VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 82919

Last change on this file since 82919 was 82919, checked in by vboxsync, 5 years ago

VMM/HMVMXR0: AssertMsg, need more info on such an assertion.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 720.2 KB
Line 
1/* $Id: HMVMXR0.cpp 82919 2020-01-30 05:48:14Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <iprt/x86.h>
25#include <iprt/asm-amd64-x86.h>
26#include <iprt/thread.h>
27#include <iprt/mem.h>
28#include <iprt/mp.h>
29
30#include <VBox/vmm/pdmapi.h>
31#include <VBox/vmm/dbgf.h>
32#include <VBox/vmm/iem.h>
33#include <VBox/vmm/iom.h>
34#include <VBox/vmm/tm.h>
35#include <VBox/vmm/em.h>
36#include <VBox/vmm/gim.h>
37#include <VBox/vmm/apic.h>
38#include "HMInternal.h"
39#include <VBox/vmm/vmcc.h>
40#include <VBox/vmm/hmvmxinline.h>
41#include "HMVMXR0.h"
42#include "dtrace/VBoxVMM.h"
43
44#ifdef DEBUG_ramshankar
45# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
46# define HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
47# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
48# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
49# define HMVMX_ALWAYS_CLEAN_TRANSIENT
50# define HMVMX_ALWAYS_CHECK_GUEST_STATE
51# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
52# define HMVMX_ALWAYS_TRAP_PF
53# define HMVMX_ALWAYS_FLUSH_TLB
54# define HMVMX_ALWAYS_SWAP_EFER
55#endif
56
57
58/*********************************************************************************************************************************
59* Defined Constants And Macros *
60*********************************************************************************************************************************/
61/** Use the function table. */
62#define HMVMX_USE_FUNCTION_TABLE
63
64/** Determine which tagged-TLB flush handler to use. */
65#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
66#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
67#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
68#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
69
70/**
71 * Flags to skip redundant reads of some common VMCS fields that are not part of
72 * the guest-CPU or VCPU state but are needed while handling VM-exits.
73 */
74#define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
75#define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
76#define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
77#define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
78#define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
79#define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
80#define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
81#define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
82#define HMVMX_READ_GUEST_PHYSICAL_ADDR RT_BIT_32(8)
83#define HMVMX_READ_GUEST_PENDING_DBG_XCPTS RT_BIT_32(9)
84
85/** All the VMCS fields required for processing of exception/NMI VM-exits. */
86#define HMVMX_READ_XCPT_INFO ( HMVMX_READ_EXIT_INTERRUPTION_INFO \
87 | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE \
88 | HMVMX_READ_EXIT_INSTR_LEN \
89 | HMVMX_READ_IDT_VECTORING_INFO \
90 | HMVMX_READ_IDT_VECTORING_ERROR_CODE)
91
92/** Assert that all the given fields have been read from the VMCS. */
93#ifdef VBOX_STRICT
94# define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) \
95 do { \
96 uint32_t const fVmcsFieldRead = ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead); \
97 Assert((fVmcsFieldRead & (a_fReadFields)) == (a_fReadFields)); \
98 } while (0)
99#else
100# define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) do { } while (0)
101#endif
102
103/**
104 * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
105 * guest using hardware-assisted VMX.
106 *
107 * This excludes state like GPRs (other than RSP) which are always are
108 * swapped and restored across the world-switch and also registers like EFER,
109 * MSR which cannot be modified by the guest without causing a VM-exit.
110 */
111#define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
112 | CPUMCTX_EXTRN_RFLAGS \
113 | CPUMCTX_EXTRN_RSP \
114 | CPUMCTX_EXTRN_SREG_MASK \
115 | CPUMCTX_EXTRN_TABLE_MASK \
116 | CPUMCTX_EXTRN_KERNEL_GS_BASE \
117 | CPUMCTX_EXTRN_SYSCALL_MSRS \
118 | CPUMCTX_EXTRN_SYSENTER_MSRS \
119 | CPUMCTX_EXTRN_TSC_AUX \
120 | CPUMCTX_EXTRN_OTHER_MSRS \
121 | CPUMCTX_EXTRN_CR0 \
122 | CPUMCTX_EXTRN_CR3 \
123 | CPUMCTX_EXTRN_CR4 \
124 | CPUMCTX_EXTRN_DR7 \
125 | CPUMCTX_EXTRN_HWVIRT \
126 | CPUMCTX_EXTRN_HM_VMX_MASK)
127
128/**
129 * Exception bitmap mask for real-mode guests (real-on-v86).
130 *
131 * We need to intercept all exceptions manually except:
132 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
133 * due to bugs in Intel CPUs.
134 * - \#PF need not be intercepted even in real-mode if we have nested paging
135 * support.
136 */
137#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
138 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
139 | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
140 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
141 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
142 | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
143 | RT_BIT(X86_XCPT_XF))
144
145/** Maximum VM-instruction error number. */
146#define HMVMX_INSTR_ERROR_MAX 28
147
148/** Profiling macro. */
149#ifdef HM_PROFILE_EXIT_DISPATCH
150# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
151# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
152#else
153# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
154# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
155#endif
156
157/** Assert that preemption is disabled or covered by thread-context hooks. */
158#define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
159 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
160
161/** Assert that we haven't migrated CPUs when thread-context hooks are not
162 * used. */
163#define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
164 || (a_pVCpu)->hm.s.idEnteredCpu == RTMpCpuId(), \
165 ("Illegal migration! Entered on CPU %u Current %u\n", \
166 (a_pVCpu)->hm.s.idEnteredCpu, RTMpCpuId()))
167
168/** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
169 * context. */
170#define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
171 ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
172 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
173
174/** Log the VM-exit reason with an easily visible marker to identify it in a
175 * potential sea of logging data. */
176#define HMVMX_LOG_EXIT(a_pVCpu, a_uExitReason) \
177 do { \
178 Log4(("VM-exit: vcpu[%RU32] %85s -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu, \
179 HMGetVmxExitName(a_uExitReason))); \
180 } while (0) \
181
182
183/*********************************************************************************************************************************
184* Structures and Typedefs *
185*********************************************************************************************************************************/
186/**
187 * VMX per-VCPU transient state.
188 *
189 * A state structure for holding miscellaneous information across
190 * VMX non-root operation and restored after the transition.
191 *
192 * Note: The members are ordered and aligned such that the most
193 * frequently used ones (in the guest execution loop) fall within
194 * the first cache line.
195 */
196typedef struct VMXTRANSIENT
197{
198 /** Mask of currently read VMCS fields; HMVMX_READ_XXX. */
199 uint32_t fVmcsFieldsRead;
200 /** The guest's TPR value used for TPR shadowing. */
201 uint8_t u8GuestTpr;
202 uint8_t abAlignment0[3];
203
204 /** Whether the VM-exit was caused by a page-fault during delivery of an
205 * external interrupt or NMI. */
206 bool fVectoringPF;
207 /** Whether the VM-exit was caused by a page-fault during delivery of a
208 * contributory exception or a page-fault. */
209 bool fVectoringDoublePF;
210 /** Whether the VM-entry failed or not. */
211 bool fVMEntryFailed;
212 /** Whether the TSC_AUX MSR needs to be removed from the auto-load/store MSR
213 * area after VM-exit. */
214 bool fRemoveTscAuxMsr;
215 /** Whether TSC-offsetting and VMX-preemption timer was updated before VM-entry. */
216 bool fUpdatedTscOffsettingAndPreemptTimer;
217 /** Whether we are currently executing a nested-guest. */
218 bool fIsNestedGuest;
219 /** Whether the guest debug state was active at the time of VM-exit. */
220 bool fWasGuestDebugStateActive;
221 /** Whether the hyper debug state was active at the time of VM-exit. */
222 bool fWasHyperDebugStateActive;
223
224 /** The basic VM-exit reason. */
225 uint32_t uExitReason;
226 /** The VM-exit interruption error code. */
227 uint32_t uExitIntErrorCode;
228
229 /** The host's rflags/eflags. */
230 RTCCUINTREG fEFlags;
231
232 /** The VM-exit exit code qualification. */
233 uint64_t uExitQual;
234
235 /** The VMCS info. object. */
236 PVMXVMCSINFO pVmcsInfo;
237
238 /** The VM-exit interruption-information field. */
239 uint32_t uExitIntInfo;
240 /** The VM-exit instruction-length field. */
241 uint32_t cbExitInstr;
242
243 /** The VM-exit instruction-information field. */
244 VMXEXITINSTRINFO ExitInstrInfo;
245 /** IDT-vectoring information field. */
246 uint32_t uIdtVectoringInfo;
247
248 /** IDT-vectoring error code. */
249 uint32_t uIdtVectoringErrorCode;
250 uint32_t u32Alignment0;
251
252 /** The Guest-linear address. */
253 uint64_t uGuestLinearAddr;
254
255 /** The Guest-physical address. */
256 uint64_t uGuestPhysicalAddr;
257
258 /** The Guest pending-debug exceptions. */
259 uint64_t uGuestPendingDbgXcpts;
260
261 /** The VM-entry interruption-information field. */
262 uint32_t uEntryIntInfo;
263 /** The VM-entry exception error code field. */
264 uint32_t uEntryXcptErrorCode;
265
266 /** The VM-entry instruction length field. */
267 uint32_t cbEntryInstr;
268} VMXTRANSIENT;
269AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
270AssertCompileMemberAlignment(VMXTRANSIENT, fVmcsFieldsRead, 8);
271AssertCompileMemberAlignment(VMXTRANSIENT, fVectoringPF, 8);
272AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, 8);
273AssertCompileMemberAlignment(VMXTRANSIENT, fEFlags, 8);
274AssertCompileMemberAlignment(VMXTRANSIENT, uExitQual, 8);
275AssertCompileMemberAlignment(VMXTRANSIENT, pVmcsInfo, 8);
276AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, 8);
277AssertCompileMemberAlignment(VMXTRANSIENT, ExitInstrInfo, 8);
278AssertCompileMemberAlignment(VMXTRANSIENT, uIdtVectoringErrorCode, 8);
279AssertCompileMemberAlignment(VMXTRANSIENT, uGuestLinearAddr, 8);
280AssertCompileMemberAlignment(VMXTRANSIENT, uGuestPhysicalAddr, 8);
281AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, 8);
282AssertCompileMemberAlignment(VMXTRANSIENT, cbEntryInstr, 8);
283/** Pointer to VMX transient state. */
284typedef VMXTRANSIENT *PVMXTRANSIENT;
285/** Pointer to a const VMX transient state. */
286typedef const VMXTRANSIENT *PCVMXTRANSIENT;
287
288/**
289 * VMX page allocation information.
290 */
291typedef struct
292{
293 uint32_t fValid; /**< Whether to allocate this page (e.g, based on a CPU feature). */
294 uint32_t uPadding0; /**< Padding to ensure array of these structs are aligned to a multiple of 8. */
295 PRTHCPHYS pHCPhys; /**< Where to store the host-physical address of the allocation. */
296 PRTR0PTR ppVirt; /**< Where to store the host-virtual address of the allocation. */
297} VMXPAGEALLOCINFO;
298/** Pointer to VMX page-allocation info. */
299typedef VMXPAGEALLOCINFO *PVMXPAGEALLOCINFO;
300/** Pointer to a const VMX page-allocation info. */
301typedef const VMXPAGEALLOCINFO *PCVMXPAGEALLOCINFO;
302AssertCompileSizeAlignment(VMXPAGEALLOCINFO, 8);
303
304/**
305 * Memory operand read or write access.
306 */
307typedef enum VMXMEMACCESS
308{
309 VMXMEMACCESS_READ = 0,
310 VMXMEMACCESS_WRITE = 1
311} VMXMEMACCESS;
312
313/**
314 * VMX VM-exit handler.
315 *
316 * @returns Strict VBox status code (i.e. informational status codes too).
317 * @param pVCpu The cross context virtual CPU structure.
318 * @param pVmxTransient The VMX-transient structure.
319 */
320#ifndef HMVMX_USE_FUNCTION_TABLE
321typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
322#else
323typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
324/** Pointer to VM-exit handler. */
325typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
326#endif
327
328/**
329 * VMX VM-exit handler, non-strict status code.
330 *
331 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
332 *
333 * @returns VBox status code, no informational status code returned.
334 * @param pVCpu The cross context virtual CPU structure.
335 * @param pVmxTransient The VMX-transient structure.
336 *
337 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
338 * use of that status code will be replaced with VINF_EM_SOMETHING
339 * later when switching over to IEM.
340 */
341#ifndef HMVMX_USE_FUNCTION_TABLE
342typedef int FNVMXEXITHANDLERNSRC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
343#else
344typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
345#endif
346
347
348/*********************************************************************************************************************************
349* Internal Functions *
350*********************************************************************************************************************************/
351#ifndef HMVMX_USE_FUNCTION_TABLE
352DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
353# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
354# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
355#else
356# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
357# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
358#endif
359#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
360DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
361#endif
362
363static int hmR0VmxImportGuestState(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat);
364
365/** @name VM-exit handler prototypes.
366 * @{
367 */
368static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
369static FNVMXEXITHANDLER hmR0VmxExitExtInt;
370static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
371static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
372static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
373static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
374static FNVMXEXITHANDLER hmR0VmxExitCpuid;
375static FNVMXEXITHANDLER hmR0VmxExitGetsec;
376static FNVMXEXITHANDLER hmR0VmxExitHlt;
377static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
378static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
379static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
380static FNVMXEXITHANDLER hmR0VmxExitVmcall;
381#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
382static FNVMXEXITHANDLER hmR0VmxExitVmclear;
383static FNVMXEXITHANDLER hmR0VmxExitVmlaunch;
384static FNVMXEXITHANDLER hmR0VmxExitVmptrld;
385static FNVMXEXITHANDLER hmR0VmxExitVmptrst;
386static FNVMXEXITHANDLER hmR0VmxExitVmread;
387static FNVMXEXITHANDLER hmR0VmxExitVmresume;
388static FNVMXEXITHANDLER hmR0VmxExitVmwrite;
389static FNVMXEXITHANDLER hmR0VmxExitVmxoff;
390static FNVMXEXITHANDLER hmR0VmxExitVmxon;
391static FNVMXEXITHANDLER hmR0VmxExitInvvpid;
392#endif
393static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
394static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
395static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
396static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
397static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
398static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
399static FNVMXEXITHANDLER hmR0VmxExitMwait;
400static FNVMXEXITHANDLER hmR0VmxExitMtf;
401static FNVMXEXITHANDLER hmR0VmxExitMonitor;
402static FNVMXEXITHANDLER hmR0VmxExitPause;
403static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
404static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
405static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
406static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
407static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
408static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
409static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
410static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
411static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
412static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
413static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
414static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUnexpected;
415/** @} */
416
417#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
418/** @name Nested-guest VM-exit handler prototypes.
419 * @{
420 */
421static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmiNested;
422static FNVMXEXITHANDLER hmR0VmxExitTripleFaultNested;
423static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindowNested;
424static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindowNested;
425static FNVMXEXITHANDLER hmR0VmxExitTaskSwitchNested;
426static FNVMXEXITHANDLER hmR0VmxExitHltNested;
427static FNVMXEXITHANDLER hmR0VmxExitInvlpgNested;
428static FNVMXEXITHANDLER hmR0VmxExitRdpmcNested;
429static FNVMXEXITHANDLER hmR0VmxExitVmreadVmwriteNested;
430static FNVMXEXITHANDLER hmR0VmxExitRdtscNested;
431static FNVMXEXITHANDLER hmR0VmxExitMovCRxNested;
432static FNVMXEXITHANDLER hmR0VmxExitMovDRxNested;
433static FNVMXEXITHANDLER hmR0VmxExitIoInstrNested;
434static FNVMXEXITHANDLER hmR0VmxExitRdmsrNested;
435static FNVMXEXITHANDLER hmR0VmxExitWrmsrNested;
436static FNVMXEXITHANDLER hmR0VmxExitMwaitNested;
437static FNVMXEXITHANDLER hmR0VmxExitMtfNested;
438static FNVMXEXITHANDLER hmR0VmxExitMonitorNested;
439static FNVMXEXITHANDLER hmR0VmxExitPauseNested;
440static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThresholdNested;
441static FNVMXEXITHANDLER hmR0VmxExitApicAccessNested;
442static FNVMXEXITHANDLER hmR0VmxExitApicWriteNested;
443static FNVMXEXITHANDLER hmR0VmxExitVirtEoiNested;
444static FNVMXEXITHANDLER hmR0VmxExitRdtscpNested;
445static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvdNested;
446static FNVMXEXITHANDLER hmR0VmxExitInvpcidNested;
447static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestStateNested;
448static FNVMXEXITHANDLER hmR0VmxExitInstrNested;
449static FNVMXEXITHANDLER hmR0VmxExitInstrWithInfoNested;
450/** @} */
451#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
452
453
454/*********************************************************************************************************************************
455* Global Variables *
456*********************************************************************************************************************************/
457#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
458/**
459 * Array of all VMCS fields.
460 * Any fields added to the VT-x spec. should be added here.
461 *
462 * Currently only used to derive shadow VMCS fields for hardware-assisted execution
463 * of nested-guests.
464 */
465static const uint32_t g_aVmcsFields[] =
466{
467 /* 16-bit control fields. */
468 VMX_VMCS16_VPID,
469 VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR,
470 VMX_VMCS16_EPTP_INDEX,
471
472 /* 16-bit guest-state fields. */
473 VMX_VMCS16_GUEST_ES_SEL,
474 VMX_VMCS16_GUEST_CS_SEL,
475 VMX_VMCS16_GUEST_SS_SEL,
476 VMX_VMCS16_GUEST_DS_SEL,
477 VMX_VMCS16_GUEST_FS_SEL,
478 VMX_VMCS16_GUEST_GS_SEL,
479 VMX_VMCS16_GUEST_LDTR_SEL,
480 VMX_VMCS16_GUEST_TR_SEL,
481 VMX_VMCS16_GUEST_INTR_STATUS,
482 VMX_VMCS16_GUEST_PML_INDEX,
483
484 /* 16-bits host-state fields. */
485 VMX_VMCS16_HOST_ES_SEL,
486 VMX_VMCS16_HOST_CS_SEL,
487 VMX_VMCS16_HOST_SS_SEL,
488 VMX_VMCS16_HOST_DS_SEL,
489 VMX_VMCS16_HOST_FS_SEL,
490 VMX_VMCS16_HOST_GS_SEL,
491 VMX_VMCS16_HOST_TR_SEL,
492
493 /* 64-bit control fields. */
494 VMX_VMCS64_CTRL_IO_BITMAP_A_FULL,
495 VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH,
496 VMX_VMCS64_CTRL_IO_BITMAP_B_FULL,
497 VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH,
498 VMX_VMCS64_CTRL_MSR_BITMAP_FULL,
499 VMX_VMCS64_CTRL_MSR_BITMAP_HIGH,
500 VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL,
501 VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH,
502 VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL,
503 VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH,
504 VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL,
505 VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH,
506 VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL,
507 VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH,
508 VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL,
509 VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH,
510 VMX_VMCS64_CTRL_TSC_OFFSET_FULL,
511 VMX_VMCS64_CTRL_TSC_OFFSET_HIGH,
512 VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL,
513 VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH,
514 VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL,
515 VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH,
516 VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL,
517 VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH,
518 VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL,
519 VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH,
520 VMX_VMCS64_CTRL_EPTP_FULL,
521 VMX_VMCS64_CTRL_EPTP_HIGH,
522 VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL,
523 VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH,
524 VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL,
525 VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH,
526 VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL,
527 VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH,
528 VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL,
529 VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH,
530 VMX_VMCS64_CTRL_EPTP_LIST_FULL,
531 VMX_VMCS64_CTRL_EPTP_LIST_HIGH,
532 VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL,
533 VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH,
534 VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL,
535 VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH,
536 VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_FULL,
537 VMX_VMCS64_CTRL_VIRTXCPT_INFO_ADDR_HIGH,
538 VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL,
539 VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH,
540 VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL,
541 VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH,
542 VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL,
543 VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH,
544
545 /* 64-bit read-only data fields. */
546 VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL,
547 VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH,
548
549 /* 64-bit guest-state fields. */
550 VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL,
551 VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH,
552 VMX_VMCS64_GUEST_DEBUGCTL_FULL,
553 VMX_VMCS64_GUEST_DEBUGCTL_HIGH,
554 VMX_VMCS64_GUEST_PAT_FULL,
555 VMX_VMCS64_GUEST_PAT_HIGH,
556 VMX_VMCS64_GUEST_EFER_FULL,
557 VMX_VMCS64_GUEST_EFER_HIGH,
558 VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL,
559 VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH,
560 VMX_VMCS64_GUEST_PDPTE0_FULL,
561 VMX_VMCS64_GUEST_PDPTE0_HIGH,
562 VMX_VMCS64_GUEST_PDPTE1_FULL,
563 VMX_VMCS64_GUEST_PDPTE1_HIGH,
564 VMX_VMCS64_GUEST_PDPTE2_FULL,
565 VMX_VMCS64_GUEST_PDPTE2_HIGH,
566 VMX_VMCS64_GUEST_PDPTE3_FULL,
567 VMX_VMCS64_GUEST_PDPTE3_HIGH,
568 VMX_VMCS64_GUEST_BNDCFGS_FULL,
569 VMX_VMCS64_GUEST_BNDCFGS_HIGH,
570
571 /* 64-bit host-state fields. */
572 VMX_VMCS64_HOST_PAT_FULL,
573 VMX_VMCS64_HOST_PAT_HIGH,
574 VMX_VMCS64_HOST_EFER_FULL,
575 VMX_VMCS64_HOST_EFER_HIGH,
576 VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL,
577 VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH,
578
579 /* 32-bit control fields. */
580 VMX_VMCS32_CTRL_PIN_EXEC,
581 VMX_VMCS32_CTRL_PROC_EXEC,
582 VMX_VMCS32_CTRL_EXCEPTION_BITMAP,
583 VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK,
584 VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH,
585 VMX_VMCS32_CTRL_CR3_TARGET_COUNT,
586 VMX_VMCS32_CTRL_EXIT,
587 VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT,
588 VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT,
589 VMX_VMCS32_CTRL_ENTRY,
590 VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT,
591 VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO,
592 VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE,
593 VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH,
594 VMX_VMCS32_CTRL_TPR_THRESHOLD,
595 VMX_VMCS32_CTRL_PROC_EXEC2,
596 VMX_VMCS32_CTRL_PLE_GAP,
597 VMX_VMCS32_CTRL_PLE_WINDOW,
598
599 /* 32-bits read-only fields. */
600 VMX_VMCS32_RO_VM_INSTR_ERROR,
601 VMX_VMCS32_RO_EXIT_REASON,
602 VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO,
603 VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE,
604 VMX_VMCS32_RO_IDT_VECTORING_INFO,
605 VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE,
606 VMX_VMCS32_RO_EXIT_INSTR_LENGTH,
607 VMX_VMCS32_RO_EXIT_INSTR_INFO,
608
609 /* 32-bit guest-state fields. */
610 VMX_VMCS32_GUEST_ES_LIMIT,
611 VMX_VMCS32_GUEST_CS_LIMIT,
612 VMX_VMCS32_GUEST_SS_LIMIT,
613 VMX_VMCS32_GUEST_DS_LIMIT,
614 VMX_VMCS32_GUEST_FS_LIMIT,
615 VMX_VMCS32_GUEST_GS_LIMIT,
616 VMX_VMCS32_GUEST_LDTR_LIMIT,
617 VMX_VMCS32_GUEST_TR_LIMIT,
618 VMX_VMCS32_GUEST_GDTR_LIMIT,
619 VMX_VMCS32_GUEST_IDTR_LIMIT,
620 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
621 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
622 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
623 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
624 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
625 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS,
626 VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS,
627 VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS,
628 VMX_VMCS32_GUEST_INT_STATE,
629 VMX_VMCS32_GUEST_ACTIVITY_STATE,
630 VMX_VMCS32_GUEST_SMBASE,
631 VMX_VMCS32_GUEST_SYSENTER_CS,
632 VMX_VMCS32_PREEMPT_TIMER_VALUE,
633
634 /* 32-bit host-state fields. */
635 VMX_VMCS32_HOST_SYSENTER_CS,
636
637 /* Natural-width control fields. */
638 VMX_VMCS_CTRL_CR0_MASK,
639 VMX_VMCS_CTRL_CR4_MASK,
640 VMX_VMCS_CTRL_CR0_READ_SHADOW,
641 VMX_VMCS_CTRL_CR4_READ_SHADOW,
642 VMX_VMCS_CTRL_CR3_TARGET_VAL0,
643 VMX_VMCS_CTRL_CR3_TARGET_VAL1,
644 VMX_VMCS_CTRL_CR3_TARGET_VAL2,
645 VMX_VMCS_CTRL_CR3_TARGET_VAL3,
646
647 /* Natural-width read-only data fields. */
648 VMX_VMCS_RO_EXIT_QUALIFICATION,
649 VMX_VMCS_RO_IO_RCX,
650 VMX_VMCS_RO_IO_RSI,
651 VMX_VMCS_RO_IO_RDI,
652 VMX_VMCS_RO_IO_RIP,
653 VMX_VMCS_RO_GUEST_LINEAR_ADDR,
654
655 /* Natural-width guest-state field */
656 VMX_VMCS_GUEST_CR0,
657 VMX_VMCS_GUEST_CR3,
658 VMX_VMCS_GUEST_CR4,
659 VMX_VMCS_GUEST_ES_BASE,
660 VMX_VMCS_GUEST_CS_BASE,
661 VMX_VMCS_GUEST_SS_BASE,
662 VMX_VMCS_GUEST_DS_BASE,
663 VMX_VMCS_GUEST_FS_BASE,
664 VMX_VMCS_GUEST_GS_BASE,
665 VMX_VMCS_GUEST_LDTR_BASE,
666 VMX_VMCS_GUEST_TR_BASE,
667 VMX_VMCS_GUEST_GDTR_BASE,
668 VMX_VMCS_GUEST_IDTR_BASE,
669 VMX_VMCS_GUEST_DR7,
670 VMX_VMCS_GUEST_RSP,
671 VMX_VMCS_GUEST_RIP,
672 VMX_VMCS_GUEST_RFLAGS,
673 VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS,
674 VMX_VMCS_GUEST_SYSENTER_ESP,
675 VMX_VMCS_GUEST_SYSENTER_EIP,
676
677 /* Natural-width host-state fields */
678 VMX_VMCS_HOST_CR0,
679 VMX_VMCS_HOST_CR3,
680 VMX_VMCS_HOST_CR4,
681 VMX_VMCS_HOST_FS_BASE,
682 VMX_VMCS_HOST_GS_BASE,
683 VMX_VMCS_HOST_TR_BASE,
684 VMX_VMCS_HOST_GDTR_BASE,
685 VMX_VMCS_HOST_IDTR_BASE,
686 VMX_VMCS_HOST_SYSENTER_ESP,
687 VMX_VMCS_HOST_SYSENTER_EIP,
688 VMX_VMCS_HOST_RSP,
689 VMX_VMCS_HOST_RIP
690};
691#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
692
693static const uint32_t g_aVmcsSegBase[] =
694{
695 VMX_VMCS_GUEST_ES_BASE,
696 VMX_VMCS_GUEST_CS_BASE,
697 VMX_VMCS_GUEST_SS_BASE,
698 VMX_VMCS_GUEST_DS_BASE,
699 VMX_VMCS_GUEST_FS_BASE,
700 VMX_VMCS_GUEST_GS_BASE
701};
702static const uint32_t g_aVmcsSegSel[] =
703{
704 VMX_VMCS16_GUEST_ES_SEL,
705 VMX_VMCS16_GUEST_CS_SEL,
706 VMX_VMCS16_GUEST_SS_SEL,
707 VMX_VMCS16_GUEST_DS_SEL,
708 VMX_VMCS16_GUEST_FS_SEL,
709 VMX_VMCS16_GUEST_GS_SEL
710};
711static const uint32_t g_aVmcsSegLimit[] =
712{
713 VMX_VMCS32_GUEST_ES_LIMIT,
714 VMX_VMCS32_GUEST_CS_LIMIT,
715 VMX_VMCS32_GUEST_SS_LIMIT,
716 VMX_VMCS32_GUEST_DS_LIMIT,
717 VMX_VMCS32_GUEST_FS_LIMIT,
718 VMX_VMCS32_GUEST_GS_LIMIT
719};
720static const uint32_t g_aVmcsSegAttr[] =
721{
722 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
723 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
724 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
725 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
726 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
727 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS
728};
729AssertCompile(RT_ELEMENTS(g_aVmcsSegSel) == X86_SREG_COUNT);
730AssertCompile(RT_ELEMENTS(g_aVmcsSegLimit) == X86_SREG_COUNT);
731AssertCompile(RT_ELEMENTS(g_aVmcsSegBase) == X86_SREG_COUNT);
732AssertCompile(RT_ELEMENTS(g_aVmcsSegAttr) == X86_SREG_COUNT);
733
734#ifdef HMVMX_USE_FUNCTION_TABLE
735/**
736 * VMX_EXIT dispatch table.
737 */
738static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
739{
740 /* 0 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
741 /* 1 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
742 /* 2 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
743 /* 3 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitErrUnexpected,
744 /* 4 VMX_EXIT_SIPI */ hmR0VmxExitErrUnexpected,
745 /* 5 VMX_EXIT_IO_SMI */ hmR0VmxExitErrUnexpected,
746 /* 6 VMX_EXIT_SMI */ hmR0VmxExitErrUnexpected,
747 /* 7 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
748 /* 8 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
749 /* 9 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
750 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
751 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
752 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
753 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
754 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
755 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
756 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
757 /* 17 VMX_EXIT_RSM */ hmR0VmxExitErrUnexpected,
758 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
759#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
760 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitVmclear,
761 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitVmlaunch,
762 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitVmptrld,
763 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitVmptrst,
764 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitVmread,
765 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitVmresume,
766 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitVmwrite,
767 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitVmxoff,
768 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitVmxon,
769#else
770 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
771 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
772 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
773 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
774 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
775 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
776 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
777 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
778 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
779#endif
780 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
781 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
782 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
783 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
784 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
785 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
786 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrUnexpected,
787 /* 35 UNDEFINED */ hmR0VmxExitErrUnexpected,
788 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
789 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
790 /* 38 UNDEFINED */ hmR0VmxExitErrUnexpected,
791 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
792 /* 40 VMX_EXIT_PAUSE */ hmR0VmxExitPause,
793 /* 41 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUnexpected,
794 /* 42 UNDEFINED */ hmR0VmxExitErrUnexpected,
795 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
796 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
797 /* 45 VMX_EXIT_VIRTUALIZED_EOI */ hmR0VmxExitErrUnexpected,
798 /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ hmR0VmxExitErrUnexpected,
799 /* 47 VMX_EXIT_LDTR_TR_ACCESS */ hmR0VmxExitErrUnexpected,
800 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
801 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
802 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
803 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
804 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
805#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
806 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitInvvpid,
807#else
808 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
809#endif
810 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
811 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
812 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUnexpected,
813 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitErrUnexpected,
814 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
815 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitErrUnexpected,
816 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUnexpected,
817 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUnexpected,
818 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUnexpected,
819 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitErrUnexpected,
820 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitErrUnexpected,
821 /* 65 UNDEFINED */ hmR0VmxExitErrUnexpected,
822 /* 66 VMX_EXIT_SPP_EVENT */ hmR0VmxExitErrUnexpected,
823 /* 67 VMX_EXIT_UMWAIT */ hmR0VmxExitErrUnexpected,
824 /* 68 VMX_EXIT_TPAUSE */ hmR0VmxExitErrUnexpected,
825};
826#endif /* HMVMX_USE_FUNCTION_TABLE */
827
828#if defined(VBOX_STRICT) && defined(LOG_ENABLED)
829static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
830{
831 /* 0 */ "(Not Used)",
832 /* 1 */ "VMCALL executed in VMX root operation.",
833 /* 2 */ "VMCLEAR with invalid physical address.",
834 /* 3 */ "VMCLEAR with VMXON pointer.",
835 /* 4 */ "VMLAUNCH with non-clear VMCS.",
836 /* 5 */ "VMRESUME with non-launched VMCS.",
837 /* 6 */ "VMRESUME after VMXOFF",
838 /* 7 */ "VM-entry with invalid control fields.",
839 /* 8 */ "VM-entry with invalid host state fields.",
840 /* 9 */ "VMPTRLD with invalid physical address.",
841 /* 10 */ "VMPTRLD with VMXON pointer.",
842 /* 11 */ "VMPTRLD with incorrect revision identifier.",
843 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
844 /* 13 */ "VMWRITE to read-only VMCS component.",
845 /* 14 */ "(Not Used)",
846 /* 15 */ "VMXON executed in VMX root operation.",
847 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
848 /* 17 */ "VM-entry with non-launched executing VMCS.",
849 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
850 /* 19 */ "VMCALL with non-clear VMCS.",
851 /* 20 */ "VMCALL with invalid VM-exit control fields.",
852 /* 21 */ "(Not Used)",
853 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
854 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
855 /* 24 */ "VMCALL with invalid SMM-monitor features.",
856 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
857 /* 26 */ "VM-entry with events blocked by MOV SS.",
858 /* 27 */ "(Not Used)",
859 /* 28 */ "Invalid operand to INVEPT/INVVPID."
860};
861#endif /* VBOX_STRICT && LOG_ENABLED */
862
863
864/**
865 * Checks if the given MSR is part of the lastbranch-from-IP MSR stack.
866 * @returns @c true if it's part of LBR stack, @c false otherwise.
867 *
868 * @param pVM The cross context VM structure.
869 * @param idMsr The MSR.
870 * @param pidxMsr Where to store the index of the MSR in the LBR MSR array.
871 * Optional, can be NULL.
872 *
873 * @remarks Must only be called when LBR is enabled.
874 */
875DECL_FORCE_INLINE(bool) hmR0VmxIsLbrBranchFromMsr(PCVM pVM, uint32_t idMsr, uint32_t *pidxMsr)
876{
877 Assert(pVM->hm.s.vmx.fLbr);
878 Assert(pVM->hm.s.vmx.idLbrFromIpMsrFirst);
879 uint32_t const cLbrStack = pVM->hm.s.vmx.idLbrFromIpMsrLast - pVM->hm.s.vmx.idLbrFromIpMsrFirst + 1;
880 uint32_t const idxMsr = idMsr - pVM->hm.s.vmx.idLbrFromIpMsrFirst;
881 if (idxMsr < cLbrStack)
882 {
883 if (pidxMsr)
884 *pidxMsr = idxMsr;
885 return true;
886 }
887 return false;
888}
889
890
891/**
892 * Checks if the given MSR is part of the lastbranch-to-IP MSR stack.
893 * @returns @c true if it's part of LBR stack, @c false otherwise.
894 *
895 * @param pVM The cross context VM structure.
896 * @param idMsr The MSR.
897 * @param pidxMsr Where to store the index of the MSR in the LBR MSR array.
898 * Optional, can be NULL.
899 *
900 * @remarks Must only be called when LBR is enabled and when lastbranch-to-IP MSRs
901 * are supported by the CPU (see hmR0VmxSetupLbrMsrRange).
902 */
903DECL_FORCE_INLINE(bool) hmR0VmxIsLbrBranchToMsr(PCVM pVM, uint32_t idMsr, uint32_t *pidxMsr)
904{
905 Assert(pVM->hm.s.vmx.fLbr);
906 if (pVM->hm.s.vmx.idLbrToIpMsrFirst)
907 {
908 uint32_t const cLbrStack = pVM->hm.s.vmx.idLbrToIpMsrLast - pVM->hm.s.vmx.idLbrToIpMsrFirst + 1;
909 uint32_t const idxMsr = idMsr - pVM->hm.s.vmx.idLbrToIpMsrFirst;
910 if (idxMsr < cLbrStack)
911 {
912 if (pidxMsr)
913 *pidxMsr = idxMsr;
914 return true;
915 }
916 }
917 return false;
918}
919
920
921/**
922 * Gets the CR0 guest/host mask.
923 *
924 * These bits typically does not change through the lifetime of a VM. Any bit set in
925 * this mask is owned by the host/hypervisor and would cause a VM-exit when modified
926 * by the guest.
927 *
928 * @returns The CR0 guest/host mask.
929 * @param pVCpu The cross context virtual CPU structure.
930 */
931static uint64_t hmR0VmxGetFixedCr0Mask(PCVMCPUCC pVCpu)
932{
933 /*
934 * Modifications to CR0 bits that VT-x ignores saving/restoring (CD, ET, NW) and
935 * to CR0 bits that we require for shadow paging (PG) by the guest must cause VM-exits.
936 *
937 * Furthermore, modifications to any bits that are reserved/unspecified currently
938 * by the Intel spec. must also cause a VM-exit. This prevents unpredictable behavior
939 * when future CPUs specify and use currently reserved/unspecified bits.
940 */
941 /** @todo Avoid intercepting CR0.PE with unrestricted guest execution. Fix PGM
942 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
943 * and @bugref{6944}. */
944 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
945 return ( X86_CR0_PE
946 | X86_CR0_NE
947 | (pVM->hm.s.fNestedPaging ? 0 : X86_CR0_WP)
948 | X86_CR0_PG
949 | VMX_EXIT_HOST_CR0_IGNORE_MASK);
950}
951
952
953/**
954 * Gets the CR4 guest/host mask.
955 *
956 * These bits typically does not change through the lifetime of a VM. Any bit set in
957 * this mask is owned by the host/hypervisor and would cause a VM-exit when modified
958 * by the guest.
959 *
960 * @returns The CR4 guest/host mask.
961 * @param pVCpu The cross context virtual CPU structure.
962 */
963static uint64_t hmR0VmxGetFixedCr4Mask(PCVMCPUCC pVCpu)
964{
965 /*
966 * We construct a mask of all CR4 bits that the guest can modify without causing
967 * a VM-exit. Then invert this mask to obtain all CR4 bits that should cause
968 * a VM-exit when the guest attempts to modify them when executing using
969 * hardware-assisted VMX.
970 *
971 * When a feature is not exposed to the guest (and may be present on the host),
972 * we want to intercept guest modifications to the bit so we can emulate proper
973 * behavior (e.g., #GP).
974 *
975 * Furthermore, only modifications to those bits that don't require immediate
976 * emulation is allowed. For e.g., PCIDE is excluded because the behavior
977 * depends on CR3 which might not always be the guest value while executing
978 * using hardware-assisted VMX.
979 */
980 PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
981 bool const fFsGsBase = pVM->cpum.ro.GuestFeatures.fFsGsBase;
982 bool const fXSaveRstor = pVM->cpum.ro.GuestFeatures.fXSaveRstor;
983 bool const fFxSaveRstor = pVM->cpum.ro.GuestFeatures.fFxSaveRstor;
984
985 /*
986 * Paranoia.
987 * Ensure features exposed to the guest are present on the host.
988 */
989 Assert(!fFsGsBase || pVM->cpum.ro.HostFeatures.fFsGsBase);
990 Assert(!fXSaveRstor || pVM->cpum.ro.HostFeatures.fXSaveRstor);
991 Assert(!fFxSaveRstor || pVM->cpum.ro.HostFeatures.fFxSaveRstor);
992
993 uint64_t const fGstMask = ( X86_CR4_PVI
994 | X86_CR4_TSD
995 | X86_CR4_DE
996 | X86_CR4_MCE
997 | X86_CR4_PCE
998 | X86_CR4_OSXMMEEXCPT
999 | (fFsGsBase ? X86_CR4_FSGSBASE : 0)
1000 | (fXSaveRstor ? X86_CR4_OSXSAVE : 0)
1001 | (fFxSaveRstor ? X86_CR4_OSFXSR : 0));
1002 return ~fGstMask;
1003}
1004
1005
1006/**
1007 * Returns whether the the VM-exit MSR-store area differs from the VM-exit MSR-load
1008 * area.
1009 *
1010 * @returns @c true if it's different, @c false otherwise.
1011 * @param pVmcsInfo The VMCS info. object.
1012 */
1013DECL_FORCE_INLINE(bool) hmR0VmxIsSeparateExitMsrStoreAreaVmcs(PCVMXVMCSINFO pVmcsInfo)
1014{
1015 return RT_BOOL( pVmcsInfo->pvGuestMsrStore != pVmcsInfo->pvGuestMsrLoad
1016 && pVmcsInfo->pvGuestMsrStore);
1017}
1018
1019
1020/**
1021 * Sets the given Processor-based VM-execution controls.
1022 *
1023 * @param pVmxTransient The VMX-transient structure.
1024 * @param uProcCtls The Processor-based VM-execution controls to set.
1025 */
1026static void hmR0VmxSetProcCtlsVmcs(PVMXTRANSIENT pVmxTransient, uint32_t uProcCtls)
1027{
1028 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1029 if ((pVmcsInfo->u32ProcCtls & uProcCtls) != uProcCtls)
1030 {
1031 pVmcsInfo->u32ProcCtls |= uProcCtls;
1032 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
1033 AssertRC(rc);
1034 }
1035}
1036
1037
1038/**
1039 * Removes the given Processor-based VM-execution controls.
1040 *
1041 * @param pVCpu The cross context virtual CPU structure.
1042 * @param pVmxTransient The VMX-transient structure.
1043 * @param uProcCtls The Processor-based VM-execution controls to remove.
1044 *
1045 * @remarks When executing a nested-guest, this will not remove any of the specified
1046 * controls if the nested hypervisor has set any one of them.
1047 */
1048static void hmR0VmxRemoveProcCtlsVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uProcCtls)
1049{
1050 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1051 if (pVmcsInfo->u32ProcCtls & uProcCtls)
1052 {
1053#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1054 bool const fRemoveCtls = !pVmxTransient->fIsNestedGuest
1055 ? true
1056 : !CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, uProcCtls);
1057#else
1058 NOREF(pVCpu);
1059 bool const fRemoveCtls = true;
1060#endif
1061 if (fRemoveCtls)
1062 {
1063 pVmcsInfo->u32ProcCtls &= ~uProcCtls;
1064 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
1065 AssertRC(rc);
1066 }
1067 }
1068}
1069
1070
1071/**
1072 * Sets the TSC offset for the current VMCS.
1073 *
1074 * @param uTscOffset The TSC offset to set.
1075 * @param pVmcsInfo The VMCS info. object.
1076 */
1077static void hmR0VmxSetTscOffsetVmcs(PVMXVMCSINFO pVmcsInfo, uint64_t uTscOffset)
1078{
1079 if (pVmcsInfo->u64TscOffset != uTscOffset)
1080 {
1081 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, uTscOffset);
1082 AssertRC(rc);
1083 pVmcsInfo->u64TscOffset = uTscOffset;
1084 }
1085}
1086
1087
1088/**
1089 * Adds one or more exceptions to the exception bitmap and commits it to the current
1090 * VMCS.
1091 *
1092 * @param pVmxTransient The VMX-transient structure.
1093 * @param uXcptMask The exception(s) to add.
1094 */
1095static void hmR0VmxAddXcptInterceptMask(PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
1096{
1097 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1098 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
1099 if ((uXcptBitmap & uXcptMask) != uXcptMask)
1100 {
1101 uXcptBitmap |= uXcptMask;
1102 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
1103 AssertRC(rc);
1104 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
1105 }
1106}
1107
1108
1109/**
1110 * Adds an exception to the exception bitmap and commits it to the current VMCS.
1111 *
1112 * @param pVmxTransient The VMX-transient structure.
1113 * @param uXcpt The exception to add.
1114 */
1115static void hmR0VmxAddXcptIntercept(PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
1116{
1117 Assert(uXcpt <= X86_XCPT_LAST);
1118 hmR0VmxAddXcptInterceptMask(pVmxTransient, RT_BIT_32(uXcpt));
1119}
1120
1121
1122/**
1123 * Remove one or more exceptions from the exception bitmap and commits it to the
1124 * current VMCS.
1125 *
1126 * This takes care of not removing the exception intercept if a nested-guest
1127 * requires the exception to be intercepted.
1128 *
1129 * @returns VBox status code.
1130 * @param pVCpu The cross context virtual CPU structure.
1131 * @param pVmxTransient The VMX-transient structure.
1132 * @param uXcptMask The exception(s) to remove.
1133 */
1134static int hmR0VmxRemoveXcptInterceptMask(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
1135{
1136 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
1137 uint32_t u32XcptBitmap = pVmcsInfo->u32XcptBitmap;
1138 if (u32XcptBitmap & uXcptMask)
1139 {
1140#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1141 if (!pVmxTransient->fIsNestedGuest)
1142 { /* likely */ }
1143 else
1144 {
1145 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
1146 uXcptMask &= ~pVmcsNstGst->u32XcptBitmap;
1147 }
1148#endif
1149#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
1150 uXcptMask &= ~( RT_BIT(X86_XCPT_BP)
1151 | RT_BIT(X86_XCPT_DE)
1152 | RT_BIT(X86_XCPT_NM)
1153 | RT_BIT(X86_XCPT_TS)
1154 | RT_BIT(X86_XCPT_UD)
1155 | RT_BIT(X86_XCPT_NP)
1156 | RT_BIT(X86_XCPT_SS)
1157 | RT_BIT(X86_XCPT_GP)
1158 | RT_BIT(X86_XCPT_PF)
1159 | RT_BIT(X86_XCPT_MF));
1160#elif defined(HMVMX_ALWAYS_TRAP_PF)
1161 uXcptMask &= ~RT_BIT(X86_XCPT_PF);
1162#endif
1163 if (uXcptMask)
1164 {
1165 /* Validate we are not removing any essential exception intercepts. */
1166 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || !(uXcptMask & RT_BIT(X86_XCPT_PF)));
1167 NOREF(pVCpu);
1168 Assert(!(uXcptMask & RT_BIT(X86_XCPT_DB)));
1169 Assert(!(uXcptMask & RT_BIT(X86_XCPT_AC)));
1170
1171 /* Remove it from the exception bitmap. */
1172 u32XcptBitmap &= ~uXcptMask;
1173
1174 /* Commit and update the cache if necessary. */
1175 if (pVmcsInfo->u32XcptBitmap != u32XcptBitmap)
1176 {
1177 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
1178 AssertRC(rc);
1179 pVmcsInfo->u32XcptBitmap = u32XcptBitmap;
1180 }
1181 }
1182 }
1183 return VINF_SUCCESS;
1184}
1185
1186
1187/**
1188 * Remove an exceptions from the exception bitmap and commits it to the current
1189 * VMCS.
1190 *
1191 * @returns VBox status code.
1192 * @param pVCpu The cross context virtual CPU structure.
1193 * @param pVmxTransient The VMX-transient structure.
1194 * @param uXcpt The exception to remove.
1195 */
1196static int hmR0VmxRemoveXcptIntercept(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
1197{
1198 return hmR0VmxRemoveXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT(uXcpt));
1199}
1200
1201
1202/**
1203 * Loads the VMCS specified by the VMCS info. object.
1204 *
1205 * @returns VBox status code.
1206 * @param pVmcsInfo The VMCS info. object.
1207 *
1208 * @remarks Can be called with interrupts disabled.
1209 */
1210static int hmR0VmxLoadVmcs(PVMXVMCSINFO pVmcsInfo)
1211{
1212 Assert(pVmcsInfo->HCPhysVmcs != 0 && pVmcsInfo->HCPhysVmcs != NIL_RTHCPHYS);
1213 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1214
1215 int rc = VMXLoadVmcs(pVmcsInfo->HCPhysVmcs);
1216 if (RT_SUCCESS(rc))
1217 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
1218 return rc;
1219}
1220
1221
1222/**
1223 * Clears the VMCS specified by the VMCS info. object.
1224 *
1225 * @returns VBox status code.
1226 * @param pVmcsInfo The VMCS info. object.
1227 *
1228 * @remarks Can be called with interrupts disabled.
1229 */
1230static int hmR0VmxClearVmcs(PVMXVMCSINFO pVmcsInfo)
1231{
1232 Assert(pVmcsInfo->HCPhysVmcs != 0 && pVmcsInfo->HCPhysVmcs != NIL_RTHCPHYS);
1233 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1234
1235 int rc = VMXClearVmcs(pVmcsInfo->HCPhysVmcs);
1236 if (RT_SUCCESS(rc))
1237 pVmcsInfo->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
1238 return rc;
1239}
1240
1241
1242#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1243/**
1244 * Loads the shadow VMCS specified by the VMCS info. object.
1245 *
1246 * @returns VBox status code.
1247 * @param pVmcsInfo The VMCS info. object.
1248 *
1249 * @remarks Can be called with interrupts disabled.
1250 */
1251static int hmR0VmxLoadShadowVmcs(PVMXVMCSINFO pVmcsInfo)
1252{
1253 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1254 Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
1255
1256 int rc = VMXLoadVmcs(pVmcsInfo->HCPhysShadowVmcs);
1257 if (RT_SUCCESS(rc))
1258 pVmcsInfo->fShadowVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
1259 return rc;
1260}
1261
1262
1263/**
1264 * Clears the shadow VMCS specified by the VMCS info. object.
1265 *
1266 * @returns VBox status code.
1267 * @param pVmcsInfo The VMCS info. object.
1268 *
1269 * @remarks Can be called with interrupts disabled.
1270 */
1271static int hmR0VmxClearShadowVmcs(PVMXVMCSINFO pVmcsInfo)
1272{
1273 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1274 Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
1275
1276 int rc = VMXClearVmcs(pVmcsInfo->HCPhysShadowVmcs);
1277 if (RT_SUCCESS(rc))
1278 pVmcsInfo->fShadowVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
1279 return rc;
1280}
1281
1282
1283/**
1284 * Switches from and to the specified VMCSes.
1285 *
1286 * @returns VBox status code.
1287 * @param pVmcsInfoFrom The VMCS info. object we are switching from.
1288 * @param pVmcsInfoTo The VMCS info. object we are switching to.
1289 *
1290 * @remarks Called with interrupts disabled.
1291 */
1292static int hmR0VmxSwitchVmcs(PVMXVMCSINFO pVmcsInfoFrom, PVMXVMCSINFO pVmcsInfoTo)
1293{
1294 /*
1295 * Clear the VMCS we are switching out if it has not already been cleared.
1296 * This will sync any CPU internal data back to the VMCS.
1297 */
1298 if (pVmcsInfoFrom->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
1299 {
1300 int rc = hmR0VmxClearVmcs(pVmcsInfoFrom);
1301 if (RT_SUCCESS(rc))
1302 {
1303 /*
1304 * The shadow VMCS, if any, would not be active at this point since we
1305 * would have cleared it while importing the virtual hardware-virtualization
1306 * state as part the VMLAUNCH/VMRESUME VM-exit. Hence, there's no need to
1307 * clear the shadow VMCS here, just assert for safety.
1308 */
1309 Assert(!pVmcsInfoFrom->pvShadowVmcs || pVmcsInfoFrom->fShadowVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR);
1310 }
1311 else
1312 return rc;
1313 }
1314
1315 /*
1316 * Clear the VMCS we are switching to if it has not already been cleared.
1317 * This will initialize the VMCS launch state to "clear" required for loading it.
1318 *
1319 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
1320 */
1321 if (pVmcsInfoTo->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
1322 {
1323 int rc = hmR0VmxClearVmcs(pVmcsInfoTo);
1324 if (RT_SUCCESS(rc))
1325 { /* likely */ }
1326 else
1327 return rc;
1328 }
1329
1330 /*
1331 * Finally, load the VMCS we are switching to.
1332 */
1333 return hmR0VmxLoadVmcs(pVmcsInfoTo);
1334}
1335
1336
1337/**
1338 * Switches between the guest VMCS and the nested-guest VMCS as specified by the
1339 * caller.
1340 *
1341 * @returns VBox status code.
1342 * @param pVCpu The cross context virtual CPU structure.
1343 * @param fSwitchToNstGstVmcs Whether to switch to the nested-guest VMCS (pass
1344 * true) or guest VMCS (pass false).
1345 */
1346static int hmR0VmxSwitchToGstOrNstGstVmcs(PVMCPUCC pVCpu, bool fSwitchToNstGstVmcs)
1347{
1348 /* Ensure we have synced everything from the guest-CPU context to the VMCS before switching. */
1349 HMVMX_CPUMCTX_ASSERT(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
1350
1351 PVMXVMCSINFO pVmcsInfoFrom;
1352 PVMXVMCSINFO pVmcsInfoTo;
1353 if (fSwitchToNstGstVmcs)
1354 {
1355 pVmcsInfoFrom = &pVCpu->hm.s.vmx.VmcsInfo;
1356 pVmcsInfoTo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
1357 }
1358 else
1359 {
1360 pVmcsInfoFrom = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
1361 pVmcsInfoTo = &pVCpu->hm.s.vmx.VmcsInfo;
1362 }
1363
1364 /*
1365 * Disable interrupts to prevent being preempted while we switch the current VMCS as the
1366 * preemption hook code path acquires the current VMCS.
1367 */
1368 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1369
1370 int rc = hmR0VmxSwitchVmcs(pVmcsInfoFrom, pVmcsInfoTo);
1371 if (RT_SUCCESS(rc))
1372 {
1373 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = fSwitchToNstGstVmcs;
1374
1375 /*
1376 * If we are switching to a VMCS that was executed on a different host CPU or was
1377 * never executed before, flag that we need to export the host state before executing
1378 * guest/nested-guest code using hardware-assisted VMX.
1379 *
1380 * This could probably be done in a preemptible context since the preemption hook
1381 * will flag the necessary change in host context. However, since preemption is
1382 * already disabled and to avoid making assumptions about host specific code in
1383 * RTMpCpuId when called with preemption enabled, we'll do this while preemption is
1384 * disabled.
1385 */
1386 if (pVmcsInfoTo->idHostCpuState == RTMpCpuId())
1387 { /* likely */ }
1388 else
1389 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE);
1390
1391 ASMSetFlags(fEFlags);
1392
1393 /*
1394 * We use a different VM-exit MSR-store areas for the guest and nested-guest. Hence,
1395 * flag that we need to update the host MSR values there. Even if we decide in the
1396 * future to share the VM-exit MSR-store area page between the guest and nested-guest,
1397 * if its content differs, we would have to update the host MSRs anyway.
1398 */
1399 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
1400 }
1401 else
1402 ASMSetFlags(fEFlags);
1403 return rc;
1404}
1405#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
1406
1407
1408/**
1409 * Updates the VM's last error record.
1410 *
1411 * If there was a VMX instruction error, reads the error data from the VMCS and
1412 * updates VCPU's last error record as well.
1413 *
1414 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1415 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
1416 * VERR_VMX_INVALID_VMCS_FIELD.
1417 * @param rc The error code.
1418 */
1419static void hmR0VmxUpdateErrorRecord(PVMCPUCC pVCpu, int rc)
1420{
1421 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
1422 || rc == VERR_VMX_UNABLE_TO_START_VM)
1423 {
1424 AssertPtrReturnVoid(pVCpu);
1425 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
1426 }
1427 pVCpu->CTX_SUFF(pVM)->hm.s.rcInit = rc;
1428}
1429
1430
1431#ifdef VBOX_STRICT
1432/**
1433 * Reads the VM-entry interruption-information field from the VMCS into the VMX
1434 * transient structure.
1435 *
1436 * @param pVmxTransient The VMX-transient structure.
1437 */
1438DECLINLINE(void) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
1439{
1440 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
1441 AssertRC(rc);
1442}
1443
1444
1445/**
1446 * Reads the VM-entry exception error code field from the VMCS into
1447 * the VMX transient structure.
1448 *
1449 * @param pVmxTransient The VMX-transient structure.
1450 */
1451DECLINLINE(void) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1452{
1453 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
1454 AssertRC(rc);
1455}
1456
1457
1458/**
1459 * Reads the VM-entry exception error code field from the VMCS into
1460 * the VMX transient structure.
1461 *
1462 * @param pVmxTransient The VMX-transient structure.
1463 */
1464DECLINLINE(void) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
1465{
1466 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
1467 AssertRC(rc);
1468}
1469#endif /* VBOX_STRICT */
1470
1471
1472/**
1473 * Reads the VM-exit interruption-information field from the VMCS into the VMX
1474 * transient structure.
1475 *
1476 * @param pVmxTransient The VMX-transient structure.
1477 */
1478DECLINLINE(void) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
1479{
1480 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
1481 {
1482 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
1483 AssertRC(rc);
1484 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
1485 }
1486}
1487
1488
1489/**
1490 * Reads the VM-exit interruption error code from the VMCS into the VMX
1491 * transient structure.
1492 *
1493 * @param pVmxTransient The VMX-transient structure.
1494 */
1495DECLINLINE(void) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1496{
1497 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
1498 {
1499 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
1500 AssertRC(rc);
1501 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
1502 }
1503}
1504
1505
1506/**
1507 * Reads the VM-exit instruction length field from the VMCS into the VMX
1508 * transient structure.
1509 *
1510 * @param pVmxTransient The VMX-transient structure.
1511 */
1512DECLINLINE(void) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
1513{
1514 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
1515 {
1516 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbExitInstr);
1517 AssertRC(rc);
1518 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
1519 }
1520}
1521
1522
1523/**
1524 * Reads the VM-exit instruction-information field from the VMCS into
1525 * the VMX transient structure.
1526 *
1527 * @param pVmxTransient The VMX-transient structure.
1528 */
1529DECLINLINE(void) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
1530{
1531 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
1532 {
1533 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
1534 AssertRC(rc);
1535 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
1536 }
1537}
1538
1539
1540/**
1541 * Reads the Exit Qualification from the VMCS into the VMX transient structure.
1542 *
1543 * @param pVmxTransient The VMX-transient structure.
1544 */
1545DECLINLINE(void) hmR0VmxReadExitQualVmcs(PVMXTRANSIENT pVmxTransient)
1546{
1547 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
1548 {
1549 int rc = VMXReadVmcsNw(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual);
1550 AssertRC(rc);
1551 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
1552 }
1553}
1554
1555
1556/**
1557 * Reads the Guest-linear address from the VMCS into the VMX transient structure.
1558 *
1559 * @param pVmxTransient The VMX-transient structure.
1560 */
1561DECLINLINE(void) hmR0VmxReadGuestLinearAddrVmcs(PVMXTRANSIENT pVmxTransient)
1562{
1563 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
1564 {
1565 int rc = VMXReadVmcsNw(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr);
1566 AssertRC(rc);
1567 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
1568 }
1569}
1570
1571
1572/**
1573 * Reads the Guest-physical address from the VMCS into the VMX transient structure.
1574 *
1575 * @param pVmxTransient The VMX-transient structure.
1576 */
1577DECLINLINE(void) hmR0VmxReadGuestPhysicalAddrVmcs(PVMXTRANSIENT pVmxTransient)
1578{
1579 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_PHYSICAL_ADDR))
1580 {
1581 int rc = VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &pVmxTransient->uGuestPhysicalAddr);
1582 AssertRC(rc);
1583 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_PHYSICAL_ADDR;
1584 }
1585}
1586
1587#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1588/**
1589 * Reads the Guest pending-debug exceptions from the VMCS into the VMX transient
1590 * structure.
1591 *
1592 * @param pVmxTransient The VMX-transient structure.
1593 */
1594DECLINLINE(void) hmR0VmxReadGuestPendingDbgXctps(PVMXTRANSIENT pVmxTransient)
1595{
1596 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_PENDING_DBG_XCPTS))
1597 {
1598 int rc = VMXReadVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &pVmxTransient->uGuestPendingDbgXcpts);
1599 AssertRC(rc);
1600 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_PENDING_DBG_XCPTS;
1601 }
1602}
1603#endif
1604
1605/**
1606 * Reads the IDT-vectoring information field from the VMCS into the VMX
1607 * transient structure.
1608 *
1609 * @param pVmxTransient The VMX-transient structure.
1610 *
1611 * @remarks No-long-jump zone!!!
1612 */
1613DECLINLINE(void) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
1614{
1615 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
1616 {
1617 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
1618 AssertRC(rc);
1619 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
1620 }
1621}
1622
1623
1624/**
1625 * Reads the IDT-vectoring error code from the VMCS into the VMX
1626 * transient structure.
1627 *
1628 * @param pVmxTransient The VMX-transient structure.
1629 */
1630DECLINLINE(void) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
1631{
1632 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
1633 {
1634 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
1635 AssertRC(rc);
1636 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
1637 }
1638}
1639
1640#ifdef HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
1641/**
1642 * Reads all relevant read-only VMCS fields into the VMX transient structure.
1643 *
1644 * @param pVmxTransient The VMX-transient structure.
1645 */
1646static void hmR0VmxReadAllRoFieldsVmcs(PVMXTRANSIENT pVmxTransient)
1647{
1648 int rc = VMXReadVmcsNw(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual);
1649 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbExitInstr);
1650 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
1651 rc |= VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
1652 rc |= VMXReadVmcs32(VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
1653 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
1654 rc |= VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
1655 rc |= VMXReadVmcsNw(VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr);
1656 rc |= VMXReadVmcs64(VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &pVmxTransient->uGuestPhysicalAddr);
1657 AssertRC(rc);
1658 pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION
1659 | HMVMX_READ_EXIT_INSTR_LEN
1660 | HMVMX_READ_EXIT_INSTR_INFO
1661 | HMVMX_READ_IDT_VECTORING_INFO
1662 | HMVMX_READ_IDT_VECTORING_ERROR_CODE
1663 | HMVMX_READ_EXIT_INTERRUPTION_INFO
1664 | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
1665 | HMVMX_READ_GUEST_LINEAR_ADDR
1666 | HMVMX_READ_GUEST_PHYSICAL_ADDR;
1667}
1668#endif
1669
1670/**
1671 * Enters VMX root mode operation on the current CPU.
1672 *
1673 * @returns VBox status code.
1674 * @param pHostCpu The HM physical-CPU structure.
1675 * @param pVM The cross context VM structure. Can be
1676 * NULL, after a resume.
1677 * @param HCPhysCpuPage Physical address of the VMXON region.
1678 * @param pvCpuPage Pointer to the VMXON region.
1679 */
1680static int hmR0VmxEnterRootMode(PHMPHYSCPU pHostCpu, PVMCC pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
1681{
1682 Assert(pHostCpu);
1683 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
1684 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
1685 Assert(pvCpuPage);
1686 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1687
1688 if (pVM)
1689 {
1690 /* Write the VMCS revision identifier to the VMXON region. */
1691 *(uint32_t *)pvCpuPage = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
1692 }
1693
1694 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
1695 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1696
1697 /* Enable the VMX bit in CR4 if necessary. */
1698 RTCCUINTREG const uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
1699
1700 /* Record whether VMXE was already prior to us enabling it above. */
1701 pHostCpu->fVmxeAlreadyEnabled = RT_BOOL(uOldCr4 & X86_CR4_VMXE);
1702
1703 /* Enter VMX root mode. */
1704 int rc = VMXEnable(HCPhysCpuPage);
1705 if (RT_FAILURE(rc))
1706 {
1707 /* Restore CR4.VMXE if it was not set prior to our attempt to set it above. */
1708 if (!pHostCpu->fVmxeAlreadyEnabled)
1709 SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
1710
1711 if (pVM)
1712 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
1713 }
1714
1715 /* Restore interrupts. */
1716 ASMSetFlags(fEFlags);
1717 return rc;
1718}
1719
1720
1721/**
1722 * Exits VMX root mode operation on the current CPU.
1723 *
1724 * @returns VBox status code.
1725 * @param pHostCpu The HM physical-CPU structure.
1726 */
1727static int hmR0VmxLeaveRootMode(PHMPHYSCPU pHostCpu)
1728{
1729 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1730
1731 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
1732 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
1733
1734 /* If we're for some reason not in VMX root mode, then don't leave it. */
1735 RTCCUINTREG const uHostCr4 = ASMGetCR4();
1736
1737 int rc;
1738 if (uHostCr4 & X86_CR4_VMXE)
1739 {
1740 /* Exit VMX root mode and clear the VMX bit in CR4. */
1741 VMXDisable();
1742
1743 /* Clear CR4.VMXE only if it was clear prior to use setting it. */
1744 if (!pHostCpu->fVmxeAlreadyEnabled)
1745 SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
1746
1747 rc = VINF_SUCCESS;
1748 }
1749 else
1750 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
1751
1752 /* Restore interrupts. */
1753 ASMSetFlags(fEFlags);
1754 return rc;
1755}
1756
1757
1758/**
1759 * Allocates pages specified as specified by an array of VMX page allocation info
1760 * objects.
1761 *
1762 * The pages contents are zero'd after allocation.
1763 *
1764 * @returns VBox status code.
1765 * @param hMemObj The ring-0 memory object associated with the allocation.
1766 * @param paAllocInfo The pointer to the first element of the VMX
1767 * page-allocation info object array.
1768 * @param cEntries The number of elements in the @a paAllocInfo array.
1769 */
1770static int hmR0VmxPagesAllocZ(RTR0MEMOBJ hMemObj, PVMXPAGEALLOCINFO paAllocInfo, uint32_t cEntries)
1771{
1772 /* Figure out how many pages to allocate. */
1773 uint32_t cPages = 0;
1774 for (uint32_t iPage = 0; iPage < cEntries; iPage++)
1775 cPages += !!paAllocInfo[iPage].fValid;
1776
1777 /* Allocate the pages. */
1778 if (cPages)
1779 {
1780 size_t const cbPages = cPages << X86_PAGE_4K_SHIFT;
1781 int rc = RTR0MemObjAllocPage(&hMemObj, cbPages, false /* fExecutable */);
1782 if (RT_FAILURE(rc))
1783 return rc;
1784
1785 /* Zero the contents and assign each page to the corresponding VMX page-allocation entry. */
1786 void *pvFirstPage = RTR0MemObjAddress(hMemObj);
1787 ASMMemZero32(pvFirstPage, cbPages);
1788
1789 uint32_t iPage = 0;
1790 for (uint32_t i = 0; i < cEntries; i++)
1791 if (paAllocInfo[i].fValid)
1792 {
1793 RTHCPHYS const HCPhysPage = RTR0MemObjGetPagePhysAddr(hMemObj, iPage);
1794 void *pvPage = (void *)((uintptr_t)pvFirstPage + (iPage << X86_PAGE_4K_SHIFT));
1795 Assert(HCPhysPage && HCPhysPage != NIL_RTHCPHYS);
1796 AssertPtr(pvPage);
1797
1798 Assert(paAllocInfo[iPage].pHCPhys);
1799 Assert(paAllocInfo[iPage].ppVirt);
1800 *paAllocInfo[iPage].pHCPhys = HCPhysPage;
1801 *paAllocInfo[iPage].ppVirt = pvPage;
1802
1803 /* Move to next page. */
1804 ++iPage;
1805 }
1806
1807 /* Make sure all valid (requested) pages have been assigned. */
1808 Assert(iPage == cPages);
1809 }
1810 return VINF_SUCCESS;
1811}
1812
1813
1814/**
1815 * Frees pages allocated using hmR0VmxPagesAllocZ.
1816 *
1817 * @param hMemObj The ring-0 memory object associated with the allocation.
1818 */
1819DECL_FORCE_INLINE(void) hmR0VmxPagesFree(RTR0MEMOBJ hMemObj)
1820{
1821 /* We can cleanup wholesale since it's all one allocation. */
1822 RTR0MemObjFree(hMemObj, true /* fFreeMappings */);
1823}
1824
1825
1826/**
1827 * Initializes a VMCS info. object.
1828 *
1829 * @param pVmcsInfo The VMCS info. object.
1830 */
1831static void hmR0VmxVmcsInfoInit(PVMXVMCSINFO pVmcsInfo)
1832{
1833 memset(pVmcsInfo, 0, sizeof(*pVmcsInfo));
1834
1835 Assert(pVmcsInfo->hMemObj == NIL_RTR0MEMOBJ);
1836 pVmcsInfo->HCPhysVmcs = NIL_RTHCPHYS;
1837 pVmcsInfo->HCPhysShadowVmcs = NIL_RTHCPHYS;
1838 pVmcsInfo->HCPhysMsrBitmap = NIL_RTHCPHYS;
1839 pVmcsInfo->HCPhysGuestMsrLoad = NIL_RTHCPHYS;
1840 pVmcsInfo->HCPhysGuestMsrStore = NIL_RTHCPHYS;
1841 pVmcsInfo->HCPhysHostMsrLoad = NIL_RTHCPHYS;
1842 pVmcsInfo->HCPhysVirtApic = NIL_RTHCPHYS;
1843 pVmcsInfo->HCPhysEPTP = NIL_RTHCPHYS;
1844 pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
1845 pVmcsInfo->idHostCpuState = NIL_RTCPUID;
1846 pVmcsInfo->idHostCpuExec = NIL_RTCPUID;
1847}
1848
1849
1850/**
1851 * Frees the VT-x structures for a VMCS info. object.
1852 *
1853 * @param pVmcsInfo The VMCS info. object.
1854 */
1855static void hmR0VmxVmcsInfoFree(PVMXVMCSINFO pVmcsInfo)
1856{
1857 if (pVmcsInfo->hMemObj != NIL_RTR0MEMOBJ)
1858 {
1859 hmR0VmxPagesFree(pVmcsInfo->hMemObj);
1860 hmR0VmxVmcsInfoInit(pVmcsInfo);
1861 }
1862}
1863
1864
1865/**
1866 * Allocates the VT-x structures for a VMCS info. object.
1867 *
1868 * @returns VBox status code.
1869 * @param pVCpu The cross context virtual CPU structure.
1870 * @param pVmcsInfo The VMCS info. object.
1871 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
1872 *
1873 * @remarks The caller is expected to take care of any and all allocation failures.
1874 * This function will not perform any cleanup for failures half-way
1875 * through.
1876 */
1877static int hmR0VmxAllocVmcsInfo(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
1878{
1879 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1880
1881 bool const fMsrBitmaps = RT_BOOL(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS);
1882 bool const fShadowVmcs = !fIsNstGstVmcs ? pVM->hm.s.vmx.fUseVmcsShadowing : pVM->cpum.ro.GuestFeatures.fVmxVmcsShadowing;
1883 Assert(!pVM->cpum.ro.GuestFeatures.fVmxVmcsShadowing); /* VMCS shadowing is not yet exposed to the guest. */
1884 VMXPAGEALLOCINFO aAllocInfo[] = {
1885 { true, 0 /* Unused */, &pVmcsInfo->HCPhysVmcs, &pVmcsInfo->pvVmcs },
1886 { true, 0 /* Unused */, &pVmcsInfo->HCPhysGuestMsrLoad, &pVmcsInfo->pvGuestMsrLoad },
1887 { true, 0 /* Unused */, &pVmcsInfo->HCPhysHostMsrLoad, &pVmcsInfo->pvHostMsrLoad },
1888 { fMsrBitmaps, 0 /* Unused */, &pVmcsInfo->HCPhysMsrBitmap, &pVmcsInfo->pvMsrBitmap },
1889 { fShadowVmcs, 0 /* Unused */, &pVmcsInfo->HCPhysShadowVmcs, &pVmcsInfo->pvShadowVmcs },
1890 };
1891
1892 int rc = hmR0VmxPagesAllocZ(pVmcsInfo->hMemObj, &aAllocInfo[0], RT_ELEMENTS(aAllocInfo));
1893 if (RT_FAILURE(rc))
1894 return rc;
1895
1896 /*
1897 * We use the same page for VM-entry MSR-load and VM-exit MSR store areas.
1898 * Because they contain a symmetric list of guest MSRs to load on VM-entry and store on VM-exit.
1899 */
1900 AssertCompile(RT_ELEMENTS(aAllocInfo) > 0);
1901 Assert(pVmcsInfo->HCPhysGuestMsrLoad != NIL_RTHCPHYS);
1902 pVmcsInfo->pvGuestMsrStore = pVmcsInfo->pvGuestMsrLoad;
1903 pVmcsInfo->HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrLoad;
1904
1905 /*
1906 * Get the virtual-APIC page rather than allocating them again.
1907 */
1908 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW)
1909 {
1910 if (!fIsNstGstVmcs)
1911 {
1912 if (PDMHasApic(pVM))
1913 {
1914 rc = APICGetApicPageForCpu(pVCpu, &pVmcsInfo->HCPhysVirtApic, (PRTR0PTR)&pVmcsInfo->pbVirtApic, NULL /*pR3Ptr*/);
1915 if (RT_FAILURE(rc))
1916 return rc;
1917 Assert(pVmcsInfo->pbVirtApic);
1918 Assert(pVmcsInfo->HCPhysVirtApic && pVmcsInfo->HCPhysVirtApic != NIL_RTHCPHYS);
1919 }
1920 }
1921 else
1922 {
1923 pVmcsInfo->pbVirtApic = (uint8_t *)CPUMGetGuestVmxVirtApicPage(&pVCpu->cpum.GstCtx, &pVmcsInfo->HCPhysVirtApic);
1924 Assert(pVmcsInfo->pbVirtApic);
1925 Assert(pVmcsInfo->HCPhysVirtApic && pVmcsInfo->HCPhysVirtApic != NIL_RTHCPHYS);
1926 }
1927 }
1928
1929 return VINF_SUCCESS;
1930}
1931
1932
1933/**
1934 * Free all VT-x structures for the VM.
1935 *
1936 * @returns IPRT status code.
1937 * @param pVM The cross context VM structure.
1938 */
1939static void hmR0VmxStructsFree(PVMCC pVM)
1940{
1941 hmR0VmxPagesFree(pVM->hm.s.vmx.hMemObj);
1942#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1943 if (pVM->hm.s.vmx.fUseVmcsShadowing)
1944 {
1945 RTMemFree(pVM->hm.s.vmx.paShadowVmcsFields);
1946 RTMemFree(pVM->hm.s.vmx.paShadowVmcsRoFields);
1947 }
1948#endif
1949
1950 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1951 {
1952 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
1953 hmR0VmxVmcsInfoFree(&pVCpu->hm.s.vmx.VmcsInfo);
1954#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1955 if (pVM->cpum.ro.GuestFeatures.fVmx)
1956 hmR0VmxVmcsInfoFree(&pVCpu->hm.s.vmx.VmcsInfoNstGst);
1957#endif
1958 }
1959}
1960
1961
1962/**
1963 * Allocate all VT-x structures for the VM.
1964 *
1965 * @returns IPRT status code.
1966 * @param pVM The cross context VM structure.
1967 *
1968 * @remarks This functions will cleanup on memory allocation failures.
1969 */
1970static int hmR0VmxStructsAlloc(PVMCC pVM)
1971{
1972 /*
1973 * Sanity check the VMCS size reported by the CPU as we assume 4KB allocations.
1974 * The VMCS size cannot be more than 4096 bytes.
1975 *
1976 * See Intel spec. Appendix A.1 "Basic VMX Information".
1977 */
1978 uint32_t const cbVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_SIZE);
1979 if (cbVmcs <= X86_PAGE_4K_SIZE)
1980 { /* likely */ }
1981 else
1982 {
1983 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE;
1984 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1985 }
1986
1987 /*
1988 * Allocate per-VM VT-x structures.
1989 */
1990 bool const fVirtApicAccess = RT_BOOL(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
1991 bool const fUseVmcsShadowing = pVM->hm.s.vmx.fUseVmcsShadowing;
1992 VMXPAGEALLOCINFO aAllocInfo[] = {
1993 { fVirtApicAccess, 0 /* Unused */, &pVM->hm.s.vmx.HCPhysApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess },
1994 { fUseVmcsShadowing, 0 /* Unused */, &pVM->hm.s.vmx.HCPhysVmreadBitmap, &pVM->hm.s.vmx.pvVmreadBitmap },
1995 { fUseVmcsShadowing, 0 /* Unused */, &pVM->hm.s.vmx.HCPhysVmwriteBitmap, &pVM->hm.s.vmx.pvVmwriteBitmap },
1996#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1997 { true, 0 /* Unused */, &pVM->hm.s.vmx.HCPhysScratch, &(PRTR0PTR)pVM->hm.s.vmx.pbScratch },
1998#endif
1999 };
2000
2001 int rc = hmR0VmxPagesAllocZ(pVM->hm.s.vmx.hMemObj, &aAllocInfo[0], RT_ELEMENTS(aAllocInfo));
2002 if (RT_FAILURE(rc))
2003 goto cleanup;
2004
2005#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2006 /* Allocate the shadow VMCS-fields array. */
2007 if (fUseVmcsShadowing)
2008 {
2009 Assert(!pVM->hm.s.vmx.cShadowVmcsFields);
2010 Assert(!pVM->hm.s.vmx.cShadowVmcsRoFields);
2011 pVM->hm.s.vmx.paShadowVmcsFields = (uint32_t *)RTMemAllocZ(sizeof(g_aVmcsFields));
2012 pVM->hm.s.vmx.paShadowVmcsRoFields = (uint32_t *)RTMemAllocZ(sizeof(g_aVmcsFields));
2013 if (RT_LIKELY( pVM->hm.s.vmx.paShadowVmcsFields
2014 && pVM->hm.s.vmx.paShadowVmcsRoFields))
2015 { /* likely */ }
2016 else
2017 {
2018 rc = VERR_NO_MEMORY;
2019 goto cleanup;
2020 }
2021 }
2022#endif
2023
2024 /*
2025 * Allocate per-VCPU VT-x structures.
2026 */
2027 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2028 {
2029 /* Allocate the guest VMCS structures. */
2030 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
2031 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
2032 if (RT_FAILURE(rc))
2033 goto cleanup;
2034
2035#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2036 /* Allocate the nested-guest VMCS structures, when the VMX feature is exposed to the guest. */
2037 if (pVM->cpum.ro.GuestFeatures.fVmx)
2038 {
2039 rc = hmR0VmxAllocVmcsInfo(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
2040 if (RT_FAILURE(rc))
2041 goto cleanup;
2042 }
2043#endif
2044 }
2045
2046 return VINF_SUCCESS;
2047
2048cleanup:
2049 hmR0VmxStructsFree(pVM);
2050 Assert(rc != VINF_SUCCESS);
2051 return rc;
2052}
2053
2054
2055/**
2056 * Pre-initializes non-zero fields in VMX structures that will be allocated.
2057 *
2058 * @param pVM The cross context VM structure.
2059 */
2060static void hmR0VmxStructsInit(PVMCC pVM)
2061{
2062 /* Paranoia. */
2063 Assert(pVM->hm.s.vmx.pbApicAccess == NULL);
2064#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2065 Assert(pVM->hm.s.vmx.pbScratch == NULL);
2066#endif
2067
2068 /*
2069 * Initialize members up-front so we can cleanup en masse on allocation failures.
2070 */
2071#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2072 pVM->hm.s.vmx.HCPhysScratch = NIL_RTHCPHYS;
2073#endif
2074 pVM->hm.s.vmx.HCPhysApicAccess = NIL_RTHCPHYS;
2075 pVM->hm.s.vmx.HCPhysVmreadBitmap = NIL_RTHCPHYS;
2076 pVM->hm.s.vmx.HCPhysVmwriteBitmap = NIL_RTHCPHYS;
2077 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2078 {
2079 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
2080 hmR0VmxVmcsInfoInit(&pVCpu->hm.s.vmx.VmcsInfo);
2081 hmR0VmxVmcsInfoInit(&pVCpu->hm.s.vmx.VmcsInfoNstGst);
2082 }
2083}
2084
2085#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2086/**
2087 * Returns whether an MSR at the given MSR-bitmap offset is intercepted or not.
2088 *
2089 * @returns @c true if the MSR is intercepted, @c false otherwise.
2090 * @param pvMsrBitmap The MSR bitmap.
2091 * @param offMsr The MSR byte offset.
2092 * @param iBit The bit offset from the byte offset.
2093 */
2094DECLINLINE(bool) hmR0VmxIsMsrBitSet(const void *pvMsrBitmap, uint16_t offMsr, int32_t iBit)
2095{
2096 uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
2097 Assert(pbMsrBitmap);
2098 Assert(offMsr + (iBit >> 3) <= X86_PAGE_4K_SIZE);
2099 return ASMBitTest(pbMsrBitmap + offMsr, iBit);
2100}
2101#endif
2102
2103/**
2104 * Sets the permission bits for the specified MSR in the given MSR bitmap.
2105 *
2106 * If the passed VMCS is a nested-guest VMCS, this function ensures that the
2107 * read/write intercept is cleared from the MSR bitmap used for hardware-assisted
2108 * VMX execution of the nested-guest, only if nested-guest is also not intercepting
2109 * the read/write access of this MSR.
2110 *
2111 * @param pVCpu The cross context virtual CPU structure.
2112 * @param pVmcsInfo The VMCS info. object.
2113 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2114 * @param idMsr The MSR value.
2115 * @param fMsrpm The MSR permissions (see VMXMSRPM_XXX). This must
2116 * include both a read -and- a write permission!
2117 *
2118 * @sa CPUMGetVmxMsrPermission.
2119 * @remarks Can be called with interrupts disabled.
2120 */
2121static void hmR0VmxSetMsrPermission(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs, uint32_t idMsr, uint32_t fMsrpm)
2122{
2123 uint8_t *pbMsrBitmap = (uint8_t *)pVmcsInfo->pvMsrBitmap;
2124 Assert(pbMsrBitmap);
2125 Assert(VMXMSRPM_IS_FLAG_VALID(fMsrpm));
2126
2127 /*
2128 * MSR-bitmap Layout:
2129 * Byte index MSR range Interpreted as
2130 * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
2131 * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
2132 * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
2133 * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
2134 *
2135 * A bit corresponding to an MSR within the above range causes a VM-exit
2136 * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
2137 * the MSR range, it always cause a VM-exit.
2138 *
2139 * See Intel spec. 24.6.9 "MSR-Bitmap Address".
2140 */
2141 uint16_t const offBitmapRead = 0;
2142 uint16_t const offBitmapWrite = 0x800;
2143 uint16_t offMsr;
2144 int32_t iBit;
2145 if (idMsr <= UINT32_C(0x00001fff))
2146 {
2147 offMsr = 0;
2148 iBit = idMsr;
2149 }
2150 else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
2151 {
2152 offMsr = 0x400;
2153 iBit = idMsr - UINT32_C(0xc0000000);
2154 }
2155 else
2156 AssertMsgFailedReturnVoid(("Invalid MSR %#RX32\n", idMsr));
2157
2158 /*
2159 * Set the MSR read permission.
2160 */
2161 uint16_t const offMsrRead = offBitmapRead + offMsr;
2162 Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
2163 if (fMsrpm & VMXMSRPM_ALLOW_RD)
2164 {
2165#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2166 bool const fClear = !fIsNstGstVmcs ? true
2167 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrRead, iBit);
2168#else
2169 RT_NOREF2(pVCpu, fIsNstGstVmcs);
2170 bool const fClear = true;
2171#endif
2172 if (fClear)
2173 ASMBitClear(pbMsrBitmap + offMsrRead, iBit);
2174 }
2175 else
2176 ASMBitSet(pbMsrBitmap + offMsrRead, iBit);
2177
2178 /*
2179 * Set the MSR write permission.
2180 */
2181 uint16_t const offMsrWrite = offBitmapWrite + offMsr;
2182 Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
2183 if (fMsrpm & VMXMSRPM_ALLOW_WR)
2184 {
2185#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2186 bool const fClear = !fIsNstGstVmcs ? true
2187 : !hmR0VmxIsMsrBitSet(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), offMsrWrite, iBit);
2188#else
2189 RT_NOREF2(pVCpu, fIsNstGstVmcs);
2190 bool const fClear = true;
2191#endif
2192 if (fClear)
2193 ASMBitClear(pbMsrBitmap + offMsrWrite, iBit);
2194 }
2195 else
2196 ASMBitSet(pbMsrBitmap + offMsrWrite, iBit);
2197}
2198
2199
2200/**
2201 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
2202 * area.
2203 *
2204 * @returns VBox status code.
2205 * @param pVCpu The cross context virtual CPU structure.
2206 * @param pVmcsInfo The VMCS info. object.
2207 * @param cMsrs The number of MSRs.
2208 */
2209static int hmR0VmxSetAutoLoadStoreMsrCount(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t cMsrs)
2210{
2211 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
2212 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
2213 if (RT_LIKELY(cMsrs < cMaxSupportedMsrs))
2214 {
2215 /* Commit the MSR counts to the VMCS and update the cache. */
2216 if (pVmcsInfo->cEntryMsrLoad != cMsrs)
2217 {
2218 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs); AssertRC(rc);
2219 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs); AssertRC(rc);
2220 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs); AssertRC(rc);
2221 pVmcsInfo->cEntryMsrLoad = cMsrs;
2222 pVmcsInfo->cExitMsrStore = cMsrs;
2223 pVmcsInfo->cExitMsrLoad = cMsrs;
2224 }
2225 return VINF_SUCCESS;
2226 }
2227
2228 LogRel(("Auto-load/store MSR count exceeded! cMsrs=%u MaxSupported=%u\n", cMsrs, cMaxSupportedMsrs));
2229 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
2230 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2231}
2232
2233
2234/**
2235 * Adds a new (or updates the value of an existing) guest/host MSR
2236 * pair to be swapped during the world-switch as part of the
2237 * auto-load/store MSR area in the VMCS.
2238 *
2239 * @returns VBox status code.
2240 * @param pVCpu The cross context virtual CPU structure.
2241 * @param pVmxTransient The VMX-transient structure.
2242 * @param idMsr The MSR.
2243 * @param uGuestMsrValue Value of the guest MSR.
2244 * @param fSetReadWrite Whether to set the guest read/write access of this
2245 * MSR (thus not causing a VM-exit).
2246 * @param fUpdateHostMsr Whether to update the value of the host MSR if
2247 * necessary.
2248 */
2249static int hmR0VmxAddAutoLoadStoreMsr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t idMsr, uint64_t uGuestMsrValue,
2250 bool fSetReadWrite, bool fUpdateHostMsr)
2251{
2252 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
2253 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
2254 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2255 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
2256 uint32_t i;
2257
2258 /* Paranoia. */
2259 Assert(pGuestMsrLoad);
2260
2261 LogFlowFunc(("pVCpu=%p idMsr=%#RX32 uGestMsrValue=%#RX64\n", pVCpu, idMsr, uGuestMsrValue));
2262
2263 /* Check if the MSR already exists in the VM-entry MSR-load area. */
2264 for (i = 0; i < cMsrs; i++)
2265 {
2266 if (pGuestMsrLoad[i].u32Msr == idMsr)
2267 break;
2268 }
2269
2270 bool fAdded = false;
2271 if (i == cMsrs)
2272 {
2273 /* The MSR does not exist, bump the MSR count to make room for the new MSR. */
2274 ++cMsrs;
2275 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
2276 AssertMsgRCReturn(rc, ("Insufficient space to add MSR to VM-entry MSR-load/store area %u\n", idMsr), rc);
2277
2278 /* Set the guest to read/write this MSR without causing VM-exits. */
2279 if ( fSetReadWrite
2280 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
2281 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_ALLOW_RD_WR);
2282
2283 Log4Func(("Added MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
2284 fAdded = true;
2285 }
2286
2287 /* Update the MSR value for the newly added or already existing MSR. */
2288 pGuestMsrLoad[i].u32Msr = idMsr;
2289 pGuestMsrLoad[i].u64Value = uGuestMsrValue;
2290
2291 /* Create the corresponding slot in the VM-exit MSR-store area if we use a different page. */
2292 if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
2293 {
2294 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2295 pGuestMsrStore[i].u32Msr = idMsr;
2296 pGuestMsrStore[i].u64Value = uGuestMsrValue;
2297 }
2298
2299 /* Update the corresponding slot in the host MSR area. */
2300 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2301 Assert(pHostMsr != pVmcsInfo->pvGuestMsrLoad);
2302 Assert(pHostMsr != pVmcsInfo->pvGuestMsrStore);
2303 pHostMsr[i].u32Msr = idMsr;
2304
2305 /*
2306 * Only if the caller requests to update the host MSR value AND we've newly added the
2307 * MSR to the host MSR area do we actually update the value. Otherwise, it will be
2308 * updated by hmR0VmxUpdateAutoLoadHostMsrs().
2309 *
2310 * We do this for performance reasons since reading MSRs may be quite expensive.
2311 */
2312 if (fAdded)
2313 {
2314 if (fUpdateHostMsr)
2315 {
2316 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2317 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2318 pHostMsr[i].u64Value = ASMRdMsr(idMsr);
2319 }
2320 else
2321 {
2322 /* Someone else can do the work. */
2323 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
2324 }
2325 }
2326 return VINF_SUCCESS;
2327}
2328
2329
2330/**
2331 * Removes a guest/host MSR pair to be swapped during the world-switch from the
2332 * auto-load/store MSR area in the VMCS.
2333 *
2334 * @returns VBox status code.
2335 * @param pVCpu The cross context virtual CPU structure.
2336 * @param pVmxTransient The VMX-transient structure.
2337 * @param idMsr The MSR.
2338 */
2339static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t idMsr)
2340{
2341 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
2342 bool const fIsNstGstVmcs = pVmxTransient->fIsNestedGuest;
2343 PVMXAUTOMSR pGuestMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2344 uint32_t cMsrs = pVmcsInfo->cEntryMsrLoad;
2345
2346 LogFlowFunc(("pVCpu=%p idMsr=%#RX32\n", pVCpu, idMsr));
2347
2348 for (uint32_t i = 0; i < cMsrs; i++)
2349 {
2350 /* Find the MSR. */
2351 if (pGuestMsrLoad[i].u32Msr == idMsr)
2352 {
2353 /*
2354 * If it's the last MSR, we only need to reduce the MSR count.
2355 * If it's -not- the last MSR, copy the last MSR in place of it and reduce the MSR count.
2356 */
2357 if (i < cMsrs - 1)
2358 {
2359 /* Remove it from the VM-entry MSR-load area. */
2360 pGuestMsrLoad[i].u32Msr = pGuestMsrLoad[cMsrs - 1].u32Msr;
2361 pGuestMsrLoad[i].u64Value = pGuestMsrLoad[cMsrs - 1].u64Value;
2362
2363 /* Remove it from the VM-exit MSR-store area if it's in a different page. */
2364 if (hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo))
2365 {
2366 PVMXAUTOMSR pGuestMsrStore = (PVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2367 Assert(pGuestMsrStore[i].u32Msr == idMsr);
2368 pGuestMsrStore[i].u32Msr = pGuestMsrStore[cMsrs - 1].u32Msr;
2369 pGuestMsrStore[i].u64Value = pGuestMsrStore[cMsrs - 1].u64Value;
2370 }
2371
2372 /* Remove it from the VM-exit MSR-load area. */
2373 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2374 Assert(pHostMsr[i].u32Msr == idMsr);
2375 pHostMsr[i].u32Msr = pHostMsr[cMsrs - 1].u32Msr;
2376 pHostMsr[i].u64Value = pHostMsr[cMsrs - 1].u64Value;
2377 }
2378
2379 /* Reduce the count to reflect the removed MSR and bail. */
2380 --cMsrs;
2381 break;
2382 }
2383 }
2384
2385 /* Update the VMCS if the count changed (meaning the MSR was found and removed). */
2386 if (cMsrs != pVmcsInfo->cEntryMsrLoad)
2387 {
2388 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, pVmcsInfo, cMsrs);
2389 AssertRCReturn(rc, rc);
2390
2391 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
2392 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2393 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, fIsNstGstVmcs, idMsr, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
2394
2395 Log4Func(("Removed MSR %#RX32, cMsrs=%u\n", idMsr, cMsrs));
2396 return VINF_SUCCESS;
2397 }
2398
2399 return VERR_NOT_FOUND;
2400}
2401
2402
2403/**
2404 * Checks if the specified guest MSR is part of the VM-entry MSR-load area.
2405 *
2406 * @returns @c true if found, @c false otherwise.
2407 * @param pVmcsInfo The VMCS info. object.
2408 * @param idMsr The MSR to find.
2409 */
2410static bool hmR0VmxIsAutoLoadGuestMsr(PCVMXVMCSINFO pVmcsInfo, uint32_t idMsr)
2411{
2412 PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2413 uint32_t const cMsrs = pVmcsInfo->cEntryMsrLoad;
2414 Assert(pMsrs);
2415 Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
2416 for (uint32_t i = 0; i < cMsrs; i++)
2417 {
2418 if (pMsrs[i].u32Msr == idMsr)
2419 return true;
2420 }
2421 return false;
2422}
2423
2424
2425/**
2426 * Updates the value of all host MSRs in the VM-exit MSR-load area.
2427 *
2428 * @param pVCpu The cross context virtual CPU structure.
2429 * @param pVmcsInfo The VMCS info. object.
2430 *
2431 * @remarks No-long-jump zone!!!
2432 */
2433static void hmR0VmxUpdateAutoLoadHostMsrs(PCVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
2434{
2435 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2436
2437 PVMXAUTOMSR pHostMsrLoad = (PVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2438 uint32_t const cMsrs = pVmcsInfo->cExitMsrLoad;
2439 Assert(pHostMsrLoad);
2440 Assert(sizeof(*pHostMsrLoad) * cMsrs <= X86_PAGE_4K_SIZE);
2441 LogFlowFunc(("pVCpu=%p cMsrs=%u\n", pVCpu, cMsrs));
2442 for (uint32_t i = 0; i < cMsrs; i++)
2443 {
2444 /*
2445 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
2446 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
2447 */
2448 if (pHostMsrLoad[i].u32Msr == MSR_K6_EFER)
2449 pHostMsrLoad[i].u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
2450 else
2451 pHostMsrLoad[i].u64Value = ASMRdMsr(pHostMsrLoad[i].u32Msr);
2452 }
2453}
2454
2455
2456/**
2457 * Saves a set of host MSRs to allow read/write passthru access to the guest and
2458 * perform lazy restoration of the host MSRs while leaving VT-x.
2459 *
2460 * @param pVCpu The cross context virtual CPU structure.
2461 *
2462 * @remarks No-long-jump zone!!!
2463 */
2464static void hmR0VmxLazySaveHostMsrs(PVMCPUCC pVCpu)
2465{
2466 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2467
2468 /*
2469 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap accesses in hmR0VmxSetupVmcsProcCtls().
2470 */
2471 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
2472 {
2473 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
2474 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2475 {
2476 pVCpu->hm.s.vmx.u64HostMsrLStar = ASMRdMsr(MSR_K8_LSTAR);
2477 pVCpu->hm.s.vmx.u64HostMsrStar = ASMRdMsr(MSR_K6_STAR);
2478 pVCpu->hm.s.vmx.u64HostMsrSfMask = ASMRdMsr(MSR_K8_SF_MASK);
2479 pVCpu->hm.s.vmx.u64HostMsrKernelGsBase = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
2480 }
2481 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
2482 }
2483}
2484
2485
2486/**
2487 * Checks whether the MSR belongs to the set of guest MSRs that we restore
2488 * lazily while leaving VT-x.
2489 *
2490 * @returns true if it does, false otherwise.
2491 * @param pVCpu The cross context virtual CPU structure.
2492 * @param idMsr The MSR to check.
2493 */
2494static bool hmR0VmxIsLazyGuestMsr(PCVMCPUCC pVCpu, uint32_t idMsr)
2495{
2496 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2497 {
2498 switch (idMsr)
2499 {
2500 case MSR_K8_LSTAR:
2501 case MSR_K6_STAR:
2502 case MSR_K8_SF_MASK:
2503 case MSR_K8_KERNEL_GS_BASE:
2504 return true;
2505 }
2506 }
2507 return false;
2508}
2509
2510
2511/**
2512 * Loads a set of guests MSRs to allow read/passthru to the guest.
2513 *
2514 * The name of this function is slightly confusing. This function does NOT
2515 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
2516 * common prefix for functions dealing with "lazy restoration" of the shared
2517 * MSRs.
2518 *
2519 * @param pVCpu The cross context virtual CPU structure.
2520 *
2521 * @remarks No-long-jump zone!!!
2522 */
2523static void hmR0VmxLazyLoadGuestMsrs(PVMCPUCC pVCpu)
2524{
2525 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2526 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2527
2528 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
2529 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2530 {
2531 /*
2532 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
2533 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
2534 * we can skip a few MSR writes.
2535 *
2536 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
2537 * guest MSR values in the guest-CPU context might be different to what's currently
2538 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
2539 * CPU, see @bugref{8728}.
2540 */
2541 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
2542 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
2543 && pCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostMsrKernelGsBase
2544 && pCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostMsrLStar
2545 && pCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostMsrStar
2546 && pCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostMsrSfMask)
2547 {
2548#ifdef VBOX_STRICT
2549 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pCtx->msrKERNELGSBASE);
2550 Assert(ASMRdMsr(MSR_K8_LSTAR) == pCtx->msrLSTAR);
2551 Assert(ASMRdMsr(MSR_K6_STAR) == pCtx->msrSTAR);
2552 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pCtx->msrSFMASK);
2553#endif
2554 }
2555 else
2556 {
2557 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
2558 ASMWrMsr(MSR_K8_LSTAR, pCtx->msrLSTAR);
2559 ASMWrMsr(MSR_K6_STAR, pCtx->msrSTAR);
2560 ASMWrMsr(MSR_K8_SF_MASK, pCtx->msrSFMASK);
2561 }
2562 }
2563 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
2564}
2565
2566
2567/**
2568 * Performs lazy restoration of the set of host MSRs if they were previously
2569 * loaded with guest MSR values.
2570 *
2571 * @param pVCpu The cross context virtual CPU structure.
2572 *
2573 * @remarks No-long-jump zone!!!
2574 * @remarks The guest MSRs should have been saved back into the guest-CPU
2575 * context by hmR0VmxImportGuestState()!!!
2576 */
2577static void hmR0VmxLazyRestoreHostMsrs(PVMCPUCC pVCpu)
2578{
2579 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2580 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2581
2582 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
2583 {
2584 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
2585 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
2586 {
2587 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostMsrLStar);
2588 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostMsrStar);
2589 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostMsrSfMask);
2590 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostMsrKernelGsBase);
2591 }
2592 }
2593 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
2594}
2595
2596
2597/**
2598 * Verifies that our cached values of the VMCS fields are all consistent with
2599 * what's actually present in the VMCS.
2600 *
2601 * @returns VBox status code.
2602 * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
2603 * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
2604 * VMCS content. HMCPU error-field is
2605 * updated, see VMX_VCI_XXX.
2606 * @param pVCpu The cross context virtual CPU structure.
2607 * @param pVmcsInfo The VMCS info. object.
2608 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2609 */
2610static int hmR0VmxCheckCachedVmcsCtls(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
2611{
2612 const char * const pcszVmcs = fIsNstGstVmcs ? "Nested-guest VMCS" : "VMCS";
2613
2614 uint32_t u32Val;
2615 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
2616 AssertRC(rc);
2617 AssertMsgReturnStmt(pVmcsInfo->u32EntryCtls == u32Val,
2618 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32EntryCtls, u32Val),
2619 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_ENTRY,
2620 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2621
2622 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
2623 AssertRC(rc);
2624 AssertMsgReturnStmt(pVmcsInfo->u32ExitCtls == u32Val,
2625 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ExitCtls, u32Val),
2626 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_EXIT,
2627 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2628
2629 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
2630 AssertRC(rc);
2631 AssertMsgReturnStmt(pVmcsInfo->u32PinCtls == u32Val,
2632 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32PinCtls, u32Val),
2633 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PIN_EXEC,
2634 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2635
2636 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
2637 AssertRC(rc);
2638 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls == u32Val,
2639 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls, u32Val),
2640 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC,
2641 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2642
2643 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2644 {
2645 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
2646 AssertRC(rc);
2647 AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls2 == u32Val,
2648 ("%s controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls2, u32Val),
2649 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
2650 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2651 }
2652
2653 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
2654 AssertRC(rc);
2655 AssertMsgReturnStmt(pVmcsInfo->u32XcptBitmap == u32Val,
2656 ("%s exception bitmap mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32XcptBitmap, u32Val),
2657 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
2658 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2659
2660 uint64_t u64Val;
2661 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
2662 AssertRC(rc);
2663 AssertMsgReturnStmt(pVmcsInfo->u64TscOffset == u64Val,
2664 ("%s TSC offset mismatch: Cache=%#RX64 VMCS=%#RX64\n", pcszVmcs, pVmcsInfo->u64TscOffset, u64Val),
2665 pVCpu->hm.s.u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
2666 VERR_VMX_VMCS_FIELD_CACHE_INVALID);
2667
2668 NOREF(pcszVmcs);
2669 return VINF_SUCCESS;
2670}
2671
2672
2673#ifdef VBOX_STRICT
2674/**
2675 * Verifies that our cached host EFER MSR value has not changed since we cached it.
2676 *
2677 * @param pVCpu The cross context virtual CPU structure.
2678 * @param pVmcsInfo The VMCS info. object.
2679 */
2680static void hmR0VmxCheckHostEferMsr(PCVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
2681{
2682 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2683
2684 if (pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
2685 {
2686 uint64_t const uHostEferMsr = ASMRdMsr(MSR_K6_EFER);
2687 uint64_t const uHostEferMsrCache = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer;
2688 uint64_t uVmcsEferMsrVmcs;
2689 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &uVmcsEferMsrVmcs);
2690 AssertRC(rc);
2691
2692 AssertMsgReturnVoid(uHostEferMsr == uVmcsEferMsrVmcs,
2693 ("EFER Host/VMCS mismatch! host=%#RX64 vmcs=%#RX64\n", uHostEferMsr, uVmcsEferMsrVmcs));
2694 AssertMsgReturnVoid(uHostEferMsr == uHostEferMsrCache,
2695 ("EFER Host/Cache mismatch! host=%#RX64 cache=%#RX64\n", uHostEferMsr, uHostEferMsrCache));
2696 }
2697}
2698
2699
2700/**
2701 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
2702 * VMCS are correct.
2703 *
2704 * @param pVCpu The cross context virtual CPU structure.
2705 * @param pVmcsInfo The VMCS info. object.
2706 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
2707 */
2708static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
2709{
2710 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2711
2712 /* Read the various MSR-area counts from the VMCS. */
2713 uint32_t cEntryLoadMsrs;
2714 uint32_t cExitStoreMsrs;
2715 uint32_t cExitLoadMsrs;
2716 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cEntryLoadMsrs); AssertRC(rc);
2717 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cExitStoreMsrs); AssertRC(rc);
2718 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cExitLoadMsrs); AssertRC(rc);
2719
2720 /* Verify all the MSR counts are the same. */
2721 Assert(cEntryLoadMsrs == cExitStoreMsrs);
2722 Assert(cExitStoreMsrs == cExitLoadMsrs);
2723 uint32_t const cMsrs = cExitLoadMsrs;
2724
2725 /* Verify the MSR counts do not exceed the maximum count supported by the hardware. */
2726 Assert(cMsrs < VMX_MISC_MAX_MSRS(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc));
2727
2728 /* Verify the MSR counts are within the allocated page size. */
2729 Assert(sizeof(VMXAUTOMSR) * cMsrs <= X86_PAGE_4K_SIZE);
2730
2731 /* Verify the relevant contents of the MSR areas match. */
2732 PCVMXAUTOMSR pGuestMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrLoad;
2733 PCVMXAUTOMSR pGuestMsrStore = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
2734 PCVMXAUTOMSR pHostMsrLoad = (PCVMXAUTOMSR)pVmcsInfo->pvHostMsrLoad;
2735 bool const fSeparateExitMsrStorePage = hmR0VmxIsSeparateExitMsrStoreAreaVmcs(pVmcsInfo);
2736 for (uint32_t i = 0; i < cMsrs; i++)
2737 {
2738 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
2739 if (fSeparateExitMsrStorePage)
2740 {
2741 AssertMsgReturnVoid(pGuestMsrLoad->u32Msr == pGuestMsrStore->u32Msr,
2742 ("GuestMsrLoad=%#RX32 GuestMsrStore=%#RX32 cMsrs=%u\n",
2743 pGuestMsrLoad->u32Msr, pGuestMsrStore->u32Msr, cMsrs));
2744 }
2745
2746 AssertMsgReturnVoid(pHostMsrLoad->u32Msr == pGuestMsrLoad->u32Msr,
2747 ("HostMsrLoad=%#RX32 GuestMsrLoad=%#RX32 cMsrs=%u\n",
2748 pHostMsrLoad->u32Msr, pGuestMsrLoad->u32Msr, cMsrs));
2749
2750 uint64_t const u64HostMsr = ASMRdMsr(pHostMsrLoad->u32Msr);
2751 AssertMsgReturnVoid(pHostMsrLoad->u64Value == u64HostMsr,
2752 ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
2753 pHostMsrLoad->u32Msr, pHostMsrLoad->u64Value, u64HostMsr, cMsrs));
2754
2755 /* Verify that cached host EFER MSR matches what's loaded the CPU. */
2756 bool const fIsEferMsr = RT_BOOL(pHostMsrLoad->u32Msr == MSR_K6_EFER);
2757 if (fIsEferMsr)
2758 {
2759 AssertMsgReturnVoid(u64HostMsr == pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer,
2760 ("Cached=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
2761 pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostMsrEfer, u64HostMsr, cMsrs));
2762 }
2763
2764 /* Verify that the accesses are as expected in the MSR bitmap for auto-load/store MSRs. */
2765 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
2766 {
2767 uint32_t const fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, pGuestMsrLoad->u32Msr);
2768 if (fIsEferMsr)
2769 {
2770 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_RD), ("Passthru read for EFER MSR!?\n"));
2771 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_EXIT_WR), ("Passthru write for EFER MSR!?\n"));
2772 }
2773 else
2774 {
2775 /* Verify LBR MSRs (used only for debugging) are intercepted. We don't passthru these MSRs to the guest yet. */
2776 PCVM pVM = pVCpu->CTX_SUFF(pVM);
2777 if ( pVM->hm.s.vmx.fLbr
2778 && ( hmR0VmxIsLbrBranchFromMsr(pVM, pGuestMsrLoad->u32Msr, NULL /* pidxMsr */)
2779 || hmR0VmxIsLbrBranchToMsr(pVM, pGuestMsrLoad->u32Msr, NULL /* pidxMsr */)
2780 || pGuestMsrLoad->u32Msr == pVM->hm.s.vmx.idLbrTosMsr))
2781 {
2782 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_MASK) == VMXMSRPM_EXIT_RD_WR,
2783 ("u32Msr=%#RX32 cMsrs=%u Passthru read/write for LBR MSRs!\n",
2784 pGuestMsrLoad->u32Msr, cMsrs));
2785 }
2786 else if (!fIsNstGstVmcs)
2787 {
2788 AssertMsgReturnVoid((fMsrpm & VMXMSRPM_MASK) == VMXMSRPM_ALLOW_RD_WR,
2789 ("u32Msr=%#RX32 cMsrs=%u No passthru read/write!\n", pGuestMsrLoad->u32Msr, cMsrs));
2790 }
2791 else
2792 {
2793 /*
2794 * A nested-guest VMCS must -also- allow read/write passthrough for the MSR for us to
2795 * execute a nested-guest with MSR passthrough.
2796 *
2797 * Check if the nested-guest MSR bitmap allows passthrough, and if so, assert that we
2798 * allow passthrough too.
2799 */
2800 void const *pvMsrBitmapNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap);
2801 Assert(pvMsrBitmapNstGst);
2802 uint32_t const fMsrpmNstGst = CPUMGetVmxMsrPermission(pvMsrBitmapNstGst, pGuestMsrLoad->u32Msr);
2803 AssertMsgReturnVoid(fMsrpm == fMsrpmNstGst,
2804 ("u32Msr=%#RX32 cMsrs=%u Permission mismatch fMsrpm=%#x fMsrpmNstGst=%#x!\n",
2805 pGuestMsrLoad->u32Msr, cMsrs, fMsrpm, fMsrpmNstGst));
2806 }
2807 }
2808 }
2809
2810 /* Move to the next MSR. */
2811 pHostMsrLoad++;
2812 pGuestMsrLoad++;
2813 pGuestMsrStore++;
2814 }
2815}
2816#endif /* VBOX_STRICT */
2817
2818
2819/**
2820 * Flushes the TLB using EPT.
2821 *
2822 * @returns VBox status code.
2823 * @param pVCpu The cross context virtual CPU structure of the calling
2824 * EMT. Can be NULL depending on @a enmTlbFlush.
2825 * @param pVmcsInfo The VMCS info. object. Can be NULL depending on @a
2826 * enmTlbFlush.
2827 * @param enmTlbFlush Type of flush.
2828 *
2829 * @remarks Caller is responsible for making sure this function is called only
2830 * when NestedPaging is supported and providing @a enmTlbFlush that is
2831 * supported by the CPU.
2832 * @remarks Can be called with interrupts disabled.
2833 */
2834static void hmR0VmxFlushEpt(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, VMXTLBFLUSHEPT enmTlbFlush)
2835{
2836 uint64_t au64Descriptor[2];
2837 if (enmTlbFlush == VMXTLBFLUSHEPT_ALL_CONTEXTS)
2838 au64Descriptor[0] = 0;
2839 else
2840 {
2841 Assert(pVCpu);
2842 Assert(pVmcsInfo);
2843 au64Descriptor[0] = pVmcsInfo->HCPhysEPTP;
2844 }
2845 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
2846
2847 int rc = VMXR0InvEPT(enmTlbFlush, &au64Descriptor[0]);
2848 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %#RHp failed. rc=%Rrc\n", enmTlbFlush, au64Descriptor[0], rc));
2849
2850 if ( RT_SUCCESS(rc)
2851 && pVCpu)
2852 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
2853}
2854
2855
2856/**
2857 * Flushes the TLB using VPID.
2858 *
2859 * @returns VBox status code.
2860 * @param pVCpu The cross context virtual CPU structure of the calling
2861 * EMT. Can be NULL depending on @a enmTlbFlush.
2862 * @param enmTlbFlush Type of flush.
2863 * @param GCPtr Virtual address of the page to flush (can be 0 depending
2864 * on @a enmTlbFlush).
2865 *
2866 * @remarks Can be called with interrupts disabled.
2867 */
2868static void hmR0VmxFlushVpid(PVMCPUCC pVCpu, VMXTLBFLUSHVPID enmTlbFlush, RTGCPTR GCPtr)
2869{
2870 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid);
2871
2872 uint64_t au64Descriptor[2];
2873 if (enmTlbFlush == VMXTLBFLUSHVPID_ALL_CONTEXTS)
2874 {
2875 au64Descriptor[0] = 0;
2876 au64Descriptor[1] = 0;
2877 }
2878 else
2879 {
2880 AssertPtr(pVCpu);
2881 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2882 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
2883 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
2884 au64Descriptor[1] = GCPtr;
2885 }
2886
2887 int rc = VMXR0InvVPID(enmTlbFlush, &au64Descriptor[0]);
2888 AssertMsg(rc == VINF_SUCCESS,
2889 ("VMXR0InvVPID %#x %u %RGv failed with %Rrc\n", enmTlbFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
2890
2891 if ( RT_SUCCESS(rc)
2892 && pVCpu)
2893 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
2894 NOREF(rc);
2895}
2896
2897
2898/**
2899 * Invalidates a guest page by guest virtual address. Only relevant for EPT/VPID,
2900 * otherwise there is nothing really to invalidate.
2901 *
2902 * @returns VBox status code.
2903 * @param pVCpu The cross context virtual CPU structure.
2904 * @param GCVirt Guest virtual address of the page to invalidate.
2905 */
2906VMMR0DECL(int) VMXR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
2907{
2908 AssertPtr(pVCpu);
2909 LogFlowFunc(("pVCpu=%p GCVirt=%RGv\n", pVCpu, GCVirt));
2910
2911 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH))
2912 {
2913 /*
2914 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for
2915 * the EPT case. See @bugref{6043} and @bugref{6177}.
2916 *
2917 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*()
2918 * as this function maybe called in a loop with individual addresses.
2919 */
2920 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2921 if (pVM->hm.s.vmx.fVpid)
2922 {
2923 bool fVpidFlush = RT_BOOL(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
2924 if (fVpidFlush)
2925 {
2926 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_INDIV_ADDR, GCVirt);
2927 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
2928 }
2929 else
2930 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2931 }
2932 else if (pVM->hm.s.fNestedPaging)
2933 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2934 }
2935
2936 return VINF_SUCCESS;
2937}
2938
2939
2940/**
2941 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
2942 * case where neither EPT nor VPID is supported by the CPU.
2943 *
2944 * @param pHostCpu The HM physical-CPU structure.
2945 * @param pVCpu The cross context virtual CPU structure.
2946 *
2947 * @remarks Called with interrupts disabled.
2948 */
2949static void hmR0VmxFlushTaggedTlbNone(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
2950{
2951 AssertPtr(pVCpu);
2952 AssertPtr(pHostCpu);
2953
2954 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
2955
2956 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2957 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
2958 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
2959 pVCpu->hm.s.fForceTLBFlush = false;
2960 return;
2961}
2962
2963
2964/**
2965 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
2966 *
2967 * @param pHostCpu The HM physical-CPU structure.
2968 * @param pVCpu The cross context virtual CPU structure.
2969 * @param pVmcsInfo The VMCS info. object.
2970 *
2971 * @remarks All references to "ASID" in this function pertains to "VPID" in Intel's
2972 * nomenclature. The reason is, to avoid confusion in compare statements
2973 * since the host-CPU copies are named "ASID".
2974 *
2975 * @remarks Called with interrupts disabled.
2976 */
2977static void hmR0VmxFlushTaggedTlbBoth(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
2978{
2979#ifdef VBOX_WITH_STATISTICS
2980 bool fTlbFlushed = false;
2981# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
2982# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
2983 if (!fTlbFlushed) \
2984 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
2985 } while (0)
2986#else
2987# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
2988# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
2989#endif
2990
2991 AssertPtr(pVCpu);
2992 AssertPtr(pHostCpu);
2993 Assert(pHostCpu->idCpu != NIL_RTCPUID);
2994
2995 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2996 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
2997 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
2998 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
2999
3000 /*
3001 * Force a TLB flush for the first world-switch if the current CPU differs from the one we
3002 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
3003 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
3004 * cannot reuse the current ASID anymore.
3005 */
3006 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
3007 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
3008 {
3009 ++pHostCpu->uCurrentAsid;
3010 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
3011 {
3012 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
3013 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
3014 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
3015 }
3016
3017 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
3018 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
3019 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
3020
3021 /*
3022 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
3023 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
3024 */
3025 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
3026 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
3027 HMVMX_SET_TAGGED_TLB_FLUSHED();
3028 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
3029 }
3030 else if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH)) /* Check for explicit TLB flushes. */
3031 {
3032 /*
3033 * Changes to the EPT paging structure by VMM requires flushing-by-EPT as the CPU
3034 * creates guest-physical (ie. only EPT-tagged) mappings while traversing the EPT
3035 * tables when EPT is in use. Flushing-by-VPID will only flush linear (only
3036 * VPID-tagged) and combined (EPT+VPID tagged) mappings but not guest-physical
3037 * mappings, see @bugref{6568}.
3038 *
3039 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information".
3040 */
3041 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
3042 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
3043 HMVMX_SET_TAGGED_TLB_FLUSHED();
3044 }
3045 else if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
3046 {
3047 /*
3048 * The nested-guest specifies its own guest-physical address to use as the APIC-access
3049 * address which requires flushing the TLB of EPT cached structures.
3050 *
3051 * See Intel spec. 28.3.3.4 "Guidelines for Use of the INVEPT Instruction".
3052 */
3053 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVM->hm.s.vmx.enmTlbFlushEpt);
3054 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
3055 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
3056 HMVMX_SET_TAGGED_TLB_FLUSHED();
3057 }
3058
3059
3060 pVCpu->hm.s.fForceTLBFlush = false;
3061 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
3062
3063 Assert(pVCpu->hm.s.idLastCpu == pHostCpu->idCpu);
3064 Assert(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes);
3065 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
3066 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
3067 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
3068 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
3069 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
3070 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
3071 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
3072
3073 /* Update VMCS with the VPID. */
3074 int rc = VMXWriteVmcs16(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
3075 AssertRC(rc);
3076
3077#undef HMVMX_SET_TAGGED_TLB_FLUSHED
3078}
3079
3080
3081/**
3082 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
3083 *
3084 * @param pHostCpu The HM physical-CPU structure.
3085 * @param pVCpu The cross context virtual CPU structure.
3086 * @param pVmcsInfo The VMCS info. object.
3087 *
3088 * @remarks Called with interrupts disabled.
3089 */
3090static void hmR0VmxFlushTaggedTlbEpt(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
3091{
3092 AssertPtr(pVCpu);
3093 AssertPtr(pHostCpu);
3094 Assert(pHostCpu->idCpu != NIL_RTCPUID);
3095 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked without NestedPaging."));
3096 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID."));
3097
3098 /*
3099 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
3100 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
3101 */
3102 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
3103 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
3104 {
3105 pVCpu->hm.s.fForceTLBFlush = true;
3106 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
3107 }
3108
3109 /* Check for explicit TLB flushes. */
3110 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
3111 {
3112 pVCpu->hm.s.fForceTLBFlush = true;
3113 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
3114 }
3115
3116 /* Check for TLB flushes while switching to/from a nested-guest. */
3117 if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
3118 {
3119 pVCpu->hm.s.fForceTLBFlush = true;
3120 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
3121 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
3122 }
3123
3124 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
3125 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
3126
3127 if (pVCpu->hm.s.fForceTLBFlush)
3128 {
3129 hmR0VmxFlushEpt(pVCpu, pVmcsInfo, pVCpu->CTX_SUFF(pVM)->hm.s.vmx.enmTlbFlushEpt);
3130 pVCpu->hm.s.fForceTLBFlush = false;
3131 }
3132}
3133
3134
3135/**
3136 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
3137 *
3138 * @param pHostCpu The HM physical-CPU structure.
3139 * @param pVCpu The cross context virtual CPU structure.
3140 *
3141 * @remarks Called with interrupts disabled.
3142 */
3143static void hmR0VmxFlushTaggedTlbVpid(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu)
3144{
3145 AssertPtr(pVCpu);
3146 AssertPtr(pHostCpu);
3147 Assert(pHostCpu->idCpu != NIL_RTCPUID);
3148 AssertMsg(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked without VPID."));
3149 AssertMsg(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging"));
3150
3151 /*
3152 * Force a TLB flush for the first world switch if the current CPU differs from the one we
3153 * ran on last. If the TLB flush count changed, another VM (VCPU rather) has hit the ASID
3154 * limit while flushing the TLB or the host CPU is online after a suspend/resume, so we
3155 * cannot reuse the current ASID anymore.
3156 */
3157 if ( pVCpu->hm.s.idLastCpu != pHostCpu->idCpu
3158 || pVCpu->hm.s.cTlbFlushes != pHostCpu->cTlbFlushes)
3159 {
3160 pVCpu->hm.s.fForceTLBFlush = true;
3161 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
3162 }
3163
3164 /* Check for explicit TLB flushes. */
3165 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
3166 {
3167 /*
3168 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see
3169 * hmR0VmxSetupTaggedTlb()) we would need to explicitly flush in this case (add an
3170 * fExplicitFlush = true here and change the pHostCpu->fFlushAsidBeforeUse check below to
3171 * include fExplicitFlush's too) - an obscure corner case.
3172 */
3173 pVCpu->hm.s.fForceTLBFlush = true;
3174 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
3175 }
3176
3177 /* Check for TLB flushes while switching to/from a nested-guest. */
3178 if (pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb)
3179 {
3180 pVCpu->hm.s.fForceTLBFlush = true;
3181 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = false;
3182 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbNstGst);
3183 }
3184
3185 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3186 pVCpu->hm.s.idLastCpu = pHostCpu->idCpu;
3187 if (pVCpu->hm.s.fForceTLBFlush)
3188 {
3189 ++pHostCpu->uCurrentAsid;
3190 if (pHostCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
3191 {
3192 pHostCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
3193 pHostCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
3194 pHostCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
3195 }
3196
3197 pVCpu->hm.s.fForceTLBFlush = false;
3198 pVCpu->hm.s.cTlbFlushes = pHostCpu->cTlbFlushes;
3199 pVCpu->hm.s.uCurrentAsid = pHostCpu->uCurrentAsid;
3200 if (pHostCpu->fFlushAsidBeforeUse)
3201 {
3202 if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_SINGLE_CONTEXT)
3203 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
3204 else if (pVM->hm.s.vmx.enmTlbFlushVpid == VMXTLBFLUSHVPID_ALL_CONTEXTS)
3205 {
3206 hmR0VmxFlushVpid(pVCpu, VMXTLBFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
3207 pHostCpu->fFlushAsidBeforeUse = false;
3208 }
3209 else
3210 {
3211 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
3212 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
3213 }
3214 }
3215 }
3216
3217 AssertMsg(pVCpu->hm.s.cTlbFlushes == pHostCpu->cTlbFlushes,
3218 ("Flush count mismatch for cpu %d (%u vs %u)\n", pHostCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pHostCpu->cTlbFlushes));
3219 AssertMsg(pHostCpu->uCurrentAsid >= 1 && pHostCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
3220 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pHostCpu->idCpu,
3221 pHostCpu->uCurrentAsid, pHostCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
3222 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
3223 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pHostCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
3224
3225 int rc = VMXWriteVmcs16(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
3226 AssertRC(rc);
3227}
3228
3229
3230/**
3231 * Flushes the guest TLB entry based on CPU capabilities.
3232 *
3233 * @param pHostCpu The HM physical-CPU structure.
3234 * @param pVCpu The cross context virtual CPU structure.
3235 * @param pVmcsInfo The VMCS info. object.
3236 *
3237 * @remarks Called with interrupts disabled.
3238 */
3239static void hmR0VmxFlushTaggedTlb(PHMPHYSCPU pHostCpu, PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3240{
3241#ifdef HMVMX_ALWAYS_FLUSH_TLB
3242 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
3243#endif
3244 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3245 switch (pVM->hm.s.vmx.enmTlbFlushType)
3246 {
3247 case VMXTLBFLUSHTYPE_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pHostCpu, pVCpu, pVmcsInfo); break;
3248 case VMXTLBFLUSHTYPE_EPT: hmR0VmxFlushTaggedTlbEpt(pHostCpu, pVCpu, pVmcsInfo); break;
3249 case VMXTLBFLUSHTYPE_VPID: hmR0VmxFlushTaggedTlbVpid(pHostCpu, pVCpu); break;
3250 case VMXTLBFLUSHTYPE_NONE: hmR0VmxFlushTaggedTlbNone(pHostCpu, pVCpu); break;
3251 default:
3252 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
3253 break;
3254 }
3255 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
3256}
3257
3258
3259/**
3260 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
3261 * TLB entries from the host TLB before VM-entry.
3262 *
3263 * @returns VBox status code.
3264 * @param pVM The cross context VM structure.
3265 */
3266static int hmR0VmxSetupTaggedTlb(PVMCC pVM)
3267{
3268 /*
3269 * Determine optimal flush type for nested paging.
3270 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup
3271 * unrestricted guest execution (see hmR3InitFinalizeR0()).
3272 */
3273 if (pVM->hm.s.fNestedPaging)
3274 {
3275 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
3276 {
3277 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
3278 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_SINGLE_CONTEXT;
3279 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
3280 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_ALL_CONTEXTS;
3281 else
3282 {
3283 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
3284 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3285 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
3286 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3287 }
3288
3289 /* Make sure the write-back cacheable memory type for EPT is supported. */
3290 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
3291 {
3292 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3293 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
3294 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3295 }
3296
3297 /* EPT requires a page-walk length of 4. */
3298 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
3299 {
3300 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3301 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
3302 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3303 }
3304 }
3305 else
3306 {
3307 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
3308 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NOT_SUPPORTED;
3309 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
3310 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3311 }
3312 }
3313
3314 /*
3315 * Determine optimal flush type for VPID.
3316 */
3317 if (pVM->hm.s.vmx.fVpid)
3318 {
3319 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
3320 {
3321 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
3322 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_SINGLE_CONTEXT;
3323 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
3324 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_ALL_CONTEXTS;
3325 else
3326 {
3327 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
3328 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
3329 LogRelFunc(("Only INDIV_ADDR supported. Ignoring VPID.\n"));
3330 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
3331 LogRelFunc(("Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
3332 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
3333 pVM->hm.s.vmx.fVpid = false;
3334 }
3335 }
3336 else
3337 {
3338 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
3339 Log4Func(("VPID supported without INVEPT support. Ignoring VPID.\n"));
3340 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NOT_SUPPORTED;
3341 pVM->hm.s.vmx.fVpid = false;
3342 }
3343 }
3344
3345 /*
3346 * Setup the handler for flushing tagged-TLBs.
3347 */
3348 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
3349 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT_VPID;
3350 else if (pVM->hm.s.fNestedPaging)
3351 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_EPT;
3352 else if (pVM->hm.s.vmx.fVpid)
3353 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_VPID;
3354 else
3355 pVM->hm.s.vmx.enmTlbFlushType = VMXTLBFLUSHTYPE_NONE;
3356 return VINF_SUCCESS;
3357}
3358
3359
3360/**
3361 * Sets up the LBR MSR ranges based on the host CPU.
3362 *
3363 * @returns VBox status code.
3364 * @param pVM The cross context VM structure.
3365 */
3366static int hmR0VmxSetupLbrMsrRange(PVMCC pVM)
3367{
3368 Assert(pVM->hm.s.vmx.fLbr);
3369 uint32_t idLbrFromIpMsrFirst;
3370 uint32_t idLbrFromIpMsrLast;
3371 uint32_t idLbrToIpMsrFirst;
3372 uint32_t idLbrToIpMsrLast;
3373 uint32_t idLbrTosMsr;
3374
3375 /*
3376 * Determine the LBR MSRs supported for this host CPU family and model.
3377 *
3378 * See Intel spec. 17.4.8 "LBR Stack".
3379 * See Intel "Model-Specific Registers" spec.
3380 */
3381 uint32_t const uFamilyModel = (pVM->cpum.ro.HostFeatures.uFamily << 8)
3382 | pVM->cpum.ro.HostFeatures.uModel;
3383 switch (uFamilyModel)
3384 {
3385 case 0x0f01: case 0x0f02:
3386 idLbrFromIpMsrFirst = MSR_P4_LASTBRANCH_0;
3387 idLbrFromIpMsrLast = MSR_P4_LASTBRANCH_3;
3388 idLbrToIpMsrFirst = 0x0;
3389 idLbrToIpMsrLast = 0x0;
3390 idLbrTosMsr = MSR_P4_LASTBRANCH_TOS;
3391 break;
3392
3393 case 0x065c: case 0x065f: case 0x064e: case 0x065e: case 0x068e:
3394 case 0x069e: case 0x0655: case 0x0666: case 0x067a: case 0x0667:
3395 case 0x066a: case 0x066c: case 0x067d: case 0x067e:
3396 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
3397 idLbrFromIpMsrLast = MSR_LASTBRANCH_31_FROM_IP;
3398 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
3399 idLbrToIpMsrLast = MSR_LASTBRANCH_31_TO_IP;
3400 idLbrTosMsr = MSR_LASTBRANCH_TOS;
3401 break;
3402
3403 case 0x063d: case 0x0647: case 0x064f: case 0x0656: case 0x063c:
3404 case 0x0645: case 0x0646: case 0x063f: case 0x062a: case 0x062d:
3405 case 0x063a: case 0x063e: case 0x061a: case 0x061e: case 0x061f:
3406 case 0x062e: case 0x0625: case 0x062c: case 0x062f:
3407 idLbrFromIpMsrFirst = MSR_LASTBRANCH_0_FROM_IP;
3408 idLbrFromIpMsrLast = MSR_LASTBRANCH_15_FROM_IP;
3409 idLbrToIpMsrFirst = MSR_LASTBRANCH_0_TO_IP;
3410 idLbrToIpMsrLast = MSR_LASTBRANCH_15_TO_IP;
3411 idLbrTosMsr = MSR_LASTBRANCH_TOS;
3412 break;
3413
3414 case 0x0617: case 0x061d: case 0x060f:
3415 idLbrFromIpMsrFirst = MSR_CORE2_LASTBRANCH_0_FROM_IP;
3416 idLbrFromIpMsrLast = MSR_CORE2_LASTBRANCH_3_FROM_IP;
3417 idLbrToIpMsrFirst = MSR_CORE2_LASTBRANCH_0_TO_IP;
3418 idLbrToIpMsrLast = MSR_CORE2_LASTBRANCH_3_TO_IP;
3419 idLbrTosMsr = MSR_CORE2_LASTBRANCH_TOS;
3420 break;
3421
3422 /* Atom and related microarchitectures we don't care about:
3423 case 0x0637: case 0x064a: case 0x064c: case 0x064d: case 0x065a:
3424 case 0x065d: case 0x061c: case 0x0626: case 0x0627: case 0x0635:
3425 case 0x0636: */
3426 /* All other CPUs: */
3427 default:
3428 {
3429 LogRelFunc(("Could not determine LBR stack size for the CPU model %#x\n", uFamilyModel));
3430 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_UNKNOWN;
3431 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3432 }
3433 }
3434
3435 /*
3436 * Validate.
3437 */
3438 uint32_t const cLbrStack = idLbrFromIpMsrLast - idLbrFromIpMsrFirst + 1;
3439 PCVMCPU pVCpu0 = VMCC_GET_CPU_0(pVM);
3440 AssertCompile( RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrFromIpMsr)
3441 == RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrToIpMsr));
3442 if (cLbrStack > RT_ELEMENTS(pVCpu0->hm.s.vmx.VmcsInfo.au64LbrFromIpMsr))
3443 {
3444 LogRelFunc(("LBR stack size of the CPU (%u) exceeds our buffer size\n", cLbrStack));
3445 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_LBR_STACK_SIZE_OVERFLOW;
3446 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3447 }
3448 NOREF(pVCpu0);
3449
3450 /*
3451 * Update the LBR info. to the VM struct. for use later.
3452 */
3453 pVM->hm.s.vmx.idLbrTosMsr = idLbrTosMsr;
3454 pVM->hm.s.vmx.idLbrFromIpMsrFirst = idLbrFromIpMsrFirst;
3455 pVM->hm.s.vmx.idLbrFromIpMsrLast = idLbrFromIpMsrLast;
3456
3457 pVM->hm.s.vmx.idLbrToIpMsrFirst = idLbrToIpMsrFirst;
3458 pVM->hm.s.vmx.idLbrToIpMsrLast = idLbrToIpMsrLast;
3459 return VINF_SUCCESS;
3460}
3461
3462
3463#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3464/**
3465 * Sets up the shadow VMCS fields arrays.
3466 *
3467 * This function builds arrays of VMCS fields to sync the shadow VMCS later while
3468 * executing the guest.
3469 *
3470 * @returns VBox status code.
3471 * @param pVM The cross context VM structure.
3472 */
3473static int hmR0VmxSetupShadowVmcsFieldsArrays(PVMCC pVM)
3474{
3475 /*
3476 * Paranoia. Ensure we haven't exposed the VMWRITE-All VMX feature to the guest
3477 * when the host does not support it.
3478 */
3479 bool const fGstVmwriteAll = pVM->cpum.ro.GuestFeatures.fVmxVmwriteAll;
3480 if ( !fGstVmwriteAll
3481 || (pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL))
3482 { /* likely. */ }
3483 else
3484 {
3485 LogRelFunc(("VMX VMWRITE-All feature exposed to the guest but host CPU does not support it!\n"));
3486 VMCC_GET_CPU_0(pVM)->hm.s.u32HMError = VMX_UFC_GST_HOST_VMWRITE_ALL;
3487 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3488 }
3489
3490 uint32_t const cVmcsFields = RT_ELEMENTS(g_aVmcsFields);
3491 uint32_t cRwFields = 0;
3492 uint32_t cRoFields = 0;
3493 for (uint32_t i = 0; i < cVmcsFields; i++)
3494 {
3495 VMXVMCSFIELD VmcsField;
3496 VmcsField.u = g_aVmcsFields[i];
3497
3498 /*
3499 * We will be writing "FULL" (64-bit) fields while syncing the shadow VMCS.
3500 * Therefore, "HIGH" (32-bit portion of 64-bit) fields must not be included
3501 * in the shadow VMCS fields array as they would be redundant.
3502 *
3503 * If the VMCS field depends on a CPU feature that is not exposed to the guest,
3504 * we must not include it in the shadow VMCS fields array. Guests attempting to
3505 * VMREAD/VMWRITE such VMCS fields would cause a VM-exit and we shall emulate
3506 * the required behavior.
3507 */
3508 if ( VmcsField.n.fAccessType == VMX_VMCSFIELD_ACCESS_FULL
3509 && CPUMIsGuestVmxVmcsFieldValid(pVM, VmcsField.u))
3510 {
3511 /*
3512 * Read-only fields are placed in a separate array so that while syncing shadow
3513 * VMCS fields later (which is more performance critical) we can avoid branches.
3514 *
3515 * However, if the guest can write to all fields (including read-only fields),
3516 * we treat it a as read/write field. Otherwise, writing to these fields would
3517 * cause a VMWRITE instruction error while syncing the shadow VMCS.
3518 */
3519 if ( fGstVmwriteAll
3520 || !VMXIsVmcsFieldReadOnly(VmcsField.u))
3521 pVM->hm.s.vmx.paShadowVmcsFields[cRwFields++] = VmcsField.u;
3522 else
3523 pVM->hm.s.vmx.paShadowVmcsRoFields[cRoFields++] = VmcsField.u;
3524 }
3525 }
3526
3527 /* Update the counts. */
3528 pVM->hm.s.vmx.cShadowVmcsFields = cRwFields;
3529 pVM->hm.s.vmx.cShadowVmcsRoFields = cRoFields;
3530 return VINF_SUCCESS;
3531}
3532
3533
3534/**
3535 * Sets up the VMREAD and VMWRITE bitmaps.
3536 *
3537 * @param pVM The cross context VM structure.
3538 */
3539static void hmR0VmxSetupVmreadVmwriteBitmaps(PVMCC pVM)
3540{
3541 /*
3542 * By default, ensure guest attempts to access any VMCS fields cause VM-exits.
3543 */
3544 uint32_t const cbBitmap = X86_PAGE_4K_SIZE;
3545 uint8_t *pbVmreadBitmap = (uint8_t *)pVM->hm.s.vmx.pvVmreadBitmap;
3546 uint8_t *pbVmwriteBitmap = (uint8_t *)pVM->hm.s.vmx.pvVmwriteBitmap;
3547 ASMMemFill32(pbVmreadBitmap, cbBitmap, UINT32_C(0xffffffff));
3548 ASMMemFill32(pbVmwriteBitmap, cbBitmap, UINT32_C(0xffffffff));
3549
3550 /*
3551 * Skip intercepting VMREAD/VMWRITE to guest read/write fields in the
3552 * VMREAD and VMWRITE bitmaps.
3553 */
3554 {
3555 uint32_t const *paShadowVmcsFields = pVM->hm.s.vmx.paShadowVmcsFields;
3556 uint32_t const cShadowVmcsFields = pVM->hm.s.vmx.cShadowVmcsFields;
3557 for (uint32_t i = 0; i < cShadowVmcsFields; i++)
3558 {
3559 uint32_t const uVmcsField = paShadowVmcsFields[i];
3560 Assert(!(uVmcsField & VMX_VMCSFIELD_RSVD_MASK));
3561 Assert(uVmcsField >> 3 < cbBitmap);
3562 ASMBitClear(pbVmreadBitmap + (uVmcsField >> 3), uVmcsField & 7);
3563 ASMBitClear(pbVmwriteBitmap + (uVmcsField >> 3), uVmcsField & 7);
3564 }
3565 }
3566
3567 /*
3568 * Skip intercepting VMREAD for guest read-only fields in the VMREAD bitmap
3569 * if the host supports VMWRITE to all supported VMCS fields.
3570 */
3571 if (pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL)
3572 {
3573 uint32_t const *paShadowVmcsRoFields = pVM->hm.s.vmx.paShadowVmcsRoFields;
3574 uint32_t const cShadowVmcsRoFields = pVM->hm.s.vmx.cShadowVmcsRoFields;
3575 for (uint32_t i = 0; i < cShadowVmcsRoFields; i++)
3576 {
3577 uint32_t const uVmcsField = paShadowVmcsRoFields[i];
3578 Assert(!(uVmcsField & VMX_VMCSFIELD_RSVD_MASK));
3579 Assert(uVmcsField >> 3 < cbBitmap);
3580 ASMBitClear(pbVmreadBitmap + (uVmcsField >> 3), uVmcsField & 7);
3581 }
3582 }
3583}
3584#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
3585
3586
3587/**
3588 * Sets up the virtual-APIC page address for the VMCS.
3589 *
3590 * @param pVmcsInfo The VMCS info. object.
3591 */
3592DECLINLINE(void) hmR0VmxSetupVmcsVirtApicAddr(PCVMXVMCSINFO pVmcsInfo)
3593{
3594 RTHCPHYS const HCPhysVirtApic = pVmcsInfo->HCPhysVirtApic;
3595 Assert(HCPhysVirtApic != NIL_RTHCPHYS);
3596 Assert(!(HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
3597 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
3598 AssertRC(rc);
3599}
3600
3601
3602/**
3603 * Sets up the MSR-bitmap address for the VMCS.
3604 *
3605 * @param pVmcsInfo The VMCS info. object.
3606 */
3607DECLINLINE(void) hmR0VmxSetupVmcsMsrBitmapAddr(PCVMXVMCSINFO pVmcsInfo)
3608{
3609 RTHCPHYS const HCPhysMsrBitmap = pVmcsInfo->HCPhysMsrBitmap;
3610 Assert(HCPhysMsrBitmap != NIL_RTHCPHYS);
3611 Assert(!(HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
3612 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, HCPhysMsrBitmap);
3613 AssertRC(rc);
3614}
3615
3616
3617/**
3618 * Sets up the APIC-access page address for the VMCS.
3619 *
3620 * @param pVCpu The cross context virtual CPU structure.
3621 */
3622DECLINLINE(void) hmR0VmxSetupVmcsApicAccessAddr(PVMCPUCC pVCpu)
3623{
3624 RTHCPHYS const HCPhysApicAccess = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysApicAccess;
3625 Assert(HCPhysApicAccess != NIL_RTHCPHYS);
3626 Assert(!(HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
3627 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
3628 AssertRC(rc);
3629}
3630
3631
3632#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
3633/**
3634 * Sets up the VMREAD bitmap address for the VMCS.
3635 *
3636 * @param pVCpu The cross context virtual CPU structure.
3637 */
3638DECLINLINE(void) hmR0VmxSetupVmcsVmreadBitmapAddr(PVMCPUCC pVCpu)
3639{
3640 RTHCPHYS const HCPhysVmreadBitmap = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysVmreadBitmap;
3641 Assert(HCPhysVmreadBitmap != NIL_RTHCPHYS);
3642 Assert(!(HCPhysVmreadBitmap & 0xfff)); /* Bits 11:0 MBZ. */
3643 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL, HCPhysVmreadBitmap);
3644 AssertRC(rc);
3645}
3646
3647
3648/**
3649 * Sets up the VMWRITE bitmap address for the VMCS.
3650 *
3651 * @param pVCpu The cross context virtual CPU structure.
3652 */
3653DECLINLINE(void) hmR0VmxSetupVmcsVmwriteBitmapAddr(PVMCPUCC pVCpu)
3654{
3655 RTHCPHYS const HCPhysVmwriteBitmap = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.HCPhysVmwriteBitmap;
3656 Assert(HCPhysVmwriteBitmap != NIL_RTHCPHYS);
3657 Assert(!(HCPhysVmwriteBitmap & 0xfff)); /* Bits 11:0 MBZ. */
3658 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL, HCPhysVmwriteBitmap);
3659 AssertRC(rc);
3660}
3661#endif
3662
3663
3664/**
3665 * Sets up the VM-entry MSR load, VM-exit MSR-store and VM-exit MSR-load addresses
3666 * in the VMCS.
3667 *
3668 * @returns VBox status code.
3669 * @param pVmcsInfo The VMCS info. object.
3670 */
3671DECLINLINE(int) hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(PVMXVMCSINFO pVmcsInfo)
3672{
3673 RTHCPHYS const HCPhysGuestMsrLoad = pVmcsInfo->HCPhysGuestMsrLoad;
3674 Assert(HCPhysGuestMsrLoad != NIL_RTHCPHYS);
3675 Assert(!(HCPhysGuestMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
3676
3677 RTHCPHYS const HCPhysGuestMsrStore = pVmcsInfo->HCPhysGuestMsrStore;
3678 Assert(HCPhysGuestMsrStore != NIL_RTHCPHYS);
3679 Assert(!(HCPhysGuestMsrStore & 0xf)); /* Bits 3:0 MBZ. */
3680
3681 RTHCPHYS const HCPhysHostMsrLoad = pVmcsInfo->HCPhysHostMsrLoad;
3682 Assert(HCPhysHostMsrLoad != NIL_RTHCPHYS);
3683 Assert(!(HCPhysHostMsrLoad & 0xf)); /* Bits 3:0 MBZ. */
3684
3685 int rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, HCPhysGuestMsrLoad); AssertRC(rc);
3686 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, HCPhysGuestMsrStore); AssertRC(rc);
3687 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, HCPhysHostMsrLoad); AssertRC(rc);
3688 return VINF_SUCCESS;
3689}
3690
3691
3692/**
3693 * Sets up MSR permissions in the MSR bitmap of a VMCS info. object.
3694 *
3695 * @param pVCpu The cross context virtual CPU structure.
3696 * @param pVmcsInfo The VMCS info. object.
3697 */
3698static void hmR0VmxSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3699{
3700 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS);
3701
3702 /*
3703 * By default, ensure guest attempts to access any MSR cause VM-exits.
3704 * This shall later be relaxed for specific MSRs as necessary.
3705 *
3706 * Note: For nested-guests, the entire bitmap will be merged prior to
3707 * executing the nested-guest using hardware-assisted VMX and hence there
3708 * is no need to perform this operation. See hmR0VmxMergeMsrBitmapNested.
3709 */
3710 Assert(pVmcsInfo->pvMsrBitmap);
3711 ASMMemFill32(pVmcsInfo->pvMsrBitmap, X86_PAGE_4K_SIZE, UINT32_C(0xffffffff));
3712
3713 /*
3714 * The guest can access the following MSRs (read, write) without causing
3715 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
3716 */
3717 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3718 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_CS, VMXMSRPM_ALLOW_RD_WR);
3719 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_ESP, VMXMSRPM_ALLOW_RD_WR);
3720 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SYSENTER_EIP, VMXMSRPM_ALLOW_RD_WR);
3721 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
3722 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_FS_BASE, VMXMSRPM_ALLOW_RD_WR);
3723
3724 /*
3725 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
3726 * associated with then. We never need to intercept access (writes need to be
3727 * executed without causing a VM-exit, reads will #GP fault anyway).
3728 *
3729 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
3730 * read/write them. We swap the the guest/host MSR value using the
3731 * auto-load/store MSR area.
3732 */
3733 if (pVM->cpum.ro.GuestFeatures.fIbpb)
3734 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_PRED_CMD, VMXMSRPM_ALLOW_RD_WR);
3735 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
3736 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_FLUSH_CMD, VMXMSRPM_ALLOW_RD_WR);
3737 if (pVM->cpum.ro.GuestFeatures.fIbrs)
3738 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_IA32_SPEC_CTRL, VMXMSRPM_ALLOW_RD_WR);
3739
3740 /*
3741 * Allow full read/write access for the following MSRs (mandatory for VT-x)
3742 * required for 64-bit guests.
3743 */
3744 if (pVM->hm.s.fAllow64BitGuests)
3745 {
3746 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_LSTAR, VMXMSRPM_ALLOW_RD_WR);
3747 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K6_STAR, VMXMSRPM_ALLOW_RD_WR);
3748 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_SF_MASK, VMXMSRPM_ALLOW_RD_WR);
3749 hmR0VmxSetMsrPermission(pVCpu, pVmcsInfo, false, MSR_K8_KERNEL_GS_BASE, VMXMSRPM_ALLOW_RD_WR);
3750 }
3751
3752 /*
3753 * IA32_EFER MSR is always intercepted, see @bugref{9180#c37}.
3754 */
3755#ifdef VBOX_STRICT
3756 Assert(pVmcsInfo->pvMsrBitmap);
3757 uint32_t const fMsrpmEfer = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, MSR_K6_EFER);
3758 Assert(fMsrpmEfer == VMXMSRPM_EXIT_RD_WR);
3759#endif
3760}
3761
3762
3763/**
3764 * Sets up pin-based VM-execution controls in the VMCS.
3765 *
3766 * @returns VBox status code.
3767 * @param pVCpu The cross context virtual CPU structure.
3768 * @param pVmcsInfo The VMCS info. object.
3769 */
3770static int hmR0VmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3771{
3772 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3773 uint32_t fVal = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0; /* Bits set here must always be set. */
3774 uint32_t const fZap = pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
3775
3776 fVal |= VMX_PIN_CTLS_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
3777 | VMX_PIN_CTLS_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
3778
3779 if (pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
3780 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
3781
3782 /* Enable the VMX-preemption timer. */
3783 if (pVM->hm.s.vmx.fUsePreemptTimer)
3784 {
3785 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
3786 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
3787 }
3788
3789#if 0
3790 /* Enable posted-interrupt processing. */
3791 if (pVM->hm.s.fPostedIntrs)
3792 {
3793 Assert(pVM->hm.s.vmx.Msrs.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
3794 Assert(pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
3795 fVal |= VMX_PIN_CTLS_POSTED_INT;
3796 }
3797#endif
3798
3799 if ((fVal & fZap) != fVal)
3800 {
3801 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3802 pVM->hm.s.vmx.Msrs.PinCtls.n.allowed0, fVal, fZap));
3803 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
3804 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3805 }
3806
3807 /* Commit it to the VMCS and update our cache. */
3808 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, fVal);
3809 AssertRC(rc);
3810 pVmcsInfo->u32PinCtls = fVal;
3811
3812 return VINF_SUCCESS;
3813}
3814
3815
3816/**
3817 * Sets up secondary processor-based VM-execution controls in the VMCS.
3818 *
3819 * @returns VBox status code.
3820 * @param pVCpu The cross context virtual CPU structure.
3821 * @param pVmcsInfo The VMCS info. object.
3822 */
3823static int hmR0VmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3824{
3825 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3826 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
3827 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3828
3829 /* WBINVD causes a VM-exit. */
3830 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
3831 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
3832
3833 /* Enable EPT (aka nested-paging). */
3834 if (pVM->hm.s.fNestedPaging)
3835 fVal |= VMX_PROC_CTLS2_EPT;
3836
3837 /* Enable the INVPCID instruction if we expose it to the guest and is supported
3838 by the hardware. Without this, guest executing INVPCID would cause a #UD. */
3839 if ( pVM->cpum.ro.GuestFeatures.fInvpcid
3840 && (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
3841 fVal |= VMX_PROC_CTLS2_INVPCID;
3842
3843 /* Enable VPID. */
3844 if (pVM->hm.s.vmx.fVpid)
3845 fVal |= VMX_PROC_CTLS2_VPID;
3846
3847 /* Enable unrestricted guest execution. */
3848 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3849 fVal |= VMX_PROC_CTLS2_UNRESTRICTED_GUEST;
3850
3851#if 0
3852 if (pVM->hm.s.fVirtApicRegs)
3853 {
3854 /* Enable APIC-register virtualization. */
3855 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
3856 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
3857
3858 /* Enable virtual-interrupt delivery. */
3859 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
3860 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
3861 }
3862#endif
3863
3864 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
3865 where the TPR shadow resides. */
3866 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
3867 * done dynamically. */
3868 if (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
3869 {
3870 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
3871 hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
3872 }
3873
3874 /* Enable the RDTSCP instruction if we expose it to the guest and is supported
3875 by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
3876 if ( pVM->cpum.ro.GuestFeatures.fRdTscP
3877 && (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
3878 fVal |= VMX_PROC_CTLS2_RDTSCP;
3879
3880 /* Enable Pause-Loop exiting. */
3881 if ( (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
3882 && pVM->hm.s.vmx.cPleGapTicks
3883 && pVM->hm.s.vmx.cPleWindowTicks)
3884 {
3885 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
3886
3887 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks); AssertRC(rc);
3888 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks); AssertRC(rc);
3889 }
3890
3891 if ((fVal & fZap) != fVal)
3892 {
3893 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3894 pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed0, fVal, fZap));
3895 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
3896 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3897 }
3898
3899 /* Commit it to the VMCS and update our cache. */
3900 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
3901 AssertRC(rc);
3902 pVmcsInfo->u32ProcCtls2 = fVal;
3903
3904 return VINF_SUCCESS;
3905}
3906
3907
3908/**
3909 * Sets up processor-based VM-execution controls in the VMCS.
3910 *
3911 * @returns VBox status code.
3912 * @param pVCpu The cross context virtual CPU structure.
3913 * @param pVmcsInfo The VMCS info. object.
3914 */
3915static int hmR0VmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
3916{
3917 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3918 uint32_t fVal = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
3919 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3920
3921 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
3922 | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
3923 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
3924 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
3925 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
3926 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
3927 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
3928
3929 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
3930 if ( !(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
3931 || (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
3932 {
3933 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
3934 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3935 }
3936
3937 /* Without nested paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
3938 if (!pVM->hm.s.fNestedPaging)
3939 {
3940 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest);
3941 fVal |= VMX_PROC_CTLS_INVLPG_EXIT
3942 | VMX_PROC_CTLS_CR3_LOAD_EXIT
3943 | VMX_PROC_CTLS_CR3_STORE_EXIT;
3944 }
3945
3946 /* Use TPR shadowing if supported by the CPU. */
3947 if ( PDMHasApic(pVM)
3948 && (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
3949 {
3950 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
3951 /* CR8 writes cause a VM-exit based on TPR threshold. */
3952 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
3953 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
3954 hmR0VmxSetupVmcsVirtApicAddr(pVmcsInfo);
3955 }
3956 else
3957 {
3958 /* Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is
3959 invalid on 32-bit Intel CPUs. Set this control only for 64-bit guests. */
3960 if (pVM->hm.s.fAllow64BitGuests)
3961 {
3962 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
3963 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
3964 }
3965 }
3966
3967 /* Use MSR-bitmaps if supported by the CPU. */
3968 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3969 {
3970 fVal |= VMX_PROC_CTLS_USE_MSR_BITMAPS;
3971 hmR0VmxSetupVmcsMsrBitmapAddr(pVmcsInfo);
3972 }
3973
3974 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
3975 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3976 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
3977
3978 if ((fVal & fZap) != fVal)
3979 {
3980 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
3981 pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0, fVal, fZap));
3982 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
3983 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3984 }
3985
3986 /* Commit it to the VMCS and update our cache. */
3987 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, fVal);
3988 AssertRC(rc);
3989 pVmcsInfo->u32ProcCtls = fVal;
3990
3991 /* Set up MSR permissions that don't change through the lifetime of the VM. */
3992 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
3993 hmR0VmxSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
3994
3995 /* Set up secondary processor-based VM-execution controls if the CPU supports it. */
3996 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
3997 return hmR0VmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
3998
3999 /* Sanity check, should not really happen. */
4000 if (RT_LIKELY(!pVM->hm.s.vmx.fUnrestrictedGuest))
4001 { /* likely */ }
4002 else
4003 {
4004 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
4005 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4006 }
4007
4008 /* Old CPUs without secondary processor-based VM-execution controls would end up here. */
4009 return VINF_SUCCESS;
4010}
4011
4012
4013/**
4014 * Sets up miscellaneous (everything other than Pin, Processor and secondary
4015 * Processor-based VM-execution) control fields in the VMCS.
4016 *
4017 * @returns VBox status code.
4018 * @param pVCpu The cross context virtual CPU structure.
4019 * @param pVmcsInfo The VMCS info. object.
4020 */
4021static int hmR0VmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
4022{
4023#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4024 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUseVmcsShadowing)
4025 {
4026 hmR0VmxSetupVmcsVmreadBitmapAddr(pVCpu);
4027 hmR0VmxSetupVmcsVmwriteBitmapAddr(pVCpu);
4028 }
4029#endif
4030
4031 Assert(pVmcsInfo->u64VmcsLinkPtr == NIL_RTHCPHYS);
4032 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS);
4033 AssertRC(rc);
4034
4035 rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo);
4036 if (RT_SUCCESS(rc))
4037 {
4038 uint64_t const u64Cr0Mask = hmR0VmxGetFixedCr0Mask(pVCpu);
4039 uint64_t const u64Cr4Mask = hmR0VmxGetFixedCr4Mask(pVCpu);
4040
4041 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
4042 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
4043
4044 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
4045 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
4046
4047 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fLbr)
4048 {
4049 rc = VMXWriteVmcsNw(VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
4050 AssertRC(rc);
4051 }
4052 return VINF_SUCCESS;
4053 }
4054 else
4055 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
4056 return rc;
4057}
4058
4059
4060/**
4061 * Sets up the initial exception bitmap in the VMCS based on static conditions.
4062 *
4063 * We shall setup those exception intercepts that don't change during the
4064 * lifetime of the VM here. The rest are done dynamically while loading the
4065 * guest state.
4066 *
4067 * @param pVCpu The cross context virtual CPU structure.
4068 * @param pVmcsInfo The VMCS info. object.
4069 */
4070static void hmR0VmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
4071{
4072 /*
4073 * The following exceptions are always intercepted:
4074 *
4075 * #AC - To prevent the guest from hanging the CPU.
4076 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
4077 * recursive #DBs can cause a CPU hang.
4078 * #PF - To sync our shadow page tables when nested-paging is not used.
4079 */
4080 bool const fNestedPaging = pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging;
4081 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
4082 | RT_BIT(X86_XCPT_DB)
4083 | (fNestedPaging ? 0 : RT_BIT(X86_XCPT_PF));
4084
4085 /* Commit it to the VMCS. */
4086 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
4087 AssertRC(rc);
4088
4089 /* Update our cache of the exception bitmap. */
4090 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
4091}
4092
4093
4094#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4095/**
4096 * Sets up the VMCS for executing a nested-guest using hardware-assisted VMX.
4097 *
4098 * @returns VBox status code.
4099 * @param pVCpu The cross context virtual CPU structure.
4100 * @param pVmcsInfo The VMCS info. object.
4101 */
4102static int hmR0VmxSetupVmcsCtlsNested(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
4103{
4104 Assert(pVmcsInfo->u64VmcsLinkPtr == NIL_RTHCPHYS);
4105 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS);
4106 AssertRC(rc);
4107
4108 rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo);
4109 if (RT_SUCCESS(rc))
4110 {
4111 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_MSR_BITMAPS)
4112 hmR0VmxSetupVmcsMsrBitmapAddr(pVmcsInfo);
4113
4114 /* Paranoia - We've not yet initialized these, they shall be done while merging the VMCS. */
4115 Assert(!pVmcsInfo->u64Cr0Mask);
4116 Assert(!pVmcsInfo->u64Cr4Mask);
4117 return VINF_SUCCESS;
4118 }
4119 else
4120 LogRelFunc(("Failed to set up the VMCS link pointer in the nested-guest VMCS. rc=%Rrc\n", rc));
4121 return rc;
4122}
4123#endif
4124
4125
4126/**
4127 * Sets up the VMCS for executing a guest (or nested-guest) using hardware-assisted
4128 * VMX.
4129 *
4130 * @returns VBox status code.
4131 * @param pVCpu The cross context virtual CPU structure.
4132 * @param pVmcsInfo The VMCS info. object.
4133 * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
4134 */
4135static int hmR0VmxSetupVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
4136{
4137 Assert(pVmcsInfo->pvVmcs);
4138 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4139
4140 /* Set the CPU specified revision identifier at the beginning of the VMCS structure. */
4141 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4142 *(uint32_t *)pVmcsInfo->pvVmcs = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
4143 const char * const pszVmcs = fIsNstGstVmcs ? "nested-guest VMCS" : "guest VMCS";
4144
4145 LogFlowFunc(("\n"));
4146
4147 /*
4148 * Initialize the VMCS using VMCLEAR before loading the VMCS.
4149 * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
4150 */
4151 int rc = hmR0VmxClearVmcs(pVmcsInfo);
4152 if (RT_SUCCESS(rc))
4153 {
4154 rc = hmR0VmxLoadVmcs(pVmcsInfo);
4155 if (RT_SUCCESS(rc))
4156 {
4157 if (!fIsNstGstVmcs)
4158 {
4159 rc = hmR0VmxSetupVmcsPinCtls(pVCpu, pVmcsInfo);
4160 if (RT_SUCCESS(rc))
4161 {
4162 rc = hmR0VmxSetupVmcsProcCtls(pVCpu, pVmcsInfo);
4163 if (RT_SUCCESS(rc))
4164 {
4165 rc = hmR0VmxSetupVmcsMiscCtls(pVCpu, pVmcsInfo);
4166 if (RT_SUCCESS(rc))
4167 {
4168 hmR0VmxSetupVmcsXcptBitmap(pVCpu, pVmcsInfo);
4169#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4170 /*
4171 * If a shadow VMCS is allocated for the VMCS info. object, initialize the
4172 * VMCS revision ID and shadow VMCS indicator bit. Also, clear the VMCS
4173 * making it fit for use when VMCS shadowing is later enabled.
4174 */
4175 if (pVmcsInfo->pvShadowVmcs)
4176 {
4177 VMXVMCSREVID VmcsRevId;
4178 VmcsRevId.u = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID);
4179 VmcsRevId.n.fIsShadowVmcs = 1;
4180 *(uint32_t *)pVmcsInfo->pvShadowVmcs = VmcsRevId.u;
4181 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
4182 if (RT_SUCCESS(rc))
4183 { /* likely */ }
4184 else
4185 LogRelFunc(("Failed to initialize shadow VMCS. rc=%Rrc\n", rc));
4186 }
4187#endif
4188 }
4189 else
4190 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
4191 }
4192 else
4193 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
4194 }
4195 else
4196 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
4197 }
4198 else
4199 {
4200#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4201 rc = hmR0VmxSetupVmcsCtlsNested(pVCpu, pVmcsInfo);
4202 if (RT_SUCCESS(rc))
4203 { /* likely */ }
4204 else
4205 LogRelFunc(("Failed to initialize nested-guest VMCS. rc=%Rrc\n", rc));
4206#else
4207 AssertFailed();
4208#endif
4209 }
4210 }
4211 else
4212 LogRelFunc(("Failed to load the %s. rc=%Rrc\n", rc, pszVmcs));
4213 }
4214 else
4215 LogRelFunc(("Failed to clear the %s. rc=%Rrc\n", rc, pszVmcs));
4216
4217 /* Sync any CPU internal VMCS data back into our VMCS in memory. */
4218 if (RT_SUCCESS(rc))
4219 {
4220 rc = hmR0VmxClearVmcs(pVmcsInfo);
4221 if (RT_SUCCESS(rc))
4222 { /* likely */ }
4223 else
4224 LogRelFunc(("Failed to clear the %s post setup. rc=%Rrc\n", rc, pszVmcs));
4225 }
4226
4227 /*
4228 * Update the last-error record both for failures and success, so we
4229 * can propagate the status code back to ring-3 for diagnostics.
4230 */
4231 hmR0VmxUpdateErrorRecord(pVCpu, rc);
4232 NOREF(pszVmcs);
4233 return rc;
4234}
4235
4236
4237/**
4238 * Does global VT-x initialization (called during module initialization).
4239 *
4240 * @returns VBox status code.
4241 */
4242VMMR0DECL(int) VMXR0GlobalInit(void)
4243{
4244#ifdef HMVMX_USE_FUNCTION_TABLE
4245 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
4246# ifdef VBOX_STRICT
4247 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
4248 Assert(g_apfnVMExitHandlers[i]);
4249# endif
4250#endif
4251 return VINF_SUCCESS;
4252}
4253
4254
4255/**
4256 * Does global VT-x termination (called during module termination).
4257 */
4258VMMR0DECL(void) VMXR0GlobalTerm()
4259{
4260 /* Nothing to do currently. */
4261}
4262
4263
4264/**
4265 * Sets up and activates VT-x on the current CPU.
4266 *
4267 * @returns VBox status code.
4268 * @param pHostCpu The HM physical-CPU structure.
4269 * @param pVM The cross context VM structure. Can be
4270 * NULL after a host resume operation.
4271 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
4272 * fEnabledByHost is @c true).
4273 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
4274 * @a fEnabledByHost is @c true).
4275 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
4276 * enable VT-x on the host.
4277 * @param pHwvirtMsrs Pointer to the hardware-virtualization MSRs.
4278 */
4279VMMR0DECL(int) VMXR0EnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
4280 PCSUPHWVIRTMSRS pHwvirtMsrs)
4281{
4282 AssertPtr(pHostCpu);
4283 AssertPtr(pHwvirtMsrs);
4284 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4285
4286 /* Enable VT-x if it's not already enabled by the host. */
4287 if (!fEnabledByHost)
4288 {
4289 int rc = hmR0VmxEnterRootMode(pHostCpu, pVM, HCPhysCpuPage, pvCpuPage);
4290 if (RT_FAILURE(rc))
4291 return rc;
4292 }
4293
4294 /*
4295 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been
4296 * using EPTPs) so we don't retain any stale guest-physical mappings which won't get
4297 * invalidated when flushing by VPID.
4298 */
4299 if (pHwvirtMsrs->u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
4300 {
4301 hmR0VmxFlushEpt(NULL /* pVCpu */, NULL /* pVmcsInfo */, VMXTLBFLUSHEPT_ALL_CONTEXTS);
4302 pHostCpu->fFlushAsidBeforeUse = false;
4303 }
4304 else
4305 pHostCpu->fFlushAsidBeforeUse = true;
4306
4307 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
4308 ++pHostCpu->cTlbFlushes;
4309
4310 return VINF_SUCCESS;
4311}
4312
4313
4314/**
4315 * Deactivates VT-x on the current CPU.
4316 *
4317 * @returns VBox status code.
4318 * @param pHostCpu The HM physical-CPU structure.
4319 * @param pvCpuPage Pointer to the VMXON region.
4320 * @param HCPhysCpuPage Physical address of the VMXON region.
4321 *
4322 * @remarks This function should never be called when SUPR0EnableVTx() or
4323 * similar was used to enable VT-x on the host.
4324 */
4325VMMR0DECL(int) VMXR0DisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
4326{
4327 RT_NOREF2(pvCpuPage, HCPhysCpuPage);
4328
4329 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4330 return hmR0VmxLeaveRootMode(pHostCpu);
4331}
4332
4333
4334/**
4335 * Does per-VM VT-x initialization.
4336 *
4337 * @returns VBox status code.
4338 * @param pVM The cross context VM structure.
4339 */
4340VMMR0DECL(int) VMXR0InitVM(PVMCC pVM)
4341{
4342 AssertPtr(pVM);
4343 LogFlowFunc(("pVM=%p\n", pVM));
4344
4345 hmR0VmxStructsInit(pVM);
4346 int rc = hmR0VmxStructsAlloc(pVM);
4347 if (RT_FAILURE(rc))
4348 {
4349 LogRelFunc(("Failed to allocated VMX structures. rc=%Rrc\n", rc));
4350 return rc;
4351 }
4352
4353 /* Setup the crash dump page. */
4354#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4355 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
4356 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
4357#endif
4358 return VINF_SUCCESS;
4359}
4360
4361
4362/**
4363 * Does per-VM VT-x termination.
4364 *
4365 * @returns VBox status code.
4366 * @param pVM The cross context VM structure.
4367 */
4368VMMR0DECL(int) VMXR0TermVM(PVMCC pVM)
4369{
4370 AssertPtr(pVM);
4371 LogFlowFunc(("pVM=%p\n", pVM));
4372
4373#ifdef VBOX_WITH_CRASHDUMP_MAGIC
4374 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
4375 {
4376 Assert(pVM->hm.s.vmx.pvScratch);
4377 ASMMemZero32(pVM->hm.s.vmx.pvScratch, X86_PAGE_4K_SIZE);
4378 }
4379#endif
4380 hmR0VmxStructsFree(pVM);
4381 return VINF_SUCCESS;
4382}
4383
4384
4385/**
4386 * Sets up the VM for execution using hardware-assisted VMX.
4387 * This function is only called once per-VM during initialization.
4388 *
4389 * @returns VBox status code.
4390 * @param pVM The cross context VM structure.
4391 */
4392VMMR0DECL(int) VMXR0SetupVM(PVMCC pVM)
4393{
4394 AssertPtr(pVM);
4395 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
4396
4397 LogFlowFunc(("pVM=%p\n", pVM));
4398
4399 /*
4400 * At least verify if VMX is enabled, since we can't check if we're in VMX root mode or not
4401 * without causing a #GP.
4402 */
4403 RTCCUINTREG const uHostCr4 = ASMGetCR4();
4404 if (RT_LIKELY(uHostCr4 & X86_CR4_VMXE))
4405 { /* likely */ }
4406 else
4407 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
4408
4409 /*
4410 * Without unrestricted guest execution, pRealModeTSS and pNonPagingModeEPTPageTable *must*
4411 * always be allocated. We no longer support the highly unlikely case of unrestricted guest
4412 * without pRealModeTSS, see hmR3InitFinalizeR0Intel().
4413 */
4414 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4415 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
4416 || !pVM->hm.s.vmx.pRealModeTSS))
4417 {
4418 LogRelFunc(("Invalid real-on-v86 state.\n"));
4419 return VERR_INTERNAL_ERROR;
4420 }
4421
4422 /* Initialize these always, see hmR3InitFinalizeR0().*/
4423 pVM->hm.s.vmx.enmTlbFlushEpt = VMXTLBFLUSHEPT_NONE;
4424 pVM->hm.s.vmx.enmTlbFlushVpid = VMXTLBFLUSHVPID_NONE;
4425
4426 /* Setup the tagged-TLB flush handlers. */
4427 int rc = hmR0VmxSetupTaggedTlb(pVM);
4428 if (RT_FAILURE(rc))
4429 {
4430 LogRelFunc(("Failed to setup tagged TLB. rc=%Rrc\n", rc));
4431 return rc;
4432 }
4433
4434 /* Determine LBR capabilities. */
4435 if (pVM->hm.s.vmx.fLbr)
4436 {
4437 rc = hmR0VmxSetupLbrMsrRange(pVM);
4438 if (RT_FAILURE(rc))
4439 {
4440 LogRelFunc(("Failed to setup LBR MSR range. rc=%Rrc\n", rc));
4441 return rc;
4442 }
4443 }
4444
4445#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4446 /* Setup the shadow VMCS fields array and VMREAD/VMWRITE bitmaps. */
4447 if (pVM->hm.s.vmx.fUseVmcsShadowing)
4448 {
4449 rc = hmR0VmxSetupShadowVmcsFieldsArrays(pVM);
4450 if (RT_SUCCESS(rc))
4451 hmR0VmxSetupVmreadVmwriteBitmaps(pVM);
4452 else
4453 {
4454 LogRelFunc(("Failed to setup shadow VMCS fields arrays. rc=%Rrc\n", rc));
4455 return rc;
4456 }
4457 }
4458#endif
4459
4460 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4461 {
4462 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
4463 Log4Func(("pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
4464
4465 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfo, false /* fIsNstGstVmcs */);
4466 if (RT_SUCCESS(rc))
4467 {
4468#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4469 if (pVM->cpum.ro.GuestFeatures.fVmx)
4470 {
4471 rc = hmR0VmxSetupVmcs(pVCpu, &pVCpu->hm.s.vmx.VmcsInfoNstGst, true /* fIsNstGstVmcs */);
4472 if (RT_SUCCESS(rc))
4473 { /* likely */ }
4474 else
4475 {
4476 LogRelFunc(("Nested-guest VMCS setup failed. rc=%Rrc\n", rc));
4477 return rc;
4478 }
4479 }
4480#endif
4481 }
4482 else
4483 {
4484 LogRelFunc(("VMCS setup failed. rc=%Rrc\n", rc));
4485 return rc;
4486 }
4487 }
4488
4489 return VINF_SUCCESS;
4490}
4491
4492
4493/**
4494 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
4495 * the VMCS.
4496 */
4497static void hmR0VmxExportHostControlRegs(void)
4498{
4499 int rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR0, ASMGetCR0()); AssertRC(rc);
4500 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR3, ASMGetCR3()); AssertRC(rc);
4501 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_CR4, ASMGetCR4()); AssertRC(rc);
4502}
4503
4504
4505/**
4506 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
4507 * the host-state area in the VMCS.
4508 *
4509 * @returns VBox status code.
4510 * @param pVCpu The cross context virtual CPU structure.
4511 */
4512static int hmR0VmxExportHostSegmentRegs(PVMCPUCC pVCpu)
4513{
4514/**
4515 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
4516 * requirements. See hmR0VmxExportHostSegmentRegs().
4517 */
4518#define VMXLOCAL_ADJUST_HOST_SEG(a_Seg, a_selValue) \
4519 if ((a_selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
4520 { \
4521 bool fValidSelector = true; \
4522 if ((a_selValue) & X86_SEL_LDT) \
4523 { \
4524 uint32_t const uAttr = ASMGetSegAttr(a_selValue); \
4525 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
4526 } \
4527 if (fValidSelector) \
4528 { \
4529 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##a_Seg; \
4530 pVCpu->hm.s.vmx.RestoreHost.uHostSel##a_Seg = (a_selValue); \
4531 } \
4532 (a_selValue) = 0; \
4533 }
4534
4535 /*
4536 * If we've executed guest code using hardware-assisted VMX, the host-state bits
4537 * will be messed up. We should -not- save the messed up state without restoring
4538 * the original host-state, see @bugref{7240}.
4539 *
4540 * This apparently can happen (most likely the FPU changes), deal with it rather than
4541 * asserting. Was observed booting Solaris 10u10 32-bit guest.
4542 */
4543 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
4544 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
4545 {
4546 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
4547 pVCpu->idCpu));
4548 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
4549 }
4550 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
4551
4552 /*
4553 * Host segment registers.
4554 */
4555 RTSEL uSelES = ASMGetES();
4556 RTSEL uSelCS = ASMGetCS();
4557 RTSEL uSelSS = ASMGetSS();
4558 RTSEL uSelDS = ASMGetDS();
4559 RTSEL uSelFS = ASMGetFS();
4560 RTSEL uSelGS = ASMGetGS();
4561 RTSEL uSelTR = ASMGetTR();
4562
4563 /*
4564 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to
4565 * gain VM-entry and restore them before we get preempted.
4566 *
4567 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
4568 */
4569 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
4570 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
4571 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
4572 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
4573
4574 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
4575 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
4576 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
4577 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
4578 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
4579 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
4580 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
4581 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
4582 Assert(uSelCS);
4583 Assert(uSelTR);
4584
4585 /* Write these host selector fields into the host-state area in the VMCS. */
4586 int rc = VMXWriteVmcs16(VMX_VMCS16_HOST_CS_SEL, uSelCS); AssertRC(rc);
4587 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_SS_SEL, uSelSS); AssertRC(rc);
4588 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_DS_SEL, uSelDS); AssertRC(rc);
4589 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_ES_SEL, uSelES); AssertRC(rc);
4590 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_FS_SEL, uSelFS); AssertRC(rc);
4591 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_GS_SEL, uSelGS); AssertRC(rc);
4592 rc = VMXWriteVmcs16(VMX_VMCS16_HOST_TR_SEL, uSelTR); AssertRC(rc);
4593
4594 /*
4595 * Host GDTR and IDTR.
4596 */
4597 RTGDTR Gdtr;
4598 RTIDTR Idtr;
4599 RT_ZERO(Gdtr);
4600 RT_ZERO(Idtr);
4601 ASMGetGDTR(&Gdtr);
4602 ASMGetIDTR(&Idtr);
4603 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt); AssertRC(rc);
4604 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt); AssertRC(rc);
4605
4606 /*
4607 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps
4608 * them to the maximum limit (0xffff) on every VM-exit.
4609 */
4610 if (Gdtr.cbGdt != 0xffff)
4611 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
4612
4613 /*
4614 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT" and
4615 * Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit
4616 * as 0xfff, VT-x bloating the limit to 0xffff shouldn't cause any different CPU behavior.
4617 * However, several hosts either insists on 0xfff being the limit (Windows Patch Guard) or
4618 * uses the limit for other purposes (darwin puts the CPU ID in there but botches sidt
4619 * alignment in at least one consumer). So, we're only allowing the IDTR.LIMIT to be left
4620 * at 0xffff on hosts where we are sure it won't cause trouble.
4621 */
4622#if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
4623 if (Idtr.cbIdt < 0x0fff)
4624#else
4625 if (Idtr.cbIdt != 0xffff)
4626#endif
4627 {
4628 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
4629 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
4630 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
4631 }
4632
4633 /*
4634 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI
4635 * and RPL bits is effectively what the CPU does for "scaling by 8". TI is always 0 and
4636 * RPL should be too in most cases.
4637 */
4638 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
4639 ("TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt), VERR_VMX_INVALID_HOST_STATE);
4640
4641 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
4642 uintptr_t const uTRBase = X86DESC64_BASE(pDesc);
4643
4644 /*
4645 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on
4646 * all VM-exits. The type is the same for 64-bit busy TSS[1]. The limit needs manual
4647 * restoration if the host has something else. Task switching is not supported in 64-bit
4648 * mode[2], but the limit still matters as IOPM is supported in 64-bit mode. Restoring the
4649 * limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
4650 *
4651 * [1] See Intel spec. 3.5 "System Descriptor Types".
4652 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
4653 */
4654 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4655 Assert(pDesc->System.u4Type == 11);
4656 if ( pDesc->System.u16LimitLow != 0x67
4657 || pDesc->System.u4LimitHigh)
4658 {
4659 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
4660 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
4661 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
4662 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
4663 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
4664 }
4665
4666 /*
4667 * Store the GDTR as we need it when restoring the GDT and while restoring the TR.
4668 */
4669 if (pVCpu->hm.s.vmx.fRestoreHostFlags & (VMX_RESTORE_HOST_GDTR | VMX_RESTORE_HOST_SEL_TR))
4670 {
4671 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
4672 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
4673 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_NEED_WRITABLE)
4674 {
4675 /* The GDT is read-only but the writable GDT is available. */
4676 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_NEED_WRITABLE;
4677 pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.cb = Gdtr.cbGdt;
4678 rc = SUPR0GetCurrentGdtRw(&pVCpu->hm.s.vmx.RestoreHost.HostGdtrRw.uAddr);
4679 AssertRCReturn(rc, rc);
4680 }
4681 }
4682
4683 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_TR_BASE, uTRBase);
4684 AssertRC(rc);
4685
4686 /*
4687 * Host FS base and GS base.
4688 */
4689 uint64_t const u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
4690 uint64_t const u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
4691 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_FS_BASE, u64FSBase); AssertRC(rc);
4692 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_GS_BASE, u64GSBase); AssertRC(rc);
4693
4694 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
4695 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
4696 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
4697 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
4698 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
4699
4700 return VINF_SUCCESS;
4701#undef VMXLOCAL_ADJUST_HOST_SEG
4702}
4703
4704
4705/**
4706 * Exports certain host MSRs in the VM-exit MSR-load area and some in the
4707 * host-state area of the VMCS.
4708 *
4709 * These MSRs will be automatically restored on the host after every successful
4710 * VM-exit.
4711 *
4712 * @param pVCpu The cross context virtual CPU structure.
4713 *
4714 * @remarks No-long-jump zone!!!
4715 */
4716static void hmR0VmxExportHostMsrs(PVMCPUCC pVCpu)
4717{
4718 AssertPtr(pVCpu);
4719
4720 /*
4721 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
4722 * rather than swapping them on every VM-entry.
4723 */
4724 hmR0VmxLazySaveHostMsrs(pVCpu);
4725
4726 /*
4727 * Host Sysenter MSRs.
4728 */
4729 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS)); AssertRC(rc);
4730 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP)); AssertRC(rc);
4731 rc = VMXWriteVmcsNw(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP)); AssertRC(rc);
4732
4733 /*
4734 * Host EFER MSR.
4735 *
4736 * If the CPU supports the newer VMCS controls for managing EFER, use it. Otherwise it's
4737 * done as part of auto-load/store MSR area in the VMCS, see hmR0VmxExportGuestMsrs().
4738 */
4739 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4740 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4741 {
4742 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostMsrEfer);
4743 AssertRC(rc);
4744 }
4745
4746 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
4747 * hmR0VmxExportGuestEntryExitCtls(). */
4748}
4749
4750
4751/**
4752 * Figures out if we need to swap the EFER MSR which is particularly expensive.
4753 *
4754 * We check all relevant bits. For now, that's everything besides LMA/LME, as
4755 * these two bits are handled by VM-entry, see hmR0VMxExportGuestEntryExitCtls().
4756 *
4757 * @returns true if we need to load guest EFER, false otherwise.
4758 * @param pVCpu The cross context virtual CPU structure.
4759 * @param pVmxTransient The VMX-transient structure.
4760 *
4761 * @remarks Requires EFER, CR4.
4762 * @remarks No-long-jump zone!!!
4763 */
4764static bool hmR0VmxShouldSwapEferMsr(PCVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
4765{
4766#ifdef HMVMX_ALWAYS_SWAP_EFER
4767 RT_NOREF2(pVCpu, pVmxTransient);
4768 return true;
4769#else
4770 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
4771 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4772 uint64_t const u64HostEfer = pVM->hm.s.vmx.u64HostMsrEfer;
4773 uint64_t const u64GuestEfer = pCtx->msrEFER;
4774
4775# ifdef VBOX_WITH_NESTED_HWVIRT_VMX
4776 /*
4777 * For nested-guests, we shall honor swapping the EFER MSR when requested by
4778 * the nested-guest.
4779 */
4780 if ( pVmxTransient->fIsNestedGuest
4781 && ( CPUMIsGuestVmxEntryCtlsSet(pCtx, VMX_ENTRY_CTLS_LOAD_EFER_MSR)
4782 || CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_SAVE_EFER_MSR)
4783 || CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_LOAD_EFER_MSR)))
4784 return true;
4785# else
4786 RT_NOREF(pVmxTransient);
4787#endif
4788
4789 /*
4790 * For 64-bit guests, if EFER.SCE bit differs, we need to swap the EFER MSR
4791 * to ensure that the guest's SYSCALL behaviour isn't broken, see @bugref{7386}.
4792 */
4793 if ( CPUMIsGuestInLongModeEx(pCtx)
4794 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
4795 return true;
4796
4797 /*
4798 * If the guest uses PAE and EFER.NXE bit differs, we need to swap the EFER MSR
4799 * as it affects guest paging. 64-bit paging implies CR4.PAE as well.
4800 *
4801 * See Intel spec. 4.5 "IA-32e Paging".
4802 * See Intel spec. 4.1.1 "Three Paging Modes".
4803 *
4804 * Verify that we always intercept CR4.PAE and CR0.PG bits, so we don't need to
4805 * import CR4 and CR0 from the VMCS here as those bits are always up to date.
4806 */
4807 Assert(hmR0VmxGetFixedCr4Mask(pVCpu) & X86_CR4_PAE);
4808 Assert(hmR0VmxGetFixedCr0Mask(pVCpu) & X86_CR0_PG);
4809 if ( (pCtx->cr4 & X86_CR4_PAE)
4810 && (pCtx->cr0 & X86_CR0_PG))
4811 {
4812 /*
4813 * If nested paging is not used, verify that the guest paging mode matches the
4814 * shadow paging mode which is/will be placed in the VMCS (which is what will
4815 * actually be used while executing the guest and not the CR4 shadow value).
4816 */
4817 AssertMsg(pVM->hm.s.fNestedPaging || ( pVCpu->hm.s.enmShadowMode == PGMMODE_PAE
4818 || pVCpu->hm.s.enmShadowMode == PGMMODE_PAE_NX
4819 || pVCpu->hm.s.enmShadowMode == PGMMODE_AMD64
4820 || pVCpu->hm.s.enmShadowMode == PGMMODE_AMD64_NX),
4821 ("enmShadowMode=%u\n", pVCpu->hm.s.enmShadowMode));
4822 if ((u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
4823 {
4824 /* Verify that the host is NX capable. */
4825 Assert(pVCpu->CTX_SUFF(pVM)->cpum.ro.HostFeatures.fNoExecute);
4826 return true;
4827 }
4828 }
4829
4830 return false;
4831#endif
4832}
4833
4834
4835/**
4836 * Exports the guest state with appropriate VM-entry and VM-exit controls in the
4837 * VMCS.
4838 *
4839 * This is typically required when the guest changes paging mode.
4840 *
4841 * @returns VBox status code.
4842 * @param pVCpu The cross context virtual CPU structure.
4843 * @param pVmxTransient The VMX-transient structure.
4844 *
4845 * @remarks Requires EFER.
4846 * @remarks No-long-jump zone!!!
4847 */
4848static int hmR0VmxExportGuestEntryExitCtls(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
4849{
4850 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS)
4851 {
4852 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
4853 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
4854 bool const fGstInLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
4855
4856 /*
4857 * VMRUN function.
4858 * If the guest is in long mode, use the 64-bit guest handler, else the 32-bit guest handler.
4859 * The host is always 64-bit since we no longer support 32-bit hosts.
4860 */
4861 if (fGstInLongMode)
4862 {
4863#ifndef VBOX_WITH_64_BITS_GUESTS
4864 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4865#else
4866 Assert(pVM->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4867 pVmcsInfo->pfnStartVM = VMXR0StartVM64;
4868#endif
4869 }
4870 else
4871 pVmcsInfo->pfnStartVM = VMXR0StartVM32;
4872
4873 /*
4874 * VM-entry controls.
4875 */
4876 {
4877 uint32_t fVal = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4878 uint32_t const fZap = pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4879
4880 /*
4881 * Load the guest debug controls (DR7 and IA32_DEBUGCTL MSR) on VM-entry.
4882 * The first VT-x capable CPUs only supported the 1-setting of this bit.
4883 *
4884 * For nested-guests, this is a mandatory VM-entry control. It's also
4885 * required because we do not want to leak host bits to the nested-guest.
4886 */
4887 fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
4888
4889 /*
4890 * Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry.
4891 *
4892 * For nested-guests, the "IA-32e mode guest" control we initialize with what is
4893 * required to get the nested-guest working with hardware-assisted VMX execution.
4894 * It depends on the nested-guest's IA32_EFER.LMA bit. Remember, a nested hypervisor
4895 * can skip intercepting changes to the EFER MSR. This is why it it needs to be done
4896 * here rather than while merging the guest VMCS controls.
4897 */
4898 if (fGstInLongMode)
4899 {
4900 Assert(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME);
4901 fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
4902 }
4903 else
4904 Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
4905
4906 /*
4907 * If the CPU supports the newer VMCS controls for managing guest/host EFER, use it.
4908 *
4909 * For nested-guests, we use the "load IA32_EFER" if the hardware supports it,
4910 * regardless of whether the nested-guest VMCS specifies it because we are free to
4911 * load whatever MSRs we require and we do not need to modify the guest visible copy
4912 * of the VM-entry MSR load area.
4913 */
4914 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4915 && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
4916 fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
4917 else
4918 Assert(!(fVal & VMX_ENTRY_CTLS_LOAD_EFER_MSR));
4919
4920 /*
4921 * The following should -not- be set (since we're not in SMM mode):
4922 * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
4923 * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
4924 */
4925
4926 /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
4927 * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
4928
4929 if ((fVal & fZap) == fVal)
4930 { /* likely */ }
4931 else
4932 {
4933 Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
4934 pVM->hm.s.vmx.Msrs.EntryCtls.n.allowed0, fVal, fZap));
4935 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
4936 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
4937 }
4938
4939 /* Commit it to the VMCS. */
4940 if (pVmcsInfo->u32EntryCtls != fVal)
4941 {
4942 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, fVal);
4943 AssertRC(rc);
4944 pVmcsInfo->u32EntryCtls = fVal;
4945 }
4946 }
4947
4948 /*
4949 * VM-exit controls.
4950 */
4951 {
4952 uint32_t fVal = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
4953 uint32_t const fZap = pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
4954
4955 /*
4956 * Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only
4957 * supported the 1-setting of this bit.
4958 *
4959 * For nested-guests, we set the "save debug controls" as the converse
4960 * "load debug controls" is mandatory for nested-guests anyway.
4961 */
4962 fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
4963
4964 /*
4965 * Set the host long mode active (EFER.LMA) bit (which Intel calls
4966 * "Host address-space size") if necessary. On VM-exit, VT-x sets both the
4967 * host EFER.LMA and EFER.LME bit to this value. See assertion in
4968 * hmR0VmxExportHostMsrs().
4969 *
4970 * For nested-guests, we always set this bit as we do not support 32-bit
4971 * hosts.
4972 */
4973 fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
4974
4975 /*
4976 * If the VMCS EFER MSR fields are supported by the hardware, we use it.
4977 *
4978 * For nested-guests, we should use the "save IA32_EFER" control if we also
4979 * used the "load IA32_EFER" control while exporting VM-entry controls.
4980 */
4981 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
4982 && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
4983 {
4984 fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
4985 | VMX_EXIT_CTLS_LOAD_EFER_MSR;
4986 }
4987
4988 /*
4989 * Enable saving of the VMX-preemption timer value on VM-exit.
4990 * For nested-guests, currently not exposed/used.
4991 */
4992 if ( pVM->hm.s.vmx.fUsePreemptTimer
4993 && (pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
4994 fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
4995
4996 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
4997 Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
4998
4999 /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
5000 * VMX_EXIT_CTLS_SAVE_PAT_MSR,
5001 * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
5002
5003 if ((fVal & fZap) == fVal)
5004 { /* likely */ }
5005 else
5006 {
5007 Log4Func(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%R#X32\n",
5008 pVM->hm.s.vmx.Msrs.ExitCtls.n.allowed0, fVal, fZap));
5009 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
5010 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
5011 }
5012
5013 /* Commit it to the VMCS. */
5014 if (pVmcsInfo->u32ExitCtls != fVal)
5015 {
5016 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, fVal);
5017 AssertRC(rc);
5018 pVmcsInfo->u32ExitCtls = fVal;
5019 }
5020 }
5021
5022 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
5023 }
5024 return VINF_SUCCESS;
5025}
5026
5027
5028/**
5029 * Sets the TPR threshold in the VMCS.
5030 *
5031 * @param pVmcsInfo The VMCS info. object.
5032 * @param u32TprThreshold The TPR threshold (task-priority class only).
5033 */
5034DECLINLINE(void) hmR0VmxApicSetTprThreshold(PVMXVMCSINFO pVmcsInfo, uint32_t u32TprThreshold)
5035{
5036 Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
5037 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
5038 RT_NOREF(pVmcsInfo);
5039 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
5040 AssertRC(rc);
5041}
5042
5043
5044/**
5045 * Exports the guest APIC TPR state into the VMCS.
5046 *
5047 * @param pVCpu The cross context virtual CPU structure.
5048 * @param pVmxTransient The VMX-transient structure.
5049 *
5050 * @remarks No-long-jump zone!!!
5051 */
5052static void hmR0VmxExportGuestApicTpr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5053{
5054 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
5055 {
5056 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
5057
5058 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5059 if (!pVmxTransient->fIsNestedGuest)
5060 {
5061 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
5062 && APICIsEnabled(pVCpu))
5063 {
5064 /*
5065 * Setup TPR shadowing.
5066 */
5067 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
5068 {
5069 bool fPendingIntr = false;
5070 uint8_t u8Tpr = 0;
5071 uint8_t u8PendingIntr = 0;
5072 int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
5073 AssertRC(rc);
5074
5075 /*
5076 * If there are interrupts pending but masked by the TPR, instruct VT-x to
5077 * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
5078 * priority of the pending interrupt so we can deliver the interrupt. If there
5079 * are no interrupts pending, set threshold to 0 to not cause any
5080 * TPR-below-threshold VM-exits.
5081 */
5082 uint32_t u32TprThreshold = 0;
5083 if (fPendingIntr)
5084 {
5085 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR
5086 (which is the Task-Priority Class). */
5087 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
5088 const uint8_t u8TprPriority = u8Tpr >> 4;
5089 if (u8PendingPriority <= u8TprPriority)
5090 u32TprThreshold = u8PendingPriority;
5091 }
5092
5093 hmR0VmxApicSetTprThreshold(pVmcsInfo, u32TprThreshold);
5094 }
5095 }
5096 }
5097 /* else: the TPR threshold has already been updated while merging the nested-guest VMCS. */
5098 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
5099 }
5100}
5101
5102
5103/**
5104 * Gets the guest interruptibility-state and updates related force-flags.
5105 *
5106 * @returns Guest's interruptibility-state.
5107 * @param pVCpu The cross context virtual CPU structure.
5108 *
5109 * @remarks No-long-jump zone!!!
5110 */
5111static uint32_t hmR0VmxGetGuestIntrStateAndUpdateFFs(PVMCPUCC pVCpu)
5112{
5113 /*
5114 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
5115 */
5116 uint32_t fIntrState = 0;
5117 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
5118 {
5119 /* If inhibition is active, RIP and RFLAGS should've been imported from the VMCS already. */
5120 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
5121
5122 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5123 if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
5124 {
5125 if (pCtx->eflags.Bits.u1IF)
5126 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
5127 else
5128 fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
5129 }
5130 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
5131 {
5132 /*
5133 * We can clear the inhibit force flag as even if we go back to the recompiler
5134 * without executing guest code in VT-x, the flag's condition to be cleared is
5135 * met and thus the cleared state is correct.
5136 */
5137 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
5138 }
5139 }
5140
5141 /*
5142 * Check if we should inhibit NMI delivery.
5143 */
5144 if (CPUMIsGuestNmiBlocking(pVCpu))
5145 fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
5146
5147 /*
5148 * Validate.
5149 */
5150#ifdef VBOX_STRICT
5151 /* We don't support block-by-SMI yet.*/
5152 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI));
5153
5154 /* Block-by-STI must not be set when interrupts are disabled. */
5155 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
5156 {
5157 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
5158 Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_IF);
5159 }
5160#endif
5161
5162 return fIntrState;
5163}
5164
5165
5166/**
5167 * Exports the exception intercepts required for guest execution in the VMCS.
5168 *
5169 * @param pVCpu The cross context virtual CPU structure.
5170 * @param pVmxTransient The VMX-transient structure.
5171 *
5172 * @remarks No-long-jump zone!!!
5173 */
5174static void hmR0VmxExportGuestXcptIntercepts(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5175{
5176 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_XCPT_INTERCEPTS)
5177 {
5178 /* When executing a nested-guest, we do not need to trap GIM hypercalls by intercepting #UD. */
5179 if ( !pVmxTransient->fIsNestedGuest
5180 && pVCpu->hm.s.fGIMTrapXcptUD)
5181 hmR0VmxAddXcptIntercept(pVmxTransient, X86_XCPT_UD);
5182 else
5183 hmR0VmxRemoveXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD);
5184
5185 /* Other exception intercepts are handled elsewhere, e.g. while exporting guest CR0. */
5186 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_XCPT_INTERCEPTS);
5187 }
5188}
5189
5190
5191/**
5192 * Exports the guest's RIP into the guest-state area in the VMCS.
5193 *
5194 * @param pVCpu The cross context virtual CPU structure.
5195 *
5196 * @remarks No-long-jump zone!!!
5197 */
5198static void hmR0VmxExportGuestRip(PVMCPUCC pVCpu)
5199{
5200 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RIP)
5201 {
5202 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
5203
5204 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
5205 AssertRC(rc);
5206
5207 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RIP);
5208 Log4Func(("rip=%#RX64\n", pVCpu->cpum.GstCtx.rip));
5209 }
5210}
5211
5212
5213/**
5214 * Exports the guest's RSP into the guest-state area in the VMCS.
5215 *
5216 * @param pVCpu The cross context virtual CPU structure.
5217 *
5218 * @remarks No-long-jump zone!!!
5219 */
5220static void hmR0VmxExportGuestRsp(PVMCPUCC pVCpu)
5221{
5222 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RSP)
5223 {
5224 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RSP);
5225
5226 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RSP, pVCpu->cpum.GstCtx.rsp);
5227 AssertRC(rc);
5228
5229 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RSP);
5230 Log4Func(("rsp=%#RX64\n", pVCpu->cpum.GstCtx.rsp));
5231 }
5232}
5233
5234
5235/**
5236 * Exports the guest's RFLAGS into the guest-state area in the VMCS.
5237 *
5238 * @param pVCpu The cross context virtual CPU structure.
5239 * @param pVmxTransient The VMX-transient structure.
5240 *
5241 * @remarks No-long-jump zone!!!
5242 */
5243static void hmR0VmxExportGuestRflags(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5244{
5245 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
5246 {
5247 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
5248
5249 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
5250 Let us assert it as such and use 32-bit VMWRITE. */
5251 Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
5252 X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
5253 Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
5254 Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
5255
5256 /*
5257 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
5258 * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
5259 * can run the real-mode guest code under Virtual 8086 mode.
5260 */
5261 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5262 if (pVmcsInfo->RealMode.fRealOnV86Active)
5263 {
5264 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
5265 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
5266 Assert(!pVmxTransient->fIsNestedGuest);
5267 pVmcsInfo->RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
5268 fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
5269 fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
5270 }
5271
5272 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
5273 AssertRC(rc);
5274
5275 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
5276 Log4Func(("eflags=%#RX32\n", fEFlags.u32));
5277 }
5278}
5279
5280
5281#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5282/**
5283 * Copies the nested-guest VMCS to the shadow VMCS.
5284 *
5285 * @returns VBox status code.
5286 * @param pVCpu The cross context virtual CPU structure.
5287 * @param pVmcsInfo The VMCS info. object.
5288 *
5289 * @remarks No-long-jump zone!!!
5290 */
5291static int hmR0VmxCopyNstGstToShadowVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
5292{
5293 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5294 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5295
5296 /*
5297 * Disable interrupts so we don't get preempted while the shadow VMCS is the
5298 * current VMCS, as we may try saving guest lazy MSRs.
5299 *
5300 * Strictly speaking the lazy MSRs are not in the VMCS, but I'd rather not risk
5301 * calling the import VMCS code which is currently performing the guest MSR reads
5302 * (on 64-bit hosts) and accessing the auto-load/store MSR area on 32-bit hosts
5303 * and the rest of the VMX leave session machinery.
5304 */
5305 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
5306
5307 int rc = hmR0VmxLoadShadowVmcs(pVmcsInfo);
5308 if (RT_SUCCESS(rc))
5309 {
5310 /*
5311 * Copy all guest read/write VMCS fields.
5312 *
5313 * We don't check for VMWRITE failures here for performance reasons and
5314 * because they are not expected to fail, barring irrecoverable conditions
5315 * like hardware errors.
5316 */
5317 uint32_t const cShadowVmcsFields = pVM->hm.s.vmx.cShadowVmcsFields;
5318 for (uint32_t i = 0; i < cShadowVmcsFields; i++)
5319 {
5320 uint64_t u64Val;
5321 uint32_t const uVmcsField = pVM->hm.s.vmx.paShadowVmcsFields[i];
5322 IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val);
5323 VMXWriteVmcs64(uVmcsField, u64Val);
5324 }
5325
5326 /*
5327 * If the host CPU supports writing all VMCS fields, copy the guest read-only
5328 * VMCS fields, so the guest can VMREAD them without causing a VM-exit.
5329 */
5330 if (pVM->hm.s.vmx.Msrs.u64Misc & VMX_MISC_VMWRITE_ALL)
5331 {
5332 uint32_t const cShadowVmcsRoFields = pVM->hm.s.vmx.cShadowVmcsRoFields;
5333 for (uint32_t i = 0; i < cShadowVmcsRoFields; i++)
5334 {
5335 uint64_t u64Val;
5336 uint32_t const uVmcsField = pVM->hm.s.vmx.paShadowVmcsRoFields[i];
5337 IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val);
5338 VMXWriteVmcs64(uVmcsField, u64Val);
5339 }
5340 }
5341
5342 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
5343 rc |= hmR0VmxLoadVmcs(pVmcsInfo);
5344 }
5345
5346 ASMSetFlags(fEFlags);
5347 return rc;
5348}
5349
5350
5351/**
5352 * Copies the shadow VMCS to the nested-guest VMCS.
5353 *
5354 * @returns VBox status code.
5355 * @param pVCpu The cross context virtual CPU structure.
5356 * @param pVmcsInfo The VMCS info. object.
5357 *
5358 * @remarks Called with interrupts disabled.
5359 */
5360static int hmR0VmxCopyShadowToNstGstVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
5361{
5362 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
5363 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5364 PVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
5365
5366 int rc = hmR0VmxLoadShadowVmcs(pVmcsInfo);
5367 if (RT_SUCCESS(rc))
5368 {
5369 /*
5370 * Copy guest read/write fields from the shadow VMCS.
5371 * Guest read-only fields cannot be modified, so no need to copy them.
5372 *
5373 * We don't check for VMREAD failures here for performance reasons and
5374 * because they are not expected to fail, barring irrecoverable conditions
5375 * like hardware errors.
5376 */
5377 uint32_t const cShadowVmcsFields = pVM->hm.s.vmx.cShadowVmcsFields;
5378 for (uint32_t i = 0; i < cShadowVmcsFields; i++)
5379 {
5380 uint64_t u64Val;
5381 uint32_t const uVmcsField = pVM->hm.s.vmx.paShadowVmcsFields[i];
5382 VMXReadVmcs64(uVmcsField, &u64Val);
5383 IEMWriteVmxVmcsField(pVmcsNstGst, uVmcsField, u64Val);
5384 }
5385
5386 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
5387 rc |= hmR0VmxLoadVmcs(pVmcsInfo);
5388 }
5389 return rc;
5390}
5391
5392
5393/**
5394 * Enables VMCS shadowing for the given VMCS info. object.
5395 *
5396 * @param pVmcsInfo The VMCS info. object.
5397 *
5398 * @remarks No-long-jump zone!!!
5399 */
5400static void hmR0VmxEnableVmcsShadowing(PVMXVMCSINFO pVmcsInfo)
5401{
5402 uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2;
5403 if (!(uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING))
5404 {
5405 Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
5406 uProcCtls2 |= VMX_PROC_CTLS2_VMCS_SHADOWING;
5407 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2); AssertRC(rc);
5408 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, pVmcsInfo->HCPhysShadowVmcs); AssertRC(rc);
5409 pVmcsInfo->u32ProcCtls2 = uProcCtls2;
5410 pVmcsInfo->u64VmcsLinkPtr = pVmcsInfo->HCPhysShadowVmcs;
5411 Log4Func(("Enabled\n"));
5412 }
5413}
5414
5415
5416/**
5417 * Disables VMCS shadowing for the given VMCS info. object.
5418 *
5419 * @param pVmcsInfo The VMCS info. object.
5420 *
5421 * @remarks No-long-jump zone!!!
5422 */
5423static void hmR0VmxDisableVmcsShadowing(PVMXVMCSINFO pVmcsInfo)
5424{
5425 /*
5426 * We want all VMREAD and VMWRITE instructions to cause VM-exits, so we clear the
5427 * VMCS shadowing control. However, VM-entry requires the shadow VMCS indicator bit
5428 * to match the VMCS shadowing control if the VMCS link pointer is not NIL_RTHCPHYS.
5429 * Hence, we must also reset the VMCS link pointer to ensure VM-entry does not fail.
5430 *
5431 * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
5432 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5433 */
5434 uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2;
5435 if (uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
5436 {
5437 uProcCtls2 &= ~VMX_PROC_CTLS2_VMCS_SHADOWING;
5438 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2); AssertRC(rc);
5439 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS); AssertRC(rc);
5440 pVmcsInfo->u32ProcCtls2 = uProcCtls2;
5441 pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
5442 Log4Func(("Disabled\n"));
5443 }
5444}
5445#endif
5446
5447
5448/**
5449 * Exports the guest hardware-virtualization state.
5450 *
5451 * @returns VBox status code.
5452 * @param pVCpu The cross context virtual CPU structure.
5453 * @param pVmxTransient The VMX-transient structure.
5454 *
5455 * @remarks No-long-jump zone!!!
5456 */
5457static int hmR0VmxExportGuestHwvirtState(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5458{
5459 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_HWVIRT)
5460 {
5461#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5462 /*
5463 * Check if the VMX feature is exposed to the guest and if the host CPU supports
5464 * VMCS shadowing.
5465 */
5466 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUseVmcsShadowing)
5467 {
5468 /*
5469 * If the nested hypervisor has loaded a current VMCS and is in VMX root mode,
5470 * copy the nested hypervisor's current VMCS into the shadow VMCS and enable
5471 * VMCS shadowing to skip intercepting some or all VMREAD/VMWRITE VM-exits.
5472 *
5473 * We check for VMX root mode here in case the guest executes VMXOFF without
5474 * clearing the current VMCS pointer and our VMXOFF instruction emulation does
5475 * not clear the current VMCS pointer.
5476 */
5477 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5478 if ( CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx)
5479 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx)
5480 && CPUMIsGuestVmxCurrentVmcsValid(&pVCpu->cpum.GstCtx))
5481 {
5482 /* Paranoia. */
5483 Assert(!pVmxTransient->fIsNestedGuest);
5484
5485 /*
5486 * For performance reasons, also check if the nested hypervisor's current VMCS
5487 * was newly loaded or modified before copying it to the shadow VMCS.
5488 */
5489 if (!pVCpu->hm.s.vmx.fCopiedNstGstToShadowVmcs)
5490 {
5491 int rc = hmR0VmxCopyNstGstToShadowVmcs(pVCpu, pVmcsInfo);
5492 AssertRCReturn(rc, rc);
5493 pVCpu->hm.s.vmx.fCopiedNstGstToShadowVmcs = true;
5494 }
5495 hmR0VmxEnableVmcsShadowing(pVmcsInfo);
5496 }
5497 else
5498 hmR0VmxDisableVmcsShadowing(pVmcsInfo);
5499 }
5500#else
5501 NOREF(pVmxTransient);
5502#endif
5503 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_HWVIRT);
5504 }
5505 return VINF_SUCCESS;
5506}
5507
5508
5509/**
5510 * Exports the guest CR0 control register into the guest-state area in the VMCS.
5511 *
5512 * The guest FPU state is always pre-loaded hence we don't need to bother about
5513 * sharing FPU related CR0 bits between the guest and host.
5514 *
5515 * @returns VBox status code.
5516 * @param pVCpu The cross context virtual CPU structure.
5517 * @param pVmxTransient The VMX-transient structure.
5518 *
5519 * @remarks No-long-jump zone!!!
5520 */
5521static int hmR0VmxExportGuestCR0(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5522{
5523 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR0)
5524 {
5525 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5526 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5527
5528 uint64_t fSetCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed0;
5529 uint64_t const fZapCr0 = pVM->hm.s.vmx.Msrs.u64Cr0Fixed1;
5530 if (pVM->hm.s.vmx.fUnrestrictedGuest)
5531 fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
5532 else
5533 Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
5534
5535 if (!pVmxTransient->fIsNestedGuest)
5536 {
5537 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5538 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5539 uint64_t const u64ShadowCr0 = u64GuestCr0;
5540 Assert(!RT_HI_U32(u64GuestCr0));
5541
5542 /*
5543 * Setup VT-x's view of the guest CR0.
5544 */
5545 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
5546 if (pVM->hm.s.fNestedPaging)
5547 {
5548 if (CPUMIsGuestPagingEnabled(pVCpu))
5549 {
5550 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
5551 uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
5552 | VMX_PROC_CTLS_CR3_STORE_EXIT);
5553 }
5554 else
5555 {
5556 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
5557 uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
5558 | VMX_PROC_CTLS_CR3_STORE_EXIT;
5559 }
5560
5561 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
5562 if (pVM->hm.s.vmx.fUnrestrictedGuest)
5563 uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
5564 }
5565 else
5566 {
5567 /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
5568 u64GuestCr0 |= X86_CR0_WP;
5569 }
5570
5571 /*
5572 * Guest FPU bits.
5573 *
5574 * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
5575 * using CR0.TS.
5576 *
5577 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
5578 * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
5579 */
5580 u64GuestCr0 |= X86_CR0_NE;
5581
5582 /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
5583 bool const fInterceptMF = !(u64ShadowCr0 & X86_CR0_NE);
5584
5585 /*
5586 * Update exception intercepts.
5587 */
5588 uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
5589 if (pVmcsInfo->RealMode.fRealOnV86Active)
5590 {
5591 Assert(PDMVmmDevHeapIsEnabled(pVM));
5592 Assert(pVM->hm.s.vmx.pRealModeTSS);
5593 uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
5594 }
5595 else
5596 {
5597 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
5598 uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
5599 if (fInterceptMF)
5600 uXcptBitmap |= RT_BIT(X86_XCPT_MF);
5601 }
5602
5603 /* Additional intercepts for debugging, define these yourself explicitly. */
5604#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
5605 uXcptBitmap |= 0
5606 | RT_BIT(X86_XCPT_BP)
5607 | RT_BIT(X86_XCPT_DE)
5608 | RT_BIT(X86_XCPT_NM)
5609 | RT_BIT(X86_XCPT_TS)
5610 | RT_BIT(X86_XCPT_UD)
5611 | RT_BIT(X86_XCPT_NP)
5612 | RT_BIT(X86_XCPT_SS)
5613 | RT_BIT(X86_XCPT_GP)
5614 | RT_BIT(X86_XCPT_PF)
5615 | RT_BIT(X86_XCPT_MF)
5616 ;
5617#elif defined(HMVMX_ALWAYS_TRAP_PF)
5618 uXcptBitmap |= RT_BIT(X86_XCPT_PF);
5619#endif
5620 if (pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv)
5621 uXcptBitmap |= RT_BIT(X86_XCPT_GP);
5622 Assert(pVM->hm.s.fNestedPaging || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
5623
5624 /* Apply the hardware specified CR0 fixed bits and enable caching. */
5625 u64GuestCr0 |= fSetCr0;
5626 u64GuestCr0 &= fZapCr0;
5627 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
5628
5629 /* Commit the CR0 and related fields to the guest VMCS. */
5630 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR0, u64GuestCr0); AssertRC(rc);
5631 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0); AssertRC(rc);
5632 if (uProcCtls != pVmcsInfo->u32ProcCtls)
5633 {
5634 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
5635 AssertRC(rc);
5636 }
5637 if (uXcptBitmap != pVmcsInfo->u32XcptBitmap)
5638 {
5639 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
5640 AssertRC(rc);
5641 }
5642
5643 /* Update our caches. */
5644 pVmcsInfo->u32ProcCtls = uProcCtls;
5645 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
5646
5647 Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
5648 }
5649 else
5650 {
5651 /*
5652 * With nested-guests, we may have extended the guest/host mask here since we
5653 * merged in the outer guest's mask. Thus, the merged mask can include more bits
5654 * (to read from the nested-guest CR0 read-shadow) than the nested hypervisor
5655 * originally supplied. We must copy those bits from the nested-guest CR0 into
5656 * the nested-guest CR0 read-shadow.
5657 */
5658 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
5659 uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
5660 uint64_t const u64ShadowCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVmcsInfo->u64Cr0Mask);
5661 Assert(!RT_HI_U32(u64GuestCr0));
5662 Assert(u64GuestCr0 & X86_CR0_NE);
5663
5664 /* Apply the hardware specified CR0 fixed bits and enable caching. */
5665 u64GuestCr0 |= fSetCr0;
5666 u64GuestCr0 &= fZapCr0;
5667 u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
5668
5669 /* Commit the CR0 and CR0 read-shadow to the nested-guest VMCS. */
5670 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR0, u64GuestCr0); AssertRC(rc);
5671 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0); AssertRC(rc);
5672
5673 Log4Func(("cr0=%#RX64 shadow=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
5674 }
5675
5676 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR0);
5677 }
5678
5679 return VINF_SUCCESS;
5680}
5681
5682
5683/**
5684 * Exports the guest control registers (CR3, CR4) into the guest-state area
5685 * in the VMCS.
5686 *
5687 * @returns VBox strict status code.
5688 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
5689 * without unrestricted guest access and the VMMDev is not presently
5690 * mapped (e.g. EFI32).
5691 *
5692 * @param pVCpu The cross context virtual CPU structure.
5693 * @param pVmxTransient The VMX-transient structure.
5694 *
5695 * @remarks No-long-jump zone!!!
5696 */
5697static VBOXSTRICTRC hmR0VmxExportGuestCR3AndCR4(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
5698{
5699 int rc = VINF_SUCCESS;
5700 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5701
5702 /*
5703 * Guest CR2.
5704 * It's always loaded in the assembler code. Nothing to do here.
5705 */
5706
5707 /*
5708 * Guest CR3.
5709 */
5710 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR3)
5711 {
5712 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
5713
5714 if (pVM->hm.s.fNestedPaging)
5715 {
5716 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5717 pVmcsInfo->HCPhysEPTP = PGMGetHyperCR3(pVCpu);
5718
5719 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
5720 Assert(pVmcsInfo->HCPhysEPTP != NIL_RTHCPHYS);
5721 Assert(!(pVmcsInfo->HCPhysEPTP & UINT64_C(0xfff0000000000000)));
5722 Assert(!(pVmcsInfo->HCPhysEPTP & 0xfff));
5723
5724 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
5725 pVmcsInfo->HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
5726 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
5727
5728 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
5729 AssertMsg( ((pVmcsInfo->HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
5730 && ((pVmcsInfo->HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
5731 ("EPTP %#RX64\n", pVmcsInfo->HCPhysEPTP));
5732 AssertMsg( !((pVmcsInfo->HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
5733 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
5734 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVmcsInfo->HCPhysEPTP));
5735
5736 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVmcsInfo->HCPhysEPTP);
5737 AssertRC(rc);
5738
5739 uint64_t u64GuestCr3;
5740 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5741 if ( pVM->hm.s.vmx.fUnrestrictedGuest
5742 || CPUMIsGuestPagingEnabledEx(pCtx))
5743 {
5744 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
5745 if (CPUMIsGuestInPAEModeEx(pCtx))
5746 {
5747 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
5748 AssertRC(rc);
5749 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u); AssertRC(rc);
5750 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u); AssertRC(rc);
5751 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u); AssertRC(rc);
5752 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u); AssertRC(rc);
5753 }
5754
5755 /*
5756 * The guest's view of its CR3 is unblemished with nested paging when the
5757 * guest is using paging or we have unrestricted guest execution to handle
5758 * the guest when it's not using paging.
5759 */
5760 u64GuestCr3 = pCtx->cr3;
5761 }
5762 else
5763 {
5764 /*
5765 * The guest is not using paging, but the CPU (VT-x) has to. While the guest
5766 * thinks it accesses physical memory directly, we use our identity-mapped
5767 * page table to map guest-linear to guest-physical addresses. EPT takes care
5768 * of translating it to host-physical addresses.
5769 */
5770 RTGCPHYS GCPhys;
5771 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
5772
5773 /* We obtain it here every time as the guest could have relocated this PCI region. */
5774 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
5775 if (RT_SUCCESS(rc))
5776 { /* likely */ }
5777 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
5778 {
5779 Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
5780 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
5781 }
5782 else
5783 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
5784
5785 u64GuestCr3 = GCPhys;
5786 }
5787
5788 Log4Func(("guest_cr3=%#RX64 (GstN)\n", u64GuestCr3));
5789 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR3, u64GuestCr3);
5790 AssertRC(rc);
5791 }
5792 else
5793 {
5794 Assert(!pVmxTransient->fIsNestedGuest);
5795 /* Non-nested paging case, just use the hypervisor's CR3. */
5796 RTHCPHYS const HCPhysGuestCr3 = PGMGetHyperCR3(pVCpu);
5797
5798 Log4Func(("guest_cr3=%#RX64 (HstN)\n", HCPhysGuestCr3));
5799 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR3, HCPhysGuestCr3);
5800 AssertRC(rc);
5801 }
5802
5803 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR3);
5804 }
5805
5806 /*
5807 * Guest CR4.
5808 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
5809 */
5810 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CR4)
5811 {
5812 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
5813 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5814
5815 uint64_t const fSetCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed0;
5816 uint64_t const fZapCr4 = pVM->hm.s.vmx.Msrs.u64Cr4Fixed1;
5817
5818 /*
5819 * With nested-guests, we may have extended the guest/host mask here (since we
5820 * merged in the outer guest's mask, see hmR0VmxMergeVmcsNested). This means, the
5821 * mask can include more bits (to read from the nested-guest CR4 read-shadow) than
5822 * the nested hypervisor originally supplied. Thus, we should, in essence, copy
5823 * those bits from the nested-guest CR4 into the nested-guest CR4 read-shadow.
5824 */
5825 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
5826 uint64_t u64GuestCr4 = pCtx->cr4;
5827 uint64_t const u64ShadowCr4 = !pVmxTransient->fIsNestedGuest
5828 ? pCtx->cr4
5829 : CPUMGetGuestVmxMaskedCr4(pCtx, pVmcsInfo->u64Cr4Mask);
5830 Assert(!RT_HI_U32(u64GuestCr4));
5831
5832 /*
5833 * Setup VT-x's view of the guest CR4.
5834 *
5835 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
5836 * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
5837 * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
5838 *
5839 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
5840 */
5841 if (pVmcsInfo->RealMode.fRealOnV86Active)
5842 {
5843 Assert(pVM->hm.s.vmx.pRealModeTSS);
5844 Assert(PDMVmmDevHeapIsEnabled(pVM));
5845 u64GuestCr4 &= ~(uint64_t)X86_CR4_VME;
5846 }
5847
5848 if (pVM->hm.s.fNestedPaging)
5849 {
5850 if ( !CPUMIsGuestPagingEnabledEx(pCtx)
5851 && !pVM->hm.s.vmx.fUnrestrictedGuest)
5852 {
5853 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
5854 u64GuestCr4 |= X86_CR4_PSE;
5855 /* Our identity mapping is a 32-bit page directory. */
5856 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5857 }
5858 /* else use guest CR4.*/
5859 }
5860 else
5861 {
5862 Assert(!pVmxTransient->fIsNestedGuest);
5863
5864 /*
5865 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
5866 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
5867 */
5868 switch (pVCpu->hm.s.enmShadowMode)
5869 {
5870 case PGMMODE_REAL: /* Real-mode. */
5871 case PGMMODE_PROTECTED: /* Protected mode without paging. */
5872 case PGMMODE_32_BIT: /* 32-bit paging. */
5873 {
5874 u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
5875 break;
5876 }
5877
5878 case PGMMODE_PAE: /* PAE paging. */
5879 case PGMMODE_PAE_NX: /* PAE paging with NX. */
5880 {
5881 u64GuestCr4 |= X86_CR4_PAE;
5882 break;
5883 }
5884
5885 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
5886 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
5887 {
5888#ifdef VBOX_WITH_64_BITS_GUESTS
5889 /* For our assumption in hmR0VmxShouldSwapEferMsr. */
5890 Assert(u64GuestCr4 & X86_CR4_PAE);
5891 break;
5892#endif
5893 }
5894 default:
5895 AssertFailed();
5896 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
5897 }
5898 }
5899
5900 /* Apply the hardware specified CR4 fixed bits (mainly CR4.VMXE). */
5901 u64GuestCr4 |= fSetCr4;
5902 u64GuestCr4 &= fZapCr4;
5903
5904 /* Commit the CR4 and CR4 read-shadow to the guest VMCS. */
5905 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_CR4, u64GuestCr4); AssertRC(rc);
5906 rc = VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_READ_SHADOW, u64ShadowCr4); AssertRC(rc);
5907
5908 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
5909 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
5910
5911 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CR4);
5912
5913 Log4Func(("cr4=%#RX64 shadow=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr4, u64ShadowCr4, fSetCr4, fZapCr4));
5914 }
5915 return rc;
5916}
5917
5918
5919/**
5920 * Exports the guest debug registers into the guest-state area in the VMCS.
5921 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
5922 *
5923 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
5924 *
5925 * @returns VBox status code.
5926 * @param pVCpu The cross context virtual CPU structure.
5927 * @param pVmxTransient The VMX-transient structure.
5928 *
5929 * @remarks No-long-jump zone!!!
5930 */
5931static int hmR0VmxExportSharedDebugState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
5932{
5933 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
5934
5935 /** @todo NSTVMX: Figure out what we want to do with nested-guest instruction
5936 * stepping. */
5937 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
5938 if (pVmxTransient->fIsNestedGuest)
5939 {
5940 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, CPUMGetGuestDR7(pVCpu));
5941 AssertRC(rc);
5942
5943 /* Always intercept Mov DRx accesses for the nested-guest for now. */
5944 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
5945 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
5946 AssertRC(rc);
5947 return VINF_SUCCESS;
5948 }
5949
5950#ifdef VBOX_STRICT
5951 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
5952 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5953 {
5954 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
5955 Assert((pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0);
5956 Assert((pVCpu->cpum.GstCtx.dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK);
5957 }
5958#endif
5959
5960 bool fSteppingDB = false;
5961 bool fInterceptMovDRx = false;
5962 uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
5963 if (pVCpu->hm.s.fSingleInstruction)
5964 {
5965 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
5966 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
5967 if (pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
5968 {
5969 uProcCtls |= VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
5970 Assert(fSteppingDB == false);
5971 }
5972 else
5973 {
5974 pVCpu->cpum.GstCtx.eflags.u32 |= X86_EFL_TF;
5975 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_RFLAGS;
5976 pVCpu->hm.s.fClearTrapFlag = true;
5977 fSteppingDB = true;
5978 }
5979 }
5980
5981 uint64_t u64GuestDr7;
5982 if ( fSteppingDB
5983 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
5984 {
5985 /*
5986 * Use the combined guest and host DRx values found in the hypervisor register set
5987 * because the hypervisor debugger has breakpoints active or someone is single stepping
5988 * on the host side without a monitor trap flag.
5989 *
5990 * Note! DBGF expects a clean DR6 state before executing guest code.
5991 */
5992 if (!CPUMIsHyperDebugStateActive(pVCpu))
5993 {
5994 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
5995 Assert(CPUMIsHyperDebugStateActive(pVCpu));
5996 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
5997 }
5998
5999 /* Update DR7 with the hypervisor value (other DRx registers are handled by CPUM one way or another). */
6000 u64GuestDr7 = CPUMGetHyperDR7(pVCpu);
6001 pVCpu->hm.s.fUsingHyperDR7 = true;
6002 fInterceptMovDRx = true;
6003 }
6004 else
6005 {
6006 /*
6007 * If the guest has enabled debug registers, we need to load them prior to
6008 * executing guest code so they'll trigger at the right time.
6009 */
6010 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DR7);
6011 if (pVCpu->cpum.GstCtx.dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
6012 {
6013 if (!CPUMIsGuestDebugStateActive(pVCpu))
6014 {
6015 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
6016 Assert(CPUMIsGuestDebugStateActive(pVCpu));
6017 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
6018 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
6019 }
6020 Assert(!fInterceptMovDRx);
6021 }
6022 else if (!CPUMIsGuestDebugStateActive(pVCpu))
6023 {
6024 /*
6025 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
6026 * must intercept #DB in order to maintain a correct DR6 guest value, and
6027 * because we need to intercept it to prevent nested #DBs from hanging the
6028 * CPU, we end up always having to intercept it. See hmR0VmxSetupVmcsXcptBitmap().
6029 */
6030 fInterceptMovDRx = true;
6031 }
6032
6033 /* Update DR7 with the actual guest value. */
6034 u64GuestDr7 = pVCpu->cpum.GstCtx.dr[7];
6035 pVCpu->hm.s.fUsingHyperDR7 = false;
6036 }
6037
6038 if (fInterceptMovDRx)
6039 uProcCtls |= VMX_PROC_CTLS_MOV_DR_EXIT;
6040 else
6041 uProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
6042
6043 /*
6044 * Update the processor-based VM-execution controls with the MOV-DRx intercepts and the
6045 * monitor-trap flag and update our cache.
6046 */
6047 if (uProcCtls != pVmcsInfo->u32ProcCtls)
6048 {
6049 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
6050 AssertRC(rc);
6051 pVmcsInfo->u32ProcCtls = uProcCtls;
6052 }
6053
6054 /*
6055 * Update guest DR7.
6056 */
6057 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, u64GuestDr7);
6058 AssertRC(rc);
6059
6060 /*
6061 * If we have forced EFLAGS.TF to be set because we're single-stepping in the hypervisor debugger,
6062 * we need to clear interrupt inhibition if any as otherwise it causes a VM-entry failure.
6063 *
6064 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
6065 */
6066 if (fSteppingDB)
6067 {
6068 Assert(pVCpu->hm.s.fSingleInstruction);
6069 Assert(pVCpu->cpum.GstCtx.eflags.Bits.u1TF);
6070
6071 uint32_t fIntrState = 0;
6072 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
6073 AssertRC(rc);
6074
6075 if (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
6076 {
6077 fIntrState &= ~(VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
6078 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
6079 AssertRC(rc);
6080 }
6081 }
6082
6083 return VINF_SUCCESS;
6084}
6085
6086
6087#ifdef VBOX_STRICT
6088/**
6089 * Strict function to validate segment registers.
6090 *
6091 * @param pVCpu The cross context virtual CPU structure.
6092 * @param pVmcsInfo The VMCS info. object.
6093 *
6094 * @remarks Will import guest CR0 on strict builds during validation of
6095 * segments.
6096 */
6097static void hmR0VmxValidateSegmentRegs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
6098{
6099 /*
6100 * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
6101 *
6102 * The reason we check for attribute value 0 in this function and not just the unusable bit is
6103 * because hmR0VmxExportGuestSegReg() only updates the VMCS' copy of the value with the
6104 * unusable bit and doesn't change the guest-context value.
6105 */
6106 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6107 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6108 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
6109 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
6110 && ( !CPUMIsGuestInRealModeEx(pCtx)
6111 && !CPUMIsGuestInV86ModeEx(pCtx)))
6112 {
6113 /* Protected mode checks */
6114 /* CS */
6115 Assert(pCtx->cs.Attr.n.u1Present);
6116 Assert(!(pCtx->cs.Attr.u & 0xf00));
6117 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
6118 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
6119 || !(pCtx->cs.Attr.n.u1Granularity));
6120 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
6121 || (pCtx->cs.Attr.n.u1Granularity));
6122 /* CS cannot be loaded with NULL in protected mode. */
6123 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
6124 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
6125 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
6126 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
6127 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
6128 else
6129 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
6130 /* SS */
6131 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
6132 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
6133 if ( !(pCtx->cr0 & X86_CR0_PE)
6134 || pCtx->cs.Attr.n.u4Type == 3)
6135 {
6136 Assert(!pCtx->ss.Attr.n.u2Dpl);
6137 }
6138 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
6139 {
6140 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
6141 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
6142 Assert(pCtx->ss.Attr.n.u1Present);
6143 Assert(!(pCtx->ss.Attr.u & 0xf00));
6144 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
6145 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
6146 || !(pCtx->ss.Attr.n.u1Granularity));
6147 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
6148 || (pCtx->ss.Attr.n.u1Granularity));
6149 }
6150 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSegReg(). */
6151 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
6152 {
6153 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6154 Assert(pCtx->ds.Attr.n.u1Present);
6155 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
6156 Assert(!(pCtx->ds.Attr.u & 0xf00));
6157 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
6158 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
6159 || !(pCtx->ds.Attr.n.u1Granularity));
6160 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
6161 || (pCtx->ds.Attr.n.u1Granularity));
6162 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6163 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
6164 }
6165 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
6166 {
6167 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6168 Assert(pCtx->es.Attr.n.u1Present);
6169 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
6170 Assert(!(pCtx->es.Attr.u & 0xf00));
6171 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
6172 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
6173 || !(pCtx->es.Attr.n.u1Granularity));
6174 Assert( !(pCtx->es.u32Limit & 0xfff00000)
6175 || (pCtx->es.Attr.n.u1Granularity));
6176 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6177 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
6178 }
6179 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
6180 {
6181 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6182 Assert(pCtx->fs.Attr.n.u1Present);
6183 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
6184 Assert(!(pCtx->fs.Attr.u & 0xf00));
6185 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
6186 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
6187 || !(pCtx->fs.Attr.n.u1Granularity));
6188 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
6189 || (pCtx->fs.Attr.n.u1Granularity));
6190 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6191 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
6192 }
6193 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
6194 {
6195 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
6196 Assert(pCtx->gs.Attr.n.u1Present);
6197 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
6198 Assert(!(pCtx->gs.Attr.u & 0xf00));
6199 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
6200 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
6201 || !(pCtx->gs.Attr.n.u1Granularity));
6202 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
6203 || (pCtx->gs.Attr.n.u1Granularity));
6204 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
6205 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
6206 }
6207 /* 64-bit capable CPUs. */
6208 Assert(!RT_HI_U32(pCtx->cs.u64Base));
6209 Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
6210 Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
6211 Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
6212 }
6213 else if ( CPUMIsGuestInV86ModeEx(pCtx)
6214 || ( CPUMIsGuestInRealModeEx(pCtx)
6215 && !pVM->hm.s.vmx.fUnrestrictedGuest))
6216 {
6217 /* Real and v86 mode checks. */
6218 /* hmR0VmxExportGuestSegReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
6219 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
6220 if (pVmcsInfo->RealMode.fRealOnV86Active)
6221 {
6222 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3;
6223 u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
6224 }
6225 else
6226 {
6227 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
6228 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
6229 }
6230
6231 /* CS */
6232 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
6233 Assert(pCtx->cs.u32Limit == 0xffff);
6234 Assert(u32CSAttr == 0xf3);
6235 /* SS */
6236 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
6237 Assert(pCtx->ss.u32Limit == 0xffff);
6238 Assert(u32SSAttr == 0xf3);
6239 /* DS */
6240 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
6241 Assert(pCtx->ds.u32Limit == 0xffff);
6242 Assert(u32DSAttr == 0xf3);
6243 /* ES */
6244 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
6245 Assert(pCtx->es.u32Limit == 0xffff);
6246 Assert(u32ESAttr == 0xf3);
6247 /* FS */
6248 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
6249 Assert(pCtx->fs.u32Limit == 0xffff);
6250 Assert(u32FSAttr == 0xf3);
6251 /* GS */
6252 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
6253 Assert(pCtx->gs.u32Limit == 0xffff);
6254 Assert(u32GSAttr == 0xf3);
6255 /* 64-bit capable CPUs. */
6256 Assert(!RT_HI_U32(pCtx->cs.u64Base));
6257 Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
6258 Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
6259 Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
6260 }
6261}
6262#endif /* VBOX_STRICT */
6263
6264
6265/**
6266 * Exports a guest segment register into the guest-state area in the VMCS.
6267 *
6268 * @returns VBox status code.
6269 * @param pVCpu The cross context virtual CPU structure.
6270 * @param pVmcsInfo The VMCS info. object.
6271 * @param iSegReg The segment register number (X86_SREG_XXX).
6272 * @param pSelReg Pointer to the segment selector.
6273 *
6274 * @remarks No-long-jump zone!!!
6275 */
6276static int hmR0VmxExportGuestSegReg(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, uint8_t iSegReg, PCCPUMSELREG pSelReg)
6277{
6278 Assert(iSegReg < X86_SREG_COUNT);
6279 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
6280 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
6281 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
6282 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
6283
6284 uint32_t u32Access = pSelReg->Attr.u;
6285 if (pVmcsInfo->RealMode.fRealOnV86Active)
6286 {
6287 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
6288 u32Access = 0xf3;
6289 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6290 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
6291 RT_NOREF_PV(pVCpu);
6292 }
6293 else
6294 {
6295 /*
6296 * The way to differentiate between whether this is really a null selector or was just
6297 * a selector loaded with 0 in real-mode is using the segment attributes. A selector
6298 * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
6299 * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
6300 * NULL selectors loaded in protected-mode have their attribute as 0.
6301 */
6302 if (!u32Access)
6303 u32Access = X86DESCATTR_UNUSABLE;
6304 }
6305
6306 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
6307 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
6308 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
6309
6310 /*
6311 * Commit it to the VMCS.
6312 */
6313 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); AssertRC(rc);
6314 rc = VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); AssertRC(rc);
6315 rc = VMXWriteVmcsNw(idxBase, pSelReg->u64Base); AssertRC(rc);
6316 rc = VMXWriteVmcs32(idxAttr, u32Access); AssertRC(rc);
6317 return VINF_SUCCESS;
6318}
6319
6320
6321/**
6322 * Exports the guest segment registers, GDTR, IDTR, LDTR, TR into the guest-state
6323 * area in the VMCS.
6324 *
6325 * @returns VBox status code.
6326 * @param pVCpu The cross context virtual CPU structure.
6327 * @param pVmxTransient The VMX-transient structure.
6328 *
6329 * @remarks Will import guest CR0 on strict builds during validation of
6330 * segments.
6331 * @remarks No-long-jump zone!!!
6332 */
6333static int hmR0VmxExportGuestSegRegsXdtr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
6334{
6335 int rc = VERR_INTERNAL_ERROR_5;
6336 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6337 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6338 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
6339
6340 /*
6341 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
6342 */
6343 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
6344 {
6345 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_CS)
6346 {
6347 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
6348 if (pVmcsInfo->RealMode.fRealOnV86Active)
6349 pVmcsInfo->RealMode.AttrCS.u = pCtx->cs.Attr.u;
6350 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_CS, &pCtx->cs);
6351 AssertRC(rc);
6352 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_CS);
6353 }
6354
6355 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SS)
6356 {
6357 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
6358 if (pVmcsInfo->RealMode.fRealOnV86Active)
6359 pVmcsInfo->RealMode.AttrSS.u = pCtx->ss.Attr.u;
6360 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_SS, &pCtx->ss);
6361 AssertRC(rc);
6362 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SS);
6363 }
6364
6365 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_DS)
6366 {
6367 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
6368 if (pVmcsInfo->RealMode.fRealOnV86Active)
6369 pVmcsInfo->RealMode.AttrDS.u = pCtx->ds.Attr.u;
6370 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_DS, &pCtx->ds);
6371 AssertRC(rc);
6372 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_DS);
6373 }
6374
6375 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_ES)
6376 {
6377 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
6378 if (pVmcsInfo->RealMode.fRealOnV86Active)
6379 pVmcsInfo->RealMode.AttrES.u = pCtx->es.Attr.u;
6380 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_ES, &pCtx->es);
6381 AssertRC(rc);
6382 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_ES);
6383 }
6384
6385 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_FS)
6386 {
6387 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
6388 if (pVmcsInfo->RealMode.fRealOnV86Active)
6389 pVmcsInfo->RealMode.AttrFS.u = pCtx->fs.Attr.u;
6390 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_FS, &pCtx->fs);
6391 AssertRC(rc);
6392 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_FS);
6393 }
6394
6395 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GS)
6396 {
6397 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
6398 if (pVmcsInfo->RealMode.fRealOnV86Active)
6399 pVmcsInfo->RealMode.AttrGS.u = pCtx->gs.Attr.u;
6400 rc = hmR0VmxExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_GS, &pCtx->gs);
6401 AssertRC(rc);
6402 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GS);
6403 }
6404
6405#ifdef VBOX_STRICT
6406 hmR0VmxValidateSegmentRegs(pVCpu, pVmcsInfo);
6407#endif
6408 Log4Func(("cs={%#04x base=%#RX64 limit=%#RX32 attr=%#RX32}\n", pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit,
6409 pCtx->cs.Attr.u));
6410 }
6411
6412 /*
6413 * Guest TR.
6414 */
6415 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_TR)
6416 {
6417 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
6418
6419 /*
6420 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
6421 * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
6422 * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
6423 */
6424 uint16_t u16Sel;
6425 uint32_t u32Limit;
6426 uint64_t u64Base;
6427 uint32_t u32AccessRights;
6428 if (!pVmcsInfo->RealMode.fRealOnV86Active)
6429 {
6430 u16Sel = pCtx->tr.Sel;
6431 u32Limit = pCtx->tr.u32Limit;
6432 u64Base = pCtx->tr.u64Base;
6433 u32AccessRights = pCtx->tr.Attr.u;
6434 }
6435 else
6436 {
6437 Assert(!pVmxTransient->fIsNestedGuest);
6438 Assert(pVM->hm.s.vmx.pRealModeTSS);
6439 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
6440
6441 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
6442 RTGCPHYS GCPhys;
6443 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
6444 AssertRCReturn(rc, rc);
6445
6446 X86DESCATTR DescAttr;
6447 DescAttr.u = 0;
6448 DescAttr.n.u1Present = 1;
6449 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
6450
6451 u16Sel = 0;
6452 u32Limit = HM_VTX_TSS_SIZE;
6453 u64Base = GCPhys;
6454 u32AccessRights = DescAttr.u;
6455 }
6456
6457 /* Validate. */
6458 Assert(!(u16Sel & RT_BIT(2)));
6459 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
6460 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
6461 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
6462 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
6463 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
6464 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
6465 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
6466 Assert( (u32Limit & 0xfff) == 0xfff
6467 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
6468 Assert( !(pCtx->tr.u32Limit & 0xfff00000)
6469 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
6470
6471 rc = VMXWriteVmcs16(VMX_VMCS16_GUEST_TR_SEL, u16Sel); AssertRC(rc);
6472 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit); AssertRC(rc);
6473 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights); AssertRC(rc);
6474 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_TR_BASE, u64Base); AssertRC(rc);
6475
6476 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_TR);
6477 Log4Func(("tr base=%#RX64 limit=%#RX32\n", pCtx->tr.u64Base, pCtx->tr.u32Limit));
6478 }
6479
6480 /*
6481 * Guest GDTR.
6482 */
6483 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_GDTR)
6484 {
6485 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
6486
6487 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt); AssertRC(rc);
6488 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt); AssertRC(rc);
6489
6490 /* Validate. */
6491 Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
6492
6493 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
6494 Log4Func(("gdtr base=%#RX64 limit=%#RX32\n", pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt));
6495 }
6496
6497 /*
6498 * Guest LDTR.
6499 */
6500 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_LDTR)
6501 {
6502 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
6503
6504 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
6505 uint32_t u32Access;
6506 if ( !pVmxTransient->fIsNestedGuest
6507 && !pCtx->ldtr.Attr.u)
6508 u32Access = X86DESCATTR_UNUSABLE;
6509 else
6510 u32Access = pCtx->ldtr.Attr.u;
6511
6512 rc = VMXWriteVmcs16(VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel); AssertRC(rc);
6513 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit); AssertRC(rc);
6514 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access); AssertRC(rc);
6515 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base); AssertRC(rc);
6516
6517 /* Validate. */
6518 if (!(u32Access & X86DESCATTR_UNUSABLE))
6519 {
6520 Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
6521 Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
6522 Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
6523 Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
6524 Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
6525 Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
6526 Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
6527 || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
6528 Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
6529 || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
6530 }
6531
6532 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
6533 Log4Func(("ldtr base=%#RX64 limit=%#RX32\n", pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit));
6534 }
6535
6536 /*
6537 * Guest IDTR.
6538 */
6539 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_IDTR)
6540 {
6541 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
6542
6543 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt); AssertRC(rc);
6544 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt); AssertRC(rc);
6545
6546 /* Validate. */
6547 Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
6548
6549 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
6550 Log4Func(("idtr base=%#RX64 limit=%#RX32\n", pCtx->idtr.pIdt, pCtx->idtr.cbIdt));
6551 }
6552
6553 return VINF_SUCCESS;
6554}
6555
6556
6557/**
6558 * Exports certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
6559 * areas.
6560 *
6561 * These MSRs will automatically be loaded to the host CPU on every successful
6562 * VM-entry and stored from the host CPU on every successful VM-exit.
6563 *
6564 * We creates/updates MSR slots for the host MSRs in the VM-exit MSR-load area. The
6565 * actual host MSR values are not- updated here for performance reasons. See
6566 * hmR0VmxExportHostMsrs().
6567 *
6568 * We also exports the guest sysenter MSRs into the guest-state area in the VMCS.
6569 *
6570 * @returns VBox status code.
6571 * @param pVCpu The cross context virtual CPU structure.
6572 * @param pVmxTransient The VMX-transient structure.
6573 *
6574 * @remarks No-long-jump zone!!!
6575 */
6576static int hmR0VmxExportGuestMsrs(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
6577{
6578 AssertPtr(pVCpu);
6579 AssertPtr(pVmxTransient);
6580
6581 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6582 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6583
6584 /*
6585 * MSRs that we use the auto-load/store MSR area in the VMCS.
6586 * For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(),
6587 * nothing to do here. The host MSR values are updated when it's safe in
6588 * hmR0VmxLazySaveHostMsrs().
6589 *
6590 * For nested-guests, the guests MSRs from the VM-entry MSR-load area are already
6591 * loaded (into the guest-CPU context) by the VMLAUNCH/VMRESUME instruction
6592 * emulation. The merged MSR permission bitmap will ensure that we get VM-exits
6593 * for any MSR that are not part of the lazy MSRs so we do not need to place
6594 * those MSRs into the auto-load/store MSR area. Nothing to do here.
6595 */
6596 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
6597 {
6598 /* No auto-load/store MSRs currently. */
6599 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_VMX_GUEST_AUTO_MSRS);
6600 }
6601
6602 /*
6603 * Guest Sysenter MSRs.
6604 */
6605 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_MSR_MASK)
6606 {
6607 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SYSENTER_MSRS);
6608
6609 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
6610 {
6611 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pCtx->SysEnter.cs);
6612 AssertRC(rc);
6613 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_CS_MSR);
6614 }
6615
6616 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
6617 {
6618 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_SYSENTER_EIP, pCtx->SysEnter.eip);
6619 AssertRC(rc);
6620 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
6621 }
6622
6623 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
6624 {
6625 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_SYSENTER_ESP, pCtx->SysEnter.esp);
6626 AssertRC(rc);
6627 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
6628 }
6629 }
6630
6631 /*
6632 * Guest/host EFER MSR.
6633 */
6634 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_EFER_MSR)
6635 {
6636 /* Whether we are using the VMCS to swap the EFER MSR must have been
6637 determined earlier while exporting VM-entry/VM-exit controls. */
6638 Assert(!(ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS));
6639 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
6640
6641 if (hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
6642 {
6643 /*
6644 * EFER.LME is written by software, while EFER.LMA is set by the CPU to (CR0.PG & EFER.LME).
6645 * This means a guest can set EFER.LME=1 while CR0.PG=0 and EFER.LMA can remain 0.
6646 * VT-x requires that "IA-32e mode guest" VM-entry control must be identical to EFER.LMA
6647 * and to CR0.PG. Without unrestricted execution, CR0.PG (used for VT-x, not the shadow)
6648 * must always be 1. This forces us to effectively clear both EFER.LMA and EFER.LME until
6649 * the guest has also set CR0.PG=1. Otherwise, we would run into an invalid-guest state
6650 * during VM-entry.
6651 */
6652 uint64_t uGuestEferMsr = pCtx->msrEFER;
6653 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
6654 {
6655 if (!(pCtx->msrEFER & MSR_K6_EFER_LMA))
6656 uGuestEferMsr &= ~MSR_K6_EFER_LME;
6657 else
6658 Assert((pCtx->msrEFER & (MSR_K6_EFER_LMA | MSR_K6_EFER_LME)) == (MSR_K6_EFER_LMA | MSR_K6_EFER_LME));
6659 }
6660
6661 /*
6662 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
6663 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
6664 */
6665 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
6666 {
6667 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, uGuestEferMsr);
6668 AssertRC(rc);
6669 }
6670 else
6671 {
6672 /*
6673 * We shall use the auto-load/store MSR area only for loading the EFER MSR but we must
6674 * continue to intercept guest read and write accesses to it, see @bugref{7386#c16}.
6675 */
6676 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER, uGuestEferMsr,
6677 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6678 AssertRCReturn(rc, rc);
6679 }
6680
6681 Log4Func(("efer=%#RX64 shadow=%#RX64\n", uGuestEferMsr, pCtx->msrEFER));
6682 }
6683 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
6684 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K6_EFER);
6685
6686 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
6687 }
6688
6689 /*
6690 * Other MSRs.
6691 */
6692 if (ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged) & HM_CHANGED_GUEST_OTHER_MSRS)
6693 {
6694 /* Speculation Control (R/W). */
6695 HMVMX_CPUMCTX_ASSERT(pVCpu, HM_CHANGED_GUEST_OTHER_MSRS);
6696 if (pVM->cpum.ro.GuestFeatures.fIbrs)
6697 {
6698 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_IA32_SPEC_CTRL, CPUMGetGuestSpecCtrl(pVCpu),
6699 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6700 AssertRCReturn(rc, rc);
6701 }
6702
6703 /* Last Branch Record. */
6704 if (pVM->hm.s.vmx.fLbr)
6705 {
6706 uint32_t const idFromIpMsrStart = pVM->hm.s.vmx.idLbrFromIpMsrFirst;
6707 uint32_t const idToIpMsrStart = pVM->hm.s.vmx.idLbrToIpMsrFirst;
6708 uint32_t const cLbrStack = pVM->hm.s.vmx.idLbrFromIpMsrLast - pVM->hm.s.vmx.idLbrFromIpMsrFirst + 1;
6709 Assert(cLbrStack <= 32);
6710 for (uint32_t i = 0; i < cLbrStack; i++)
6711 {
6712 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, idFromIpMsrStart + i,
6713 pVmxTransient->pVmcsInfo->au64LbrFromIpMsr[i],
6714 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6715 AssertRCReturn(rc, rc);
6716
6717 /* Some CPUs don't have a Branch-To-IP MSR (P4 and related Xeons). */
6718 if (idToIpMsrStart != 0)
6719 {
6720 rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, idToIpMsrStart + i,
6721 pVmxTransient->pVmcsInfo->au64LbrToIpMsr[i],
6722 false /* fSetReadWrite */, false /* fUpdateHostMsr */);
6723 AssertRCReturn(rc, rc);
6724 }
6725 }
6726
6727 /* Add LBR top-of-stack MSR (which contains the index to the most recent record). */
6728 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, pVM->hm.s.vmx.idLbrTosMsr,
6729 pVmxTransient->pVmcsInfo->u64LbrTosMsr, false /* fSetReadWrite */,
6730 false /* fUpdateHostMsr */);
6731 AssertRCReturn(rc, rc);
6732 }
6733
6734 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
6735 }
6736
6737 return VINF_SUCCESS;
6738}
6739
6740
6741/**
6742 * Wrapper for running the guest code in VT-x.
6743 *
6744 * @returns VBox status code, no informational status codes.
6745 * @param pVCpu The cross context virtual CPU structure.
6746 * @param pVmxTransient The VMX-transient structure.
6747 *
6748 * @remarks No-long-jump zone!!!
6749 */
6750DECLINLINE(int) hmR0VmxRunGuest(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
6751{
6752 /* Mark that HM is the keeper of all guest-CPU registers now that we're going to execute guest code. */
6753 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
6754 pCtx->fExtrn |= HMVMX_CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_HM;
6755
6756 /** @todo Add stats for VMRESUME vs VMLAUNCH. */
6757
6758 /*
6759 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses
6760 * floating-point operations using SSE instructions. Some XMM registers (XMM6-XMM15) are
6761 * callee-saved and thus the need for this XMM wrapper.
6762 *
6763 * See MSDN "Configuring Programs for 64-bit/x64 Software Conventions / Register Usage".
6764 */
6765 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
6766 bool const fResumeVM = RT_BOOL(pVmcsInfo->fVmcsState & VMX_V_VMCS_LAUNCH_STATE_LAUNCHED);
6767 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6768#ifdef VBOX_WITH_KERNEL_USING_XMM
6769 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, NULL /*pvUnused*/, pVM, pVCpu, pVmcsInfo->pfnStartVM);
6770#else
6771 int rc = pVmcsInfo->pfnStartVM(fResumeVM, pCtx, NULL /*pvUnused*/, pVM, pVCpu);
6772#endif
6773 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
6774 return rc;
6775}
6776
6777
6778/**
6779 * Reports world-switch error and dumps some useful debug info.
6780 *
6781 * @param pVCpu The cross context virtual CPU structure.
6782 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
6783 * @param pVmxTransient The VMX-transient structure (only
6784 * exitReason updated).
6785 */
6786static void hmR0VmxReportWorldSwitchError(PVMCPUCC pVCpu, int rcVMRun, PVMXTRANSIENT pVmxTransient)
6787{
6788 Assert(pVCpu);
6789 Assert(pVmxTransient);
6790 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
6791
6792 Log4Func(("VM-entry failure: %Rrc\n", rcVMRun));
6793 switch (rcVMRun)
6794 {
6795 case VERR_VMX_INVALID_VMXON_PTR:
6796 AssertFailed();
6797 break;
6798 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
6799 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
6800 {
6801 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
6802 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
6803 AssertRC(rc);
6804 hmR0VmxReadExitQualVmcs(pVmxTransient);
6805
6806 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
6807 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
6808 Cannot do it here as we may have been long preempted. */
6809
6810#ifdef VBOX_STRICT
6811 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
6812 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
6813 pVmxTransient->uExitReason));
6814 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQual));
6815 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
6816 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
6817 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
6818 else
6819 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
6820 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
6821 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
6822
6823 static struct
6824 {
6825 /** Name of the field to log. */
6826 const char *pszName;
6827 /** The VMCS field. */
6828 uint32_t uVmcsField;
6829 /** Whether host support of this field needs to be checked. */
6830 bool fCheckSupport;
6831 } const s_aVmcsFields[] =
6832 {
6833 { "VMX_VMCS32_CTRL_PIN_EXEC", VMX_VMCS32_CTRL_PIN_EXEC, false },
6834 { "VMX_VMCS32_CTRL_PROC_EXEC", VMX_VMCS32_CTRL_PROC_EXEC, false },
6835 { "VMX_VMCS32_CTRL_PROC_EXEC2", VMX_VMCS32_CTRL_PROC_EXEC2, true },
6836 { "VMX_VMCS32_CTRL_ENTRY", VMX_VMCS32_CTRL_ENTRY, false },
6837 { "VMX_VMCS32_CTRL_EXIT", VMX_VMCS32_CTRL_EXIT, false },
6838 { "VMX_VMCS32_CTRL_CR3_TARGET_COUNT", VMX_VMCS32_CTRL_CR3_TARGET_COUNT, false },
6839 { "VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO", VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, false },
6840 { "VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE", VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, false },
6841 { "VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH", VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, false },
6842 { "VMX_VMCS32_CTRL_TPR_THRESHOLD", VMX_VMCS32_CTRL_TPR_THRESHOLD, false },
6843 { "VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT", VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, false },
6844 { "VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT", VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, false },
6845 { "VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT", VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, false },
6846 { "VMX_VMCS32_CTRL_EXCEPTION_BITMAP", VMX_VMCS32_CTRL_EXCEPTION_BITMAP, false },
6847 { "VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK", VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, false },
6848 { "VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH", VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, false },
6849 { "VMX_VMCS_CTRL_CR0_MASK", VMX_VMCS_CTRL_CR0_MASK, false },
6850 { "VMX_VMCS_CTRL_CR0_READ_SHADOW", VMX_VMCS_CTRL_CR0_READ_SHADOW, false },
6851 { "VMX_VMCS_CTRL_CR4_MASK", VMX_VMCS_CTRL_CR4_MASK, false },
6852 { "VMX_VMCS_CTRL_CR4_READ_SHADOW", VMX_VMCS_CTRL_CR4_READ_SHADOW, false },
6853 { "VMX_VMCS64_CTRL_EPTP_FULL", VMX_VMCS64_CTRL_EPTP_FULL, true },
6854 { "VMX_VMCS_GUEST_RIP", VMX_VMCS_GUEST_RIP, false },
6855 { "VMX_VMCS_GUEST_RSP", VMX_VMCS_GUEST_RSP, false },
6856 { "VMX_VMCS_GUEST_RFLAGS", VMX_VMCS_GUEST_RFLAGS, false },
6857 { "VMX_VMCS16_VPID", VMX_VMCS16_VPID, true, },
6858 { "VMX_VMCS_HOST_CR0", VMX_VMCS_HOST_CR0, false },
6859 { "VMX_VMCS_HOST_CR3", VMX_VMCS_HOST_CR3, false },
6860 { "VMX_VMCS_HOST_CR4", VMX_VMCS_HOST_CR4, false },
6861 /* The order of selector fields below are fixed! */
6862 { "VMX_VMCS16_HOST_ES_SEL", VMX_VMCS16_HOST_ES_SEL, false },
6863 { "VMX_VMCS16_HOST_CS_SEL", VMX_VMCS16_HOST_CS_SEL, false },
6864 { "VMX_VMCS16_HOST_SS_SEL", VMX_VMCS16_HOST_SS_SEL, false },
6865 { "VMX_VMCS16_HOST_DS_SEL", VMX_VMCS16_HOST_DS_SEL, false },
6866 { "VMX_VMCS16_HOST_FS_SEL", VMX_VMCS16_HOST_FS_SEL, false },
6867 { "VMX_VMCS16_HOST_GS_SEL", VMX_VMCS16_HOST_GS_SEL, false },
6868 { "VMX_VMCS16_HOST_TR_SEL", VMX_VMCS16_HOST_TR_SEL, false },
6869 /* End of ordered selector fields. */
6870 { "VMX_VMCS_HOST_TR_BASE", VMX_VMCS_HOST_TR_BASE, false },
6871 { "VMX_VMCS_HOST_GDTR_BASE", VMX_VMCS_HOST_GDTR_BASE, false },
6872 { "VMX_VMCS_HOST_IDTR_BASE", VMX_VMCS_HOST_IDTR_BASE, false },
6873 { "VMX_VMCS32_HOST_SYSENTER_CS", VMX_VMCS32_HOST_SYSENTER_CS, false },
6874 { "VMX_VMCS_HOST_SYSENTER_EIP", VMX_VMCS_HOST_SYSENTER_EIP, false },
6875 { "VMX_VMCS_HOST_SYSENTER_ESP", VMX_VMCS_HOST_SYSENTER_ESP, false },
6876 { "VMX_VMCS_HOST_RSP", VMX_VMCS_HOST_RSP, false },
6877 { "VMX_VMCS_HOST_RIP", VMX_VMCS_HOST_RIP, false }
6878 };
6879
6880 RTGDTR HostGdtr;
6881 ASMGetGDTR(&HostGdtr);
6882
6883 uint32_t const cVmcsFields = RT_ELEMENTS(s_aVmcsFields);
6884 for (uint32_t i = 0; i < cVmcsFields; i++)
6885 {
6886 uint32_t const uVmcsField = s_aVmcsFields[i].uVmcsField;
6887
6888 bool fSupported;
6889 if (!s_aVmcsFields[i].fCheckSupport)
6890 fSupported = true;
6891 else
6892 {
6893 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6894 switch (uVmcsField)
6895 {
6896 case VMX_VMCS64_CTRL_EPTP_FULL: fSupported = pVM->hm.s.fNestedPaging; break;
6897 case VMX_VMCS16_VPID: fSupported = pVM->hm.s.vmx.fVpid; break;
6898 case VMX_VMCS32_CTRL_PROC_EXEC2:
6899 fSupported = RT_BOOL(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
6900 break;
6901 default:
6902 AssertMsgFailedReturnVoid(("Failed to provide VMCS field support for %#RX32\n", uVmcsField));
6903 }
6904 }
6905
6906 if (fSupported)
6907 {
6908 uint8_t const uWidth = RT_BF_GET(uVmcsField, VMX_BF_VMCSFIELD_WIDTH);
6909 switch (uWidth)
6910 {
6911 case VMX_VMCSFIELD_WIDTH_16BIT:
6912 {
6913 uint16_t u16Val;
6914 rc = VMXReadVmcs16(uVmcsField, &u16Val);
6915 AssertRC(rc);
6916 Log4(("%-40s = %#RX16\n", s_aVmcsFields[i].pszName, u16Val));
6917
6918 if ( uVmcsField >= VMX_VMCS16_HOST_ES_SEL
6919 && uVmcsField <= VMX_VMCS16_HOST_TR_SEL)
6920 {
6921 if (u16Val < HostGdtr.cbGdt)
6922 {
6923 /* Order of selectors in s_apszSel is fixed and matches the order in s_aVmcsFields. */
6924 static const char * const s_apszSel[] = { "Host ES", "Host CS", "Host SS", "Host DS",
6925 "Host FS", "Host GS", "Host TR" };
6926 uint8_t const idxSel = RT_BF_GET(uVmcsField, VMX_BF_VMCSFIELD_INDEX);
6927 Assert(idxSel < RT_ELEMENTS(s_apszSel));
6928 PCX86DESCHC pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u16Val & X86_SEL_MASK));
6929 hmR0DumpDescriptor(pDesc, u16Val, s_apszSel[idxSel]);
6930 }
6931 else
6932 Log4((" Selector value exceeds GDT limit!\n"));
6933 }
6934 break;
6935 }
6936
6937 case VMX_VMCSFIELD_WIDTH_32BIT:
6938 {
6939 uint32_t u32Val;
6940 rc = VMXReadVmcs32(uVmcsField, &u32Val);
6941 AssertRC(rc);
6942 Log4(("%-40s = %#RX32\n", s_aVmcsFields[i].pszName, u32Val));
6943 break;
6944 }
6945
6946 case VMX_VMCSFIELD_WIDTH_64BIT:
6947 case VMX_VMCSFIELD_WIDTH_NATURAL:
6948 {
6949 uint64_t u64Val;
6950 rc = VMXReadVmcs64(uVmcsField, &u64Val);
6951 AssertRC(rc);
6952 Log4(("%-40s = %#RX64\n", s_aVmcsFields[i].pszName, u64Val));
6953 break;
6954 }
6955 }
6956 }
6957 }
6958
6959 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
6960 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
6961 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
6962 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
6963 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
6964 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
6965#endif /* VBOX_STRICT */
6966 break;
6967 }
6968
6969 default:
6970 /* Impossible */
6971 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
6972 break;
6973 }
6974}
6975
6976
6977/**
6978 * Sets up the usage of TSC-offsetting and updates the VMCS.
6979 *
6980 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
6981 * VMX-preemption timer.
6982 *
6983 * @returns VBox status code.
6984 * @param pVCpu The cross context virtual CPU structure.
6985 * @param pVmxTransient The VMX-transient structure.
6986 *
6987 * @remarks No-long-jump zone!!!
6988 */
6989static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
6990{
6991 bool fOffsettedTsc;
6992 bool fParavirtTsc;
6993 uint64_t uTscOffset;
6994 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
6995 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
6996
6997 if (pVM->hm.s.vmx.fUsePreemptTimer)
6998 {
6999 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &uTscOffset, &fOffsettedTsc, &fParavirtTsc);
7000
7001 /* Make sure the returned values have sane upper and lower boundaries. */
7002 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
7003 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
7004 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
7005 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
7006
7007 /** @todo r=ramshankar: We need to find a way to integrate nested-guest
7008 * preemption timers here. We probably need to clamp the preemption timer,
7009 * after converting the timer value to the host. */
7010 uint32_t const cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
7011 int rc = VMXWriteVmcs32(VMX_VMCS32_PREEMPT_TIMER_VALUE, cPreemptionTickCount);
7012 AssertRC(rc);
7013 }
7014 else
7015 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &uTscOffset, &fParavirtTsc);
7016
7017 if (fParavirtTsc)
7018 {
7019 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
7020 information before every VM-entry, hence disable it for performance sake. */
7021#if 0
7022 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
7023 AssertRC(rc);
7024#endif
7025 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
7026 }
7027
7028 if ( fOffsettedTsc
7029 && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
7030 {
7031 if (pVmxTransient->fIsNestedGuest)
7032 uTscOffset = CPUMApplyNestedGuestTscOffset(pVCpu, uTscOffset);
7033 hmR0VmxSetTscOffsetVmcs(pVmcsInfo, uTscOffset);
7034 hmR0VmxRemoveProcCtlsVmcs(pVCpu, pVmxTransient, VMX_PROC_CTLS_RDTSC_EXIT);
7035 }
7036 else
7037 {
7038 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
7039 hmR0VmxSetProcCtlsVmcs(pVmxTransient, VMX_PROC_CTLS_RDTSC_EXIT);
7040 }
7041}
7042
7043
7044/**
7045 * Gets the IEM exception flags for the specified vector and IDT vectoring /
7046 * VM-exit interruption info type.
7047 *
7048 * @returns The IEM exception flags.
7049 * @param uVector The event vector.
7050 * @param uVmxEventType The VMX event type.
7051 *
7052 * @remarks This function currently only constructs flags required for
7053 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
7054 * and CR2 aspects of an exception are not included).
7055 */
7056static uint32_t hmR0VmxGetIemXcptFlags(uint8_t uVector, uint32_t uVmxEventType)
7057{
7058 uint32_t fIemXcptFlags;
7059 switch (uVmxEventType)
7060 {
7061 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7062 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7063 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
7064 break;
7065
7066 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7067 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
7068 break;
7069
7070 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7071 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
7072 break;
7073
7074 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
7075 {
7076 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
7077 if (uVector == X86_XCPT_BP)
7078 fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
7079 else if (uVector == X86_XCPT_OF)
7080 fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
7081 else
7082 {
7083 fIemXcptFlags = 0;
7084 AssertMsgFailed(("Unexpected vector for software exception. uVector=%#x", uVector));
7085 }
7086 break;
7087 }
7088
7089 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7090 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
7091 break;
7092
7093 default:
7094 fIemXcptFlags = 0;
7095 AssertMsgFailed(("Unexpected vector type! uVmxEventType=%#x uVector=%#x", uVmxEventType, uVector));
7096 break;
7097 }
7098 return fIemXcptFlags;
7099}
7100
7101
7102/**
7103 * Sets an event as a pending event to be injected into the guest.
7104 *
7105 * @param pVCpu The cross context virtual CPU structure.
7106 * @param u32IntInfo The VM-entry interruption-information field.
7107 * @param cbInstr The VM-entry instruction length in bytes (for
7108 * software interrupts, exceptions and privileged
7109 * software exceptions).
7110 * @param u32ErrCode The VM-entry exception error code.
7111 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
7112 * page-fault.
7113 */
7114DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPUCC pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
7115 RTGCUINTPTR GCPtrFaultAddress)
7116{
7117 Assert(!pVCpu->hm.s.Event.fPending);
7118 pVCpu->hm.s.Event.fPending = true;
7119 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
7120 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
7121 pVCpu->hm.s.Event.cbInstr = cbInstr;
7122 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
7123}
7124
7125
7126/**
7127 * Sets an external interrupt as pending-for-injection into the VM.
7128 *
7129 * @param pVCpu The cross context virtual CPU structure.
7130 * @param u8Interrupt The external interrupt vector.
7131 */
7132DECLINLINE(void) hmR0VmxSetPendingExtInt(PVMCPUCC pVCpu, uint8_t u8Interrupt)
7133{
7134 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, u8Interrupt)
7135 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
7136 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7137 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7138 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7139}
7140
7141
7142/**
7143 * Sets an NMI (\#NMI) exception as pending-for-injection into the VM.
7144 *
7145 * @param pVCpu The cross context virtual CPU structure.
7146 */
7147DECLINLINE(void) hmR0VmxSetPendingXcptNmi(PVMCPUCC pVCpu)
7148{
7149 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_NMI)
7150 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_NMI)
7151 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7152 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7153 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7154}
7155
7156
7157/**
7158 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
7159 *
7160 * @param pVCpu The cross context virtual CPU structure.
7161 */
7162DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPUCC pVCpu)
7163{
7164 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
7165 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7166 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
7167 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7168 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7169}
7170
7171
7172/**
7173 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
7174 *
7175 * @param pVCpu The cross context virtual CPU structure.
7176 */
7177DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPUCC pVCpu)
7178{
7179 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
7180 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7181 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7182 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7183 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7184}
7185
7186
7187/**
7188 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
7189 *
7190 * @param pVCpu The cross context virtual CPU structure.
7191 */
7192DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPUCC pVCpu)
7193{
7194 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
7195 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7196 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
7197 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7198 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7199}
7200
7201
7202#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7203/**
7204 * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
7205 *
7206 * @param pVCpu The cross context virtual CPU structure.
7207 * @param u32ErrCode The error code for the general-protection exception.
7208 */
7209DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPUCC pVCpu, uint32_t u32ErrCode)
7210{
7211 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
7212 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7213 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
7214 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7215 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
7216}
7217
7218
7219/**
7220 * Sets a stack (\#SS) exception as pending-for-injection into the VM.
7221 *
7222 * @param pVCpu The cross context virtual CPU structure.
7223 * @param u32ErrCode The error code for the stack exception.
7224 */
7225DECLINLINE(void) hmR0VmxSetPendingXcptSS(PVMCPUCC pVCpu, uint32_t u32ErrCode)
7226{
7227 uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
7228 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
7229 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
7230 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7231 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
7232}
7233#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
7234
7235
7236/**
7237 * Fixes up attributes for the specified segment register.
7238 *
7239 * @param pVCpu The cross context virtual CPU structure.
7240 * @param pSelReg The segment register that needs fixing.
7241 * @param idxSel The VMCS field for the corresponding segment register.
7242 */
7243static void hmR0VmxFixUnusableSegRegAttr(PVMCPUCC pVCpu, PCPUMSELREG pSelReg, uint32_t idxSel)
7244{
7245 Assert(pSelReg->Attr.u & X86DESCATTR_UNUSABLE);
7246
7247 /*
7248 * If VT-x marks the segment as unusable, most other bits remain undefined:
7249 * - For CS the L, D and G bits have meaning.
7250 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
7251 * - For the remaining data segments no bits are defined.
7252 *
7253 * The present bit and the unusable bit has been observed to be set at the
7254 * same time (the selector was supposed to be invalid as we started executing
7255 * a V8086 interrupt in ring-0).
7256 *
7257 * What should be important for the rest of the VBox code, is that the P bit is
7258 * cleared. Some of the other VBox code recognizes the unusable bit, but
7259 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
7260 * safe side here, we'll strip off P and other bits we don't care about. If
7261 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
7262 *
7263 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
7264 */
7265#ifdef VBOX_STRICT
7266 uint32_t const uAttr = pSelReg->Attr.u;
7267#endif
7268
7269 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
7270 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
7271 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
7272
7273#ifdef VBOX_STRICT
7274 VMMRZCallRing3Disable(pVCpu);
7275 Log4Func(("Unusable %#x: sel=%#x attr=%#x -> %#x\n", idxSel, pSelReg->Sel, uAttr, pSelReg->Attr.u));
7276# ifdef DEBUG_bird
7277 AssertMsg((uAttr & ~X86DESCATTR_P) == pSelReg->Attr.u,
7278 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
7279 idxSel, uAttr, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
7280# endif
7281 VMMRZCallRing3Enable(pVCpu);
7282 NOREF(uAttr);
7283#endif
7284 RT_NOREF2(pVCpu, idxSel);
7285}
7286
7287
7288/**
7289 * Imports a guest segment register from the current VMCS into the guest-CPU
7290 * context.
7291 *
7292 * @param pVCpu The cross context virtual CPU structure.
7293 * @param iSegReg The segment register number (X86_SREG_XXX).
7294 *
7295 * @remarks Called with interrupts and/or preemption disabled.
7296 */
7297static void hmR0VmxImportGuestSegReg(PVMCPUCC pVCpu, uint8_t iSegReg)
7298{
7299 Assert(iSegReg < X86_SREG_COUNT);
7300
7301 uint32_t const idxSel = g_aVmcsSegSel[iSegReg];
7302 uint32_t const idxLimit = g_aVmcsSegLimit[iSegReg];
7303 uint32_t const idxAttr = g_aVmcsSegAttr[iSegReg];
7304 uint32_t const idxBase = g_aVmcsSegBase[iSegReg];
7305
7306 uint16_t u16Sel;
7307 uint64_t u64Base;
7308 uint32_t u32Limit, u32Attr;
7309 int rc = VMXReadVmcs16(idxSel, &u16Sel); AssertRC(rc);
7310 rc = VMXReadVmcs32(idxLimit, &u32Limit); AssertRC(rc);
7311 rc = VMXReadVmcs32(idxAttr, &u32Attr); AssertRC(rc);
7312 rc = VMXReadVmcsNw(idxBase, &u64Base); AssertRC(rc);
7313
7314 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
7315 pSelReg->Sel = u16Sel;
7316 pSelReg->ValidSel = u16Sel;
7317 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
7318 pSelReg->u32Limit = u32Limit;
7319 pSelReg->u64Base = u64Base;
7320 pSelReg->Attr.u = u32Attr;
7321 if (u32Attr & X86DESCATTR_UNUSABLE)
7322 hmR0VmxFixUnusableSegRegAttr(pVCpu, pSelReg, idxSel);
7323}
7324
7325
7326/**
7327 * Imports the guest LDTR from the current VMCS into the guest-CPU context.
7328 *
7329 * @param pVCpu The cross context virtual CPU structure.
7330 *
7331 * @remarks Called with interrupts and/or preemption disabled.
7332 */
7333static void hmR0VmxImportGuestLdtr(PVMCPUCC pVCpu)
7334{
7335 uint16_t u16Sel;
7336 uint64_t u64Base;
7337 uint32_t u32Limit, u32Attr;
7338 int rc = VMXReadVmcs16(VMX_VMCS16_GUEST_LDTR_SEL, &u16Sel); AssertRC(rc);
7339 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, &u32Limit); AssertRC(rc);
7340 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, &u32Attr); AssertRC(rc);
7341 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_LDTR_BASE, &u64Base); AssertRC(rc);
7342
7343 pVCpu->cpum.GstCtx.ldtr.Sel = u16Sel;
7344 pVCpu->cpum.GstCtx.ldtr.ValidSel = u16Sel;
7345 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
7346 pVCpu->cpum.GstCtx.ldtr.u32Limit = u32Limit;
7347 pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
7348 pVCpu->cpum.GstCtx.ldtr.Attr.u = u32Attr;
7349 if (u32Attr & X86DESCATTR_UNUSABLE)
7350 hmR0VmxFixUnusableSegRegAttr(pVCpu, &pVCpu->cpum.GstCtx.ldtr, VMX_VMCS16_GUEST_LDTR_SEL);
7351}
7352
7353
7354/**
7355 * Imports the guest TR from the current VMCS into the guest-CPU context.
7356 *
7357 * @param pVCpu The cross context virtual CPU structure.
7358 *
7359 * @remarks Called with interrupts and/or preemption disabled.
7360 */
7361static void hmR0VmxImportGuestTr(PVMCPUCC pVCpu)
7362{
7363 uint16_t u16Sel;
7364 uint64_t u64Base;
7365 uint32_t u32Limit, u32Attr;
7366 int rc = VMXReadVmcs16(VMX_VMCS16_GUEST_TR_SEL, &u16Sel); AssertRC(rc);
7367 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, &u32Limit); AssertRC(rc);
7368 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, &u32Attr); AssertRC(rc);
7369 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_TR_BASE, &u64Base); AssertRC(rc);
7370
7371 pVCpu->cpum.GstCtx.tr.Sel = u16Sel;
7372 pVCpu->cpum.GstCtx.tr.ValidSel = u16Sel;
7373 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
7374 pVCpu->cpum.GstCtx.tr.u32Limit = u32Limit;
7375 pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
7376 pVCpu->cpum.GstCtx.tr.Attr.u = u32Attr;
7377 /* TR is the only selector that can never be unusable. */
7378 Assert(!(u32Attr & X86DESCATTR_UNUSABLE));
7379}
7380
7381
7382/**
7383 * Imports the guest RIP from the VMCS back into the guest-CPU context.
7384 *
7385 * @param pVCpu The cross context virtual CPU structure.
7386 *
7387 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7388 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7389 * instead!!!
7390 */
7391static void hmR0VmxImportGuestRip(PVMCPUCC pVCpu)
7392{
7393 uint64_t u64Val;
7394 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7395 if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
7396 {
7397 int rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RIP, &u64Val);
7398 AssertRC(rc);
7399
7400 pCtx->rip = u64Val;
7401 EMR0HistoryUpdatePC(pVCpu, pCtx->rip, false);
7402 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
7403 }
7404}
7405
7406
7407/**
7408 * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
7409 *
7410 * @param pVCpu The cross context virtual CPU structure.
7411 * @param pVmcsInfo The VMCS info. object.
7412 *
7413 * @remarks Called with interrupts and/or preemption disabled, should not assert!
7414 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7415 * instead!!!
7416 */
7417static void hmR0VmxImportGuestRFlags(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
7418{
7419 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7420 if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
7421 {
7422 uint64_t u64Val;
7423 int rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RFLAGS, &u64Val);
7424 AssertRC(rc);
7425
7426 pCtx->rflags.u64 = u64Val;
7427 if (pVmcsInfo->RealMode.fRealOnV86Active)
7428 {
7429 pCtx->eflags.Bits.u1VM = 0;
7430 pCtx->eflags.Bits.u2IOPL = pVmcsInfo->RealMode.Eflags.Bits.u2IOPL;
7431 }
7432 pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
7433 }
7434}
7435
7436
7437/**
7438 * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
7439 * context.
7440 *
7441 * @param pVCpu The cross context virtual CPU structure.
7442 * @param pVmcsInfo The VMCS info. object.
7443 *
7444 * @remarks Called with interrupts and/or preemption disabled, try not to assert and
7445 * do not log!
7446 * @remarks Do -not- call this function directly, use hmR0VmxImportGuestState()
7447 * instead!!!
7448 */
7449static void hmR0VmxImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
7450{
7451 uint32_t u32Val;
7452 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32Val); AssertRC(rc);
7453 if (!u32Val)
7454 {
7455 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7456 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7457 CPUMSetGuestNmiBlocking(pVCpu, false);
7458 }
7459 else
7460 {
7461 /*
7462 * We must import RIP here to set our EM interrupt-inhibited state.
7463 * We also import RFLAGS as our code that evaluates pending interrupts
7464 * before VM-entry requires it.
7465 */
7466 hmR0VmxImportGuestRip(pVCpu);
7467 hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7468
7469 if (u32Val & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
7470 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
7471 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
7472 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
7473
7474 bool const fNmiBlocking = RT_BOOL(u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
7475 CPUMSetGuestNmiBlocking(pVCpu, fNmiBlocking);
7476 }
7477}
7478
7479
7480/**
7481 * Worker for VMXR0ImportStateOnDemand.
7482 *
7483 * @returns VBox status code.
7484 * @param pVCpu The cross context virtual CPU structure.
7485 * @param pVmcsInfo The VMCS info. object.
7486 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7487 */
7488static int hmR0VmxImportGuestState(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat)
7489{
7490 int rc = VINF_SUCCESS;
7491 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7492 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7493 uint32_t u32Val;
7494
7495 /*
7496 * Note! This is hack to workaround a mysterious BSOD observed with release builds
7497 * on Windows 10 64-bit hosts. Profile and debug builds are not affected and
7498 * neither are other host platforms.
7499 *
7500 * Committing this temporarily as it prevents BSOD.
7501 *
7502 * Update: This is very likely a compiler optimization bug, see @bugref{9180}.
7503 */
7504#ifdef RT_OS_WINDOWS
7505 if (pVM == 0 || pVM == (void *)(uintptr_t)-1)
7506 return VERR_HM_IPE_1;
7507#endif
7508
7509 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatImportGuestState, x);
7510
7511 /*
7512 * We disable interrupts to make the updating of the state and in particular
7513 * the fExtrn modification atomic wrt to preemption hooks.
7514 */
7515 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
7516
7517 fWhat &= pCtx->fExtrn;
7518 if (fWhat)
7519 {
7520 do
7521 {
7522 if (fWhat & CPUMCTX_EXTRN_RIP)
7523 hmR0VmxImportGuestRip(pVCpu);
7524
7525 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
7526 hmR0VmxImportGuestRFlags(pVCpu, pVmcsInfo);
7527
7528 if (fWhat & CPUMCTX_EXTRN_HM_VMX_INT_STATE)
7529 hmR0VmxImportGuestIntrState(pVCpu, pVmcsInfo);
7530
7531 if (fWhat & CPUMCTX_EXTRN_RSP)
7532 {
7533 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RSP, &pCtx->rsp);
7534 AssertRC(rc);
7535 }
7536
7537 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
7538 {
7539 bool const fRealOnV86Active = pVmcsInfo->RealMode.fRealOnV86Active;
7540 if (fWhat & CPUMCTX_EXTRN_CS)
7541 {
7542 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_CS);
7543 hmR0VmxImportGuestRip(pVCpu);
7544 if (fRealOnV86Active)
7545 pCtx->cs.Attr.u = pVmcsInfo->RealMode.AttrCS.u;
7546 EMR0HistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true /* fFlattened */);
7547 }
7548 if (fWhat & CPUMCTX_EXTRN_SS)
7549 {
7550 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_SS);
7551 if (fRealOnV86Active)
7552 pCtx->ss.Attr.u = pVmcsInfo->RealMode.AttrSS.u;
7553 }
7554 if (fWhat & CPUMCTX_EXTRN_DS)
7555 {
7556 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_DS);
7557 if (fRealOnV86Active)
7558 pCtx->ds.Attr.u = pVmcsInfo->RealMode.AttrDS.u;
7559 }
7560 if (fWhat & CPUMCTX_EXTRN_ES)
7561 {
7562 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_ES);
7563 if (fRealOnV86Active)
7564 pCtx->es.Attr.u = pVmcsInfo->RealMode.AttrES.u;
7565 }
7566 if (fWhat & CPUMCTX_EXTRN_FS)
7567 {
7568 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_FS);
7569 if (fRealOnV86Active)
7570 pCtx->fs.Attr.u = pVmcsInfo->RealMode.AttrFS.u;
7571 }
7572 if (fWhat & CPUMCTX_EXTRN_GS)
7573 {
7574 hmR0VmxImportGuestSegReg(pVCpu, X86_SREG_GS);
7575 if (fRealOnV86Active)
7576 pCtx->gs.Attr.u = pVmcsInfo->RealMode.AttrGS.u;
7577 }
7578 }
7579
7580 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
7581 {
7582 if (fWhat & CPUMCTX_EXTRN_LDTR)
7583 hmR0VmxImportGuestLdtr(pVCpu);
7584
7585 if (fWhat & CPUMCTX_EXTRN_GDTR)
7586 {
7587 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_GDTR_BASE, &pCtx->gdtr.pGdt); AssertRC(rc);
7588 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRC(rc);
7589 pCtx->gdtr.cbGdt = u32Val;
7590 }
7591
7592 /* Guest IDTR. */
7593 if (fWhat & CPUMCTX_EXTRN_IDTR)
7594 {
7595 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_IDTR_BASE, &pCtx->idtr.pIdt); AssertRC(rc);
7596 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRC(rc);
7597 pCtx->idtr.cbIdt = u32Val;
7598 }
7599
7600 /* Guest TR. */
7601 if (fWhat & CPUMCTX_EXTRN_TR)
7602 {
7603 /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR,
7604 don't need to import that one. */
7605 if (!pVmcsInfo->RealMode.fRealOnV86Active)
7606 hmR0VmxImportGuestTr(pVCpu);
7607 }
7608 }
7609
7610 if (fWhat & CPUMCTX_EXTRN_DR7)
7611 {
7612 if (!pVCpu->hm.s.fUsingHyperDR7)
7613 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_DR7, &pCtx->dr[7]); AssertRC(rc);
7614 }
7615
7616 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
7617 {
7618 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip); AssertRC(rc);
7619 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp); AssertRC(rc);
7620 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRC(rc);
7621 pCtx->SysEnter.cs = u32Val;
7622 }
7623
7624 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
7625 {
7626 if ( pVM->hm.s.fAllow64BitGuests
7627 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7628 pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
7629 }
7630
7631 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
7632 {
7633 if ( pVM->hm.s.fAllow64BitGuests
7634 && (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
7635 {
7636 pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
7637 pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
7638 pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
7639 }
7640 }
7641
7642 if (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
7643 {
7644 PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
7645 uint32_t const cMsrs = pVmcsInfo->cExitMsrStore;
7646 Assert(pMsrs);
7647 Assert(cMsrs <= VMX_MISC_MAX_MSRS(pVM->hm.s.vmx.Msrs.u64Misc));
7648 Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
7649 for (uint32_t i = 0; i < cMsrs; i++)
7650 {
7651 uint32_t const idMsr = pMsrs[i].u32Msr;
7652 switch (idMsr)
7653 {
7654 case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsrs[i].u64Value); break;
7655 case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsrs[i].u64Value); break;
7656 case MSR_K6_EFER: /* Can't be changed without causing a VM-exit */ break;
7657 default:
7658 {
7659 uint32_t idxLbrMsr;
7660 if (pVM->hm.s.vmx.fLbr)
7661 {
7662 if (hmR0VmxIsLbrBranchFromMsr(pVM, idMsr, &idxLbrMsr))
7663 {
7664 Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfo->au64LbrFromIpMsr));
7665 pVmcsInfo->au64LbrFromIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
7666 break;
7667 }
7668 else if (hmR0VmxIsLbrBranchToMsr(pVM, idMsr, &idxLbrMsr))
7669 {
7670 Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfo->au64LbrFromIpMsr));
7671 pVmcsInfo->au64LbrToIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
7672 break;
7673 }
7674 else if (idMsr == pVM->hm.s.vmx.idLbrTosMsr)
7675 {
7676 pVmcsInfo->u64LbrTosMsr = pMsrs[i].u64Value;
7677 break;
7678 }
7679 /* Fallthru (no break) */
7680 }
7681 pCtx->fExtrn = 0;
7682 pVCpu->hm.s.u32HMError = pMsrs->u32Msr;
7683 ASMSetFlags(fEFlags);
7684 AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", idMsr, cMsrs));
7685 return VERR_HM_UNEXPECTED_LD_ST_MSR;
7686 }
7687 }
7688 }
7689 }
7690
7691 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
7692 {
7693 if (fWhat & CPUMCTX_EXTRN_CR0)
7694 {
7695 uint64_t u64Cr0;
7696 uint64_t u64Shadow;
7697 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR0, &u64Cr0); AssertRC(rc);
7698 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow); AssertRC(rc);
7699#ifndef VBOX_WITH_NESTED_HWVIRT_VMX
7700 u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
7701 | (u64Shadow & pVmcsInfo->u64Cr0Mask);
7702#else
7703 if (!CPUMIsGuestInVmxNonRootMode(pCtx))
7704 {
7705 u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
7706 | (u64Shadow & pVmcsInfo->u64Cr0Mask);
7707 }
7708 else
7709 {
7710 /*
7711 * We've merged the guest and nested-guest's CR0 guest/host mask while executing
7712 * the nested-guest using hardware-assisted VMX. Accordingly we need to
7713 * re-construct CR0. See @bugref{9180#c95} for details.
7714 */
7715 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
7716 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7717 u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
7718 | (pVmcsNstGst->u64GuestCr0.u & pVmcsNstGst->u64Cr0Mask.u)
7719 | (u64Shadow & (pVmcsInfoGst->u64Cr0Mask & ~pVmcsNstGst->u64Cr0Mask.u));
7720 }
7721#endif
7722 VMMRZCallRing3Disable(pVCpu); /* May call into PGM which has Log statements. */
7723 CPUMSetGuestCR0(pVCpu, u64Cr0);
7724 VMMRZCallRing3Enable(pVCpu);
7725 }
7726
7727 if (fWhat & CPUMCTX_EXTRN_CR4)
7728 {
7729 uint64_t u64Cr4;
7730 uint64_t u64Shadow;
7731 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR4, &u64Cr4); AssertRC(rc);
7732 rc |= VMXReadVmcsNw(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow); AssertRC(rc);
7733#ifndef VBOX_WITH_NESTED_HWVIRT_VMX
7734 u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
7735 | (u64Shadow & pVmcsInfo->u64Cr4Mask);
7736#else
7737 if (!CPUMIsGuestInVmxNonRootMode(pCtx))
7738 {
7739 u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
7740 | (u64Shadow & pVmcsInfo->u64Cr4Mask);
7741 }
7742 else
7743 {
7744 /*
7745 * We've merged the guest and nested-guest's CR4 guest/host mask while executing
7746 * the nested-guest using hardware-assisted VMX. Accordingly we need to
7747 * re-construct CR4. See @bugref{9180#c95} for details.
7748 */
7749 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
7750 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
7751 u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
7752 | (pVmcsNstGst->u64GuestCr4.u & pVmcsNstGst->u64Cr4Mask.u)
7753 | (u64Shadow & (pVmcsInfoGst->u64Cr4Mask & ~pVmcsNstGst->u64Cr4Mask.u));
7754 }
7755#endif
7756 pCtx->cr4 = u64Cr4;
7757 }
7758
7759 if (fWhat & CPUMCTX_EXTRN_CR3)
7760 {
7761 /* CR0.PG bit changes are always intercepted, so it's up to date. */
7762 if ( pVM->hm.s.vmx.fUnrestrictedGuest
7763 || ( pVM->hm.s.fNestedPaging
7764 && CPUMIsGuestPagingEnabledEx(pCtx)))
7765 {
7766 uint64_t u64Cr3;
7767 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR3, &u64Cr3); AssertRC(rc);
7768 if (pCtx->cr3 != u64Cr3)
7769 {
7770 pCtx->cr3 = u64Cr3;
7771 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
7772 }
7773
7774 /* If the guest is in PAE mode, sync back the PDPE's into the guest state.
7775 Note: CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date. */
7776 if (CPUMIsGuestInPAEModeEx(pCtx))
7777 {
7778 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u); AssertRC(rc);
7779 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u); AssertRC(rc);
7780 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u); AssertRC(rc);
7781 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u); AssertRC(rc);
7782 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
7783 }
7784 }
7785 }
7786 }
7787
7788#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7789 if (fWhat & CPUMCTX_EXTRN_HWVIRT)
7790 {
7791 if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
7792 && !CPUMIsGuestInVmxNonRootMode(pCtx))
7793 {
7794 Assert(CPUMIsGuestInVmxRootMode(pCtx));
7795 rc = hmR0VmxCopyShadowToNstGstVmcs(pVCpu, pVmcsInfo);
7796 if (RT_SUCCESS(rc))
7797 { /* likely */ }
7798 else
7799 break;
7800 }
7801 }
7802#endif
7803 } while (0);
7804
7805 if (RT_SUCCESS(rc))
7806 {
7807 /* Update fExtrn. */
7808 pCtx->fExtrn &= ~fWhat;
7809
7810 /* If everything has been imported, clear the HM keeper bit. */
7811 if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
7812 {
7813 pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
7814 Assert(!pCtx->fExtrn);
7815 }
7816 }
7817 }
7818 else
7819 AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
7820
7821 /*
7822 * Restore interrupts.
7823 */
7824 ASMSetFlags(fEFlags);
7825
7826 STAM_PROFILE_ADV_STOP(& pVCpu->hm.s.StatImportGuestState, x);
7827
7828 if (RT_SUCCESS(rc))
7829 { /* likely */ }
7830 else
7831 return rc;
7832
7833 /*
7834 * Honor any pending CR3 updates.
7835 *
7836 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> VMXR0CallRing3Callback()
7837 * -> VMMRZCallRing3Disable() -> hmR0VmxImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
7838 * -> continue with VM-exit handling -> hmR0VmxImportGuestState() and here we are.
7839 *
7840 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
7841 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
7842 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
7843 * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
7844 *
7845 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
7846 */
7847 if (VMMRZCallRing3IsEnabled(pVCpu))
7848 {
7849 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
7850 {
7851 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
7852 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
7853 }
7854
7855 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
7856 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
7857
7858 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
7859 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
7860 }
7861
7862 return VINF_SUCCESS;
7863}
7864
7865
7866/**
7867 * Saves the guest state from the VMCS into the guest-CPU context.
7868 *
7869 * @returns VBox status code.
7870 * @param pVCpu The cross context virtual CPU structure.
7871 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
7872 */
7873VMMR0DECL(int) VMXR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
7874{
7875 AssertPtr(pVCpu);
7876 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
7877 return hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fWhat);
7878}
7879
7880
7881/**
7882 * Check per-VM and per-VCPU force flag actions that require us to go back to
7883 * ring-3 for one reason or another.
7884 *
7885 * @returns Strict VBox status code (i.e. informational status codes too)
7886 * @retval VINF_SUCCESS if we don't have any actions that require going back to
7887 * ring-3.
7888 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
7889 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
7890 * interrupts)
7891 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
7892 * all EMTs to be in ring-3.
7893 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
7894 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
7895 * to the EM loop.
7896 *
7897 * @param pVCpu The cross context virtual CPU structure.
7898 * @param pVmxTransient The VMX-transient structure.
7899 * @param fStepping Whether we are single-stepping the guest using the
7900 * hypervisor debugger.
7901 *
7902 * @remarks This might cause nested-guest VM-exits, caller must check if the guest
7903 * is no longer in VMX non-root mode.
7904 */
7905static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, bool fStepping)
7906{
7907 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7908
7909 /*
7910 * Update pending interrupts into the APIC's IRR.
7911 */
7912 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7913 APICUpdatePendingInterrupts(pVCpu);
7914
7915 /*
7916 * Anything pending? Should be more likely than not if we're doing a good job.
7917 */
7918 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7919 if ( !fStepping
7920 ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
7921 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
7922 : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
7923 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
7924 return VINF_SUCCESS;
7925
7926 /* Pending PGM C3 sync. */
7927 if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
7928 {
7929 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
7930 Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
7931 VBOXSTRICTRC rcStrict = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
7932 VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
7933 if (rcStrict != VINF_SUCCESS)
7934 {
7935 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
7936 Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
7937 return rcStrict;
7938 }
7939 }
7940
7941 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
7942 if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
7943 || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
7944 {
7945 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
7946 int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
7947 Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
7948 return rc;
7949 }
7950
7951 /* Pending VM request packets, such as hardware interrupts. */
7952 if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
7953 || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
7954 {
7955 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchVmReq);
7956 Log4Func(("Pending VM request forcing us back to ring-3\n"));
7957 return VINF_EM_PENDING_REQUEST;
7958 }
7959
7960 /* Pending PGM pool flushes. */
7961 if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
7962 {
7963 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPgmPoolFlush);
7964 Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
7965 return VINF_PGM_POOL_FLUSH_PENDING;
7966 }
7967
7968 /* Pending DMA requests. */
7969 if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
7970 {
7971 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchDma);
7972 Log4Func(("Pending DMA request forcing us back to ring-3\n"));
7973 return VINF_EM_RAW_TO_R3;
7974 }
7975
7976#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
7977 /*
7978 * Pending nested-guest events.
7979 *
7980 * Please note the priority of these events are specified and important.
7981 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
7982 * See Intel spec. 6.9 "Priority Among Simultaneous Exceptions And Interrupts".
7983 */
7984 if (pVmxTransient->fIsNestedGuest)
7985 {
7986 /* Pending nested-guest APIC-write. */
7987 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
7988 {
7989 Log4Func(("Pending nested-guest APIC-write\n"));
7990 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitApicWrite(pVCpu);
7991 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
7992 return rcStrict;
7993 }
7994
7995 /* Pending nested-guest monitor-trap flag (MTF). */
7996 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF))
7997 {
7998 Log4Func(("Pending nested-guest MTF\n"));
7999 VBOXSTRICTRC rcStrict = IEMExecVmxVmexit(pVCpu, VMX_EXIT_MTF, 0 /* uExitQual */);
8000 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8001 return rcStrict;
8002 }
8003
8004 /* Pending nested-guest VMX-preemption timer expired. */
8005 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER))
8006 {
8007 Log4Func(("Pending nested-guest MTF\n"));
8008 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitPreemptTimer(pVCpu);
8009 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8010 return rcStrict;
8011 }
8012 }
8013#else
8014 NOREF(pVmxTransient);
8015#endif
8016
8017 return VINF_SUCCESS;
8018}
8019
8020
8021/**
8022 * Converts any TRPM trap into a pending HM event. This is typically used when
8023 * entering from ring-3 (not longjmp returns).
8024 *
8025 * @param pVCpu The cross context virtual CPU structure.
8026 */
8027static void hmR0VmxTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
8028{
8029 Assert(TRPMHasTrap(pVCpu));
8030 Assert(!pVCpu->hm.s.Event.fPending);
8031
8032 uint8_t uVector;
8033 TRPMEVENT enmTrpmEvent;
8034 uint32_t uErrCode;
8035 RTGCUINTPTR GCPtrFaultAddress;
8036 uint8_t cbInstr;
8037 bool fIcebp;
8038
8039 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, &fIcebp);
8040 AssertRC(rc);
8041
8042 uint32_t u32IntInfo;
8043 u32IntInfo = uVector | VMX_IDT_VECTORING_INFO_VALID;
8044 u32IntInfo |= HMTrpmEventTypeToVmxEventType(uVector, enmTrpmEvent, fIcebp);
8045
8046 rc = TRPMResetTrap(pVCpu);
8047 AssertRC(rc);
8048 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
8049 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
8050
8051 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
8052}
8053
8054
8055/**
8056 * Converts the pending HM event into a TRPM trap.
8057 *
8058 * @param pVCpu The cross context virtual CPU structure.
8059 */
8060static void hmR0VmxPendingEventToTrpmTrap(PVMCPUCC pVCpu)
8061{
8062 Assert(pVCpu->hm.s.Event.fPending);
8063
8064 /* If a trap was already pending, we did something wrong! */
8065 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
8066
8067 uint32_t const u32IntInfo = pVCpu->hm.s.Event.u64IntInfo;
8068 uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(u32IntInfo);
8069 TRPMEVENT const enmTrapType = HMVmxEventTypeToTrpmEventType(u32IntInfo);
8070
8071 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
8072
8073 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
8074 AssertRC(rc);
8075
8076 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8077 TRPMSetErrorCode(pVCpu, pVCpu->hm.s.Event.u32ErrCode);
8078
8079 if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(u32IntInfo))
8080 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
8081 else if (VMX_IDT_VECTORING_INFO_TYPE(u32IntInfo) == VMX_IDT_VECTORING_INFO_TYPE_SW_INT)
8082 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
8083
8084 if (VMX_IDT_VECTORING_INFO_TYPE(u32IntInfo) == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
8085 TRPMSetTrapDueToIcebp(pVCpu);
8086
8087 /* We're now done converting the pending event. */
8088 pVCpu->hm.s.Event.fPending = false;
8089}
8090
8091
8092/**
8093 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
8094 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
8095 *
8096 * @param pVCpu The cross context virtual CPU structure.
8097 * @param pVmcsInfo The VMCS info. object.
8098 */
8099static void hmR0VmxSetIntWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
8100{
8101 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8102 {
8103 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
8104 {
8105 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
8106 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8107 AssertRC(rc);
8108 }
8109 } /* else we will deliver interrupts whenever the guest Vm-exits next and is in a state to receive the interrupt. */
8110}
8111
8112
8113/**
8114 * Clears the interrupt-window exiting control in the VMCS.
8115 *
8116 * @param pVmcsInfo The VMCS info. object.
8117 */
8118DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
8119{
8120 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
8121 {
8122 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
8123 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8124 AssertRC(rc);
8125 }
8126}
8127
8128
8129/**
8130 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
8131 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
8132 *
8133 * @param pVCpu The cross context virtual CPU structure.
8134 * @param pVmcsInfo The VMCS info. object.
8135 */
8136static void hmR0VmxSetNmiWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
8137{
8138 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8139 {
8140 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
8141 {
8142 pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
8143 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8144 AssertRC(rc);
8145 Log4Func(("Setup NMI-window exiting\n"));
8146 }
8147 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
8148}
8149
8150
8151/**
8152 * Clears the NMI-window exiting control in the VMCS.
8153 *
8154 * @param pVmcsInfo The VMCS info. object.
8155 */
8156DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMXVMCSINFO pVmcsInfo)
8157{
8158 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
8159 {
8160 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
8161 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
8162 AssertRC(rc);
8163 }
8164}
8165
8166
8167/**
8168 * Does the necessary state syncing before returning to ring-3 for any reason
8169 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
8170 *
8171 * @returns VBox status code.
8172 * @param pVCpu The cross context virtual CPU structure.
8173 * @param fImportState Whether to import the guest state from the VMCS back
8174 * to the guest-CPU context.
8175 *
8176 * @remarks No-long-jmp zone!!!
8177 */
8178static int hmR0VmxLeave(PVMCPUCC pVCpu, bool fImportState)
8179{
8180 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8181 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8182
8183 RTCPUID const idCpu = RTMpCpuId();
8184 Log4Func(("HostCpuId=%u\n", idCpu));
8185
8186 /*
8187 * !!! IMPORTANT !!!
8188 * If you modify code here, check whether VMXR0CallRing3Callback() needs to be updated too.
8189 */
8190
8191 /* Save the guest state if necessary. */
8192 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8193 if (fImportState)
8194 {
8195 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8196 AssertRCReturn(rc, rc);
8197 }
8198
8199 /* Restore host FPU state if necessary. We will resync on next R0 reentry. */
8200 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8201 Assert(!CPUMIsGuestFPUStateActive(pVCpu));
8202
8203 /* Restore host debug registers if necessary. We will resync on next R0 reentry. */
8204#ifdef VBOX_STRICT
8205 if (CPUMIsHyperDebugStateActive(pVCpu))
8206 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT);
8207#endif
8208 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8209 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
8210 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
8211
8212 /* Restore host-state bits that VT-x only restores partially. */
8213 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8214 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8215 {
8216 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
8217 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8218 }
8219 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8220
8221 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8222 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8223 {
8224 /* We shouldn't restore the host MSRs without saving the guest MSRs first. */
8225 if (!fImportState)
8226 {
8227 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS);
8228 AssertRCReturn(rc, rc);
8229 }
8230 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8231 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
8232 }
8233 else
8234 pVCpu->hm.s.vmx.fLazyMsrs = 0;
8235
8236 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8237 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8238
8239 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
8240 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatImportGuestState);
8241 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExportGuestState);
8242 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatPreExit);
8243 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitHandling);
8244 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
8245 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
8246 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
8247 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitVmentry);
8248 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8249
8250 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8251
8252 /** @todo This partially defeats the purpose of having preemption hooks.
8253 * The problem is, deregistering the hooks should be moved to a place that
8254 * lasts until the EMT is about to be destroyed not everytime while leaving HM
8255 * context.
8256 */
8257 int rc = hmR0VmxClearVmcs(pVmcsInfo);
8258 AssertRCReturn(rc, rc);
8259
8260#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8261 /*
8262 * A valid shadow VMCS is made active as part of VM-entry. It is necessary to
8263 * clear a shadow VMCS before allowing that VMCS to become active on another
8264 * logical processor. We may or may not be importing guest state which clears
8265 * it, so cover for it here.
8266 *
8267 * See Intel spec. 24.11.1 "Software Use of Virtual-Machine Control Structures".
8268 */
8269 if ( pVmcsInfo->pvShadowVmcs
8270 && pVmcsInfo->fShadowVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
8271 {
8272 rc = hmR0VmxClearShadowVmcs(pVmcsInfo);
8273 AssertRCReturn(rc, rc);
8274 }
8275
8276 /*
8277 * Flag that we need to re-export the host state if we switch to this VMCS before
8278 * executing guest or nested-guest code.
8279 */
8280 pVmcsInfo->idHostCpuState = NIL_RTCPUID;
8281#endif
8282
8283 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
8284 NOREF(idCpu);
8285 return VINF_SUCCESS;
8286}
8287
8288
8289/**
8290 * Leaves the VT-x session.
8291 *
8292 * @returns VBox status code.
8293 * @param pVCpu The cross context virtual CPU structure.
8294 *
8295 * @remarks No-long-jmp zone!!!
8296 */
8297static int hmR0VmxLeaveSession(PVMCPUCC pVCpu)
8298{
8299 HM_DISABLE_PREEMPT(pVCpu);
8300 HMVMX_ASSERT_CPU_SAFE(pVCpu);
8301 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8302 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8303
8304 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
8305 and done this from the VMXR0ThreadCtxCallback(). */
8306 if (!pVCpu->hm.s.fLeaveDone)
8307 {
8308 int rc2 = hmR0VmxLeave(pVCpu, true /* fImportState */);
8309 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
8310 pVCpu->hm.s.fLeaveDone = true;
8311 }
8312 Assert(!pVCpu->cpum.GstCtx.fExtrn);
8313
8314 /*
8315 * !!! IMPORTANT !!!
8316 * If you modify code here, make sure to check whether VMXR0CallRing3Callback() needs to be updated too.
8317 */
8318
8319 /* Deregister hook now that we've left HM context before re-enabling preemption. */
8320 /** @todo Deregistering here means we need to VMCLEAR always
8321 * (longjmp/exit-to-r3) in VT-x which is not efficient, eliminate need
8322 * for calling VMMR0ThreadCtxHookDisable here! */
8323 VMMR0ThreadCtxHookDisable(pVCpu);
8324
8325 /* Leave HM context. This takes care of local init (term) and deregistering the longjmp-to-ring-3 callback. */
8326 int rc = HMR0LeaveCpu(pVCpu);
8327 HM_RESTORE_PREEMPT();
8328 return rc;
8329}
8330
8331
8332/**
8333 * Does the necessary state syncing before doing a longjmp to ring-3.
8334 *
8335 * @returns VBox status code.
8336 * @param pVCpu The cross context virtual CPU structure.
8337 *
8338 * @remarks No-long-jmp zone!!!
8339 */
8340DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPUCC pVCpu)
8341{
8342 return hmR0VmxLeaveSession(pVCpu);
8343}
8344
8345
8346/**
8347 * Take necessary actions before going back to ring-3.
8348 *
8349 * An action requires us to go back to ring-3. This function does the necessary
8350 * steps before we can safely return to ring-3. This is not the same as longjmps
8351 * to ring-3, this is voluntary and prepares the guest so it may continue
8352 * executing outside HM (recompiler/IEM).
8353 *
8354 * @returns VBox status code.
8355 * @param pVCpu The cross context virtual CPU structure.
8356 * @param rcExit The reason for exiting to ring-3. Can be
8357 * VINF_VMM_UNKNOWN_RING3_CALL.
8358 */
8359static int hmR0VmxExitToRing3(PVMCPUCC pVCpu, VBOXSTRICTRC rcExit)
8360{
8361 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8362
8363 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8364 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
8365 {
8366 VMXGetCurrentVmcs(&pVCpu->hm.s.vmx.LastError.HCPhysCurrentVmcs);
8367 pVCpu->hm.s.vmx.LastError.u32VmcsRev = *(uint32_t *)pVmcsInfo->pvVmcs;
8368 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
8369 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
8370 }
8371
8372 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
8373 VMMRZCallRing3Disable(pVCpu);
8374 Log4Func(("rcExit=%d\n", VBOXSTRICTRC_VAL(rcExit)));
8375
8376 /*
8377 * Convert any pending HM events back to TRPM due to premature exits to ring-3.
8378 * We need to do this only on returns to ring-3 and not for longjmps to ring3.
8379 *
8380 * This is because execution may continue from ring-3 and we would need to inject
8381 * the event from there (hence place it back in TRPM).
8382 */
8383 if (pVCpu->hm.s.Event.fPending)
8384 {
8385 hmR0VmxPendingEventToTrpmTrap(pVCpu);
8386 Assert(!pVCpu->hm.s.Event.fPending);
8387
8388 /* Clear the events from the VMCS. */
8389 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
8390 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
8391 }
8392#ifdef VBOX_STRICT
8393 else
8394 {
8395 /*
8396 * Ensure we don't accidentally clear a pending HM event without clearing the VMCS.
8397 * This can be pretty hard to debug otherwise, interrupts might get injected twice
8398 * occasionally, see @bugref{9180#c42}.
8399 *
8400 * However, if the VM-entry failed, any VM entry-interruption info. field would
8401 * be left unmodified as the event would not have been injected to the guest. In
8402 * such cases, don't assert, we're not going to continue guest execution anyway.
8403 */
8404 uint32_t uExitReason;
8405 uint32_t uEntryIntInfo;
8406 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
8407 rc |= VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &uEntryIntInfo);
8408 AssertRC(rc);
8409 AssertMsg(VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason) || !VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo),
8410 ("uExitReason=%#RX32 uEntryIntInfo=%#RX32 rcExit=%d\n", uExitReason, uEntryIntInfo, VBOXSTRICTRC_VAL(rcExit)));
8411 }
8412#endif
8413
8414 /*
8415 * Clear the interrupt-window and NMI-window VMCS controls as we could have got
8416 * a VM-exit with higher priority than interrupt-window or NMI-window VM-exits
8417 * (e.g. TPR below threshold).
8418 */
8419 if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8420 {
8421 hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
8422 hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
8423 }
8424
8425 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
8426 and if we're injecting an event we should have a TRPM trap pending. */
8427 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8428#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a triple fault in progress. */
8429 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
8430#endif
8431
8432 /* Save guest state and restore host state bits. */
8433 int rc = hmR0VmxLeaveSession(pVCpu);
8434 AssertRCReturn(rc, rc);
8435 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
8436
8437 /* Thread-context hooks are unregistered at this point!!! */
8438 /* Ring-3 callback notifications are unregistered at this point!!! */
8439
8440 /* Sync recompiler state. */
8441 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
8442 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
8443 | CPUM_CHANGED_LDTR
8444 | CPUM_CHANGED_GDTR
8445 | CPUM_CHANGED_IDTR
8446 | CPUM_CHANGED_TR
8447 | CPUM_CHANGED_HIDDEN_SEL_REGS);
8448 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
8449 && CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx))
8450 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
8451
8452 Assert(!pVCpu->hm.s.fClearTrapFlag);
8453
8454 /* Update the exit-to-ring 3 reason. */
8455 pVCpu->hm.s.rcLastExitToR3 = VBOXSTRICTRC_VAL(rcExit);
8456
8457 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
8458 if ( rcExit != VINF_EM_RAW_INTERRUPT
8459 || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
8460 {
8461 Assert(!(pVCpu->cpum.GstCtx.fExtrn & HMVMX_CPUMCTX_EXTRN_ALL));
8462 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
8463 }
8464
8465 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
8466 VMMRZCallRing3Enable(pVCpu);
8467 return rc;
8468}
8469
8470
8471/**
8472 * VMMRZCallRing3() callback wrapper which saves the guest state before we
8473 * longjump to ring-3 and possibly get preempted.
8474 *
8475 * @returns VBox status code.
8476 * @param pVCpu The cross context virtual CPU structure.
8477 * @param enmOperation The operation causing the ring-3 longjump.
8478 */
8479VMMR0DECL(int) VMXR0CallRing3Callback(PVMCPUCC pVCpu, VMMCALLRING3 enmOperation)
8480{
8481 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
8482 {
8483 /*
8484 * !!! IMPORTANT !!!
8485 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
8486 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
8487 */
8488 VMMRZCallRing3RemoveNotification(pVCpu);
8489 VMMRZCallRing3Disable(pVCpu);
8490 HM_DISABLE_PREEMPT(pVCpu);
8491
8492 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
8493 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
8494 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
8495 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
8496
8497 /* Restore host-state bits that VT-x only restores partially. */
8498 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
8499 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
8500 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
8501 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
8502
8503 /* Restore the lazy host MSRs as we're leaving VT-x context. */
8504 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
8505 hmR0VmxLazyRestoreHostMsrs(pVCpu);
8506
8507 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
8508 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = false;
8509 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
8510
8511 /* Clear the current VMCS data back to memory (shadow VMCS if any would have been
8512 cleared as part of importing the guest state above. */
8513 hmR0VmxClearVmcs(pVmcsInfo);
8514
8515 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
8516 VMMR0ThreadCtxHookDisable(pVCpu);
8517
8518 /* Leave HM context. This takes care of local init (term). */
8519 HMR0LeaveCpu(pVCpu);
8520 HM_RESTORE_PREEMPT();
8521 return VINF_SUCCESS;
8522 }
8523
8524 Assert(pVCpu);
8525 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8526 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8527
8528 VMMRZCallRing3Disable(pVCpu);
8529 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8530
8531 Log4Func(("-> hmR0VmxLongJmpToRing3 enmOperation=%d\n", enmOperation));
8532
8533 int rc = hmR0VmxLongJmpToRing3(pVCpu);
8534 AssertRCReturn(rc, rc);
8535
8536 VMMRZCallRing3Enable(pVCpu);
8537 return VINF_SUCCESS;
8538}
8539
8540
8541/**
8542 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
8543 * stack.
8544 *
8545 * @returns Strict VBox status code (i.e. informational status codes too).
8546 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
8547 * @param pVCpu The cross context virtual CPU structure.
8548 * @param uValue The value to push to the guest stack.
8549 */
8550static VBOXSTRICTRC hmR0VmxRealModeGuestStackPush(PVMCPUCC pVCpu, uint16_t uValue)
8551{
8552 /*
8553 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
8554 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
8555 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
8556 */
8557 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8558 if (pCtx->sp == 1)
8559 return VINF_EM_RESET;
8560 pCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
8561 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), pCtx->ss.u64Base + pCtx->sp, &uValue, sizeof(uint16_t));
8562 AssertRC(rc);
8563 return rc;
8564}
8565
8566
8567/**
8568 * Injects an event into the guest upon VM-entry by updating the relevant fields
8569 * in the VM-entry area in the VMCS.
8570 *
8571 * @returns Strict VBox status code (i.e. informational status codes too).
8572 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
8573 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
8574 *
8575 * @param pVCpu The cross context virtual CPU structure.
8576 * @param pVmxTransient The VMX-transient structure.
8577 * @param pEvent The event being injected.
8578 * @param pfIntrState Pointer to the VT-x guest-interruptibility-state. This
8579 * will be updated if necessary. This cannot not be NULL.
8580 * @param fStepping Whether we're single-stepping guest execution and should
8581 * return VINF_EM_DBG_STEPPED if the event is injected
8582 * directly (registers modified by us, not by hardware on
8583 * VM-entry).
8584 */
8585static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, PCHMEVENT pEvent, bool fStepping,
8586 uint32_t *pfIntrState)
8587{
8588 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
8589 AssertMsg(!RT_HI_U32(pEvent->u64IntInfo), ("%#RX64\n", pEvent->u64IntInfo));
8590 Assert(pfIntrState);
8591
8592 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8593 uint32_t u32IntInfo = pEvent->u64IntInfo;
8594 uint32_t const u32ErrCode = pEvent->u32ErrCode;
8595 uint32_t const cbInstr = pEvent->cbInstr;
8596 RTGCUINTPTR const GCPtrFault = pEvent->GCPtrFaultAddress;
8597 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
8598 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
8599
8600#ifdef VBOX_STRICT
8601 /*
8602 * Validate the error-code-valid bit for hardware exceptions.
8603 * No error codes for exceptions in real-mode.
8604 *
8605 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8606 */
8607 if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
8608 && !CPUMIsGuestInRealModeEx(pCtx))
8609 {
8610 switch (uVector)
8611 {
8612 case X86_XCPT_PF:
8613 case X86_XCPT_DF:
8614 case X86_XCPT_TS:
8615 case X86_XCPT_NP:
8616 case X86_XCPT_SS:
8617 case X86_XCPT_GP:
8618 case X86_XCPT_AC:
8619 AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
8620 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8621 RT_FALL_THRU();
8622 default:
8623 break;
8624 }
8625 }
8626
8627 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8628 Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
8629 || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
8630#endif
8631
8632 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8633
8634 /*
8635 * Hardware interrupts & exceptions cannot be delivered through the software interrupt
8636 * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
8637 * interrupt handler in the (real-mode) guest.
8638 *
8639 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
8640 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8641 */
8642 if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
8643 {
8644 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest)
8645 {
8646 /*
8647 * For CPUs with unrestricted guest execution enabled and with the guest
8648 * in real-mode, we must not set the deliver-error-code bit.
8649 *
8650 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8651 */
8652 u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
8653 }
8654 else
8655 {
8656 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
8657 Assert(PDMVmmDevHeapIsEnabled(pVM));
8658 Assert(pVM->hm.s.vmx.pRealModeTSS);
8659 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
8660
8661 /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
8662 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8663 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK
8664 | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
8665 AssertRCReturn(rc2, rc2);
8666
8667 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8668 size_t const cbIdtEntry = sizeof(X86IDTR16);
8669 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
8670 {
8671 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8672 if (uVector == X86_XCPT_DF)
8673 return VINF_EM_RESET;
8674
8675 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault.
8676 No error codes for exceptions in real-mode. */
8677 if (uVector == X86_XCPT_GP)
8678 {
8679 uint32_t const uXcptDfInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
8680 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8681 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8682 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8683 HMEVENT EventXcptDf;
8684 RT_ZERO(EventXcptDf);
8685 EventXcptDf.u64IntInfo = uXcptDfInfo;
8686 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptDf, fStepping, pfIntrState);
8687 }
8688
8689 /*
8690 * If we're injecting an event with no valid IDT entry, inject a #GP.
8691 * No error codes for exceptions in real-mode.
8692 *
8693 * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
8694 */
8695 uint32_t const uXcptGpInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
8696 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
8697 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
8698 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
8699 HMEVENT EventXcptGp;
8700 RT_ZERO(EventXcptGp);
8701 EventXcptGp.u64IntInfo = uXcptGpInfo;
8702 return hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &EventXcptGp, fStepping, pfIntrState);
8703 }
8704
8705 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8706 uint16_t uGuestIp = pCtx->ip;
8707 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
8708 {
8709 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8710 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8711 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8712 }
8713 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
8714 uGuestIp = pCtx->ip + (uint16_t)cbInstr;
8715
8716 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8717 X86IDTR16 IdtEntry;
8718 RTGCPHYS const GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
8719 rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8720 AssertRCReturn(rc2, rc2);
8721
8722 /* Construct the stack frame for the interrupt/exception handler. */
8723 VBOXSTRICTRC rcStrict;
8724 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
8725 if (rcStrict == VINF_SUCCESS)
8726 {
8727 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
8728 if (rcStrict == VINF_SUCCESS)
8729 rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
8730 }
8731
8732 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8733 if (rcStrict == VINF_SUCCESS)
8734 {
8735 pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8736 pCtx->rip = IdtEntry.offSel;
8737 pCtx->cs.Sel = IdtEntry.uSel;
8738 pCtx->cs.ValidSel = IdtEntry.uSel;
8739 pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8740 if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
8741 && uVector == X86_XCPT_PF)
8742 pCtx->cr2 = GCPtrFault;
8743
8744 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
8745 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
8746 | HM_CHANGED_GUEST_RSP);
8747
8748 /*
8749 * If we delivered a hardware exception (other than an NMI) and if there was
8750 * block-by-STI in effect, we should clear it.
8751 */
8752 if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
8753 {
8754 Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
8755 && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
8756 Log4Func(("Clearing inhibition due to STI\n"));
8757 *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
8758 }
8759
8760 Log4(("Injected real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8761 u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
8762
8763 /*
8764 * The event has been truly dispatched to the guest. Mark it as no longer pending so
8765 * we don't attempt to undo it if we are returning to ring-3 before executing guest code.
8766 */
8767 pVCpu->hm.s.Event.fPending = false;
8768
8769 /*
8770 * If we eventually support nested-guest execution without unrestricted guest execution,
8771 * we should set fInterceptEvents here.
8772 */
8773 Assert(!pVmxTransient->fIsNestedGuest);
8774
8775 /* If we're stepping and we've changed cs:rip above, bail out of the VMX R0 execution loop. */
8776 if (fStepping)
8777 rcStrict = VINF_EM_DBG_STEPPED;
8778 }
8779 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8780 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8781 return rcStrict;
8782 }
8783 }
8784
8785 /*
8786 * Validate.
8787 */
8788 Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8789 Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
8790
8791 /*
8792 * Inject the event into the VMCS.
8793 */
8794 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8795 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
8796 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8797 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8798 AssertRC(rc);
8799
8800 /*
8801 * Update guest CR2 if this is a page-fault.
8802 */
8803 if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(u32IntInfo))
8804 pCtx->cr2 = GCPtrFault;
8805
8806 Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
8807 return VINF_SUCCESS;
8808}
8809
8810
8811/**
8812 * Evaluates the event to be delivered to the guest and sets it as the pending
8813 * event.
8814 *
8815 * Toggling of interrupt force-flags here is safe since we update TRPM on premature
8816 * exits to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must
8817 * NOT restore these force-flags.
8818 *
8819 * @returns Strict VBox status code (i.e. informational status codes too).
8820 * @param pVCpu The cross context virtual CPU structure.
8821 * @param pVmxTransient The VMX-transient structure.
8822 * @param pfIntrState Where to store the VT-x guest-interruptibility state.
8823 */
8824static VBOXSTRICTRC hmR0VmxEvaluatePendingEvent(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t *pfIntrState)
8825{
8826 Assert(pfIntrState);
8827 Assert(!TRPMHasTrap(pVCpu));
8828
8829 /*
8830 * Compute/update guest-interruptibility state related FFs.
8831 * The FFs will be used below while evaluating events to be injected.
8832 */
8833 *pfIntrState = hmR0VmxGetGuestIntrStateAndUpdateFFs(pVCpu);
8834
8835 /*
8836 * Evaluate if a new event needs to be injected.
8837 * An event that's already pending has already performed all necessary checks.
8838 */
8839 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
8840 bool const fIsNestedGuest = pVmxTransient->fIsNestedGuest;
8841 if ( !pVCpu->hm.s.Event.fPending
8842 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
8843 {
8844 /** @todo SMI. SMIs take priority over NMIs. */
8845
8846 /*
8847 * NMIs.
8848 * NMIs take priority over external interrupts.
8849 */
8850 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
8851 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
8852 {
8853 /*
8854 * For a guest, the FF always indicates the guest's ability to receive an NMI.
8855 *
8856 * For a nested-guest, the FF always indicates the outer guest's ability to
8857 * receive an NMI while the guest-interruptibility state bit depends on whether
8858 * the nested-hypervisor is using virtual-NMIs.
8859 */
8860 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
8861 {
8862#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8863 if ( fIsNestedGuest
8864 && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_NMI_EXIT))
8865 return IEMExecVmxVmexitXcptNmi(pVCpu);
8866#endif
8867 hmR0VmxSetPendingXcptNmi(pVCpu);
8868 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
8869 Log4Func(("NMI pending injection\n"));
8870
8871 /* We've injected the NMI, bail. */
8872 return VINF_SUCCESS;
8873 }
8874 else if (!fIsNestedGuest)
8875 hmR0VmxSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
8876 }
8877
8878 /*
8879 * External interrupts (PIC/APIC).
8880 * Once PDMGetInterrupt() returns a valid interrupt we -must- deliver it.
8881 * We cannot re-request the interrupt from the controller again.
8882 */
8883 if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
8884 && !pVCpu->hm.s.fSingleInstruction)
8885 {
8886 Assert(!DBGFIsStepping(pVCpu));
8887 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
8888 AssertRC(rc);
8889
8890 if (pCtx->eflags.u32 & X86_EFL_IF)
8891 {
8892#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8893 if ( fIsNestedGuest
8894 && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT)
8895 && !CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_ACK_EXT_INT))
8896 {
8897 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, 0 /* uVector */, true /* fIntPending */);
8898 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8899 return rcStrict;
8900 }
8901#endif
8902 uint8_t u8Interrupt;
8903 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
8904 if (RT_SUCCESS(rc))
8905 {
8906#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
8907 if ( fIsNestedGuest
8908 && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT)
8909 && CPUMIsGuestVmxExitCtlsSet(pCtx, VMX_EXIT_CTLS_ACK_EXT_INT))
8910 {
8911 VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, u8Interrupt, false /* fIntPending */);
8912 Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
8913 return rcStrict;
8914 }
8915#endif
8916 hmR0VmxSetPendingExtInt(pVCpu, u8Interrupt);
8917 Log4Func(("External interrupt (%#x) pending injection\n", u8Interrupt));
8918 }
8919 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
8920 {
8921 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
8922
8923 if ( !fIsNestedGuest
8924 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
8925 hmR0VmxApicSetTprThreshold(pVmcsInfo, u8Interrupt >> 4);
8926 /* else: for nested-guests, TPR threshold is picked up while merging VMCS controls. */
8927
8928 /*
8929 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
8930 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
8931 * need to re-set this force-flag here.
8932 */
8933 }
8934 else
8935 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
8936
8937 /* We've injected the interrupt or taken necessary action, bail. */
8938 return VINF_SUCCESS;
8939 }
8940 else if (!fIsNestedGuest)
8941 hmR0VmxSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
8942 }
8943 }
8944 else if (!fIsNestedGuest)
8945 {
8946 /*
8947 * An event is being injected or we are in an interrupt shadow. Check if another event is
8948 * pending. If so, instruct VT-x to cause a VM-exit as soon as the guest is ready to accept
8949 * the pending event.
8950 */
8951 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
8952 hmR0VmxSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
8953 else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
8954 && !pVCpu->hm.s.fSingleInstruction)
8955 hmR0VmxSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
8956 }
8957 /* else: for nested-guests, NMI/interrupt-window exiting will be picked up when merging VMCS controls. */
8958
8959 return VINF_SUCCESS;
8960}
8961
8962
8963/**
8964 * Injects any pending events into the guest if the guest is in a state to
8965 * receive them.
8966 *
8967 * @returns Strict VBox status code (i.e. informational status codes too).
8968 * @param pVCpu The cross context virtual CPU structure.
8969 * @param pVmxTransient The VMX-transient structure.
8970 * @param fIntrState The VT-x guest-interruptibility state.
8971 * @param fStepping Whether we are single-stepping the guest using the
8972 * hypervisor debugger and should return
8973 * VINF_EM_DBG_STEPPED if the event was dispatched
8974 * directly.
8975 */
8976static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t fIntrState, bool fStepping)
8977{
8978 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
8979 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8980
8981#ifdef VBOX_STRICT
8982 /*
8983 * Verify guest-interruptibility state.
8984 *
8985 * We put this in a scoped block so we do not accidentally use fBlockSti or fBlockMovSS,
8986 * since injecting an event may modify the interruptibility state and we must thus always
8987 * use fIntrState.
8988 */
8989 {
8990 bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
8991 bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
8992 Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
8993 Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
8994 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
8995 Assert(!TRPMHasTrap(pVCpu));
8996 NOREF(fBlockMovSS); NOREF(fBlockSti);
8997 }
8998#endif
8999
9000 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
9001 if (pVCpu->hm.s.Event.fPending)
9002 {
9003 /*
9004 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
9005 * pending even while injecting an event and in this case, we want a VM-exit as soon as
9006 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
9007 *
9008 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
9009 */
9010 uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
9011#ifdef VBOX_STRICT
9012 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
9013 {
9014 Assert(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
9015 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI));
9016 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
9017 }
9018 else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
9019 {
9020 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI));
9021 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI));
9022 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
9023 }
9024#endif
9025 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
9026 uIntType));
9027
9028 /*
9029 * Inject the event and get any changes to the guest-interruptibility state.
9030 *
9031 * The guest-interruptibility state may need to be updated if we inject the event
9032 * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
9033 */
9034 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pVmxTransient, &pVCpu->hm.s.Event, fStepping, &fIntrState);
9035 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
9036
9037 if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
9038 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
9039 else
9040 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
9041 }
9042
9043 /*
9044 * Deliver any pending debug exceptions if the guest is single-stepping using EFLAGS.TF and
9045 * is an interrupt shadow (block-by-STI or block-by-MOV SS).
9046 */
9047 if ( (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
9048 && !pVmxTransient->fIsNestedGuest)
9049 {
9050 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
9051
9052 if (!pVCpu->hm.s.fSingleInstruction)
9053 {
9054 /*
9055 * Set or clear the BS bit depending on whether the trap flag is active or not. We need
9056 * to do both since we clear the BS bit from the VMCS while exiting to ring-3.
9057 */
9058 Assert(!DBGFIsStepping(pVCpu));
9059 uint8_t const fTrapFlag = !!(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_TF);
9060 int rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, fTrapFlag << VMX_BF_VMCS_PENDING_DBG_XCPT_BS_SHIFT);
9061 AssertRC(rc);
9062 }
9063 else
9064 {
9065 /*
9066 * We must not deliver a debug exception when single-stepping over STI/Mov-SS in the
9067 * hypervisor debugger using EFLAGS.TF but rather clear interrupt inhibition. However,
9068 * we take care of this case in hmR0VmxExportSharedDebugState and also the case if
9069 * we use MTF, so just make sure it's called before executing guest-code.
9070 */
9071 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
9072 }
9073 }
9074 /* else: for nested-guest currently handling while merging controls. */
9075
9076 /*
9077 * Finally, update the guest-interruptibility state.
9078 *
9079 * This is required for the real-on-v86 software interrupt injection, for
9080 * pending debug exceptions as well as updates to the guest state from ring-3 (IEM).
9081 */
9082 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
9083 AssertRC(rc);
9084
9085 /*
9086 * There's no need to clear the VM-entry interruption-information field here if we're not
9087 * injecting anything. VT-x clears the valid bit on every VM-exit.
9088 *
9089 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
9090 */
9091
9092 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
9093 return rcStrict;
9094}
9095
9096
9097/**
9098 * Enters the VT-x session.
9099 *
9100 * @returns VBox status code.
9101 * @param pVCpu The cross context virtual CPU structure.
9102 */
9103VMMR0DECL(int) VMXR0Enter(PVMCPUCC pVCpu)
9104{
9105 AssertPtr(pVCpu);
9106 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported);
9107 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9108
9109 LogFlowFunc(("pVCpu=%p\n", pVCpu));
9110 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
9111 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
9112
9113#ifdef VBOX_STRICT
9114 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
9115 RTCCUINTREG uHostCr4 = ASMGetCR4();
9116 if (!(uHostCr4 & X86_CR4_VMXE))
9117 {
9118 LogRelFunc(("X86_CR4_VMXE bit in CR4 is not set!\n"));
9119 return VERR_VMX_X86_CR4_VMXE_CLEARED;
9120 }
9121#endif
9122
9123 /*
9124 * Load the appropriate VMCS as the current and active one.
9125 */
9126 PVMXVMCSINFO pVmcsInfo;
9127 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx);
9128 if (!fInNestedGuestMode)
9129 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfo;
9130 else
9131 pVmcsInfo = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
9132 int rc = hmR0VmxLoadVmcs(pVmcsInfo);
9133 if (RT_SUCCESS(rc))
9134 {
9135 pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs = fInNestedGuestMode;
9136 pVCpu->hm.s.fLeaveDone = false;
9137 Log4Func(("Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
9138
9139 /*
9140 * Do the EMT scheduled L1D flush here if needed.
9141 */
9142 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
9143 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
9144 else if (pVCpu->CTX_SUFF(pVM)->hm.s.fMdsClearOnSched)
9145 hmR0MdsClear();
9146 }
9147 return rc;
9148}
9149
9150
9151/**
9152 * The thread-context callback (only on platforms which support it).
9153 *
9154 * @param enmEvent The thread-context event.
9155 * @param pVCpu The cross context virtual CPU structure.
9156 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
9157 * @thread EMT(pVCpu)
9158 */
9159VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
9160{
9161 AssertPtr(pVCpu);
9162 RT_NOREF1(fGlobalInit);
9163
9164 switch (enmEvent)
9165 {
9166 case RTTHREADCTXEVENT_OUT:
9167 {
9168 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9169 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
9170 VMCPU_ASSERT_EMT(pVCpu);
9171
9172 /* No longjmps (logger flushes, locks) in this fragile context. */
9173 VMMRZCallRing3Disable(pVCpu);
9174 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
9175
9176 /* Restore host-state (FPU, debug etc.) */
9177 if (!pVCpu->hm.s.fLeaveDone)
9178 {
9179 /*
9180 * Do -not- import the guest-state here as we might already be in the middle of importing
9181 * it, esp. bad if we're holding the PGM lock, see comment in hmR0VmxImportGuestState().
9182 */
9183 hmR0VmxLeave(pVCpu, false /* fImportState */);
9184 pVCpu->hm.s.fLeaveDone = true;
9185 }
9186
9187 /* Leave HM context, takes care of local init (term). */
9188 int rc = HMR0LeaveCpu(pVCpu);
9189 AssertRC(rc);
9190
9191 /* Restore longjmp state. */
9192 VMMRZCallRing3Enable(pVCpu);
9193 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
9194 break;
9195 }
9196
9197 case RTTHREADCTXEVENT_IN:
9198 {
9199 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9200 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
9201 VMCPU_ASSERT_EMT(pVCpu);
9202
9203 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
9204 VMMRZCallRing3Disable(pVCpu);
9205 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
9206
9207 /* Initialize the bare minimum state required for HM. This takes care of
9208 initializing VT-x if necessary (onlined CPUs, local init etc.) */
9209 int rc = hmR0EnterCpu(pVCpu);
9210 AssertRC(rc);
9211 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
9212 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
9213
9214 /* Load the active VMCS as the current one. */
9215 PVMXVMCSINFO pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
9216 rc = hmR0VmxLoadVmcs(pVmcsInfo);
9217 AssertRC(rc);
9218 Log4Func(("Resumed: Loaded Vmcs. HostCpuId=%u\n", RTMpCpuId()));
9219 pVCpu->hm.s.fLeaveDone = false;
9220
9221 /* Do the EMT scheduled L1D flush if needed. */
9222 if (pVCpu->CTX_SUFF(pVM)->hm.s.fL1dFlushOnSched)
9223 ASMWrMsr(MSR_IA32_FLUSH_CMD, MSR_IA32_FLUSH_CMD_F_L1D);
9224
9225 /* Restore longjmp state. */
9226 VMMRZCallRing3Enable(pVCpu);
9227 break;
9228 }
9229
9230 default:
9231 break;
9232 }
9233}
9234
9235
9236/**
9237 * Exports the host state into the VMCS host-state area.
9238 * Sets up the VM-exit MSR-load area.
9239 *
9240 * The CPU state will be loaded from these fields on every successful VM-exit.
9241 *
9242 * @returns VBox status code.
9243 * @param pVCpu The cross context virtual CPU structure.
9244 *
9245 * @remarks No-long-jump zone!!!
9246 */
9247static int hmR0VmxExportHostState(PVMCPUCC pVCpu)
9248{
9249 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9250
9251 int rc = VINF_SUCCESS;
9252 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
9253 {
9254 hmR0VmxExportHostControlRegs();
9255
9256 rc = hmR0VmxExportHostSegmentRegs(pVCpu);
9257 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9258
9259 hmR0VmxExportHostMsrs(pVCpu);
9260
9261 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_HOST_CONTEXT;
9262 }
9263 return rc;
9264}
9265
9266
9267/**
9268 * Saves the host state in the VMCS host-state.
9269 *
9270 * @returns VBox status code.
9271 * @param pVCpu The cross context virtual CPU structure.
9272 *
9273 * @remarks No-long-jump zone!!!
9274 */
9275VMMR0DECL(int) VMXR0ExportHostState(PVMCPUCC pVCpu)
9276{
9277 AssertPtr(pVCpu);
9278 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9279
9280 /*
9281 * Export the host state here while entering HM context.
9282 * When thread-context hooks are used, we might get preempted and have to re-save the host
9283 * state but most of the time we won't be, so do it here before we disable interrupts.
9284 */
9285 return hmR0VmxExportHostState(pVCpu);
9286}
9287
9288
9289/**
9290 * Exports the guest state into the VMCS guest-state area.
9291 *
9292 * The will typically be done before VM-entry when the guest-CPU state and the
9293 * VMCS state may potentially be out of sync.
9294 *
9295 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
9296 * VM-entry controls.
9297 * Sets up the appropriate VMX non-root function to execute guest code based on
9298 * the guest CPU mode.
9299 *
9300 * @returns VBox strict status code.
9301 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9302 * without unrestricted guest execution and the VMMDev is not presently
9303 * mapped (e.g. EFI32).
9304 *
9305 * @param pVCpu The cross context virtual CPU structure.
9306 * @param pVmxTransient The VMX-transient structure.
9307 *
9308 * @remarks No-long-jump zone!!!
9309 */
9310static VBOXSTRICTRC hmR0VmxExportGuestState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
9311{
9312 AssertPtr(pVCpu);
9313 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9314 LogFlowFunc(("pVCpu=%p\n", pVCpu));
9315
9316 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExportGuestState, x);
9317
9318 /*
9319 * Determine real-on-v86 mode.
9320 * Used when the guest is in real-mode and unrestricted guest execution is not used.
9321 */
9322 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
9323 if ( pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest
9324 || !CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx))
9325 pVmcsInfo->RealMode.fRealOnV86Active = false;
9326 else
9327 {
9328 Assert(!pVmxTransient->fIsNestedGuest);
9329 pVmcsInfo->RealMode.fRealOnV86Active = true;
9330 }
9331
9332 /*
9333 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
9334 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
9335 */
9336 int rc = hmR0VmxExportGuestEntryExitCtls(pVCpu, pVmxTransient);
9337 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9338
9339 rc = hmR0VmxExportGuestCR0(pVCpu, pVmxTransient);
9340 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9341
9342 VBOXSTRICTRC rcStrict = hmR0VmxExportGuestCR3AndCR4(pVCpu, pVmxTransient);
9343 if (rcStrict == VINF_SUCCESS)
9344 { /* likely */ }
9345 else
9346 {
9347 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
9348 return rcStrict;
9349 }
9350
9351 rc = hmR0VmxExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
9352 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9353
9354 rc = hmR0VmxExportGuestMsrs(pVCpu, pVmxTransient);
9355 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9356
9357 hmR0VmxExportGuestApicTpr(pVCpu, pVmxTransient);
9358 hmR0VmxExportGuestXcptIntercepts(pVCpu, pVmxTransient);
9359 hmR0VmxExportGuestRip(pVCpu);
9360 hmR0VmxExportGuestRsp(pVCpu);
9361 hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9362
9363 rc = hmR0VmxExportGuestHwvirtState(pVCpu, pVmxTransient);
9364 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
9365
9366 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
9367 ASMAtomicUoAndU64(&pVCpu->hm.s.fCtxChanged, ~( (HM_CHANGED_GUEST_GPRS_MASK & ~HM_CHANGED_GUEST_RSP)
9368 | HM_CHANGED_GUEST_CR2
9369 | (HM_CHANGED_GUEST_DR_MASK & ~HM_CHANGED_GUEST_DR7)
9370 | HM_CHANGED_GUEST_X87
9371 | HM_CHANGED_GUEST_SSE_AVX
9372 | HM_CHANGED_GUEST_OTHER_XSAVE
9373 | HM_CHANGED_GUEST_XCRx
9374 | HM_CHANGED_GUEST_KERNEL_GS_BASE /* Part of lazy or auto load-store MSRs. */
9375 | HM_CHANGED_GUEST_SYSCALL_MSRS /* Part of lazy or auto load-store MSRs. */
9376 | HM_CHANGED_GUEST_TSC_AUX
9377 | HM_CHANGED_GUEST_OTHER_MSRS
9378 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
9379
9380 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExportGuestState, x);
9381 return rc;
9382}
9383
9384
9385/**
9386 * Exports the state shared between the host and guest into the VMCS.
9387 *
9388 * @param pVCpu The cross context virtual CPU structure.
9389 * @param pVmxTransient The VMX-transient structure.
9390 *
9391 * @remarks No-long-jump zone!!!
9392 */
9393static void hmR0VmxExportSharedState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
9394{
9395 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
9396 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9397
9398 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_DR_MASK)
9399 {
9400 int rc = hmR0VmxExportSharedDebugState(pVCpu, pVmxTransient);
9401 AssertRC(rc);
9402 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_GUEST_DR_MASK;
9403
9404 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
9405 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_GUEST_RFLAGS)
9406 hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9407 }
9408
9409 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_GUEST_LAZY_MSRS)
9410 {
9411 hmR0VmxLazyLoadGuestMsrs(pVCpu);
9412 pVCpu->hm.s.fCtxChanged &= ~HM_CHANGED_VMX_GUEST_LAZY_MSRS;
9413 }
9414
9415 AssertMsg(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE),
9416 ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
9417}
9418
9419
9420/**
9421 * Worker for loading the guest-state bits in the inner VT-x execution loop.
9422 *
9423 * @returns Strict VBox status code (i.e. informational status codes too).
9424 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
9425 * without unrestricted guest execution and the VMMDev is not presently
9426 * mapped (e.g. EFI32).
9427 *
9428 * @param pVCpu The cross context virtual CPU structure.
9429 * @param pVmxTransient The VMX-transient structure.
9430 *
9431 * @remarks No-long-jump zone!!!
9432 */
9433static VBOXSTRICTRC hmR0VmxExportGuestStateOptimal(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
9434{
9435 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
9436 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9437 Assert(VMMR0IsLogFlushDisabled(pVCpu));
9438
9439#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
9440 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
9441#endif
9442
9443 /*
9444 * For many VM-exits only RIP/RSP/RFLAGS (and HWVIRT state when executing a nested-guest)
9445 * changes. First try to export only these without going through all other changed-flag checks.
9446 */
9447 VBOXSTRICTRC rcStrict;
9448 uint64_t const fCtxMask = HM_CHANGED_ALL_GUEST & ~HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE;
9449 uint64_t const fMinimalMask = HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT;
9450 uint64_t const fCtxChanged = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9451
9452 /* If only RIP/RSP/RFLAGS/HWVIRT changed, export only those (quicker, happens more often).*/
9453 if ( (fCtxChanged & fMinimalMask)
9454 && !(fCtxChanged & (fCtxMask & ~fMinimalMask)))
9455 {
9456 hmR0VmxExportGuestRip(pVCpu);
9457 hmR0VmxExportGuestRsp(pVCpu);
9458 hmR0VmxExportGuestRflags(pVCpu, pVmxTransient);
9459 rcStrict = hmR0VmxExportGuestHwvirtState(pVCpu, pVmxTransient);
9460 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportMinimal);
9461 }
9462 /* If anything else also changed, go through the full export routine and export as required. */
9463 else if (fCtxChanged & fCtxMask)
9464 {
9465 rcStrict = hmR0VmxExportGuestState(pVCpu, pVmxTransient);
9466 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9467 { /* likely */}
9468 else
9469 {
9470 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM, ("Failed to export guest state! rc=%Rrc\n",
9471 VBOXSTRICTRC_VAL(rcStrict)));
9472 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
9473 return rcStrict;
9474 }
9475 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportFull);
9476 }
9477 /* Nothing changed, nothing to load here. */
9478 else
9479 rcStrict = VINF_SUCCESS;
9480
9481#ifdef VBOX_STRICT
9482 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
9483 uint64_t const fCtxChangedCur = ASMAtomicUoReadU64(&pVCpu->hm.s.fCtxChanged);
9484 AssertMsg(!(fCtxChangedCur & fCtxMask), ("fCtxChangedCur=%#RX64\n", fCtxChangedCur));
9485#endif
9486 return rcStrict;
9487}
9488
9489
9490/**
9491 * Tries to determine what part of the guest-state VT-x has deemed as invalid
9492 * and update error record fields accordingly.
9493 *
9494 * @returns VMX_IGS_* error codes.
9495 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
9496 * wrong with the guest state.
9497 *
9498 * @param pVCpu The cross context virtual CPU structure.
9499 * @param pVmcsInfo The VMCS info. object.
9500 *
9501 * @remarks This function assumes our cache of the VMCS controls
9502 * are valid, i.e. hmR0VmxCheckCachedVmcsCtls() succeeded.
9503 */
9504static uint32_t hmR0VmxCheckGuestState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
9505{
9506#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
9507#define HMVMX_CHECK_BREAK(expr, err) do { \
9508 if (!(expr)) { uError = (err); break; } \
9509 } while (0)
9510
9511 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
9512 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
9513 uint32_t uError = VMX_IGS_ERROR;
9514 uint32_t u32IntrState = 0;
9515 bool const fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
9516 do
9517 {
9518 int rc;
9519
9520 /*
9521 * Guest-interruptibility state.
9522 *
9523 * Read this first so that any check that fails prior to those that actually
9524 * require the guest-interruptibility state would still reflect the correct
9525 * VMCS value and avoids causing further confusion.
9526 */
9527 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
9528 AssertRC(rc);
9529
9530 uint32_t u32Val;
9531 uint64_t u64Val;
9532
9533 /*
9534 * CR0.
9535 */
9536 /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */
9537 uint64_t fSetCr0 = (pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9538 uint64_t const fZapCr0 = (pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
9539 /* Exceptions for unrestricted guest execution for CR0 fixed bits (PE, PG).
9540 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
9541 if (fUnrestrictedGuest)
9542 fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
9543
9544 uint64_t u64GuestCr0;
9545 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR0, &u64GuestCr0);
9546 AssertRC(rc);
9547 HMVMX_CHECK_BREAK((u64GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
9548 HMVMX_CHECK_BREAK(!(u64GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
9549 if ( !fUnrestrictedGuest
9550 && (u64GuestCr0 & X86_CR0_PG)
9551 && !(u64GuestCr0 & X86_CR0_PE))
9552 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
9553
9554 /*
9555 * CR4.
9556 */
9557 /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */
9558 uint64_t const fSetCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9559 uint64_t const fZapCr4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
9560
9561 uint64_t u64GuestCr4;
9562 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR4, &u64GuestCr4);
9563 AssertRC(rc);
9564 HMVMX_CHECK_BREAK((u64GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
9565 HMVMX_CHECK_BREAK(!(u64GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
9566
9567 /*
9568 * IA32_DEBUGCTL MSR.
9569 */
9570 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
9571 AssertRC(rc);
9572 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9573 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
9574 {
9575 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
9576 }
9577 uint64_t u64DebugCtlMsr = u64Val;
9578
9579#ifdef VBOX_STRICT
9580 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
9581 AssertRC(rc);
9582 Assert(u32Val == pVmcsInfo->u32EntryCtls);
9583#endif
9584 bool const fLongModeGuest = RT_BOOL(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
9585
9586 /*
9587 * RIP and RFLAGS.
9588 */
9589 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RIP, &u64Val);
9590 AssertRC(rc);
9591 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
9592 if ( !fLongModeGuest
9593 || !pCtx->cs.Attr.n.u1Long)
9594 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
9595 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
9596 * must be identical if the "IA-32e mode guest" VM-entry
9597 * control is 1 and CS.L is 1. No check applies if the
9598 * CPU supports 64 linear-address bits. */
9599
9600 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
9601 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_RFLAGS, &u64Val);
9602 AssertRC(rc);
9603 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
9604 VMX_IGS_RFLAGS_RESERVED);
9605 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
9606 uint32_t const u32Eflags = u64Val;
9607
9608 if ( fLongModeGuest
9609 || ( fUnrestrictedGuest
9610 && !(u64GuestCr0 & X86_CR0_PE)))
9611 {
9612 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
9613 }
9614
9615 uint32_t u32EntryInfo;
9616 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
9617 AssertRC(rc);
9618 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo))
9619 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
9620
9621 /*
9622 * 64-bit checks.
9623 */
9624 if (fLongModeGuest)
9625 {
9626 HMVMX_CHECK_BREAK(u64GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
9627 HMVMX_CHECK_BREAK(u64GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
9628 }
9629
9630 if ( !fLongModeGuest
9631 && (u64GuestCr4 & X86_CR4_PCIDE))
9632 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
9633
9634 /** @todo CR3 field must be such that bits 63:52 and bits in the range
9635 * 51:32 beyond the processor's physical-address width are 0. */
9636
9637 if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
9638 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
9639 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
9640
9641 rc = VMXReadVmcsNw(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
9642 AssertRC(rc);
9643 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
9644
9645 rc = VMXReadVmcsNw(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
9646 AssertRC(rc);
9647 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
9648
9649 /*
9650 * PERF_GLOBAL MSR.
9651 */
9652 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
9653 {
9654 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
9655 AssertRC(rc);
9656 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
9657 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
9658 }
9659
9660 /*
9661 * PAT MSR.
9662 */
9663 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
9664 {
9665 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
9666 AssertRC(rc);
9667 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
9668 for (unsigned i = 0; i < 8; i++)
9669 {
9670 uint8_t u8Val = (u64Val & 0xff);
9671 if ( u8Val != 0 /* UC */
9672 && u8Val != 1 /* WC */
9673 && u8Val != 4 /* WT */
9674 && u8Val != 5 /* WP */
9675 && u8Val != 6 /* WB */
9676 && u8Val != 7 /* UC- */)
9677 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
9678 u64Val >>= 8;
9679 }
9680 }
9681
9682 /*
9683 * EFER MSR.
9684 */
9685 if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
9686 {
9687 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
9688 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
9689 AssertRC(rc);
9690 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
9691 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
9692 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVmcsInfo->u32EntryCtls
9693 & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
9694 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
9695 /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
9696 * iemVmxVmentryCheckGuestState(). */
9697 HMVMX_CHECK_BREAK( fUnrestrictedGuest
9698 || !(u64GuestCr0 & X86_CR0_PG)
9699 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
9700 VMX_IGS_EFER_LMA_LME_MISMATCH);
9701 }
9702
9703 /*
9704 * Segment registers.
9705 */
9706 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9707 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
9708 if (!(u32Eflags & X86_EFL_VM))
9709 {
9710 /* CS */
9711 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
9712 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
9713 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
9714 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
9715 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9716 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
9717 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
9718 /* CS cannot be loaded with NULL in protected mode. */
9719 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
9720 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
9721 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
9722 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
9723 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
9724 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
9725 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
9726 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
9727 else
9728 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
9729
9730 /* SS */
9731 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9732 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
9733 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
9734 if ( !(pCtx->cr0 & X86_CR0_PE)
9735 || pCtx->cs.Attr.n.u4Type == 3)
9736 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
9737
9738 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
9739 {
9740 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
9741 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
9742 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
9743 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
9744 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
9745 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9746 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
9747 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
9748 }
9749
9750 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxExportGuestSReg(). */
9751 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
9752 {
9753 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
9754 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
9755 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9756 || pCtx->ds.Attr.n.u4Type > 11
9757 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9758 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
9759 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
9760 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
9761 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9762 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
9763 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
9764 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9765 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
9766 }
9767 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
9768 {
9769 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
9770 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
9771 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9772 || pCtx->es.Attr.n.u4Type > 11
9773 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
9774 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
9775 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
9776 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
9777 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9778 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
9779 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
9780 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9781 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
9782 }
9783 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
9784 {
9785 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
9786 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
9787 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9788 || pCtx->fs.Attr.n.u4Type > 11
9789 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
9790 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
9791 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
9792 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
9793 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9794 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
9795 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
9796 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9797 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
9798 }
9799 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
9800 {
9801 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
9802 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
9803 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
9804 || pCtx->gs.Attr.n.u4Type > 11
9805 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
9806 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
9807 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
9808 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
9809 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9810 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
9811 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
9812 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
9813 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
9814 }
9815 /* 64-bit capable CPUs. */
9816 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9817 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9818 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9819 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9820 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9821 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9822 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9823 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9824 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9825 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9826 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9827 }
9828 else
9829 {
9830 /* V86 mode checks. */
9831 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
9832 if (pVmcsInfo->RealMode.fRealOnV86Active)
9833 {
9834 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
9835 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
9836 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
9837 }
9838 else
9839 {
9840 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
9841 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
9842 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
9843 }
9844
9845 /* CS */
9846 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
9847 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
9848 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
9849 /* SS */
9850 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
9851 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
9852 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
9853 /* DS */
9854 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
9855 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
9856 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
9857 /* ES */
9858 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
9859 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
9860 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
9861 /* FS */
9862 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
9863 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
9864 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
9865 /* GS */
9866 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
9867 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
9868 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
9869 /* 64-bit capable CPUs. */
9870 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
9871 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
9872 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
9873 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
9874 HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
9875 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
9876 VMX_IGS_LONGMODE_SS_BASE_INVALID);
9877 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
9878 VMX_IGS_LONGMODE_DS_BASE_INVALID);
9879 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
9880 VMX_IGS_LONGMODE_ES_BASE_INVALID);
9881 }
9882
9883 /*
9884 * TR.
9885 */
9886 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
9887 /* 64-bit capable CPUs. */
9888 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
9889 if (fLongModeGuest)
9890 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
9891 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
9892 else
9893 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
9894 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
9895 VMX_IGS_TR_ATTR_TYPE_INVALID);
9896 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
9897 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
9898 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
9899 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
9900 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9901 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
9902 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
9903 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
9904
9905 /*
9906 * GDTR and IDTR (64-bit capable checks).
9907 */
9908 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
9909 AssertRC(rc);
9910 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
9911
9912 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
9913 AssertRC(rc);
9914 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
9915
9916 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
9917 AssertRC(rc);
9918 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9919
9920 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
9921 AssertRC(rc);
9922 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
9923
9924 /*
9925 * Guest Non-Register State.
9926 */
9927 /* Activity State. */
9928 uint32_t u32ActivityState;
9929 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
9930 AssertRC(rc);
9931 HMVMX_CHECK_BREAK( !u32ActivityState
9932 || (u32ActivityState & RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
9933 VMX_IGS_ACTIVITY_STATE_INVALID);
9934 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
9935 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
9936
9937 if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
9938 || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9939 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
9940
9941 /** @todo Activity state and injecting interrupts. Left as a todo since we
9942 * currently don't use activity states but ACTIVE. */
9943
9944 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9945 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
9946
9947 /* Guest interruptibility-state. */
9948 HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
9949 HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
9950 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9951 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
9952 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
9953 || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9954 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
9955 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo))
9956 {
9957 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9958 && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9959 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
9960 }
9961 else if (VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo))
9962 {
9963 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
9964 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
9965 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
9966 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
9967 }
9968 /** @todo Assumes the processor is not in SMM. */
9969 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9970 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
9971 HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
9972 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
9973 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
9974 if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
9975 && VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo))
9976 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI), VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
9977
9978 /* Pending debug exceptions. */
9979 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
9980 AssertRC(rc);
9981 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
9982 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
9983 u32Val = u64Val; /* For pending debug exceptions checks below. */
9984
9985 if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
9986 || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
9987 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
9988 {
9989 if ( (u32Eflags & X86_EFL_TF)
9990 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9991 {
9992 /* Bit 14 is PendingDebug.BS. */
9993 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
9994 }
9995 if ( !(u32Eflags & X86_EFL_TF)
9996 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
9997 {
9998 /* Bit 14 is PendingDebug.BS. */
9999 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
10000 }
10001 }
10002
10003 /* VMCS link pointer. */
10004 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
10005 AssertRC(rc);
10006 if (u64Val != UINT64_C(0xffffffffffffffff))
10007 {
10008 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
10009 /** @todo Bits beyond the processor's physical-address width MBZ. */
10010 /** @todo SMM checks. */
10011 Assert(pVmcsInfo->HCPhysShadowVmcs == u64Val);
10012 Assert(pVmcsInfo->pvShadowVmcs);
10013 VMXVMCSREVID VmcsRevId;
10014 VmcsRevId.u = *(uint32_t *)pVmcsInfo->pvShadowVmcs;
10015 HMVMX_CHECK_BREAK(VmcsRevId.n.u31RevisionId == RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_ID),
10016 VMX_IGS_VMCS_LINK_PTR_SHADOW_VMCS_ID_INVALID);
10017 HMVMX_CHECK_BREAK(VmcsRevId.n.fIsShadowVmcs == (uint32_t)!!(pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING),
10018 VMX_IGS_VMCS_LINK_PTR_NOT_SHADOW);
10019 }
10020
10021 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
10022 * not using nested paging? */
10023 if ( pVM->hm.s.fNestedPaging
10024 && !fLongModeGuest
10025 && CPUMIsGuestInPAEModeEx(pCtx))
10026 {
10027 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
10028 AssertRC(rc);
10029 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10030
10031 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
10032 AssertRC(rc);
10033 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10034
10035 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
10036 AssertRC(rc);
10037 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10038
10039 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
10040 AssertRC(rc);
10041 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
10042 }
10043
10044 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
10045 if (uError == VMX_IGS_ERROR)
10046 uError = VMX_IGS_REASON_NOT_FOUND;
10047 } while (0);
10048
10049 pVCpu->hm.s.u32HMError = uError;
10050 pVCpu->hm.s.vmx.LastError.u32GuestIntrState = u32IntrState;
10051 return uError;
10052
10053#undef HMVMX_ERROR_BREAK
10054#undef HMVMX_CHECK_BREAK
10055}
10056
10057
10058/**
10059 * Map the APIC-access page for virtualizing APIC accesses.
10060 *
10061 * This can cause a longjumps to R3 due to the acquisition of the PGM lock. Hence,
10062 * this not done as part of exporting guest state, see @bugref{8721}.
10063 *
10064 * @returns VBox status code.
10065 * @param pVCpu The cross context virtual CPU structure.
10066 */
10067static int hmR0VmxMapHCApicAccessPage(PVMCPUCC pVCpu)
10068{
10069 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10070 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
10071
10072 Assert(PDMHasApic(pVM));
10073 Assert(u64MsrApicBase);
10074
10075 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
10076 Log4Func(("Mappping HC APIC-access page at %#RGp\n", GCPhysApicBase));
10077
10078 /* Unalias the existing mapping. */
10079 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
10080 AssertRCReturn(rc, rc);
10081
10082 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
10083 Assert(pVM->hm.s.vmx.HCPhysApicAccess != NIL_RTHCPHYS);
10084 rc = IOMR0MmioMapMmioHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
10085 AssertRCReturn(rc, rc);
10086
10087 /* Update the per-VCPU cache of the APIC base MSR. */
10088 pVCpu->hm.s.vmx.u64GstMsrApicBase = u64MsrApicBase;
10089 return VINF_SUCCESS;
10090}
10091
10092
10093/**
10094 * Worker function passed to RTMpOnSpecific() that is to be called on the target
10095 * CPU.
10096 *
10097 * @param idCpu The ID for the CPU the function is called on.
10098 * @param pvUser1 Null, not used.
10099 * @param pvUser2 Null, not used.
10100 */
10101static DECLCALLBACK(void) hmR0DispatchHostNmi(RTCPUID idCpu, void *pvUser1, void *pvUser2)
10102{
10103 RT_NOREF3(idCpu, pvUser1, pvUser2);
10104 VMXDispatchHostNmi();
10105}
10106
10107
10108/**
10109 * Dispatching an NMI on the host CPU that received it.
10110 *
10111 * @returns VBox status code.
10112 * @param pVCpu The cross context virtual CPU structure.
10113 * @param pVmcsInfo The VMCS info. object corresponding to the VMCS that was
10114 * executing when receiving the host NMI in VMX non-root
10115 * operation.
10116 */
10117static int hmR0VmxExitHostNmi(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
10118{
10119 RTCPUID const idCpu = pVmcsInfo->idHostCpuExec;
10120 Assert(idCpu != NIL_RTCPUID);
10121
10122 /*
10123 * We don't want to delay dispatching the NMI any more than we have to. However,
10124 * we have already chosen -not- to dispatch NMIs when interrupts were still disabled
10125 * after executing guest or nested-guest code for the following reasons:
10126 *
10127 * - We would need to perform VMREADs with interrupts disabled and is orders of
10128 * magnitude worse when we run as a nested hypervisor without VMCS shadowing
10129 * supported by the host hypervisor.
10130 *
10131 * - It affects the common VM-exit scenario and keeps interrupts disabled for a
10132 * longer period of time just for handling an edge case like host NMIs which do
10133 * not occur nearly as frequently as other VM-exits.
10134 *
10135 * Let's cover the most likely scenario first. Check if we are on the target CPU
10136 * and dispatch the NMI right away. This should be much faster than calling into
10137 * RTMpOnSpecific() machinery.
10138 */
10139 bool fDispatched = false;
10140 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
10141 if (idCpu == RTMpCpuId())
10142 {
10143 VMXDispatchHostNmi();
10144 fDispatched = true;
10145 }
10146 ASMSetFlags(fEFlags);
10147 if (fDispatched)
10148 {
10149 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
10150 return VINF_SUCCESS;
10151 }
10152
10153 /*
10154 * RTMpOnSpecific() waits until the worker function has run on the target CPU. So
10155 * there should be no race or recursion even if we are unlucky enough to be preempted
10156 * (to the target CPU) without dispatching the host NMI above.
10157 */
10158 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGCIpi);
10159 return RTMpOnSpecific(idCpu, &hmR0DispatchHostNmi, NULL /* pvUser1 */, NULL /* pvUser2 */);
10160}
10161
10162
10163#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10164/**
10165 * Merges the guest with the nested-guest MSR bitmap in preparation of executing the
10166 * nested-guest using hardware-assisted VMX.
10167 *
10168 * @param pVCpu The cross context virtual CPU structure.
10169 * @param pVmcsInfoNstGst The nested-guest VMCS info. object.
10170 * @param pVmcsInfoGst The guest VMCS info. object.
10171 */
10172static void hmR0VmxMergeMsrBitmapNested(PCVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfoNstGst, PCVMXVMCSINFO pVmcsInfoGst)
10173{
10174 uint32_t const cbMsrBitmap = X86_PAGE_4K_SIZE;
10175 uint64_t *pu64MsrBitmap = (uint64_t *)pVmcsInfoNstGst->pvMsrBitmap;
10176 Assert(pu64MsrBitmap);
10177
10178 /*
10179 * We merge the guest MSR bitmap with the nested-guest MSR bitmap such that any
10180 * MSR that is intercepted by the guest is also intercepted while executing the
10181 * nested-guest using hardware-assisted VMX.
10182 *
10183 * Note! If the nested-guest is not using an MSR bitmap, every MSR must cause a
10184 * nested-guest VM-exit even if the outer guest is not intercepting some
10185 * MSRs. We cannot assume the caller has initialized the nested-guest
10186 * MSR bitmap in this case.
10187 *
10188 * The nested hypervisor may also switch whether it uses MSR bitmaps for
10189 * each of its VM-entry, hence initializing it once per-VM while setting
10190 * up the nested-guest VMCS is not sufficient.
10191 */
10192 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
10193 if (pVmcsNstGst->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
10194 {
10195 uint64_t const *pu64MsrBitmapNstGst = (uint64_t const *)pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap);
10196 uint64_t const *pu64MsrBitmapGst = (uint64_t const *)pVmcsInfoGst->pvMsrBitmap;
10197 Assert(pu64MsrBitmapNstGst);
10198 Assert(pu64MsrBitmapGst);
10199
10200 uint32_t const cFrags = cbMsrBitmap / sizeof(uint64_t);
10201 for (uint32_t i = 0; i < cFrags; i++)
10202 pu64MsrBitmap[i] = pu64MsrBitmapNstGst[i] | pu64MsrBitmapGst[i];
10203 }
10204 else
10205 ASMMemFill32(pu64MsrBitmap, cbMsrBitmap, UINT32_C(0xffffffff));
10206}
10207
10208
10209/**
10210 * Merges the guest VMCS in to the nested-guest VMCS controls in preparation of
10211 * hardware-assisted VMX execution of the nested-guest.
10212 *
10213 * For a guest, we don't modify these controls once we set up the VMCS and hence
10214 * this function is never called.
10215 *
10216 * For nested-guests since the nested hypervisor provides these controls on every
10217 * nested-guest VM-entry and could potentially change them everytime we need to
10218 * merge them before every nested-guest VM-entry.
10219 *
10220 * @returns VBox status code.
10221 * @param pVCpu The cross context virtual CPU structure.
10222 */
10223static int hmR0VmxMergeVmcsNested(PVMCPUCC pVCpu)
10224{
10225 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10226 PCVMXVMCSINFO pVmcsInfoGst = &pVCpu->hm.s.vmx.VmcsInfo;
10227 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
10228 Assert(pVmcsNstGst);
10229
10230 /*
10231 * Merge the controls with the requirements of the guest VMCS.
10232 *
10233 * We do not need to validate the nested-guest VMX features specified in the nested-guest
10234 * VMCS with the features supported by the physical CPU as it's already done by the
10235 * VMLAUNCH/VMRESUME instruction emulation.
10236 *
10237 * This is because the VMX features exposed by CPUM (through CPUID/MSRs) to the guest are
10238 * derived from the VMX features supported by the physical CPU.
10239 */
10240
10241 /* Pin-based VM-execution controls. */
10242 uint32_t const u32PinCtls = pVmcsNstGst->u32PinCtls | pVmcsInfoGst->u32PinCtls;
10243
10244 /* Processor-based VM-execution controls. */
10245 uint32_t u32ProcCtls = (pVmcsNstGst->u32ProcCtls & ~VMX_PROC_CTLS_USE_IO_BITMAPS)
10246 | (pVmcsInfoGst->u32ProcCtls & ~( VMX_PROC_CTLS_INT_WINDOW_EXIT
10247 | VMX_PROC_CTLS_NMI_WINDOW_EXIT
10248 | VMX_PROC_CTLS_USE_TPR_SHADOW
10249 | VMX_PROC_CTLS_MONITOR_TRAP_FLAG));
10250
10251 /* Secondary processor-based VM-execution controls. */
10252 uint32_t const u32ProcCtls2 = (pVmcsNstGst->u32ProcCtls2 & ~VMX_PROC_CTLS2_VPID)
10253 | (pVmcsInfoGst->u32ProcCtls2 & ~( VMX_PROC_CTLS2_VIRT_APIC_ACCESS
10254 | VMX_PROC_CTLS2_INVPCID
10255 | VMX_PROC_CTLS2_VMCS_SHADOWING
10256 | VMX_PROC_CTLS2_RDTSCP
10257 | VMX_PROC_CTLS2_XSAVES_XRSTORS
10258 | VMX_PROC_CTLS2_APIC_REG_VIRT
10259 | VMX_PROC_CTLS2_VIRT_INT_DELIVERY
10260 | VMX_PROC_CTLS2_VMFUNC));
10261
10262 /*
10263 * VM-entry controls:
10264 * These controls contains state that depends on the nested-guest state (primarily
10265 * EFER MSR) and is thus not constant between VMLAUNCH/VMRESUME and the nested-guest
10266 * VM-exit. Although the nested hypervisor cannot change it, we need to in order to
10267 * properly continue executing the nested-guest if the EFER MSR changes but does not
10268 * cause a nested-guest VM-exits.
10269 *
10270 * VM-exit controls:
10271 * These controls specify the host state on return. We cannot use the controls from
10272 * the nested hypervisor state as is as it would contain the guest state rather than
10273 * the host state. Since the host state is subject to change (e.g. preemption, trips
10274 * to ring-3, longjmp and rescheduling to a different host CPU) they are not constant
10275 * through VMLAUNCH/VMRESUME and the nested-guest VM-exit.
10276 *
10277 * VM-entry MSR-load:
10278 * The guest MSRs from the VM-entry MSR-load area are already loaded into the guest-CPU
10279 * context by the VMLAUNCH/VMRESUME instruction emulation.
10280 *
10281 * VM-exit MSR-store:
10282 * The VM-exit emulation will take care of populating the MSRs from the guest-CPU context
10283 * back into the VM-exit MSR-store area.
10284 *
10285 * VM-exit MSR-load areas:
10286 * This must contain the real host MSRs with hardware-assisted VMX execution. Hence, we
10287 * can entirely ignore what the nested hypervisor wants to load here.
10288 */
10289
10290 /*
10291 * Exception bitmap.
10292 *
10293 * We could remove #UD from the guest bitmap and merge it with the nested-guest bitmap
10294 * here (and avoid doing anything while exporting nested-guest state), but to keep the
10295 * code more flexible if intercepting exceptions become more dynamic in the future we do
10296 * it as part of exporting the nested-guest state.
10297 */
10298 uint32_t const u32XcptBitmap = pVmcsNstGst->u32XcptBitmap | pVmcsInfoGst->u32XcptBitmap;
10299
10300 /*
10301 * CR0/CR4 guest/host mask.
10302 *
10303 * Modifications by the nested-guest to CR0/CR4 bits owned by the host and the guest must
10304 * cause VM-exits, so we need to merge them here.
10305 */
10306 uint64_t const u64Cr0Mask = pVmcsNstGst->u64Cr0Mask.u | pVmcsInfoGst->u64Cr0Mask;
10307 uint64_t const u64Cr4Mask = pVmcsNstGst->u64Cr4Mask.u | pVmcsInfoGst->u64Cr4Mask;
10308
10309 /*
10310 * Page-fault error-code mask and match.
10311 *
10312 * Although we require unrestricted guest execution (and thereby nested-paging) for
10313 * hardware-assisted VMX execution of nested-guests and thus the outer guest doesn't
10314 * normally intercept #PFs, it might intercept them for debugging purposes.
10315 *
10316 * If the outer guest is not intercepting #PFs, we can use the nested-guest #PF filters.
10317 * If the outer guest is intercepting #PFs, we must intercept all #PFs.
10318 */
10319 uint32_t u32XcptPFMask;
10320 uint32_t u32XcptPFMatch;
10321 if (!(pVmcsInfoGst->u32XcptBitmap & RT_BIT(X86_XCPT_PF)))
10322 {
10323 u32XcptPFMask = pVmcsNstGst->u32XcptPFMask;
10324 u32XcptPFMatch = pVmcsNstGst->u32XcptPFMatch;
10325 }
10326 else
10327 {
10328 u32XcptPFMask = 0;
10329 u32XcptPFMatch = 0;
10330 }
10331
10332 /*
10333 * Pause-Loop exiting.
10334 */
10335 uint32_t const cPleGapTicks = RT_MIN(pVM->hm.s.vmx.cPleGapTicks, pVmcsNstGst->u32PleGap);
10336 uint32_t const cPleWindowTicks = RT_MIN(pVM->hm.s.vmx.cPleWindowTicks, pVmcsNstGst->u32PleWindow);
10337
10338 /*
10339 * Pending debug exceptions.
10340 * Currently just copy whatever the nested-guest provides us.
10341 */
10342 uint64_t const uPendingDbgXcpts = pVmcsNstGst->u64GuestPendingDbgXcpts.u;
10343
10344 /*
10345 * I/O Bitmap.
10346 *
10347 * We do not use the I/O bitmap that may be provided by the nested hypervisor as we always
10348 * intercept all I/O port accesses.
10349 */
10350 Assert(u32ProcCtls & VMX_PROC_CTLS_UNCOND_IO_EXIT);
10351 Assert(!(u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS));
10352
10353 /*
10354 * VMCS shadowing.
10355 *
10356 * We do not yet expose VMCS shadowing to the guest and thus VMCS shadowing should not be
10357 * enabled while executing the nested-guest.
10358 */
10359 Assert(!(u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING));
10360
10361 /*
10362 * APIC-access page.
10363 */
10364 RTHCPHYS HCPhysApicAccess;
10365 if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10366 {
10367 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
10368 RTGCPHYS const GCPhysApicAccess = pVmcsNstGst->u64AddrApicAccess.u;
10369
10370 /** @todo NSTVMX: This is not really correct but currently is required to make
10371 * things work. We need to re-enable the page handler when we fallback to
10372 * IEM execution of the nested-guest! */
10373 PGMHandlerPhysicalPageTempOff(pVM, GCPhysApicAccess, GCPhysApicAccess);
10374
10375 void *pvPage;
10376 PGMPAGEMAPLOCK PgLockApicAccess;
10377 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysApicAccess, &pvPage, &PgLockApicAccess);
10378 if (RT_SUCCESS(rc))
10379 {
10380 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysApicAccess, &HCPhysApicAccess);
10381 AssertMsgRCReturn(rc, ("Failed to get host-physical address for APIC-access page at %#RGp\n", GCPhysApicAccess), rc);
10382
10383 /** @todo Handle proper releasing of page-mapping lock later. */
10384 PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &PgLockApicAccess);
10385 }
10386 else
10387 return rc;
10388 }
10389 else
10390 HCPhysApicAccess = 0;
10391
10392 /*
10393 * Virtual-APIC page and TPR threshold.
10394 */
10395 RTHCPHYS HCPhysVirtApic;
10396 uint32_t u32TprThreshold;
10397 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10398 {
10399 Assert(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW);
10400 RTGCPHYS const GCPhysVirtApic = pVmcsNstGst->u64AddrVirtApic.u;
10401
10402 void *pvPage;
10403 PGMPAGEMAPLOCK PgLockVirtApic;
10404 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhysVirtApic, &pvPage, &PgLockVirtApic);
10405 if (RT_SUCCESS(rc))
10406 {
10407 rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysVirtApic, &HCPhysVirtApic);
10408 AssertMsgRCReturn(rc, ("Failed to get host-physical address for virtual-APIC page at %#RGp\n", GCPhysVirtApic), rc);
10409
10410 /** @todo Handle proper releasing of page-mapping lock later. */
10411 PGMPhysReleasePageMappingLock(pVCpu->CTX_SUFF(pVM), &PgLockVirtApic);
10412 }
10413 else
10414 return rc;
10415
10416 u32TprThreshold = pVmcsNstGst->u32TprThreshold;
10417 }
10418 else
10419 {
10420 HCPhysVirtApic = 0;
10421 u32TprThreshold = 0;
10422
10423 /*
10424 * We must make sure CR8 reads/write must cause VM-exits when TPR shadowing is not
10425 * used by the nested hypervisor. Preventing MMIO accesses to the physical APIC will
10426 * be taken care of by EPT/shadow paging.
10427 */
10428 if (pVM->hm.s.fAllow64BitGuests)
10429 {
10430 u32ProcCtls |= VMX_PROC_CTLS_CR8_STORE_EXIT
10431 | VMX_PROC_CTLS_CR8_LOAD_EXIT;
10432 }
10433 }
10434
10435 /*
10436 * Validate basic assumptions.
10437 */
10438 PVMXVMCSINFO pVmcsInfoNstGst = &pVCpu->hm.s.vmx.VmcsInfoNstGst;
10439 Assert(pVM->hm.s.vmx.fAllowUnrestricted);
10440 Assert(pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
10441 Assert(hmGetVmxActiveVmcsInfo(pVCpu) == pVmcsInfoNstGst);
10442
10443 /*
10444 * Commit it to the nested-guest VMCS.
10445 */
10446 int rc = VINF_SUCCESS;
10447 if (pVmcsInfoNstGst->u32PinCtls != u32PinCtls)
10448 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, u32PinCtls);
10449 if (pVmcsInfoNstGst->u32ProcCtls != u32ProcCtls)
10450 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, u32ProcCtls);
10451 if (pVmcsInfoNstGst->u32ProcCtls2 != u32ProcCtls2)
10452 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, u32ProcCtls2);
10453 if (pVmcsInfoNstGst->u32XcptBitmap != u32XcptBitmap)
10454 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
10455 if (pVmcsInfoNstGst->u64Cr0Mask != u64Cr0Mask)
10456 rc |= VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask);
10457 if (pVmcsInfoNstGst->u64Cr4Mask != u64Cr4Mask)
10458 rc |= VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask);
10459 if (pVmcsInfoNstGst->u32XcptPFMask != u32XcptPFMask)
10460 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, u32XcptPFMask);
10461 if (pVmcsInfoNstGst->u32XcptPFMatch != u32XcptPFMatch)
10462 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, u32XcptPFMatch);
10463 if ( !(u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
10464 && (u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
10465 {
10466 Assert(pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT);
10467 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, cPleGapTicks);
10468 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, cPleWindowTicks);
10469 }
10470 if (u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
10471 {
10472 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
10473 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL, HCPhysVirtApic);
10474 }
10475 if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10476 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, HCPhysApicAccess);
10477 rc |= VMXWriteVmcsNw(VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, uPendingDbgXcpts);
10478 AssertRC(rc);
10479
10480 /*
10481 * Update the nested-guest VMCS cache.
10482 */
10483 pVmcsInfoNstGst->u32PinCtls = u32PinCtls;
10484 pVmcsInfoNstGst->u32ProcCtls = u32ProcCtls;
10485 pVmcsInfoNstGst->u32ProcCtls2 = u32ProcCtls2;
10486 pVmcsInfoNstGst->u32XcptBitmap = u32XcptBitmap;
10487 pVmcsInfoNstGst->u64Cr0Mask = u64Cr0Mask;
10488 pVmcsInfoNstGst->u64Cr4Mask = u64Cr4Mask;
10489 pVmcsInfoNstGst->u32XcptPFMask = u32XcptPFMask;
10490 pVmcsInfoNstGst->u32XcptPFMatch = u32XcptPFMatch;
10491 pVmcsInfoNstGst->HCPhysVirtApic = HCPhysVirtApic;
10492
10493 /*
10494 * We need to flush the TLB if we are switching the APIC-access page address.
10495 * See Intel spec. 28.3.3.4 "Guidelines for Use of the INVEPT Instruction".
10496 */
10497 if (u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10498 pVCpu->hm.s.vmx.fSwitchedNstGstFlushTlb = true;
10499
10500 /*
10501 * MSR bitmap.
10502 *
10503 * The MSR bitmap address has already been initialized while setting up the nested-guest
10504 * VMCS, here we need to merge the MSR bitmaps.
10505 */
10506 if (u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
10507 hmR0VmxMergeMsrBitmapNested(pVCpu, pVmcsInfoNstGst, pVmcsInfoGst);
10508
10509 return VINF_SUCCESS;
10510}
10511#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10512
10513
10514/**
10515 * Does the preparations before executing guest code in VT-x.
10516 *
10517 * This may cause longjmps to ring-3 and may even result in rescheduling to the
10518 * recompiler/IEM. We must be cautious what we do here regarding committing
10519 * guest-state information into the VMCS assuming we assuredly execute the
10520 * guest in VT-x mode.
10521 *
10522 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
10523 * the common-state (TRPM/forceflags), we must undo those changes so that the
10524 * recompiler/IEM can (and should) use them when it resumes guest execution.
10525 * Otherwise such operations must be done when we can no longer exit to ring-3.
10526 *
10527 * @returns Strict VBox status code (i.e. informational status codes too).
10528 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
10529 * have been disabled.
10530 * @retval VINF_VMX_VMEXIT if a nested-guest VM-exit occurs (e.g., while evaluating
10531 * pending events).
10532 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
10533 * double-fault into the guest.
10534 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
10535 * dispatched directly.
10536 * @retval VINF_* scheduling changes, we have to go back to ring-3.
10537 *
10538 * @param pVCpu The cross context virtual CPU structure.
10539 * @param pVmxTransient The VMX-transient structure.
10540 * @param fStepping Whether we are single-stepping the guest in the
10541 * hypervisor debugger. Makes us ignore some of the reasons
10542 * for returning to ring-3, and return VINF_EM_DBG_STEPPED
10543 * if event dispatching took place.
10544 */
10545static VBOXSTRICTRC hmR0VmxPreRunGuest(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, bool fStepping)
10546{
10547 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10548
10549 Log4Func(("fIsNested=%RTbool fStepping=%RTbool\n", pVmxTransient->fIsNestedGuest, fStepping));
10550
10551#ifdef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
10552 if (pVmxTransient->fIsNestedGuest)
10553 {
10554 RT_NOREF2(pVCpu, fStepping);
10555 Log2Func(("Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
10556 return VINF_EM_RESCHEDULE_REM;
10557 }
10558#endif
10559
10560#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
10561 PGMRZDynMapFlushAutoSet(pVCpu);
10562#endif
10563
10564 /*
10565 * Check and process force flag actions, some of which might require us to go back to ring-3.
10566 */
10567 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVCpu, pVmxTransient, fStepping);
10568 if (rcStrict == VINF_SUCCESS)
10569 {
10570 /* FFs don't get set all the time. */
10571#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10572 if ( pVmxTransient->fIsNestedGuest
10573 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
10574 {
10575 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
10576 return VINF_VMX_VMEXIT;
10577 }
10578#endif
10579 }
10580 else
10581 return rcStrict;
10582
10583 /*
10584 * Virtualize memory-mapped accesses to the physical APIC (may take locks).
10585 */
10586 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10587 if ( !pVCpu->hm.s.vmx.u64GstMsrApicBase
10588 && (pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
10589 && PDMHasApic(pVM))
10590 {
10591 int rc = hmR0VmxMapHCApicAccessPage(pVCpu);
10592 AssertRCReturn(rc, rc);
10593 }
10594
10595#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10596 /*
10597 * Merge guest VMCS controls with the nested-guest VMCS controls.
10598 *
10599 * Even if we have not executed the guest prior to this (e.g. when resuming from a
10600 * saved state), we should be okay with merging controls as we initialize the
10601 * guest VMCS controls as part of VM setup phase.
10602 */
10603 if ( pVmxTransient->fIsNestedGuest
10604 && !pVCpu->hm.s.vmx.fMergedNstGstCtls)
10605 {
10606 int rc = hmR0VmxMergeVmcsNested(pVCpu);
10607 AssertRCReturn(rc, rc);
10608 pVCpu->hm.s.vmx.fMergedNstGstCtls = true;
10609 }
10610#endif
10611
10612 /*
10613 * Evaluate events to be injected into the guest.
10614 *
10615 * Events in TRPM can be injected without inspecting the guest state.
10616 * If any new events (interrupts/NMI) are pending currently, we try to set up the
10617 * guest to cause a VM-exit the next time they are ready to receive the event.
10618 *
10619 * With nested-guests, evaluating pending events may cause VM-exits. Also, verify
10620 * that the event in TRPM that we will inject using hardware-assisted VMX is -not-
10621 * subject to interecption. Otherwise, we should have checked and injected them
10622 * manually elsewhere (IEM).
10623 */
10624 if (TRPMHasTrap(pVCpu))
10625 {
10626 Assert(!pVmxTransient->fIsNestedGuest || !CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx));
10627 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
10628 }
10629
10630 uint32_t fIntrState;
10631 rcStrict = hmR0VmxEvaluatePendingEvent(pVCpu, pVmxTransient, &fIntrState);
10632
10633#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10634 /*
10635 * While evaluating pending events if something failed (unlikely) or if we were
10636 * preparing to run a nested-guest but performed a nested-guest VM-exit, we should bail.
10637 */
10638 if (rcStrict != VINF_SUCCESS)
10639 return rcStrict;
10640 if ( pVmxTransient->fIsNestedGuest
10641 && !CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
10642 {
10643 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
10644 return VINF_VMX_VMEXIT;
10645 }
10646#else
10647 Assert(rcStrict == VINF_SUCCESS);
10648#endif
10649
10650 /*
10651 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
10652 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
10653 * also result in triple-faulting the VM.
10654 *
10655 * With nested-guests, the above does not apply since unrestricted guest execution is a
10656 * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
10657 */
10658 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pVmxTransient, fIntrState, fStepping);
10659 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10660 { /* likely */ }
10661 else
10662 {
10663 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
10664 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
10665 return rcStrict;
10666 }
10667
10668 /*
10669 * A longjump might result in importing CR3 even for VM-exits that don't necessarily
10670 * import CR3 themselves. We will need to update them here, as even as late as the above
10671 * hmR0VmxInjectPendingEvent() call may lazily import guest-CPU state on demand causing
10672 * the below force flags to be set.
10673 */
10674 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
10675 {
10676 Assert(!(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_CR3));
10677 int rc2 = PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
10678 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
10679 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
10680 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
10681 }
10682 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
10683 {
10684 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
10685 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
10686 }
10687
10688#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10689 /* Paranoia. */
10690 Assert(!pVmxTransient->fIsNestedGuest || CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
10691#endif
10692
10693 /*
10694 * No longjmps to ring-3 from this point on!!!
10695 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
10696 * This also disables flushing of the R0-logger instance (if any).
10697 */
10698 VMMRZCallRing3Disable(pVCpu);
10699
10700 /*
10701 * Export the guest state bits.
10702 *
10703 * We cannot perform longjmps while loading the guest state because we do not preserve the
10704 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
10705 * CPU migration.
10706 *
10707 * If we are injecting events to a real-on-v86 mode guest, we would have updated RIP and some segment
10708 * registers. Hence, exporting of the guest state needs to be done -after- injection of events.
10709 */
10710 rcStrict = hmR0VmxExportGuestStateOptimal(pVCpu, pVmxTransient);
10711 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
10712 { /* likely */ }
10713 else
10714 {
10715 VMMRZCallRing3Enable(pVCpu);
10716 return rcStrict;
10717 }
10718
10719 /*
10720 * We disable interrupts so that we don't miss any interrupts that would flag preemption
10721 * (IPI/timers etc.) when thread-context hooks aren't used and we've been running with
10722 * preemption disabled for a while. Since this is purely to aid the
10723 * RTThreadPreemptIsPending() code, it doesn't matter that it may temporarily reenable and
10724 * disable interrupt on NT.
10725 *
10726 * We need to check for force-flags that could've possible been altered since we last
10727 * checked them (e.g. by PDMGetInterrupt() leaving the PDM critical section,
10728 * see @bugref{6398}).
10729 *
10730 * We also check a couple of other force-flags as a last opportunity to get the EMT back
10731 * to ring-3 before executing guest code.
10732 */
10733 pVmxTransient->fEFlags = ASMIntDisableFlags();
10734
10735 if ( ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
10736 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
10737 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
10738 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
10739 {
10740 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
10741 {
10742#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
10743 /*
10744 * If we are executing a nested-guest make sure that we should intercept subsequent
10745 * events. The one we are injecting might be part of VM-entry. This is mainly to keep
10746 * the VM-exit instruction emulation happy.
10747 */
10748 if (pVmxTransient->fIsNestedGuest)
10749 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, true);
10750#endif
10751
10752 /*
10753 * We've injected any pending events. This is really the point of no return (to ring-3).
10754 *
10755 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
10756 * returns from this function, so do -not- enable them here.
10757 */
10758 pVCpu->hm.s.Event.fPending = false;
10759 return VINF_SUCCESS;
10760 }
10761
10762 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPendingHostIrq);
10763 rcStrict = VINF_EM_RAW_INTERRUPT;
10764 }
10765 else
10766 {
10767 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
10768 rcStrict = VINF_EM_RAW_TO_R3;
10769 }
10770
10771 ASMSetFlags(pVmxTransient->fEFlags);
10772 VMMRZCallRing3Enable(pVCpu);
10773
10774 return rcStrict;
10775}
10776
10777
10778/**
10779 * Final preparations before executing guest code using hardware-assisted VMX.
10780 *
10781 * We can no longer get preempted to a different host CPU and there are no returns
10782 * to ring-3. We ignore any errors that may happen from this point (e.g. VMWRITE
10783 * failures), this function is not intended to fail sans unrecoverable hardware
10784 * errors.
10785 *
10786 * @param pVCpu The cross context virtual CPU structure.
10787 * @param pVmxTransient The VMX-transient structure.
10788 *
10789 * @remarks Called with preemption disabled.
10790 * @remarks No-long-jump zone!!!
10791 */
10792static void hmR0VmxPreRunGuestCommitted(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
10793{
10794 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
10795 Assert(VMMR0IsLogFlushDisabled(pVCpu));
10796 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
10797 Assert(!pVCpu->hm.s.Event.fPending);
10798
10799 /*
10800 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
10801 */
10802 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
10803 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
10804
10805 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
10806 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10807 PHMPHYSCPU pHostCpu = hmR0GetCurrentCpu();
10808 RTCPUID const idCurrentCpu = pHostCpu->idCpu;
10809
10810 if (!CPUMIsGuestFPUStateActive(pVCpu))
10811 {
10812 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10813 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
10814 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT;
10815 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestFpuState, x);
10816 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadGuestFpu);
10817 }
10818
10819 /*
10820 * Re-export the host state bits as we may've been preempted (only happens when
10821 * thread-context hooks are used or when the VM start function changes) or if
10822 * the host CR0 is modified while loading the guest FPU state above.
10823 *
10824 * The 64-on-32 switcher saves the (64-bit) host state into the VMCS and if we
10825 * changed the switcher back to 32-bit, we *must* save the 32-bit host state here,
10826 * see @bugref{8432}.
10827 *
10828 * This may also happen when switching to/from a nested-guest VMCS without leaving
10829 * ring-0.
10830 */
10831 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT)
10832 {
10833 hmR0VmxExportHostState(pVCpu);
10834 STAM_COUNTER_INC(&pVCpu->hm.s.StatExportHostState);
10835 }
10836 Assert(!(pVCpu->hm.s.fCtxChanged & HM_CHANGED_HOST_CONTEXT));
10837
10838 /*
10839 * Export the state shared between host and guest (FPU, debug, lazy MSRs).
10840 */
10841 if (pVCpu->hm.s.fCtxChanged & HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE)
10842 hmR0VmxExportSharedState(pVCpu, pVmxTransient);
10843 AssertMsg(!pVCpu->hm.s.fCtxChanged, ("fCtxChanged=%#RX64\n", pVCpu->hm.s.fCtxChanged));
10844
10845 /*
10846 * Store status of the shared guest/host debug state at the time of VM-entry.
10847 */
10848 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
10849 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
10850
10851 /*
10852 * Always cache the TPR-shadow if the virtual-APIC page exists, thereby skipping
10853 * more than one conditional check. The post-run side of our code shall determine
10854 * if it needs to sync. the virtual APIC TPR with the TPR-shadow.
10855 */
10856 if (pVmcsInfo->pbVirtApic)
10857 pVmxTransient->u8GuestTpr = pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR];
10858
10859 /*
10860 * Update the host MSRs values in the VM-exit MSR-load area.
10861 */
10862 if (!pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs)
10863 {
10864 if (pVmcsInfo->cExitMsrLoad > 0)
10865 hmR0VmxUpdateAutoLoadHostMsrs(pVCpu, pVmcsInfo);
10866 pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs = true;
10867 }
10868
10869 /*
10870 * Evaluate if we need to intercept guest RDTSC/P accesses. Set up the
10871 * VMX-preemption timer based on the next virtual sync clock deadline.
10872 */
10873 if ( !pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer
10874 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
10875 {
10876 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pVmxTransient);
10877 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = true;
10878 }
10879
10880 /* Record statistics of how often we use TSC offsetting as opposed to intercepting RDTSC/P. */
10881 bool const fIsRdtscIntercepted = RT_BOOL(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT);
10882 if (!fIsRdtscIntercepted)
10883 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
10884 else
10885 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
10886
10887 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
10888 hmR0VmxFlushTaggedTlb(pHostCpu, pVCpu, pVmcsInfo); /* Invalidate the appropriate guest entries from the TLB. */
10889 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
10890 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Record the error reporting info. with the current host CPU. */
10891 pVmcsInfo->idHostCpuState = idCurrentCpu; /* Record the CPU for which the host-state has been exported. */
10892 pVmcsInfo->idHostCpuExec = idCurrentCpu; /* Record the CPU on which we shall execute. */
10893
10894 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
10895
10896 TMNotifyStartOfExecution(pVM, pVCpu); /* Notify TM to resume its clocks when TSC is tied to execution,
10897 as we're about to start executing the guest. */
10898
10899 /*
10900 * Load the guest TSC_AUX MSR when we are not intercepting RDTSCP.
10901 *
10902 * This is done this late as updating the TSC offsetting/preemption timer above
10903 * figures out if we can skip intercepting RDTSCP by calculating the number of
10904 * host CPU ticks till the next virtual sync deadline (for the dynamic case).
10905 */
10906 if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_RDTSCP)
10907 && !fIsRdtscIntercepted)
10908 {
10909 hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_TSC_AUX);
10910
10911 /* NB: Because we call hmR0VmxAddAutoLoadStoreMsr with fUpdateHostMsr=true,
10912 it's safe even after hmR0VmxUpdateAutoLoadHostMsrs has already been done. */
10913 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX, CPUMGetGuestTscAux(pVCpu),
10914 true /* fSetReadWrite */, true /* fUpdateHostMsr */);
10915 AssertRC(rc);
10916 Assert(!pVmxTransient->fRemoveTscAuxMsr);
10917 pVmxTransient->fRemoveTscAuxMsr = true;
10918 }
10919
10920#ifdef VBOX_STRICT
10921 Assert(pVCpu->hm.s.vmx.fUpdatedHostAutoMsrs);
10922 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest);
10923 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo);
10924 AssertRC(hmR0VmxCheckCachedVmcsCtls(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest));
10925#endif
10926
10927#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
10928 /** @todo r=ramshankar: We can now probably use iemVmxVmentryCheckGuestState here.
10929 * Add a PVMXMSRS parameter to it, so that IEM can look at the host MSRs,
10930 * see @bugref{9180#c54}. */
10931 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
10932 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
10933 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
10934#endif
10935}
10936
10937
10938/**
10939 * First C routine invoked after running guest code using hardware-assisted VMX.
10940 *
10941 * @param pVCpu The cross context virtual CPU structure.
10942 * @param pVmxTransient The VMX-transient structure.
10943 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
10944 *
10945 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
10946 *
10947 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
10948 * unconditionally when it is safe to do so.
10949 */
10950static void hmR0VmxPostRunGuest(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, int rcVMRun)
10951{
10952 uint64_t const uHostTsc = ASMReadTSC(); /** @todo We can do a lot better here, see @bugref{9180#c38}. */
10953
10954 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
10955 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
10956 pVCpu->hm.s.fCtxChanged = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
10957 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
10958 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
10959 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
10960
10961 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
10962 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_RDTSC_EXIT))
10963 {
10964 uint64_t uGstTsc;
10965 if (!pVmxTransient->fIsNestedGuest)
10966 uGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10967 else
10968 {
10969 uint64_t const uNstGstTsc = uHostTsc + pVmcsInfo->u64TscOffset;
10970 uGstTsc = CPUMRemoveNestedGuestTscOffset(pVCpu, uNstGstTsc);
10971 }
10972 TMCpuTickSetLastSeen(pVCpu, uGstTsc); /* Update TM with the guest TSC. */
10973 }
10974
10975 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatPreExit, x);
10976 TMNotifyEndOfExecution(pVCpu->CTX_SUFF(pVM), pVCpu); /* Notify TM that the guest is no longer running. */
10977 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
10978
10979 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Some host state messed up by VMX needs restoring. */
10980 pVmcsInfo->fVmcsState |= VMX_V_VMCS_LAUNCH_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
10981#ifdef VBOX_STRICT
10982 hmR0VmxCheckHostEferMsr(pVCpu, pVmcsInfo); /* Verify that the host EFER MSR wasn't modified. */
10983#endif
10984 Assert(!ASMIntAreEnabled());
10985 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
10986 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
10987
10988#ifdef HMVMX_ALWAYS_CLEAN_TRANSIENT
10989 /*
10990 * Clean all the VMCS fields in the transient structure before reading
10991 * anything from the VMCS.
10992 */
10993 pVmxTransient->uExitReason = 0;
10994 pVmxTransient->uExitIntErrorCode = 0;
10995 pVmxTransient->uExitQual = 0;
10996 pVmxTransient->uGuestLinearAddr = 0;
10997 pVmxTransient->uExitIntInfo = 0;
10998 pVmxTransient->cbExitInstr = 0;
10999 pVmxTransient->ExitInstrInfo.u = 0;
11000 pVmxTransient->uEntryIntInfo = 0;
11001 pVmxTransient->uEntryXcptErrorCode = 0;
11002 pVmxTransient->cbEntryInstr = 0;
11003 pVmxTransient->uIdtVectoringInfo = 0;
11004 pVmxTransient->uIdtVectoringErrorCode = 0;
11005#endif
11006
11007 /*
11008 * Save the basic VM-exit reason and check if the VM-entry failed.
11009 * See Intel spec. 24.9.1 "Basic VM-exit Information".
11010 */
11011 uint32_t uExitReason;
11012 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
11013 AssertRC(rc);
11014 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
11015 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
11016
11017 /*
11018 * Log the VM-exit before logging anything else as otherwise it might be a
11019 * tad confusing what happens before and after the world-switch.
11020 */
11021 HMVMX_LOG_EXIT(pVCpu, uExitReason);
11022
11023 /*
11024 * Remove the TSC_AUX MSR from the auto-load/store MSR area and reset any MSR
11025 * bitmap permissions, if it was added before VM-entry.
11026 */
11027 if (pVmxTransient->fRemoveTscAuxMsr)
11028 {
11029 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, pVmxTransient, MSR_K8_TSC_AUX);
11030 pVmxTransient->fRemoveTscAuxMsr = false;
11031 }
11032
11033 /*
11034 * Check if VMLAUNCH/VMRESUME succeeded.
11035 * If this failed, we cause a guru meditation and cease further execution.
11036 *
11037 * However, if we are executing a nested-guest we might fail if we use the
11038 * fast path rather than fully emulating VMLAUNCH/VMRESUME instruction in IEM.
11039 */
11040 if (RT_LIKELY(rcVMRun == VINF_SUCCESS))
11041 {
11042 /*
11043 * Update the VM-exit history array here even if the VM-entry failed due to:
11044 * - Invalid guest state.
11045 * - MSR loading.
11046 * - Machine-check event.
11047 *
11048 * In any of the above cases we will still have a "valid" VM-exit reason
11049 * despite @a fVMEntryFailed being false.
11050 *
11051 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
11052 *
11053 * Note! We don't have CS or RIP at this point. Will probably address that later
11054 * by amending the history entry added here.
11055 */
11056 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_VMX, pVmxTransient->uExitReason & EMEXIT_F_TYPE_MASK),
11057 UINT64_MAX, uHostTsc);
11058
11059 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
11060 {
11061 VMMRZCallRing3Enable(pVCpu);
11062
11063 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
11064 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
11065
11066#ifdef HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
11067 hmR0VmxReadAllRoFieldsVmcs(pVmxTransient);
11068#endif
11069
11070 /*
11071 * Import the guest-interruptibility state always as we need it while evaluating
11072 * injecting events on re-entry.
11073 *
11074 * We don't import CR0 (when unrestricted guest execution is unavailable) despite
11075 * checking for real-mode while exporting the state because all bits that cause
11076 * mode changes wrt CR0 are intercepted.
11077 */
11078 uint64_t const fImportMask = CPUMCTX_EXTRN_HM_VMX_INT_STATE
11079#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
11080 | HMVMX_CPUMCTX_EXTRN_ALL
11081#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
11082 | CPUMCTX_EXTRN_RFLAGS
11083#endif
11084 ;
11085 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImportMask);
11086 AssertRC(rc);
11087
11088 /*
11089 * Sync the TPR shadow with our APIC state.
11090 */
11091 if ( !pVmxTransient->fIsNestedGuest
11092 && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
11093 {
11094 Assert(pVmcsInfo->pbVirtApic);
11095 if (pVmxTransient->u8GuestTpr != pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR])
11096 {
11097 rc = APICSetTpr(pVCpu, pVmcsInfo->pbVirtApic[XAPIC_OFF_TPR]);
11098 AssertRC(rc);
11099 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
11100 }
11101 }
11102
11103 Assert(VMMRZCallRing3IsEnabled(pVCpu));
11104 return;
11105 }
11106 }
11107#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
11108 else if (pVmxTransient->fIsNestedGuest)
11109 AssertMsgFailed(("VMLAUNCH/VMRESUME failed but shouldn't happen when VMLAUNCH/VMRESUME was emulated in IEM!\n"));
11110#endif
11111 else
11112 Log4Func(("VM-entry failure: rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", rcVMRun, pVmxTransient->fVMEntryFailed));
11113
11114 VMMRZCallRing3Enable(pVCpu);
11115}
11116
11117
11118/**
11119 * Runs the guest code using hardware-assisted VMX the normal way.
11120 *
11121 * @returns VBox status code.
11122 * @param pVCpu The cross context virtual CPU structure.
11123 * @param pcLoops Pointer to the number of executed loops.
11124 */
11125static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVMCPUCC pVCpu, uint32_t *pcLoops)
11126{
11127 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
11128 Assert(pcLoops);
11129 Assert(*pcLoops <= cMaxResumeLoops);
11130 Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
11131
11132#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
11133 /*
11134 * Switch to the guest VMCS as we may have transitioned from executing the nested-guest
11135 * without leaving ring-0. Otherwise, if we came from ring-3 we would have loaded the
11136 * guest VMCS while entering the VMX ring-0 session.
11137 */
11138 if (pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs)
11139 {
11140 int rc = hmR0VmxSwitchToGstOrNstGstVmcs(pVCpu, false /* fSwitchToNstGstVmcs */);
11141 if (RT_SUCCESS(rc))
11142 { /* likely */ }
11143 else
11144 {
11145 LogRelFunc(("Failed to switch to the guest VMCS. rc=%Rrc\n", rc));
11146 return rc;
11147 }
11148 }
11149#endif
11150
11151 VMXTRANSIENT VmxTransient;
11152 RT_ZERO(VmxTransient);
11153 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
11154
11155 /* Paranoia. */
11156 Assert(VmxTransient.pVmcsInfo == &pVCpu->hm.s.vmx.VmcsInfo);
11157
11158 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
11159 for (;;)
11160 {
11161 Assert(!HMR0SuspendPending());
11162 HMVMX_ASSERT_CPU_SAFE(pVCpu);
11163 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
11164
11165 /*
11166 * Preparatory work for running nested-guest code, this may force us to
11167 * return to ring-3.
11168 *
11169 * Warning! This bugger disables interrupts on VINF_SUCCESS!
11170 */
11171 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
11172 if (rcStrict != VINF_SUCCESS)
11173 break;
11174
11175 /* Interrupts are disabled at this point! */
11176 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
11177 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
11178 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
11179 /* Interrupts are re-enabled at this point! */
11180
11181 /*
11182 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
11183 */
11184 if (RT_SUCCESS(rcRun))
11185 { /* very likely */ }
11186 else
11187 {
11188 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
11189 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
11190 return rcRun;
11191 }
11192
11193 /*
11194 * Profile the VM-exit.
11195 */
11196 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
11197 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
11198 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
11199 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
11200 HMVMX_START_EXIT_DISPATCH_PROF();
11201
11202 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
11203
11204 /*
11205 * Handle the VM-exit.
11206 */
11207#ifdef HMVMX_USE_FUNCTION_TABLE
11208 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, &VmxTransient);
11209#else
11210 rcStrict = hmR0VmxHandleExit(pVCpu, &VmxTransient);
11211#endif
11212 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
11213 if (rcStrict == VINF_SUCCESS)
11214 {
11215 if (++(*pcLoops) <= cMaxResumeLoops)
11216 continue;
11217 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
11218 rcStrict = VINF_EM_RAW_INTERRUPT;
11219 }
11220 break;
11221 }
11222
11223 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
11224 return rcStrict;
11225}
11226
11227
11228#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
11229/**
11230 * Runs the nested-guest code using hardware-assisted VMX.
11231 *
11232 * @returns VBox status code.
11233 * @param pVCpu The cross context virtual CPU structure.
11234 * @param pcLoops Pointer to the number of executed loops.
11235 *
11236 * @sa hmR0VmxRunGuestCodeNormal.
11237 */
11238static VBOXSTRICTRC hmR0VmxRunGuestCodeNested(PVMCPUCC pVCpu, uint32_t *pcLoops)
11239{
11240 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
11241 Assert(pcLoops);
11242 Assert(*pcLoops <= cMaxResumeLoops);
11243 Assert(CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
11244
11245 /*
11246 * Switch to the nested-guest VMCS as we may have transitioned from executing the
11247 * guest without leaving ring-0. Otherwise, if we came from ring-3 we would have
11248 * loaded the nested-guest VMCS while entering the VMX ring-0 session.
11249 */
11250 if (!pVCpu->hm.s.vmx.fSwitchedToNstGstVmcs)
11251 {
11252 int rc = hmR0VmxSwitchToGstOrNstGstVmcs(pVCpu, true /* fSwitchToNstGstVmcs */);
11253 if (RT_SUCCESS(rc))
11254 { /* likely */ }
11255 else
11256 {
11257 LogRelFunc(("Failed to switch to the nested-guest VMCS. rc=%Rrc\n", rc));
11258 return rc;
11259 }
11260 }
11261
11262 VMXTRANSIENT VmxTransient;
11263 RT_ZERO(VmxTransient);
11264 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
11265 VmxTransient.fIsNestedGuest = true;
11266
11267 /* Paranoia. */
11268 Assert(VmxTransient.pVmcsInfo == &pVCpu->hm.s.vmx.VmcsInfoNstGst);
11269
11270 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
11271 for (;;)
11272 {
11273 Assert(!HMR0SuspendPending());
11274 HMVMX_ASSERT_CPU_SAFE(pVCpu);
11275 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
11276
11277 /*
11278 * Preparatory work for running guest code, this may force us to
11279 * return to ring-3.
11280 *
11281 * Warning! This bugger disables interrupts on VINF_SUCCESS!
11282 */
11283 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, false /* fStepping */);
11284 if (rcStrict != VINF_SUCCESS)
11285 break;
11286
11287 /* Interrupts are disabled at this point! */
11288 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
11289 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
11290 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
11291 /* Interrupts are re-enabled at this point! */
11292
11293 /*
11294 * Check for errors with running the VM (VMLAUNCH/VMRESUME).
11295 */
11296 if (RT_SUCCESS(rcRun))
11297 { /* very likely */ }
11298 else
11299 {
11300 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
11301 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
11302 return rcRun;
11303 }
11304
11305 /*
11306 * Profile the VM-exit.
11307 */
11308 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
11309 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
11310 STAM_COUNTER_INC(&pVCpu->hm.s.StatNestedExitAll);
11311 STAM_COUNTER_INC(&pVCpu->hm.s.paStatNestedExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
11312 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
11313 HMVMX_START_EXIT_DISPATCH_PROF();
11314
11315 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
11316
11317 /*
11318 * Handle the VM-exit.
11319 */
11320 rcStrict = hmR0VmxHandleExitNested(pVCpu, &VmxTransient);
11321 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
11322 if (rcStrict == VINF_SUCCESS)
11323 {
11324 if (!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
11325 {
11326 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchNstGstVmexit);
11327 rcStrict = VINF_VMX_VMEXIT;
11328 }
11329 else
11330 {
11331 if (++(*pcLoops) <= cMaxResumeLoops)
11332 continue;
11333 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
11334 rcStrict = VINF_EM_RAW_INTERRUPT;
11335 }
11336 }
11337 else
11338 Assert(rcStrict != VINF_VMX_VMEXIT);
11339 break;
11340 }
11341
11342 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
11343 return rcStrict;
11344}
11345#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
11346
11347
11348/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
11349 * probes.
11350 *
11351 * The following few functions and associated structure contains the bloat
11352 * necessary for providing detailed debug events and dtrace probes as well as
11353 * reliable host side single stepping. This works on the principle of
11354 * "subclassing" the normal execution loop and workers. We replace the loop
11355 * method completely and override selected helpers to add necessary adjustments
11356 * to their core operation.
11357 *
11358 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
11359 * any performance for debug and analysis features.
11360 *
11361 * @{
11362 */
11363
11364/**
11365 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
11366 * the debug run loop.
11367 */
11368typedef struct VMXRUNDBGSTATE
11369{
11370 /** The RIP we started executing at. This is for detecting that we stepped. */
11371 uint64_t uRipStart;
11372 /** The CS we started executing with. */
11373 uint16_t uCsStart;
11374
11375 /** Whether we've actually modified the 1st execution control field. */
11376 bool fModifiedProcCtls : 1;
11377 /** Whether we've actually modified the 2nd execution control field. */
11378 bool fModifiedProcCtls2 : 1;
11379 /** Whether we've actually modified the exception bitmap. */
11380 bool fModifiedXcptBitmap : 1;
11381
11382 /** We desire the modified the CR0 mask to be cleared. */
11383 bool fClearCr0Mask : 1;
11384 /** We desire the modified the CR4 mask to be cleared. */
11385 bool fClearCr4Mask : 1;
11386 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
11387 uint32_t fCpe1Extra;
11388 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
11389 uint32_t fCpe1Unwanted;
11390 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
11391 uint32_t fCpe2Extra;
11392 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
11393 uint32_t bmXcptExtra;
11394 /** The sequence number of the Dtrace provider settings the state was
11395 * configured against. */
11396 uint32_t uDtraceSettingsSeqNo;
11397 /** VM-exits to check (one bit per VM-exit). */
11398 uint32_t bmExitsToCheck[3];
11399
11400 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
11401 uint32_t fProcCtlsInitial;
11402 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
11403 uint32_t fProcCtls2Initial;
11404 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
11405 uint32_t bmXcptInitial;
11406} VMXRUNDBGSTATE;
11407AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
11408typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
11409
11410
11411/**
11412 * Initializes the VMXRUNDBGSTATE structure.
11413 *
11414 * @param pVCpu The cross context virtual CPU structure of the
11415 * calling EMT.
11416 * @param pVmxTransient The VMX-transient structure.
11417 * @param pDbgState The debug state to initialize.
11418 */
11419static void hmR0VmxRunDebugStateInit(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11420{
11421 pDbgState->uRipStart = pVCpu->cpum.GstCtx.rip;
11422 pDbgState->uCsStart = pVCpu->cpum.GstCtx.cs.Sel;
11423
11424 pDbgState->fModifiedProcCtls = false;
11425 pDbgState->fModifiedProcCtls2 = false;
11426 pDbgState->fModifiedXcptBitmap = false;
11427 pDbgState->fClearCr0Mask = false;
11428 pDbgState->fClearCr4Mask = false;
11429 pDbgState->fCpe1Extra = 0;
11430 pDbgState->fCpe1Unwanted = 0;
11431 pDbgState->fCpe2Extra = 0;
11432 pDbgState->bmXcptExtra = 0;
11433 pDbgState->fProcCtlsInitial = pVmxTransient->pVmcsInfo->u32ProcCtls;
11434 pDbgState->fProcCtls2Initial = pVmxTransient->pVmcsInfo->u32ProcCtls2;
11435 pDbgState->bmXcptInitial = pVmxTransient->pVmcsInfo->u32XcptBitmap;
11436}
11437
11438
11439/**
11440 * Updates the VMSC fields with changes requested by @a pDbgState.
11441 *
11442 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
11443 * immediately before executing guest code, i.e. when interrupts are disabled.
11444 * We don't check status codes here as we cannot easily assert or return in the
11445 * latter case.
11446 *
11447 * @param pVCpu The cross context virtual CPU structure.
11448 * @param pVmxTransient The VMX-transient structure.
11449 * @param pDbgState The debug state.
11450 */
11451static void hmR0VmxPreRunGuestDebugStateApply(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11452{
11453 /*
11454 * Ensure desired flags in VMCS control fields are set.
11455 * (Ignoring write failure here, as we're committed and it's just debug extras.)
11456 *
11457 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
11458 * there should be no stale data in pCtx at this point.
11459 */
11460 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11461 if ( (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
11462 || (pVmcsInfo->u32ProcCtls & pDbgState->fCpe1Unwanted))
11463 {
11464 pVmcsInfo->u32ProcCtls |= pDbgState->fCpe1Extra;
11465 pVmcsInfo->u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
11466 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
11467 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVmcsInfo->u32ProcCtls));
11468 pDbgState->fModifiedProcCtls = true;
11469 }
11470
11471 if ((pVmcsInfo->u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
11472 {
11473 pVmcsInfo->u32ProcCtls2 |= pDbgState->fCpe2Extra;
11474 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVmcsInfo->u32ProcCtls2);
11475 Log6Func(("VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVmcsInfo->u32ProcCtls2));
11476 pDbgState->fModifiedProcCtls2 = true;
11477 }
11478
11479 if ((pVmcsInfo->u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
11480 {
11481 pVmcsInfo->u32XcptBitmap |= pDbgState->bmXcptExtra;
11482 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVmcsInfo->u32XcptBitmap);
11483 Log6Func(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVmcsInfo->u32XcptBitmap));
11484 pDbgState->fModifiedXcptBitmap = true;
11485 }
11486
11487 if (pDbgState->fClearCr0Mask && pVmcsInfo->u64Cr0Mask != 0)
11488 {
11489 pVmcsInfo->u64Cr0Mask = 0;
11490 VMXWriteVmcsNw(VMX_VMCS_CTRL_CR0_MASK, 0);
11491 Log6Func(("VMX_VMCS_CTRL_CR0_MASK: 0\n"));
11492 }
11493
11494 if (pDbgState->fClearCr4Mask && pVmcsInfo->u64Cr4Mask != 0)
11495 {
11496 pVmcsInfo->u64Cr4Mask = 0;
11497 VMXWriteVmcsNw(VMX_VMCS_CTRL_CR4_MASK, 0);
11498 Log6Func(("VMX_VMCS_CTRL_CR4_MASK: 0\n"));
11499 }
11500
11501 NOREF(pVCpu);
11502}
11503
11504
11505/**
11506 * Restores VMCS fields that were changed by hmR0VmxPreRunGuestDebugStateApply for
11507 * re-entry next time around.
11508 *
11509 * @returns Strict VBox status code (i.e. informational status codes too).
11510 * @param pVCpu The cross context virtual CPU structure.
11511 * @param pVmxTransient The VMX-transient structure.
11512 * @param pDbgState The debug state.
11513 * @param rcStrict The return code from executing the guest using single
11514 * stepping.
11515 */
11516static VBOXSTRICTRC hmR0VmxRunDebugStateRevert(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState,
11517 VBOXSTRICTRC rcStrict)
11518{
11519 /*
11520 * Restore VM-exit control settings as we may not reenter this function the
11521 * next time around.
11522 */
11523 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
11524
11525 /* We reload the initial value, trigger what we can of recalculations the
11526 next time around. From the looks of things, that's all that's required atm. */
11527 if (pDbgState->fModifiedProcCtls)
11528 {
11529 if (!(pDbgState->fProcCtlsInitial & VMX_PROC_CTLS_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
11530 pDbgState->fProcCtlsInitial |= VMX_PROC_CTLS_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
11531 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
11532 AssertRC(rc2);
11533 pVmcsInfo->u32ProcCtls = pDbgState->fProcCtlsInitial;
11534 }
11535
11536 /* We're currently the only ones messing with this one, so just restore the
11537 cached value and reload the field. */
11538 if ( pDbgState->fModifiedProcCtls2
11539 && pVmcsInfo->u32ProcCtls2 != pDbgState->fProcCtls2Initial)
11540 {
11541 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
11542 AssertRC(rc2);
11543 pVmcsInfo->u32ProcCtls2 = pDbgState->fProcCtls2Initial;
11544 }
11545
11546 /* If we've modified the exception bitmap, we restore it and trigger
11547 reloading and partial recalculation the next time around. */
11548 if (pDbgState->fModifiedXcptBitmap)
11549 pVmcsInfo->u32XcptBitmap = pDbgState->bmXcptInitial;
11550
11551 return rcStrict;
11552}
11553
11554
11555/**
11556 * Configures VM-exit controls for current DBGF and DTrace settings.
11557 *
11558 * This updates @a pDbgState and the VMCS execution control fields to reflect
11559 * the necessary VM-exits demanded by DBGF and DTrace.
11560 *
11561 * @param pVCpu The cross context virtual CPU structure.
11562 * @param pVmxTransient The VMX-transient structure. May update
11563 * fUpdatedTscOffsettingAndPreemptTimer.
11564 * @param pDbgState The debug state.
11565 */
11566static void hmR0VmxPreRunGuestDebugStateUpdate(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
11567{
11568 /*
11569 * Take down the dtrace serial number so we can spot changes.
11570 */
11571 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
11572 ASMCompilerBarrier();
11573
11574 /*
11575 * We'll rebuild most of the middle block of data members (holding the
11576 * current settings) as we go along here, so start by clearing it all.
11577 */
11578 pDbgState->bmXcptExtra = 0;
11579 pDbgState->fCpe1Extra = 0;
11580 pDbgState->fCpe1Unwanted = 0;
11581 pDbgState->fCpe2Extra = 0;
11582 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
11583 pDbgState->bmExitsToCheck[i] = 0;
11584
11585 /*
11586 * Software interrupts (INT XXh) - no idea how to trigger these...
11587 */
11588 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
11589 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
11590 || VBOXVMM_INT_SOFTWARE_ENABLED())
11591 {
11592 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11593 }
11594
11595 /*
11596 * INT3 breakpoints - triggered by #BP exceptions.
11597 */
11598 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
11599 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11600
11601 /*
11602 * Exception bitmap and XCPT events+probes.
11603 */
11604 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
11605 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
11606 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
11607
11608 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
11609 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
11610 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
11611 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
11612 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
11613 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
11614 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
11615 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
11616 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
11617 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
11618 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
11619 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
11620 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
11621 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
11622 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
11623 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
11624 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
11625 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
11626
11627 if (pDbgState->bmXcptExtra)
11628 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
11629
11630 /*
11631 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
11632 *
11633 * Note! This is the reverse of what hmR0VmxHandleExitDtraceEvents does.
11634 * So, when adding/changing/removing please don't forget to update it.
11635 *
11636 * Some of the macros are picking up local variables to save horizontal space,
11637 * (being able to see it in a table is the lesser evil here).
11638 */
11639#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
11640 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
11641 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
11642#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
11643 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11644 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11645 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11646 } else do { } while (0)
11647#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
11648 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11649 { \
11650 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
11651 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11652 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11653 } else do { } while (0)
11654#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
11655 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11656 { \
11657 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
11658 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11659 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11660 } else do { } while (0)
11661#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
11662 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
11663 { \
11664 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
11665 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
11666 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
11667 } else do { } while (0)
11668
11669 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
11670 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
11671 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
11672 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
11673 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
11674
11675 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
11676 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
11677 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
11678 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
11679 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_PROC_CTLS_HLT_EXIT); /* paranoia */
11680 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
11681 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
11682 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
11683 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_PROC_CTLS_INVLPG_EXIT);
11684 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
11685 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_PROC_CTLS_RDPMC_EXIT);
11686 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
11687 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_PROC_CTLS_RDTSC_EXIT);
11688 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
11689 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
11690 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
11691 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
11692 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
11693 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
11694 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
11695 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
11696 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
11697 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
11698 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
11699 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
11700 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
11701 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
11702 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
11703 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
11704 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
11705 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
11706 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
11707 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
11708 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
11709 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
11710 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
11711
11712 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
11713 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11714 {
11715 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4
11716 | CPUMCTX_EXTRN_APIC_TPR);
11717 AssertRC(rc);
11718
11719#if 0 /** @todo fix me */
11720 pDbgState->fClearCr0Mask = true;
11721 pDbgState->fClearCr4Mask = true;
11722#endif
11723 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
11724 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_STORE_EXIT | VMX_PROC_CTLS_CR8_STORE_EXIT;
11725 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
11726 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_CR3_LOAD_EXIT | VMX_PROC_CTLS_CR8_LOAD_EXIT;
11727 pDbgState->fCpe1Unwanted |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* risky? */
11728 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
11729 require clearing here and in the loop if we start using it. */
11730 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
11731 }
11732 else
11733 {
11734 if (pDbgState->fClearCr0Mask)
11735 {
11736 pDbgState->fClearCr0Mask = false;
11737 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
11738 }
11739 if (pDbgState->fClearCr4Mask)
11740 {
11741 pDbgState->fClearCr4Mask = false;
11742 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR4);
11743 }
11744 }
11745 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
11746 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
11747
11748 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
11749 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
11750 {
11751 /** @todo later, need to fix handler as it assumes this won't usually happen. */
11752 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
11753 }
11754 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
11755 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
11756
11757 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS); /* risky clearing this? */
11758 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
11759 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_PROC_CTLS_USE_MSR_BITMAPS);
11760 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
11761 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_PROC_CTLS_MWAIT_EXIT); /* paranoia */
11762 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
11763 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_PROC_CTLS_MONITOR_EXIT); /* paranoia */
11764 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
11765#if 0 /** @todo too slow, fix handler. */
11766 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_PROC_CTLS_PAUSE_EXIT);
11767#endif
11768 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
11769
11770 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
11771 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
11772 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
11773 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
11774 {
11775 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11776 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_GDTR_IDTR_ACCESS);
11777 }
11778 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11779 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11780 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11781 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_GDTR_IDTR_ACCESS);
11782
11783 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
11784 || IS_EITHER_ENABLED(pVM, INSTR_STR)
11785 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
11786 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
11787 {
11788 pDbgState->fCpe2Extra |= VMX_PROC_CTLS2_DESC_TABLE_EXIT;
11789 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_LDTR_TR_ACCESS);
11790 }
11791 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_LDTR_TR_ACCESS);
11792 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_LDTR_TR_ACCESS);
11793 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_LDTR_TR_ACCESS);
11794 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_LDTR_TR_ACCESS);
11795
11796 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
11797 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
11798 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_PROC_CTLS_RDTSC_EXIT);
11799 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
11800 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
11801 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
11802 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_PROC_CTLS2_WBINVD_EXIT);
11803 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
11804 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
11805 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
11806 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_PROC_CTLS2_RDRAND_EXIT);
11807 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
11808 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_PROC_CTLS_INVLPG_EXIT);
11809 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
11810 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
11811 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
11812 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_PROC_CTLS2_RDSEED_EXIT);
11813 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
11814 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
11815 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
11816 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
11817 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
11818
11819#undef IS_EITHER_ENABLED
11820#undef SET_ONLY_XBM_IF_EITHER_EN
11821#undef SET_CPE1_XBM_IF_EITHER_EN
11822#undef SET_CPEU_XBM_IF_EITHER_EN
11823#undef SET_CPE2_XBM_IF_EITHER_EN
11824
11825 /*
11826 * Sanitize the control stuff.
11827 */
11828 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.ProcCtls2.n.allowed1;
11829 if (pDbgState->fCpe2Extra)
11830 pDbgState->fCpe1Extra |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
11831 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed1;
11832 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.ProcCtls.n.allowed0;
11833 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_PROC_CTLS_RDTSC_EXIT))
11834 {
11835 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
11836 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
11837 }
11838
11839 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
11840 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
11841 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
11842 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
11843}
11844
11845
11846/**
11847 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
11848 * appropriate.
11849 *
11850 * The caller has checked the VM-exit against the
11851 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
11852 * already, so we don't have to do that either.
11853 *
11854 * @returns Strict VBox status code (i.e. informational status codes too).
11855 * @param pVCpu The cross context virtual CPU structure.
11856 * @param pVmxTransient The VMX-transient structure.
11857 * @param uExitReason The VM-exit reason.
11858 *
11859 * @remarks The name of this function is displayed by dtrace, so keep it short
11860 * and to the point. No longer than 33 chars long, please.
11861 */
11862static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
11863{
11864 /*
11865 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
11866 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
11867 *
11868 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
11869 * does. Must add/change/remove both places. Same ordering, please.
11870 *
11871 * Added/removed events must also be reflected in the next section
11872 * where we dispatch dtrace events.
11873 */
11874 bool fDtrace1 = false;
11875 bool fDtrace2 = false;
11876 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
11877 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
11878 uint32_t uEventArg = 0;
11879#define SET_EXIT(a_EventSubName) \
11880 do { \
11881 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11882 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11883 } while (0)
11884#define SET_BOTH(a_EventSubName) \
11885 do { \
11886 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
11887 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
11888 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
11889 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
11890 } while (0)
11891 switch (uExitReason)
11892 {
11893 case VMX_EXIT_MTF:
11894 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
11895
11896 case VMX_EXIT_XCPT_OR_NMI:
11897 {
11898 uint8_t const idxVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
11899 switch (VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo))
11900 {
11901 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
11902 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
11903 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
11904 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
11905 {
11906 if (VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uExitIntInfo))
11907 {
11908 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11909 uEventArg = pVmxTransient->uExitIntErrorCode;
11910 }
11911 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
11912 switch (enmEvent1)
11913 {
11914 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
11915 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
11916 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
11917 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
11918 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
11919 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
11920 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
11921 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
11922 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
11923 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
11924 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
11925 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
11926 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
11927 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
11928 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
11929 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
11930 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
11931 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
11932 default: break;
11933 }
11934 }
11935 else
11936 AssertFailed();
11937 break;
11938
11939 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
11940 uEventArg = idxVector;
11941 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
11942 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
11943 break;
11944 }
11945 break;
11946 }
11947
11948 case VMX_EXIT_TRIPLE_FAULT:
11949 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
11950 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
11951 break;
11952 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
11953 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
11954 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
11955 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
11956 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
11957
11958 /* Instruction specific VM-exits: */
11959 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
11960 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
11961 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
11962 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
11963 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
11964 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
11965 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
11966 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
11967 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
11968 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
11969 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
11970 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
11971 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
11972 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
11973 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
11974 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
11975 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
11976 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
11977 case VMX_EXIT_MOV_CRX:
11978 hmR0VmxReadExitQualVmcs(pVmxTransient);
11979 if (VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_CRX_ACCESS_READ)
11980 SET_BOTH(CRX_READ);
11981 else
11982 SET_BOTH(CRX_WRITE);
11983 uEventArg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
11984 break;
11985 case VMX_EXIT_MOV_DRX:
11986 hmR0VmxReadExitQualVmcs(pVmxTransient);
11987 if ( VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual)
11988 == VMX_EXIT_QUAL_DRX_DIRECTION_READ)
11989 SET_BOTH(DRX_READ);
11990 else
11991 SET_BOTH(DRX_WRITE);
11992 uEventArg = VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual);
11993 break;
11994 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
11995 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
11996 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
11997 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
11998 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
11999 case VMX_EXIT_GDTR_IDTR_ACCESS:
12000 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12001 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_XDTR_INSINFO_INSTR_ID))
12002 {
12003 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
12004 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
12005 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
12006 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
12007 }
12008 break;
12009
12010 case VMX_EXIT_LDTR_TR_ACCESS:
12011 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12012 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_BF_YYTR_INSINFO_INSTR_ID))
12013 {
12014 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
12015 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
12016 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
12017 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
12018 }
12019 break;
12020
12021 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
12022 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
12023 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
12024 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
12025 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
12026 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
12027 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
12028 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
12029 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
12030 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
12031 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
12032
12033 /* Events that aren't relevant at this point. */
12034 case VMX_EXIT_EXT_INT:
12035 case VMX_EXIT_INT_WINDOW:
12036 case VMX_EXIT_NMI_WINDOW:
12037 case VMX_EXIT_TPR_BELOW_THRESHOLD:
12038 case VMX_EXIT_PREEMPT_TIMER:
12039 case VMX_EXIT_IO_INSTR:
12040 break;
12041
12042 /* Errors and unexpected events. */
12043 case VMX_EXIT_INIT_SIGNAL:
12044 case VMX_EXIT_SIPI:
12045 case VMX_EXIT_IO_SMI:
12046 case VMX_EXIT_SMI:
12047 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
12048 case VMX_EXIT_ERR_MSR_LOAD:
12049 case VMX_EXIT_ERR_MACHINE_CHECK:
12050 case VMX_EXIT_PML_FULL:
12051 case VMX_EXIT_VIRTUALIZED_EOI:
12052 break;
12053
12054 default:
12055 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
12056 break;
12057 }
12058#undef SET_BOTH
12059#undef SET_EXIT
12060
12061 /*
12062 * Dtrace tracepoints go first. We do them here at once so we don't
12063 * have to copy the guest state saving and stuff a few dozen times.
12064 * Down side is that we've got to repeat the switch, though this time
12065 * we use enmEvent since the probes are a subset of what DBGF does.
12066 */
12067 if (fDtrace1 || fDtrace2)
12068 {
12069 hmR0VmxReadExitQualVmcs(pVmxTransient);
12070 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
12071 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12072 switch (enmEvent1)
12073 {
12074 /** @todo consider which extra parameters would be helpful for each probe. */
12075 case DBGFEVENT_END: break;
12076 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pCtx); break;
12077 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pCtx, pCtx->dr[6]); break;
12078 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pCtx); break;
12079 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pCtx); break;
12080 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pCtx); break;
12081 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pCtx); break;
12082 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pCtx); break;
12083 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pCtx); break;
12084 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pCtx, uEventArg); break;
12085 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pCtx, uEventArg); break;
12086 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pCtx, uEventArg); break;
12087 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pCtx, uEventArg); break;
12088 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pCtx, uEventArg, pCtx->cr2); break;
12089 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pCtx); break;
12090 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pCtx); break;
12091 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pCtx); break;
12092 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pCtx); break;
12093 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pCtx, uEventArg); break;
12094 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12095 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
12096 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pCtx); break;
12097 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pCtx); break;
12098 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pCtx); break;
12099 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pCtx); break;
12100 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pCtx); break;
12101 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pCtx); break;
12102 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pCtx); break;
12103 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12104 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12105 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12106 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12107 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
12108 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pCtx, pCtx->ecx,
12109 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
12110 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pCtx); break;
12111 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pCtx); break;
12112 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pCtx); break;
12113 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pCtx); break;
12114 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pCtx); break;
12115 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pCtx); break;
12116 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pCtx); break;
12117 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pCtx); break;
12118 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pCtx); break;
12119 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pCtx); break;
12120 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pCtx); break;
12121 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pCtx); break;
12122 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pCtx); break;
12123 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pCtx); break;
12124 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pCtx); break;
12125 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pCtx); break;
12126 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pCtx); break;
12127 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pCtx); break;
12128 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pCtx); break;
12129 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pCtx); break;
12130 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pCtx); break;
12131 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pCtx); break;
12132 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pCtx); break;
12133 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pCtx); break;
12134 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pCtx); break;
12135 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pCtx); break;
12136 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pCtx); break;
12137 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pCtx); break;
12138 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pCtx); break;
12139 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pCtx); break;
12140 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pCtx); break;
12141 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pCtx); break;
12142 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
12143 }
12144 switch (enmEvent2)
12145 {
12146 /** @todo consider which extra parameters would be helpful for each probe. */
12147 case DBGFEVENT_END: break;
12148 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pCtx); break;
12149 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pCtx, pCtx->eax, pCtx->ecx); break;
12150 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pCtx); break;
12151 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pCtx); break;
12152 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pCtx); break;
12153 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pCtx); break;
12154 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pCtx); break;
12155 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pCtx); break;
12156 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pCtx); break;
12157 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12158 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12159 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pCtx, (uint8_t)uEventArg); break;
12160 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pCtx, (uint8_t)uEventArg); break;
12161 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pCtx, pCtx->ecx); break;
12162 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pCtx, pCtx->ecx,
12163 RT_MAKE_U64(pCtx->eax, pCtx->edx)); break;
12164 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pCtx); break;
12165 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pCtx); break;
12166 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pCtx); break;
12167 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pCtx); break;
12168 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pCtx); break;
12169 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pCtx); break;
12170 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pCtx); break;
12171 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pCtx); break;
12172 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pCtx); break;
12173 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pCtx); break;
12174 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pCtx); break;
12175 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pCtx); break;
12176 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pCtx); break;
12177 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pCtx); break;
12178 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pCtx); break;
12179 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pCtx); break;
12180 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pCtx); break;
12181 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pCtx); break;
12182 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pCtx); break;
12183 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pCtx); break;
12184 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pCtx); break;
12185 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pCtx); break;
12186 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pCtx); break;
12187 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pCtx); break;
12188 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pCtx); break;
12189 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pCtx); break;
12190 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pCtx); break;
12191 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pCtx); break;
12192 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pCtx); break;
12193 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pCtx); break;
12194 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pCtx); break;
12195 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pCtx); break;
12196 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pCtx); break;
12197 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pCtx); break;
12198 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pCtx); break;
12199 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pCtx); break;
12200 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
12201 }
12202 }
12203
12204 /*
12205 * Fire of the DBGF event, if enabled (our check here is just a quick one,
12206 * the DBGF call will do a full check).
12207 *
12208 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
12209 * Note! If we have to events, we prioritize the first, i.e. the instruction
12210 * one, in order to avoid event nesting.
12211 */
12212 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
12213 if ( enmEvent1 != DBGFEVENT_END
12214 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
12215 {
12216 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12217 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent1, DBGFEVENTCTX_HM, 1, uEventArg);
12218 if (rcStrict != VINF_SUCCESS)
12219 return rcStrict;
12220 }
12221 else if ( enmEvent2 != DBGFEVENT_END
12222 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
12223 {
12224 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12225 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, enmEvent2, DBGFEVENTCTX_HM, 1, uEventArg);
12226 if (rcStrict != VINF_SUCCESS)
12227 return rcStrict;
12228 }
12229
12230 return VINF_SUCCESS;
12231}
12232
12233
12234/**
12235 * Single-stepping VM-exit filtering.
12236 *
12237 * This is preprocessing the VM-exits and deciding whether we've gotten far
12238 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
12239 * handling is performed.
12240 *
12241 * @returns Strict VBox status code (i.e. informational status codes too).
12242 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
12243 * @param pVmxTransient The VMX-transient structure.
12244 * @param pDbgState The debug state.
12245 */
12246DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PVMXRUNDBGSTATE pDbgState)
12247{
12248 /*
12249 * Expensive (saves context) generic dtrace VM-exit probe.
12250 */
12251 uint32_t const uExitReason = pVmxTransient->uExitReason;
12252 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
12253 { /* more likely */ }
12254 else
12255 {
12256 hmR0VmxReadExitQualVmcs(pVmxTransient);
12257 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
12258 AssertRC(rc);
12259 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, &pVCpu->cpum.GstCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
12260 }
12261
12262 /*
12263 * Check for host NMI, just to get that out of the way.
12264 */
12265 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
12266 { /* normally likely */ }
12267 else
12268 {
12269 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
12270 uint32_t const uIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
12271 if (uIntType == VMX_EXIT_INT_INFO_TYPE_NMI)
12272 return hmR0VmxExitHostNmi(pVCpu, pVmxTransient->pVmcsInfo);
12273 }
12274
12275 /*
12276 * Check for single stepping event if we're stepping.
12277 */
12278 if (pVCpu->hm.s.fSingleInstruction)
12279 {
12280 switch (uExitReason)
12281 {
12282 case VMX_EXIT_MTF:
12283 return hmR0VmxExitMtf(pVCpu, pVmxTransient);
12284
12285 /* Various events: */
12286 case VMX_EXIT_XCPT_OR_NMI:
12287 case VMX_EXIT_EXT_INT:
12288 case VMX_EXIT_TRIPLE_FAULT:
12289 case VMX_EXIT_INT_WINDOW:
12290 case VMX_EXIT_NMI_WINDOW:
12291 case VMX_EXIT_TASK_SWITCH:
12292 case VMX_EXIT_TPR_BELOW_THRESHOLD:
12293 case VMX_EXIT_APIC_ACCESS:
12294 case VMX_EXIT_EPT_VIOLATION:
12295 case VMX_EXIT_EPT_MISCONFIG:
12296 case VMX_EXIT_PREEMPT_TIMER:
12297
12298 /* Instruction specific VM-exits: */
12299 case VMX_EXIT_CPUID:
12300 case VMX_EXIT_GETSEC:
12301 case VMX_EXIT_HLT:
12302 case VMX_EXIT_INVD:
12303 case VMX_EXIT_INVLPG:
12304 case VMX_EXIT_RDPMC:
12305 case VMX_EXIT_RDTSC:
12306 case VMX_EXIT_RSM:
12307 case VMX_EXIT_VMCALL:
12308 case VMX_EXIT_VMCLEAR:
12309 case VMX_EXIT_VMLAUNCH:
12310 case VMX_EXIT_VMPTRLD:
12311 case VMX_EXIT_VMPTRST:
12312 case VMX_EXIT_VMREAD:
12313 case VMX_EXIT_VMRESUME:
12314 case VMX_EXIT_VMWRITE:
12315 case VMX_EXIT_VMXOFF:
12316 case VMX_EXIT_VMXON:
12317 case VMX_EXIT_MOV_CRX:
12318 case VMX_EXIT_MOV_DRX:
12319 case VMX_EXIT_IO_INSTR:
12320 case VMX_EXIT_RDMSR:
12321 case VMX_EXIT_WRMSR:
12322 case VMX_EXIT_MWAIT:
12323 case VMX_EXIT_MONITOR:
12324 case VMX_EXIT_PAUSE:
12325 case VMX_EXIT_GDTR_IDTR_ACCESS:
12326 case VMX_EXIT_LDTR_TR_ACCESS:
12327 case VMX_EXIT_INVEPT:
12328 case VMX_EXIT_RDTSCP:
12329 case VMX_EXIT_INVVPID:
12330 case VMX_EXIT_WBINVD:
12331 case VMX_EXIT_XSETBV:
12332 case VMX_EXIT_RDRAND:
12333 case VMX_EXIT_INVPCID:
12334 case VMX_EXIT_VMFUNC:
12335 case VMX_EXIT_RDSEED:
12336 case VMX_EXIT_XSAVES:
12337 case VMX_EXIT_XRSTORS:
12338 {
12339 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12340 AssertRCReturn(rc, rc);
12341 if ( pVCpu->cpum.GstCtx.rip != pDbgState->uRipStart
12342 || pVCpu->cpum.GstCtx.cs.Sel != pDbgState->uCsStart)
12343 return VINF_EM_DBG_STEPPED;
12344 break;
12345 }
12346
12347 /* Errors and unexpected events: */
12348 case VMX_EXIT_INIT_SIGNAL:
12349 case VMX_EXIT_SIPI:
12350 case VMX_EXIT_IO_SMI:
12351 case VMX_EXIT_SMI:
12352 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
12353 case VMX_EXIT_ERR_MSR_LOAD:
12354 case VMX_EXIT_ERR_MACHINE_CHECK:
12355 case VMX_EXIT_PML_FULL:
12356 case VMX_EXIT_VIRTUALIZED_EOI:
12357 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
12358 break;
12359
12360 default:
12361 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
12362 break;
12363 }
12364 }
12365
12366 /*
12367 * Check for debugger event breakpoints and dtrace probes.
12368 */
12369 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
12370 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
12371 {
12372 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVCpu, pVmxTransient, uExitReason);
12373 if (rcStrict != VINF_SUCCESS)
12374 return rcStrict;
12375 }
12376
12377 /*
12378 * Normal processing.
12379 */
12380#ifdef HMVMX_USE_FUNCTION_TABLE
12381 return g_apfnVMExitHandlers[uExitReason](pVCpu, pVmxTransient);
12382#else
12383 return hmR0VmxHandleExit(pVCpu, pVmxTransient, uExitReason);
12384#endif
12385}
12386
12387
12388/**
12389 * Single steps guest code using hardware-assisted VMX.
12390 *
12391 * This is -not- the same as the guest single-stepping itself (say using EFLAGS.TF)
12392 * but single-stepping through the hypervisor debugger.
12393 *
12394 * @returns Strict VBox status code (i.e. informational status codes too).
12395 * @param pVCpu The cross context virtual CPU structure.
12396 * @param pcLoops Pointer to the number of executed loops.
12397 *
12398 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
12399 */
12400static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVMCPUCC pVCpu, uint32_t *pcLoops)
12401{
12402 uint32_t const cMaxResumeLoops = pVCpu->CTX_SUFF(pVM)->hm.s.cMaxResumeLoops;
12403 Assert(pcLoops);
12404 Assert(*pcLoops <= cMaxResumeLoops);
12405
12406 VMXTRANSIENT VmxTransient;
12407 RT_ZERO(VmxTransient);
12408 VmxTransient.pVmcsInfo = hmGetVmxActiveVmcsInfo(pVCpu);
12409
12410 /* Set HMCPU indicators. */
12411 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
12412 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
12413 pVCpu->hm.s.fDebugWantRdTscExit = false;
12414 pVCpu->hm.s.fUsingDebugLoop = true;
12415
12416 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
12417 VMXRUNDBGSTATE DbgState;
12418 hmR0VmxRunDebugStateInit(pVCpu, &VmxTransient, &DbgState);
12419 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
12420
12421 /*
12422 * The loop.
12423 */
12424 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
12425 for (;;)
12426 {
12427 Assert(!HMR0SuspendPending());
12428 HMVMX_ASSERT_CPU_SAFE(pVCpu);
12429 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
12430 bool fStepping = pVCpu->hm.s.fSingleInstruction;
12431
12432 /* Set up VM-execution controls the next two can respond to. */
12433 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
12434
12435 /*
12436 * Preparatory work for running guest code, this may force us to
12437 * return to ring-3.
12438 *
12439 * Warning! This bugger disables interrupts on VINF_SUCCESS!
12440 */
12441 rcStrict = hmR0VmxPreRunGuest(pVCpu, &VmxTransient, fStepping);
12442 if (rcStrict != VINF_SUCCESS)
12443 break;
12444
12445 /* Interrupts are disabled at this point! */
12446 hmR0VmxPreRunGuestCommitted(pVCpu, &VmxTransient);
12447
12448 /* Override any obnoxious code in the above two calls. */
12449 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &VmxTransient, &DbgState);
12450
12451 /*
12452 * Finally execute the guest.
12453 */
12454 int rcRun = hmR0VmxRunGuest(pVCpu, &VmxTransient);
12455
12456 hmR0VmxPostRunGuest(pVCpu, &VmxTransient, rcRun);
12457 /* Interrupts are re-enabled at this point! */
12458
12459 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
12460 if (RT_SUCCESS(rcRun))
12461 { /* very likely */ }
12462 else
12463 {
12464 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatPreExit, x);
12465 hmR0VmxReportWorldSwitchError(pVCpu, rcRun, &VmxTransient);
12466 return rcRun;
12467 }
12468
12469 /* Profile the VM-exit. */
12470 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
12471 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
12472 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
12473 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatPreExit, &pVCpu->hm.s.StatExitHandling, x);
12474 HMVMX_START_EXIT_DISPATCH_PROF();
12475
12476 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, &pVCpu->cpum.GstCtx, VmxTransient.uExitReason);
12477
12478 /*
12479 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
12480 */
12481 rcStrict = hmR0VmxRunDebugHandleExit(pVCpu, &VmxTransient, &DbgState);
12482 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitHandling, x);
12483 if (rcStrict != VINF_SUCCESS)
12484 break;
12485 if (++(*pcLoops) > cMaxResumeLoops)
12486 {
12487 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
12488 rcStrict = VINF_EM_RAW_INTERRUPT;
12489 break;
12490 }
12491
12492 /*
12493 * Stepping: Did the RIP change, if so, consider it a single step.
12494 * Otherwise, make sure one of the TFs gets set.
12495 */
12496 if (fStepping)
12497 {
12498 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
12499 AssertRC(rc);
12500 if ( pVCpu->cpum.GstCtx.rip != DbgState.uRipStart
12501 || pVCpu->cpum.GstCtx.cs.Sel != DbgState.uCsStart)
12502 {
12503 rcStrict = VINF_EM_DBG_STEPPED;
12504 break;
12505 }
12506 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
12507 }
12508
12509 /*
12510 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
12511 */
12512 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
12513 hmR0VmxPreRunGuestDebugStateUpdate(pVCpu, &VmxTransient, &DbgState);
12514 }
12515
12516 /*
12517 * Clear the X86_EFL_TF if necessary.
12518 */
12519 if (pVCpu->hm.s.fClearTrapFlag)
12520 {
12521 int rc = hmR0VmxImportGuestState(pVCpu, VmxTransient.pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
12522 AssertRC(rc);
12523 pVCpu->hm.s.fClearTrapFlag = false;
12524 pVCpu->cpum.GstCtx.eflags.Bits.u1TF = 0;
12525 }
12526 /** @todo there seems to be issues with the resume flag when the monitor trap
12527 * flag is pending without being used. Seen early in bios init when
12528 * accessing APIC page in protected mode. */
12529
12530 /*
12531 * Restore VM-exit control settings as we may not re-enter this function the
12532 * next time around.
12533 */
12534 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &VmxTransient, &DbgState, rcStrict);
12535
12536 /* Restore HMCPU indicators. */
12537 pVCpu->hm.s.fUsingDebugLoop = false;
12538 pVCpu->hm.s.fDebugWantRdTscExit = false;
12539 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
12540
12541 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
12542 return rcStrict;
12543}
12544
12545
12546/** @} */
12547
12548
12549/**
12550 * Checks if any expensive dtrace probes are enabled and we should go to the
12551 * debug loop.
12552 *
12553 * @returns true if we should use debug loop, false if not.
12554 */
12555static bool hmR0VmxAnyExpensiveProbesEnabled(void)
12556{
12557 /* It's probably faster to OR the raw 32-bit counter variables together.
12558 Since the variables are in an array and the probes are next to one
12559 another (more or less), we have good locality. So, better read
12560 eight-nine cache lines ever time and only have one conditional, than
12561 128+ conditionals, right? */
12562 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
12563 | VBOXVMM_XCPT_DE_ENABLED_RAW()
12564 | VBOXVMM_XCPT_DB_ENABLED_RAW()
12565 | VBOXVMM_XCPT_BP_ENABLED_RAW()
12566 | VBOXVMM_XCPT_OF_ENABLED_RAW()
12567 | VBOXVMM_XCPT_BR_ENABLED_RAW()
12568 | VBOXVMM_XCPT_UD_ENABLED_RAW()
12569 | VBOXVMM_XCPT_NM_ENABLED_RAW()
12570 | VBOXVMM_XCPT_DF_ENABLED_RAW()
12571 | VBOXVMM_XCPT_TS_ENABLED_RAW()
12572 | VBOXVMM_XCPT_NP_ENABLED_RAW()
12573 | VBOXVMM_XCPT_SS_ENABLED_RAW()
12574 | VBOXVMM_XCPT_GP_ENABLED_RAW()
12575 | VBOXVMM_XCPT_PF_ENABLED_RAW()
12576 | VBOXVMM_XCPT_MF_ENABLED_RAW()
12577 | VBOXVMM_XCPT_AC_ENABLED_RAW()
12578 | VBOXVMM_XCPT_XF_ENABLED_RAW()
12579 | VBOXVMM_XCPT_VE_ENABLED_RAW()
12580 | VBOXVMM_XCPT_SX_ENABLED_RAW()
12581 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
12582 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
12583 ) != 0
12584 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
12585 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
12586 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
12587 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
12588 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
12589 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
12590 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
12591 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
12592 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
12593 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
12594 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
12595 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
12596 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
12597 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
12598 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
12599 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
12600 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
12601 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
12602 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
12603 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
12604 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
12605 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
12606 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
12607 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
12608 | VBOXVMM_INSTR_STR_ENABLED_RAW()
12609 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
12610 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
12611 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
12612 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
12613 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
12614 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
12615 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
12616 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
12617 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
12618 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
12619 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
12620 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
12621 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
12622 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
12623 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
12624 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
12625 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
12626 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
12627 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
12628 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
12629 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
12630 ) != 0
12631 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
12632 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
12633 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
12634 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
12635 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
12636 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
12637 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
12638 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
12639 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
12640 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
12641 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
12642 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
12643 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
12644 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
12645 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
12646 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
12647 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
12648 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
12649 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
12650 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
12651 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
12652 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
12653 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
12654 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
12655 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
12656 | VBOXVMM_EXIT_STR_ENABLED_RAW()
12657 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
12658 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
12659 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
12660 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
12661 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
12662 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
12663 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
12664 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
12665 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
12666 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
12667 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
12668 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
12669 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
12670 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
12671 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
12672 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
12673 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
12674 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
12675 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
12676 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
12677 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
12678 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
12679 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
12680 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
12681 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
12682 ) != 0;
12683}
12684
12685
12686/**
12687 * Runs the guest using hardware-assisted VMX.
12688 *
12689 * @returns Strict VBox status code (i.e. informational status codes too).
12690 * @param pVCpu The cross context virtual CPU structure.
12691 */
12692VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVMCPUCC pVCpu)
12693{
12694 AssertPtr(pVCpu);
12695 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
12696 Assert(VMMRZCallRing3IsEnabled(pVCpu));
12697 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12698 HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
12699
12700 VBOXSTRICTRC rcStrict;
12701 uint32_t cLoops = 0;
12702 for (;;)
12703 {
12704#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12705 bool const fInNestedGuestMode = CPUMIsGuestInVmxNonRootMode(pCtx);
12706#else
12707 NOREF(pCtx);
12708 bool const fInNestedGuestMode = false;
12709#endif
12710 if (!fInNestedGuestMode)
12711 {
12712 if ( !pVCpu->hm.s.fUseDebugLoop
12713 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
12714 && !DBGFIsStepping(pVCpu)
12715 && !pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
12716 rcStrict = hmR0VmxRunGuestCodeNormal(pVCpu, &cLoops);
12717 else
12718 rcStrict = hmR0VmxRunGuestCodeDebug(pVCpu, &cLoops);
12719 }
12720#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12721 else
12722 rcStrict = hmR0VmxRunGuestCodeNested(pVCpu, &cLoops);
12723
12724 if (rcStrict == VINF_VMX_VMLAUNCH_VMRESUME)
12725 {
12726 Assert(CPUMIsGuestInVmxNonRootMode(pCtx));
12727 continue;
12728 }
12729 if (rcStrict == VINF_VMX_VMEXIT)
12730 {
12731 Assert(!CPUMIsGuestInVmxNonRootMode(pCtx));
12732 continue;
12733 }
12734#endif
12735 break;
12736 }
12737
12738 int const rcLoop = VBOXSTRICTRC_VAL(rcStrict);
12739 switch (rcLoop)
12740 {
12741 case VERR_EM_INTERPRETER: rcStrict = VINF_EM_RAW_EMULATE_INSTR; break;
12742 case VINF_EM_RESET: rcStrict = VINF_EM_TRIPLE_FAULT; break;
12743 }
12744
12745 int rc2 = hmR0VmxExitToRing3(pVCpu, rcStrict);
12746 if (RT_FAILURE(rc2))
12747 {
12748 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
12749 rcStrict = rc2;
12750 }
12751 Assert(!ASMAtomicUoReadU64(&pCtx->fExtrn));
12752 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
12753 return rcStrict;
12754}
12755
12756
12757#ifndef HMVMX_USE_FUNCTION_TABLE
12758/**
12759 * Handles a guest VM-exit from hardware-assisted VMX execution.
12760 *
12761 * @returns Strict VBox status code (i.e. informational status codes too).
12762 * @param pVCpu The cross context virtual CPU structure.
12763 * @param pVmxTransient The VMX-transient structure.
12764 */
12765DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
12766{
12767#ifdef DEBUG_ramshankar
12768# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
12769 do { \
12770 if (a_fSave != 0) \
12771 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL); \
12772 VBOXSTRICTRC rcStrict = a_CallExpr; \
12773 if (a_fSave != 0) \
12774 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST); \
12775 return rcStrict; \
12776 } while (0)
12777#else
12778# define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
12779#endif
12780 uint32_t const uExitReason = pVmxTransient->uExitReason;
12781 switch (uExitReason)
12782 {
12783 case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient));
12784 case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, hmR0VmxExitEptViolation(pVCpu, pVmxTransient));
12785 case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, hmR0VmxExitIoInstr(pVCpu, pVmxTransient));
12786 case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, hmR0VmxExitCpuid(pVCpu, pVmxTransient));
12787 case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, hmR0VmxExitRdtsc(pVCpu, pVmxTransient));
12788 case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, hmR0VmxExitRdtscp(pVCpu, pVmxTransient));
12789 case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, hmR0VmxExitApicAccess(pVCpu, pVmxTransient));
12790 case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, hmR0VmxExitXcptOrNmi(pVCpu, pVmxTransient));
12791 case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovCRx(pVCpu, pVmxTransient));
12792 case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, hmR0VmxExitExtInt(pVCpu, pVmxTransient));
12793 case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, hmR0VmxExitIntWindow(pVCpu, pVmxTransient));
12794 case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient));
12795 case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, hmR0VmxExitMwait(pVCpu, pVmxTransient));
12796 case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, hmR0VmxExitMonitor(pVCpu, pVmxTransient));
12797 case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, hmR0VmxExitTaskSwitch(pVCpu, pVmxTransient));
12798 case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient));
12799 case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, hmR0VmxExitRdmsr(pVCpu, pVmxTransient));
12800 case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, hmR0VmxExitWrmsr(pVCpu, pVmxTransient));
12801 case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, hmR0VmxExitVmcall(pVCpu, pVmxTransient));
12802 case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, hmR0VmxExitMovDRx(pVCpu, pVmxTransient));
12803 case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, hmR0VmxExitHlt(pVCpu, pVmxTransient));
12804 case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, hmR0VmxExitInvd(pVCpu, pVmxTransient));
12805 case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, hmR0VmxExitInvlpg(pVCpu, pVmxTransient));
12806 case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, hmR0VmxExitMtf(pVCpu, pVmxTransient));
12807 case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, hmR0VmxExitPause(pVCpu, pVmxTransient));
12808 case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, hmR0VmxExitWbinvd(pVCpu, pVmxTransient));
12809 case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, hmR0VmxExitXsetbv(pVCpu, pVmxTransient));
12810 case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, hmR0VmxExitInvpcid(pVCpu, pVmxTransient));
12811 case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, hmR0VmxExitGetsec(pVCpu, pVmxTransient));
12812 case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, hmR0VmxExitRdpmc(pVCpu, pVmxTransient));
12813#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12814 case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, hmR0VmxExitVmclear(pVCpu, pVmxTransient));
12815 case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, hmR0VmxExitVmlaunch(pVCpu, pVmxTransient));
12816 case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrld(pVCpu, pVmxTransient));
12817 case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, hmR0VmxExitVmptrst(pVCpu, pVmxTransient));
12818 case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, hmR0VmxExitVmread(pVCpu, pVmxTransient));
12819 case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, hmR0VmxExitVmwrite(pVCpu, pVmxTransient));
12820 case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, hmR0VmxExitVmresume(pVCpu, pVmxTransient));
12821 case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, hmR0VmxExitVmxoff(pVCpu, pVmxTransient));
12822 case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, hmR0VmxExitVmxon(pVCpu, pVmxTransient));
12823 case VMX_EXIT_INVVPID: VMEXIT_CALL_RET(0, hmR0VmxExitInvvpid(pVCpu, pVmxTransient));
12824 case VMX_EXIT_INVEPT: VMEXIT_CALL_RET(0, hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient));
12825#else
12826 case VMX_EXIT_VMCLEAR:
12827 case VMX_EXIT_VMLAUNCH:
12828 case VMX_EXIT_VMPTRLD:
12829 case VMX_EXIT_VMPTRST:
12830 case VMX_EXIT_VMREAD:
12831 case VMX_EXIT_VMRESUME:
12832 case VMX_EXIT_VMWRITE:
12833 case VMX_EXIT_VMXOFF:
12834 case VMX_EXIT_VMXON:
12835 case VMX_EXIT_INVVPID:
12836 case VMX_EXIT_INVEPT:
12837 return hmR0VmxExitSetPendingXcptUD(pVCpu, pVmxTransient);
12838#endif
12839
12840 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pVmxTransient);
12841 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pVmxTransient);
12842 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
12843
12844 case VMX_EXIT_INIT_SIGNAL:
12845 case VMX_EXIT_SIPI:
12846 case VMX_EXIT_IO_SMI:
12847 case VMX_EXIT_SMI:
12848 case VMX_EXIT_ERR_MSR_LOAD:
12849 case VMX_EXIT_ERR_MACHINE_CHECK:
12850 case VMX_EXIT_PML_FULL:
12851 case VMX_EXIT_VIRTUALIZED_EOI:
12852 case VMX_EXIT_GDTR_IDTR_ACCESS:
12853 case VMX_EXIT_LDTR_TR_ACCESS:
12854 case VMX_EXIT_APIC_WRITE:
12855 case VMX_EXIT_RDRAND:
12856 case VMX_EXIT_RSM:
12857 case VMX_EXIT_VMFUNC:
12858 case VMX_EXIT_ENCLS:
12859 case VMX_EXIT_RDSEED:
12860 case VMX_EXIT_XSAVES:
12861 case VMX_EXIT_XRSTORS:
12862 case VMX_EXIT_UMWAIT:
12863 case VMX_EXIT_TPAUSE:
12864 default:
12865 return hmR0VmxExitErrUnexpected(pVCpu, pVmxTransient);
12866 }
12867#undef VMEXIT_CALL_RET
12868}
12869#endif /* !HMVMX_USE_FUNCTION_TABLE */
12870
12871
12872#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
12873/**
12874 * Handles a nested-guest VM-exit from hardware-assisted VMX execution.
12875 *
12876 * @returns Strict VBox status code (i.e. informational status codes too).
12877 * @param pVCpu The cross context virtual CPU structure.
12878 * @param pVmxTransient The VMX-transient structure.
12879 */
12880DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
12881{
12882 uint32_t const uExitReason = pVmxTransient->uExitReason;
12883 switch (uExitReason)
12884 {
12885 case VMX_EXIT_EPT_MISCONFIG: return hmR0VmxExitEptMisconfig(pVCpu, pVmxTransient);
12886 case VMX_EXIT_EPT_VIOLATION: return hmR0VmxExitEptViolation(pVCpu, pVmxTransient);
12887 case VMX_EXIT_XCPT_OR_NMI: return hmR0VmxExitXcptOrNmiNested(pVCpu, pVmxTransient);
12888 case VMX_EXIT_IO_INSTR: return hmR0VmxExitIoInstrNested(pVCpu, pVmxTransient);
12889 case VMX_EXIT_HLT: return hmR0VmxExitHltNested(pVCpu, pVmxTransient);
12890
12891 /*
12892 * We shouldn't direct host physical interrupts to the nested-guest.
12893 */
12894 case VMX_EXIT_EXT_INT:
12895 return hmR0VmxExitExtInt(pVCpu, pVmxTransient);
12896
12897 /*
12898 * Instructions that cause VM-exits unconditionally or the condition is
12899 * always is taken solely from the nested hypervisor (meaning if the VM-exit
12900 * happens, it's guaranteed to be a nested-guest VM-exit).
12901 *
12902 * - Provides VM-exit instruction length ONLY.
12903 */
12904 case VMX_EXIT_CPUID: /* Unconditional. */
12905 case VMX_EXIT_VMCALL:
12906 case VMX_EXIT_GETSEC:
12907 case VMX_EXIT_INVD:
12908 case VMX_EXIT_XSETBV:
12909 case VMX_EXIT_VMLAUNCH:
12910 case VMX_EXIT_VMRESUME:
12911 case VMX_EXIT_VMXOFF:
12912 case VMX_EXIT_ENCLS: /* Condition specified solely by nested hypervisor. */
12913 case VMX_EXIT_VMFUNC:
12914 return hmR0VmxExitInstrNested(pVCpu, pVmxTransient);
12915
12916 /*
12917 * Instructions that cause VM-exits unconditionally or the condition is
12918 * always is taken solely from the nested hypervisor (meaning if the VM-exit
12919 * happens, it's guaranteed to be a nested-guest VM-exit).
12920 *
12921 * - Provides VM-exit instruction length.
12922 * - Provides VM-exit information.
12923 * - Optionally provides Exit qualification.
12924 *
12925 * Since Exit qualification is 0 for all VM-exits where it is not
12926 * applicable, reading and passing it to the guest should produce
12927 * defined behavior.
12928 *
12929 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
12930 */
12931 case VMX_EXIT_INVEPT: /* Unconditional. */
12932 case VMX_EXIT_INVVPID:
12933 case VMX_EXIT_VMCLEAR:
12934 case VMX_EXIT_VMPTRLD:
12935 case VMX_EXIT_VMPTRST:
12936 case VMX_EXIT_VMXON:
12937 case VMX_EXIT_GDTR_IDTR_ACCESS: /* Condition specified solely by nested hypervisor. */
12938 case VMX_EXIT_LDTR_TR_ACCESS:
12939 case VMX_EXIT_RDRAND:
12940 case VMX_EXIT_RDSEED:
12941 case VMX_EXIT_XSAVES:
12942 case VMX_EXIT_XRSTORS:
12943 case VMX_EXIT_UMWAIT:
12944 case VMX_EXIT_TPAUSE:
12945 return hmR0VmxExitInstrWithInfoNested(pVCpu, pVmxTransient);
12946
12947 case VMX_EXIT_RDTSC: return hmR0VmxExitRdtscNested(pVCpu, pVmxTransient);
12948 case VMX_EXIT_RDTSCP: return hmR0VmxExitRdtscpNested(pVCpu, pVmxTransient);
12949 case VMX_EXIT_RDMSR: return hmR0VmxExitRdmsrNested(pVCpu, pVmxTransient);
12950 case VMX_EXIT_WRMSR: return hmR0VmxExitWrmsrNested(pVCpu, pVmxTransient);
12951 case VMX_EXIT_INVLPG: return hmR0VmxExitInvlpgNested(pVCpu, pVmxTransient);
12952 case VMX_EXIT_INVPCID: return hmR0VmxExitInvpcidNested(pVCpu, pVmxTransient);
12953 case VMX_EXIT_TASK_SWITCH: return hmR0VmxExitTaskSwitchNested(pVCpu, pVmxTransient);
12954 case VMX_EXIT_WBINVD: return hmR0VmxExitWbinvdNested(pVCpu, pVmxTransient);
12955 case VMX_EXIT_MTF: return hmR0VmxExitMtfNested(pVCpu, pVmxTransient);
12956 case VMX_EXIT_APIC_ACCESS: return hmR0VmxExitApicAccessNested(pVCpu, pVmxTransient);
12957 case VMX_EXIT_APIC_WRITE: return hmR0VmxExitApicWriteNested(pVCpu, pVmxTransient);
12958 case VMX_EXIT_VIRTUALIZED_EOI: return hmR0VmxExitVirtEoiNested(pVCpu, pVmxTransient);
12959 case VMX_EXIT_MOV_CRX: return hmR0VmxExitMovCRxNested(pVCpu, pVmxTransient);
12960 case VMX_EXIT_INT_WINDOW: return hmR0VmxExitIntWindowNested(pVCpu, pVmxTransient);
12961 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindowNested(pVCpu, pVmxTransient);
12962 case VMX_EXIT_TPR_BELOW_THRESHOLD: return hmR0VmxExitTprBelowThresholdNested(pVCpu, pVmxTransient);
12963 case VMX_EXIT_MWAIT: return hmR0VmxExitMwaitNested(pVCpu, pVmxTransient);
12964 case VMX_EXIT_MONITOR: return hmR0VmxExitMonitorNested(pVCpu, pVmxTransient);
12965 case VMX_EXIT_PAUSE: return hmR0VmxExitPauseNested(pVCpu, pVmxTransient);
12966
12967 case VMX_EXIT_PREEMPT_TIMER:
12968 {
12969 /** @todo NSTVMX: Preempt timer. */
12970 return hmR0VmxExitPreemptTimer(pVCpu, pVmxTransient);
12971 }
12972
12973 case VMX_EXIT_MOV_DRX: return hmR0VmxExitMovDRxNested(pVCpu, pVmxTransient);
12974 case VMX_EXIT_RDPMC: return hmR0VmxExitRdpmcNested(pVCpu, pVmxTransient);
12975
12976 case VMX_EXIT_VMREAD:
12977 case VMX_EXIT_VMWRITE: return hmR0VmxExitVmreadVmwriteNested(pVCpu, pVmxTransient);
12978
12979 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFaultNested(pVCpu, pVmxTransient);
12980 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestStateNested(pVCpu, pVmxTransient);
12981
12982 case VMX_EXIT_INIT_SIGNAL:
12983 case VMX_EXIT_SIPI:
12984 case VMX_EXIT_IO_SMI:
12985 case VMX_EXIT_SMI:
12986 case VMX_EXIT_ERR_MSR_LOAD:
12987 case VMX_EXIT_ERR_MACHINE_CHECK:
12988 case VMX_EXIT_PML_FULL:
12989 case VMX_EXIT_RSM:
12990 default:
12991 return hmR0VmxExitErrUnexpected(pVCpu, pVmxTransient);
12992 }
12993}
12994#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
12995
12996
12997/** @name VM-exit helpers.
12998 * @{
12999 */
13000/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13001/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit helpers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
13002/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13003
13004/** Macro for VM-exits called unexpectedly. */
13005#define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_HmError) \
13006 do { \
13007 (a_pVCpu)->hm.s.u32HMError = (a_HmError); \
13008 return VERR_VMX_UNEXPECTED_EXIT; \
13009 } while (0)
13010
13011#ifdef VBOX_STRICT
13012/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
13013# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
13014 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
13015
13016# define HMVMX_ASSERT_PREEMPT_CPUID() \
13017 do { \
13018 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
13019 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
13020 } while (0)
13021
13022# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13023 do { \
13024 AssertPtr((a_pVCpu)); \
13025 AssertPtr((a_pVmxTransient)); \
13026 Assert((a_pVmxTransient)->fVMEntryFailed == false); \
13027 Assert((a_pVmxTransient)->pVmcsInfo); \
13028 Assert(ASMIntAreEnabled()); \
13029 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
13030 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
13031 Log4Func(("vcpu[%RU32]\n", (a_pVCpu)->idCpu)); \
13032 HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
13033 if (VMMR0IsLogFlushDisabled((a_pVCpu))) \
13034 HMVMX_ASSERT_PREEMPT_CPUID(); \
13035 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
13036 } while (0)
13037
13038# define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13039 do { \
13040 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); \
13041 Assert((a_pVmxTransient)->fIsNestedGuest); \
13042 } while (0)
13043
13044# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13045 do { \
13046 Log4Func(("\n")); \
13047 } while (0)
13048#else
13049# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13050 do { \
13051 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
13052 NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
13053 } while (0)
13054
13055# define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
13056 do { HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); } while (0)
13057
13058# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
13059#endif
13060
13061#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13062/** Macro that does the necessary privilege checks and intercepted VM-exits for
13063 * guests that attempted to execute a VMX instruction. */
13064# define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
13065 do \
13066 { \
13067 VBOXSTRICTRC rcStrictTmp = hmR0VmxCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
13068 if (rcStrictTmp == VINF_SUCCESS) \
13069 { /* likely */ } \
13070 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
13071 { \
13072 Assert((a_pVCpu)->hm.s.Event.fPending); \
13073 Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
13074 return VINF_SUCCESS; \
13075 } \
13076 else \
13077 { \
13078 int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
13079 AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
13080 } \
13081 } while (0)
13082
13083/** Macro that decodes a memory operand for an VM-exit caused by an instruction. */
13084# define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
13085 do \
13086 { \
13087 VBOXSTRICTRC rcStrictTmp = hmR0VmxDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
13088 (a_pGCPtrEffAddr)); \
13089 if (rcStrictTmp == VINF_SUCCESS) \
13090 { /* likely */ } \
13091 else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
13092 { \
13093 uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
13094 Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
13095 NOREF(uXcptTmp); \
13096 return VINF_SUCCESS; \
13097 } \
13098 else \
13099 { \
13100 Log4Func(("hmR0VmxDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
13101 return rcStrictTmp; \
13102 } \
13103 } while (0)
13104#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13105
13106
13107/**
13108 * Advances the guest RIP by the specified number of bytes.
13109 *
13110 * @param pVCpu The cross context virtual CPU structure.
13111 * @param cbInstr Number of bytes to advance the RIP by.
13112 *
13113 * @remarks No-long-jump zone!!!
13114 */
13115DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPUCC pVCpu, uint32_t cbInstr)
13116{
13117 /* Advance the RIP. */
13118 pVCpu->cpum.GstCtx.rip += cbInstr;
13119 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
13120
13121 /* Update interrupt inhibition. */
13122 if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
13123 && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
13124 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
13125}
13126
13127
13128/**
13129 * Advances the guest RIP after reading it from the VMCS.
13130 *
13131 * @returns VBox status code, no informational status codes.
13132 * @param pVCpu The cross context virtual CPU structure.
13133 * @param pVmxTransient The VMX-transient structure.
13134 *
13135 * @remarks No-long-jump zone!!!
13136 */
13137static int hmR0VmxAdvanceGuestRip(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13138{
13139 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13140 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
13141 AssertRCReturn(rc, rc);
13142
13143 hmR0VmxAdvanceGuestRipBy(pVCpu, pVmxTransient->cbExitInstr);
13144 return VINF_SUCCESS;
13145}
13146
13147
13148/**
13149 * Handle a condition that occurred while delivering an event through the guest or
13150 * nested-guest IDT.
13151 *
13152 * @returns Strict VBox status code (i.e. informational status codes too).
13153 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
13154 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
13155 * to continue execution of the guest which will delivery the \#DF.
13156 * @retval VINF_EM_RESET if we detected a triple-fault condition.
13157 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
13158 *
13159 * @param pVCpu The cross context virtual CPU structure.
13160 * @param pVmxTransient The VMX-transient structure.
13161 *
13162 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13163 * Additionally, HMVMX_READ_EXIT_QUALIFICATION is required if the VM-exit
13164 * is due to an EPT violation, PML full or SPP-related event.
13165 *
13166 * @remarks No-long-jump zone!!!
13167 */
13168static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13169{
13170 Assert(!pVCpu->hm.s.Event.fPending);
13171 HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO);
13172 if ( pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION
13173 || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL
13174 || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT)
13175 HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_EXIT_QUALIFICATION);
13176
13177 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
13178 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
13179 uint32_t const uIdtVectorInfo = pVmxTransient->uIdtVectoringInfo;
13180 uint32_t const uExitIntInfo = pVmxTransient->uExitIntInfo;
13181 if (VMX_IDT_VECTORING_INFO_IS_VALID(uIdtVectorInfo))
13182 {
13183 uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(uIdtVectorInfo);
13184 uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(uIdtVectorInfo);
13185
13186 /*
13187 * If the event was a software interrupt (generated with INT n) or a software exception
13188 * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
13189 * can handle the VM-exit and continue guest execution which will re-execute the
13190 * instruction rather than re-injecting the exception, as that can cause premature
13191 * trips to ring-3 before injection and involve TRPM which currently has no way of
13192 * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
13193 * the problem).
13194 */
13195 IEMXCPTRAISE enmRaise;
13196 IEMXCPTRAISEINFO fRaiseInfo;
13197 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
13198 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
13199 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
13200 {
13201 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
13202 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
13203 }
13204 else if (VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo))
13205 {
13206 uint32_t const uExitVectorType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo);
13207 uint8_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
13208 Assert(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT);
13209
13210 uint32_t const fIdtVectorFlags = hmR0VmxGetIemXcptFlags(uIdtVector, uIdtVectorType);
13211 uint32_t const fExitVectorFlags = hmR0VmxGetIemXcptFlags(uExitVector, uExitVectorType);
13212
13213 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
13214
13215 /* Determine a vectoring #PF condition, see comment in hmR0VmxExitXcptPF(). */
13216 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
13217 {
13218 pVmxTransient->fVectoringPF = true;
13219 enmRaise = IEMXCPTRAISE_PREV_EVENT;
13220 }
13221 }
13222 else
13223 {
13224 /*
13225 * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
13226 * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
13227 * It is sufficient to reflect the original event to the guest after handling the VM-exit.
13228 */
13229 Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
13230 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
13231 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
13232 enmRaise = IEMXCPTRAISE_PREV_EVENT;
13233 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
13234 }
13235
13236 /*
13237 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
13238 * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
13239 * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
13240 * subsequent VM-entry would fail, see @bugref{7445}.
13241 *
13242 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception".
13243 */
13244 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
13245 && enmRaise == IEMXCPTRAISE_PREV_EVENT
13246 && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
13247 && CPUMIsGuestNmiBlocking(pVCpu))
13248 {
13249 CPUMSetGuestNmiBlocking(pVCpu, false);
13250 }
13251
13252 switch (enmRaise)
13253 {
13254 case IEMXCPTRAISE_CURRENT_XCPT:
13255 {
13256 Log4Func(("IDT: Pending secondary Xcpt: idtinfo=%#RX64 exitinfo=%#RX64\n", uIdtVectorInfo, uExitIntInfo));
13257 Assert(rcStrict == VINF_SUCCESS);
13258 break;
13259 }
13260
13261 case IEMXCPTRAISE_PREV_EVENT:
13262 {
13263 uint32_t u32ErrCode;
13264 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(uIdtVectorInfo))
13265 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
13266 else
13267 u32ErrCode = 0;
13268
13269 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see hmR0VmxExitXcptPF(). */
13270 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflect);
13271 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(uIdtVectorInfo), 0 /* cbInstr */,
13272 u32ErrCode, pVCpu->cpum.GstCtx.cr2);
13273
13274 Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->hm.s.Event.u64IntInfo,
13275 pVCpu->hm.s.Event.u32ErrCode));
13276 Assert(rcStrict == VINF_SUCCESS);
13277 break;
13278 }
13279
13280 case IEMXCPTRAISE_REEXEC_INSTR:
13281 Assert(rcStrict == VINF_SUCCESS);
13282 break;
13283
13284 case IEMXCPTRAISE_DOUBLE_FAULT:
13285 {
13286 /*
13287 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
13288 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
13289 */
13290 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
13291 {
13292 pVmxTransient->fVectoringDoublePF = true;
13293 Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo,
13294 pVCpu->cpum.GstCtx.cr2));
13295 rcStrict = VINF_SUCCESS;
13296 }
13297 else
13298 {
13299 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectConvertDF);
13300 hmR0VmxSetPendingXcptDF(pVCpu);
13301 Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
13302 uIdtVector, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo)));
13303 rcStrict = VINF_HM_DOUBLE_FAULT;
13304 }
13305 break;
13306 }
13307
13308 case IEMXCPTRAISE_TRIPLE_FAULT:
13309 {
13310 Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector,
13311 VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo)));
13312 rcStrict = VINF_EM_RESET;
13313 break;
13314 }
13315
13316 case IEMXCPTRAISE_CPU_HANG:
13317 {
13318 Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
13319 rcStrict = VERR_EM_GUEST_CPU_HANG;
13320 break;
13321 }
13322
13323 default:
13324 {
13325 AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
13326 rcStrict = VERR_VMX_IPE_2;
13327 break;
13328 }
13329 }
13330 }
13331 else if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
13332 && !CPUMIsGuestNmiBlocking(pVCpu))
13333 {
13334 if ( VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo)
13335 && VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo) != X86_XCPT_DF
13336 && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(uExitIntInfo))
13337 {
13338 /*
13339 * Execution of IRET caused a fault when NMI blocking was in effect (i.e we're in
13340 * the guest or nested-guest NMI handler). We need to set the block-by-NMI field so
13341 * that virtual NMIs remain blocked until the IRET execution is completed.
13342 *
13343 * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception".
13344 */
13345 CPUMSetGuestNmiBlocking(pVCpu, true);
13346 Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason));
13347 }
13348 else if ( pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION
13349 || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL
13350 || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT)
13351 {
13352 /*
13353 * Execution of IRET caused an EPT violation, page-modification log-full event or
13354 * SPP-related event VM-exit when NMI blocking was in effect (i.e. we're in the
13355 * guest or nested-guest NMI handler). We need to set the block-by-NMI field so
13356 * that virtual NMIs remain blocked until the IRET execution is completed.
13357 *
13358 * See Intel spec. 27.2.3 "Information about NMI unblocking due to IRET"
13359 */
13360 if (VMX_EXIT_QUAL_EPT_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitQual))
13361 {
13362 CPUMSetGuestNmiBlocking(pVCpu, true);
13363 Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason));
13364 }
13365 }
13366 }
13367
13368 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
13369 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
13370 return rcStrict;
13371}
13372
13373
13374#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
13375/**
13376 * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
13377 * guest attempting to execute a VMX instruction.
13378 *
13379 * @returns Strict VBox status code (i.e. informational status codes too).
13380 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
13381 * @retval VINF_HM_PENDING_XCPT if an exception was raised.
13382 *
13383 * @param pVCpu The cross context virtual CPU structure.
13384 * @param uExitReason The VM-exit reason.
13385 *
13386 * @todo NSTVMX: Document other error codes when VM-exit is implemented.
13387 * @remarks No-long-jump zone!!!
13388 */
13389static VBOXSTRICTRC hmR0VmxCheckExitDueToVmxInstr(PVMCPUCC pVCpu, uint32_t uExitReason)
13390{
13391 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
13392 | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
13393
13394 /*
13395 * The physical CPU would have already checked the CPU mode/code segment.
13396 * We shall just assert here for paranoia.
13397 * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
13398 */
13399 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
13400 Assert( !CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
13401 || CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx));
13402
13403 if (uExitReason == VMX_EXIT_VMXON)
13404 {
13405 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
13406
13407 /*
13408 * We check CR4.VMXE because it is required to be always set while in VMX operation
13409 * by physical CPUs and our CR4 read-shadow is only consulted when executing specific
13410 * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
13411 * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
13412 */
13413 if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
13414 {
13415 Log4Func(("CR4.VMXE is not set -> #UD\n"));
13416 hmR0VmxSetPendingXcptUD(pVCpu);
13417 return VINF_HM_PENDING_XCPT;
13418 }
13419 }
13420 else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
13421 {
13422 /*
13423 * The guest has not entered VMX operation but attempted to execute a VMX instruction
13424 * (other than VMXON), we need to raise a #UD.
13425 */
13426 Log4Func(("Not in VMX root mode -> #UD\n"));
13427 hmR0VmxSetPendingXcptUD(pVCpu);
13428 return VINF_HM_PENDING_XCPT;
13429 }
13430
13431 /* All other checks (including VM-exit intercepts) are handled by IEM instruction emulation. */
13432 return VINF_SUCCESS;
13433}
13434
13435
13436/**
13437 * Decodes the memory operand of an instruction that caused a VM-exit.
13438 *
13439 * The Exit qualification field provides the displacement field for memory
13440 * operand instructions, if any.
13441 *
13442 * @returns Strict VBox status code (i.e. informational status codes too).
13443 * @retval VINF_SUCCESS if the operand was successfully decoded.
13444 * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
13445 * operand.
13446 * @param pVCpu The cross context virtual CPU structure.
13447 * @param uExitInstrInfo The VM-exit instruction information field.
13448 * @param enmMemAccess The memory operand's access type (read or write).
13449 * @param GCPtrDisp The instruction displacement field, if any. For
13450 * RIP-relative addressing pass RIP + displacement here.
13451 * @param pGCPtrMem Where to store the effective destination memory address.
13452 *
13453 * @remarks Warning! This function ASSUMES the instruction cannot be used in real or
13454 * virtual-8086 mode hence skips those checks while verifying if the
13455 * segment is valid.
13456 */
13457static VBOXSTRICTRC hmR0VmxDecodeMemOperand(PVMCPUCC pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
13458 PRTGCPTR pGCPtrMem)
13459{
13460 Assert(pGCPtrMem);
13461 Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
13462 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
13463 | CPUMCTX_EXTRN_CR0);
13464
13465 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
13466 static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
13467 AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
13468
13469 VMXEXITINSTRINFO ExitInstrInfo;
13470 ExitInstrInfo.u = uExitInstrInfo;
13471 uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
13472 uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
13473 bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
13474 uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
13475 uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
13476 bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
13477 uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
13478 bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
13479 bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
13480
13481 /*
13482 * Validate instruction information.
13483 * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
13484 */
13485 AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
13486 ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
13487 AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
13488 ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
13489 AssertLogRelMsgReturn(fIsMemOperand,
13490 ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
13491
13492 /*
13493 * Compute the complete effective address.
13494 *
13495 * See AMD instruction spec. 1.4.2 "SIB Byte Format"
13496 * See AMD spec. 4.5.2 "Segment Registers".
13497 */
13498 RTGCPTR GCPtrMem = GCPtrDisp;
13499 if (fBaseRegValid)
13500 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
13501 if (fIdxRegValid)
13502 GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
13503
13504 RTGCPTR const GCPtrOff = GCPtrMem;
13505 if ( !fIsLongMode
13506 || iSegReg >= X86_SREG_FS)
13507 GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
13508 GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
13509
13510 /*
13511 * Validate effective address.
13512 * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
13513 */
13514 uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
13515 Assert(cbAccess > 0);
13516 if (fIsLongMode)
13517 {
13518 if (X86_IS_CANONICAL(GCPtrMem))
13519 {
13520 *pGCPtrMem = GCPtrMem;
13521 return VINF_SUCCESS;
13522 }
13523
13524 /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
13525 * "Data Limit Checks in 64-bit Mode". */
13526 Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
13527 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13528 return VINF_HM_PENDING_XCPT;
13529 }
13530
13531 /*
13532 * This is a watered down version of iemMemApplySegment().
13533 * Parts that are not applicable for VMX instructions like real-or-v8086 mode
13534 * and segment CPL/DPL checks are skipped.
13535 */
13536 RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
13537 RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
13538 PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
13539
13540 /* Check if the segment is present and usable. */
13541 if ( pSel->Attr.n.u1Present
13542 && !pSel->Attr.n.u1Unusable)
13543 {
13544 Assert(pSel->Attr.n.u1DescType);
13545 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
13546 {
13547 /* Check permissions for the data segment. */
13548 if ( enmMemAccess == VMXMEMACCESS_WRITE
13549 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
13550 {
13551 Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
13552 hmR0VmxSetPendingXcptGP(pVCpu, iSegReg);
13553 return VINF_HM_PENDING_XCPT;
13554 }
13555
13556 /* Check limits if it's a normal data segment. */
13557 if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
13558 {
13559 if ( GCPtrFirst32 > pSel->u32Limit
13560 || GCPtrLast32 > pSel->u32Limit)
13561 {
13562 Log4Func(("Data segment limit exceeded. "
13563 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
13564 GCPtrLast32, pSel->u32Limit));
13565 if (iSegReg == X86_SREG_SS)
13566 hmR0VmxSetPendingXcptSS(pVCpu, 0);
13567 else
13568 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13569 return VINF_HM_PENDING_XCPT;
13570 }
13571 }
13572 else
13573 {
13574 /* Check limits if it's an expand-down data segment.
13575 Note! The upper boundary is defined by the B bit, not the G bit! */
13576 if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
13577 || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
13578 {
13579 Log4Func(("Expand-down data segment limit exceeded. "
13580 "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
13581 GCPtrLast32, pSel->u32Limit));
13582 if (iSegReg == X86_SREG_SS)
13583 hmR0VmxSetPendingXcptSS(pVCpu, 0);
13584 else
13585 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13586 return VINF_HM_PENDING_XCPT;
13587 }
13588 }
13589 }
13590 else
13591 {
13592 /* Check permissions for the code segment. */
13593 if ( enmMemAccess == VMXMEMACCESS_WRITE
13594 || ( enmMemAccess == VMXMEMACCESS_READ
13595 && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
13596 {
13597 Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
13598 Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
13599 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13600 return VINF_HM_PENDING_XCPT;
13601 }
13602
13603 /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
13604 if ( GCPtrFirst32 > pSel->u32Limit
13605 || GCPtrLast32 > pSel->u32Limit)
13606 {
13607 Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
13608 GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
13609 if (iSegReg == X86_SREG_SS)
13610 hmR0VmxSetPendingXcptSS(pVCpu, 0);
13611 else
13612 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13613 return VINF_HM_PENDING_XCPT;
13614 }
13615 }
13616 }
13617 else
13618 {
13619 Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
13620 hmR0VmxSetPendingXcptGP(pVCpu, 0);
13621 return VINF_HM_PENDING_XCPT;
13622 }
13623
13624 *pGCPtrMem = GCPtrMem;
13625 return VINF_SUCCESS;
13626}
13627#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
13628
13629
13630/**
13631 * VM-exit helper for LMSW.
13632 */
13633static VBOXSTRICTRC hmR0VmxExitLmsw(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint16_t uMsw, RTGCPTR GCPtrEffDst)
13634{
13635 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13636 AssertRCReturn(rc, rc);
13637
13638 VBOXSTRICTRC rcStrict = IEMExecDecodedLmsw(pVCpu, cbInstr, uMsw, GCPtrEffDst);
13639 AssertMsg( rcStrict == VINF_SUCCESS
13640 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13641
13642 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13643 if (rcStrict == VINF_IEM_RAISED_XCPT)
13644 {
13645 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13646 rcStrict = VINF_SUCCESS;
13647 }
13648
13649 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
13650 Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13651 return rcStrict;
13652}
13653
13654
13655/**
13656 * VM-exit helper for CLTS.
13657 */
13658static VBOXSTRICTRC hmR0VmxExitClts(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr)
13659{
13660 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13661 AssertRCReturn(rc, rc);
13662
13663 VBOXSTRICTRC rcStrict = IEMExecDecodedClts(pVCpu, cbInstr);
13664 AssertMsg( rcStrict == VINF_SUCCESS
13665 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13666
13667 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
13668 if (rcStrict == VINF_IEM_RAISED_XCPT)
13669 {
13670 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13671 rcStrict = VINF_SUCCESS;
13672 }
13673
13674 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
13675 Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13676 return rcStrict;
13677}
13678
13679
13680/**
13681 * VM-exit helper for MOV from CRx (CRx read).
13682 */
13683static VBOXSTRICTRC hmR0VmxExitMovFromCrX(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
13684{
13685 Assert(iCrReg < 16);
13686 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
13687
13688 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13689 AssertRCReturn(rc, rc);
13690
13691 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
13692 AssertMsg( rcStrict == VINF_SUCCESS
13693 || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13694
13695 if (iGReg == X86_GREG_xSP)
13696 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
13697 else
13698 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13699#ifdef VBOX_WITH_STATISTICS
13700 switch (iCrReg)
13701 {
13702 case 0: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Read); break;
13703 case 2: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Read); break;
13704 case 3: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Read); break;
13705 case 4: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Read); break;
13706 case 8: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Read); break;
13707 }
13708#endif
13709 Log4Func(("CR%d Read access rcStrict=%Rrc\n", iCrReg, VBOXSTRICTRC_VAL(rcStrict)));
13710 return rcStrict;
13711}
13712
13713
13714/**
13715 * VM-exit helper for MOV to CRx (CRx write).
13716 */
13717static VBOXSTRICTRC hmR0VmxExitMovToCrX(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
13718{
13719 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
13720 AssertRCReturn(rc, rc);
13721
13722 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
13723 AssertMsg( rcStrict == VINF_SUCCESS
13724 || rcStrict == VINF_IEM_RAISED_XCPT
13725 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
13726
13727 switch (iCrReg)
13728 {
13729 case 0:
13730 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0
13731 | HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
13732 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR0Write);
13733 Log4Func(("CR0 write. rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
13734 break;
13735
13736 case 2:
13737 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR2Write);
13738 /* Nothing to do here, CR2 it's not part of the VMCS. */
13739 break;
13740
13741 case 3:
13742 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
13743 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR3Write);
13744 Log4Func(("CR3 write. rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
13745 break;
13746
13747 case 4:
13748 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
13749 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR4Write);
13750 Log4Func(("CR4 write. rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
13751 pVCpu->cpum.GstCtx.cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
13752 break;
13753
13754 case 8:
13755 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged,
13756 HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
13757 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCR8Write);
13758 break;
13759
13760 default:
13761 AssertMsgFailed(("Invalid CRx register %#x\n", iCrReg));
13762 break;
13763 }
13764
13765 if (rcStrict == VINF_IEM_RAISED_XCPT)
13766 {
13767 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
13768 rcStrict = VINF_SUCCESS;
13769 }
13770 return rcStrict;
13771}
13772
13773
13774/**
13775 * VM-exit exception handler for \#PF (Page-fault exception).
13776 *
13777 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13778 */
13779static VBOXSTRICTRC hmR0VmxExitXcptPF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13780{
13781 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13782 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
13783 hmR0VmxReadExitQualVmcs(pVmxTransient);
13784
13785 if (!pVM->hm.s.fNestedPaging)
13786 { /* likely */ }
13787 else
13788 {
13789#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13790 Assert(pVmxTransient->fIsNestedGuest || pVCpu->hm.s.fUsingDebugLoop);
13791#endif
13792 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13793 if (!pVmxTransient->fVectoringDoublePF)
13794 {
13795 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13796 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
13797 }
13798 else
13799 {
13800 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13801 Assert(!pVmxTransient->fIsNestedGuest);
13802 hmR0VmxSetPendingXcptDF(pVCpu);
13803 Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
13804 }
13805 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13806 return VINF_SUCCESS;
13807 }
13808
13809 Assert(!pVmxTransient->fIsNestedGuest);
13810
13811 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13812 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13813 if (pVmxTransient->fVectoringPF)
13814 {
13815 Assert(pVCpu->hm.s.Event.fPending);
13816 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13817 }
13818
13819 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13820 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13821 AssertRCReturn(rc, rc);
13822
13823 Log4Func(("#PF: cs:rip=%#04x:%#RX64 err_code=%#RX32 exit_qual=%#RX64 cr3=%#RX64\n", pCtx->cs.Sel, pCtx->rip,
13824 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual, pCtx->cr3));
13825
13826 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13827 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
13828
13829 Log4Func(("#PF: rc=%Rrc\n", rc));
13830 if (rc == VINF_SUCCESS)
13831 {
13832 /*
13833 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13834 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13835 */
13836 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
13837 TRPMResetTrap(pVCpu);
13838 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13839 return rc;
13840 }
13841
13842 if (rc == VINF_EM_RAW_GUEST_TRAP)
13843 {
13844 if (!pVmxTransient->fVectoringDoublePF)
13845 {
13846 /* It's a guest page fault and needs to be reflected to the guest. */
13847 uint32_t const uGstErrorCode = TRPMGetErrorCode(pVCpu);
13848 TRPMResetTrap(pVCpu);
13849 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13850 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
13851 uGstErrorCode, pVmxTransient->uExitQual);
13852 }
13853 else
13854 {
13855 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13856 TRPMResetTrap(pVCpu);
13857 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13858 hmR0VmxSetPendingXcptDF(pVCpu);
13859 Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
13860 }
13861
13862 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13863 return VINF_SUCCESS;
13864 }
13865
13866 TRPMResetTrap(pVCpu);
13867 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13868 return rc;
13869}
13870
13871
13872/**
13873 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
13874 *
13875 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13876 */
13877static VBOXSTRICTRC hmR0VmxExitXcptMF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13878{
13879 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13880 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
13881
13882 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0);
13883 AssertRCReturn(rc, rc);
13884
13885 if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
13886 {
13887 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
13888 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
13889
13890 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
13891 * provides VM-exit instruction length. If this causes problem later,
13892 * disassemble the instruction like it's done on AMD-V. */
13893 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
13894 AssertRCReturn(rc2, rc2);
13895 return rc;
13896 }
13897
13898 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbExitInstr,
13899 pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13900 return VINF_SUCCESS;
13901}
13902
13903
13904/**
13905 * VM-exit exception handler for \#BP (Breakpoint exception).
13906 *
13907 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13908 */
13909static VBOXSTRICTRC hmR0VmxExitXcptBP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13910{
13911 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13912 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13913
13914 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
13915 AssertRCReturn(rc, rc);
13916
13917 if (!pVmxTransient->fIsNestedGuest)
13918 rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx));
13919 else
13920 rc = VINF_EM_RAW_GUEST_TRAP;
13921
13922 if (rc == VINF_EM_RAW_GUEST_TRAP)
13923 {
13924 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13925 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13926 rc = VINF_SUCCESS;
13927 }
13928
13929 Assert(rc == VINF_SUCCESS || rc == VINF_EM_DBG_BREAKPOINT);
13930 return rc;
13931}
13932
13933
13934/**
13935 * VM-exit exception handler for \#AC (Alignment-check exception).
13936 *
13937 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13938 */
13939static VBOXSTRICTRC hmR0VmxExitXcptAC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13940{
13941 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13942 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC);
13943
13944 /* Re-inject it. We'll detect any nesting before getting here. */
13945 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13946 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13947 return VINF_SUCCESS;
13948}
13949
13950
13951/**
13952 * VM-exit exception handler for \#DB (Debug exception).
13953 *
13954 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
13955 */
13956static VBOXSTRICTRC hmR0VmxExitXcptDB(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
13957{
13958 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
13959 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13960
13961 /*
13962 * Get the DR6-like values from the Exit qualification and pass it to DBGF for processing.
13963 */
13964 hmR0VmxReadExitQualVmcs(pVmxTransient);
13965
13966 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13967 uint64_t const uDR6 = X86_DR6_INIT_VAL
13968 | (pVmxTransient->uExitQual & ( X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3
13969 | X86_DR6_BD | X86_DR6_BS));
13970
13971 int rc;
13972 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
13973 if (!pVmxTransient->fIsNestedGuest)
13974 {
13975 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13976
13977 /*
13978 * Prevents stepping twice over the same instruction when the guest is stepping using
13979 * EFLAGS.TF and the hypervisor debugger is stepping using MTF.
13980 * Testcase: DOSQEMM, break (using "ba x 1") at cs:rip 0x70:0x774 and step (using "t").
13981 */
13982 if ( rc == VINF_EM_DBG_STEPPED
13983 && (pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG))
13984 {
13985 Assert(pVCpu->hm.s.fSingleInstruction);
13986 rc = VINF_EM_RAW_GUEST_TRAP;
13987 }
13988 }
13989 else
13990 rc = VINF_EM_RAW_GUEST_TRAP;
13991 Log6Func(("rc=%Rrc\n", rc));
13992 if (rc == VINF_EM_RAW_GUEST_TRAP)
13993 {
13994 /*
13995 * The exception was for the guest. Update DR6, DR7.GD and
13996 * IA32_DEBUGCTL.LBR before forwarding it.
13997 * See Intel spec. 27.1 "Architectural State before a VM-Exit".
13998 */
13999 VMMRZCallRing3Disable(pVCpu);
14000 HM_DISABLE_PREEMPT(pVCpu);
14001
14002 pCtx->dr[6] &= ~X86_DR6_B_MASK;
14003 pCtx->dr[6] |= uDR6;
14004 if (CPUMIsGuestDebugStateActive(pVCpu))
14005 ASMSetDR6(pCtx->dr[6]);
14006
14007 HM_RESTORE_PREEMPT();
14008 VMMRZCallRing3Enable(pVCpu);
14009
14010 rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_DR7);
14011 AssertRCReturn(rc, rc);
14012
14013 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
14014 pCtx->dr[7] &= ~(uint64_t)X86_DR7_GD;
14015
14016 /* Paranoia. */
14017 pCtx->dr[7] &= ~(uint64_t)X86_DR7_RAZ_MASK;
14018 pCtx->dr[7] |= X86_DR7_RA1_MASK;
14019
14020 rc = VMXWriteVmcsNw(VMX_VMCS_GUEST_DR7, pCtx->dr[7]);
14021 AssertRC(rc);
14022
14023 /*
14024 * Raise #DB in the guest.
14025 *
14026 * It is important to reflect exactly what the VM-exit gave us (preserving the
14027 * interruption-type) rather than use hmR0VmxSetPendingXcptDB() as the #DB could've
14028 * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
14029 * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
14030 *
14031 * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
14032 * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
14033 */
14034 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14035 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14036 return VINF_SUCCESS;
14037 }
14038
14039 /*
14040 * Not a guest trap, must be a hypervisor related debug event then.
14041 * Update DR6 in case someone is interested in it.
14042 */
14043 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
14044 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
14045 CPUMSetHyperDR6(pVCpu, uDR6);
14046
14047 return rc;
14048}
14049
14050
14051/**
14052 * Hacks its way around the lovely mesa driver's backdoor accesses.
14053 *
14054 * @sa hmR0SvmHandleMesaDrvGp.
14055 */
14056static int hmR0VmxHandleMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14057{
14058 LogFunc(("cs:rip=%#04x:%#RX64 rcx=%#RX64 rbx=%#RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
14059 RT_NOREF(pCtx);
14060
14061 /* For now we'll just skip the instruction. */
14062 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14063}
14064
14065
14066/**
14067 * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
14068 * backdoor logging w/o checking what it is running inside.
14069 *
14070 * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
14071 * backdoor port and magic numbers loaded in registers.
14072 *
14073 * @returns true if it is, false if it isn't.
14074 * @sa hmR0SvmIsMesaDrvGp.
14075 */
14076DECLINLINE(bool) hmR0VmxIsMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
14077{
14078 /* 0xed: IN eAX,dx */
14079 uint8_t abInstr[1];
14080 if (pVmxTransient->cbExitInstr != sizeof(abInstr))
14081 return false;
14082
14083 /* Check that it is #GP(0). */
14084 if (pVmxTransient->uExitIntErrorCode != 0)
14085 return false;
14086
14087 /* Check magic and port. */
14088 Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
14089 /*Log(("hmR0VmxIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
14090 if (pCtx->rax != UINT32_C(0x564d5868))
14091 return false;
14092 if (pCtx->dx != UINT32_C(0x5658))
14093 return false;
14094
14095 /* Flat ring-3 CS. */
14096 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
14097 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
14098 /*Log(("hmR0VmxIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
14099 if (pCtx->cs.Attr.n.u2Dpl != 3)
14100 return false;
14101 if (pCtx->cs.u64Base != 0)
14102 return false;
14103
14104 /* Check opcode. */
14105 AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
14106 Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
14107 int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
14108 /*Log(("hmR0VmxIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
14109 if (RT_FAILURE(rc))
14110 return false;
14111 if (abInstr[0] != 0xed)
14112 return false;
14113
14114 return true;
14115}
14116
14117
14118/**
14119 * VM-exit exception handler for \#GP (General-protection exception).
14120 *
14121 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
14122 */
14123static VBOXSTRICTRC hmR0VmxExitXcptGP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14124{
14125 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14126 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
14127
14128 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14129 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14130 if (pVmcsInfo->RealMode.fRealOnV86Active)
14131 { /* likely */ }
14132 else
14133 {
14134#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14135 Assert(pVCpu->hm.s.fUsingDebugLoop || pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv || pVmxTransient->fIsNestedGuest);
14136#endif
14137 /*
14138 * If the guest is not in real-mode or we have unrestricted guest execution support, or if we are
14139 * executing a nested-guest, reflect #GP to the guest or nested-guest.
14140 */
14141 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14142 AssertRCReturn(rc, rc);
14143 Log4Func(("Gst: cs:rip=%#04x:%#RX64 ErrorCode=%#x cr0=%#RX64 cpl=%u tr=%#04x\n", pCtx->cs.Sel, pCtx->rip,
14144 pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
14145
14146 if ( pVmxTransient->fIsNestedGuest
14147 || !pVCpu->hm.s.fTrapXcptGpForLovelyMesaDrv
14148 || !hmR0VmxIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
14149 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14150 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14151 else
14152 rc = hmR0VmxHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
14153 return rc;
14154 }
14155
14156 Assert(CPUMIsGuestInRealModeEx(pCtx));
14157 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
14158 Assert(!pVmxTransient->fIsNestedGuest);
14159
14160 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14161 AssertRCReturn(rc, rc);
14162
14163 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
14164 if (rcStrict == VINF_SUCCESS)
14165 {
14166 if (!CPUMIsGuestInRealModeEx(pCtx))
14167 {
14168 /*
14169 * The guest is no longer in real-mode, check if we can continue executing the
14170 * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
14171 */
14172 pVmcsInfo->RealMode.fRealOnV86Active = false;
14173 if (HMCanExecuteVmxGuest(pVCpu->pVMR0, pVCpu, pCtx))
14174 {
14175 Log4Func(("Mode changed but guest still suitable for executing using hardware-assisted VMX\n"));
14176 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14177 }
14178 else
14179 {
14180 Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
14181 rcStrict = VINF_EM_RESCHEDULE;
14182 }
14183 }
14184 else
14185 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14186 }
14187 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14188 {
14189 rcStrict = VINF_SUCCESS;
14190 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14191 }
14192 return VBOXSTRICTRC_VAL(rcStrict);
14193}
14194
14195
14196/**
14197 * VM-exit exception handler wrapper for all other exceptions that are not handled
14198 * by a specific handler.
14199 *
14200 * This simply re-injects the exception back into the VM without any special
14201 * processing.
14202 *
14203 * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
14204 */
14205static VBOXSTRICTRC hmR0VmxExitXcptOthers(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14206{
14207 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14208
14209#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14210 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14211 AssertMsg(pVCpu->hm.s.fUsingDebugLoop || pVmcsInfo->RealMode.fRealOnV86Active || pVmxTransient->fIsNestedGuest,
14212 ("uVector=%#x u32XcptBitmap=%#X32\n",
14213 VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVmcsInfo->u32XcptBitmap));
14214 NOREF(pVmcsInfo);
14215#endif
14216
14217 /*
14218 * Re-inject the exception into the guest. This cannot be a double-fault condition which
14219 * would have been handled while checking exits due to event delivery.
14220 */
14221 uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
14222
14223#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
14224 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
14225 AssertRCReturn(rc, rc);
14226 Log4Func(("Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
14227#endif
14228
14229#ifdef VBOX_WITH_STATISTICS
14230 switch (uVector)
14231 {
14232 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE); break;
14233 case X86_XCPT_DB: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB); break;
14234 case X86_XCPT_BP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP); break;
14235 case X86_XCPT_OF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
14236 case X86_XCPT_BR: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBR); break;
14237 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD); break;
14238 case X86_XCPT_NM: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestOF); break;
14239 case X86_XCPT_DF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDF); break;
14240 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS); break;
14241 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP); break;
14242 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS); break;
14243 case X86_XCPT_GP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP); break;
14244 case X86_XCPT_PF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF); break;
14245 case X86_XCPT_MF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF); break;
14246 case X86_XCPT_AC: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestAC); break;
14247 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF); break;
14248 default:
14249 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
14250 break;
14251 }
14252#endif
14253
14254 /* We should never call this function for a page-fault, we'd need to pass on the fault address below otherwise. */
14255 Assert(!VMX_EXIT_INT_INFO_IS_XCPT_PF(pVmxTransient->uExitIntInfo));
14256 NOREF(uVector);
14257
14258 /* Re-inject the original exception into the guest. */
14259 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
14260 pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
14261 return VINF_SUCCESS;
14262}
14263
14264
14265/**
14266 * VM-exit exception handler for all exceptions (except NMIs!).
14267 *
14268 * @remarks This may be called for both guests and nested-guests. Take care to not
14269 * make assumptions and avoid doing anything that is not relevant when
14270 * executing a nested-guest (e.g., Mesa driver hacks).
14271 */
14272static VBOXSTRICTRC hmR0VmxExitXcpt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14273{
14274 HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO);
14275
14276 /*
14277 * If this VM-exit occurred while delivering an event through the guest IDT, take
14278 * action based on the return code and additional hints (e.g. for page-faults)
14279 * that will be updated in the VMX transient structure.
14280 */
14281 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
14282 if (rcStrict == VINF_SUCCESS)
14283 {
14284 /*
14285 * If an exception caused a VM-exit due to delivery of an event, the original
14286 * event may have to be re-injected into the guest. We shall reinject it and
14287 * continue guest execution. However, page-fault is a complicated case and
14288 * needs additional processing done in hmR0VmxExitXcptPF().
14289 */
14290 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
14291 uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
14292 if ( !pVCpu->hm.s.Event.fPending
14293 || uVector == X86_XCPT_PF)
14294 {
14295 switch (uVector)
14296 {
14297 case X86_XCPT_PF: return hmR0VmxExitXcptPF(pVCpu, pVmxTransient);
14298 case X86_XCPT_GP: return hmR0VmxExitXcptGP(pVCpu, pVmxTransient);
14299 case X86_XCPT_MF: return hmR0VmxExitXcptMF(pVCpu, pVmxTransient);
14300 case X86_XCPT_DB: return hmR0VmxExitXcptDB(pVCpu, pVmxTransient);
14301 case X86_XCPT_BP: return hmR0VmxExitXcptBP(pVCpu, pVmxTransient);
14302 case X86_XCPT_AC: return hmR0VmxExitXcptAC(pVCpu, pVmxTransient);
14303 default:
14304 return hmR0VmxExitXcptOthers(pVCpu, pVmxTransient);
14305 }
14306 }
14307 /* else: inject pending event before resuming guest execution. */
14308 }
14309 else if (rcStrict == VINF_HM_DOUBLE_FAULT)
14310 {
14311 Assert(pVCpu->hm.s.Event.fPending);
14312 rcStrict = VINF_SUCCESS;
14313 }
14314
14315 return rcStrict;
14316}
14317/** @} */
14318
14319
14320/** @name VM-exit handlers.
14321 * @{
14322 */
14323/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14324/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
14325/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
14326
14327/**
14328 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
14329 */
14330HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14331{
14332 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14333 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
14334 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
14335 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
14336 return VINF_SUCCESS;
14337 return VINF_EM_RAW_INTERRUPT;
14338}
14339
14340
14341/**
14342 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI). Conditional
14343 * VM-exit.
14344 */
14345HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14346{
14347 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14348 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
14349
14350 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
14351
14352 uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
14353 uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
14354 Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
14355
14356 PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14357 Assert( !(pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
14358 && uExitIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
14359 NOREF(pVmcsInfo);
14360
14361 VBOXSTRICTRC rcStrict;
14362 switch (uExitIntType)
14363 {
14364 /*
14365 * Host physical NMIs:
14366 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
14367 * injected it ourselves and anything we inject is not going to cause a VM-exit directly
14368 * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
14369 *
14370 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
14371 * See Intel spec. 27.5.5 "Updating Non-Register State".
14372 */
14373 case VMX_EXIT_INT_INFO_TYPE_NMI:
14374 {
14375 rcStrict = hmR0VmxExitHostNmi(pVCpu, pVmcsInfo);
14376 break;
14377 }
14378
14379 /*
14380 * Privileged software exceptions (#DB from ICEBP),
14381 * Software exceptions (#BP and #OF),
14382 * Hardware exceptions:
14383 * Process the required exceptions and resume guest execution if possible.
14384 */
14385 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
14386 Assert(uVector == X86_XCPT_DB);
14387 RT_FALL_THRU();
14388 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
14389 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uExitIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
14390 RT_FALL_THRU();
14391 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
14392 {
14393 NOREF(uVector);
14394 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
14395 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14396 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
14397 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
14398
14399 rcStrict = hmR0VmxExitXcpt(pVCpu, pVmxTransient);
14400 break;
14401 }
14402
14403 default:
14404 {
14405 pVCpu->hm.s.u32HMError = pVmxTransient->uExitIntInfo;
14406 rcStrict = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
14407 AssertMsgFailed(("Invalid/unexpected VM-exit interruption info %#x\n", pVmxTransient->uExitIntInfo));
14408 break;
14409 }
14410 }
14411
14412 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
14413 return rcStrict;
14414}
14415
14416
14417/**
14418 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
14419 */
14420HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14421{
14422 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14423
14424 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
14425 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14426 hmR0VmxClearIntWindowExitVmcs(pVmcsInfo);
14427
14428 /* Evaluate and deliver pending events and resume guest execution. */
14429 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
14430 return VINF_SUCCESS;
14431}
14432
14433
14434/**
14435 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
14436 */
14437HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14438{
14439 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14440
14441 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14442 if (RT_UNLIKELY(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))) /** @todo NSTVMX: Turn this into an assertion. */
14443 {
14444 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
14445 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
14446 }
14447
14448 Assert(!CPUMIsGuestNmiBlocking(pVCpu));
14449
14450 /*
14451 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
14452 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
14453 */
14454 uint32_t fIntrState;
14455 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
14456 AssertRC(rc);
14457 Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
14458 if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
14459 {
14460 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
14461 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
14462
14463 fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
14464 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INT_STATE, fIntrState);
14465 AssertRC(rc);
14466 }
14467
14468 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
14469 hmR0VmxClearNmiWindowExitVmcs(pVmcsInfo);
14470
14471 /* Evaluate and deliver pending events and resume guest execution. */
14472 return VINF_SUCCESS;
14473}
14474
14475
14476/**
14477 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
14478 */
14479HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14480{
14481 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14482 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14483}
14484
14485
14486/**
14487 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
14488 */
14489HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14490{
14491 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14492 return hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14493}
14494
14495
14496/**
14497 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
14498 */
14499HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14500{
14501 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14502
14503 /*
14504 * Get the state we need and update the exit history entry.
14505 */
14506 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14507 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14508
14509 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
14510 AssertRCReturn(rc, rc);
14511
14512 VBOXSTRICTRC rcStrict;
14513 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
14514 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
14515 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
14516 if (!pExitRec)
14517 {
14518 /*
14519 * Regular CPUID instruction execution.
14520 */
14521 rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbExitInstr);
14522 if (rcStrict == VINF_SUCCESS)
14523 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14524 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14525 {
14526 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14527 rcStrict = VINF_SUCCESS;
14528 }
14529 }
14530 else
14531 {
14532 /*
14533 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
14534 */
14535 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14536 AssertRCReturn(rc2, rc2);
14537
14538 Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
14539 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
14540
14541 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
14542 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
14543
14544 Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
14545 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
14546 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
14547 }
14548 return rcStrict;
14549}
14550
14551
14552/**
14553 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
14554 */
14555HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14556{
14557 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14558
14559 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14560 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4);
14561 AssertRCReturn(rc, rc);
14562
14563 if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
14564 return VINF_EM_RAW_EMULATE_INSTR;
14565
14566 AssertMsgFailed(("hmR0VmxExitGetsec: Unexpected VM-exit when CR4.SMXE is 0.\n"));
14567 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
14568}
14569
14570
14571/**
14572 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
14573 */
14574HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14575{
14576 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14577
14578 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14579 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14580 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
14581 AssertRCReturn(rc, rc);
14582
14583 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbExitInstr);
14584 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
14585 {
14586 /* If we get a spurious VM-exit when TSC offsetting is enabled,
14587 we must reset offsetting on VM-entry. See @bugref{6634}. */
14588 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
14589 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
14590 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14591 }
14592 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14593 {
14594 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14595 rcStrict = VINF_SUCCESS;
14596 }
14597 return rcStrict;
14598}
14599
14600
14601/**
14602 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
14603 */
14604HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14605{
14606 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14607
14608 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14609 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14610 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
14611 AssertRCReturn(rc, rc);
14612
14613 VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbExitInstr);
14614 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
14615 {
14616 /* If we get a spurious VM-exit when TSC offsetting is enabled,
14617 we must reset offsetting on VM-reentry. See @bugref{6634}. */
14618 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
14619 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
14620 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14621 }
14622 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14623 {
14624 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14625 rcStrict = VINF_SUCCESS;
14626 }
14627 return rcStrict;
14628}
14629
14630
14631/**
14632 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
14633 */
14634HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14635{
14636 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14637
14638 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14639 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0
14640 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
14641 AssertRCReturn(rc, rc);
14642
14643 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14644 rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
14645 if (RT_LIKELY(rc == VINF_SUCCESS))
14646 {
14647 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14648 Assert(pVmxTransient->cbExitInstr == 2);
14649 }
14650 else
14651 {
14652 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
14653 rc = VERR_EM_INTERPRETER;
14654 }
14655 return rc;
14656}
14657
14658
14659/**
14660 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
14661 */
14662HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14663{
14664 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14665
14666 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
14667 if (EMAreHypercallInstructionsEnabled(pVCpu))
14668 {
14669 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14670 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
14671 | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
14672 AssertRCReturn(rc, rc);
14673
14674 /* Perform the hypercall. */
14675 rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
14676 if (rcStrict == VINF_SUCCESS)
14677 {
14678 rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14679 AssertRCReturn(rc, rc);
14680 }
14681 else
14682 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
14683 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
14684 || RT_FAILURE(rcStrict));
14685
14686 /* If the hypercall changes anything other than guest's general-purpose registers,
14687 we would need to reload the guest changed bits here before VM-entry. */
14688 }
14689 else
14690 Log4Func(("Hypercalls not enabled\n"));
14691
14692 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
14693 if (RT_FAILURE(rcStrict))
14694 {
14695 hmR0VmxSetPendingXcptUD(pVCpu);
14696 rcStrict = VINF_SUCCESS;
14697 }
14698
14699 return rcStrict;
14700}
14701
14702
14703/**
14704 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
14705 */
14706HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14707{
14708 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14709 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
14710
14711 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14712 hmR0VmxReadExitQualVmcs(pVmxTransient);
14713 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14714 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
14715 AssertRCReturn(rc, rc);
14716
14717 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->uExitQual);
14718
14719 if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
14720 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14721 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14722 {
14723 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14724 rcStrict = VINF_SUCCESS;
14725 }
14726 else
14727 AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) status: %Rrc\n", pVmxTransient->uExitQual,
14728 VBOXSTRICTRC_VAL(rcStrict)));
14729 return rcStrict;
14730}
14731
14732
14733/**
14734 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
14735 */
14736HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14737{
14738 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14739
14740 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14741 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14742 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
14743 AssertRCReturn(rc, rc);
14744
14745 VBOXSTRICTRC rcStrict = IEMExecDecodedMonitor(pVCpu, pVmxTransient->cbExitInstr);
14746 if (rcStrict == VINF_SUCCESS)
14747 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14748 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14749 {
14750 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14751 rcStrict = VINF_SUCCESS;
14752 }
14753
14754 return rcStrict;
14755}
14756
14757
14758/**
14759 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
14760 */
14761HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14762{
14763 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14764
14765 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14766 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14767 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
14768 AssertRCReturn(rc, rc);
14769
14770 VBOXSTRICTRC rcStrict = IEMExecDecodedMwait(pVCpu, pVmxTransient->cbExitInstr);
14771 if (RT_SUCCESS(rcStrict))
14772 {
14773 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14774 if (EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
14775 rcStrict = VINF_SUCCESS;
14776 }
14777
14778 return rcStrict;
14779}
14780
14781
14782/**
14783 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
14784 * VM-exit.
14785 */
14786HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14787{
14788 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14789 return VINF_EM_RESET;
14790}
14791
14792
14793/**
14794 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
14795 */
14796HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14797{
14798 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14799
14800 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
14801 AssertRCReturn(rc, rc);
14802
14803 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS); /* Advancing the RIP above should've imported eflags. */
14804 if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
14805 rc = VINF_SUCCESS;
14806 else
14807 rc = VINF_EM_HALT;
14808
14809 if (rc != VINF_SUCCESS)
14810 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
14811 return rc;
14812}
14813
14814
14815/**
14816 * VM-exit handler for instructions that result in a \#UD exception delivered to
14817 * the guest.
14818 */
14819HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14820{
14821 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14822 hmR0VmxSetPendingXcptUD(pVCpu);
14823 return VINF_SUCCESS;
14824}
14825
14826
14827/**
14828 * VM-exit handler for expiry of the VMX-preemption timer.
14829 */
14830HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14831{
14832 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14833
14834 /* If the VMX-preemption timer has expired, reinitialize the preemption timer on next VM-entry. */
14835 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
14836
14837 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
14838 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
14839 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
14840 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
14841 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
14842}
14843
14844
14845/**
14846 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
14847 */
14848HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14849{
14850 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14851
14852 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14853 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14854 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
14855 AssertRCReturn(rc, rc);
14856
14857 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbExitInstr);
14858 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
14859 : HM_CHANGED_RAISED_XCPT_MASK);
14860
14861 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
14862 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
14863
14864 return rcStrict;
14865}
14866
14867
14868/**
14869 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
14870 */
14871HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14872{
14873 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
14874
14875 /** @todo Enable the new code after finding a reliably guest test-case. */
14876#if 1
14877 return VERR_EM_INTERPRETER;
14878#else
14879 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
14880 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
14881 hmR0VmxReadExitQualVmcs(pVmxTransient);
14882 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
14883 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
14884 AssertRCReturn(rc, rc);
14885
14886 /* Paranoia. Ensure this has a memory operand. */
14887 Assert(!pVmxTransient->ExitInstrInfo.Inv.u1Cleared0);
14888
14889 uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2;
14890 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
14891 uint64_t const uType = CPUMIsGuestIn64BitCode(pVCpu) ? pVCpu->cpum.GstCtx.aGRegs[iGReg].u64
14892 : pVCpu->cpum.GstCtx.aGRegs[iGReg].u32;
14893
14894 RTGCPTR GCPtrDesc;
14895 HMVMX_DECODE_MEM_OPERAND(pVCpu, pVmxTransient->ExitInstrInfo.u, pVmxTransient->uExitQual, VMXMEMACCESS_READ, &GCPtrDesc);
14896
14897 VBOXSTRICTRC rcStrict = IEMExecDecodedInvpcid(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->ExitInstrInfo.Inv.iSegReg,
14898 GCPtrDesc, uType);
14899 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
14900 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
14901 else if (rcStrict == VINF_IEM_RAISED_XCPT)
14902 {
14903 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
14904 rcStrict = VINF_SUCCESS;
14905 }
14906 return rcStrict;
14907#endif
14908}
14909
14910
14911/**
14912 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error
14913 * VM-exit.
14914 */
14915HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14916{
14917 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
14918 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
14919 AssertRCReturn(rc, rc);
14920
14921 rc = hmR0VmxCheckCachedVmcsCtls(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest);
14922 if (RT_FAILURE(rc))
14923 return rc;
14924
14925 uint32_t const uInvalidReason = hmR0VmxCheckGuestState(pVCpu, pVmcsInfo);
14926 NOREF(uInvalidReason);
14927
14928#ifdef VBOX_STRICT
14929 uint32_t fIntrState;
14930 uint64_t u64Val;
14931 hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
14932 hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
14933 hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
14934
14935 Log4(("uInvalidReason %u\n", uInvalidReason));
14936 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
14937 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
14938 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
14939
14940 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INT_STATE, &fIntrState); AssertRC(rc);
14941 Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
14942 rc = VMXReadVmcsNw(VMX_VMCS_GUEST_CR0, &u64Val); AssertRC(rc);
14943 Log4(("VMX_VMCS_GUEST_CR0 %#RX64\n", u64Val));
14944 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR0_MASK, &u64Val); AssertRC(rc);
14945 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RX64\n", u64Val));
14946 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Val); AssertRC(rc);
14947 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RX64\n", u64Val));
14948 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR4_MASK, &u64Val); AssertRC(rc);
14949 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RX64\n", u64Val));
14950 rc = VMXReadVmcsNw(VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Val); AssertRC(rc);
14951 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RX64\n", u64Val));
14952 if (pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging)
14953 {
14954 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
14955 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
14956 }
14957 hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
14958#endif
14959
14960 return VERR_VMX_INVALID_GUEST_STATE;
14961}
14962
14963/**
14964 * VM-exit handler for all undefined/unexpected reasons. Should never happen.
14965 */
14966HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUnexpected(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
14967{
14968 /*
14969 * Cumulative notes of all recognized but unexpected VM-exits.
14970 *
14971 * 1. This does -not- cover scenarios like a page-fault VM-exit occurring when
14972 * nested-paging is used.
14973 *
14974 * 2. Any instruction that causes a VM-exit unconditionally (for e.g. VMXON) must be
14975 * emulated or a #UD must be raised in the guest. Therefore, we should -not- be using
14976 * this function (and thereby stop VM execution) for handling such instructions.
14977 *
14978 *
14979 * VMX_EXIT_INIT_SIGNAL:
14980 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
14981 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these
14982 * VM-exits. However, we should not receive INIT signals VM-exit while executing a VM.
14983 *
14984 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery"
14985 * See Intel spec. 29.3 "VMX Instructions" for "VMXON".
14986 * See Intel spec. "23.8 Restrictions on VMX operation".
14987 *
14988 * VMX_EXIT_SIPI:
14989 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest
14990 * activity state is used. We don't make use of it as our guests don't have direct
14991 * access to the host local APIC.
14992 *
14993 * See Intel spec. 25.3 "Other Causes of VM-exits".
14994 *
14995 * VMX_EXIT_IO_SMI:
14996 * VMX_EXIT_SMI:
14997 * This can only happen if we support dual-monitor treatment of SMI, which can be
14998 * activated by executing VMCALL in VMX root operation. Only an STM (SMM transfer
14999 * monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL in
15000 * VMX root mode or receive an SMI. If we get here, something funny is going on.
15001 *
15002 * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
15003 * See Intel spec. 25.3 "Other Causes of VM-Exits"
15004 *
15005 * VMX_EXIT_ERR_MSR_LOAD:
15006 * Failures while loading MSRs are part of the VM-entry MSR-load area are unexpected
15007 * and typically indicates a bug in the hypervisor code. We thus cannot not resume
15008 * execution.
15009 *
15010 * See Intel spec. 26.7 "VM-Entry Failures During Or After Loading Guest State".
15011 *
15012 * VMX_EXIT_ERR_MACHINE_CHECK:
15013 * Machine check exceptions indicates a fatal/unrecoverable hardware condition
15014 * including but not limited to system bus, ECC, parity, cache and TLB errors. A
15015 * #MC exception abort class exception is raised. We thus cannot assume a
15016 * reasonable chance of continuing any sort of execution and we bail.
15017 *
15018 * See Intel spec. 15.1 "Machine-check Architecture".
15019 * See Intel spec. 27.1 "Architectural State Before A VM Exit".
15020 *
15021 * VMX_EXIT_PML_FULL:
15022 * VMX_EXIT_VIRTUALIZED_EOI:
15023 * VMX_EXIT_APIC_WRITE:
15024 * We do not currently support any of these features and thus they are all unexpected
15025 * VM-exits.
15026 *
15027 * VMX_EXIT_GDTR_IDTR_ACCESS:
15028 * VMX_EXIT_LDTR_TR_ACCESS:
15029 * VMX_EXIT_RDRAND:
15030 * VMX_EXIT_RSM:
15031 * VMX_EXIT_VMFUNC:
15032 * VMX_EXIT_ENCLS:
15033 * VMX_EXIT_RDSEED:
15034 * VMX_EXIT_XSAVES:
15035 * VMX_EXIT_XRSTORS:
15036 * VMX_EXIT_UMWAIT:
15037 * VMX_EXIT_TPAUSE:
15038 * These VM-exits are -not- caused unconditionally by execution of the corresponding
15039 * instruction. Any VM-exit for these instructions indicate a hardware problem,
15040 * unsupported CPU modes (like SMM) or potentially corrupt VMCS controls.
15041 *
15042 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
15043 */
15044 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15045 AssertMsgFailed(("Unexpected VM-exit %u\n", pVmxTransient->uExitReason));
15046 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
15047}
15048
15049
15050/**
15051 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
15052 */
15053HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15054{
15055 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15056
15057 /** @todo Optimize this: We currently drag in the whole MSR state
15058 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
15059 * MSRs required. That would require changes to IEM and possibly CPUM too.
15060 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
15061 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15062 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
15063 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
15064 switch (idMsr)
15065 {
15066 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
15067 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
15068 }
15069
15070 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15071 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
15072 AssertRCReturn(rc, rc);
15073
15074 Log4Func(("ecx=%#RX32\n", idMsr));
15075
15076#ifdef VBOX_STRICT
15077 Assert(!pVmxTransient->fIsNestedGuest);
15078 if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
15079 {
15080 if ( hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr)
15081 && idMsr != MSR_K6_EFER)
15082 {
15083 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
15084 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15085 }
15086 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
15087 {
15088 Assert(pVmcsInfo->pvMsrBitmap);
15089 uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
15090 if (fMsrpm & VMXMSRPM_ALLOW_RD)
15091 {
15092 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
15093 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15094 }
15095 }
15096 }
15097#endif
15098
15099 VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbExitInstr);
15100 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
15101 if (rcStrict == VINF_SUCCESS)
15102 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15103 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15104 {
15105 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15106 rcStrict = VINF_SUCCESS;
15107 }
15108 else
15109 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ, ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
15110
15111 return rcStrict;
15112}
15113
15114
15115/**
15116 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
15117 */
15118HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15119{
15120 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15121
15122 /** @todo Optimize this: We currently drag in the whole MSR state
15123 * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
15124 * MSRs required. That would require changes to IEM and possibly CPUM too.
15125 * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
15126 uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
15127 uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
15128
15129 /*
15130 * The FS and GS base MSRs are not part of the above all-MSRs mask.
15131 * Although we don't need to fetch the base as it will be overwritten shortly, while
15132 * loading guest-state we would also load the entire segment register including limit
15133 * and attributes and thus we need to load them here.
15134 */
15135 switch (idMsr)
15136 {
15137 case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
15138 case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
15139 }
15140
15141 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15142 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15143 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, fImport);
15144 AssertRCReturn(rc, rc);
15145
15146 Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
15147
15148 VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbExitInstr);
15149 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
15150
15151 if (rcStrict == VINF_SUCCESS)
15152 {
15153 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
15154
15155 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
15156 if ( idMsr == MSR_IA32_APICBASE
15157 || ( idMsr >= MSR_IA32_X2APIC_START
15158 && idMsr <= MSR_IA32_X2APIC_END))
15159 {
15160 /*
15161 * We've already saved the APIC related guest-state (TPR) in post-run phase.
15162 * When full APIC register virtualization is implemented we'll have to make
15163 * sure APIC state is saved from the VMCS before IEM changes it.
15164 */
15165 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
15166 }
15167 else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
15168 pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
15169 else if (idMsr == MSR_K6_EFER)
15170 {
15171 /*
15172 * If the guest touches the EFER MSR we need to update the VM-Entry and VM-Exit controls
15173 * as well, even if it is -not- touching bits that cause paging mode changes (LMA/LME).
15174 * We care about the other bits as well, SCE and NXE. See @bugref{7368}.
15175 */
15176 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
15177 }
15178
15179 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not used. */
15180 if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
15181 {
15182 switch (idMsr)
15183 {
15184 case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
15185 case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
15186 case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
15187 case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_FS); break;
15188 case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_GS); break;
15189 case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
15190 default:
15191 {
15192 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
15193 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
15194 else if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
15195 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
15196 break;
15197 }
15198 }
15199 }
15200#ifdef VBOX_STRICT
15201 else
15202 {
15203 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
15204 switch (idMsr)
15205 {
15206 case MSR_IA32_SYSENTER_CS:
15207 case MSR_IA32_SYSENTER_EIP:
15208 case MSR_IA32_SYSENTER_ESP:
15209 case MSR_K8_FS_BASE:
15210 case MSR_K8_GS_BASE:
15211 {
15212 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
15213 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15214 }
15215
15216 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
15217 default:
15218 {
15219 if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
15220 {
15221 /* EFER MSR writes are always intercepted. */
15222 if (idMsr != MSR_K6_EFER)
15223 {
15224 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
15225 idMsr));
15226 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15227 }
15228 }
15229
15230 if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
15231 {
15232 Assert(pVmcsInfo->pvMsrBitmap);
15233 uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
15234 if (fMsrpm & VMXMSRPM_ALLOW_WR)
15235 {
15236 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
15237 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
15238 }
15239 }
15240 break;
15241 }
15242 }
15243 }
15244#endif /* VBOX_STRICT */
15245 }
15246 else if (rcStrict == VINF_IEM_RAISED_XCPT)
15247 {
15248 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
15249 rcStrict = VINF_SUCCESS;
15250 }
15251 else
15252 AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE, ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
15253
15254 return rcStrict;
15255}
15256
15257
15258/**
15259 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
15260 */
15261HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15262{
15263 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15264
15265 /** @todo The guest has likely hit a contended spinlock. We might want to
15266 * poke a schedule different guest VCPU. */
15267 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
15268 if (RT_SUCCESS(rc))
15269 return VINF_EM_RAW_INTERRUPT;
15270
15271 AssertMsgFailed(("hmR0VmxExitPause: Failed to increment RIP. rc=%Rrc\n", rc));
15272 return rc;
15273}
15274
15275
15276/**
15277 * VM-exit handler for when the TPR value is lowered below the specified
15278 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
15279 */
15280HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15281{
15282 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15283 Assert(pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
15284
15285 /*
15286 * The TPR shadow would've been synced with the APIC TPR in the post-run phase.
15287 * We'll re-evaluate pending interrupts and inject them before the next VM
15288 * entry so we can just continue execution here.
15289 */
15290 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
15291 return VINF_SUCCESS;
15292}
15293
15294
15295/**
15296 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
15297 * VM-exit.
15298 *
15299 * @retval VINF_SUCCESS when guest execution can continue.
15300 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
15301 * @retval VERR_EM_RESCHEDULE_REM when we need to return to ring-3 due to
15302 * incompatible guest state for VMX execution (real-on-v86 case).
15303 */
15304HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15305{
15306 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15307 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
15308
15309 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15310 hmR0VmxReadExitQualVmcs(pVmxTransient);
15311 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15312
15313 VBOXSTRICTRC rcStrict;
15314 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15315 uint64_t const uExitQual = pVmxTransient->uExitQual;
15316 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
15317 switch (uAccessType)
15318 {
15319 /*
15320 * MOV to CRx.
15321 */
15322 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE:
15323 {
15324 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
15325 AssertRCReturn(rc, rc);
15326
15327 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
15328 uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
15329 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(uExitQual);
15330 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual);
15331
15332 /*
15333 * MOV to CR3 only cause a VM-exit when one or more of the following are true:
15334 * - When nested paging isn't used.
15335 * - If the guest doesn't have paging enabled (intercept CR3 to update shadow page tables).
15336 * - We are executing in the VM debug loop.
15337 */
15338 Assert( iCrReg != 3
15339 || !pVM->hm.s.fNestedPaging
15340 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
15341 || pVCpu->hm.s.fUsingDebugLoop);
15342
15343 /* MOV to CR8 writes only cause VM-exits when TPR shadow is not used. */
15344 Assert( iCrReg != 8
15345 || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
15346
15347 rcStrict = hmR0VmxExitMovToCrX(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
15348 AssertMsg( rcStrict == VINF_SUCCESS
15349 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
15350
15351 /*
15352 * This is a kludge for handling switches back to real mode when we try to use
15353 * V86 mode to run real mode code directly. Problem is that V86 mode cannot
15354 * deal with special selector values, so we have to return to ring-3 and run
15355 * there till the selector values are V86 mode compatible.
15356 *
15357 * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
15358 * latter is an alias for VINF_IEM_RAISED_XCPT which is asserted at the end of
15359 * this function.
15360 */
15361 if ( iCrReg == 0
15362 && rcStrict == VINF_SUCCESS
15363 && !pVM->hm.s.vmx.fUnrestrictedGuest
15364 && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
15365 && (uOldCr0 & X86_CR0_PE)
15366 && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
15367 {
15368 /** @todo Check selectors rather than returning all the time. */
15369 Assert(!pVmxTransient->fIsNestedGuest);
15370 Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
15371 rcStrict = VINF_EM_RESCHEDULE_REM;
15372 }
15373 break;
15374 }
15375
15376 /*
15377 * MOV from CRx.
15378 */
15379 case VMX_EXIT_QUAL_CRX_ACCESS_READ:
15380 {
15381 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(uExitQual);
15382 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual);
15383
15384 /*
15385 * MOV from CR3 only cause a VM-exit when one or more of the following are true:
15386 * - When nested paging isn't used.
15387 * - If the guest doesn't have paging enabled (pass guest's CR3 rather than our identity mapped CR3).
15388 * - We are executing in the VM debug loop.
15389 */
15390 Assert( iCrReg != 3
15391 || !pVM->hm.s.fNestedPaging
15392 || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
15393 || pVCpu->hm.s.fUsingDebugLoop);
15394
15395 /* MOV from CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
15396 Assert( iCrReg != 8
15397 || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
15398
15399 rcStrict = hmR0VmxExitMovFromCrX(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
15400 break;
15401 }
15402
15403 /*
15404 * CLTS (Clear Task-Switch Flag in CR0).
15405 */
15406 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS:
15407 {
15408 rcStrict = hmR0VmxExitClts(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr);
15409 break;
15410 }
15411
15412 /*
15413 * LMSW (Load Machine-Status Word into CR0).
15414 * LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here.
15415 */
15416 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW:
15417 {
15418 RTGCPTR GCPtrEffDst;
15419 uint8_t const cbInstr = pVmxTransient->cbExitInstr;
15420 uint16_t const uMsw = VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual);
15421 bool const fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(uExitQual);
15422 if (fMemOperand)
15423 {
15424 hmR0VmxReadGuestLinearAddrVmcs(pVmxTransient);
15425 GCPtrEffDst = pVmxTransient->uGuestLinearAddr;
15426 }
15427 else
15428 GCPtrEffDst = NIL_RTGCPTR;
15429 rcStrict = hmR0VmxExitLmsw(pVCpu, pVmcsInfo, cbInstr, uMsw, GCPtrEffDst);
15430 break;
15431 }
15432
15433 default:
15434 {
15435 AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType));
15436 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType);
15437 }
15438 }
15439
15440 Assert((pVCpu->hm.s.fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
15441 == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
15442 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
15443
15444 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
15445 NOREF(pVM);
15446 return rcStrict;
15447}
15448
15449
15450/**
15451 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
15452 * VM-exit.
15453 */
15454HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15455{
15456 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15457 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
15458
15459 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15460 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15461 hmR0VmxReadExitQualVmcs(pVmxTransient);
15462 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15463 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK
15464 | CPUMCTX_EXTRN_EFER);
15465 /* EFER MSR also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
15466 AssertRCReturn(rc, rc);
15467
15468 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
15469 uint32_t const uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
15470 uint8_t const uIOSize = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual);
15471 bool const fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
15472 bool const fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
15473 bool const fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
15474 bool const fDbgStepping = pVCpu->hm.s.fSingleInstruction;
15475 AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1);
15476
15477 /*
15478 * Update exit history to see if this exit can be optimized.
15479 */
15480 VBOXSTRICTRC rcStrict;
15481 PCEMEXITREC pExitRec = NULL;
15482 if ( !fGstStepping
15483 && !fDbgStepping)
15484 pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
15485 !fIOString
15486 ? !fIOWrite
15487 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
15488 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
15489 : !fIOWrite
15490 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
15491 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
15492 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
15493 if (!pExitRec)
15494 {
15495 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses in bytes. */
15496 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
15497
15498 uint32_t const cbValue = s_aIOSizes[uIOSize];
15499 uint32_t const cbInstr = pVmxTransient->cbExitInstr;
15500 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
15501 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15502 if (fIOString)
15503 {
15504 /*
15505 * INS/OUTS - I/O String instruction.
15506 *
15507 * Use instruction-information if available, otherwise fall back on
15508 * interpreting the instruction.
15509 */
15510 Log4Func(("cs:rip=%#04x:%#RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
15511 AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
15512 bool const fInsOutsInfo = RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
15513 if (fInsOutsInfo)
15514 {
15515 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
15516 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
15517 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
15518 IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
15519 bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
15520 if (fIOWrite)
15521 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
15522 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
15523 else
15524 {
15525 /*
15526 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
15527 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
15528 * See Intel Instruction spec. for "INS".
15529 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
15530 */
15531 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
15532 }
15533 }
15534 else
15535 rcStrict = IEMExecOne(pVCpu);
15536
15537 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
15538 fUpdateRipAlready = true;
15539 }
15540 else
15541 {
15542 /*
15543 * IN/OUT - I/O instruction.
15544 */
15545 Log4Func(("cs:rip=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
15546 uint32_t const uAndVal = s_aIOOpAnd[uIOSize];
15547 Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
15548 if (fIOWrite)
15549 {
15550 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
15551 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
15552 if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
15553 && !pCtx->eflags.Bits.u1TF)
15554 rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
15555 }
15556 else
15557 {
15558 uint32_t u32Result = 0;
15559 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
15560 if (IOM_SUCCESS(rcStrict))
15561 {
15562 /* Save result of I/O IN instr. in AL/AX/EAX. */
15563 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
15564 }
15565 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
15566 && !pCtx->eflags.Bits.u1TF)
15567 rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
15568 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
15569 }
15570 }
15571
15572 if (IOM_SUCCESS(rcStrict))
15573 {
15574 if (!fUpdateRipAlready)
15575 {
15576 hmR0VmxAdvanceGuestRipBy(pVCpu, cbInstr);
15577 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP);
15578 }
15579
15580 /*
15581 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
15582 * while booting Fedora 17 64-bit guest.
15583 *
15584 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
15585 */
15586 if (fIOString)
15587 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
15588
15589 /*
15590 * If any I/O breakpoints are armed, we need to check if one triggered
15591 * and take appropriate action.
15592 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
15593 */
15594 rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_DR7);
15595 AssertRCReturn(rc, rc);
15596
15597 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
15598 * execution engines about whether hyper BPs and such are pending. */
15599 uint32_t const uDr7 = pCtx->dr[7];
15600 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
15601 && X86_DR7_ANY_RW_IO(uDr7)
15602 && (pCtx->cr4 & X86_CR4_DE))
15603 || DBGFBpIsHwIoArmed(pVM)))
15604 {
15605 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
15606
15607 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
15608 VMMRZCallRing3Disable(pVCpu);
15609 HM_DISABLE_PREEMPT(pVCpu);
15610
15611 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
15612
15613 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
15614 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
15615 {
15616 /* Raise #DB. */
15617 if (fIsGuestDbgActive)
15618 ASMSetDR6(pCtx->dr[6]);
15619 if (pCtx->dr[7] != uDr7)
15620 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_GUEST_DR7;
15621
15622 hmR0VmxSetPendingXcptDB(pVCpu);
15623 }
15624 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
15625 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
15626 else if ( rcStrict2 != VINF_SUCCESS
15627 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
15628 rcStrict = rcStrict2;
15629 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
15630
15631 HM_RESTORE_PREEMPT();
15632 VMMRZCallRing3Enable(pVCpu);
15633 }
15634 }
15635
15636#ifdef VBOX_STRICT
15637 if ( rcStrict == VINF_IOM_R3_IOPORT_READ
15638 || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
15639 Assert(!fIOWrite);
15640 else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
15641 || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
15642 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
15643 Assert(fIOWrite);
15644 else
15645 {
15646# if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
15647 * statuses, that the VMM device and some others may return. See
15648 * IOM_SUCCESS() for guidance. */
15649 AssertMsg( RT_FAILURE(rcStrict)
15650 || rcStrict == VINF_SUCCESS
15651 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
15652 || rcStrict == VINF_EM_DBG_BREAKPOINT
15653 || rcStrict == VINF_EM_RAW_GUEST_TRAP
15654 || rcStrict == VINF_EM_RAW_TO_R3
15655 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
15656# endif
15657 }
15658#endif
15659 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
15660 }
15661 else
15662 {
15663 /*
15664 * Frequent exit or something needing probing. Get state and call EMHistoryExec.
15665 */
15666 int rc2 = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
15667 AssertRCReturn(rc2, rc2);
15668 STAM_COUNTER_INC(!fIOString ? fIOWrite ? &pVCpu->hm.s.StatExitIOWrite : &pVCpu->hm.s.StatExitIORead
15669 : fIOWrite ? &pVCpu->hm.s.StatExitIOStringWrite : &pVCpu->hm.s.StatExitIOStringRead);
15670 Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
15671 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
15672 VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
15673 fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOSize));
15674
15675 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
15676 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
15677
15678 Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
15679 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
15680 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
15681 }
15682 return rcStrict;
15683}
15684
15685
15686/**
15687 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
15688 * VM-exit.
15689 */
15690HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15691{
15692 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15693
15694 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
15695 hmR0VmxReadExitQualVmcs(pVmxTransient);
15696 if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
15697 {
15698 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
15699 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
15700 {
15701 uint32_t uErrCode;
15702 if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
15703 {
15704 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
15705 uErrCode = pVmxTransient->uIdtVectoringErrorCode;
15706 }
15707 else
15708 uErrCode = 0;
15709
15710 RTGCUINTPTR GCPtrFaultAddress;
15711 if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(pVmxTransient->uIdtVectoringInfo))
15712 GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
15713 else
15714 GCPtrFaultAddress = 0;
15715
15716 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15717
15718 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
15719 pVmxTransient->cbExitInstr, uErrCode, GCPtrFaultAddress);
15720
15721 Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo),
15722 VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo)));
15723 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
15724 return VINF_EM_RAW_INJECT_TRPM_EVENT;
15725 }
15726 }
15727
15728 /* Fall back to the interpreter to emulate the task-switch. */
15729 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
15730 return VERR_EM_INTERPRETER;
15731}
15732
15733
15734/**
15735 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
15736 */
15737HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15738{
15739 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15740
15741 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15742 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
15743 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
15744 AssertRC(rc);
15745 return VINF_EM_DBG_STEPPED;
15746}
15747
15748
15749/**
15750 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
15751 */
15752HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15753{
15754 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15755 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
15756
15757 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
15758 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15759 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15760 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
15761 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
15762
15763 /*
15764 * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
15765 */
15766 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
15767 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15768 {
15769 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
15770 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
15771 {
15772 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
15773 return VINF_EM_RAW_INJECT_TRPM_EVENT;
15774 }
15775 }
15776 else
15777 {
15778 Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
15779 return rcStrict;
15780 }
15781
15782 /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
15783 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15784 hmR0VmxReadExitQualVmcs(pVmxTransient);
15785 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
15786 AssertRCReturn(rc, rc);
15787
15788 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
15789 uint32_t const uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
15790 switch (uAccessType)
15791 {
15792 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
15793 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
15794 {
15795 AssertMsg( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
15796 || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
15797 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
15798
15799 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64GstMsrApicBase; /* Always up-to-date, as it is not part of the VMCS. */
15800 GCPhys &= PAGE_BASE_GC_MASK;
15801 GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
15802 Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
15803 VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
15804
15805 rcStrict = IOMR0MmioPhysHandler(pVCpu->CTX_SUFF(pVM), pVCpu,
15806 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW, GCPhys);
15807 Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
15808 if ( rcStrict == VINF_SUCCESS
15809 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
15810 || rcStrict == VERR_PAGE_NOT_PRESENT)
15811 {
15812 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
15813 | HM_CHANGED_GUEST_APIC_TPR);
15814 rcStrict = VINF_SUCCESS;
15815 }
15816 break;
15817 }
15818
15819 default:
15820 {
15821 Log4Func(("uAccessType=%#x\n", uAccessType));
15822 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
15823 break;
15824 }
15825 }
15826
15827 if (rcStrict != VINF_SUCCESS)
15828 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
15829 return rcStrict;
15830}
15831
15832
15833/**
15834 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
15835 * VM-exit.
15836 */
15837HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15838{
15839 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15840 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15841
15842 /* We might get this VM-exit if the nested-guest is not intercepting MOV DRx accesses. */
15843 if (!pVmxTransient->fIsNestedGuest)
15844 {
15845 /* We should -not- get this VM-exit if the guest's debug registers were active. */
15846 if (pVmxTransient->fWasGuestDebugStateActive)
15847 {
15848 AssertMsgFailed(("Unexpected MOV DRx exit\n"));
15849 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
15850 }
15851
15852 if ( !pVCpu->hm.s.fSingleInstruction
15853 && !pVmxTransient->fWasHyperDebugStateActive)
15854 {
15855 Assert(!DBGFIsStepping(pVCpu));
15856 Assert(pVmcsInfo->u32XcptBitmap & RT_BIT(X86_XCPT_DB));
15857
15858 /* Don't intercept MOV DRx any more. */
15859 pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
15860 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
15861 AssertRC(rc);
15862
15863 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
15864 VMMRZCallRing3Disable(pVCpu);
15865 HM_DISABLE_PREEMPT(pVCpu);
15866
15867 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
15868 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
15869 Assert(CPUMIsGuestDebugStateActive(pVCpu));
15870
15871 HM_RESTORE_PREEMPT();
15872 VMMRZCallRing3Enable(pVCpu);
15873
15874#ifdef VBOX_WITH_STATISTICS
15875 hmR0VmxReadExitQualVmcs(pVmxTransient);
15876 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
15877 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
15878 else
15879 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
15880#endif
15881 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
15882 return VINF_SUCCESS;
15883 }
15884 }
15885
15886 /*
15887 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER MSR, CS.
15888 * The EFER MSR is always up-to-date.
15889 * Update the segment registers and DR7 from the CPU.
15890 */
15891 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15892 hmR0VmxReadExitQualVmcs(pVmxTransient);
15893 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
15894 AssertRCReturn(rc, rc);
15895 Log4Func(("cs:rip=%#04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
15896
15897 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15898 if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
15899 {
15900 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
15901 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
15902 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
15903 if (RT_SUCCESS(rc))
15904 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_DR7);
15905 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
15906 }
15907 else
15908 {
15909 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
15910 VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
15911 VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
15912 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
15913 }
15914
15915 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
15916 if (RT_SUCCESS(rc))
15917 {
15918 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pVmxTransient);
15919 AssertRCReturn(rc2, rc2);
15920 return VINF_SUCCESS;
15921 }
15922 return rc;
15923}
15924
15925
15926/**
15927 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
15928 * Conditional VM-exit.
15929 */
15930HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
15931{
15932 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
15933 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
15934
15935 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
15936 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
15937 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
15938 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
15939 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
15940
15941 /*
15942 * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
15943 */
15944 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
15945 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
15946 {
15947 /*
15948 * In the unlikely case where delivering an event causes an EPT misconfig (MMIO), go back to
15949 * instruction emulation to inject the original event. Otherwise, injecting the original event
15950 * using hardware-assisted VMX would trigger the same EPT misconfig VM-exit again.
15951 */
15952 if (!pVCpu->hm.s.Event.fPending)
15953 { /* likely */ }
15954 else
15955 {
15956 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterpret);
15957#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
15958 /** @todo NSTVMX: Think about how this should be handled. */
15959 if (pVmxTransient->fIsNestedGuest)
15960 return VERR_VMX_IPE_3;
15961#endif
15962 return VINF_EM_RAW_INJECT_TRPM_EVENT;
15963 }
15964 }
15965 else
15966 {
15967 Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
15968 return rcStrict;
15969 }
15970
15971 /*
15972 * Get sufficient state and update the exit history entry.
15973 */
15974 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
15975 hmR0VmxReadGuestPhysicalAddrVmcs(pVmxTransient);
15976 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
15977 AssertRCReturn(rc, rc);
15978
15979 RTGCPHYS const GCPhys = pVmxTransient->uGuestPhysicalAddr;
15980 PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
15981 EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
15982 pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
15983 if (!pExitRec)
15984 {
15985 /*
15986 * If we succeed, resume guest execution.
15987 * If we fail in interpreting the instruction because we couldn't get the guest physical address
15988 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
15989 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
15990 * weird case. See @bugref{6043}.
15991 */
15992 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
15993 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
15994/** @todo bird: We can probably just go straight to IOM here and assume that
15995 * it's MMIO, then fall back on PGM if that hunch didn't work out so
15996 * well. However, we need to address that aliasing workarounds that
15997 * PGMR0Trap0eHandlerNPMisconfig implements. So, some care is needed.
15998 *
15999 * Might also be interesting to see if we can get this done more or
16000 * less locklessly inside IOM. Need to consider the lookup table
16001 * updating and use a bit more carefully first (or do all updates via
16002 * rendezvous) */
16003 rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
16004 Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
16005 if ( rcStrict == VINF_SUCCESS
16006 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
16007 || rcStrict == VERR_PAGE_NOT_PRESENT)
16008 {
16009 /* Successfully handled MMIO operation. */
16010 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
16011 | HM_CHANGED_GUEST_APIC_TPR);
16012 rcStrict = VINF_SUCCESS;
16013 }
16014 }
16015 else
16016 {
16017 /*
16018 * Frequent exit or something needing probing. Call EMHistoryExec.
16019 */
16020 Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
16021 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
16022
16023 rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
16024 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
16025
16026 Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
16027 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
16028 VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
16029 }
16030 return rcStrict;
16031}
16032
16033
16034/**
16035 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
16036 * VM-exit.
16037 */
16038HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16039{
16040 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16041 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
16042
16043 hmR0VmxReadExitQualVmcs(pVmxTransient);
16044 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
16045 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
16046 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16047 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16048 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16049
16050 /*
16051 * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
16052 */
16053 VBOXSTRICTRC rcStrict = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
16054 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16055 {
16056 /*
16057 * If delivery of an event causes an EPT violation (true nested #PF and not MMIO),
16058 * we shall resolve the nested #PF and re-inject the original event.
16059 */
16060 if (pVCpu->hm.s.Event.fPending)
16061 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectReflectNPF);
16062 }
16063 else
16064 {
16065 Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
16066 return rcStrict;
16067 }
16068
16069 PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
16070 hmR0VmxReadGuestPhysicalAddrVmcs(pVmxTransient);
16071 int rc = hmR0VmxImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
16072 AssertRCReturn(rc, rc);
16073
16074 RTGCPHYS const GCPhys = pVmxTransient->uGuestPhysicalAddr;
16075 uint64_t const uExitQual = pVmxTransient->uExitQual;
16076 AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", uExitQual));
16077
16078 RTGCUINT uErrorCode = 0;
16079 if (uExitQual & VMX_EXIT_QUAL_EPT_INSTR_FETCH)
16080 uErrorCode |= X86_TRAP_PF_ID;
16081 if (uExitQual & VMX_EXIT_QUAL_EPT_DATA_WRITE)
16082 uErrorCode |= X86_TRAP_PF_RW;
16083 if (uExitQual & VMX_EXIT_QUAL_EPT_ENTRY_PRESENT)
16084 uErrorCode |= X86_TRAP_PF_P;
16085
16086 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
16087 PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
16088 Log4Func(("at %#RX64 (%#RX64 errcode=%#x) cs:rip=%#04x:%#RX64\n", GCPhys, uExitQual, uErrorCode, pCtx->cs.Sel, pCtx->rip));
16089
16090 /*
16091 * Handle the pagefault trap for the nested shadow table.
16092 */
16093 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
16094 rcStrict = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
16095 TRPMResetTrap(pVCpu);
16096
16097 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
16098 if ( rcStrict == VINF_SUCCESS
16099 || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
16100 || rcStrict == VERR_PAGE_NOT_PRESENT)
16101 {
16102 /* Successfully synced our nested page tables. */
16103 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
16104 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
16105 return VINF_SUCCESS;
16106 }
16107
16108 Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
16109 return rcStrict;
16110}
16111
16112
16113#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
16114/**
16115 * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
16116 */
16117HMVMX_EXIT_DECL hmR0VmxExitVmclear(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16118{
16119 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16120
16121 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16122 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16123 hmR0VmxReadExitQualVmcs(pVmxTransient);
16124 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16125 | CPUMCTX_EXTRN_HWVIRT
16126 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16127 AssertRCReturn(rc, rc);
16128
16129 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16130
16131 VMXVEXITINFO ExitInfo;
16132 RT_ZERO(ExitInfo);
16133 ExitInfo.uReason = pVmxTransient->uExitReason;
16134 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16135 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16136 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16137 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16138
16139 VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
16140 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16141 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16142 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16143 {
16144 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16145 rcStrict = VINF_SUCCESS;
16146 }
16147 return rcStrict;
16148}
16149
16150
16151/**
16152 * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
16153 */
16154HMVMX_EXIT_DECL hmR0VmxExitVmlaunch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16155{
16156 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16157
16158 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMLAUNCH,
16159 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
16160 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16161 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
16162 AssertRCReturn(rc, rc);
16163
16164 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16165
16166 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
16167 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMLAUNCH);
16168 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
16169 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16170 {
16171 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
16172 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
16173 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
16174 }
16175 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
16176 return rcStrict;
16177}
16178
16179
16180/**
16181 * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
16182 */
16183HMVMX_EXIT_DECL hmR0VmxExitVmptrld(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16184{
16185 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16186
16187 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16188 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16189 hmR0VmxReadExitQualVmcs(pVmxTransient);
16190 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16191 | CPUMCTX_EXTRN_HWVIRT
16192 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16193 AssertRCReturn(rc, rc);
16194
16195 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16196
16197 VMXVEXITINFO ExitInfo;
16198 RT_ZERO(ExitInfo);
16199 ExitInfo.uReason = pVmxTransient->uExitReason;
16200 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16201 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16202 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16203 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16204
16205 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
16206 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16207 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16208 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16209 {
16210 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16211 rcStrict = VINF_SUCCESS;
16212 }
16213 return rcStrict;
16214}
16215
16216
16217/**
16218 * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
16219 */
16220HMVMX_EXIT_DECL hmR0VmxExitVmptrst(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16221{
16222 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16223
16224 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16225 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16226 hmR0VmxReadExitQualVmcs(pVmxTransient);
16227 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16228 | CPUMCTX_EXTRN_HWVIRT
16229 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16230 AssertRCReturn(rc, rc);
16231
16232 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16233
16234 VMXVEXITINFO ExitInfo;
16235 RT_ZERO(ExitInfo);
16236 ExitInfo.uReason = pVmxTransient->uExitReason;
16237 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16238 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16239 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16240 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
16241
16242 VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
16243 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16244 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
16245 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16246 {
16247 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16248 rcStrict = VINF_SUCCESS;
16249 }
16250 return rcStrict;
16251}
16252
16253
16254/**
16255 * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Conditional VM-exit.
16256 */
16257HMVMX_EXIT_DECL hmR0VmxExitVmread(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16258{
16259 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16260
16261 /*
16262 * Strictly speaking we should not get VMREAD VM-exits for shadow VMCS fields and
16263 * thus might not need to import the shadow VMCS state, it's safer just in case
16264 * code elsewhere dares look at unsynced VMCS fields.
16265 */
16266 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16267 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16268 hmR0VmxReadExitQualVmcs(pVmxTransient);
16269 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16270 | CPUMCTX_EXTRN_HWVIRT
16271 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16272 AssertRCReturn(rc, rc);
16273
16274 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16275
16276 VMXVEXITINFO ExitInfo;
16277 RT_ZERO(ExitInfo);
16278 ExitInfo.uReason = pVmxTransient->uExitReason;
16279 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16280 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16281 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16282 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
16283 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
16284
16285 VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
16286 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16287 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
16288 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16289 {
16290 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16291 rcStrict = VINF_SUCCESS;
16292 }
16293 return rcStrict;
16294}
16295
16296
16297/**
16298 * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
16299 */
16300HMVMX_EXIT_DECL hmR0VmxExitVmresume(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16301{
16302 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16303
16304 /* Import the entire VMCS state for now as we would be switching VMCS on successful VMRESUME,
16305 otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
16306 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16307 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
16308 AssertRCReturn(rc, rc);
16309
16310 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16311
16312 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitVmentry, z);
16313 VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMRESUME);
16314 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitVmentry, z);
16315 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16316 {
16317 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
16318 if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
16319 rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
16320 }
16321 Assert(rcStrict != VINF_IEM_RAISED_XCPT);
16322 return rcStrict;
16323}
16324
16325
16326/**
16327 * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Conditional VM-exit.
16328 */
16329HMVMX_EXIT_DECL hmR0VmxExitVmwrite(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16330{
16331 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16332
16333 /*
16334 * Although we should not get VMWRITE VM-exits for shadow VMCS fields, since our HM hook
16335 * gets invoked when IEM's VMWRITE instruction emulation modifies the current VMCS and it
16336 * flags re-loading the entire shadow VMCS, we should save the entire shadow VMCS here.
16337 */
16338 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16339 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16340 hmR0VmxReadExitQualVmcs(pVmxTransient);
16341 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16342 | CPUMCTX_EXTRN_HWVIRT
16343 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16344 AssertRCReturn(rc, rc);
16345
16346 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16347
16348 VMXVEXITINFO ExitInfo;
16349 RT_ZERO(ExitInfo);
16350 ExitInfo.uReason = pVmxTransient->uExitReason;
16351 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16352 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16353 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16354 if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
16355 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16356
16357 VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
16358 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16359 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16360 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16361 {
16362 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16363 rcStrict = VINF_SUCCESS;
16364 }
16365 return rcStrict;
16366}
16367
16368
16369/**
16370 * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
16371 */
16372HMVMX_EXIT_DECL hmR0VmxExitVmxoff(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16373{
16374 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16375
16376 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16377 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR4
16378 | CPUMCTX_EXTRN_HWVIRT
16379 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
16380 AssertRCReturn(rc, rc);
16381
16382 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16383
16384 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbExitInstr);
16385 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16386 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
16387 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16388 {
16389 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16390 rcStrict = VINF_SUCCESS;
16391 }
16392 return rcStrict;
16393}
16394
16395
16396/**
16397 * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
16398 */
16399HMVMX_EXIT_DECL hmR0VmxExitVmxon(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16400{
16401 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16402
16403 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16404 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16405 hmR0VmxReadExitQualVmcs(pVmxTransient);
16406 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16407 | CPUMCTX_EXTRN_HWVIRT
16408 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16409 AssertRCReturn(rc, rc);
16410
16411 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16412
16413 VMXVEXITINFO ExitInfo;
16414 RT_ZERO(ExitInfo);
16415 ExitInfo.uReason = pVmxTransient->uExitReason;
16416 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16417 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16418 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16419 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16420
16421 VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
16422 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16423 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
16424 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16425 {
16426 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16427 rcStrict = VINF_SUCCESS;
16428 }
16429 return rcStrict;
16430}
16431
16432
16433/**
16434 * VM-exit handler for INVVPID (VMX_EXIT_INVVPID). Unconditional VM-exit.
16435 */
16436HMVMX_EXIT_DECL hmR0VmxExitInvvpid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16437{
16438 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16439
16440 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16441 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16442 hmR0VmxReadExitQualVmcs(pVmxTransient);
16443 int rc = hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
16444 | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
16445 AssertRCReturn(rc, rc);
16446
16447 HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
16448
16449 VMXVEXITINFO ExitInfo;
16450 RT_ZERO(ExitInfo);
16451 ExitInfo.uReason = pVmxTransient->uExitReason;
16452 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16453 ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
16454 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16455 HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
16456
16457 VBOXSTRICTRC rcStrict = IEMExecDecodedInvvpid(pVCpu, &ExitInfo);
16458 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
16459 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
16460 else if (rcStrict == VINF_IEM_RAISED_XCPT)
16461 {
16462 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16463 rcStrict = VINF_SUCCESS;
16464 }
16465 return rcStrict;
16466}
16467#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
16468/** @} */
16469
16470
16471#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
16472/** @name Nested-guest VM-exit handlers.
16473 * @{
16474 */
16475/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
16476/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- Nested-guest VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
16477/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
16478
16479/**
16480 * Nested-guest VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
16481 * Conditional VM-exit.
16482 */
16483HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16484{
16485 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16486
16487 hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
16488
16489 uint64_t const uExitIntInfo = pVmxTransient->uExitIntInfo;
16490 uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo);
16491 Assert(VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo));
16492
16493 switch (uExitIntType)
16494 {
16495 /*
16496 * Physical NMIs:
16497 * We shouldn't direct host physical NMIs to the nested-guest. Dispatch it to the host.
16498 */
16499 case VMX_EXIT_INT_INFO_TYPE_NMI:
16500 return hmR0VmxExitHostNmi(pVCpu, pVmxTransient->pVmcsInfo);
16501
16502 /*
16503 * Hardware exceptions,
16504 * Software exceptions,
16505 * Privileged software exceptions:
16506 * Figure out if the exception must be delivered to the guest or the nested-guest.
16507 */
16508 case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
16509 case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
16510 case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
16511 {
16512 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
16513 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16514 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16515 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16516
16517 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
16518 bool const fIntercept = CPUMIsGuestVmxXcptInterceptSet(pCtx, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo),
16519 pVmxTransient->uExitIntErrorCode);
16520 if (fIntercept)
16521 {
16522 /* Exit qualification is required for debug and page-fault exceptions. */
16523 hmR0VmxReadExitQualVmcs(pVmxTransient);
16524
16525 /*
16526 * For VM-exits due to software exceptions (those generated by INT3 or INTO) and privileged
16527 * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
16528 * length. However, if delivery of a software interrupt, software exception or privileged
16529 * software exception causes a VM-exit, that too provides the VM-exit instruction length.
16530 */
16531 VMXVEXITINFO ExitInfo;
16532 RT_ZERO(ExitInfo);
16533 ExitInfo.uReason = pVmxTransient->uExitReason;
16534 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16535 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16536
16537 VMXVEXITEVENTINFO ExitEventInfo;
16538 RT_ZERO(ExitEventInfo);
16539 ExitEventInfo.uExitIntInfo = pVmxTransient->uExitIntInfo;
16540 ExitEventInfo.uExitIntErrCode = pVmxTransient->uExitIntErrorCode;
16541 ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
16542 ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
16543
16544#ifdef DEBUG_ramshankar
16545 hmR0VmxImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
16546 Log4Func(("exit_int_info=%#RX32 err_code=%#RX32 exit_qual=%#RX64\n", pVmxTransient->uExitIntInfo,
16547 pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual));
16548 if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
16549 {
16550 Log4Func(("idt_info=%#RX32 idt_errcode=%#RX32 cr2=%#RX64\n", pVmxTransient->uIdtVectoringInfo,
16551 pVmxTransient->uIdtVectoringErrorCode, pCtx->cr2));
16552 }
16553#endif
16554 return IEMExecVmxVmexitXcpt(pVCpu, &ExitInfo, &ExitEventInfo);
16555 }
16556
16557 /* Nested paging is currently a requirement, otherwise we would need to handle shadow #PFs in hmR0VmxExitXcptPF. */
16558 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
16559 return hmR0VmxExitXcpt(pVCpu, pVmxTransient);
16560 }
16561
16562 /*
16563 * Software interrupts:
16564 * VM-exits cannot be caused by software interrupts.
16565 *
16566 * External interrupts:
16567 * This should only happen when "acknowledge external interrupts on VM-exit"
16568 * control is set. However, we never set this when executing a guest or
16569 * nested-guest. For nested-guests it is emulated while injecting interrupts into
16570 * the guest.
16571 */
16572 case VMX_EXIT_INT_INFO_TYPE_SW_INT:
16573 case VMX_EXIT_INT_INFO_TYPE_EXT_INT:
16574 default:
16575 {
16576 pVCpu->hm.s.u32HMError = pVmxTransient->uExitIntInfo;
16577 return VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
16578 }
16579 }
16580}
16581
16582
16583/**
16584 * Nested-guest VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT).
16585 * Unconditional VM-exit.
16586 */
16587HMVMX_EXIT_DECL hmR0VmxExitTripleFaultNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16588{
16589 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16590 return IEMExecVmxVmexitTripleFault(pVCpu);
16591}
16592
16593
16594/**
16595 * Nested-guest VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
16596 */
16597HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16598{
16599 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16600
16601 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INT_WINDOW_EXIT))
16602 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */);
16603 return hmR0VmxExitIntWindow(pVCpu, pVmxTransient);
16604}
16605
16606
16607/**
16608 * Nested-guest VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
16609 */
16610HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16611{
16612 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16613
16614 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_NMI_WINDOW_EXIT))
16615 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */);
16616 return hmR0VmxExitIntWindow(pVCpu, pVmxTransient);
16617}
16618
16619
16620/**
16621 * Nested-guest VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH).
16622 * Unconditional VM-exit.
16623 */
16624HMVMX_EXIT_DECL hmR0VmxExitTaskSwitchNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16625{
16626 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16627
16628 hmR0VmxReadExitQualVmcs(pVmxTransient);
16629 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16630 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
16631 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
16632
16633 VMXVEXITINFO ExitInfo;
16634 RT_ZERO(ExitInfo);
16635 ExitInfo.uReason = pVmxTransient->uExitReason;
16636 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16637 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16638
16639 VMXVEXITEVENTINFO ExitEventInfo;
16640 RT_ZERO(ExitEventInfo);
16641 ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
16642 ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
16643 return IEMExecVmxVmexitTaskSwitch(pVCpu, &ExitInfo, &ExitEventInfo);
16644}
16645
16646
16647/**
16648 * Nested-guest VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
16649 */
16650HMVMX_EXIT_DECL hmR0VmxExitHltNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16651{
16652 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16653
16654 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_HLT_EXIT))
16655 {
16656 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16657 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
16658 }
16659 return hmR0VmxExitHlt(pVCpu, pVmxTransient);
16660}
16661
16662
16663/**
16664 * Nested-guest VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
16665 */
16666HMVMX_EXIT_DECL hmR0VmxExitInvlpgNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16667{
16668 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16669
16670 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT))
16671 {
16672 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16673 hmR0VmxReadExitQualVmcs(pVmxTransient);
16674
16675 VMXVEXITINFO ExitInfo;
16676 RT_ZERO(ExitInfo);
16677 ExitInfo.uReason = pVmxTransient->uExitReason;
16678 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16679 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16680 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16681 }
16682 return hmR0VmxExitInvlpg(pVCpu, pVmxTransient);
16683}
16684
16685
16686/**
16687 * Nested-guest VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
16688 */
16689HMVMX_EXIT_DECL hmR0VmxExitRdpmcNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16690{
16691 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16692
16693 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDPMC_EXIT))
16694 {
16695 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16696 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
16697 }
16698 return hmR0VmxExitRdpmc(pVCpu, pVmxTransient);
16699}
16700
16701
16702/**
16703 * Nested-guest VM-exit handler for VMREAD (VMX_EXIT_VMREAD) and VMWRITE
16704 * (VMX_EXIT_VMWRITE). Conditional VM-exit.
16705 */
16706HMVMX_EXIT_DECL hmR0VmxExitVmreadVmwriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16707{
16708 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16709
16710 Assert( pVmxTransient->uExitReason == VMX_EXIT_VMREAD
16711 || pVmxTransient->uExitReason == VMX_EXIT_VMWRITE);
16712
16713 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16714
16715 uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2;
16716 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
16717 uint64_t u64VmcsField = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64;
16718
16719 HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
16720 if (!CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
16721 u64VmcsField &= UINT64_C(0xffffffff);
16722
16723 if (CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, pVmxTransient->uExitReason, u64VmcsField))
16724 {
16725 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16726 hmR0VmxReadExitQualVmcs(pVmxTransient);
16727
16728 VMXVEXITINFO ExitInfo;
16729 RT_ZERO(ExitInfo);
16730 ExitInfo.uReason = pVmxTransient->uExitReason;
16731 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16732 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16733 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
16734 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16735 }
16736
16737 if (pVmxTransient->uExitReason == VMX_EXIT_VMREAD)
16738 return hmR0VmxExitVmread(pVCpu, pVmxTransient);
16739 return hmR0VmxExitVmwrite(pVCpu, pVmxTransient);
16740}
16741
16742
16743/**
16744 * Nested-guest VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
16745 */
16746HMVMX_EXIT_DECL hmR0VmxExitRdtscNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16747{
16748 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16749
16750 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT))
16751 {
16752 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16753 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
16754 }
16755
16756 return hmR0VmxExitRdtsc(pVCpu, pVmxTransient);
16757}
16758
16759
16760/**
16761 * Nested-guest VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX).
16762 * Conditional VM-exit.
16763 */
16764HMVMX_EXIT_DECL hmR0VmxExitMovCRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16765{
16766 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16767
16768 hmR0VmxReadExitQualVmcs(pVmxTransient);
16769 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16770
16771 VBOXSTRICTRC rcStrict;
16772 uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual);
16773 switch (uAccessType)
16774 {
16775 case VMX_EXIT_QUAL_CRX_ACCESS_WRITE:
16776 {
16777 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
16778 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual);
16779 Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
16780 uint64_t const uNewCrX = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64;
16781
16782 bool fIntercept;
16783 switch (iCrReg)
16784 {
16785 case 0:
16786 case 4:
16787 fIntercept = CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX);
16788 break;
16789
16790 case 3:
16791 fIntercept = CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCrX);
16792 break;
16793
16794 case 8:
16795 fIntercept = CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_CR8_LOAD_EXIT);
16796 break;
16797
16798 default:
16799 fIntercept = false;
16800 break;
16801 }
16802 if (fIntercept)
16803 {
16804 VMXVEXITINFO ExitInfo;
16805 RT_ZERO(ExitInfo);
16806 ExitInfo.uReason = pVmxTransient->uExitReason;
16807 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16808 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16809 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16810 }
16811 else
16812 rcStrict = hmR0VmxExitMovToCrX(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
16813 break;
16814 }
16815
16816 case VMX_EXIT_QUAL_CRX_ACCESS_READ:
16817 {
16818 /*
16819 * CR0/CR4 reads do not cause VM-exits, the read-shadow is used (subject to masking).
16820 * CR2 reads do not cause a VM-exit.
16821 * CR3 reads cause a VM-exit depending on the "CR3 store exiting" control.
16822 * CR8 reads cause a VM-exit depending on the "CR8 store exiting" control.
16823 */
16824 uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
16825 if ( iCrReg == 3
16826 || iCrReg == 8)
16827 {
16828 static const uint32_t s_auCrXReadIntercepts[] = { 0, 0, 0, VMX_PROC_CTLS_CR3_STORE_EXIT, 0,
16829 0, 0, 0, VMX_PROC_CTLS_CR8_STORE_EXIT };
16830 uint32_t const uIntercept = s_auCrXReadIntercepts[iCrReg];
16831 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, uIntercept))
16832 {
16833 VMXVEXITINFO ExitInfo;
16834 RT_ZERO(ExitInfo);
16835 ExitInfo.uReason = pVmxTransient->uExitReason;
16836 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16837 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16838 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16839 }
16840 else
16841 {
16842 uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual);
16843 rcStrict = hmR0VmxExitMovFromCrX(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
16844 }
16845 }
16846 else
16847 {
16848 AssertMsgFailed(("MOV from CR%d VM-exit must not happen\n", iCrReg));
16849 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, iCrReg);
16850 }
16851 break;
16852 }
16853
16854 case VMX_EXIT_QUAL_CRX_ACCESS_CLTS:
16855 {
16856 PCVMXVVMCS pVmcsNstGst = pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pVmcs);
16857 Assert(pVmcsNstGst);
16858 uint64_t const uGstHostMask = pVmcsNstGst->u64Cr0Mask.u;
16859 uint64_t const uReadShadow = pVmcsNstGst->u64Cr0ReadShadow.u;
16860 if ( (uGstHostMask & X86_CR0_TS)
16861 && (uReadShadow & X86_CR0_TS))
16862 {
16863 VMXVEXITINFO ExitInfo;
16864 RT_ZERO(ExitInfo);
16865 ExitInfo.uReason = pVmxTransient->uExitReason;
16866 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16867 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16868 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16869 }
16870 else
16871 rcStrict = hmR0VmxExitClts(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr);
16872 break;
16873 }
16874
16875 case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
16876 {
16877 RTGCPTR GCPtrEffDst;
16878 uint16_t const uNewMsw = VMX_EXIT_QUAL_CRX_LMSW_DATA(pVmxTransient->uExitQual);
16879 bool const fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(pVmxTransient->uExitQual);
16880 if (fMemOperand)
16881 {
16882 hmR0VmxReadGuestLinearAddrVmcs(pVmxTransient);
16883 GCPtrEffDst = pVmxTransient->uGuestLinearAddr;
16884 }
16885 else
16886 GCPtrEffDst = NIL_RTGCPTR;
16887
16888 if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw))
16889 {
16890 VMXVEXITINFO ExitInfo;
16891 RT_ZERO(ExitInfo);
16892 ExitInfo.uReason = pVmxTransient->uExitReason;
16893 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16894 ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
16895 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16896 rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16897 }
16898 else
16899 rcStrict = hmR0VmxExitLmsw(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, uNewMsw, GCPtrEffDst);
16900 break;
16901 }
16902
16903 default:
16904 {
16905 AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType));
16906 HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType);
16907 }
16908 }
16909
16910 if (rcStrict == VINF_IEM_RAISED_XCPT)
16911 {
16912 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
16913 rcStrict = VINF_SUCCESS;
16914 }
16915 return rcStrict;
16916}
16917
16918
16919/**
16920 * Nested-guest VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX).
16921 * Conditional VM-exit.
16922 */
16923HMVMX_EXIT_DECL hmR0VmxExitMovDRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16924{
16925 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16926
16927 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MOV_DR_EXIT))
16928 {
16929 hmR0VmxReadExitQualVmcs(pVmxTransient);
16930 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16931
16932 VMXVEXITINFO ExitInfo;
16933 RT_ZERO(ExitInfo);
16934 ExitInfo.uReason = pVmxTransient->uExitReason;
16935 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16936 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16937 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16938 }
16939 return hmR0VmxExitMovDRx(pVCpu, pVmxTransient);
16940}
16941
16942
16943/**
16944 * Nested-guest VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR).
16945 * Conditional VM-exit.
16946 */
16947HMVMX_EXIT_DECL hmR0VmxExitIoInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
16948{
16949 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
16950
16951 hmR0VmxReadExitQualVmcs(pVmxTransient);
16952
16953 uint32_t const uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
16954 uint8_t const uIOSize = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual);
16955 AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1);
16956
16957 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses in bytes. */
16958 uint8_t const cbAccess = s_aIOSizes[uIOSize];
16959 if (CPUMIsGuestVmxIoInterceptSet(pVCpu, uIOPort, cbAccess))
16960 {
16961 /*
16962 * IN/OUT instruction:
16963 * - Provides VM-exit instruction length.
16964 *
16965 * INS/OUTS instruction:
16966 * - Provides VM-exit instruction length.
16967 * - Provides Guest-linear address.
16968 * - Optionally provides VM-exit instruction info (depends on CPU feature).
16969 */
16970 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
16971 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
16972
16973 /* Make sure we don't use stale/uninitialized VMX-transient info. below. */
16974 pVmxTransient->ExitInstrInfo.u = 0;
16975 pVmxTransient->uGuestLinearAddr = 0;
16976
16977 bool const fVmxInsOutsInfo = pVM->cpum.ro.GuestFeatures.fVmxInsOutInfo;
16978 bool const fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
16979 if (fIOString)
16980 {
16981 hmR0VmxReadGuestLinearAddrVmcs(pVmxTransient);
16982 if (fVmxInsOutsInfo)
16983 {
16984 Assert(RT_BF_GET(pVM->hm.s.vmx.Msrs.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS)); /* Paranoia. */
16985 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
16986 }
16987 }
16988
16989 VMXVEXITINFO ExitInfo;
16990 RT_ZERO(ExitInfo);
16991 ExitInfo.uReason = pVmxTransient->uExitReason;
16992 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
16993 ExitInfo.u64Qual = pVmxTransient->uExitQual;
16994 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
16995 ExitInfo.u64GuestLinearAddr = pVmxTransient->uGuestLinearAddr;
16996 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
16997 }
16998 return hmR0VmxExitIoInstr(pVCpu, pVmxTransient);
16999}
17000
17001
17002/**
17003 * Nested-guest VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
17004 */
17005HMVMX_EXIT_DECL hmR0VmxExitRdmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17006{
17007 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17008
17009 uint32_t fMsrpm;
17010 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS))
17011 fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), pVCpu->cpum.GstCtx.ecx);
17012 else
17013 fMsrpm = VMXMSRPM_EXIT_RD;
17014
17015 if (fMsrpm & VMXMSRPM_EXIT_RD)
17016 {
17017 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17018 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17019 }
17020 return hmR0VmxExitRdmsr(pVCpu, pVmxTransient);
17021}
17022
17023
17024/**
17025 * Nested-guest VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
17026 */
17027HMVMX_EXIT_DECL hmR0VmxExitWrmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17028{
17029 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17030
17031 uint32_t fMsrpm;
17032 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS))
17033 fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.CTX_SUFF(pvMsrBitmap), pVCpu->cpum.GstCtx.ecx);
17034 else
17035 fMsrpm = VMXMSRPM_EXIT_WR;
17036
17037 if (fMsrpm & VMXMSRPM_EXIT_WR)
17038 {
17039 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17040 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17041 }
17042 return hmR0VmxExitWrmsr(pVCpu, pVmxTransient);
17043}
17044
17045
17046/**
17047 * Nested-guest VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
17048 */
17049HMVMX_EXIT_DECL hmR0VmxExitMwaitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17050{
17051 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17052
17053 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MWAIT_EXIT))
17054 {
17055 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17056 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17057 }
17058 return hmR0VmxExitMwait(pVCpu, pVmxTransient);
17059}
17060
17061
17062/**
17063 * Nested-guest VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional
17064 * VM-exit.
17065 */
17066HMVMX_EXIT_DECL hmR0VmxExitMtfNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17067{
17068 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17069
17070 /** @todo NSTVMX: Should consider debugging nested-guests using VM debugger. */
17071 hmR0VmxReadGuestPendingDbgXctps(pVmxTransient);
17072 VMXVEXITINFO ExitInfo;
17073 RT_ZERO(ExitInfo);
17074 ExitInfo.uReason = pVmxTransient->uExitReason;
17075 ExitInfo.u64GuestPendingDbgXcpts = pVmxTransient->uGuestPendingDbgXcpts;
17076 return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo);
17077}
17078
17079
17080/**
17081 * Nested-guest VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
17082 */
17083HMVMX_EXIT_DECL hmR0VmxExitMonitorNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17084{
17085 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17086
17087 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MONITOR_EXIT))
17088 {
17089 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17090 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17091 }
17092 return hmR0VmxExitMonitor(pVCpu, pVmxTransient);
17093}
17094
17095
17096/**
17097 * Nested-guest VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
17098 */
17099HMVMX_EXIT_DECL hmR0VmxExitPauseNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17100{
17101 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17102
17103 /** @todo NSTVMX: Think about this more. Does the outer guest need to intercept
17104 * PAUSE when executing a nested-guest? If it does not, we would not need
17105 * to check for the intercepts here. Just call VM-exit... */
17106
17107 /* The CPU would have already performed the necessary CPL checks for PAUSE-loop exiting. */
17108 if ( CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_PAUSE_EXIT)
17109 || CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
17110 {
17111 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17112 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17113 }
17114 return hmR0VmxExitPause(pVCpu, pVmxTransient);
17115}
17116
17117
17118/**
17119 * Nested-guest VM-exit handler for when the TPR value is lowered below the
17120 * specified threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
17121 */
17122HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThresholdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17123{
17124 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17125
17126 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_TPR_SHADOW))
17127 {
17128 hmR0VmxReadGuestPendingDbgXctps(pVmxTransient);
17129 VMXVEXITINFO ExitInfo;
17130 RT_ZERO(ExitInfo);
17131 ExitInfo.uReason = pVmxTransient->uExitReason;
17132 ExitInfo.u64GuestPendingDbgXcpts = pVmxTransient->uGuestPendingDbgXcpts;
17133 return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo);
17134 }
17135 return hmR0VmxExitTprBelowThreshold(pVCpu, pVmxTransient);
17136}
17137
17138
17139/**
17140 * Nested-guest VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional
17141 * VM-exit.
17142 */
17143HMVMX_EXIT_DECL hmR0VmxExitApicAccessNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17144{
17145 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17146
17147 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17148 hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
17149 hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
17150 hmR0VmxReadExitQualVmcs(pVmxTransient);
17151
17152 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_APIC_ACCESS));
17153
17154 Log4Func(("at offset %#x type=%u\n", VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual),
17155 VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual)));
17156
17157 VMXVEXITINFO ExitInfo;
17158 RT_ZERO(ExitInfo);
17159 ExitInfo.uReason = pVmxTransient->uExitReason;
17160 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17161 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17162
17163 VMXVEXITEVENTINFO ExitEventInfo;
17164 RT_ZERO(ExitEventInfo);
17165 ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
17166 ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
17167 return IEMExecVmxVmexitApicAccess(pVCpu, &ExitInfo, &ExitEventInfo);
17168}
17169
17170
17171/**
17172 * Nested-guest VM-exit handler for APIC write emulation (VMX_EXIT_APIC_WRITE).
17173 * Conditional VM-exit.
17174 */
17175HMVMX_EXIT_DECL hmR0VmxExitApicWriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17176{
17177 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17178
17179 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_APIC_REG_VIRT));
17180 hmR0VmxReadExitQualVmcs(pVmxTransient);
17181 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
17182}
17183
17184
17185/**
17186 * Nested-guest VM-exit handler for virtualized EOI (VMX_EXIT_VIRTUALIZED_EOI).
17187 * Conditional VM-exit.
17188 */
17189HMVMX_EXIT_DECL hmR0VmxExitVirtEoiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17190{
17191 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17192
17193 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_INT_DELIVERY));
17194 hmR0VmxReadExitQualVmcs(pVmxTransient);
17195 return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
17196}
17197
17198
17199/**
17200 * Nested-guest VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
17201 */
17202HMVMX_EXIT_DECL hmR0VmxExitRdtscpNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17203{
17204 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17205
17206 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT))
17207 {
17208 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_RDTSCP));
17209 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17210 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17211 }
17212 return hmR0VmxExitRdtscp(pVCpu, pVmxTransient);
17213}
17214
17215
17216/**
17217 * Nested-guest VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
17218 */
17219HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17220{
17221 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17222
17223 if (CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_WBINVD_EXIT))
17224 {
17225 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17226 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17227 }
17228 return hmR0VmxExitWbinvd(pVCpu, pVmxTransient);
17229}
17230
17231
17232/**
17233 * Nested-guest VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
17234 */
17235HMVMX_EXIT_DECL hmR0VmxExitInvpcidNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17236{
17237 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17238
17239 if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT))
17240 {
17241 Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_INVPCID));
17242 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17243 hmR0VmxReadExitQualVmcs(pVmxTransient);
17244 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
17245
17246 VMXVEXITINFO ExitInfo;
17247 RT_ZERO(ExitInfo);
17248 ExitInfo.uReason = pVmxTransient->uExitReason;
17249 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17250 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17251 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
17252 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17253 }
17254 return hmR0VmxExitInvpcid(pVCpu, pVmxTransient);
17255}
17256
17257
17258/**
17259 * Nested-guest VM-exit handler for invalid-guest state
17260 * (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error VM-exit.
17261 */
17262HMVMX_EXIT_DECL hmR0VmxExitErrInvalidGuestStateNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17263{
17264 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17265
17266 /*
17267 * Currently this should never happen because we fully emulate VMLAUNCH/VMRESUME in IEM.
17268 * So if it does happen, it indicates a bug possibly in the hardware-assisted VMX code.
17269 * Handle it like it's in an invalid guest state of the outer guest.
17270 *
17271 * When the fast path is implemented, this should be changed to cause the corresponding
17272 * nested-guest VM-exit.
17273 */
17274 return hmR0VmxExitErrInvalidGuestState(pVCpu, pVmxTransient);
17275}
17276
17277
17278/**
17279 * Nested-guest VM-exit handler for instructions that cause VM-exits uncondtionally
17280 * and only provide the instruction length.
17281 *
17282 * Unconditional VM-exit.
17283 */
17284HMVMX_EXIT_DECL hmR0VmxExitInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17285{
17286 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17287
17288#ifdef VBOX_STRICT
17289 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
17290 switch (pVmxTransient->uExitReason)
17291 {
17292 case VMX_EXIT_ENCLS:
17293 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_ENCLS_EXIT));
17294 break;
17295
17296 case VMX_EXIT_VMFUNC:
17297 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_VMFUNC));
17298 break;
17299 }
17300#endif
17301
17302 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17303 return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
17304}
17305
17306
17307/**
17308 * Nested-guest VM-exit handler for instructions that provide instruction length as
17309 * well as more information.
17310 *
17311 * Unconditional VM-exit.
17312 */
17313HMVMX_EXIT_DECL hmR0VmxExitInstrWithInfoNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
17314{
17315 HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
17316
17317#ifdef VBOX_STRICT
17318 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
17319 switch (pVmxTransient->uExitReason)
17320 {
17321 case VMX_EXIT_GDTR_IDTR_ACCESS:
17322 case VMX_EXIT_LDTR_TR_ACCESS:
17323 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_DESC_TABLE_EXIT));
17324 break;
17325
17326 case VMX_EXIT_RDRAND:
17327 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDRAND_EXIT));
17328 break;
17329
17330 case VMX_EXIT_RDSEED:
17331 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDSEED_EXIT));
17332 break;
17333
17334 case VMX_EXIT_XSAVES:
17335 case VMX_EXIT_XRSTORS:
17336 /** @todo NSTVMX: Verify XSS-bitmap. */
17337 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_XSAVES_XRSTORS));
17338 break;
17339
17340 case VMX_EXIT_UMWAIT:
17341 case VMX_EXIT_TPAUSE:
17342 Assert(CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_RDTSC_EXIT));
17343 Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_USER_WAIT_PAUSE));
17344 break;
17345 }
17346#endif
17347
17348 hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
17349 hmR0VmxReadExitQualVmcs(pVmxTransient);
17350 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
17351
17352 VMXVEXITINFO ExitInfo;
17353 RT_ZERO(ExitInfo);
17354 ExitInfo.uReason = pVmxTransient->uExitReason;
17355 ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
17356 ExitInfo.u64Qual = pVmxTransient->uExitQual;
17357 ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
17358 return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
17359}
17360
17361/** @} */
17362#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
17363
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette