12066 case VMX_EXIT_SIPI:
12067 case VMX_EXIT_IO_SMI:
12068 case VMX_EXIT_SMI:
12069 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
12070 case VMX_EXIT_ERR_MSR_LOAD:
12071 case VMX_EXIT_ERR_MACHINE_CHECK:
12072 case VMX_EXIT_PML_FULL:
12073 case VMX_EXIT_VIRTUALIZED_EOI:
12074 break;
12075
12076 default:
12077 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
12078 break;
12079 }
12080#undef SET_BOTH
12081#undef SET_EXIT
12082
12083 /*
12084 * Dtrace tracepoints go first. We do them here at once so we don't
12085 * have to copy the guest state saving and stuff a few dozen times.
12086 * Down side is that we've got to repeat the switch, though this time
12087 * we use enmEvent since the probes are a subset of what DBGF does.
12088 */
12089 if (fDtrace1 || fDtrace2)
12090 {
12091 hmR0VmxReadExitQualVmcs(pVmxTransient);
12092 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
12093 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12094 switch (enmEvent1)
12095 {
12096 /** @todo consider which extra parameters would be helpful for each probe. */
12097 case DBGFEVENT_END: break;
12098 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
12099 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
12100 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
12101 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
12102 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
12103 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
12104 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
12105 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
12106 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
12107 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
12108 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
12109 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
12110 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
12111 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
12112 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
12113 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
12114 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
12115 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
12116 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12117 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
12118 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
12119 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
12120 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
12121 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
12122 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
12123 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
12124 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
12125 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12126 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12127 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12128 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12129 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
12130 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
12131 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
12132 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
12133 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
12134 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
12135 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
12136 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
12137 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
12138 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
12139 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
12140 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
12141 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
12142 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
12143 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
12144 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
12145 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
12146 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
12147 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
12148 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
12149 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
12150 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
12151 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
12152 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
12153 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
12154 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
12155 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
12156 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
12157 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
12158 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
12159 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
12160 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
12161 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
12162 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
12163 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
12164 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
12165 }
12166 switch (enmEvent2)
12167 {
12168 /** @todo consider which extra parameters would be helpful for each probe. */
12169 case DBGFEVENT_END: break;
12170 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
12171 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
12172 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
12173 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
12174 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
12175 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
12176 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
12177 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
12178 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
12179 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12180 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12181 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12182 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12183 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
12184 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
12185 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
12186 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
12187 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
12188 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
12189 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
12190 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
12191 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
12192 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
12193 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
12194 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
12195 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
12196 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
12197 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
12198 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
12199 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
12200 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
12201 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
12202 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
12203 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
12204 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
12205 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
12206 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
12207 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
12208 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
12209 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
12210 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
12211 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
12212 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
12213 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
12214 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
12215 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
12216 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
12217 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
12218 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
12219 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
12220 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
12221 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
12222 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
12223 }
12224 }
12225
12226 /*
12227 * Fire of the DBGF event, if enabled (our check here is just a quick one,
12228 * the DBGF call will do a full check).
12229 *
12230 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
12231 * Note! If we have to events, we prioritize the first, i.e. the instruction
12232 * one, in order to avoid event nesting.
12233 */
12234 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
12235 if ( enmEvent1 != DBGFEVENT_END
12236 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
12237 {
12238 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12239 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
12240 if (rcStrict != VINF_SUCCESS)
12241 return rcStrict;
12242 }
12243 else if ( enmEvent2 != DBGFEVENT_END
12244 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
12245 {
12246 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12247 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
12248 if (rcStrict != VINF_SUCCESS)
12249 return rcStrict;
12250 }
12251
12252 return VINF_SUCCESS;
12253}
12254
12255
12256/**
12257 * Single-stepping VM-exit filtering.
12258 *
12259 * This is preprocessing the VM-exits and deciding whether we've gotten far
12260 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
12261 * handling is performed.
12262 *
12263 * @returns Strict VBox status code (i.e. informational status codes too).
12264 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
12265 * @param pVmxTransient The VMX-transient structure.
12266 * @param pDbgState The debug state.
12267 */
12268DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
12269{
12270 /*
12271 * Expensive (saves context) generic dtrace VM-exit probe.
12272 */
12273 uint32_t const uExitReason = pVmxTransient->uExitReason;
12274 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
12275 { /* more likely */ }
12276 else
12277 {
12278 hmR0VmxReadExitQualVmcs(pVmxTransient);
12279 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
12280 AssertRC(rc);
12281 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
12282 }
12283
12284 /*
12285 * Check for host NMI, just to get that out of the way.
12286 */
12287 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
12288 { /* normally likely */ }
12289 else
12290 {
12291 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12292 uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
12293 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
12294 return hmR0VmxExitHostNmi(pVCpu, pVmxTransient->pVmcsInfo);
12295 }
12296
12297 /*
12298 * Check for single stepping event if we're stepping.
12299 */
12300 if (pVCpu->hm.s.fSingleInstruction)
12301 {
12302 switch (uExitReason)
12303 {
12304 case VMX_EXIT_MTF:
12305 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
12306
12307 /* Various events: */
12308 case VMX_EXIT_XCPT_OR_NMI:
12309 case VMX_EXIT_EXT_INT:
12310 case VMX_EXIT_TRIPLE_FAULT:
12311 case VMX_EXIT_INT_WINDOW:
12312 case VMX_EXIT_NMI_WINDOW:
12313 case VMX_EXIT_TASK_SWITCH:
12314 case VMX_EXIT_TPR_BELOW_THRESHOLD:
12315 case VMX_EXIT_APIC_ACCESS:
12316 case VMX_EXIT_EPT_VIOLATION:
12317 case VMX_EXIT_EPT_MISCONFIG:
12318 case VMX_EXIT_PREEMPT_TIMER:
12319
12320 /* Instruction specific VM-exits: */
12321 case VMX_EXIT_CPUID:
12322 case VMX_EXIT_GETSEC:
12323 case VMX_EXIT_HLT:
12324 case VMX_EXIT_INVD:
12325 case VMX_EXIT_INVLPG:
12326 case VMX_EXIT_RDPMC:
12327 case VMX_EXIT_RDTSC:
12328 case VMX_EXIT_RSM:
12329 case VMX_EXIT_VMCALL:
12330 case VMX_EXIT_VMCLEAR:
12331 case VMX_EXIT_VMLAUNCH:
12332 case VMX_EXIT_VMPTRLD:
12333 case VMX_EXIT_VMPTRST:
12334 case VMX_EXIT_VMREAD:
12335 case VMX_EXIT_VMRESUME:
12336 case VMX_EXIT_VMWRITE:
12337 case VMX_EXIT_VMXOFF:
12338 case VMX_EXIT_VMXON:
12339 case VMX_EXIT_MOV_CRX:
12340 case VMX_EXIT_MOV_DRX:
12341 case VMX_EXIT_IO_INSTR:
12342 case VMX_EXIT_RDMSR:
12343 case VMX_EXIT_WRMSR:
12344 case VMX_EXIT_MWAIT:
12345 case VMX_EXIT_MONITOR:
12346 case VMX_EXIT_PAUSE:
12347 case VMX_EXIT_GDTR_IDTR_ACCESS:
12348 case VMX_EXIT_LDTR_TR_ACCESS:
12349 case VMX_EXIT_INVEPT:
12350 case VMX_EXIT_RDTSCP:
12351 case VMX_EXIT_INVVPID:
12352 case VMX_EXIT_WBINVD:
12353 case VMX_EXIT_XSETBV:
12354 case VMX_EXIT_RDRAND:
12355 case VMX_EXIT_INVPCID:
12356 case VMX_EXIT_VMFUNC:
12357 case VMX_EXIT_RDSEED:
12358 case VMX_EXIT_XSAVES:
12359 case VMX_EXIT_XRSTORS:
12360 {
12361 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12362 AssertRCReturn(rc, rc);
12363 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
12364 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
12365 return VINF_EM_DBG_STEPPED;
12366 break;
12367 }
12368
12369 /* Errors and unexpected events: */
12370 case VMX_EXIT_INIT_SIGNAL:
12371 case VMX_EXIT_SIPI:
12372 case VMX_EXIT_IO_SMI:
12373 case VMX_EXIT_SMI:
12374 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
12375 case VMX_EXIT_ERR_MSR_LOAD:
12376 case VMX_EXIT_ERR_MACHINE_CHECK:
12377 case VMX_EXIT_PML_FULL:
12378 case VMX_EXIT_VIRTUALIZED_EOI:
12379 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
12380 break;
12381
12382 default:
12383 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
12384 break;
12385 }
12386 }
12387
12388 /*
12389 * Check for debugger event breakpoints and dtrace probes.
12390 */
12391 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
12392 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
12393 {
12394 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
12395 if (rcStrict != VINF_SUCCESS)
12396 return rcStrict;
12397 }
12398
12399 /*
12400 * Normal processing.
12401 */
12402#ifdef HMVMX_USE_FUNCTION_TABLE
12403 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
12404#else
12405 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
12406#endif
12407}
12408
12409
12410/**
12411 * Single steps guest code using hardware-assisted VMX.
12412 *
12413 * This is -not- the same as the guest single-stepping itself (say using EFLAGS.TF)
12414 * but single-stepping through the hypervisor debugger.
12415 *
12416 * @returns Strict VBox status code (i.e. informational status codes too).
12417 * @param pVCpu The cross context virtual CPU structure.
12418 * @param pcLoops Pointer to the number of executed loops.
12419 *
12420 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
12421 */
12422static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPUCC pVCpu, uint32_t *pcLoops)
12423{
12424 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
12425 Assert(pcLoops);
12426 Assert(*pcLoops <= cMaxResumeLoops);
12427
12428 VMXTRANSIENT VmxTransient;
12429 RT_ZERO(VmxTransient);
12430 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
12431
12432 /* Set HMCPU indicators. */
12433 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
12434 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
12435 pVCpu->hm.s.fDebugWantRdTscExit = false;
12436 pVCpu->hm.s.fUsingDebugLoop = true;
12437
12438 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
12439 VMXRUNDBGSTATE DbgState;
12440 hmR0VmxRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
12441 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
12442
12443 /*
12444 * The loop.
12445 */
12446 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
12447 for (;;)
12448 {
12449 Assert(!HMR0SuspendPending());
12450 HMVMX_ASSERT_CPU_SAFE(pVCpu);
12451 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
12452 bool fStepping = pVCpu->hm.s.fSingleInstruction;
12453
12454 /* Set up VM-execution controls the next two can respond to. */
12455 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
12456
12457 /*
12458 * Preparatory work for running guest code, this may force us to
12459 * return to ring-3.
12460 *
12461 * Warning! This bugger disables interrupts on VINF_SUCCESS!
12462 */
12463 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
12464 if (rcStrict != VINF_SUCCESS)
12465 break;
12466
12467 /* Interrupts are disabled at this point! */
12468 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
12469
12470 /* Override any obnoxious code in the above two calls. */
12471 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
12472
12473 /*
12474 * Finally execute the guest.
12475 */
12476 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
12477
12478 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
12479 /* Interrupts are re-enabled at this point! */
12480
12481 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
12482 if (RT_SUCCESS(rcRun))
12483 { /* very likely */ }
12484 else
12485 {
12486 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
12487 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
12488 return rcRun;
12489 }
12490
12491 /* Profile the VM-exit. */
12492 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
12493 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
12494 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
12495 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
12496 HMVMX_START_EXIT_DISPATCH_PROF();
12497
12498 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
12499
12500 /*
12501 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
12502 */
12503 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
12504 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
12505 if (rcStrict != VINF_SUCCESS)
12506 break;
12507 if (++(*pcLoops) > cMaxResumeLoops)
12508 {
12509 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
12510 rcStrict = VINF_EM_RAW_INTERRUPT;
12511 break;
12512 }
12513
12514 /*
12515 * Stepping: Did the RIP change, if so, consider it a single step.
12516 * Otherwise, make sure one of the TFs gets set.
12517 */
12518 if (fStepping)
12519 {
12520 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12521 AssertRC(rc);
12522 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
12523 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
12524 {
12525 rcStrict = VINF_EM_DBG_STEPPED;
12526 break;
12527 }
12528 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12529 }
12530
12531 /*
12532 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
12533 */
12534 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
12535 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
12536 }
12537
12538 /*
12539 * Clear the X86_EFL_TF if necessary.
12540 */
12541 if (pVCpu->hm.s.fClearTrapFlag)
12542 {
12543 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
12544 AssertRC(rc);
12545 pVCpu->hm.s.fClearTrapFlag = false;
12546 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
12547 }
12548 /** @todo there seems to be issues with the resume flag when the monitor trap
12549 * flag is pending without being used. Seen early in bios init when
12550 * accessing APIC page in protected mode. */
12551
12552 /*
12553 * Restore VM-exit control settings as we may not re-enter this function the
12554 * next time around.
12555 */
12556 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
12557
12558 /* Restore HMCPU indicators. */
12559 pVCpu->hm.s.fUsingDebugLoop = false;
12560 pVCpu->hm.s.fDebugWantRdTscExit = false;
12561 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
12562
12563 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
12564 return rcStrict;
12565}
12566
12567
12568/** @} */
12569
12570
12571/**
12572 * Checks if any expensive dtrace probes are enabled and we should go to the
12573 * debug loop.
12574 *
12575 * @returns true if we should use debug loop, false if not.
12576 */
12577static bool hmR0VmxAnyExpensiveProbesEnabled(void)
12578{
12579 /* It's probably faster to OR the raw 32-bit counter variables together.
12580 Since the variables are in an array and the probes are next to one
12581 another (more or less), we have good locality. So, better read
12582 eight-nine cache lines ever time and only have one conditional, than
12583 128+ conditionals, right? */
12584 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
12585 | VBOXVMM_XCPT_DE_ENABLED_RAW()
12586 | VBOXVMM_XCPT_DB_ENABLED_RAW()
12587 | VBOXVMM_XCPT_BP_ENABLED_RAW()
12588 | VBOXVMM_XCPT_OF_ENABLED_RAW()
12589 | VBOXVMM_XCPT_BR_ENABLED_RAW()
12590 | VBOXVMM_XCPT_UD_ENABLED_RAW()
12591 | VBOXVMM_XCPT_NM_ENABLED_RAW()
12592 | VBOXVMM_XCPT_DF_ENABLED_RAW()
12593 | VBOXVMM_XCPT_TS_ENABLED_RAW()
12594 | VBOXVMM_XCPT_NP_ENABLED_RAW()
12595 | VBOXVMM_XCPT_SS_ENABLED_RAW()
12596 | VBOXVMM_XCPT_GP_ENABLED_RAW()
12597 | VBOXVMM_XCPT_PF_ENABLED_RAW()
12598 | VBOXVMM_XCPT_MF_ENABLED_RAW()
12599 | VBOXVMM_XCPT_AC_ENABLED_RAW()
12600 | VBOXVMM_XCPT_XF_ENABLED_RAW()
12601 | VBOXVMM_XCPT_VE_ENABLED_RAW()
12602 | VBOXVMM_XCPT_SX_ENABLED_RAW()
12603 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
12604 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
12605 ) != 0
12606 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
12607 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
12608 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
12609 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
12610 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
12611 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
12612 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
12613 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
12614 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
12615 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
12616 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
12617 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
12618 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
12619 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
12620 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
12621 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
12622 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
12623 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
12624 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
12625 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
12626 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
12627 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
12628 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
12629 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
12630 | VBOXVMM_INSTR_STR_ENABLED_RAW()
12631 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
12632 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
12633 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
12634 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
12635 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
12636 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
12637 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
12638 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
12639 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
12640 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
12641 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
12642 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
12643 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
12644 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
12645 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
12646 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
12647 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
12648 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
12649 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
12650 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
12651 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
12652 ) != 0
12653 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
12654 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
12655 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
12656 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
12657 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
12658 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
12659 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
12660 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
12661 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
12662 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
12663 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
12664 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
12665 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
12666 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
12667 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
12668 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
12669 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
12670 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
12671 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
12672 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
12673 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
12674 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
12675 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
12676 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
12677 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
12678 | VBOXVMM_EXIT_STR_ENABLED_RAW()
12679 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
12680 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
12681 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
12682 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
12683 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
12684 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
12685 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
12686 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
12687 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
12688 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
12689 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
12690 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
12691 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
12692 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
12693 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
12694 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
12695 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
12696 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
12697 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
12698 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
12699 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
12700 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
12701 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
12702 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
12703 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
12704 ) != 0;
12705}
12706
12707
12708/**
12709 * Runs the guest using hardware-assisted VMX.
12710 *
12711 * @returns Strict VBox status code (i.e. informational status codes too).
12712 * @param pVCpu The cross context virtual CPU structure.
12713 */
12714VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPUCC pVCpu)
12715{
12716 AssertPtr(pVCpu);
12717 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12718 Assert(VMMRZCallRing3IsEnabled(pVCpu));
12719 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12720 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
12721
12722 VBOXSTRICTRC rcStrict;
12723 uint32_t cLoops = 0;
12724 for (;;)
12725 {
12726#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12727 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(pCtx);
12728#else
12729 NOREF(pCtx);
12730 bool const fInNestedGuestMode = false;
12731#endif
12732 if (!fInNestedGuestMode)
12733 {
12734 if ( !pVCpu->hm.s.fUseDebugLoop
12735 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
12736 && !DBGFIsStepping(pVCpu)
12737 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
12738 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu, &cLoops);
12739 else
12740 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu, &cLoops);
12741 }
12742#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12743 else
12744 rcStrict = hmR0VmxRunGuestCodeNested(pVCpu, &cLoops);
12745
12746 if (rcStrict == VINF_VMX_VMLAUNCH_VMRESUME)
12747 {
12748 Assert(CPUMIsGuestInVmxNonRootMode(pCtx));
12749 continue;
12750 }
12751 if (rcStrict == VINF_VMX_VMEXIT)
12752 {
12753 Assert(!CPUMIsGuestInVmxNonRootMode(pCtx));
12754 continue;
12755 }
12756#endif
12757 break;
12758 }
12759
12760 int const rcLoop = VBOXSTRICTRC_VAL(rcStrict);
12761 switch (rcLoop)
12762 {
12763 case VERR_EM_INTERPRETER: rcStrict = VINF_EM_RAW_EMULATE_INSTR; break;
12764 case VINF_EM_RESET: rcStrict = VINF_EM_TRIPLE_FAULT; break;
12765 }
12766
12767 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
12768 if (RT_FAILURE(rc2))
12769 {
12770 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
12771 rcStrict = rc2;
12772 }
12773 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12774 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
12775 return rcStrict;
12776}
12777
12778
12779#ifndef HMVMX_USE_FUNCTION_TABLE
12780/**
12781 * Handles a guest VM-exit from hardware-assisted VMX execution.
12782 *
12783 * @returns Strict VBox status code (i.e. informational status codes too).
12784 * @param pVCpu The cross context virtual CPU structure.
12785 * @param pVmxTransient The VMX-transient structure.
12786 */
12787DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
12788{
12789#ifdef DEBUG_ramshankar
12790# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
12791 do { \
12792 if (a_fSave != 0) \
12793 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL); \
12794 VBOXSTRICTRC rcStrict = a_CallExpr; \
12795 if (a_fSave != 0) \
12796 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
12797 return rcStrict; \
12798 } while (0)
12799#else
12800# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
12801#endif
12802 uint32_t const uExitReason = pVmxTransient->uExitReason;
12803 switch (uExitReason)
12804 {
12805 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
12806 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
12807 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
12808 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
12809 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
12810 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
12811 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
12812 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
12813 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
12814 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
12815 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
12816 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
12817 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
12818 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
12819 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
12820 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
12821 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
12822 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
12823 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
12824 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
12825 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
12826 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
12827 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
12828 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
12829 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
12830 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
12831 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
12832 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
12833 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
12834 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
12835#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12836 case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, hmR0VmxExitVmclear(pVCpu, pVmxTransient));
12837 case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, hmR0VmxExitVmlaunch(pVCpu, pVmxTransient));
12838 case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrld(pVCpu, pVmxTransient));
12839 case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrst(pVCpu, pVmxTransient));
12840 case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, hmR0VmxExitVmread(pVCpu, pVmxTransient));
12841 case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, hmR0VmxExitVmwrite(pVCpu, pVmxTransient));
12842 case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, hmR0VmxExitVmresume(pVCpu, pVmxTransient));
12843 case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, hmR0VmxExitVmxoff(pVCpu, pVmxTransient));
12844 case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, hmR0VmxExitVmxon(pVCpu, pVmxTransient));
12845 case VMX_EXIT_INVVPID: VMEXIT_CALL_RET(0, hmR0VmxExitInvvpid(pVCpu, pVmxTransient));
12846 case VMX_EXIT_INVEPT: VMEXIT_CALL_RET(0, hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient));
12847#else
12848 case VMX_EXIT_VMCLEAR:
12849 case VMX_EXIT_VMLAUNCH:
12850 case VMX_EXIT_VMPTRLD:
12851 case VMX_EXIT_VMPTRST:
12852 case VMX_EXIT_VMREAD:
12853 case VMX_EXIT_VMRESUME:
12854 case VMX_EXIT_VMWRITE:
12855 case VMX_EXIT_VMXOFF:
12856 case VMX_EXIT_VMXON:
12857 case VMX_EXIT_INVVPID:
12858 case VMX_EXIT_INVEPT:
12859 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
12860#endif
12861
12862 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
12863 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
12864 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
12865
12866 case VMX_EXIT_INIT_SIGNAL:
12867 case VMX_EXIT_SIPI:
12868 case VMX_EXIT_IO_SMI:
12869 case VMX_EXIT_SMI:
12870 case VMX_EXIT_ERR_MSR_LOAD:
12871 case VMX_EXIT_ERR_MACHINE_CHECK:
12872 case VMX_EXIT_PML_FULL:
12873 case VMX_EXIT_VIRTUALIZED_EOI:
12874 case VMX_EXIT_GDTR_IDTR_ACCESS:
12875 case VMX_EXIT_LDTR_TR_ACCESS:
12876 case VMX_EXIT_APIC_WRITE:
12877 case VMX_EXIT_RDRAND:
12878 case VMX_EXIT_RSM:
12879 case VMX_EXIT_VMFUNC:
12880 case VMX_EXIT_ENCLS:
12881 case VMX_EXIT_RDSEED:
12882 case VMX_EXIT_XSAVES:
12883 case VMX_EXIT_XRSTORS:
12884 case VMX_EXIT_UMWAIT:
12885 case VMX_EXIT_TPAUSE:
12886 default:
12887 return hmR0VmxExitErrUnexpected(pVCpu, pVmxTransient);
12888 }
12889#undef VMEXIT_CALL_RET
12890}
12891#endif /* !HMVMX_USE_FUNCTION_TABLE */
12892
12893
12894#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12895/**
12896 * Handles a nested-guest VM-exit from hardware-assisted VMX execution.
12897 *
12898 * @returns Strict VBox status code (i.e. informational status codes too).
12899 * @param pVCpu The cross context virtual CPU structure.
12900 * @param pVmxTransient The VMX-transient structure.
12901 */
12902DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
12903{
12904 uint32_t const uExitReason = pVmxTransient->uExitReason;
12905 switch (uExitReason)
12906 {
12907 case VMX_EXIT_EPT_MISCONFIG: return hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient);
12908 case VMX_EXIT_EPT_VIOLATION: return hmR0VmxExitEptViolation(pVCpu, pVmxTransient);
12909 case VMX_EXIT_XCPT_OR_NMI: return hmR0VmxExitXcptOrNmiNested(pVCpu, pVmxTransient);
12910 case VMX_EXIT_IO_INSTR: return hmR0VmxExitIoInstrNested(pVCpu, pVmxTransient);
12911 case VMX_EXIT_HLT: return hmR0VmxExitHltNested(pVCpu, pVmxTransient);
12912
12913 /*
12914 * We shouldn't direct host physical interrupts to the nested-guest.
12915 */
12916 case VMX_EXIT_EXT_INT:
12917 return hmR0VmxExitExtInt(pVCpu, pVmxTransient);
12918
12919 /*
12920 * Instructions that cause VM-exits unconditionally or the condition is
12921 * always is taken solely from the nested hypervisor (meaning if the VM-exit
12922 * happens, it's guaranteed to be a nested-guest VM-exit).
12923 *
12924 * - Provides VM-exit instruction length ONLY.
12925 */
12926 case VMX_EXIT_CPUID: /* Unconditional. */
12927 case VMX_EXIT_VMCALL:
12928 case VMX_EXIT_GETSEC:
12929 case VMX_EXIT_INVD:
12930 case VMX_EXIT_XSETBV:
12931 case VMX_EXIT_VMLAUNCH:
12932 case VMX_EXIT_VMRESUME:
12933 case VMX_EXIT_VMXOFF:
12934 case VMX_EXIT_ENCLS: /* Condition specified solely by nested hypervisor. */
12935 case VMX_EXIT_VMFUNC:
12936 return hmR0VmxExitInstrNested(pVCpu, pVmxTransient);
12937
12938 /*
12939 * Instructions that cause VM-exits unconditionally or the condition is
12940 * always is taken solely from the nested hypervisor (meaning if the VM-exit
12941 * happens, it's guaranteed to be a nested-guest VM-exit).
12942 *
12943 * - Provides VM-exit instruction length.
12944 * - Provides VM-exit information.
12945 * - Optionally provides Exit qualification.
12946 *
12947 * Since Exit qualification is 0 for all VM-exits where it is not
12948 * applicable, reading and passing it to the guest should produce
12949 * defined behavior.
12950 *
12951 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
12952 */
12953 case VMX_EXIT_INVEPT: /* Unconditional. */
12954 case VMX_EXIT_INVVPID:
12955 case VMX_EXIT_VMCLEAR:
12956 case VMX_EXIT_VMPTRLD:
12957 case VMX_EXIT_VMPTRST:
12958 case VMX_EXIT_VMXON:
12959 case VMX_EXIT_GDTR_IDTR_ACCESS: /* Condition specified solely by nested hypervisor. */
12960 case VMX_EXIT_LDTR_TR_ACCESS:
12961 case VMX_EXIT_RDRAND:
12962 case VMX_EXIT_RDSEED:
12963 case VMX_EXIT_XSAVES:
12964 case VMX_EXIT_XRSTORS:
12965 case VMX_EXIT_UMWAIT:
12966 case VMX_EXIT_TPAUSE:
12967 return hmR0VmxExitInstrWithInfoNested(pVCpu, pVmxTransient);
12968
12969 case VMX_EXIT_RDTSC: return hmR0VmxExitRdtscNested(pVCpu, pVmxTransient);
12970 case VMX_EXIT_RDTSCP: return hmR0VmxExitRdtscpNested(pVCpu, pVmxTransient);
12971 case VMX_EXIT_RDMSR: return hmR0VmxExitRdmsrNested(pVCpu, pVmxTransient);
12972 case VMX_EXIT_WRMSR: return hmR0VmxExitWrmsrNested(pVCpu, pVmxTransient);
12973 case VMX_EXIT_INVLPG: return hmR0VmxExitInvlpgNested(pVCpu, pVmxTransient);
12974 case VMX_EXIT_INVPCID: return hmR0VmxExitInvpcidNested(pVCpu, pVmxTransient);
12975 case VMX_EXIT_TASK_SWITCH: return hmR0VmxExitTaskSwitchNested(pVCpu, pVmxTransient);
12976 case VMX_EXIT_WBINVD: return hmR0VmxExitWbinvdNested(pVCpu, pVmxTransient);
12977 case VMX_EXIT_MTF: return hmR0VmxExitMtfNested(pVCpu, pVmxTransient);
12978 case VMX_EXIT_APIC_ACCESS: return hmR0VmxExitApicAccessNested(pVCpu, pVmxTransient);
12979 case VMX_EXIT_APIC_WRITE: return hmR0VmxExitApicWriteNested(pVCpu, pVmxTransient);
12980 case VMX_EXIT_VIRTUALIZED_EOI: return hmR0VmxExitVirtEoiNested(pVCpu, pVmxTransient);
12981 case VMX_EXIT_MOV_CRX: return hmR0VmxExitMovCRxNested(pVCpu, pVmxTransient);
12982 case VMX_EXIT_INT_WINDOW: return hmR0VmxExitIntWindowNested(pVCpu, pVmxTransient);
12983 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindowNested(pVCpu, pVmxTransient);
12984 case VMX_EXIT_TPR_BELOW_THRESHOLD: return hmR0VmxExitTprBelowThresholdNested(pVCpu, pVmxTransient);
12985 case VMX_EXIT_MWAIT: return hmR0VmxExitMwaitNested(pVCpu, pVmxTransient);
12986 case VMX_EXIT_MONITOR: return hmR0VmxExitMonitorNested(pVCpu, pVmxTransient);
12987 case VMX_EXIT_PAUSE: return hmR0VmxExitPauseNested(pVCpu, pVmxTransient);
12988
12989 case VMX_EXIT_PREEMPT_TIMER:
12990 {
12991 /** @todo NSTVMX: Preempt timer. */
12992 return hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient);
12993 }
12994
12995 case VMX_EXIT_MOV_DRX: return hmR0VmxExitMovDRxNested(pVCpu, pVmxTransient);
12996 case VMX_EXIT_RDPMC: return hmR0VmxExitRdpmcNested(pVCpu, pVmxTransient);
12997
12998 case VMX_EXIT_VMREAD:
12999 case VMX_EXIT_VMWRITE: return hmR0VmxExitVmreadVmwriteNested(pVCpu, pVmxTransient);
13000
13001 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFaultNested(pVCpu, pVmxTransient);
13002 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestStateNested(pVCpu, pVmxTransient);
13003
13004 case VMX_EXIT_INIT_SIGNAL:
13005 case VMX_EXIT_SIPI:
13006 case VMX_EXIT_IO_SMI:
13007 case VMX_EXIT_SMI:
13008 case VMX_EXIT_ERR_MSR_LOAD:
13009 case VMX_EXIT_ERR_MACHINE_CHECK:
13010 case VMX_EXIT_PML_FULL:
13011 case VMX_EXIT_RSM:
13012 default:
13013 return hmR0VmxExitErrUnexpected(pVCpu, pVmxTransient);
13014 }
13015}
13016#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13017
13018
13019/** @name VM-exit helpers.
13020 * @{
13021 */
13022/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13023/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit helpers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
13024/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13025
13026/** Macro for VM-exits called unexpectedly. */
13027#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_HmError) \
13028 do { \
13029 (a_pVCpu)->hm.s.u32HMError = (a_HmError); \
13030 return VERR_VMX_UNEXPECTED_EXIT; \
13031 } while (0)
13032
13033#ifdef VBOX_STRICT
13034/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
13035# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
13036 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
13037
13038# define HMVMX_ASSERT_PREEMPT_CPUID() \
13039 do { \
13040 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
13041 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
13042 } while (0)
13043
13044# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13045 do { \
13046 AssertPtr((a_pVCpu)); \
13047 AssertPtr((a_pVmxTransient)); \
13048 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
13049 Assert((a_pVmxTransient)->pVmcsInfo); \
13050 Assert(ASMIntAreEnabled()); \
13051 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
13052 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
13053 Log4Func(("vcpu[%RU32]\n", (a_pVCpu)->idCpu)); \
13054 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
13055 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
13056 HMVMX_ASSERT_PREEMPT_CPUID(); \
13057 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
13058 } while (0)
13059
13060# define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13061 do { \
13062 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); \
13063 Assert((a_pVmxTransient)->fIsNestedGuest); \
13064 } while (0)
13065
13066# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13067 do { \
13068 Log4Func(("\n")); \
13069 } while (0)
13070#else
13071# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13072 do { \
13073 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
13074 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
13075 } while (0)
13076
13077# define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13078 do { HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); } while (0)
13079
13080# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
13081#endif
13082
13083#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13084/** Macro that does the necessary privilege checks and intercepted VM-exits for
13085 * guests that attempted to execute a VMX instruction. */
13086# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
13087 do \
13088 { \
13089 VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
13090 if (rcStrictTmp == VINF_SUCCESS) \
13091 { /* likely */ } \
13092 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
13093 { \
13094 Assert((a_pVCpu)->hm.s.Event.fPending); \
13095 Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
13096 return VINF_SUCCESS; \
13097 } \
13098 else \
13099 { \
13100 int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
13101 AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
13102 } \
13103 } while (0)
13104
13105/** Macro that decodes a memory operand for an VM-exit caused by an instruction. */
13106# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
13107 do \
13108 { \
13109 VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
13110 (a_pGCPtrEffAddr)); \
13111 if (rcStrictTmp == VINF_SUCCESS) \
13112 { /* likely */ } \
13113 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
13114 { \
13115 uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
13116 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
13117 NOREF(uXcptTmp); \
13118 return VINF_SUCCESS; \
13119 } \
13120 else \
13121 { \
13122 Log4Func(("hmR0VmxDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
13123 return rcStrictTmp; \
13124 } \
13125 } while (0)
13126#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13127
13128
13129/**
13130 * Advances the guest RIP by the specified number of bytes.
13131 *
13132 * @param pVCpu The cross context virtual CPU structure.
13133 * @param cbInstr Number of bytes to advance the RIP by.
13134 *
13135 * @remarks No-long-jump zone!!!
13136 */
13137DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPUCC pVCpu, uint32_t cbInstr)
13138{
13139 /* Advance the RIP. */
13140 pVCpu->cpum.GstCtx.rip += cbInstr;
13141 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
13142
13143 /* Update interrupt inhibition. */
13144 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
13145 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
13146 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
13147}
13148
13149
13150/**
13151 * Advances the guest RIP after reading it from the VMCS.
13152 *
13153 * @returns VBox status code, no informational status codes.
13154 * @param pVCpu The cross context virtual CPU structure.
13155 * @param pVmxTransient The VMX-transient structure.
13156 *
13157 * @remarks No-long-jump zone!!!
13158 */
13159static int hmR0VmxAdvanceGuestRip(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13160{
13161 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13162 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
13163 AssertRCReturn(rc, rc);
13164
13165 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbExitInstr);
13166 return VINF_SUCCESS;
13167}
13168
13169
13170/**
13171 * Handle a condition that occurred while delivering an event through the guest or
13172 * nested-guest IDT.
13173 *
13174 * @returns Strict VBox status code (i.e. informational status codes too).
13175 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
13176 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
13177 * to continue execution of the guest which will delivery the \#DF.
13178 * @retval VINF_EM_RESET if we detected a triple-fault condition.
13179 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
13180 *
13181 * @param pVCpu The cross context virtual CPU structure.
13182 * @param pVmxTransient The VMX-transient structure.
13183 *
13184 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13185 * Additionally, HMVMX_READ_EXIT_QUALIFICATION is required if the VM-exit
13186 * is due to an EPT violation, PML full or SPP-related event.
13187 *
13188 * @remarks No-long-jump zone!!!
13189 */
13190static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13191{
13192 Assert(!pVCpu->hm.s.Event.fPending);
13193 HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO);
13194 if ( pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION
13195 || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL
13196 || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT)
13197 HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_EXIT_QUALIFICATION);
13198
13199 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
13200 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13201 uint32_t const uIdtVectorInfo = pVmxTransient->uIdtVectoringInfo;
13202 uint32_t const uExitIntInfo = pVmxTransient->uExitIntInfo;
13203 if (VMX_IDT_VECTORING_INFO_IS_VALID(uIdtVectorInfo))
13204 {
13205 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(uIdtVectorInfo);
13206 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(uIdtVectorInfo);
13207
13208 /*
13209 * If the event was a software interrupt (generated with INT n) or a software exception
13210 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
13211 * can handle the VM-exit and continue guest execution which will re-execute the
13212 * instruction rather than re-injecting the exception, as that can cause premature
13213 * trips to ring-3 before injection and involve TRPM which currently has no way of
13214 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
13215 * the problem).
13216 */
13217 IEMXCPTRAISE enmRaise;
13218 IEMXCPTRAISEINFO fRaiseInfo;
13219 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
13220 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
13221 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
13222 {
13223 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
13224 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
13225 }
13226 else if (VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo))
13227 {
13228 uint32_t const uExitVectorType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo);
13229 uint8_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
13230 Assert(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT);
13231
13232 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
13233 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
13234
13235 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
13236
13237 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
13238 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
13239 {
13240 pVmxTransient->fVectoringPF = true;
13241 enmRaise = IEMXCPTRAISE_PREV_EVENT;
13242 }
13243 }
13244 else
13245 {
13246 /*
13247 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
13248 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
13249 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
13250 */
13251 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
13252 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
13253 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
13254 enmRaise = IEMXCPTRAISE_PREV_EVENT;
13255 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
13256 }
13257
13258 /*
13259 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
13260 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
13261 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
13262 * subsequent VM-entry would fail, see @bugref{7445}.
13263 *
13264 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception".
13265 */
13266 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
13267 && enmRaise == IEMXCPTRAISE_PREV_EVENT
13268 && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
13269 && CPUMIsGuestNmiBlocking(pVCpu))
13270 {
13271 CPUMSetGuestNmiBlocking(pVCpu, false);
13272 }
13273
13274 switch (enmRaise)
13275 {
13276 case IEMXCPTRAISE_CURRENT_XCPT:
13277 {
13278 Log4Func(("IDT: Pending secondary Xcpt: idtinfo=%#RX64 exitinfo=%#RX64\n", uIdtVectorInfo, uExitIntInfo));
13279 Assert(rcStrict == VINF_SUCCESS);
13280 break;
13281 }
13282
13283 case IEMXCPTRAISE_PREV_EVENT:
13284 {
13285 uint32_t u32ErrCode;
13286 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(uIdtVectorInfo))
13287 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
13288 else
13289 u32ErrCode = 0;
13290
13291 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
13292 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflect);
13293 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(uIdtVectorInfo), 0 /* cbInstr */,
13294 u32ErrCode, pVCpu->cpum.GstCtx.cr2);
13295
13296 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
13297 pVCpu->hm.s.Event.u32ErrCode));
13298 Assert(rcStrict == VINF_SUCCESS);
13299 break;
13300 }
13301
13302 case IEMXCPTRAISE_REEXEC_INSTR:
13303 Assert(rcStrict == VINF_SUCCESS);
13304 break;
13305
13306 case IEMXCPTRAISE_DOUBLE_FAULT:
13307 {
13308 /*
13309 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
13310 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
13311 */
13312 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
13313 {
13314 pVmxTransient->fVectoringDoublePF = true;
13315 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
13316 pVCpu->cpum.GstCtx.cr2));
13317 rcStrict = VINF_SUCCESS;
13318 }
13319 else
13320 {
13321 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectConvertDF);
13322 hmR0VmxSetPendingXcptDF(pVCpu);
13323 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
13324 uIdtVector, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo)));
13325 rcStrict = VINF_HM_DOUBLE_FAULT;
13326 }
13327 break;
13328 }
13329
13330 case IEMXCPTRAISE_TRIPLE_FAULT:
13331 {
13332 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector,
13333 VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo)));
13334 rcStrict = VINF_EM_RESET;
13335 break;
13336 }
13337
13338 case IEMXCPTRAISE_CPU_HANG:
13339 {
13340 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
13341 rcStrict = VERR_EM_GUEST_CPU_HANG;
13342 break;
13343 }
13344
13345 default:
13346 {
13347 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
13348 rcStrict = VERR_VMX_IPE_2;
13349 break;
13350 }
13351 }
13352 }
13353 else if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
13354 && !CPUMIsGuestNmiBlocking(pVCpu))
13355 {
13356 if ( VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo)
13357 && VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo) != X86_XCPT_DF
13358 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(uExitIntInfo))
13359 {
13360 /*
13361 * Execution of IRET caused a fault when NMI blocking was in effect (i.e we're in
13362 * the guest or nested-guest NMI handler). We need to set the block-by-NMI field so
13363 * that virtual NMIs remain blocked until the IRET execution is completed.
13364 *
13365 * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception".
13366 */
13367 CPUMSetGuestNmiBlocking(pVCpu, true);
13368 Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason));
13369 }
13370 else if ( pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION
13371 || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL
13372 || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT)
13373 {
13374 /*
13375 * Execution of IRET caused an EPT violation, page-modification log-full event or
13376 * SPP-related event VM-exit when NMI blocking was in effect (i.e. we're in the
13377 * guest or nested-guest NMI handler). We need to set the block-by-NMI field so
13378 * that virtual NMIs remain blocked until the IRET execution is completed.
13379 *
13380 * See Intel spec. 27.2.3 "Information about NMI unblocking due to IRET"
13381 */
13382 if (VMX_EXIT_QUAL_EPT_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitQual))
13383 {
13384 CPUMSetGuestNmiBlocking(pVCpu, true);
13385 Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason));
13386 }
13387 }
13388 }
13389
13390 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
13391 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
13392 return rcStrict;
13393}
13394
13395
13396#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13397/**
13398 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
13399 * guest attempting to execute a VMX instruction.
13400 *
13401 * @returns Strict VBox status code (i.e. informational status codes too).
13402 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
13403 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
13404 *
13405 * @param pVCpu The cross context virtual CPU structure.
13406 * @param uExitReason The VM-exit reason.
13407 *
13408 * @todo NSTVMX: Document other error codes when VM-exit is implemented.
13409 * @remarks No-long-jump zone!!!
13410 */
13411static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPUCC pVCpu, uint32_t uExitReason)
13412{
13413 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
13414 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
13415
13416 /*
13417 * The physical CPU would have already checked the CPU mode/code segment.
13418 * We shall just assert here for paranoia.
13419 * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
13420 */
13421 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
13422 Assert( !CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
13423 || CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx));
13424
13425 if (uExitReason == VMX_EXIT_VMXON)
13426 {
13427 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
13428
13429 /*
13430 * We check CR4.VMXE because it is required to be always set while in VMX operation
13431 * by physical CPUs and our CR4 read-shadow is only consulted when executing specific
13432 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
13433 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
13434 */
13435 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
13436 {
13437 Log4Func(("CR4.VMXE is not set -> #UD\n"));
13438 hmR0VmxSetPendingXcptUD(pVCpu);
13439 return VINF_HM_PENDING_XCPT;
13440 }
13441 }
13442 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
13443 {
13444 /*
13445 * The guest has not entered VMX operation but attempted to execute a VMX instruction
13446 * (other than VMXON), we need to raise a #UD.
13447 */
13448 Log4Func(("Not in VMX root mode -> #UD\n"));
13449 hmR0VmxSetPendingXcptUD(pVCpu);
13450 return VINF_HM_PENDING_XCPT;
13451 }
13452
13453 /* All other checks (including VM-exit intercepts) are handled by IEM instruction emulation. */
13454 return VINF_SUCCESS;
13455}
13456
13457
13458/**
13459 * Decodes the memory operand of an instruction that caused a VM-exit.
13460 *
13461 * The Exit qualification field provides the displacement field for memory
13462 * operand instructions, if any.
13463 *
13464 * @returns Strict VBox status code (i.e. informational status codes too).
13465 * @retval VINF_SUCCESS if the operand was successfully decoded.
13466 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
13467 * operand.
13468 * @param pVCpu The cross context virtual CPU structure.
13469 * @param uExitInstrInfo The VM-exit instruction information field.
13470 * @param enmMemAccess The memory operand's access type (read or write).
13471 * @param GCPtrDisp The instruction displacement field, if any. For
13472 * RIP-relative addressing pass RIP + displacement here.
13473 * @param pGCPtrMem Where to store the effective destination memory address.
13474 *
13475 * @remarks Warning! This function ASSUMES the instruction cannot be used in real or
13476 * virtual-8086 mode hence skips those checks while verifying if the
13477 * segment is valid.
13478 */
13479static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPUCC pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
13480 PRTGCPTR pGCPtrMem)
13481{
13482 Assert(pGCPtrMem);
13483 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
13484 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
13485 | CPUMCTX_EXTRN_CR0);
13486
13487 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
13488 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
13489 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
13490
13491 VMXEXITINSTRINFO ExitInstrInfo;
13492 ExitInstrInfo.u = uExitInstrInfo;
13493 uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
13494 uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
13495 bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
13496 uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
13497 uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
13498 bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
13499 uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
13500 bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
13501 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
13502
13503 /*
13504 * Validate instruction information.
13505 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
13506 */
13507 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
13508 ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
13509 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
13510 ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
13511 AssertLogRelMsgReturn(fIsMemOperand,
13512 ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
13513
13514 /*
13515 * Compute the complete effective address.
13516 *
13517 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
13518 * See AMD spec. 4.5.2 "Segment Registers".
13519 */
13520 RTGCPTR GCPtrMem = GCPtrDisp;
13521 if (fBaseRegValid)
13522 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
13523 if (fIdxRegValid)
13524 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
13525
13526 RTGCPTR const GCPtrOff = GCPtrMem;
13527 if ( !fIsLongMode
13528 || iSegReg >= X86_SREG_FS)
13529 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
13530 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
13531
13532 /*
13533 * Validate effective address.
13534 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
13535 */
13536 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
13537 Assert(cbAccess > 0);
13538 if (fIsLongMode)
13539 {
13540 if (X86_IS_CANONICAL(GCPtrMem))
13541 {
13542 *pGCPtrMem = GCPtrMem;
13543 return VINF_SUCCESS;
13544 }
13545
13546 /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
13547 * "Data Limit Checks in 64-bit Mode". */
13548 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
13549 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13550 return VINF_HM_PENDING_XCPT;
13551 }
13552
13553 /*
13554 * This is a watered down version of iemMemApplySegment().
13555 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
13556 * and segment CPL/DPL checks are skipped.
13557 */
13558 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
13559 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
13560 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
13561
13562 /* Check if the segment is present and usable. */
13563 if ( pSel->Attr.n.u1Present
13564 && !pSel->Attr.n.u1Unusable)
13565 {
13566 Assert(pSel->Attr.n.u1DescType);
13567 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
13568 {
13569 /* Check permissions for the data segment. */
13570 if ( enmMemAccess == VMXMEMACCESS_WRITE
13571 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
13572 {
13573 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
13574 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
13575 return VINF_HM_PENDING_XCPT;
13576 }
13577
13578 /* Check limits if it's a normal data segment. */
13579 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
13580 {
13581 if ( GCPtrFirst32 > pSel->u32Limit
13582 || GCPtrLast32 > pSel->u32Limit)
13583 {
13584 Log4Func(("Data segment limit exceeded. "
13585 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
13586 GCPtrLast32, pSel->u32Limit));
13587 if (iSegReg == X86_SREG_SS)
13588 hmR0VmxSetPendingXcptSS(pVCpu, 0);
13589 else
13590 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13591 return VINF_HM_PENDING_XCPT;
13592 }
13593 }
13594 else
13595 {
13596 /* Check limits if it's an expand-down data segment.
13597 Note! The upper boundary is defined by the B bit, not the G bit! */
13598 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
13599 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
13600 {
13601 Log4Func(("Expand-down data segment limit exceeded. "
13602 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
13603 GCPtrLast32, pSel->u32Limit));
13604 if (iSegReg == X86_SREG_SS)
13605 hmR0VmxSetPendingXcptSS(pVCpu, 0);
13606 else
13607 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13608 return VINF_HM_PENDING_XCPT;
13609 }
13610 }
13611 }
13612 else
13613 {
13614 /* Check permissions for the code segment. */
13615 if ( enmMemAccess == VMXMEMACCESS_WRITE
13616 || ( enmMemAccess == VMXMEMACCESS_READ
13617 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
13618 {
13619 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
13620 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
13621 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13622 return VINF_HM_PENDING_XCPT;
13623 }
13624
13625 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
13626 if ( GCPtrFirst32 > pSel->u32Limit
13627 || GCPtrLast32 > pSel->u32Limit)
13628 {
13629 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
13630 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
13631 if (iSegReg == X86_SREG_SS)
13632 hmR0VmxSetPendingXcptSS(pVCpu, 0);
13633 else
13634 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13635 return VINF_HM_PENDING_XCPT;
13636 }
13637 }
13638 }
13639 else
13640 {
13641 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
13642 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13643 return VINF_HM_PENDING_XCPT;
13644 }
13645
13646 *pGCPtrMem = GCPtrMem;
13647 return VINF_SUCCESS;
13648}
13649#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13650
13651
13652/**
13653 * VM-exit helper for LMSW.
13654 */
13655static VBOXSTRICTRC hmR0VmxExitLmsw(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint16_t uMsw, RTGCPTR GCPtrEffDst)
13656{
13657 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13658 AssertRCReturn(rc, rc);
13659
13660 VBOXSTRICTRC rcStrict = IEMExecDecodedLmsw(pVCpu, cbInstr, uMsw, GCPtrEffDst);
13661 AssertMsg( rcStrict == VINF_SUCCESS
13662 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13663
13664 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13665 if (rcStrict == VINF_IEM_RAISED_XCPT)
13666 {
13667 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13668 rcStrict = VINF_SUCCESS;
13669 }
13670
13671 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
13672 Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13673 return rcStrict;
13674}
13675
13676
13677/**
13678 * VM-exit helper for CLTS.
13679 */
13680static VBOXSTRICTRC hmR0VmxExitClts(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr)
13681{
13682 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13683 AssertRCReturn(rc, rc);
13684
13685 VBOXSTRICTRC rcStrict = IEMExecDecodedClts(pVCpu, cbInstr);
13686 AssertMsg( rcStrict == VINF_SUCCESS
13687 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13688
13689 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13690 if (rcStrict == VINF_IEM_RAISED_XCPT)
13691 {
13692 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13693 rcStrict = VINF_SUCCESS;
13694 }
13695
13696 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
13697 Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13698 return rcStrict;
13699}
13700
13701
13702/**
13703 * VM-exit helper for MOV from CRx (CRx read).
13704 */
13705static VBOXSTRICTRC hmR0VmxExitMovFromCrX(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
13706{
13707 Assert(iCrReg < 16);
13708 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
13709
13710 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13711 AssertRCReturn(rc, rc);
13712
13713 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
13714 AssertMsg( rcStrict == VINF_SUCCESS
13715 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13716
13717 if (iGReg == X86_GREG_xSP)
13718 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
13719 else
13720 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13721#ifdef VBOX_WITH_STATISTICS
13722 switch (iCrReg)
13723 {
13724 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
13725 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
13726 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
13727 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
13728 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
13729 }
13730#endif
13731 Log4Func(("CR%d Read access rcStrict=%Rrc\n", iCrReg, VBOXSTRICTRC_VAL(rcStrict)));
13732 return rcStrict;
13733}
13734
13735
13736/**
13737 * VM-exit helper for MOV to CRx (CRx write).
13738 */
13739static VBOXSTRICTRC hmR0VmxExitMovToCrX(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
13740{
13741 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13742 AssertRCReturn(rc, rc);
13743
13744 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
13745 AssertMsg( rcStrict == VINF_SUCCESS
13746 || rcStrict == VINF_IEM_RAISED_XCPT
13747 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13748
13749 switch (iCrReg)
13750 {
13751 case 0:
13752 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0
13753 | HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
13754 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
13755 Log4Func(("CR0 write. rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
13756 break;
13757
13758 case 2:
13759 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
13760 /* Nothing to do here, CR2 it's not part of the VMCS. */
13761 break;
13762
13763 case 3:
13764 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
13765 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
13766 Log4Func(("CR3 write. rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
13767 break;
13768
13769 case 4:
13770 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
13771 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
13772 Log4Func(("CR4 write. rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
13773 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
13774 break;
13775
13776 case 8:
13777 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13778 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
13779 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
13780 break;
13781
13782 default:
13783 AssertMsgFailed(("Invalid CRx register %#x\n", iCrReg));
13784 break;
13785 }
13786
13787 if (rcStrict == VINF_IEM_RAISED_XCPT)
13788 {
13789 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13790 rcStrict = VINF_SUCCESS;
13791 }
13792 return rcStrict;
13793}
13794
13795
13796/**
13797 * VM-exit exception handler for \#PF (Page-fault exception).
13798 *
13799 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13800 */
13801static VBOXSTRICTRC hmR0VmxExitXcptPF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13802{
13803 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13804 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
13805 hmR0VmxReadExitQualVmcs(pVmxTransient);
13806
13807 if (!pVM->hm.s.fNestedPaging)
13808 { /* likely */ }
13809 else
13810 {
13811#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13812 Assert(pVmxTransient->fIsNestedGuest || pVCpu->hm.s.fUsingDebugLoop);
13813#endif
13814 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13815 if (!pVmxTransient->fVectoringDoublePF)
13816 {
13817 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13818 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
13819 }
13820 else
13821 {
13822 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13823 Assert(!pVmxTransient->fIsNestedGuest);
13824 hmR0VmxSetPendingXcptDF(pVCpu);
13825 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
13826 }
13827 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13828 return VINF_SUCCESS;
13829 }
13830
13831 Assert(!pVmxTransient->fIsNestedGuest);
13832
13833 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13834 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13835 if (pVmxTransient->fVectoringPF)
13836 {
13837 Assert(pVCpu->hm.s.Event.fPending);
13838 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13839 }
13840
13841 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13842 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13843 AssertRCReturn(rc, rc);
13844
13845 Log4Func(("#PF: cs:rip=%#04x:%#RX64 err_code=%#RX32 exit_qual=%#RX64 cr3=%#RX64\n", pCtx->cs.Sel, pCtx->rip,
13846 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual, pCtx->cr3));
13847
13848 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13849 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
13850
13851 Log4Func(("#PF: rc=%Rrc\n", rc));
13852 if (rc == VINF_SUCCESS)
13853 {
13854 /*
13855 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13856 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13857 */
13858 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13859 TRPMResetTrap(pVCpu);
13860 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13861 return rc;
13862 }
13863
13864 if (rc == VINF_EM_RAW_GUEST_TRAP)
13865 {
13866 if (!pVmxTransient->fVectoringDoublePF)
13867 {
13868 /* It's a guest page fault and needs to be reflected to the guest. */
13869 uint32_t const uGstErrorCode = TRPMGetErrorCode(pVCpu);
13870 TRPMResetTrap(pVCpu);
13871 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13872 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13873 uGstErrorCode, pVmxTransient->uExitQual);
13874 }
13875 else
13876 {
13877 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13878 TRPMResetTrap(pVCpu);
13879 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13880 hmR0VmxSetPendingXcptDF(pVCpu);
13881 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
13882 }
13883
13884 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13885 return VINF_SUCCESS;
13886 }
13887
13888 TRPMResetTrap(pVCpu);
13889 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13890 return rc;
13891}
13892
13893
13894/**
13895 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
13896 *
13897 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13898 */
13899static VBOXSTRICTRC hmR0VmxExitXcptMF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13900{
13901 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13902 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
13903
13904 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0);
13905 AssertRCReturn(rc, rc);
13906
13907 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
13908 {
13909 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
13910 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
13911
13912 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
13913 * provides VM-exit instruction length. If this causes problem later,
13914 * disassemble the instruction like it's done on AMD-V. */
13915 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13916 AssertRCReturn(rc2, rc2);
13917 return rc;
13918 }
13919
13920 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbExitInstr,
13921 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13922 return VINF_SUCCESS;
13923}
13924
13925
13926/**
13927 * VM-exit exception handler for \#BP (Breakpoint exception).
13928 *
13929 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13930 */
13931static VBOXSTRICTRC hmR0VmxExitXcptBP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13932{
13933 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13934 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13935
13936 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13937 AssertRCReturn(rc, rc);
13938
13939 if (!pVmxTransient->fIsNestedGuest)
13940 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx));
13941 else
13942 rc = VINF_EM_RAW_GUEST_TRAP;
13943
13944 if (rc == VINF_EM_RAW_GUEST_TRAP)
13945 {
13946 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13947 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13948 rc = VINF_SUCCESS;
13949 }
13950
13951 Assert(rc == VINF_SUCCESS || rc == VINF_EM_DBG_BREAKPOINT);
13952 return rc;
13953}
13954
13955
13956/**
13957 * VM-exit exception handler for \#AC (Alignment-check exception).
13958 *
13959 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13960 */
13961static VBOXSTRICTRC hmR0VmxExitXcptAC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13962{
13963 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13964 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC);
13965
13966 /* Re-inject it. We'll detect any nesting before getting here. */
13967 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13968 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13969 return VINF_SUCCESS;
13970}
13971
13972
13973/**
13974 * VM-exit exception handler for \#DB (Debug exception).
13975 *
13976 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13977 */
13978static VBOXSTRICTRC hmR0VmxExitXcptDB(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13979{
13980 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13981 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13982
13983 /*
13984 * Get the DR6-like values from the Exit qualification and pass it to DBGF for processing.
13985 */
13986 hmR0VmxReadExitQualVmcs(pVmxTransient);
13987
13988 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13989 uint64_t const uDR6 = X86_DR6_INIT_VAL
13990 | (pVmxTransient->uExitQual & ( X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3
13991 | X86_DR6_BD | X86_DR6_BS));
13992
13993 int rc;
13994 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13995 if (!pVmxTransient->fIsNestedGuest)
13996 {
13997 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13998
13999 /*
14000 * Prevents stepping twice over the same instruction when the guest is stepping using
14001 * EFLAGS.TF and the hypervisor debugger is stepping using MTF.
14002 * Testcase: DOSQEMM, break (using "ba x 1") at cs:rip 0x70:0x774 and step (using "t").
14003 */
14004 if ( rc == VINF_EM_DBG_STEPPED
14005 && (pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG))
14006 {
14007 Assert(pVCpu->hm.s.fSingleInstruction);
14008 rc = VINF_EM_RAW_GUEST_TRAP;
14009 }
14010 }
14011 else
14012 rc = VINF_EM_RAW_GUEST_TRAP;
14013 Log6Func(("rc=%Rrc\n", rc));
14014 if (rc == VINF_EM_RAW_GUEST_TRAP)
14015 {
14016 /*
14017 * The exception was for the guest. Update DR6, DR7.GD and
14018 * IA32_DEBUGCTL.LBR before forwarding it.
14019 * See Intel spec. 27.1 "Architectural State before a VM-Exit".
14020 */
14021 VMMRZCallRing3Disable(pVCpu);
14022 HM_DISABLE_PREEMPT(pVCpu);
14023
14024 pCtx->dr[6] &= ~X86_DR6_B_MASK;
14025 pCtx->dr[6] |= uDR6;
14026 if (CPUMIsGuestDebugStateActive(pVCpu))
14027 ASMSetDR6(pCtx->dr[6]);
14028
14029 HM_RESTORE_PREEMPT();
14030 VMMRZCallRing3Enable(pVCpu);
14031
14032 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_DR7);
14033 AssertRCReturn(rc, rc);
14034
14035 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
14036 pCtx->dr[7] &= ~(uint64_t)X86_DR7_GD;
14037
14038 /* Paranoia. */
14039 pCtx->dr[7] &= ~(uint64_t)X86_DR7_RAZ_MASK;
14040 pCtx->dr[7] |= X86_DR7_RA1_MASK;
14041
14042 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, pCtx->dr[7]);
14043 AssertRC(rc);
14044
14045 /*
14046 * Raise #DB in the guest.
14047 *
14048 * It is important to reflect exactly what the VM-exit gave us (preserving the
14049 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
14050 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
14051 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
14052 *
14053 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
14054 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
14055 */
14056 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14057 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14058 return VINF_SUCCESS;
14059 }
14060
14061 /*
14062 * Not a guest trap, must be a hypervisor related debug event then.
14063 * Update DR6 in case someone is interested in it.
14064 */
14065 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
14066 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
14067 CPUMSetHyperDR6(pVCpu, uDR6);
14068
14069 return rc;
14070}
14071
14072
14073/**
14074 * Hacks its way around the lovely mesa driver's backdoor accesses.
14075 *
14076 * @sa hmR0SvmHandleMesaDrvGp.
14077 */
14078static int hmR0VmxHandleMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14079{
14080 LogFunc(("cs:rip=%#04x:%#RX64 rcx=%#RX64 rbx=%#RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
14081 RT_NOREF(pCtx);
14082
14083 /* For now we'll just skip the instruction. */
14084 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14085}
14086
14087
14088/**
14089 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
14090 * backdoor logging w/o checking what it is running inside.
14091 *
14092 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
14093 * backdoor port and magic numbers loaded in registers.
14094 *
14095 * @returns true if it is, false if it isn't.
14096 * @sa hmR0SvmIsMesaDrvGp.
14097 */
14098DECLINLINE(bool) hmR0VmxIsMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14099{
14100 /* 0xed: IN eAX,dx */
14101 uint8_t abInstr[1];
14102 if (pVmxTransient->cbExitInstr != sizeof(abInstr))
14103 return false;
14104
14105 /* Check that it is #GP(0). */
14106 if (pVmxTransient->uExitIntErrorCode != 0)
14107 return false;
14108
14109 /* Check magic and port. */
14110 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
14111 /*Log(("hmR0VmxIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
14112 if (pCtx->rax != UINT32_C(0x564d5868))
14113 return false;
14114 if (pCtx->dx != UINT32_C(0x5658))
14115 return false;
14116
14117 /* Flat ring-3 CS. */
14118 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
14119 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
14120 /*Log(("hmR0VmxIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
14121 if (pCtx->cs.Attr.n.u2Dpl != 3)
14122 return false;
14123 if (pCtx->cs.u64Base != 0)
14124 return false;
14125
14126 /* Check opcode. */
14127 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
14128 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
14129 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
14130 /*Log(("hmR0VmxIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
14131 if (RT_FAILURE(rc))
14132 return false;
14133 if (abInstr[0] != 0xed)
14134 return false;
14135
14136 return true;
14137}
14138
14139
14140/**
14141 * VM-exit exception handler for \#GP (General-protection exception).
14142 *
14143 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
14144 */
14145static VBOXSTRICTRC hmR0VmxExitXcptGP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14146{
14147 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14148 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
14149
14150 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14151 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14152 if (pVmcsInfo->RealMode.fRealOnV86Active)
14153 { /* likely */ }
14154 else
14155 {
14156#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14157 Assert(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv || pVmxTransient->fIsNestedGuest);
14158#endif
14159 /*
14160 * If the guest is not in real-mode or we have unrestricted guest execution support, or if we are
14161 * executing a nested-guest, reflect #GP to the guest or nested-guest.
14162 */
14163 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14164 AssertRCReturn(rc, rc);
14165 Log4Func(("Gst: cs:rip=%#04x:%#RX64 ErrorCode=%#x cr0=%#RX64 cpl=%u tr=%#04x\n", pCtx->cs.Sel, pCtx->rip,
14166 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
14167
14168 if ( pVmxTransient->fIsNestedGuest
14169 || !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
14170 || !hmR0VmxIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
14171 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14172 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14173 else
14174 rc = hmR0VmxHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
14175 return rc;
14176 }
14177
14178 Assert(CPUMIsGuestInRealModeEx(pCtx));
14179 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
14180 Assert(!pVmxTransient->fIsNestedGuest);
14181
14182 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14183 AssertRCReturn(rc, rc);
14184
14185 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
14186 if (rcStrict == VINF_SUCCESS)
14187 {
14188 if (!CPUMIsGuestInRealModeEx(pCtx))
14189 {
14190 /*
14191 * The guest is no longer in real-mode, check if we can continue executing the
14192 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
14193 */
14194 pVmcsInfo->RealMode.fRealOnV86Active = false;
14195 if (HMCanExecuteVmxGuest(pVCpu->pVMR0, pVCpu, pCtx))
14196 {
14197 Log4Func(("Mode changed but guest still suitable for executing using hardware-assisted VMX\n"));
14198 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14199 }
14200 else
14201 {
14202 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
14203 rcStrict = VINF_EM_RESCHEDULE;
14204 }
14205 }
14206 else
14207 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14208 }
14209 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14210 {
14211 rcStrict = VINF_SUCCESS;
14212 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14213 }
14214 return VBOXSTRICTRC_VAL(rcStrict);
14215}
14216
14217
14218/**
14219 * VM-exit exception handler wrapper for all other exceptions that are not handled
14220 * by a specific handler.
14221 *
14222 * This simply re-injects the exception back into the VM without any special
14223 * processing.
14224 *
14225 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
14226 */
14227static VBOXSTRICTRC hmR0VmxExitXcptOthers(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14228{
14229 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14230
14231#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14232 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14233 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVmcsInfo->RealMode.fRealOnV86Active || pVmxTransient->fIsNestedGuest,
14234 ("uVector=%#x u32XcptBitmap=%#X32\n",
14235 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVmcsInfo->u32XcptBitmap));
14236 NOREF(pVmcsInfo);
14237#endif
14238
14239 /*
14240 * Re-inject the exception into the guest. This cannot be a double-fault condition which
14241 * would have been handled while checking exits due to event delivery.
14242 */
14243 uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
14244
14245#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14246 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
14247 AssertRCReturn(rc, rc);
14248 Log4Func(("Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
14249#endif
14250
14251#ifdef VBOX_WITH_STATISTICS
14252 switch (uVector)
14253 {
14254 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break;
14255 case X86_XCPT_DB: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); break;
14256 case X86_XCPT_BP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); break;
14257 case X86_XCPT_OF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
14258 case X86_XCPT_BR: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBR); break;
14259 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break;
14260 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
14261 case X86_XCPT_DF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDF); break;
14262 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS); break;
14263 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break;
14264 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break;
14265 case X86_XCPT_GP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); break;
14266 case X86_XCPT_PF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); break;
14267 case X86_XCPT_MF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); break;
14268 case X86_XCPT_AC: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC); break;
14269 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break;
14270 default:
14271 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
14272 break;
14273 }
14274#endif
14275
14276 /* We should never call this function for a page-fault, we'd need to pass on the fault address below otherwise. */
14277 Assert(!VMX_EXIT_INT_INFO_IS_XCPT_PF(pVmxTransient->uExitIntInfo));
14278 NOREF(uVector);
14279
14280 /* Re-inject the original exception into the guest. */
14281 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14282 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14283 return VINF_SUCCESS;
14284}
14285
14286
14287/**
14288 * VM-exit exception handler for all exceptions (except NMIs!).
14289 *
14290 * @remarks This may be called for both guests and nested-guests. Take care to not
14291 * make assumptions and avoid doing anything that is not relevant when
14292 * executing a nested-guest (e.g., Mesa driver hacks).
14293 */
14294static VBOXSTRICTRC hmR0VmxExitXcpt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14295{
14296 HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO);
14297
14298 /*
14299 * If this VM-exit occurred while delivering an event through the guest IDT, take
14300 * action based on the return code and additional hints (e.g. for page-faults)
14301 * that will be updated in the VMX transient structure.
14302 */
14303 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14304 if (rcStrict == VINF_SUCCESS)
14305 {
14306 /*
14307 * If an exception caused a VM-exit due to delivery of an event, the original
14308 * event may have to be re-injected into the guest. We shall reinject it and
14309 * continue guest execution. However, page-fault is a complicated case and
14310 * needs additional processing done in hmR0VmxExitXcptPF().
14311 */
14312 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
14313 uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
14314 if ( !pVCpu->hm.s.Event.fPending
14315 || uVector == X86_XCPT_PF)
14316 {
14317 switch (uVector)
14318 {
14319 case X86_XCPT_PF: return hmR0VmxExitXcptPF(pVCpu, pVmxTransient);
14320 case X86_XCPT_GP: return hmR0VmxExitXcptGP(pVCpu, pVmxTransient);
14321 case X86_XCPT_MF: return hmR0VmxExitXcptMF(pVCpu, pVmxTransient);
14322 case X86_XCPT_DB: return hmR0VmxExitXcptDB(pVCpu, pVmxTransient);
14323 case X86_XCPT_BP: return hmR0VmxExitXcptBP(pVCpu, pVmxTransient);
14324 case X86_XCPT_AC: return hmR0VmxExitXcptAC(pVCpu, pVmxTransient);
14325 default:
14326 return hmR0VmxExitXcptOthers(pVCpu, pVmxTransient);
14327 }
14328 }
14329 /* else: inject pending event before resuming guest execution. */
14330 }
14331 else if (rcStrict == VINF_HM_DOUBLE_FAULT)
14332 {
14333 Assert(pVCpu->hm.s.Event.fPending);
14334 rcStrict = VINF_SUCCESS;
14335 }
14336
14337 return rcStrict;
14338}
14339/** @} */
14340
14341
14342/** @name VM-exit handlers.
14343 * @{
14344 */
14345/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14346/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
14347/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14348
14349/**
14350 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
14351 */
14352HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14353{
14354 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14355 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
14356 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
14357 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
14358 return VINF_SUCCESS;
14359 return VINF_EM_RAW_INTERRUPT;
14360}
14361
14362
14363/**
14364 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI). Conditional
14365 * VM-exit.
14366 */
14367HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14368{
14369 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14370 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
14371
14372 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14373
14374 uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
14375 uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
14376 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
14377
14378 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14379 Assert( !(pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
14380 && uExitIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
14381 NOREF(pVmcsInfo);
14382
14383 VBOXSTRICTRC rcStrict;
14384 switch (uExitIntType)
14385 {
14386 /*
14387 * Host physical NMIs:
14388 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
14389 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
14390 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
14391 *
14392 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
14393 * See Intel spec. 27.5.5 "Updating Non-Register State".
14394 */
14395 case VMX_EXIT_INT_INFO_TYPE_NMI:
14396 {
14397 rcStrict = hmR0VmxExitHostNmi(pVCpu, pVmcsInfo);
14398 break;
14399 }
14400
14401 /*
14402 * Privileged software exceptions (#DB from ICEBP),
14403 * Software exceptions (#BP and #OF),
14404 * Hardware exceptions:
14405 * Process the required exceptions and resume guest execution if possible.
14406 */
14407 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
14408 Assert(uVector == X86_XCPT_DB);
14409 RT_FALL_THRU();
14410 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
14411 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uExitIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
14412 RT_FALL_THRU();
14413 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
14414 {
14415 NOREF(uVector);
14416 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14417 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14418 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
14419 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
14420
14421 rcStrict = hmR0VmxExitXcpt(pVCpu, pVmxTransient);
14422 break;
14423 }
14424
14425 default:
14426 {
14427 pVCpu->hm.s.u32HMError = pVmxTransient->uExitIntInfo;
14428 rcStrict = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
14429 AssertMsgFailed(("Invalid/unexpected VM-exit interruption info %#x\n", pVmxTransient->uExitIntInfo));
14430 break;
14431 }
14432 }
14433
14434 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
14435 return rcStrict;
14436}
14437
14438
14439/**
14440 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
14441 */
14442HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14443{
14444 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14445
14446 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
14447 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14448 hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
14449
14450 /* Evaluate and deliver pending events and resume guest execution. */
14451 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
14452 return VINF_SUCCESS;
14453}
14454
14455
14456/**
14457 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
14458 */
14459HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14460{
14461 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14462
14463 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14464 if (RT_UNLIKELY(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))) /** @todo NSTVMX: Turn this into an assertion. */
14465 {
14466 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
14467 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
14468 }
14469
14470 Assert(!CPUMIsGuestNmiBlocking(pVCpu));
14471
14472 /*
14473 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
14474 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
14475 */
14476 uint32_t fIntrState;
14477 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
14478 AssertRC(rc);
14479 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
14480 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
14481 {
14482 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
14483 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
14484
14485 fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
14486 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
14487 AssertRC(rc);
14488 }
14489
14490 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
14491 hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
14492
14493 /* Evaluate and deliver pending events and resume guest execution. */
14494 return VINF_SUCCESS;
14495}
14496
14497
14498/**
14499 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
14500 */
14501HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14502{
14503 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14504 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14505}
14506
14507
14508/**
14509 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
14510 */
14511HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14512{
14513 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14514 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14515}
14516
14517
14518/**
14519 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
14520 */
14521HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14522{
14523 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14524
14525 /*
14526 * Get the state we need and update the exit history entry.
14527 */
14528 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14529 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14530
14531 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
14532 AssertRCReturn(rc, rc);
14533
14534 VBOXSTRICTRC rcStrict;
14535 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
14536 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
14537 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
14538 if (!pExitRec)
14539 {
14540 /*
14541 * Regular CPUID instruction execution.
14542 */
14543 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbExitInstr);
14544 if (rcStrict == VINF_SUCCESS)
14545 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14546 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14547 {
14548 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14549 rcStrict = VINF_SUCCESS;
14550 }
14551 }
14552 else
14553 {
14554 /*
14555 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
14556 */
14557 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14558 AssertRCReturn(rc2, rc2);
14559
14560 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
14561 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
14562
14563 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
14564 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14565
14566 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
14567 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14568 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
14569 }
14570 return rcStrict;
14571}
14572
14573
14574/**
14575 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
14576 */
14577HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14578{
14579 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14580
14581 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14582 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4);
14583 AssertRCReturn(rc, rc);
14584
14585 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
14586 return VINF_EM_RAW_EMULATE_INSTR;
14587
14588 AssertMsgFailed(("hmR0VmxExitGetsec: Unexpected VM-exit when CR4.SMXE is 0.\n"));
14589 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
14590}
14591
14592
14593/**
14594 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
14595 */
14596HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14597{
14598 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14599
14600 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14601 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14602 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14603 AssertRCReturn(rc, rc);
14604
14605 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbExitInstr);
14606 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
14607 {
14608 /* If we get a spurious VM-exit when TSC offsetting is enabled,
14609 we must reset offsetting on VM-entry. See @bugref{6634}. */
14610 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
14611 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
14612 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14613 }
14614 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14615 {
14616 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14617 rcStrict = VINF_SUCCESS;
14618 }
14619 return rcStrict;
14620}
14621
14622
14623/**
14624 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
14625 */
14626HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14627{
14628 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14629
14630 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14631 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14632 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
14633 AssertRCReturn(rc, rc);
14634
14635 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbExitInstr);
14636 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
14637 {
14638 /* If we get a spurious VM-exit when TSC offsetting is enabled,
14639 we must reset offsetting on VM-reentry. See @bugref{6634}. */
14640 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
14641 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
14642 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14643 }
14644 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14645 {
14646 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14647 rcStrict = VINF_SUCCESS;
14648 }
14649 return rcStrict;
14650}
14651
14652
14653/**
14654 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
14655 */
14656HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14657{
14658 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14659
14660 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14661 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0
14662 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
14663 AssertRCReturn(rc, rc);
14664
14665 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14666 rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
14667 if (RT_LIKELY(rc == VINF_SUCCESS))
14668 {
14669 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14670 Assert(pVmxTransient->cbExitInstr == 2);
14671 }
14672 else
14673 {
14674 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
14675 rc = VERR_EM_INTERPRETER;
14676 }
14677 return rc;
14678}
14679
14680
14681/**
14682 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
14683 */
14684HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14685{
14686 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14687
14688 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
14689 if (EMAreHypercallInstructionsEnabled(pVCpu))
14690 {
14691 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14692 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
14693 | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
14694 AssertRCReturn(rc, rc);
14695
14696 /* Perform the hypercall. */
14697 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
14698 if (rcStrict == VINF_SUCCESS)
14699 {
14700 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14701 AssertRCReturn(rc, rc);
14702 }
14703 else
14704 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
14705 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
14706 || RT_FAILURE(rcStrict));
14707
14708 /* If the hypercall changes anything other than guest's general-purpose registers,
14709 we would need to reload the guest changed bits here before VM-entry. */
14710 }
14711 else
14712 Log4Func(("Hypercalls not enabled\n"));
14713
14714 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
14715 if (RT_FAILURE(rcStrict))
14716 {
14717 hmR0VmxSetPendingXcptUD(pVCpu);
14718 rcStrict = VINF_SUCCESS;
14719 }
14720
14721 return rcStrict;
14722}
14723
14724
14725/**
14726 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
14727 */
14728HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14729{
14730 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14731 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
14732
14733 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14734 hmR0VmxReadExitQualVmcs(pVmxTransient);
14735 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14736 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
14737 AssertRCReturn(rc, rc);
14738
14739 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->uExitQual);
14740
14741 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
14742 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14743 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14744 {
14745 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14746 rcStrict = VINF_SUCCESS;
14747 }
14748 else
14749 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) status: %Rrc\n", pVmxTransient->uExitQual,
14750 VBOXSTRICTRC_VAL(rcStrict)));
14751 return rcStrict;
14752}
14753
14754
14755/**
14756 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
14757 */
14758HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14759{
14760 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14761
14762 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14763 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14764 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
14765 AssertRCReturn(rc, rc);
14766
14767 VBOXSTRICTRC rcStrict = IEMExecDecodedMonitor(pVCpu, pVmxTransient->cbExitInstr);
14768 if (rcStrict == VINF_SUCCESS)
14769 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14770 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14771 {
14772 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14773 rcStrict = VINF_SUCCESS;
14774 }
14775
14776 return rcStrict;
14777}
14778
14779
14780/**
14781 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
14782 */
14783HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14784{
14785 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14786
14787 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14788 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14789 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
14790 AssertRCReturn(rc, rc);
14791
14792 VBOXSTRICTRC rcStrict = IEMExecDecodedMwait(pVCpu, pVmxTransient->cbExitInstr);
14793 if (RT_SUCCESS(rcStrict))
14794 {
14795 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14796 if (EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
14797 rcStrict = VINF_SUCCESS;
14798 }
14799
14800 return rcStrict;
14801}
14802
14803
14804/**
14805 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
14806 * VM-exit.
14807 */
14808HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14809{
14810 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14811 return VINF_EM_RESET;
14812}
14813
14814
14815/**
14816 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
14817 */
14818HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14819{
14820 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14821
14822 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14823 AssertRCReturn(rc, rc);
14824
14825 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS); /* Advancing the RIP above should've imported eflags. */
14826 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
14827 rc = VINF_SUCCESS;
14828 else
14829 rc = VINF_EM_HALT;
14830
14831 if (rc != VINF_SUCCESS)
14832 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
14833 return rc;
14834}
14835
14836
14837/**
14838 * VM-exit handler for instructions that result in a \#UD exception delivered to
14839 * the guest.
14840 */
14841HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14842{
14843 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14844 hmR0VmxSetPendingXcptUD(pVCpu);
14845 return VINF_SUCCESS;
14846}
14847
14848
14849/**
14850 * VM-exit handler for expiry of the VMX-preemption timer.
14851 */
14852HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14853{
14854 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14855
14856 /* If the VMX-preemption timer has expired, reinitialize the preemption timer on next VM-entry. */
14857 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
14858
14859 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
14860 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
14861 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
14862 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
14863 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
14864}
14865
14866
14867/**
14868 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
14869 */
14870HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14871{
14872 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14873
14874 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14875 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14876 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
14877 AssertRCReturn(rc, rc);
14878
14879 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbExitInstr);
14880 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
14881 : HM_CHANGED_RAISED_XCPT_MASK);
14882
14883 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14884 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
14885
14886 return rcStrict;
14887}
14888
14889
14890/**
14891 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
14892 */
14893HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14894{
14895 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14896
14897 /** @todo Enable the new code after finding a reliably guest test-case. */
14898#if 1
14899 return VERR_EM_INTERPRETER;
14900#else
14901 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14902 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
14903 hmR0VmxReadExitQualVmcs(pVmxTransient);
14904 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
14905 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
14906 AssertRCReturn(rc, rc);
14907
14908 /* Paranoia. Ensure this has a memory operand. */
14909 Assert(!pVmxTransient->ExitInstrInfo.Inv.u1Cleared0);
14910
14911 uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2;
14912 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
14913 uint64_t const uType = CPUMIsGuestIn64BitCode(pVCpu) ? pVCpu->cpum.GstCtx.aGRegs[iGReg].u64
14914 : pVCpu->cpum.GstCtx.aGRegs[iGReg].u32;
14915
14916 RTGCPTR GCPtrDesc;
14917 HMVMX_DECODE_MEM_OPERAND(pVCpu, pVmxTransient->ExitInstrInfo.u, pVmxTransient->uExitQual, VMXMEMACCESS_READ, &GCPtrDesc);
14918
14919 VBOXSTRICTRC rcStrict = IEMExecDecodedInvpcid(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->ExitInstrInfo.Inv.iSegReg,
14920 GCPtrDesc, uType);
14921 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
14922 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14923 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14924 {
14925 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14926 rcStrict = VINF_SUCCESS;
14927 }
14928 return rcStrict;
14929#endif
14930}
14931
14932
14933/**
14934 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error
14935 * VM-exit.
14936 */
14937HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14938{
14939 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14940 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14941 AssertRCReturn(rc, rc);
14942
14943 rc = hmR0VmxCheckCachedVmcsCtls(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest);
14944 if (RT_FAILURE(rc))
14945 return rc;
14946
14947 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
14948 NOREF(uInvalidReason);
14949
14950#ifdef VBOX_STRICT
14951 uint32_t fIntrState;
14952 uint64_t u64Val;
14953 hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
14954 hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
14955 hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
14956
14957 Log4(("uInvalidReason %u\n", uInvalidReason));
14958 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
14959 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
14960 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
14961
14962 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState); AssertRC(rc);
14963 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
14964 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR0, &u64Val); AssertRC(rc);
14965 Log4(("VMX_VMCS_GUEST_CR0 %#RX64\n", u64Val));
14966 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR0_MASK, &u64Val); AssertRC(rc);
14967 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RX64\n", u64Val));
14968 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Val); AssertRC(rc);
14969 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RX64\n", u64Val));
14970 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR4_MASK, &u64Val); AssertRC(rc);
14971 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RX64\n", u64Val));
14972 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Val); AssertRC(rc);
14973 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RX64\n", u64Val));
14974 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
14975 {
14976 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
14977 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
14978 }
14979 hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
14980#endif
14981
14982 return VERR_VMX_INVALID_GUEST_STATE;
14983}
14984
14985/**
14986 * VM-exit handler for all undefined/unexpected reasons. Should never happen.
14987 */
14988HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUnexpected(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14989{
14990 /*
14991 * Cumulative notes of all recognized but unexpected VM-exits.
14992 *
14993 * 1. This does -not- cover scenarios like a page-fault VM-exit occurring when
14994 * nested-paging is used.
14995 *
14996 * 2. Any instruction that causes a VM-exit unconditionally (for e.g. VMXON) must be
14997 * emulated or a #UD must be raised in the guest. Therefore, we should -not- be using
14998 * this function (and thereby stop VM execution) for handling such instructions.
14999 *
15000 *
15001 * VMX_EXIT_INIT_SIGNAL:
15002 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
15003 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these
15004 * VM-exits. However, we should not receive INIT signals VM-exit while executing a VM.
15005 *
15006 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery"
15007 * See Intel spec. 29.3 "VMX Instructions" for "VMXON".
15008 * See Intel spec. "23.8 Restrictions on VMX operation".
15009 *
15010 * VMX_EXIT_SIPI:
15011 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest
15012 * activity state is used. We don't make use of it as our guests don't have direct
15013 * access to the host local APIC.
15014 *
15015 * See Intel spec. 25.3 "Other Causes of VM-exits".
15016 *
15017 * VMX_EXIT_IO_SMI:
15018 * VMX_EXIT_SMI:
15019 * This can only happen if we support dual-monitor treatment of SMI, which can be
15020 * activated by executing VMCALL in VMX root operation. Only an STM (SMM transfer
15021 * monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL in
15022 * VMX root mode or receive an SMI. If we get here, something funny is going on.
15023 *
15024 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
15025 * See Intel spec. 25.3 "Other Causes of VM-Exits"
15026 *
15027 * VMX_EXIT_ERR_MSR_LOAD:
15028 * Failures while loading MSRs are part of the VM-entry MSR-load area are unexpected
15029 * and typically indicates a bug in the hypervisor code. We thus cannot not resume
15030 * execution.
15031 *
15032 * See Intel spec. 26.7 "VM-Entry Failures During Or After Loading Guest State".
15033 *
15034 * VMX_EXIT_ERR_MACHINE_CHECK:
15035 * Machine check exceptions indicates a fatal/unrecoverable hardware condition
15036 * including but not limited to system bus, ECC, parity, cache and TLB errors. A
15037 * #MC exception abort class exception is raised. We thus cannot assume a
15038 * reasonable chance of continuing any sort of execution and we bail.
15039 *
15040 * See Intel spec. 15.1 "Machine-check Architecture".
15041 * See Intel spec. 27.1 "Architectural State Before A VM Exit".
15042 *
15043 * VMX_EXIT_PML_FULL:
15044 * VMX_EXIT_VIRTUALIZED_EOI:
15045 * VMX_EXIT_APIC_WRITE:
15046 * We do not currently support any of these features and thus they are all unexpected
15047 * VM-exits.
15048 *
15049 * VMX_EXIT_GDTR_IDTR_ACCESS:
15050 * VMX_EXIT_LDTR_TR_ACCESS:
15051 * VMX_EXIT_RDRAND:
15052 * VMX_EXIT_RSM:
15053 * VMX_EXIT_VMFUNC:
15054 * VMX_EXIT_ENCLS:
15055 * VMX_EXIT_RDSEED:
15056 * VMX_EXIT_XSAVES:
15057 * VMX_EXIT_XRSTORS:
15058 * VMX_EXIT_UMWAIT:
15059 * VMX_EXIT_TPAUSE:
15060 * These VM-exits are -not- caused unconditionally by execution of the corresponding
15061 * instruction. Any VM-exit for these instructions indicate a hardware problem,
15062 * unsupported CPU modes (like SMM) or potentially corrupt VMCS controls.
15063 *
15064 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
15065 */
15066 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15067 AssertMsgFailed(("Unexpected VM-exit %u\n", pVmxTransient->uExitReason));
15068 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
15069}
15070
15071
15072/**
15073 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
15074 */
15075HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15076{
15077 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15078
15079 /** @todo Optimize this: We currently drag in the whole MSR state
15080 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
15081 * MSRs required. That would require changes to IEM and possibly CPUM too.
15082 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
15083 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15084 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
15085 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
15086 switch (idMsr)
15087 {
15088 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
15089 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
15090 }
15091
15092 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15093 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
15094 AssertRCReturn(rc, rc);
15095
15096 Log4Func(("ecx=%#RX32\n", idMsr));
15097
15098#ifdef VBOX_STRICT
15099 Assert(!pVmxTransient->fIsNestedGuest);
15100 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
15101 {
15102 if ( hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr)
15103 && idMsr != MSR_K6_EFER)
15104 {
15105 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
15106 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15107 }
15108 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
15109 {
15110 Assert(pVmcsInfo->pvMsrBitmap);
15111 uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
15112 if (fMsrpm & VMXMSRPM_ALLOW_RD)
15113 {
15114 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
15115 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15116 }
15117 }
15118 }
15119#endif
15120
15121 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbExitInstr);
15122 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
15123 if (rcStrict == VINF_SUCCESS)
15124 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15125 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15126 {
15127 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15128 rcStrict = VINF_SUCCESS;
15129 }
15130 else
15131 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
15132
15133 return rcStrict;
15134}
15135
15136
15137/**
15138 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
15139 */
15140HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15141{
15142 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15143
15144 /** @todo Optimize this: We currently drag in the whole MSR state
15145 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
15146 * MSRs required. That would require changes to IEM and possibly CPUM too.
15147 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
15148 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
15149 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
15150
15151 /*
15152 * The FS and GS base MSRs are not part of the above all-MSRs mask.
15153 * Although we don't need to fetch the base as it will be overwritten shortly, while
15154 * loading guest-state we would also load the entire segment register including limit
15155 * and attributes and thus we need to load them here.
15156 */
15157 switch (idMsr)
15158 {
15159 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
15160 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
15161 }
15162
15163 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15164 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15165 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
15166 AssertRCReturn(rc, rc);
15167
15168 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
15169
15170 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbExitInstr);
15171 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
15172
15173 if (rcStrict == VINF_SUCCESS)
15174 {
15175 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15176
15177 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
15178 if ( idMsr == MSR_IA32_APICBASE
15179 || ( idMsr >= MSR_IA32_X2APIC_START
15180 && idMsr <= MSR_IA32_X2APIC_END))
15181 {
15182 /*
15183 * We've already saved the APIC related guest-state (TPR) in post-run phase.
15184 * When full APIC register virtualization is implemented we'll have to make
15185 * sure APIC state is saved from the VMCS before IEM changes it.
15186 */
15187 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
15188 }
15189 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
15190 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
15191 else if (idMsr == MSR_K6_EFER)
15192 {
15193 /*
15194 * If the guest touches the EFER MSR we need to update the VM-Entry and VM-Exit controls
15195 * as well, even if it is -not- touching bits that cause paging mode changes (LMA/LME).
15196 * We care about the other bits as well, SCE and NXE. See @bugref{7368}.
15197 */
15198 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
15199 }
15200
15201 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not used. */
15202 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
15203 {
15204 switch (idMsr)
15205 {
15206 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
15207 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
15208 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
15209 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
15210 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
15211 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
15212 default:
15213 {
15214 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
15215 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
15216 else if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
15217 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
15218 break;
15219 }
15220 }
15221 }
15222#ifdef VBOX_STRICT
15223 else
15224 {
15225 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
15226 switch (idMsr)
15227 {
15228 case MSR_IA32_SYSENTER_CS:
15229 case MSR_IA32_SYSENTER_EIP:
15230 case MSR_IA32_SYSENTER_ESP:
15231 case MSR_K8_FS_BASE:
15232 case MSR_K8_GS_BASE:
15233 {
15234 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
15235 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15236 }
15237
15238 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
15239 default:
15240 {
15241 if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
15242 {
15243 /* EFER MSR writes are always intercepted. */
15244 if (idMsr != MSR_K6_EFER)
15245 {
15246 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
15247 idMsr));
15248 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15249 }
15250 }
15251
15252 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
15253 {
15254 Assert(pVmcsInfo->pvMsrBitmap);
15255 uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
15256 if (fMsrpm & VMXMSRPM_ALLOW_WR)
15257 {
15258 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
15259 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15260 }
15261 }
15262 break;
15263 }
15264 }
15265 }
15266#endif /* VBOX_STRICT */
15267 }
15268 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15269 {
15270 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15271 rcStrict = VINF_SUCCESS;
15272 }
15273 else
15274 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
15275
15276 return rcStrict;
15277}
15278
15279
15280/**
15281 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
15282 */
15283HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15284{
15285 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15286
15287 /** @todo The guest has likely hit a contended spinlock. We might want to
15288 * poke a schedule different guest VCPU. */
15289 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
15290 if (RT_SUCCESS(rc))
15291 return VINF_EM_RAW_INTERRUPT;
15292
15293 AssertMsgFailed(("hmR0VmxExitPause: Failed to increment RIP. rc=%Rrc\n", rc));
15294 return rc;
15295}
15296
15297
15298/**
15299 * VM-exit handler for when the TPR value is lowered below the specified
15300 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
15301 */
15302HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15303{
15304 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15305 Assert(pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
15306
15307 /*
15308 * The TPR shadow would've been synced with the APIC TPR in the post-run phase.
15309 * We'll re-evaluate pending interrupts and inject them before the next VM
15310 * entry so we can just continue execution here.
15311 */
15312 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
15313 return VINF_SUCCESS;
15314}
15315
15316
15317/**
15318 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
15319 * VM-exit.
15320 *
15321 * @retval VINF_SUCCESS when guest execution can continue.
15322 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
15323 * @retval VERR_EM_RESCHEDULE_REM when we need to return to ring-3 due to
15324 * incompatible guest state for VMX execution (real-on-v86 case).
15325 */
15326HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15327{
15328 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15329 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
15330
15331 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15332 hmR0VmxReadExitQualVmcs(pVmxTransient);
15333 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15334
15335 VBOXSTRICTRC rcStrict;
15336 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15337 uint64_t const uExitQual = pVmxTransient->uExitQual;
15338 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
15339 switch (uAccessType)
15340 {
15341 /*
15342 * MOV to CRx.
15343 */
15344 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE:
15345 {
15346 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
15347 AssertRCReturn(rc, rc);
15348
15349 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
15350 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
15351 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(uExitQual);
15352 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual);
15353
15354 /*
15355 * MOV to CR3 only cause a VM-exit when one or more of the following are true:
15356 * - When nested paging isn't used.
15357 * - If the guest doesn't have paging enabled (intercept CR3 to update shadow page tables).
15358 * - We are executing in the VM debug loop.
15359 */
15360 Assert( iCrReg != 3
15361 || !pVM->hm.s.fNestedPaging
15362 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
15363 || pVCpu->hm.s.fUsingDebugLoop);
15364
15365 /* MOV to CR8 writes only cause VM-exits when TPR shadow is not used. */
15366 Assert( iCrReg != 8
15367 || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
15368
15369 rcStrict = hmR0VmxExitMovToCrX(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
15370 AssertMsg( rcStrict == VINF_SUCCESS
15371 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
15372
15373 /*
15374 * This is a kludge for handling switches back to real mode when we try to use
15375 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
15376 * deal with special selector values, so we have to return to ring-3 and run
15377 * there till the selector values are V86 mode compatible.
15378 *
15379 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
15380 * latter is an alias for VINF_IEM_RAISED_XCPT which is asserted at the end of
15381 * this function.
15382 */
15383 if ( iCrReg == 0
15384 && rcStrict == VINF_SUCCESS
15385 && !pVM->hm.s.vmx.fUnrestrictedGuest
15386 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
15387 && (uOldCr0 & X86_CR0_PE)
15388 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
15389 {
15390 /** @todo Check selectors rather than returning all the time. */
15391 Assert(!pVmxTransient->fIsNestedGuest);
15392 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
15393 rcStrict = VINF_EM_RESCHEDULE_REM;
15394 }
15395 break;
15396 }
15397
15398 /*
15399 * MOV from CRx.
15400 */
15401 case VMX_EXIT_QUAL_CRX_ACCESS_READ:
15402 {
15403 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(uExitQual);
15404 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual);
15405
15406 /*
15407 * MOV from CR3 only cause a VM-exit when one or more of the following are true:
15408 * - When nested paging isn't used.
15409 * - If the guest doesn't have paging enabled (pass guest's CR3 rather than our identity mapped CR3).
15410 * - We are executing in the VM debug loop.
15411 */
15412 Assert( iCrReg != 3
15413 || !pVM->hm.s.fNestedPaging
15414 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
15415 || pVCpu->hm.s.fUsingDebugLoop);
15416
15417 /* MOV from CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
15418 Assert( iCrReg != 8
15419 || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
15420
15421 rcStrict = hmR0VmxExitMovFromCrX(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
15422 break;
15423 }
15424
15425 /*
15426 * CLTS (Clear Task-Switch Flag in CR0).
15427 */
15428 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS:
15429 {
15430 rcStrict = hmR0VmxExitClts(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr);
15431 break;
15432 }
15433
15434 /*
15435 * LMSW (Load Machine-Status Word into CR0).
15436 * LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here.
15437 */
15438 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW:
15439 {
15440 RTGCPTR GCPtrEffDst;
15441 uint8_t const cbInstr = pVmxTransient->cbExitInstr;
15442 uint16_t const uMsw = VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual);
15443 bool const fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(uExitQual);
15444 if (fMemOperand)
15445 {
15446 hmR0VmxReadGuestLinearAddrVmcs(pVmxTransient);
15447 GCPtrEffDst = pVmxTransient->uGuestLinearAddr;
15448 }
15449 else
15450 GCPtrEffDst = NIL_RTGCPTR;
15451 rcStrict = hmR0VmxExitLmsw(pVCpu, pVmcsInfo, cbInstr, uMsw, GCPtrEffDst);
15452 break;
15453 }
15454
15455 default:
15456 {
15457 AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType));
15458 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType);
15459 }
15460 }
15461
15462 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
15463 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
15464 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
15465
15466 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
15467 NOREF(pVM);
15468 return rcStrict;
15469}
15470
15471
15472/**
15473 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
15474 * VM-exit.
15475 */
15476HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15477{
15478 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15479 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
15480
15481 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15482 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15483 hmR0VmxReadExitQualVmcs(pVmxTransient);
15484 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15485 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK
15486 | CPUMCTX_EXTRN_EFER);
15487 /* EFER MSR also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
15488 AssertRCReturn(rc, rc);
15489
15490 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
15491 uint32_t const uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
15492 uint8_t const uIOSize = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual);
15493 bool const fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
15494 bool const fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
15495 bool const fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
15496 bool const fDbgStepping = pVCpu->hm.s.fSingleInstruction;
15497 AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1);
15498
15499 /*
15500 * Update exit history to see if this exit can be optimized.
15501 */
15502 VBOXSTRICTRC rcStrict;
15503 PCEMEXITREC pExitRec = NULL;
15504 if ( !fGstStepping
15505 && !fDbgStepping)
15506 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
15507 !fIOString
15508 ? !fIOWrite
15509 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
15510 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
15511 : !fIOWrite
15512 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
15513 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
15514 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
15515 if (!pExitRec)
15516 {
15517 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses in bytes. */
15518 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
15519
15520 uint32_t const cbValue = s_aIOSizes[uIOSize];
15521 uint32_t const cbInstr = pVmxTransient->cbExitInstr;
15522 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
15523 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15524 if (fIOString)
15525 {
15526 /*
15527 * INS/OUTS - I/O String instruction.
15528 *
15529 * Use instruction-information if available, otherwise fall back on
15530 * interpreting the instruction.
15531 */
15532 Log4Func(("cs:rip=%#04x:%#RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
15533 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
15534 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
15535 if (fInsOutsInfo)
15536 {
15537 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15538 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
15539 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
15540 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
15541 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
15542 if (fIOWrite)
15543 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
15544 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
15545 else
15546 {
15547 /*
15548 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
15549 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
15550 * See Intel Instruction spec. for "INS".
15551 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
15552 */
15553 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
15554 }
15555 }
15556 else
15557 rcStrict = IEMExecOne(pVCpu);
15558
15559 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
15560 fUpdateRipAlready = true;
15561 }
15562 else
15563 {
15564 /*
15565 * IN/OUT - I/O instruction.
15566 */
15567 Log4Func(("cs:rip=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
15568 uint32_t const uAndVal = s_aIOOpAnd[uIOSize];
15569 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
15570 if (fIOWrite)
15571 {
15572 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
15573 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
15574 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
15575 && !pCtx->eflags.Bits.u1TF)
15576 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
15577 }
15578 else
15579 {
15580 uint32_t u32Result = 0;
15581 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
15582 if (IOM_SUCCESS(rcStrict))
15583 {
15584 /* Save result of I/O IN instr. in AL/AX/EAX. */
15585 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
15586 }
15587 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
15588 && !pCtx->eflags.Bits.u1TF)
15589 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
15590 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
15591 }
15592 }
15593
15594 if (IOM_SUCCESS(rcStrict))
15595 {
15596 if (!fUpdateRipAlready)
15597 {
15598 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
15599 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
15600 }
15601
15602 /*
15603 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
15604 * while booting Fedora 17 64-bit guest.
15605 *
15606 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
15607 */
15608 if (fIOString)
15609 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
15610
15611 /*
15612 * If any I/O breakpoints are armed, we need to check if one triggered
15613 * and take appropriate action.
15614 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
15615 */
15616 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_DR7);
15617 AssertRCReturn(rc, rc);
15618
15619 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
15620 * execution engines about whether hyper BPs and such are pending. */
15621 uint32_t const uDr7 = pCtx->dr[7];
15622 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
15623 && X86_DR7_ANY_RW_IO(uDr7)
15624 && (pCtx->cr4 & X86_CR4_DE))
15625 || DBGFBpIsHwIoArmed(pVM)))
15626 {
15627 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
15628
15629 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
15630 VMMRZCallRing3Disable(pVCpu);
15631 HM_DISABLE_PREEMPT(pVCpu);
15632
15633 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
15634
15635 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
15636 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
15637 {
15638 /* Raise #DB. */
15639 if (fIsGuestDbgActive)
15640 ASMSetDR6(pCtx->dr[6]);
15641 if (pCtx->dr[7] != uDr7)
15642 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
15643
15644 hmR0VmxSetPendingXcptDB(pVCpu);
15645 }
15646 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
15647 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
15648 else if ( rcStrict2 != VINF_SUCCESS
15649 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
15650 rcStrict = rcStrict2;
15651 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
15652
15653 HM_RESTORE_PREEMPT();
15654 VMMRZCallRing3Enable(pVCpu);
15655 }
15656 }
15657
15658#ifdef VBOX_STRICT
15659 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
15660 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
15661 Assert(!fIOWrite);
15662 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
15663 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
15664 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
15665 Assert(fIOWrite);
15666 else
15667 {
15668# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
15669 * statuses, that the VMM device and some others may return. See
15670 * IOM_SUCCESS() for guidance. */
15671 AssertMsg( RT_FAILURE(rcStrict)
15672 || rcStrict == VINF_SUCCESS
15673 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
15674 || rcStrict == VINF_EM_DBG_BREAKPOINT
15675 || rcStrict == VINF_EM_RAW_GUEST_TRAP
15676 || rcStrict == VINF_EM_RAW_TO_R3
15677 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
15678# endif
15679 }
15680#endif
15681 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
15682 }
15683 else
15684 {
15685 /*
15686 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
15687 */
15688 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15689 AssertRCReturn(rc2, rc2);
15690 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
15691 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
15692 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
15693 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
15694 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
15695 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOSize));
15696
15697 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
15698 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15699
15700 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
15701 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
15702 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
15703 }
15704 return rcStrict;
15705}
15706
15707
15708/**
15709 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
15710 * VM-exit.
15711 */
15712HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15713{
15714 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15715
15716 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
15717 hmR0VmxReadExitQualVmcs(pVmxTransient);
15718 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
15719 {
15720 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
15721 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
15722 {
15723 uint32_t uErrCode;
15724 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
15725 {
15726 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
15727 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
15728 }
15729 else
15730 uErrCode = 0;
15731
15732 RTGCUINTPTR GCPtrFaultAddress;
15733 if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(pVmxTransient->uIdtVectoringInfo))
15734 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
15735 else
15736 GCPtrFaultAddress = 0;
15737
15738 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15739
15740 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
15741 pVmxTransient->cbExitInstr, uErrCode, GCPtrFaultAddress);
15742
15743 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo),
15744 VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo)));
15745 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
15746 return VINF_EM_RAW_INJECT_TRPM_EVENT;
15747 }
15748 }
15749
15750 /* Fall back to the interpreter to emulate the task-switch. */
15751 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
15752 return VERR_EM_INTERPRETER;
15753}
15754
15755
15756/**
15757 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
15758 */
15759HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15760{
15761 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15762
15763 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15764 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
15765 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
15766 AssertRC(rc);
15767 return VINF_EM_DBG_STEPPED;
15768}
15769
15770
15771/**
15772 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
15773 */
15774HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15775{
15776 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15777 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
15778
15779 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
15780 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15781 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15782 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
15783 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
15784
15785 /*
15786 * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
15787 */
15788 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
15789 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15790 {
15791 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
15792 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
15793 {
15794 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
15795 return VINF_EM_RAW_INJECT_TRPM_EVENT;
15796 }
15797 }
15798 else
15799 {
15800 Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
15801 return rcStrict;
15802 }
15803
15804 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
15805 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15806 hmR0VmxReadExitQualVmcs(pVmxTransient);
15807 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
15808 AssertRCReturn(rc, rc);
15809
15810 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
15811 uint32_t const uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
15812 switch (uAccessType)
15813 {
15814 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
15815 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
15816 {
15817 AssertMsg( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
15818 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
15819 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
15820
15821 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64GstMsrApicBase; /* Always up-to-date, as it is not part of the VMCS. */
15822 GCPhys &= PAGE_BASE_GC_MASK;
15823 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
15824 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
15825 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
15826
15827 rcStrict = IOMR0MmioPhysHandler(pVCpu->CTX_SUFF(pVM), pVCpu,
15828 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW, GCPhys);
15829 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
15830 if ( rcStrict == VINF_SUCCESS
15831 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
15832 || rcStrict == VERR_PAGE_NOT_PRESENT)
15833 {
15834 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
15835 | HM_CHANGED_GUEST_APIC_TPR);
15836 rcStrict = VINF_SUCCESS;
15837 }
15838 break;
15839 }
15840
15841 default:
15842 {
15843 Log4Func(("uAccessType=%#x\n", uAccessType));
15844 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
15845 break;
15846 }
15847 }
15848
15849 if (rcStrict != VINF_SUCCESS)
15850 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
15851 return rcStrict;
15852}
15853
15854
15855/**
15856 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
15857 * VM-exit.
15858 */
15859HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15860{
15861 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15862 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15863
15864 /* We might get this VM-exit if the nested-guest is not intercepting MOV DRx accesses. */
15865 if (!pVmxTransient->fIsNestedGuest)
15866 {
15867 /* We should -not- get this VM-exit if the guest's debug registers were active. */
15868 if (pVmxTransient->fWasGuestDebugStateActive)
15869 {
15870 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
15871 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
15872 }
15873
15874 if ( !pVCpu->hm.s.fSingleInstruction
15875 && !pVmxTransient->fWasHyperDebugStateActive)
15876 {
15877 Assert(!DBGFIsStepping(pVCpu));
15878 Assert(pVmcsInfo->u32XcptBitmap & RT_BIT(X86_XCPT_DB));
15879
15880 /* Don't intercept MOV DRx any more. */
15881 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
15882 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
15883 AssertRC(rc);
15884
15885 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
15886 VMMRZCallRing3Disable(pVCpu);
15887 HM_DISABLE_PREEMPT(pVCpu);
15888
15889 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
15890 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
15891 Assert(CPUMIsGuestDebugStateActive(pVCpu));
15892
15893 HM_RESTORE_PREEMPT();
15894 VMMRZCallRing3Enable(pVCpu);
15895
15896#ifdef VBOX_WITH_STATISTICS
15897 hmR0VmxReadExitQualVmcs(pVmxTransient);
15898 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
15899 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
15900 else
15901 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
15902#endif
15903 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
15904 return VINF_SUCCESS;
15905 }
15906 }
15907
15908 /*
15909 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER MSR, CS.
15910 * The EFER MSR is always up-to-date.
15911 * Update the segment registers and DR7 from the CPU.
15912 */
15913 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15914 hmR0VmxReadExitQualVmcs(pVmxTransient);
15915 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
15916 AssertRCReturn(rc, rc);
15917 Log4Func(("cs:rip=%#04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
15918
15919 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15920 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
15921 {
15922 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
15923 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
15924 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
15925 if (RT_SUCCESS(rc))
15926 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
15927 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
15928 }
15929 else
15930 {
15931 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
15932 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
15933 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
15934 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
15935 }
15936
15937 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
15938 if (RT_SUCCESS(rc))
15939 {
15940 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
15941 AssertRCReturn(rc2, rc2);
15942 return VINF_SUCCESS;
15943 }
15944 return rc;
15945}
15946
15947
15948/**
15949 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
15950 * Conditional VM-exit.
15951 */
15952HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15953{
15954 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15955 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
15956
15957 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
15958 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15959 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15960 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
15961 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
15962
15963 /*
15964 * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
15965 */
15966 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
15967 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15968 {
15969 /*
15970 * In the unlikely case where delivering an event causes an EPT misconfig (MMIO), go back to
15971 * instruction emulation to inject the original event. Otherwise, injecting the original event
15972 * using hardware-assisted VMX would trigger the same EPT misconfig VM-exit again.
15973 */
15974 if (!pVCpu->hm.s.Event.fPending)
15975 { /* likely */ }
15976 else
15977 {
15978 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
15979#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
15980 /** @todo NSTVMX: Think about how this should be handled. */
15981 if (pVmxTransient->fIsNestedGuest)
15982 return VERR_VMX_IPE_3;
15983#endif
15984 return VINF_EM_RAW_INJECT_TRPM_EVENT;
15985 }
15986 }
15987 else
15988 {
15989 Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
15990 return rcStrict;
15991 }
15992
15993 /*
15994 * Get sufficient state and update the exit history entry.
15995 */
15996 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15997 hmR0VmxReadGuestPhysicalAddrVmcs(pVmxTransient);
15998 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
15999 AssertRCReturn(rc, rc);
16000
16001 RTGCPHYS const GCPhys = pVmxTransient->uGuestPhysicalAddr;
16002 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
16003 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
16004 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
16005 if (!pExitRec)
16006 {
16007 /*
16008 * If we succeed, resume guest execution.
16009 * If we fail in interpreting the instruction because we couldn't get the guest physical address
16010 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
16011 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
16012 * weird case. See @bugref{6043}.
16013 */
16014 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
16015 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
16016/** @todo bird: We can probably just go straight to IOM here and assume that
16017 * it's MMIO, then fall back on PGM if that hunch didn't work out so
16018 * well. However, we need to address that aliasing workarounds that
16019 * PGMR0Trap0eHandlerNPMisconfig implements. So, some care is needed.
16020 *
16021 * Might also be interesting to see if we can get this done more or
16022 * less locklessly inside IOM. Need to consider the lookup table
16023 * updating and use a bit more carefully first (or do all updates via
16024 * rendezvous) */
16025 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
16026 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
16027 if ( rcStrict == VINF_SUCCESS
16028 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
16029 || rcStrict == VERR_PAGE_NOT_PRESENT)
16030 {
16031 /* Successfully handled MMIO operation. */
16032 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
16033 | HM_CHANGED_GUEST_APIC_TPR);
16034 rcStrict = VINF_SUCCESS;
16035 }
16036 }
16037 else
16038 {
16039 /*
16040 * Frequent exit or something needing probing. Call EMHistoryExec.
16041 */
16042 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
16043 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
16044
16045 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
16046 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
16047
16048 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
16049 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
16050 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
16051 }
16052 return rcStrict;
16053}
16054
16055
16056/**
16057 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
16058 * VM-exit.
16059 */
16060HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16061{
16062 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16063 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
16064
16065 hmR0VmxReadExitQualVmcs(pVmxTransient);
16066 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
16067 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
16068 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16069 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16070 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16071
16072 /*
16073 * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
16074 */
16075 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
16076 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16077 {
16078 /*
16079 * If delivery of an event causes an EPT violation (true nested #PF and not MMIO),
16080 * we shall resolve the nested #PF and re-inject the original event.
16081 */
16082 if (pVCpu->hm.s.Event.fPending)
16083 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflectNPF);
16084 }
16085 else
16086 {
16087 Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
16088 return rcStrict;
16089 }
16090
16091 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
16092 hmR0VmxReadGuestPhysicalAddrVmcs(pVmxTransient);
16093 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
16094 AssertRCReturn(rc, rc);
16095
16096 RTGCPHYS const GCPhys = pVmxTransient->uGuestPhysicalAddr;
16097 uint64_t const uExitQual = pVmxTransient->uExitQual;
16098 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", uExitQual));
16099
16100 RTGCUINT uErrorCode = 0;
16101 if (uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
16102 uErrorCode |= X86_TRAP_PF_ID;
16103 if (uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
16104 uErrorCode |= X86_TRAP_PF_RW;
16105 if (uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
16106 uErrorCode |= X86_TRAP_PF_P;
16107
16108 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
16109 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
16110 Log4Func(("at %#RX64 (%#RX64 errcode=%#x) cs:rip=%#04x:%#RX64\n", GCPhys, uExitQual, uErrorCode, pCtx->cs.Sel, pCtx->rip));
16111
16112 /*
16113 * Handle the pagefault trap for the nested shadow table.
16114 */
16115 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
16116 rcStrict = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
16117 TRPMResetTrap(pVCpu);
16118
16119 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
16120 if ( rcStrict == VINF_SUCCESS
16121 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
16122 || rcStrict == VERR_PAGE_NOT_PRESENT)
16123 {
16124 /* Successfully synced our nested page tables. */
16125 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
16126 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
16127 return VINF_SUCCESS;
16128 }
16129
16130 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
16131 return rcStrict;
16132}
16133
16134
16135#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
16136/**
16137 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
16138 */
16139HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16140{
16141 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16142
16143 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16144 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16145 hmR0VmxReadExitQualVmcs(pVmxTransient);
16146 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16147 | CPUMCTX_EXTRN_HWVIRT
16148 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16149 AssertRCReturn(rc, rc);
16150
16151 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16152
16153 VMXVEXITINFO ExitInfo;
16154 RT_ZERO(ExitInfo);
16155 ExitInfo.uReason = pVmxTransient->uExitReason;
16156 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16157 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16158 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16159 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16160
16161 VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
16162 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16163 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16164 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16165 {
16166 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16167 rcStrict = VINF_SUCCESS;
16168 }
16169 return rcStrict;
16170}
16171
16172
16173/**
16174 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
16175 */
16176HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16177{
16178 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16179
16180 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMLAUNCH,
16181 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
16182 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16183 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
16184 AssertRCReturn(rc, rc);
16185
16186 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16187
16188 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
16189 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMLAUNCH);
16190 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
16191 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16192 {
16193 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
16194 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
16195 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
16196 }
16197 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
16198 return rcStrict;
16199}
16200
16201
16202/**
16203 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
16204 */
16205HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16206{
16207 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16208
16209 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16210 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16211 hmR0VmxReadExitQualVmcs(pVmxTransient);
16212 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16213 | CPUMCTX_EXTRN_HWVIRT
16214 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16215 AssertRCReturn(rc, rc);
16216
16217 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16218
16219 VMXVEXITINFO ExitInfo;
16220 RT_ZERO(ExitInfo);
16221 ExitInfo.uReason = pVmxTransient->uExitReason;
16222 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16223 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16224 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16225 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16226
16227 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
16228 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16229 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16230 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16231 {
16232 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16233 rcStrict = VINF_SUCCESS;
16234 }
16235 return rcStrict;
16236}
16237
16238
16239/**
16240 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
16241 */
16242HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16243{
16244 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16245
16246 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16247 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16248 hmR0VmxReadExitQualVmcs(pVmxTransient);
16249 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16250 | CPUMCTX_EXTRN_HWVIRT
16251 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16252 AssertRCReturn(rc, rc);
16253
16254 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16255
16256 VMXVEXITINFO ExitInfo;
16257 RT_ZERO(ExitInfo);
16258 ExitInfo.uReason = pVmxTransient->uExitReason;
16259 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16260 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16261 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16262 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
16263
16264 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
16265 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16266 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
16267 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16268 {
16269 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16270 rcStrict = VINF_SUCCESS;
16271 }
16272 return rcStrict;
16273}
16274
16275
16276/**
16277 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Conditional VM-exit.
16278 */
16279HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16280{
16281 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16282
16283 /*
16284 * Strictly speaking we should not get VMREAD VM-exits for shadow VMCS fields and
16285 * thus might not need to import the shadow VMCS state, it's safer just in case
16286 * code elsewhere dares look at unsynced VMCS fields.
16287 */
16288 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16289 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16290 hmR0VmxReadExitQualVmcs(pVmxTransient);
16291 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16292 | CPUMCTX_EXTRN_HWVIRT
16293 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16294 AssertRCReturn(rc, rc);
16295
16296 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16297
16298 VMXVEXITINFO ExitInfo;
16299 RT_ZERO(ExitInfo);
16300 ExitInfo.uReason = pVmxTransient->uExitReason;
16301 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16302 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16303 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16304 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
16305 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
16306
16307 VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
16308 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16309 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
16310 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16311 {
16312 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16313 rcStrict = VINF_SUCCESS;
16314 }
16315 return rcStrict;
16316}
16317
16318
16319/**
16320 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
16321 */
16322HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16323{
16324 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16325
16326 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMRESUME,
16327 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
16328 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16329 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
16330 AssertRCReturn(rc, rc);
16331
16332 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16333
16334 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
16335 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMRESUME);
16336 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
16337 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16338 {
16339 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
16340 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
16341 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
16342 }
16343 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
16344 return rcStrict;
16345}
16346
16347
16348/**
16349 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Conditional VM-exit.
16350 */
16351HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16352{
16353 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16354
16355 /*
16356 * Although we should not get VMWRITE VM-exits for shadow VMCS fields, since our HM hook
16357 * gets invoked when IEM's VMWRITE instruction emulation modifies the current VMCS and it
16358 * flags re-loading the entire shadow VMCS, we should save the entire shadow VMCS here.
16359 */
16360 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16361 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16362 hmR0VmxReadExitQualVmcs(pVmxTransient);
16363 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16364 | CPUMCTX_EXTRN_HWVIRT
16365 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16366 AssertRCReturn(rc, rc);
16367
16368 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16369
16370 VMXVEXITINFO ExitInfo;
16371 RT_ZERO(ExitInfo);
16372 ExitInfo.uReason = pVmxTransient->uExitReason;
16373 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16374 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16375 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16376 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
16377 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16378
16379 VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
16380 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16381 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16382 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16383 {
16384 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16385 rcStrict = VINF_SUCCESS;
16386 }
16387 return rcStrict;
16388}
16389
16390
16391/**
16392 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
16393 */
16394HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16395{
16396 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16397
16398 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16399 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR4
16400 | CPUMCTX_EXTRN_HWVIRT
16401 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
16402 AssertRCReturn(rc, rc);
16403
16404 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16405
16406 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbExitInstr);
16407 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16408 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
16409 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16410 {
16411 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16412 rcStrict = VINF_SUCCESS;
16413 }
16414 return rcStrict;
16415}
16416
16417
16418/**
16419 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
16420 */
16421HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16422{
16423 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16424
16425 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16426 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16427 hmR0VmxReadExitQualVmcs(pVmxTransient);
16428 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16429 | CPUMCTX_EXTRN_HWVIRT
16430 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16431 AssertRCReturn(rc, rc);
16432
16433 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16434
16435 VMXVEXITINFO ExitInfo;
16436 RT_ZERO(ExitInfo);
16437 ExitInfo.uReason = pVmxTransient->uExitReason;
16438 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16439 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16440 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16441 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16442
16443 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
16444 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16445 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16446 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16447 {
16448 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16449 rcStrict = VINF_SUCCESS;
16450 }
16451 return rcStrict;
16452}
16453
16454
16455/**
16456 * VM-exit handler for INVVPID (VMX_EXIT_INVVPID). Unconditional VM-exit.
16457 */
16458HMVMX_EXIT_DECL hmR0VmxExitInvvpid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16459{
16460 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16461
16462 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16463 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16464 hmR0VmxReadExitQualVmcs(pVmxTransient);
16465 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16466 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16467 AssertRCReturn(rc, rc);
16468
16469 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16470
16471 VMXVEXITINFO ExitInfo;
16472 RT_ZERO(ExitInfo);
16473 ExitInfo.uReason = pVmxTransient->uExitReason;
16474 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16475 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16476 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16477 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16478
16479 VBOXSTRICTRC rcStrict = IEMExecDecodedInvvpid(pVCpu, &ExitInfo);
16480 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16481 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
16482 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16483 {
16484 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16485 rcStrict = VINF_SUCCESS;
16486 }
16487 return rcStrict;
16488}
16489#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
16490/** @} */
16491
16492
16493#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
16494/** @name Nested-guest VM-exit handlers.
16495 * @{
16496 */
16497/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
16498/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- Nested-guest VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
16499/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
16500
16501/**
16502 * Nested-guest VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
16503 * Conditional VM-exit.
16504 */
16505HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16506{
16507 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16508
16509 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
16510
16511 uint64_t const uExitIntInfo = pVmxTransient->uExitIntInfo;
16512 uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo);
16513 Assert(VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo));
16514
16515 switch (uExitIntType)
16516 {
16517 /*
16518 * Physical NMIs:
16519 * We shouldn't direct host physical NMIs to the nested-guest. Dispatch it to the host.
16520 */
16521 case VMX_EXIT_INT_INFO_TYPE_NMI:
16522 return hmR0VmxExitHostNmi(pVCpu, pVmxTransient->pVmcsInfo);
16523
16524 /*
16525 * Hardware exceptions,
16526 * Software exceptions,
16527 * Privileged software exceptions:
16528 * Figure out if the exception must be delivered to the guest or the nested-guest.
16529 */
16530 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
16531 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
16532 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
16533 {
16534 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
16535 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16536 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16537 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16538
16539 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
16540 bool const fIntercept = CPUMIsGuestVmxXcptInterceptSet(pCtx, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo),
16541 pVmxTransient->uExitIntErrorCode);
16542 if (fIntercept)
16543 {
16544 /* Exit qualification is required for debug and page-fault exceptions. */
16545 hmR0VmxReadExitQualVmcs(pVmxTransient);
16546
16547 /*
16548 * For VM-exits due to software exceptions (those generated by INT3 or INTO) and privileged
16549 * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
16550 * length. However, if delivery of a software interrupt, software exception or privileged
16551 * software exception causes a VM-exit, that too provides the VM-exit instruction length.
16552 */
16553 VMXVEXITINFO ExitInfo;
16554 RT_ZERO(ExitInfo);
16555 ExitInfo.uReason = pVmxTransient->uExitReason;
16556 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16557 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16558
16559 VMXVEXITEVENTINFO ExitEventInfo;
16560 RT_ZERO(ExitEventInfo);
16561 ExitEventInfo.uExitIntInfo = pVmxTransient->uExitIntInfo;
16562 ExitEventInfo.uExitIntErrCode = pVmxTransient->uExitIntErrorCode;
16563 ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
16564 ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
16565
16566#ifdef DEBUG_ramshankar
16567 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
16568 Log4Func(("exit_int_info=%#RX32 err_code=%#RX32 exit_qual=%#RX64\n", pVmxTransient->uExitIntInfo,
16569 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual));
16570 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
16571 {
16572 Log4Func(("idt_info=%#RX32 idt_errcode=%#RX32 cr2=%#RX64\n", pVmxTransient->uIdtVectoringInfo,
16573 pVmxTransient->uIdtVectoringErrorCode, pCtx->cr2));
16574 }
16575#endif
16576 return IEMExecVmxVmexitXcpt(pVCpu, &ExitInfo, &ExitEventInfo);
16577 }
16578
16579 /* Nested paging is currently a requirement, otherwise we would need to handle shadow #PFs in hmR0VmxExitXcptPF. */
16580 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
16581 return hmR0VmxExitXcpt(pVCpu, pVmxTransient);
16582 }
16583
16584 /*
16585 * Software interrupts:
16586 * VM-exits cannot be caused by software interrupts.
16587 *
16588 * External interrupts:
16589 * This should only happen when "acknowledge external interrupts on VM-exit"
16590 * control is set. However, we never set this when executing a guest or
16591 * nested-guest. For nested-guests it is emulated while injecting interrupts into
16592 * the guest.
16593 */
16594 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
16595 case VMX_EXIT_INT_INFO_TYPE_EXT_INT:
16596 default:
16597 {
16598 pVCpu->hm.s.u32HMError = pVmxTransient->uExitIntInfo;
16599 return VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
16600 }
16601 }
16602}
16603
16604
16605/**
16606 * Nested-guest VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT).
16607 * Unconditional VM-exit.
16608 */
16609HMVMX_EXIT_DECL hmR0VmxExitTripleFaultNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16610{
16611 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16612 return IEMExecVmxVmexitTripleFault(pVCpu);
16613}
16614
16615
16616/**
16617 * Nested-guest VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
16618 */
16619HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16620{
16621 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16622
16623 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INT_WINDOW_EXIT))
16624 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */);
16625 return hmR0VmxExitIntWindow(pVCpu, pVmxTransient);
16626}
16627
16628
16629/**
16630 * Nested-guest VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
16631 */
16632HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16633{
16634 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16635
16636 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_NMI_WINDOW_EXIT))
16637 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */);
16638 return hmR0VmxExitIntWindow(pVCpu, pVmxTransient);
16639}
16640
16641
16642/**
16643 * Nested-guest VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH).
16644 * Unconditional VM-exit.
16645 */
16646HMVMX_EXIT_DECL hmR0VmxExitTaskSwitchNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16647{
16648 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16649
16650 hmR0VmxReadExitQualVmcs(pVmxTransient);
16651 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16652 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16653 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16654
16655 VMXVEXITINFO ExitInfo;
16656 RT_ZERO(ExitInfo);
16657 ExitInfo.uReason = pVmxTransient->uExitReason;
16658 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16659 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16660
16661 VMXVEXITEVENTINFO ExitEventInfo;
16662 RT_ZERO(ExitEventInfo);
16663 ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
16664 ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
16665 return IEMExecVmxVmexitTaskSwitch(pVCpu, &ExitInfo, &ExitEventInfo);
16666}
16667
16668
16669/**
16670 * Nested-guest VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
16671 */
16672HMVMX_EXIT_DECL hmR0VmxExitHltNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16673{
16674 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16675
16676 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_HLT_EXIT))
16677 {
16678 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16679 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
16680 }
16681 return hmR0VmxExitHlt(pVCpu, pVmxTransient);
16682}
16683
16684
16685/**
16686 * Nested-guest VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
16687 */
16688HMVMX_EXIT_DECL hmR0VmxExitInvlpgNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16689{
16690 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16691
16692 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT))
16693 {
16694 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16695 hmR0VmxReadExitQualVmcs(pVmxTransient);
16696
16697 VMXVEXITINFO ExitInfo;
16698 RT_ZERO(ExitInfo);
16699 ExitInfo.uReason = pVmxTransient->uExitReason;
16700 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16701 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16702 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16703 }
16704 return hmR0VmxExitInvlpg(pVCpu, pVmxTransient);
16705}
16706
16707
16708/**
16709 * Nested-guest VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
16710 */
16711HMVMX_EXIT_DECL hmR0VmxExitRdpmcNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16712{
16713 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16714
16715 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDPMC_EXIT))
16716 {
16717 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16718 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
16719 }
16720 return hmR0VmxExitRdpmc(pVCpu, pVmxTransient);
16721}
16722
16723
16724/**
16725 * Nested-guest VM-exit handler for VMREAD (VMX_EXIT_VMREAD) and VMWRITE
16726 * (VMX_EXIT_VMWRITE). Conditional VM-exit.
16727 */
16728HMVMX_EXIT_DECL hmR0VmxExitVmreadVmwriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16729{
16730 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16731
16732 Assert( pVmxTransient->uExitReason == VMX_EXIT_VMREAD
16733 || pVmxTransient->uExitReason == VMX_EXIT_VMWRITE);
16734
16735 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16736
16737 uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2;
16738 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
16739 uint64_t u64VmcsField = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64;
16740
16741 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
16742 if (!CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
16743 u64VmcsField &= UINT64_C(0xffffffff);
16744
16745 if (CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, pVmxTransient->uExitReason, u64VmcsField))
16746 {
16747 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16748 hmR0VmxReadExitQualVmcs(pVmxTransient);
16749
16750 VMXVEXITINFO ExitInfo;
16751 RT_ZERO(ExitInfo);
16752 ExitInfo.uReason = pVmxTransient->uExitReason;
16753 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16754 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16755 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
16756 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16757 }
16758
16759 if (pVmxTransient->uExitReason == VMX_EXIT_VMREAD)
16760 return hmR0VmxExitVmread(pVCpu, pVmxTransient);
16761 return hmR0VmxExitVmwrite(pVCpu, pVmxTransient);
16762}
16763
16764
16765/**
16766 * Nested-guest VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
16767 */
16768HMVMX_EXIT_DECL hmR0VmxExitRdtscNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16769{
16770 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16771
16772 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT))
16773 {
16774 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16775 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
16776 }
16777
16778 return hmR0VmxExitRdtsc(pVCpu, pVmxTransient);
16779}
16780
16781
16782/**
16783 * Nested-guest VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX).
16784 * Conditional VM-exit.
16785 */
16786HMVMX_EXIT_DECL hmR0VmxExitMovCRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16787{
16788 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16789
16790 hmR0VmxReadExitQualVmcs(pVmxTransient);
16791 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16792
16793 VBOXSTRICTRC rcStrict;
16794 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual);
16795 switch (uAccessType)
16796 {
16797 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE:
16798 {
16799 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
16800 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual);
16801 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
16802 uint64_t const uNewCrX = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64;
16803
16804 bool fIntercept;
16805 switch (iCrReg)
16806 {
16807 case 0:
16808 case 4:
16809 fIntercept = CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX);
16810 break;
16811
16812 case 3:
16813 fIntercept = CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCrX);
16814 break;
16815
16816 case 8:
16817 fIntercept = CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_CR8_LOAD_EXIT);
16818 break;
16819
16820 default:
16821 fIntercept = false;
16822 break;
16823 }
16824 if (fIntercept)
16825 {
16826 VMXVEXITINFO ExitInfo;
16827 RT_ZERO(ExitInfo);
16828 ExitInfo.uReason = pVmxTransient->uExitReason;
16829 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16830 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16831 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16832 }
16833 else
16834 rcStrict = hmR0VmxExitMovToCrX(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
16835 break;
16836 }
16837
16838 case VMX_EXIT_QUAL_CRX_ACCESS_READ:
16839 {
16840 /*
16841 * CR0/CR4 reads do not cause VM-exits, the read-shadow is used (subject to masking).
16842 * CR2 reads do not cause a VM-exit.
16843 * CR3 reads cause a VM-exit depending on the "CR3 store exiting" control.
16844 * CR8 reads cause a VM-exit depending on the "CR8 store exiting" control.
16845 */
16846 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
16847 if ( iCrReg == 3
16848 || iCrReg == 8)
16849 {
16850 static const uint32_t s_auCrXReadIntercepts[] = { 0, 0, 0, VMX_PROC_CTLS_CR3_STORE_EXIT, 0,
16851 0, 0, 0, VMX_PROC_CTLS_CR8_STORE_EXIT };
16852 uint32_t const uIntercept = s_auCrXReadIntercepts[iCrReg];
16853 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, uIntercept))
16854 {
16855 VMXVEXITINFO ExitInfo;
16856 RT_ZERO(ExitInfo);
16857 ExitInfo.uReason = pVmxTransient->uExitReason;
16858 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16859 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16860 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16861 }
16862 else
16863 {
16864 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual);
16865 rcStrict = hmR0VmxExitMovFromCrX(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
16866 }
16867 }
16868 else
16869 {
16870 AssertMsgFailed(("MOV from CR%d VM-exit must not happen\n", iCrReg));
16871 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, iCrReg);
16872 }
16873 break;
16874 }
16875
16876 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS:
16877 {
16878 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
16879 Assert(pVmcsNstGst);
16880 uint64_t const uGstHostMask = pVmcsNstGst->u64Cr0Mask.u;
16881 uint64_t const uReadShadow = pVmcsNstGst->u64Cr0ReadShadow.u;
16882 if ( (uGstHostMask & X86_CR0_TS)
16883 && (uReadShadow & X86_CR0_TS))
16884 {
16885 VMXVEXITINFO ExitInfo;
16886 RT_ZERO(ExitInfo);
16887 ExitInfo.uReason = pVmxTransient->uExitReason;
16888 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16889 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16890 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16891 }
16892 else
16893 rcStrict = hmR0VmxExitClts(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr);
16894 break;
16895 }
16896
16897 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
16898 {
16899 RTGCPTR GCPtrEffDst;
16900 uint16_t const uNewMsw = VMX_EXIT_QUAL_CRX_LMSW_DATA(pVmxTransient->uExitQual);
16901 bool const fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(pVmxTransient->uExitQual);
16902 if (fMemOperand)
16903 {
16904 hmR0VmxReadGuestLinearAddrVmcs(pVmxTransient);
16905 GCPtrEffDst = pVmxTransient->uGuestLinearAddr;
16906 }
16907 else
16908 GCPtrEffDst = NIL_RTGCPTR;
16909
16910 if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw))
16911 {
16912 VMXVEXITINFO ExitInfo;
16913 RT_ZERO(ExitInfo);
16914 ExitInfo.uReason = pVmxTransient->uExitReason;
16915 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16916 ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
16917 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16918 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16919 }
16920 else
16921 rcStrict = hmR0VmxExitLmsw(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, uNewMsw, GCPtrEffDst);
16922 break;
16923 }
16924
16925 default:
16926 {
16927 AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType));
16928 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType);
16929 }
16930 }
16931
16932 if (rcStrict == VINF_IEM_RAISED_XCPT)
16933 {
16934 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16935 rcStrict = VINF_SUCCESS;
16936 }
16937 return rcStrict;
16938}
16939
16940
16941/**
16942 * Nested-guest VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX).
16943 * Conditional VM-exit.
16944 */
16945HMVMX_EXIT_DECL hmR0VmxExitMovDRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16946{
16947 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16948
16949 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MOV_DR_EXIT))
16950 {
16951 hmR0VmxReadExitQualVmcs(pVmxTransient);
16952 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16953
16954 VMXVEXITINFO ExitInfo;
16955 RT_ZERO(ExitInfo);
16956 ExitInfo.uReason = pVmxTransient->uExitReason;
16957 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16958 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16959 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16960 }
16961 return hmR0VmxExitMovDRx(pVCpu, pVmxTransient);
16962}
16963
16964
16965/**
16966 * Nested-guest VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR).
16967 * Conditional VM-exit.
16968 */
16969HMVMX_EXIT_DECL hmR0VmxExitIoInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16970{
16971 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16972
16973 hmR0VmxReadExitQualVmcs(pVmxTransient);
16974
16975 uint32_t const uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
16976 uint8_t const uIOSize = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual);
16977 AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1);
16978
16979 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses in bytes. */
16980 uint8_t const cbAccess = s_aIOSizes[uIOSize];
16981 if (CPUMIsGuestVmxIoInterceptSet(pVCpu, uIOPort, cbAccess))
16982 {
16983 /*
16984 * IN/OUT instruction:
16985 * - Provides VM-exit instruction length.
16986 *
16987 * INS/OUTS instruction:
16988 * - Provides VM-exit instruction length.
16989 * - Provides Guest-linear address.
16990 * - Optionally provides VM-exit instruction info (depends on CPU feature).
16991 */
16992 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
16993 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16994
16995 /* Make sure we don't use stale/uninitialized VMX-transient info. below. */
16996 pVmxTransient->ExitInstrInfo.u = 0;
16997 pVmxTransient->uGuestLinearAddr = 0;
16998
16999 bool const fVmxInsOutsInfo = pVM->cpum.ro.GuestFeatures.fVmxInsOutInfo;
17000 bool const fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
17001 if (fIOString)
17002 {
17003 hmR0VmxReadGuestLinearAddrVmcs(pVmxTransient);
17004 if (fVmxInsOutsInfo)
17005 {
17006 Assert(RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS)); /* Paranoia. */
17007 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
17008 }
17009 }
17010
17011 VMXVEXITINFO ExitInfo;
17012 RT_ZERO(ExitInfo);
17013 ExitInfo.uReason = pVmxTransient->uExitReason;
17014 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17015 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17016 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
17017 ExitInfo.u64GuestLinearAddr = pVmxTransient->uGuestLinearAddr;
17018 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17019 }
17020 return hmR0VmxExitIoInstr(pVCpu, pVmxTransient);
17021}
17022
17023
17024/**
17025 * Nested-guest VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
17026 */
17027HMVMX_EXIT_DECL hmR0VmxExitRdmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17028{
17029 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17030
17031 uint32_t fMsrpm;
17032 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS))
17033 fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), pVCpu->cpum.GstCtx.ecx);
17034 else
17035 fMsrpm = VMXMSRPM_EXIT_RD;
17036
17037 if (fMsrpm & VMXMSRPM_EXIT_RD)
17038 {
17039 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17040 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17041 }
17042 return hmR0VmxExitRdmsr(pVCpu, pVmxTransient);
17043}
17044
17045
17046/**
17047 * Nested-guest VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
17048 */
17049HMVMX_EXIT_DECL hmR0VmxExitWrmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17050{
17051 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17052
17053 uint32_t fMsrpm;
17054 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS))
17055 fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), pVCpu->cpum.GstCtx.ecx);
17056 else
17057 fMsrpm = VMXMSRPM_EXIT_WR;
17058
17059 if (fMsrpm & VMXMSRPM_EXIT_WR)
17060 {
17061 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17062 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17063 }
17064 return hmR0VmxExitWrmsr(pVCpu, pVmxTransient);
17065}
17066
17067
17068/**
17069 * Nested-guest VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
17070 */
17071HMVMX_EXIT_DECL hmR0VmxExitMwaitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17072{
17073 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17074
17075 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MWAIT_EXIT))
17076 {
17077 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17078 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17079 }
17080 return hmR0VmxExitMwait(pVCpu, pVmxTransient);
17081}
17082
17083
17084/**
17085 * Nested-guest VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional
17086 * VM-exit.
17087 */
17088HMVMX_EXIT_DECL hmR0VmxExitMtfNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17089{
17090 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17091
17092 /** @todo NSTVMX: Should consider debugging nested-guests using VM debugger. */
17093 hmR0VmxReadGuestPendingDbgXctps(pVmxTransient);
17094 VMXVEXITINFO ExitInfo;
17095 RT_ZERO(ExitInfo);
17096 ExitInfo.uReason = pVmxTransient->uExitReason;
17097 ExitInfo.u64GuestPendingDbgXcpts = pVmxTransient->uGuestPendingDbgXcpts;
17098 return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo);
17099}
17100
17101
17102/**
17103 * Nested-guest VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
17104 */
17105HMVMX_EXIT_DECL hmR0VmxExitMonitorNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17106{
17107 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17108
17109 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MONITOR_EXIT))
17110 {
17111 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17112 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17113 }
17114 return hmR0VmxExitMonitor(pVCpu, pVmxTransient);
17115}
17116
17117
17118/**
17119 * Nested-guest VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
17120 */
17121HMVMX_EXIT_DECL hmR0VmxExitPauseNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17122{
17123 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17124
17125 /** @todo NSTVMX: Think about this more. Does the outer guest need to intercept
17126 * PAUSE when executing a nested-guest? If it does not, we would not need
17127 * to check for the intercepts here. Just call VM-exit... */
17128
17129 /* The CPU would have already performed the necessary CPL checks for PAUSE-loop exiting. */
17130 if ( CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_PAUSE_EXIT)
17131 || CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
17132 {
17133 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17134 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17135 }
17136 return hmR0VmxExitPause(pVCpu, pVmxTransient);
17137}
17138
17139
17140/**
17141 * Nested-guest VM-exit handler for when the TPR value is lowered below the
17142 * specified threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
17143 */
17144HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThresholdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17145{
17146 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17147
17148 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_TPR_SHADOW))
17149 {
17150 hmR0VmxReadGuestPendingDbgXctps(pVmxTransient);
17151 VMXVEXITINFO ExitInfo;
17152 RT_ZERO(ExitInfo);
17153 ExitInfo.uReason = pVmxTransient->uExitReason;
17154 ExitInfo.u64GuestPendingDbgXcpts = pVmxTransient->uGuestPendingDbgXcpts;
17155 return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo);
17156 }
17157 return hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient);
17158}
17159
17160
17161/**
17162 * Nested-guest VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional
17163 * VM-exit.
17164 */
17165HMVMX_EXIT_DECL hmR0VmxExitApicAccessNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17166{
17167 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17168
17169 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17170 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
17171 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
17172 hmR0VmxReadExitQualVmcs(pVmxTransient);
17173
17174 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_APIC_ACCESS));
17175
17176 Log4Func(("at offset %#x type=%u\n", VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual),
17177 VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual)));
17178
17179 VMXVEXITINFO ExitInfo;
17180 RT_ZERO(ExitInfo);
17181 ExitInfo.uReason = pVmxTransient->uExitReason;
17182 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17183 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17184
17185 VMXVEXITEVENTINFO ExitEventInfo;
17186 RT_ZERO(ExitEventInfo);
17187 ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
17188 ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
17189 return IEMExecVmxVmexitApicAccess(pVCpu, &ExitInfo, &ExitEventInfo);
17190}
17191
17192
17193/**
17194 * Nested-guest VM-exit handler for APIC write emulation (VMX_EXIT_APIC_WRITE).
17195 * Conditional VM-exit.
17196 */
17197HMVMX_EXIT_DECL hmR0VmxExitApicWriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17198{
17199 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17200
17201 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_APIC_REG_VIRT));
17202 hmR0VmxReadExitQualVmcs(pVmxTransient);
17203 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
17204}
17205
17206
17207/**
17208 * Nested-guest VM-exit handler for virtualized EOI (VMX_EXIT_VIRTUALIZED_EOI).
17209 * Conditional VM-exit.
17210 */
17211HMVMX_EXIT_DECL hmR0VmxExitVirtEoiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17212{
17213 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17214
17215 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_INT_DELIVERY));
17216 hmR0VmxReadExitQualVmcs(pVmxTransient);
17217 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
17218}
17219
17220
17221/**
17222 * Nested-guest VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
17223 */
17224HMVMX_EXIT_DECL hmR0VmxExitRdtscpNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17225{
17226 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17227
17228 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT))
17229 {
17230 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_RDTSCP));
17231 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17232 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17233 }
17234 return hmR0VmxExitRdtscp(pVCpu, pVmxTransient);
17235}
17236
17237
17238/**
17239 * Nested-guest VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
17240 */
17241HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17242{
17243 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17244
17245 if (CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_WBINVD_EXIT))
17246 {
17247 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17248 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17249 }
17250 return hmR0VmxExitWbinvd(pVCpu, pVmxTransient);
17251}
17252
17253
17254/**
17255 * Nested-guest VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
17256 */
17257HMVMX_EXIT_DECL hmR0VmxExitInvpcidNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17258{
17259 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17260
17261 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT))
17262 {
17263 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_INVPCID));
17264 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17265 hmR0VmxReadExitQualVmcs(pVmxTransient);
17266 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
17267
17268 VMXVEXITINFO ExitInfo;
17269 RT_ZERO(ExitInfo);
17270 ExitInfo.uReason = pVmxTransient->uExitReason;
17271 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17272 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17273 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
17274 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17275 }
17276 return hmR0VmxExitInvpcid(pVCpu, pVmxTransient);
17277}
17278
17279
17280/**
17281 * Nested-guest VM-exit handler for invalid-guest state
17282 * (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error VM-exit.
17283 */
17284HMVMX_EXIT_DECL hmR0VmxExitErrInvalidGuestStateNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17285{
17286 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17287
17288 /*
17289 * Currently this should never happen because we fully emulate VMLAUNCH/VMRESUME in IEM.
17290 * So if it does happen, it indicates a bug possibly in the hardware-assisted VMX code.
17291 * Handle it like it's in an invalid guest state of the outer guest.
17292 *
17293 * When the fast path is implemented, this should be changed to cause the corresponding
17294 * nested-guest VM-exit.
17295 */
17296 return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
17297}
17298
17299
17300/**
17301 * Nested-guest VM-exit handler for instructions that cause VM-exits uncondtionally
17302 * and only provide the instruction length.
17303 *
17304 * Unconditional VM-exit.
17305 */
17306HMVMX_EXIT_DECL hmR0VmxExitInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17307{
17308 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17309
17310#ifdef VBOX_STRICT
17311 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
17312 switch (pVmxTransient->uExitReason)
17313 {
17314 case VMX_EXIT_ENCLS:
17315 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_ENCLS_EXIT));
17316 break;
17317
17318 case VMX_EXIT_VMFUNC:
17319 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_VMFUNC));
17320 break;
17321 }
17322#endif
17323
17324 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17325 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17326}
17327
17328
17329/**
17330 * Nested-guest VM-exit handler for instructions that provide instruction length as
17331 * well as more information.
17332 *
17333 * Unconditional VM-exit.
17334 */
17335HMVMX_EXIT_DECL hmR0VmxExitInstrWithInfoNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17336{
17337 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17338
17339#ifdef VBOX_STRICT
17340 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
17341 switch (pVmxTransient->uExitReason)
17342 {
17343 case VMX_EXIT_GDTR_IDTR_ACCESS:
17344 case VMX_EXIT_LDTR_TR_ACCESS:
17345 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_DESC_TABLE_EXIT));
17346 break;
17347
17348 case VMX_EXIT_RDRAND:
17349 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDRAND_EXIT));
17350 break;
17351
17352 case VMX_EXIT_RDSEED:
17353 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDSEED_EXIT));
17354 break;
17355
17356 case VMX_EXIT_XSAVES:
17357 case VMX_EXIT_XRSTORS:
17358 /** @todo NSTVMX: Verify XSS-bitmap. */
17359 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_XSAVES_XRSTORS));
17360 break;
17361
17362 case VMX_EXIT_UMWAIT:
17363 case VMX_EXIT_TPAUSE:
17364 Assert(CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_RDTSC_EXIT));
17365 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_USER_WAIT_PAUSE));
17366 break;
17367 }
17368#endif
17369
17370 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17371 hmR0VmxReadExitQualVmcs(pVmxTransient);
17372 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
17373
17374 VMXVEXITINFO ExitInfo;
17375 RT_ZERO(ExitInfo);
17376 ExitInfo.uReason = pVmxTransient->uExitReason;
17377 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17378 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17379 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
17380 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17381}
17382
17383/** @} */
17384#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
17385
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette