VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMVMXR0.cpp@ 66250

Last change on this file since 66250 was 66052, checked in by vboxsync, 8 years ago

HMVMXR0.cpp: Disabled (for me only) annoying HMCPU_CF_IS_PENDING assertion triggered by bs3-cpu-generated-1.img and debugger.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 587.8 KB
Line 
1/* $Id: HMVMXR0.cpp 66052 2017-03-10 19:21:28Z vboxsync $ */
2/** @file
3 * HM VMX (Intel VT-x) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2012-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <iprt/x86.h>
24#include <iprt/asm-amd64-x86.h>
25#include <iprt/thread.h>
26
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/dbgf.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/iom.h>
31#include <VBox/vmm/selm.h>
32#include <VBox/vmm/tm.h>
33#include <VBox/vmm/gim.h>
34#include <VBox/vmm/apic.h>
35#ifdef VBOX_WITH_REM
36# include <VBox/vmm/rem.h>
37#endif
38#include "HMInternal.h"
39#include <VBox/vmm/vm.h>
40#include "HMVMXR0.h"
41#include "dtrace/VBoxVMM.h"
42
43#ifdef DEBUG_ramshankar
44# define HMVMX_ALWAYS_SAVE_GUEST_RFLAGS
45# define HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE
46# define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
47# define HMVMX_ALWAYS_CHECK_GUEST_STATE
48# define HMVMX_ALWAYS_TRAP_ALL_XCPTS
49# define HMVMX_ALWAYS_TRAP_PF
50# define HMVMX_ALWAYS_SWAP_FPU_STATE
51# define HMVMX_ALWAYS_FLUSH_TLB
52# define HMVMX_ALWAYS_SWAP_EFER
53#endif
54
55
56/*********************************************************************************************************************************
57* Defined Constants And Macros *
58*********************************************************************************************************************************/
59/** Use the function table. */
60#define HMVMX_USE_FUNCTION_TABLE
61
62/** Determine which tagged-TLB flush handler to use. */
63#define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
64#define HMVMX_FLUSH_TAGGED_TLB_EPT 1
65#define HMVMX_FLUSH_TAGGED_TLB_VPID 2
66#define HMVMX_FLUSH_TAGGED_TLB_NONE 3
67
68/** @name Updated-guest-state flags.
69 * @{ */
70#define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
71#define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
72#define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
73#define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
74#define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
75#define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
76#define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
77#define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
78#define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
79#define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
80#define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
81#define HMVMX_UPDATED_GUEST_DR7 RT_BIT(11)
82#define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(12)
83#define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(13)
84#define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(14)
85#define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(15)
86#define HMVMX_UPDATED_GUEST_LAZY_MSRS RT_BIT(16)
87#define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(17)
88#define HMVMX_UPDATED_GUEST_INTR_STATE RT_BIT(18)
89#define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
90#define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
91 | HMVMX_UPDATED_GUEST_RSP \
92 | HMVMX_UPDATED_GUEST_RFLAGS \
93 | HMVMX_UPDATED_GUEST_CR0 \
94 | HMVMX_UPDATED_GUEST_CR3 \
95 | HMVMX_UPDATED_GUEST_CR4 \
96 | HMVMX_UPDATED_GUEST_GDTR \
97 | HMVMX_UPDATED_GUEST_IDTR \
98 | HMVMX_UPDATED_GUEST_LDTR \
99 | HMVMX_UPDATED_GUEST_TR \
100 | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
101 | HMVMX_UPDATED_GUEST_DR7 \
102 | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
103 | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
104 | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
105 | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
106 | HMVMX_UPDATED_GUEST_LAZY_MSRS \
107 | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
108 | HMVMX_UPDATED_GUEST_INTR_STATE \
109 | HMVMX_UPDATED_GUEST_APIC_STATE)
110/** @} */
111
112/** @name
113 * Flags to skip redundant reads of some common VMCS fields that are not part of
114 * the guest-CPU state but are in the transient structure.
115 */
116#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
117#define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
118#define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
119#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
120#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
121#define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
122#define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO RT_BIT(6)
123/** @} */
124
125/** @name
126 * States of the VMCS.
127 *
128 * This does not reflect all possible VMCS states but currently only those
129 * needed for maintaining the VMCS consistently even when thread-context hooks
130 * are used. Maybe later this can be extended (i.e. Nested Virtualization).
131 */
132#define HMVMX_VMCS_STATE_CLEAR RT_BIT(0)
133#define HMVMX_VMCS_STATE_ACTIVE RT_BIT(1)
134#define HMVMX_VMCS_STATE_LAUNCHED RT_BIT(2)
135/** @} */
136
137/**
138 * Exception bitmap mask for real-mode guests (real-on-v86).
139 *
140 * We need to intercept all exceptions manually except:
141 * - \#NM, \#MF handled in hmR0VmxLoadSharedCR0().
142 * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
143 * due to bugs in Intel CPUs.
144 * - \#PF need not be intercepted even in real-mode if we have Nested Paging
145 * support.
146 */
147#define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
148 | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
149 | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
150 | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
151 | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
152 /* RT_BIT(X86_XCPT_MF) always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
153 | RT_BIT(X86_XCPT_XF))
154
155/**
156 * Exception bitmap mask for all contributory exceptions.
157 *
158 * Page fault is deliberately excluded here as it's conditional as to whether
159 * it's contributory or benign. Page faults are handled separately.
160 */
161#define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
162 | RT_BIT(X86_XCPT_DE))
163
164/** Maximum VM-instruction error number. */
165#define HMVMX_INSTR_ERROR_MAX 28
166
167/** Profiling macro. */
168#ifdef HM_PROFILE_EXIT_DISPATCH
169# define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
170# define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
171#else
172# define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
173# define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
174#endif
175
176/** Assert that preemption is disabled or covered by thread-context hooks. */
177#define HMVMX_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
178 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
179
180/** Assert that we haven't migrated CPUs when thread-context hooks are not
181 * used. */
182#define HMVMX_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
183 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
184 ("Illegal migration! Entered on CPU %u Current %u\n", \
185 pVCpu->hm.s.idEnteredCpu, RTMpCpuId())); \
186
187/** Helper macro for VM-exit handlers called unexpectedly. */
188#define HMVMX_RETURN_UNEXPECTED_EXIT() \
189 do { \
190 pVCpu->hm.s.u32HMError = pVmxTransient->uExitReason; \
191 return VERR_VMX_UNEXPECTED_EXIT; \
192 } while (0)
193
194
195/*********************************************************************************************************************************
196* Structures and Typedefs *
197*********************************************************************************************************************************/
198/**
199 * VMX transient state.
200 *
201 * A state structure for holding miscellaneous information across
202 * VMX non-root operation and restored after the transition.
203 */
204typedef struct VMXTRANSIENT
205{
206 /** The host's rflags/eflags. */
207 RTCCUINTREG fEFlags;
208#if HC_ARCH_BITS == 32
209 uint32_t u32Alignment0;
210#endif
211 /** The guest's TPR value used for TPR shadowing. */
212 uint8_t u8GuestTpr;
213 /** Alignment. */
214 uint8_t abAlignment0[7];
215
216 /** The basic VM-exit reason. */
217 uint16_t uExitReason;
218 /** Alignment. */
219 uint16_t u16Alignment0;
220 /** The VM-exit interruption error code. */
221 uint32_t uExitIntErrorCode;
222 /** The VM-exit exit code qualification. */
223 uint64_t uExitQualification;
224
225 /** The VM-exit interruption-information field. */
226 uint32_t uExitIntInfo;
227 /** The VM-exit instruction-length field. */
228 uint32_t cbInstr;
229 /** The VM-exit instruction-information field. */
230 union
231 {
232 /** Plain unsigned int representation. */
233 uint32_t u;
234 /** INS and OUTS information. */
235 struct
236 {
237 uint32_t u7Reserved0 : 7;
238 /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
239 uint32_t u3AddrSize : 3;
240 uint32_t u5Reserved1 : 5;
241 /** The segment register (X86_SREG_XXX). */
242 uint32_t iSegReg : 3;
243 uint32_t uReserved2 : 14;
244 } StrIo;
245 } ExitInstrInfo;
246 /** Whether the VM-entry failed or not. */
247 bool fVMEntryFailed;
248 /** Alignment. */
249 uint8_t abAlignment1[3];
250
251 /** The VM-entry interruption-information field. */
252 uint32_t uEntryIntInfo;
253 /** The VM-entry exception error code field. */
254 uint32_t uEntryXcptErrorCode;
255 /** The VM-entry instruction length field. */
256 uint32_t cbEntryInstr;
257
258 /** IDT-vectoring information field. */
259 uint32_t uIdtVectoringInfo;
260 /** IDT-vectoring error code. */
261 uint32_t uIdtVectoringErrorCode;
262
263 /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
264 uint32_t fVmcsFieldsRead;
265
266 /** Whether the guest FPU was active at the time of VM-exit. */
267 bool fWasGuestFPUStateActive;
268 /** Whether the guest debug state was active at the time of VM-exit. */
269 bool fWasGuestDebugStateActive;
270 /** Whether the hyper debug state was active at the time of VM-exit. */
271 bool fWasHyperDebugStateActive;
272 /** Whether TSC-offsetting should be setup before VM-entry. */
273 bool fUpdateTscOffsettingAndPreemptTimer;
274 /** Whether the VM-exit was caused by a page-fault during delivery of a
275 * contributory exception or a page-fault. */
276 bool fVectoringDoublePF;
277 /** Whether the VM-exit was caused by a page-fault during delivery of an
278 * external interrupt or NMI. */
279 bool fVectoringPF;
280} VMXTRANSIENT;
281AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
282AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntInfo, sizeof(uint64_t));
283AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntInfo, sizeof(uint64_t));
284AssertCompileMemberAlignment(VMXTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
285AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
286/** Pointer to VMX transient state. */
287typedef VMXTRANSIENT *PVMXTRANSIENT;
288
289
290/**
291 * MSR-bitmap read permissions.
292 */
293typedef enum VMXMSREXITREAD
294{
295 /** Reading this MSR causes a VM-exit. */
296 VMXMSREXIT_INTERCEPT_READ = 0xb,
297 /** Reading this MSR does not cause a VM-exit. */
298 VMXMSREXIT_PASSTHRU_READ
299} VMXMSREXITREAD;
300/** Pointer to MSR-bitmap read permissions. */
301typedef VMXMSREXITREAD* PVMXMSREXITREAD;
302
303/**
304 * MSR-bitmap write permissions.
305 */
306typedef enum VMXMSREXITWRITE
307{
308 /** Writing to this MSR causes a VM-exit. */
309 VMXMSREXIT_INTERCEPT_WRITE = 0xd,
310 /** Writing to this MSR does not cause a VM-exit. */
311 VMXMSREXIT_PASSTHRU_WRITE
312} VMXMSREXITWRITE;
313/** Pointer to MSR-bitmap write permissions. */
314typedef VMXMSREXITWRITE* PVMXMSREXITWRITE;
315
316
317/**
318 * VMX VM-exit handler.
319 *
320 * @returns Strict VBox status code (i.e. informational status codes too).
321 * @param pVCpu The cross context virtual CPU structure.
322 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
323 * out-of-sync. Make sure to update the required
324 * fields before using them.
325 * @param pVmxTransient Pointer to the VMX-transient structure.
326 */
327#ifndef HMVMX_USE_FUNCTION_TABLE
328typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
329#else
330typedef DECLCALLBACK(VBOXSTRICTRC) FNVMXEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
331/** Pointer to VM-exit handler. */
332typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
333#endif
334
335/**
336 * VMX VM-exit handler, non-strict status code.
337 *
338 * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
339 *
340 * @returns VBox status code, no informational status code returned.
341 * @param pVCpu The cross context virtual CPU structure.
342 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
343 * out-of-sync. Make sure to update the required
344 * fields before using them.
345 * @param pVmxTransient Pointer to the VMX-transient structure.
346 *
347 * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
348 * use of that status code will be replaced with VINF_EM_SOMETHING
349 * later when switching over to IEM.
350 */
351#ifndef HMVMX_USE_FUNCTION_TABLE
352typedef int FNVMXEXITHANDLERNSRC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
353#else
354typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
355#endif
356
357
358/*********************************************************************************************************************************
359* Internal Functions *
360*********************************************************************************************************************************/
361static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush);
362static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr);
363static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu);
364static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
365 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress,
366 bool fStepping, uint32_t *puIntState);
367#if HC_ARCH_BITS == 32
368static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
369#endif
370#ifndef HMVMX_USE_FUNCTION_TABLE
371DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
372# define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
373# define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
374#else
375# define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
376# define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
377#endif
378
379
380/** @name VM-exit handlers.
381 * @{
382 */
383static FNVMXEXITHANDLER hmR0VmxExitXcptOrNmi;
384static FNVMXEXITHANDLER hmR0VmxExitExtInt;
385static FNVMXEXITHANDLER hmR0VmxExitTripleFault;
386static FNVMXEXITHANDLERNSRC hmR0VmxExitInitSignal;
387static FNVMXEXITHANDLERNSRC hmR0VmxExitSipi;
388static FNVMXEXITHANDLERNSRC hmR0VmxExitIoSmi;
389static FNVMXEXITHANDLERNSRC hmR0VmxExitSmi;
390static FNVMXEXITHANDLERNSRC hmR0VmxExitIntWindow;
391static FNVMXEXITHANDLERNSRC hmR0VmxExitNmiWindow;
392static FNVMXEXITHANDLER hmR0VmxExitTaskSwitch;
393static FNVMXEXITHANDLER hmR0VmxExitCpuid;
394static FNVMXEXITHANDLER hmR0VmxExitGetsec;
395static FNVMXEXITHANDLER hmR0VmxExitHlt;
396static FNVMXEXITHANDLERNSRC hmR0VmxExitInvd;
397static FNVMXEXITHANDLER hmR0VmxExitInvlpg;
398static FNVMXEXITHANDLER hmR0VmxExitRdpmc;
399static FNVMXEXITHANDLER hmR0VmxExitVmcall;
400static FNVMXEXITHANDLER hmR0VmxExitRdtsc;
401static FNVMXEXITHANDLERNSRC hmR0VmxExitRsm;
402static FNVMXEXITHANDLERNSRC hmR0VmxExitSetPendingXcptUD;
403static FNVMXEXITHANDLER hmR0VmxExitMovCRx;
404static FNVMXEXITHANDLER hmR0VmxExitMovDRx;
405static FNVMXEXITHANDLER hmR0VmxExitIoInstr;
406static FNVMXEXITHANDLER hmR0VmxExitRdmsr;
407static FNVMXEXITHANDLER hmR0VmxExitWrmsr;
408static FNVMXEXITHANDLERNSRC hmR0VmxExitErrInvalidGuestState;
409static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMsrLoad;
410static FNVMXEXITHANDLERNSRC hmR0VmxExitErrUndefined;
411static FNVMXEXITHANDLER hmR0VmxExitMwait;
412static FNVMXEXITHANDLER hmR0VmxExitMtf;
413static FNVMXEXITHANDLER hmR0VmxExitMonitor;
414static FNVMXEXITHANDLER hmR0VmxExitPause;
415static FNVMXEXITHANDLERNSRC hmR0VmxExitErrMachineCheck;
416static FNVMXEXITHANDLERNSRC hmR0VmxExitTprBelowThreshold;
417static FNVMXEXITHANDLER hmR0VmxExitApicAccess;
418static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
419static FNVMXEXITHANDLER hmR0VmxExitXdtrAccess;
420static FNVMXEXITHANDLER hmR0VmxExitEptViolation;
421static FNVMXEXITHANDLER hmR0VmxExitEptMisconfig;
422static FNVMXEXITHANDLER hmR0VmxExitRdtscp;
423static FNVMXEXITHANDLER hmR0VmxExitPreemptTimer;
424static FNVMXEXITHANDLERNSRC hmR0VmxExitWbinvd;
425static FNVMXEXITHANDLER hmR0VmxExitXsetbv;
426static FNVMXEXITHANDLER hmR0VmxExitRdrand;
427static FNVMXEXITHANDLER hmR0VmxExitInvpcid;
428/** @} */
429
430static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
431static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
432static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
433static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
434static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
435static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
436static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
437static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
438static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
439
440
441/*********************************************************************************************************************************
442* Global Variables *
443*********************************************************************************************************************************/
444#ifdef HMVMX_USE_FUNCTION_TABLE
445
446/**
447 * VMX_EXIT dispatch table.
448 */
449static const PFNVMXEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
450{
451 /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
452 /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
453 /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
454 /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
455 /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
456 /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
457 /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
458 /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
459 /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
460 /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
461 /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
462 /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
463 /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
464 /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
465 /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
466 /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
467 /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
468 /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
469 /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitVmcall,
470 /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
471 /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
472 /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
473 /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
474 /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
475 /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
476 /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
477 /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
478 /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
479 /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
480 /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
481 /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
482 /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
483 /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
484 /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
485 /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
486 /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
487 /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
488 /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
489 /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
490 /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
491 /* 40 UNDEFINED */ hmR0VmxExitPause,
492 /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
493 /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
494 /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
495 /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
496 /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
497 /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
498 /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
499 /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
500 /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
501 /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
502 /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
503 /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
504 /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
505 /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
506 /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
507 /* 56 VMX_EXIT_APIC_WRITE */ hmR0VmxExitErrUndefined,
508 /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
509 /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
510 /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD,
511 /* 60 VMX_EXIT_ENCLS */ hmR0VmxExitErrUndefined,
512 /* 61 VMX_EXIT_RDSEED */ hmR0VmxExitErrUndefined, /* only spurious exits, so undefined */
513 /* 62 VMX_EXIT_PML_FULL */ hmR0VmxExitErrUndefined,
514 /* 63 VMX_EXIT_XSAVES */ hmR0VmxExitSetPendingXcptUD,
515 /* 64 VMX_EXIT_XRSTORS */ hmR0VmxExitSetPendingXcptUD,
516};
517#endif /* HMVMX_USE_FUNCTION_TABLE */
518
519#ifdef VBOX_STRICT
520static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
521{
522 /* 0 */ "(Not Used)",
523 /* 1 */ "VMCALL executed in VMX root operation.",
524 /* 2 */ "VMCLEAR with invalid physical address.",
525 /* 3 */ "VMCLEAR with VMXON pointer.",
526 /* 4 */ "VMLAUNCH with non-clear VMCS.",
527 /* 5 */ "VMRESUME with non-launched VMCS.",
528 /* 6 */ "VMRESUME after VMXOFF",
529 /* 7 */ "VM-entry with invalid control fields.",
530 /* 8 */ "VM-entry with invalid host state fields.",
531 /* 9 */ "VMPTRLD with invalid physical address.",
532 /* 10 */ "VMPTRLD with VMXON pointer.",
533 /* 11 */ "VMPTRLD with incorrect revision identifier.",
534 /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
535 /* 13 */ "VMWRITE to read-only VMCS component.",
536 /* 14 */ "(Not Used)",
537 /* 15 */ "VMXON executed in VMX root operation.",
538 /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
539 /* 17 */ "VM-entry with non-launched executing VMCS.",
540 /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
541 /* 19 */ "VMCALL with non-clear VMCS.",
542 /* 20 */ "VMCALL with invalid VM-exit control fields.",
543 /* 21 */ "(Not Used)",
544 /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
545 /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
546 /* 24 */ "VMCALL with invalid SMM-monitor features.",
547 /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
548 /* 26 */ "VM-entry with events blocked by MOV SS.",
549 /* 27 */ "(Not Used)",
550 /* 28 */ "Invalid operand to INVEPT/INVVPID."
551};
552#endif /* VBOX_STRICT */
553
554
555
556/**
557 * Updates the VM's last error record.
558 *
559 * If there was a VMX instruction error, reads the error data from the VMCS and
560 * updates VCPU's last error record as well.
561 *
562 * @param pVM The cross context VM structure.
563 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
564 * Can be NULL if @a rc is not VERR_VMX_UNABLE_TO_START_VM or
565 * VERR_VMX_INVALID_VMCS_FIELD.
566 * @param rc The error code.
567 */
568static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
569{
570 AssertPtr(pVM);
571 if ( rc == VERR_VMX_INVALID_VMCS_FIELD
572 || rc == VERR_VMX_UNABLE_TO_START_VM)
573 {
574 AssertPtrReturnVoid(pVCpu);
575 VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
576 }
577 pVM->hm.s.lLastError = rc;
578}
579
580
581/**
582 * Reads the VM-entry interruption-information field from the VMCS into the VMX
583 * transient structure.
584 *
585 * @returns VBox status code.
586 * @param pVmxTransient Pointer to the VMX transient structure.
587 *
588 * @remarks No-long-jump zone!!!
589 */
590DECLINLINE(int) hmR0VmxReadEntryIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
591{
592 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
593 AssertRCReturn(rc, rc);
594 return VINF_SUCCESS;
595}
596
597
598#ifdef VBOX_STRICT
599/**
600 * Reads the VM-entry exception error code field from the VMCS into
601 * the VMX transient structure.
602 *
603 * @returns VBox status code.
604 * @param pVmxTransient Pointer to the VMX transient structure.
605 *
606 * @remarks No-long-jump zone!!!
607 */
608DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
609{
610 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
611 AssertRCReturn(rc, rc);
612 return VINF_SUCCESS;
613}
614#endif /* VBOX_STRICT */
615
616
617#ifdef VBOX_STRICT
618/**
619 * Reads the VM-entry exception error code field from the VMCS into
620 * the VMX transient structure.
621 *
622 * @returns VBox status code.
623 * @param pVmxTransient Pointer to the VMX transient structure.
624 *
625 * @remarks No-long-jump zone!!!
626 */
627DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
628{
629 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
630 AssertRCReturn(rc, rc);
631 return VINF_SUCCESS;
632}
633#endif /* VBOX_STRICT */
634
635
636/**
637 * Reads the VM-exit interruption-information field from the VMCS into the VMX
638 * transient structure.
639 *
640 * @returns VBox status code.
641 * @param pVmxTransient Pointer to the VMX transient structure.
642 */
643DECLINLINE(int) hmR0VmxReadExitIntInfoVmcs(PVMXTRANSIENT pVmxTransient)
644{
645 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
646 {
647 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
648 AssertRCReturn(rc, rc);
649 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
650 }
651 return VINF_SUCCESS;
652}
653
654
655/**
656 * Reads the VM-exit interruption error code from the VMCS into the VMX
657 * transient structure.
658 *
659 * @returns VBox status code.
660 * @param pVmxTransient Pointer to the VMX transient structure.
661 */
662DECLINLINE(int) hmR0VmxReadExitIntErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
663{
664 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
665 {
666 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
667 AssertRCReturn(rc, rc);
668 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
669 }
670 return VINF_SUCCESS;
671}
672
673
674/**
675 * Reads the VM-exit instruction length field from the VMCS into the VMX
676 * transient structure.
677 *
678 * @returns VBox status code.
679 * @param pVmxTransient Pointer to the VMX transient structure.
680 */
681DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMXTRANSIENT pVmxTransient)
682{
683 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
684 {
685 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
686 AssertRCReturn(rc, rc);
687 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
688 }
689 return VINF_SUCCESS;
690}
691
692
693/**
694 * Reads the VM-exit instruction-information field from the VMCS into
695 * the VMX transient structure.
696 *
697 * @returns VBox status code.
698 * @param pVmxTransient Pointer to the VMX transient structure.
699 */
700DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMXTRANSIENT pVmxTransient)
701{
702 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO))
703 {
704 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
705 AssertRCReturn(rc, rc);
706 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_INFO;
707 }
708 return VINF_SUCCESS;
709}
710
711
712/**
713 * Reads the exit code qualification from the VMCS into the VMX transient
714 * structure.
715 *
716 * @returns VBox status code.
717 * @param pVCpu The cross context virtual CPU structure of the
718 * calling EMT. (Required for the VMCS cache case.)
719 * @param pVmxTransient Pointer to the VMX transient structure.
720 */
721DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
722{
723 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
724 {
725 int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification); NOREF(pVCpu);
726 AssertRCReturn(rc, rc);
727 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
728 }
729 return VINF_SUCCESS;
730}
731
732
733/**
734 * Reads the IDT-vectoring information field from the VMCS into the VMX
735 * transient structure.
736 *
737 * @returns VBox status code.
738 * @param pVmxTransient Pointer to the VMX transient structure.
739 *
740 * @remarks No-long-jump zone!!!
741 */
742DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
743{
744 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
745 {
746 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
747 AssertRCReturn(rc, rc);
748 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
749 }
750 return VINF_SUCCESS;
751}
752
753
754/**
755 * Reads the IDT-vectoring error code from the VMCS into the VMX
756 * transient structure.
757 *
758 * @returns VBox status code.
759 * @param pVmxTransient Pointer to the VMX transient structure.
760 */
761DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
762{
763 if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
764 {
765 int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
766 AssertRCReturn(rc, rc);
767 pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
768 }
769 return VINF_SUCCESS;
770}
771
772
773/**
774 * Enters VMX root mode operation on the current CPU.
775 *
776 * @returns VBox status code.
777 * @param pVM The cross context VM structure. Can be
778 * NULL, after a resume.
779 * @param HCPhysCpuPage Physical address of the VMXON region.
780 * @param pvCpuPage Pointer to the VMXON region.
781 */
782static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
783{
784 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
785 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
786 Assert(pvCpuPage);
787 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
788
789 if (pVM)
790 {
791 /* Write the VMCS revision dword to the VMXON region. */
792 *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
793 }
794
795 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with CR4. */
796 RTCCUINTREG fEFlags = ASMIntDisableFlags();
797
798 /* Enable the VMX bit in CR4 if necessary. */
799 RTCCUINTREG uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
800
801 /* Enter VMX root mode. */
802 int rc = VMXEnable(HCPhysCpuPage);
803 if (RT_FAILURE(rc))
804 {
805 if (!(uOldCr4 & X86_CR4_VMXE))
806 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
807
808 if (pVM)
809 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
810 }
811
812 /* Restore interrupts. */
813 ASMSetFlags(fEFlags);
814 return rc;
815}
816
817
818/**
819 * Exits VMX root mode operation on the current CPU.
820 *
821 * @returns VBox status code.
822 */
823static int hmR0VmxLeaveRootMode(void)
824{
825 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
826
827 /* Paranoid: Disable interrupts as, in theory, interrupts handlers might mess with CR4. */
828 RTCCUINTREG fEFlags = ASMIntDisableFlags();
829
830 /* If we're for some reason not in VMX root mode, then don't leave it. */
831 RTCCUINTREG uHostCR4 = ASMGetCR4();
832
833 int rc;
834 if (uHostCR4 & X86_CR4_VMXE)
835 {
836 /* Exit VMX root mode and clear the VMX bit in CR4. */
837 VMXDisable();
838 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
839 rc = VINF_SUCCESS;
840 }
841 else
842 rc = VERR_VMX_NOT_IN_VMX_ROOT_MODE;
843
844 /* Restore interrupts. */
845 ASMSetFlags(fEFlags);
846 return rc;
847}
848
849
850/**
851 * Allocates and maps one physically contiguous page. The allocated page is
852 * zero'd out. (Used by various VT-x structures).
853 *
854 * @returns IPRT status code.
855 * @param pMemObj Pointer to the ring-0 memory object.
856 * @param ppVirt Where to store the virtual address of the
857 * allocation.
858 * @param pHCPhys Where to store the physical address of the
859 * allocation.
860 */
861DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
862{
863 AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
864 AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
865 AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
866
867 int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
868 if (RT_FAILURE(rc))
869 return rc;
870 *ppVirt = RTR0MemObjAddress(*pMemObj);
871 *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
872 ASMMemZero32(*ppVirt, PAGE_SIZE);
873 return VINF_SUCCESS;
874}
875
876
877/**
878 * Frees and unmaps an allocated physical page.
879 *
880 * @param pMemObj Pointer to the ring-0 memory object.
881 * @param ppVirt Where to re-initialize the virtual address of
882 * allocation as 0.
883 * @param pHCPhys Where to re-initialize the physical address of the
884 * allocation as 0.
885 */
886DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
887{
888 AssertPtr(pMemObj);
889 AssertPtr(ppVirt);
890 AssertPtr(pHCPhys);
891 if (*pMemObj != NIL_RTR0MEMOBJ)
892 {
893 int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
894 AssertRC(rc);
895 *pMemObj = NIL_RTR0MEMOBJ;
896 *ppVirt = 0;
897 *pHCPhys = 0;
898 }
899}
900
901
902/**
903 * Worker function to free VT-x related structures.
904 *
905 * @returns IPRT status code.
906 * @param pVM The cross context VM structure.
907 */
908static void hmR0VmxStructsFree(PVM pVM)
909{
910 for (VMCPUID i = 0; i < pVM->cCpus; i++)
911 {
912 PVMCPU pVCpu = &pVM->aCpus[i];
913 AssertPtr(pVCpu);
914
915 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
916 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
917
918 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
919 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
920
921 hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
922 }
923
924 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
925#ifdef VBOX_WITH_CRASHDUMP_MAGIC
926 hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
927#endif
928}
929
930
931/**
932 * Worker function to allocate VT-x related VM structures.
933 *
934 * @returns IPRT status code.
935 * @param pVM The cross context VM structure.
936 */
937static int hmR0VmxStructsAlloc(PVM pVM)
938{
939 /*
940 * Initialize members up-front so we can cleanup properly on allocation failure.
941 */
942#define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
943 pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
944 pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
945 pVM->hm.s.vmx.HCPhys##a_Name = 0;
946
947#define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
948 pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
949 pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
950 pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
951
952#ifdef VBOX_WITH_CRASHDUMP_MAGIC
953 VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
954#endif
955 VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
956
957 AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
958 for (VMCPUID i = 0; i < pVM->cCpus; i++)
959 {
960 PVMCPU pVCpu = &pVM->aCpus[i];
961 VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
962 VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
963 VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
964 VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
965 }
966#undef VMXLOCAL_INIT_VMCPU_MEMOBJ
967#undef VMXLOCAL_INIT_VM_MEMOBJ
968
969 /* The VMCS size cannot be more than 4096 bytes. See Intel spec. Appendix A.1 "Basic VMX Information". */
970 AssertReturnStmt(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.Msrs.u64BasicInfo) <= PAGE_SIZE,
971 (&pVM->aCpus[0])->hm.s.u32HMError = VMX_UFC_INVALID_VMCS_SIZE,
972 VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO);
973
974 /*
975 * Allocate all the VT-x structures.
976 */
977 int rc = VINF_SUCCESS;
978#ifdef VBOX_WITH_CRASHDUMP_MAGIC
979 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
980 if (RT_FAILURE(rc))
981 goto cleanup;
982 strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
983 *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
984#endif
985
986 /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
987 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
988 {
989 rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
990 &pVM->hm.s.vmx.HCPhysApicAccess);
991 if (RT_FAILURE(rc))
992 goto cleanup;
993 }
994
995 /*
996 * Initialize per-VCPU VT-x structures.
997 */
998 for (VMCPUID i = 0; i < pVM->cCpus; i++)
999 {
1000 PVMCPU pVCpu = &pVM->aCpus[i];
1001 AssertPtr(pVCpu);
1002
1003 /* Allocate the VM control structure (VMCS). */
1004 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
1005 if (RT_FAILURE(rc))
1006 goto cleanup;
1007
1008 /* Get the allocated virtual-APIC page from the APIC device for transparent TPR accesses. */
1009 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
1010 {
1011 rc = APICGetApicPageForCpu(pVCpu, &pVCpu->hm.s.vmx.HCPhysVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
1012 NULL /* pR3Ptr */, NULL /* pRCPtr */);
1013 if (RT_FAILURE(rc))
1014 goto cleanup;
1015 }
1016
1017 /*
1018 * Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for
1019 * transparent accesses of specific MSRs.
1020 *
1021 * If the condition for enabling MSR bitmaps changes here, don't forget to
1022 * update HMAreMsrBitmapsAvailable().
1023 */
1024 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1025 {
1026 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
1027 &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
1028 if (RT_FAILURE(rc))
1029 goto cleanup;
1030 ASMMemFill32(pVCpu->hm.s.vmx.pvMsrBitmap, PAGE_SIZE, UINT32_C(0xffffffff));
1031 }
1032
1033 /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
1034 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
1035 if (RT_FAILURE(rc))
1036 goto cleanup;
1037
1038 /* Allocate the VM-exit MSR-load page for the host MSRs. */
1039 rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
1040 if (RT_FAILURE(rc))
1041 goto cleanup;
1042 }
1043
1044 return VINF_SUCCESS;
1045
1046cleanup:
1047 hmR0VmxStructsFree(pVM);
1048 return rc;
1049}
1050
1051
1052/**
1053 * Does global VT-x initialization (called during module initialization).
1054 *
1055 * @returns VBox status code.
1056 */
1057VMMR0DECL(int) VMXR0GlobalInit(void)
1058{
1059#ifdef HMVMX_USE_FUNCTION_TABLE
1060 AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
1061# ifdef VBOX_STRICT
1062 for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
1063 Assert(g_apfnVMExitHandlers[i]);
1064# endif
1065#endif
1066 return VINF_SUCCESS;
1067}
1068
1069
1070/**
1071 * Does global VT-x termination (called during module termination).
1072 */
1073VMMR0DECL(void) VMXR0GlobalTerm()
1074{
1075 /* Nothing to do currently. */
1076}
1077
1078
1079/**
1080 * Sets up and activates VT-x on the current CPU.
1081 *
1082 * @returns VBox status code.
1083 * @param pCpu Pointer to the global CPU info struct.
1084 * @param pVM The cross context VM structure. Can be
1085 * NULL after a host resume operation.
1086 * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
1087 * fEnabledByHost is @c true).
1088 * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
1089 * @a fEnabledByHost is @c true).
1090 * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
1091 * enable VT-x on the host.
1092 * @param pvMsrs Opaque pointer to VMXMSRS struct.
1093 */
1094VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
1095 void *pvMsrs)
1096{
1097 Assert(pCpu);
1098 Assert(pvMsrs);
1099 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1100
1101 /* Enable VT-x if it's not already enabled by the host. */
1102 if (!fEnabledByHost)
1103 {
1104 int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
1105 if (RT_FAILURE(rc))
1106 return rc;
1107 }
1108
1109 /*
1110 * Flush all EPT tagged-TLB entries (in case VirtualBox or any other hypervisor have been using EPTPs) so
1111 * we don't retain any stale guest-physical mappings which won't get invalidated when flushing by VPID.
1112 */
1113 PVMXMSRS pMsrs = (PVMXMSRS)pvMsrs;
1114 if (pMsrs->u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
1115 {
1116 hmR0VmxFlushEpt(NULL /* pVCpu */, VMXFLUSHEPT_ALL_CONTEXTS);
1117 pCpu->fFlushAsidBeforeUse = false;
1118 }
1119 else
1120 pCpu->fFlushAsidBeforeUse = true;
1121
1122 /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
1123 ++pCpu->cTlbFlushes;
1124
1125 return VINF_SUCCESS;
1126}
1127
1128
1129/**
1130 * Deactivates VT-x on the current CPU.
1131 *
1132 * @returns VBox status code.
1133 * @param pCpu Pointer to the global CPU info struct.
1134 * @param pvCpuPage Pointer to the VMXON region.
1135 * @param HCPhysCpuPage Physical address of the VMXON region.
1136 *
1137 * @remarks This function should never be called when SUPR0EnableVTx() or
1138 * similar was used to enable VT-x on the host.
1139 */
1140VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
1141{
1142 NOREF(pCpu);
1143 NOREF(pvCpuPage);
1144 NOREF(HCPhysCpuPage);
1145
1146 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1147 return hmR0VmxLeaveRootMode();
1148}
1149
1150
1151/**
1152 * Sets the permission bits for the specified MSR in the MSR bitmap.
1153 *
1154 * @param pVCpu The cross context virtual CPU structure.
1155 * @param uMsr The MSR value.
1156 * @param enmRead Whether reading this MSR causes a VM-exit.
1157 * @param enmWrite Whether writing this MSR causes a VM-exit.
1158 */
1159static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
1160{
1161 int32_t iBit;
1162 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1163
1164 /*
1165 * Layout:
1166 * 0x000 - 0x3ff - Low MSR read bits
1167 * 0x400 - 0x7ff - High MSR read bits
1168 * 0x800 - 0xbff - Low MSR write bits
1169 * 0xc00 - 0xfff - High MSR write bits
1170 */
1171 if (uMsr <= 0x00001FFF)
1172 iBit = uMsr;
1173 else if (uMsr - UINT32_C(0xC0000000) <= UINT32_C(0x00001FFF))
1174 {
1175 iBit = uMsr - UINT32_C(0xC0000000);
1176 pbMsrBitmap += 0x400;
1177 }
1178 else
1179 AssertMsgFailedReturnVoid(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
1180
1181 Assert(iBit <= 0x1fff);
1182 if (enmRead == VMXMSREXIT_INTERCEPT_READ)
1183 ASMBitSet(pbMsrBitmap, iBit);
1184 else
1185 ASMBitClear(pbMsrBitmap, iBit);
1186
1187 if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
1188 ASMBitSet(pbMsrBitmap + 0x800, iBit);
1189 else
1190 ASMBitClear(pbMsrBitmap + 0x800, iBit);
1191}
1192
1193
1194#ifdef VBOX_STRICT
1195/**
1196 * Gets the permission bits for the specified MSR in the MSR bitmap.
1197 *
1198 * @returns VBox status code.
1199 * @retval VINF_SUCCESS if the specified MSR is found.
1200 * @retval VERR_NOT_FOUND if the specified MSR is not found.
1201 * @retval VERR_NOT_SUPPORTED if VT-x doesn't allow the MSR.
1202 *
1203 * @param pVCpu The cross context virtual CPU structure.
1204 * @param uMsr The MSR.
1205 * @param penmRead Where to store the read permissions.
1206 * @param penmWrite Where to store the write permissions.
1207 */
1208static int hmR0VmxGetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, PVMXMSREXITREAD penmRead, PVMXMSREXITWRITE penmWrite)
1209{
1210 AssertPtrReturn(penmRead, VERR_INVALID_PARAMETER);
1211 AssertPtrReturn(penmWrite, VERR_INVALID_PARAMETER);
1212 int32_t iBit;
1213 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
1214
1215 /* See hmR0VmxSetMsrPermission() for the layout. */
1216 if (uMsr <= 0x00001FFF)
1217 iBit = uMsr;
1218 else if ( uMsr >= 0xC0000000
1219 && uMsr <= 0xC0001FFF)
1220 {
1221 iBit = (uMsr - 0xC0000000);
1222 pbMsrBitmap += 0x400;
1223 }
1224 else
1225 AssertMsgFailedReturn(("hmR0VmxGetMsrPermission: Invalid MSR %#RX32\n", uMsr), VERR_NOT_SUPPORTED);
1226
1227 Assert(iBit <= 0x1fff);
1228 if (ASMBitTest(pbMsrBitmap, iBit))
1229 *penmRead = VMXMSREXIT_INTERCEPT_READ;
1230 else
1231 *penmRead = VMXMSREXIT_PASSTHRU_READ;
1232
1233 if (ASMBitTest(pbMsrBitmap + 0x800, iBit))
1234 *penmWrite = VMXMSREXIT_INTERCEPT_WRITE;
1235 else
1236 *penmWrite = VMXMSREXIT_PASSTHRU_WRITE;
1237 return VINF_SUCCESS;
1238}
1239#endif /* VBOX_STRICT */
1240
1241
1242/**
1243 * Updates the VMCS with the number of effective MSRs in the auto-load/store MSR
1244 * area.
1245 *
1246 * @returns VBox status code.
1247 * @param pVCpu The cross context virtual CPU structure.
1248 * @param cMsrs The number of MSRs.
1249 */
1250DECLINLINE(int) hmR0VmxSetAutoLoadStoreMsrCount(PVMCPU pVCpu, uint32_t cMsrs)
1251{
1252 /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
1253 uint32_t const cMaxSupportedMsrs = MSR_IA32_VMX_MISC_MAX_MSR(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.u64Misc);
1254 if (RT_UNLIKELY(cMsrs > cMaxSupportedMsrs))
1255 {
1256 LogRel(("CPU auto-load/store MSR count in VMCS exceeded cMsrs=%u Supported=%u.\n", cMsrs, cMaxSupportedMsrs));
1257 pVCpu->hm.s.u32HMError = VMX_UFC_INSUFFICIENT_GUEST_MSR_STORAGE;
1258 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1259 }
1260
1261 /* Update number of guest MSRs to load/store across the world-switch. */
1262 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cMsrs);
1263 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cMsrs);
1264
1265 /* Update number of host MSRs to load after the world-switch. Identical to guest-MSR count as it's always paired. */
1266 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cMsrs);
1267 AssertRCReturn(rc, rc);
1268
1269 /* Update the VCPU's copy of the MSR count. */
1270 pVCpu->hm.s.vmx.cMsrs = cMsrs;
1271
1272 return VINF_SUCCESS;
1273}
1274
1275
1276/**
1277 * Adds a new (or updates the value of an existing) guest/host MSR
1278 * pair to be swapped during the world-switch as part of the
1279 * auto-load/store MSR area in the VMCS.
1280 *
1281 * @returns VBox status code.
1282 * @param pVCpu The cross context virtual CPU structure.
1283 * @param uMsr The MSR.
1284 * @param uGuestMsrValue Value of the guest MSR.
1285 * @param fUpdateHostMsr Whether to update the value of the host MSR if
1286 * necessary.
1287 * @param pfAddedAndUpdated Where to store whether the MSR was added -and-
1288 * its value was updated. Optional, can be NULL.
1289 */
1290static int hmR0VmxAddAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr, uint64_t uGuestMsrValue, bool fUpdateHostMsr,
1291 bool *pfAddedAndUpdated)
1292{
1293 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1294 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1295 uint32_t i;
1296 for (i = 0; i < cMsrs; i++)
1297 {
1298 if (pGuestMsr->u32Msr == uMsr)
1299 break;
1300 pGuestMsr++;
1301 }
1302
1303 bool fAdded = false;
1304 if (i == cMsrs)
1305 {
1306 ++cMsrs;
1307 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1308 AssertMsgRCReturn(rc, ("hmR0VmxAddAutoLoadStoreMsr: Insufficient space to add MSR %u\n", uMsr), rc);
1309
1310 /* Now that we're swapping MSRs during the world-switch, allow the guest to read/write them without causing VM-exits. */
1311 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1312 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
1313
1314 fAdded = true;
1315 }
1316
1317 /* Update the MSR values in the auto-load/store MSR area. */
1318 pGuestMsr->u32Msr = uMsr;
1319 pGuestMsr->u64Value = uGuestMsrValue;
1320
1321 /* Create/update the MSR slot in the host MSR area. */
1322 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1323 pHostMsr += i;
1324 pHostMsr->u32Msr = uMsr;
1325
1326 /*
1327 * Update the host MSR only when requested by the caller AND when we're
1328 * adding it to the auto-load/store area. Otherwise, it would have been
1329 * updated by hmR0VmxSaveHostMsrs(). We do this for performance reasons.
1330 */
1331 bool fUpdatedMsrValue = false;
1332 if ( fAdded
1333 && fUpdateHostMsr)
1334 {
1335 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1336 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1337 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1338 fUpdatedMsrValue = true;
1339 }
1340
1341 if (pfAddedAndUpdated)
1342 *pfAddedAndUpdated = fUpdatedMsrValue;
1343 return VINF_SUCCESS;
1344}
1345
1346
1347/**
1348 * Removes a guest/host MSR pair to be swapped during the world-switch from the
1349 * auto-load/store MSR area in the VMCS.
1350 *
1351 * @returns VBox status code.
1352 * @param pVCpu The cross context virtual CPU structure.
1353 * @param uMsr The MSR.
1354 */
1355static int hmR0VmxRemoveAutoLoadStoreMsr(PVMCPU pVCpu, uint32_t uMsr)
1356{
1357 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1358 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1359 for (uint32_t i = 0; i < cMsrs; i++)
1360 {
1361 /* Find the MSR. */
1362 if (pGuestMsr->u32Msr == uMsr)
1363 {
1364 /* If it's the last MSR, simply reduce the count. */
1365 if (i == cMsrs - 1)
1366 {
1367 --cMsrs;
1368 break;
1369 }
1370
1371 /* Remove it by swapping the last MSR in place of it, and reducing the count. */
1372 PVMXAUTOMSR pLastGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1373 pLastGuestMsr += cMsrs - 1;
1374 pGuestMsr->u32Msr = pLastGuestMsr->u32Msr;
1375 pGuestMsr->u64Value = pLastGuestMsr->u64Value;
1376
1377 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1378 PVMXAUTOMSR pLastHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1379 pLastHostMsr += cMsrs - 1;
1380 pHostMsr->u32Msr = pLastHostMsr->u32Msr;
1381 pHostMsr->u64Value = pLastHostMsr->u64Value;
1382 --cMsrs;
1383 break;
1384 }
1385 pGuestMsr++;
1386 }
1387
1388 /* Update the VMCS if the count changed (meaning the MSR was found). */
1389 if (cMsrs != pVCpu->hm.s.vmx.cMsrs)
1390 {
1391 int rc = hmR0VmxSetAutoLoadStoreMsrCount(pVCpu, cMsrs);
1392 AssertRCReturn(rc, rc);
1393
1394 /* We're no longer swapping MSRs during the world-switch, intercept guest read/writes to them. */
1395 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1396 hmR0VmxSetMsrPermission(pVCpu, uMsr, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
1397
1398 Log4(("Removed MSR %#RX32 new cMsrs=%u\n", uMsr, pVCpu->hm.s.vmx.cMsrs));
1399 return VINF_SUCCESS;
1400 }
1401
1402 return VERR_NOT_FOUND;
1403}
1404
1405
1406/**
1407 * Checks if the specified guest MSR is part of the auto-load/store area in
1408 * the VMCS.
1409 *
1410 * @returns true if found, false otherwise.
1411 * @param pVCpu The cross context virtual CPU structure.
1412 * @param uMsr The MSR to find.
1413 */
1414static bool hmR0VmxIsAutoLoadStoreGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1415{
1416 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1417 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1418
1419 for (uint32_t i = 0; i < cMsrs; i++, pGuestMsr++)
1420 {
1421 if (pGuestMsr->u32Msr == uMsr)
1422 return true;
1423 }
1424 return false;
1425}
1426
1427
1428/**
1429 * Updates the value of all host MSRs in the auto-load/store area in the VMCS.
1430 *
1431 * @param pVCpu The cross context virtual CPU structure.
1432 *
1433 * @remarks No-long-jump zone!!!
1434 */
1435static void hmR0VmxUpdateAutoLoadStoreHostMsrs(PVMCPU pVCpu)
1436{
1437 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1438 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1439 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1440 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
1441
1442 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1443 {
1444 AssertReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr);
1445
1446 /*
1447 * Performance hack for the host EFER MSR. We use the cached value rather than re-read it.
1448 * Strict builds will catch mismatches in hmR0VmxCheckAutoLoadStoreMsrs(). See @bugref{7368}.
1449 */
1450 if (pHostMsr->u32Msr == MSR_K6_EFER)
1451 pHostMsr->u64Value = pVCpu->CTX_SUFF(pVM)->hm.s.vmx.u64HostEfer;
1452 else
1453 pHostMsr->u64Value = ASMRdMsr(pHostMsr->u32Msr);
1454 }
1455
1456 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
1457}
1458
1459
1460/**
1461 * Saves a set of host MSRs to allow read/write passthru access to the guest and
1462 * perform lazy restoration of the host MSRs while leaving VT-x.
1463 *
1464 * @param pVCpu The cross context virtual CPU structure.
1465 *
1466 * @remarks No-long-jump zone!!!
1467 */
1468static void hmR0VmxLazySaveHostMsrs(PVMCPU pVCpu)
1469{
1470 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1471
1472 /*
1473 * Note: If you're adding MSRs here, make sure to update the MSR-bitmap permissions in hmR0VmxSetupProcCtls().
1474 */
1475 if (!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST))
1476 {
1477 Assert(!(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)); /* Guest MSRs better not be loaded now. */
1478#if HC_ARCH_BITS == 64
1479 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1480 {
1481 pVCpu->hm.s.vmx.u64HostLStarMsr = ASMRdMsr(MSR_K8_LSTAR);
1482 pVCpu->hm.s.vmx.u64HostStarMsr = ASMRdMsr(MSR_K6_STAR);
1483 pVCpu->hm.s.vmx.u64HostSFMaskMsr = ASMRdMsr(MSR_K8_SF_MASK);
1484 pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1485 }
1486#endif
1487 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_SAVED_HOST;
1488 }
1489}
1490
1491
1492/**
1493 * Checks whether the MSR belongs to the set of guest MSRs that we restore
1494 * lazily while leaving VT-x.
1495 *
1496 * @returns true if it does, false otherwise.
1497 * @param pVCpu The cross context virtual CPU structure.
1498 * @param uMsr The MSR to check.
1499 */
1500static bool hmR0VmxIsLazyGuestMsr(PVMCPU pVCpu, uint32_t uMsr)
1501{
1502 NOREF(pVCpu);
1503#if HC_ARCH_BITS == 64
1504 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1505 {
1506 switch (uMsr)
1507 {
1508 case MSR_K8_LSTAR:
1509 case MSR_K6_STAR:
1510 case MSR_K8_SF_MASK:
1511 case MSR_K8_KERNEL_GS_BASE:
1512 return true;
1513 }
1514 }
1515#else
1516 RT_NOREF(pVCpu, uMsr);
1517#endif
1518 return false;
1519}
1520
1521
1522/**
1523 * Saves a set of guest MSRs back into the guest-CPU context.
1524 *
1525 * @param pVCpu The cross context virtual CPU structure.
1526 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1527 * out-of-sync. Make sure to update the required fields
1528 * before using them.
1529 *
1530 * @remarks No-long-jump zone!!!
1531 */
1532static void hmR0VmxLazySaveGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1533{
1534 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1535 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1536
1537 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1538 {
1539 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1540#if HC_ARCH_BITS == 64
1541 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1542 {
1543 pMixedCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
1544 pMixedCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
1545 pMixedCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
1546 pMixedCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
1547 }
1548#else
1549 NOREF(pMixedCtx);
1550#endif
1551 }
1552}
1553
1554
1555/**
1556 * Loads a set of guests MSRs to allow read/passthru to the guest.
1557 *
1558 * The name of this function is slightly confusing. This function does NOT
1559 * postpone loading, but loads the MSR right now. "hmR0VmxLazy" is simply a
1560 * common prefix for functions dealing with "lazy restoration" of the shared
1561 * MSRs.
1562 *
1563 * @param pVCpu The cross context virtual CPU structure.
1564 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1565 * out-of-sync. Make sure to update the required fields
1566 * before using them.
1567 *
1568 * @remarks No-long-jump zone!!!
1569 */
1570static void hmR0VmxLazyLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1571{
1572 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1573 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1574
1575 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1576#if HC_ARCH_BITS == 64
1577 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1578 {
1579 /*
1580 * If the guest MSRs are not loaded -and- if all the guest MSRs are identical
1581 * to the MSRs on the CPU (which are the saved host MSRs, see assertion above) then
1582 * we can skip a few MSR writes.
1583 *
1584 * Otherwise, it implies either 1. they're not loaded, or 2. they're loaded but the
1585 * guest MSR values in the guest-CPU context might be different to what's currently
1586 * loaded in the CPU. In either case, we need to write the new guest MSR values to the
1587 * CPU, see @bugref{8728}.
1588 */
1589 if ( !(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1590 && pMixedCtx->msrKERNELGSBASE == pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr
1591 && pMixedCtx->msrLSTAR == pVCpu->hm.s.vmx.u64HostLStarMsr
1592 && pMixedCtx->msrSTAR == pVCpu->hm.s.vmx.u64HostStarMsr
1593 && pMixedCtx->msrSFMASK == pVCpu->hm.s.vmx.u64HostSFMaskMsr)
1594 {
1595#ifdef VBOX_STRICT
1596 Assert(ASMRdMsr(MSR_K8_KERNEL_GS_BASE) == pMixedCtx->msrKERNELGSBASE);
1597 Assert(ASMRdMsr(MSR_K8_LSTAR) == pMixedCtx->msrLSTAR);
1598 Assert(ASMRdMsr(MSR_K6_STAR) == pMixedCtx->msrSTAR);
1599 Assert(ASMRdMsr(MSR_K8_SF_MASK) == pMixedCtx->msrSFMASK);
1600#endif
1601 }
1602 else
1603 {
1604 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE);
1605 ASMWrMsr(MSR_K8_LSTAR, pMixedCtx->msrLSTAR);
1606 ASMWrMsr(MSR_K6_STAR, pMixedCtx->msrSTAR);
1607 ASMWrMsr(MSR_K8_SF_MASK, pMixedCtx->msrSFMASK);
1608 }
1609 }
1610#else
1611 RT_NOREF(pMixedCtx);
1612#endif
1613 pVCpu->hm.s.vmx.fLazyMsrs |= VMX_LAZY_MSRS_LOADED_GUEST;
1614}
1615
1616
1617/**
1618 * Performs lazy restoration of the set of host MSRs if they were previously
1619 * loaded with guest MSR values.
1620 *
1621 * @param pVCpu The cross context virtual CPU structure.
1622 *
1623 * @remarks No-long-jump zone!!!
1624 * @remarks The guest MSRs should have been saved back into the guest-CPU
1625 * context by hmR0VmxSaveGuestLazyMsrs()!!!
1626 */
1627static void hmR0VmxLazyRestoreHostMsrs(PVMCPU pVCpu)
1628{
1629 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1630 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1631
1632 if (pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST)
1633 {
1634 Assert(pVCpu->hm.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_SAVED_HOST);
1635#if HC_ARCH_BITS == 64
1636 if (pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests)
1637 {
1638 ASMWrMsr(MSR_K8_LSTAR, pVCpu->hm.s.vmx.u64HostLStarMsr);
1639 ASMWrMsr(MSR_K6_STAR, pVCpu->hm.s.vmx.u64HostStarMsr);
1640 ASMWrMsr(MSR_K8_SF_MASK, pVCpu->hm.s.vmx.u64HostSFMaskMsr);
1641 ASMWrMsr(MSR_K8_KERNEL_GS_BASE, pVCpu->hm.s.vmx.u64HostKernelGSBaseMsr);
1642 }
1643#endif
1644 }
1645 pVCpu->hm.s.vmx.fLazyMsrs &= ~(VMX_LAZY_MSRS_LOADED_GUEST | VMX_LAZY_MSRS_SAVED_HOST);
1646}
1647
1648
1649/**
1650 * Verifies that our cached values of the VMCS controls are all
1651 * consistent with what's actually present in the VMCS.
1652 *
1653 * @returns VBox status code.
1654 * @param pVCpu The cross context virtual CPU structure.
1655 */
1656static int hmR0VmxCheckVmcsCtls(PVMCPU pVCpu)
1657{
1658 uint32_t u32Val;
1659 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
1660 AssertRCReturn(rc, rc);
1661 AssertMsgReturn(pVCpu->hm.s.vmx.u32EntryCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32EntryCtls, u32Val),
1662 VERR_VMX_ENTRY_CTLS_CACHE_INVALID);
1663
1664 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val);
1665 AssertRCReturn(rc, rc);
1666 AssertMsgReturn(pVCpu->hm.s.vmx.u32ExitCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ExitCtls, u32Val),
1667 VERR_VMX_EXIT_CTLS_CACHE_INVALID);
1668
1669 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
1670 AssertRCReturn(rc, rc);
1671 AssertMsgReturn(pVCpu->hm.s.vmx.u32PinCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32PinCtls, u32Val),
1672 VERR_VMX_PIN_EXEC_CTLS_CACHE_INVALID);
1673
1674 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
1675 AssertRCReturn(rc, rc);
1676 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls == u32Val, ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls, u32Val),
1677 VERR_VMX_PROC_EXEC_CTLS_CACHE_INVALID);
1678
1679 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
1680 {
1681 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
1682 AssertRCReturn(rc, rc);
1683 AssertMsgReturn(pVCpu->hm.s.vmx.u32ProcCtls2 == u32Val,
1684 ("Cache=%#RX32 VMCS=%#RX32", pVCpu->hm.s.vmx.u32ProcCtls2, u32Val),
1685 VERR_VMX_PROC_EXEC2_CTLS_CACHE_INVALID);
1686 }
1687
1688 return VINF_SUCCESS;
1689}
1690
1691
1692#ifdef VBOX_STRICT
1693/**
1694 * Verifies that our cached host EFER value has not changed
1695 * since we cached it.
1696 *
1697 * @param pVCpu The cross context virtual CPU structure.
1698 */
1699static void hmR0VmxCheckHostEferMsr(PVMCPU pVCpu)
1700{
1701 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1702
1703 if (pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
1704 {
1705 uint64_t u64Val;
1706 int rc = VMXReadVmcs64(VMX_VMCS64_HOST_EFER_FULL, &u64Val);
1707 AssertRC(rc);
1708
1709 uint64_t u64HostEferMsr = ASMRdMsr(MSR_K6_EFER);
1710 AssertMsgReturnVoid(u64HostEferMsr == u64Val, ("u64HostEferMsr=%#RX64 u64Val=%#RX64\n", u64HostEferMsr, u64Val));
1711 }
1712}
1713
1714
1715/**
1716 * Verifies whether the guest/host MSR pairs in the auto-load/store area in the
1717 * VMCS are correct.
1718 *
1719 * @param pVCpu The cross context virtual CPU structure.
1720 */
1721static void hmR0VmxCheckAutoLoadStoreMsrs(PVMCPU pVCpu)
1722{
1723 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1724
1725 /* Verify MSR counts in the VMCS are what we think it should be. */
1726 uint32_t cMsrs;
1727 int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1728 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1729
1730 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &cMsrs); AssertRC(rc);
1731 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1732
1733 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &cMsrs); AssertRC(rc);
1734 Assert(cMsrs == pVCpu->hm.s.vmx.cMsrs);
1735
1736 PVMXAUTOMSR pHostMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvHostMsr;
1737 PVMXAUTOMSR pGuestMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
1738 for (uint32_t i = 0; i < cMsrs; i++, pHostMsr++, pGuestMsr++)
1739 {
1740 /* Verify that the MSRs are paired properly and that the host MSR has the correct value. */
1741 AssertMsgReturnVoid(pHostMsr->u32Msr == pGuestMsr->u32Msr, ("HostMsr=%#RX32 GuestMsr=%#RX32 cMsrs=%u\n", pHostMsr->u32Msr,
1742 pGuestMsr->u32Msr, cMsrs));
1743
1744 uint64_t u64Msr = ASMRdMsr(pHostMsr->u32Msr);
1745 AssertMsgReturnVoid(pHostMsr->u64Value == u64Msr, ("u32Msr=%#RX32 VMCS Value=%#RX64 ASMRdMsr=%#RX64 cMsrs=%u\n",
1746 pHostMsr->u32Msr, pHostMsr->u64Value, u64Msr, cMsrs));
1747
1748 /* Verify that the permissions are as expected in the MSR bitmap. */
1749 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
1750 {
1751 VMXMSREXITREAD enmRead;
1752 VMXMSREXITWRITE enmWrite;
1753 rc = hmR0VmxGetMsrPermission(pVCpu, pGuestMsr->u32Msr, &enmRead, &enmWrite);
1754 AssertMsgReturnVoid(rc == VINF_SUCCESS, ("hmR0VmxGetMsrPermission! failed. rc=%Rrc\n", rc));
1755 if (pGuestMsr->u32Msr == MSR_K6_EFER)
1756 {
1757 AssertMsgReturnVoid(enmRead == VMXMSREXIT_INTERCEPT_READ, ("Passthru read for EFER!?\n"));
1758 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_INTERCEPT_WRITE, ("Passthru write for EFER!?\n"));
1759 }
1760 else
1761 {
1762 AssertMsgReturnVoid(enmRead == VMXMSREXIT_PASSTHRU_READ, ("u32Msr=%#RX32 cMsrs=%u No passthru read!\n",
1763 pGuestMsr->u32Msr, cMsrs));
1764 AssertMsgReturnVoid(enmWrite == VMXMSREXIT_PASSTHRU_WRITE, ("u32Msr=%#RX32 cMsrs=%u No passthru write!\n",
1765 pGuestMsr->u32Msr, cMsrs));
1766 }
1767 }
1768 }
1769}
1770#endif /* VBOX_STRICT */
1771
1772
1773/**
1774 * Flushes the TLB using EPT.
1775 *
1776 * @returns VBox status code.
1777 * @param pVCpu The cross context virtual CPU structure of the calling
1778 * EMT. Can be NULL depending on @a enmFlush.
1779 * @param enmFlush Type of flush.
1780 *
1781 * @remarks Caller is responsible for making sure this function is called only
1782 * when NestedPaging is supported and providing @a enmFlush that is
1783 * supported by the CPU.
1784 * @remarks Can be called with interrupts disabled.
1785 */
1786static void hmR0VmxFlushEpt(PVMCPU pVCpu, VMXFLUSHEPT enmFlush)
1787{
1788 uint64_t au64Descriptor[2];
1789 if (enmFlush == VMXFLUSHEPT_ALL_CONTEXTS)
1790 au64Descriptor[0] = 0;
1791 else
1792 {
1793 Assert(pVCpu);
1794 au64Descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
1795 }
1796 au64Descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
1797
1798 int rc = VMXR0InvEPT(enmFlush, &au64Descriptor[0]);
1799 AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
1800 rc));
1801 if ( RT_SUCCESS(rc)
1802 && pVCpu)
1803 {
1804 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
1805 }
1806}
1807
1808
1809/**
1810 * Flushes the TLB using VPID.
1811 *
1812 * @returns VBox status code.
1813 * @param pVM The cross context VM structure.
1814 * @param pVCpu The cross context virtual CPU structure of the calling
1815 * EMT. Can be NULL depending on @a enmFlush.
1816 * @param enmFlush Type of flush.
1817 * @param GCPtr Virtual address of the page to flush (can be 0 depending
1818 * on @a enmFlush).
1819 *
1820 * @remarks Can be called with interrupts disabled.
1821 */
1822static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMXFLUSHVPID enmFlush, RTGCPTR GCPtr)
1823{
1824 NOREF(pVM);
1825 AssertPtr(pVM);
1826 Assert(pVM->hm.s.vmx.fVpid);
1827
1828 uint64_t au64Descriptor[2];
1829 if (enmFlush == VMXFLUSHVPID_ALL_CONTEXTS)
1830 {
1831 au64Descriptor[0] = 0;
1832 au64Descriptor[1] = 0;
1833 }
1834 else
1835 {
1836 AssertPtr(pVCpu);
1837 AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1838 AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
1839 au64Descriptor[0] = pVCpu->hm.s.uCurrentAsid;
1840 au64Descriptor[1] = GCPtr;
1841 }
1842
1843 int rc = VMXR0InvVPID(enmFlush, &au64Descriptor[0]); NOREF(rc);
1844 AssertMsg(rc == VINF_SUCCESS,
1845 ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
1846 if ( RT_SUCCESS(rc)
1847 && pVCpu)
1848 {
1849 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
1850 }
1851}
1852
1853
1854/**
1855 * Invalidates a guest page by guest virtual address. Only relevant for
1856 * EPT/VPID, otherwise there is nothing really to invalidate.
1857 *
1858 * @returns VBox status code.
1859 * @param pVM The cross context VM structure.
1860 * @param pVCpu The cross context virtual CPU structure.
1861 * @param GCVirt Guest virtual address of the page to invalidate.
1862 */
1863VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
1864{
1865 AssertPtr(pVM);
1866 AssertPtr(pVCpu);
1867 LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
1868
1869 bool fFlushPending = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
1870 if (!fFlushPending)
1871 {
1872 /*
1873 * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
1874 * See @bugref{6043} and @bugref{6177}.
1875 *
1876 * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
1877 * function maybe called in a loop with individual addresses.
1878 */
1879 if (pVM->hm.s.vmx.fVpid)
1880 {
1881 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
1882 {
1883 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_INDIV_ADDR, GCVirt);
1884 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
1885 }
1886 else
1887 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1888 }
1889 else if (pVM->hm.s.fNestedPaging)
1890 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1891 }
1892
1893 return VINF_SUCCESS;
1894}
1895
1896
1897/**
1898 * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
1899 * otherwise there is nothing really to invalidate.
1900 *
1901 * @returns VBox status code.
1902 * @param pVM The cross context VM structure.
1903 * @param pVCpu The cross context virtual CPU structure.
1904 * @param GCPhys Guest physical address of the page to invalidate.
1905 */
1906VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
1907{
1908 NOREF(pVM); NOREF(GCPhys);
1909 LogFlowFunc(("%RGp\n", GCPhys));
1910
1911 /*
1912 * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
1913 * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
1914 * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
1915 */
1916 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
1917 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
1918 return VINF_SUCCESS;
1919}
1920
1921
1922/**
1923 * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
1924 * case where neither EPT nor VPID is supported by the CPU.
1925 *
1926 * @param pVM The cross context VM structure.
1927 * @param pVCpu The cross context virtual CPU structure.
1928 * @param pCpu Pointer to the global HM struct.
1929 *
1930 * @remarks Called with interrupts disabled.
1931 */
1932static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1933{
1934 AssertPtr(pVCpu);
1935 AssertPtr(pCpu);
1936 NOREF(pVM);
1937
1938 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
1939
1940 Assert(pCpu->idCpu != NIL_RTCPUID);
1941 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
1942 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
1943 pVCpu->hm.s.fForceTLBFlush = false;
1944 return;
1945}
1946
1947
1948/**
1949 * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
1950 *
1951 * @param pVM The cross context VM structure.
1952 * @param pVCpu The cross context virtual CPU structure.
1953 * @param pCpu Pointer to the global HM CPU struct.
1954 * @remarks All references to "ASID" in this function pertains to "VPID" in
1955 * Intel's nomenclature. The reason is, to avoid confusion in compare
1956 * statements since the host-CPU copies are named "ASID".
1957 *
1958 * @remarks Called with interrupts disabled.
1959 */
1960static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1961{
1962#ifdef VBOX_WITH_STATISTICS
1963 bool fTlbFlushed = false;
1964# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
1965# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
1966 if (!fTlbFlushed) \
1967 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
1968 } while (0)
1969#else
1970# define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
1971# define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
1972#endif
1973
1974 AssertPtr(pVM);
1975 AssertPtr(pCpu);
1976 AssertPtr(pVCpu);
1977 Assert(pCpu->idCpu != NIL_RTCPUID);
1978
1979 AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
1980 ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
1981 "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
1982
1983 /*
1984 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
1985 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
1986 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
1987 */
1988 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
1989 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
1990 {
1991 ++pCpu->uCurrentAsid;
1992 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
1993 {
1994 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
1995 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
1996 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
1997 }
1998
1999 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2000 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2001 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2002
2003 /*
2004 * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
2005 * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
2006 */
2007 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2008 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2009 HMVMX_SET_TAGGED_TLB_FLUSHED();
2010 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
2011 }
2012
2013 /* Check for explicit TLB flushes. */
2014 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2015 {
2016 /*
2017 * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
2018 * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
2019 * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
2020 * but not guest-physical mappings.
2021 * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
2022 */
2023 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2024 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2025 HMVMX_SET_TAGGED_TLB_FLUSHED();
2026 }
2027
2028 pVCpu->hm.s.fForceTLBFlush = false;
2029 HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
2030
2031 Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
2032 Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
2033 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2034 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2035 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2036 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2037 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2038 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2039 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2040
2041 /* Update VMCS with the VPID. */
2042 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2043 AssertRC(rc);
2044
2045#undef HMVMX_SET_TAGGED_TLB_FLUSHED
2046}
2047
2048
2049/**
2050 * Flushes the tagged-TLB entries for EPT CPUs as necessary.
2051 *
2052 * @returns VBox status code.
2053 * @param pVM The cross context VM structure.
2054 * @param pVCpu The cross context virtual CPU structure.
2055 * @param pCpu Pointer to the global HM CPU struct.
2056 *
2057 * @remarks Called with interrupts disabled.
2058 */
2059static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2060{
2061 AssertPtr(pVM);
2062 AssertPtr(pVCpu);
2063 AssertPtr(pCpu);
2064 Assert(pCpu->idCpu != NIL_RTCPUID);
2065 AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
2066 AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
2067
2068 /*
2069 * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
2070 * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
2071 */
2072 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2073 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2074 {
2075 pVCpu->hm.s.fForceTLBFlush = true;
2076 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2077 }
2078
2079 /* Check for explicit TLB flushes. */
2080 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2081 {
2082 pVCpu->hm.s.fForceTLBFlush = true;
2083 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2084 }
2085
2086 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2087 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2088
2089 if (pVCpu->hm.s.fForceTLBFlush)
2090 {
2091 hmR0VmxFlushEpt(pVCpu, pVM->hm.s.vmx.enmFlushEpt);
2092 pVCpu->hm.s.fForceTLBFlush = false;
2093 }
2094}
2095
2096
2097/**
2098 * Flushes the tagged-TLB entries for VPID CPUs as necessary.
2099 *
2100 * @returns VBox status code.
2101 * @param pVM The cross context VM structure.
2102 * @param pVCpu The cross context virtual CPU structure.
2103 * @param pCpu Pointer to the global HM CPU struct.
2104 *
2105 * @remarks Called with interrupts disabled.
2106 */
2107static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2108{
2109 AssertPtr(pVM);
2110 AssertPtr(pVCpu);
2111 AssertPtr(pCpu);
2112 Assert(pCpu->idCpu != NIL_RTCPUID);
2113 AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
2114 AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
2115
2116 /*
2117 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
2118 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
2119 * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
2120 */
2121 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
2122 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
2123 {
2124 pVCpu->hm.s.fForceTLBFlush = true;
2125 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
2126 }
2127
2128 /* Check for explicit TLB flushes. */
2129 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
2130 {
2131 /*
2132 * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
2133 * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
2134 * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
2135 */
2136 pVCpu->hm.s.fForceTLBFlush = true;
2137 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
2138 }
2139
2140 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
2141 if (pVCpu->hm.s.fForceTLBFlush)
2142 {
2143 ++pCpu->uCurrentAsid;
2144 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
2145 {
2146 pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
2147 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
2148 pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
2149 }
2150
2151 pVCpu->hm.s.fForceTLBFlush = false;
2152 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
2153 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
2154 if (pCpu->fFlushAsidBeforeUse)
2155 {
2156 if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_SINGLE_CONTEXT)
2157 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_SINGLE_CONTEXT, 0 /* GCPtr */);
2158 else if (pVM->hm.s.vmx.enmFlushVpid == VMXFLUSHVPID_ALL_CONTEXTS)
2159 {
2160 hmR0VmxFlushVpid(pVM, pVCpu, VMXFLUSHVPID_ALL_CONTEXTS, 0 /* GCPtr */);
2161 pCpu->fFlushAsidBeforeUse = false;
2162 }
2163 else
2164 {
2165 /* hmR0VmxSetupTaggedTlb() ensures we never get here. Paranoia. */
2166 AssertMsgFailed(("Unsupported VPID-flush context type.\n"));
2167 }
2168 }
2169 }
2170
2171 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
2172 ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
2173 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
2174 ("Cpu[%u] uCurrentAsid=%u cTlbFlushes=%u pVCpu->idLastCpu=%u pVCpu->cTlbFlushes=%u\n", pCpu->idCpu,
2175 pCpu->uCurrentAsid, pCpu->cTlbFlushes, pVCpu->hm.s.idLastCpu, pVCpu->hm.s.cTlbFlushes));
2176 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
2177 ("Cpu[%u] pVCpu->uCurrentAsid=%u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
2178
2179 int rc = VMXWriteVmcs32(VMX_VMCS16_VPID, pVCpu->hm.s.uCurrentAsid);
2180 AssertRC(rc);
2181}
2182
2183
2184/**
2185 * Flushes the guest TLB entry based on CPU capabilities.
2186 *
2187 * @param pVCpu The cross context virtual CPU structure.
2188 * @param pCpu Pointer to the global HM CPU struct.
2189 */
2190DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
2191{
2192#ifdef HMVMX_ALWAYS_FLUSH_TLB
2193 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
2194#endif
2195 PVM pVM = pVCpu->CTX_SUFF(pVM);
2196 switch (pVM->hm.s.vmx.uFlushTaggedTlb)
2197 {
2198 case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu, pCpu); break;
2199 case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu, pCpu); break;
2200 case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu, pCpu); break;
2201 case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu, pCpu); break;
2202 default:
2203 AssertMsgFailed(("Invalid flush-tag function identifier\n"));
2204 break;
2205 }
2206
2207 /* Don't assert that VMCPU_FF_TLB_FLUSH should no longer be pending. It can be set by other EMTs. */
2208}
2209
2210
2211/**
2212 * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
2213 * TLB entries from the host TLB before VM-entry.
2214 *
2215 * @returns VBox status code.
2216 * @param pVM The cross context VM structure.
2217 */
2218static int hmR0VmxSetupTaggedTlb(PVM pVM)
2219{
2220 /*
2221 * Determine optimal flush type for Nested Paging.
2222 * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
2223 * guest execution (see hmR3InitFinalizeR0()).
2224 */
2225 if (pVM->hm.s.fNestedPaging)
2226 {
2227 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
2228 {
2229 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
2230 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_SINGLE_CONTEXT;
2231 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
2232 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_ALL_CONTEXTS;
2233 else
2234 {
2235 /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
2236 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2237 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_FLUSH_TYPE_UNSUPPORTED;
2238 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2239 }
2240
2241 /* Make sure the write-back cacheable memory type for EPT is supported. */
2242 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB)))
2243 {
2244 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2245 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_MEM_TYPE_NOT_WB;
2246 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2247 }
2248
2249 /* EPT requires a page-walk length of 4. */
2250 if (RT_UNLIKELY(!(pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_PAGE_WALK_LENGTH_4)))
2251 {
2252 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2253 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_PAGE_WALK_LENGTH_UNSUPPORTED;
2254 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2255 }
2256 }
2257 else
2258 {
2259 /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
2260 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NOT_SUPPORTED;
2261 pVM->aCpus[0].hm.s.u32HMError = VMX_UFC_EPT_INVEPT_UNAVAILABLE;
2262 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2263 }
2264 }
2265
2266 /*
2267 * Determine optimal flush type for VPID.
2268 */
2269 if (pVM->hm.s.vmx.fVpid)
2270 {
2271 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
2272 {
2273 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
2274 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_SINGLE_CONTEXT;
2275 else if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
2276 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_ALL_CONTEXTS;
2277 else
2278 {
2279 /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
2280 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
2281 LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
2282 if (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
2283 LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
2284 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2285 pVM->hm.s.vmx.fVpid = false;
2286 }
2287 }
2288 else
2289 {
2290 /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
2291 Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
2292 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NOT_SUPPORTED;
2293 pVM->hm.s.vmx.fVpid = false;
2294 }
2295 }
2296
2297 /*
2298 * Setup the handler for flushing tagged-TLBs.
2299 */
2300 if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
2301 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
2302 else if (pVM->hm.s.fNestedPaging)
2303 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
2304 else if (pVM->hm.s.vmx.fVpid)
2305 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
2306 else
2307 pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
2308 return VINF_SUCCESS;
2309}
2310
2311
2312/**
2313 * Sets up pin-based VM-execution controls in the VMCS.
2314 *
2315 * @returns VBox status code.
2316 * @param pVM The cross context VM structure.
2317 * @param pVCpu The cross context virtual CPU structure.
2318 */
2319static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
2320{
2321 AssertPtr(pVM);
2322 AssertPtr(pVCpu);
2323
2324 uint32_t val = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0; /* Bits set here must always be set. */
2325 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
2326
2327 val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts cause a VM-exit. */
2328 | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts (NMIs) cause a VM-exit. */
2329
2330 if (pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
2331 val |= VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
2332
2333 /* Enable the VMX preemption timer. */
2334 if (pVM->hm.s.vmx.fUsePreemptTimer)
2335 {
2336 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
2337 val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
2338 }
2339
2340#if 0
2341 /* Enable posted-interrupt processing. */
2342 if (pVM->hm.s.fPostedIntrs)
2343 {
2344 Assert(pVM->hm.s.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR);
2345 Assert(pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT);
2346 val |= VMX_VMCS_CTRL_PIN_EXEC_POSTED_INTR;
2347 }
2348#endif
2349
2350 if ((val & zap) != val)
2351 {
2352 LogRel(("hmR0VmxSetupPinCtls: Invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2353 pVM->hm.s.vmx.Msrs.VmxPinCtls.n.disallowed0, val, zap));
2354 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
2355 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2356 }
2357
2358 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
2359 AssertRCReturn(rc, rc);
2360
2361 pVCpu->hm.s.vmx.u32PinCtls = val;
2362 return rc;
2363}
2364
2365
2366/**
2367 * Sets up processor-based VM-execution controls in the VMCS.
2368 *
2369 * @returns VBox status code.
2370 * @param pVM The cross context VM structure.
2371 * @param pVCpu The cross context virtual CPU structure.
2372 */
2373static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
2374{
2375 AssertPtr(pVM);
2376 AssertPtr(pVCpu);
2377
2378 int rc = VERR_INTERNAL_ERROR_5;
2379 uint32_t val = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0; /* Bits set here must be set in the VMCS. */
2380 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2381
2382 val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
2383 | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2384 | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2385 | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2386 | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2387 | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2388 | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2389
2390 /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2391 if ( !(pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
2392 || (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
2393 {
2394 LogRel(("hmR0VmxSetupProcCtls: Unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
2395 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2396 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2397 }
2398
2399 /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
2400 if (!pVM->hm.s.fNestedPaging)
2401 {
2402 Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
2403 val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
2404 | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
2405 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
2406 }
2407
2408 /* Use TPR shadowing if supported by the CPU. */
2409 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
2410 {
2411 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
2412 Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
2413 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
2414 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
2415 AssertRCReturn(rc, rc);
2416
2417 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2418 /* CR8 writes cause a VM-exit based on TPR threshold. */
2419 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
2420 Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
2421 }
2422 else
2423 {
2424 /*
2425 * Some 32-bit CPUs do not support CR8 load/store exiting as MOV CR8 is invalid on 32-bit Intel CPUs.
2426 * Set this control only for 64-bit guests.
2427 */
2428 if (pVM->hm.s.fAllow64BitGuests)
2429 {
2430 val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2431 | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2432 }
2433 }
2434
2435 /* Use MSR-bitmaps if supported by the CPU. */
2436 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
2437 {
2438 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
2439
2440 Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2441 Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
2442 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
2443 AssertRCReturn(rc, rc);
2444
2445 /*
2446 * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
2447 * automatically using dedicated fields in the VMCS.
2448 */
2449 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2450 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2451 hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2452 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2453 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2454
2455#if HC_ARCH_BITS == 64
2456 /*
2457 * Set passthru permissions for the following MSRs (mandatory for VT-x) required for 64-bit guests.
2458 */
2459 if (pVM->hm.s.fAllow64BitGuests)
2460 {
2461 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2462 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2463 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2464 hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
2465 }
2466#endif
2467 /* Though MSR_IA32_PERF_GLOBAL_CTRL is saved/restored lazily, we want intercept reads/write to it for now. */
2468 }
2469
2470 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2471 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
2472 val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
2473
2474 if ((val & zap) != val)
2475 {
2476 LogRel(("hmR0VmxSetupProcCtls: Invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
2477 pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0, val, zap));
2478 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2479 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2480 }
2481
2482 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
2483 AssertRCReturn(rc, rc);
2484
2485 pVCpu->hm.s.vmx.u32ProcCtls = val;
2486
2487 /*
2488 * Secondary processor-based VM-execution controls.
2489 */
2490 if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
2491 {
2492 val = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
2493 zap = pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2494
2495 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
2496 val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
2497
2498 if (pVM->hm.s.fNestedPaging)
2499 val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
2500 else
2501 {
2502 /*
2503 * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
2504 * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
2505 * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
2506 */
2507 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
2508 val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
2509 }
2510
2511 if (pVM->hm.s.vmx.fVpid)
2512 val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
2513
2514 if (pVM->hm.s.vmx.fUnrestrictedGuest)
2515 val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
2516
2517#if 0
2518 if (pVM->hm.s.fVirtApicRegs)
2519 {
2520 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT);
2521 val |= VMX_VMCS_CTRL_PROC_EXEC2_APIC_REG_VIRT; /* Enable APIC-register virtualization. */
2522
2523 Assert(pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY);
2524 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_INTR_DELIVERY; /* Enable virtual-interrupt delivery. */
2525 }
2526#endif
2527
2528 /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
2529 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2530 * done dynamically. */
2531 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
2532 {
2533 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
2534 Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
2535 val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
2536 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
2537 AssertRCReturn(rc, rc);
2538 }
2539
2540 if (pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
2541 val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
2542
2543 if ( pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT
2544 && pVM->hm.s.vmx.cPleGapTicks
2545 && pVM->hm.s.vmx.cPleWindowTicks)
2546 {
2547 val |= VMX_VMCS_CTRL_PROC_EXEC2_PAUSE_LOOP_EXIT; /* Enable pause-loop exiting. */
2548
2549 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks);
2550 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks);
2551 AssertRCReturn(rc, rc);
2552 }
2553
2554 if ((val & zap) != val)
2555 {
2556 LogRel(("hmR0VmxSetupProcCtls: Invalid secondary processor-based VM-execution controls combo! "
2557 "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.disallowed0, val, zap));
2558 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2559 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2560 }
2561
2562 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
2563 AssertRCReturn(rc, rc);
2564
2565 pVCpu->hm.s.vmx.u32ProcCtls2 = val;
2566 }
2567 else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
2568 {
2569 LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
2570 "available\n"));
2571 pVCpu->hm.s.u32HMError = VMX_UFC_INVALID_UX_COMBO;
2572 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2573 }
2574
2575 return VINF_SUCCESS;
2576}
2577
2578
2579/**
2580 * Sets up miscellaneous (everything other than Pin & Processor-based
2581 * VM-execution) control fields in the VMCS.
2582 *
2583 * @returns VBox status code.
2584 * @param pVM The cross context VM structure.
2585 * @param pVCpu The cross context virtual CPU structure.
2586 */
2587static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
2588{
2589 NOREF(pVM);
2590 AssertPtr(pVM);
2591 AssertPtr(pVCpu);
2592
2593 int rc = VERR_GENERAL_FAILURE;
2594
2595 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2596#if 0
2597 /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestCR3AndCR4())*/
2598 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0);
2599 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0);
2600
2601 /*
2602 * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
2603 * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
2604 * We thus use the exception bitmap to control it rather than use both.
2605 */
2606 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0);
2607 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0);
2608
2609 /** @todo Explore possibility of using IO-bitmaps. */
2610 /* All IO & IOIO instructions cause VM-exits. */
2611 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0);
2612 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0);
2613
2614 /* Initialize the MSR-bitmap area. */
2615 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0);
2616 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0);
2617 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0);
2618 AssertRCReturn(rc, rc);
2619#endif
2620
2621 /* Setup MSR auto-load/store area. */
2622 Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
2623 Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
2624 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2625 rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
2626 AssertRCReturn(rc, rc);
2627
2628 Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
2629 Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
2630 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
2631 AssertRCReturn(rc, rc);
2632
2633 /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
2634 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
2635 AssertRCReturn(rc, rc);
2636
2637 /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
2638#if 0
2639 /* Setup debug controls */
2640 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
2641 rc |= VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
2642 AssertRCReturn(rc, rc);
2643#endif
2644
2645 return rc;
2646}
2647
2648
2649/**
2650 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2651 *
2652 * We shall setup those exception intercepts that don't change during the
2653 * lifetime of the VM here. The rest are done dynamically while loading the
2654 * guest state.
2655 *
2656 * @returns VBox status code.
2657 * @param pVM The cross context VM structure.
2658 * @param pVCpu The cross context virtual CPU structure.
2659 */
2660static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
2661{
2662 AssertPtr(pVM);
2663 AssertPtr(pVCpu);
2664
2665 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
2666
2667 uint32_t u32XcptBitmap = 0;
2668
2669 /* Must always intercept #AC to prevent the guest from hanging the CPU. */
2670 u32XcptBitmap |= RT_BIT_32(X86_XCPT_AC);
2671
2672 /* Because we need to maintain the DR6 state even when intercepting DRx reads
2673 and writes, and because recursive #DBs can cause the CPU hang, we must always
2674 intercept #DB. */
2675 u32XcptBitmap |= RT_BIT_32(X86_XCPT_DB);
2676
2677 /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
2678 if (!pVM->hm.s.fNestedPaging)
2679 u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
2680
2681 pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
2682 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
2683 AssertRCReturn(rc, rc);
2684 return rc;
2685}
2686
2687
2688/**
2689 * Sets up the initial guest-state mask. The guest-state mask is consulted
2690 * before reading guest-state fields from the VMCS as VMREADs can be expensive
2691 * for the nested virtualization case (as it would cause a VM-exit).
2692 *
2693 * @param pVCpu The cross context virtual CPU structure.
2694 */
2695static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
2696{
2697 /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
2698 HMVMXCPU_GST_RESET_TO(pVCpu, HMVMX_UPDATED_GUEST_ALL);
2699 return VINF_SUCCESS;
2700}
2701
2702
2703/**
2704 * Does per-VM VT-x initialization.
2705 *
2706 * @returns VBox status code.
2707 * @param pVM The cross context VM structure.
2708 */
2709VMMR0DECL(int) VMXR0InitVM(PVM pVM)
2710{
2711 LogFlowFunc(("pVM=%p\n", pVM));
2712
2713 int rc = hmR0VmxStructsAlloc(pVM);
2714 if (RT_FAILURE(rc))
2715 {
2716 LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
2717 return rc;
2718 }
2719
2720 return VINF_SUCCESS;
2721}
2722
2723
2724/**
2725 * Does per-VM VT-x termination.
2726 *
2727 * @returns VBox status code.
2728 * @param pVM The cross context VM structure.
2729 */
2730VMMR0DECL(int) VMXR0TermVM(PVM pVM)
2731{
2732 LogFlowFunc(("pVM=%p\n", pVM));
2733
2734#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2735 if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
2736 ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
2737#endif
2738 hmR0VmxStructsFree(pVM);
2739 return VINF_SUCCESS;
2740}
2741
2742
2743/**
2744 * Sets up the VM for execution under VT-x.
2745 * This function is only called once per-VM during initialization.
2746 *
2747 * @returns VBox status code.
2748 * @param pVM The cross context VM structure.
2749 */
2750VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
2751{
2752 AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
2753 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2754
2755 LogFlowFunc(("pVM=%p\n", pVM));
2756
2757 /*
2758 * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
2759 * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0Intel().
2760 */
2761 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
2762 && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
2763 || !pVM->hm.s.vmx.pRealModeTSS))
2764 {
2765 LogRel(("VMXR0SetupVM: Invalid real-on-v86 state.\n"));
2766 return VERR_INTERNAL_ERROR;
2767 }
2768
2769 /* Initialize these always, see hmR3InitFinalizeR0().*/
2770 pVM->hm.s.vmx.enmFlushEpt = VMXFLUSHEPT_NONE;
2771 pVM->hm.s.vmx.enmFlushVpid = VMXFLUSHVPID_NONE;
2772
2773 /* Setup the tagged-TLB flush handlers. */
2774 int rc = hmR0VmxSetupTaggedTlb(pVM);
2775 if (RT_FAILURE(rc))
2776 {
2777 LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
2778 return rc;
2779 }
2780
2781 /* Check if we can use the VMCS controls for swapping the EFER MSR. */
2782 Assert(!pVM->hm.s.vmx.fSupportsVmcsEfer);
2783#if HC_ARCH_BITS == 64
2784 if ( (pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1 & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
2785 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR)
2786 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR))
2787 {
2788 pVM->hm.s.vmx.fSupportsVmcsEfer = true;
2789 }
2790#endif
2791
2792 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
2793 RTCCUINTREG uHostCR4 = ASMGetCR4();
2794 if (RT_UNLIKELY(!(uHostCR4 & X86_CR4_VMXE)))
2795 return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
2796
2797 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2798 {
2799 PVMCPU pVCpu = &pVM->aCpus[i];
2800 AssertPtr(pVCpu);
2801 AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
2802
2803 /* Log the VCPU pointers, useful for debugging SMP VMs. */
2804 Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
2805
2806 /* Initialize the VM-exit history array with end-of-array markers (UINT16_MAX). */
2807 Assert(!pVCpu->hm.s.idxExitHistoryFree);
2808 HMCPU_EXIT_HISTORY_RESET(pVCpu);
2809
2810 /* Set revision dword at the beginning of the VMCS structure. */
2811 *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.Msrs.u64BasicInfo);
2812
2813 /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
2814 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2815 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2816 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2817
2818 /* Load this VMCS as the current VMCS. */
2819 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2820 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVmcs failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2821 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2822
2823 rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
2824 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2825 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2826
2827 rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
2828 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2829 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2830
2831 rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
2832 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2833 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2834
2835 rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
2836 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2837 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2838
2839 rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
2840 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2841 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2842
2843#if HC_ARCH_BITS == 32
2844 rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
2845 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2846 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2847#endif
2848
2849 /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
2850 rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
2851 AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVmcs(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
2852 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
2853
2854 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
2855
2856 hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
2857 }
2858
2859 return VINF_SUCCESS;
2860}
2861
2862
2863/**
2864 * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
2865 * the VMCS.
2866 *
2867 * @returns VBox status code.
2868 * @param pVM The cross context VM structure.
2869 * @param pVCpu The cross context virtual CPU structure.
2870 */
2871DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
2872{
2873 NOREF(pVM); NOREF(pVCpu);
2874
2875 RTCCUINTREG uReg = ASMGetCR0();
2876 int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
2877 AssertRCReturn(rc, rc);
2878
2879 uReg = ASMGetCR3();
2880 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
2881 AssertRCReturn(rc, rc);
2882
2883 uReg = ASMGetCR4();
2884 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
2885 AssertRCReturn(rc, rc);
2886 return rc;
2887}
2888
2889
2890#if HC_ARCH_BITS == 64
2891/**
2892 * Macro for adjusting host segment selectors to satisfy VT-x's VM-entry
2893 * requirements. See hmR0VmxSaveHostSegmentRegs().
2894 */
2895# define VMXLOCAL_ADJUST_HOST_SEG(seg, selValue) \
2896 if ((selValue) & (X86_SEL_RPL | X86_SEL_LDT)) \
2897 { \
2898 bool fValidSelector = true; \
2899 if ((selValue) & X86_SEL_LDT) \
2900 { \
2901 uint32_t uAttr = ASMGetSegAttr((selValue)); \
2902 fValidSelector = RT_BOOL(uAttr != UINT32_MAX && (uAttr & X86_DESC_P)); \
2903 } \
2904 if (fValidSelector) \
2905 { \
2906 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_##seg; \
2907 pVCpu->hm.s.vmx.RestoreHost.uHostSel##seg = (selValue); \
2908 } \
2909 (selValue) = 0; \
2910 }
2911#endif
2912
2913
2914/**
2915 * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
2916 * the host-state area in the VMCS.
2917 *
2918 * @returns VBox status code.
2919 * @param pVM The cross context VM structure.
2920 * @param pVCpu The cross context virtual CPU structure.
2921 */
2922DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
2923{
2924 int rc = VERR_INTERNAL_ERROR_5;
2925
2926#if HC_ARCH_BITS == 64
2927 /*
2928 * If we've executed guest code using VT-x, the host-state bits will be messed up. We
2929 * should -not- save the messed up state without restoring the original host-state. See @bugref{7240}.
2930 *
2931 * This apparently can happen (most likely the FPU changes), deal with it rather than asserting.
2932 * Was observed booting Solaris10u10 32-bit guest.
2933 */
2934 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
2935 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
2936 {
2937 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags,
2938 pVCpu->idCpu));
2939 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
2940 }
2941 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
2942#else
2943 RT_NOREF(pVCpu);
2944#endif
2945
2946 /*
2947 * Host DS, ES, FS and GS segment registers.
2948 */
2949#if HC_ARCH_BITS == 64
2950 RTSEL uSelDS = ASMGetDS();
2951 RTSEL uSelES = ASMGetES();
2952 RTSEL uSelFS = ASMGetFS();
2953 RTSEL uSelGS = ASMGetGS();
2954#else
2955 RTSEL uSelDS = 0;
2956 RTSEL uSelES = 0;
2957 RTSEL uSelFS = 0;
2958 RTSEL uSelGS = 0;
2959#endif
2960
2961 /*
2962 * Host CS and SS segment registers.
2963 */
2964 RTSEL uSelCS = ASMGetCS();
2965 RTSEL uSelSS = ASMGetSS();
2966
2967 /*
2968 * Host TR segment register.
2969 */
2970 RTSEL uSelTR = ASMGetTR();
2971
2972#if HC_ARCH_BITS == 64
2973 /*
2974 * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
2975 * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
2976 */
2977 VMXLOCAL_ADJUST_HOST_SEG(DS, uSelDS);
2978 VMXLOCAL_ADJUST_HOST_SEG(ES, uSelES);
2979 VMXLOCAL_ADJUST_HOST_SEG(FS, uSelFS);
2980 VMXLOCAL_ADJUST_HOST_SEG(GS, uSelGS);
2981# undef VMXLOCAL_ADJUST_HOST_SEG
2982#endif
2983
2984 /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
2985 Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
2986 Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
2987 Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
2988 Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
2989 Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
2990 Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
2991 Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
2992 Assert(uSelCS);
2993 Assert(uSelTR);
2994
2995 /* Assertion is right but we would not have updated u32ExitCtls yet. */
2996#if 0
2997 if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
2998 Assert(uSelSS != 0);
2999#endif
3000
3001 /* Write these host selector fields into the host-state area in the VMCS. */
3002 rc = VMXWriteVmcs32(VMX_VMCS16_HOST_CS_SEL, uSelCS);
3003 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_SS_SEL, uSelSS);
3004#if HC_ARCH_BITS == 64
3005 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_DS_SEL, uSelDS);
3006 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_ES_SEL, uSelES);
3007 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_FS_SEL, uSelFS);
3008 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_GS_SEL, uSelGS);
3009#else
3010 NOREF(uSelDS);
3011 NOREF(uSelES);
3012 NOREF(uSelFS);
3013 NOREF(uSelGS);
3014#endif
3015 rc |= VMXWriteVmcs32(VMX_VMCS16_HOST_TR_SEL, uSelTR);
3016 AssertRCReturn(rc, rc);
3017
3018 /*
3019 * Host GDTR and IDTR.
3020 */
3021 RTGDTR Gdtr;
3022 RTIDTR Idtr;
3023 RT_ZERO(Gdtr);
3024 RT_ZERO(Idtr);
3025 ASMGetGDTR(&Gdtr);
3026 ASMGetIDTR(&Idtr);
3027 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt);
3028 rc |= VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt);
3029 AssertRCReturn(rc, rc);
3030
3031#if HC_ARCH_BITS == 64
3032 /*
3033 * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
3034 * maximum limit (0xffff) on every VM-exit.
3035 */
3036 if (Gdtr.cbGdt != 0xffff)
3037 {
3038 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
3039 AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
3040 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3041 }
3042
3043 /*
3044 * IDT limit is effectively capped at 0xfff. (See Intel spec. 6.14.1 "64-Bit Mode IDT"
3045 * and Intel spec. 6.2 "Exception and Interrupt Vectors".) Therefore if the host has the limit as 0xfff, VT-x
3046 * bloating the limit to 0xffff shouldn't cause any different CPU behavior. However, several hosts either insists
3047 * on 0xfff being the limit (Windows Patch Guard) or uses the limit for other purposes (darwin puts the CPU ID in there
3048 * but botches sidt alignment in at least one consumer). So, we're only allowing IDTR.LIMIT to be left at 0xffff on
3049 * hosts where we are pretty sure it won't cause trouble.
3050 */
3051# if defined(RT_OS_LINUX) || defined(RT_OS_SOLARIS)
3052 if (Idtr.cbIdt < 0x0fff)
3053# else
3054 if (Idtr.cbIdt != 0xffff)
3055# endif
3056 {
3057 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
3058 AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
3059 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
3060 }
3061#endif
3062
3063 /*
3064 * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
3065 * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
3066 */
3067 AssertMsgReturn((uSelTR | X86_SEL_RPL_LDT) <= Gdtr.cbGdt,
3068 ("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt),
3069 VERR_VMX_INVALID_HOST_STATE);
3070
3071 PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
3072#if HC_ARCH_BITS == 64
3073 uintptr_t uTRBase = X86DESC64_BASE(pDesc);
3074
3075 /*
3076 * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
3077 * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
3078 * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
3079 * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
3080 *
3081 * [1] See Intel spec. 3.5 "System Descriptor Types".
3082 * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
3083 */
3084 Assert(pDesc->System.u4Type == 11);
3085 if ( pDesc->System.u16LimitLow != 0x67
3086 || pDesc->System.u4LimitHigh)
3087 {
3088 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
3089 /* If the host has made GDT read-only, we would need to temporarily toggle CR0.WP before writing the GDT. */
3090 if (pVM->hm.s.fHostKernelFeatures & SUPKERNELFEATURES_GDT_READ_ONLY)
3091 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDT_READ_ONLY;
3092 pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
3093
3094 /* Store the GDTR here as we need it while restoring TR. */
3095 memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
3096 }
3097#else
3098 NOREF(pVM);
3099 uintptr_t uTRBase = X86DESC_BASE(pDesc);
3100#endif
3101 rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
3102 AssertRCReturn(rc, rc);
3103
3104 /*
3105 * Host FS base and GS base.
3106 */
3107#if HC_ARCH_BITS == 64
3108 uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
3109 uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
3110 rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase);
3111 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase);
3112 AssertRCReturn(rc, rc);
3113
3114 /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
3115 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
3116 pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
3117 if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
3118 pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
3119#endif
3120 return rc;
3121}
3122
3123
3124/**
3125 * Saves certain host MSRs in the VM-exit MSR-load area and some in the
3126 * host-state area of the VMCS. Theses MSRs will be automatically restored on
3127 * the host after every successful VM-exit.
3128 *
3129 * @returns VBox status code.
3130 * @param pVM The cross context VM structure.
3131 * @param pVCpu The cross context virtual CPU structure.
3132 *
3133 * @remarks No-long-jump zone!!!
3134 */
3135DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
3136{
3137 NOREF(pVM);
3138
3139 AssertPtr(pVCpu);
3140 AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
3141
3142 /*
3143 * Save MSRs that we restore lazily (due to preemption or transition to ring-3)
3144 * rather than swapping them on every VM-entry.
3145 */
3146 hmR0VmxLazySaveHostMsrs(pVCpu);
3147
3148 /*
3149 * Host Sysenter MSRs.
3150 */
3151 int rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
3152#if HC_ARCH_BITS == 32
3153 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
3154 rc |= VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
3155#else
3156 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
3157 rc |= VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
3158#endif
3159 AssertRCReturn(rc, rc);
3160
3161 /*
3162 * Host EFER MSR.
3163 * If the CPU supports the newer VMCS controls for managing EFER, use it.
3164 * Otherwise it's done as part of auto-load/store MSR area in the VMCS, see hmR0VmxLoadGuestMsrs().
3165 */
3166 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
3167 {
3168 rc = VMXWriteVmcs64(VMX_VMCS64_HOST_EFER_FULL, pVM->hm.s.vmx.u64HostEfer);
3169 AssertRCReturn(rc, rc);
3170 }
3171
3172 /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT also see
3173 * hmR0VmxLoadGuestExitCtls() !! */
3174
3175 return rc;
3176}
3177
3178
3179/**
3180 * Figures out if we need to swap the EFER MSR which is particularly expensive.
3181 *
3182 * We check all relevant bits. For now, that's everything besides LMA/LME, as
3183 * these two bits are handled by VM-entry, see hmR0VmxLoadGuestExitCtls() and
3184 * hmR0VMxLoadGuestEntryCtls().
3185 *
3186 * @returns true if we need to load guest EFER, false otherwise.
3187 * @param pVCpu The cross context virtual CPU structure.
3188 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3189 * out-of-sync. Make sure to update the required fields
3190 * before using them.
3191 *
3192 * @remarks Requires EFER, CR4.
3193 * @remarks No-long-jump zone!!!
3194 */
3195static bool hmR0VmxShouldSwapEferMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3196{
3197#ifdef HMVMX_ALWAYS_SWAP_EFER
3198 return true;
3199#endif
3200
3201#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
3202 /* For 32-bit hosts running 64-bit guests, we always swap EFER in the world-switcher. Nothing to do here. */
3203 if (CPUMIsGuestInLongMode(pVCpu))
3204 return false;
3205#endif
3206
3207 PVM pVM = pVCpu->CTX_SUFF(pVM);
3208 uint64_t u64HostEfer = pVM->hm.s.vmx.u64HostEfer;
3209 uint64_t u64GuestEfer = pMixedCtx->msrEFER;
3210
3211 /*
3212 * For 64-bit guests, if EFER.SCE bit differs, we need to swap to ensure that the
3213 * guest's SYSCALL behaviour isn't screwed. See @bugref{7386}.
3214 */
3215 if ( CPUMIsGuestInLongMode(pVCpu)
3216 && (u64GuestEfer & MSR_K6_EFER_SCE) != (u64HostEfer & MSR_K6_EFER_SCE))
3217 {
3218 return true;
3219 }
3220
3221 /*
3222 * If the guest uses PAE and EFER.NXE bit differs, we need to swap EFER as it
3223 * affects guest paging. 64-bit paging implies CR4.PAE as well.
3224 * See Intel spec. 4.5 "IA-32e Paging" and Intel spec. 4.1.1 "Three Paging Modes".
3225 */
3226 if ( (pMixedCtx->cr4 & X86_CR4_PAE)
3227 && (pMixedCtx->cr0 & X86_CR0_PG)
3228 && (u64GuestEfer & MSR_K6_EFER_NXE) != (u64HostEfer & MSR_K6_EFER_NXE))
3229 {
3230 /* Assert that host is PAE capable. */
3231 Assert(pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_NX);
3232 return true;
3233 }
3234
3235 /** @todo Check the latest Intel spec. for any other bits,
3236 * like SMEP/SMAP? */
3237 return false;
3238}
3239
3240
3241/**
3242 * Sets up VM-entry controls in the VMCS. These controls can affect things done
3243 * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
3244 * controls".
3245 *
3246 * @returns VBox status code.
3247 * @param pVCpu The cross context virtual CPU structure.
3248 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3249 * out-of-sync. Make sure to update the required fields
3250 * before using them.
3251 *
3252 * @remarks Requires EFER.
3253 * @remarks No-long-jump zone!!!
3254 */
3255DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3256{
3257 int rc = VINF_SUCCESS;
3258 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS))
3259 {
3260 PVM pVM = pVCpu->CTX_SUFF(pVM);
3261 uint32_t val = pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0; /* Bits set here must be set in the VMCS. */
3262 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxEntry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3263
3264 /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
3265 val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
3266
3267 /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
3268 if (CPUMIsGuestInLongModeEx(pMixedCtx))
3269 {
3270 val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
3271 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST\n", pVCpu->idCpu));
3272 }
3273 else
3274 Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
3275
3276 /* If the CPU supports the newer VMCS controls for managing guest/host EFER, use it. */
3277 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3278 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3279 {
3280 val |= VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR;
3281 Log4(("Load[%RU32]: VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR\n", pVCpu->idCpu));
3282 }
3283
3284 /*
3285 * The following should -not- be set (since we're not in SMM mode):
3286 * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
3287 * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
3288 */
3289
3290 /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
3291 * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR. */
3292
3293 if ((val & zap) != val)
3294 {
3295 LogRel(("hmR0VmxLoadGuestEntryCtls: Invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3296 pVM->hm.s.vmx.Msrs.VmxEntry.n.disallowed0, val, zap));
3297 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_ENTRY;
3298 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3299 }
3300
3301 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
3302 AssertRCReturn(rc, rc);
3303
3304 pVCpu->hm.s.vmx.u32EntryCtls = val;
3305 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_ENTRY_CTLS);
3306 }
3307 return rc;
3308}
3309
3310
3311/**
3312 * Sets up the VM-exit controls in the VMCS.
3313 *
3314 * @returns VBox status code.
3315 * @param pVCpu The cross context virtual CPU structure.
3316 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3317 * out-of-sync. Make sure to update the required fields
3318 * before using them.
3319 *
3320 * @remarks Requires EFER.
3321 */
3322DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3323{
3324 NOREF(pMixedCtx);
3325
3326 int rc = VINF_SUCCESS;
3327 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_EXIT_CTLS))
3328 {
3329 PVM pVM = pVCpu->CTX_SUFF(pVM);
3330 uint32_t val = pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0; /* Bits set here must be set in the VMCS. */
3331 uint32_t zap = pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
3332
3333 /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
3334 val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
3335
3336 /*
3337 * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
3338 * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
3339 */
3340#if HC_ARCH_BITS == 64
3341 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3342 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3343#else
3344 Assert( pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64
3345 || pVCpu->hm.s.vmx.pfnStartVM == VMXR0StartVM32);
3346 /* Set the host address-space size based on the switcher, not guest state. See @bugref{8432}. */
3347 if (pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64)
3348 {
3349 /* The switcher returns to long mode, EFER is managed by the switcher. */
3350 val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
3351 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE\n", pVCpu->idCpu));
3352 }
3353 else
3354 Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
3355#endif
3356
3357 /* If the newer VMCS fields for managing EFER exists, use it. */
3358 if ( pVM->hm.s.vmx.fSupportsVmcsEfer
3359 && hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
3360 {
3361 val |= VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR
3362 | VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR;
3363 Log4(("Load[%RU32]: VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR, VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR\n", pVCpu->idCpu));
3364 }
3365
3366 /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
3367 Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
3368
3369 /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
3370 * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
3371 * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR. */
3372
3373 if ( pVM->hm.s.vmx.fUsePreemptTimer
3374 && (pVM->hm.s.vmx.Msrs.VmxExit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER))
3375 val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
3376
3377 if ((val & zap) != val)
3378 {
3379 LogRel(("hmR0VmxSetupProcCtls: Invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
3380 pVM->hm.s.vmx.Msrs.VmxExit.n.disallowed0, val, zap));
3381 pVCpu->hm.s.u32HMError = VMX_UFC_CTRL_EXIT;
3382 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
3383 }
3384
3385 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
3386 AssertRCReturn(rc, rc);
3387
3388 pVCpu->hm.s.vmx.u32ExitCtls = val;
3389 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_EXIT_CTLS);
3390 }
3391 return rc;
3392}
3393
3394
3395/**
3396 * Sets the TPR threshold in the VMCS.
3397 *
3398 * @returns VBox status code.
3399 * @param pVCpu The cross context virtual CPU structure.
3400 * @param u32TprThreshold The TPR threshold (task-priority class only).
3401 */
3402DECLINLINE(int) hmR0VmxApicSetTprThreshold(PVMCPU pVCpu, uint32_t u32TprThreshold)
3403{
3404 Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
3405 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW); RT_NOREF_PV(pVCpu);
3406 return VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
3407}
3408
3409
3410/**
3411 * Loads the guest APIC and related state.
3412 *
3413 * @returns VBox status code.
3414 * @param pVCpu The cross context virtual CPU structure.
3415 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3416 * out-of-sync. Make sure to update the required fields
3417 * before using them.
3418 *
3419 * @remarks No-long-jump zone!!!
3420 */
3421DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3422{
3423 NOREF(pMixedCtx);
3424
3425 int rc = VINF_SUCCESS;
3426 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE))
3427 {
3428 if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
3429 && APICIsEnabled(pVCpu))
3430 {
3431 /*
3432 * Setup TPR shadowing.
3433 */
3434 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
3435 {
3436 Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
3437
3438 bool fPendingIntr = false;
3439 uint8_t u8Tpr = 0;
3440 uint8_t u8PendingIntr = 0;
3441 rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
3442 AssertRCReturn(rc, rc);
3443
3444 /*
3445 * If there are interrupts pending but masked by the TPR, instruct VT-x to cause a TPR-below-threshold VM-exit
3446 * when the guest lowers its TPR below the priority of the pending interrupt so we can deliver the interrupt.
3447 * If there are no interrupts pending, set threshold to 0 to not cause any TPR-below-threshold VM-exits.
3448 */
3449 pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR] = u8Tpr;
3450 uint32_t u32TprThreshold = 0;
3451 if (fPendingIntr)
3452 {
3453 /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR (which is the Task-Priority Class). */
3454 const uint8_t u8PendingPriority = u8PendingIntr >> 4;
3455 const uint8_t u8TprPriority = u8Tpr >> 4;
3456 if (u8PendingPriority <= u8TprPriority)
3457 u32TprThreshold = u8PendingPriority;
3458 }
3459
3460 rc = hmR0VmxApicSetTprThreshold(pVCpu, u32TprThreshold);
3461 AssertRCReturn(rc, rc);
3462 }
3463 }
3464 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
3465 }
3466
3467 return rc;
3468}
3469
3470
3471/**
3472 * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
3473 *
3474 * @returns Guest's interruptibility-state.
3475 * @param pVCpu The cross context virtual CPU structure.
3476 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3477 * out-of-sync. Make sure to update the required fields
3478 * before using them.
3479 *
3480 * @remarks No-long-jump zone!!!
3481 */
3482DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3483{
3484 /*
3485 * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
3486 */
3487 uint32_t uIntrState = 0;
3488 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3489 {
3490 /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
3491 AssertMsg(HMVMXCPU_GST_IS_SET(pVCpu, HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS),
3492 ("%#x\n", HMVMXCPU_GST_VALUE(pVCpu)));
3493 if (pMixedCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
3494 {
3495 if (pMixedCtx->eflags.Bits.u1IF)
3496 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
3497 else
3498 uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
3499 }
3500 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
3501 {
3502 /*
3503 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
3504 * VT-x, the flag's condition to be cleared is met and thus the cleared state is correct.
3505 */
3506 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
3507 }
3508 }
3509
3510 /*
3511 * NMIs to the guest are blocked after an NMI is injected until the guest executes an IRET. We only
3512 * bother with virtual-NMI blocking when we have support for virtual NMIs in the CPU, otherwise
3513 * setting this would block host-NMIs and IRET will not clear the blocking.
3514 *
3515 * See Intel spec. 26.6.1 "Interruptibility state". See @bugref{7445}.
3516 */
3517 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS)
3518 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
3519 {
3520 uIntrState |= VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI;
3521 }
3522
3523 return uIntrState;
3524}
3525
3526
3527/**
3528 * Loads the guest's interruptibility-state into the guest-state area in the
3529 * VMCS.
3530 *
3531 * @returns VBox status code.
3532 * @param pVCpu The cross context virtual CPU structure.
3533 * @param uIntrState The interruptibility-state to set.
3534 */
3535static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
3536{
3537 NOREF(pVCpu);
3538 AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
3539 Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
3540 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
3541 AssertRC(rc);
3542 return rc;
3543}
3544
3545
3546/**
3547 * Loads the exception intercepts required for guest execution in the VMCS.
3548 *
3549 * @returns VBox status code.
3550 * @param pVCpu The cross context virtual CPU structure.
3551 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3552 * out-of-sync. Make sure to update the required fields
3553 * before using them.
3554 */
3555static int hmR0VmxLoadGuestXcptIntercepts(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3556{
3557 NOREF(pMixedCtx);
3558 int rc = VINF_SUCCESS;
3559 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
3560 {
3561 /* The remaining exception intercepts are handled elsewhere, e.g. in hmR0VmxLoadSharedCR0(). */
3562 if (pVCpu->hm.s.fGIMTrapXcptUD)
3563 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_UD);
3564#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3565 else
3566 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_UD);
3567#endif
3568
3569 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
3570 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
3571
3572 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
3573 AssertRCReturn(rc, rc);
3574
3575 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3576 Log4(("Load[%RU32]: VMX_VMCS32_CTRL_EXCEPTION_BITMAP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu,
3577 pVCpu->hm.s.vmx.u32XcptBitmap, HMCPU_CF_VALUE(pVCpu)));
3578 }
3579 return rc;
3580}
3581
3582
3583/**
3584 * Loads the guest's RIP into the guest-state area in the VMCS.
3585 *
3586 * @returns VBox status code.
3587 * @param pVCpu The cross context virtual CPU structure.
3588 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3589 * out-of-sync. Make sure to update the required fields
3590 * before using them.
3591 *
3592 * @remarks No-long-jump zone!!!
3593 */
3594static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3595{
3596 int rc = VINF_SUCCESS;
3597 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP))
3598 {
3599 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
3600 AssertRCReturn(rc, rc);
3601
3602 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP);
3603 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RIP=%#RX64 fContextUseFlags=%#RX32\n", pVCpu->idCpu, pMixedCtx->rip,
3604 HMCPU_CF_VALUE(pVCpu)));
3605 }
3606 return rc;
3607}
3608
3609
3610/**
3611 * Loads the guest's RSP into the guest-state area in the VMCS.
3612 *
3613 * @returns VBox status code.
3614 * @param pVCpu The cross context virtual CPU structure.
3615 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3616 * out-of-sync. Make sure to update the required fields
3617 * before using them.
3618 *
3619 * @remarks No-long-jump zone!!!
3620 */
3621static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3622{
3623 int rc = VINF_SUCCESS;
3624 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP))
3625 {
3626 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
3627 AssertRCReturn(rc, rc);
3628
3629 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RSP);
3630 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RSP=%#RX64\n", pVCpu->idCpu, pMixedCtx->rsp));
3631 }
3632 return rc;
3633}
3634
3635
3636/**
3637 * Loads the guest's RFLAGS into the guest-state area in the VMCS.
3638 *
3639 * @returns VBox status code.
3640 * @param pVCpu The cross context virtual CPU structure.
3641 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3642 * out-of-sync. Make sure to update the required fields
3643 * before using them.
3644 *
3645 * @remarks No-long-jump zone!!!
3646 */
3647static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3648{
3649 int rc = VINF_SUCCESS;
3650 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
3651 {
3652 /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
3653 Let us assert it as such and use 32-bit VMWRITE. */
3654 Assert(!(pMixedCtx->rflags.u64 >> 32));
3655 X86EFLAGS Eflags = pMixedCtx->eflags;
3656 /** @todo r=bird: There shall be no need to OR in X86_EFL_1 here, nor
3657 * shall there be any reason for clearing bits 63:22, 15, 5 and 3.
3658 * These will never be cleared/set, unless some other part of the VMM
3659 * code is buggy - in which case we're better of finding and fixing
3660 * those bugs than hiding them. */
3661 Assert(Eflags.u32 & X86_EFL_RA1_MASK);
3662 Assert(!(Eflags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
3663 Eflags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
3664 Eflags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
3665
3666 /*
3667 * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM-exit.
3668 * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
3669 */
3670 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3671 {
3672 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
3673 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
3674 pVCpu->hm.s.vmx.RealMode.Eflags.u32 = Eflags.u32; /* Save the original eflags of the real-mode guest. */
3675 Eflags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
3676 Eflags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
3677 }
3678
3679 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, Eflags.u32);
3680 AssertRCReturn(rc, rc);
3681
3682 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RFLAGS);
3683 Log4(("Load[%RU32]: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", pVCpu->idCpu, Eflags.u32));
3684 }
3685 return rc;
3686}
3687
3688
3689/**
3690 * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
3691 *
3692 * @returns VBox status code.
3693 * @param pVCpu The cross context virtual CPU structure.
3694 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3695 * out-of-sync. Make sure to update the required fields
3696 * before using them.
3697 *
3698 * @remarks No-long-jump zone!!!
3699 */
3700DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3701{
3702 int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
3703 rc |= hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
3704 rc |= hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
3705 AssertRCReturn(rc, rc);
3706 return rc;
3707}
3708
3709
3710/**
3711 * Loads the guest CR0 control register into the guest-state area in the VMCS.
3712 * CR0 is partially shared with the host and we have to consider the FPU bits.
3713 *
3714 * @returns VBox status code.
3715 * @param pVCpu The cross context virtual CPU structure.
3716 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3717 * out-of-sync. Make sure to update the required fields
3718 * before using them.
3719 *
3720 * @remarks No-long-jump zone!!!
3721 */
3722static int hmR0VmxLoadSharedCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3723{
3724 /*
3725 * Guest CR0.
3726 * Guest FPU.
3727 */
3728 int rc = VINF_SUCCESS;
3729 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
3730 {
3731 Assert(!(pMixedCtx->cr0 >> 32));
3732 uint32_t u32GuestCR0 = pMixedCtx->cr0;
3733 PVM pVM = pVCpu->CTX_SUFF(pVM);
3734
3735 /* The guest's view (read access) of its CR0 is unblemished. */
3736 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
3737 AssertRCReturn(rc, rc);
3738 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR0));
3739
3740 /* Setup VT-x's view of the guest CR0. */
3741 /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
3742 if (pVM->hm.s.fNestedPaging)
3743 {
3744 if (CPUMIsGuestPagingEnabledEx(pMixedCtx))
3745 {
3746 /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
3747 pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3748 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
3749 }
3750 else
3751 {
3752 /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
3753 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
3754 | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3755 }
3756
3757 /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
3758 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3759 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
3760
3761 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
3762 AssertRCReturn(rc, rc);
3763 }
3764 else
3765 u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
3766
3767 /*
3768 * Guest FPU bits.
3769 * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
3770 * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
3771 */
3772 u32GuestCR0 |= X86_CR0_NE;
3773 bool fInterceptNM = false;
3774 if (CPUMIsGuestFPUStateActive(pVCpu))
3775 {
3776 fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
3777 /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
3778 We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
3779 }
3780 else
3781 {
3782 fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
3783 u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
3784 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
3785 }
3786
3787 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
3788 bool fInterceptMF = false;
3789 if (!(pMixedCtx->cr0 & X86_CR0_NE))
3790 fInterceptMF = true;
3791
3792 /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
3793 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
3794 {
3795 Assert(PDMVmmDevHeapIsEnabled(pVM));
3796 Assert(pVM->hm.s.vmx.pRealModeTSS);
3797 pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
3798 fInterceptNM = true;
3799 fInterceptMF = true;
3800 }
3801 else
3802 {
3803 /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
3804 pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
3805 }
3806 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
3807
3808 if (fInterceptNM)
3809 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
3810 else
3811 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
3812
3813 if (fInterceptMF)
3814 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
3815 else
3816 pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
3817
3818 /* Additional intercepts for debugging, define these yourself explicitly. */
3819#ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
3820 pVCpu->hm.s.vmx.u32XcptBitmap |= 0
3821 | RT_BIT(X86_XCPT_BP)
3822 | RT_BIT(X86_XCPT_DE)
3823 | RT_BIT(X86_XCPT_NM)
3824 | RT_BIT(X86_XCPT_TS)
3825 | RT_BIT(X86_XCPT_UD)
3826 | RT_BIT(X86_XCPT_NP)
3827 | RT_BIT(X86_XCPT_SS)
3828 | RT_BIT(X86_XCPT_GP)
3829 | RT_BIT(X86_XCPT_PF)
3830 | RT_BIT(X86_XCPT_MF)
3831 ;
3832#elif defined(HMVMX_ALWAYS_TRAP_PF)
3833 pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
3834#endif
3835
3836 Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
3837
3838 /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
3839 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3840 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
3841 if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
3842 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
3843 else
3844 Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
3845
3846 u32GuestCR0 |= uSetCR0;
3847 u32GuestCR0 &= uZapCR0;
3848 u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
3849
3850 /* Write VT-x's view of the guest CR0 into the VMCS. */
3851 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
3852 AssertRCReturn(rc, rc);
3853 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", pVCpu->idCpu, u32GuestCR0, uSetCR0,
3854 uZapCR0));
3855
3856 /*
3857 * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
3858 * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
3859 * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
3860 */
3861 uint32_t u32CR0Mask = 0;
3862 u32CR0Mask = X86_CR0_PE
3863 | X86_CR0_NE
3864 | X86_CR0_WP
3865 | X86_CR0_PG
3866 | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
3867 | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
3868 | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
3869
3870 /** @todo Avoid intercepting CR0.PE with unrestricted guests. Fix PGM
3871 * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
3872 * and @bugref{6944}. */
3873#if 0
3874 if (pVM->hm.s.vmx.fUnrestrictedGuest)
3875 u32CR0Mask &= ~X86_CR0_PE;
3876#endif
3877 if (pVM->hm.s.fNestedPaging)
3878 u32CR0Mask &= ~X86_CR0_WP;
3879
3880 /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
3881 if (fInterceptNM)
3882 {
3883 u32CR0Mask |= X86_CR0_TS
3884 | X86_CR0_MP;
3885 }
3886
3887 /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
3888 pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
3889 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
3890 AssertRCReturn(rc, rc);
3891 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR0_MASK=%#RX32\n", pVCpu->idCpu, u32CR0Mask));
3892
3893 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
3894 }
3895 return rc;
3896}
3897
3898
3899/**
3900 * Loads the guest control registers (CR3, CR4) into the guest-state area
3901 * in the VMCS.
3902 *
3903 * @returns VBox strict status code.
3904 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
3905 * without unrestricted guest access and the VMMDev is not presently
3906 * mapped (e.g. EFI32).
3907 *
3908 * @param pVCpu The cross context virtual CPU structure.
3909 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
3910 * out-of-sync. Make sure to update the required fields
3911 * before using them.
3912 *
3913 * @remarks No-long-jump zone!!!
3914 */
3915static VBOXSTRICTRC hmR0VmxLoadGuestCR3AndCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
3916{
3917 int rc = VINF_SUCCESS;
3918 PVM pVM = pVCpu->CTX_SUFF(pVM);
3919
3920 /*
3921 * Guest CR2.
3922 * It's always loaded in the assembler code. Nothing to do here.
3923 */
3924
3925 /*
3926 * Guest CR3.
3927 */
3928 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
3929 {
3930 RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
3931 if (pVM->hm.s.fNestedPaging)
3932 {
3933 pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
3934
3935 /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
3936 Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
3937 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
3938 Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
3939
3940 /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
3941 pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
3942 | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
3943
3944 /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
3945 AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
3946 && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
3947 ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3948 AssertMsg( !((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
3949 || (pVM->hm.s.vmx.Msrs.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_EPT_ACCESS_DIRTY),
3950 ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
3951
3952 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
3953 AssertRCReturn(rc, rc);
3954 Log4(("Load[%RU32]: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->idCpu, pVCpu->hm.s.vmx.HCPhysEPTP));
3955
3956 if ( pVM->hm.s.vmx.fUnrestrictedGuest
3957 || CPUMIsGuestPagingEnabledEx(pMixedCtx))
3958 {
3959 /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
3960 if (CPUMIsGuestInPAEModeEx(pMixedCtx))
3961 {
3962 rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
3963 AssertRCReturn(rc, rc);
3964 rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u);
3965 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u);
3966 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u);
3967 rc |= VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u);
3968 AssertRCReturn(rc, rc);
3969 }
3970
3971 /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
3972 have Unrestricted Execution to handle the guest when it's not using paging. */
3973 GCPhysGuestCR3 = pMixedCtx->cr3;
3974 }
3975 else
3976 {
3977 /*
3978 * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
3979 * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
3980 * EPT takes care of translating it to host-physical addresses.
3981 */
3982 RTGCPHYS GCPhys;
3983 Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
3984
3985 /* We obtain it here every time as the guest could have relocated this PCI region. */
3986 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
3987 if (RT_SUCCESS(rc))
3988 { /* likely */ }
3989 else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
3990 {
3991 Log4(("Load[%RU32]: VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n", pVCpu->idCpu));
3992 return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
3993 }
3994 else
3995 AssertMsgFailedReturn(("%Rrc\n", rc), rc);
3996
3997 GCPhysGuestCR3 = GCPhys;
3998 }
3999
4000 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RGp (GstN)\n", pVCpu->idCpu, GCPhysGuestCR3));
4001 rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
4002 }
4003 else
4004 {
4005 /* Non-nested paging case, just use the hypervisor's CR3. */
4006 RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
4007
4008 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", pVCpu->idCpu, HCPhysGuestCR3));
4009 rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
4010 }
4011 AssertRCReturn(rc, rc);
4012
4013 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
4014 }
4015
4016 /*
4017 * Guest CR4.
4018 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
4019 */
4020 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
4021 {
4022 Assert(!(pMixedCtx->cr4 >> 32));
4023 uint32_t u32GuestCR4 = pMixedCtx->cr4;
4024
4025 /* The guest's view of its CR4 is unblemished. */
4026 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
4027 AssertRCReturn(rc, rc);
4028 Log4(("Load[%RU32]: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", pVCpu->idCpu, u32GuestCR4));
4029
4030 /* Setup VT-x's view of the guest CR4. */
4031 /*
4032 * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
4033 * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
4034 * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
4035 */
4036 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4037 {
4038 Assert(pVM->hm.s.vmx.pRealModeTSS);
4039 Assert(PDMVmmDevHeapIsEnabled(pVM));
4040 u32GuestCR4 &= ~X86_CR4_VME;
4041 }
4042
4043 if (pVM->hm.s.fNestedPaging)
4044 {
4045 if ( !CPUMIsGuestPagingEnabledEx(pMixedCtx)
4046 && !pVM->hm.s.vmx.fUnrestrictedGuest)
4047 {
4048 /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
4049 u32GuestCR4 |= X86_CR4_PSE;
4050 /* Our identity mapping is a 32-bit page directory. */
4051 u32GuestCR4 &= ~X86_CR4_PAE;
4052 }
4053 /* else use guest CR4.*/
4054 }
4055 else
4056 {
4057 /*
4058 * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
4059 * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
4060 */
4061 switch (pVCpu->hm.s.enmShadowMode)
4062 {
4063 case PGMMODE_REAL: /* Real-mode. */
4064 case PGMMODE_PROTECTED: /* Protected mode without paging. */
4065 case PGMMODE_32_BIT: /* 32-bit paging. */
4066 {
4067 u32GuestCR4 &= ~X86_CR4_PAE;
4068 break;
4069 }
4070
4071 case PGMMODE_PAE: /* PAE paging. */
4072 case PGMMODE_PAE_NX: /* PAE paging with NX. */
4073 {
4074 u32GuestCR4 |= X86_CR4_PAE;
4075 break;
4076 }
4077
4078 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
4079 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
4080#ifdef VBOX_ENABLE_64_BITS_GUESTS
4081 break;
4082#endif
4083 default:
4084 AssertFailed();
4085 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4086 }
4087 }
4088
4089 /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
4090 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4091 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
4092 u32GuestCR4 |= uSetCR4;
4093 u32GuestCR4 &= uZapCR4;
4094
4095 /* Write VT-x's view of the guest CR4 into the VMCS. */
4096 Log4(("Load[%RU32]: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", pVCpu->idCpu, u32GuestCR4, uSetCR4, uZapCR4));
4097 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
4098 AssertRCReturn(rc, rc);
4099
4100 /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM-exit. */
4101 uint32_t u32CR4Mask = X86_CR4_VME
4102 | X86_CR4_PAE
4103 | X86_CR4_PGE
4104 | X86_CR4_PSE
4105 | X86_CR4_VMXE;
4106 if (pVM->cpum.ro.HostFeatures.fXSaveRstor)
4107 u32CR4Mask |= X86_CR4_OSXSAVE;
4108 pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
4109 rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
4110 AssertRCReturn(rc, rc);
4111
4112 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
4113 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
4114
4115 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
4116 }
4117 return rc;
4118}
4119
4120
4121/**
4122 * Loads the guest debug registers into the guest-state area in the VMCS.
4123 *
4124 * This also sets up whether \#DB and MOV DRx accesses cause VM-exits.
4125 *
4126 * The guest debug bits are partially shared with the host (e.g. DR6, DR0-3).
4127 *
4128 * @returns VBox status code.
4129 * @param pVCpu The cross context virtual CPU structure.
4130 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4131 * out-of-sync. Make sure to update the required fields
4132 * before using them.
4133 *
4134 * @remarks No-long-jump zone!!!
4135 */
4136static int hmR0VmxLoadSharedDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4137{
4138 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
4139 return VINF_SUCCESS;
4140
4141#ifdef VBOX_STRICT
4142 /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
4143 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
4144 {
4145 /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
4146 Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
4147 Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
4148 }
4149#endif
4150
4151 int rc;
4152 PVM pVM = pVCpu->CTX_SUFF(pVM);
4153 bool fSteppingDB = false;
4154 bool fInterceptMovDRx = false;
4155 if (pVCpu->hm.s.fSingleInstruction)
4156 {
4157 /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
4158 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
4159 {
4160 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
4161 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4162 AssertRCReturn(rc, rc);
4163 Assert(fSteppingDB == false);
4164 }
4165 else
4166 {
4167 pMixedCtx->eflags.u32 |= X86_EFL_TF;
4168 pVCpu->hm.s.fClearTrapFlag = true;
4169 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
4170 fSteppingDB = true;
4171 }
4172 }
4173
4174 if ( fSteppingDB
4175 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
4176 {
4177 /*
4178 * Use the combined guest and host DRx values found in the hypervisor
4179 * register set because the debugger has breakpoints active or someone
4180 * is single stepping on the host side without a monitor trap flag.
4181 *
4182 * Note! DBGF expects a clean DR6 state before executing guest code.
4183 */
4184#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4185 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4186 && !CPUMIsHyperDebugStateActivePending(pVCpu))
4187 {
4188 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4189 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
4190 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
4191 }
4192 else
4193#endif
4194 if (!CPUMIsHyperDebugStateActive(pVCpu))
4195 {
4196 CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
4197 Assert(CPUMIsHyperDebugStateActive(pVCpu));
4198 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
4199 }
4200
4201 /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
4202 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
4203 AssertRCReturn(rc, rc);
4204
4205 pVCpu->hm.s.fUsingHyperDR7 = true;
4206 fInterceptMovDRx = true;
4207 }
4208 else
4209 {
4210 /*
4211 * If the guest has enabled debug registers, we need to load them prior to
4212 * executing guest code so they'll trigger at the right time.
4213 */
4214 if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
4215 {
4216#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4217 if ( CPUMIsGuestInLongModeEx(pMixedCtx)
4218 && !CPUMIsGuestDebugStateActivePending(pVCpu))
4219 {
4220 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4221 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
4222 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
4223 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4224 }
4225 else
4226#endif
4227 if (!CPUMIsGuestDebugStateActive(pVCpu))
4228 {
4229 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
4230 Assert(CPUMIsGuestDebugStateActive(pVCpu));
4231 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
4232 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
4233 }
4234 Assert(!fInterceptMovDRx);
4235 }
4236 /*
4237 * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
4238 * must intercept #DB in order to maintain a correct DR6 guest value, and
4239 * because we need to intercept it to prevent nested #DBs from hanging the
4240 * CPU, we end up always having to intercept it. See hmR0VmxInitXcptBitmap.
4241 */
4242#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
4243 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
4244 && !CPUMIsGuestDebugStateActive(pVCpu))
4245#else
4246 else if (!CPUMIsGuestDebugStateActive(pVCpu))
4247#endif
4248 {
4249 fInterceptMovDRx = true;
4250 }
4251
4252 /* Update guest DR7. */
4253 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
4254 AssertRCReturn(rc, rc);
4255
4256 pVCpu->hm.s.fUsingHyperDR7 = false;
4257 }
4258
4259 /*
4260 * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
4261 */
4262 if (fInterceptMovDRx)
4263 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4264 else
4265 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
4266 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
4267 AssertRCReturn(rc, rc);
4268
4269 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
4270 return VINF_SUCCESS;
4271}
4272
4273
4274#ifdef VBOX_STRICT
4275/**
4276 * Strict function to validate segment registers.
4277 *
4278 * @remarks ASSUMES CR0 is up to date.
4279 */
4280static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
4281{
4282 /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
4283 /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
4284 * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
4285 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
4286 && ( !CPUMIsGuestInRealModeEx(pCtx)
4287 && !CPUMIsGuestInV86ModeEx(pCtx)))
4288 {
4289 /* Protected mode checks */
4290 /* CS */
4291 Assert(pCtx->cs.Attr.n.u1Present);
4292 Assert(!(pCtx->cs.Attr.u & 0xf00));
4293 Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
4294 Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
4295 || !(pCtx->cs.Attr.n.u1Granularity));
4296 Assert( !(pCtx->cs.u32Limit & 0xfff00000)
4297 || (pCtx->cs.Attr.n.u1Granularity));
4298 /* CS cannot be loaded with NULL in protected mode. */
4299 Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
4300 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
4301 Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
4302 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
4303 Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
4304 else
4305 AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
4306 /* SS */
4307 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4308 Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
4309 if ( !(pCtx->cr0 & X86_CR0_PE)
4310 || pCtx->cs.Attr.n.u4Type == 3)
4311 {
4312 Assert(!pCtx->ss.Attr.n.u2Dpl);
4313 }
4314 if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
4315 {
4316 Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
4317 Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
4318 Assert(pCtx->ss.Attr.n.u1Present);
4319 Assert(!(pCtx->ss.Attr.u & 0xf00));
4320 Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
4321 Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
4322 || !(pCtx->ss.Attr.n.u1Granularity));
4323 Assert( !(pCtx->ss.u32Limit & 0xfff00000)
4324 || (pCtx->ss.Attr.n.u1Granularity));
4325 }
4326 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
4327 if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
4328 {
4329 Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4330 Assert(pCtx->ds.Attr.n.u1Present);
4331 Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
4332 Assert(!(pCtx->ds.Attr.u & 0xf00));
4333 Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
4334 Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
4335 || !(pCtx->ds.Attr.n.u1Granularity));
4336 Assert( !(pCtx->ds.u32Limit & 0xfff00000)
4337 || (pCtx->ds.Attr.n.u1Granularity));
4338 Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4339 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
4340 }
4341 if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
4342 {
4343 Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4344 Assert(pCtx->es.Attr.n.u1Present);
4345 Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
4346 Assert(!(pCtx->es.Attr.u & 0xf00));
4347 Assert(!(pCtx->es.Attr.u & 0xfffe0000));
4348 Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
4349 || !(pCtx->es.Attr.n.u1Granularity));
4350 Assert( !(pCtx->es.u32Limit & 0xfff00000)
4351 || (pCtx->es.Attr.n.u1Granularity));
4352 Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4353 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
4354 }
4355 if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
4356 {
4357 Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4358 Assert(pCtx->fs.Attr.n.u1Present);
4359 Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
4360 Assert(!(pCtx->fs.Attr.u & 0xf00));
4361 Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
4362 Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
4363 || !(pCtx->fs.Attr.n.u1Granularity));
4364 Assert( !(pCtx->fs.u32Limit & 0xfff00000)
4365 || (pCtx->fs.Attr.n.u1Granularity));
4366 Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4367 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4368 }
4369 if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
4370 {
4371 Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
4372 Assert(pCtx->gs.Attr.n.u1Present);
4373 Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
4374 Assert(!(pCtx->gs.Attr.u & 0xf00));
4375 Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
4376 Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
4377 || !(pCtx->gs.Attr.n.u1Granularity));
4378 Assert( !(pCtx->gs.u32Limit & 0xfff00000)
4379 || (pCtx->gs.Attr.n.u1Granularity));
4380 Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
4381 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
4382 }
4383 /* 64-bit capable CPUs. */
4384# if HC_ARCH_BITS == 64
4385 Assert(!(pCtx->cs.u64Base >> 32));
4386 Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
4387 Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
4388 Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
4389# endif
4390 }
4391 else if ( CPUMIsGuestInV86ModeEx(pCtx)
4392 || ( CPUMIsGuestInRealModeEx(pCtx)
4393 && !pVM->hm.s.vmx.fUnrestrictedGuest))
4394 {
4395 /* Real and v86 mode checks. */
4396 /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
4397 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
4398 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4399 {
4400 u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
4401 }
4402 else
4403 {
4404 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
4405 u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
4406 }
4407
4408 /* CS */
4409 AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
4410 Assert(pCtx->cs.u32Limit == 0xffff);
4411 Assert(u32CSAttr == 0xf3);
4412 /* SS */
4413 Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
4414 Assert(pCtx->ss.u32Limit == 0xffff);
4415 Assert(u32SSAttr == 0xf3);
4416 /* DS */
4417 Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
4418 Assert(pCtx->ds.u32Limit == 0xffff);
4419 Assert(u32DSAttr == 0xf3);
4420 /* ES */
4421 Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
4422 Assert(pCtx->es.u32Limit == 0xffff);
4423 Assert(u32ESAttr == 0xf3);
4424 /* FS */
4425 Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
4426 Assert(pCtx->fs.u32Limit == 0xffff);
4427 Assert(u32FSAttr == 0xf3);
4428 /* GS */
4429 Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
4430 Assert(pCtx->gs.u32Limit == 0xffff);
4431 Assert(u32GSAttr == 0xf3);
4432 /* 64-bit capable CPUs. */
4433# if HC_ARCH_BITS == 64
4434 Assert(!(pCtx->cs.u64Base >> 32));
4435 Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
4436 Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
4437 Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
4438# endif
4439 }
4440}
4441#endif /* VBOX_STRICT */
4442
4443
4444/**
4445 * Writes a guest segment register into the guest-state area in the VMCS.
4446 *
4447 * @returns VBox status code.
4448 * @param pVCpu The cross context virtual CPU structure.
4449 * @param idxSel Index of the selector in the VMCS.
4450 * @param idxLimit Index of the segment limit in the VMCS.
4451 * @param idxBase Index of the segment base in the VMCS.
4452 * @param idxAccess Index of the access rights of the segment in the VMCS.
4453 * @param pSelReg Pointer to the segment selector.
4454 *
4455 * @remarks No-long-jump zone!!!
4456 */
4457static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
4458 uint32_t idxAccess, PCPUMSELREG pSelReg)
4459{
4460 int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
4461 rc |= VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
4462 rc |= VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
4463 AssertRCReturn(rc, rc);
4464
4465 uint32_t u32Access = pSelReg->Attr.u;
4466 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4467 {
4468 /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
4469 u32Access = 0xf3;
4470 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
4471 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
4472 }
4473 else
4474 {
4475 /*
4476 * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
4477 * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
4478 * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
4479 * loaded in protected-mode have their attribute as 0.
4480 */
4481 if (!u32Access)
4482 u32Access = X86DESCATTR_UNUSABLE;
4483 }
4484
4485 /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
4486 AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
4487 ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
4488
4489 rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
4490 AssertRCReturn(rc, rc);
4491 return rc;
4492}
4493
4494
4495/**
4496 * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
4497 * into the guest-state area in the VMCS.
4498 *
4499 * @returns VBox status code.
4500 * @param pVCpu The cross context virtual CPU structure.
4501 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4502 * out-of-sync. Make sure to update the required fields
4503 * before using them.
4504 *
4505 * @remarks ASSUMES pMixedCtx->cr0 is up to date (strict builds validation).
4506 * @remarks No-long-jump zone!!!
4507 */
4508static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4509{
4510 int rc = VERR_INTERNAL_ERROR_5;
4511 PVM pVM = pVCpu->CTX_SUFF(pVM);
4512
4513 /*
4514 * Guest Segment registers: CS, SS, DS, ES, FS, GS.
4515 */
4516 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
4517 {
4518 /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
4519 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4520 {
4521 pVCpu->hm.s.vmx.RealMode.AttrCS.u = pMixedCtx->cs.Attr.u;
4522 pVCpu->hm.s.vmx.RealMode.AttrSS.u = pMixedCtx->ss.Attr.u;
4523 pVCpu->hm.s.vmx.RealMode.AttrDS.u = pMixedCtx->ds.Attr.u;
4524 pVCpu->hm.s.vmx.RealMode.AttrES.u = pMixedCtx->es.Attr.u;
4525 pVCpu->hm.s.vmx.RealMode.AttrFS.u = pMixedCtx->fs.Attr.u;
4526 pVCpu->hm.s.vmx.RealMode.AttrGS.u = pMixedCtx->gs.Attr.u;
4527 }
4528
4529#ifdef VBOX_WITH_REM
4530 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
4531 {
4532 Assert(pVM->hm.s.vmx.pRealModeTSS);
4533 AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
4534 if ( pVCpu->hm.s.vmx.fWasInRealMode
4535 && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
4536 {
4537 /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
4538 in real-mode (e.g. OpenBSD 4.0) */
4539 REMFlushTBs(pVM);
4540 Log4(("Load[%RU32]: Switch to protected mode detected!\n", pVCpu->idCpu));
4541 pVCpu->hm.s.vmx.fWasInRealMode = false;
4542 }
4543 }
4544#endif
4545 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_CS_SEL, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
4546 VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs);
4547 AssertRCReturn(rc, rc);
4548 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_SS_SEL, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
4549 VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss);
4550 AssertRCReturn(rc, rc);
4551 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_DS_SEL, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
4552 VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds);
4553 AssertRCReturn(rc, rc);
4554 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_ES_SEL, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
4555 VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es);
4556 AssertRCReturn(rc, rc);
4557 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FS_SEL, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
4558 VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs);
4559 AssertRCReturn(rc, rc);
4560 rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_GS_SEL, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
4561 VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs);
4562 AssertRCReturn(rc, rc);
4563
4564#ifdef VBOX_STRICT
4565 /* Validate. */
4566 hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
4567#endif
4568
4569 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
4570 Log4(("Load[%RU32]: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pVCpu->idCpu, pMixedCtx->cs.Sel,
4571 pMixedCtx->cs.u64Base, pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
4572 }
4573
4574 /*
4575 * Guest TR.
4576 */
4577 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
4578 {
4579 /*
4580 * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
4581 * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
4582 * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
4583 */
4584 uint16_t u16Sel = 0;
4585 uint32_t u32Limit = 0;
4586 uint64_t u64Base = 0;
4587 uint32_t u32AccessRights = 0;
4588
4589 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
4590 {
4591 u16Sel = pMixedCtx->tr.Sel;
4592 u32Limit = pMixedCtx->tr.u32Limit;
4593 u64Base = pMixedCtx->tr.u64Base;
4594 u32AccessRights = pMixedCtx->tr.Attr.u;
4595 }
4596 else
4597 {
4598 Assert(pVM->hm.s.vmx.pRealModeTSS);
4599 Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
4600
4601 /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
4602 RTGCPHYS GCPhys;
4603 rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
4604 AssertRCReturn(rc, rc);
4605
4606 X86DESCATTR DescAttr;
4607 DescAttr.u = 0;
4608 DescAttr.n.u1Present = 1;
4609 DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
4610
4611 u16Sel = 0;
4612 u32Limit = HM_VTX_TSS_SIZE;
4613 u64Base = GCPhys; /* in real-mode phys = virt. */
4614 u32AccessRights = DescAttr.u;
4615 }
4616
4617 /* Validate. */
4618 Assert(!(u16Sel & RT_BIT(2)));
4619 AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
4620 || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
4621 AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
4622 Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
4623 Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
4624 Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
4625 Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
4626 Assert( (u32Limit & 0xfff) == 0xfff
4627 || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
4628 Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
4629 || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
4630
4631 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_TR_SEL, u16Sel);
4632 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit);
4633 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base);
4634 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights);
4635 AssertRCReturn(rc, rc);
4636
4637 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
4638 Log4(("Load[%RU32]: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", pVCpu->idCpu, u64Base));
4639 }
4640
4641 /*
4642 * Guest GDTR.
4643 */
4644 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
4645 {
4646 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt);
4647 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt);
4648 AssertRCReturn(rc, rc);
4649
4650 /* Validate. */
4651 Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4652
4653 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
4654 Log4(("Load[%RU32]: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->gdtr.pGdt));
4655 }
4656
4657 /*
4658 * Guest LDTR.
4659 */
4660 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
4661 {
4662 /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
4663 uint32_t u32Access = 0;
4664 if (!pMixedCtx->ldtr.Attr.u)
4665 u32Access = X86DESCATTR_UNUSABLE;
4666 else
4667 u32Access = pMixedCtx->ldtr.Attr.u;
4668
4669 rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_LDTR_SEL, pMixedCtx->ldtr.Sel);
4670 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit);
4671 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base);
4672 rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access);
4673 AssertRCReturn(rc, rc);
4674
4675 /* Validate. */
4676 if (!(u32Access & X86DESCATTR_UNUSABLE))
4677 {
4678 Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
4679 Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
4680 Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
4681 Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
4682 Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
4683 Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
4684 Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
4685 || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
4686 Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
4687 || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
4688 }
4689
4690 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
4691 Log4(("Load[%RU32]: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->ldtr.u64Base));
4692 }
4693
4694 /*
4695 * Guest IDTR.
4696 */
4697 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
4698 {
4699 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt);
4700 rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt);
4701 AssertRCReturn(rc, rc);
4702
4703 /* Validate. */
4704 Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
4705
4706 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
4707 Log4(("Load[%RU32]: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pVCpu->idCpu, pMixedCtx->idtr.pIdt));
4708 }
4709
4710 return VINF_SUCCESS;
4711}
4712
4713
4714/**
4715 * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
4716 * areas.
4717 *
4718 * These MSRs will automatically be loaded to the host CPU on every successful
4719 * VM-entry and stored from the host CPU on every successful VM-exit. This also
4720 * creates/updates MSR slots for the host MSRs. The actual host MSR values are
4721 * -not- updated here for performance reasons. See hmR0VmxSaveHostMsrs().
4722 *
4723 * Also loads the sysenter MSRs into the guest-state area in the VMCS.
4724 *
4725 * @returns VBox status code.
4726 * @param pVCpu The cross context virtual CPU structure.
4727 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4728 * out-of-sync. Make sure to update the required fields
4729 * before using them.
4730 *
4731 * @remarks No-long-jump zone!!!
4732 */
4733static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4734{
4735 AssertPtr(pVCpu);
4736 AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
4737
4738 /*
4739 * MSRs that we use the auto-load/store MSR area in the VMCS.
4740 */
4741 PVM pVM = pVCpu->CTX_SUFF(pVM);
4742 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS))
4743 {
4744 /* For 64-bit hosts, we load/restore them lazily, see hmR0VmxLazyLoadGuestMsrs(). */
4745#if HC_ARCH_BITS == 32
4746 if (pVM->hm.s.fAllow64BitGuests)
4747 {
4748 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_LSTAR, pMixedCtx->msrLSTAR, false, NULL);
4749 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_STAR, pMixedCtx->msrSTAR, false, NULL);
4750 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_SF_MASK, pMixedCtx->msrSFMASK, false, NULL);
4751 rc |= hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_KERNEL_GS_BASE, pMixedCtx->msrKERNELGSBASE, false, NULL);
4752 AssertRCReturn(rc, rc);
4753# ifdef LOG_ENABLED
4754 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
4755 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cMsrs; i++, pMsr++)
4756 {
4757 Log4(("Load[%RU32]: MSR[%RU32]: u32Msr=%#RX32 u64Value=%#RX64\n", pVCpu->idCpu, i, pMsr->u32Msr,
4758 pMsr->u64Value));
4759 }
4760# endif
4761 }
4762#endif
4763 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
4764 }
4765
4766 /*
4767 * Guest Sysenter MSRs.
4768 * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
4769 * VM-exits on WRMSRs for these MSRs.
4770 */
4771 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR))
4772 {
4773 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
4774 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
4775 }
4776
4777 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR))
4778 {
4779 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
4780 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
4781 }
4782
4783 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR))
4784 {
4785 int rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
4786 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
4787 }
4788
4789 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
4790 {
4791 if (hmR0VmxShouldSwapEferMsr(pVCpu, pMixedCtx))
4792 {
4793 /*
4794 * If the CPU supports VMCS controls for swapping EFER, use it. Otherwise, we have no option
4795 * but to use the auto-load store MSR area in the VMCS for swapping EFER. See @bugref{7368}.
4796 */
4797 if (pVM->hm.s.vmx.fSupportsVmcsEfer)
4798 {
4799 int rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_EFER_FULL, pMixedCtx->msrEFER);
4800 AssertRCReturn(rc,rc);
4801 Log4(("Load[%RU32]: VMX_VMCS64_GUEST_EFER_FULL=%#RX64\n", pVCpu->idCpu, pMixedCtx->msrEFER));
4802 }
4803 else
4804 {
4805 int rc = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K6_EFER, pMixedCtx->msrEFER, false /* fUpdateHostMsr */,
4806 NULL /* pfAddedAndUpdated */);
4807 AssertRCReturn(rc, rc);
4808
4809 /* We need to intercept reads too, see @bugref{7386#c16}. */
4810 if (pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
4811 hmR0VmxSetMsrPermission(pVCpu, MSR_K6_EFER, VMXMSREXIT_INTERCEPT_READ, VMXMSREXIT_INTERCEPT_WRITE);
4812 Log4(("Load[%RU32]: MSR[--]: u32Msr=%#RX32 u64Value=%#RX64 cMsrs=%u\n", pVCpu->idCpu, MSR_K6_EFER,
4813 pMixedCtx->msrEFER, pVCpu->hm.s.vmx.cMsrs));
4814 }
4815 }
4816 else if (!pVM->hm.s.vmx.fSupportsVmcsEfer)
4817 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K6_EFER);
4818 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
4819 }
4820
4821 return VINF_SUCCESS;
4822}
4823
4824
4825/**
4826 * Loads the guest activity state into the guest-state area in the VMCS.
4827 *
4828 * @returns VBox status code.
4829 * @param pVCpu The cross context virtual CPU structure.
4830 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4831 * out-of-sync. Make sure to update the required fields
4832 * before using them.
4833 *
4834 * @remarks No-long-jump zone!!!
4835 */
4836static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4837{
4838 NOREF(pMixedCtx);
4839 /** @todo See if we can make use of other states, e.g.
4840 * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
4841 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE))
4842 {
4843 int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
4844 AssertRCReturn(rc, rc);
4845
4846 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_VMX_GUEST_ACTIVITY_STATE);
4847 }
4848 return VINF_SUCCESS;
4849}
4850
4851
4852#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
4853/**
4854 * Check if guest state allows safe use of 32-bit switcher again.
4855 *
4856 * Segment bases and protected mode structures must be 32-bit addressable
4857 * because the 32-bit switcher will ignore high dword when writing these VMCS
4858 * fields. See @bugref{8432} for details.
4859 *
4860 * @returns true if safe, false if must continue to use the 64-bit switcher.
4861 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4862 * out-of-sync. Make sure to update the required fields
4863 * before using them.
4864 *
4865 * @remarks No-long-jump zone!!!
4866 */
4867static bool hmR0VmxIs32BitSwitcherSafe(PCPUMCTX pMixedCtx)
4868{
4869 if (pMixedCtx->gdtr.pGdt & UINT64_C(0xffffffff00000000))
4870 return false;
4871 if (pMixedCtx->idtr.pIdt & UINT64_C(0xffffffff00000000))
4872 return false;
4873 if (pMixedCtx->ldtr.u64Base & UINT64_C(0xffffffff00000000))
4874 return false;
4875 if (pMixedCtx->tr.u64Base & UINT64_C(0xffffffff00000000))
4876 return false;
4877 if (pMixedCtx->es.u64Base & UINT64_C(0xffffffff00000000))
4878 return false;
4879 if (pMixedCtx->cs.u64Base & UINT64_C(0xffffffff00000000))
4880 return false;
4881 if (pMixedCtx->ss.u64Base & UINT64_C(0xffffffff00000000))
4882 return false;
4883 if (pMixedCtx->ds.u64Base & UINT64_C(0xffffffff00000000))
4884 return false;
4885 if (pMixedCtx->fs.u64Base & UINT64_C(0xffffffff00000000))
4886 return false;
4887 if (pMixedCtx->gs.u64Base & UINT64_C(0xffffffff00000000))
4888 return false;
4889 /* All good, bases are 32-bit. */
4890 return true;
4891}
4892#endif
4893
4894
4895/**
4896 * Sets up the appropriate function to run guest code.
4897 *
4898 * @returns VBox status code.
4899 * @param pVCpu The cross context virtual CPU structure.
4900 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
4901 * out-of-sync. Make sure to update the required fields
4902 * before using them.
4903 *
4904 * @remarks No-long-jump zone!!!
4905 */
4906static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
4907{
4908 if (CPUMIsGuestInLongModeEx(pMixedCtx))
4909 {
4910#ifndef VBOX_ENABLE_64_BITS_GUESTS
4911 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
4912#endif
4913 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
4914#if HC_ARCH_BITS == 32
4915 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
4916 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
4917 {
4918 if (pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4919 {
4920 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4921 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4922 | HM_CHANGED_VMX_ENTRY_CTLS
4923 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4924 }
4925 pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
4926
4927 /* Mark that we've switched to 64-bit handler, we can't safely switch back to 32-bit for
4928 the rest of the VM run (until VM reset). See @bugref{8432#c7}. */
4929 pVCpu->hm.s.vmx.fSwitchedTo64on32 = true;
4930 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 64-bit switcher\n", pVCpu->idCpu));
4931 }
4932#else
4933 /* 64-bit host. */
4934 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
4935#endif
4936 }
4937 else
4938 {
4939 /* Guest is not in long mode, use the 32-bit handler. */
4940#if HC_ARCH_BITS == 32
4941 if ( pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32
4942 && !pVCpu->hm.s.vmx.fSwitchedTo64on32 /* If set, guest mode change does not imply switcher change. */
4943 && pVCpu->hm.s.vmx.pfnStartVM != NULL) /* Very first entry would have saved host-state already, ignore it. */
4944 {
4945 /* Currently, all mode changes sends us back to ring-3, so these should be set. See @bugref{6944}. */
4946 AssertMsg(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_VMX_EXIT_CTLS
4947 | HM_CHANGED_VMX_ENTRY_CTLS
4948 | HM_CHANGED_GUEST_EFER_MSR), ("flags=%#x\n", HMCPU_CF_VALUE(pVCpu)));
4949 }
4950# ifdef VBOX_ENABLE_64_BITS_GUESTS
4951 /*
4952 * Keep using the 64-bit switcher even though we're in 32-bit because of bad Intel design, see @bugref{8432#c7}.
4953 * If real-on-v86 mode is active, clear the 64-bit switcher flag because now we know the guest is in a sane
4954 * state where it's safe to use the 32-bit switcher. Otherwise check the guest state if it's safe to use
4955 * the much faster 32-bit switcher again.
4956 */
4957 if (!pVCpu->hm.s.vmx.fSwitchedTo64on32)
4958 {
4959 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0StartVM32)
4960 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher\n", pVCpu->idCpu));
4961 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4962 }
4963 else
4964 {
4965 Assert(pVCpu->hm.s.vmx.pfnStartVM == VMXR0SwitcherStartVM64);
4966 if ( pVCpu->hm.s.vmx.RealMode.fRealOnV86Active
4967 || hmR0VmxIs32BitSwitcherSafe(pMixedCtx))
4968 {
4969 pVCpu->hm.s.vmx.fSwitchedTo64on32 = false;
4970 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4971 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR
4972 | HM_CHANGED_VMX_ENTRY_CTLS
4973 | HM_CHANGED_VMX_EXIT_CTLS
4974 | HM_CHANGED_HOST_CONTEXT);
4975 Log4(("Load[%RU32]: hmR0VmxSetupVMRunHandler: selected 32-bit switcher (safe)\n", pVCpu->idCpu));
4976 }
4977 }
4978# else
4979 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4980# endif
4981#else
4982 pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
4983#endif
4984 }
4985 Assert(pVCpu->hm.s.vmx.pfnStartVM);
4986 return VINF_SUCCESS;
4987}
4988
4989
4990/**
4991 * Wrapper for running the guest code in VT-x.
4992 *
4993 * @returns VBox status code, no informational status codes.
4994 * @param pVM The cross context VM structure.
4995 * @param pVCpu The cross context virtual CPU structure.
4996 * @param pCtx Pointer to the guest-CPU context.
4997 *
4998 * @remarks No-long-jump zone!!!
4999 */
5000DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
5001{
5002 /*
5003 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
5004 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
5005 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
5006 */
5007 bool const fResumeVM = RT_BOOL(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED);
5008 /** @todo Add stats for resume vs launch. */
5009#ifdef VBOX_WITH_KERNEL_USING_XMM
5010 int rc = hmR0VMXStartVMWrapXMM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
5011#else
5012 int rc = pVCpu->hm.s.vmx.pfnStartVM(fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
5013#endif
5014 AssertMsg(rc <= VINF_SUCCESS, ("%Rrc\n", rc));
5015 return rc;
5016}
5017
5018
5019/**
5020 * Reports world-switch error and dumps some useful debug info.
5021 *
5022 * @param pVM The cross context VM structure.
5023 * @param pVCpu The cross context virtual CPU structure.
5024 * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
5025 * @param pCtx Pointer to the guest-CPU context.
5026 * @param pVmxTransient Pointer to the VMX transient structure (only
5027 * exitReason updated).
5028 */
5029static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
5030{
5031 Assert(pVM);
5032 Assert(pVCpu);
5033 Assert(pCtx);
5034 Assert(pVmxTransient);
5035 HMVMX_ASSERT_PREEMPT_SAFE();
5036
5037 Log4(("VM-entry failure: %Rrc\n", rcVMRun));
5038 switch (rcVMRun)
5039 {
5040 case VERR_VMX_INVALID_VMXON_PTR:
5041 AssertFailed();
5042 break;
5043 case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
5044 case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
5045 {
5046 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
5047 rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
5048 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
5049 AssertRC(rc);
5050
5051 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
5052 /* LastError.idCurrentCpu was already updated in hmR0VmxPreRunGuestCommitted().
5053 Cannot do it here as we may have been long preempted. */
5054
5055#ifdef VBOX_STRICT
5056 Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
5057 pVmxTransient->uExitReason));
5058 Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
5059 Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
5060 if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
5061 Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
5062 else
5063 Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
5064 Log4(("Entered host CPU %u\n", pVCpu->hm.s.vmx.LastError.idEnteredCpu));
5065 Log4(("Current host CPU %u\n", pVCpu->hm.s.vmx.LastError.idCurrentCpu));
5066
5067 /* VMX control bits. */
5068 uint32_t u32Val;
5069 uint64_t u64Val;
5070 RTHCUINTREG uHCReg;
5071 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
5072 Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
5073 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
5074 Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
5075 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
5076 {
5077 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
5078 Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
5079 }
5080 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
5081 Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
5082 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
5083 Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
5084 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
5085 Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
5086 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
5087 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
5088 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
5089 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
5090 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
5091 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
5092 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
5093 Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
5094 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
5095 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
5096 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5097 Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
5098 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
5099 Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
5100 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
5101 Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
5102 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
5103 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
5104 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
5105 Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
5106 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
5107 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
5108 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
5109 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5110 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
5111 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
5112 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
5113 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
5114 if (pVM->hm.s.fNestedPaging)
5115 {
5116 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
5117 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
5118 }
5119
5120 /* Guest bits. */
5121 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
5122 Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
5123 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
5124 Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
5125 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
5126 Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
5127 if (pVM->hm.s.vmx.fVpid)
5128 {
5129 rc = VMXReadVmcs32(VMX_VMCS16_VPID, &u32Val); AssertRC(rc);
5130 Log4(("VMX_VMCS16_VPID %u\n", u32Val));
5131 }
5132
5133 /* Host bits. */
5134 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
5135 Log4(("Host CR0 %#RHr\n", uHCReg));
5136 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
5137 Log4(("Host CR3 %#RHr\n", uHCReg));
5138 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
5139 Log4(("Host CR4 %#RHr\n", uHCReg));
5140
5141 RTGDTR HostGdtr;
5142 PCX86DESCHC pDesc;
5143 ASMGetGDTR(&HostGdtr);
5144 rc = VMXReadVmcs32(VMX_VMCS16_HOST_CS_SEL, &u32Val); AssertRC(rc);
5145 Log4(("Host CS %#08x\n", u32Val));
5146 if (u32Val < HostGdtr.cbGdt)
5147 {
5148 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5149 hmR0DumpDescriptor(pDesc, u32Val, "CS: ");
5150 }
5151
5152 rc = VMXReadVmcs32(VMX_VMCS16_HOST_DS_SEL, &u32Val); AssertRC(rc);
5153 Log4(("Host DS %#08x\n", u32Val));
5154 if (u32Val < HostGdtr.cbGdt)
5155 {
5156 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5157 hmR0DumpDescriptor(pDesc, u32Val, "DS: ");
5158 }
5159
5160 rc = VMXReadVmcs32(VMX_VMCS16_HOST_ES_SEL, &u32Val); AssertRC(rc);
5161 Log4(("Host ES %#08x\n", u32Val));
5162 if (u32Val < HostGdtr.cbGdt)
5163 {
5164 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5165 hmR0DumpDescriptor(pDesc, u32Val, "ES: ");
5166 }
5167
5168 rc = VMXReadVmcs32(VMX_VMCS16_HOST_FS_SEL, &u32Val); AssertRC(rc);
5169 Log4(("Host FS %#08x\n", u32Val));
5170 if (u32Val < HostGdtr.cbGdt)
5171 {
5172 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5173 hmR0DumpDescriptor(pDesc, u32Val, "FS: ");
5174 }
5175
5176 rc = VMXReadVmcs32(VMX_VMCS16_HOST_GS_SEL, &u32Val); AssertRC(rc);
5177 Log4(("Host GS %#08x\n", u32Val));
5178 if (u32Val < HostGdtr.cbGdt)
5179 {
5180 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5181 hmR0DumpDescriptor(pDesc, u32Val, "GS: ");
5182 }
5183
5184 rc = VMXReadVmcs32(VMX_VMCS16_HOST_SS_SEL, &u32Val); AssertRC(rc);
5185 Log4(("Host SS %#08x\n", u32Val));
5186 if (u32Val < HostGdtr.cbGdt)
5187 {
5188 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5189 hmR0DumpDescriptor(pDesc, u32Val, "SS: ");
5190 }
5191
5192 rc = VMXReadVmcs32(VMX_VMCS16_HOST_TR_SEL, &u32Val); AssertRC(rc);
5193 Log4(("Host TR %#08x\n", u32Val));
5194 if (u32Val < HostGdtr.cbGdt)
5195 {
5196 pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
5197 hmR0DumpDescriptor(pDesc, u32Val, "TR: ");
5198 }
5199
5200 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
5201 Log4(("Host TR Base %#RHv\n", uHCReg));
5202 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
5203 Log4(("Host GDTR Base %#RHv\n", uHCReg));
5204 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
5205 Log4(("Host IDTR Base %#RHv\n", uHCReg));
5206 rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
5207 Log4(("Host SYSENTER CS %#08x\n", u32Val));
5208 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
5209 Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
5210 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
5211 Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
5212 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
5213 Log4(("Host RSP %#RHv\n", uHCReg));
5214 rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
5215 Log4(("Host RIP %#RHv\n", uHCReg));
5216# if HC_ARCH_BITS == 64
5217 Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
5218 Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
5219 Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
5220 Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
5221 Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
5222 Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
5223# endif
5224#endif /* VBOX_STRICT */
5225 break;
5226 }
5227
5228 default:
5229 /* Impossible */
5230 AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
5231 break;
5232 }
5233 NOREF(pVM); NOREF(pCtx);
5234}
5235
5236
5237#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
5238#ifndef VMX_USE_CACHED_VMCS_ACCESSES
5239# error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
5240#endif
5241#ifdef VBOX_STRICT
5242static bool hmR0VmxIsValidWriteField(uint32_t idxField)
5243{
5244 switch (idxField)
5245 {
5246 case VMX_VMCS_GUEST_RIP:
5247 case VMX_VMCS_GUEST_RSP:
5248 case VMX_VMCS_GUEST_SYSENTER_EIP:
5249 case VMX_VMCS_GUEST_SYSENTER_ESP:
5250 case VMX_VMCS_GUEST_GDTR_BASE:
5251 case VMX_VMCS_GUEST_IDTR_BASE:
5252 case VMX_VMCS_GUEST_CS_BASE:
5253 case VMX_VMCS_GUEST_DS_BASE:
5254 case VMX_VMCS_GUEST_ES_BASE:
5255 case VMX_VMCS_GUEST_FS_BASE:
5256 case VMX_VMCS_GUEST_GS_BASE:
5257 case VMX_VMCS_GUEST_SS_BASE:
5258 case VMX_VMCS_GUEST_LDTR_BASE:
5259 case VMX_VMCS_GUEST_TR_BASE:
5260 case VMX_VMCS_GUEST_CR3:
5261 return true;
5262 }
5263 return false;
5264}
5265
5266static bool hmR0VmxIsValidReadField(uint32_t idxField)
5267{
5268 switch (idxField)
5269 {
5270 /* Read-only fields. */
5271 case VMX_VMCS_RO_EXIT_QUALIFICATION:
5272 return true;
5273 }
5274 /* Remaining readable fields should also be writable. */
5275 return hmR0VmxIsValidWriteField(idxField);
5276}
5277#endif /* VBOX_STRICT */
5278
5279
5280/**
5281 * Executes the specified handler in 64-bit mode.
5282 *
5283 * @returns VBox status code (no informational status codes).
5284 * @param pVM The cross context VM structure.
5285 * @param pVCpu The cross context virtual CPU structure.
5286 * @param pCtx Pointer to the guest CPU context.
5287 * @param enmOp The operation to perform.
5288 * @param cParams Number of parameters.
5289 * @param paParam Array of 32-bit parameters.
5290 */
5291VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
5292 uint32_t cParams, uint32_t *paParam)
5293{
5294 NOREF(pCtx);
5295
5296 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
5297 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
5298 Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
5299 Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
5300
5301#ifdef VBOX_STRICT
5302 for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
5303 Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
5304
5305 for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
5306 Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
5307#endif
5308
5309 /* Disable interrupts. */
5310 RTCCUINTREG fOldEFlags = ASMIntDisableFlags();
5311
5312#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
5313 RTCPUID idHostCpu = RTMpCpuId();
5314 CPUMR0SetLApic(pVCpu, idHostCpu);
5315#endif
5316
5317 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5318 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5319
5320 /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
5321 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5322 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
5323
5324 /* Leave VMX Root Mode. */
5325 VMXDisable();
5326
5327 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5328
5329 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
5330 CPUMSetHyperEIP(pVCpu, enmOp);
5331 for (int i = (int)cParams - 1; i >= 0; i--)
5332 CPUMPushHyper(pVCpu, paParam[i]);
5333
5334 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
5335
5336 /* Call the switcher. */
5337 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
5338 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
5339
5340 /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
5341 /* Make sure the VMX instructions don't cause #UD faults. */
5342 SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
5343
5344 /* Re-enter VMX Root Mode */
5345 int rc2 = VMXEnable(HCPhysCpuPage);
5346 if (RT_FAILURE(rc2))
5347 {
5348 SUPR0ChangeCR4(0, ~X86_CR4_VMXE);
5349 ASMSetFlags(fOldEFlags);
5350 pVM->hm.s.vmx.HCPhysVmxEnableError = HCPhysCpuPage;
5351 return rc2;
5352 }
5353
5354 rc2 = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
5355 AssertRC(rc2);
5356 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
5357 Assert(!(ASMGetFlags() & X86_EFL_IF));
5358 ASMSetFlags(fOldEFlags);
5359 return rc;
5360}
5361
5362
5363/**
5364 * Prepares for and executes VMLAUNCH (64-bit guests) for 32-bit hosts
5365 * supporting 64-bit guests.
5366 *
5367 * @returns VBox status code.
5368 * @param fResume Whether to VMLAUNCH or VMRESUME.
5369 * @param pCtx Pointer to the guest-CPU context.
5370 * @param pCache Pointer to the VMCS cache.
5371 * @param pVM The cross context VM structure.
5372 * @param pVCpu The cross context virtual CPU structure.
5373 */
5374DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
5375{
5376 NOREF(fResume);
5377
5378 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
5379 RTHCPHYS HCPhysCpuPage = pCpu->HCPhysMemObj;
5380
5381#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5382 pCache->uPos = 1;
5383 pCache->interPD = PGMGetInterPaeCR3(pVM);
5384 pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
5385#endif
5386
5387#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5388 pCache->TestIn.HCPhysCpuPage = 0;
5389 pCache->TestIn.HCPhysVmcs = 0;
5390 pCache->TestIn.pCache = 0;
5391 pCache->TestOut.HCPhysVmcs = 0;
5392 pCache->TestOut.pCache = 0;
5393 pCache->TestOut.pCtx = 0;
5394 pCache->TestOut.eflags = 0;
5395#else
5396 NOREF(pCache);
5397#endif
5398
5399 uint32_t aParam[10];
5400 aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
5401 aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
5402 aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
5403 aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
5404 aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
5405 aParam[5] = 0;
5406 aParam[6] = VM_RC_ADDR(pVM, pVM);
5407 aParam[7] = 0;
5408 aParam[8] = VM_RC_ADDR(pVM, pVCpu);
5409 aParam[9] = 0;
5410
5411#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5412 pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
5413 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
5414#endif
5415 int rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, RT_ELEMENTS(aParam), &aParam[0]);
5416
5417#ifdef VBOX_WITH_CRASHDUMP_MAGIC
5418 Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
5419 Assert(pCtx->dr[4] == 10);
5420 *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
5421#endif
5422
5423#if defined(DEBUG) && defined(VMX_USE_CACHED_VMCS_ACCESSES)
5424 AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
5425 AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5426 pVCpu->hm.s.vmx.HCPhysVmcs));
5427 AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
5428 pCache->TestOut.HCPhysVmcs));
5429 AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
5430 pCache->TestOut.pCache));
5431 AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
5432 ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
5433 AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
5434 pCache->TestOut.pCtx));
5435 Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
5436#endif
5437 return rc;
5438}
5439
5440
5441/**
5442 * Initialize the VMCS-Read cache.
5443 *
5444 * The VMCS cache is used for 32-bit hosts running 64-bit guests (except 32-bit
5445 * Darwin which runs with 64-bit paging in 32-bit mode) for 64-bit fields that
5446 * cannot be accessed in 32-bit mode. Some 64-bit fields -can- be accessed
5447 * (those that have a 32-bit FULL & HIGH part).
5448 *
5449 * @returns VBox status code.
5450 * @param pVM The cross context VM structure.
5451 * @param pVCpu The cross context virtual CPU structure.
5452 */
5453static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
5454{
5455#define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
5456{ \
5457 Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
5458 pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
5459 pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
5460 ++cReadFields; \
5461}
5462
5463 AssertPtr(pVM);
5464 AssertPtr(pVCpu);
5465 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5466 uint32_t cReadFields = 0;
5467
5468 /*
5469 * Don't remove the #if 0'd fields in this code. They're listed here for consistency
5470 * and serve to indicate exceptions to the rules.
5471 */
5472
5473 /* Guest-natural selector base fields. */
5474#if 0
5475 /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
5476 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
5477 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
5478#endif
5479 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
5480 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
5481 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
5482 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
5483 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
5484 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
5485 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
5486 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
5487 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
5488 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
5489 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
5490 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
5491#if 0
5492 /* Unused natural width guest-state fields. */
5493 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
5494 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
5495#endif
5496 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
5497 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
5498
5499 /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
5500#if 0
5501 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
5502 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
5503 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
5504 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
5505 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
5506 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
5507 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
5508 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
5509 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
5510#endif
5511
5512 /* Natural width guest-state fields. */
5513 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
5514#if 0
5515 /* Currently unused field. */
5516 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
5517#endif
5518
5519 if (pVM->hm.s.fNestedPaging)
5520 {
5521 VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
5522 AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
5523 VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
5524 pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
5525 }
5526 else
5527 {
5528 AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
5529 pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
5530 }
5531
5532#undef VMXLOCAL_INIT_READ_CACHE_FIELD
5533 return VINF_SUCCESS;
5534}
5535
5536
5537/**
5538 * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
5539 * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
5540 * darwin, running 64-bit guests).
5541 *
5542 * @returns VBox status code.
5543 * @param pVCpu The cross context virtual CPU structure.
5544 * @param idxField The VMCS field encoding.
5545 * @param u64Val 16, 32 or 64-bit value.
5546 */
5547VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5548{
5549 int rc;
5550 switch (idxField)
5551 {
5552 /*
5553 * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
5554 */
5555 /* 64-bit Control fields. */
5556 case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
5557 case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
5558 case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
5559 case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
5560 case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
5561 case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
5562 case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
5563 case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
5564 case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
5565 case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
5566 case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
5567 case VMX_VMCS64_CTRL_EPTP_FULL:
5568 case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
5569 /* 64-bit Guest-state fields. */
5570 case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
5571 case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
5572 case VMX_VMCS64_GUEST_PAT_FULL:
5573 case VMX_VMCS64_GUEST_EFER_FULL:
5574 case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
5575 case VMX_VMCS64_GUEST_PDPTE0_FULL:
5576 case VMX_VMCS64_GUEST_PDPTE1_FULL:
5577 case VMX_VMCS64_GUEST_PDPTE2_FULL:
5578 case VMX_VMCS64_GUEST_PDPTE3_FULL:
5579 /* 64-bit Host-state fields. */
5580 case VMX_VMCS64_HOST_PAT_FULL:
5581 case VMX_VMCS64_HOST_EFER_FULL:
5582 case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
5583 {
5584 rc = VMXWriteVmcs32(idxField, u64Val);
5585 rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
5586 break;
5587 }
5588
5589 /*
5590 * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
5591 * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
5592 */
5593 /* Natural-width Guest-state fields. */
5594 case VMX_VMCS_GUEST_CR3:
5595 case VMX_VMCS_GUEST_ES_BASE:
5596 case VMX_VMCS_GUEST_CS_BASE:
5597 case VMX_VMCS_GUEST_SS_BASE:
5598 case VMX_VMCS_GUEST_DS_BASE:
5599 case VMX_VMCS_GUEST_FS_BASE:
5600 case VMX_VMCS_GUEST_GS_BASE:
5601 case VMX_VMCS_GUEST_LDTR_BASE:
5602 case VMX_VMCS_GUEST_TR_BASE:
5603 case VMX_VMCS_GUEST_GDTR_BASE:
5604 case VMX_VMCS_GUEST_IDTR_BASE:
5605 case VMX_VMCS_GUEST_RSP:
5606 case VMX_VMCS_GUEST_RIP:
5607 case VMX_VMCS_GUEST_SYSENTER_ESP:
5608 case VMX_VMCS_GUEST_SYSENTER_EIP:
5609 {
5610 if (!(u64Val >> 32))
5611 {
5612 /* If this field is 64-bit, VT-x will zero out the top bits. */
5613 rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
5614 }
5615 else
5616 {
5617 /* Assert that only the 32->64 switcher case should ever come here. */
5618 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
5619 rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
5620 }
5621 break;
5622 }
5623
5624 default:
5625 {
5626 AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
5627 rc = VERR_INVALID_PARAMETER;
5628 break;
5629 }
5630 }
5631 AssertRCReturn(rc, rc);
5632 return rc;
5633}
5634
5635
5636/**
5637 * Queue up a VMWRITE by using the VMCS write cache.
5638 * This is only used on 32-bit hosts (except darwin) for 64-bit guests.
5639 *
5640 * @param pVCpu The cross context virtual CPU structure.
5641 * @param idxField The VMCS field encoding.
5642 * @param u64Val 16, 32 or 64-bit value.
5643 */
5644VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
5645{
5646 AssertPtr(pVCpu);
5647 PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
5648
5649 AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
5650 ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
5651
5652 /* Make sure there are no duplicates. */
5653 for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
5654 {
5655 if (pCache->Write.aField[i] == idxField)
5656 {
5657 pCache->Write.aFieldVal[i] = u64Val;
5658 return VINF_SUCCESS;
5659 }
5660 }
5661
5662 pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
5663 pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
5664 pCache->Write.cValidEntries++;
5665 return VINF_SUCCESS;
5666}
5667#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
5668
5669
5670/**
5671 * Sets up the usage of TSC-offsetting and updates the VMCS.
5672 *
5673 * If offsetting is not possible, cause VM-exits on RDTSC(P)s. Also sets up the
5674 * VMX preemption timer.
5675 *
5676 * @returns VBox status code.
5677 * @param pVM The cross context VM structure.
5678 * @param pVCpu The cross context virtual CPU structure.
5679 *
5680 * @remarks No-long-jump zone!!!
5681 */
5682static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVM pVM, PVMCPU pVCpu)
5683{
5684 int rc;
5685 bool fOffsettedTsc;
5686 bool fParavirtTsc;
5687 if (pVM->hm.s.vmx.fUsePreemptTimer)
5688 {
5689 uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset,
5690 &fOffsettedTsc, &fParavirtTsc);
5691
5692 /* Make sure the returned values have sane upper and lower boundaries. */
5693 uint64_t u64CpuHz = SUPGetCpuHzFromGipBySetIndex(g_pSUPGlobalInfoPage, pVCpu->iHostCpuSet);
5694 cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
5695 cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
5696 cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
5697
5698 uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
5699 rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
5700 }
5701 else
5702 fOffsettedTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset, &fParavirtTsc);
5703
5704 /** @todo later optimize this to be done elsewhere and not before every
5705 * VM-entry. */
5706 if (fParavirtTsc)
5707 {
5708 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
5709 information before every VM-entry, hence disable it for performance sake. */
5710#if 0
5711 rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
5712 AssertRC(rc);
5713#endif
5714 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
5715 }
5716
5717 if (fOffsettedTsc && RT_LIKELY(!pVCpu->hm.s.fDebugWantRdTscExit))
5718 {
5719 /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
5720 rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
5721
5722 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5723 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5724 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
5725 }
5726 else
5727 {
5728 /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
5729 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
5730 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
5731 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
5732 }
5733}
5734
5735
5736/**
5737 * Determines if an exception is a contributory exception.
5738 *
5739 * Contributory exceptions are ones which can cause double-faults unless the
5740 * original exception was a benign exception. Page-fault is intentionally not
5741 * included here as it's a conditional contributory exception.
5742 *
5743 * @returns true if the exception is contributory, false otherwise.
5744 * @param uVector The exception vector.
5745 */
5746DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
5747{
5748 switch (uVector)
5749 {
5750 case X86_XCPT_GP:
5751 case X86_XCPT_SS:
5752 case X86_XCPT_NP:
5753 case X86_XCPT_TS:
5754 case X86_XCPT_DE:
5755 return true;
5756 default:
5757 break;
5758 }
5759 return false;
5760}
5761
5762
5763/**
5764 * Sets an event as a pending event to be injected into the guest.
5765 *
5766 * @param pVCpu The cross context virtual CPU structure.
5767 * @param u32IntInfo The VM-entry interruption-information field.
5768 * @param cbInstr The VM-entry instruction length in bytes (for software
5769 * interrupts, exceptions and privileged software
5770 * exceptions).
5771 * @param u32ErrCode The VM-entry exception error code.
5772 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
5773 * page-fault.
5774 *
5775 * @remarks Statistics counter assumes this is a guest event being injected or
5776 * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
5777 * always incremented.
5778 */
5779DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
5780 RTGCUINTPTR GCPtrFaultAddress)
5781{
5782 Assert(!pVCpu->hm.s.Event.fPending);
5783 pVCpu->hm.s.Event.fPending = true;
5784 pVCpu->hm.s.Event.u64IntInfo = u32IntInfo;
5785 pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
5786 pVCpu->hm.s.Event.cbInstr = cbInstr;
5787 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
5788}
5789
5790
5791/**
5792 * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
5793 *
5794 * @param pVCpu The cross context virtual CPU structure.
5795 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5796 * out-of-sync. Make sure to update the required fields
5797 * before using them.
5798 */
5799DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
5800{
5801 NOREF(pMixedCtx);
5802 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
5803 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
5804 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
5805 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
5806}
5807
5808
5809/**
5810 * Handle a condition that occurred while delivering an event through the guest
5811 * IDT.
5812 *
5813 * @returns Strict VBox status code (i.e. informational status codes too).
5814 * @retval VINF_SUCCESS if we should continue handling the VM-exit.
5815 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
5816 * to continue execution of the guest which will delivery the \#DF.
5817 * @retval VINF_EM_RESET if we detected a triple-fault condition.
5818 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
5819 *
5820 * @param pVCpu The cross context virtual CPU structure.
5821 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
5822 * out-of-sync. Make sure to update the required fields
5823 * before using them.
5824 * @param pVmxTransient Pointer to the VMX transient structure.
5825 *
5826 * @remarks No-long-jump zone!!!
5827 */
5828static VBOXSTRICTRC hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
5829{
5830 uint32_t uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
5831
5832 int rc2 = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5833 rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient); AssertRCReturn(rc2, rc2);
5834
5835 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
5836 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
5837 {
5838 uint32_t uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
5839 uint32_t uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
5840
5841 typedef enum
5842 {
5843 VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
5844 VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
5845 VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
5846 VMXREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
5847 VMXREFLECTXCPT_NONE /* Nothing to reflect. */
5848 } VMXREFLECTXCPT;
5849
5850 /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
5851 VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
5852 if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo))
5853 {
5854 if (uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
5855 {
5856 enmReflect = VMXREFLECTXCPT_XCPT;
5857#ifdef VBOX_STRICT
5858 if ( hmR0VmxIsContributoryXcpt(uIdtVector)
5859 && uExitVector == X86_XCPT_PF)
5860 {
5861 Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5862 }
5863#endif
5864 if ( uExitVector == X86_XCPT_PF
5865 && uIdtVector == X86_XCPT_PF)
5866 {
5867 pVmxTransient->fVectoringDoublePF = true;
5868 Log4(("IDT: vcpu[%RU32] Vectoring Double #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5869 }
5870 else if ( uExitVector == X86_XCPT_AC
5871 && uIdtVector == X86_XCPT_AC)
5872 {
5873 enmReflect = VMXREFLECTXCPT_HANG;
5874 Log4(("IDT: Nested #AC - Bad guest\n"));
5875 }
5876 else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
5877 && hmR0VmxIsContributoryXcpt(uExitVector)
5878 && ( hmR0VmxIsContributoryXcpt(uIdtVector)
5879 || uIdtVector == X86_XCPT_PF))
5880 {
5881 enmReflect = VMXREFLECTXCPT_DF;
5882 }
5883 else if (uIdtVector == X86_XCPT_DF)
5884 enmReflect = VMXREFLECTXCPT_TF;
5885 }
5886 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5887 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5888 {
5889 /*
5890 * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and
5891 * privileged software exception (#DB from ICEBP) as they reoccur when restarting the instruction.
5892 */
5893 enmReflect = VMXREFLECTXCPT_XCPT;
5894
5895 if (uExitVector == X86_XCPT_PF)
5896 {
5897 pVmxTransient->fVectoringPF = true;
5898 Log4(("IDT: vcpu[%RU32] Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
5899 }
5900 }
5901 }
5902 else if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
5903 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
5904 || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
5905 {
5906 /*
5907 * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
5908 * interruption-information will not be valid as it's not an exception and we end up here. In such cases,
5909 * it is sufficient to reflect the original exception to the guest after handling the VM-exit.
5910 */
5911 enmReflect = VMXREFLECTXCPT_XCPT;
5912 }
5913
5914 /*
5915 * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig etc.) occurred
5916 * while delivering the NMI, we need to clear the block-by-NMI field in the guest interruptibility-state before
5917 * re-delivering the NMI after handling the VM-exit. Otherwise the subsequent VM-entry would fail.
5918 *
5919 * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception". See @bugref{7445}.
5920 */
5921 if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
5922 && enmReflect == VMXREFLECTXCPT_XCPT
5923 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
5924 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
5925 {
5926 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5927 }
5928
5929 switch (enmReflect)
5930 {
5931 case VMXREFLECTXCPT_XCPT:
5932 {
5933 Assert( uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
5934 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
5935 && uIdtVectorType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
5936
5937 uint32_t u32ErrCode = 0;
5938 if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
5939 {
5940 rc2 = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
5941 AssertRCReturn(rc2, rc2);
5942 u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
5943 }
5944
5945 /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
5946 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5947 hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
5948 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
5949 rcStrict = VINF_SUCCESS;
5950 Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
5951 pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.u32ErrCode));
5952
5953 break;
5954 }
5955
5956 case VMXREFLECTXCPT_DF:
5957 {
5958 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
5959 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
5960 rcStrict = VINF_HM_DOUBLE_FAULT;
5961 Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
5962 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
5963
5964 break;
5965 }
5966
5967 case VMXREFLECTXCPT_TF:
5968 {
5969 rcStrict = VINF_EM_RESET;
5970 Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
5971 uExitVector));
5972 break;
5973 }
5974
5975 case VMXREFLECTXCPT_HANG:
5976 {
5977 rcStrict = VERR_EM_GUEST_CPU_HANG;
5978 break;
5979 }
5980
5981 default:
5982 Assert(rcStrict == VINF_SUCCESS);
5983 break;
5984 }
5985 }
5986 else if ( VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo)
5987 && VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(pVmxTransient->uExitIntInfo)
5988 && uExitVector != X86_XCPT_DF
5989 && (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI))
5990 {
5991 /*
5992 * Execution of IRET caused this fault when NMI blocking was in effect (i.e we're in the guest NMI handler).
5993 * We need to set the block-by-NMI field so that NMIs remain blocked until the IRET execution is restarted.
5994 * See Intel spec. 30.7.1.2 "Resuming guest software after handling an exception".
5995 */
5996 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
5997 {
5998 Log4(("hmR0VmxCheckExitDueToEventDelivery: vcpu[%RU32] Setting VMCPU_FF_BLOCK_NMIS. Valid=%RTbool uExitReason=%u\n",
5999 pVCpu->idCpu, VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo), pVmxTransient->uExitReason));
6000 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6001 }
6002 }
6003
6004 Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
6005 || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
6006 return rcStrict;
6007}
6008
6009
6010/**
6011 * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
6012 *
6013 * @returns VBox status code.
6014 * @param pVCpu The cross context virtual CPU structure.
6015 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6016 * out-of-sync. Make sure to update the required fields
6017 * before using them.
6018 *
6019 * @remarks No-long-jump zone!!!
6020 */
6021static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6022{
6023 NOREF(pMixedCtx);
6024
6025 /*
6026 * While in the middle of saving guest-CR0, we could get preempted and re-invoked from the preemption hook,
6027 * see hmR0VmxLeave(). Safer to just make this code non-preemptible.
6028 */
6029 VMMRZCallRing3Disable(pVCpu);
6030 HM_DISABLE_PREEMPT();
6031
6032 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0))
6033 {
6034#ifndef DEBUG_bird /** @todo this triggers running bs3-cpu-generated-1.img with --debug-command-line
6035 * and 'dbgc-init' containing:
6036 * sxe "xcpt_de"
6037 * sxe "xcpt_bp"
6038 * sxi "xcpt_gp"
6039 * sxi "xcpt_ss"
6040 * sxi "xcpt_np"
6041 */
6042 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
6043#endif
6044 uint32_t uVal = 0;
6045 uint32_t uShadow = 0;
6046 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
6047 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
6048 AssertRCReturn(rc, rc);
6049
6050 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
6051 CPUMSetGuestCR0(pVCpu, uVal);
6052 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0);
6053 }
6054
6055 HM_RESTORE_PREEMPT();
6056 VMMRZCallRing3Enable(pVCpu);
6057 return VINF_SUCCESS;
6058}
6059
6060
6061/**
6062 * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
6063 *
6064 * @returns VBox status code.
6065 * @param pVCpu The cross context virtual CPU structure.
6066 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6067 * out-of-sync. Make sure to update the required fields
6068 * before using them.
6069 *
6070 * @remarks No-long-jump zone!!!
6071 */
6072static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6073{
6074 NOREF(pMixedCtx);
6075
6076 int rc = VINF_SUCCESS;
6077 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4))
6078 {
6079 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4));
6080 uint32_t uVal = 0;
6081 uint32_t uShadow = 0;
6082 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
6083 rc |= VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
6084 AssertRCReturn(rc, rc);
6085
6086 uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
6087 CPUMSetGuestCR4(pVCpu, uVal);
6088 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4);
6089 }
6090 return rc;
6091}
6092
6093
6094/**
6095 * Saves the guest's RIP register from the VMCS into the guest-CPU context.
6096 *
6097 * @returns VBox status code.
6098 * @param pVCpu The cross context virtual CPU structure.
6099 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6100 * out-of-sync. Make sure to update the required fields
6101 * before using them.
6102 *
6103 * @remarks No-long-jump zone!!!
6104 */
6105static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6106{
6107 int rc = VINF_SUCCESS;
6108 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP))
6109 {
6110 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RIP));
6111 uint64_t u64Val = 0;
6112 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
6113 AssertRCReturn(rc, rc);
6114
6115 pMixedCtx->rip = u64Val;
6116 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP);
6117 }
6118 return rc;
6119}
6120
6121
6122/**
6123 * Saves the guest's RSP register from the VMCS into the guest-CPU context.
6124 *
6125 * @returns VBox status code.
6126 * @param pVCpu The cross context virtual CPU structure.
6127 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6128 * out-of-sync. Make sure to update the required fields
6129 * before using them.
6130 *
6131 * @remarks No-long-jump zone!!!
6132 */
6133static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6134{
6135 int rc = VINF_SUCCESS;
6136 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP))
6137 {
6138 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RSP));
6139 uint64_t u64Val = 0;
6140 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
6141 AssertRCReturn(rc, rc);
6142
6143 pMixedCtx->rsp = u64Val;
6144 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RSP);
6145 }
6146 return rc;
6147}
6148
6149
6150/**
6151 * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
6152 *
6153 * @returns VBox status code.
6154 * @param pVCpu The cross context virtual CPU structure.
6155 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6156 * out-of-sync. Make sure to update the required fields
6157 * before using them.
6158 *
6159 * @remarks No-long-jump zone!!!
6160 */
6161static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6162{
6163 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS))
6164 {
6165 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS));
6166 uint32_t uVal = 0;
6167 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
6168 AssertRCReturn(rc, rc);
6169
6170 pMixedCtx->eflags.u32 = uVal;
6171 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
6172 {
6173 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
6174 Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
6175
6176 pMixedCtx->eflags.Bits.u1VM = 0;
6177 pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.Eflags.Bits.u2IOPL;
6178 }
6179
6180 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS);
6181 }
6182 return VINF_SUCCESS;
6183}
6184
6185
6186/**
6187 * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
6188 * guest-CPU context.
6189 */
6190DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6191{
6192 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6193 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6194 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6195 return rc;
6196}
6197
6198
6199/**
6200 * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
6201 * from the guest-state area in the VMCS.
6202 *
6203 * @param pVCpu The cross context virtual CPU structure.
6204 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6205 * out-of-sync. Make sure to update the required fields
6206 * before using them.
6207 *
6208 * @remarks No-long-jump zone!!!
6209 */
6210static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6211{
6212 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE))
6213 {
6214 uint32_t uIntrState = 0;
6215 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
6216 AssertRC(rc);
6217
6218 if (!uIntrState)
6219 {
6220 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6221 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6222
6223 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6224 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6225 }
6226 else
6227 {
6228 if (uIntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
6229 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI))
6230 {
6231 rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6232 AssertRC(rc);
6233 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
6234 AssertRC(rc);
6235
6236 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
6237 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
6238 }
6239 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
6240 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
6241
6242 if (uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI)
6243 {
6244 if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6245 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
6246 }
6247 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
6248 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
6249 }
6250
6251 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_INTR_STATE);
6252 }
6253}
6254
6255
6256/**
6257 * Saves the guest's activity state.
6258 *
6259 * @returns VBox status code.
6260 * @param pVCpu The cross context virtual CPU structure.
6261 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6262 * out-of-sync. Make sure to update the required fields
6263 * before using them.
6264 *
6265 * @remarks No-long-jump zone!!!
6266 */
6267static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6268{
6269 NOREF(pMixedCtx);
6270 /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
6271 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_ACTIVITY_STATE);
6272 return VINF_SUCCESS;
6273}
6274
6275
6276/**
6277 * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
6278 * the current VMCS into the guest-CPU context.
6279 *
6280 * @returns VBox status code.
6281 * @param pVCpu The cross context virtual CPU structure.
6282 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6283 * out-of-sync. Make sure to update the required fields
6284 * before using them.
6285 *
6286 * @remarks No-long-jump zone!!!
6287 */
6288static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6289{
6290 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
6291 {
6292 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR));
6293 uint32_t u32Val = 0;
6294 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
6295 pMixedCtx->SysEnter.cs = u32Val;
6296 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
6297 }
6298
6299 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
6300 {
6301 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR));
6302 uint64_t u64Val = 0;
6303 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
6304 pMixedCtx->SysEnter.eip = u64Val;
6305 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
6306 }
6307 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
6308 {
6309 Assert(!HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR));
6310 uint64_t u64Val = 0;
6311 int rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
6312 pMixedCtx->SysEnter.esp = u64Val;
6313 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
6314 }
6315 return VINF_SUCCESS;
6316}
6317
6318
6319/**
6320 * Saves the set of guest MSRs (that we restore lazily while leaving VT-x) from
6321 * the CPU back into the guest-CPU context.
6322 *
6323 * @returns VBox status code.
6324 * @param pVCpu The cross context virtual CPU structure.
6325 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6326 * out-of-sync. Make sure to update the required fields
6327 * before using them.
6328 *
6329 * @remarks No-long-jump zone!!!
6330 */
6331static int hmR0VmxSaveGuestLazyMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6332{
6333 /* Since this can be called from our preemption hook it's safer to make the guest-MSRs update non-preemptible. */
6334 VMMRZCallRing3Disable(pVCpu);
6335 HM_DISABLE_PREEMPT();
6336
6337 /* Doing the check here ensures we don't overwrite already-saved guest MSRs from a preemption hook. */
6338 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS))
6339 {
6340 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS));
6341 hmR0VmxLazySaveGuestMsrs(pVCpu, pMixedCtx);
6342 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS);
6343 }
6344
6345 HM_RESTORE_PREEMPT();
6346 VMMRZCallRing3Enable(pVCpu);
6347
6348 return VINF_SUCCESS;
6349}
6350
6351
6352/**
6353 * Saves the auto load/store'd guest MSRs from the current VMCS into
6354 * the guest-CPU context.
6355 *
6356 * @returns VBox status code.
6357 * @param pVCpu The cross context virtual CPU structure.
6358 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6359 * out-of-sync. Make sure to update the required fields
6360 * before using them.
6361 *
6362 * @remarks No-long-jump zone!!!
6363 */
6364static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6365{
6366 if (HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS))
6367 return VINF_SUCCESS;
6368
6369 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS));
6370 PVMXAUTOMSR pMsr = (PVMXAUTOMSR)pVCpu->hm.s.vmx.pvGuestMsr;
6371 uint32_t cMsrs = pVCpu->hm.s.vmx.cMsrs;
6372 Log4(("hmR0VmxSaveGuestAutoLoadStoreMsrs: cMsrs=%u\n", cMsrs));
6373 for (uint32_t i = 0; i < cMsrs; i++, pMsr++)
6374 {
6375 switch (pMsr->u32Msr)
6376 {
6377 case MSR_K8_TSC_AUX: CPUMR0SetGuestTscAux(pVCpu, pMsr->u64Value); break;
6378 case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
6379 case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
6380 case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
6381 case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
6382 case MSR_K6_EFER: /* Nothing to do here since we intercept writes, see hmR0VmxLoadGuestMsrs(). */
6383 break;
6384
6385 default:
6386 {
6387 AssertMsgFailed(("Unexpected MSR in auto-load/store area. uMsr=%#RX32 cMsrs=%u\n", pMsr->u32Msr, cMsrs));
6388 pVCpu->hm.s.u32HMError = pMsr->u32Msr;
6389 return VERR_HM_UNEXPECTED_LD_ST_MSR;
6390 }
6391 }
6392 }
6393
6394 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS);
6395 return VINF_SUCCESS;
6396}
6397
6398
6399/**
6400 * Saves the guest control registers from the current VMCS into the guest-CPU
6401 * context.
6402 *
6403 * @returns VBox status code.
6404 * @param pVCpu The cross context virtual CPU structure.
6405 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6406 * out-of-sync. Make sure to update the required fields
6407 * before using them.
6408 *
6409 * @remarks No-long-jump zone!!!
6410 */
6411static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6412{
6413 /* Guest CR0. Guest FPU. */
6414 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6415 AssertRCReturn(rc, rc);
6416
6417 /* Guest CR4. */
6418 rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
6419 AssertRCReturn(rc, rc);
6420
6421 /* Guest CR2 - updated always during the world-switch or in #PF. */
6422 /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
6423 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3))
6424 {
6425 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3));
6426 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
6427 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR4));
6428
6429 PVM pVM = pVCpu->CTX_SUFF(pVM);
6430 if ( pVM->hm.s.vmx.fUnrestrictedGuest
6431 || ( pVM->hm.s.fNestedPaging
6432 && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
6433 {
6434 uint64_t u64Val = 0;
6435 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
6436 if (pMixedCtx->cr3 != u64Val)
6437 {
6438 CPUMSetGuestCR3(pVCpu, u64Val);
6439 if (VMMRZCallRing3IsEnabled(pVCpu))
6440 {
6441 PGMUpdateCR3(pVCpu, u64Val);
6442 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6443 }
6444 else
6445 {
6446 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
6447 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
6448 }
6449 }
6450
6451 /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
6452 if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
6453 {
6454 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u);
6455 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u);
6456 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u);
6457 rc |= VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u);
6458 AssertRCReturn(rc, rc);
6459
6460 if (VMMRZCallRing3IsEnabled(pVCpu))
6461 {
6462 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6463 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6464 }
6465 else
6466 {
6467 /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
6468 VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
6469 }
6470 }
6471 }
6472
6473 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR3);
6474 }
6475
6476 /*
6477 * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
6478 * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
6479 * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
6480 *
6481 * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
6482 * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
6483 * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
6484 * -NOT- check if HMVMX_UPDATED_GUEST_CR3 is already set or not!
6485 *
6486 * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
6487 */
6488 if (VMMRZCallRing3IsEnabled(pVCpu))
6489 {
6490 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6491 PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
6492
6493 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6494 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6495
6496 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6497 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6498 }
6499
6500 return rc;
6501}
6502
6503
6504/**
6505 * Reads a guest segment register from the current VMCS into the guest-CPU
6506 * context.
6507 *
6508 * @returns VBox status code.
6509 * @param pVCpu The cross context virtual CPU structure.
6510 * @param idxSel Index of the selector in the VMCS.
6511 * @param idxLimit Index of the segment limit in the VMCS.
6512 * @param idxBase Index of the segment base in the VMCS.
6513 * @param idxAccess Index of the access rights of the segment in the VMCS.
6514 * @param pSelReg Pointer to the segment selector.
6515 *
6516 * @remarks No-long-jump zone!!!
6517 * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
6518 * macro as that takes care of whether to read from the VMCS cache or
6519 * not.
6520 */
6521DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
6522 PCPUMSELREG pSelReg)
6523{
6524 NOREF(pVCpu);
6525
6526 uint32_t u32Val = 0;
6527 int rc = VMXReadVmcs32(idxSel, &u32Val);
6528 AssertRCReturn(rc, rc);
6529 pSelReg->Sel = (uint16_t)u32Val;
6530 pSelReg->ValidSel = (uint16_t)u32Val;
6531 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6532
6533 rc = VMXReadVmcs32(idxLimit, &u32Val);
6534 AssertRCReturn(rc, rc);
6535 pSelReg->u32Limit = u32Val;
6536
6537 uint64_t u64Val = 0;
6538 rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
6539 AssertRCReturn(rc, rc);
6540 pSelReg->u64Base = u64Val;
6541
6542 rc = VMXReadVmcs32(idxAccess, &u32Val);
6543 AssertRCReturn(rc, rc);
6544 pSelReg->Attr.u = u32Val;
6545
6546 /*
6547 * If VT-x marks the segment as unusable, most other bits remain undefined:
6548 * - For CS the L, D and G bits have meaning.
6549 * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
6550 * - For the remaining data segments no bits are defined.
6551 *
6552 * The present bit and the unusable bit has been observed to be set at the
6553 * same time (the selector was supposed to be invalid as we started executing
6554 * a V8086 interrupt in ring-0).
6555 *
6556 * What should be important for the rest of the VBox code, is that the P bit is
6557 * cleared. Some of the other VBox code recognizes the unusable bit, but
6558 * AMD-V certainly don't, and REM doesn't really either. So, to be on the
6559 * safe side here, we'll strip off P and other bits we don't care about. If
6560 * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
6561 *
6562 * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
6563 */
6564 if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
6565 {
6566 Assert(idxSel != VMX_VMCS16_GUEST_TR_SEL); /* TR is the only selector that can never be unusable. */
6567
6568 /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
6569 pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
6570 | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
6571
6572 Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x -> %#x\n", idxSel, u32Val, pSelReg->Attr.u));
6573#ifdef DEBUG_bird
6574 AssertMsg((u32Val & ~X86DESCATTR_P) == pSelReg->Attr.u,
6575 ("%#x: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
6576 idxSel, u32Val, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
6577#endif
6578 }
6579 return VINF_SUCCESS;
6580}
6581
6582
6583#ifdef VMX_USE_CACHED_VMCS_ACCESSES
6584# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6585 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6586 VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6587#else
6588# define VMXLOCAL_READ_SEG(Sel, CtxSel) \
6589 hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_##Sel##_SEL, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
6590 VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
6591#endif
6592
6593
6594/**
6595 * Saves the guest segment registers from the current VMCS into the guest-CPU
6596 * context.
6597 *
6598 * @returns VBox status code.
6599 * @param pVCpu The cross context virtual CPU structure.
6600 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6601 * out-of-sync. Make sure to update the required fields
6602 * before using them.
6603 *
6604 * @remarks No-long-jump zone!!!
6605 */
6606static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6607{
6608 /* Guest segment registers. */
6609 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS))
6610 {
6611 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS));
6612 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6613 AssertRCReturn(rc, rc);
6614
6615 rc = VMXLOCAL_READ_SEG(CS, cs);
6616 rc |= VMXLOCAL_READ_SEG(SS, ss);
6617 rc |= VMXLOCAL_READ_SEG(DS, ds);
6618 rc |= VMXLOCAL_READ_SEG(ES, es);
6619 rc |= VMXLOCAL_READ_SEG(FS, fs);
6620 rc |= VMXLOCAL_READ_SEG(GS, gs);
6621 AssertRCReturn(rc, rc);
6622
6623 /* Restore segment attributes for real-on-v86 mode hack. */
6624 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6625 {
6626 pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrCS.u;
6627 pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrSS.u;
6628 pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrDS.u;
6629 pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrES.u;
6630 pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrFS.u;
6631 pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.AttrGS.u;
6632 }
6633 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SEGMENT_REGS);
6634 }
6635
6636 return VINF_SUCCESS;
6637}
6638
6639
6640/**
6641 * Saves the guest descriptor table registers and task register from the current
6642 * VMCS into the guest-CPU context.
6643 *
6644 * @returns VBox status code.
6645 * @param pVCpu The cross context virtual CPU structure.
6646 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6647 * out-of-sync. Make sure to update the required fields
6648 * before using them.
6649 *
6650 * @remarks No-long-jump zone!!!
6651 */
6652static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6653{
6654 int rc = VINF_SUCCESS;
6655
6656 /* Guest LDTR. */
6657 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR))
6658 {
6659 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR));
6660 rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
6661 AssertRCReturn(rc, rc);
6662 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LDTR);
6663 }
6664
6665 /* Guest GDTR. */
6666 uint64_t u64Val = 0;
6667 uint32_t u32Val = 0;
6668 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR))
6669 {
6670 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR));
6671 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
6672 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6673 pMixedCtx->gdtr.pGdt = u64Val;
6674 pMixedCtx->gdtr.cbGdt = u32Val;
6675 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_GDTR);
6676 }
6677
6678 /* Guest IDTR. */
6679 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR))
6680 {
6681 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR));
6682 rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
6683 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
6684 pMixedCtx->idtr.pIdt = u64Val;
6685 pMixedCtx->idtr.cbIdt = u32Val;
6686 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_IDTR);
6687 }
6688
6689 /* Guest TR. */
6690 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR))
6691 {
6692 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR));
6693 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6694 AssertRCReturn(rc, rc);
6695
6696 /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
6697 if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
6698 {
6699 rc = VMXLOCAL_READ_SEG(TR, tr);
6700 AssertRCReturn(rc, rc);
6701 }
6702 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_TR);
6703 }
6704 return rc;
6705}
6706
6707#undef VMXLOCAL_READ_SEG
6708
6709
6710/**
6711 * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
6712 * context.
6713 *
6714 * @returns VBox status code.
6715 * @param pVCpu The cross context virtual CPU structure.
6716 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6717 * out-of-sync. Make sure to update the required fields
6718 * before using them.
6719 *
6720 * @remarks No-long-jump zone!!!
6721 */
6722static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6723{
6724 if (!HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DR7))
6725 {
6726 if (!pVCpu->hm.s.fUsingHyperDR7)
6727 {
6728 /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
6729 uint32_t u32Val;
6730 int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
6731 pMixedCtx->dr[7] = u32Val;
6732 }
6733
6734 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_DR7);
6735 }
6736 return VINF_SUCCESS;
6737}
6738
6739
6740/**
6741 * Saves the guest APIC state from the current VMCS into the guest-CPU context.
6742 *
6743 * @returns VBox status code.
6744 * @param pVCpu The cross context virtual CPU structure.
6745 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
6746 * out-of-sync. Make sure to update the required fields
6747 * before using them.
6748 *
6749 * @remarks No-long-jump zone!!!
6750 */
6751static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6752{
6753 NOREF(pMixedCtx);
6754
6755 /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
6756 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_APIC_STATE);
6757 return VINF_SUCCESS;
6758}
6759
6760
6761/**
6762 * Saves the entire guest state from the currently active VMCS into the
6763 * guest-CPU context.
6764 *
6765 * This essentially VMREADs all guest-data.
6766 *
6767 * @returns VBox status code.
6768 * @param pVCpu The cross context virtual CPU structure.
6769 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6770 * out-of-sync. Make sure to update the required fields
6771 * before using them.
6772 */
6773static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6774{
6775 Assert(pVCpu);
6776 Assert(pMixedCtx);
6777
6778 if (HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL)
6779 return VINF_SUCCESS;
6780
6781 /* Though we can longjmp to ring-3 due to log-flushes here and get recalled
6782 again on the ring-3 callback path, there is no real need to. */
6783 if (VMMRZCallRing3IsEnabled(pVCpu))
6784 VMMR0LogFlushDisable(pVCpu);
6785 else
6786 Assert(VMMR0IsLogFlushDisabled(pVCpu));
6787 Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
6788
6789 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
6790 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6791
6792 rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6793 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6794
6795 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6796 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6797
6798 rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
6799 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6800
6801 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
6802 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6803
6804 rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
6805 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6806
6807 rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
6808 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestLazyMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6809
6810 rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
6811 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6812
6813 rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
6814 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6815
6816 rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
6817 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
6818
6819 AssertMsg(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL,
6820 ("Missed guest state bits while saving state; missing %RX32 (got %RX32, want %RX32) - check log for any previous errors!\n",
6821 HMVMX_UPDATED_GUEST_ALL ^ HMVMXCPU_GST_VALUE(pVCpu), HMVMXCPU_GST_VALUE(pVCpu), HMVMX_UPDATED_GUEST_ALL));
6822
6823 if (VMMRZCallRing3IsEnabled(pVCpu))
6824 VMMR0LogFlushEnable(pVCpu);
6825
6826 return VINF_SUCCESS;
6827}
6828
6829
6830/**
6831 * Saves basic guest registers needed for IEM instruction execution.
6832 *
6833 * @returns VBox status code (OR-able).
6834 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
6835 * @param pMixedCtx Pointer to the CPU context of the guest.
6836 * @param fMemory Whether the instruction being executed operates on
6837 * memory or not. Only CR0 is synced up if clear.
6838 * @param fNeedRsp Need RSP (any instruction working on GPRs or stack).
6839 */
6840static int hmR0VmxSaveGuestRegsForIemExec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fMemory, bool fNeedRsp)
6841{
6842 /*
6843 * We assume all general purpose registers other than RSP are available.
6844 *
6845 * - RIP is a must, as it will be incremented or otherwise changed.
6846 * - RFLAGS are always required to figure the CPL.
6847 * - RSP isn't always required, however it's a GPR, so frequently required.
6848 * - SS and CS are the only segment register needed if IEM doesn't do memory
6849 * access (CPL + 16/32/64-bit mode), but we can only get all segment registers.
6850 * - CR0 is always required by IEM for the CPL, while CR3 and CR4 will only
6851 * be required for memory accesses.
6852 *
6853 * Note! Before IEM dispatches an exception, it will call us to sync in everything.
6854 */
6855 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
6856 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
6857 if (fNeedRsp)
6858 rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
6859 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
6860 if (!fMemory)
6861 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
6862 else
6863 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6864 AssertRCReturn(rc, rc);
6865 return rc;
6866}
6867
6868
6869/**
6870 * Ensures that we've got a complete basic guest-context.
6871 *
6872 * This excludes the FPU, SSE, AVX, and similar extended state. The interface
6873 * is for the interpreter.
6874 *
6875 * @returns VBox status code.
6876 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
6877 * @param pMixedCtx Pointer to the guest-CPU context which may have data
6878 * needing to be synced in.
6879 * @thread EMT(pVCpu)
6880 */
6881VMMR0_INT_DECL(int) HMR0EnsureCompleteBasicContext(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
6882{
6883 /* Note! Since this is only applicable to VT-x, the implementation is placed
6884 in the VT-x part of the sources instead of the generic stuff. */
6885 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
6886 {
6887 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
6888 /*
6889 * For now, imply that the caller might change everything too. Do this after
6890 * saving the guest state so as to not trigger assertions.
6891 */
6892 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
6893 return rc;
6894 }
6895 return VINF_SUCCESS;
6896}
6897
6898
6899/**
6900 * Check per-VM and per-VCPU force flag actions that require us to go back to
6901 * ring-3 for one reason or another.
6902 *
6903 * @returns Strict VBox status code (i.e. informational status codes too)
6904 * @retval VINF_SUCCESS if we don't have any actions that require going back to
6905 * ring-3.
6906 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
6907 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
6908 * interrupts)
6909 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
6910 * all EMTs to be in ring-3.
6911 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
6912 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
6913 * to the EM loop.
6914 *
6915 * @param pVM The cross context VM structure.
6916 * @param pVCpu The cross context virtual CPU structure.
6917 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
6918 * out-of-sync. Make sure to update the required fields
6919 * before using them.
6920 * @param fStepping Running in hmR0VmxRunGuestCodeStep().
6921 */
6922static VBOXSTRICTRC hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping)
6923{
6924 Assert(VMMRZCallRing3IsEnabled(pVCpu));
6925
6926 /*
6927 * Anything pending? Should be more likely than not if we're doing a good job.
6928 */
6929 if ( !fStepping
6930 ? !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_MASK)
6931 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
6932 : !VM_FF_IS_PENDING(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
6933 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
6934 return VINF_SUCCESS;
6935
6936 /* We need the control registers now, make sure the guest-CPU context is updated. */
6937 int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
6938 AssertRCReturn(rc3, rc3);
6939
6940 /* Pending HM CR3 sync. */
6941 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
6942 {
6943 int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
6944 AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
6945 ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
6946 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
6947 }
6948
6949 /* Pending HM PAE PDPEs. */
6950 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
6951 {
6952 PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
6953 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
6954 }
6955
6956 /* Pending PGM C3 sync. */
6957 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
6958 {
6959 VBOXSTRICTRC rcStrict2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4,
6960 VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
6961 if (rcStrict2 != VINF_SUCCESS)
6962 {
6963 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
6964 Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
6965 return rcStrict2;
6966 }
6967 }
6968
6969 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
6970 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
6971 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
6972 {
6973 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
6974 int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
6975 Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
6976 return rc2;
6977 }
6978
6979 /* Pending VM request packets, such as hardware interrupts. */
6980 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
6981 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
6982 {
6983 Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
6984 return VINF_EM_PENDING_REQUEST;
6985 }
6986
6987 /* Pending PGM pool flushes. */
6988 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
6989 {
6990 Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
6991 return VINF_PGM_POOL_FLUSH_PENDING;
6992 }
6993
6994 /* Pending DMA requests. */
6995 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
6996 {
6997 Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
6998 return VINF_EM_RAW_TO_R3;
6999 }
7000
7001 return VINF_SUCCESS;
7002}
7003
7004
7005/**
7006 * Converts any TRPM trap into a pending HM event. This is typically used when
7007 * entering from ring-3 (not longjmp returns).
7008 *
7009 * @param pVCpu The cross context virtual CPU structure.
7010 */
7011static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
7012{
7013 Assert(TRPMHasTrap(pVCpu));
7014 Assert(!pVCpu->hm.s.Event.fPending);
7015
7016 uint8_t uVector;
7017 TRPMEVENT enmTrpmEvent;
7018 RTGCUINT uErrCode;
7019 RTGCUINTPTR GCPtrFaultAddress;
7020 uint8_t cbInstr;
7021
7022 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
7023 AssertRC(rc);
7024
7025 /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntInfo. */
7026 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7027 if (enmTrpmEvent == TRPM_TRAP)
7028 {
7029 switch (uVector)
7030 {
7031 case X86_XCPT_NMI:
7032 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7033 break;
7034
7035 case X86_XCPT_BP:
7036 case X86_XCPT_OF:
7037 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7038 break;
7039
7040 case X86_XCPT_PF:
7041 case X86_XCPT_DF:
7042 case X86_XCPT_TS:
7043 case X86_XCPT_NP:
7044 case X86_XCPT_SS:
7045 case X86_XCPT_GP:
7046 case X86_XCPT_AC:
7047 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7048 /* fall thru */
7049 default:
7050 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7051 break;
7052 }
7053 }
7054 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
7055 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7056 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
7057 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7058 else
7059 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
7060
7061 rc = TRPMResetTrap(pVCpu);
7062 AssertRC(rc);
7063 Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
7064 u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
7065
7066 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
7067}
7068
7069
7070/**
7071 * Converts the pending HM event into a TRPM trap.
7072 *
7073 * @param pVCpu The cross context virtual CPU structure.
7074 */
7075static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
7076{
7077 Assert(pVCpu->hm.s.Event.fPending);
7078
7079 uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7080 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntInfo);
7081 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntInfo);
7082 uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
7083
7084 /* If a trap was already pending, we did something wrong! */
7085 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
7086
7087 TRPMEVENT enmTrapType;
7088 switch (uVectorType)
7089 {
7090 case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
7091 enmTrapType = TRPM_HARDWARE_INT;
7092 break;
7093
7094 case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
7095 enmTrapType = TRPM_SOFTWARE_INT;
7096 break;
7097
7098 case VMX_IDT_VECTORING_INFO_TYPE_NMI:
7099 case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
7100 case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
7101 case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
7102 enmTrapType = TRPM_TRAP;
7103 break;
7104
7105 default:
7106 AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
7107 enmTrapType = TRPM_32BIT_HACK;
7108 break;
7109 }
7110
7111 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
7112
7113 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
7114 AssertRC(rc);
7115
7116 if (fErrorCodeValid)
7117 TRPMSetErrorCode(pVCpu, uErrorCode);
7118
7119 if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
7120 && uVector == X86_XCPT_PF)
7121 {
7122 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
7123 }
7124 else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7125 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
7126 || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
7127 {
7128 AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
7129 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
7130 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
7131 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
7132 }
7133
7134 /* Clear any pending events from the VMCS. */
7135 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
7136 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0); AssertRC(rc);
7137
7138 /* We're now done converting the pending event. */
7139 pVCpu->hm.s.Event.fPending = false;
7140}
7141
7142
7143/**
7144 * Does the necessary state syncing before returning to ring-3 for any reason
7145 * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
7146 *
7147 * @returns VBox status code.
7148 * @param pVCpu The cross context virtual CPU structure.
7149 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7150 * be out-of-sync. Make sure to update the required
7151 * fields before using them.
7152 * @param fSaveGuestState Whether to save the guest state or not.
7153 *
7154 * @remarks No-long-jmp zone!!!
7155 */
7156static int hmR0VmxLeave(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fSaveGuestState)
7157{
7158 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7159 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7160
7161 RTCPUID idCpu = RTMpCpuId();
7162 Log4Func(("HostCpuId=%u\n", idCpu));
7163
7164 /*
7165 * !!! IMPORTANT !!!
7166 * If you modify code here, check whether hmR0VmxCallRing3Callback() needs to be updated too.
7167 */
7168
7169 /* Save the guest state if necessary. */
7170 if ( fSaveGuestState
7171 && HMVMXCPU_GST_VALUE(pVCpu) != HMVMX_UPDATED_GUEST_ALL)
7172 {
7173 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
7174 AssertRCReturn(rc, rc);
7175 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7176 }
7177
7178 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
7179 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
7180 {
7181 /* We shouldn't reload CR0 without saving it first. */
7182 if (!fSaveGuestState)
7183 {
7184 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
7185 AssertRCReturn(rc, rc);
7186 }
7187 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
7188 }
7189
7190 /* Restore host debug registers if necessary and resync on next R0 reentry. */
7191#ifdef VBOX_STRICT
7192 if (CPUMIsHyperDebugStateActive(pVCpu))
7193 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
7194#endif
7195 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
7196 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
7197 Assert(!CPUMIsGuestDebugStateActive(pVCpu) && !CPUMIsGuestDebugStateActivePending(pVCpu));
7198 Assert(!CPUMIsHyperDebugStateActive(pVCpu) && !CPUMIsHyperDebugStateActivePending(pVCpu));
7199
7200#if HC_ARCH_BITS == 64
7201 /* Restore host-state bits that VT-x only restores partially. */
7202 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7203 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7204 {
7205 Log4Func(("Restoring Host State: fRestoreHostFlags=%#RX32 HostCpuId=%u\n", pVCpu->hm.s.vmx.fRestoreHostFlags, idCpu));
7206 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7207 }
7208 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7209#endif
7210
7211 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7212 if (pVCpu->hm.s.vmx.fLazyMsrs)
7213 {
7214 /* We shouldn't reload the guest MSRs without saving it first. */
7215 if (!fSaveGuestState)
7216 {
7217 int rc = hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
7218 AssertRCReturn(rc, rc);
7219 }
7220 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_LAZY_MSRS));
7221 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7222 Assert(!pVCpu->hm.s.vmx.fLazyMsrs);
7223 }
7224
7225 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7226 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7227
7228 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
7229 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
7230 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
7231 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
7232 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
7233 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
7234 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
7235 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7236
7237 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7238
7239 /** @todo This partially defeats the purpose of having preemption hooks.
7240 * The problem is, deregistering the hooks should be moved to a place that
7241 * lasts until the EMT is about to be destroyed not everytime while leaving HM
7242 * context.
7243 */
7244 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7245 {
7246 int rc = VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7247 AssertRCReturn(rc, rc);
7248
7249 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7250 Log4Func(("Cleared Vmcs. HostCpuId=%u\n", idCpu));
7251 }
7252 Assert(!(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_LAUNCHED));
7253 NOREF(idCpu);
7254
7255 return VINF_SUCCESS;
7256}
7257
7258
7259/**
7260 * Leaves the VT-x session.
7261 *
7262 * @returns VBox status code.
7263 * @param pVCpu The cross context virtual CPU structure.
7264 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7265 * out-of-sync. Make sure to update the required fields
7266 * before using them.
7267 *
7268 * @remarks No-long-jmp zone!!!
7269 */
7270DECLINLINE(int) hmR0VmxLeaveSession(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7271{
7272 HM_DISABLE_PREEMPT();
7273 HMVMX_ASSERT_CPU_SAFE();
7274 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
7275 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
7276
7277 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
7278 and done this from the VMXR0ThreadCtxCallback(). */
7279 if (!pVCpu->hm.s.fLeaveDone)
7280 {
7281 int rc2 = hmR0VmxLeave(pVCpu, pMixedCtx, true /* fSaveGuestState */);
7282 AssertRCReturnStmt(rc2, HM_RESTORE_PREEMPT(), rc2);
7283 pVCpu->hm.s.fLeaveDone = true;
7284 }
7285 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
7286
7287 /*
7288 * !!! IMPORTANT !!!
7289 * If you modify code here, make sure to check whether hmR0VmxCallRing3Callback() needs to be updated too.
7290 */
7291
7292 /* Deregister hook now that we've left HM context before re-enabling preemption. */
7293 /** @todo Deregistering here means we need to VMCLEAR always
7294 * (longjmp/exit-to-r3) in VT-x which is not efficient. */
7295 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7296 VMMR0ThreadCtxHookDisable(pVCpu);
7297
7298 /* Leave HM context. This takes care of local init (term). */
7299 int rc = HMR0LeaveCpu(pVCpu);
7300
7301 HM_RESTORE_PREEMPT();
7302 return rc;
7303}
7304
7305
7306/**
7307 * Does the necessary state syncing before doing a longjmp to ring-3.
7308 *
7309 * @returns VBox status code.
7310 * @param pVCpu The cross context virtual CPU structure.
7311 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7312 * out-of-sync. Make sure to update the required fields
7313 * before using them.
7314 *
7315 * @remarks No-long-jmp zone!!!
7316 */
7317DECLINLINE(int) hmR0VmxLongJmpToRing3(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7318{
7319 return hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7320}
7321
7322
7323/**
7324 * Take necessary actions before going back to ring-3.
7325 *
7326 * An action requires us to go back to ring-3. This function does the necessary
7327 * steps before we can safely return to ring-3. This is not the same as longjmps
7328 * to ring-3, this is voluntary and prepares the guest so it may continue
7329 * executing outside HM (recompiler/IEM).
7330 *
7331 * @returns VBox status code.
7332 * @param pVM The cross context VM structure.
7333 * @param pVCpu The cross context virtual CPU structure.
7334 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7335 * out-of-sync. Make sure to update the required fields
7336 * before using them.
7337 * @param rcExit The reason for exiting to ring-3. Can be
7338 * VINF_VMM_UNKNOWN_RING3_CALL.
7339 */
7340static int hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, VBOXSTRICTRC rcExit)
7341{
7342 Assert(pVM);
7343 Assert(pVCpu);
7344 Assert(pMixedCtx);
7345 HMVMX_ASSERT_PREEMPT_SAFE();
7346
7347 if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
7348 {
7349 VMXGetActivatedVmcs(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
7350 pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
7351 pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
7352 /* LastError.idCurrentCpu was updated in hmR0VmxPreRunGuestCommitted(). */
7353 }
7354
7355 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
7356 VMMRZCallRing3Disable(pVCpu);
7357 Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcExit)));
7358
7359 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
7360 if (pVCpu->hm.s.Event.fPending)
7361 {
7362 hmR0VmxPendingEventToTrpmTrap(pVCpu);
7363 Assert(!pVCpu->hm.s.Event.fPending);
7364 }
7365
7366 /* Clear interrupt-window and NMI-window controls as we re-evaluate it when we return from ring-3. */
7367 hmR0VmxClearIntNmiWindowsVmcs(pVCpu);
7368
7369 /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
7370 and if we're injecting an event we should have a TRPM trap pending. */
7371 AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7372#ifndef DEBUG_bird /* Triggered after firing an NMI against NT4SP1, possibly a tripple fault in progress. */
7373 AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("%Rrc\n", VBOXSTRICTRC_VAL(rcExit)));
7374#endif
7375
7376 /* Save guest state and restore host state bits. */
7377 int rc = hmR0VmxLeaveSession(pVCpu, pMixedCtx);
7378 AssertRCReturn(rc, rc);
7379 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
7380 /* Thread-context hooks are unregistered at this point!!! */
7381
7382 /* Sync recompiler state. */
7383 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
7384 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
7385 | CPUM_CHANGED_LDTR
7386 | CPUM_CHANGED_GDTR
7387 | CPUM_CHANGED_IDTR
7388 | CPUM_CHANGED_TR
7389 | CPUM_CHANGED_HIDDEN_SEL_REGS);
7390 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
7391 if ( pVM->hm.s.fNestedPaging
7392 && CPUMIsGuestPagingEnabledEx(pMixedCtx))
7393 {
7394 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
7395 }
7396
7397 Assert(!pVCpu->hm.s.fClearTrapFlag);
7398
7399 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
7400 if (rcExit != VINF_EM_RAW_INTERRUPT)
7401 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
7402
7403 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
7404
7405 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
7406 VMMRZCallRing3RemoveNotification(pVCpu);
7407 VMMRZCallRing3Enable(pVCpu);
7408
7409 return rc;
7410}
7411
7412
7413/**
7414 * VMMRZCallRing3() callback wrapper which saves the guest state before we
7415 * longjump to ring-3 and possibly get preempted.
7416 *
7417 * @returns VBox status code.
7418 * @param pVCpu The cross context virtual CPU structure.
7419 * @param enmOperation The operation causing the ring-3 longjump.
7420 * @param pvUser Opaque pointer to the guest-CPU context. The data
7421 * may be out-of-sync. Make sure to update the required
7422 * fields before using them.
7423 */
7424static DECLCALLBACK(int) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
7425{
7426 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
7427 {
7428 /*
7429 * !!! IMPORTANT !!!
7430 * If you modify code here, check whether hmR0VmxLeave() and hmR0VmxLeaveSession() needs to be updated too.
7431 * This is a stripped down version which gets out ASAP, trying to not trigger any further assertions.
7432 */
7433 VMMRZCallRing3RemoveNotification(pVCpu);
7434 VMMRZCallRing3Disable(pVCpu);
7435 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
7436 RTThreadPreemptDisable(&PreemptState);
7437
7438 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
7439 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */);
7440
7441#if HC_ARCH_BITS == 64
7442 /* Restore host-state bits that VT-x only restores partially. */
7443 if ( (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_REQUIRED)
7444 && (pVCpu->hm.s.vmx.fRestoreHostFlags & ~VMX_RESTORE_HOST_REQUIRED))
7445 VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
7446 pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
7447#endif
7448 /* Restore the lazy host MSRs as we're leaving VT-x context. */
7449 if (pVCpu->hm.s.vmx.fLazyMsrs)
7450 hmR0VmxLazyRestoreHostMsrs(pVCpu);
7451
7452 /* Update auto-load/store host MSRs values when we re-enter VT-x (as we could be on a different CPU). */
7453 pVCpu->hm.s.vmx.fUpdatedHostMsrs = false;
7454 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
7455 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_ACTIVE)
7456 {
7457 VMXClearVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
7458 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_CLEAR;
7459 }
7460
7461 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
7462 VMMR0ThreadCtxHookDisable(pVCpu);
7463 HMR0LeaveCpu(pVCpu);
7464 RTThreadPreemptRestore(&PreemptState);
7465 return VINF_SUCCESS;
7466 }
7467
7468 Assert(pVCpu);
7469 Assert(pvUser);
7470 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7471 HMVMX_ASSERT_PREEMPT_SAFE();
7472
7473 VMMRZCallRing3Disable(pVCpu);
7474 Assert(VMMR0IsLogFlushDisabled(pVCpu));
7475
7476 Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32 enmOperation=%d\n", pVCpu, pVCpu->idCpu,
7477 enmOperation));
7478
7479 int rc = hmR0VmxLongJmpToRing3(pVCpu, (PCPUMCTX)pvUser);
7480 AssertRCReturn(rc, rc);
7481
7482 VMMRZCallRing3Enable(pVCpu);
7483 return VINF_SUCCESS;
7484}
7485
7486
7487/**
7488 * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
7489 * cause a VM-exit as soon as the guest is in a state to receive interrupts.
7490 *
7491 * @param pVCpu The cross context virtual CPU structure.
7492 */
7493DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
7494{
7495 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7496 {
7497 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
7498 {
7499 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7500 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7501 AssertRC(rc);
7502 Log4(("Setup interrupt-window exiting\n"));
7503 }
7504 } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
7505}
7506
7507
7508/**
7509 * Clears the interrupt-window exiting control in the VMCS.
7510 *
7511 * @param pVCpu The cross context virtual CPU structure.
7512 */
7513DECLINLINE(void) hmR0VmxClearIntWindowExitVmcs(PVMCPU pVCpu)
7514{
7515 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
7516 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
7517 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7518 AssertRC(rc);
7519 Log4(("Cleared interrupt-window exiting\n"));
7520}
7521
7522
7523/**
7524 * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
7525 * cause a VM-exit as soon as the guest is in a state to receive NMIs.
7526 *
7527 * @param pVCpu The cross context virtual CPU structure.
7528 */
7529DECLINLINE(void) hmR0VmxSetNmiWindowExitVmcs(PVMCPU pVCpu)
7530{
7531 if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7532 {
7533 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT))
7534 {
7535 pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7536 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7537 AssertRC(rc);
7538 Log4(("Setup NMI-window exiting\n"));
7539 }
7540 } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
7541}
7542
7543
7544/**
7545 * Clears the NMI-window exiting control in the VMCS.
7546 *
7547 * @param pVCpu The cross context virtual CPU structure.
7548 */
7549DECLINLINE(void) hmR0VmxClearNmiWindowExitVmcs(PVMCPU pVCpu)
7550{
7551 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT);
7552 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT;
7553 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
7554 AssertRC(rc);
7555 Log4(("Cleared NMI-window exiting\n"));
7556}
7557
7558
7559/**
7560 * Evaluates the event to be delivered to the guest and sets it as the pending
7561 * event.
7562 *
7563 * @returns The VT-x guest-interruptibility state.
7564 * @param pVCpu The cross context virtual CPU structure.
7565 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7566 * out-of-sync. Make sure to update the required fields
7567 * before using them.
7568 */
7569static uint32_t hmR0VmxEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7570{
7571 /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
7572 uint32_t const uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
7573 bool const fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7574 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7575 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7576
7577 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7578 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7579 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7580 Assert(!TRPMHasTrap(pVCpu));
7581
7582 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
7583 APICUpdatePendingInterrupts(pVCpu);
7584
7585 /*
7586 * Toggling of interrupt force-flags here is safe since we update TRPM on premature exits
7587 * to ring-3 before executing guest code, see hmR0VmxExitToRing3(). We must NOT restore these force-flags.
7588 */
7589 /** @todo SMI. SMIs take priority over NMIs. */
7590 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts. */
7591 {
7592 /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
7593 if ( !pVCpu->hm.s.Event.fPending
7594 && !fBlockNmi
7595 && !fBlockSti
7596 && !fBlockMovSS)
7597 {
7598 Log4(("Pending NMI vcpu[%RU32]\n", pVCpu->idCpu));
7599 uint32_t u32IntInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
7600 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7601
7602 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7603 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
7604 }
7605 else
7606 hmR0VmxSetNmiWindowExitVmcs(pVCpu);
7607 }
7608 /*
7609 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
7610 * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
7611 */
7612 else if ( VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
7613 && !pVCpu->hm.s.fSingleInstruction)
7614 {
7615 Assert(!DBGFIsStepping(pVCpu));
7616 int rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7617 AssertRC(rc);
7618 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7619 if ( !pVCpu->hm.s.Event.fPending
7620 && !fBlockInt
7621 && !fBlockSti
7622 && !fBlockMovSS)
7623 {
7624 uint8_t u8Interrupt;
7625 rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
7626 if (RT_SUCCESS(rc))
7627 {
7628 Log4(("Pending interrupt vcpu[%RU32] u8Interrupt=%#x \n", pVCpu->idCpu, u8Interrupt));
7629 uint32_t u32IntInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
7630 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7631
7632 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrfaultAddress */);
7633 }
7634 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
7635 {
7636 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
7637 hmR0VmxApicSetTprThreshold(pVCpu, u8Interrupt >> 4);
7638 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
7639
7640 /*
7641 * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
7642 * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
7643 * need to re-set this force-flag here.
7644 */
7645 }
7646 else
7647 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
7648 }
7649 else
7650 hmR0VmxSetIntWindowExitVmcs(pVCpu);
7651 }
7652
7653 return uIntrState;
7654}
7655
7656
7657/**
7658 * Sets a pending-debug exception to be delivered to the guest if the guest is
7659 * single-stepping in the VMCS.
7660 *
7661 * @param pVCpu The cross context virtual CPU structure.
7662 */
7663DECLINLINE(void) hmR0VmxSetPendingDebugXcptVmcs(PVMCPU pVCpu)
7664{
7665 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS)); NOREF(pVCpu);
7666 int rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
7667 AssertRC(rc);
7668}
7669
7670
7671/**
7672 * Injects any pending events into the guest if the guest is in a state to
7673 * receive them.
7674 *
7675 * @returns Strict VBox status code (i.e. informational status codes too).
7676 * @param pVCpu The cross context virtual CPU structure.
7677 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7678 * out-of-sync. Make sure to update the required fields
7679 * before using them.
7680 * @param uIntrState The VT-x guest-interruptibility state.
7681 * @param fStepping Running in hmR0VmxRunGuestCodeStep() and we should
7682 * return VINF_EM_DBG_STEPPED if the event was
7683 * dispatched directly.
7684 */
7685static VBOXSTRICTRC hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t uIntrState, bool fStepping)
7686{
7687 HMVMX_ASSERT_PREEMPT_SAFE();
7688 Assert(VMMRZCallRing3IsEnabled(pVCpu));
7689
7690 bool fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7691 bool fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7692
7693 Assert(!fBlockSti || HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RFLAGS));
7694 Assert(!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
7695 Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
7696 Assert(!TRPMHasTrap(pVCpu));
7697
7698 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
7699 if (pVCpu->hm.s.Event.fPending)
7700 {
7701 /*
7702 * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
7703 * pending even while injecting an event and in this case, we want a VM-exit as soon as
7704 * the guest is ready for the next interrupt, see @bugref{6208#c45}.
7705 *
7706 * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
7707 */
7708 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntInfo);
7709#ifdef VBOX_STRICT
7710 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7711 {
7712 bool const fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
7713 Assert(!fBlockInt);
7714 Assert(!fBlockSti);
7715 Assert(!fBlockMovSS);
7716 }
7717 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
7718 {
7719 bool const fBlockNmi = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI);
7720 Assert(!fBlockSti);
7721 Assert(!fBlockMovSS);
7722 Assert(!fBlockNmi);
7723 }
7724#endif
7725 Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#x\n", pVCpu->idCpu, pVCpu->hm.s.Event.u64IntInfo,
7726 (uint8_t)uIntType));
7727 rcStrict = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntInfo, pVCpu->hm.s.Event.cbInstr,
7728 pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress,
7729 fStepping, &uIntrState);
7730 AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
7731
7732 /* Update the interruptibility-state as it could have been changed by
7733 hmR0VmxInjectEventVmcs() (e.g. real-on-v86 guest injecting software interrupts) */
7734 fBlockMovSS = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
7735 fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
7736
7737 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
7738 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
7739 else
7740 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
7741 }
7742
7743 /* Deliver pending debug exception if the guest is single-stepping. Evaluate and set the BS bit. */
7744 if ( fBlockSti
7745 || fBlockMovSS)
7746 {
7747 if (!pVCpu->hm.s.fSingleInstruction)
7748 {
7749 /*
7750 * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
7751 * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
7752 * See Intel spec. 27.3.4 "Saving Non-Register State".
7753 */
7754 Assert(!DBGFIsStepping(pVCpu));
7755 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
7756 AssertRCReturn(rc2, rc2);
7757 if (pMixedCtx->eflags.Bits.u1TF)
7758 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
7759 }
7760 else if (pMixedCtx->eflags.Bits.u1TF)
7761 {
7762 /*
7763 * We are single-stepping in the hypervisor debugger using EFLAGS.TF. Clear interrupt inhibition as setting the
7764 * BS bit would mean delivering a #DB to the guest upon VM-entry when it shouldn't be.
7765 */
7766 Assert(!(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG));
7767 uIntrState = 0;
7768 }
7769 }
7770
7771 /*
7772 * There's no need to clear the VM-entry interruption-information field here if we're not injecting anything.
7773 * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7774 */
7775 int rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
7776 AssertRC(rc2);
7777
7778 Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
7779 NOREF(fBlockMovSS); NOREF(fBlockSti);
7780 return rcStrict;
7781}
7782
7783
7784/**
7785 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
7786 *
7787 * @param pVCpu The cross context virtual CPU structure.
7788 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7789 * out-of-sync. Make sure to update the required fields
7790 * before using them.
7791 */
7792DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7793{
7794 NOREF(pMixedCtx);
7795 uint32_t u32IntInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
7796 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7797}
7798
7799
7800/**
7801 * Injects a double-fault (\#DF) exception into the VM.
7802 *
7803 * @returns Strict VBox status code (i.e. informational status codes too).
7804 * @param pVCpu The cross context virtual CPU structure.
7805 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7806 * out-of-sync. Make sure to update the required fields
7807 * before using them.
7808 * @param fStepping Whether we're running in hmR0VmxRunGuestCodeStep()
7809 * and should return VINF_EM_DBG_STEPPED if the event
7810 * is injected directly (register modified by us, not
7811 * by hardware on VM-entry).
7812 * @param puIntrState Pointer to the current guest interruptibility-state.
7813 * This interruptibility-state will be updated if
7814 * necessary. This cannot not be NULL.
7815 */
7816DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fStepping, uint32_t *puIntrState)
7817{
7818 uint32_t u32IntInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7819 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7820 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7821 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
7822 fStepping, puIntrState);
7823}
7824
7825
7826/**
7827 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
7828 *
7829 * @param pVCpu The cross context virtual CPU structure.
7830 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7831 * out-of-sync. Make sure to update the required fields
7832 * before using them.
7833 */
7834DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
7835{
7836 NOREF(pMixedCtx);
7837 uint32_t u32IntInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
7838 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7839 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7840}
7841
7842
7843/**
7844 * Sets an overflow (\#OF) exception as pending-for-injection into the VM.
7845 *
7846 * @param pVCpu The cross context virtual CPU structure.
7847 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7848 * out-of-sync. Make sure to update the required fields
7849 * before using them.
7850 * @param cbInstr The value of RIP that is to be pushed on the guest
7851 * stack.
7852 */
7853DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
7854{
7855 NOREF(pMixedCtx);
7856 uint32_t u32IntInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
7857 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7858 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7859}
7860
7861
7862/**
7863 * Injects a general-protection (\#GP) fault into the VM.
7864 *
7865 * @returns Strict VBox status code (i.e. informational status codes too).
7866 * @param pVCpu The cross context virtual CPU structure.
7867 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7868 * out-of-sync. Make sure to update the required fields
7869 * before using them.
7870 * @param fErrorCodeValid Whether the error code is valid (depends on the CPU
7871 * mode, i.e. in real-mode it's not valid).
7872 * @param u32ErrorCode The error code associated with the \#GP.
7873 * @param fStepping Whether we're running in
7874 * hmR0VmxRunGuestCodeStep() and should return
7875 * VINF_EM_DBG_STEPPED if the event is injected
7876 * directly (register modified by us, not by
7877 * hardware on VM-entry).
7878 * @param puIntrState Pointer to the current guest interruptibility-state.
7879 * This interruptibility-state will be updated if
7880 * necessary. This cannot not be NULL.
7881 */
7882DECLINLINE(VBOXSTRICTRC) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
7883 bool fStepping, uint32_t *puIntrState)
7884{
7885 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7886 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7887 if (fErrorCodeValid)
7888 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7889 return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
7890 fStepping, puIntrState);
7891}
7892
7893
7894#if 0 /* unused */
7895/**
7896 * Sets a general-protection (\#GP) exception as pending-for-injection into the
7897 * VM.
7898 *
7899 * @param pVCpu The cross context virtual CPU structure.
7900 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7901 * out-of-sync. Make sure to update the required fields
7902 * before using them.
7903 * @param u32ErrorCode The error code associated with the \#GP.
7904 */
7905DECLINLINE(void) hmR0VmxSetPendingXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t u32ErrorCode)
7906{
7907 NOREF(pMixedCtx);
7908 uint32_t u32IntInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
7909 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7910 u32IntInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
7911 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */);
7912}
7913#endif /* unused */
7914
7915
7916/**
7917 * Sets a software interrupt (INTn) as pending-for-injection into the VM.
7918 *
7919 * @param pVCpu The cross context virtual CPU structure.
7920 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
7921 * out-of-sync. Make sure to update the required fields
7922 * before using them.
7923 * @param uVector The software interrupt vector number.
7924 * @param cbInstr The value of RIP that is to be pushed on the guest
7925 * stack.
7926 */
7927DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
7928{
7929 NOREF(pMixedCtx);
7930 uint32_t u32IntInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
7931 if ( uVector == X86_XCPT_BP
7932 || uVector == X86_XCPT_OF)
7933 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7934 else
7935 u32IntInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
7936 hmR0VmxSetPendingEvent(pVCpu, u32IntInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
7937}
7938
7939
7940/**
7941 * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
7942 * stack.
7943 *
7944 * @returns Strict VBox status code (i.e. informational status codes too).
7945 * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
7946 * @param pVM The cross context VM structure.
7947 * @param pMixedCtx Pointer to the guest-CPU context.
7948 * @param uValue The value to push to the guest stack.
7949 */
7950DECLINLINE(VBOXSTRICTRC) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
7951{
7952 /*
7953 * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
7954 * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
7955 * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
7956 */
7957 if (pMixedCtx->sp == 1)
7958 return VINF_EM_RESET;
7959 pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
7960 int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
7961 AssertRC(rc);
7962 return rc;
7963}
7964
7965
7966/**
7967 * Injects an event into the guest upon VM-entry by updating the relevant fields
7968 * in the VM-entry area in the VMCS.
7969 *
7970 * @returns Strict VBox status code (i.e. informational status codes too).
7971 * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
7972 * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
7973 *
7974 * @param pVCpu The cross context virtual CPU structure.
7975 * @param pMixedCtx Pointer to the guest-CPU context. The data may
7976 * be out-of-sync. Make sure to update the required
7977 * fields before using them.
7978 * @param u64IntInfo The VM-entry interruption-information field.
7979 * @param cbInstr The VM-entry instruction length in bytes (for
7980 * software interrupts, exceptions and privileged
7981 * software exceptions).
7982 * @param u32ErrCode The VM-entry exception error code.
7983 * @param GCPtrFaultAddress The page-fault address for \#PF exceptions.
7984 * @param puIntrState Pointer to the current guest interruptibility-state.
7985 * This interruptibility-state will be updated if
7986 * necessary. This cannot not be NULL.
7987 * @param fStepping Whether we're running in
7988 * hmR0VmxRunGuestCodeStep() and should return
7989 * VINF_EM_DBG_STEPPED if the event is injected
7990 * directly (register modified by us, not by
7991 * hardware on VM-entry).
7992 *
7993 * @remarks Requires CR0!
7994 */
7995static VBOXSTRICTRC hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntInfo, uint32_t cbInstr,
7996 uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, bool fStepping,
7997 uint32_t *puIntrState)
7998{
7999 /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
8000 AssertMsg(u64IntInfo >> 32 == 0, ("%#RX64\n", u64IntInfo));
8001 Assert(puIntrState);
8002 uint32_t u32IntInfo = (uint32_t)u64IntInfo;
8003
8004 uint32_t const uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntInfo);
8005 uint32_t const uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo);
8006
8007#ifdef VBOX_STRICT
8008 /* Validate the error-code-valid bit for hardware exceptions. */
8009 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
8010 {
8011 switch (uVector)
8012 {
8013 case X86_XCPT_PF:
8014 case X86_XCPT_DF:
8015 case X86_XCPT_TS:
8016 case X86_XCPT_NP:
8017 case X86_XCPT_SS:
8018 case X86_XCPT_GP:
8019 case X86_XCPT_AC:
8020 AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo),
8021 ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
8022 /* fall thru */
8023 default:
8024 break;
8025 }
8026 }
8027#endif
8028
8029 /* Cannot inject an NMI when block-by-MOV SS is in effect. */
8030 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8031 || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
8032
8033 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
8034
8035 /* We require CR0 to check if the guest is in real-mode. */
8036 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8037 AssertRCReturn(rc, rc);
8038
8039 /*
8040 * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
8041 * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
8042 * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
8043 * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
8044 */
8045 if (CPUMIsGuestInRealModeEx(pMixedCtx))
8046 {
8047 PVM pVM = pVCpu->CTX_SUFF(pVM);
8048 if (!pVM->hm.s.vmx.fUnrestrictedGuest)
8049 {
8050 Assert(PDMVmmDevHeapIsEnabled(pVM));
8051 Assert(pVM->hm.s.vmx.pRealModeTSS);
8052
8053 /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
8054 rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
8055 rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
8056 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
8057 AssertRCReturn(rc, rc);
8058 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_RIP));
8059
8060 /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
8061 size_t const cbIdtEntry = sizeof(X86IDTR16);
8062 if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
8063 {
8064 /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
8065 if (uVector == X86_XCPT_DF)
8066 return VINF_EM_RESET;
8067
8068 /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
8069 if (uVector == X86_XCPT_GP)
8070 return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, fStepping, puIntrState);
8071
8072 /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
8073 /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
8074 return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */,
8075 fStepping, puIntrState);
8076 }
8077
8078 /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
8079 uint16_t uGuestIp = pMixedCtx->ip;
8080 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
8081 {
8082 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
8083 /* #BP and #OF are both benign traps, we need to resume the next instruction. */
8084 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8085 }
8086 else if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
8087 uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
8088
8089 /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
8090 X86IDTR16 IdtEntry;
8091 RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
8092 rc = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
8093 AssertRCReturn(rc, rc);
8094
8095 /* Construct the stack frame for the interrupt/exception handler. */
8096 VBOXSTRICTRC rcStrict;
8097 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
8098 if (rcStrict == VINF_SUCCESS)
8099 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
8100 if (rcStrict == VINF_SUCCESS)
8101 rcStrict = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
8102
8103 /* Clear the required eflag bits and jump to the interrupt/exception handler. */
8104 if (rcStrict == VINF_SUCCESS)
8105 {
8106 pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
8107 pMixedCtx->rip = IdtEntry.offSel;
8108 pMixedCtx->cs.Sel = IdtEntry.uSel;
8109 pMixedCtx->cs.ValidSel = IdtEntry.uSel;
8110 pMixedCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
8111 if ( uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8112 && uVector == X86_XCPT_PF)
8113 pMixedCtx->cr2 = GCPtrFaultAddress;
8114
8115 /* If any other guest-state bits are changed here, make sure to update
8116 hmR0VmxPreRunGuestCommitted() when thread-context hooks are used. */
8117 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS
8118 | HM_CHANGED_GUEST_RIP
8119 | HM_CHANGED_GUEST_RFLAGS
8120 | HM_CHANGED_GUEST_RSP);
8121
8122 /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
8123 if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
8124 {
8125 Assert( uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
8126 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
8127 Log4(("Clearing inhibition due to STI.\n"));
8128 *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
8129 }
8130 Log4(("Injecting real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
8131 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->eflags.u, pMixedCtx->cs.Sel, pMixedCtx->eip));
8132
8133 /* The event has been truly dispatched. Mark it as no longer pending so we don't attempt to 'undo'
8134 it, if we are returning to ring-3 before executing guest code. */
8135 pVCpu->hm.s.Event.fPending = false;
8136
8137 /* Make hmR0VmxPreRunGuest return if we're stepping since we've changed cs:rip. */
8138 if (fStepping)
8139 rcStrict = VINF_EM_DBG_STEPPED;
8140 }
8141 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8142 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8143 return rcStrict;
8144 }
8145
8146 /*
8147 * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
8148 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
8149 */
8150 u32IntInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
8151 }
8152
8153 /* Validate. */
8154 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
8155 Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK_IRET(u32IntInfo)); /* Bit 12 MBZ. */
8156 Assert(!(u32IntInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
8157
8158 /* Inject. */
8159 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
8160 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntInfo))
8161 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
8162 rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
8163
8164 if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
8165 && uVector == X86_XCPT_PF)
8166 pMixedCtx->cr2 = GCPtrFaultAddress;
8167
8168 Log4(("Injecting vcpu[%RU32] u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
8169 u32IntInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
8170
8171 AssertRCReturn(rc, rc);
8172 return VINF_SUCCESS;
8173}
8174
8175
8176/**
8177 * Clears the interrupt-window exiting control in the VMCS and if necessary
8178 * clears the current event in the VMCS as well.
8179 *
8180 * @returns VBox status code.
8181 * @param pVCpu The cross context virtual CPU structure.
8182 *
8183 * @remarks Use this function only to clear events that have not yet been
8184 * delivered to the guest but are injected in the VMCS!
8185 * @remarks No-long-jump zone!!!
8186 */
8187static void hmR0VmxClearIntNmiWindowsVmcs(PVMCPU pVCpu)
8188{
8189 Log4Func(("vcpu[%d]\n", pVCpu->idCpu));
8190
8191 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT)
8192 hmR0VmxClearIntWindowExitVmcs(pVCpu);
8193
8194 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)
8195 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
8196}
8197
8198
8199/**
8200 * Enters the VT-x session.
8201 *
8202 * @returns VBox status code.
8203 * @param pVM The cross context VM structure.
8204 * @param pVCpu The cross context virtual CPU structure.
8205 * @param pCpu Pointer to the CPU info struct.
8206 */
8207VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
8208{
8209 AssertPtr(pVM);
8210 AssertPtr(pVCpu);
8211 Assert(pVM->hm.s.vmx.fSupported);
8212 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8213 NOREF(pCpu); NOREF(pVM);
8214
8215 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8216 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8217
8218#ifdef VBOX_STRICT
8219 /* At least verify VMX is enabled, since we can't check if we're in VMX root mode without #GP'ing. */
8220 RTCCUINTREG uHostCR4 = ASMGetCR4();
8221 if (!(uHostCR4 & X86_CR4_VMXE))
8222 {
8223 LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
8224 return VERR_VMX_X86_CR4_VMXE_CLEARED;
8225 }
8226#endif
8227
8228 /*
8229 * Load the VCPU's VMCS as the current (and active) one.
8230 */
8231 Assert(pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR);
8232 int rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8233 if (RT_FAILURE(rc))
8234 return rc;
8235
8236 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8237 pVCpu->hm.s.fLeaveDone = false;
8238 Log4Func(("Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8239
8240 return VINF_SUCCESS;
8241}
8242
8243
8244/**
8245 * The thread-context callback (only on platforms which support it).
8246 *
8247 * @param enmEvent The thread-context event.
8248 * @param pVCpu The cross context virtual CPU structure.
8249 * @param fGlobalInit Whether global VT-x/AMD-V init. was used.
8250 * @thread EMT(pVCpu)
8251 */
8252VMMR0DECL(void) VMXR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
8253{
8254 NOREF(fGlobalInit);
8255
8256 switch (enmEvent)
8257 {
8258 case RTTHREADCTXEVENT_OUT:
8259 {
8260 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8261 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8262 VMCPU_ASSERT_EMT(pVCpu);
8263
8264 PCPUMCTX pMixedCtx = CPUMQueryGuestCtxPtr(pVCpu);
8265
8266 /* No longjmps (logger flushes, locks) in this fragile context. */
8267 VMMRZCallRing3Disable(pVCpu);
8268 Log4Func(("Preempting: HostCpuId=%u\n", RTMpCpuId()));
8269
8270 /*
8271 * Restore host-state (FPU, debug etc.)
8272 */
8273 if (!pVCpu->hm.s.fLeaveDone)
8274 {
8275 /* Do -not- save guest-state here as we might already be in the middle of saving it (esp. bad if we are
8276 holding the PGM lock while saving the guest state (see hmR0VmxSaveGuestControlRegs()). */
8277 hmR0VmxLeave(pVCpu, pMixedCtx, false /* fSaveGuestState */);
8278 pVCpu->hm.s.fLeaveDone = true;
8279 }
8280
8281 /* Leave HM context, takes care of local init (term). */
8282 int rc = HMR0LeaveCpu(pVCpu);
8283 AssertRC(rc); NOREF(rc);
8284
8285 /* Restore longjmp state. */
8286 VMMRZCallRing3Enable(pVCpu);
8287 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
8288 break;
8289 }
8290
8291 case RTTHREADCTXEVENT_IN:
8292 {
8293 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8294 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
8295 VMCPU_ASSERT_EMT(pVCpu);
8296
8297 /* No longjmps here, as we don't want to trigger preemption (& its hook) while resuming. */
8298 VMMRZCallRing3Disable(pVCpu);
8299 Log4Func(("Resumed: HostCpuId=%u\n", RTMpCpuId()));
8300
8301 /* Initialize the bare minimum state required for HM. This takes care of
8302 initializing VT-x if necessary (onlined CPUs, local init etc.) */
8303 int rc = HMR0EnterCpu(pVCpu);
8304 AssertRC(rc);
8305 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
8306
8307 /* Load the active VMCS as the current one. */
8308 if (pVCpu->hm.s.vmx.uVmcsState & HMVMX_VMCS_STATE_CLEAR)
8309 {
8310 rc = VMXActivateVmcs(pVCpu->hm.s.vmx.HCPhysVmcs);
8311 AssertRC(rc); NOREF(rc);
8312 pVCpu->hm.s.vmx.uVmcsState = HMVMX_VMCS_STATE_ACTIVE;
8313 Log4Func(("Resumed: Activated Vmcs. HostCpuId=%u\n", RTMpCpuId()));
8314 }
8315 pVCpu->hm.s.fLeaveDone = false;
8316
8317 /* Restore longjmp state. */
8318 VMMRZCallRing3Enable(pVCpu);
8319 break;
8320 }
8321
8322 default:
8323 break;
8324 }
8325}
8326
8327
8328/**
8329 * Saves the host state in the VMCS host-state.
8330 * Sets up the VM-exit MSR-load area.
8331 *
8332 * The CPU state will be loaded from these fields on every successful VM-exit.
8333 *
8334 * @returns VBox status code.
8335 * @param pVM The cross context VM structure.
8336 * @param pVCpu The cross context virtual CPU structure.
8337 *
8338 * @remarks No-long-jump zone!!!
8339 */
8340static int hmR0VmxSaveHostState(PVM pVM, PVMCPU pVCpu)
8341{
8342 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8343
8344 int rc = VINF_SUCCESS;
8345 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8346 {
8347 rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
8348 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8349
8350 rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
8351 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8352
8353 rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
8354 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8355
8356 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
8357 }
8358 return rc;
8359}
8360
8361
8362/**
8363 * Saves the host state in the VMCS host-state.
8364 *
8365 * @returns VBox status code.
8366 * @param pVM The cross context VM structure.
8367 * @param pVCpu The cross context virtual CPU structure.
8368 *
8369 * @remarks No-long-jump zone!!!
8370 */
8371VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
8372{
8373 AssertPtr(pVM);
8374 AssertPtr(pVCpu);
8375
8376 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8377
8378 /* Save the host state here while entering HM context. When thread-context hooks are used, we might get preempted
8379 and have to resave the host state but most of the time we won't be, so do it here before we disable interrupts. */
8380 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8381 return hmR0VmxSaveHostState(pVM, pVCpu);
8382}
8383
8384
8385/**
8386 * Loads the guest state into the VMCS guest-state area.
8387 *
8388 * The will typically be done before VM-entry when the guest-CPU state and the
8389 * VMCS state may potentially be out of sync.
8390 *
8391 * Sets up the VM-entry MSR-load and VM-exit MSR-store areas. Sets up the
8392 * VM-entry controls.
8393 * Sets up the appropriate VMX non-root function to execute guest code based on
8394 * the guest CPU mode.
8395 *
8396 * @returns VBox strict status code.
8397 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8398 * without unrestricted guest access and the VMMDev is not presently
8399 * mapped (e.g. EFI32).
8400 *
8401 * @param pVM The cross context VM structure.
8402 * @param pVCpu The cross context virtual CPU structure.
8403 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8404 * out-of-sync. Make sure to update the required fields
8405 * before using them.
8406 *
8407 * @remarks No-long-jump zone!!!
8408 */
8409static VBOXSTRICTRC hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8410{
8411 AssertPtr(pVM);
8412 AssertPtr(pVCpu);
8413 AssertPtr(pMixedCtx);
8414 HMVMX_ASSERT_PREEMPT_SAFE();
8415
8416 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
8417
8418 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
8419
8420 /* Determine real-on-v86 mode. */
8421 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
8422 if ( !pVM->hm.s.vmx.fUnrestrictedGuest
8423 && CPUMIsGuestInRealModeEx(pMixedCtx))
8424 {
8425 pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
8426 }
8427
8428 /*
8429 * Load the guest-state into the VMCS.
8430 * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
8431 * Ideally, assert that the cross-dependent bits are up-to-date at the point of using it.
8432 */
8433 int rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
8434 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8435
8436 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-entry control updates. */
8437 rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
8438 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8439
8440 /* This needs to be done after hmR0VmxSetupVMRunHandler() as changing pfnStartVM may require VM-exit control updates. */
8441 rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
8442 AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8443
8444 rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
8445 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8446
8447 VBOXSTRICTRC rcStrict = hmR0VmxLoadGuestCR3AndCR4(pVCpu, pMixedCtx);
8448 if (rcStrict == VINF_SUCCESS)
8449 { /* likely */ }
8450 else
8451 {
8452 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
8453 return rcStrict;
8454 }
8455
8456 /* Assumes pMixedCtx->cr0 is up-to-date (strict builds require CR0 for segment register validation checks). */
8457 rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
8458 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8459
8460 /* This needs to be done after hmR0VmxLoadGuestEntryCtls() and hmR0VmxLoadGuestExitCtls() as it may alter controls if we
8461 determine we don't have to swap EFER after all. */
8462 rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
8463 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8464
8465 rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
8466 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8467
8468 rc = hmR0VmxLoadGuestXcptIntercepts(pVCpu, pMixedCtx);
8469 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8470
8471 /*
8472 * Loading Rflags here is fine, even though Rflags.TF might depend on guest debug state (which is not loaded here).
8473 * It is re-evaluated and updated if necessary in hmR0VmxLoadSharedState().
8474 */
8475 rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
8476 AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
8477
8478 /* Clear any unused and reserved bits. */
8479 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
8480
8481 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
8482 return rc;
8483}
8484
8485
8486/**
8487 * Loads the state shared between the host and guest into the VMCS.
8488 *
8489 * @param pVM The cross context VM structure.
8490 * @param pVCpu The cross context virtual CPU structure.
8491 * @param pCtx Pointer to the guest-CPU context.
8492 *
8493 * @remarks No-long-jump zone!!!
8494 */
8495static void hmR0VmxLoadSharedState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
8496{
8497 NOREF(pVM);
8498
8499 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8500 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8501
8502 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
8503 {
8504 int rc = hmR0VmxLoadSharedCR0(pVCpu, pCtx);
8505 AssertRC(rc);
8506 }
8507
8508 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
8509 {
8510 int rc = hmR0VmxLoadSharedDebugState(pVCpu, pCtx);
8511 AssertRC(rc);
8512
8513 /* Loading shared debug bits might have changed eflags.TF bit for debugging purposes. */
8514 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_RFLAGS))
8515 {
8516 rc = hmR0VmxLoadGuestRflags(pVCpu, pCtx);
8517 AssertRC(rc);
8518 }
8519 }
8520
8521 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS))
8522 {
8523 hmR0VmxLazyLoadGuestMsrs(pVCpu, pCtx);
8524 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
8525 }
8526
8527 /* Loading CR0, debug state might have changed intercepts, update VMCS. */
8528 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
8529 {
8530 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_AC));
8531 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
8532 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
8533 AssertRC(rc);
8534 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
8535 }
8536
8537 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
8538 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8539}
8540
8541
8542/**
8543 * Worker for loading the guest-state bits in the inner VT-x execution loop.
8544 *
8545 * @returns Strict VBox status code (i.e. informational status codes too).
8546 * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
8547 * without unrestricted guest access and the VMMDev is not presently
8548 * mapped (e.g. EFI32).
8549 *
8550 * @param pVM The cross context VM structure.
8551 * @param pVCpu The cross context virtual CPU structure.
8552 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8553 * out-of-sync. Make sure to update the required fields
8554 * before using them.
8555 *
8556 * @remarks No-long-jump zone!!!
8557 */
8558static VBOXSTRICTRC hmR0VmxLoadGuestStateOptimal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
8559{
8560 HMVMX_ASSERT_PREEMPT_SAFE();
8561 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8562 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8563
8564 Log5(("LoadFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8565#ifdef HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
8566 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
8567#endif
8568
8569 /*
8570 * RIP is what changes the most often and hence if it's the only bit needing to be
8571 * updated, we shall handle it early for performance reasons.
8572 */
8573 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
8574 if (HMCPU_CF_IS_SET_ONLY(pVCpu, HM_CHANGED_GUEST_RIP))
8575 {
8576 rcStrict = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
8577 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8578 { /* likely */}
8579 else
8580 {
8581 AssertMsgFailedReturn(("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestRip failed! rc=%Rrc\n",
8582 VBOXSTRICTRC_VAL(rcStrict)), rcStrict);
8583 }
8584 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
8585 }
8586 else if (HMCPU_CF_VALUE(pVCpu))
8587 {
8588 rcStrict = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
8589 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8590 { /* likely */}
8591 else
8592 {
8593 AssertMsg(rcStrict == VINF_EM_RESCHEDULE_REM,
8594 ("hmR0VmxLoadGuestStateOptimal: hmR0VmxLoadGuestState failed! rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8595 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8596 return rcStrict;
8597 }
8598 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
8599 }
8600
8601 /* All the guest state bits should be loaded except maybe the host context and/or the shared host/guest bits. */
8602 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
8603 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
8604 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8605 return rcStrict;
8606}
8607
8608
8609/**
8610 * Does the preparations before executing guest code in VT-x.
8611 *
8612 * This may cause longjmps to ring-3 and may even result in rescheduling to the
8613 * recompiler/IEM. We must be cautious what we do here regarding committing
8614 * guest-state information into the VMCS assuming we assuredly execute the
8615 * guest in VT-x mode.
8616 *
8617 * If we fall back to the recompiler/IEM after updating the VMCS and clearing
8618 * the common-state (TRPM/forceflags), we must undo those changes so that the
8619 * recompiler/IEM can (and should) use them when it resumes guest execution.
8620 * Otherwise such operations must be done when we can no longer exit to ring-3.
8621 *
8622 * @returns Strict VBox status code (i.e. informational status codes too).
8623 * @retval VINF_SUCCESS if we can proceed with running the guest, interrupts
8624 * have been disabled.
8625 * @retval VINF_EM_RESET if a triple-fault occurs while injecting a
8626 * double-fault into the guest.
8627 * @retval VINF_EM_DBG_STEPPED if @a fStepping is true and an event was
8628 * dispatched directly.
8629 * @retval VINF_* scheduling changes, we have to go back to ring-3.
8630 *
8631 * @param pVM The cross context VM structure.
8632 * @param pVCpu The cross context virtual CPU structure.
8633 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8634 * out-of-sync. Make sure to update the required fields
8635 * before using them.
8636 * @param pVmxTransient Pointer to the VMX transient structure.
8637 * @param fStepping Set if called from hmR0VmxRunGuestCodeStep(). Makes
8638 * us ignore some of the reasons for returning to
8639 * ring-3, and return VINF_EM_DBG_STEPPED if event
8640 * dispatching took place.
8641 */
8642static VBOXSTRICTRC hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, bool fStepping)
8643{
8644 Assert(VMMRZCallRing3IsEnabled(pVCpu));
8645
8646#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
8647 PGMRZDynMapFlushAutoSet(pVCpu);
8648#endif
8649
8650 /* Check force flag actions that might require us to go back to ring-3. */
8651 VBOXSTRICTRC rcStrict = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx, fStepping);
8652 if (rcStrict == VINF_SUCCESS)
8653 { /* FFs doesn't get set all the time. */ }
8654 else
8655 return rcStrict;
8656
8657#ifndef IEM_VERIFICATION_MODE_FULL
8658 /*
8659 * Setup the virtualized-APIC accesses.
8660 *
8661 * Note! This can cause a longjumps to R3 due to the acquisition of the PGM lock
8662 * in both PGMHandlerPhysicalReset() and IOMMMIOMapMMIOHCPage(), see @bugref{8721}.
8663 *
8664 * This is the reason we do it here and not in hmR0VmxLoadGuestState().
8665 */
8666 if ( !pVCpu->hm.s.vmx.u64MsrApicBase
8667 && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
8668 && PDMHasApic(pVM))
8669 {
8670 uint64_t const u64MsrApicBase = APICGetBaseMsrNoCheck(pVCpu);
8671 Assert(u64MsrApicBase);
8672 Assert(pVM->hm.s.vmx.HCPhysApicAccess);
8673
8674 RTGCPHYS const GCPhysApicBase = u64MsrApicBase & PAGE_BASE_GC_MASK;
8675
8676 /* Unalias any existing mapping. */
8677 int rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
8678 AssertRCReturn(rc, rc);
8679
8680 /* Map the HC APIC-access page in place of the MMIO page, also updates the shadow page tables if necessary. */
8681 Log4(("hmR0VmxPreRunGuest: VCPU%u: Mapped HC APIC-access page at %#RGp\n", pVCpu->idCpu, GCPhysApicBase));
8682 rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
8683 AssertRCReturn(rc, rc);
8684
8685 /* Update the per-VCPU cache of the APIC base MSR. */
8686 pVCpu->hm.s.vmx.u64MsrApicBase = u64MsrApicBase;
8687 }
8688#endif /* !IEM_VERIFICATION_MODE_FULL */
8689
8690 if (TRPMHasTrap(pVCpu))
8691 hmR0VmxTrpmTrapToPendingEvent(pVCpu);
8692 uint32_t uIntrState = hmR0VmxEvaluatePendingEvent(pVCpu, pMixedCtx);
8693
8694 /*
8695 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus needs to be done with
8696 * longjmps or interrupts + preemption enabled. Event injection might also result in triple-faulting the VM.
8697 */
8698 rcStrict = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx, uIntrState, fStepping);
8699 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8700 { /* likely */ }
8701 else
8702 {
8703 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
8704 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8705 return rcStrict;
8706 }
8707
8708 /*
8709 * No longjmps to ring-3 from this point on!!!
8710 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
8711 * This also disables flushing of the R0-logger instance (if any).
8712 */
8713 VMMRZCallRing3Disable(pVCpu);
8714
8715 /*
8716 * Load the guest state bits.
8717 *
8718 * We cannot perform longjmps while loading the guest state because we do not preserve the
8719 * host/guest state (although the VMCS will be preserved) across longjmps which can cause
8720 * CPU migration.
8721 *
8722 * If we are injecting events to a real-on-v86 mode guest, we will have to update
8723 * RIP and some segment registers, i.e. hmR0VmxInjectPendingEvent()->hmR0VmxInjectEventVmcs().
8724 * Hence, loading of the guest state needs to be done -after- injection of events.
8725 */
8726 rcStrict = hmR0VmxLoadGuestStateOptimal(pVM, pVCpu, pMixedCtx);
8727 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8728 { /* likely */ }
8729 else
8730 {
8731 VMMRZCallRing3Enable(pVCpu);
8732 return rcStrict;
8733 }
8734
8735 /*
8736 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
8737 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
8738 *
8739 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
8740 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
8741 *
8742 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
8743 * executing guest code.
8744 */
8745 pVmxTransient->fEFlags = ASMIntDisableFlags();
8746
8747 if ( ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
8748 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
8749 || ( fStepping /* Optimized for the non-stepping case, so a bit of unnecessary work when stepping. */
8750 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK & ~(VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT))) )
8751 {
8752 if (!RTThreadPreemptIsPending(NIL_RTTHREAD))
8753 {
8754 pVCpu->hm.s.Event.fPending = false;
8755
8756 /*
8757 * We've injected any pending events. This is really the point of no return (to ring-3).
8758 *
8759 * Note! The caller expects to continue with interrupts & longjmps disabled on successful
8760 * returns from this function, so don't enable them here.
8761 */
8762 return VINF_SUCCESS;
8763 }
8764
8765 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
8766 rcStrict = VINF_EM_RAW_INTERRUPT;
8767 }
8768 else
8769 {
8770 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
8771 rcStrict = VINF_EM_RAW_TO_R3;
8772 }
8773
8774 ASMSetFlags(pVmxTransient->fEFlags);
8775 VMMRZCallRing3Enable(pVCpu);
8776
8777 return rcStrict;
8778}
8779
8780
8781/**
8782 * Prepares to run guest code in VT-x and we've committed to doing so. This
8783 * means there is no backing out to ring-3 or anywhere else at this
8784 * point.
8785 *
8786 * @param pVM The cross context VM structure.
8787 * @param pVCpu The cross context virtual CPU structure.
8788 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
8789 * out-of-sync. Make sure to update the required fields
8790 * before using them.
8791 * @param pVmxTransient Pointer to the VMX transient structure.
8792 *
8793 * @remarks Called with preemption disabled.
8794 * @remarks No-long-jump zone!!!
8795 */
8796static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
8797{
8798 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8799 Assert(VMMR0IsLogFlushDisabled(pVCpu));
8800 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
8801
8802 /*
8803 * Indicate start of guest execution and where poking EMT out of guest-context is recognized.
8804 */
8805 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8806 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
8807
8808#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8809 if (!CPUMIsGuestFPUStateActive(pVCpu))
8810 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8811 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
8812 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8813#endif
8814
8815 if ( pVCpu->hm.s.fPreloadGuestFpu
8816 && !CPUMIsGuestFPUStateActive(pVCpu))
8817 {
8818 if (CPUMR0LoadGuestFPU(pVM, pVCpu) == VINF_CPUM_HOST_CR0_MODIFIED)
8819 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
8820 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_CR0));
8821 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8822 }
8823
8824 /*
8825 * Lazy-update of the host MSRs values in the auto-load/store MSR area.
8826 */
8827 if ( !pVCpu->hm.s.vmx.fUpdatedHostMsrs
8828 && pVCpu->hm.s.vmx.cMsrs > 0)
8829 {
8830 hmR0VmxUpdateAutoLoadStoreHostMsrs(pVCpu);
8831 }
8832
8833 /*
8834 * Load the host state bits as we may've been preempted (only happens when
8835 * thread-context hooks are used or when hmR0VmxSetupVMRunHandler() changes pfnStartVM).
8836 * Note that the 64-on-32 switcher saves the (64-bit) host state into the VMCS and
8837 * if we change the switcher back to 32-bit, we *must* save the 32-bit host state here.
8838 * See @bugref{8432}.
8839 */
8840 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT))
8841 {
8842 int rc = hmR0VmxSaveHostState(pVM, pVCpu);
8843 AssertRC(rc);
8844 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreemptSaveHostState);
8845 }
8846 Assert(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_CONTEXT));
8847
8848 /*
8849 * Load the state shared between host and guest (FPU, debug, lazy MSRs).
8850 */
8851 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
8852 hmR0VmxLoadSharedState(pVM, pVCpu, pMixedCtx);
8853 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
8854
8855 /* Store status of the shared guest-host state at the time of VM-entry. */
8856#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
8857 if (CPUMIsGuestInLongModeEx(pMixedCtx))
8858 {
8859 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
8860 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
8861 }
8862 else
8863#endif
8864 {
8865 pVmxTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
8866 pVmxTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
8867 }
8868 pVmxTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
8869
8870 /*
8871 * Cache the TPR-shadow for checking on every VM-exit if it might have changed.
8872 */
8873 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
8874 pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR];
8875
8876 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
8877 RTCPUID idCurrentCpu = pCpu->idCpu;
8878 if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
8879 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
8880 {
8881 hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVM, pVCpu);
8882 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
8883 }
8884
8885 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
8886 hmR0VmxFlushTaggedTlb(pVCpu, pCpu); /* Invalidate the appropriate guest entries from the TLB. */
8887 Assert(idCurrentCpu == pVCpu->hm.s.idLastCpu);
8888 pVCpu->hm.s.vmx.LastError.idCurrentCpu = idCurrentCpu; /* Update the error reporting info. with the current host CPU. */
8889
8890 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
8891
8892 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
8893 to start executing. */
8894
8895 /*
8896 * Load the TSC_AUX MSR when we are not intercepting RDTSCP.
8897 */
8898 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
8899 {
8900 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8901 {
8902 bool fMsrUpdated;
8903 int rc2 = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
8904 AssertRC(rc2);
8905 Assert(HMVMXCPU_GST_IS_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS));
8906
8907 rc2 = hmR0VmxAddAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX, CPUMR0GetGuestTscAux(pVCpu), true /* fUpdateHostMsr */,
8908 &fMsrUpdated);
8909 AssertRC(rc2);
8910 Assert(fMsrUpdated || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8911
8912 /* Finally, mark that all host MSR values are updated so we don't redo it without leaving VT-x. See @bugref{6956}. */
8913 pVCpu->hm.s.vmx.fUpdatedHostMsrs = true;
8914 }
8915 else
8916 {
8917 hmR0VmxRemoveAutoLoadStoreMsr(pVCpu, MSR_K8_TSC_AUX);
8918 Assert(!pVCpu->hm.s.vmx.cMsrs || pVCpu->hm.s.vmx.fUpdatedHostMsrs);
8919 }
8920 }
8921
8922#ifdef VBOX_STRICT
8923 hmR0VmxCheckAutoLoadStoreMsrs(pVCpu);
8924 hmR0VmxCheckHostEferMsr(pVCpu);
8925 AssertRC(hmR0VmxCheckVmcsCtls(pVCpu));
8926#endif
8927#ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
8928 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
8929 if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
8930 Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
8931#endif
8932}
8933
8934
8935/**
8936 * Performs some essential restoration of state after running guest code in
8937 * VT-x.
8938 *
8939 * @param pVM The cross context VM structure.
8940 * @param pVCpu The cross context virtual CPU structure.
8941 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
8942 * out-of-sync. Make sure to update the required fields
8943 * before using them.
8944 * @param pVmxTransient Pointer to the VMX transient structure.
8945 * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
8946 *
8947 * @remarks Called with interrupts disabled, and returns with interrupts enabled!
8948 *
8949 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
8950 * unconditionally when it is safe to do so.
8951 */
8952static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
8953{
8954 NOREF(pVM);
8955
8956 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
8957
8958 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
8959 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
8960 HMVMXCPU_GST_RESET_TO(pVCpu, 0); /* Exits/longjmps to ring-3 requires saving the guest state. */
8961 pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
8962 pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
8963 pVmxTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
8964
8965 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
8966 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVCpu->hm.s.vmx.u64TSCOffset);
8967
8968 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
8969 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
8970 Assert(!ASMIntAreEnabled());
8971 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
8972
8973#ifdef HMVMX_ALWAYS_SWAP_FPU_STATE
8974 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVM, pVCpu))
8975 {
8976 hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
8977 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
8978 }
8979#endif
8980
8981#if HC_ARCH_BITS == 64
8982 pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_REQUIRED; /* Host state messed up by VT-x, we must restore. */
8983#endif
8984#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
8985 /* The 64-on-32 switcher maintains uVmcsState on its own and we need to leave it alone here. */
8986 if (pVCpu->hm.s.vmx.pfnStartVM != VMXR0SwitcherStartVM64)
8987 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8988#else
8989 pVCpu->hm.s.vmx.uVmcsState |= HMVMX_VMCS_STATE_LAUNCHED; /* Use VMRESUME instead of VMLAUNCH in the next run. */
8990#endif
8991#ifdef VBOX_STRICT
8992 hmR0VmxCheckHostEferMsr(pVCpu); /* Verify that VMRUN/VMLAUNCH didn't modify host EFER. */
8993#endif
8994 ASMSetFlags(pVmxTransient->fEFlags); /* Enable interrupts. */
8995 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
8996
8997 /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
8998 uint32_t uExitReason;
8999 int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
9000 rc |= hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
9001 AssertRC(rc);
9002 pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
9003 pVmxTransient->fVMEntryFailed = VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uEntryIntInfo);
9004
9005 /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
9006 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
9007 {
9008 Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
9009 pVmxTransient->fVMEntryFailed));
9010 return;
9011 }
9012
9013 /*
9014 * Update the VM-exit history array here even if the VM-entry failed due to:
9015 * - Invalid guest state.
9016 * - MSR loading.
9017 * - Machine-check event.
9018 *
9019 * In any of the above cases we will still have a "valid" VM-exit reason
9020 * despite @a fVMEntryFailed being false.
9021 *
9022 * See Intel spec. 26.7 "VM-Entry failures during or after loading guest state".
9023 */
9024 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmxTransient->uExitReason);
9025
9026 if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
9027 {
9028 /** @todo We can optimize this by only syncing with our force-flags when
9029 * really needed and keeping the VMCS state as it is for most
9030 * VM-exits. */
9031 /* Update the guest interruptibility-state from the VMCS. */
9032 hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
9033
9034#if defined(HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE) || defined(HMVMX_ALWAYS_SAVE_FULL_GUEST_STATE)
9035 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9036 AssertRC(rc);
9037#elif defined(HMVMX_ALWAYS_SAVE_GUEST_RFLAGS)
9038 rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
9039 AssertRC(rc);
9040#endif
9041
9042 /*
9043 * Sync the TPR shadow with our APIC state.
9044 */
9045 if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
9046 && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR])
9047 {
9048 rc = APICSetTpr(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[XAPIC_OFF_TPR]);
9049 AssertRC(rc);
9050 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
9051 }
9052 }
9053}
9054
9055
9056/**
9057 * Runs the guest code using VT-x the normal way.
9058 *
9059 * @returns VBox status code.
9060 * @param pVM The cross context VM structure.
9061 * @param pVCpu The cross context virtual CPU structure.
9062 * @param pCtx Pointer to the guest-CPU context.
9063 *
9064 * @note Mostly the same as hmR0VmxRunGuestCodeStep().
9065 */
9066static VBOXSTRICTRC hmR0VmxRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
9067{
9068 VMXTRANSIENT VmxTransient;
9069 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
9070 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
9071 uint32_t cLoops = 0;
9072
9073 for (;; cLoops++)
9074 {
9075 Assert(!HMR0SuspendPending());
9076 HMVMX_ASSERT_CPU_SAFE();
9077
9078 /* Preparatory work for running guest code, this may force us to return
9079 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
9080 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
9081 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, false /* fStepping */);
9082 if (rcStrict != VINF_SUCCESS)
9083 break;
9084
9085 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
9086 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
9087 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
9088
9089 /* Restore any residual host-state and save any bits shared between host
9090 and guest into the guest-CPU state. Re-enables interrupts! */
9091 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
9092
9093 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
9094 if (RT_SUCCESS(rcRun))
9095 { /* very likely */ }
9096 else
9097 {
9098 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
9099 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
9100 return rcRun;
9101 }
9102
9103 /* Profile the VM-exit. */
9104 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
9105 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
9106 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
9107 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
9108 HMVMX_START_EXIT_DISPATCH_PROF();
9109
9110 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
9111
9112 /* Handle the VM-exit. */
9113#ifdef HMVMX_USE_FUNCTION_TABLE
9114 rcStrict = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
9115#else
9116 rcStrict = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
9117#endif
9118 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
9119 if (rcStrict == VINF_SUCCESS)
9120 {
9121 if (cLoops <= pVM->hm.s.cMaxResumeLoops)
9122 continue; /* likely */
9123 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
9124 rcStrict = VINF_EM_RAW_INTERRUPT;
9125 }
9126 break;
9127 }
9128
9129 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
9130 return rcStrict;
9131}
9132
9133
9134
9135/** @name Execution loop for single stepping, DBGF events and expensive Dtrace
9136 * probes.
9137 *
9138 * The following few functions and associated structure contains the bloat
9139 * necessary for providing detailed debug events and dtrace probes as well as
9140 * reliable host side single stepping. This works on the principle of
9141 * "subclassing" the normal execution loop and workers. We replace the loop
9142 * method completely and override selected helpers to add necessary adjustments
9143 * to their core operation.
9144 *
9145 * The goal is to keep the "parent" code lean and mean, so as not to sacrifice
9146 * any performance for debug and analysis features.
9147 *
9148 * @{
9149 */
9150
9151/**
9152 * Transient per-VCPU debug state of VMCS and related info. we save/restore in
9153 * the debug run loop.
9154 */
9155typedef struct VMXRUNDBGSTATE
9156{
9157 /** The RIP we started executing at. This is for detecting that we stepped. */
9158 uint64_t uRipStart;
9159 /** The CS we started executing with. */
9160 uint16_t uCsStart;
9161
9162 /** Whether we've actually modified the 1st execution control field. */
9163 bool fModifiedProcCtls : 1;
9164 /** Whether we've actually modified the 2nd execution control field. */
9165 bool fModifiedProcCtls2 : 1;
9166 /** Whether we've actually modified the exception bitmap. */
9167 bool fModifiedXcptBitmap : 1;
9168
9169 /** We desire the modified the CR0 mask to be cleared. */
9170 bool fClearCr0Mask : 1;
9171 /** We desire the modified the CR4 mask to be cleared. */
9172 bool fClearCr4Mask : 1;
9173 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC. */
9174 uint32_t fCpe1Extra;
9175 /** Stuff we do not want in VMX_VMCS32_CTRL_PROC_EXEC. */
9176 uint32_t fCpe1Unwanted;
9177 /** Stuff we need in VMX_VMCS32_CTRL_PROC_EXEC2. */
9178 uint32_t fCpe2Extra;
9179 /** Extra stuff we need in VMX_VMCS32_CTRL_EXCEPTION_BITMAP. */
9180 uint32_t bmXcptExtra;
9181 /** The sequence number of the Dtrace provider settings the state was
9182 * configured against. */
9183 uint32_t uDtraceSettingsSeqNo;
9184 /** VM-exits to check (one bit per VM-exit). */
9185 uint32_t bmExitsToCheck[3];
9186
9187 /** The initial VMX_VMCS32_CTRL_PROC_EXEC value (helps with restore). */
9188 uint32_t fProcCtlsInitial;
9189 /** The initial VMX_VMCS32_CTRL_PROC_EXEC2 value (helps with restore). */
9190 uint32_t fProcCtls2Initial;
9191 /** The initial VMX_VMCS32_CTRL_EXCEPTION_BITMAP value (helps with restore). */
9192 uint32_t bmXcptInitial;
9193} VMXRUNDBGSTATE;
9194AssertCompileMemberSize(VMXRUNDBGSTATE, bmExitsToCheck, (VMX_EXIT_MAX + 1 + 31) / 32 * 4);
9195typedef VMXRUNDBGSTATE *PVMXRUNDBGSTATE;
9196
9197
9198/**
9199 * Initializes the VMXRUNDBGSTATE structure.
9200 *
9201 * @param pVCpu The cross context virtual CPU structure of the
9202 * calling EMT.
9203 * @param pCtx The CPU register context to go with @a pVCpu.
9204 * @param pDbgState The structure to initialize.
9205 */
9206DECLINLINE(void) hmR0VmxRunDebugStateInit(PVMCPU pVCpu, PCCPUMCTX pCtx, PVMXRUNDBGSTATE pDbgState)
9207{
9208 pDbgState->uRipStart = pCtx->rip;
9209 pDbgState->uCsStart = pCtx->cs.Sel;
9210
9211 pDbgState->fModifiedProcCtls = false;
9212 pDbgState->fModifiedProcCtls2 = false;
9213 pDbgState->fModifiedXcptBitmap = false;
9214 pDbgState->fClearCr0Mask = false;
9215 pDbgState->fClearCr4Mask = false;
9216 pDbgState->fCpe1Extra = 0;
9217 pDbgState->fCpe1Unwanted = 0;
9218 pDbgState->fCpe2Extra = 0;
9219 pDbgState->bmXcptExtra = 0;
9220 pDbgState->fProcCtlsInitial = pVCpu->hm.s.vmx.u32ProcCtls;
9221 pDbgState->fProcCtls2Initial = pVCpu->hm.s.vmx.u32ProcCtls2;
9222 pDbgState->bmXcptInitial = pVCpu->hm.s.vmx.u32XcptBitmap;
9223}
9224
9225
9226/**
9227 * Updates the VMSC fields with changes requested by @a pDbgState.
9228 *
9229 * This is performed after hmR0VmxPreRunGuestDebugStateUpdate as well
9230 * immediately before executing guest code, i.e. when interrupts are disabled.
9231 * We don't check status codes here as we cannot easily assert or return in the
9232 * latter case.
9233 *
9234 * @param pVCpu The cross context virtual CPU structure.
9235 * @param pDbgState The debug state.
9236 */
9237DECLINLINE(void) hmR0VmxPreRunGuestDebugStateApply(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState)
9238{
9239 /*
9240 * Ensure desired flags in VMCS control fields are set.
9241 * (Ignoring write failure here, as we're committed and it's just debug extras.)
9242 *
9243 * Note! We load the shadow CR0 & CR4 bits when we flag the clearing, so
9244 * there should be no stale data in pCtx at this point.
9245 */
9246 if ( (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Extra) != pDbgState->fCpe1Extra
9247 || (pVCpu->hm.s.vmx.u32ProcCtls & pDbgState->fCpe1Unwanted))
9248 {
9249 pVCpu->hm.s.vmx.u32ProcCtls |= pDbgState->fCpe1Extra;
9250 pVCpu->hm.s.vmx.u32ProcCtls &= ~pDbgState->fCpe1Unwanted;
9251 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
9252 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls));
9253 pDbgState->fModifiedProcCtls = true;
9254 }
9255
9256 if ((pVCpu->hm.s.vmx.u32ProcCtls2 & pDbgState->fCpe2Extra) != pDbgState->fCpe2Extra)
9257 {
9258 pVCpu->hm.s.vmx.u32ProcCtls2 |= pDbgState->fCpe2Extra;
9259 VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pVCpu->hm.s.vmx.u32ProcCtls2);
9260 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_PROC_EXEC2: %#RX32\n", pVCpu->hm.s.vmx.u32ProcCtls2));
9261 pDbgState->fModifiedProcCtls2 = true;
9262 }
9263
9264 if ((pVCpu->hm.s.vmx.u32XcptBitmap & pDbgState->bmXcptExtra) != pDbgState->bmXcptExtra)
9265 {
9266 pVCpu->hm.s.vmx.u32XcptBitmap |= pDbgState->bmXcptExtra;
9267 VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
9268 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS32_CTRL_EXCEPTION_BITMAP: %#RX32\n", pVCpu->hm.s.vmx.u32XcptBitmap));
9269 pDbgState->fModifiedXcptBitmap = true;
9270 }
9271
9272 if (pDbgState->fClearCr0Mask && pVCpu->hm.s.vmx.u32CR0Mask != 0)
9273 {
9274 pVCpu->hm.s.vmx.u32CR0Mask = 0;
9275 VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, 0);
9276 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR0_MASK: 0\n"));
9277 }
9278
9279 if (pDbgState->fClearCr4Mask && pVCpu->hm.s.vmx.u32CR4Mask != 0)
9280 {
9281 pVCpu->hm.s.vmx.u32CR4Mask = 0;
9282 VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, 0);
9283 Log6(("hmR0VmxRunDebugStateRevert: VMX_VMCS_CTRL_CR4_MASK: 0\n"));
9284 }
9285}
9286
9287
9288DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugStateRevert(PVMCPU pVCpu, PVMXRUNDBGSTATE pDbgState, VBOXSTRICTRC rcStrict)
9289{
9290 /*
9291 * Restore VM-exit control settings as we may not reenter this function the
9292 * next time around.
9293 */
9294 /* We reload the initial value, trigger what we can of recalculations the
9295 next time around. From the looks of things, that's all that's required atm. */
9296 if (pDbgState->fModifiedProcCtls)
9297 {
9298 if (!(pDbgState->fProcCtlsInitial & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT) && CPUMIsHyperDebugStateActive(pVCpu))
9299 pDbgState->fProcCtlsInitial |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT; /* Avoid assertion in hmR0VmxLeave */
9300 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pDbgState->fProcCtlsInitial);
9301 AssertRCReturn(rc2, rc2);
9302 pVCpu->hm.s.vmx.u32ProcCtls = pDbgState->fProcCtlsInitial;
9303 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0 | HM_CHANGED_GUEST_DEBUG);
9304 }
9305
9306 /* We're currently the only ones messing with this one, so just restore the
9307 cached value and reload the field. */
9308 if ( pDbgState->fModifiedProcCtls2
9309 && pVCpu->hm.s.vmx.u32ProcCtls2 != pDbgState->fProcCtls2Initial)
9310 {
9311 int rc2 = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, pDbgState->fProcCtls2Initial);
9312 AssertRCReturn(rc2, rc2);
9313 pVCpu->hm.s.vmx.u32ProcCtls2 = pDbgState->fProcCtls2Initial;
9314 }
9315
9316 /* If we've modified the exception bitmap, we restore it and trigger
9317 reloading and partial recalculation the next time around. */
9318 if (pDbgState->fModifiedXcptBitmap)
9319 {
9320 pVCpu->hm.s.vmx.u32XcptBitmap = pDbgState->bmXcptInitial;
9321 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS | HM_CHANGED_GUEST_CR0);
9322 }
9323
9324 /* We assume hmR0VmxLoadSharedCR0 will recalculate and load the CR0 mask. */
9325 if (pDbgState->fClearCr0Mask)
9326 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9327
9328 /* We assume hmR0VmxLoadGuestCR3AndCR4 will recalculate and load the CR4 mask. */
9329 if (pDbgState->fClearCr4Mask)
9330 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9331
9332 return rcStrict;
9333}
9334
9335
9336/**
9337 * Configures VM-exit controls for current DBGF and DTrace settings.
9338 *
9339 * This updates @a pDbgState and the VMCS execution control fields to reflect
9340 * the necessary VM-exits demanded by DBGF and DTrace.
9341 *
9342 * @param pVM The cross context VM structure.
9343 * @param pVCpu The cross context virtual CPU structure.
9344 * @param pCtx Pointer to the guest-CPU context.
9345 * @param pDbgState The debug state.
9346 * @param pVmxTransient Pointer to the VMX transient structure. May update
9347 * fUpdateTscOffsettingAndPreemptTimer.
9348 */
9349static void hmR0VmxPreRunGuestDebugStateUpdate(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx,
9350 PVMXRUNDBGSTATE pDbgState, PVMXTRANSIENT pVmxTransient)
9351{
9352 /*
9353 * Take down the dtrace serial number so we can spot changes.
9354 */
9355 pDbgState->uDtraceSettingsSeqNo = VBOXVMM_GET_SETTINGS_SEQ_NO();
9356 ASMCompilerBarrier();
9357
9358 /*
9359 * We'll rebuild most of the middle block of data members (holding the
9360 * current settings) as we go along here, so start by clearing it all.
9361 */
9362 pDbgState->bmXcptExtra = 0;
9363 pDbgState->fCpe1Extra = 0;
9364 pDbgState->fCpe1Unwanted = 0;
9365 pDbgState->fCpe2Extra = 0;
9366 for (unsigned i = 0; i < RT_ELEMENTS(pDbgState->bmExitsToCheck); i++)
9367 pDbgState->bmExitsToCheck[i] = 0;
9368
9369 /*
9370 * Software interrupts (INT XXh) - no idea how to trigger these...
9371 */
9372 if ( DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_INTERRUPT_SOFTWARE)
9373 || VBOXVMM_INT_SOFTWARE_ENABLED())
9374 {
9375 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9376 }
9377
9378 /*
9379 * INT3 breakpoints - triggered by #BP exceptions.
9380 */
9381 if (pVM->dbgf.ro.cEnabledInt3Breakpoints > 0)
9382 pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9383
9384 /*
9385 * Exception bitmap and XCPT events+probes.
9386 */
9387 for (int iXcpt = 0; iXcpt < (DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST + 1); iXcpt++)
9388 if (DBGF_IS_EVENT_ENABLED(pVM, (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + iXcpt)))
9389 pDbgState->bmXcptExtra |= RT_BIT_32(iXcpt);
9390
9391 if (VBOXVMM_XCPT_DE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DE);
9392 if (VBOXVMM_XCPT_DB_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DB);
9393 if (VBOXVMM_XCPT_BP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BP);
9394 if (VBOXVMM_XCPT_OF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_OF);
9395 if (VBOXVMM_XCPT_BR_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_BR);
9396 if (VBOXVMM_XCPT_UD_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_UD);
9397 if (VBOXVMM_XCPT_NM_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NM);
9398 if (VBOXVMM_XCPT_DF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_DF);
9399 if (VBOXVMM_XCPT_TS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_TS);
9400 if (VBOXVMM_XCPT_NP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_NP);
9401 if (VBOXVMM_XCPT_SS_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SS);
9402 if (VBOXVMM_XCPT_GP_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_GP);
9403 if (VBOXVMM_XCPT_PF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_PF);
9404 if (VBOXVMM_XCPT_MF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_MF);
9405 if (VBOXVMM_XCPT_AC_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_AC);
9406 if (VBOXVMM_XCPT_XF_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_XF);
9407 if (VBOXVMM_XCPT_VE_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_VE);
9408 if (VBOXVMM_XCPT_SX_ENABLED()) pDbgState->bmXcptExtra |= RT_BIT_32(X86_XCPT_SX);
9409
9410 if (pDbgState->bmXcptExtra)
9411 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XCPT_OR_NMI);
9412
9413 /*
9414 * Process events and probes for VM-exits, making sure we get the wanted VM-exits.
9415 *
9416 * Note! This is the reverse of waft hmR0VmxHandleExitDtraceEvents does.
9417 * So, when adding/changing/removing please don't forget to update it.
9418 *
9419 * Some of the macros are picking up local variables to save horizontal space,
9420 * (being able to see it in a table is the lesser evil here).
9421 */
9422#define IS_EITHER_ENABLED(a_pVM, a_EventSubName) \
9423 ( DBGF_IS_EVENT_ENABLED(a_pVM, RT_CONCAT(DBGFEVENT_, a_EventSubName)) \
9424 || RT_CONCAT3(VBOXVMM_, a_EventSubName, _ENABLED)() )
9425#define SET_ONLY_XBM_IF_EITHER_EN(a_EventSubName, a_uExit) \
9426 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9427 { AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9428 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9429 } else do { } while (0)
9430#define SET_CPE1_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec) \
9431 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9432 { \
9433 (pDbgState)->fCpe1Extra |= (a_fCtrlProcExec); \
9434 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9435 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9436 } else do { } while (0)
9437#define SET_CPEU_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fUnwantedCtrlProcExec) \
9438 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9439 { \
9440 (pDbgState)->fCpe1Unwanted |= (a_fUnwantedCtrlProcExec); \
9441 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9442 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9443 } else do { } while (0)
9444#define SET_CPE2_XBM_IF_EITHER_EN(a_EventSubName, a_uExit, a_fCtrlProcExec2) \
9445 if (IS_EITHER_ENABLED(pVM, a_EventSubName)) \
9446 { \
9447 (pDbgState)->fCpe2Extra |= (a_fCtrlProcExec2); \
9448 AssertCompile((unsigned)(a_uExit) < sizeof(pDbgState->bmExitsToCheck) * 8); \
9449 ASMBitSet((pDbgState)->bmExitsToCheck, a_uExit); \
9450 } else do { } while (0)
9451
9452 SET_ONLY_XBM_IF_EITHER_EN(EXIT_TASK_SWITCH, VMX_EXIT_TASK_SWITCH); /* unconditional */
9453 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_VIOLATION, VMX_EXIT_EPT_VIOLATION); /* unconditional */
9454 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_EPT_MISCONFIG, VMX_EXIT_EPT_MISCONFIG); /* unconditional (unless #VE) */
9455 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_ACCESS, VMX_EXIT_APIC_ACCESS); /* feature dependent, nothing to enable here */
9456 SET_ONLY_XBM_IF_EITHER_EN(EXIT_VMX_VAPIC_WRITE, VMX_EXIT_APIC_WRITE); /* feature dependent, nothing to enable here */
9457
9458 SET_ONLY_XBM_IF_EITHER_EN(INSTR_CPUID, VMX_EXIT_CPUID); /* unconditional */
9459 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CPUID, VMX_EXIT_CPUID);
9460 SET_ONLY_XBM_IF_EITHER_EN(INSTR_GETSEC, VMX_EXIT_GETSEC); /* unconditional */
9461 SET_ONLY_XBM_IF_EITHER_EN( EXIT_GETSEC, VMX_EXIT_GETSEC);
9462 SET_CPE1_XBM_IF_EITHER_EN(INSTR_HALT, VMX_EXIT_HLT, VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT); /* paranoia */
9463 SET_ONLY_XBM_IF_EITHER_EN( EXIT_HALT, VMX_EXIT_HLT);
9464 SET_ONLY_XBM_IF_EITHER_EN(INSTR_INVD, VMX_EXIT_INVD); /* unconditional */
9465 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVD, VMX_EXIT_INVD);
9466 SET_CPE1_XBM_IF_EITHER_EN(INSTR_INVLPG, VMX_EXIT_INVLPG, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9467 SET_ONLY_XBM_IF_EITHER_EN( EXIT_INVLPG, VMX_EXIT_INVLPG);
9468 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDPMC, VMX_EXIT_RDPMC, VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT);
9469 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDPMC, VMX_EXIT_RDPMC);
9470 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSC, VMX_EXIT_RDTSC, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9471 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSC, VMX_EXIT_RDTSC);
9472 SET_ONLY_XBM_IF_EITHER_EN(INSTR_RSM, VMX_EXIT_RSM); /* unconditional */
9473 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RSM, VMX_EXIT_RSM);
9474 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMM_CALL, VMX_EXIT_VMCALL); /* unconditional */
9475 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMM_CALL, VMX_EXIT_VMCALL);
9476 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMCLEAR, VMX_EXIT_VMCLEAR); /* unconditional */
9477 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMCLEAR, VMX_EXIT_VMCLEAR);
9478 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH); /* unconditional */
9479 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMLAUNCH, VMX_EXIT_VMLAUNCH);
9480 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRLD, VMX_EXIT_VMPTRLD); /* unconditional */
9481 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRLD, VMX_EXIT_VMPTRLD);
9482 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMPTRST, VMX_EXIT_VMPTRST); /* unconditional */
9483 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMPTRST, VMX_EXIT_VMPTRST);
9484 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMREAD, VMX_EXIT_VMREAD); /* unconditional */
9485 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMREAD, VMX_EXIT_VMREAD);
9486 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMRESUME, VMX_EXIT_VMRESUME); /* unconditional */
9487 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMRESUME, VMX_EXIT_VMRESUME);
9488 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMWRITE, VMX_EXIT_VMWRITE); /* unconditional */
9489 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMWRITE, VMX_EXIT_VMWRITE);
9490 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXOFF, VMX_EXIT_VMXOFF); /* unconditional */
9491 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXOFF, VMX_EXIT_VMXOFF);
9492 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMXON, VMX_EXIT_VMXON); /* unconditional */
9493 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMXON, VMX_EXIT_VMXON);
9494
9495 if ( IS_EITHER_ENABLED(pVM, INSTR_CRX_READ)
9496 || IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9497 {
9498 int rc2 = hmR0VmxSaveGuestCR0(pVCpu, pCtx);
9499 rc2 |= hmR0VmxSaveGuestCR4(pVCpu, pCtx);
9500 rc2 |= hmR0VmxSaveGuestApicState(pVCpu, pCtx);
9501 AssertRC(rc2);
9502
9503#if 0 /** @todo fix me */
9504 pDbgState->fClearCr0Mask = true;
9505 pDbgState->fClearCr4Mask = true;
9506#endif
9507 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_READ))
9508 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT;
9509 if (IS_EITHER_ENABLED(pVM, INSTR_CRX_WRITE))
9510 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT;
9511 pDbgState->fCpe1Unwanted |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* risky? */
9512 /* Note! We currently don't use VMX_VMCS32_CTRL_CR3_TARGET_COUNT. It would
9513 require clearing here and in the loop if we start using it. */
9514 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_CRX);
9515 }
9516 else
9517 {
9518 if (pDbgState->fClearCr0Mask)
9519 {
9520 pDbgState->fClearCr0Mask = false;
9521 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
9522 }
9523 if (pDbgState->fClearCr4Mask)
9524 {
9525 pDbgState->fClearCr4Mask = false;
9526 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
9527 }
9528 }
9529 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_READ, VMX_EXIT_MOV_CRX);
9530 SET_ONLY_XBM_IF_EITHER_EN( EXIT_CRX_WRITE, VMX_EXIT_MOV_CRX);
9531
9532 if ( IS_EITHER_ENABLED(pVM, INSTR_DRX_READ)
9533 || IS_EITHER_ENABLED(pVM, INSTR_DRX_WRITE))
9534 {
9535 /** @todo later, need to fix handler as it assumes this won't usually happen. */
9536 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_MOV_DRX);
9537 }
9538 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_READ, VMX_EXIT_MOV_DRX);
9539 SET_ONLY_XBM_IF_EITHER_EN( EXIT_DRX_WRITE, VMX_EXIT_MOV_DRX);
9540
9541 SET_CPEU_XBM_IF_EITHER_EN(INSTR_RDMSR, VMX_EXIT_RDMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS); /* risky clearing this? */
9542 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDMSR, VMX_EXIT_RDMSR);
9543 SET_CPEU_XBM_IF_EITHER_EN(INSTR_WRMSR, VMX_EXIT_WRMSR, VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS);
9544 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WRMSR, VMX_EXIT_WRMSR);
9545 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MWAIT, VMX_EXIT_MWAIT, VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT); /* paranoia */
9546 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MWAIT, VMX_EXIT_MWAIT);
9547 SET_CPE1_XBM_IF_EITHER_EN(INSTR_MONITOR, VMX_EXIT_MONITOR, VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT); /* paranoia */
9548 SET_ONLY_XBM_IF_EITHER_EN( EXIT_MONITOR, VMX_EXIT_MONITOR);
9549#if 0 /** @todo too slow, fix handler. */
9550 SET_CPE1_XBM_IF_EITHER_EN(INSTR_PAUSE, VMX_EXIT_PAUSE, VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT);
9551#endif
9552 SET_ONLY_XBM_IF_EITHER_EN( EXIT_PAUSE, VMX_EXIT_PAUSE);
9553
9554 if ( IS_EITHER_ENABLED(pVM, INSTR_SGDT)
9555 || IS_EITHER_ENABLED(pVM, INSTR_SIDT)
9556 || IS_EITHER_ENABLED(pVM, INSTR_LGDT)
9557 || IS_EITHER_ENABLED(pVM, INSTR_LIDT))
9558 {
9559 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9560 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_XDTR_ACCESS);
9561 }
9562 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SGDT, VMX_EXIT_XDTR_ACCESS);
9563 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SIDT, VMX_EXIT_XDTR_ACCESS);
9564 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LGDT, VMX_EXIT_XDTR_ACCESS);
9565 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LIDT, VMX_EXIT_XDTR_ACCESS);
9566
9567 if ( IS_EITHER_ENABLED(pVM, INSTR_SLDT)
9568 || IS_EITHER_ENABLED(pVM, INSTR_STR)
9569 || IS_EITHER_ENABLED(pVM, INSTR_LLDT)
9570 || IS_EITHER_ENABLED(pVM, INSTR_LTR))
9571 {
9572 pDbgState->fCpe2Extra |= VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT;
9573 ASMBitSet(pDbgState->bmExitsToCheck, VMX_EXIT_TR_ACCESS);
9574 }
9575 SET_ONLY_XBM_IF_EITHER_EN( EXIT_SLDT, VMX_EXIT_TR_ACCESS);
9576 SET_ONLY_XBM_IF_EITHER_EN( EXIT_STR, VMX_EXIT_TR_ACCESS);
9577 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LLDT, VMX_EXIT_TR_ACCESS);
9578 SET_ONLY_XBM_IF_EITHER_EN( EXIT_LTR, VMX_EXIT_TR_ACCESS);
9579
9580 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVEPT, VMX_EXIT_INVEPT); /* unconditional */
9581 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVEPT, VMX_EXIT_INVEPT);
9582 SET_CPE1_XBM_IF_EITHER_EN(INSTR_RDTSCP, VMX_EXIT_RDTSCP, VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT);
9583 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDTSCP, VMX_EXIT_RDTSCP);
9584 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_INVVPID, VMX_EXIT_INVVPID); /* unconditional */
9585 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVVPID, VMX_EXIT_INVVPID);
9586 SET_CPE2_XBM_IF_EITHER_EN(INSTR_WBINVD, VMX_EXIT_WBINVD, VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT);
9587 SET_ONLY_XBM_IF_EITHER_EN( EXIT_WBINVD, VMX_EXIT_WBINVD);
9588 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSETBV, VMX_EXIT_XSETBV); /* unconditional */
9589 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XSETBV, VMX_EXIT_XSETBV);
9590 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDRAND, VMX_EXIT_RDRAND, VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT);
9591 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDRAND, VMX_EXIT_RDRAND);
9592 SET_CPE1_XBM_IF_EITHER_EN(INSTR_VMX_INVPCID, VMX_EXIT_INVPCID, VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT);
9593 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_INVPCID, VMX_EXIT_INVPCID);
9594 SET_ONLY_XBM_IF_EITHER_EN(INSTR_VMX_VMFUNC, VMX_EXIT_VMFUNC); /* unconditional for the current setup */
9595 SET_ONLY_XBM_IF_EITHER_EN( EXIT_VMX_VMFUNC, VMX_EXIT_VMFUNC);
9596 SET_CPE2_XBM_IF_EITHER_EN(INSTR_RDSEED, VMX_EXIT_RDSEED, VMX_VMCS_CTRL_PROC_EXEC2_RDSEED_EXIT);
9597 SET_ONLY_XBM_IF_EITHER_EN( EXIT_RDSEED, VMX_EXIT_RDSEED);
9598 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XSAVES, VMX_EXIT_XSAVES); /* unconditional (enabled by host, guest cfg) */
9599 SET_ONLY_XBM_IF_EITHER_EN(EXIT_XSAVES, VMX_EXIT_XSAVES);
9600 SET_ONLY_XBM_IF_EITHER_EN(INSTR_XRSTORS, VMX_EXIT_XRSTORS); /* unconditional (enabled by host, guest cfg) */
9601 SET_ONLY_XBM_IF_EITHER_EN( EXIT_XRSTORS, VMX_EXIT_XRSTORS);
9602
9603#undef IS_EITHER_ENABLED
9604#undef SET_ONLY_XBM_IF_EITHER_EN
9605#undef SET_CPE1_XBM_IF_EITHER_EN
9606#undef SET_CPEU_XBM_IF_EITHER_EN
9607#undef SET_CPE2_XBM_IF_EITHER_EN
9608
9609 /*
9610 * Sanitize the control stuff.
9611 */
9612 pDbgState->fCpe2Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls2.n.allowed1;
9613 if (pDbgState->fCpe2Extra)
9614 pDbgState->fCpe1Extra |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
9615 pDbgState->fCpe1Extra &= pVM->hm.s.vmx.Msrs.VmxProcCtls.n.allowed1;
9616 pDbgState->fCpe1Unwanted &= ~pVM->hm.s.vmx.Msrs.VmxProcCtls.n.disallowed0;
9617 if (pVCpu->hm.s.fDebugWantRdTscExit != RT_BOOL(pDbgState->fCpe1Extra & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
9618 {
9619 pVCpu->hm.s.fDebugWantRdTscExit ^= true;
9620 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
9621 }
9622
9623 Log6(("HM: debug state: cpe1=%#RX32 cpeu=%#RX32 cpe2=%#RX32%s%s\n",
9624 pDbgState->fCpe1Extra, pDbgState->fCpe1Unwanted, pDbgState->fCpe2Extra,
9625 pDbgState->fClearCr0Mask ? " clr-cr0" : "",
9626 pDbgState->fClearCr4Mask ? " clr-cr4" : ""));
9627}
9628
9629
9630/**
9631 * Fires off DBGF events and dtrace probes for a VM-exit, when it's
9632 * appropriate.
9633 *
9634 * The caller has checked the VM-exit against the
9635 * VMXRUNDBGSTATE::bmExitsToCheck bitmap. The caller has checked for NMIs
9636 * already, so we don't have to do that either.
9637 *
9638 * @returns Strict VBox status code (i.e. informational status codes too).
9639 * @param pVM The cross context VM structure.
9640 * @param pVCpu The cross context virtual CPU structure.
9641 * @param pMixedCtx Pointer to the guest-CPU context.
9642 * @param pVmxTransient Pointer to the VMX-transient structure.
9643 * @param uExitReason The VM-exit reason.
9644 *
9645 * @remarks The name of this function is displayed by dtrace, so keep it short
9646 * and to the point. No longer than 33 chars long, please.
9647 */
9648static VBOXSTRICTRC hmR0VmxHandleExitDtraceEvents(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx,
9649 PVMXTRANSIENT pVmxTransient, uint32_t uExitReason)
9650{
9651 /*
9652 * Translate the event into a DBGF event (enmEvent + uEventArg) and at the
9653 * same time check whether any corresponding Dtrace event is enabled (fDtrace).
9654 *
9655 * Note! This is the reverse operation of what hmR0VmxPreRunGuestDebugStateUpdate
9656 * does. Must add/change/remove both places. Same ordering, please.
9657 *
9658 * Added/removed events must also be reflected in the next section
9659 * where we dispatch dtrace events.
9660 */
9661 bool fDtrace1 = false;
9662 bool fDtrace2 = false;
9663 DBGFEVENTTYPE enmEvent1 = DBGFEVENT_END;
9664 DBGFEVENTTYPE enmEvent2 = DBGFEVENT_END;
9665 uint32_t uEventArg = 0;
9666#define SET_EXIT(a_EventSubName) \
9667 do { \
9668 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9669 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9670 } while (0)
9671#define SET_BOTH(a_EventSubName) \
9672 do { \
9673 enmEvent1 = RT_CONCAT(DBGFEVENT_INSTR_, a_EventSubName); \
9674 enmEvent2 = RT_CONCAT(DBGFEVENT_EXIT_, a_EventSubName); \
9675 fDtrace1 = RT_CONCAT3(VBOXVMM_INSTR_, a_EventSubName, _ENABLED)(); \
9676 fDtrace2 = RT_CONCAT3(VBOXVMM_EXIT_, a_EventSubName, _ENABLED)(); \
9677 } while (0)
9678 switch (uExitReason)
9679 {
9680 case VMX_EXIT_MTF:
9681 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
9682
9683 case VMX_EXIT_XCPT_OR_NMI:
9684 {
9685 uint8_t const idxVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
9686 switch (VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo))
9687 {
9688 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
9689 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT:
9690 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT:
9691 if (idxVector <= (unsigned)(DBGFEVENT_XCPT_LAST - DBGFEVENT_XCPT_FIRST))
9692 {
9693 if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uExitIntInfo))
9694 {
9695 hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
9696 uEventArg = pVmxTransient->uExitIntErrorCode;
9697 }
9698 enmEvent1 = (DBGFEVENTTYPE)(DBGFEVENT_XCPT_FIRST + idxVector);
9699 switch (enmEvent1)
9700 {
9701 case DBGFEVENT_XCPT_DE: fDtrace1 = VBOXVMM_XCPT_DE_ENABLED(); break;
9702 case DBGFEVENT_XCPT_DB: fDtrace1 = VBOXVMM_XCPT_DB_ENABLED(); break;
9703 case DBGFEVENT_XCPT_BP: fDtrace1 = VBOXVMM_XCPT_BP_ENABLED(); break;
9704 case DBGFEVENT_XCPT_OF: fDtrace1 = VBOXVMM_XCPT_OF_ENABLED(); break;
9705 case DBGFEVENT_XCPT_BR: fDtrace1 = VBOXVMM_XCPT_BR_ENABLED(); break;
9706 case DBGFEVENT_XCPT_UD: fDtrace1 = VBOXVMM_XCPT_UD_ENABLED(); break;
9707 case DBGFEVENT_XCPT_NM: fDtrace1 = VBOXVMM_XCPT_NM_ENABLED(); break;
9708 case DBGFEVENT_XCPT_DF: fDtrace1 = VBOXVMM_XCPT_DF_ENABLED(); break;
9709 case DBGFEVENT_XCPT_TS: fDtrace1 = VBOXVMM_XCPT_TS_ENABLED(); break;
9710 case DBGFEVENT_XCPT_NP: fDtrace1 = VBOXVMM_XCPT_NP_ENABLED(); break;
9711 case DBGFEVENT_XCPT_SS: fDtrace1 = VBOXVMM_XCPT_SS_ENABLED(); break;
9712 case DBGFEVENT_XCPT_GP: fDtrace1 = VBOXVMM_XCPT_GP_ENABLED(); break;
9713 case DBGFEVENT_XCPT_PF: fDtrace1 = VBOXVMM_XCPT_PF_ENABLED(); break;
9714 case DBGFEVENT_XCPT_MF: fDtrace1 = VBOXVMM_XCPT_MF_ENABLED(); break;
9715 case DBGFEVENT_XCPT_AC: fDtrace1 = VBOXVMM_XCPT_AC_ENABLED(); break;
9716 case DBGFEVENT_XCPT_XF: fDtrace1 = VBOXVMM_XCPT_XF_ENABLED(); break;
9717 case DBGFEVENT_XCPT_VE: fDtrace1 = VBOXVMM_XCPT_VE_ENABLED(); break;
9718 case DBGFEVENT_XCPT_SX: fDtrace1 = VBOXVMM_XCPT_SX_ENABLED(); break;
9719 default: break;
9720 }
9721 }
9722 else
9723 AssertFailed();
9724 break;
9725
9726 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT:
9727 uEventArg = idxVector;
9728 enmEvent1 = DBGFEVENT_INTERRUPT_SOFTWARE;
9729 fDtrace1 = VBOXVMM_INT_SOFTWARE_ENABLED();
9730 break;
9731 }
9732 break;
9733 }
9734
9735 case VMX_EXIT_TRIPLE_FAULT:
9736 enmEvent1 = DBGFEVENT_TRIPLE_FAULT;
9737 //fDtrace1 = VBOXVMM_EXIT_TRIPLE_FAULT_ENABLED();
9738 break;
9739 case VMX_EXIT_TASK_SWITCH: SET_EXIT(TASK_SWITCH); break;
9740 case VMX_EXIT_EPT_VIOLATION: SET_EXIT(VMX_EPT_VIOLATION); break;
9741 case VMX_EXIT_EPT_MISCONFIG: SET_EXIT(VMX_EPT_MISCONFIG); break;
9742 case VMX_EXIT_APIC_ACCESS: SET_EXIT(VMX_VAPIC_ACCESS); break;
9743 case VMX_EXIT_APIC_WRITE: SET_EXIT(VMX_VAPIC_WRITE); break;
9744
9745 /* Instruction specific VM-exits: */
9746 case VMX_EXIT_CPUID: SET_BOTH(CPUID); break;
9747 case VMX_EXIT_GETSEC: SET_BOTH(GETSEC); break;
9748 case VMX_EXIT_HLT: SET_BOTH(HALT); break;
9749 case VMX_EXIT_INVD: SET_BOTH(INVD); break;
9750 case VMX_EXIT_INVLPG: SET_BOTH(INVLPG); break;
9751 case VMX_EXIT_RDPMC: SET_BOTH(RDPMC); break;
9752 case VMX_EXIT_RDTSC: SET_BOTH(RDTSC); break;
9753 case VMX_EXIT_RSM: SET_BOTH(RSM); break;
9754 case VMX_EXIT_VMCALL: SET_BOTH(VMM_CALL); break;
9755 case VMX_EXIT_VMCLEAR: SET_BOTH(VMX_VMCLEAR); break;
9756 case VMX_EXIT_VMLAUNCH: SET_BOTH(VMX_VMLAUNCH); break;
9757 case VMX_EXIT_VMPTRLD: SET_BOTH(VMX_VMPTRLD); break;
9758 case VMX_EXIT_VMPTRST: SET_BOTH(VMX_VMPTRST); break;
9759 case VMX_EXIT_VMREAD: SET_BOTH(VMX_VMREAD); break;
9760 case VMX_EXIT_VMRESUME: SET_BOTH(VMX_VMRESUME); break;
9761 case VMX_EXIT_VMWRITE: SET_BOTH(VMX_VMWRITE); break;
9762 case VMX_EXIT_VMXOFF: SET_BOTH(VMX_VMXOFF); break;
9763 case VMX_EXIT_VMXON: SET_BOTH(VMX_VMXON); break;
9764 case VMX_EXIT_MOV_CRX:
9765 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9766/** @todo r=bird: I feel these macros aren't very descriptive and needs to be at least 30 chars longer! ;-)
9767* Sensible abbreviations strongly recommended here because even with 130 columns this stuff get too wide! */
9768 if ( VMX_EXIT_QUALIFICATION_CRX_ACCESS(pVmxTransient->uExitQualification)
9769 == VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ)
9770 SET_BOTH(CRX_READ);
9771 else
9772 SET_BOTH(CRX_WRITE);
9773 uEventArg = VMX_EXIT_QUALIFICATION_CRX_REGISTER(pVmxTransient->uExitQualification);
9774 break;
9775 case VMX_EXIT_MOV_DRX:
9776 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9777 if ( VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification)
9778 == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_READ)
9779 SET_BOTH(DRX_READ);
9780 else
9781 SET_BOTH(DRX_WRITE);
9782 uEventArg = VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification);
9783 break;
9784 case VMX_EXIT_RDMSR: SET_BOTH(RDMSR); break;
9785 case VMX_EXIT_WRMSR: SET_BOTH(WRMSR); break;
9786 case VMX_EXIT_MWAIT: SET_BOTH(MWAIT); break;
9787 case VMX_EXIT_MONITOR: SET_BOTH(MONITOR); break;
9788 case VMX_EXIT_PAUSE: SET_BOTH(PAUSE); break;
9789 case VMX_EXIT_XDTR_ACCESS:
9790 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9791 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_XDTR_INSINFO_INSTR_ID))
9792 {
9793 case VMX_XDTR_INSINFO_II_SGDT: SET_BOTH(SGDT); break;
9794 case VMX_XDTR_INSINFO_II_SIDT: SET_BOTH(SIDT); break;
9795 case VMX_XDTR_INSINFO_II_LGDT: SET_BOTH(LGDT); break;
9796 case VMX_XDTR_INSINFO_II_LIDT: SET_BOTH(LIDT); break;
9797 }
9798 break;
9799
9800 case VMX_EXIT_TR_ACCESS:
9801 hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
9802 switch (RT_BF_GET(pVmxTransient->ExitInstrInfo.u, VMX_YYTR_INSINFO_INSTR_ID))
9803 {
9804 case VMX_YYTR_INSINFO_II_SLDT: SET_BOTH(SLDT); break;
9805 case VMX_YYTR_INSINFO_II_STR: SET_BOTH(STR); break;
9806 case VMX_YYTR_INSINFO_II_LLDT: SET_BOTH(LLDT); break;
9807 case VMX_YYTR_INSINFO_II_LTR: SET_BOTH(LTR); break;
9808 }
9809 break;
9810
9811 case VMX_EXIT_INVEPT: SET_BOTH(VMX_INVEPT); break;
9812 case VMX_EXIT_RDTSCP: SET_BOTH(RDTSCP); break;
9813 case VMX_EXIT_INVVPID: SET_BOTH(VMX_INVVPID); break;
9814 case VMX_EXIT_WBINVD: SET_BOTH(WBINVD); break;
9815 case VMX_EXIT_XSETBV: SET_BOTH(XSETBV); break;
9816 case VMX_EXIT_RDRAND: SET_BOTH(RDRAND); break;
9817 case VMX_EXIT_INVPCID: SET_BOTH(VMX_INVPCID); break;
9818 case VMX_EXIT_VMFUNC: SET_BOTH(VMX_VMFUNC); break;
9819 case VMX_EXIT_RDSEED: SET_BOTH(RDSEED); break;
9820 case VMX_EXIT_XSAVES: SET_BOTH(XSAVES); break;
9821 case VMX_EXIT_XRSTORS: SET_BOTH(XRSTORS); break;
9822
9823 /* Events that aren't relevant at this point. */
9824 case VMX_EXIT_EXT_INT:
9825 case VMX_EXIT_INT_WINDOW:
9826 case VMX_EXIT_NMI_WINDOW:
9827 case VMX_EXIT_TPR_BELOW_THRESHOLD:
9828 case VMX_EXIT_PREEMPT_TIMER:
9829 case VMX_EXIT_IO_INSTR:
9830 break;
9831
9832 /* Errors and unexpected events. */
9833 case VMX_EXIT_INIT_SIGNAL:
9834 case VMX_EXIT_SIPI:
9835 case VMX_EXIT_IO_SMI:
9836 case VMX_EXIT_SMI:
9837 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
9838 case VMX_EXIT_ERR_MSR_LOAD:
9839 case VMX_EXIT_ERR_MACHINE_CHECK:
9840 break;
9841
9842 default:
9843 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
9844 break;
9845 }
9846#undef SET_BOTH
9847#undef SET_EXIT
9848
9849 /*
9850 * Dtrace tracepoints go first. We do them here at once so we don't
9851 * have to copy the guest state saving and stuff a few dozen times.
9852 * Down side is that we've got to repeat the switch, though this time
9853 * we use enmEvent since the probes are a subset of what DBGF does.
9854 */
9855 if (fDtrace1 || fDtrace2)
9856 {
9857 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
9858 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
9859 switch (enmEvent1)
9860 {
9861 /** @todo consider which extra parameters would be helpful for each probe. */
9862 case DBGFEVENT_END: break;
9863 case DBGFEVENT_XCPT_DE: VBOXVMM_XCPT_DE(pVCpu, pMixedCtx); break;
9864 case DBGFEVENT_XCPT_DB: VBOXVMM_XCPT_DB(pVCpu, pMixedCtx, pMixedCtx->dr[6]); break;
9865 case DBGFEVENT_XCPT_BP: VBOXVMM_XCPT_BP(pVCpu, pMixedCtx); break;
9866 case DBGFEVENT_XCPT_OF: VBOXVMM_XCPT_OF(pVCpu, pMixedCtx); break;
9867 case DBGFEVENT_XCPT_BR: VBOXVMM_XCPT_BR(pVCpu, pMixedCtx); break;
9868 case DBGFEVENT_XCPT_UD: VBOXVMM_XCPT_UD(pVCpu, pMixedCtx); break;
9869 case DBGFEVENT_XCPT_NM: VBOXVMM_XCPT_NM(pVCpu, pMixedCtx); break;
9870 case DBGFEVENT_XCPT_DF: VBOXVMM_XCPT_DF(pVCpu, pMixedCtx); break;
9871 case DBGFEVENT_XCPT_TS: VBOXVMM_XCPT_TS(pVCpu, pMixedCtx, uEventArg); break;
9872 case DBGFEVENT_XCPT_NP: VBOXVMM_XCPT_NP(pVCpu, pMixedCtx, uEventArg); break;
9873 case DBGFEVENT_XCPT_SS: VBOXVMM_XCPT_SS(pVCpu, pMixedCtx, uEventArg); break;
9874 case DBGFEVENT_XCPT_GP: VBOXVMM_XCPT_GP(pVCpu, pMixedCtx, uEventArg); break;
9875 case DBGFEVENT_XCPT_PF: VBOXVMM_XCPT_PF(pVCpu, pMixedCtx, uEventArg, pMixedCtx->cr2); break;
9876 case DBGFEVENT_XCPT_MF: VBOXVMM_XCPT_MF(pVCpu, pMixedCtx); break;
9877 case DBGFEVENT_XCPT_AC: VBOXVMM_XCPT_AC(pVCpu, pMixedCtx); break;
9878 case DBGFEVENT_XCPT_XF: VBOXVMM_XCPT_XF(pVCpu, pMixedCtx); break;
9879 case DBGFEVENT_XCPT_VE: VBOXVMM_XCPT_VE(pVCpu, pMixedCtx); break;
9880 case DBGFEVENT_XCPT_SX: VBOXVMM_XCPT_SX(pVCpu, pMixedCtx, uEventArg); break;
9881 case DBGFEVENT_INTERRUPT_SOFTWARE: VBOXVMM_INT_SOFTWARE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9882 case DBGFEVENT_INSTR_CPUID: VBOXVMM_INSTR_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
9883 case DBGFEVENT_INSTR_GETSEC: VBOXVMM_INSTR_GETSEC(pVCpu, pMixedCtx); break;
9884 case DBGFEVENT_INSTR_HALT: VBOXVMM_INSTR_HALT(pVCpu, pMixedCtx); break;
9885 case DBGFEVENT_INSTR_INVD: VBOXVMM_INSTR_INVD(pVCpu, pMixedCtx); break;
9886 case DBGFEVENT_INSTR_INVLPG: VBOXVMM_INSTR_INVLPG(pVCpu, pMixedCtx); break;
9887 case DBGFEVENT_INSTR_RDPMC: VBOXVMM_INSTR_RDPMC(pVCpu, pMixedCtx); break;
9888 case DBGFEVENT_INSTR_RDTSC: VBOXVMM_INSTR_RDTSC(pVCpu, pMixedCtx); break;
9889 case DBGFEVENT_INSTR_RSM: VBOXVMM_INSTR_RSM(pVCpu, pMixedCtx); break;
9890 case DBGFEVENT_INSTR_CRX_READ: VBOXVMM_INSTR_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9891 case DBGFEVENT_INSTR_CRX_WRITE: VBOXVMM_INSTR_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9892 case DBGFEVENT_INSTR_DRX_READ: VBOXVMM_INSTR_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9893 case DBGFEVENT_INSTR_DRX_WRITE: VBOXVMM_INSTR_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9894 case DBGFEVENT_INSTR_RDMSR: VBOXVMM_INSTR_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
9895 case DBGFEVENT_INSTR_WRMSR: VBOXVMM_INSTR_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
9896 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
9897 case DBGFEVENT_INSTR_MWAIT: VBOXVMM_INSTR_MWAIT(pVCpu, pMixedCtx); break;
9898 case DBGFEVENT_INSTR_MONITOR: VBOXVMM_INSTR_MONITOR(pVCpu, pMixedCtx); break;
9899 case DBGFEVENT_INSTR_PAUSE: VBOXVMM_INSTR_PAUSE(pVCpu, pMixedCtx); break;
9900 case DBGFEVENT_INSTR_SGDT: VBOXVMM_INSTR_SGDT(pVCpu, pMixedCtx); break;
9901 case DBGFEVENT_INSTR_SIDT: VBOXVMM_INSTR_SIDT(pVCpu, pMixedCtx); break;
9902 case DBGFEVENT_INSTR_LGDT: VBOXVMM_INSTR_LGDT(pVCpu, pMixedCtx); break;
9903 case DBGFEVENT_INSTR_LIDT: VBOXVMM_INSTR_LIDT(pVCpu, pMixedCtx); break;
9904 case DBGFEVENT_INSTR_SLDT: VBOXVMM_INSTR_SLDT(pVCpu, pMixedCtx); break;
9905 case DBGFEVENT_INSTR_STR: VBOXVMM_INSTR_STR(pVCpu, pMixedCtx); break;
9906 case DBGFEVENT_INSTR_LLDT: VBOXVMM_INSTR_LLDT(pVCpu, pMixedCtx); break;
9907 case DBGFEVENT_INSTR_LTR: VBOXVMM_INSTR_LTR(pVCpu, pMixedCtx); break;
9908 case DBGFEVENT_INSTR_RDTSCP: VBOXVMM_INSTR_RDTSCP(pVCpu, pMixedCtx); break;
9909 case DBGFEVENT_INSTR_WBINVD: VBOXVMM_INSTR_WBINVD(pVCpu, pMixedCtx); break;
9910 case DBGFEVENT_INSTR_XSETBV: VBOXVMM_INSTR_XSETBV(pVCpu, pMixedCtx); break;
9911 case DBGFEVENT_INSTR_RDRAND: VBOXVMM_INSTR_RDRAND(pVCpu, pMixedCtx); break;
9912 case DBGFEVENT_INSTR_RDSEED: VBOXVMM_INSTR_RDSEED(pVCpu, pMixedCtx); break;
9913 case DBGFEVENT_INSTR_XSAVES: VBOXVMM_INSTR_XSAVES(pVCpu, pMixedCtx); break;
9914 case DBGFEVENT_INSTR_XRSTORS: VBOXVMM_INSTR_XRSTORS(pVCpu, pMixedCtx); break;
9915 case DBGFEVENT_INSTR_VMM_CALL: VBOXVMM_INSTR_VMM_CALL(pVCpu, pMixedCtx); break;
9916 case DBGFEVENT_INSTR_VMX_VMCLEAR: VBOXVMM_INSTR_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
9917 case DBGFEVENT_INSTR_VMX_VMLAUNCH: VBOXVMM_INSTR_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
9918 case DBGFEVENT_INSTR_VMX_VMPTRLD: VBOXVMM_INSTR_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
9919 case DBGFEVENT_INSTR_VMX_VMPTRST: VBOXVMM_INSTR_VMX_VMPTRST(pVCpu, pMixedCtx); break;
9920 case DBGFEVENT_INSTR_VMX_VMREAD: VBOXVMM_INSTR_VMX_VMREAD(pVCpu, pMixedCtx); break;
9921 case DBGFEVENT_INSTR_VMX_VMRESUME: VBOXVMM_INSTR_VMX_VMRESUME(pVCpu, pMixedCtx); break;
9922 case DBGFEVENT_INSTR_VMX_VMWRITE: VBOXVMM_INSTR_VMX_VMWRITE(pVCpu, pMixedCtx); break;
9923 case DBGFEVENT_INSTR_VMX_VMXOFF: VBOXVMM_INSTR_VMX_VMXOFF(pVCpu, pMixedCtx); break;
9924 case DBGFEVENT_INSTR_VMX_VMXON: VBOXVMM_INSTR_VMX_VMXON(pVCpu, pMixedCtx); break;
9925 case DBGFEVENT_INSTR_VMX_INVEPT: VBOXVMM_INSTR_VMX_INVEPT(pVCpu, pMixedCtx); break;
9926 case DBGFEVENT_INSTR_VMX_INVVPID: VBOXVMM_INSTR_VMX_INVVPID(pVCpu, pMixedCtx); break;
9927 case DBGFEVENT_INSTR_VMX_INVPCID: VBOXVMM_INSTR_VMX_INVPCID(pVCpu, pMixedCtx); break;
9928 case DBGFEVENT_INSTR_VMX_VMFUNC: VBOXVMM_INSTR_VMX_VMFUNC(pVCpu, pMixedCtx); break;
9929 default: AssertMsgFailed(("enmEvent1=%d uExitReason=%d\n", enmEvent1, uExitReason)); break;
9930 }
9931 switch (enmEvent2)
9932 {
9933 /** @todo consider which extra parameters would be helpful for each probe. */
9934 case DBGFEVENT_END: break;
9935 case DBGFEVENT_EXIT_TASK_SWITCH: VBOXVMM_EXIT_TASK_SWITCH(pVCpu, pMixedCtx); break;
9936 case DBGFEVENT_EXIT_CPUID: VBOXVMM_EXIT_CPUID(pVCpu, pMixedCtx, pMixedCtx->eax, pMixedCtx->ecx); break;
9937 case DBGFEVENT_EXIT_GETSEC: VBOXVMM_EXIT_GETSEC(pVCpu, pMixedCtx); break;
9938 case DBGFEVENT_EXIT_HALT: VBOXVMM_EXIT_HALT(pVCpu, pMixedCtx); break;
9939 case DBGFEVENT_EXIT_INVD: VBOXVMM_EXIT_INVD(pVCpu, pMixedCtx); break;
9940 case DBGFEVENT_EXIT_INVLPG: VBOXVMM_EXIT_INVLPG(pVCpu, pMixedCtx); break;
9941 case DBGFEVENT_EXIT_RDPMC: VBOXVMM_EXIT_RDPMC(pVCpu, pMixedCtx); break;
9942 case DBGFEVENT_EXIT_RDTSC: VBOXVMM_EXIT_RDTSC(pVCpu, pMixedCtx); break;
9943 case DBGFEVENT_EXIT_RSM: VBOXVMM_EXIT_RSM(pVCpu, pMixedCtx); break;
9944 case DBGFEVENT_EXIT_CRX_READ: VBOXVMM_EXIT_CRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9945 case DBGFEVENT_EXIT_CRX_WRITE: VBOXVMM_EXIT_CRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9946 case DBGFEVENT_EXIT_DRX_READ: VBOXVMM_EXIT_DRX_READ(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9947 case DBGFEVENT_EXIT_DRX_WRITE: VBOXVMM_EXIT_DRX_WRITE(pVCpu, pMixedCtx, (uint8_t)uEventArg); break;
9948 case DBGFEVENT_EXIT_RDMSR: VBOXVMM_EXIT_RDMSR(pVCpu, pMixedCtx, pMixedCtx->ecx); break;
9949 case DBGFEVENT_EXIT_WRMSR: VBOXVMM_EXIT_WRMSR(pVCpu, pMixedCtx, pMixedCtx->ecx,
9950 RT_MAKE_U64(pMixedCtx->eax, pMixedCtx->edx)); break;
9951 case DBGFEVENT_EXIT_MWAIT: VBOXVMM_EXIT_MWAIT(pVCpu, pMixedCtx); break;
9952 case DBGFEVENT_EXIT_MONITOR: VBOXVMM_EXIT_MONITOR(pVCpu, pMixedCtx); break;
9953 case DBGFEVENT_EXIT_PAUSE: VBOXVMM_EXIT_PAUSE(pVCpu, pMixedCtx); break;
9954 case DBGFEVENT_EXIT_SGDT: VBOXVMM_EXIT_SGDT(pVCpu, pMixedCtx); break;
9955 case DBGFEVENT_EXIT_SIDT: VBOXVMM_EXIT_SIDT(pVCpu, pMixedCtx); break;
9956 case DBGFEVENT_EXIT_LGDT: VBOXVMM_EXIT_LGDT(pVCpu, pMixedCtx); break;
9957 case DBGFEVENT_EXIT_LIDT: VBOXVMM_EXIT_LIDT(pVCpu, pMixedCtx); break;
9958 case DBGFEVENT_EXIT_SLDT: VBOXVMM_EXIT_SLDT(pVCpu, pMixedCtx); break;
9959 case DBGFEVENT_EXIT_STR: VBOXVMM_EXIT_STR(pVCpu, pMixedCtx); break;
9960 case DBGFEVENT_EXIT_LLDT: VBOXVMM_EXIT_LLDT(pVCpu, pMixedCtx); break;
9961 case DBGFEVENT_EXIT_LTR: VBOXVMM_EXIT_LTR(pVCpu, pMixedCtx); break;
9962 case DBGFEVENT_EXIT_RDTSCP: VBOXVMM_EXIT_RDTSCP(pVCpu, pMixedCtx); break;
9963 case DBGFEVENT_EXIT_WBINVD: VBOXVMM_EXIT_WBINVD(pVCpu, pMixedCtx); break;
9964 case DBGFEVENT_EXIT_XSETBV: VBOXVMM_EXIT_XSETBV(pVCpu, pMixedCtx); break;
9965 case DBGFEVENT_EXIT_RDRAND: VBOXVMM_EXIT_RDRAND(pVCpu, pMixedCtx); break;
9966 case DBGFEVENT_EXIT_RDSEED: VBOXVMM_EXIT_RDSEED(pVCpu, pMixedCtx); break;
9967 case DBGFEVENT_EXIT_XSAVES: VBOXVMM_EXIT_XSAVES(pVCpu, pMixedCtx); break;
9968 case DBGFEVENT_EXIT_XRSTORS: VBOXVMM_EXIT_XRSTORS(pVCpu, pMixedCtx); break;
9969 case DBGFEVENT_EXIT_VMM_CALL: VBOXVMM_EXIT_VMM_CALL(pVCpu, pMixedCtx); break;
9970 case DBGFEVENT_EXIT_VMX_VMCLEAR: VBOXVMM_EXIT_VMX_VMCLEAR(pVCpu, pMixedCtx); break;
9971 case DBGFEVENT_EXIT_VMX_VMLAUNCH: VBOXVMM_EXIT_VMX_VMLAUNCH(pVCpu, pMixedCtx); break;
9972 case DBGFEVENT_EXIT_VMX_VMPTRLD: VBOXVMM_EXIT_VMX_VMPTRLD(pVCpu, pMixedCtx); break;
9973 case DBGFEVENT_EXIT_VMX_VMPTRST: VBOXVMM_EXIT_VMX_VMPTRST(pVCpu, pMixedCtx); break;
9974 case DBGFEVENT_EXIT_VMX_VMREAD: VBOXVMM_EXIT_VMX_VMREAD(pVCpu, pMixedCtx); break;
9975 case DBGFEVENT_EXIT_VMX_VMRESUME: VBOXVMM_EXIT_VMX_VMRESUME(pVCpu, pMixedCtx); break;
9976 case DBGFEVENT_EXIT_VMX_VMWRITE: VBOXVMM_EXIT_VMX_VMWRITE(pVCpu, pMixedCtx); break;
9977 case DBGFEVENT_EXIT_VMX_VMXOFF: VBOXVMM_EXIT_VMX_VMXOFF(pVCpu, pMixedCtx); break;
9978 case DBGFEVENT_EXIT_VMX_VMXON: VBOXVMM_EXIT_VMX_VMXON(pVCpu, pMixedCtx); break;
9979 case DBGFEVENT_EXIT_VMX_INVEPT: VBOXVMM_EXIT_VMX_INVEPT(pVCpu, pMixedCtx); break;
9980 case DBGFEVENT_EXIT_VMX_INVVPID: VBOXVMM_EXIT_VMX_INVVPID(pVCpu, pMixedCtx); break;
9981 case DBGFEVENT_EXIT_VMX_INVPCID: VBOXVMM_EXIT_VMX_INVPCID(pVCpu, pMixedCtx); break;
9982 case DBGFEVENT_EXIT_VMX_VMFUNC: VBOXVMM_EXIT_VMX_VMFUNC(pVCpu, pMixedCtx); break;
9983 case DBGFEVENT_EXIT_VMX_EPT_MISCONFIG: VBOXVMM_EXIT_VMX_EPT_MISCONFIG(pVCpu, pMixedCtx); break;
9984 case DBGFEVENT_EXIT_VMX_EPT_VIOLATION: VBOXVMM_EXIT_VMX_EPT_VIOLATION(pVCpu, pMixedCtx); break;
9985 case DBGFEVENT_EXIT_VMX_VAPIC_ACCESS: VBOXVMM_EXIT_VMX_VAPIC_ACCESS(pVCpu, pMixedCtx); break;
9986 case DBGFEVENT_EXIT_VMX_VAPIC_WRITE: VBOXVMM_EXIT_VMX_VAPIC_WRITE(pVCpu, pMixedCtx); break;
9987 default: AssertMsgFailed(("enmEvent2=%d uExitReason=%d\n", enmEvent2, uExitReason)); break;
9988 }
9989 }
9990
9991 /*
9992 * Fire of the DBGF event, if enabled (our check here is just a quick one,
9993 * the DBGF call will do a full check).
9994 *
9995 * Note! DBGF sets DBGFEVENT_INTERRUPT_SOFTWARE in the bitmap.
9996 * Note! If we have to events, we prioritize the first, i.e. the instruction
9997 * one, in order to avoid event nesting.
9998 */
9999 if ( enmEvent1 != DBGFEVENT_END
10000 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent1))
10001 {
10002 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent1, uEventArg, DBGFEVENTCTX_HM);
10003 if (rcStrict != VINF_SUCCESS)
10004 return rcStrict;
10005 }
10006 else if ( enmEvent2 != DBGFEVENT_END
10007 && DBGF_IS_EVENT_ENABLED(pVM, enmEvent2))
10008 {
10009 VBOXSTRICTRC rcStrict = DBGFEventGenericWithArg(pVM, pVCpu, enmEvent2, uEventArg, DBGFEVENTCTX_HM);
10010 if (rcStrict != VINF_SUCCESS)
10011 return rcStrict;
10012 }
10013
10014 return VINF_SUCCESS;
10015}
10016
10017
10018/**
10019 * Single-stepping VM-exit filtering.
10020 *
10021 * This is preprocessing the VM-exits and deciding whether we've gotten far
10022 * enough to return VINF_EM_DBG_STEPPED already. If not, normal VM-exit
10023 * handling is performed.
10024 *
10025 * @returns Strict VBox status code (i.e. informational status codes too).
10026 * @param pVM The cross context VM structure.
10027 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
10028 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
10029 * out-of-sync. Make sure to update the required
10030 * fields before using them.
10031 * @param pVmxTransient Pointer to the VMX-transient structure.
10032 * @param uExitReason The VM-exit reason.
10033 * @param pDbgState The debug state.
10034 */
10035DECLINLINE(VBOXSTRICTRC) hmR0VmxRunDebugHandleExit(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient,
10036 uint32_t uExitReason, PVMXRUNDBGSTATE pDbgState)
10037{
10038 /*
10039 * Expensive (saves context) generic dtrace VM-exit probe.
10040 */
10041 if (!VBOXVMM_R0_HMVMX_VMEXIT_ENABLED())
10042 { /* more likely */ }
10043 else
10044 {
10045 hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
10046 hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
10047 VBOXVMM_R0_HMVMX_VMEXIT(pVCpu, pMixedCtx, pVmxTransient->uExitReason, pVmxTransient->uExitQualification);
10048 }
10049
10050 /*
10051 * Check for host NMI, just to get that out of the way.
10052 */
10053 if (uExitReason != VMX_EXIT_XCPT_OR_NMI)
10054 { /* normally likely */ }
10055 else
10056 {
10057 int rc2 = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
10058 AssertRCReturn(rc2, rc2);
10059 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
10060 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
10061 return hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient);
10062 }
10063
10064 /*
10065 * Check for single stepping event if we're stepping.
10066 */
10067 if (pVCpu->hm.s.fSingleInstruction)
10068 {
10069 switch (uExitReason)
10070 {
10071 case VMX_EXIT_MTF:
10072 return hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient);
10073
10074 /* Various events: */
10075 case VMX_EXIT_XCPT_OR_NMI:
10076 case VMX_EXIT_EXT_INT:
10077 case VMX_EXIT_TRIPLE_FAULT:
10078 case VMX_EXIT_INT_WINDOW:
10079 case VMX_EXIT_NMI_WINDOW:
10080 case VMX_EXIT_TASK_SWITCH:
10081 case VMX_EXIT_TPR_BELOW_THRESHOLD:
10082 case VMX_EXIT_APIC_ACCESS:
10083 case VMX_EXIT_EPT_VIOLATION:
10084 case VMX_EXIT_EPT_MISCONFIG:
10085 case VMX_EXIT_PREEMPT_TIMER:
10086
10087 /* Instruction specific VM-exits: */
10088 case VMX_EXIT_CPUID:
10089 case VMX_EXIT_GETSEC:
10090 case VMX_EXIT_HLT:
10091 case VMX_EXIT_INVD:
10092 case VMX_EXIT_INVLPG:
10093 case VMX_EXIT_RDPMC:
10094 case VMX_EXIT_RDTSC:
10095 case VMX_EXIT_RSM:
10096 case VMX_EXIT_VMCALL:
10097 case VMX_EXIT_VMCLEAR:
10098 case VMX_EXIT_VMLAUNCH:
10099 case VMX_EXIT_VMPTRLD:
10100 case VMX_EXIT_VMPTRST:
10101 case VMX_EXIT_VMREAD:
10102 case VMX_EXIT_VMRESUME:
10103 case VMX_EXIT_VMWRITE:
10104 case VMX_EXIT_VMXOFF:
10105 case VMX_EXIT_VMXON:
10106 case VMX_EXIT_MOV_CRX:
10107 case VMX_EXIT_MOV_DRX:
10108 case VMX_EXIT_IO_INSTR:
10109 case VMX_EXIT_RDMSR:
10110 case VMX_EXIT_WRMSR:
10111 case VMX_EXIT_MWAIT:
10112 case VMX_EXIT_MONITOR:
10113 case VMX_EXIT_PAUSE:
10114 case VMX_EXIT_XDTR_ACCESS:
10115 case VMX_EXIT_TR_ACCESS:
10116 case VMX_EXIT_INVEPT:
10117 case VMX_EXIT_RDTSCP:
10118 case VMX_EXIT_INVVPID:
10119 case VMX_EXIT_WBINVD:
10120 case VMX_EXIT_XSETBV:
10121 case VMX_EXIT_RDRAND:
10122 case VMX_EXIT_INVPCID:
10123 case VMX_EXIT_VMFUNC:
10124 case VMX_EXIT_RDSEED:
10125 case VMX_EXIT_XSAVES:
10126 case VMX_EXIT_XRSTORS:
10127 {
10128 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10129 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
10130 AssertRCReturn(rc2, rc2);
10131 if ( pMixedCtx->rip != pDbgState->uRipStart
10132 || pMixedCtx->cs.Sel != pDbgState->uCsStart)
10133 return VINF_EM_DBG_STEPPED;
10134 break;
10135 }
10136
10137 /* Errors and unexpected events: */
10138 case VMX_EXIT_INIT_SIGNAL:
10139 case VMX_EXIT_SIPI:
10140 case VMX_EXIT_IO_SMI:
10141 case VMX_EXIT_SMI:
10142 case VMX_EXIT_ERR_INVALID_GUEST_STATE:
10143 case VMX_EXIT_ERR_MSR_LOAD:
10144 case VMX_EXIT_ERR_MACHINE_CHECK:
10145 case VMX_EXIT_APIC_WRITE: /* Some talk about this being fault like, so I guess we must process it? */
10146 break;
10147
10148 default:
10149 AssertMsgFailed(("Unexpected VM-exit=%#x\n", uExitReason));
10150 break;
10151 }
10152 }
10153
10154 /*
10155 * Check for debugger event breakpoints and dtrace probes.
10156 */
10157 if ( uExitReason < RT_ELEMENTS(pDbgState->bmExitsToCheck) * 32U
10158 && ASMBitTest(pDbgState->bmExitsToCheck, uExitReason) )
10159 {
10160 VBOXSTRICTRC rcStrict = hmR0VmxHandleExitDtraceEvents(pVM, pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10161 if (rcStrict != VINF_SUCCESS)
10162 return rcStrict;
10163 }
10164
10165 /*
10166 * Normal processing.
10167 */
10168#ifdef HMVMX_USE_FUNCTION_TABLE
10169 return g_apfnVMExitHandlers[uExitReason](pVCpu, pMixedCtx, pVmxTransient);
10170#else
10171 return hmR0VmxHandleExit(pVCpu, pMixedCtx, pVmxTransient, uExitReason);
10172#endif
10173}
10174
10175
10176/**
10177 * Single steps guest code using VT-x.
10178 *
10179 * @returns Strict VBox status code (i.e. informational status codes too).
10180 * @param pVM The cross context VM structure.
10181 * @param pVCpu The cross context virtual CPU structure.
10182 * @param pCtx Pointer to the guest-CPU context.
10183 *
10184 * @note Mostly the same as hmR0VmxRunGuestCodeNormal().
10185 */
10186static VBOXSTRICTRC hmR0VmxRunGuestCodeDebug(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10187{
10188 VMXTRANSIENT VmxTransient;
10189 VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
10190
10191 /* Set HMCPU indicators. */
10192 bool const fSavedSingleInstruction = pVCpu->hm.s.fSingleInstruction;
10193 pVCpu->hm.s.fSingleInstruction = pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu);
10194 pVCpu->hm.s.fDebugWantRdTscExit = false;
10195 pVCpu->hm.s.fUsingDebugLoop = true;
10196
10197 /* State we keep to help modify and later restore the VMCS fields we alter, and for detecting steps. */
10198 VMXRUNDBGSTATE DbgState;
10199 hmR0VmxRunDebugStateInit(pVCpu, pCtx, &DbgState);
10200 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10201
10202 /*
10203 * The loop.
10204 */
10205 VBOXSTRICTRC rcStrict = VERR_INTERNAL_ERROR_5;
10206 for (uint32_t cLoops = 0; ; cLoops++)
10207 {
10208 Assert(!HMR0SuspendPending());
10209 HMVMX_ASSERT_CPU_SAFE();
10210 bool fStepping = pVCpu->hm.s.fSingleInstruction;
10211
10212 /*
10213 * Preparatory work for running guest code, this may force us to return
10214 * to ring-3. This bugger disables interrupts on VINF_SUCCESS!
10215 */
10216 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
10217 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Set up execute controls the next to can respond to. */
10218 rcStrict = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient, fStepping);
10219 if (rcStrict != VINF_SUCCESS)
10220 break;
10221
10222 hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
10223 hmR0VmxPreRunGuestDebugStateApply(pVCpu, &DbgState); /* Override any obnoxious code in the above two calls. */
10224
10225 /*
10226 * Now we can run the guest code.
10227 */
10228 int rcRun = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
10229
10230 /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
10231
10232 /*
10233 * Restore any residual host-state and save any bits shared between host
10234 * and guest into the guest-CPU state. Re-enables interrupts!
10235 */
10236 hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rcRun);
10237
10238 /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
10239 if (RT_SUCCESS(rcRun))
10240 { /* very likely */ }
10241 else
10242 {
10243 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
10244 hmR0VmxReportWorldSwitchError(pVM, pVCpu, rcRun, pCtx, &VmxTransient);
10245 return rcRun;
10246 }
10247
10248 /* Profile the VM-exit. */
10249 AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
10250 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll);
10251 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
10252 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
10253 HMVMX_START_EXIT_DISPATCH_PROF();
10254
10255 VBOXVMM_R0_HMVMX_VMEXIT_NOCTX(pVCpu, pCtx, VmxTransient.uExitReason);
10256
10257 /*
10258 * Handle the VM-exit - we quit earlier on certain VM-exits, see hmR0VmxHandleExitDebug().
10259 */
10260 rcStrict = hmR0VmxRunDebugHandleExit(pVM, pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason, &DbgState);
10261 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
10262 if (rcStrict != VINF_SUCCESS)
10263 break;
10264 if (cLoops > pVM->hm.s.cMaxResumeLoops)
10265 {
10266 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
10267 rcStrict = VINF_EM_RAW_INTERRUPT;
10268 break;
10269 }
10270
10271 /*
10272 * Stepping: Did the RIP change, if so, consider it a single step.
10273 * Otherwise, make sure one of the TFs gets set.
10274 */
10275 if (fStepping)
10276 {
10277 int rc2 = hmR0VmxSaveGuestRip(pVCpu, pCtx);
10278 rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pCtx);
10279 AssertRCReturn(rc2, rc2);
10280 if ( pCtx->rip != DbgState.uRipStart
10281 || pCtx->cs.Sel != DbgState.uCsStart)
10282 {
10283 rcStrict = VINF_EM_DBG_STEPPED;
10284 break;
10285 }
10286 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
10287 }
10288
10289 /*
10290 * Update when dtrace settings changes (DBGF kicks us, so no need to check).
10291 */
10292 if (VBOXVMM_GET_SETTINGS_SEQ_NO() != DbgState.uDtraceSettingsSeqNo)
10293 hmR0VmxPreRunGuestDebugStateUpdate(pVM, pVCpu, pCtx, &DbgState, &VmxTransient);
10294 }
10295
10296 /*
10297 * Clear the X86_EFL_TF if necessary.
10298 */
10299 if (pVCpu->hm.s.fClearTrapFlag)
10300 {
10301 int rc2 = hmR0VmxSaveGuestRflags(pVCpu, pCtx);
10302 AssertRCReturn(rc2, rc2);
10303 pVCpu->hm.s.fClearTrapFlag = false;
10304 pCtx->eflags.Bits.u1TF = 0;
10305 }
10306 /** @todo there seems to be issues with the resume flag when the monitor trap
10307 * flag is pending without being used. Seen early in bios init when
10308 * accessing APIC page in protected mode. */
10309
10310 /*
10311 * Restore VM-exit control settings as we may not reenter this function the
10312 * next time around.
10313 */
10314 rcStrict = hmR0VmxRunDebugStateRevert(pVCpu, &DbgState, rcStrict);
10315
10316 /* Restore HMCPU indicators. */
10317 pVCpu->hm.s.fUsingDebugLoop = false;
10318 pVCpu->hm.s.fDebugWantRdTscExit = false;
10319 pVCpu->hm.s.fSingleInstruction = fSavedSingleInstruction;
10320
10321 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
10322 return rcStrict;
10323}
10324
10325
10326/** @} */
10327
10328
10329/**
10330 * Checks if any expensive dtrace probes are enabled and we should go to the
10331 * debug loop.
10332 *
10333 * @returns true if we should use debug loop, false if not.
10334 */
10335static bool hmR0VmxAnyExpensiveProbesEnabled(void)
10336{
10337 /* It's probably faster to OR the raw 32-bit counter variables together.
10338 Since the variables are in an array and the probes are next to one
10339 another (more or less), we have good locality. So, better read
10340 eight-nine cache lines ever time and only have one conditional, than
10341 128+ conditionals, right? */
10342 return ( VBOXVMM_R0_HMVMX_VMEXIT_ENABLED_RAW() /* expensive too due to context */
10343 | VBOXVMM_XCPT_DE_ENABLED_RAW()
10344 | VBOXVMM_XCPT_DB_ENABLED_RAW()
10345 | VBOXVMM_XCPT_BP_ENABLED_RAW()
10346 | VBOXVMM_XCPT_OF_ENABLED_RAW()
10347 | VBOXVMM_XCPT_BR_ENABLED_RAW()
10348 | VBOXVMM_XCPT_UD_ENABLED_RAW()
10349 | VBOXVMM_XCPT_NM_ENABLED_RAW()
10350 | VBOXVMM_XCPT_DF_ENABLED_RAW()
10351 | VBOXVMM_XCPT_TS_ENABLED_RAW()
10352 | VBOXVMM_XCPT_NP_ENABLED_RAW()
10353 | VBOXVMM_XCPT_SS_ENABLED_RAW()
10354 | VBOXVMM_XCPT_GP_ENABLED_RAW()
10355 | VBOXVMM_XCPT_PF_ENABLED_RAW()
10356 | VBOXVMM_XCPT_MF_ENABLED_RAW()
10357 | VBOXVMM_XCPT_AC_ENABLED_RAW()
10358 | VBOXVMM_XCPT_XF_ENABLED_RAW()
10359 | VBOXVMM_XCPT_VE_ENABLED_RAW()
10360 | VBOXVMM_XCPT_SX_ENABLED_RAW()
10361 | VBOXVMM_INT_SOFTWARE_ENABLED_RAW()
10362 | VBOXVMM_INT_HARDWARE_ENABLED_RAW()
10363 ) != 0
10364 || ( VBOXVMM_INSTR_HALT_ENABLED_RAW()
10365 | VBOXVMM_INSTR_MWAIT_ENABLED_RAW()
10366 | VBOXVMM_INSTR_MONITOR_ENABLED_RAW()
10367 | VBOXVMM_INSTR_CPUID_ENABLED_RAW()
10368 | VBOXVMM_INSTR_INVD_ENABLED_RAW()
10369 | VBOXVMM_INSTR_WBINVD_ENABLED_RAW()
10370 | VBOXVMM_INSTR_INVLPG_ENABLED_RAW()
10371 | VBOXVMM_INSTR_RDTSC_ENABLED_RAW()
10372 | VBOXVMM_INSTR_RDTSCP_ENABLED_RAW()
10373 | VBOXVMM_INSTR_RDPMC_ENABLED_RAW()
10374 | VBOXVMM_INSTR_RDMSR_ENABLED_RAW()
10375 | VBOXVMM_INSTR_WRMSR_ENABLED_RAW()
10376 | VBOXVMM_INSTR_CRX_READ_ENABLED_RAW()
10377 | VBOXVMM_INSTR_CRX_WRITE_ENABLED_RAW()
10378 | VBOXVMM_INSTR_DRX_READ_ENABLED_RAW()
10379 | VBOXVMM_INSTR_DRX_WRITE_ENABLED_RAW()
10380 | VBOXVMM_INSTR_PAUSE_ENABLED_RAW()
10381 | VBOXVMM_INSTR_XSETBV_ENABLED_RAW()
10382 | VBOXVMM_INSTR_SIDT_ENABLED_RAW()
10383 | VBOXVMM_INSTR_LIDT_ENABLED_RAW()
10384 | VBOXVMM_INSTR_SGDT_ENABLED_RAW()
10385 | VBOXVMM_INSTR_LGDT_ENABLED_RAW()
10386 | VBOXVMM_INSTR_SLDT_ENABLED_RAW()
10387 | VBOXVMM_INSTR_LLDT_ENABLED_RAW()
10388 | VBOXVMM_INSTR_STR_ENABLED_RAW()
10389 | VBOXVMM_INSTR_LTR_ENABLED_RAW()
10390 | VBOXVMM_INSTR_GETSEC_ENABLED_RAW()
10391 | VBOXVMM_INSTR_RSM_ENABLED_RAW()
10392 | VBOXVMM_INSTR_RDRAND_ENABLED_RAW()
10393 | VBOXVMM_INSTR_RDSEED_ENABLED_RAW()
10394 | VBOXVMM_INSTR_XSAVES_ENABLED_RAW()
10395 | VBOXVMM_INSTR_XRSTORS_ENABLED_RAW()
10396 | VBOXVMM_INSTR_VMM_CALL_ENABLED_RAW()
10397 | VBOXVMM_INSTR_VMX_VMCLEAR_ENABLED_RAW()
10398 | VBOXVMM_INSTR_VMX_VMLAUNCH_ENABLED_RAW()
10399 | VBOXVMM_INSTR_VMX_VMPTRLD_ENABLED_RAW()
10400 | VBOXVMM_INSTR_VMX_VMPTRST_ENABLED_RAW()
10401 | VBOXVMM_INSTR_VMX_VMREAD_ENABLED_RAW()
10402 | VBOXVMM_INSTR_VMX_VMRESUME_ENABLED_RAW()
10403 | VBOXVMM_INSTR_VMX_VMWRITE_ENABLED_RAW()
10404 | VBOXVMM_INSTR_VMX_VMXOFF_ENABLED_RAW()
10405 | VBOXVMM_INSTR_VMX_VMXON_ENABLED_RAW()
10406 | VBOXVMM_INSTR_VMX_VMFUNC_ENABLED_RAW()
10407 | VBOXVMM_INSTR_VMX_INVEPT_ENABLED_RAW()
10408 | VBOXVMM_INSTR_VMX_INVVPID_ENABLED_RAW()
10409 | VBOXVMM_INSTR_VMX_INVPCID_ENABLED_RAW()
10410 ) != 0
10411 || ( VBOXVMM_EXIT_TASK_SWITCH_ENABLED_RAW()
10412 | VBOXVMM_EXIT_HALT_ENABLED_RAW()
10413 | VBOXVMM_EXIT_MWAIT_ENABLED_RAW()
10414 | VBOXVMM_EXIT_MONITOR_ENABLED_RAW()
10415 | VBOXVMM_EXIT_CPUID_ENABLED_RAW()
10416 | VBOXVMM_EXIT_INVD_ENABLED_RAW()
10417 | VBOXVMM_EXIT_WBINVD_ENABLED_RAW()
10418 | VBOXVMM_EXIT_INVLPG_ENABLED_RAW()
10419 | VBOXVMM_EXIT_RDTSC_ENABLED_RAW()
10420 | VBOXVMM_EXIT_RDTSCP_ENABLED_RAW()
10421 | VBOXVMM_EXIT_RDPMC_ENABLED_RAW()
10422 | VBOXVMM_EXIT_RDMSR_ENABLED_RAW()
10423 | VBOXVMM_EXIT_WRMSR_ENABLED_RAW()
10424 | VBOXVMM_EXIT_CRX_READ_ENABLED_RAW()
10425 | VBOXVMM_EXIT_CRX_WRITE_ENABLED_RAW()
10426 | VBOXVMM_EXIT_DRX_READ_ENABLED_RAW()
10427 | VBOXVMM_EXIT_DRX_WRITE_ENABLED_RAW()
10428 | VBOXVMM_EXIT_PAUSE_ENABLED_RAW()
10429 | VBOXVMM_EXIT_XSETBV_ENABLED_RAW()
10430 | VBOXVMM_EXIT_SIDT_ENABLED_RAW()
10431 | VBOXVMM_EXIT_LIDT_ENABLED_RAW()
10432 | VBOXVMM_EXIT_SGDT_ENABLED_RAW()
10433 | VBOXVMM_EXIT_LGDT_ENABLED_RAW()
10434 | VBOXVMM_EXIT_SLDT_ENABLED_RAW()
10435 | VBOXVMM_EXIT_LLDT_ENABLED_RAW()
10436 | VBOXVMM_EXIT_STR_ENABLED_RAW()
10437 | VBOXVMM_EXIT_LTR_ENABLED_RAW()
10438 | VBOXVMM_EXIT_GETSEC_ENABLED_RAW()
10439 | VBOXVMM_EXIT_RSM_ENABLED_RAW()
10440 | VBOXVMM_EXIT_RDRAND_ENABLED_RAW()
10441 | VBOXVMM_EXIT_RDSEED_ENABLED_RAW()
10442 | VBOXVMM_EXIT_XSAVES_ENABLED_RAW()
10443 | VBOXVMM_EXIT_XRSTORS_ENABLED_RAW()
10444 | VBOXVMM_EXIT_VMM_CALL_ENABLED_RAW()
10445 | VBOXVMM_EXIT_VMX_VMCLEAR_ENABLED_RAW()
10446 | VBOXVMM_EXIT_VMX_VMLAUNCH_ENABLED_RAW()
10447 | VBOXVMM_EXIT_VMX_VMPTRLD_ENABLED_RAW()
10448 | VBOXVMM_EXIT_VMX_VMPTRST_ENABLED_RAW()
10449 | VBOXVMM_EXIT_VMX_VMREAD_ENABLED_RAW()
10450 | VBOXVMM_EXIT_VMX_VMRESUME_ENABLED_RAW()
10451 | VBOXVMM_EXIT_VMX_VMWRITE_ENABLED_RAW()
10452 | VBOXVMM_EXIT_VMX_VMXOFF_ENABLED_RAW()
10453 | VBOXVMM_EXIT_VMX_VMXON_ENABLED_RAW()
10454 | VBOXVMM_EXIT_VMX_VMFUNC_ENABLED_RAW()
10455 | VBOXVMM_EXIT_VMX_INVEPT_ENABLED_RAW()
10456 | VBOXVMM_EXIT_VMX_INVVPID_ENABLED_RAW()
10457 | VBOXVMM_EXIT_VMX_INVPCID_ENABLED_RAW()
10458 | VBOXVMM_EXIT_VMX_EPT_VIOLATION_ENABLED_RAW()
10459 | VBOXVMM_EXIT_VMX_EPT_MISCONFIG_ENABLED_RAW()
10460 | VBOXVMM_EXIT_VMX_VAPIC_ACCESS_ENABLED_RAW()
10461 | VBOXVMM_EXIT_VMX_VAPIC_WRITE_ENABLED_RAW()
10462 ) != 0;
10463}
10464
10465
10466/**
10467 * Runs the guest code using VT-x.
10468 *
10469 * @returns Strict VBox status code (i.e. informational status codes too).
10470 * @param pVM The cross context VM structure.
10471 * @param pVCpu The cross context virtual CPU structure.
10472 * @param pCtx Pointer to the guest-CPU context.
10473 */
10474VMMR0DECL(VBOXSTRICTRC) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10475{
10476 Assert(VMMRZCallRing3IsEnabled(pVCpu));
10477 Assert(HMVMXCPU_GST_VALUE(pVCpu) == HMVMX_UPDATED_GUEST_ALL);
10478 HMVMX_ASSERT_PREEMPT_SAFE();
10479
10480 VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pCtx);
10481
10482 VBOXSTRICTRC rcStrict;
10483 if ( !pVCpu->hm.s.fUseDebugLoop
10484 && (!VBOXVMM_ANY_PROBES_ENABLED() || !hmR0VmxAnyExpensiveProbesEnabled())
10485 && !DBGFIsStepping(pVCpu)
10486 && !pVM->dbgf.ro.cEnabledInt3Breakpoints)
10487 rcStrict = hmR0VmxRunGuestCodeNormal(pVM, pVCpu, pCtx);
10488 else
10489 rcStrict = hmR0VmxRunGuestCodeDebug(pVM, pVCpu, pCtx);
10490
10491 if (rcStrict == VERR_EM_INTERPRETER)
10492 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
10493 else if (rcStrict == VINF_EM_RESET)
10494 rcStrict = VINF_EM_TRIPLE_FAULT;
10495
10496 int rc2 = hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rcStrict);
10497 if (RT_FAILURE(rc2))
10498 {
10499 pVCpu->hm.s.u32HMError = (uint32_t)VBOXSTRICTRC_VAL(rcStrict);
10500 rcStrict = rc2;
10501 }
10502 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
10503 return rcStrict;
10504}
10505
10506
10507#ifndef HMVMX_USE_FUNCTION_TABLE
10508DECLINLINE(VBOXSTRICTRC) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
10509{
10510# ifdef DEBUG_ramshankar
10511# define RETURN_EXIT_CALL(a_CallExpr) \
10512 do { \
10513 int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx); AssertRC(rc2); \
10514 VBOXSTRICTRC rcStrict = a_CallExpr; \
10515 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST); \
10516 return rcStrict; \
10517 } while (0)
10518# else
10519# define RETURN_EXIT_CALL(a_CallExpr) return a_CallExpr
10520# endif
10521 switch (rcReason)
10522 {
10523 case VMX_EXIT_EPT_MISCONFIG: RETURN_EXIT_CALL(hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient));
10524 case VMX_EXIT_EPT_VIOLATION: RETURN_EXIT_CALL(hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient));
10525 case VMX_EXIT_IO_INSTR: RETURN_EXIT_CALL(hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient));
10526 case VMX_EXIT_CPUID: RETURN_EXIT_CALL(hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient));
10527 case VMX_EXIT_RDTSC: RETURN_EXIT_CALL(hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient));
10528 case VMX_EXIT_RDTSCP: RETURN_EXIT_CALL(hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient));
10529 case VMX_EXIT_APIC_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient));
10530 case VMX_EXIT_XCPT_OR_NMI: RETURN_EXIT_CALL(hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient));
10531 case VMX_EXIT_MOV_CRX: RETURN_EXIT_CALL(hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient));
10532 case VMX_EXIT_EXT_INT: RETURN_EXIT_CALL(hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient));
10533 case VMX_EXIT_INT_WINDOW: RETURN_EXIT_CALL(hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient));
10534 case VMX_EXIT_MWAIT: RETURN_EXIT_CALL(hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient));
10535 case VMX_EXIT_MONITOR: RETURN_EXIT_CALL(hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient));
10536 case VMX_EXIT_TASK_SWITCH: RETURN_EXIT_CALL(hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient));
10537 case VMX_EXIT_PREEMPT_TIMER: RETURN_EXIT_CALL(hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient));
10538 case VMX_EXIT_RDMSR: RETURN_EXIT_CALL(hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient));
10539 case VMX_EXIT_WRMSR: RETURN_EXIT_CALL(hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient));
10540 case VMX_EXIT_MOV_DRX: RETURN_EXIT_CALL(hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient));
10541 case VMX_EXIT_TPR_BELOW_THRESHOLD: RETURN_EXIT_CALL(hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient));
10542 case VMX_EXIT_HLT: RETURN_EXIT_CALL(hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient));
10543 case VMX_EXIT_INVD: RETURN_EXIT_CALL(hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient));
10544 case VMX_EXIT_INVLPG: RETURN_EXIT_CALL(hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient));
10545 case VMX_EXIT_RSM: RETURN_EXIT_CALL(hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient));
10546 case VMX_EXIT_MTF: RETURN_EXIT_CALL(hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient));
10547 case VMX_EXIT_PAUSE: RETURN_EXIT_CALL(hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient));
10548 case VMX_EXIT_XDTR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10549 case VMX_EXIT_TR_ACCESS: RETURN_EXIT_CALL(hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient));
10550 case VMX_EXIT_WBINVD: RETURN_EXIT_CALL(hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient));
10551 case VMX_EXIT_XSETBV: RETURN_EXIT_CALL(hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient));
10552 case VMX_EXIT_RDRAND: RETURN_EXIT_CALL(hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient));
10553 case VMX_EXIT_INVPCID: RETURN_EXIT_CALL(hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient));
10554 case VMX_EXIT_GETSEC: RETURN_EXIT_CALL(hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient));
10555 case VMX_EXIT_RDPMC: RETURN_EXIT_CALL(hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient));
10556 case VMX_EXIT_VMCALL: RETURN_EXIT_CALL(hmR0VmxExitVmcall(pVCpu, pMixedCtx, pVmxTransient));
10557
10558 case VMX_EXIT_TRIPLE_FAULT: return hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient);
10559 case VMX_EXIT_NMI_WINDOW: return hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient);
10560 case VMX_EXIT_INIT_SIGNAL: return hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient);
10561 case VMX_EXIT_SIPI: return hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient);
10562 case VMX_EXIT_IO_SMI: return hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient);
10563 case VMX_EXIT_SMI: return hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient);
10564 case VMX_EXIT_ERR_MSR_LOAD: return hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient);
10565 case VMX_EXIT_ERR_INVALID_GUEST_STATE: return hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient);
10566 case VMX_EXIT_ERR_MACHINE_CHECK: return hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient);
10567
10568 case VMX_EXIT_VMCLEAR:
10569 case VMX_EXIT_VMLAUNCH:
10570 case VMX_EXIT_VMPTRLD:
10571 case VMX_EXIT_VMPTRST:
10572 case VMX_EXIT_VMREAD:
10573 case VMX_EXIT_VMRESUME:
10574 case VMX_EXIT_VMWRITE:
10575 case VMX_EXIT_VMXOFF:
10576 case VMX_EXIT_VMXON:
10577 case VMX_EXIT_INVEPT:
10578 case VMX_EXIT_INVVPID:
10579 case VMX_EXIT_VMFUNC:
10580 case VMX_EXIT_XSAVES:
10581 case VMX_EXIT_XRSTORS:
10582 return hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
10583 case VMX_EXIT_ENCLS:
10584 case VMX_EXIT_RDSEED: /* only spurious VM-exits, so undefined */
10585 case VMX_EXIT_PML_FULL:
10586 default:
10587 return hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
10588 }
10589#undef RETURN_EXIT_CALL
10590}
10591#endif /* !HMVMX_USE_FUNCTION_TABLE */
10592
10593
10594#ifdef VBOX_STRICT
10595/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
10596# define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
10597 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
10598
10599# define HMVMX_ASSERT_PREEMPT_CPUID() \
10600 do { \
10601 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
10602 AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
10603 } while (0)
10604
10605# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10606 do { \
10607 AssertPtr(pVCpu); \
10608 AssertPtr(pMixedCtx); \
10609 AssertPtr(pVmxTransient); \
10610 Assert(pVmxTransient->fVMEntryFailed == false); \
10611 Assert(ASMIntAreEnabled()); \
10612 HMVMX_ASSERT_PREEMPT_SAFE(); \
10613 HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
10614 Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
10615 HMVMX_ASSERT_PREEMPT_SAFE(); \
10616 if (VMMR0IsLogFlushDisabled(pVCpu)) \
10617 HMVMX_ASSERT_PREEMPT_CPUID(); \
10618 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10619 } while (0)
10620
10621# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
10622 do { \
10623 Log4Func(("\n")); \
10624 } while (0)
10625#else /* nonstrict builds: */
10626# define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
10627 do { \
10628 HMVMX_STOP_EXIT_DISPATCH_PROF(); \
10629 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient); \
10630 } while (0)
10631# define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while (0)
10632#endif
10633
10634
10635/**
10636 * Advances the guest RIP by the specified number of bytes.
10637 *
10638 * @param pVCpu The cross context virtual CPU structure.
10639 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10640 * out-of-sync. Make sure to update the required fields
10641 * before using them.
10642 * @param cbInstr Number of bytes to advance the RIP by.
10643 *
10644 * @remarks No-long-jump zone!!!
10645 */
10646DECLINLINE(void) hmR0VmxAdvanceGuestRipBy(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
10647{
10648 /* Advance the RIP. */
10649 pMixedCtx->rip += cbInstr;
10650 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
10651
10652 /* Update interrupt inhibition. */
10653 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
10654 && pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
10655 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
10656}
10657
10658
10659/**
10660 * Advances the guest RIP after reading it from the VMCS.
10661 *
10662 * @returns VBox status code, no informational status codes.
10663 * @param pVCpu The cross context virtual CPU structure.
10664 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
10665 * out-of-sync. Make sure to update the required fields
10666 * before using them.
10667 * @param pVmxTransient Pointer to the VMX transient structure.
10668 *
10669 * @remarks No-long-jump zone!!!
10670 */
10671static int hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
10672{
10673 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
10674 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
10675 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
10676 AssertRCReturn(rc, rc);
10677
10678 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, pVmxTransient->cbInstr);
10679
10680 /*
10681 * Deliver a debug exception to the guest if it is single-stepping. Don't directly inject a #DB but use the
10682 * pending debug exception field as it takes care of priority of events.
10683 *
10684 * See Intel spec. 32.2.1 "Debug Exceptions".
10685 */
10686 if ( !pVCpu->hm.s.fSingleInstruction
10687 && pMixedCtx->eflags.Bits.u1TF)
10688 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
10689
10690 return VINF_SUCCESS;
10691}
10692
10693
10694/**
10695 * Tries to determine what part of the guest-state VT-x has deemed as invalid
10696 * and update error record fields accordingly.
10697 *
10698 * @return VMX_IGS_* return codes.
10699 * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
10700 * wrong with the guest state.
10701 *
10702 * @param pVM The cross context VM structure.
10703 * @param pVCpu The cross context virtual CPU structure.
10704 * @param pCtx Pointer to the guest-CPU state.
10705 *
10706 * @remarks This function assumes our cache of the VMCS controls
10707 * are valid, i.e. hmR0VmxCheckVmcsCtls() succeeded.
10708 */
10709static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
10710{
10711#define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
10712#define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
10713 uError = (err); \
10714 break; \
10715 } else do { } while (0)
10716
10717 int rc;
10718 uint32_t uError = VMX_IGS_ERROR;
10719 uint32_t u32Val;
10720 bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
10721
10722 do
10723 {
10724 /*
10725 * CR0.
10726 */
10727 uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10728 uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.Msrs.u64Cr0Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr0Fixed1);
10729 /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
10730 See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
10731 if (fUnrestrictedGuest)
10732 uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
10733
10734 uint32_t u32GuestCR0;
10735 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32GuestCR0);
10736 AssertRCBreak(rc);
10737 HMVMX_CHECK_BREAK((u32GuestCR0 & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
10738 HMVMX_CHECK_BREAK(!(u32GuestCR0 & ~uZapCR0), VMX_IGS_CR0_FIXED0);
10739 if ( !fUnrestrictedGuest
10740 && (u32GuestCR0 & X86_CR0_PG)
10741 && !(u32GuestCR0 & X86_CR0_PE))
10742 {
10743 HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
10744 }
10745
10746 /*
10747 * CR4.
10748 */
10749 uint64_t uSetCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 & pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10750 uint64_t uZapCR4 = (pVM->hm.s.vmx.Msrs.u64Cr4Fixed0 | pVM->hm.s.vmx.Msrs.u64Cr4Fixed1);
10751
10752 uint32_t u32GuestCR4;
10753 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32GuestCR4);
10754 AssertRCBreak(rc);
10755 HMVMX_CHECK_BREAK((u32GuestCR4 & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
10756 HMVMX_CHECK_BREAK(!(u32GuestCR4 & ~uZapCR4), VMX_IGS_CR4_FIXED0);
10757
10758 /*
10759 * IA32_DEBUGCTL MSR.
10760 */
10761 uint64_t u64Val;
10762 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
10763 AssertRCBreak(rc);
10764 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
10765 && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
10766 {
10767 HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
10768 }
10769 uint64_t u64DebugCtlMsr = u64Val;
10770
10771#ifdef VBOX_STRICT
10772 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val);
10773 AssertRCBreak(rc);
10774 Assert(u32Val == pVCpu->hm.s.vmx.u32EntryCtls);
10775#endif
10776 bool const fLongModeGuest = RT_BOOL(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
10777
10778 /*
10779 * RIP and RFLAGS.
10780 */
10781 uint32_t u32Eflags;
10782#if HC_ARCH_BITS == 64
10783 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
10784 AssertRCBreak(rc);
10785 /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
10786 if ( !fLongModeGuest
10787 || !pCtx->cs.Attr.n.u1Long)
10788 {
10789 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
10790 }
10791 /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
10792 * must be identical if the "IA-32e mode guest" VM-entry
10793 * control is 1 and CS.L is 1. No check applies if the
10794 * CPU supports 64 linear-address bits. */
10795
10796 /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
10797 rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
10798 AssertRCBreak(rc);
10799 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
10800 VMX_IGS_RFLAGS_RESERVED);
10801 HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10802 u32Eflags = u64Val;
10803#else
10804 rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Eflags);
10805 AssertRCBreak(rc);
10806 HMVMX_CHECK_BREAK(!(u32Eflags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
10807 HMVMX_CHECK_BREAK((u32Eflags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
10808#endif
10809
10810 if ( fLongModeGuest
10811 || ( fUnrestrictedGuest
10812 && !(u32GuestCR0 & X86_CR0_PE)))
10813 {
10814 HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
10815 }
10816
10817 uint32_t u32EntryInfo;
10818 rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
10819 AssertRCBreak(rc);
10820 if ( VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
10821 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
10822 {
10823 HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
10824 }
10825
10826 /*
10827 * 64-bit checks.
10828 */
10829#if HC_ARCH_BITS == 64
10830 if (fLongModeGuest)
10831 {
10832 HMVMX_CHECK_BREAK(u32GuestCR0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
10833 HMVMX_CHECK_BREAK(u32GuestCR4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
10834 }
10835
10836 if ( !fLongModeGuest
10837 && (u32GuestCR4 & X86_CR4_PCIDE))
10838 {
10839 HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
10840 }
10841
10842 /** @todo CR3 field must be such that bits 63:52 and bits in the range
10843 * 51:32 beyond the processor's physical-address width are 0. */
10844
10845 if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
10846 && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
10847 {
10848 HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
10849 }
10850
10851 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
10852 AssertRCBreak(rc);
10853 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
10854
10855 rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
10856 AssertRCBreak(rc);
10857 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
10858#endif
10859
10860 /*
10861 * PERF_GLOBAL MSR.
10862 */
10863 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
10864 {
10865 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
10866 AssertRCBreak(rc);
10867 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
10868 VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
10869 }
10870
10871 /*
10872 * PAT MSR.
10873 */
10874 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
10875 {
10876 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
10877 AssertRCBreak(rc);
10878 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
10879 for (unsigned i = 0; i < 8; i++)
10880 {
10881 uint8_t u8Val = (u64Val & 0xff);
10882 if ( u8Val != 0 /* UC */
10883 && u8Val != 1 /* WC */
10884 && u8Val != 4 /* WT */
10885 && u8Val != 5 /* WP */
10886 && u8Val != 6 /* WB */
10887 && u8Val != 7 /* UC- */)
10888 {
10889 HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
10890 }
10891 u64Val >>= 8;
10892 }
10893 }
10894
10895 /*
10896 * EFER MSR.
10897 */
10898 if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
10899 {
10900 Assert(pVM->hm.s.vmx.fSupportsVmcsEfer);
10901 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
10902 AssertRCBreak(rc);
10903 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
10904 VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
10905 HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVCpu->hm.s.vmx.u32EntryCtls
10906 & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
10907 VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
10908 HMVMX_CHECK_BREAK( fUnrestrictedGuest
10909 || !(u32GuestCR0 & X86_CR0_PG)
10910 || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
10911 VMX_IGS_EFER_LMA_LME_MISMATCH);
10912 }
10913
10914 /*
10915 * Segment registers.
10916 */
10917 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
10918 || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
10919 if (!(u32Eflags & X86_EFL_VM))
10920 {
10921 /* CS */
10922 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
10923 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
10924 HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
10925 HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
10926 || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10927 HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
10928 || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
10929 /* CS cannot be loaded with NULL in protected mode. */
10930 HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
10931 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
10932 if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
10933 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
10934 else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
10935 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
10936 else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
10937 HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
10938 else
10939 HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
10940
10941 /* SS */
10942 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10943 || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
10944 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
10945 if ( !(pCtx->cr0 & X86_CR0_PE)
10946 || pCtx->cs.Attr.n.u4Type == 3)
10947 {
10948 HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
10949 }
10950 if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
10951 {
10952 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
10953 HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
10954 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
10955 HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
10956 HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
10957 || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10958 HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
10959 || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
10960 }
10961
10962 /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
10963 if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
10964 {
10965 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
10966 HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
10967 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10968 || pCtx->ds.Attr.n.u4Type > 11
10969 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10970 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
10971 HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
10972 HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
10973 || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10974 HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
10975 || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
10976 HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10977 || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
10978 }
10979 if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
10980 {
10981 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
10982 HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
10983 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
10984 || pCtx->es.Attr.n.u4Type > 11
10985 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
10986 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
10987 HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
10988 HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
10989 || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10990 HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
10991 || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
10992 HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
10993 || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
10994 }
10995 if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
10996 {
10997 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
10998 HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
10999 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11000 || pCtx->fs.Attr.n.u4Type > 11
11001 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
11002 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
11003 HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
11004 HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
11005 || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
11006 HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
11007 || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
11008 HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11009 || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
11010 }
11011 if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
11012 {
11013 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
11014 HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
11015 HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
11016 || pCtx->gs.Attr.n.u4Type > 11
11017 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
11018 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
11019 HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
11020 HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
11021 || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
11022 HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
11023 || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
11024 HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
11025 || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
11026 }
11027 /* 64-bit capable CPUs. */
11028#if HC_ARCH_BITS == 64
11029 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
11030 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
11031 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11032 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
11033 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
11034 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
11035 VMX_IGS_LONGMODE_SS_BASE_INVALID);
11036 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
11037 VMX_IGS_LONGMODE_DS_BASE_INVALID);
11038 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
11039 VMX_IGS_LONGMODE_ES_BASE_INVALID);
11040#endif
11041 }
11042 else
11043 {
11044 /* V86 mode checks. */
11045 uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
11046 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11047 {
11048 u32CSAttr = 0xf3; u32SSAttr = 0xf3;
11049 u32DSAttr = 0xf3; u32ESAttr = 0xf3;
11050 u32FSAttr = 0xf3; u32GSAttr = 0xf3;
11051 }
11052 else
11053 {
11054 u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
11055 u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
11056 u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
11057 }
11058
11059 /* CS */
11060 HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
11061 HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
11062 HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
11063 /* SS */
11064 HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
11065 HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
11066 HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
11067 /* DS */
11068 HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
11069 HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
11070 HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
11071 /* ES */
11072 HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
11073 HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
11074 HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
11075 /* FS */
11076 HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
11077 HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
11078 HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
11079 /* GS */
11080 HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
11081 HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
11082 HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
11083 /* 64-bit capable CPUs. */
11084#if HC_ARCH_BITS == 64
11085 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
11086 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
11087 HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
11088 || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
11089 HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
11090 HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
11091 VMX_IGS_LONGMODE_SS_BASE_INVALID);
11092 HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
11093 VMX_IGS_LONGMODE_DS_BASE_INVALID);
11094 HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
11095 VMX_IGS_LONGMODE_ES_BASE_INVALID);
11096#endif
11097 }
11098
11099 /*
11100 * TR.
11101 */
11102 HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
11103 /* 64-bit capable CPUs. */
11104#if HC_ARCH_BITS == 64
11105 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
11106#endif
11107 if (fLongModeGuest)
11108 {
11109 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
11110 VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
11111 }
11112 else
11113 {
11114 HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
11115 || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
11116 VMX_IGS_TR_ATTR_TYPE_INVALID);
11117 }
11118 HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
11119 HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
11120 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
11121 HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
11122 || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11123 HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
11124 || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
11125 HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
11126
11127 /*
11128 * GDTR and IDTR.
11129 */
11130#if HC_ARCH_BITS == 64
11131 rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
11132 AssertRCBreak(rc);
11133 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
11134
11135 rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
11136 AssertRCBreak(rc);
11137 HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
11138#endif
11139
11140 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
11141 AssertRCBreak(rc);
11142 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11143
11144 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
11145 AssertRCBreak(rc);
11146 HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
11147
11148 /*
11149 * Guest Non-Register State.
11150 */
11151 /* Activity State. */
11152 uint32_t u32ActivityState;
11153 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
11154 AssertRCBreak(rc);
11155 HMVMX_CHECK_BREAK( !u32ActivityState
11156 || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.Msrs.u64Misc)),
11157 VMX_IGS_ACTIVITY_STATE_INVALID);
11158 HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
11159 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
11160 uint32_t u32IntrState;
11161 rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
11162 AssertRCBreak(rc);
11163 if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
11164 || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11165 {
11166 HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
11167 }
11168
11169 /** @todo Activity state and injecting interrupts. Left as a todo since we
11170 * currently don't use activity states but ACTIVE. */
11171
11172 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11173 || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
11174
11175 /* Guest interruptibility-state. */
11176 HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
11177 HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11178 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
11179 != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
11180 | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11181 VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
11182 HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
11183 || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11184 VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
11185 if (VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo))
11186 {
11187 if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
11188 {
11189 HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11190 && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11191 VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
11192 }
11193 else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11194 {
11195 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
11196 VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
11197 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
11198 VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
11199 }
11200 }
11201 /** @todo Assumes the processor is not in SMM. */
11202 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11203 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
11204 HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
11205 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
11206 VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
11207 if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
11208 && VMX_ENTRY_INTERRUPTION_INFO_IS_VALID(u32EntryInfo)
11209 && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11210 {
11211 HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
11212 VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
11213 }
11214
11215 /* Pending debug exceptions. */
11216#if HC_ARCH_BITS == 64
11217 rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
11218 AssertRCBreak(rc);
11219 /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
11220 HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
11221 u32Val = u64Val; /* For pending debug exceptions checks below. */
11222#else
11223 rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
11224 AssertRCBreak(rc);
11225 /* Bits 31:15, Bit 13, Bits 11:4 MBZ. */
11226 HMVMX_CHECK_BREAK(!(u32Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
11227#endif
11228
11229 if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
11230 || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
11231 || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
11232 {
11233 if ( (u32Eflags & X86_EFL_TF)
11234 && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11235 {
11236 /* Bit 14 is PendingDebug.BS. */
11237 HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
11238 }
11239 if ( !(u32Eflags & X86_EFL_TF)
11240 || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
11241 {
11242 /* Bit 14 is PendingDebug.BS. */
11243 HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
11244 }
11245 }
11246
11247 /* VMCS link pointer. */
11248 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
11249 AssertRCBreak(rc);
11250 if (u64Val != UINT64_C(0xffffffffffffffff))
11251 {
11252 HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
11253 /** @todo Bits beyond the processor's physical-address width MBZ. */
11254 /** @todo 32-bit located in memory referenced by value of this field (as a
11255 * physical address) must contain the processor's VMCS revision ID. */
11256 /** @todo SMM checks. */
11257 }
11258
11259 /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
11260 * not using Nested Paging? */
11261 if ( pVM->hm.s.fNestedPaging
11262 && !fLongModeGuest
11263 && CPUMIsGuestInPAEModeEx(pCtx))
11264 {
11265 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
11266 AssertRCBreak(rc);
11267 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11268
11269 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
11270 AssertRCBreak(rc);
11271 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11272
11273 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
11274 AssertRCBreak(rc);
11275 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11276
11277 rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
11278 AssertRCBreak(rc);
11279 HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
11280 }
11281
11282 /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
11283 if (uError == VMX_IGS_ERROR)
11284 uError = VMX_IGS_REASON_NOT_FOUND;
11285 } while (0);
11286
11287 pVCpu->hm.s.u32HMError = uError;
11288 return uError;
11289
11290#undef HMVMX_ERROR_BREAK
11291#undef HMVMX_CHECK_BREAK
11292}
11293
11294/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11295/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
11296/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
11297
11298/** @name VM-exit handlers.
11299 * @{
11300 */
11301
11302/**
11303 * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
11304 */
11305HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11306{
11307 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11308 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
11309 /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
11310 if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
11311 return VINF_SUCCESS;
11312 return VINF_EM_RAW_INTERRUPT;
11313}
11314
11315
11316/**
11317 * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
11318 */
11319HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11320{
11321 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11322 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
11323
11324 int rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
11325 AssertRCReturn(rc, rc);
11326
11327 uint32_t uIntType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntInfo);
11328 Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
11329 && uIntType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
11330 Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
11331
11332 if (uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
11333 {
11334 /*
11335 * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
11336 * anything we inject is not going to cause a VM-exit directly for the event being injected.
11337 * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
11338 *
11339 * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
11340 */
11341 VMXDispatchHostNmi();
11342 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
11343 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11344 return VINF_SUCCESS;
11345 }
11346
11347 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
11348 VBOXSTRICTRC rcStrictRc1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
11349 if (RT_UNLIKELY(rcStrictRc1 == VINF_SUCCESS))
11350 { /* likely */ }
11351 else
11352 {
11353 if (rcStrictRc1 == VINF_HM_DOUBLE_FAULT)
11354 rcStrictRc1 = VINF_SUCCESS;
11355 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11356 return rcStrictRc1;
11357 }
11358
11359 uint32_t uExitIntInfo = pVmxTransient->uExitIntInfo;
11360 uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntInfo);
11361 switch (uIntType)
11362 {
11363 case VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT: /* Privileged software exception. (#DB from ICEBP) */
11364 Assert(uVector == X86_XCPT_DB);
11365 /* fall thru */
11366 case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
11367 Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uIntType == VMX_EXIT_INTERRUPTION_INFO_TYPE_PRIV_SW_XCPT);
11368 /* fall thru */
11369 case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
11370 {
11371 /*
11372 * If there's any exception caused as a result of event injection, go back to
11373 * the interpreter. The page-fault case is complicated and we manually handle
11374 * any currently pending event in hmR0VmxExitXcptPF. Nested #ACs are already
11375 * handled in hmR0VmxCheckExitDueToEventDelivery.
11376 */
11377 if (!pVCpu->hm.s.Event.fPending)
11378 { /* likely */ }
11379 else if ( uVector != X86_XCPT_PF
11380 && uVector != X86_XCPT_AC)
11381 {
11382 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
11383 rc = VERR_EM_INTERPRETER;
11384 break;
11385 }
11386
11387 switch (uVector)
11388 {
11389 case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
11390 case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
11391 case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
11392 case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
11393 case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
11394 case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
11395 case X86_XCPT_AC: rc = hmR0VmxExitXcptAC(pVCpu, pMixedCtx, pVmxTransient); break;
11396
11397 case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
11398 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11399 case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
11400 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11401 case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
11402 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11403 case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
11404 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11405 case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
11406 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11407 case X86_XCPT_TS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestTS);
11408 rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
11409 default:
11410 {
11411 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11412 AssertRCReturn(rc, rc);
11413
11414 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
11415 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
11416 {
11417 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
11418 Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
11419 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
11420
11421 rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11422 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
11423 AssertRCReturn(rc, rc);
11424 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntInfo),
11425 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode,
11426 0 /* GCPtrFaultAddress */);
11427 AssertRCReturn(rc, rc);
11428 }
11429 else
11430 {
11431 AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
11432 pVCpu->hm.s.u32HMError = uVector;
11433 rc = VERR_VMX_UNEXPECTED_EXCEPTION;
11434 }
11435 break;
11436 }
11437 }
11438 break;
11439 }
11440
11441 default:
11442 {
11443 pVCpu->hm.s.u32HMError = uExitIntInfo;
11444 rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
11445 AssertMsgFailed(("Unexpected interruption info %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntInfo)));
11446 break;
11447 }
11448 }
11449 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
11450 return rc;
11451}
11452
11453
11454/**
11455 * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
11456 */
11457HMVMX_EXIT_NSRC_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11458{
11459 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11460
11461 /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
11462 hmR0VmxClearIntWindowExitVmcs(pVCpu);
11463
11464 /* Deliver the pending interrupts via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11465 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
11466 return VINF_SUCCESS;
11467}
11468
11469
11470/**
11471 * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
11472 */
11473HMVMX_EXIT_NSRC_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11474{
11475 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11476 if (RT_UNLIKELY(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_NMI_WINDOW_EXIT)))
11477 {
11478 AssertMsgFailed(("Unexpected NMI-window exit.\n"));
11479 HMVMX_RETURN_UNEXPECTED_EXIT();
11480 }
11481
11482 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
11483
11484 /*
11485 * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
11486 * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
11487 */
11488 uint32_t uIntrState = 0;
11489 int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
11490 AssertRCReturn(rc, rc);
11491
11492 bool const fBlockSti = RT_BOOL(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
11493 if ( fBlockSti
11494 && VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
11495 {
11496 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
11497 }
11498
11499 /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
11500 hmR0VmxClearNmiWindowExitVmcs(pVCpu);
11501
11502 /* Deliver the pending NMI via hmR0VmxEvaluatePendingEvent() and resume guest execution. */
11503 return VINF_SUCCESS;
11504}
11505
11506
11507/**
11508 * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
11509 */
11510HMVMX_EXIT_NSRC_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11511{
11512 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11513 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
11514 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11515}
11516
11517
11518/**
11519 * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
11520 */
11521HMVMX_EXIT_NSRC_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11522{
11523 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11524 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
11525 return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11526}
11527
11528
11529/**
11530 * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
11531 */
11532HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11533{
11534 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11535 PVM pVM = pVCpu->CTX_SUFF(pVM);
11536 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11537 if (RT_LIKELY(rc == VINF_SUCCESS))
11538 {
11539 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11540 Assert(pVmxTransient->cbInstr == 2);
11541 }
11542 else
11543 {
11544 AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
11545 rc = VERR_EM_INTERPRETER;
11546 }
11547 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
11548 return rc;
11549}
11550
11551
11552/**
11553 * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
11554 */
11555HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11556{
11557 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11558 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11559 AssertRCReturn(rc, rc);
11560
11561 if (pMixedCtx->cr4 & X86_CR4_SMXE)
11562 return VINF_EM_RAW_EMULATE_INSTR;
11563
11564 AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
11565 HMVMX_RETURN_UNEXPECTED_EXIT();
11566}
11567
11568
11569/**
11570 * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
11571 */
11572HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11573{
11574 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11575 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11576 AssertRCReturn(rc, rc);
11577
11578 PVM pVM = pVCpu->CTX_SUFF(pVM);
11579 rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11580 if (RT_LIKELY(rc == VINF_SUCCESS))
11581 {
11582 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11583 Assert(pVmxTransient->cbInstr == 2);
11584 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11585 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11586 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11587 }
11588 else
11589 rc = VERR_EM_INTERPRETER;
11590 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11591 return rc;
11592}
11593
11594
11595/**
11596 * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
11597 */
11598HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11599{
11600 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11601 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11602 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
11603 AssertRCReturn(rc, rc);
11604
11605 PVM pVM = pVCpu->CTX_SUFF(pVM);
11606 rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
11607 if (RT_SUCCESS(rc))
11608 {
11609 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11610 Assert(pVmxTransient->cbInstr == 3);
11611 /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
11612 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
11613 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11614 }
11615 else
11616 {
11617 AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
11618 rc = VERR_EM_INTERPRETER;
11619 }
11620 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
11621 return rc;
11622}
11623
11624
11625/**
11626 * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
11627 */
11628HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11629{
11630 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11631 int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11632 rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11633 AssertRCReturn(rc, rc);
11634
11635 PVM pVM = pVCpu->CTX_SUFF(pVM);
11636 rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11637 if (RT_LIKELY(rc == VINF_SUCCESS))
11638 {
11639 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11640 Assert(pVmxTransient->cbInstr == 2);
11641 }
11642 else
11643 {
11644 AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
11645 rc = VERR_EM_INTERPRETER;
11646 }
11647 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
11648 return rc;
11649}
11650
11651
11652/**
11653 * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
11654 */
11655HMVMX_EXIT_DECL hmR0VmxExitVmcall(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11656{
11657 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11658 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
11659
11660 VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
11661 if (pVCpu->hm.s.fHypercallsEnabled)
11662 {
11663#if 0
11664 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11665#else
11666 /* Aggressive state sync. for now. */
11667 int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
11668 rc |= hmR0VmxSaveGuestRflags(pVCpu,pMixedCtx); /* For CPL checks in gimHvHypercall() & gimKvmHypercall() */
11669 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* For long-mode checks in gimKvmHypercall(). */
11670 AssertRCReturn(rc, rc);
11671#endif
11672
11673 /* Perform the hypercall. */
11674 rcStrict = GIMHypercall(pVCpu, pMixedCtx);
11675 if (rcStrict == VINF_SUCCESS)
11676 {
11677 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11678 AssertRCReturn(rc, rc);
11679 }
11680 else
11681 Assert( rcStrict == VINF_GIM_R3_HYPERCALL
11682 || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
11683 || RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
11684
11685 /* If the hypercall changes anything other than guest's general-purpose registers,
11686 we would need to reload the guest changed bits here before VM-entry. */
11687 }
11688 else
11689 Log4(("hmR0VmxExitVmcall: Hypercalls not enabled\n"));
11690
11691 /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
11692 if (RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)))
11693 {
11694 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
11695 rcStrict = VINF_SUCCESS;
11696 }
11697
11698 return rcStrict;
11699}
11700
11701
11702/**
11703 * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
11704 */
11705HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11706{
11707 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11708 PVM pVM = pVCpu->CTX_SUFF(pVM);
11709 Assert(!pVM->hm.s.fNestedPaging || pVCpu->hm.s.fUsingDebugLoop);
11710
11711 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
11712 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
11713 AssertRCReturn(rc, rc);
11714
11715 VBOXSTRICTRC rcStrict = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
11716 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
11717 rcStrict = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11718 else
11719 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
11720 pVmxTransient->uExitQualification, VBOXSTRICTRC_VAL(rcStrict)));
11721 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
11722 return rcStrict;
11723}
11724
11725
11726/**
11727 * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
11728 */
11729HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11730{
11731 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11732 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11733 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11734 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11735 AssertRCReturn(rc, rc);
11736
11737 PVM pVM = pVCpu->CTX_SUFF(pVM);
11738 rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11739 if (RT_LIKELY(rc == VINF_SUCCESS))
11740 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11741 else
11742 {
11743 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
11744 rc = VERR_EM_INTERPRETER;
11745 }
11746 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
11747 return rc;
11748}
11749
11750
11751/**
11752 * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
11753 */
11754HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11755{
11756 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11757 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
11758 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
11759 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
11760 AssertRCReturn(rc, rc);
11761
11762 PVM pVM = pVCpu->CTX_SUFF(pVM);
11763 VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
11764 rc = VBOXSTRICTRC_VAL(rc2);
11765 if (RT_LIKELY( rc == VINF_SUCCESS
11766 || rc == VINF_EM_HALT))
11767 {
11768 int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11769 AssertRCReturn(rc3, rc3);
11770
11771 if ( rc == VINF_EM_HALT
11772 && EMMonitorWaitShouldContinue(pVCpu, pMixedCtx))
11773 {
11774 rc = VINF_SUCCESS;
11775 }
11776 }
11777 else
11778 {
11779 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
11780 rc = VERR_EM_INTERPRETER;
11781 }
11782 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
11783 ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
11784 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
11785 return rc;
11786}
11787
11788
11789/**
11790 * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
11791 */
11792HMVMX_EXIT_NSRC_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11793{
11794 /*
11795 * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
11796 * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
11797 * executing VMCALL in VMX root operation. If we get here, something funny is going on.
11798 * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
11799 */
11800 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11801 AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11802 HMVMX_RETURN_UNEXPECTED_EXIT();
11803}
11804
11805
11806/**
11807 * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
11808 */
11809HMVMX_EXIT_NSRC_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11810{
11811 /*
11812 * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
11813 * root operation. Only an STM (SMM transfer monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL
11814 * in VMX root mode or receive an SMI. If we get here, something funny is going on.
11815 * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
11816 */
11817 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11818 AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11819 HMVMX_RETURN_UNEXPECTED_EXIT();
11820}
11821
11822
11823/**
11824 * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
11825 */
11826HMVMX_EXIT_NSRC_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11827{
11828 /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
11829 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11830 AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11831 HMVMX_RETURN_UNEXPECTED_EXIT();
11832}
11833
11834
11835/**
11836 * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
11837 */
11838HMVMX_EXIT_NSRC_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11839{
11840 /*
11841 * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
11842 * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
11843 * See Intel spec. 25.3 "Other Causes of VM-exits".
11844 */
11845 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11846 AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
11847 HMVMX_RETURN_UNEXPECTED_EXIT();
11848}
11849
11850
11851/**
11852 * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
11853 * VM-exit.
11854 */
11855HMVMX_EXIT_NSRC_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11856{
11857 /*
11858 * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
11859 * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
11860 *
11861 * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
11862 * See Intel spec. "23.8 Restrictions on VMX operation".
11863 */
11864 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11865 return VINF_SUCCESS;
11866}
11867
11868
11869/**
11870 * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
11871 * VM-exit.
11872 */
11873HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11874{
11875 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11876 return VINF_EM_RESET;
11877}
11878
11879
11880/**
11881 * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
11882 */
11883HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11884{
11885 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11886 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
11887
11888 int rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
11889 AssertRCReturn(rc, rc);
11890
11891 if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
11892 rc = VINF_SUCCESS;
11893 else
11894 rc = VINF_EM_HALT;
11895
11896 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
11897 if (rc != VINF_SUCCESS)
11898 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
11899 return rc;
11900}
11901
11902
11903/**
11904 * VM-exit handler for instructions that result in a \#UD exception delivered to
11905 * the guest.
11906 */
11907HMVMX_EXIT_NSRC_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11908{
11909 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11910 hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
11911 return VINF_SUCCESS;
11912}
11913
11914
11915/**
11916 * VM-exit handler for expiry of the VMX preemption timer.
11917 */
11918HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11919{
11920 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11921
11922 /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
11923 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
11924
11925 /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
11926 PVM pVM = pVCpu->CTX_SUFF(pVM);
11927 bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
11928 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
11929 return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
11930}
11931
11932
11933/**
11934 * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
11935 */
11936HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11937{
11938 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11939
11940 int rc = hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
11941 rc |= hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, false /*fNeedRsp*/);
11942 rc |= hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
11943 AssertRCReturn(rc, rc);
11944
11945 VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbInstr);
11946 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
11947
11948 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pMixedCtx->cr4 & X86_CR4_OSXSAVE) && pMixedCtx->aXcr[0] != ASMGetXcr0();
11949
11950 return rcStrict;
11951}
11952
11953
11954/**
11955 * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
11956 */
11957HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11958{
11959 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
11960
11961 /* The guest should not invalidate the host CPU's TLBs, fallback to interpreter. */
11962 /** @todo implement EMInterpretInvpcid() */
11963 return VERR_EM_INTERPRETER;
11964}
11965
11966
11967/**
11968 * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
11969 * Error VM-exit.
11970 */
11971HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
11972{
11973 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
11974 AssertRCReturn(rc, rc);
11975
11976 rc = hmR0VmxCheckVmcsCtls(pVCpu);
11977 AssertRCReturn(rc, rc);
11978
11979 uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
11980 NOREF(uInvalidReason);
11981
11982#ifdef VBOX_STRICT
11983 uint32_t uIntrState;
11984 RTHCUINTREG uHCReg;
11985 uint64_t u64Val;
11986 uint32_t u32Val;
11987
11988 rc = hmR0VmxReadEntryIntInfoVmcs(pVmxTransient);
11989 rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
11990 rc |= hmR0VmxReadEntryInstrLenVmcs(pVmxTransient);
11991 rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
11992 AssertRCReturn(rc, rc);
11993
11994 Log4(("uInvalidReason %u\n", uInvalidReason));
11995 Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
11996 Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
11997 Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
11998 Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
11999
12000 rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
12001 Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
12002 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
12003 Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
12004 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
12005 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
12006 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
12007 Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
12008 rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
12009 Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
12010 rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
12011 Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
12012#else
12013 NOREF(pVmxTransient);
12014#endif
12015
12016 hmDumpRegs(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
12017 return VERR_VMX_INVALID_GUEST_STATE;
12018}
12019
12020
12021/**
12022 * VM-exit handler for VM-entry failure due to an MSR-load
12023 * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
12024 */
12025HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12026{
12027 NOREF(pVmxTransient);
12028 AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
12029 HMVMX_RETURN_UNEXPECTED_EXIT();
12030}
12031
12032
12033/**
12034 * VM-exit handler for VM-entry failure due to a machine-check event
12035 * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
12036 */
12037HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12038{
12039 NOREF(pVmxTransient);
12040 AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx)); NOREF(pMixedCtx);
12041 HMVMX_RETURN_UNEXPECTED_EXIT();
12042}
12043
12044
12045/**
12046 * VM-exit handler for all undefined reasons. Should never ever happen.. in
12047 * theory.
12048 */
12049HMVMX_EXIT_NSRC_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12050{
12051 AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
12052 NOREF(pVCpu); NOREF(pMixedCtx); NOREF(pVmxTransient);
12053 return VERR_VMX_UNDEFINED_EXIT_CODE;
12054}
12055
12056
12057/**
12058 * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
12059 * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
12060 * Conditional VM-exit.
12061 */
12062HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12063{
12064 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12065
12066 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
12067 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
12068 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
12069 return VERR_EM_INTERPRETER;
12070 AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12071 HMVMX_RETURN_UNEXPECTED_EXIT();
12072}
12073
12074
12075/**
12076 * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
12077 */
12078HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12079{
12080 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12081
12082 /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
12083 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
12084 if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
12085 return VERR_EM_INTERPRETER;
12086 AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12087 HMVMX_RETURN_UNEXPECTED_EXIT();
12088}
12089
12090
12091/**
12092 * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
12093 */
12094HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12095{
12096 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12097
12098 /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
12099 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12100 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12101 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12102 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12103 {
12104 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12105 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12106 }
12107 AssertRCReturn(rc, rc);
12108 Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
12109
12110#ifdef VBOX_STRICT
12111 if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
12112 {
12113 if ( hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx)
12114 && pMixedCtx->ecx != MSR_K6_EFER)
12115 {
12116 AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12117 pMixedCtx->ecx));
12118 HMVMX_RETURN_UNEXPECTED_EXIT();
12119 }
12120 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12121 {
12122 VMXMSREXITREAD enmRead;
12123 VMXMSREXITWRITE enmWrite;
12124 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12125 AssertRCReturn(rc2, rc2);
12126 if (enmRead == VMXMSREXIT_PASSTHRU_READ)
12127 {
12128 AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12129 HMVMX_RETURN_UNEXPECTED_EXIT();
12130 }
12131 }
12132 }
12133#endif
12134
12135 PVM pVM = pVCpu->CTX_SUFF(pVM);
12136 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12137 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
12138 ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
12139 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
12140 if (RT_SUCCESS(rc))
12141 {
12142 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12143 Assert(pVmxTransient->cbInstr == 2);
12144 }
12145 return rc;
12146}
12147
12148
12149/**
12150 * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
12151 */
12152HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12153{
12154 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12155 PVM pVM = pVCpu->CTX_SUFF(pVM);
12156 int rc = VINF_SUCCESS;
12157
12158 /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
12159 rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
12160 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
12161 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12162 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12163 {
12164 rc |= hmR0VmxSaveGuestLazyMsrs(pVCpu, pMixedCtx);
12165 rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
12166 }
12167 AssertRCReturn(rc, rc);
12168 Log4(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", pMixedCtx->ecx, pMixedCtx->edx, pMixedCtx->eax));
12169
12170 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
12171 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
12172 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
12173
12174 if (RT_SUCCESS(rc))
12175 {
12176 rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12177
12178 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
12179 if ( pMixedCtx->ecx == MSR_IA32_APICBASE
12180 || ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
12181 && pMixedCtx->ecx <= MSR_IA32_X2APIC_END))
12182 {
12183 /*
12184 * We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
12185 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
12186 * EMInterpretWrmsr() changes it.
12187 */
12188 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12189 }
12190 else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
12191 pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
12192 else if (pMixedCtx->ecx == MSR_K6_EFER)
12193 {
12194 /*
12195 * If the guest touches EFER we need to update the VM-Entry and VM-Exit controls as well,
12196 * even if it is -not- touching bits that cause paging mode changes (LMA/LME). We care about
12197 * the other bits as well, SCE and NXE. See @bugref{7368}.
12198 */
12199 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_CTLS | HM_CHANGED_VMX_EXIT_CTLS);
12200 }
12201
12202 /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not supported. */
12203 if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
12204 {
12205 switch (pMixedCtx->ecx)
12206 {
12207 /*
12208 * For SYSENTER CS, EIP, ESP MSRs, we set both the flags here so we don't accidentally
12209 * overwrite the changed guest-CPU context value while going to ring-3, see @bufref{8745}.
12210 */
12211 case MSR_IA32_SYSENTER_CS:
12212 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_CS_MSR);
12213 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR);
12214 break;
12215 case MSR_IA32_SYSENTER_EIP:
12216 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_EIP_MSR);
12217 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR);
12218 break;
12219 case MSR_IA32_SYSENTER_ESP:
12220 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
12221 HMVMXCPU_GST_SET_UPDATED(pVCpu, HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR);
12222 break;
12223 case MSR_K8_FS_BASE: /* fall thru */
12224 case MSR_K8_GS_BASE: HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS); break;
12225 case MSR_K6_EFER: /* already handled above */ break;
12226 default:
12227 {
12228 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12229 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
12230 else if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12231 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
12232 break;
12233 }
12234 }
12235 }
12236#ifdef VBOX_STRICT
12237 else
12238 {
12239 /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
12240 switch (pMixedCtx->ecx)
12241 {
12242 case MSR_IA32_SYSENTER_CS:
12243 case MSR_IA32_SYSENTER_EIP:
12244 case MSR_IA32_SYSENTER_ESP:
12245 case MSR_K8_FS_BASE:
12246 case MSR_K8_GS_BASE:
12247 {
12248 AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
12249 HMVMX_RETURN_UNEXPECTED_EXIT();
12250 }
12251
12252 /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
12253 default:
12254 {
12255 if (hmR0VmxIsAutoLoadStoreGuestMsr(pVCpu, pMixedCtx->ecx))
12256 {
12257 /* EFER writes are always intercepted, see hmR0VmxLoadGuestMsrs(). */
12258 if (pMixedCtx->ecx != MSR_K6_EFER)
12259 {
12260 AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
12261 pMixedCtx->ecx));
12262 HMVMX_RETURN_UNEXPECTED_EXIT();
12263 }
12264 }
12265
12266 if (hmR0VmxIsLazyGuestMsr(pVCpu, pMixedCtx->ecx))
12267 {
12268 VMXMSREXITREAD enmRead;
12269 VMXMSREXITWRITE enmWrite;
12270 int rc2 = hmR0VmxGetMsrPermission(pVCpu, pMixedCtx->ecx, &enmRead, &enmWrite);
12271 AssertRCReturn(rc2, rc2);
12272 if (enmWrite == VMXMSREXIT_PASSTHRU_WRITE)
12273 {
12274 AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", pMixedCtx->ecx));
12275 HMVMX_RETURN_UNEXPECTED_EXIT();
12276 }
12277 }
12278 break;
12279 }
12280 }
12281 }
12282#endif /* VBOX_STRICT */
12283 }
12284 return rc;
12285}
12286
12287
12288/**
12289 * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
12290 */
12291HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12292{
12293 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12294
12295 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
12296 return VINF_EM_RAW_INTERRUPT;
12297}
12298
12299
12300/**
12301 * VM-exit handler for when the TPR value is lowered below the specified
12302 * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
12303 */
12304HMVMX_EXIT_NSRC_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12305{
12306 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12307 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
12308
12309 /*
12310 * The TPR shadow would've been synced with the APIC TPR in hmR0VmxPostRunGuest(). We'll re-evaluate
12311 * pending interrupts and inject them before the next VM-entry so we can just continue execution here.
12312 */
12313 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
12314 return VINF_SUCCESS;
12315}
12316
12317
12318/**
12319 * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
12320 * VM-exit.
12321 *
12322 * @retval VINF_SUCCESS when guest execution can continue.
12323 * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
12324 * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
12325 * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
12326 * interpreter.
12327 */
12328HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12329{
12330 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12331 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
12332 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12333 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12334 AssertRCReturn(rc, rc);
12335
12336 RTGCUINTPTR const uExitQualification = pVmxTransient->uExitQualification;
12337 uint32_t const uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
12338 PVM pVM = pVCpu->CTX_SUFF(pVM);
12339 VBOXSTRICTRC rcStrict;
12340 rc = hmR0VmxSaveGuestRegsForIemExec(pVCpu, pMixedCtx, false /*fMemory*/, true /*fNeedRsp*/);
12341 switch (uAccessType)
12342 {
12343 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
12344 {
12345 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12346 AssertRCReturn(rc, rc);
12347
12348 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, pVmxTransient->cbInstr,
12349 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12350 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
12351 AssertMsg( rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE
12352 || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12353 switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
12354 {
12355 case 0: /* CR0 */
12356 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12357 Log4(("CRX CR0 write rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr0));
12358 break;
12359 case 2: /* CR2 */
12360 /* Nothing to do here, CR2 it's not part of the VMCS. */
12361 break;
12362 case 3: /* CR3 */
12363 Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx) || pVCpu->hm.s.fUsingDebugLoop);
12364 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
12365 Log4(("CRX CR3 write rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr3));
12366 break;
12367 case 4: /* CR4 */
12368 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
12369 Log4(("CRX CR4 write rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n",
12370 VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->cr4, pVCpu->hm.s.fLoadSaveGuestXcr0));
12371 break;
12372 case 8: /* CR8 */
12373 Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12374 /* CR8 contains the APIC TPR. Was updated by IEMExecDecodedMovCRxWrite(). */
12375 HMCPU_CF_SET(pVCpu, HM_CHANGED_VMX_GUEST_APIC_STATE);
12376 break;
12377 default:
12378 AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
12379 break;
12380 }
12381
12382 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12383 break;
12384 }
12385
12386 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
12387 {
12388 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12389 AssertRCReturn(rc, rc);
12390
12391 Assert( !pVM->hm.s.fNestedPaging
12392 || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
12393 || pVCpu->hm.s.fUsingDebugLoop
12394 || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
12395
12396 /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
12397 Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
12398 || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
12399
12400 rcStrict = IEMExecDecodedMovCRxRead(pVCpu, pVmxTransient->cbInstr,
12401 VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
12402 VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
12403 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12404 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
12405 Log4(("CRX CR%d Read access rcStrict=%Rrc\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
12406 VBOXSTRICTRC_VAL(rcStrict)));
12407 break;
12408 }
12409
12410 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
12411 {
12412 AssertRCReturn(rc, rc);
12413 rcStrict = IEMExecDecodedClts(pVCpu, pVmxTransient->cbInstr);
12414 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12415 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12416 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
12417 Log4(("CRX CLTS rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12418 break;
12419 }
12420
12421 case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
12422 {
12423 AssertRCReturn(rc, rc);
12424 rcStrict = IEMExecDecodedLmsw(pVCpu, pVmxTransient->cbInstr,
12425 VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
12426 AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_IEM_RAISED_XCPT || rcStrict == VINF_PGM_CHANGE_MODE,
12427 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12428 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
12429 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
12430 Log4(("CRX LMSW rcStrict=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
12431 break;
12432 }
12433
12434 default:
12435 AssertMsgFailedReturn(("Invalid access-type in Mov CRx VM-exit qualification %#x\n", uAccessType),
12436 VERR_VMX_UNEXPECTED_EXCEPTION);
12437 }
12438
12439 HMCPU_CF_SET(pVCpu, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS : HM_CHANGED_ALL_GUEST);
12440 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
12441 NOREF(pVM);
12442 return rcStrict;
12443}
12444
12445
12446/**
12447 * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
12448 * VM-exit.
12449 */
12450HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12451{
12452 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12453 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
12454
12455 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12456 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
12457 rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
12458 rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
12459 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
12460 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
12461 /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
12462 AssertRCReturn(rc, rc);
12463
12464 /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
12465 uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
12466 uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
12467 bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
12468 == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
12469 bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
12470 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
12471 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
12472 AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_VMX_IPE_1);
12473
12474 /* I/O operation lookup arrays. */
12475 static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
12476 static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
12477
12478 VBOXSTRICTRC rcStrict;
12479 uint32_t const cbValue = s_aIOSizes[uIOWidth];
12480 uint32_t const cbInstr = pVmxTransient->cbInstr;
12481 bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
12482 PVM pVM = pVCpu->CTX_SUFF(pVM);
12483 if (fIOString)
12484 {
12485#ifdef VBOX_WITH_2ND_IEM_STEP /* This used to gurus with debian 32-bit guest without NP (on ATA reads).
12486 See @bugref{5752#c158}. Should work now. */
12487 /*
12488 * INS/OUTS - I/O String instruction.
12489 *
12490 * Use instruction-information if available, otherwise fall back on
12491 * interpreting the instruction.
12492 */
12493 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue,
12494 fIOWrite ? 'w' : 'r'));
12495 AssertReturn(pMixedCtx->dx == uIOPort, VERR_VMX_IPE_2);
12496 if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.Msrs.u64BasicInfo))
12497 {
12498 int rc2 = hmR0VmxReadExitInstrInfoVmcs(pVmxTransient);
12499 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12500 rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12501 AssertRCReturn(rc2, rc2);
12502 AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
12503 AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
12504 IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
12505 bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
12506 if (fIOWrite)
12507 {
12508 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
12509 pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
12510 }
12511 else
12512 {
12513 /*
12514 * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
12515 * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
12516 * See Intel Instruction spec. for "INS".
12517 * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
12518 */
12519 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
12520 }
12521 }
12522 else
12523 {
12524 /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
12525 int rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12526 AssertRCReturn(rc2, rc2);
12527 rcStrict = IEMExecOne(pVCpu);
12528 }
12529 /** @todo IEM needs to be setting these flags somehow. */
12530 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12531 fUpdateRipAlready = true;
12532#else
12533 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
12534 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
12535 if (RT_SUCCESS(rcStrict))
12536 {
12537 if (fIOWrite)
12538 {
12539 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12540 (DISCPUMODE)pDis->uAddrMode, cbValue);
12541 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
12542 }
12543 else
12544 {
12545 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
12546 (DISCPUMODE)pDis->uAddrMode, cbValue);
12547 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
12548 }
12549 }
12550 else
12551 {
12552 AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict),
12553 pMixedCtx->rip));
12554 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
12555 }
12556#endif
12557 }
12558 else
12559 {
12560 /*
12561 * IN/OUT - I/O instruction.
12562 */
12563 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
12564 uint32_t const uAndVal = s_aIOOpAnd[uIOWidth];
12565 Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
12566 if (fIOWrite)
12567 {
12568 rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
12569 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
12570 }
12571 else
12572 {
12573 uint32_t u32Result = 0;
12574 rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
12575 if (IOM_SUCCESS(rcStrict))
12576 {
12577 /* Save result of I/O IN instr. in AL/AX/EAX. */
12578 pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
12579 }
12580 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12581 HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
12582 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
12583 }
12584 }
12585
12586 if (IOM_SUCCESS(rcStrict))
12587 {
12588 if (!fUpdateRipAlready)
12589 {
12590 hmR0VmxAdvanceGuestRipBy(pVCpu, pMixedCtx, cbInstr);
12591 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP);
12592 }
12593
12594 /*
12595 * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru while booting Fedora 17 64-bit guest.
12596 * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
12597 */
12598 if (fIOString)
12599 {
12600 /** @todo Single-step for INS/OUTS with REP prefix? */
12601 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
12602 }
12603 else if ( !fDbgStepping
12604 && fGstStepping)
12605 {
12606 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
12607 }
12608
12609 /*
12610 * If any I/O breakpoints are armed, we need to check if one triggered
12611 * and take appropriate action.
12612 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
12613 */
12614 int rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
12615 AssertRCReturn(rc2, rc2);
12616
12617 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
12618 * execution engines about whether hyper BPs and such are pending. */
12619 uint32_t const uDr7 = pMixedCtx->dr[7];
12620 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
12621 && X86_DR7_ANY_RW_IO(uDr7)
12622 && (pMixedCtx->cr4 & X86_CR4_DE))
12623 || DBGFBpIsHwIoArmed(pVM)))
12624 {
12625 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
12626
12627 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
12628 VMMRZCallRing3Disable(pVCpu);
12629 HM_DISABLE_PREEMPT();
12630
12631 bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
12632
12633 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
12634 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
12635 {
12636 /* Raise #DB. */
12637 if (fIsGuestDbgActive)
12638 ASMSetDR6(pMixedCtx->dr[6]);
12639 if (pMixedCtx->dr[7] != uDr7)
12640 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
12641
12642 hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
12643 }
12644 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
12645 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
12646 else if ( rcStrict2 != VINF_SUCCESS
12647 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
12648 rcStrict = rcStrict2;
12649 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
12650
12651 HM_RESTORE_PREEMPT();
12652 VMMRZCallRing3Enable(pVCpu);
12653 }
12654 }
12655
12656#ifdef VBOX_STRICT
12657 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
12658 Assert(!fIOWrite);
12659 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
12660 Assert(fIOWrite);
12661 else
12662 {
12663#if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
12664 * statuses, that the VMM device and some others may return. See
12665 * IOM_SUCCESS() for guidance. */
12666 AssertMsg( RT_FAILURE(rcStrict)
12667 || rcStrict == VINF_SUCCESS
12668 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
12669 || rcStrict == VINF_EM_DBG_BREAKPOINT
12670 || rcStrict == VINF_EM_RAW_GUEST_TRAP
12671 || rcStrict == VINF_EM_RAW_TO_R3
12672 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
12673#endif
12674 }
12675#endif
12676
12677 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
12678 return rcStrict;
12679}
12680
12681
12682/**
12683 * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
12684 * VM-exit.
12685 */
12686HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12687{
12688 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12689
12690 /* Check if this task-switch occurred while delivery an event through the guest IDT. */
12691 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12692 AssertRCReturn(rc, rc);
12693 if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
12694 {
12695 rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
12696 AssertRCReturn(rc, rc);
12697 if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
12698 {
12699 uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
12700
12701 uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
12702 bool fErrorCodeValid = VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
12703
12704 /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
12705 Assert(!pVCpu->hm.s.Event.fPending);
12706 pVCpu->hm.s.Event.fPending = true;
12707 pVCpu->hm.s.Event.u64IntInfo = pVmxTransient->uIdtVectoringInfo;
12708 rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
12709 AssertRCReturn(rc, rc);
12710 if (fErrorCodeValid)
12711 pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
12712 else
12713 pVCpu->hm.s.Event.u32ErrCode = 0;
12714 if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
12715 && uVector == X86_XCPT_PF)
12716 {
12717 pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
12718 }
12719
12720 Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
12721 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12722 return VINF_EM_RAW_INJECT_TRPM_EVENT;
12723 }
12724 }
12725
12726 /* Fall back to the interpreter to emulate the task-switch. */
12727 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
12728 return VERR_EM_INTERPRETER;
12729}
12730
12731
12732/**
12733 * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
12734 */
12735HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12736{
12737 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12738 Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
12739 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
12740 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12741 AssertRCReturn(rc, rc);
12742 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
12743 return VINF_EM_DBG_STEPPED;
12744}
12745
12746
12747/**
12748 * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
12749 */
12750HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12751{
12752 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12753
12754 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
12755
12756 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12757 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12758 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12759 {
12760 /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
12761 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12762 {
12763 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12764 return VERR_EM_INTERPRETER;
12765 }
12766 }
12767 else
12768 {
12769 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12770 rcStrict1 = VINF_SUCCESS;
12771 return rcStrict1;
12772 }
12773
12774#if 0
12775 /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
12776 * just sync the whole thing. */
12777 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
12778#else
12779 /* Aggressive state sync. for now. */
12780 int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12781 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12782 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12783#endif
12784 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12785 AssertRCReturn(rc, rc);
12786
12787 /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
12788 uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
12789 VBOXSTRICTRC rcStrict2;
12790 switch (uAccessType)
12791 {
12792 case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
12793 case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
12794 {
12795 AssertMsg( !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
12796 || VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) != XAPIC_OFF_TPR,
12797 ("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
12798
12799 RTGCPHYS GCPhys = pVCpu->hm.s.vmx.u64MsrApicBase; /* Always up-to-date, u64MsrApicBase is not part of the VMCS. */
12800 GCPhys &= PAGE_BASE_GC_MASK;
12801 GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
12802 PVM pVM = pVCpu->CTX_SUFF(pVM);
12803 Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
12804 VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
12805
12806 rcStrict2 = IOMMMIOPhysHandler(pVM, pVCpu,
12807 uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW,
12808 CPUMCTX2CORE(pMixedCtx), GCPhys);
12809 Log4(("ApicAccess rcStrict2=%d\n", VBOXSTRICTRC_VAL(rcStrict2)));
12810 if ( rcStrict2 == VINF_SUCCESS
12811 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12812 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12813 {
12814 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12815 | HM_CHANGED_GUEST_RSP
12816 | HM_CHANGED_GUEST_RFLAGS
12817 | HM_CHANGED_VMX_GUEST_APIC_STATE);
12818 rcStrict2 = VINF_SUCCESS;
12819 }
12820 break;
12821 }
12822
12823 default:
12824 Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
12825 rcStrict2 = VINF_EM_RAW_EMULATE_INSTR;
12826 break;
12827 }
12828
12829 if (rcStrict2 != VINF_SUCCESS)
12830 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchApicAccessToR3);
12831 return rcStrict2;
12832}
12833
12834
12835/**
12836 * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
12837 * VM-exit.
12838 */
12839HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12840{
12841 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12842
12843 /* We should -not- get this VM-exit if the guest's debug registers were active. */
12844 if (pVmxTransient->fWasGuestDebugStateActive)
12845 {
12846 AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
12847 HMVMX_RETURN_UNEXPECTED_EXIT();
12848 }
12849
12850 if ( !pVCpu->hm.s.fSingleInstruction
12851 && !pVmxTransient->fWasHyperDebugStateActive)
12852 {
12853 Assert(!DBGFIsStepping(pVCpu));
12854 Assert(pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT_32(X86_XCPT_DB));
12855
12856 /* Don't intercept MOV DRx any more. */
12857 pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
12858 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
12859 AssertRCReturn(rc, rc);
12860
12861 /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
12862 VMMRZCallRing3Disable(pVCpu);
12863 HM_DISABLE_PREEMPT();
12864
12865 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
12866 CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
12867 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
12868
12869 HM_RESTORE_PREEMPT();
12870 VMMRZCallRing3Enable(pVCpu);
12871
12872#ifdef VBOX_WITH_STATISTICS
12873 rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12874 AssertRCReturn(rc, rc);
12875 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
12876 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12877 else
12878 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12879#endif
12880 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
12881 return VINF_SUCCESS;
12882 }
12883
12884 /*
12885 * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date.
12886 * Update the segment registers and DR7 from the CPU.
12887 */
12888 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
12889 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12890 rc |= hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
12891 AssertRCReturn(rc, rc);
12892 Log4(("CS:RIP=%04x:%08RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
12893
12894 PVM pVM = pVCpu->CTX_SUFF(pVM);
12895 if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
12896 {
12897 rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
12898 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
12899 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
12900 if (RT_SUCCESS(rc))
12901 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
12902 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
12903 }
12904 else
12905 {
12906 rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
12907 VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
12908 VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
12909 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
12910 }
12911
12912 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
12913 if (RT_SUCCESS(rc))
12914 {
12915 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
12916 AssertRCReturn(rc2, rc2);
12917 return VINF_SUCCESS;
12918 }
12919 return rc;
12920}
12921
12922
12923/**
12924 * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
12925 * Conditional VM-exit.
12926 */
12927HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12928{
12929 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12930 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12931
12932 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12933 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
12934 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
12935 {
12936 /* If event delivery causes an EPT misconfig (MMIO), go back to instruction emulation as otherwise
12937 injecting the original pending event would most likely cause the same EPT misconfig VM-exit. */
12938 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
12939 {
12940 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
12941 return VERR_EM_INTERPRETER;
12942 }
12943 }
12944 else
12945 {
12946 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
12947 rcStrict1 = VINF_SUCCESS;
12948 return rcStrict1;
12949 }
12950
12951 RTGCPHYS GCPhys = 0;
12952 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
12953
12954#if 0
12955 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
12956#else
12957 /* Aggressive state sync. for now. */
12958 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
12959 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
12960 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
12961#endif
12962 AssertRCReturn(rc, rc);
12963
12964 /*
12965 * If we succeed, resume guest execution.
12966 * If we fail in interpreting the instruction because we couldn't get the guest physical address
12967 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
12968 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
12969 * weird case. See @bugref{6043}.
12970 */
12971 PVM pVM = pVCpu->CTX_SUFF(pVM);
12972 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
12973 Log4(("EPT misconfig at %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pMixedCtx->rip, VBOXSTRICTRC_VAL(rcStrict2)));
12974 if ( rcStrict2 == VINF_SUCCESS
12975 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
12976 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
12977 {
12978 /* Successfully handled MMIO operation. */
12979 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
12980 | HM_CHANGED_GUEST_RSP
12981 | HM_CHANGED_GUEST_RFLAGS
12982 | HM_CHANGED_VMX_GUEST_APIC_STATE);
12983 return VINF_SUCCESS;
12984 }
12985 return rcStrict2;
12986}
12987
12988
12989/**
12990 * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
12991 * VM-exit.
12992 */
12993HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
12994{
12995 HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
12996 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
12997
12998 /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
12999 VBOXSTRICTRC rcStrict1 = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
13000 if (RT_LIKELY(rcStrict1 == VINF_SUCCESS))
13001 {
13002 /* In the unlikely case that the EPT violation happened as a result of delivering an event, log it. */
13003 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
13004 Log4(("EPT violation with an event pending u64IntInfo=%#RX64\n", pVCpu->hm.s.Event.u64IntInfo));
13005 }
13006 else
13007 {
13008 if (rcStrict1 == VINF_HM_DOUBLE_FAULT)
13009 rcStrict1 = VINF_SUCCESS;
13010 return rcStrict1;
13011 }
13012
13013 RTGCPHYS GCPhys = 0;
13014 int rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
13015 rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13016#if 0
13017 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
13018#else
13019 /* Aggressive state sync. for now. */
13020 rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
13021 rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
13022 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13023#endif
13024 AssertRCReturn(rc, rc);
13025
13026 /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
13027 AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
13028
13029 RTGCUINT uErrorCode = 0;
13030 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
13031 uErrorCode |= X86_TRAP_PF_ID;
13032 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
13033 uErrorCode |= X86_TRAP_PF_RW;
13034 if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
13035 uErrorCode |= X86_TRAP_PF_P;
13036
13037 TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
13038
13039 Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:RIP=%04x:%08RX64\n", pVmxTransient->uExitQualification, GCPhys,
13040 uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
13041
13042 /* Handle the pagefault trap for the nested shadow table. */
13043 PVM pVM = pVCpu->CTX_SUFF(pVM);
13044 VBOXSTRICTRC rcStrict2 = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
13045 TRPMResetTrap(pVCpu);
13046
13047 /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
13048 if ( rcStrict2 == VINF_SUCCESS
13049 || rcStrict2 == VERR_PAGE_TABLE_NOT_PRESENT
13050 || rcStrict2 == VERR_PAGE_NOT_PRESENT)
13051 {
13052 /* Successfully synced our nested page tables. */
13053 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
13054 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13055 | HM_CHANGED_GUEST_RSP
13056 | HM_CHANGED_GUEST_RFLAGS);
13057 return VINF_SUCCESS;
13058 }
13059
13060 Log4(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
13061 return rcStrict2;
13062}
13063
13064/** @} */
13065
13066/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13067/* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
13068/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
13069
13070/** @name VM-exit exception handlers.
13071 * @{
13072 */
13073
13074/**
13075 * VM-exit exception handler for \#MF (Math Fault: floating point exception).
13076 */
13077static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13078{
13079 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13080 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
13081
13082 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
13083 AssertRCReturn(rc, rc);
13084
13085 if (!(pMixedCtx->cr0 & X86_CR0_NE))
13086 {
13087 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
13088 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
13089
13090 /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
13091 * provides VM-exit instruction length. If this causes problem later,
13092 * disassemble the instruction like it's done on AMD-V. */
13093 int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
13094 AssertRCReturn(rc2, rc2);
13095 return rc;
13096 }
13097
13098 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13099 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13100 return rc;
13101}
13102
13103
13104/**
13105 * VM-exit exception handler for \#BP (Breakpoint exception).
13106 */
13107static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13108{
13109 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13110 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
13111
13112 /** @todo Try optimize this by not saving the entire guest state unless
13113 * really needed. */
13114 int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13115 AssertRCReturn(rc, rc);
13116
13117 PVM pVM = pVCpu->CTX_SUFF(pVM);
13118 rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
13119 if (rc == VINF_EM_RAW_GUEST_TRAP)
13120 {
13121 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13122 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13123 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13124 AssertRCReturn(rc, rc);
13125
13126 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13127 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13128 }
13129
13130 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
13131 return rc;
13132}
13133
13134
13135/**
13136 * VM-exit exception handler for \#AC (alignment check exception).
13137 */
13138static int hmR0VmxExitXcptAC(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13139{
13140 RT_NOREF_PV(pMixedCtx);
13141 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13142
13143 /*
13144 * Re-inject it. We'll detect any nesting before getting here.
13145 */
13146 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13147 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13148 AssertRCReturn(rc, rc);
13149 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13150
13151 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13152 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13153 return VINF_SUCCESS;
13154}
13155
13156
13157/**
13158 * VM-exit exception handler for \#DB (Debug exception).
13159 */
13160static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13161{
13162 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13163 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
13164 Log6(("XcptDB\n"));
13165
13166 /*
13167 * Get the DR6-like values from the VM-exit qualification and pass it to DBGF
13168 * for processing.
13169 */
13170 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13171 AssertRCReturn(rc, rc);
13172
13173 /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
13174 uint64_t uDR6 = X86_DR6_INIT_VAL;
13175 uDR6 |= ( pVmxTransient->uExitQualification
13176 & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
13177
13178 rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
13179 if (rc == VINF_EM_RAW_GUEST_TRAP)
13180 {
13181 /*
13182 * The exception was for the guest. Update DR6, DR7.GD and
13183 * IA32_DEBUGCTL.LBR before forwarding it.
13184 * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
13185 */
13186 VMMRZCallRing3Disable(pVCpu);
13187 HM_DISABLE_PREEMPT();
13188
13189 pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
13190 pMixedCtx->dr[6] |= uDR6;
13191 if (CPUMIsGuestDebugStateActive(pVCpu))
13192 ASMSetDR6(pMixedCtx->dr[6]);
13193
13194 HM_RESTORE_PREEMPT();
13195 VMMRZCallRing3Enable(pVCpu);
13196
13197 rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
13198 AssertRCReturn(rc, rc);
13199
13200 /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
13201 pMixedCtx->dr[7] &= ~X86_DR7_GD;
13202
13203 /* Paranoia. */
13204 pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
13205 pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
13206
13207 rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
13208 AssertRCReturn(rc, rc);
13209
13210 /*
13211 * Raise #DB in the guest.
13212 *
13213 * It is important to reflect what the VM-exit gave us (preserving the interruption-type) rather than use
13214 * hmR0VmxSetPendingXcptDB() as the #DB could've been raised while executing ICEBP and not the 'normal' #DB.
13215 * Thus it -may- trigger different handling in the CPU (like skipped DPL checks). See @bugref{6398}.
13216 *
13217 * Since ICEBP isn't documented on Intel, see AMD spec. 15.20 "Event Injection".
13218 */
13219 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13220 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13221 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13222 AssertRCReturn(rc, rc);
13223 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13224 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13225 return VINF_SUCCESS;
13226 }
13227
13228 /*
13229 * Not a guest trap, must be a hypervisor related debug event then.
13230 * Update DR6 in case someone is interested in it.
13231 */
13232 AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
13233 AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
13234 CPUMSetHyperDR6(pVCpu, uDR6);
13235
13236 return rc;
13237}
13238
13239
13240/**
13241 * VM-exit exception handler for \#NM (Device-not-available exception: floating
13242 * point exception).
13243 */
13244static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13245{
13246 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13247
13248 /* We require CR0 and EFER. EFER is always up-to-date. */
13249 int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
13250 AssertRCReturn(rc, rc);
13251
13252 /* We're playing with the host CPU state here, have to disable preemption or longjmp. */
13253 VMMRZCallRing3Disable(pVCpu);
13254 HM_DISABLE_PREEMPT();
13255
13256 /* If the guest FPU was active at the time of the #NM VM-exit, then it's a guest fault. */
13257 if (pVmxTransient->fWasGuestFPUStateActive)
13258 {
13259 rc = VINF_EM_RAW_GUEST_TRAP;
13260 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
13261 }
13262 else
13263 {
13264#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13265 Assert(!pVmxTransient->fWasGuestFPUStateActive || pVCpu->hm.s.fUsingDebugLoop);
13266#endif
13267 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu);
13268 Assert( rc == VINF_EM_RAW_GUEST_TRAP
13269 || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
13270 if (rc == VINF_CPUM_HOST_CR0_MODIFIED)
13271 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
13272 }
13273
13274 HM_RESTORE_PREEMPT();
13275 VMMRZCallRing3Enable(pVCpu);
13276
13277 if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
13278 {
13279 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
13280 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
13281 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
13282 pVCpu->hm.s.fPreloadGuestFpu = true;
13283 }
13284 else
13285 {
13286 /* Forward #NM to the guest. */
13287 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
13288 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13289 AssertRCReturn(rc, rc);
13290 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13291 pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
13292 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
13293 }
13294
13295 return VINF_SUCCESS;
13296}
13297
13298
13299/**
13300 * VM-exit exception handler for \#GP (General-protection exception).
13301 *
13302 * @remarks Requires pVmxTransient->uExitIntInfo to be up-to-date.
13303 */
13304static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13305{
13306 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13307 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
13308
13309 int rc;
13310 if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
13311 { /* likely */ }
13312 else
13313 {
13314#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13315 Assert(pVCpu->hm.s.fUsingDebugLoop);
13316#endif
13317 /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
13318 rc = hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13319 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13320 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13321 rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13322 AssertRCReturn(rc, rc);
13323 Log4(("#GP Gst: CS:RIP %04x:%08RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u TR=%#04x\n", pMixedCtx->cs.Sel, pMixedCtx->rip,
13324 pVmxTransient->uExitIntErrorCode, pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu), pMixedCtx->tr.Sel));
13325 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13326 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13327 return rc;
13328 }
13329
13330 Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
13331 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
13332
13333 /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
13334 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13335 AssertRCReturn(rc, rc);
13336
13337 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
13338 uint32_t cbOp = 0;
13339 PVM pVM = pVCpu->CTX_SUFF(pVM);
13340 bool fDbgStepping = pVCpu->hm.s.fSingleInstruction;
13341 rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
13342 if (RT_SUCCESS(rc))
13343 {
13344 rc = VINF_SUCCESS;
13345 Assert(cbOp == pDis->cbInstr);
13346 Log4(("#GP Disas OpCode=%u CS:EIP %04x:%04RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
13347 switch (pDis->pCurInstr->uOpcode)
13348 {
13349 case OP_CLI:
13350 {
13351 pMixedCtx->eflags.Bits.u1IF = 0;
13352 pMixedCtx->eflags.Bits.u1RF = 0;
13353 pMixedCtx->rip += pDis->cbInstr;
13354 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13355 if ( !fDbgStepping
13356 && pMixedCtx->eflags.Bits.u1TF)
13357 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13358 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
13359 break;
13360 }
13361
13362 case OP_STI:
13363 {
13364 bool fOldIF = pMixedCtx->eflags.Bits.u1IF;
13365 pMixedCtx->eflags.Bits.u1IF = 1;
13366 pMixedCtx->eflags.Bits.u1RF = 0;
13367 pMixedCtx->rip += pDis->cbInstr;
13368 if (!fOldIF)
13369 {
13370 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
13371 Assert(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
13372 }
13373 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13374 if ( !fDbgStepping
13375 && pMixedCtx->eflags.Bits.u1TF)
13376 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13377 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
13378 break;
13379 }
13380
13381 case OP_HLT:
13382 {
13383 rc = VINF_EM_HALT;
13384 pMixedCtx->rip += pDis->cbInstr;
13385 pMixedCtx->eflags.Bits.u1RF = 0;
13386 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
13387 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
13388 break;
13389 }
13390
13391 case OP_POPF:
13392 {
13393 Log4(("POPF CS:EIP %04x:%04RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
13394 uint32_t cbParm;
13395 uint32_t uMask;
13396 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13397 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13398 {
13399 cbParm = 4;
13400 uMask = 0xffffffff;
13401 }
13402 else
13403 {
13404 cbParm = 2;
13405 uMask = 0xffff;
13406 }
13407
13408 /* Get the stack pointer & pop the contents of the stack onto Eflags. */
13409 RTGCPTR GCPtrStack = 0;
13410 X86EFLAGS Eflags;
13411 Eflags.u32 = 0;
13412 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13413 &GCPtrStack);
13414 if (RT_SUCCESS(rc))
13415 {
13416 Assert(sizeof(Eflags.u32) >= cbParm);
13417 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u32, cbParm, PGMACCESSORIGIN_HM));
13418 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13419 }
13420 if (RT_FAILURE(rc))
13421 {
13422 rc = VERR_EM_INTERPRETER;
13423 break;
13424 }
13425 Log4(("POPF %#x -> %#RX64 mask=%#x RIP=%#RX64\n", Eflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
13426 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~((X86_EFL_POPF_BITS & uMask) | X86_EFL_RF))
13427 | (Eflags.u32 & X86_EFL_POPF_BITS & uMask);
13428 pMixedCtx->esp += cbParm;
13429 pMixedCtx->esp &= uMask;
13430 pMixedCtx->rip += pDis->cbInstr;
13431 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13432 | HM_CHANGED_GUEST_RSP
13433 | HM_CHANGED_GUEST_RFLAGS);
13434 /* Generate a pending-debug exception when the guest stepping over POPF regardless of how
13435 POPF restores EFLAGS.TF. */
13436 if ( !fDbgStepping
13437 && fGstStepping)
13438 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13439 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
13440 break;
13441 }
13442
13443 case OP_PUSHF:
13444 {
13445 uint32_t cbParm;
13446 uint32_t uMask;
13447 if (pDis->fPrefix & DISPREFIX_OPSIZE)
13448 {
13449 cbParm = 4;
13450 uMask = 0xffffffff;
13451 }
13452 else
13453 {
13454 cbParm = 2;
13455 uMask = 0xffff;
13456 }
13457
13458 /* Get the stack pointer & push the contents of eflags onto the stack. */
13459 RTGCPTR GCPtrStack = 0;
13460 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
13461 SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
13462 if (RT_FAILURE(rc))
13463 {
13464 rc = VERR_EM_INTERPRETER;
13465 break;
13466 }
13467 X86EFLAGS Eflags = pMixedCtx->eflags;
13468 /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
13469 Eflags.Bits.u1RF = 0;
13470 Eflags.Bits.u1VM = 0;
13471
13472 rc = VBOXSTRICTRC_TODO(PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &Eflags.u, cbParm, PGMACCESSORIGIN_HM));
13473 if (RT_UNLIKELY(rc != VINF_SUCCESS))
13474 {
13475 AssertMsgFailed(("%Rrc\n", rc)); /** @todo allow strict return codes here */
13476 rc = VERR_EM_INTERPRETER;
13477 break;
13478 }
13479 Log4(("PUSHF %#x -> %#RGv\n", Eflags.u, GCPtrStack));
13480 pMixedCtx->esp -= cbParm;
13481 pMixedCtx->esp &= uMask;
13482 pMixedCtx->rip += pDis->cbInstr;
13483 pMixedCtx->eflags.Bits.u1RF = 0;
13484 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13485 | HM_CHANGED_GUEST_RSP
13486 | HM_CHANGED_GUEST_RFLAGS);
13487 if ( !fDbgStepping
13488 && pMixedCtx->eflags.Bits.u1TF)
13489 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13490 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
13491 break;
13492 }
13493
13494 case OP_IRET:
13495 {
13496 /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
13497 * instruction reference. */
13498 RTGCPTR GCPtrStack = 0;
13499 uint32_t uMask = 0xffff;
13500 bool fGstStepping = RT_BOOL(pMixedCtx->eflags.Bits.u1TF);
13501 uint16_t aIretFrame[3];
13502 if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
13503 {
13504 rc = VERR_EM_INTERPRETER;
13505 break;
13506 }
13507 rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
13508 &GCPtrStack);
13509 if (RT_SUCCESS(rc))
13510 {
13511 rc = VBOXSTRICTRC_TODO(PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame),
13512 PGMACCESSORIGIN_HM));
13513 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); /** @todo allow strict return codes here */
13514 }
13515 if (RT_FAILURE(rc))
13516 {
13517 rc = VERR_EM_INTERPRETER;
13518 break;
13519 }
13520 pMixedCtx->eip = 0;
13521 pMixedCtx->ip = aIretFrame[0];
13522 pMixedCtx->cs.Sel = aIretFrame[1];
13523 pMixedCtx->cs.ValidSel = aIretFrame[1];
13524 pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
13525 pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ((UINT32_C(0xffff0000) | X86_EFL_1) & ~X86_EFL_RF))
13526 | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
13527 pMixedCtx->sp += sizeof(aIretFrame);
13528 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13529 | HM_CHANGED_GUEST_SEGMENT_REGS
13530 | HM_CHANGED_GUEST_RSP
13531 | HM_CHANGED_GUEST_RFLAGS);
13532 /* Generate a pending-debug exception when stepping over IRET regardless of how IRET modifies EFLAGS.TF. */
13533 if ( !fDbgStepping
13534 && fGstStepping)
13535 hmR0VmxSetPendingDebugXcptVmcs(pVCpu);
13536 Log4(("IRET %#RX32 to %04x:%04x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
13537 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
13538 break;
13539 }
13540
13541 case OP_INT:
13542 {
13543 uint16_t uVector = pDis->Param1.uValue & 0xff;
13544 hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
13545 /* INT clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13546 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13547 break;
13548 }
13549
13550 case OP_INTO:
13551 {
13552 if (pMixedCtx->eflags.Bits.u1OF)
13553 {
13554 hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
13555 /* INTO clears EFLAGS.TF, we must not set any pending debug exceptions here. */
13556 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
13557 }
13558 else
13559 {
13560 pMixedCtx->eflags.Bits.u1RF = 0;
13561 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RFLAGS);
13562 }
13563 break;
13564 }
13565
13566 default:
13567 {
13568 pMixedCtx->eflags.Bits.u1RF = 0; /* This is correct most of the time... */
13569 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
13570 EMCODETYPE_SUPERVISOR);
13571 rc = VBOXSTRICTRC_VAL(rc2);
13572 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13573 /** @todo We have to set pending-debug exceptions here when the guest is
13574 * single-stepping depending on the instruction that was interpreted. */
13575 Log4(("#GP rc=%Rrc\n", rc));
13576 break;
13577 }
13578 }
13579 }
13580 else
13581 rc = VERR_EM_INTERPRETER;
13582
13583 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
13584 ("#GP Unexpected rc=%Rrc\n", rc));
13585 return rc;
13586}
13587
13588
13589/**
13590 * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
13591 * the exception reported in the VMX transient structure back into the VM.
13592 *
13593 * @remarks Requires uExitIntInfo in the VMX transient structure to be
13594 * up-to-date.
13595 */
13596static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13597{
13598 RT_NOREF_PV(pMixedCtx);
13599 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13600#ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
13601 Assert(pVCpu->hm.s.fUsingDebugLoop);
13602#endif
13603
13604 /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
13605 hmR0VmxCheckExitDueToEventDelivery(). */
13606 int rc = hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13607 rc |= hmR0VmxReadExitInstrLenVmcs(pVmxTransient);
13608 AssertRCReturn(rc, rc);
13609 Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
13610
13611#ifdef DEBUG_ramshankar
13612 rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
13613 uint8_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntInfo);
13614 Log(("hmR0VmxExitXcptGeneric: Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pCtx->cs.Sel, pCtx->rip));
13615#endif
13616
13617 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13618 pVmxTransient->cbInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
13619 return VINF_SUCCESS;
13620}
13621
13622
13623/**
13624 * VM-exit exception handler for \#PF (Page-fault exception).
13625 */
13626static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
13627{
13628 HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
13629 PVM pVM = pVCpu->CTX_SUFF(pVM);
13630 int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
13631 rc |= hmR0VmxReadExitIntInfoVmcs(pVmxTransient);
13632 rc |= hmR0VmxReadExitIntErrorCodeVmcs(pVmxTransient);
13633 AssertRCReturn(rc, rc);
13634
13635 if (!pVM->hm.s.fNestedPaging)
13636 { /* likely */ }
13637 else
13638 {
13639#if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF)
13640 Assert(pVCpu->hm.s.fUsingDebugLoop);
13641#endif
13642 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
13643 if (RT_LIKELY(!pVmxTransient->fVectoringDoublePF))
13644 {
13645 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13646 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13647 0 /* cbInstr */, pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQualification);
13648 }
13649 else
13650 {
13651 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13652 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13653 Log4(("Pending #DF due to vectoring #PF. NP\n"));
13654 }
13655 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13656 return rc;
13657 }
13658
13659 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
13660 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
13661 if (pVmxTransient->fVectoringPF)
13662 {
13663 Assert(pVCpu->hm.s.Event.fPending);
13664 return VINF_EM_RAW_INJECT_TRPM_EVENT;
13665 }
13666
13667 rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
13668 AssertRCReturn(rc, rc);
13669
13670 Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
13671 pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntErrorCode, pMixedCtx->cr3));
13672
13673 TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
13674 rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pMixedCtx),
13675 (RTGCPTR)pVmxTransient->uExitQualification);
13676
13677 Log4(("#PF: rc=%Rrc\n", rc));
13678 if (rc == VINF_SUCCESS)
13679 {
13680#if 0
13681 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
13682 /** @todo this isn't quite right, what if guest does lgdt with some MMIO
13683 * memory? We don't update the whole state here... */
13684 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_RIP
13685 | HM_CHANGED_GUEST_RSP
13686 | HM_CHANGED_GUEST_RFLAGS
13687 | HM_CHANGED_VMX_GUEST_APIC_STATE);
13688#else
13689 /*
13690 * This is typically a shadow page table sync or a MMIO instruction. But we may have
13691 * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
13692 */
13693 /** @todo take advantage of CPUM changed flags instead of brute forcing. */
13694 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
13695#endif
13696 TRPMResetTrap(pVCpu);
13697 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
13698 return rc;
13699 }
13700
13701 if (rc == VINF_EM_RAW_GUEST_TRAP)
13702 {
13703 if (!pVmxTransient->fVectoringDoublePF)
13704 {
13705 /* It's a guest page fault and needs to be reflected to the guest. */
13706 uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
13707 TRPMResetTrap(pVCpu);
13708 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
13709 pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
13710 hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
13711 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
13712 }
13713 else
13714 {
13715 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
13716 TRPMResetTrap(pVCpu);
13717 pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
13718 hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
13719 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
13720 }
13721
13722 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
13723 return VINF_SUCCESS;
13724 }
13725
13726 TRPMResetTrap(pVCpu);
13727 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
13728 return rc;
13729}
13730
13731/** @} */
13732
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette