1 | /* $Id: HMVMXR0.cpp 47687 2013-08-13 12:10:19Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * HM VMX (Intel VT-x) - Host Context Ring-0.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2012-2013 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 | /*******************************************************************************
|
---|
19 | * Header Files *
|
---|
20 | *******************************************************************************/
|
---|
21 | #define LOG_GROUP LOG_GROUP_HM
|
---|
22 | #include <iprt/asm-amd64-x86.h>
|
---|
23 | #include <iprt/thread.h>
|
---|
24 | #include <iprt/string.h>
|
---|
25 |
|
---|
26 | #include "HMInternal.h"
|
---|
27 | #include <VBox/vmm/vm.h>
|
---|
28 | #include "HMVMXR0.h"
|
---|
29 | #include <VBox/vmm/pdmapi.h>
|
---|
30 | #include <VBox/vmm/dbgf.h>
|
---|
31 | #include <VBox/vmm/iem.h>
|
---|
32 | #include <VBox/vmm/iom.h>
|
---|
33 | #include <VBox/vmm/selm.h>
|
---|
34 | #include <VBox/vmm/tm.h>
|
---|
35 | #ifdef VBOX_WITH_REM
|
---|
36 | # include <VBox/vmm/rem.h>
|
---|
37 | #endif
|
---|
38 | #ifdef DEBUG_ramshankar
|
---|
39 | #define HMVMX_SAVE_FULL_GUEST_STATE
|
---|
40 | #define HMVMX_SYNC_FULL_GUEST_STATE
|
---|
41 | #define HMVMX_ALWAYS_CHECK_GUEST_STATE
|
---|
42 | #define HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
43 | #define HMVMX_ALWAYS_TRAP_PF
|
---|
44 | #endif
|
---|
45 |
|
---|
46 |
|
---|
47 | /*******************************************************************************
|
---|
48 | * Defined Constants And Macros *
|
---|
49 | *******************************************************************************/
|
---|
50 | #if defined(RT_ARCH_AMD64)
|
---|
51 | # define HMVMX_IS_64BIT_HOST_MODE() (true)
|
---|
52 | typedef RTHCUINTREG HMVMXHCUINTREG;
|
---|
53 | #elif defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
54 | extern "C" uint32_t g_fVMXIs64bitHost;
|
---|
55 | # define HMVMX_IS_64BIT_HOST_MODE() (g_fVMXIs64bitHost != 0)
|
---|
56 | typedef uint64_t HMVMXHCUINTREG;
|
---|
57 | #else
|
---|
58 | # define HMVMX_IS_64BIT_HOST_MODE() (false)
|
---|
59 | typedef RTHCUINTREG HMVMXHCUINTREG;
|
---|
60 | #endif
|
---|
61 |
|
---|
62 | /** Use the function table. */
|
---|
63 | #define HMVMX_USE_FUNCTION_TABLE
|
---|
64 |
|
---|
65 | /** Determine which tagged-TLB flush handler to use. */
|
---|
66 | #define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
|
---|
67 | #define HMVMX_FLUSH_TAGGED_TLB_EPT 1
|
---|
68 | #define HMVMX_FLUSH_TAGGED_TLB_VPID 2
|
---|
69 | #define HMVMX_FLUSH_TAGGED_TLB_NONE 3
|
---|
70 |
|
---|
71 | /** @name Updated-guest-state flags.
|
---|
72 | * @{ */
|
---|
73 | #define HMVMX_UPDATED_GUEST_RIP RT_BIT(0)
|
---|
74 | #define HMVMX_UPDATED_GUEST_RSP RT_BIT(1)
|
---|
75 | #define HMVMX_UPDATED_GUEST_RFLAGS RT_BIT(2)
|
---|
76 | #define HMVMX_UPDATED_GUEST_CR0 RT_BIT(3)
|
---|
77 | #define HMVMX_UPDATED_GUEST_CR3 RT_BIT(4)
|
---|
78 | #define HMVMX_UPDATED_GUEST_CR4 RT_BIT(5)
|
---|
79 | #define HMVMX_UPDATED_GUEST_GDTR RT_BIT(6)
|
---|
80 | #define HMVMX_UPDATED_GUEST_IDTR RT_BIT(7)
|
---|
81 | #define HMVMX_UPDATED_GUEST_LDTR RT_BIT(8)
|
---|
82 | #define HMVMX_UPDATED_GUEST_TR RT_BIT(9)
|
---|
83 | #define HMVMX_UPDATED_GUEST_SEGMENT_REGS RT_BIT(10)
|
---|
84 | #define HMVMX_UPDATED_GUEST_DEBUG RT_BIT(11)
|
---|
85 | #define HMVMX_UPDATED_GUEST_FS_BASE_MSR RT_BIT(12)
|
---|
86 | #define HMVMX_UPDATED_GUEST_GS_BASE_MSR RT_BIT(13)
|
---|
87 | #define HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR RT_BIT(14)
|
---|
88 | #define HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR RT_BIT(15)
|
---|
89 | #define HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR RT_BIT(16)
|
---|
90 | #define HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS RT_BIT(17)
|
---|
91 | #define HMVMX_UPDATED_GUEST_ACTIVITY_STATE RT_BIT(18)
|
---|
92 | #define HMVMX_UPDATED_GUEST_APIC_STATE RT_BIT(19)
|
---|
93 | #define HMVMX_UPDATED_GUEST_ALL ( HMVMX_UPDATED_GUEST_RIP \
|
---|
94 | | HMVMX_UPDATED_GUEST_RSP \
|
---|
95 | | HMVMX_UPDATED_GUEST_RFLAGS \
|
---|
96 | | HMVMX_UPDATED_GUEST_CR0 \
|
---|
97 | | HMVMX_UPDATED_GUEST_CR3 \
|
---|
98 | | HMVMX_UPDATED_GUEST_CR4 \
|
---|
99 | | HMVMX_UPDATED_GUEST_GDTR \
|
---|
100 | | HMVMX_UPDATED_GUEST_IDTR \
|
---|
101 | | HMVMX_UPDATED_GUEST_LDTR \
|
---|
102 | | HMVMX_UPDATED_GUEST_TR \
|
---|
103 | | HMVMX_UPDATED_GUEST_SEGMENT_REGS \
|
---|
104 | | HMVMX_UPDATED_GUEST_DEBUG \
|
---|
105 | | HMVMX_UPDATED_GUEST_FS_BASE_MSR \
|
---|
106 | | HMVMX_UPDATED_GUEST_GS_BASE_MSR \
|
---|
107 | | HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR \
|
---|
108 | | HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR \
|
---|
109 | | HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR \
|
---|
110 | | HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS \
|
---|
111 | | HMVMX_UPDATED_GUEST_ACTIVITY_STATE \
|
---|
112 | | HMVMX_UPDATED_GUEST_APIC_STATE)
|
---|
113 | /** @} */
|
---|
114 |
|
---|
115 | /** @name
|
---|
116 | * Flags to skip redundant reads of some common VMCS fields that are not part of
|
---|
117 | * the guest-CPU state but are in the transient structure.
|
---|
118 | */
|
---|
119 | #define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO RT_BIT(0)
|
---|
120 | #define HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE RT_BIT(1)
|
---|
121 | #define HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION RT_BIT(2)
|
---|
122 | #define HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN RT_BIT(3)
|
---|
123 | #define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO RT_BIT(4)
|
---|
124 | #define HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE RT_BIT(5)
|
---|
125 | /** @} */
|
---|
126 |
|
---|
127 | /**
|
---|
128 | * Exception bitmap mask for real-mode guests (real-on-v86).
|
---|
129 | *
|
---|
130 | * We need to intercept all exceptions manually (except #PF). #NM is also
|
---|
131 | * handled separately, see hmR0VmxLoadGuestControlRegs(). #PF need not be
|
---|
132 | * intercepted even in real-mode if we have Nested Paging support.
|
---|
133 | */
|
---|
134 | #define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) | RT_BIT(X86_XCPT_DB) | RT_BIT(X86_XCPT_NMI) \
|
---|
135 | | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
|
---|
136 | | RT_BIT(X86_XCPT_UD) /* RT_BIT(X86_XCPT_NM) */ | RT_BIT(X86_XCPT_DF) \
|
---|
137 | | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
|
---|
138 | | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
|
---|
139 | | RT_BIT(X86_XCPT_MF) | RT_BIT(X86_XCPT_AC) | RT_BIT(X86_XCPT_MC) \
|
---|
140 | | RT_BIT(X86_XCPT_XF))
|
---|
141 |
|
---|
142 | /**
|
---|
143 | * Exception bitmap mask for all contributory exceptions.
|
---|
144 | *
|
---|
145 | * Page fault is deliberately excluded here as it's conditional as to whether
|
---|
146 | * it's contributory or benign. Page faults are handled separately.
|
---|
147 | */
|
---|
148 | #define HMVMX_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
|
---|
149 | | RT_BIT(X86_XCPT_DE))
|
---|
150 |
|
---|
151 | /** Maximum VM-instruction error number. */
|
---|
152 | #define HMVMX_INSTR_ERROR_MAX 28
|
---|
153 |
|
---|
154 | /** Profiling macro. */
|
---|
155 | #ifdef HM_PROFILE_EXIT_DISPATCH
|
---|
156 | # define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitDispatch, ed)
|
---|
157 | # define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitDispatch, ed)
|
---|
158 | #else
|
---|
159 | # define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
|
---|
160 | # define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
|
---|
161 | #endif
|
---|
162 |
|
---|
163 |
|
---|
164 | /*******************************************************************************
|
---|
165 | * Structures and Typedefs *
|
---|
166 | *******************************************************************************/
|
---|
167 | /**
|
---|
168 | * VMX transient state.
|
---|
169 | *
|
---|
170 | * A state structure for holding miscellaneous information across
|
---|
171 | * VMX non-root operation and restored after the transition.
|
---|
172 | */
|
---|
173 | typedef struct VMXTRANSIENT
|
---|
174 | {
|
---|
175 | /** The host's rflags/eflags. */
|
---|
176 | RTCCUINTREG uEFlags;
|
---|
177 | #if HC_ARCH_BITS == 32
|
---|
178 | uint32_t u32Alignment0;
|
---|
179 | #endif
|
---|
180 | /** The guest's LSTAR MSR value used for TPR patching for 32-bit guests. */
|
---|
181 | uint64_t u64LStarMsr;
|
---|
182 | /** The guest's TPR value used for TPR shadowing. */
|
---|
183 | uint8_t u8GuestTpr;
|
---|
184 | /** Alignment. */
|
---|
185 | uint8_t abAlignment0[7];
|
---|
186 |
|
---|
187 | /** The basic VM-exit reason. */
|
---|
188 | uint16_t uExitReason;
|
---|
189 | /** Alignment. */
|
---|
190 | uint16_t u16Alignment0;
|
---|
191 | /** The VM-exit interruption error code. */
|
---|
192 | uint32_t uExitIntrErrorCode;
|
---|
193 | /** The VM-exit exit qualification. */
|
---|
194 | uint64_t uExitQualification;
|
---|
195 |
|
---|
196 | /** The VM-exit interruption-information field. */
|
---|
197 | uint32_t uExitIntrInfo;
|
---|
198 | /** The VM-exit instruction-length field. */
|
---|
199 | uint32_t cbInstr;
|
---|
200 | /** The VM-exit instruction-information field. */
|
---|
201 | union
|
---|
202 | {
|
---|
203 | /** Plain unsigned int representation. */
|
---|
204 | uint32_t u;
|
---|
205 | /** INS and OUTS information. */
|
---|
206 | struct
|
---|
207 | {
|
---|
208 | uint32_t u6Reserved0 : 6;
|
---|
209 | /** The address size; 0=16-bit, 1=32-bit, 2=64-bit, rest undefined. */
|
---|
210 | uint32_t u3AddrSize : 3;
|
---|
211 | uint32_t u5Reserved1 : 5;
|
---|
212 | /** The segment register (X86_SREG_XXX). */
|
---|
213 | uint32_t iSegReg : 3;
|
---|
214 | uint32_t uReserved2 : 14;
|
---|
215 | } StrIo;
|
---|
216 | } ExitInstrInfo;
|
---|
217 | /** Whether the VM-entry failed or not. */
|
---|
218 | bool fVMEntryFailed;
|
---|
219 | /** Alignment. */
|
---|
220 | uint8_t abAlignment1[3];
|
---|
221 |
|
---|
222 | /** The VM-entry interruption-information field. */
|
---|
223 | uint32_t uEntryIntrInfo;
|
---|
224 | /** The VM-entry exception error code field. */
|
---|
225 | uint32_t uEntryXcptErrorCode;
|
---|
226 | /** The VM-entry instruction length field. */
|
---|
227 | uint32_t cbEntryInstr;
|
---|
228 |
|
---|
229 | /** IDT-vectoring information field. */
|
---|
230 | uint32_t uIdtVectoringInfo;
|
---|
231 | /** IDT-vectoring error code. */
|
---|
232 | uint32_t uIdtVectoringErrorCode;
|
---|
233 |
|
---|
234 | /** Mask of currently read VMCS fields; HMVMX_UPDATED_TRANSIENT_*. */
|
---|
235 | uint32_t fVmcsFieldsRead;
|
---|
236 | /** Whether TSC-offsetting should be setup before VM-entry. */
|
---|
237 | bool fUpdateTscOffsettingAndPreemptTimer;
|
---|
238 | /** Whether the VM-exit was caused by a page-fault during delivery of a
|
---|
239 | * contributory exception or a page-fault. */
|
---|
240 | bool fVectoringPF;
|
---|
241 | } VMXTRANSIENT;
|
---|
242 | AssertCompileMemberAlignment(VMXTRANSIENT, uExitReason, sizeof(uint64_t));
|
---|
243 | AssertCompileMemberAlignment(VMXTRANSIENT, uExitIntrInfo, sizeof(uint64_t));
|
---|
244 | AssertCompileMemberAlignment(VMXTRANSIENT, uEntryIntrInfo, sizeof(uint64_t));
|
---|
245 | AssertCompileMemberSize(VMXTRANSIENT, ExitInstrInfo, sizeof(uint32_t));
|
---|
246 | /** Pointer to VMX transient state. */
|
---|
247 | typedef VMXTRANSIENT *PVMXTRANSIENT;
|
---|
248 |
|
---|
249 |
|
---|
250 | /**
|
---|
251 | * MSR-bitmap read permissions.
|
---|
252 | */
|
---|
253 | typedef enum VMXMSREXITREAD
|
---|
254 | {
|
---|
255 | /** Reading this MSR causes a VM-exit. */
|
---|
256 | VMXMSREXIT_INTERCEPT_READ = 0xb,
|
---|
257 | /** Reading this MSR does not cause a VM-exit. */
|
---|
258 | VMXMSREXIT_PASSTHRU_READ
|
---|
259 | } VMXMSREXITREAD;
|
---|
260 |
|
---|
261 | /**
|
---|
262 | * MSR-bitmap write permissions.
|
---|
263 | */
|
---|
264 | typedef enum VMXMSREXITWRITE
|
---|
265 | {
|
---|
266 | /** Writing to this MSR causes a VM-exit. */
|
---|
267 | VMXMSREXIT_INTERCEPT_WRITE = 0xd,
|
---|
268 | /** Writing to this MSR does not cause a VM-exit. */
|
---|
269 | VMXMSREXIT_PASSTHRU_WRITE
|
---|
270 | } VMXMSREXITWRITE;
|
---|
271 |
|
---|
272 | /**
|
---|
273 | * VM-exit handler.
|
---|
274 | *
|
---|
275 | * @returns VBox status code.
|
---|
276 | * @param pVCpu Pointer to the VMCPU.
|
---|
277 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
278 | * out-of-sync. Make sure to update the required
|
---|
279 | * fields before using them.
|
---|
280 | * @param pVmxTransient Pointer to the VMX-transient structure.
|
---|
281 | */
|
---|
282 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
283 | typedef int FNVMEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
284 | #else
|
---|
285 | typedef DECLCALLBACK(int) FNVMEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
286 | /** Pointer to VM-exit handler. */
|
---|
287 | typedef FNVMEXITHANDLER *PFNVMEXITHANDLER;
|
---|
288 | #endif
|
---|
289 |
|
---|
290 |
|
---|
291 | /*******************************************************************************
|
---|
292 | * Internal Functions *
|
---|
293 | *******************************************************************************/
|
---|
294 | static void hmR0VmxFlushEpt(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush);
|
---|
295 | static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr);
|
---|
296 | static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntrInfo, uint32_t cbInstr,
|
---|
297 | uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, uint32_t *puIntrState);
|
---|
298 | #if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
299 | static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu);
|
---|
300 | #endif
|
---|
301 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
302 | DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason);
|
---|
303 | # define HMVMX_EXIT_DECL static int
|
---|
304 | #else
|
---|
305 | # define HMVMX_EXIT_DECL static DECLCALLBACK(int)
|
---|
306 | #endif
|
---|
307 |
|
---|
308 | /** @name VM-exit handlers.
|
---|
309 | * @{
|
---|
310 | */
|
---|
311 | static FNVMEXITHANDLER hmR0VmxExitXcptOrNmi;
|
---|
312 | static FNVMEXITHANDLER hmR0VmxExitExtInt;
|
---|
313 | static FNVMEXITHANDLER hmR0VmxExitTripleFault;
|
---|
314 | static FNVMEXITHANDLER hmR0VmxExitInitSignal;
|
---|
315 | static FNVMEXITHANDLER hmR0VmxExitSipi;
|
---|
316 | static FNVMEXITHANDLER hmR0VmxExitIoSmi;
|
---|
317 | static FNVMEXITHANDLER hmR0VmxExitSmi;
|
---|
318 | static FNVMEXITHANDLER hmR0VmxExitIntWindow;
|
---|
319 | static FNVMEXITHANDLER hmR0VmxExitNmiWindow;
|
---|
320 | static FNVMEXITHANDLER hmR0VmxExitTaskSwitch;
|
---|
321 | static FNVMEXITHANDLER hmR0VmxExitCpuid;
|
---|
322 | static FNVMEXITHANDLER hmR0VmxExitGetsec;
|
---|
323 | static FNVMEXITHANDLER hmR0VmxExitHlt;
|
---|
324 | static FNVMEXITHANDLER hmR0VmxExitInvd;
|
---|
325 | static FNVMEXITHANDLER hmR0VmxExitInvlpg;
|
---|
326 | static FNVMEXITHANDLER hmR0VmxExitRdpmc;
|
---|
327 | static FNVMEXITHANDLER hmR0VmxExitRdtsc;
|
---|
328 | static FNVMEXITHANDLER hmR0VmxExitRsm;
|
---|
329 | static FNVMEXITHANDLER hmR0VmxExitSetPendingXcptUD;
|
---|
330 | static FNVMEXITHANDLER hmR0VmxExitMovCRx;
|
---|
331 | static FNVMEXITHANDLER hmR0VmxExitMovDRx;
|
---|
332 | static FNVMEXITHANDLER hmR0VmxExitIoInstr;
|
---|
333 | static FNVMEXITHANDLER hmR0VmxExitRdmsr;
|
---|
334 | static FNVMEXITHANDLER hmR0VmxExitWrmsr;
|
---|
335 | static FNVMEXITHANDLER hmR0VmxExitErrInvalidGuestState;
|
---|
336 | static FNVMEXITHANDLER hmR0VmxExitErrMsrLoad;
|
---|
337 | static FNVMEXITHANDLER hmR0VmxExitErrUndefined;
|
---|
338 | static FNVMEXITHANDLER hmR0VmxExitMwait;
|
---|
339 | static FNVMEXITHANDLER hmR0VmxExitMtf;
|
---|
340 | static FNVMEXITHANDLER hmR0VmxExitMonitor;
|
---|
341 | static FNVMEXITHANDLER hmR0VmxExitPause;
|
---|
342 | static FNVMEXITHANDLER hmR0VmxExitErrMachineCheck;
|
---|
343 | static FNVMEXITHANDLER hmR0VmxExitTprBelowThreshold;
|
---|
344 | static FNVMEXITHANDLER hmR0VmxExitApicAccess;
|
---|
345 | static FNVMEXITHANDLER hmR0VmxExitXdtrAccess;
|
---|
346 | static FNVMEXITHANDLER hmR0VmxExitXdtrAccess;
|
---|
347 | static FNVMEXITHANDLER hmR0VmxExitEptViolation;
|
---|
348 | static FNVMEXITHANDLER hmR0VmxExitEptMisconfig;
|
---|
349 | static FNVMEXITHANDLER hmR0VmxExitRdtscp;
|
---|
350 | static FNVMEXITHANDLER hmR0VmxExitPreemptTimer;
|
---|
351 | static FNVMEXITHANDLER hmR0VmxExitWbinvd;
|
---|
352 | static FNVMEXITHANDLER hmR0VmxExitXsetbv;
|
---|
353 | static FNVMEXITHANDLER hmR0VmxExitRdrand;
|
---|
354 | static FNVMEXITHANDLER hmR0VmxExitInvpcid;
|
---|
355 | /** @} */
|
---|
356 |
|
---|
357 | static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
358 | static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
359 | static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
360 | static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
361 | static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
362 | static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
363 | static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient);
|
---|
364 | static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx);
|
---|
365 |
|
---|
366 | /*******************************************************************************
|
---|
367 | * Global Variables *
|
---|
368 | *******************************************************************************/
|
---|
369 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
370 |
|
---|
371 | /**
|
---|
372 | * VMX_EXIT dispatch table.
|
---|
373 | */
|
---|
374 | static const PFNVMEXITHANDLER g_apfnVMExitHandlers[VMX_EXIT_MAX + 1] =
|
---|
375 | {
|
---|
376 | /* 00 VMX_EXIT_XCPT_OR_NMI */ hmR0VmxExitXcptOrNmi,
|
---|
377 | /* 01 VMX_EXIT_EXT_INT */ hmR0VmxExitExtInt,
|
---|
378 | /* 02 VMX_EXIT_TRIPLE_FAULT */ hmR0VmxExitTripleFault,
|
---|
379 | /* 03 VMX_EXIT_INIT_SIGNAL */ hmR0VmxExitInitSignal,
|
---|
380 | /* 04 VMX_EXIT_SIPI */ hmR0VmxExitSipi,
|
---|
381 | /* 05 VMX_EXIT_IO_SMI */ hmR0VmxExitIoSmi,
|
---|
382 | /* 06 VMX_EXIT_SMI */ hmR0VmxExitSmi,
|
---|
383 | /* 07 VMX_EXIT_INT_WINDOW */ hmR0VmxExitIntWindow,
|
---|
384 | /* 08 VMX_EXIT_NMI_WINDOW */ hmR0VmxExitNmiWindow,
|
---|
385 | /* 09 VMX_EXIT_TASK_SWITCH */ hmR0VmxExitTaskSwitch,
|
---|
386 | /* 10 VMX_EXIT_CPUID */ hmR0VmxExitCpuid,
|
---|
387 | /* 11 VMX_EXIT_GETSEC */ hmR0VmxExitGetsec,
|
---|
388 | /* 12 VMX_EXIT_HLT */ hmR0VmxExitHlt,
|
---|
389 | /* 13 VMX_EXIT_INVD */ hmR0VmxExitInvd,
|
---|
390 | /* 14 VMX_EXIT_INVLPG */ hmR0VmxExitInvlpg,
|
---|
391 | /* 15 VMX_EXIT_RDPMC */ hmR0VmxExitRdpmc,
|
---|
392 | /* 16 VMX_EXIT_RDTSC */ hmR0VmxExitRdtsc,
|
---|
393 | /* 17 VMX_EXIT_RSM */ hmR0VmxExitRsm,
|
---|
394 | /* 18 VMX_EXIT_VMCALL */ hmR0VmxExitSetPendingXcptUD,
|
---|
395 | /* 19 VMX_EXIT_VMCLEAR */ hmR0VmxExitSetPendingXcptUD,
|
---|
396 | /* 20 VMX_EXIT_VMLAUNCH */ hmR0VmxExitSetPendingXcptUD,
|
---|
397 | /* 21 VMX_EXIT_VMPTRLD */ hmR0VmxExitSetPendingXcptUD,
|
---|
398 | /* 22 VMX_EXIT_VMPTRST */ hmR0VmxExitSetPendingXcptUD,
|
---|
399 | /* 23 VMX_EXIT_VMREAD */ hmR0VmxExitSetPendingXcptUD,
|
---|
400 | /* 24 VMX_EXIT_VMRESUME */ hmR0VmxExitSetPendingXcptUD,
|
---|
401 | /* 25 VMX_EXIT_VMWRITE */ hmR0VmxExitSetPendingXcptUD,
|
---|
402 | /* 26 VMX_EXIT_VMXOFF */ hmR0VmxExitSetPendingXcptUD,
|
---|
403 | /* 27 VMX_EXIT_VMXON */ hmR0VmxExitSetPendingXcptUD,
|
---|
404 | /* 28 VMX_EXIT_MOV_CRX */ hmR0VmxExitMovCRx,
|
---|
405 | /* 29 VMX_EXIT_MOV_DRX */ hmR0VmxExitMovDRx,
|
---|
406 | /* 30 VMX_EXIT_IO_INSTR */ hmR0VmxExitIoInstr,
|
---|
407 | /* 31 VMX_EXIT_RDMSR */ hmR0VmxExitRdmsr,
|
---|
408 | /* 32 VMX_EXIT_WRMSR */ hmR0VmxExitWrmsr,
|
---|
409 | /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ hmR0VmxExitErrInvalidGuestState,
|
---|
410 | /* 34 VMX_EXIT_ERR_MSR_LOAD */ hmR0VmxExitErrMsrLoad,
|
---|
411 | /* 35 UNDEFINED */ hmR0VmxExitErrUndefined,
|
---|
412 | /* 36 VMX_EXIT_MWAIT */ hmR0VmxExitMwait,
|
---|
413 | /* 37 VMX_EXIT_MTF */ hmR0VmxExitMtf,
|
---|
414 | /* 38 UNDEFINED */ hmR0VmxExitErrUndefined,
|
---|
415 | /* 39 VMX_EXIT_MONITOR */ hmR0VmxExitMonitor,
|
---|
416 | /* 40 UNDEFINED */ hmR0VmxExitPause,
|
---|
417 | /* 41 VMX_EXIT_PAUSE */ hmR0VmxExitErrMachineCheck,
|
---|
418 | /* 42 VMX_EXIT_ERR_MACHINE_CHECK */ hmR0VmxExitErrUndefined,
|
---|
419 | /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ hmR0VmxExitTprBelowThreshold,
|
---|
420 | /* 44 VMX_EXIT_APIC_ACCESS */ hmR0VmxExitApicAccess,
|
---|
421 | /* 45 UNDEFINED */ hmR0VmxExitErrUndefined,
|
---|
422 | /* 46 VMX_EXIT_XDTR_ACCESS */ hmR0VmxExitXdtrAccess,
|
---|
423 | /* 47 VMX_EXIT_TR_ACCESS */ hmR0VmxExitXdtrAccess,
|
---|
424 | /* 48 VMX_EXIT_EPT_VIOLATION */ hmR0VmxExitEptViolation,
|
---|
425 | /* 49 VMX_EXIT_EPT_MISCONFIG */ hmR0VmxExitEptMisconfig,
|
---|
426 | /* 50 VMX_EXIT_INVEPT */ hmR0VmxExitSetPendingXcptUD,
|
---|
427 | /* 51 VMX_EXIT_RDTSCP */ hmR0VmxExitRdtscp,
|
---|
428 | /* 52 VMX_EXIT_PREEMPT_TIMER */ hmR0VmxExitPreemptTimer,
|
---|
429 | /* 53 VMX_EXIT_INVVPID */ hmR0VmxExitSetPendingXcptUD,
|
---|
430 | /* 54 VMX_EXIT_WBINVD */ hmR0VmxExitWbinvd,
|
---|
431 | /* 55 VMX_EXIT_XSETBV */ hmR0VmxExitXsetbv,
|
---|
432 | /* 56 UNDEFINED */ hmR0VmxExitErrUndefined,
|
---|
433 | /* 57 VMX_EXIT_RDRAND */ hmR0VmxExitRdrand,
|
---|
434 | /* 58 VMX_EXIT_INVPCID */ hmR0VmxExitInvpcid,
|
---|
435 | /* 59 VMX_EXIT_VMFUNC */ hmR0VmxExitSetPendingXcptUD
|
---|
436 | };
|
---|
437 | #endif /* HMVMX_USE_FUNCTION_TABLE */
|
---|
438 |
|
---|
439 | #ifdef VBOX_STRICT
|
---|
440 | static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
|
---|
441 | {
|
---|
442 | /* 0 */ "(Not Used)",
|
---|
443 | /* 1 */ "VMCALL executed in VMX root operation.",
|
---|
444 | /* 2 */ "VMCLEAR with invalid physical address.",
|
---|
445 | /* 3 */ "VMCLEAR with VMXON pointer.",
|
---|
446 | /* 4 */ "VMLAUNCH with non-clear VMCS.",
|
---|
447 | /* 5 */ "VMRESUME with non-launched VMCS.",
|
---|
448 | /* 6 */ "VMRESUME after VMXOFF",
|
---|
449 | /* 7 */ "VM entry with invalid control fields.",
|
---|
450 | /* 8 */ "VM entry with invalid host state fields.",
|
---|
451 | /* 9 */ "VMPTRLD with invalid physical address.",
|
---|
452 | /* 10 */ "VMPTRLD with VMXON pointer.",
|
---|
453 | /* 11 */ "VMPTRLD with incorrect revision identifier.",
|
---|
454 | /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
|
---|
455 | /* 13 */ "VMWRITE to read-only VMCS component.",
|
---|
456 | /* 14 */ "(Not Used)",
|
---|
457 | /* 15 */ "VMXON executed in VMX root operation.",
|
---|
458 | /* 16 */ "VM entry with invalid executive-VMCS pointer.",
|
---|
459 | /* 17 */ "VM entry with non-launched executing VMCS.",
|
---|
460 | /* 18 */ "VM entry with executive-VMCS pointer not VMXON pointer.",
|
---|
461 | /* 19 */ "VMCALL with non-clear VMCS.",
|
---|
462 | /* 20 */ "VMCALL with invalid VM-exit control fields.",
|
---|
463 | /* 21 */ "(Not Used)",
|
---|
464 | /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
|
---|
465 | /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
|
---|
466 | /* 24 */ "VMCALL with invalid SMM-monitor features.",
|
---|
467 | /* 25 */ "VM entry with invalid VM-execution control fields in executive VMCS.",
|
---|
468 | /* 26 */ "VM entry with events blocked by MOV SS.",
|
---|
469 | /* 27 */ "(Not Used)",
|
---|
470 | /* 28 */ "Invalid operand to INVEPT/INVVPID."
|
---|
471 | };
|
---|
472 | #endif /* VBOX_STRICT */
|
---|
473 |
|
---|
474 |
|
---|
475 |
|
---|
476 | /**
|
---|
477 | * Updates the VM's last error record. If there was a VMX instruction error,
|
---|
478 | * reads the error data from the VMCS and updates VCPU's last error record as
|
---|
479 | * well.
|
---|
480 | *
|
---|
481 | * @param pVM Pointer to the VM.
|
---|
482 | * @param pVCpu Pointer to the VMCPU (can be NULL if @a rc is not
|
---|
483 | * VERR_VMX_UNABLE_TO_START_VM or
|
---|
484 | * VERR_VMX_INVALID_VMCS_FIELD).
|
---|
485 | * @param rc The error code.
|
---|
486 | */
|
---|
487 | static void hmR0VmxUpdateErrorRecord(PVM pVM, PVMCPU pVCpu, int rc)
|
---|
488 | {
|
---|
489 | AssertPtr(pVM);
|
---|
490 | if ( rc == VERR_VMX_INVALID_VMCS_FIELD
|
---|
491 | || rc == VERR_VMX_UNABLE_TO_START_VM)
|
---|
492 | {
|
---|
493 | AssertPtrReturnVoid(pVCpu);
|
---|
494 | VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
|
---|
495 | }
|
---|
496 | pVM->hm.s.lLastError = rc;
|
---|
497 | }
|
---|
498 |
|
---|
499 |
|
---|
500 | /**
|
---|
501 | * Reads the VM-entry interruption-information field from the VMCS into the VMX
|
---|
502 | * transient structure.
|
---|
503 | *
|
---|
504 | * @returns VBox status code.
|
---|
505 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
506 | *
|
---|
507 | * @remarks No-long-jump zone!!!
|
---|
508 | */
|
---|
509 | DECLINLINE(int) hmR0VmxReadEntryIntrInfoVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
510 | {
|
---|
511 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntrInfo);
|
---|
512 | AssertRCReturn(rc, rc);
|
---|
513 | return VINF_SUCCESS;
|
---|
514 | }
|
---|
515 |
|
---|
516 |
|
---|
517 | /**
|
---|
518 | * Reads the VM-entry exception error code field from the VMCS into
|
---|
519 | * the VMX transient structure.
|
---|
520 | *
|
---|
521 | * @returns VBox status code.
|
---|
522 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
523 | *
|
---|
524 | * @remarks No-long-jump zone!!!
|
---|
525 | */
|
---|
526 | DECLINLINE(int) hmR0VmxReadEntryXcptErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
527 | {
|
---|
528 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
|
---|
529 | AssertRCReturn(rc, rc);
|
---|
530 | return VINF_SUCCESS;
|
---|
531 | }
|
---|
532 |
|
---|
533 |
|
---|
534 | /**
|
---|
535 | * Reads the VM-entry exception error code field from the VMCS into
|
---|
536 | * the VMX transient structure.
|
---|
537 | *
|
---|
538 | * @returns VBox status code.
|
---|
539 | * @param pVCpu Pointer to the VMCPU.
|
---|
540 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
541 | *
|
---|
542 | * @remarks No-long-jump zone!!!
|
---|
543 | */
|
---|
544 | DECLINLINE(int) hmR0VmxReadEntryInstrLenVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
545 | {
|
---|
546 | int rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
|
---|
547 | AssertRCReturn(rc, rc);
|
---|
548 | return VINF_SUCCESS;
|
---|
549 | }
|
---|
550 |
|
---|
551 |
|
---|
552 | /**
|
---|
553 | * Reads the VM-exit interruption-information field from the VMCS into the VMX
|
---|
554 | * transient structure.
|
---|
555 | *
|
---|
556 | * @returns VBox status code.
|
---|
557 | * @param pVCpu Pointer to the VMCPU.
|
---|
558 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
559 | */
|
---|
560 | DECLINLINE(int) hmR0VmxReadExitIntrInfoVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
561 | {
|
---|
562 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO))
|
---|
563 | {
|
---|
564 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntrInfo);
|
---|
565 | AssertRCReturn(rc, rc);
|
---|
566 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO;
|
---|
567 | }
|
---|
568 | return VINF_SUCCESS;
|
---|
569 | }
|
---|
570 |
|
---|
571 |
|
---|
572 | /**
|
---|
573 | * Reads the VM-exit interruption error code from the VMCS into the VMX
|
---|
574 | * transient structure.
|
---|
575 | *
|
---|
576 | * @returns VBox status code.
|
---|
577 | * @param pVCpu Pointer to the VMCPU.
|
---|
578 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
579 | */
|
---|
580 | DECLINLINE(int) hmR0VmxReadExitIntrErrorCodeVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
581 | {
|
---|
582 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE))
|
---|
583 | {
|
---|
584 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntrErrorCode);
|
---|
585 | AssertRCReturn(rc, rc);
|
---|
586 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_ERROR_CODE;
|
---|
587 | }
|
---|
588 | return VINF_SUCCESS;
|
---|
589 | }
|
---|
590 |
|
---|
591 |
|
---|
592 | /**
|
---|
593 | * Reads the VM-exit instruction length field from the VMCS into the VMX
|
---|
594 | * transient structure.
|
---|
595 | *
|
---|
596 | * @returns VBox status code.
|
---|
597 | * @param pVCpu Pointer to the VMCPU.
|
---|
598 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
599 | */
|
---|
600 | DECLINLINE(int) hmR0VmxReadExitInstrLenVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
601 | {
|
---|
602 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
|
---|
603 | {
|
---|
604 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbInstr);
|
---|
605 | AssertRCReturn(rc, rc);
|
---|
606 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
|
---|
607 | }
|
---|
608 | return VINF_SUCCESS;
|
---|
609 | }
|
---|
610 |
|
---|
611 |
|
---|
612 | /**
|
---|
613 | * Reads the VM-exit instruction-information field from the VMCS into
|
---|
614 | * the VMX transient structure.
|
---|
615 | *
|
---|
616 | * @returns VBox status code.
|
---|
617 | * @param pVCpu The cross context per CPU structure.
|
---|
618 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
619 | */
|
---|
620 | DECLINLINE(int) hmR0VmxReadExitInstrInfoVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
621 | {
|
---|
622 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN))
|
---|
623 | {
|
---|
624 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->cbInstr);
|
---|
625 | AssertRCReturn(rc, rc);
|
---|
626 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_INSTR_LEN;
|
---|
627 | }
|
---|
628 | return VINF_SUCCESS;
|
---|
629 | }
|
---|
630 |
|
---|
631 |
|
---|
632 | /**
|
---|
633 | * Reads the exit qualification from the VMCS into the VMX transient structure.
|
---|
634 | *
|
---|
635 | * @returns VBox status code.
|
---|
636 | * @param pVCpu Pointer to the VMCPU.
|
---|
637 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
638 | */
|
---|
639 | DECLINLINE(int) hmR0VmxReadExitQualificationVmcs(PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
640 | {
|
---|
641 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION))
|
---|
642 | {
|
---|
643 | int rc = VMXReadVmcsGstN(VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQualification);
|
---|
644 | AssertRCReturn(rc, rc);
|
---|
645 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_EXIT_QUALIFICATION;
|
---|
646 | }
|
---|
647 | return VINF_SUCCESS;
|
---|
648 | }
|
---|
649 |
|
---|
650 |
|
---|
651 | /**
|
---|
652 | * Reads the IDT-vectoring information field from the VMCS into the VMX
|
---|
653 | * transient structure.
|
---|
654 | *
|
---|
655 | * @returns VBox status code.
|
---|
656 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
657 | *
|
---|
658 | * @remarks No-long-jump zone!!!
|
---|
659 | */
|
---|
660 | DECLINLINE(int) hmR0VmxReadIdtVectoringInfoVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
661 | {
|
---|
662 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO))
|
---|
663 | {
|
---|
664 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_INFO, &pVmxTransient->uIdtVectoringInfo);
|
---|
665 | AssertRCReturn(rc, rc);
|
---|
666 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_INFO;
|
---|
667 | }
|
---|
668 | return VINF_SUCCESS;
|
---|
669 | }
|
---|
670 |
|
---|
671 |
|
---|
672 | /**
|
---|
673 | * Reads the IDT-vectoring error code from the VMCS into the VMX
|
---|
674 | * transient structure.
|
---|
675 | *
|
---|
676 | * @returns VBox status code.
|
---|
677 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
678 | */
|
---|
679 | DECLINLINE(int) hmR0VmxReadIdtVectoringErrorCodeVmcs(PVMXTRANSIENT pVmxTransient)
|
---|
680 | {
|
---|
681 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE))
|
---|
682 | {
|
---|
683 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_IDT_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
|
---|
684 | AssertRCReturn(rc, rc);
|
---|
685 | pVmxTransient->fVmcsFieldsRead |= HMVMX_UPDATED_TRANSIENT_IDT_VECTORING_ERROR_CODE;
|
---|
686 | }
|
---|
687 | return VINF_SUCCESS;
|
---|
688 | }
|
---|
689 |
|
---|
690 |
|
---|
691 | /**
|
---|
692 | * Enters VMX root mode operation on the current CPU.
|
---|
693 | *
|
---|
694 | * @returns VBox status code.
|
---|
695 | * @param pVM Pointer to the VM (optional, can be NULL, after
|
---|
696 | * a resume).
|
---|
697 | * @param HCPhysCpuPage Physical address of the VMXON region.
|
---|
698 | * @param pvCpuPage Pointer to the VMXON region.
|
---|
699 | */
|
---|
700 | static int hmR0VmxEnterRootMode(PVM pVM, RTHCPHYS HCPhysCpuPage, void *pvCpuPage)
|
---|
701 | {
|
---|
702 | AssertReturn(HCPhysCpuPage != 0 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
|
---|
703 | AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
|
---|
704 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
705 |
|
---|
706 | if (pVM)
|
---|
707 | {
|
---|
708 | /* Write the VMCS revision dword to the VMXON region. */
|
---|
709 | *(uint32_t *)pvCpuPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.msr.vmx_basic_info);
|
---|
710 | }
|
---|
711 |
|
---|
712 | /* Enable the VMX bit in CR4 if necessary. */
|
---|
713 | RTCCUINTREG uCr4 = ASMGetCR4();
|
---|
714 | if (!(uCr4 & X86_CR4_VMXE))
|
---|
715 | ASMSetCR4(uCr4 | X86_CR4_VMXE);
|
---|
716 |
|
---|
717 | /* Enter VMX root mode. */
|
---|
718 | int rc = VMXEnable(HCPhysCpuPage);
|
---|
719 | if (RT_FAILURE(rc))
|
---|
720 | ASMSetCR4(uCr4);
|
---|
721 |
|
---|
722 | return rc;
|
---|
723 | }
|
---|
724 |
|
---|
725 |
|
---|
726 | /**
|
---|
727 | * Exits VMX root mode operation on the current CPU.
|
---|
728 | *
|
---|
729 | * @returns VBox status code.
|
---|
730 | */
|
---|
731 | static int hmR0VmxLeaveRootMode(void)
|
---|
732 | {
|
---|
733 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
734 |
|
---|
735 | /* If we're for some reason not in VMX root mode, then don't leave it. */
|
---|
736 | RTCCUINTREG uHostCR4 = ASMGetCR4();
|
---|
737 | if (uHostCR4 & X86_CR4_VMXE)
|
---|
738 | {
|
---|
739 | /* Exit VMX root mode and clear the VMX bit in CR4. */
|
---|
740 | VMXDisable();
|
---|
741 | ASMSetCR4(uHostCR4 & ~X86_CR4_VMXE);
|
---|
742 | return VINF_SUCCESS;
|
---|
743 | }
|
---|
744 |
|
---|
745 | return VERR_VMX_NOT_IN_VMX_ROOT_MODE;
|
---|
746 | }
|
---|
747 |
|
---|
748 |
|
---|
749 | /**
|
---|
750 | * Allocates and maps one physically contiguous page. The allocated page is
|
---|
751 | * zero'd out. (Used by various VT-x structures).
|
---|
752 | *
|
---|
753 | * @returns IPRT status code.
|
---|
754 | * @param pMemObj Pointer to the ring-0 memory object.
|
---|
755 | * @param ppVirt Where to store the virtual address of the
|
---|
756 | * allocation.
|
---|
757 | * @param pPhys Where to store the physical address of the
|
---|
758 | * allocation.
|
---|
759 | */
|
---|
760 | DECLINLINE(int) hmR0VmxPageAllocZ(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
|
---|
761 | {
|
---|
762 | AssertPtrReturn(pMemObj, VERR_INVALID_PARAMETER);
|
---|
763 | AssertPtrReturn(ppVirt, VERR_INVALID_PARAMETER);
|
---|
764 | AssertPtrReturn(pHCPhys, VERR_INVALID_PARAMETER);
|
---|
765 |
|
---|
766 | int rc = RTR0MemObjAllocCont(pMemObj, PAGE_SIZE, false /* fExecutable */);
|
---|
767 | if (RT_FAILURE(rc))
|
---|
768 | return rc;
|
---|
769 | *ppVirt = RTR0MemObjAddress(*pMemObj);
|
---|
770 | *pHCPhys = RTR0MemObjGetPagePhysAddr(*pMemObj, 0 /* iPage */);
|
---|
771 | ASMMemZero32(*ppVirt, PAGE_SIZE);
|
---|
772 | return VINF_SUCCESS;
|
---|
773 | }
|
---|
774 |
|
---|
775 |
|
---|
776 | /**
|
---|
777 | * Frees and unmaps an allocated physical page.
|
---|
778 | *
|
---|
779 | * @param pMemObj Pointer to the ring-0 memory object.
|
---|
780 | * @param ppVirt Where to re-initialize the virtual address of
|
---|
781 | * allocation as 0.
|
---|
782 | * @param pHCPhys Where to re-initialize the physical address of the
|
---|
783 | * allocation as 0.
|
---|
784 | */
|
---|
785 | DECLINLINE(void) hmR0VmxPageFree(PRTR0MEMOBJ pMemObj, PRTR0PTR ppVirt, PRTHCPHYS pHCPhys)
|
---|
786 | {
|
---|
787 | AssertPtr(pMemObj);
|
---|
788 | AssertPtr(ppVirt);
|
---|
789 | AssertPtr(pHCPhys);
|
---|
790 | if (*pMemObj != NIL_RTR0MEMOBJ)
|
---|
791 | {
|
---|
792 | int rc = RTR0MemObjFree(*pMemObj, true /* fFreeMappings */);
|
---|
793 | AssertRC(rc);
|
---|
794 | *pMemObj = NIL_RTR0MEMOBJ;
|
---|
795 | *ppVirt = 0;
|
---|
796 | *pHCPhys = 0;
|
---|
797 | }
|
---|
798 | }
|
---|
799 |
|
---|
800 |
|
---|
801 | /**
|
---|
802 | * Worker function to free VT-x related structures.
|
---|
803 | *
|
---|
804 | * @returns IPRT status code.
|
---|
805 | * @param pVM Pointer to the VM.
|
---|
806 | */
|
---|
807 | static void hmR0VmxStructsFree(PVM pVM)
|
---|
808 | {
|
---|
809 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
810 | {
|
---|
811 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
812 | AssertPtr(pVCpu);
|
---|
813 |
|
---|
814 | #ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
|
---|
815 | hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
|
---|
816 | hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
|
---|
817 | #endif
|
---|
818 |
|
---|
819 | if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
|
---|
820 | hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap, &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
|
---|
821 |
|
---|
822 | hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic, &pVCpu->hm.s.vmx.HCPhysVirtApic);
|
---|
823 | hmR0VmxPageFree(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
824 | }
|
---|
825 |
|
---|
826 | hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess, &pVM->hm.s.vmx.HCPhysApicAccess);
|
---|
827 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
828 | hmR0VmxPageFree(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
|
---|
829 | #endif
|
---|
830 | }
|
---|
831 |
|
---|
832 |
|
---|
833 | /**
|
---|
834 | * Worker function to allocate VT-x related VM structures.
|
---|
835 | *
|
---|
836 | * @returns IPRT status code.
|
---|
837 | * @param pVM Pointer to the VM.
|
---|
838 | */
|
---|
839 | static int hmR0VmxStructsAlloc(PVM pVM)
|
---|
840 | {
|
---|
841 | /*
|
---|
842 | * Initialize members up-front so we can cleanup properly on allocation failure.
|
---|
843 | */
|
---|
844 | #define VMXLOCAL_INIT_VM_MEMOBJ(a_Name, a_VirtPrefix) \
|
---|
845 | pVM->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
|
---|
846 | pVM->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
|
---|
847 | pVM->hm.s.vmx.HCPhys##a_Name = 0;
|
---|
848 |
|
---|
849 | #define VMXLOCAL_INIT_VMCPU_MEMOBJ(a_Name, a_VirtPrefix) \
|
---|
850 | pVCpu->hm.s.vmx.hMemObj##a_Name = NIL_RTR0MEMOBJ; \
|
---|
851 | pVCpu->hm.s.vmx.a_VirtPrefix##a_Name = 0; \
|
---|
852 | pVCpu->hm.s.vmx.HCPhys##a_Name = 0;
|
---|
853 |
|
---|
854 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
855 | VMXLOCAL_INIT_VM_MEMOBJ(Scratch, pv);
|
---|
856 | #endif
|
---|
857 | VMXLOCAL_INIT_VM_MEMOBJ(ApicAccess, pb);
|
---|
858 |
|
---|
859 | AssertCompile(sizeof(VMCPUID) == sizeof(pVM->cCpus));
|
---|
860 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
861 | {
|
---|
862 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
863 | VMXLOCAL_INIT_VMCPU_MEMOBJ(Vmcs, pv);
|
---|
864 | VMXLOCAL_INIT_VMCPU_MEMOBJ(VirtApic, pb);
|
---|
865 | VMXLOCAL_INIT_VMCPU_MEMOBJ(MsrBitmap, pv);
|
---|
866 | #ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
|
---|
867 | VMXLOCAL_INIT_VMCPU_MEMOBJ(GuestMsr, pv);
|
---|
868 | VMXLOCAL_INIT_VMCPU_MEMOBJ(HostMsr, pv);
|
---|
869 | #endif
|
---|
870 | }
|
---|
871 | #undef VMXLOCAL_INIT_VMCPU_MEMOBJ
|
---|
872 | #undef VMXLOCAL_INIT_VM_MEMOBJ
|
---|
873 |
|
---|
874 | /*
|
---|
875 | * Allocate all the VT-x structures.
|
---|
876 | */
|
---|
877 | int rc = VINF_SUCCESS;
|
---|
878 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
879 | rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjScratch, &pVM->hm.s.vmx.pbScratch, &pVM->hm.s.vmx.HCPhysScratch);
|
---|
880 | if (RT_FAILURE(rc))
|
---|
881 | goto cleanup;
|
---|
882 | strcpy((char *)pVM->hm.s.vmx.pbScratch, "SCRATCH Magic");
|
---|
883 | *(uint64_t *)(pVM->hm.s.vmx.pbScratch + 16) = UINT64_C(0xdeadbeefdeadbeef);
|
---|
884 | #endif
|
---|
885 |
|
---|
886 | /* Allocate the APIC-access page for trapping APIC accesses from the guest. */
|
---|
887 | if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
|
---|
888 | {
|
---|
889 | rc = hmR0VmxPageAllocZ(&pVM->hm.s.vmx.hMemObjApicAccess, (PRTR0PTR)&pVM->hm.s.vmx.pbApicAccess,
|
---|
890 | &pVM->hm.s.vmx.HCPhysApicAccess);
|
---|
891 | if (RT_FAILURE(rc))
|
---|
892 | goto cleanup;
|
---|
893 | }
|
---|
894 |
|
---|
895 | /*
|
---|
896 | * Initialize per-VCPU VT-x structures.
|
---|
897 | */
|
---|
898 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
899 | {
|
---|
900 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
901 | AssertPtr(pVCpu);
|
---|
902 |
|
---|
903 | /* Allocate the VM control structure (VMCS). */
|
---|
904 | AssertReturn(MSR_IA32_VMX_BASIC_INFO_VMCS_SIZE(pVM->hm.s.vmx.msr.vmx_basic_info) <= PAGE_SIZE, VERR_INTERNAL_ERROR);
|
---|
905 | rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVmcs, &pVCpu->hm.s.vmx.pvVmcs, &pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
906 | if (RT_FAILURE(rc))
|
---|
907 | goto cleanup;
|
---|
908 |
|
---|
909 | /* Allocate the Virtual-APIC page for transparent TPR accesses. */
|
---|
910 | if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
|
---|
911 | {
|
---|
912 | rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjVirtApic, (PRTR0PTR)&pVCpu->hm.s.vmx.pbVirtApic,
|
---|
913 | &pVCpu->hm.s.vmx.HCPhysVirtApic);
|
---|
914 | if (RT_FAILURE(rc))
|
---|
915 | goto cleanup;
|
---|
916 | }
|
---|
917 |
|
---|
918 | /* Allocate the MSR-bitmap if supported by the CPU. The MSR-bitmap is for transparent accesses of specific MSRs. */
|
---|
919 | if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
|
---|
920 | {
|
---|
921 | rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjMsrBitmap, &pVCpu->hm.s.vmx.pvMsrBitmap,
|
---|
922 | &pVCpu->hm.s.vmx.HCPhysMsrBitmap);
|
---|
923 | if (RT_FAILURE(rc))
|
---|
924 | goto cleanup;
|
---|
925 | memset(pVCpu->hm.s.vmx.pvMsrBitmap, 0xff, PAGE_SIZE);
|
---|
926 | }
|
---|
927 |
|
---|
928 | #ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
|
---|
929 | /* Allocate the VM-entry MSR-load and VM-exit MSR-store page for the guest MSRs. */
|
---|
930 | rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjGuestMsr, &pVCpu->hm.s.vmx.pvGuestMsr, &pVCpu->hm.s.vmx.HCPhysGuestMsr);
|
---|
931 | if (RT_FAILURE(rc))
|
---|
932 | goto cleanup;
|
---|
933 |
|
---|
934 | /* Allocate the VM-exit MSR-load page for the host MSRs. */
|
---|
935 | rc = hmR0VmxPageAllocZ(&pVCpu->hm.s.vmx.hMemObjHostMsr, &pVCpu->hm.s.vmx.pvHostMsr, &pVCpu->hm.s.vmx.HCPhysHostMsr);
|
---|
936 | if (RT_FAILURE(rc))
|
---|
937 | goto cleanup;
|
---|
938 | #endif
|
---|
939 | }
|
---|
940 |
|
---|
941 | return VINF_SUCCESS;
|
---|
942 |
|
---|
943 | cleanup:
|
---|
944 | hmR0VmxStructsFree(pVM);
|
---|
945 | return rc;
|
---|
946 | }
|
---|
947 |
|
---|
948 |
|
---|
949 | /**
|
---|
950 | * Does global VT-x initialization (called during module initialization).
|
---|
951 | *
|
---|
952 | * @returns VBox status code.
|
---|
953 | */
|
---|
954 | VMMR0DECL(int) VMXR0GlobalInit(void)
|
---|
955 | {
|
---|
956 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
957 | AssertCompile(VMX_EXIT_MAX + 1 == RT_ELEMENTS(g_apfnVMExitHandlers));
|
---|
958 | # ifdef VBOX_STRICT
|
---|
959 | for (unsigned i = 0; i < RT_ELEMENTS(g_apfnVMExitHandlers); i++)
|
---|
960 | Assert(g_apfnVMExitHandlers[i]);
|
---|
961 | # endif
|
---|
962 | #endif
|
---|
963 | return VINF_SUCCESS;
|
---|
964 | }
|
---|
965 |
|
---|
966 |
|
---|
967 | /**
|
---|
968 | * Does global VT-x termination (called during module termination).
|
---|
969 | */
|
---|
970 | VMMR0DECL(void) VMXR0GlobalTerm()
|
---|
971 | {
|
---|
972 | /* Nothing to do currently. */
|
---|
973 | }
|
---|
974 |
|
---|
975 |
|
---|
976 | /**
|
---|
977 | * Sets up and activates VT-x on the current CPU.
|
---|
978 | *
|
---|
979 | * @returns VBox status code.
|
---|
980 | * @param pCpu Pointer to the global CPU info struct.
|
---|
981 | * @param pVM Pointer to the VM (can be NULL after a host resume
|
---|
982 | * operation).
|
---|
983 | * @param pvCpuPage Pointer to the VMXON region (can be NULL if @a
|
---|
984 | * fEnabledByHost is true).
|
---|
985 | * @param HCPhysCpuPage Physical address of the VMXON region (can be 0 if
|
---|
986 | * @a fEnabledByHost is true).
|
---|
987 | * @param fEnabledByHost Set if SUPR0EnableVTx() or similar was used to
|
---|
988 | * enable VT-x on the host.
|
---|
989 | */
|
---|
990 | VMMR0DECL(int) VMXR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
|
---|
991 | {
|
---|
992 | AssertReturn(pCpu, VERR_INVALID_PARAMETER);
|
---|
993 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
994 |
|
---|
995 | if (!fEnabledByHost)
|
---|
996 | {
|
---|
997 | int rc = hmR0VmxEnterRootMode(pVM, HCPhysCpuPage, pvCpuPage);
|
---|
998 | if (RT_FAILURE(rc))
|
---|
999 | return rc;
|
---|
1000 | }
|
---|
1001 |
|
---|
1002 | /*
|
---|
1003 | * Flush all EPTP tagged-TLB entries (in case any other hypervisor have been using EPTPs) so that
|
---|
1004 | * we can avoid an explicit flush while using new VPIDs. We would still need to flush
|
---|
1005 | * each time while reusing a VPID after hitting the MaxASID limit once.
|
---|
1006 | */
|
---|
1007 | if ( pVM
|
---|
1008 | && pVM->hm.s.fNestedPaging)
|
---|
1009 | {
|
---|
1010 | /* We require ALL_CONTEXT flush-type to be available on the CPU. See hmR0VmxSetupTaggedTlb(). */
|
---|
1011 | Assert(pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS);
|
---|
1012 | hmR0VmxFlushEpt(pVM, NULL /* pVCpu */, VMX_FLUSH_EPT_ALL_CONTEXTS);
|
---|
1013 | pCpu->fFlushAsidBeforeUse = false;
|
---|
1014 | }
|
---|
1015 | else
|
---|
1016 | {
|
---|
1017 | /** @todo This is still not perfect. If on host resume (pVM is NULL or a VM
|
---|
1018 | * without Nested Paging triggered this function) we still have the risk
|
---|
1019 | * of potentially running with stale TLB-entries from other hypervisors
|
---|
1020 | * when later we use a VM with NestedPaging. To fix this properly we will
|
---|
1021 | * have to pass '&g_HvmR0' (see HMR0.cpp) to this function and read
|
---|
1022 | * 'vmx_ept_vpid_caps' from it. Sigh. */
|
---|
1023 | pCpu->fFlushAsidBeforeUse = true;
|
---|
1024 | }
|
---|
1025 |
|
---|
1026 | /* Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}. */
|
---|
1027 | ++pCpu->cTlbFlushes;
|
---|
1028 |
|
---|
1029 | return VINF_SUCCESS;
|
---|
1030 | }
|
---|
1031 |
|
---|
1032 |
|
---|
1033 | /**
|
---|
1034 | * Deactivates VT-x on the current CPU.
|
---|
1035 | *
|
---|
1036 | * @returns VBox status code.
|
---|
1037 | * @param pCpu Pointer to the global CPU info struct.
|
---|
1038 | * @param pvCpuPage Pointer to the VMXON region.
|
---|
1039 | * @param HCPhysCpuPage Physical address of the VMXON region.
|
---|
1040 | *
|
---|
1041 | * @remarks This function should never be called when SUPR0EnableVTx() or
|
---|
1042 | * similar was used to enable VT-x on the host.
|
---|
1043 | */
|
---|
1044 | VMMR0DECL(int) VMXR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
|
---|
1045 | {
|
---|
1046 | NOREF(pCpu);
|
---|
1047 | NOREF(pvCpuPage);
|
---|
1048 | NOREF(HCPhysCpuPage);
|
---|
1049 |
|
---|
1050 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1051 | return hmR0VmxLeaveRootMode();
|
---|
1052 | }
|
---|
1053 |
|
---|
1054 |
|
---|
1055 | /**
|
---|
1056 | * Sets the permission bits for the specified MSR in the MSR bitmap.
|
---|
1057 | *
|
---|
1058 | * @param pVCpu Pointer to the VMCPU.
|
---|
1059 | * @param uMSR The MSR value.
|
---|
1060 | * @param enmRead Whether reading this MSR causes a VM-exit.
|
---|
1061 | * @param enmWrite Whether writing this MSR causes a VM-exit.
|
---|
1062 | */
|
---|
1063 | static void hmR0VmxSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, VMXMSREXITREAD enmRead, VMXMSREXITWRITE enmWrite)
|
---|
1064 | {
|
---|
1065 | int32_t iBit;
|
---|
1066 | uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.vmx.pvMsrBitmap;
|
---|
1067 |
|
---|
1068 | /*
|
---|
1069 | * Layout:
|
---|
1070 | * 0x000 - 0x3ff - Low MSR read bits
|
---|
1071 | * 0x400 - 0x7ff - High MSR read bits
|
---|
1072 | * 0x800 - 0xbff - Low MSR write bits
|
---|
1073 | * 0xc00 - 0xfff - High MSR write bits
|
---|
1074 | */
|
---|
1075 | if (uMsr <= 0x00001FFF)
|
---|
1076 | iBit = uMsr;
|
---|
1077 | else if ( uMsr >= 0xC0000000
|
---|
1078 | && uMsr <= 0xC0001FFF)
|
---|
1079 | {
|
---|
1080 | iBit = (uMsr - 0xC0000000);
|
---|
1081 | pbMsrBitmap += 0x400;
|
---|
1082 | }
|
---|
1083 | else
|
---|
1084 | {
|
---|
1085 | AssertMsgFailed(("hmR0VmxSetMsrPermission: Invalid MSR %#RX32\n", uMsr));
|
---|
1086 | return;
|
---|
1087 | }
|
---|
1088 |
|
---|
1089 | Assert(iBit <= 0x1fff);
|
---|
1090 | if (enmRead == VMXMSREXIT_INTERCEPT_READ)
|
---|
1091 | ASMBitSet(pbMsrBitmap, iBit);
|
---|
1092 | else
|
---|
1093 | ASMBitClear(pbMsrBitmap, iBit);
|
---|
1094 |
|
---|
1095 | if (enmWrite == VMXMSREXIT_INTERCEPT_WRITE)
|
---|
1096 | ASMBitSet(pbMsrBitmap + 0x800, iBit);
|
---|
1097 | else
|
---|
1098 | ASMBitClear(pbMsrBitmap + 0x800, iBit);
|
---|
1099 | }
|
---|
1100 |
|
---|
1101 |
|
---|
1102 | /**
|
---|
1103 | * Flushes the TLB using EPT.
|
---|
1104 | *
|
---|
1105 | * @returns VBox status code.
|
---|
1106 | * @param pVM Pointer to the VM.
|
---|
1107 | * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
|
---|
1108 | * enmFlush).
|
---|
1109 | * @param enmFlush Type of flush.
|
---|
1110 | */
|
---|
1111 | static void hmR0VmxFlushEpt(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_EPT enmFlush)
|
---|
1112 | {
|
---|
1113 | AssertPtr(pVM);
|
---|
1114 | Assert(pVM->hm.s.fNestedPaging);
|
---|
1115 |
|
---|
1116 | uint64_t descriptor[2];
|
---|
1117 | if (enmFlush == VMX_FLUSH_EPT_ALL_CONTEXTS)
|
---|
1118 | descriptor[0] = 0;
|
---|
1119 | else
|
---|
1120 | {
|
---|
1121 | Assert(pVCpu);
|
---|
1122 | descriptor[0] = pVCpu->hm.s.vmx.HCPhysEPTP;
|
---|
1123 | }
|
---|
1124 | descriptor[1] = 0; /* MBZ. Intel spec. 33.3 "VMX Instructions" */
|
---|
1125 |
|
---|
1126 | int rc = VMXR0InvEPT(enmFlush, &descriptor[0]);
|
---|
1127 | AssertMsg(rc == VINF_SUCCESS, ("VMXR0InvEPT %#x %RGv failed with %Rrc\n", enmFlush, pVCpu ? pVCpu->hm.s.vmx.HCPhysEPTP : 0,
|
---|
1128 | rc));
|
---|
1129 | if ( RT_SUCCESS(rc)
|
---|
1130 | && pVCpu)
|
---|
1131 | {
|
---|
1132 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushNestedPaging);
|
---|
1133 | }
|
---|
1134 | }
|
---|
1135 |
|
---|
1136 |
|
---|
1137 | /**
|
---|
1138 | * Flushes the TLB using VPID.
|
---|
1139 | *
|
---|
1140 | * @returns VBox status code.
|
---|
1141 | * @param pVM Pointer to the VM.
|
---|
1142 | * @param pVCpu Pointer to the VMCPU (can be NULL depending on @a
|
---|
1143 | * enmFlush).
|
---|
1144 | * @param enmFlush Type of flush.
|
---|
1145 | * @param GCPtr Virtual address of the page to flush (can be 0 depending
|
---|
1146 | * on @a enmFlush).
|
---|
1147 | */
|
---|
1148 | static void hmR0VmxFlushVpid(PVM pVM, PVMCPU pVCpu, VMX_FLUSH_VPID enmFlush, RTGCPTR GCPtr)
|
---|
1149 | {
|
---|
1150 | AssertPtr(pVM);
|
---|
1151 | Assert(pVM->hm.s.vmx.fVpid);
|
---|
1152 |
|
---|
1153 | uint64_t descriptor[2];
|
---|
1154 | if (enmFlush == VMX_FLUSH_VPID_ALL_CONTEXTS)
|
---|
1155 | {
|
---|
1156 | descriptor[0] = 0;
|
---|
1157 | descriptor[1] = 0;
|
---|
1158 | }
|
---|
1159 | else
|
---|
1160 | {
|
---|
1161 | AssertPtr(pVCpu);
|
---|
1162 | AssertMsg(pVCpu->hm.s.uCurrentAsid != 0, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
|
---|
1163 | AssertMsg(pVCpu->hm.s.uCurrentAsid <= UINT16_MAX, ("VMXR0InvVPID: invalid ASID %lu\n", pVCpu->hm.s.uCurrentAsid));
|
---|
1164 | descriptor[0] = pVCpu->hm.s.uCurrentAsid;
|
---|
1165 | descriptor[1] = GCPtr;
|
---|
1166 | }
|
---|
1167 |
|
---|
1168 | int rc = VMXR0InvVPID(enmFlush, &descriptor[0]); NOREF(rc);
|
---|
1169 | AssertMsg(rc == VINF_SUCCESS,
|
---|
1170 | ("VMXR0InvVPID %#x %u %RGv failed with %d\n", enmFlush, pVCpu ? pVCpu->hm.s.uCurrentAsid : 0, GCPtr, rc));
|
---|
1171 | if ( RT_SUCCESS(rc)
|
---|
1172 | && pVCpu)
|
---|
1173 | {
|
---|
1174 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
|
---|
1175 | }
|
---|
1176 | }
|
---|
1177 |
|
---|
1178 |
|
---|
1179 | /**
|
---|
1180 | * Invalidates a guest page by guest virtual address. Only relevant for
|
---|
1181 | * EPT/VPID, otherwise there is nothing really to invalidate.
|
---|
1182 | *
|
---|
1183 | * @returns VBox status code.
|
---|
1184 | * @param pVM Pointer to the VM.
|
---|
1185 | * @param pVCpu Pointer to the VMCPU.
|
---|
1186 | * @param GCVirt Guest virtual address of the page to invalidate.
|
---|
1187 | */
|
---|
1188 | VMMR0DECL(int) VMXR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
|
---|
1189 | {
|
---|
1190 | AssertPtr(pVM);
|
---|
1191 | AssertPtr(pVCpu);
|
---|
1192 | LogFlowFunc(("pVM=%p pVCpu=%p GCVirt=%RGv\n", pVM, pVCpu, GCVirt));
|
---|
1193 |
|
---|
1194 | bool fFlushPending = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1195 | if (!fFlushPending)
|
---|
1196 | {
|
---|
1197 | /*
|
---|
1198 | * We must invalidate the guest TLB entry in either case, we cannot ignore it even for the EPT case
|
---|
1199 | * See @bugref{6043} and @bugref{6177}.
|
---|
1200 | *
|
---|
1201 | * Set the VMCPU_FF_TLB_FLUSH force flag and flush before VM-entry in hmR0VmxFlushTLB*() as this
|
---|
1202 | * function maybe called in a loop with individual addresses.
|
---|
1203 | */
|
---|
1204 | if (pVM->hm.s.vmx.fVpid)
|
---|
1205 | {
|
---|
1206 | if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
|
---|
1207 | {
|
---|
1208 | hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, GCVirt);
|
---|
1209 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
|
---|
1210 | }
|
---|
1211 | else
|
---|
1212 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1213 | }
|
---|
1214 | else if (pVM->hm.s.fNestedPaging)
|
---|
1215 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 | return VINF_SUCCESS;
|
---|
1219 | }
|
---|
1220 |
|
---|
1221 |
|
---|
1222 | /**
|
---|
1223 | * Invalidates a guest page by physical address. Only relevant for EPT/VPID,
|
---|
1224 | * otherwise there is nothing really to invalidate.
|
---|
1225 | *
|
---|
1226 | * @returns VBox status code.
|
---|
1227 | * @param pVM Pointer to the VM.
|
---|
1228 | * @param pVCpu Pointer to the VMCPU.
|
---|
1229 | * @param GCPhys Guest physical address of the page to invalidate.
|
---|
1230 | */
|
---|
1231 | VMMR0DECL(int) VMXR0InvalidatePhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
|
---|
1232 | {
|
---|
1233 | LogFlowFunc(("%RGp\n", GCPhys));
|
---|
1234 |
|
---|
1235 | /*
|
---|
1236 | * We cannot flush a page by guest-physical address. invvpid takes only a linear address while invept only flushes
|
---|
1237 | * by EPT not individual addresses. We update the force flag here and flush before the next VM-entry in hmR0VmxFlushTLB*().
|
---|
1238 | * This function might be called in a loop. This should cause a flush-by-EPT if EPT is in use. See @bugref{6568}.
|
---|
1239 | */
|
---|
1240 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1241 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgPhys);
|
---|
1242 | return VINF_SUCCESS;
|
---|
1243 | }
|
---|
1244 |
|
---|
1245 |
|
---|
1246 | /**
|
---|
1247 | * Dummy placeholder for tagged-TLB flush handling before VM-entry. Used in the
|
---|
1248 | * case where neither EPT nor VPID is supported by the CPU.
|
---|
1249 | *
|
---|
1250 | * @param pVM Pointer to the VM.
|
---|
1251 | * @param pVCpu Pointer to the VMCPU.
|
---|
1252 | *
|
---|
1253 | * @remarks Called with interrupts disabled.
|
---|
1254 | */
|
---|
1255 | static void hmR0VmxFlushTaggedTlbNone(PVM pVM, PVMCPU pVCpu)
|
---|
1256 | {
|
---|
1257 | NOREF(pVM);
|
---|
1258 | AssertPtr(pVCpu);
|
---|
1259 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
1260 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
|
---|
1261 |
|
---|
1262 | PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
|
---|
1263 | AssertPtr(pCpu);
|
---|
1264 |
|
---|
1265 | pVCpu->hm.s.TlbShootdown.cPages = 0;
|
---|
1266 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
1267 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
1268 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
1269 | return;
|
---|
1270 | }
|
---|
1271 |
|
---|
1272 |
|
---|
1273 | /**
|
---|
1274 | * Flushes the tagged-TLB entries for EPT+VPID CPUs as necessary.
|
---|
1275 | *
|
---|
1276 | * @param pVM Pointer to the VM.
|
---|
1277 | * @param pVCpu Pointer to the VMCPU.
|
---|
1278 | * @remarks All references to "ASID" in this function pertains to "VPID" in
|
---|
1279 | * Intel's nomenclature. The reason is, to avoid confusion in compare
|
---|
1280 | * statements since the host-CPU copies are named "ASID".
|
---|
1281 | *
|
---|
1282 | * @remarks Called with interrupts disabled.
|
---|
1283 | */
|
---|
1284 | static void hmR0VmxFlushTaggedTlbBoth(PVM pVM, PVMCPU pVCpu)
|
---|
1285 | {
|
---|
1286 | #ifdef VBOX_WITH_STATISTICS
|
---|
1287 | bool fTlbFlushed = false;
|
---|
1288 | # define HMVMX_SET_TAGGED_TLB_FLUSHED() do { fTlbFlushed = true; } while (0)
|
---|
1289 | # define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { \
|
---|
1290 | if (!fTlbFlushed) \
|
---|
1291 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch); \
|
---|
1292 | } while (0)
|
---|
1293 | #else
|
---|
1294 | # define HMVMX_SET_TAGGED_TLB_FLUSHED() do { } while (0)
|
---|
1295 | # define HMVMX_UPDATE_FLUSH_SKIPPED_STAT() do { } while (0)
|
---|
1296 | #endif
|
---|
1297 |
|
---|
1298 | AssertPtr(pVM);
|
---|
1299 | AssertPtr(pVCpu);
|
---|
1300 | AssertMsg(pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid,
|
---|
1301 | ("hmR0VmxFlushTaggedTlbBoth cannot be invoked unless NestedPaging & VPID are enabled."
|
---|
1302 | "fNestedPaging=%RTbool fVpid=%RTbool", pVM->hm.s.fNestedPaging, pVM->hm.s.vmx.fVpid));
|
---|
1303 |
|
---|
1304 | PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
|
---|
1305 | AssertPtr(pCpu);
|
---|
1306 |
|
---|
1307 | /*
|
---|
1308 | * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
|
---|
1309 | * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
|
---|
1310 | * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
|
---|
1311 | */
|
---|
1312 | if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|
---|
1313 | || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
|
---|
1314 | {
|
---|
1315 | ++pCpu->uCurrentAsid;
|
---|
1316 | if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
|
---|
1317 | {
|
---|
1318 | pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0. */
|
---|
1319 | pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
|
---|
1320 | pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
|
---|
1321 | }
|
---|
1322 |
|
---|
1323 | pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
|
---|
1324 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
1325 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
1326 |
|
---|
1327 | /*
|
---|
1328 | * Flush by EPT when we get rescheduled to a new host CPU to ensure EPT-only tagged mappings are also
|
---|
1329 | * invalidated. We don't need to flush-by-VPID here as flushing by EPT covers it. See @bugref{6568}.
|
---|
1330 | */
|
---|
1331 | hmR0VmxFlushEpt(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
|
---|
1332 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
1333 | HMVMX_SET_TAGGED_TLB_FLUSHED();
|
---|
1334 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH); /* Already flushed-by-EPT, skip doing it again below. */
|
---|
1335 | }
|
---|
1336 |
|
---|
1337 | /* Check for explicit TLB shootdowns. */
|
---|
1338 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
1339 | {
|
---|
1340 | /*
|
---|
1341 | * Changes to the EPT paging structure by VMM requires flushing by EPT as the CPU creates
|
---|
1342 | * guest-physical (only EPT-tagged) mappings while traversing the EPT tables when EPT is in use.
|
---|
1343 | * Flushing by VPID will only flush linear (only VPID-tagged) and combined (EPT+VPID tagged) mappings
|
---|
1344 | * but not guest-physical mappings.
|
---|
1345 | * See Intel spec. 28.3.2 "Creating and Using Cached Translation Information". See @bugref{6568}.
|
---|
1346 | */
|
---|
1347 | hmR0VmxFlushEpt(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
|
---|
1348 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
1349 | HMVMX_SET_TAGGED_TLB_FLUSHED();
|
---|
1350 | }
|
---|
1351 |
|
---|
1352 | /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
|
---|
1353 | * not be executed. See hmQueueInvlPage() where it is commented
|
---|
1354 | * out. Support individual entry flushing someday. */
|
---|
1355 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
|
---|
1356 | {
|
---|
1357 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
|
---|
1358 |
|
---|
1359 | /*
|
---|
1360 | * Flush individual guest entries using VPID from the TLB or as little as possible with EPT
|
---|
1361 | * as supported by the CPU.
|
---|
1362 | */
|
---|
1363 | if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
|
---|
1364 | {
|
---|
1365 | for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
|
---|
1366 | hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
|
---|
1367 | }
|
---|
1368 | else
|
---|
1369 | hmR0VmxFlushEpt(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
|
---|
1370 |
|
---|
1371 | HMVMX_SET_TAGGED_TLB_FLUSHED();
|
---|
1372 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
|
---|
1373 | }
|
---|
1374 |
|
---|
1375 | pVCpu->hm.s.TlbShootdown.cPages = 0;
|
---|
1376 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
1377 |
|
---|
1378 | HMVMX_UPDATE_FLUSH_SKIPPED_STAT();
|
---|
1379 |
|
---|
1380 | Assert(pVCpu->hm.s.idLastCpu == pCpu->idCpu);
|
---|
1381 | Assert(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes);
|
---|
1382 | AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
|
---|
1383 | ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
|
---|
1384 | AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
1385 | ("cpu%d uCurrentAsid = %u\n", pCpu->idCpu, pCpu->uCurrentAsid));
|
---|
1386 | AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
1387 | ("cpu%d VM uCurrentAsid = %u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
|
---|
1388 |
|
---|
1389 | /* Update VMCS with the VPID. */
|
---|
1390 | int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
|
---|
1391 | AssertRC(rc);
|
---|
1392 |
|
---|
1393 | #undef HMVMX_SET_TAGGED_TLB_FLUSHED
|
---|
1394 | }
|
---|
1395 |
|
---|
1396 |
|
---|
1397 | /**
|
---|
1398 | * Flushes the tagged-TLB entries for EPT CPUs as necessary.
|
---|
1399 | *
|
---|
1400 | * @returns VBox status code.
|
---|
1401 | * @param pVM Pointer to the VM.
|
---|
1402 | * @param pVCpu Pointer to the VMCPU.
|
---|
1403 | *
|
---|
1404 | * @remarks Called with interrupts disabled.
|
---|
1405 | */
|
---|
1406 | static void hmR0VmxFlushTaggedTlbEpt(PVM pVM, PVMCPU pVCpu)
|
---|
1407 | {
|
---|
1408 | AssertPtr(pVM);
|
---|
1409 | AssertPtr(pVCpu);
|
---|
1410 | AssertMsg(pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with NestedPaging disabled."));
|
---|
1411 | AssertMsg(!pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTaggedTlbEpt cannot be invoked with VPID enabled."));
|
---|
1412 |
|
---|
1413 | PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
|
---|
1414 | AssertPtr(pCpu);
|
---|
1415 |
|
---|
1416 | /*
|
---|
1417 | * Force a TLB flush for the first world-switch if the current CPU differs from the one we ran on last.
|
---|
1418 | * A change in the TLB flush count implies the host CPU is online after a suspend/resume.
|
---|
1419 | */
|
---|
1420 | if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|
---|
1421 | || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
|
---|
1422 | {
|
---|
1423 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
1424 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
1425 | }
|
---|
1426 |
|
---|
1427 | /* Check for explicit TLB shootdown flushes. */
|
---|
1428 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
1429 | {
|
---|
1430 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
1431 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
1432 | }
|
---|
1433 |
|
---|
1434 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
1435 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
1436 |
|
---|
1437 | if (pVCpu->hm.s.fForceTLBFlush)
|
---|
1438 | {
|
---|
1439 | hmR0VmxFlushEpt(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
|
---|
1440 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
1441 | }
|
---|
1442 | else
|
---|
1443 | {
|
---|
1444 | /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
|
---|
1445 | * not be executed. See hmQueueInvlPage() where it is commented
|
---|
1446 | * out. Support individual entry flushing someday. */
|
---|
1447 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
|
---|
1448 | {
|
---|
1449 | /* We cannot flush individual entries without VPID support. Flush using EPT. */
|
---|
1450 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
|
---|
1451 | hmR0VmxFlushEpt(pVM, pVCpu, pVM->hm.s.vmx.enmFlushEpt);
|
---|
1452 | }
|
---|
1453 | else
|
---|
1454 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
|
---|
1455 | }
|
---|
1456 |
|
---|
1457 | pVCpu->hm.s.TlbShootdown.cPages = 0;
|
---|
1458 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
|
---|
1459 | }
|
---|
1460 |
|
---|
1461 |
|
---|
1462 | /**
|
---|
1463 | * Flushes the tagged-TLB entries for VPID CPUs as necessary.
|
---|
1464 | *
|
---|
1465 | * @returns VBox status code.
|
---|
1466 | * @param pVM Pointer to the VM.
|
---|
1467 | * @param pVCpu Pointer to the VMCPU.
|
---|
1468 | *
|
---|
1469 | * @remarks Called with interrupts disabled.
|
---|
1470 | */
|
---|
1471 | static void hmR0VmxFlushTaggedTlbVpid(PVM pVM, PVMCPU pVCpu)
|
---|
1472 | {
|
---|
1473 | AssertPtr(pVM);
|
---|
1474 | AssertPtr(pVCpu);
|
---|
1475 | AssertMsg(pVM->hm.s.vmx.fVpid, ("hmR0VmxFlushTlbVpid cannot be invoked with VPID disabled."));
|
---|
1476 | AssertMsg(!pVM->hm.s.fNestedPaging, ("hmR0VmxFlushTlbVpid cannot be invoked with NestedPaging enabled"));
|
---|
1477 |
|
---|
1478 | PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
|
---|
1479 |
|
---|
1480 | /*
|
---|
1481 | * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
|
---|
1482 | * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB
|
---|
1483 | * or the host CPU is online after a suspend/resume, so we cannot reuse the current ASID anymore.
|
---|
1484 | */
|
---|
1485 | if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|
---|
1486 | || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
|
---|
1487 | {
|
---|
1488 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
1489 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
1490 | }
|
---|
1491 |
|
---|
1492 | /* Check for explicit TLB shootdown flushes. */
|
---|
1493 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
1494 | {
|
---|
1495 | /*
|
---|
1496 | * If we ever support VPID flush combinations other than ALL or SINGLE-context (see hmR0VmxSetupTaggedTlb())
|
---|
1497 | * we would need to explicitly flush in this case (add an fExplicitFlush = true here and change the
|
---|
1498 | * pCpu->fFlushAsidBeforeUse check below to include fExplicitFlush's too) - an obscure corner case.
|
---|
1499 | */
|
---|
1500 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
1501 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
1502 | }
|
---|
1503 |
|
---|
1504 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
1505 | if (pVCpu->hm.s.fForceTLBFlush)
|
---|
1506 | {
|
---|
1507 | ++pCpu->uCurrentAsid;
|
---|
1508 | if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
|
---|
1509 | {
|
---|
1510 | pCpu->uCurrentAsid = 1; /* Wraparound to 1; host uses 0 */
|
---|
1511 | pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
|
---|
1512 | pCpu->fFlushAsidBeforeUse = true; /* All VCPUs that run on this host CPU must flush their new VPID before use. */
|
---|
1513 | }
|
---|
1514 |
|
---|
1515 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
1516 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
1517 | pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
|
---|
1518 | if (pCpu->fFlushAsidBeforeUse)
|
---|
1519 | hmR0VmxFlushVpid(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
|
---|
1520 | }
|
---|
1521 | else
|
---|
1522 | {
|
---|
1523 | AssertMsg(pVCpu->hm.s.uCurrentAsid && pCpu->uCurrentAsid,
|
---|
1524 | ("hm->uCurrentAsid=%lu hm->cTlbFlushes=%lu cpu->uCurrentAsid=%lu cpu->cTlbFlushes=%lu\n",
|
---|
1525 | pVCpu->hm.s.uCurrentAsid, pVCpu->hm.s.cTlbFlushes,
|
---|
1526 | pCpu->uCurrentAsid, pCpu->cTlbFlushes));
|
---|
1527 |
|
---|
1528 | /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
|
---|
1529 | * not be executed. See hmQueueInvlPage() where it is commented
|
---|
1530 | * out. Support individual entry flushing someday. */
|
---|
1531 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
|
---|
1532 | {
|
---|
1533 | /* Flush individual guest entries using VPID or as little as possible with EPT as supported by the CPU. */
|
---|
1534 | if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
|
---|
1535 | {
|
---|
1536 | for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
|
---|
1537 | hmR0VmxFlushVpid(pVM, pVCpu, VMX_FLUSH_VPID_INDIV_ADDR, pVCpu->hm.s.TlbShootdown.aPages[i]);
|
---|
1538 | }
|
---|
1539 | else
|
---|
1540 | hmR0VmxFlushVpid(pVM, pVCpu, pVM->hm.s.vmx.enmFlushVpid, 0 /* GCPtr */);
|
---|
1541 | }
|
---|
1542 | else
|
---|
1543 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
|
---|
1544 | }
|
---|
1545 |
|
---|
1546 | pVCpu->hm.s.TlbShootdown.cPages = 0;
|
---|
1547 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
|
---|
1548 |
|
---|
1549 | AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
|
---|
1550 | ("Flush count mismatch for cpu %d (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
|
---|
1551 | AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
1552 | ("cpu%d uCurrentAsid = %u\n", pCpu->idCpu, pCpu->uCurrentAsid));
|
---|
1553 | AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
1554 | ("cpu%d VM uCurrentAsid = %u\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
|
---|
1555 |
|
---|
1556 | int rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, pVCpu->hm.s.uCurrentAsid);
|
---|
1557 | AssertRC(rc);
|
---|
1558 | }
|
---|
1559 |
|
---|
1560 |
|
---|
1561 | /**
|
---|
1562 | * Flushes the guest TLB entry based on CPU capabilities.
|
---|
1563 | *
|
---|
1564 | * @param pVCpu Pointer to the VMCPU.
|
---|
1565 | */
|
---|
1566 | DECLINLINE(void) hmR0VmxFlushTaggedTlb(PVMCPU pVCpu)
|
---|
1567 | {
|
---|
1568 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1569 | switch (pVM->hm.s.vmx.uFlushTaggedTlb)
|
---|
1570 | {
|
---|
1571 | case HMVMX_FLUSH_TAGGED_TLB_EPT_VPID: hmR0VmxFlushTaggedTlbBoth(pVM, pVCpu); break;
|
---|
1572 | case HMVMX_FLUSH_TAGGED_TLB_EPT: hmR0VmxFlushTaggedTlbEpt(pVM, pVCpu); break;
|
---|
1573 | case HMVMX_FLUSH_TAGGED_TLB_VPID: hmR0VmxFlushTaggedTlbVpid(pVM, pVCpu); break;
|
---|
1574 | case HMVMX_FLUSH_TAGGED_TLB_NONE: hmR0VmxFlushTaggedTlbNone(pVM, pVCpu); break;
|
---|
1575 | default:
|
---|
1576 | AssertMsgFailed(("Invalid flush-tag function identifier\n"));
|
---|
1577 | break;
|
---|
1578 | }
|
---|
1579 | }
|
---|
1580 |
|
---|
1581 |
|
---|
1582 | /**
|
---|
1583 | * Sets up the appropriate tagged TLB-flush level and handler for flushing guest
|
---|
1584 | * TLB entries from the host TLB before VM-entry.
|
---|
1585 | *
|
---|
1586 | * @returns VBox status code.
|
---|
1587 | * @param pVM Pointer to the VM.
|
---|
1588 | */
|
---|
1589 | static int hmR0VmxSetupTaggedTlb(PVM pVM)
|
---|
1590 | {
|
---|
1591 | /*
|
---|
1592 | * Determine optimal flush type for Nested Paging.
|
---|
1593 | * We cannot ignore EPT if no suitable flush-types is supported by the CPU as we've already setup unrestricted
|
---|
1594 | * guest execution (see hmR3InitFinalizeR0()).
|
---|
1595 | */
|
---|
1596 | if (pVM->hm.s.fNestedPaging)
|
---|
1597 | {
|
---|
1598 | if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT)
|
---|
1599 | {
|
---|
1600 | if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_SINGLE_CONTEXT)
|
---|
1601 | pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_SINGLE_CONTEXT;
|
---|
1602 | else if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVEPT_ALL_CONTEXTS)
|
---|
1603 | pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_ALL_CONTEXTS;
|
---|
1604 | else
|
---|
1605 | {
|
---|
1606 | /* Shouldn't happen. EPT is supported but no suitable flush-types supported. */
|
---|
1607 | pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
|
---|
1608 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1609 | }
|
---|
1610 |
|
---|
1611 | /* Make sure the write-back cacheable memory type for EPT is supported. */
|
---|
1612 | if (!(pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_EMT_WB))
|
---|
1613 | {
|
---|
1614 | LogRel(("hmR0VmxSetupTaggedTlb: Unsupported EPTP memory type %#x.\n", pVM->hm.s.vmx.msr.vmx_ept_vpid_caps));
|
---|
1615 | pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
|
---|
1616 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1617 | }
|
---|
1618 | }
|
---|
1619 | else
|
---|
1620 | {
|
---|
1621 | /* Shouldn't happen. EPT is supported but INVEPT instruction is not supported. */
|
---|
1622 | pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NOT_SUPPORTED;
|
---|
1623 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1624 | }
|
---|
1625 | }
|
---|
1626 |
|
---|
1627 | /*
|
---|
1628 | * Determine optimal flush type for VPID.
|
---|
1629 | */
|
---|
1630 | if (pVM->hm.s.vmx.fVpid)
|
---|
1631 | {
|
---|
1632 | if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID)
|
---|
1633 | {
|
---|
1634 | if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT)
|
---|
1635 | pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_SINGLE_CONTEXT;
|
---|
1636 | else if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_ALL_CONTEXTS)
|
---|
1637 | pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_ALL_CONTEXTS;
|
---|
1638 | else
|
---|
1639 | {
|
---|
1640 | /* Neither SINGLE nor ALL-context flush types for VPID is supported by the CPU. Ignore VPID capability. */
|
---|
1641 | if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_INDIV_ADDR)
|
---|
1642 | LogRel(("hmR0VmxSetupTaggedTlb: Only INDIV_ADDR supported. Ignoring VPID.\n"));
|
---|
1643 | if (pVM->hm.s.vmx.msr.vmx_ept_vpid_caps & MSR_IA32_VMX_EPT_VPID_CAP_INVVPID_SINGLE_CONTEXT_RETAIN_GLOBALS)
|
---|
1644 | LogRel(("hmR0VmxSetupTaggedTlb: Only SINGLE_CONTEXT_RETAIN_GLOBALS supported. Ignoring VPID.\n"));
|
---|
1645 | pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
|
---|
1646 | pVM->hm.s.vmx.fVpid = false;
|
---|
1647 | }
|
---|
1648 | }
|
---|
1649 | else
|
---|
1650 | {
|
---|
1651 | /* Shouldn't happen. VPID is supported but INVVPID is not supported by the CPU. Ignore VPID capability. */
|
---|
1652 | Log4(("hmR0VmxSetupTaggedTlb: VPID supported without INVEPT support. Ignoring VPID.\n"));
|
---|
1653 | pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NOT_SUPPORTED;
|
---|
1654 | pVM->hm.s.vmx.fVpid = false;
|
---|
1655 | }
|
---|
1656 | }
|
---|
1657 |
|
---|
1658 | /*
|
---|
1659 | * Setup the handler for flushing tagged-TLBs.
|
---|
1660 | */
|
---|
1661 | if (pVM->hm.s.fNestedPaging && pVM->hm.s.vmx.fVpid)
|
---|
1662 | pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT_VPID;
|
---|
1663 | else if (pVM->hm.s.fNestedPaging)
|
---|
1664 | pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_EPT;
|
---|
1665 | else if (pVM->hm.s.vmx.fVpid)
|
---|
1666 | pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_VPID;
|
---|
1667 | else
|
---|
1668 | pVM->hm.s.vmx.uFlushTaggedTlb = HMVMX_FLUSH_TAGGED_TLB_NONE;
|
---|
1669 | return VINF_SUCCESS;
|
---|
1670 | }
|
---|
1671 |
|
---|
1672 |
|
---|
1673 | /**
|
---|
1674 | * Sets up pin-based VM-execution controls in the VMCS.
|
---|
1675 | *
|
---|
1676 | * @returns VBox status code.
|
---|
1677 | * @param pVM Pointer to the VM.
|
---|
1678 | * @param pVCpu Pointer to the VMCPU.
|
---|
1679 | */
|
---|
1680 | static int hmR0VmxSetupPinCtls(PVM pVM, PVMCPU pVCpu)
|
---|
1681 | {
|
---|
1682 | AssertPtr(pVM);
|
---|
1683 | AssertPtr(pVCpu);
|
---|
1684 |
|
---|
1685 | uint32_t val = pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0; /* Bits set here must always be set. */
|
---|
1686 | uint32_t zap = pVM->hm.s.vmx.msr.vmx_pin_ctls.n.allowed1; /* Bits cleared here must always be cleared. */
|
---|
1687 |
|
---|
1688 | val |= VMX_VMCS_CTRL_PIN_EXEC_EXT_INT_EXIT /* External interrupts causes a VM-exits. */
|
---|
1689 | | VMX_VMCS_CTRL_PIN_EXEC_NMI_EXIT; /* Non-maskable interrupts causes a VM-exit. */
|
---|
1690 | Assert(!(val & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI));
|
---|
1691 |
|
---|
1692 | /* Enable the VMX preemption timer. */
|
---|
1693 | if (pVM->hm.s.vmx.fUsePreemptTimer)
|
---|
1694 | {
|
---|
1695 | Assert(pVM->hm.s.vmx.msr.vmx_pin_ctls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER);
|
---|
1696 | val |= VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER;
|
---|
1697 | }
|
---|
1698 |
|
---|
1699 | if ((val & zap) != val)
|
---|
1700 | {
|
---|
1701 | LogRel(("hmR0VmxSetupPinCtls: invalid pin-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
|
---|
1702 | pVM->hm.s.vmx.msr.vmx_pin_ctls.n.disallowed0, val, zap));
|
---|
1703 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1704 | }
|
---|
1705 |
|
---|
1706 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, val);
|
---|
1707 | AssertRCReturn(rc, rc);
|
---|
1708 |
|
---|
1709 | /* Update VCPU with the currently set pin-based VM-execution controls. */
|
---|
1710 | pVCpu->hm.s.vmx.u32PinCtls = val;
|
---|
1711 | return rc;
|
---|
1712 | }
|
---|
1713 |
|
---|
1714 |
|
---|
1715 | /**
|
---|
1716 | * Sets up processor-based VM-execution controls in the VMCS.
|
---|
1717 | *
|
---|
1718 | * @returns VBox status code.
|
---|
1719 | * @param pVM Pointer to the VM.
|
---|
1720 | * @param pVMCPU Pointer to the VMCPU.
|
---|
1721 | */
|
---|
1722 | static int hmR0VmxSetupProcCtls(PVM pVM, PVMCPU pVCpu)
|
---|
1723 | {
|
---|
1724 | AssertPtr(pVM);
|
---|
1725 | AssertPtr(pVCpu);
|
---|
1726 |
|
---|
1727 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
1728 | uint32_t val = pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0; /* Bits set here must be set in the VMCS. */
|
---|
1729 | uint32_t zap = pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
1730 |
|
---|
1731 | val |= VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT /* HLT causes a VM-exit. */
|
---|
1732 | | VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
|
---|
1733 | | VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
|
---|
1734 | | VMX_VMCS_CTRL_PROC_EXEC_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
|
---|
1735 | | VMX_VMCS_CTRL_PROC_EXEC_RDPMC_EXIT /* RDPMC causes a VM-exit. */
|
---|
1736 | | VMX_VMCS_CTRL_PROC_EXEC_MONITOR_EXIT /* MONITOR causes a VM-exit. */
|
---|
1737 | | VMX_VMCS_CTRL_PROC_EXEC_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
|
---|
1738 |
|
---|
1739 | /* We toggle VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
|
---|
1740 | if ( !(pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT)
|
---|
1741 | || (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0 & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT))
|
---|
1742 | {
|
---|
1743 | LogRel(("hmR0VmxSetupProcCtls: unsupported VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT combo!"));
|
---|
1744 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1745 | }
|
---|
1746 |
|
---|
1747 | /* Without Nested Paging, INVLPG (also affects INVPCID) and MOV CR3 instructions should cause VM-exits. */
|
---|
1748 | if (!pVM->hm.s.fNestedPaging)
|
---|
1749 | {
|
---|
1750 | Assert(!pVM->hm.s.vmx.fUnrestrictedGuest); /* Paranoia. */
|
---|
1751 | val |= VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT
|
---|
1752 | | VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
|
---|
1753 | | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
|
---|
1754 | }
|
---|
1755 |
|
---|
1756 | /* Use TPR shadowing if supported by the CPU. */
|
---|
1757 | if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
|
---|
1758 | {
|
---|
1759 | Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
|
---|
1760 | Assert(!(pVCpu->hm.s.vmx.HCPhysVirtApic & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
1761 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, 0);
|
---|
1762 | rc |= VMXWriteVmcs64(VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL, pVCpu->hm.s.vmx.HCPhysVirtApic);
|
---|
1763 | AssertRCReturn(rc, rc);
|
---|
1764 |
|
---|
1765 | val |= VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
|
---|
1766 | /* CR8 writes causes a VM-exit based on TPR threshold. */
|
---|
1767 | Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT));
|
---|
1768 | Assert(!(val & VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT));
|
---|
1769 | }
|
---|
1770 | else
|
---|
1771 | {
|
---|
1772 | val |= VMX_VMCS_CTRL_PROC_EXEC_CR8_STORE_EXIT /* CR8 reads causes a VM-exit. */
|
---|
1773 | | VMX_VMCS_CTRL_PROC_EXEC_CR8_LOAD_EXIT; /* CR8 writes causes a VM-exit. */
|
---|
1774 | }
|
---|
1775 |
|
---|
1776 | /* Use MSR-bitmaps if supported by the CPU. */
|
---|
1777 | if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
|
---|
1778 | {
|
---|
1779 | val |= VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS;
|
---|
1780 |
|
---|
1781 | Assert(pVCpu->hm.s.vmx.HCPhysMsrBitmap);
|
---|
1782 | Assert(!(pVCpu->hm.s.vmx.HCPhysMsrBitmap & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
1783 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_MSR_BITMAP_FULL, pVCpu->hm.s.vmx.HCPhysMsrBitmap);
|
---|
1784 | AssertRCReturn(rc, rc);
|
---|
1785 |
|
---|
1786 | /*
|
---|
1787 | * The guest can access the following MSRs (read, write) without causing VM-exits; they are loaded/stored
|
---|
1788 | * automatically (either as part of the MSR-load/store areas or dedicated fields in the VMCS).
|
---|
1789 | */
|
---|
1790 | hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
1791 | hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
1792 | hmR0VmxSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
1793 | hmR0VmxSetMsrPermission(pVCpu, MSR_K8_LSTAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
1794 | hmR0VmxSetMsrPermission(pVCpu, MSR_K6_STAR, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
1795 | hmR0VmxSetMsrPermission(pVCpu, MSR_K8_SF_MASK, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
1796 | hmR0VmxSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
1797 | hmR0VmxSetMsrPermission(pVCpu, MSR_K8_GS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
1798 | hmR0VmxSetMsrPermission(pVCpu, MSR_K8_FS_BASE, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
1799 | }
|
---|
1800 |
|
---|
1801 | /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
|
---|
1802 | if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
|
---|
1803 | val |= VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL;
|
---|
1804 |
|
---|
1805 | if ((val & zap) != val)
|
---|
1806 | {
|
---|
1807 | LogRel(("hmR0VmxSetupProcCtls: invalid processor-based VM-execution controls combo! cpu=%#RX64 val=%#RX64 zap=%#RX64\n",
|
---|
1808 | pVM->hm.s.vmx.msr.vmx_proc_ctls.n.disallowed0, val, zap));
|
---|
1809 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1810 | }
|
---|
1811 |
|
---|
1812 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, val);
|
---|
1813 | AssertRCReturn(rc, rc);
|
---|
1814 |
|
---|
1815 | /* Update VCPU with the currently set processor-based VM-execution controls. */
|
---|
1816 | pVCpu->hm.s.vmx.u32ProcCtls = val;
|
---|
1817 |
|
---|
1818 | /*
|
---|
1819 | * Secondary processor-based VM-execution controls.
|
---|
1820 | */
|
---|
1821 | if (RT_LIKELY(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL))
|
---|
1822 | {
|
---|
1823 | val = pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.disallowed0; /* Bits set here must be set in the VMCS. */
|
---|
1824 | zap = pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
1825 |
|
---|
1826 | if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT)
|
---|
1827 | val |= VMX_VMCS_CTRL_PROC_EXEC2_WBINVD_EXIT; /* WBINVD causes a VM-exit. */
|
---|
1828 |
|
---|
1829 | if (pVM->hm.s.fNestedPaging)
|
---|
1830 | val |= VMX_VMCS_CTRL_PROC_EXEC2_EPT; /* Enable EPT. */
|
---|
1831 | else
|
---|
1832 | {
|
---|
1833 | /*
|
---|
1834 | * Without Nested Paging, INVPCID should cause a VM-exit. Enabling this bit causes the CPU to refer to
|
---|
1835 | * VMX_VMCS_CTRL_PROC_EXEC_INVLPG_EXIT when INVPCID is executed by the guest.
|
---|
1836 | * See Intel spec. 25.4 "Changes to instruction behaviour in VMX non-root operation".
|
---|
1837 | */
|
---|
1838 | if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_INVPCID)
|
---|
1839 | val |= VMX_VMCS_CTRL_PROC_EXEC2_INVPCID;
|
---|
1840 | }
|
---|
1841 |
|
---|
1842 | if (pVM->hm.s.vmx.fVpid)
|
---|
1843 | val |= VMX_VMCS_CTRL_PROC_EXEC2_VPID; /* Enable VPID. */
|
---|
1844 |
|
---|
1845 | if (pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
1846 | val |= VMX_VMCS_CTRL_PROC_EXEC2_UNRESTRICTED_GUEST; /* Enable Unrestricted Execution. */
|
---|
1847 |
|
---|
1848 | /* Enable Virtual-APIC page accesses if supported by the CPU. This is essentially where the TPR shadow resides. */
|
---|
1849 | /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
|
---|
1850 | * done dynamically. */
|
---|
1851 | if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC)
|
---|
1852 | {
|
---|
1853 | Assert(pVM->hm.s.vmx.HCPhysApicAccess);
|
---|
1854 | Assert(!(pVM->hm.s.vmx.HCPhysApicAccess & 0xfff)); /* Bits 11:0 MBZ. */
|
---|
1855 | val |= VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC; /* Virtualize APIC accesses. */
|
---|
1856 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL, pVM->hm.s.vmx.HCPhysApicAccess);
|
---|
1857 | AssertRCReturn(rc, rc);
|
---|
1858 | }
|
---|
1859 |
|
---|
1860 | if (pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
|
---|
1861 | {
|
---|
1862 | val |= VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP; /* Enable RDTSCP support. */
|
---|
1863 | if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS)
|
---|
1864 | hmR0VmxSetMsrPermission(pVCpu, MSR_K8_TSC_AUX, VMXMSREXIT_PASSTHRU_READ, VMXMSREXIT_PASSTHRU_WRITE);
|
---|
1865 | }
|
---|
1866 |
|
---|
1867 | if ((val & zap) != val)
|
---|
1868 | {
|
---|
1869 | LogRel(("hmR0VmxSetupProcCtls: invalid secondary processor-based VM-execution controls combo! "
|
---|
1870 | "cpu=%#RX64 val=%#RX64 zap=%#RX64\n", pVM->hm.s.vmx.msr.vmx_proc_ctls2.n.disallowed0, val, zap));
|
---|
1871 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1872 | }
|
---|
1873 |
|
---|
1874 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, val);
|
---|
1875 | AssertRCReturn(rc, rc);
|
---|
1876 |
|
---|
1877 | /* Update VCPU with the currently set secondary processor-based VM-execution controls. */
|
---|
1878 | pVCpu->hm.s.vmx.u32ProcCtls2 = val;
|
---|
1879 | }
|
---|
1880 | else if (RT_UNLIKELY(pVM->hm.s.vmx.fUnrestrictedGuest))
|
---|
1881 | {
|
---|
1882 | LogRel(("hmR0VmxSetupProcCtls: Unrestricted Guest set as true when secondary processor-based VM-execution controls not "
|
---|
1883 | "available\n"));
|
---|
1884 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1885 | }
|
---|
1886 |
|
---|
1887 | return VINF_SUCCESS;
|
---|
1888 | }
|
---|
1889 |
|
---|
1890 |
|
---|
1891 | /**
|
---|
1892 | * Sets up miscellaneous (everything other than Pin & Processor-based
|
---|
1893 | * VM-execution) control fields in the VMCS.
|
---|
1894 | *
|
---|
1895 | * @returns VBox status code.
|
---|
1896 | * @param pVM Pointer to the VM.
|
---|
1897 | * @param pVCpu Pointer to the VMCPU.
|
---|
1898 | */
|
---|
1899 | static int hmR0VmxSetupMiscCtls(PVM pVM, PVMCPU pVCpu)
|
---|
1900 | {
|
---|
1901 | AssertPtr(pVM);
|
---|
1902 | AssertPtr(pVCpu);
|
---|
1903 |
|
---|
1904 | int rc = VERR_GENERAL_FAILURE;
|
---|
1905 |
|
---|
1906 | /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
|
---|
1907 | #if 0
|
---|
1908 | /* All CR3 accesses cause VM-exits. Later we optimize CR3 accesses (see hmR0VmxLoadGuestControlRegs())*/
|
---|
1909 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, 0); AssertRCReturn(rc, rc);
|
---|
1910 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, 0); AssertRCReturn(rc, rc);
|
---|
1911 |
|
---|
1912 | /*
|
---|
1913 | * Set MASK & MATCH to 0. VMX checks if GuestPFErrCode & MASK == MATCH. If equal (in our case it always is)
|
---|
1914 | * and if the X86_XCPT_PF bit in the exception bitmap is set it causes a VM-exit, if clear doesn't cause an exit.
|
---|
1915 | * We thus use the exception bitmap to control it rather than use both.
|
---|
1916 | */
|
---|
1917 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, 0); AssertRCReturn(rc, rc);
|
---|
1918 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, 0); AssertRCReturn(rc, rc);
|
---|
1919 |
|
---|
1920 | /** @todo Explore possibility of using IO-bitmaps. */
|
---|
1921 | /* All IO & IOIO instructions cause VM-exits. */
|
---|
1922 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_A_FULL, 0); AssertRCReturn(rc, rc);
|
---|
1923 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_IO_BITMAP_B_FULL, 0); AssertRCReturn(rc, rc);
|
---|
1924 |
|
---|
1925 | /* Initialize the MSR-bitmap area. */
|
---|
1926 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, 0); AssertRCReturn(rc, rc);
|
---|
1927 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, 0); AssertRCReturn(rc, rc);
|
---|
1928 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, 0); AssertRCReturn(rc, rc);
|
---|
1929 | #endif
|
---|
1930 |
|
---|
1931 | #ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
|
---|
1932 | /* Setup MSR autoloading/storing. */
|
---|
1933 | Assert(pVCpu->hm.s.vmx.HCPhysGuestMsr);
|
---|
1934 | Assert(!(pVCpu->hm.s.vmx.HCPhysGuestMsr & 0xf)); /* Lower 4 bits MBZ. */
|
---|
1935 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
|
---|
1936 | AssertRCReturn(rc, rc);
|
---|
1937 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL, pVCpu->hm.s.vmx.HCPhysGuestMsr);
|
---|
1938 | AssertRCReturn(rc, rc);
|
---|
1939 |
|
---|
1940 | Assert(pVCpu->hm.s.vmx.HCPhysHostMsr);
|
---|
1941 | Assert(!(pVCpu->hm.s.vmx.HCPhysHostMsr & 0xf)); /* Lower 4 bits MBZ. */
|
---|
1942 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL, pVCpu->hm.s.vmx.HCPhysHostMsr);
|
---|
1943 | AssertRCReturn(rc, rc);
|
---|
1944 | #endif
|
---|
1945 |
|
---|
1946 | /* Set VMCS link pointer. Reserved for future use, must be -1. Intel spec. 24.4 "Guest-State Area". */
|
---|
1947 | rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, UINT64_C(0xffffffffffffffff));
|
---|
1948 | AssertRCReturn(rc, rc);
|
---|
1949 |
|
---|
1950 | /* All fields are zero-initialized during allocation; but don't remove the commented block below. */
|
---|
1951 | #if 0
|
---|
1952 | /* Setup debug controls */
|
---|
1953 | rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0); /** @todo We don't support IA32_DEBUGCTL MSR. Should we? */
|
---|
1954 | AssertRCReturn(rc, rc);
|
---|
1955 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, 0);
|
---|
1956 | AssertRCReturn(rc, rc);
|
---|
1957 | #endif
|
---|
1958 |
|
---|
1959 | return rc;
|
---|
1960 | }
|
---|
1961 |
|
---|
1962 |
|
---|
1963 | /**
|
---|
1964 | * Sets up the initial exception bitmap in the VMCS based on static conditions
|
---|
1965 | * (i.e. conditions that cannot ever change at runtime).
|
---|
1966 | *
|
---|
1967 | * @returns VBox status code.
|
---|
1968 | * @param pVM Pointer to the VM.
|
---|
1969 | * @param pVCpu Pointer to the VMCPU.
|
---|
1970 | */
|
---|
1971 | static int hmR0VmxInitXcptBitmap(PVM pVM, PVMCPU pVCpu)
|
---|
1972 | {
|
---|
1973 | AssertPtr(pVM);
|
---|
1974 | AssertPtr(pVCpu);
|
---|
1975 |
|
---|
1976 | LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
|
---|
1977 |
|
---|
1978 | uint32_t u32XcptBitmap = 0;
|
---|
1979 |
|
---|
1980 | /* Without Nested Paging, #PF must cause a VM-exit so we can sync our shadow page tables. */
|
---|
1981 | if (!pVM->hm.s.fNestedPaging)
|
---|
1982 | u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
|
---|
1983 |
|
---|
1984 | pVCpu->hm.s.vmx.u32XcptBitmap = u32XcptBitmap;
|
---|
1985 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
|
---|
1986 | AssertRCReturn(rc, rc);
|
---|
1987 | return rc;
|
---|
1988 | }
|
---|
1989 |
|
---|
1990 |
|
---|
1991 | /**
|
---|
1992 | * Sets up the initial guest-state mask. The guest-state mask is consulted
|
---|
1993 | * before reading guest-state fields from the VMCS as VMREADs can be expensive
|
---|
1994 | * for the nested virtualization case (as it would cause a VM-exit).
|
---|
1995 | *
|
---|
1996 | * @param pVCpu Pointer to the VMCPU.
|
---|
1997 | */
|
---|
1998 | static int hmR0VmxInitUpdatedGuestStateMask(PVMCPU pVCpu)
|
---|
1999 | {
|
---|
2000 | /* Initially the guest-state is up-to-date as there is nothing in the VMCS. */
|
---|
2001 | pVCpu->hm.s.vmx.fUpdatedGuestState = HMVMX_UPDATED_GUEST_ALL;
|
---|
2002 | return VINF_SUCCESS;
|
---|
2003 | }
|
---|
2004 |
|
---|
2005 |
|
---|
2006 | /**
|
---|
2007 | * Does per-VM VT-x initialization.
|
---|
2008 | *
|
---|
2009 | * @returns VBox status code.
|
---|
2010 | * @param pVM Pointer to the VM.
|
---|
2011 | */
|
---|
2012 | VMMR0DECL(int) VMXR0InitVM(PVM pVM)
|
---|
2013 | {
|
---|
2014 | LogFlowFunc(("pVM=%p\n", pVM));
|
---|
2015 |
|
---|
2016 | int rc = hmR0VmxStructsAlloc(pVM);
|
---|
2017 | if (RT_FAILURE(rc))
|
---|
2018 | {
|
---|
2019 | LogRel(("VMXR0InitVM: hmR0VmxStructsAlloc failed! rc=%Rrc\n", rc));
|
---|
2020 | return rc;
|
---|
2021 | }
|
---|
2022 |
|
---|
2023 | return VINF_SUCCESS;
|
---|
2024 | }
|
---|
2025 |
|
---|
2026 |
|
---|
2027 | /**
|
---|
2028 | * Does per-VM VT-x termination.
|
---|
2029 | *
|
---|
2030 | * @returns VBox status code.
|
---|
2031 | * @param pVM Pointer to the VM.
|
---|
2032 | */
|
---|
2033 | VMMR0DECL(int) VMXR0TermVM(PVM pVM)
|
---|
2034 | {
|
---|
2035 | LogFlowFunc(("pVM=%p\n", pVM));
|
---|
2036 |
|
---|
2037 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
2038 | if (pVM->hm.s.vmx.hMemObjScratch != NIL_RTR0MEMOBJ)
|
---|
2039 | ASMMemZero32(pVM->hm.s.vmx.pvScratch, PAGE_SIZE);
|
---|
2040 | #endif
|
---|
2041 | hmR0VmxStructsFree(pVM);
|
---|
2042 | return VINF_SUCCESS;
|
---|
2043 | }
|
---|
2044 |
|
---|
2045 |
|
---|
2046 | /**
|
---|
2047 | * Sets up the VM for execution under VT-x.
|
---|
2048 | * This function is only called once per-VM during initialization.
|
---|
2049 | *
|
---|
2050 | * @returns VBox status code.
|
---|
2051 | * @param pVM Pointer to the VM.
|
---|
2052 | */
|
---|
2053 | VMMR0DECL(int) VMXR0SetupVM(PVM pVM)
|
---|
2054 | {
|
---|
2055 | AssertPtrReturn(pVM, VERR_INVALID_PARAMETER);
|
---|
2056 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2057 |
|
---|
2058 | LogFlowFunc(("pVM=%p\n", pVM));
|
---|
2059 |
|
---|
2060 | /*
|
---|
2061 | * Without UnrestrictedGuest, pRealModeTSS and pNonPagingModeEPTPageTable *must* always be allocated.
|
---|
2062 | * We no longer support the highly unlikely case of UnrestrictedGuest without pRealModeTSS. See hmR3InitFinalizeR0().
|
---|
2063 | */
|
---|
2064 | /* -XXX- change hmR3InitFinalizeR0Intel() to fail if pRealModeTSS alloc fails. */
|
---|
2065 | if ( !pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
2066 | && ( !pVM->hm.s.vmx.pNonPagingModeEPTPageTable
|
---|
2067 | || !pVM->hm.s.vmx.pRealModeTSS))
|
---|
2068 | {
|
---|
2069 | LogRel(("VMXR0SetupVM: invalid real-on-v86 state.\n"));
|
---|
2070 | return VERR_INTERNAL_ERROR;
|
---|
2071 | }
|
---|
2072 |
|
---|
2073 | #ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
|
---|
2074 | /*
|
---|
2075 | * This is for the darwin 32-bit/PAE kernels trying to execute 64-bit guests. We don't bother with
|
---|
2076 | * the 32<->64 switcher in this case. This is a rare, legacy use-case with barely any test coverage.
|
---|
2077 | */
|
---|
2078 | if ( pVM->hm.s.fAllow64BitGuests
|
---|
2079 | && !HMVMX_IS_64BIT_HOST_MODE())
|
---|
2080 | {
|
---|
2081 | LogRel(("VMXR0SetupVM: Unsupported guest and host paging mode combination.\n"));
|
---|
2082 | return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
|
---|
2083 | }
|
---|
2084 | #endif
|
---|
2085 |
|
---|
2086 | /* Initialize these always, see hmR3InitFinalizeR0().*/
|
---|
2087 | pVM->hm.s.vmx.enmFlushEpt = VMX_FLUSH_EPT_NONE;
|
---|
2088 | pVM->hm.s.vmx.enmFlushVpid = VMX_FLUSH_VPID_NONE;
|
---|
2089 |
|
---|
2090 | /* Setup the tagged-TLB flush handlers. */
|
---|
2091 | int rc = hmR0VmxSetupTaggedTlb(pVM);
|
---|
2092 | if (RT_FAILURE(rc))
|
---|
2093 | {
|
---|
2094 | LogRel(("VMXR0SetupVM: hmR0VmxSetupTaggedTlb failed! rc=%Rrc\n", rc));
|
---|
2095 | return rc;
|
---|
2096 | }
|
---|
2097 |
|
---|
2098 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
2099 | {
|
---|
2100 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
2101 | AssertPtr(pVCpu);
|
---|
2102 | AssertPtr(pVCpu->hm.s.vmx.pvVmcs);
|
---|
2103 |
|
---|
2104 | /* Log the VCPU pointers, useful for debugging SMP VMs. */
|
---|
2105 | Log4(("VMXR0SetupVM: pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
|
---|
2106 |
|
---|
2107 | /* Set revision dword at the beginning of the VMCS structure. */
|
---|
2108 | *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(pVM->hm.s.vmx.msr.vmx_basic_info);
|
---|
2109 |
|
---|
2110 | /* Initialize our VMCS region in memory, set the VMCS launch state to "clear". */
|
---|
2111 | rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
2112 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVMCS failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2113 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2114 |
|
---|
2115 | /* Load this VMCS as the current VMCS. */
|
---|
2116 | rc = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
2117 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXActivateVMCS failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2118 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2119 |
|
---|
2120 | rc = hmR0VmxSetupPinCtls(pVM, pVCpu);
|
---|
2121 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupPinCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2122 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2123 |
|
---|
2124 | rc = hmR0VmxSetupProcCtls(pVM, pVCpu);
|
---|
2125 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupProcCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2126 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2127 |
|
---|
2128 | rc = hmR0VmxSetupMiscCtls(pVM, pVCpu);
|
---|
2129 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxSetupMiscCtls failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2130 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2131 |
|
---|
2132 | rc = hmR0VmxInitXcptBitmap(pVM, pVCpu);
|
---|
2133 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitXcptBitmap failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2134 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2135 |
|
---|
2136 | rc = hmR0VmxInitUpdatedGuestStateMask(pVCpu);
|
---|
2137 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitUpdatedGuestStateMask failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2138 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2139 |
|
---|
2140 | #if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
2141 | rc = hmR0VmxInitVmcsReadCache(pVM, pVCpu);
|
---|
2142 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: hmR0VmxInitVmcsReadCache failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2143 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2144 | #endif
|
---|
2145 |
|
---|
2146 | /* Re-sync the CPU's internal data into our VMCS memory region & reset the launch state to "clear". */
|
---|
2147 | rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
2148 | AssertLogRelMsgRCReturnStmt(rc, ("VMXR0SetupVM: VMXClearVMCS(2) failed! rc=%Rrc (pVM=%p)\n", rc, pVM),
|
---|
2149 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc), rc);
|
---|
2150 |
|
---|
2151 | hmR0VmxUpdateErrorRecord(pVM, pVCpu, rc);
|
---|
2152 | }
|
---|
2153 |
|
---|
2154 | return VINF_SUCCESS;
|
---|
2155 | }
|
---|
2156 |
|
---|
2157 |
|
---|
2158 | /**
|
---|
2159 | * Saves the host control registers (CR0, CR3, CR4) into the host-state area in
|
---|
2160 | * the VMCS.
|
---|
2161 | *
|
---|
2162 | * @returns VBox status code.
|
---|
2163 | * @param pVM Pointer to the VM.
|
---|
2164 | * @param pVCpu Pointer to the VMCPU.
|
---|
2165 | */
|
---|
2166 | DECLINLINE(int) hmR0VmxSaveHostControlRegs(PVM pVM, PVMCPU pVCpu)
|
---|
2167 | {
|
---|
2168 | RTCCUINTREG uReg = ASMGetCR0();
|
---|
2169 | int rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR0, uReg);
|
---|
2170 | AssertRCReturn(rc, rc);
|
---|
2171 |
|
---|
2172 | #ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
|
---|
2173 | /* For the darwin 32-bit hybrid kernel, we need the 64-bit CR3 as it uses 64-bit paging. */
|
---|
2174 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
2175 | {
|
---|
2176 | uint64_t uRegCR3 = HMR0Get64bitCR3();
|
---|
2177 | rc = VMXWriteVmcs64(VMX_VMCS_HOST_CR3, uRegCR3);
|
---|
2178 | }
|
---|
2179 | else
|
---|
2180 | #endif
|
---|
2181 | {
|
---|
2182 | uReg = ASMGetCR3();
|
---|
2183 | rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR3, uReg);
|
---|
2184 | }
|
---|
2185 | AssertRCReturn(rc, rc);
|
---|
2186 |
|
---|
2187 | uReg = ASMGetCR4();
|
---|
2188 | rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_CR4, uReg);
|
---|
2189 | AssertRCReturn(rc, rc);
|
---|
2190 | return rc;
|
---|
2191 | }
|
---|
2192 |
|
---|
2193 |
|
---|
2194 | /**
|
---|
2195 | * Saves the host segment registers and GDTR, IDTR, (TR, GS and FS bases) into
|
---|
2196 | * the host-state area in the VMCS.
|
---|
2197 | *
|
---|
2198 | * @returns VBox status code.
|
---|
2199 | * @param pVM Pointer to the VM.
|
---|
2200 | * @param pVCpu Pointer to the VMCPU.
|
---|
2201 | */
|
---|
2202 | DECLINLINE(int) hmR0VmxSaveHostSegmentRegs(PVM pVM, PVMCPU pVCpu)
|
---|
2203 | {
|
---|
2204 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
2205 | RTSEL uSelDS = 0;
|
---|
2206 | RTSEL uSelES = 0;
|
---|
2207 | RTSEL uSelFS = 0;
|
---|
2208 | RTSEL uSelGS = 0;
|
---|
2209 | RTSEL uSelTR = 0;
|
---|
2210 |
|
---|
2211 | /*
|
---|
2212 | * Host DS, ES, FS and GS segment registers.
|
---|
2213 | */
|
---|
2214 | #if HC_ARCH_BITS == 64
|
---|
2215 | pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
|
---|
2216 | uSelDS = ASMGetDS();
|
---|
2217 | uSelES = ASMGetES();
|
---|
2218 | uSelFS = ASMGetFS();
|
---|
2219 | uSelGS = ASMGetGS();
|
---|
2220 | #endif
|
---|
2221 |
|
---|
2222 | /*
|
---|
2223 | * Host CS and SS segment registers.
|
---|
2224 | */
|
---|
2225 | RTSEL uSelCS;
|
---|
2226 | RTSEL uSelSS;
|
---|
2227 | #ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
|
---|
2228 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
2229 | {
|
---|
2230 | uSelCS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelCS;
|
---|
2231 | uSelSS = (RTSEL)(uintptr_t)&SUPR0Abs64bitKernelSS;
|
---|
2232 | }
|
---|
2233 | else
|
---|
2234 | {
|
---|
2235 | /* Seems darwin uses the LDT (TI flag is set) in the CS & SS selectors which VT-x doesn't like. */
|
---|
2236 | uSelCS = (RTSEL)(uintptr_t)&SUPR0AbsKernelCS;
|
---|
2237 | uSelSS = (RTSEL)(uintptr_t)&SUPR0AbsKernelSS;
|
---|
2238 | }
|
---|
2239 | #else
|
---|
2240 | uSelCS = ASMGetCS();
|
---|
2241 | uSelSS = ASMGetSS();
|
---|
2242 | #endif
|
---|
2243 |
|
---|
2244 | /*
|
---|
2245 | * Host TR segment register.
|
---|
2246 | */
|
---|
2247 | uSelTR = ASMGetTR();
|
---|
2248 |
|
---|
2249 | #if HC_ARCH_BITS == 64
|
---|
2250 | /*
|
---|
2251 | * Determine if the host segment registers are suitable for VT-x. Otherwise use zero to gain VM-entry and restore them
|
---|
2252 | * before we get preempted. See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
|
---|
2253 | */
|
---|
2254 | if (uSelDS & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
2255 | {
|
---|
2256 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_DS;
|
---|
2257 | pVCpu->hm.s.vmx.RestoreHost.uHostSelDS = uSelDS;
|
---|
2258 | uSelDS = 0;
|
---|
2259 | }
|
---|
2260 | if (uSelES & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
2261 | {
|
---|
2262 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_ES;
|
---|
2263 | pVCpu->hm.s.vmx.RestoreHost.uHostSelES = uSelES;
|
---|
2264 | uSelES = 0;
|
---|
2265 | }
|
---|
2266 | if (uSelFS & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
2267 | {
|
---|
2268 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_FS;
|
---|
2269 | pVCpu->hm.s.vmx.RestoreHost.uHostSelFS = uSelFS;
|
---|
2270 | uSelFS = 0;
|
---|
2271 | }
|
---|
2272 | if (uSelGS & (X86_SEL_RPL | X86_SEL_LDT))
|
---|
2273 | {
|
---|
2274 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_GS;
|
---|
2275 | pVCpu->hm.s.vmx.RestoreHost.uHostSelGS = uSelGS;
|
---|
2276 | uSelGS = 0;
|
---|
2277 | }
|
---|
2278 | #endif
|
---|
2279 |
|
---|
2280 | /* Verification based on Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers" */
|
---|
2281 | Assert(!(uSelCS & X86_SEL_RPL)); Assert(!(uSelCS & X86_SEL_LDT));
|
---|
2282 | Assert(!(uSelSS & X86_SEL_RPL)); Assert(!(uSelSS & X86_SEL_LDT));
|
---|
2283 | Assert(!(uSelDS & X86_SEL_RPL)); Assert(!(uSelDS & X86_SEL_LDT));
|
---|
2284 | Assert(!(uSelES & X86_SEL_RPL)); Assert(!(uSelES & X86_SEL_LDT));
|
---|
2285 | Assert(!(uSelFS & X86_SEL_RPL)); Assert(!(uSelFS & X86_SEL_LDT));
|
---|
2286 | Assert(!(uSelGS & X86_SEL_RPL)); Assert(!(uSelGS & X86_SEL_LDT));
|
---|
2287 | Assert(!(uSelTR & X86_SEL_RPL)); Assert(!(uSelTR & X86_SEL_LDT));
|
---|
2288 | Assert(uSelCS);
|
---|
2289 | Assert(uSelTR);
|
---|
2290 |
|
---|
2291 | /* Assertion is right but we would not have updated u32ExitCtls yet. */
|
---|
2292 | #if 0
|
---|
2293 | if (!(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE))
|
---|
2294 | Assert(uSelSS != 0);
|
---|
2295 | #endif
|
---|
2296 |
|
---|
2297 | /* Write these host selector fields into the host-state area in the VMCS. */
|
---|
2298 | rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_CS, uSelCS); AssertRCReturn(rc, rc);
|
---|
2299 | rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_SS, uSelSS); AssertRCReturn(rc, rc);
|
---|
2300 | #if HC_ARCH_BITS == 64
|
---|
2301 | rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_DS, uSelDS); AssertRCReturn(rc, rc);
|
---|
2302 | rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_ES, uSelES); AssertRCReturn(rc, rc);
|
---|
2303 | rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_FS, uSelFS); AssertRCReturn(rc, rc);
|
---|
2304 | rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_GS, uSelGS); AssertRCReturn(rc, rc);
|
---|
2305 | #endif
|
---|
2306 | rc = VMXWriteVmcs32(VMX_VMCS16_HOST_FIELD_TR, uSelTR); AssertRCReturn(rc, rc);
|
---|
2307 |
|
---|
2308 | /*
|
---|
2309 | * Host GDTR and IDTR.
|
---|
2310 | */
|
---|
2311 | RTGDTR Gdtr;
|
---|
2312 | RT_ZERO(Gdtr);
|
---|
2313 | #ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
|
---|
2314 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
2315 | {
|
---|
2316 | X86XDTR64 Gdtr64;
|
---|
2317 | X86XDTR64 Idtr64;
|
---|
2318 | HMR0Get64bitGdtrAndIdtr(&Gdtr64, &Idtr64);
|
---|
2319 | rc = VMXWriteVmcs64(VMX_VMCS_HOST_GDTR_BASE, Gdtr64.uAddr); AssertRCReturn(rc, rc);
|
---|
2320 | rc = VMXWriteVmcs64(VMX_VMCS_HOST_IDTR_BASE, Idtr64.uAddr); AssertRCReturn(rc, rc);
|
---|
2321 |
|
---|
2322 | Gdtr.cbGdt = Gdtr64.cb;
|
---|
2323 | Gdtr.pGdt = (uintptr_t)Gdtr64.uAddr;
|
---|
2324 | }
|
---|
2325 | else
|
---|
2326 | #endif
|
---|
2327 | {
|
---|
2328 | RTIDTR Idtr;
|
---|
2329 | ASMGetGDTR(&Gdtr);
|
---|
2330 | ASMGetIDTR(&Idtr);
|
---|
2331 | rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, Gdtr.pGdt); AssertRCReturn(rc, rc);
|
---|
2332 | rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, Idtr.pIdt); AssertRCReturn(rc, rc);
|
---|
2333 |
|
---|
2334 | #if HC_ARCH_BITS == 64
|
---|
2335 | /*
|
---|
2336 | * Determine if we need to manually need to restore the GDTR and IDTR limits as VT-x zaps them to the
|
---|
2337 | * maximum limit (0xffff) on every VM-exit.
|
---|
2338 | */
|
---|
2339 | if (Gdtr.cbGdt != 0xffff)
|
---|
2340 | {
|
---|
2341 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_GDTR;
|
---|
2342 | AssertCompile(sizeof(Gdtr) == sizeof(X86XDTR64));
|
---|
2343 | memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
|
---|
2344 | }
|
---|
2345 |
|
---|
2346 | /*
|
---|
2347 | * IDT limit is practically 0xfff. Therefore if the host has the limit as 0xfff, VT-x bloating the limit to 0xffff
|
---|
2348 | * is not a problem as it's not possible to get at them anyway. See Intel spec. 6.14.1 "64-Bit Mode IDT" and
|
---|
2349 | * Intel spec. 6.2 "Exception and Interrupt Vectors".
|
---|
2350 | */
|
---|
2351 | if (Idtr.cbIdt < 0x0fff)
|
---|
2352 | {
|
---|
2353 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_IDTR;
|
---|
2354 | AssertCompile(sizeof(Idtr) == sizeof(X86XDTR64));
|
---|
2355 | memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostIdtr, &Idtr, sizeof(X86XDTR64));
|
---|
2356 | }
|
---|
2357 | #endif
|
---|
2358 | }
|
---|
2359 |
|
---|
2360 | /*
|
---|
2361 | * Host TR base. Verify that TR selector doesn't point past the GDT. Masking off the TI and RPL bits
|
---|
2362 | * is effectively what the CPU does for "scaling by 8". TI is always 0 and RPL should be too in most cases.
|
---|
2363 | */
|
---|
2364 | if ((uSelTR & X86_SEL_MASK) > Gdtr.cbGdt)
|
---|
2365 | {
|
---|
2366 | AssertMsgFailed(("hmR0VmxSaveHostSegmentRegs: TR selector exceeds limit. TR=%RTsel cbGdt=%#x\n", uSelTR, Gdtr.cbGdt));
|
---|
2367 | return VERR_VMX_INVALID_HOST_STATE;
|
---|
2368 | }
|
---|
2369 |
|
---|
2370 | PCX86DESCHC pDesc = (PCX86DESCHC)(Gdtr.pGdt + (uSelTR & X86_SEL_MASK));
|
---|
2371 | #ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
|
---|
2372 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
2373 | {
|
---|
2374 | /* We need the 64-bit TR base for hybrid darwin. */
|
---|
2375 | uint64_t u64TRBase = X86DESC64_BASE((PX86DESC64)pDesc);
|
---|
2376 | rc = VMXWriteVmcs64(VMX_VMCS_HOST_TR_BASE, u64TRBase);
|
---|
2377 | }
|
---|
2378 | else
|
---|
2379 | #endif
|
---|
2380 | {
|
---|
2381 | uintptr_t uTRBase;
|
---|
2382 | #if HC_ARCH_BITS == 64
|
---|
2383 | uTRBase = X86DESC64_BASE(pDesc);
|
---|
2384 |
|
---|
2385 | /*
|
---|
2386 | * VT-x unconditionally restores the TR limit to 0x67 and type to 11 (32-bit busy TSS) on all VM-exits.
|
---|
2387 | * The type is the same for 64-bit busy TSS[1]. The limit needs manual restoration if the host has something else.
|
---|
2388 | * Task switching is not supported in 64-bit mode[2], but the limit still matters as IOPM is supported in 64-bit mode.
|
---|
2389 | * Restoring the limit lazily while returning to ring-3 is safe because IOPM is not applicable in ring-0.
|
---|
2390 | *
|
---|
2391 | * [1] See Intel spec. 3.5 "System Descriptor Types".
|
---|
2392 | * [2] See Intel spec. 7.2.3 "TSS Descriptor in 64-bit mode".
|
---|
2393 | */
|
---|
2394 | Assert(pDesc->System.u4Type == 11);
|
---|
2395 | if ( pDesc->System.u16LimitLow != 0x67
|
---|
2396 | || pDesc->System.u4LimitHigh)
|
---|
2397 | {
|
---|
2398 | pVCpu->hm.s.vmx.fRestoreHostFlags |= VMX_RESTORE_HOST_SEL_TR;
|
---|
2399 | pVCpu->hm.s.vmx.RestoreHost.uHostSelTR = uSelTR;
|
---|
2400 |
|
---|
2401 | /* Store the GDTR here as we need it while restoring TR. */
|
---|
2402 | memcpy(&pVCpu->hm.s.vmx.RestoreHost.HostGdtr, &Gdtr, sizeof(X86XDTR64));
|
---|
2403 | }
|
---|
2404 | #else
|
---|
2405 | uTRBase = X86DESC_BASE(pDesc);
|
---|
2406 | #endif
|
---|
2407 | rc = VMXWriteVmcsHstN(VMX_VMCS_HOST_TR_BASE, uTRBase);
|
---|
2408 | }
|
---|
2409 | AssertRCReturn(rc, rc);
|
---|
2410 |
|
---|
2411 | /*
|
---|
2412 | * Host FS base and GS base.
|
---|
2413 | */
|
---|
2414 | #if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
2415 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
2416 | {
|
---|
2417 | uint64_t u64FSBase = ASMRdMsr(MSR_K8_FS_BASE);
|
---|
2418 | uint64_t u64GSBase = ASMRdMsr(MSR_K8_GS_BASE);
|
---|
2419 | rc = VMXWriteVmcs64(VMX_VMCS_HOST_FS_BASE, u64FSBase); AssertRCReturn(rc, rc);
|
---|
2420 | rc = VMXWriteVmcs64(VMX_VMCS_HOST_GS_BASE, u64GSBase); AssertRCReturn(rc, rc);
|
---|
2421 |
|
---|
2422 | # if HC_ARCH_BITS == 64
|
---|
2423 | /* Store the base if we have to restore FS or GS manually as we need to restore the base as well. */
|
---|
2424 | if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_FS)
|
---|
2425 | pVCpu->hm.s.vmx.RestoreHost.uHostFSBase = u64FSBase;
|
---|
2426 | if (pVCpu->hm.s.vmx.fRestoreHostFlags & VMX_RESTORE_HOST_SEL_GS)
|
---|
2427 | pVCpu->hm.s.vmx.RestoreHost.uHostGSBase = u64GSBase;
|
---|
2428 | # endif
|
---|
2429 | }
|
---|
2430 | #endif
|
---|
2431 | return rc;
|
---|
2432 | }
|
---|
2433 |
|
---|
2434 |
|
---|
2435 | /**
|
---|
2436 | * Saves certain host MSRs in the VM-Exit MSR-load area and some in the
|
---|
2437 | * host-state area of the VMCS. Theses MSRs will be automatically restored on
|
---|
2438 | * the host after every successful VM exit.
|
---|
2439 | *
|
---|
2440 | * @returns VBox status code.
|
---|
2441 | * @param pVM Pointer to the VM.
|
---|
2442 | * @param pVCpu Pointer to the VMCPU.
|
---|
2443 | */
|
---|
2444 | DECLINLINE(int) hmR0VmxSaveHostMsrs(PVM pVM, PVMCPU pVCpu)
|
---|
2445 | {
|
---|
2446 | AssertPtr(pVCpu);
|
---|
2447 | AssertPtr(pVCpu->hm.s.vmx.pvHostMsr);
|
---|
2448 |
|
---|
2449 | int rc = VINF_SUCCESS;
|
---|
2450 | #ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
|
---|
2451 | PVMXMSR pHostMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvHostMsr;
|
---|
2452 | uint32_t cHostMsrs = 0;
|
---|
2453 | uint32_t u32HostExtFeatures = pVM->hm.s.cpuid.u32AMDFeatureEDX;
|
---|
2454 |
|
---|
2455 | if (u32HostExtFeatures & (X86_CPUID_EXT_FEATURE_EDX_NX | X86_CPUID_EXT_FEATURE_EDX_LONG_MODE))
|
---|
2456 | {
|
---|
2457 | uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
|
---|
2458 |
|
---|
2459 | # if HC_ARCH_BITS == 64
|
---|
2460 | /* Paranoia. 64-bit code requires these bits to be set always. */
|
---|
2461 | Assert((u64HostEfer & (MSR_K6_EFER_LMA | MSR_K6_EFER_LME)) == (MSR_K6_EFER_LMA | MSR_K6_EFER_LME));
|
---|
2462 |
|
---|
2463 | /*
|
---|
2464 | * We currently do not save/restore host EFER, we just make sure it doesn't get modified by VT-x operation.
|
---|
2465 | * All guest accesses (read, write) on EFER cause VM-exits. If we are to conditionally load the guest EFER for
|
---|
2466 | * some reason (e.g. allow transparent reads) we would activate the code below.
|
---|
2467 | */
|
---|
2468 | # if 0
|
---|
2469 | /* All our supported 64-bit host platforms must have NXE bit set. Otherwise we can change the below code to save EFER. */
|
---|
2470 | Assert(u64HostEfer & (MSR_K6_EFER_NXE));
|
---|
2471 | /* The SCE bit is only applicable in 64-bit mode. Save EFER if it doesn't match what the guest has.
|
---|
2472 | See Intel spec. 30.10.4.3 "Handling the SYSCALL and SYSRET Instructions". */
|
---|
2473 | if (CPUMIsGuestInLongMode(pVCpu))
|
---|
2474 | {
|
---|
2475 | uint64_t u64GuestEfer;
|
---|
2476 | rc = CPUMQueryGuestMsr(pVCpu, MSR_K6_EFER, &u64GuestEfer);
|
---|
2477 | AssertRC(rc);
|
---|
2478 |
|
---|
2479 | if ((u64HostEfer & MSR_K6_EFER_SCE) != (u64GuestEfer & MSR_K6_EFER_SCE))
|
---|
2480 | {
|
---|
2481 | pHostMsr->u32IndexMSR = MSR_K6_EFER;
|
---|
2482 | pHostMsr->u32Reserved = 0;
|
---|
2483 | pHostMsr->u64Value = u64HostEfer;
|
---|
2484 | pHostMsr++; cHostMsrs++;
|
---|
2485 | }
|
---|
2486 | }
|
---|
2487 | # endif
|
---|
2488 | # else /* HC_ARCH_BITS != 64 */
|
---|
2489 | pHostMsr->u32IndexMSR = MSR_K6_EFER;
|
---|
2490 | pHostMsr->u32Reserved = 0;
|
---|
2491 | # if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
2492 | if (CPUMIsGuestInLongMode(pVCpu))
|
---|
2493 | {
|
---|
2494 | /* Must match the EFER value in our 64 bits switcher. */
|
---|
2495 | pHostMsr->u64Value = u64HostEfer | MSR_K6_EFER_LME | MSR_K6_EFER_SCE | MSR_K6_EFER_NXE;
|
---|
2496 | }
|
---|
2497 | else
|
---|
2498 | # endif
|
---|
2499 | pHostMsr->u64Value = u64HostEfer;
|
---|
2500 | pHostMsr++; cHostMsrs++;
|
---|
2501 | # endif /* HC_ARCH_BITS == 64 */
|
---|
2502 | }
|
---|
2503 |
|
---|
2504 | # if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
2505 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
2506 | {
|
---|
2507 | pHostMsr->u32IndexMSR = MSR_K6_STAR;
|
---|
2508 | pHostMsr->u32Reserved = 0;
|
---|
2509 | pHostMsr->u64Value = ASMRdMsr(MSR_K6_STAR); /* legacy syscall eip, cs & ss */
|
---|
2510 | pHostMsr++; cHostMsrs++;
|
---|
2511 | pHostMsr->u32IndexMSR = MSR_K8_LSTAR;
|
---|
2512 | pHostMsr->u32Reserved = 0;
|
---|
2513 | pHostMsr->u64Value = ASMRdMsr(MSR_K8_LSTAR); /* 64-bit mode syscall rip */
|
---|
2514 | pHostMsr++; cHostMsrs++;
|
---|
2515 | pHostMsr->u32IndexMSR = MSR_K8_SF_MASK;
|
---|
2516 | pHostMsr->u32Reserved = 0;
|
---|
2517 | pHostMsr->u64Value = ASMRdMsr(MSR_K8_SF_MASK); /* syscall flag mask */
|
---|
2518 | pHostMsr++; cHostMsrs++;
|
---|
2519 | pHostMsr->u32IndexMSR = MSR_K8_KERNEL_GS_BASE;
|
---|
2520 | pHostMsr->u32Reserved = 0;
|
---|
2521 | pHostMsr->u64Value = ASMRdMsr(MSR_K8_KERNEL_GS_BASE); /* swapgs exchange value */
|
---|
2522 | pHostMsr++; cHostMsrs++;
|
---|
2523 | }
|
---|
2524 | # endif
|
---|
2525 |
|
---|
2526 | /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
|
---|
2527 | if (RT_UNLIKELY(cHostMsrs > MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.msr.vmx_misc)))
|
---|
2528 | {
|
---|
2529 | LogRel(("cHostMsrs=%u Cpu=%u\n", cHostMsrs, (unsigned)MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.msr.vmx_misc)));
|
---|
2530 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2531 | }
|
---|
2532 |
|
---|
2533 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, cHostMsrs);
|
---|
2534 | #endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
|
---|
2535 |
|
---|
2536 | /*
|
---|
2537 | * Host Sysenter MSRs.
|
---|
2538 | */
|
---|
2539 | rc = VMXWriteVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, ASMRdMsr_Low(MSR_IA32_SYSENTER_CS));
|
---|
2540 | AssertRCReturn(rc, rc);
|
---|
2541 | #ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
|
---|
2542 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
2543 | {
|
---|
2544 | rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
|
---|
2545 | AssertRCReturn(rc, rc);
|
---|
2546 | rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
|
---|
2547 | }
|
---|
2548 | else
|
---|
2549 | {
|
---|
2550 | rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
|
---|
2551 | AssertRCReturn(rc, rc);
|
---|
2552 | rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
|
---|
2553 | }
|
---|
2554 | #elif HC_ARCH_BITS == 32
|
---|
2555 | rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr_Low(MSR_IA32_SYSENTER_ESP));
|
---|
2556 | AssertRCReturn(rc, rc);
|
---|
2557 | rc = VMXWriteVmcs32(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr_Low(MSR_IA32_SYSENTER_EIP));
|
---|
2558 | #else
|
---|
2559 | rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, ASMRdMsr(MSR_IA32_SYSENTER_ESP));
|
---|
2560 | AssertRCReturn(rc, rc);
|
---|
2561 | rc = VMXWriteVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, ASMRdMsr(MSR_IA32_SYSENTER_EIP));
|
---|
2562 | #endif
|
---|
2563 | AssertRCReturn(rc, rc);
|
---|
2564 |
|
---|
2565 | /** @todo IA32_PERF_GLOBALCTRL, IA32_PAT, IA32_EFER, also see
|
---|
2566 | * hmR0VmxSetupExitCtls() !! */
|
---|
2567 | return rc;
|
---|
2568 | }
|
---|
2569 |
|
---|
2570 |
|
---|
2571 | /**
|
---|
2572 | * Sets up VM-entry controls in the VMCS. These controls can affect things done
|
---|
2573 | * on VM-exit; e.g. "load debug controls", see Intel spec. 24.8.1 "VM-entry
|
---|
2574 | * controls".
|
---|
2575 | *
|
---|
2576 | * @returns VBox status code.
|
---|
2577 | * @param pVCpu Pointer to the VMCPU.
|
---|
2578 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
2579 | * out-of-sync. Make sure to update the required fields
|
---|
2580 | * before using them.
|
---|
2581 | *
|
---|
2582 | * @remarks No-long-jump zone!!!
|
---|
2583 | */
|
---|
2584 | DECLINLINE(int) hmR0VmxLoadGuestEntryCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
2585 | {
|
---|
2586 | int rc = VINF_SUCCESS;
|
---|
2587 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_ENTRY_CTLS)
|
---|
2588 | {
|
---|
2589 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2590 | uint32_t val = pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0; /* Bits set here must be set in the VMCS. */
|
---|
2591 | uint32_t zap = pVM->hm.s.vmx.msr.vmx_entry.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
2592 |
|
---|
2593 | /* Load debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x capable CPUs only supports the 1-setting of this bit. */
|
---|
2594 | val |= VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG;
|
---|
2595 |
|
---|
2596 | /* Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry. */
|
---|
2597 | if (CPUMIsGuestInLongModeEx(pMixedCtx))
|
---|
2598 | val |= VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST;
|
---|
2599 | else
|
---|
2600 | Assert(!(val & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST));
|
---|
2601 |
|
---|
2602 | /*
|
---|
2603 | * The following should not be set (since we're not in SMM mode):
|
---|
2604 | * - VMX_VMCS_CTRL_ENTRY_ENTRY_SMM
|
---|
2605 | * - VMX_VMCS_CTRL_ENTRY_DEACTIVATE_DUALMON
|
---|
2606 | */
|
---|
2607 |
|
---|
2608 | /** @todo VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR,
|
---|
2609 | * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR,
|
---|
2610 | * VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR */
|
---|
2611 |
|
---|
2612 | if ((val & zap) != val)
|
---|
2613 | {
|
---|
2614 | LogRel(("hmR0VmxLoadGuestEntryCtls: invalid VM-entry controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
|
---|
2615 | pVM->hm.s.vmx.msr.vmx_entry.n.disallowed0, val, zap));
|
---|
2616 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2617 | }
|
---|
2618 |
|
---|
2619 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY, val);
|
---|
2620 | AssertRCReturn(rc, rc);
|
---|
2621 |
|
---|
2622 | /* Update VCPU with the currently set VM-exit controls. */
|
---|
2623 | pVCpu->hm.s.vmx.u32EntryCtls = val;
|
---|
2624 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_ENTRY_CTLS;
|
---|
2625 | }
|
---|
2626 | return rc;
|
---|
2627 | }
|
---|
2628 |
|
---|
2629 |
|
---|
2630 | /**
|
---|
2631 | * Sets up the VM-exit controls in the VMCS.
|
---|
2632 | *
|
---|
2633 | * @returns VBox status code.
|
---|
2634 | * @param pVM Pointer to the VM.
|
---|
2635 | * @param pVCpu Pointer to the VMCPU.
|
---|
2636 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
2637 | * out-of-sync. Make sure to update the required fields
|
---|
2638 | * before using them.
|
---|
2639 | *
|
---|
2640 | * @remarks requires EFER.
|
---|
2641 | */
|
---|
2642 | DECLINLINE(int) hmR0VmxLoadGuestExitCtls(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
2643 | {
|
---|
2644 | int rc = VINF_SUCCESS;
|
---|
2645 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_EXIT_CTLS)
|
---|
2646 | {
|
---|
2647 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2648 | uint32_t val = pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0; /* Bits set here must be set in the VMCS. */
|
---|
2649 | uint32_t zap = pVM->hm.s.vmx.msr.vmx_exit.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
2650 |
|
---|
2651 | /* Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only supported the 1-setting of this bit. */
|
---|
2652 | val |= VMX_VMCS_CTRL_EXIT_SAVE_DEBUG;
|
---|
2653 |
|
---|
2654 | /*
|
---|
2655 | * Set the host long mode active (EFER.LMA) bit (which Intel calls "Host address-space size") if necessary.
|
---|
2656 | * On VM-exit, VT-x sets both the host EFER.LMA and EFER.LME bit to this value. See assertion in hmR0VmxSaveHostMsrs().
|
---|
2657 | */
|
---|
2658 | #if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
2659 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
2660 | val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE;
|
---|
2661 | else
|
---|
2662 | Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
|
---|
2663 | #elif HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
|
---|
2664 | if (CPUMIsGuestInLongModeEx(pMixedCtx))
|
---|
2665 | val |= VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE; /* The switcher goes to long mode. */
|
---|
2666 | else
|
---|
2667 | Assert(!(val & VMX_VMCS_CTRL_EXIT_HOST_ADDR_SPACE_SIZE));
|
---|
2668 | #endif
|
---|
2669 |
|
---|
2670 | /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
|
---|
2671 | Assert(!(val & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT));
|
---|
2672 |
|
---|
2673 | /** @todo VMX_VMCS_CTRL_EXIT_LOAD_PERF_MSR,
|
---|
2674 | * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_PAT_MSR,
|
---|
2675 | * VMX_VMCS_CTRL_EXIT_LOAD_HOST_PAT_MSR,
|
---|
2676 | * VMX_VMCS_CTRL_EXIT_SAVE_GUEST_EFER_MSR,
|
---|
2677 | * VMX_VMCS_CTRL_EXIT_LOAD_HOST_EFER_MSR. */
|
---|
2678 |
|
---|
2679 | if (pVM->hm.s.vmx.msr.vmx_exit.n.allowed1 & VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER)
|
---|
2680 | val |= VMX_VMCS_CTRL_EXIT_SAVE_VMX_PREEMPT_TIMER;
|
---|
2681 |
|
---|
2682 | if ((val & zap) != val)
|
---|
2683 | {
|
---|
2684 | LogRel(("hmR0VmxSetupProcCtls: invalid VM-exit controls combo! cpu=%RX64 val=%RX64 zap=%RX64\n",
|
---|
2685 | pVM->hm.s.vmx.msr.vmx_exit.n.disallowed0, val, zap));
|
---|
2686 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
2687 | }
|
---|
2688 |
|
---|
2689 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT, val);
|
---|
2690 | AssertRCReturn(rc, rc);
|
---|
2691 |
|
---|
2692 | /* Update VCPU with the currently set VM-exit controls. */
|
---|
2693 | pVCpu->hm.s.vmx.u32ExitCtls = val;
|
---|
2694 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_EXIT_CTLS;
|
---|
2695 | }
|
---|
2696 | return rc;
|
---|
2697 | }
|
---|
2698 |
|
---|
2699 |
|
---|
2700 | /**
|
---|
2701 | * Loads the guest APIC and related state.
|
---|
2702 | *
|
---|
2703 | * @returns VBox status code.
|
---|
2704 | * @param pVM Pointer to the VM.
|
---|
2705 | * @param pVCpu Pointer to the VMCPU.
|
---|
2706 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
2707 | * out-of-sync. Make sure to update the required fields
|
---|
2708 | * before using them.
|
---|
2709 | */
|
---|
2710 | DECLINLINE(int) hmR0VmxLoadGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
2711 | {
|
---|
2712 | int rc = VINF_SUCCESS;
|
---|
2713 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_GUEST_APIC_STATE)
|
---|
2714 | {
|
---|
2715 | /* Setup TPR shadowing. Also setup TPR patching for 32-bit guests. */
|
---|
2716 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
|
---|
2717 | {
|
---|
2718 | Assert(pVCpu->hm.s.vmx.HCPhysVirtApic);
|
---|
2719 |
|
---|
2720 | bool fPendingIntr = false;
|
---|
2721 | uint8_t u8Tpr = 0;
|
---|
2722 | uint8_t u8PendingIntr = 0;
|
---|
2723 | rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
|
---|
2724 | AssertRCReturn(rc, rc);
|
---|
2725 |
|
---|
2726 | /*
|
---|
2727 | * If there are external interrupts pending but masked by the TPR value, instruct VT-x to cause a VM-exit when
|
---|
2728 | * the guest lowers its TPR below the highest-priority pending interrupt and we can deliver the interrupt.
|
---|
2729 | * If there are no external interrupts pending, set threshold to 0 to not cause a VM-exit. We will eventually deliver
|
---|
2730 | * the interrupt when we VM-exit for other reasons.
|
---|
2731 | */
|
---|
2732 | pVCpu->hm.s.vmx.pbVirtApic[0x80] = u8Tpr; /* Offset 0x80 is TPR in the APIC MMIO range. */
|
---|
2733 | uint32_t u32TprThreshold = 0;
|
---|
2734 | if (fPendingIntr)
|
---|
2735 | {
|
---|
2736 | /* Bits 3-0 of the TPR threshold field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
|
---|
2737 | const uint8_t u8PendingPriority = (u8PendingIntr >> 4);
|
---|
2738 | const uint8_t u8TprPriority = (u8Tpr >> 4) & 7;
|
---|
2739 | if (u8PendingPriority <= u8TprPriority)
|
---|
2740 | u32TprThreshold = u8PendingPriority;
|
---|
2741 | else
|
---|
2742 | u32TprThreshold = u8TprPriority; /* Required for Vista 64-bit guest, see @bugref{6398}. */
|
---|
2743 | }
|
---|
2744 | Assert(!(u32TprThreshold & 0xfffffff0)); /* Bits 31:4 MBZ. */
|
---|
2745 |
|
---|
2746 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
|
---|
2747 | AssertRCReturn(rc, rc);
|
---|
2748 | }
|
---|
2749 |
|
---|
2750 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_GUEST_APIC_STATE;
|
---|
2751 | }
|
---|
2752 | return rc;
|
---|
2753 | }
|
---|
2754 |
|
---|
2755 |
|
---|
2756 | /**
|
---|
2757 | * Gets the guest's interruptibility-state ("interrupt shadow" as AMD calls it).
|
---|
2758 | *
|
---|
2759 | * @returns Guest's interruptibility-state.
|
---|
2760 | * @param pVCpu Pointer to the VMCPU.
|
---|
2761 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
2762 | * out-of-sync. Make sure to update the required fields
|
---|
2763 | * before using them.
|
---|
2764 | *
|
---|
2765 | * @remarks No-long-jump zone!!!
|
---|
2766 | * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
|
---|
2767 | */
|
---|
2768 | DECLINLINE(uint32_t) hmR0VmxGetGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
2769 | {
|
---|
2770 | /*
|
---|
2771 | * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
|
---|
2772 | * inhibit interrupts or clear any existing interrupt-inhibition.
|
---|
2773 | */
|
---|
2774 | uint32_t uIntrState = 0;
|
---|
2775 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
2776 | {
|
---|
2777 | /* If inhibition is active, RIP & RFLAGS should've been accessed (i.e. read previously from the VMCS or from ring-3). */
|
---|
2778 | AssertMsg((pVCpu->hm.s.vmx.fUpdatedGuestState & (HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS))
|
---|
2779 | == (HMVMX_UPDATED_GUEST_RIP | HMVMX_UPDATED_GUEST_RFLAGS), ("%#x\n", pVCpu->hm.s.vmx.fUpdatedGuestState));
|
---|
2780 | if (pMixedCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
2781 | {
|
---|
2782 | /*
|
---|
2783 | * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
|
---|
2784 | * VT-x, the flag's condition to be cleared is met and thus the cleared state is correct.
|
---|
2785 | */
|
---|
2786 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
2787 | }
|
---|
2788 | else if (pMixedCtx->eflags.Bits.u1IF)
|
---|
2789 | uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
|
---|
2790 | else
|
---|
2791 | uIntrState = VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS;
|
---|
2792 | }
|
---|
2793 | return uIntrState;
|
---|
2794 | }
|
---|
2795 |
|
---|
2796 |
|
---|
2797 | /**
|
---|
2798 | * Loads the guest's interruptibility-state into the guest-state area in the
|
---|
2799 | * VMCS.
|
---|
2800 | *
|
---|
2801 | * @returns VBox status code.
|
---|
2802 | * @param pVCpu Pointer to the VMCPU.
|
---|
2803 | * @param uIntrState The interruptibility-state to set.
|
---|
2804 | */
|
---|
2805 | static int hmR0VmxLoadGuestIntrState(PVMCPU pVCpu, uint32_t uIntrState)
|
---|
2806 | {
|
---|
2807 | AssertMsg(!(uIntrState & 0xfffffff0), ("%#x\n", uIntrState)); /* Bits 31:4 MBZ. */
|
---|
2808 | Assert((uIntrState & 0x3) != 0x3); /* Block-by-STI and MOV SS cannot be simultaneously set. */
|
---|
2809 | int rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, uIntrState);
|
---|
2810 | AssertRCReturn(rc, rc);
|
---|
2811 | return rc;
|
---|
2812 | }
|
---|
2813 |
|
---|
2814 |
|
---|
2815 | /**
|
---|
2816 | * Loads the guest's RIP into the guest-state area in the VMCS.
|
---|
2817 | *
|
---|
2818 | * @returns VBox status code.
|
---|
2819 | * @param pVCpu Pointer to the VMCPU.
|
---|
2820 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
2821 | * out-of-sync. Make sure to update the required fields
|
---|
2822 | * before using them.
|
---|
2823 | *
|
---|
2824 | * @remarks No-long-jump zone!!!
|
---|
2825 | */
|
---|
2826 | static int hmR0VmxLoadGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
2827 | {
|
---|
2828 | int rc = VINF_SUCCESS;
|
---|
2829 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_RIP)
|
---|
2830 | {
|
---|
2831 | rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RIP, pMixedCtx->rip);
|
---|
2832 | AssertRCReturn(rc, rc);
|
---|
2833 | Log4(("Load: VMX_VMCS_GUEST_RIP=%#RX64\n", pMixedCtx->rip));
|
---|
2834 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_RIP;
|
---|
2835 | }
|
---|
2836 | return rc;
|
---|
2837 | }
|
---|
2838 |
|
---|
2839 |
|
---|
2840 | /**
|
---|
2841 | * Loads the guest's RSP into the guest-state area in the VMCS.
|
---|
2842 | *
|
---|
2843 | * @returns VBox status code.
|
---|
2844 | * @param pVCpu Pointer to the VMCPU.
|
---|
2845 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
2846 | * out-of-sync. Make sure to update the required fields
|
---|
2847 | * before using them.
|
---|
2848 | *
|
---|
2849 | * @remarks No-long-jump zone!!!
|
---|
2850 | */
|
---|
2851 | static int hmR0VmxLoadGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
2852 | {
|
---|
2853 | int rc = VINF_SUCCESS;
|
---|
2854 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_RSP)
|
---|
2855 | {
|
---|
2856 | rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_RSP, pMixedCtx->rsp);
|
---|
2857 | AssertRCReturn(rc, rc);
|
---|
2858 | Log4(("Load: VMX_VMCS_GUEST_RSP=%#RX64\n", pMixedCtx->rsp));
|
---|
2859 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_RSP;
|
---|
2860 | }
|
---|
2861 | return rc;
|
---|
2862 | }
|
---|
2863 |
|
---|
2864 |
|
---|
2865 | /**
|
---|
2866 | * Loads the guest's RFLAGS into the guest-state area in the VMCS.
|
---|
2867 | *
|
---|
2868 | * @returns VBox status code.
|
---|
2869 | * @param pVCpu Pointer to the VMCPU.
|
---|
2870 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
2871 | * out-of-sync. Make sure to update the required fields
|
---|
2872 | * before using them.
|
---|
2873 | *
|
---|
2874 | * @remarks No-long-jump zone!!!
|
---|
2875 | */
|
---|
2876 | static int hmR0VmxLoadGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
2877 | {
|
---|
2878 | int rc = VINF_SUCCESS;
|
---|
2879 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_RFLAGS)
|
---|
2880 | {
|
---|
2881 | /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
|
---|
2882 | Let us assert it as such and use 32-bit VMWRITE. */
|
---|
2883 | Assert(!(pMixedCtx->rflags.u64 >> 32));
|
---|
2884 | X86EFLAGS uEFlags = pMixedCtx->eflags;
|
---|
2885 | uEFlags.u32 &= VMX_EFLAGS_RESERVED_0; /* Bits 22-31, 15, 5 & 3 MBZ. */
|
---|
2886 | uEFlags.u32 |= VMX_EFLAGS_RESERVED_1; /* Bit 1 MB1. */
|
---|
2887 |
|
---|
2888 | /*
|
---|
2889 | * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so we can restore them on VM exit.
|
---|
2890 | * Modify the real-mode guest's eflags so that VT-x can run the real-mode guest code under Virtual 8086 mode.
|
---|
2891 | */
|
---|
2892 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
2893 | {
|
---|
2894 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
|
---|
2895 | Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
|
---|
2896 | pVCpu->hm.s.vmx.RealMode.eflags.u32 = uEFlags.u32; /* Save the original eflags of the real-mode guest. */
|
---|
2897 | uEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
|
---|
2898 | uEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
|
---|
2899 | }
|
---|
2900 |
|
---|
2901 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_RFLAGS, uEFlags.u32);
|
---|
2902 | AssertRCReturn(rc, rc);
|
---|
2903 |
|
---|
2904 | Log4(("Load: VMX_VMCS_GUEST_RFLAGS=%#RX32\n", uEFlags.u32));
|
---|
2905 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_RFLAGS;
|
---|
2906 | }
|
---|
2907 | return rc;
|
---|
2908 | }
|
---|
2909 |
|
---|
2910 |
|
---|
2911 | /**
|
---|
2912 | * Loads the guest RIP, RSP and RFLAGS into the guest-state area in the VMCS.
|
---|
2913 | *
|
---|
2914 | * @returns VBox status code.
|
---|
2915 | * @param pVCpu Pointer to the VMCPU.
|
---|
2916 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
2917 | * out-of-sync. Make sure to update the required fields
|
---|
2918 | * before using them.
|
---|
2919 | *
|
---|
2920 | * @remarks No-long-jump zone!!!
|
---|
2921 | */
|
---|
2922 | DECLINLINE(int) hmR0VmxLoadGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
2923 | {
|
---|
2924 | int rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
|
---|
2925 | AssertRCReturn(rc, rc);
|
---|
2926 | rc = hmR0VmxLoadGuestRsp(pVCpu, pMixedCtx);
|
---|
2927 | AssertRCReturn(rc, rc);
|
---|
2928 | rc = hmR0VmxLoadGuestRflags(pVCpu, pMixedCtx);
|
---|
2929 | AssertRCReturn(rc, rc);
|
---|
2930 | return rc;
|
---|
2931 | }
|
---|
2932 |
|
---|
2933 |
|
---|
2934 | /**
|
---|
2935 | * Loads the guest control registers (CR0, CR3, CR4) into the guest-state area
|
---|
2936 | * in the VMCS.
|
---|
2937 | *
|
---|
2938 | * @returns VBox status code.
|
---|
2939 | * @param pVM Pointer to the VM.
|
---|
2940 | * @param pVCpu Pointer to the VMCPU.
|
---|
2941 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
2942 | * out-of-sync. Make sure to update the required fields
|
---|
2943 | * before using them.
|
---|
2944 | *
|
---|
2945 | * @remarks No-long-jump zone!!!
|
---|
2946 | */
|
---|
2947 | static int hmR0VmxLoadGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2948 | {
|
---|
2949 | int rc = VINF_SUCCESS;
|
---|
2950 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2951 |
|
---|
2952 | /*
|
---|
2953 | * Guest CR0.
|
---|
2954 | * Guest FPU.
|
---|
2955 | */
|
---|
2956 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
|
---|
2957 | {
|
---|
2958 | Assert(!(pCtx->cr0 >> 32));
|
---|
2959 | uint32_t u32GuestCR0 = pCtx->cr0;
|
---|
2960 |
|
---|
2961 | /* The guest's view (read access) of its CR0 is unblemished. */
|
---|
2962 | rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, u32GuestCR0);
|
---|
2963 | AssertRCReturn(rc, rc);
|
---|
2964 | Log4(("Load: VMX_VMCS_CTRL_CR0_READ_SHADOW=%#RX32\n", u32GuestCR0));
|
---|
2965 |
|
---|
2966 | /* Setup VT-x's view of the guest CR0. */
|
---|
2967 | /* Minimize VM-exits due to CR3 changes when we have NestedPaging. */
|
---|
2968 | if (pVM->hm.s.fNestedPaging)
|
---|
2969 | {
|
---|
2970 | if (CPUMIsGuestPagingEnabledEx(pCtx))
|
---|
2971 | {
|
---|
2972 | /* The guest has paging enabled, let it access CR3 without causing a VM exit if supported. */
|
---|
2973 | pVCpu->hm.s.vmx.u32ProcCtls &= ~( VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
|
---|
2974 | | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT);
|
---|
2975 | }
|
---|
2976 | else
|
---|
2977 | {
|
---|
2978 | /* The guest doesn't have paging enabled, make CR3 access to cause VM exits to update our shadow. */
|
---|
2979 | pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_CR3_LOAD_EXIT
|
---|
2980 | | VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
|
---|
2981 | }
|
---|
2982 |
|
---|
2983 | /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
|
---|
2984 | if (pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
2985 | pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_CR3_STORE_EXIT;
|
---|
2986 |
|
---|
2987 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
2988 | AssertRCReturn(rc, rc);
|
---|
2989 | }
|
---|
2990 | else
|
---|
2991 | u32GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
|
---|
2992 |
|
---|
2993 | /*
|
---|
2994 | * Guest FPU bits.
|
---|
2995 | * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be set on the first
|
---|
2996 | * CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
|
---|
2997 | */
|
---|
2998 | u32GuestCR0 |= X86_CR0_NE;
|
---|
2999 | bool fInterceptNM = false;
|
---|
3000 | if (CPUMIsGuestFPUStateActive(pVCpu))
|
---|
3001 | {
|
---|
3002 | fInterceptNM = false; /* Guest FPU active, no need to VM-exit on #NM. */
|
---|
3003 | /* The guest should still get #NM exceptions when it expects it to, so we should not clear TS & MP bits here.
|
---|
3004 | We're only concerned about -us- not intercepting #NMs when the guest-FPU is active. Not the guest itself! */
|
---|
3005 | }
|
---|
3006 | else
|
---|
3007 | {
|
---|
3008 | fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
|
---|
3009 | u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
|
---|
3010 | | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
|
---|
3011 | }
|
---|
3012 |
|
---|
3013 | /* Catch floating point exceptions if we need to report them to the guest in a different way. */
|
---|
3014 | bool fInterceptMF = false;
|
---|
3015 | if (!(pCtx->cr0 & X86_CR0_NE))
|
---|
3016 | fInterceptMF = true;
|
---|
3017 |
|
---|
3018 | /* Finally, intercept all exceptions as we cannot directly inject them in real-mode, see hmR0VmxInjectEventVmcs(). */
|
---|
3019 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
3020 | {
|
---|
3021 | Assert(PDMVmmDevHeapIsEnabled(pVM));
|
---|
3022 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
3023 | pVCpu->hm.s.vmx.u32XcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
|
---|
3024 | fInterceptNM = true;
|
---|
3025 | fInterceptMF = true;
|
---|
3026 | }
|
---|
3027 | else
|
---|
3028 | pVCpu->hm.s.vmx.u32XcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
|
---|
3029 |
|
---|
3030 | if (fInterceptNM)
|
---|
3031 | pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_NM);
|
---|
3032 | else
|
---|
3033 | pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_NM);
|
---|
3034 |
|
---|
3035 | if (fInterceptMF)
|
---|
3036 | pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_MF);
|
---|
3037 | else
|
---|
3038 | pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_MF);
|
---|
3039 |
|
---|
3040 | /* Additional intercepts for debugging, define these yourself explicitly. */
|
---|
3041 | #ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
3042 | pVCpu->hm.s.vmx.u32XcptBitmap |= 0
|
---|
3043 | | RT_BIT(X86_XCPT_BP)
|
---|
3044 | | RT_BIT(X86_XCPT_DB)
|
---|
3045 | | RT_BIT(X86_XCPT_DE)
|
---|
3046 | | RT_BIT(X86_XCPT_NM)
|
---|
3047 | | RT_BIT(X86_XCPT_UD)
|
---|
3048 | | RT_BIT(X86_XCPT_NP)
|
---|
3049 | | RT_BIT(X86_XCPT_SS)
|
---|
3050 | | RT_BIT(X86_XCPT_GP)
|
---|
3051 | | RT_BIT(X86_XCPT_PF)
|
---|
3052 | | RT_BIT(X86_XCPT_MF)
|
---|
3053 | ;
|
---|
3054 | #elif defined(HMVMX_ALWAYS_TRAP_PF)
|
---|
3055 | pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_PF);
|
---|
3056 | #endif
|
---|
3057 |
|
---|
3058 | Assert(pVM->hm.s.fNestedPaging || (pVCpu->hm.s.vmx.u32XcptBitmap & RT_BIT(X86_XCPT_PF)));
|
---|
3059 |
|
---|
3060 | /* Set/clear the CR0 specific bits along with their exceptions (PE, PG, CD, NW). */
|
---|
3061 | uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.msr.vmx_cr0_fixed0 & pVM->hm.s.vmx.msr.vmx_cr0_fixed1);
|
---|
3062 | uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.msr.vmx_cr0_fixed0 | pVM->hm.s.vmx.msr.vmx_cr0_fixed1);
|
---|
3063 | if (pVM->hm.s.vmx.fUnrestrictedGuest) /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG). */
|
---|
3064 | uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
|
---|
3065 | else
|
---|
3066 | Assert((uSetCR0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
|
---|
3067 |
|
---|
3068 | u32GuestCR0 |= uSetCR0;
|
---|
3069 | u32GuestCR0 &= uZapCR0;
|
---|
3070 | u32GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW); /* Always enable caching. */
|
---|
3071 |
|
---|
3072 | /* Write VT-x's view of the guest CR0 into the VMCS and update the exception bitmap. */
|
---|
3073 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR0, u32GuestCR0);
|
---|
3074 | AssertRCReturn(rc, rc);
|
---|
3075 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
|
---|
3076 | AssertRCReturn(rc, rc);
|
---|
3077 | Log4(("Load: VMX_VMCS_GUEST_CR0=%#RX32 (uSetCR0=%#RX32 uZapCR0=%#RX32)\n", u32GuestCR0, uSetCR0, uZapCR0));
|
---|
3078 |
|
---|
3079 | /*
|
---|
3080 | * CR0 is shared between host and guest along with a CR0 read shadow. Therefore, certain bits must not be changed
|
---|
3081 | * by the guest because VT-x ignores saving/restoring them (namely CD, ET, NW) and for certain other bits
|
---|
3082 | * we want to be notified immediately of guest CR0 changes (e.g. PG to update our shadow page tables).
|
---|
3083 | */
|
---|
3084 | uint32_t u32CR0Mask = 0;
|
---|
3085 | u32CR0Mask = X86_CR0_PE
|
---|
3086 | | X86_CR0_NE
|
---|
3087 | | X86_CR0_WP
|
---|
3088 | | X86_CR0_PG
|
---|
3089 | | X86_CR0_ET /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.ET */
|
---|
3090 | | X86_CR0_CD /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.CD */
|
---|
3091 | | X86_CR0_NW; /* Bit ignored on VM-entry and VM-exit. Don't let the guest modify the host CR0.NW */
|
---|
3092 | if (pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
3093 | u32CR0Mask &= ~X86_CR0_PE;
|
---|
3094 | if (pVM->hm.s.fNestedPaging)
|
---|
3095 | u32CR0Mask &= ~X86_CR0_WP;
|
---|
3096 |
|
---|
3097 | /* If the guest FPU state is active, don't need to VM-exit on writes to FPU related bits in CR0. */
|
---|
3098 | if (fInterceptNM)
|
---|
3099 | u32CR0Mask |= (X86_CR0_TS | X86_CR0_MP);
|
---|
3100 | else
|
---|
3101 | u32CR0Mask &= ~(X86_CR0_TS | X86_CR0_MP);
|
---|
3102 |
|
---|
3103 | /* Write the CR0 mask into the VMCS and update the VCPU's copy of the current CR0 mask. */
|
---|
3104 | pVCpu->hm.s.vmx.u32CR0Mask = u32CR0Mask;
|
---|
3105 | rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR0_MASK, u32CR0Mask);
|
---|
3106 | AssertRCReturn(rc, rc);
|
---|
3107 |
|
---|
3108 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
|
---|
3109 | }
|
---|
3110 |
|
---|
3111 | /*
|
---|
3112 | * Guest CR2.
|
---|
3113 | * It's always loaded in the assembler code. Nothing to do here.
|
---|
3114 | */
|
---|
3115 |
|
---|
3116 | /*
|
---|
3117 | * Guest CR3.
|
---|
3118 | */
|
---|
3119 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
|
---|
3120 | {
|
---|
3121 | RTGCPHYS GCPhysGuestCR3 = NIL_RTGCPHYS;
|
---|
3122 | if (pVM->hm.s.fNestedPaging)
|
---|
3123 | {
|
---|
3124 | pVCpu->hm.s.vmx.HCPhysEPTP = PGMGetHyperCR3(pVCpu);
|
---|
3125 |
|
---|
3126 | /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
|
---|
3127 | Assert(pVCpu->hm.s.vmx.HCPhysEPTP);
|
---|
3128 | Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & UINT64_C(0xfff0000000000000)));
|
---|
3129 | Assert(!(pVCpu->hm.s.vmx.HCPhysEPTP & 0xfff));
|
---|
3130 |
|
---|
3131 | /* VMX_EPT_MEMTYPE_WB support is already checked in hmR0VmxSetupTaggedTlb(). */
|
---|
3132 | pVCpu->hm.s.vmx.HCPhysEPTP |= VMX_EPT_MEMTYPE_WB
|
---|
3133 | | (VMX_EPT_PAGE_WALK_LENGTH_DEFAULT << VMX_EPT_PAGE_WALK_LENGTH_SHIFT);
|
---|
3134 |
|
---|
3135 | /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
|
---|
3136 | AssertMsg( ((pVCpu->hm.s.vmx.HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
|
---|
3137 | && ((pVCpu->hm.s.vmx.HCPhysEPTP >> 6) & 0x3f) == 0, /* Bits 6:11 MBZ. */
|
---|
3138 | ("EPTP %#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
|
---|
3139 |
|
---|
3140 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, pVCpu->hm.s.vmx.HCPhysEPTP);
|
---|
3141 | AssertRCReturn(rc, rc);
|
---|
3142 | Log4(("Load: VMX_VMCS64_CTRL_EPTP_FULL=%#RX64\n", pVCpu->hm.s.vmx.HCPhysEPTP));
|
---|
3143 |
|
---|
3144 | if ( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
3145 | || CPUMIsGuestPagingEnabledEx(pCtx))
|
---|
3146 | {
|
---|
3147 | /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
|
---|
3148 | if (CPUMIsGuestInPAEModeEx(pCtx))
|
---|
3149 | {
|
---|
3150 | rc = PGMGstGetPaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]); AssertRCReturn(rc, rc);
|
---|
3151 | rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, pVCpu->hm.s.aPdpes[0].u); AssertRCReturn(rc, rc);
|
---|
3152 | rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, pVCpu->hm.s.aPdpes[1].u); AssertRCReturn(rc, rc);
|
---|
3153 | rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, pVCpu->hm.s.aPdpes[2].u); AssertRCReturn(rc, rc);
|
---|
3154 | rc = VMXWriteVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, pVCpu->hm.s.aPdpes[3].u); AssertRCReturn(rc, rc);
|
---|
3155 | }
|
---|
3156 |
|
---|
3157 | /* The guest's view of its CR3 is unblemished with Nested Paging when the guest is using paging or we
|
---|
3158 | have Unrestricted Execution to handle the guest when it's not using paging. */
|
---|
3159 | GCPhysGuestCR3 = pCtx->cr3;
|
---|
3160 | }
|
---|
3161 | else
|
---|
3162 | {
|
---|
3163 | /*
|
---|
3164 | * The guest is not using paging, but the CPU (VT-x) has to. While the guest thinks it accesses physical memory
|
---|
3165 | * directly, we use our identity-mapped page table to map guest-linear to guest-physical addresses.
|
---|
3166 | * EPT takes care of translating it to host-physical addresses.
|
---|
3167 | */
|
---|
3168 | RTGCPHYS GCPhys;
|
---|
3169 | Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
|
---|
3170 | Assert(PDMVmmDevHeapIsEnabled(pVM));
|
---|
3171 |
|
---|
3172 | /* We obtain it here every time as the guest could have relocated this PCI region. */
|
---|
3173 | rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
|
---|
3174 | AssertRCReturn(rc, rc);
|
---|
3175 |
|
---|
3176 | GCPhysGuestCR3 = GCPhys;
|
---|
3177 | }
|
---|
3178 |
|
---|
3179 | Log4(("Load: VMX_VMCS_GUEST_CR3=%#RGv (GstN)\n", GCPhysGuestCR3));
|
---|
3180 | rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_CR3, GCPhysGuestCR3);
|
---|
3181 | }
|
---|
3182 | else
|
---|
3183 | {
|
---|
3184 | /* Non-nested paging case, just use the hypervisor's CR3. */
|
---|
3185 | RTHCPHYS HCPhysGuestCR3 = PGMGetHyperCR3(pVCpu);
|
---|
3186 |
|
---|
3187 | Log4(("Load: VMX_VMCS_GUEST_CR3=%#RHv (HstN)\n", HCPhysGuestCR3));
|
---|
3188 | rc = VMXWriteVmcsHstN(VMX_VMCS_GUEST_CR3, HCPhysGuestCR3);
|
---|
3189 | }
|
---|
3190 | AssertRCReturn(rc, rc);
|
---|
3191 |
|
---|
3192 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR3;
|
---|
3193 | }
|
---|
3194 |
|
---|
3195 | /*
|
---|
3196 | * Guest CR4.
|
---|
3197 | */
|
---|
3198 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
|
---|
3199 | {
|
---|
3200 | Assert(!(pCtx->cr4 >> 32));
|
---|
3201 | uint32_t u32GuestCR4 = pCtx->cr4;
|
---|
3202 |
|
---|
3203 | /* The guest's view of its CR4 is unblemished. */
|
---|
3204 | rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, u32GuestCR4);
|
---|
3205 | AssertRCReturn(rc, rc);
|
---|
3206 | Log4(("Load: VMX_VMCS_CTRL_CR4_READ_SHADOW=%#RX32\n", u32GuestCR4));
|
---|
3207 |
|
---|
3208 | /* Setup VT-x's view of the guest CR4. */
|
---|
3209 | /*
|
---|
3210 | * If we're emulating real-mode using virtual-8086 mode, we want to redirect software interrupts to the 8086 program
|
---|
3211 | * interrupt handler. Clear the VME bit (the interrupt redirection bitmap is already all 0, see hmR3InitFinalizeR0())
|
---|
3212 | * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
|
---|
3213 | */
|
---|
3214 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
3215 | {
|
---|
3216 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
3217 | Assert(PDMVmmDevHeapIsEnabled(pVM));
|
---|
3218 | u32GuestCR4 &= ~X86_CR4_VME;
|
---|
3219 | }
|
---|
3220 |
|
---|
3221 | if (pVM->hm.s.fNestedPaging)
|
---|
3222 | {
|
---|
3223 | if ( !CPUMIsGuestPagingEnabledEx(pCtx)
|
---|
3224 | && !pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
3225 | {
|
---|
3226 | /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
|
---|
3227 | u32GuestCR4 |= X86_CR4_PSE;
|
---|
3228 | /* Our identity mapping is a 32 bits page directory. */
|
---|
3229 | u32GuestCR4 &= ~X86_CR4_PAE;
|
---|
3230 | }
|
---|
3231 | /* else use guest CR4.*/
|
---|
3232 | }
|
---|
3233 | else
|
---|
3234 | {
|
---|
3235 | /*
|
---|
3236 | * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
|
---|
3237 | * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
|
---|
3238 | */
|
---|
3239 | switch (pVCpu->hm.s.enmShadowMode)
|
---|
3240 | {
|
---|
3241 | case PGMMODE_REAL: /* Real-mode. */
|
---|
3242 | case PGMMODE_PROTECTED: /* Protected mode without paging. */
|
---|
3243 | case PGMMODE_32_BIT: /* 32-bit paging. */
|
---|
3244 | {
|
---|
3245 | u32GuestCR4 &= ~X86_CR4_PAE;
|
---|
3246 | break;
|
---|
3247 | }
|
---|
3248 |
|
---|
3249 | case PGMMODE_PAE: /* PAE paging. */
|
---|
3250 | case PGMMODE_PAE_NX: /* PAE paging with NX. */
|
---|
3251 | {
|
---|
3252 | u32GuestCR4 |= X86_CR4_PAE;
|
---|
3253 | break;
|
---|
3254 | }
|
---|
3255 |
|
---|
3256 | case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
|
---|
3257 | case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
|
---|
3258 | #ifdef VBOX_ENABLE_64_BITS_GUESTS
|
---|
3259 | break;
|
---|
3260 | #endif
|
---|
3261 | default:
|
---|
3262 | AssertFailed();
|
---|
3263 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
3264 | }
|
---|
3265 | }
|
---|
3266 |
|
---|
3267 | /* We need to set and clear the CR4 specific bits here (mainly the X86_CR4_VMXE bit). */
|
---|
3268 | uint64_t uSetCR4 = (pVM->hm.s.vmx.msr.vmx_cr4_fixed0 & pVM->hm.s.vmx.msr.vmx_cr4_fixed1);
|
---|
3269 | uint64_t uZapCR4 = (pVM->hm.s.vmx.msr.vmx_cr4_fixed0 | pVM->hm.s.vmx.msr.vmx_cr4_fixed1);
|
---|
3270 | u32GuestCR4 |= uSetCR4;
|
---|
3271 | u32GuestCR4 &= uZapCR4;
|
---|
3272 |
|
---|
3273 | /* Write VT-x's view of the guest CR4 into the VMCS. */
|
---|
3274 | Log4(("Load: VMX_VMCS_GUEST_CR4=%#RX32 (Set=%#RX32 Zap=%#RX32)\n", u32GuestCR4, uSetCR4, uZapCR4));
|
---|
3275 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_CR4, u32GuestCR4);
|
---|
3276 | AssertRCReturn(rc, rc);
|
---|
3277 |
|
---|
3278 | /* Setup CR4 mask. CR4 flags owned by the host, if the guest attempts to change them, that would cause a VM exit. */
|
---|
3279 | uint32_t u32CR4Mask = 0;
|
---|
3280 | u32CR4Mask = X86_CR4_VME
|
---|
3281 | | X86_CR4_PAE
|
---|
3282 | | X86_CR4_PGE
|
---|
3283 | | X86_CR4_PSE
|
---|
3284 | | X86_CR4_VMXE;
|
---|
3285 | pVCpu->hm.s.vmx.u32CR4Mask = u32CR4Mask;
|
---|
3286 | rc = VMXWriteVmcs32(VMX_VMCS_CTRL_CR4_MASK, u32CR4Mask);
|
---|
3287 | AssertRCReturn(rc, rc);
|
---|
3288 |
|
---|
3289 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
|
---|
3290 | }
|
---|
3291 | return rc;
|
---|
3292 | }
|
---|
3293 |
|
---|
3294 |
|
---|
3295 | /**
|
---|
3296 | * Loads the guest debug registers into the guest-state area in the VMCS.
|
---|
3297 | * This also sets up whether #DB and MOV DRx accesses cause VM exits.
|
---|
3298 | *
|
---|
3299 | * @returns VBox status code.
|
---|
3300 | * @param pVCpu Pointer to the VMCPU.
|
---|
3301 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3302 | * out-of-sync. Make sure to update the required fields
|
---|
3303 | * before using them.
|
---|
3304 | *
|
---|
3305 | * @remarks No-long-jump zone!!!
|
---|
3306 | */
|
---|
3307 | static int hmR0VmxLoadGuestDebugState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3308 | {
|
---|
3309 | if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG))
|
---|
3310 | return VINF_SUCCESS;
|
---|
3311 |
|
---|
3312 | #ifdef VBOX_STRICT
|
---|
3313 | /* Validate. Intel spec. 26.3.1.1 "Checks on Guest Controls Registers, Debug Registers, MSRs" */
|
---|
3314 | if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
|
---|
3315 | {
|
---|
3316 | /* Validate. Intel spec. 17.2 "Debug Registers", recompiler paranoia checks. */
|
---|
3317 | Assert((pMixedCtx->dr[7] & (X86_DR7_MBZ_MASK | X86_DR7_RAZ_MASK)) == 0); /* Bits 63:32, 15, 14, 12, 11 are reserved. */
|
---|
3318 | Assert((pMixedCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); /* Bit 10 is reserved (RA1). */
|
---|
3319 | }
|
---|
3320 | #endif
|
---|
3321 |
|
---|
3322 | int rc;
|
---|
3323 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3324 | bool fInterceptDB = false;
|
---|
3325 | bool fInterceptMovDRx = false;
|
---|
3326 | if (pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu))
|
---|
3327 | {
|
---|
3328 | /* If the CPU supports the monitor trap flag, use it for single stepping in DBGF and avoid intercepting #DB. */
|
---|
3329 | if (pVM->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG)
|
---|
3330 | {
|
---|
3331 | pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
|
---|
3332 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
3333 | AssertRCReturn(rc, rc);
|
---|
3334 | Assert(fInterceptDB == false);
|
---|
3335 | }
|
---|
3336 | else
|
---|
3337 | {
|
---|
3338 | fInterceptDB = true;
|
---|
3339 | pMixedCtx->eflags.u32 |= X86_EFL_TF;
|
---|
3340 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RFLAGS;
|
---|
3341 | }
|
---|
3342 | }
|
---|
3343 |
|
---|
3344 | if (fInterceptDB || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
|
---|
3345 | {
|
---|
3346 | /*
|
---|
3347 | * Use the combined guest and host DRx values found in the hypervisor
|
---|
3348 | * register set because the debugger has breakpoints active or someone
|
---|
3349 | * is single stepping on the host side without a monitor trap flag.
|
---|
3350 | *
|
---|
3351 | * Note! DBGF expects a clean DR6 state before executing guest code.
|
---|
3352 | */
|
---|
3353 | if (!CPUMIsHyperDebugStateActive(pVCpu))
|
---|
3354 | CPUMR0LoadHyperDebugState(pVCpu, true /* include DR6 */);
|
---|
3355 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
3356 | Assert(CPUMIsHyperDebugStateActive(pVCpu));
|
---|
3357 |
|
---|
3358 | /* Update DR7. (The other DRx values are handled by CPUM one way or the other.) */
|
---|
3359 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)CPUMGetHyperDR7(pVCpu));
|
---|
3360 | AssertRCReturn(rc, rc);
|
---|
3361 |
|
---|
3362 | fInterceptDB = true;
|
---|
3363 | fInterceptMovDRx = true;
|
---|
3364 | }
|
---|
3365 | else
|
---|
3366 | {
|
---|
3367 | /*
|
---|
3368 | * If the guest has enabled debug registers, we need to load them prior to
|
---|
3369 | * executing guest code so they'll trigger at the right time.
|
---|
3370 | */
|
---|
3371 | if (pMixedCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
|
---|
3372 | {
|
---|
3373 | if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
3374 | {
|
---|
3375 | CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
|
---|
3376 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
3377 | }
|
---|
3378 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
3379 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
3380 | }
|
---|
3381 | /*
|
---|
3382 | * If no debugging enabled, we'll lazy load DR0-3. Unlike on AMD-V, we
|
---|
3383 | * must intercept #DB in order to maintain a correct DR6 guest value.
|
---|
3384 | */
|
---|
3385 | else if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
3386 | {
|
---|
3387 | fInterceptMovDRx = true;
|
---|
3388 | fInterceptDB = true;
|
---|
3389 | }
|
---|
3390 |
|
---|
3391 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, pMixedCtx->dr[7]);
|
---|
3392 | AssertRCReturn(rc, rc);
|
---|
3393 | }
|
---|
3394 |
|
---|
3395 | /*
|
---|
3396 | * Update the exception bitmap regarding intercepting #DB generated by the guest.
|
---|
3397 | */
|
---|
3398 | if (fInterceptDB)
|
---|
3399 | pVCpu->hm.s.vmx.u32XcptBitmap |= RT_BIT(X86_XCPT_DB);
|
---|
3400 | else if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
3401 | {
|
---|
3402 | #ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
3403 | pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_DB);
|
---|
3404 | #endif
|
---|
3405 | }
|
---|
3406 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
|
---|
3407 | AssertRCReturn(rc, rc);
|
---|
3408 |
|
---|
3409 | /*
|
---|
3410 | * Update the processor-based VM-execution controls regarding intercepting MOV DRx instructions.
|
---|
3411 | */
|
---|
3412 | if (fInterceptMovDRx)
|
---|
3413 | pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
|
---|
3414 | else
|
---|
3415 | pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
|
---|
3416 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
3417 | AssertRCReturn(rc, rc);
|
---|
3418 |
|
---|
3419 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_DEBUG;
|
---|
3420 | return VINF_SUCCESS;
|
---|
3421 | }
|
---|
3422 |
|
---|
3423 |
|
---|
3424 | #ifdef VBOX_STRICT
|
---|
3425 | /**
|
---|
3426 | * Strict function to validate segment registers.
|
---|
3427 | *
|
---|
3428 | * @remarks Requires CR0.
|
---|
3429 | */
|
---|
3430 | static void hmR0VmxValidateSegmentRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3431 | {
|
---|
3432 | /* Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers". */
|
---|
3433 | /* NOTE: The reason we check for attribute value 0 and not just the unusable bit here is because hmR0VmxWriteSegmentReg()
|
---|
3434 | * only updates the VMCS' copy of the value with the unusable bit and doesn't change the guest-context value. */
|
---|
3435 | if ( !pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
3436 | && ( !CPUMIsGuestInRealModeEx(pCtx)
|
---|
3437 | && !CPUMIsGuestInV86ModeEx(pCtx)))
|
---|
3438 | {
|
---|
3439 | /* Protected mode checks */
|
---|
3440 | /* CS */
|
---|
3441 | Assert(pCtx->cs.Attr.n.u1Present);
|
---|
3442 | Assert(!(pCtx->cs.Attr.u & 0xf00));
|
---|
3443 | Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
|
---|
3444 | Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
|
---|
3445 | || !(pCtx->cs.Attr.n.u1Granularity));
|
---|
3446 | Assert( !(pCtx->cs.u32Limit & 0xfff00000)
|
---|
3447 | || (pCtx->cs.Attr.n.u1Granularity));
|
---|
3448 | /* CS cannot be loaded with NULL in protected mode. */
|
---|
3449 | Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS?!? */
|
---|
3450 | if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
|
---|
3451 | Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
|
---|
3452 | else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
|
---|
3453 | Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
|
---|
3454 | else
|
---|
3455 | AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
|
---|
3456 | /* SS */
|
---|
3457 | Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
|
---|
3458 | Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
|
---|
3459 | Assert(!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0));
|
---|
3460 | if ( !(pCtx->cr0 & X86_CR0_PE)
|
---|
3461 | || pCtx->cs.Attr.n.u4Type == 3)
|
---|
3462 | {
|
---|
3463 | Assert(!pCtx->ss.Attr.n.u2Dpl);
|
---|
3464 | }
|
---|
3465 | if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
3466 | {
|
---|
3467 | Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
|
---|
3468 | Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
|
---|
3469 | Assert(pCtx->ss.Attr.n.u1Present);
|
---|
3470 | Assert(!(pCtx->ss.Attr.u & 0xf00));
|
---|
3471 | Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
|
---|
3472 | Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
|
---|
3473 | || !(pCtx->ss.Attr.n.u1Granularity));
|
---|
3474 | Assert( !(pCtx->ss.u32Limit & 0xfff00000)
|
---|
3475 | || (pCtx->ss.Attr.n.u1Granularity));
|
---|
3476 | }
|
---|
3477 | /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
|
---|
3478 | if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
3479 | {
|
---|
3480 | Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
3481 | Assert(pCtx->ds.Attr.n.u1Present);
|
---|
3482 | Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
|
---|
3483 | Assert(!(pCtx->ds.Attr.u & 0xf00));
|
---|
3484 | Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
|
---|
3485 | Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
|
---|
3486 | || !(pCtx->ds.Attr.n.u1Granularity));
|
---|
3487 | Assert( !(pCtx->ds.u32Limit & 0xfff00000)
|
---|
3488 | || (pCtx->ds.Attr.n.u1Granularity));
|
---|
3489 | Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
3490 | || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
3491 | }
|
---|
3492 | if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
3493 | {
|
---|
3494 | Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
3495 | Assert(pCtx->es.Attr.n.u1Present);
|
---|
3496 | Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
|
---|
3497 | Assert(!(pCtx->es.Attr.u & 0xf00));
|
---|
3498 | Assert(!(pCtx->es.Attr.u & 0xfffe0000));
|
---|
3499 | Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
|
---|
3500 | || !(pCtx->es.Attr.n.u1Granularity));
|
---|
3501 | Assert( !(pCtx->es.u32Limit & 0xfff00000)
|
---|
3502 | || (pCtx->es.Attr.n.u1Granularity));
|
---|
3503 | Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
3504 | || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
3505 | }
|
---|
3506 | if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
3507 | {
|
---|
3508 | Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
3509 | Assert(pCtx->fs.Attr.n.u1Present);
|
---|
3510 | Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
|
---|
3511 | Assert(!(pCtx->fs.Attr.u & 0xf00));
|
---|
3512 | Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
|
---|
3513 | Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
|
---|
3514 | || !(pCtx->fs.Attr.n.u1Granularity));
|
---|
3515 | Assert( !(pCtx->fs.u32Limit & 0xfff00000)
|
---|
3516 | || (pCtx->fs.Attr.n.u1Granularity));
|
---|
3517 | Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
3518 | || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
3519 | }
|
---|
3520 | if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
3521 | {
|
---|
3522 | Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
3523 | Assert(pCtx->gs.Attr.n.u1Present);
|
---|
3524 | Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
|
---|
3525 | Assert(!(pCtx->gs.Attr.u & 0xf00));
|
---|
3526 | Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
|
---|
3527 | Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
|
---|
3528 | || !(pCtx->gs.Attr.n.u1Granularity));
|
---|
3529 | Assert( !(pCtx->gs.u32Limit & 0xfff00000)
|
---|
3530 | || (pCtx->gs.Attr.n.u1Granularity));
|
---|
3531 | Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
3532 | || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
3533 | }
|
---|
3534 | /* 64-bit capable CPUs. */
|
---|
3535 | # if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
3536 | Assert(!(pCtx->cs.u64Base >> 32));
|
---|
3537 | Assert(!pCtx->ss.Attr.u || !(pCtx->ss.u64Base >> 32));
|
---|
3538 | Assert(!pCtx->ds.Attr.u || !(pCtx->ds.u64Base >> 32));
|
---|
3539 | Assert(!pCtx->es.Attr.u || !(pCtx->es.u64Base >> 32));
|
---|
3540 | # endif
|
---|
3541 | }
|
---|
3542 | else if ( CPUMIsGuestInV86ModeEx(pCtx)
|
---|
3543 | || ( CPUMIsGuestInRealModeEx(pCtx)
|
---|
3544 | && !pVM->hm.s.vmx.fUnrestrictedGuest))
|
---|
3545 | {
|
---|
3546 | /* Real and v86 mode checks. */
|
---|
3547 | /* hmR0VmxWriteSegmentReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
|
---|
3548 | uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
|
---|
3549 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
3550 | {
|
---|
3551 | u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3; u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
|
---|
3552 | }
|
---|
3553 | else
|
---|
3554 | {
|
---|
3555 | u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
|
---|
3556 | u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
|
---|
3557 | }
|
---|
3558 |
|
---|
3559 | /* CS */
|
---|
3560 | AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
|
---|
3561 | Assert(pCtx->cs.u32Limit == 0xffff);
|
---|
3562 | Assert(u32CSAttr == 0xf3);
|
---|
3563 | /* SS */
|
---|
3564 | Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
|
---|
3565 | Assert(pCtx->ss.u32Limit == 0xffff);
|
---|
3566 | Assert(u32SSAttr == 0xf3);
|
---|
3567 | /* DS */
|
---|
3568 | Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
|
---|
3569 | Assert(pCtx->ds.u32Limit == 0xffff);
|
---|
3570 | Assert(u32DSAttr == 0xf3);
|
---|
3571 | /* ES */
|
---|
3572 | Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
|
---|
3573 | Assert(pCtx->es.u32Limit == 0xffff);
|
---|
3574 | Assert(u32ESAttr == 0xf3);
|
---|
3575 | /* FS */
|
---|
3576 | Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
|
---|
3577 | Assert(pCtx->fs.u32Limit == 0xffff);
|
---|
3578 | Assert(u32FSAttr == 0xf3);
|
---|
3579 | /* GS */
|
---|
3580 | Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
|
---|
3581 | Assert(pCtx->gs.u32Limit == 0xffff);
|
---|
3582 | Assert(u32GSAttr == 0xf3);
|
---|
3583 | /* 64-bit capable CPUs. */
|
---|
3584 | # if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
3585 | Assert(!(pCtx->cs.u64Base >> 32));
|
---|
3586 | Assert(!u32SSAttr || !(pCtx->ss.u64Base >> 32));
|
---|
3587 | Assert(!u32DSAttr || !(pCtx->ds.u64Base >> 32));
|
---|
3588 | Assert(!u32ESAttr || !(pCtx->es.u64Base >> 32));
|
---|
3589 | # endif
|
---|
3590 | }
|
---|
3591 | }
|
---|
3592 | #endif /* VBOX_STRICT */
|
---|
3593 |
|
---|
3594 |
|
---|
3595 | /**
|
---|
3596 | * Writes a guest segment register into the guest-state area in the VMCS.
|
---|
3597 | *
|
---|
3598 | * @returns VBox status code.
|
---|
3599 | * @param pVCpu Pointer to the VMCPU.
|
---|
3600 | * @param idxSel Index of the selector in the VMCS.
|
---|
3601 | * @param idxLimit Index of the segment limit in the VMCS.
|
---|
3602 | * @param idxBase Index of the segment base in the VMCS.
|
---|
3603 | * @param idxAccess Index of the access rights of the segment in the VMCS.
|
---|
3604 | * @param pSelReg Pointer to the segment selector.
|
---|
3605 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3606 | *
|
---|
3607 | * @remarks No-long-jump zone!!!
|
---|
3608 | */
|
---|
3609 | static int hmR0VmxWriteSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase,
|
---|
3610 | uint32_t idxAccess, PCPUMSELREG pSelReg, PCPUMCTX pCtx)
|
---|
3611 | {
|
---|
3612 | int rc = VMXWriteVmcs32(idxSel, pSelReg->Sel); /* 16-bit guest selector field. */
|
---|
3613 | AssertRCReturn(rc, rc);
|
---|
3614 | rc = VMXWriteVmcs32(idxLimit, pSelReg->u32Limit); /* 32-bit guest segment limit field. */
|
---|
3615 | AssertRCReturn(rc, rc);
|
---|
3616 | rc = VMXWriteVmcsGstN(idxBase, pSelReg->u64Base); /* Natural width guest segment base field.*/
|
---|
3617 | AssertRCReturn(rc, rc);
|
---|
3618 |
|
---|
3619 | uint32_t u32Access = pSelReg->Attr.u;
|
---|
3620 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
3621 | {
|
---|
3622 | /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
|
---|
3623 | u32Access = 0xf3;
|
---|
3624 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
|
---|
3625 | Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
|
---|
3626 | }
|
---|
3627 | else
|
---|
3628 | {
|
---|
3629 | /*
|
---|
3630 | * The way to differentiate between whether this is really a null selector or was just a selector loaded with 0 in
|
---|
3631 | * real-mode is using the segment attributes. A selector loaded in real-mode with the value 0 is valid and usable in
|
---|
3632 | * protected-mode and we should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures NULL selectors
|
---|
3633 | * loaded in protected-mode have their attribute as 0.
|
---|
3634 | */
|
---|
3635 | if (!u32Access)
|
---|
3636 | u32Access = X86DESCATTR_UNUSABLE;
|
---|
3637 | }
|
---|
3638 |
|
---|
3639 | /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
|
---|
3640 | AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
|
---|
3641 | ("Access bit not set for usable segment. idx=%#x sel=%#x attr %#x\n", idxBase, pSelReg, pSelReg->Attr.u));
|
---|
3642 |
|
---|
3643 | rc = VMXWriteVmcs32(idxAccess, u32Access); /* 32-bit guest segment access-rights field. */
|
---|
3644 | AssertRCReturn(rc, rc);
|
---|
3645 | return rc;
|
---|
3646 | }
|
---|
3647 |
|
---|
3648 |
|
---|
3649 | /**
|
---|
3650 | * Loads the guest segment registers, GDTR, IDTR, LDTR, (TR, FS and GS bases)
|
---|
3651 | * into the guest-state area in the VMCS.
|
---|
3652 | *
|
---|
3653 | * @returns VBox status code.
|
---|
3654 | * @param pVM Pointer to the VM.
|
---|
3655 | * @param pVCPU Pointer to the VMCPU.
|
---|
3656 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3657 | * out-of-sync. Make sure to update the required fields
|
---|
3658 | * before using them.
|
---|
3659 | *
|
---|
3660 | * @remarks Requires CR0 (strict builds validation).
|
---|
3661 | * @remarks No-long-jump zone!!!
|
---|
3662 | */
|
---|
3663 | static int hmR0VmxLoadGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3664 | {
|
---|
3665 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
3666 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3667 |
|
---|
3668 | /*
|
---|
3669 | * Guest Segment registers: CS, SS, DS, ES, FS, GS.
|
---|
3670 | */
|
---|
3671 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
|
---|
3672 | {
|
---|
3673 | /* Save the segment attributes for real-on-v86 mode hack, so we can restore them on VM-exit. */
|
---|
3674 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
3675 | {
|
---|
3676 | pVCpu->hm.s.vmx.RealMode.uAttrCS.u = pMixedCtx->cs.Attr.u;
|
---|
3677 | pVCpu->hm.s.vmx.RealMode.uAttrSS.u = pMixedCtx->ss.Attr.u;
|
---|
3678 | pVCpu->hm.s.vmx.RealMode.uAttrDS.u = pMixedCtx->ds.Attr.u;
|
---|
3679 | pVCpu->hm.s.vmx.RealMode.uAttrES.u = pMixedCtx->es.Attr.u;
|
---|
3680 | pVCpu->hm.s.vmx.RealMode.uAttrFS.u = pMixedCtx->fs.Attr.u;
|
---|
3681 | pVCpu->hm.s.vmx.RealMode.uAttrGS.u = pMixedCtx->gs.Attr.u;
|
---|
3682 | }
|
---|
3683 |
|
---|
3684 | #ifdef VBOX_WITH_REM
|
---|
3685 | if (!pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
3686 | {
|
---|
3687 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
3688 | AssertCompile(PGMMODE_REAL < PGMMODE_PROTECTED);
|
---|
3689 | if ( pVCpu->hm.s.vmx.fWasInRealMode
|
---|
3690 | && PGMGetGuestMode(pVCpu) >= PGMMODE_PROTECTED)
|
---|
3691 | {
|
---|
3692 | /* Signal that the recompiler must flush its code-cache as the guest -may- rewrite code it will later execute
|
---|
3693 | in real-mode (e.g. OpenBSD 4.0) */
|
---|
3694 | REMFlushTBs(pVM);
|
---|
3695 | Log4(("Load: Switch to protected mode detected!\n"));
|
---|
3696 | pVCpu->hm.s.vmx.fWasInRealMode = false;
|
---|
3697 | }
|
---|
3698 | }
|
---|
3699 | #endif
|
---|
3700 | rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_CS, VMX_VMCS32_GUEST_CS_LIMIT, VMX_VMCS_GUEST_CS_BASE,
|
---|
3701 | VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS, &pMixedCtx->cs, pMixedCtx);
|
---|
3702 | AssertRCReturn(rc, rc);
|
---|
3703 | rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_SS, VMX_VMCS32_GUEST_SS_LIMIT, VMX_VMCS_GUEST_SS_BASE,
|
---|
3704 | VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS, &pMixedCtx->ss, pMixedCtx);
|
---|
3705 | AssertRCReturn(rc, rc);
|
---|
3706 | rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_DS, VMX_VMCS32_GUEST_DS_LIMIT, VMX_VMCS_GUEST_DS_BASE,
|
---|
3707 | VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS, &pMixedCtx->ds, pMixedCtx);
|
---|
3708 | AssertRCReturn(rc, rc);
|
---|
3709 | rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_ES, VMX_VMCS32_GUEST_ES_LIMIT, VMX_VMCS_GUEST_ES_BASE,
|
---|
3710 | VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, &pMixedCtx->es, pMixedCtx);
|
---|
3711 | AssertRCReturn(rc, rc);
|
---|
3712 | rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_FS, VMX_VMCS32_GUEST_FS_LIMIT, VMX_VMCS_GUEST_FS_BASE,
|
---|
3713 | VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS, &pMixedCtx->fs, pMixedCtx);
|
---|
3714 | AssertRCReturn(rc, rc);
|
---|
3715 | rc = hmR0VmxWriteSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_GS, VMX_VMCS32_GUEST_GS_LIMIT, VMX_VMCS_GUEST_GS_BASE,
|
---|
3716 | VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS, &pMixedCtx->gs, pMixedCtx);
|
---|
3717 | AssertRCReturn(rc, rc);
|
---|
3718 |
|
---|
3719 | Log4(("Load: CS=%#RX16 Base=%#RX64 Limit=%#RX32 Attr=%#RX32\n", pMixedCtx->cs.Sel, pMixedCtx->cs.u64Base,
|
---|
3720 | pMixedCtx->cs.u32Limit, pMixedCtx->cs.Attr.u));
|
---|
3721 | #ifdef VBOX_STRICT
|
---|
3722 | hmR0VmxValidateSegmentRegs(pVM, pVCpu, pMixedCtx);
|
---|
3723 | #endif
|
---|
3724 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
|
---|
3725 | }
|
---|
3726 |
|
---|
3727 | /*
|
---|
3728 | * Guest TR.
|
---|
3729 | */
|
---|
3730 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
|
---|
3731 | {
|
---|
3732 | /*
|
---|
3733 | * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is achieved
|
---|
3734 | * using the interrupt redirection bitmap (all bits cleared to let the guest handle INT-n's) in the TSS.
|
---|
3735 | * See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
|
---|
3736 | */
|
---|
3737 | uint16_t u16Sel = 0;
|
---|
3738 | uint32_t u32Limit = 0;
|
---|
3739 | uint64_t u64Base = 0;
|
---|
3740 | uint32_t u32AccessRights = 0;
|
---|
3741 |
|
---|
3742 | if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
3743 | {
|
---|
3744 | u16Sel = pMixedCtx->tr.Sel;
|
---|
3745 | u32Limit = pMixedCtx->tr.u32Limit;
|
---|
3746 | u64Base = pMixedCtx->tr.u64Base;
|
---|
3747 | u32AccessRights = pMixedCtx->tr.Attr.u;
|
---|
3748 | }
|
---|
3749 | else
|
---|
3750 | {
|
---|
3751 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
3752 | Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMR3CanExecuteGuest() -XXX- what about inner loop changes? */
|
---|
3753 |
|
---|
3754 | /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
|
---|
3755 | RTGCPHYS GCPhys;
|
---|
3756 | rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
|
---|
3757 | AssertRCReturn(rc, rc);
|
---|
3758 |
|
---|
3759 | X86DESCATTR DescAttr;
|
---|
3760 | DescAttr.u = 0;
|
---|
3761 | DescAttr.n.u1Present = 1;
|
---|
3762 | DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
|
---|
3763 |
|
---|
3764 | u16Sel = 0;
|
---|
3765 | u32Limit = HM_VTX_TSS_SIZE;
|
---|
3766 | u64Base = GCPhys; /* in real-mode phys = virt. */
|
---|
3767 | u32AccessRights = DescAttr.u;
|
---|
3768 | }
|
---|
3769 |
|
---|
3770 | /* Validate. */
|
---|
3771 | Assert(!(u16Sel & RT_BIT(2)));
|
---|
3772 | AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
|
---|
3773 | || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
|
---|
3774 | AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
|
---|
3775 | Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
|
---|
3776 | Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
|
---|
3777 | Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
|
---|
3778 | Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
|
---|
3779 | Assert( (u32Limit & 0xfff) == 0xfff
|
---|
3780 | || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
|
---|
3781 | Assert( !(pMixedCtx->tr.u32Limit & 0xfff00000)
|
---|
3782 | || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
|
---|
3783 |
|
---|
3784 | rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_TR, u16Sel); AssertRCReturn(rc, rc);
|
---|
3785 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_LIMIT, u32Limit); AssertRCReturn(rc, rc);
|
---|
3786 | rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_TR_BASE, u64Base); AssertRCReturn(rc, rc);
|
---|
3787 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights); AssertRCReturn(rc, rc);
|
---|
3788 |
|
---|
3789 | Log4(("Load: VMX_VMCS_GUEST_TR_BASE=%#RX64\n", u64Base));
|
---|
3790 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
|
---|
3791 | }
|
---|
3792 |
|
---|
3793 | /*
|
---|
3794 | * Guest GDTR.
|
---|
3795 | */
|
---|
3796 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
|
---|
3797 | {
|
---|
3798 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, pMixedCtx->gdtr.cbGdt); AssertRCReturn(rc, rc);
|
---|
3799 | rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, pMixedCtx->gdtr.pGdt); AssertRCReturn(rc, rc);
|
---|
3800 |
|
---|
3801 | Assert(!(pMixedCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
|
---|
3802 | Log4(("Load: VMX_VMCS_GUEST_GDTR_BASE=%#RX64\n", pMixedCtx->gdtr.pGdt));
|
---|
3803 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
|
---|
3804 | }
|
---|
3805 |
|
---|
3806 | /*
|
---|
3807 | * Guest LDTR.
|
---|
3808 | */
|
---|
3809 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
|
---|
3810 | {
|
---|
3811 | /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
|
---|
3812 | uint32_t u32Access = 0;
|
---|
3813 | if (!pMixedCtx->ldtr.Attr.u)
|
---|
3814 | u32Access = X86DESCATTR_UNUSABLE;
|
---|
3815 | else
|
---|
3816 | u32Access = pMixedCtx->ldtr.Attr.u;
|
---|
3817 |
|
---|
3818 | rc = VMXWriteVmcs32(VMX_VMCS16_GUEST_FIELD_LDTR, pMixedCtx->ldtr.Sel); AssertRCReturn(rc, rc);
|
---|
3819 | rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_LIMIT, pMixedCtx->ldtr.u32Limit); AssertRCReturn(rc, rc);
|
---|
3820 | rc |= VMXWriteVmcsGstN(VMX_VMCS_GUEST_LDTR_BASE, pMixedCtx->ldtr.u64Base); AssertRCReturn(rc, rc);
|
---|
3821 | rc |= VMXWriteVmcs32(VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access); AssertRCReturn(rc, rc);
|
---|
3822 |
|
---|
3823 | /* Validate. */
|
---|
3824 | if (!(u32Access & X86DESCATTR_UNUSABLE))
|
---|
3825 | {
|
---|
3826 | Assert(!(pMixedCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
|
---|
3827 | Assert(pMixedCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
|
---|
3828 | Assert(!pMixedCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
|
---|
3829 | Assert(pMixedCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
|
---|
3830 | Assert(!pMixedCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
|
---|
3831 | Assert(!(pMixedCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
|
---|
3832 | Assert( (pMixedCtx->ldtr.u32Limit & 0xfff) == 0xfff
|
---|
3833 | || !pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
|
---|
3834 | Assert( !(pMixedCtx->ldtr.u32Limit & 0xfff00000)
|
---|
3835 | || pMixedCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
|
---|
3836 | }
|
---|
3837 |
|
---|
3838 | Log4(("Load: VMX_VMCS_GUEST_LDTR_BASE=%#RX64\n", pMixedCtx->ldtr.u64Base));
|
---|
3839 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
|
---|
3840 | }
|
---|
3841 |
|
---|
3842 | /*
|
---|
3843 | * Guest IDTR.
|
---|
3844 | */
|
---|
3845 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
|
---|
3846 | {
|
---|
3847 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, pMixedCtx->idtr.cbIdt); AssertRCReturn(rc, rc);
|
---|
3848 | rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, pMixedCtx->idtr.pIdt); AssertRCReturn(rc, rc);
|
---|
3849 |
|
---|
3850 | Assert(!(pMixedCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
|
---|
3851 | Log4(("Load: VMX_VMCS_GUEST_IDTR_BASE=%#RX64\n", pMixedCtx->idtr.pIdt));
|
---|
3852 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
|
---|
3853 | }
|
---|
3854 |
|
---|
3855 | return VINF_SUCCESS;
|
---|
3856 | }
|
---|
3857 |
|
---|
3858 |
|
---|
3859 | /**
|
---|
3860 | * Loads certain guest MSRs into the VM-entry MSR-load and VM-exit MSR-store
|
---|
3861 | * areas. These MSRs will automatically be loaded to the host CPU on every
|
---|
3862 | * successful VM entry and stored from the host CPU on every successful VM exit.
|
---|
3863 | * Also loads the sysenter MSRs into the guest-state area in the VMCS.
|
---|
3864 | *
|
---|
3865 | * @returns VBox status code.
|
---|
3866 | * @param pVCpu Pointer to the VMCPU.
|
---|
3867 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3868 | * out-of-sync. Make sure to update the required fields
|
---|
3869 | * before using them.
|
---|
3870 | *
|
---|
3871 | * @remarks No-long-jump zone!!!
|
---|
3872 | */
|
---|
3873 | static int hmR0VmxLoadGuestMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
3874 | {
|
---|
3875 | AssertPtr(pVCpu);
|
---|
3876 | AssertPtr(pVCpu->hm.s.vmx.pvGuestMsr);
|
---|
3877 |
|
---|
3878 | /*
|
---|
3879 | * MSRs covered by Auto-load/store: EFER, LSTAR, STAR, SF_MASK, TSC_AUX (RDTSCP).
|
---|
3880 | */
|
---|
3881 | int rc = VINF_SUCCESS;
|
---|
3882 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_GUEST_AUTO_MSRS)
|
---|
3883 | {
|
---|
3884 | #ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
|
---|
3885 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3886 | PVMXMSR pGuestMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvGuestMsr;
|
---|
3887 | uint32_t cGuestMsrs = 0;
|
---|
3888 |
|
---|
3889 | /* See Intel spec. 4.1.4 "Enumeration of Paging Features by CPUID". */
|
---|
3890 | /** @todo r=ramshankar: Optimize this further to do lazy restoration and only
|
---|
3891 | * when the guest really is in 64-bit mode. */
|
---|
3892 | bool fSupportsLongMode = CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_LONG_MODE);
|
---|
3893 | if (fSupportsLongMode)
|
---|
3894 | {
|
---|
3895 | pGuestMsr->u32IndexMSR = MSR_K8_LSTAR;
|
---|
3896 | pGuestMsr->u32Reserved = 0;
|
---|
3897 | pGuestMsr->u64Value = pMixedCtx->msrLSTAR; /* 64 bits mode syscall rip */
|
---|
3898 | pGuestMsr++; cGuestMsrs++;
|
---|
3899 | pGuestMsr->u32IndexMSR = MSR_K6_STAR;
|
---|
3900 | pGuestMsr->u32Reserved = 0;
|
---|
3901 | pGuestMsr->u64Value = pMixedCtx->msrSTAR; /* legacy syscall eip, cs & ss */
|
---|
3902 | pGuestMsr++; cGuestMsrs++;
|
---|
3903 | pGuestMsr->u32IndexMSR = MSR_K8_SF_MASK;
|
---|
3904 | pGuestMsr->u32Reserved = 0;
|
---|
3905 | pGuestMsr->u64Value = pMixedCtx->msrSFMASK; /* syscall flag mask */
|
---|
3906 | pGuestMsr++; cGuestMsrs++;
|
---|
3907 | pGuestMsr->u32IndexMSR = MSR_K8_KERNEL_GS_BASE;
|
---|
3908 | pGuestMsr->u32Reserved = 0;
|
---|
3909 | pGuestMsr->u64Value = pMixedCtx->msrKERNELGSBASE; /* swapgs exchange value */
|
---|
3910 | pGuestMsr++; cGuestMsrs++;
|
---|
3911 | }
|
---|
3912 |
|
---|
3913 | /*
|
---|
3914 | * RDTSCP requires the TSC_AUX MSR. Host and guest share the physical MSR. So we have to
|
---|
3915 | * load the guest's copy if the guest can execute RDTSCP without causing VM-exits.
|
---|
3916 | */
|
---|
3917 | if ( CPUMGetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_RDTSCP)
|
---|
3918 | && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP))
|
---|
3919 | {
|
---|
3920 | pGuestMsr->u32IndexMSR = MSR_K8_TSC_AUX;
|
---|
3921 | pGuestMsr->u32Reserved = 0;
|
---|
3922 | rc = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &pGuestMsr->u64Value);
|
---|
3923 | AssertRCReturn(rc, rc);
|
---|
3924 | pGuestMsr++; cGuestMsrs++;
|
---|
3925 | }
|
---|
3926 |
|
---|
3927 | /* Shouldn't ever happen but there -is- a number. We're well within the recommended 512. */
|
---|
3928 | if (cGuestMsrs > MSR_IA32_VMX_MISC_MAX_MSR(pVM->hm.s.vmx.msr.vmx_misc))
|
---|
3929 | {
|
---|
3930 | LogRel(("CPU autoload/store MSR count in VMCS exceeded cGuestMsrs=%u.\n", cGuestMsrs));
|
---|
3931 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
3932 | }
|
---|
3933 |
|
---|
3934 | /* Update the VCPU's copy of the guest MSR count. */
|
---|
3935 | pVCpu->hm.s.vmx.cGuestMsrs = cGuestMsrs;
|
---|
3936 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, cGuestMsrs); AssertRCReturn(rc, rc);
|
---|
3937 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, cGuestMsrs); AssertRCReturn(rc, rc);
|
---|
3938 | #endif /* VBOX_WITH_AUTO_MSR_LOAD_RESTORE */
|
---|
3939 |
|
---|
3940 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_GUEST_AUTO_MSRS;
|
---|
3941 | }
|
---|
3942 |
|
---|
3943 | /*
|
---|
3944 | * Guest Sysenter MSRs.
|
---|
3945 | * These flags are only set when MSR-bitmaps are not supported by the CPU and we cause
|
---|
3946 | * VM-exits on WRMSRs for these MSRs.
|
---|
3947 | */
|
---|
3948 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SYSENTER_CS_MSR)
|
---|
3949 | {
|
---|
3950 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, pMixedCtx->SysEnter.cs); AssertRCReturn(rc, rc);
|
---|
3951 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SYSENTER_CS_MSR;
|
---|
3952 | }
|
---|
3953 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SYSENTER_EIP_MSR)
|
---|
3954 | {
|
---|
3955 | rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, pMixedCtx->SysEnter.eip); AssertRCReturn(rc, rc);
|
---|
3956 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SYSENTER_EIP_MSR;
|
---|
3957 | }
|
---|
3958 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SYSENTER_ESP_MSR)
|
---|
3959 | {
|
---|
3960 | rc = VMXWriteVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, pMixedCtx->SysEnter.esp); AssertRCReturn(rc, rc);
|
---|
3961 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SYSENTER_ESP_MSR;
|
---|
3962 | }
|
---|
3963 |
|
---|
3964 | return rc;
|
---|
3965 | }
|
---|
3966 |
|
---|
3967 |
|
---|
3968 | /**
|
---|
3969 | * Loads the guest activity state into the guest-state area in the VMCS.
|
---|
3970 | *
|
---|
3971 | * @returns VBox status code.
|
---|
3972 | * @param pVCpu Pointer to the VMCPU.
|
---|
3973 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
3974 | * out-of-sync. Make sure to update the required fields
|
---|
3975 | * before using them.
|
---|
3976 | *
|
---|
3977 | * @remarks No-long-jump zone!!!
|
---|
3978 | */
|
---|
3979 | static int hmR0VmxLoadGuestActivityState(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3980 | {
|
---|
3981 | /** @todo See if we can make use of other states, e.g.
|
---|
3982 | * VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN or HLT. */
|
---|
3983 | int rc = VINF_SUCCESS;
|
---|
3984 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_VMX_GUEST_ACTIVITY_STATE)
|
---|
3985 | {
|
---|
3986 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, VMX_VMCS_GUEST_ACTIVITY_ACTIVE);
|
---|
3987 | AssertRCReturn(rc, rc);
|
---|
3988 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_VMX_GUEST_ACTIVITY_STATE;
|
---|
3989 | }
|
---|
3990 | return rc;
|
---|
3991 | }
|
---|
3992 |
|
---|
3993 |
|
---|
3994 | /**
|
---|
3995 | * Sets up the appropriate function to run guest code.
|
---|
3996 | *
|
---|
3997 | * @returns VBox status code.
|
---|
3998 | * @param pVCpu Pointer to the VMCPU.
|
---|
3999 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
4000 | * out-of-sync. Make sure to update the required fields
|
---|
4001 | * before using them.
|
---|
4002 | *
|
---|
4003 | * @remarks No-long-jump zone!!!
|
---|
4004 | */
|
---|
4005 | static int hmR0VmxSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
4006 | {
|
---|
4007 | if (CPUMIsGuestInLongModeEx(pMixedCtx))
|
---|
4008 | {
|
---|
4009 | #ifndef VBOX_ENABLE_64_BITS_GUESTS
|
---|
4010 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
4011 | #endif
|
---|
4012 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
|
---|
4013 | #if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
4014 | /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
|
---|
4015 | pVCpu->hm.s.vmx.pfnStartVM = VMXR0SwitcherStartVM64;
|
---|
4016 | #else
|
---|
4017 | /* 64-bit host or hybrid host. */
|
---|
4018 | pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM64;
|
---|
4019 | #endif
|
---|
4020 | }
|
---|
4021 | else
|
---|
4022 | {
|
---|
4023 | /* Guest is not in long mode, use the 32-bit handler. */
|
---|
4024 | pVCpu->hm.s.vmx.pfnStartVM = VMXR0StartVM32;
|
---|
4025 | }
|
---|
4026 | Assert(pVCpu->hm.s.vmx.pfnStartVM);
|
---|
4027 | return VINF_SUCCESS;
|
---|
4028 | }
|
---|
4029 |
|
---|
4030 |
|
---|
4031 | /**
|
---|
4032 | * Wrapper for running the guest code in VT-x.
|
---|
4033 | *
|
---|
4034 | * @returns VBox strict status code.
|
---|
4035 | * @param pVM Pointer to the VM.
|
---|
4036 | * @param pVCpu Pointer to the VMCPU.
|
---|
4037 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4038 | *
|
---|
4039 | * @remarks No-long-jump zone!!!
|
---|
4040 | */
|
---|
4041 | DECLINLINE(int) hmR0VmxRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
4042 | {
|
---|
4043 | /*
|
---|
4044 | * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
|
---|
4045 | * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
|
---|
4046 | * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
|
---|
4047 | */
|
---|
4048 | #ifdef VBOX_WITH_KERNEL_USING_XMM
|
---|
4049 | return HMR0VMXStartVMWrapXMM(pVCpu->hm.s.fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu, pVCpu->hm.s.vmx.pfnStartVM);
|
---|
4050 | #else
|
---|
4051 | return pVCpu->hm.s.vmx.pfnStartVM(pVCpu->hm.s.fResumeVM, pCtx, &pVCpu->hm.s.vmx.VMCSCache, pVM, pVCpu);
|
---|
4052 | #endif
|
---|
4053 | }
|
---|
4054 |
|
---|
4055 |
|
---|
4056 | /**
|
---|
4057 | * Reports world-switch error and dumps some useful debug info.
|
---|
4058 | *
|
---|
4059 | * @param pVM Pointer to the VM.
|
---|
4060 | * @param pVCpu Pointer to the VMCPU.
|
---|
4061 | * @param rcVMRun The return code from VMLAUNCH/VMRESUME.
|
---|
4062 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4063 | * @param pVmxTransient Pointer to the VMX transient structure (only
|
---|
4064 | * exitReason updated).
|
---|
4065 | */
|
---|
4066 | static void hmR0VmxReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx, PVMXTRANSIENT pVmxTransient)
|
---|
4067 | {
|
---|
4068 | Assert(pVM);
|
---|
4069 | Assert(pVCpu);
|
---|
4070 | Assert(pCtx);
|
---|
4071 | Assert(pVmxTransient);
|
---|
4072 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
4073 |
|
---|
4074 | Log4(("VM-entry failure: %Rrc\n", rcVMRun));
|
---|
4075 | switch (rcVMRun)
|
---|
4076 | {
|
---|
4077 | case VERR_VMX_INVALID_VMXON_PTR:
|
---|
4078 | AssertFailed();
|
---|
4079 | break;
|
---|
4080 | case VINF_SUCCESS: /* VMLAUNCH/VMRESUME succeeded but VM-entry failed... yeah, true story. */
|
---|
4081 | case VERR_VMX_UNABLE_TO_START_VM: /* VMLAUNCH/VMRESUME itself failed. */
|
---|
4082 | {
|
---|
4083 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &pVCpu->hm.s.vmx.LastError.u32ExitReason);
|
---|
4084 | rc |= VMXReadVmcs32(VMX_VMCS32_RO_VM_INSTR_ERROR, &pVCpu->hm.s.vmx.LastError.u32InstrError);
|
---|
4085 | rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
4086 | AssertRC(rc);
|
---|
4087 |
|
---|
4088 | #ifdef VBOX_STRICT
|
---|
4089 | Log4(("uExitReason %#RX32 (VmxTransient %#RX16)\n", pVCpu->hm.s.vmx.LastError.u32ExitReason,
|
---|
4090 | pVmxTransient->uExitReason));
|
---|
4091 | Log4(("Exit Qualification %#RX64\n", pVmxTransient->uExitQualification));
|
---|
4092 | Log4(("InstrError %#RX32\n", pVCpu->hm.s.vmx.LastError.u32InstrError));
|
---|
4093 | if (pVCpu->hm.s.vmx.LastError.u32InstrError <= HMVMX_INSTR_ERROR_MAX)
|
---|
4094 | Log4(("InstrError Desc. \"%s\"\n", g_apszVmxInstrErrors[pVCpu->hm.s.vmx.LastError.u32InstrError]));
|
---|
4095 | else
|
---|
4096 | Log4(("InstrError Desc. Range exceeded %u\n", HMVMX_INSTR_ERROR_MAX));
|
---|
4097 |
|
---|
4098 | /* VMX control bits. */
|
---|
4099 | uint32_t u32Val;
|
---|
4100 | uint64_t u64Val;
|
---|
4101 | HMVMXHCUINTREG uHCReg;
|
---|
4102 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PIN_EXEC, &u32Val); AssertRC(rc);
|
---|
4103 | Log4(("VMX_VMCS32_CTRL_PIN_EXEC %#RX32\n", u32Val));
|
---|
4104 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val); AssertRC(rc);
|
---|
4105 | Log4(("VMX_VMCS32_CTRL_PROC_EXEC %#RX32\n", u32Val));
|
---|
4106 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val); AssertRC(rc);
|
---|
4107 | Log4(("VMX_VMCS32_CTRL_PROC_EXEC2 %#RX32\n", u32Val));
|
---|
4108 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY, &u32Val); AssertRC(rc);
|
---|
4109 | Log4(("VMX_VMCS32_CTRL_ENTRY %#RX32\n", u32Val));
|
---|
4110 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT, &u32Val); AssertRC(rc);
|
---|
4111 | Log4(("VMX_VMCS32_CTRL_EXIT %#RX32\n", u32Val));
|
---|
4112 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_CR3_TARGET_COUNT, &u32Val); AssertRC(rc);
|
---|
4113 | Log4(("VMX_VMCS32_CTRL_CR3_TARGET_COUNT %#RX32\n", u32Val));
|
---|
4114 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32Val); AssertRC(rc);
|
---|
4115 | Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", u32Val));
|
---|
4116 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &u32Val); AssertRC(rc);
|
---|
4117 | Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", u32Val));
|
---|
4118 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &u32Val); AssertRC(rc);
|
---|
4119 | Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %u\n", u32Val));
|
---|
4120 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_TPR_THRESHOLD, &u32Val); AssertRC(rc);
|
---|
4121 | Log4(("VMX_VMCS32_CTRL_TPR_THRESHOLD %u\n", u32Val));
|
---|
4122 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT, &u32Val); AssertRC(rc);
|
---|
4123 | Log4(("VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT %u (guest MSRs)\n", u32Val));
|
---|
4124 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
|
---|
4125 | Log4(("VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT %u (host MSRs)\n", u32Val));
|
---|
4126 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT, &u32Val); AssertRC(rc);
|
---|
4127 | Log4(("VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT %u (guest MSRs)\n", u32Val));
|
---|
4128 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val); AssertRC(rc);
|
---|
4129 | Log4(("VMX_VMCS32_CTRL_EXCEPTION_BITMAP %#RX32\n", u32Val));
|
---|
4130 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK, &u32Val); AssertRC(rc);
|
---|
4131 | Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK %#RX32\n", u32Val));
|
---|
4132 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH, &u32Val); AssertRC(rc);
|
---|
4133 | Log4(("VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH %#RX32\n", u32Val));
|
---|
4134 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
|
---|
4135 | Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
|
---|
4136 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
|
---|
4137 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
|
---|
4138 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
|
---|
4139 | Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
|
---|
4140 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
|
---|
4141 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
|
---|
4142 | rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
|
---|
4143 | Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
|
---|
4144 |
|
---|
4145 | /* Guest bits. */
|
---|
4146 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val); AssertRC(rc);
|
---|
4147 | Log4(("Old Guest Rip %#RX64 New %#RX64\n", pCtx->rip, u64Val));
|
---|
4148 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val); AssertRC(rc);
|
---|
4149 | Log4(("Old Guest Rsp %#RX64 New %#RX64\n", pCtx->rsp, u64Val));
|
---|
4150 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32Val); AssertRC(rc);
|
---|
4151 | Log4(("Old Guest Rflags %#RX32 New %#RX32\n", pCtx->eflags.u32, u32Val));
|
---|
4152 | rc = VMXReadVmcs32(VMX_VMCS16_GUEST_FIELD_VPID, &u32Val); AssertRC(rc);
|
---|
4153 | Log4(("VMX_VMCS16_GUEST_FIELD_VPID %u\n", u32Val));
|
---|
4154 |
|
---|
4155 | /* Host bits. */
|
---|
4156 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR0, &uHCReg); AssertRC(rc);
|
---|
4157 | Log4(("Host CR0 %#RHr\n", uHCReg));
|
---|
4158 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR3, &uHCReg); AssertRC(rc);
|
---|
4159 | Log4(("Host CR3 %#RHr\n", uHCReg));
|
---|
4160 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_CR4, &uHCReg); AssertRC(rc);
|
---|
4161 | Log4(("Host CR4 %#RHr\n", uHCReg));
|
---|
4162 |
|
---|
4163 | RTGDTR HostGdtr;
|
---|
4164 | PCX86DESCHC pDesc;
|
---|
4165 | ASMGetGDTR(&HostGdtr);
|
---|
4166 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_CS, &u32Val); AssertRC(rc);
|
---|
4167 | Log4(("Host CS %#08x\n", u32Val));
|
---|
4168 | if (u32Val < HostGdtr.cbGdt)
|
---|
4169 | {
|
---|
4170 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
4171 | HMR0DumpDescriptor(pDesc, u32Val, "CS: ");
|
---|
4172 | }
|
---|
4173 |
|
---|
4174 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_DS, &u32Val); AssertRC(rc);
|
---|
4175 | Log4(("Host DS %#08x\n", u32Val));
|
---|
4176 | if (u32Val < HostGdtr.cbGdt)
|
---|
4177 | {
|
---|
4178 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
4179 | HMR0DumpDescriptor(pDesc, u32Val, "DS: ");
|
---|
4180 | }
|
---|
4181 |
|
---|
4182 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_ES, &u32Val); AssertRC(rc);
|
---|
4183 | Log4(("Host ES %#08x\n", u32Val));
|
---|
4184 | if (u32Val < HostGdtr.cbGdt)
|
---|
4185 | {
|
---|
4186 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
4187 | HMR0DumpDescriptor(pDesc, u32Val, "ES: ");
|
---|
4188 | }
|
---|
4189 |
|
---|
4190 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_FS, &u32Val); AssertRC(rc);
|
---|
4191 | Log4(("Host FS %#08x\n", u32Val));
|
---|
4192 | if (u32Val < HostGdtr.cbGdt)
|
---|
4193 | {
|
---|
4194 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
4195 | HMR0DumpDescriptor(pDesc, u32Val, "FS: ");
|
---|
4196 | }
|
---|
4197 |
|
---|
4198 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_GS, &u32Val); AssertRC(rc);
|
---|
4199 | Log4(("Host GS %#08x\n", u32Val));
|
---|
4200 | if (u32Val < HostGdtr.cbGdt)
|
---|
4201 | {
|
---|
4202 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
4203 | HMR0DumpDescriptor(pDesc, u32Val, "GS: ");
|
---|
4204 | }
|
---|
4205 |
|
---|
4206 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_SS, &u32Val); AssertRC(rc);
|
---|
4207 | Log4(("Host SS %#08x\n", u32Val));
|
---|
4208 | if (u32Val < HostGdtr.cbGdt)
|
---|
4209 | {
|
---|
4210 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
4211 | HMR0DumpDescriptor(pDesc, u32Val, "SS: ");
|
---|
4212 | }
|
---|
4213 |
|
---|
4214 | rc = VMXReadVmcs32(VMX_VMCS16_HOST_FIELD_TR, &u32Val); AssertRC(rc);
|
---|
4215 | Log4(("Host TR %#08x\n", u32Val));
|
---|
4216 | if (u32Val < HostGdtr.cbGdt)
|
---|
4217 | {
|
---|
4218 | pDesc = (PCX86DESCHC)(HostGdtr.pGdt + (u32Val & X86_SEL_MASK));
|
---|
4219 | HMR0DumpDescriptor(pDesc, u32Val, "TR: ");
|
---|
4220 | }
|
---|
4221 |
|
---|
4222 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_TR_BASE, &uHCReg); AssertRC(rc);
|
---|
4223 | Log4(("Host TR Base %#RHv\n", uHCReg));
|
---|
4224 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_GDTR_BASE, &uHCReg); AssertRC(rc);
|
---|
4225 | Log4(("Host GDTR Base %#RHv\n", uHCReg));
|
---|
4226 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_IDTR_BASE, &uHCReg); AssertRC(rc);
|
---|
4227 | Log4(("Host IDTR Base %#RHv\n", uHCReg));
|
---|
4228 | rc = VMXReadVmcs32(VMX_VMCS32_HOST_SYSENTER_CS, &u32Val); AssertRC(rc);
|
---|
4229 | Log4(("Host SYSENTER CS %#08x\n", u32Val));
|
---|
4230 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_EIP, &uHCReg); AssertRC(rc);
|
---|
4231 | Log4(("Host SYSENTER EIP %#RHv\n", uHCReg));
|
---|
4232 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_SYSENTER_ESP, &uHCReg); AssertRC(rc);
|
---|
4233 | Log4(("Host SYSENTER ESP %#RHv\n", uHCReg));
|
---|
4234 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RSP, &uHCReg); AssertRC(rc);
|
---|
4235 | Log4(("Host RSP %#RHv\n", uHCReg));
|
---|
4236 | rc = VMXReadVmcsHstN(VMX_VMCS_HOST_RIP, &uHCReg); AssertRC(rc);
|
---|
4237 | Log4(("Host RIP %#RHv\n", uHCReg));
|
---|
4238 | # if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
4239 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
4240 | {
|
---|
4241 | Log4(("MSR_K6_EFER = %#RX64\n", ASMRdMsr(MSR_K6_EFER)));
|
---|
4242 | Log4(("MSR_K6_STAR = %#RX64\n", ASMRdMsr(MSR_K6_STAR)));
|
---|
4243 | Log4(("MSR_K8_LSTAR = %#RX64\n", ASMRdMsr(MSR_K8_LSTAR)));
|
---|
4244 | Log4(("MSR_K8_CSTAR = %#RX64\n", ASMRdMsr(MSR_K8_CSTAR)));
|
---|
4245 | Log4(("MSR_K8_SF_MASK = %#RX64\n", ASMRdMsr(MSR_K8_SF_MASK)));
|
---|
4246 | Log4(("MSR_K8_KERNEL_GS_BASE = %#RX64\n", ASMRdMsr(MSR_K8_KERNEL_GS_BASE)));
|
---|
4247 | }
|
---|
4248 | # endif
|
---|
4249 | #endif /* VBOX_STRICT */
|
---|
4250 | break;
|
---|
4251 | }
|
---|
4252 |
|
---|
4253 | default:
|
---|
4254 | /* Impossible */
|
---|
4255 | AssertMsgFailed(("hmR0VmxReportWorldSwitchError %Rrc (%#x)\n", rcVMRun, rcVMRun));
|
---|
4256 | break;
|
---|
4257 | }
|
---|
4258 | NOREF(pVM);
|
---|
4259 | }
|
---|
4260 |
|
---|
4261 |
|
---|
4262 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
4263 | #ifndef VMX_USE_CACHED_VMCS_ACCESSES
|
---|
4264 | # error "VMX_USE_CACHED_VMCS_ACCESSES not defined when it should be!"
|
---|
4265 | #endif
|
---|
4266 | #ifdef VBOX_STRICT
|
---|
4267 | static bool hmR0VmxIsValidWriteField(uint32_t idxField)
|
---|
4268 | {
|
---|
4269 | switch (idxField)
|
---|
4270 | {
|
---|
4271 | case VMX_VMCS_GUEST_RIP:
|
---|
4272 | case VMX_VMCS_GUEST_RSP:
|
---|
4273 | case VMX_VMCS_GUEST_SYSENTER_EIP:
|
---|
4274 | case VMX_VMCS_GUEST_SYSENTER_ESP:
|
---|
4275 | case VMX_VMCS_GUEST_GDTR_BASE:
|
---|
4276 | case VMX_VMCS_GUEST_IDTR_BASE:
|
---|
4277 | case VMX_VMCS_GUEST_CS_BASE:
|
---|
4278 | case VMX_VMCS_GUEST_DS_BASE:
|
---|
4279 | case VMX_VMCS_GUEST_ES_BASE:
|
---|
4280 | case VMX_VMCS_GUEST_FS_BASE:
|
---|
4281 | case VMX_VMCS_GUEST_GS_BASE:
|
---|
4282 | case VMX_VMCS_GUEST_SS_BASE:
|
---|
4283 | case VMX_VMCS_GUEST_LDTR_BASE:
|
---|
4284 | case VMX_VMCS_GUEST_TR_BASE:
|
---|
4285 | case VMX_VMCS_GUEST_CR3:
|
---|
4286 | return true;
|
---|
4287 | }
|
---|
4288 | return false;
|
---|
4289 | }
|
---|
4290 |
|
---|
4291 | static bool hmR0VmxIsValidReadField(uint32_t idxField)
|
---|
4292 | {
|
---|
4293 | switch (idxField)
|
---|
4294 | {
|
---|
4295 | /* Read-only fields. */
|
---|
4296 | case VMX_VMCS_RO_EXIT_QUALIFICATION:
|
---|
4297 | return true;
|
---|
4298 | }
|
---|
4299 | /* Remaining readable fields should also be writable. */
|
---|
4300 | return hmR0VmxIsValidWriteField(idxField);
|
---|
4301 | }
|
---|
4302 | #endif /* VBOX_STRICT */
|
---|
4303 |
|
---|
4304 |
|
---|
4305 | /**
|
---|
4306 | * Executes the specified handler in 64-bit mode.
|
---|
4307 | *
|
---|
4308 | * @returns VBox status code.
|
---|
4309 | * @param pVM Pointer to the VM.
|
---|
4310 | * @param pVCpu Pointer to the VMCPU.
|
---|
4311 | * @param pCtx Pointer to the guest CPU context.
|
---|
4312 | * @param enmOp The operation to perform.
|
---|
4313 | * @param cbParam Number of parameters.
|
---|
4314 | * @param paParam Array of 32-bit parameters.
|
---|
4315 | */
|
---|
4316 | VMMR0DECL(int) VMXR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
|
---|
4317 | uint32_t *paParam)
|
---|
4318 | {
|
---|
4319 | int rc, rc2;
|
---|
4320 | PHMGLOBLCPUINFO pCpu;
|
---|
4321 | RTHCPHYS HCPhysCpuPage;
|
---|
4322 | RTCCUINTREG uOldEFlags;
|
---|
4323 |
|
---|
4324 | AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
|
---|
4325 | Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
|
---|
4326 | Assert(pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Write.aField));
|
---|
4327 | Assert(pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries <= RT_ELEMENTS(pVCpu->hm.s.vmx.VMCSCache.Read.aField));
|
---|
4328 |
|
---|
4329 | #ifdef VBOX_STRICT
|
---|
4330 | for (uint32_t i = 0; i < pVCpu->hm.s.vmx.VMCSCache.Write.cValidEntries; i++)
|
---|
4331 | Assert(hmR0VmxIsValidWriteField(pVCpu->hm.s.vmx.VMCSCache.Write.aField[i]));
|
---|
4332 |
|
---|
4333 | for (uint32_t i = 0; i <pVCpu->hm.s.vmx.VMCSCache.Read.cValidEntries; i++)
|
---|
4334 | Assert(hmR0VmxIsValidReadField(pVCpu->hm.s.vmx.VMCSCache.Read.aField[i]));
|
---|
4335 | #endif
|
---|
4336 |
|
---|
4337 | /* Disable interrupts. */
|
---|
4338 | uOldEFlags = ASMIntDisableFlags();
|
---|
4339 |
|
---|
4340 | #ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
|
---|
4341 | RTCPUID idHostCpu = RTMpCpuId();
|
---|
4342 | CPUMR0SetLApic(pVM, idHostCpu);
|
---|
4343 | #endif
|
---|
4344 |
|
---|
4345 | pCpu = HMR0GetCurrentCpu();
|
---|
4346 | HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
|
---|
4347 |
|
---|
4348 | /* Clear VMCS. Marking it inactive, clearing implementation-specific data and writing VMCS data back to memory. */
|
---|
4349 | VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
4350 |
|
---|
4351 | /* Leave VMX Root Mode. */
|
---|
4352 | VMXDisable();
|
---|
4353 |
|
---|
4354 | ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
|
---|
4355 |
|
---|
4356 | CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
|
---|
4357 | CPUMSetHyperEIP(pVCpu, enmOp);
|
---|
4358 | for (int i = (int)cbParam - 1; i >= 0; i--)
|
---|
4359 | CPUMPushHyper(pVCpu, paParam[i]);
|
---|
4360 |
|
---|
4361 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
4362 |
|
---|
4363 | /* Call the switcher. */
|
---|
4364 | rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
|
---|
4365 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
4366 |
|
---|
4367 | /** @todo replace with hmR0VmxEnterRootMode() and hmR0VmxLeaveRootMode(). */
|
---|
4368 | /* Make sure the VMX instructions don't cause #UD faults. */
|
---|
4369 | ASMSetCR4(ASMGetCR4() | X86_CR4_VMXE);
|
---|
4370 |
|
---|
4371 | /* Re-enter VMX Root Mode */
|
---|
4372 | rc2 = VMXEnable(HCPhysCpuPage);
|
---|
4373 | if (RT_FAILURE(rc2))
|
---|
4374 | {
|
---|
4375 | ASMSetCR4(ASMGetCR4() & ~X86_CR4_VMXE);
|
---|
4376 | ASMSetFlags(uOldEFlags);
|
---|
4377 | return rc2;
|
---|
4378 | }
|
---|
4379 |
|
---|
4380 | rc2 = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
4381 | AssertRC(rc2);
|
---|
4382 | Assert(!(ASMGetFlags() & X86_EFL_IF));
|
---|
4383 | ASMSetFlags(uOldEFlags);
|
---|
4384 | return rc;
|
---|
4385 | }
|
---|
4386 |
|
---|
4387 |
|
---|
4388 | /**
|
---|
4389 | * Prepares for and executes VMLAUNCH (64 bits guests) for 32-bit hosts
|
---|
4390 | * supporting 64-bit guests.
|
---|
4391 | *
|
---|
4392 | * @returns VBox status code.
|
---|
4393 | * @param fResume Whether to VMLAUNCH or VMRESUME.
|
---|
4394 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4395 | * @param pCache Pointer to the VMCS cache.
|
---|
4396 | * @param pVM Pointer to the VM.
|
---|
4397 | * @param pVCpu Pointer to the VMCPU.
|
---|
4398 | */
|
---|
4399 | DECLASM(int) VMXR0SwitcherStartVM64(RTHCUINT fResume, PCPUMCTX pCtx, PVMCSCACHE pCache, PVM pVM, PVMCPU pVCpu)
|
---|
4400 | {
|
---|
4401 | uint32_t aParam[6];
|
---|
4402 | PHMGLOBLCPUINFO pCpu = NULL;
|
---|
4403 | RTHCPHYS HCPhysCpuPage = 0;
|
---|
4404 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
4405 |
|
---|
4406 | pCpu = HMR0GetCurrentCpu();
|
---|
4407 | HCPhysCpuPage = RTR0MemObjGetPagePhysAddr(pCpu->hMemObj, 0);
|
---|
4408 |
|
---|
4409 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
4410 | pCache->uPos = 1;
|
---|
4411 | pCache->interPD = PGMGetInterPaeCR3(pVM);
|
---|
4412 | pCache->pSwitcher = (uint64_t)pVM->hm.s.pfnHost32ToGuest64R0;
|
---|
4413 | #endif
|
---|
4414 |
|
---|
4415 | #ifdef VBOX_STRICT
|
---|
4416 | pCache->TestIn.HCPhysCpuPage = 0;
|
---|
4417 | pCache->TestIn.HCPhysVmcs = 0;
|
---|
4418 | pCache->TestIn.pCache = 0;
|
---|
4419 | pCache->TestOut.HCPhysVmcs = 0;
|
---|
4420 | pCache->TestOut.pCache = 0;
|
---|
4421 | pCache->TestOut.pCtx = 0;
|
---|
4422 | pCache->TestOut.eflags = 0;
|
---|
4423 | #endif
|
---|
4424 |
|
---|
4425 | aParam[0] = (uint32_t)(HCPhysCpuPage); /* Param 1: VMXON physical address - Lo. */
|
---|
4426 | aParam[1] = (uint32_t)(HCPhysCpuPage >> 32); /* Param 1: VMXON physical address - Hi. */
|
---|
4427 | aParam[2] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs); /* Param 2: VMCS physical address - Lo. */
|
---|
4428 | aParam[3] = (uint32_t)(pVCpu->hm.s.vmx.HCPhysVmcs >> 32); /* Param 2: VMCS physical address - Hi. */
|
---|
4429 | aParam[4] = VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache);
|
---|
4430 | aParam[5] = 0;
|
---|
4431 |
|
---|
4432 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
4433 | pCtx->dr[4] = pVM->hm.s.vmx.pScratchPhys + 16 + 8;
|
---|
4434 | *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 1;
|
---|
4435 | #endif
|
---|
4436 | rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_VMXRCStartVM64, 6, &aParam[0]);
|
---|
4437 |
|
---|
4438 | #ifdef VBOX_WITH_CRASHDUMP_MAGIC
|
---|
4439 | Assert(*(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) == 5);
|
---|
4440 | Assert(pCtx->dr[4] == 10);
|
---|
4441 | *(uint32_t *)(pVM->hm.s.vmx.pScratch + 16 + 8) = 0xff;
|
---|
4442 | #endif
|
---|
4443 |
|
---|
4444 | #ifdef VBOX_STRICT
|
---|
4445 | AssertMsg(pCache->TestIn.HCPhysCpuPage == HCPhysCpuPage, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysCpuPage, HCPhysCpuPage));
|
---|
4446 | AssertMsg(pCache->TestIn.HCPhysVmcs == pVCpu->hm.s.vmx.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
|
---|
4447 | pVCpu->hm.s.vmx.HCPhysVmcs));
|
---|
4448 | AssertMsg(pCache->TestIn.HCPhysVmcs == pCache->TestOut.HCPhysVmcs, ("%RHp vs %RHp\n", pCache->TestIn.HCPhysVmcs,
|
---|
4449 | pCache->TestOut.HCPhysVmcs));
|
---|
4450 | AssertMsg(pCache->TestIn.pCache == pCache->TestOut.pCache, ("%RGv vs %RGv\n", pCache->TestIn.pCache,
|
---|
4451 | pCache->TestOut.pCache));
|
---|
4452 | AssertMsg(pCache->TestIn.pCache == VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache),
|
---|
4453 | ("%RGv vs %RGv\n", pCache->TestIn.pCache, VM_RC_ADDR(pVM, &pVM->aCpus[pVCpu->idCpu].hm.s.vmx.VMCSCache)));
|
---|
4454 | AssertMsg(pCache->TestIn.pCtx == pCache->TestOut.pCtx, ("%RGv vs %RGv\n", pCache->TestIn.pCtx,
|
---|
4455 | pCache->TestOut.pCtx));
|
---|
4456 | Assert(!(pCache->TestOut.eflags & X86_EFL_IF));
|
---|
4457 | #endif
|
---|
4458 | return rc;
|
---|
4459 | }
|
---|
4460 |
|
---|
4461 |
|
---|
4462 | /**
|
---|
4463 | * Initialize the VMCS-Read cache. The VMCS cache is used for 32-bit hosts
|
---|
4464 | * running 64-bit guests (except 32-bit Darwin which runs with 64-bit paging in
|
---|
4465 | * 32-bit mode) for 64-bit fields that cannot be accessed in 32-bit mode. Some
|
---|
4466 | * 64-bit fields -can- be accessed (those that have a 32-bit FULL & HIGH part).
|
---|
4467 | *
|
---|
4468 | * @returns VBox status code.
|
---|
4469 | * @param pVM Pointer to the VM.
|
---|
4470 | * @param pVCpu Pointer to the VMCPU.
|
---|
4471 | */
|
---|
4472 | static int hmR0VmxInitVmcsReadCache(PVM pVM, PVMCPU pVCpu)
|
---|
4473 | {
|
---|
4474 | #define VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, idxField) \
|
---|
4475 | { \
|
---|
4476 | Assert(pCache->Read.aField[idxField##_CACHE_IDX] == 0); \
|
---|
4477 | pCache->Read.aField[idxField##_CACHE_IDX] = idxField; \
|
---|
4478 | pCache->Read.aFieldVal[idxField##_CACHE_IDX] = 0; \
|
---|
4479 | ++cReadFields; \
|
---|
4480 | }
|
---|
4481 |
|
---|
4482 | AssertPtr(pVM);
|
---|
4483 | AssertPtr(pVCpu);
|
---|
4484 | PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
|
---|
4485 | uint32_t cReadFields = 0;
|
---|
4486 |
|
---|
4487 | /*
|
---|
4488 | * Don't remove the #if 0'd fields in this code. They're listed here for consistency
|
---|
4489 | * and serve to indicate exceptions to the rules.
|
---|
4490 | */
|
---|
4491 |
|
---|
4492 | /* Guest-natural selector base fields. */
|
---|
4493 | #if 0
|
---|
4494 | /* These are 32-bit in practice. See Intel spec. 2.5 "Control Registers". */
|
---|
4495 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR0);
|
---|
4496 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR4);
|
---|
4497 | #endif
|
---|
4498 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_ES_BASE);
|
---|
4499 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CS_BASE);
|
---|
4500 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SS_BASE);
|
---|
4501 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_DS_BASE);
|
---|
4502 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_FS_BASE);
|
---|
4503 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GS_BASE);
|
---|
4504 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_LDTR_BASE);
|
---|
4505 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_TR_BASE);
|
---|
4506 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_GDTR_BASE);
|
---|
4507 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_IDTR_BASE);
|
---|
4508 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RSP);
|
---|
4509 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_RIP);
|
---|
4510 | #if 0
|
---|
4511 | /* Unused natural width guest-state fields. */
|
---|
4512 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS);
|
---|
4513 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3); /* Handled in Nested Paging case */
|
---|
4514 | #endif
|
---|
4515 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_ESP);
|
---|
4516 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_SYSENTER_EIP);
|
---|
4517 |
|
---|
4518 | /* 64-bit guest-state fields; unused as we use two 32-bit VMREADs for these 64-bit fields (using "FULL" and "HIGH" fields). */
|
---|
4519 | #if 0
|
---|
4520 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL);
|
---|
4521 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_DEBUGCTL_FULL);
|
---|
4522 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PAT_FULL);
|
---|
4523 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_EFER_FULL);
|
---|
4524 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL);
|
---|
4525 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE0_FULL);
|
---|
4526 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE1_FULL);
|
---|
4527 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE2_FULL);
|
---|
4528 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS64_GUEST_PDPTE3_FULL);
|
---|
4529 | #endif
|
---|
4530 |
|
---|
4531 | /* Natural width guest-state fields. */
|
---|
4532 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_QUALIFICATION);
|
---|
4533 | #if 0
|
---|
4534 | /* Currently unused field. */
|
---|
4535 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_RO_EXIT_GUEST_LINEAR_ADDR);
|
---|
4536 | #endif
|
---|
4537 |
|
---|
4538 | if (pVM->hm.s.fNestedPaging)
|
---|
4539 | {
|
---|
4540 | VMXLOCAL_INIT_READ_CACHE_FIELD(pCache, VMX_VMCS_GUEST_CR3);
|
---|
4541 | AssertMsg(cReadFields == VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields,
|
---|
4542 | VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX));
|
---|
4543 | pCache->Read.cValidEntries = VMX_VMCS_MAX_NESTED_PAGING_CACHE_IDX;
|
---|
4544 | }
|
---|
4545 | else
|
---|
4546 | {
|
---|
4547 | AssertMsg(cReadFields == VMX_VMCS_MAX_CACHE_IDX, ("cReadFields=%u expected %u\n", cReadFields, VMX_VMCS_MAX_CACHE_IDX));
|
---|
4548 | pCache->Read.cValidEntries = VMX_VMCS_MAX_CACHE_IDX;
|
---|
4549 | }
|
---|
4550 |
|
---|
4551 | #undef VMXLOCAL_INIT_READ_CACHE_FIELD
|
---|
4552 | return VINF_SUCCESS;
|
---|
4553 | }
|
---|
4554 |
|
---|
4555 |
|
---|
4556 | /**
|
---|
4557 | * Writes a field into the VMCS. This can either directly invoke a VMWRITE or
|
---|
4558 | * queue up the VMWRITE by using the VMCS write cache (on 32-bit hosts, except
|
---|
4559 | * darwin, running 64-bit guests).
|
---|
4560 | *
|
---|
4561 | * @returns VBox status code.
|
---|
4562 | * @param pVCpu Pointer to the VMCPU.
|
---|
4563 | * @param idxField The VMCS field encoding.
|
---|
4564 | * @param u64Val 16, 32 or 64 bits value.
|
---|
4565 | */
|
---|
4566 | VMMR0DECL(int) VMXWriteVmcs64Ex(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
|
---|
4567 | {
|
---|
4568 | int rc;
|
---|
4569 | switch (idxField)
|
---|
4570 | {
|
---|
4571 | /*
|
---|
4572 | * These fields consists of a "FULL" and a "HIGH" part which can be written to individually.
|
---|
4573 | */
|
---|
4574 | /* 64-bit Control fields. */
|
---|
4575 | case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
|
---|
4576 | case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
|
---|
4577 | case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
|
---|
4578 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
|
---|
4579 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
|
---|
4580 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
|
---|
4581 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
|
---|
4582 | case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
|
---|
4583 | case VMX_VMCS64_CTRL_VAPIC_PAGEADDR_FULL:
|
---|
4584 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
|
---|
4585 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
|
---|
4586 | case VMX_VMCS64_CTRL_EPTP_FULL:
|
---|
4587 | case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
|
---|
4588 | /* 64-bit Guest-state fields. */
|
---|
4589 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
|
---|
4590 | case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
|
---|
4591 | case VMX_VMCS64_GUEST_PAT_FULL:
|
---|
4592 | case VMX_VMCS64_GUEST_EFER_FULL:
|
---|
4593 | case VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL:
|
---|
4594 | case VMX_VMCS64_GUEST_PDPTE0_FULL:
|
---|
4595 | case VMX_VMCS64_GUEST_PDPTE1_FULL:
|
---|
4596 | case VMX_VMCS64_GUEST_PDPTE2_FULL:
|
---|
4597 | case VMX_VMCS64_GUEST_PDPTE3_FULL:
|
---|
4598 | /* 64-bit Host-state fields. */
|
---|
4599 | case VMX_VMCS64_HOST_FIELD_PAT_FULL:
|
---|
4600 | case VMX_VMCS64_HOST_FIELD_EFER_FULL:
|
---|
4601 | case VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL:
|
---|
4602 | {
|
---|
4603 | rc = VMXWriteVmcs32(idxField, u64Val);
|
---|
4604 | rc |= VMXWriteVmcs32(idxField + 1, (uint32_t)(u64Val >> 32));
|
---|
4605 | break;
|
---|
4606 | }
|
---|
4607 |
|
---|
4608 | /*
|
---|
4609 | * These fields do not have high and low parts. Queue up the VMWRITE by using the VMCS write-cache (for 64-bit
|
---|
4610 | * values). When we switch the host to 64-bit mode for running 64-bit guests, these VMWRITEs get executed then.
|
---|
4611 | */
|
---|
4612 | /* Natural-width Guest-state fields. */
|
---|
4613 | case VMX_VMCS_GUEST_CR3:
|
---|
4614 | case VMX_VMCS_GUEST_ES_BASE:
|
---|
4615 | case VMX_VMCS_GUEST_CS_BASE:
|
---|
4616 | case VMX_VMCS_GUEST_SS_BASE:
|
---|
4617 | case VMX_VMCS_GUEST_DS_BASE:
|
---|
4618 | case VMX_VMCS_GUEST_FS_BASE:
|
---|
4619 | case VMX_VMCS_GUEST_GS_BASE:
|
---|
4620 | case VMX_VMCS_GUEST_LDTR_BASE:
|
---|
4621 | case VMX_VMCS_GUEST_TR_BASE:
|
---|
4622 | case VMX_VMCS_GUEST_GDTR_BASE:
|
---|
4623 | case VMX_VMCS_GUEST_IDTR_BASE:
|
---|
4624 | case VMX_VMCS_GUEST_RSP:
|
---|
4625 | case VMX_VMCS_GUEST_RIP:
|
---|
4626 | case VMX_VMCS_GUEST_SYSENTER_ESP:
|
---|
4627 | case VMX_VMCS_GUEST_SYSENTER_EIP:
|
---|
4628 | {
|
---|
4629 | if (!(u64Val >> 32))
|
---|
4630 | {
|
---|
4631 | /* If this field is 64-bit, VT-x will zero out the top bits. */
|
---|
4632 | rc = VMXWriteVmcs32(idxField, (uint32_t)u64Val);
|
---|
4633 | }
|
---|
4634 | else
|
---|
4635 | {
|
---|
4636 | /* Assert that only the 32->64 switcher case should ever come here. */
|
---|
4637 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests);
|
---|
4638 | rc = VMXWriteCachedVmcsEx(pVCpu, idxField, u64Val);
|
---|
4639 | }
|
---|
4640 | break;
|
---|
4641 | }
|
---|
4642 |
|
---|
4643 | default:
|
---|
4644 | {
|
---|
4645 | AssertMsgFailed(("VMXWriteVmcs64Ex: Invalid field %#RX32 (pVCpu=%p u64Val=%#RX64)\n", idxField, pVCpu, u64Val));
|
---|
4646 | rc = VERR_INVALID_PARAMETER;
|
---|
4647 | break;
|
---|
4648 | }
|
---|
4649 | }
|
---|
4650 | AssertRCReturn(rc, rc);
|
---|
4651 | return rc;
|
---|
4652 | }
|
---|
4653 |
|
---|
4654 |
|
---|
4655 | /**
|
---|
4656 | * Queue up a VMWRITE by using the VMCS write cache. This is only used on 32-bit
|
---|
4657 | * hosts (except darwin) for 64-bit guests.
|
---|
4658 | *
|
---|
4659 | * @param pVCpu Pointer to the VMCPU.
|
---|
4660 | * @param idxField The VMCS field encoding.
|
---|
4661 | * @param u64Val 16, 32 or 64 bits value.
|
---|
4662 | */
|
---|
4663 | VMMR0DECL(int) VMXWriteCachedVmcsEx(PVMCPU pVCpu, uint32_t idxField, uint64_t u64Val)
|
---|
4664 | {
|
---|
4665 | AssertPtr(pVCpu);
|
---|
4666 | PVMCSCACHE pCache = &pVCpu->hm.s.vmx.VMCSCache;
|
---|
4667 |
|
---|
4668 | AssertMsgReturn(pCache->Write.cValidEntries < VMCSCACHE_MAX_ENTRY - 1,
|
---|
4669 | ("entries=%u\n", pCache->Write.cValidEntries), VERR_ACCESS_DENIED);
|
---|
4670 |
|
---|
4671 | /* Make sure there are no duplicates. */
|
---|
4672 | for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
|
---|
4673 | {
|
---|
4674 | if (pCache->Write.aField[i] == idxField)
|
---|
4675 | {
|
---|
4676 | pCache->Write.aFieldVal[i] = u64Val;
|
---|
4677 | return VINF_SUCCESS;
|
---|
4678 | }
|
---|
4679 | }
|
---|
4680 |
|
---|
4681 | pCache->Write.aField[pCache->Write.cValidEntries] = idxField;
|
---|
4682 | pCache->Write.aFieldVal[pCache->Write.cValidEntries] = u64Val;
|
---|
4683 | pCache->Write.cValidEntries++;
|
---|
4684 | return VINF_SUCCESS;
|
---|
4685 | }
|
---|
4686 |
|
---|
4687 | /* Enable later when the assembly code uses these as callbacks. */
|
---|
4688 | #if 0
|
---|
4689 | /*
|
---|
4690 | * Loads the VMCS write-cache into the CPU (by executing VMWRITEs).
|
---|
4691 | *
|
---|
4692 | * @param pVCpu Pointer to the VMCPU.
|
---|
4693 | * @param pCache Pointer to the VMCS cache.
|
---|
4694 | *
|
---|
4695 | * @remarks No-long-jump zone!!!
|
---|
4696 | */
|
---|
4697 | VMMR0DECL(void) VMXWriteCachedVmcsLoad(PVMCPU pVCpu, PVMCSCACHE pCache)
|
---|
4698 | {
|
---|
4699 | AssertPtr(pCache);
|
---|
4700 | for (uint32_t i = 0; i < pCache->Write.cValidEntries; i++)
|
---|
4701 | {
|
---|
4702 | int rc = VMXWriteVmcs64(pCache->Write.aField[i], pCache->Write.aFieldVal[i]);
|
---|
4703 | AssertRC(rc);
|
---|
4704 | }
|
---|
4705 | pCache->Write.cValidEntries = 0;
|
---|
4706 | }
|
---|
4707 |
|
---|
4708 |
|
---|
4709 | /**
|
---|
4710 | * Stores the VMCS read-cache from the CPU (by executing VMREADs).
|
---|
4711 | *
|
---|
4712 | * @param pVCpu Pointer to the VMCPU.
|
---|
4713 | * @param pCache Pointer to the VMCS cache.
|
---|
4714 | *
|
---|
4715 | * @remarks No-long-jump zone!!!
|
---|
4716 | */
|
---|
4717 | VMMR0DECL(void) VMXReadCachedVmcsStore(PVMCPU pVCpu, PVMCSCACHE pCache)
|
---|
4718 | {
|
---|
4719 | AssertPtr(pCache);
|
---|
4720 | for (uint32_t i = 0; i < pCache->Read.cValidEntries; i++)
|
---|
4721 | {
|
---|
4722 | int rc = VMXReadVmcs64(pCache->Read.aField[i], &pCache->Read.aFieldVal[i]);
|
---|
4723 | AssertRC(rc);
|
---|
4724 | }
|
---|
4725 | }
|
---|
4726 | #endif
|
---|
4727 | #endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL) */
|
---|
4728 |
|
---|
4729 |
|
---|
4730 | /**
|
---|
4731 | * Sets up the usage of TSC-offsetting and updates the VMCS. If offsetting is
|
---|
4732 | * not possible, cause VM-exits on RDTSC(P)s. Also sets up the VMX preemption
|
---|
4733 | * timer.
|
---|
4734 | *
|
---|
4735 | * @returns VBox status code.
|
---|
4736 | * @param pVCpu Pointer to the VMCPU.
|
---|
4737 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
4738 | * out-of-sync. Make sure to update the required fields
|
---|
4739 | * before using them.
|
---|
4740 | * @remarks No-long-jump zone!!!
|
---|
4741 | */
|
---|
4742 | static void hmR0VmxUpdateTscOffsettingAndPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
4743 | {
|
---|
4744 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
4745 | bool fOffsettedTsc = false;
|
---|
4746 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4747 | if (pVM->hm.s.vmx.fUsePreemptTimer)
|
---|
4748 | {
|
---|
4749 | uint64_t cTicksToDeadline = TMCpuTickGetDeadlineAndTscOffset(pVCpu, &fOffsettedTsc, &pVCpu->hm.s.vmx.u64TSCOffset);
|
---|
4750 |
|
---|
4751 | /* Make sure the returned values have sane upper and lower boundaries. */
|
---|
4752 | uint64_t u64CpuHz = SUPGetCpuHzFromGIP(g_pSUPGlobalInfoPage);
|
---|
4753 | cTicksToDeadline = RT_MIN(cTicksToDeadline, u64CpuHz / 64); /* 1/64th of a second */
|
---|
4754 | cTicksToDeadline = RT_MAX(cTicksToDeadline, u64CpuHz / 2048); /* 1/2048th of a second */
|
---|
4755 | cTicksToDeadline >>= pVM->hm.s.vmx.cPreemptTimerShift;
|
---|
4756 |
|
---|
4757 | uint32_t cPreemptionTickCount = (uint32_t)RT_MIN(cTicksToDeadline, UINT32_MAX - 16);
|
---|
4758 | rc = VMXWriteVmcs32(VMX_VMCS32_GUEST_PREEMPT_TIMER_VALUE, cPreemptionTickCount); AssertRC(rc);
|
---|
4759 | }
|
---|
4760 | else
|
---|
4761 | fOffsettedTsc = TMCpuTickCanUseRealTSC(pVCpu, &pVCpu->hm.s.vmx.u64TSCOffset);
|
---|
4762 |
|
---|
4763 | if (fOffsettedTsc)
|
---|
4764 | {
|
---|
4765 | uint64_t u64CurTSC = ASMReadTSC();
|
---|
4766 | if (u64CurTSC + pVCpu->hm.s.vmx.u64TSCOffset >= TMCpuTickGetLastSeen(pVCpu))
|
---|
4767 | {
|
---|
4768 | /* Note: VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT takes precedence over TSC_OFFSET, applies to RDTSCP too. */
|
---|
4769 | rc = VMXWriteVmcs64(VMX_VMCS64_CTRL_TSC_OFFSET_FULL, pVCpu->hm.s.vmx.u64TSCOffset); AssertRC(rc);
|
---|
4770 |
|
---|
4771 | pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
|
---|
4772 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
|
---|
4773 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
|
---|
4774 | }
|
---|
4775 | else
|
---|
4776 | {
|
---|
4777 | /* VM-exit on RDTSC(P) as we would otherwise pass decreasing TSC values to the guest. */
|
---|
4778 | pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
|
---|
4779 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
|
---|
4780 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
|
---|
4781 | }
|
---|
4782 | }
|
---|
4783 | else
|
---|
4784 | {
|
---|
4785 | /* We can't use TSC-offsetting (non-fixed TSC, warp drive active etc.), VM-exit on RDTSC(P). */
|
---|
4786 | pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT;
|
---|
4787 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls); AssertRC(rc);
|
---|
4788 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
|
---|
4789 | }
|
---|
4790 | }
|
---|
4791 |
|
---|
4792 |
|
---|
4793 | /**
|
---|
4794 | * Determines if an exception is a contributory exception. Contributory
|
---|
4795 | * exceptions are ones which can cause double-faults. Page-fault is
|
---|
4796 | * intentionally not included here as it's a conditional contributory exception.
|
---|
4797 | *
|
---|
4798 | * @returns true if the exception is contributory, false otherwise.
|
---|
4799 | * @param uVector The exception vector.
|
---|
4800 | */
|
---|
4801 | DECLINLINE(bool) hmR0VmxIsContributoryXcpt(const uint32_t uVector)
|
---|
4802 | {
|
---|
4803 | switch (uVector)
|
---|
4804 | {
|
---|
4805 | case X86_XCPT_GP:
|
---|
4806 | case X86_XCPT_SS:
|
---|
4807 | case X86_XCPT_NP:
|
---|
4808 | case X86_XCPT_TS:
|
---|
4809 | case X86_XCPT_DE:
|
---|
4810 | return true;
|
---|
4811 | default:
|
---|
4812 | break;
|
---|
4813 | }
|
---|
4814 | return false;
|
---|
4815 | }
|
---|
4816 |
|
---|
4817 |
|
---|
4818 | /**
|
---|
4819 | * Sets an event as a pending event to be injected into the guest.
|
---|
4820 | *
|
---|
4821 | * @param pVCpu Pointer to the VMCPU.
|
---|
4822 | * @param u32IntrInfo The VM-entry interruption-information field.
|
---|
4823 | * @param cbInstr The VM-entry instruction length in bytes (for software
|
---|
4824 | * interrupts, exceptions and privileged software
|
---|
4825 | * exceptions).
|
---|
4826 | * @param u32ErrCode The VM-entry exception error code.
|
---|
4827 | * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
|
---|
4828 | * page-fault.
|
---|
4829 | *
|
---|
4830 | * @remarks Statistics counter assumes this is a guest event being injected or
|
---|
4831 | * re-injected into the guest, i.e. 'StatInjectPendingReflect' is
|
---|
4832 | * always incremented.
|
---|
4833 | */
|
---|
4834 | DECLINLINE(void) hmR0VmxSetPendingEvent(PVMCPU pVCpu, uint32_t u32IntrInfo, uint32_t cbInstr, uint32_t u32ErrCode,
|
---|
4835 | RTGCUINTPTR GCPtrFaultAddress)
|
---|
4836 | {
|
---|
4837 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
4838 | pVCpu->hm.s.Event.fPending = true;
|
---|
4839 | pVCpu->hm.s.Event.u64IntrInfo = u32IntrInfo;
|
---|
4840 | pVCpu->hm.s.Event.u32ErrCode = u32ErrCode;
|
---|
4841 | pVCpu->hm.s.Event.cbInstr = cbInstr;
|
---|
4842 | pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
|
---|
4843 |
|
---|
4844 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
4845 | }
|
---|
4846 |
|
---|
4847 |
|
---|
4848 | /**
|
---|
4849 | * Sets a double-fault (#DF) exception as pending-for-injection into the VM.
|
---|
4850 | *
|
---|
4851 | * @param pVCpu Pointer to the VMCPU.
|
---|
4852 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
4853 | * out-of-sync. Make sure to update the required fields
|
---|
4854 | * before using them.
|
---|
4855 | */
|
---|
4856 | DECLINLINE(void) hmR0VmxSetPendingXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
4857 | {
|
---|
4858 | uint32_t u32IntrInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
4859 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
4860 | u32IntrInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
|
---|
4861 | hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
4862 | }
|
---|
4863 |
|
---|
4864 |
|
---|
4865 | /**
|
---|
4866 | * Handle a condition that occurred while delivering an event through the guest
|
---|
4867 | * IDT.
|
---|
4868 | *
|
---|
4869 | * @returns VBox status code (informational error codes included).
|
---|
4870 | * @retval VINF_SUCCESS if we should continue handling the VM-exit.
|
---|
4871 | * @retval VINF_HM_DOUBLE_FAULT if a #DF condition was detected and we ought to
|
---|
4872 | * continue execution of the guest which will delivery the #DF.
|
---|
4873 | * @retval VINF_EM_RESET if we detected a triple-fault condition.
|
---|
4874 | *
|
---|
4875 | * @param pVCpu Pointer to the VMCPU.
|
---|
4876 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
4877 | * out-of-sync. Make sure to update the required fields
|
---|
4878 | * before using them.
|
---|
4879 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
4880 | *
|
---|
4881 | * @remarks No-long-jump zone!!!
|
---|
4882 | */
|
---|
4883 | static int hmR0VmxCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
4884 | {
|
---|
4885 | int rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
|
---|
4886 | AssertRC(rc);
|
---|
4887 | if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
|
---|
4888 | {
|
---|
4889 | rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
|
---|
4890 | AssertRCReturn(rc, rc);
|
---|
4891 |
|
---|
4892 | uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
|
---|
4893 | uint32_t uExitVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(pVmxTransient->uExitIntrInfo);
|
---|
4894 | uint32_t uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
|
---|
4895 |
|
---|
4896 | typedef enum
|
---|
4897 | {
|
---|
4898 | VMXREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
|
---|
4899 | VMXREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
|
---|
4900 | VMXREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
|
---|
4901 | VMXREFLECTXCPT_NONE /* Nothing to reflect. */
|
---|
4902 | } VMXREFLECTXCPT;
|
---|
4903 |
|
---|
4904 | /* See Intel spec. 30.7.1.1 "Reflecting Exceptions to Guest Software". */
|
---|
4905 | VMXREFLECTXCPT enmReflect = VMXREFLECTXCPT_NONE;
|
---|
4906 | if (VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntrInfo))
|
---|
4907 | {
|
---|
4908 | if (uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT)
|
---|
4909 | {
|
---|
4910 | enmReflect = VMXREFLECTXCPT_XCPT;
|
---|
4911 | #ifdef VBOX_STRICT
|
---|
4912 | if ( hmR0VmxIsContributoryXcpt(uIdtVector)
|
---|
4913 | && uExitVector == X86_XCPT_PF)
|
---|
4914 | {
|
---|
4915 | Log4(("IDT: vcpu[%RU32] Contributory #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
|
---|
4916 | }
|
---|
4917 | #endif
|
---|
4918 | if ( uExitVector == X86_XCPT_PF
|
---|
4919 | && uIdtVector == X86_XCPT_PF)
|
---|
4920 | {
|
---|
4921 | pVmxTransient->fVectoringPF = true;
|
---|
4922 | Log4(("IDT: vcpu[%RU32] Vectoring #PF uCR2=%#RX64\n", pVCpu->idCpu, pMixedCtx->cr2));
|
---|
4923 | }
|
---|
4924 | else if ( (pVCpu->hm.s.vmx.u32XcptBitmap & HMVMX_CONTRIBUTORY_XCPT_MASK)
|
---|
4925 | && hmR0VmxIsContributoryXcpt(uExitVector)
|
---|
4926 | && ( hmR0VmxIsContributoryXcpt(uIdtVector)
|
---|
4927 | || uIdtVector == X86_XCPT_PF))
|
---|
4928 | {
|
---|
4929 | enmReflect = VMXREFLECTXCPT_DF;
|
---|
4930 | }
|
---|
4931 | else if (uIdtVector == X86_XCPT_DF)
|
---|
4932 | enmReflect = VMXREFLECTXCPT_TF;
|
---|
4933 | }
|
---|
4934 | else if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
|
---|
4935 | || uIntType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
|
---|
4936 | || uIntType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
|
---|
4937 | {
|
---|
4938 | /*
|
---|
4939 | * Ignore software interrupts (INT n), software exceptions (#BP, #OF) and privileged software exception
|
---|
4940 | * (whatever they are) as they reoccur when restarting the instruction.
|
---|
4941 | */
|
---|
4942 | enmReflect = VMXREFLECTXCPT_XCPT;
|
---|
4943 | }
|
---|
4944 | }
|
---|
4945 | else
|
---|
4946 | {
|
---|
4947 | /*
|
---|
4948 | * If event delivery caused an EPT violation/misconfig or APIC access VM-exit, then the VM-exit
|
---|
4949 | * interruption-information will not be valid and we end up here. In such cases, it is sufficient to reflect the
|
---|
4950 | * original exception to the guest after handling the VM-exit.
|
---|
4951 | */
|
---|
4952 | if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
|
---|
4953 | || uIntType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT
|
---|
4954 | || uIntType == VMX_IDT_VECTORING_INFO_TYPE_NMI)
|
---|
4955 | {
|
---|
4956 | enmReflect = VMXREFLECTXCPT_XCPT;
|
---|
4957 | }
|
---|
4958 | }
|
---|
4959 |
|
---|
4960 | switch (enmReflect)
|
---|
4961 | {
|
---|
4962 | case VMXREFLECTXCPT_XCPT:
|
---|
4963 | {
|
---|
4964 | Assert( uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
|
---|
4965 | && uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
|
---|
4966 | && uIntType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
|
---|
4967 |
|
---|
4968 | uint32_t u32ErrCode = 0;
|
---|
4969 | if (VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo))
|
---|
4970 | {
|
---|
4971 | rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
|
---|
4972 | AssertRCReturn(rc, rc);
|
---|
4973 | u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
|
---|
4974 | }
|
---|
4975 |
|
---|
4976 | /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF. See hmR0VmxExitXcptPF(). */
|
---|
4977 | hmR0VmxSetPendingEvent(pVCpu, VMX_ENTRY_INTR_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
|
---|
4978 | 0 /* cbInstr */, u32ErrCode, pMixedCtx->cr2);
|
---|
4979 | rc = VINF_SUCCESS;
|
---|
4980 | Log4(("IDT: vcpu[%RU32] Pending vectoring event %#RX64 Err=%#RX32\n", pVCpu->idCpu,
|
---|
4981 | pVCpu->hm.s.Event.u64IntrInfo, pVCpu->hm.s.Event.u32ErrCode));
|
---|
4982 |
|
---|
4983 | break;
|
---|
4984 | }
|
---|
4985 |
|
---|
4986 | case VMXREFLECTXCPT_DF:
|
---|
4987 | {
|
---|
4988 | hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
|
---|
4989 | rc = VINF_HM_DOUBLE_FAULT;
|
---|
4990 | Log4(("IDT: vcpu[%RU32] Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->idCpu,
|
---|
4991 | pVCpu->hm.s.Event.u64IntrInfo, uIdtVector, uExitVector));
|
---|
4992 |
|
---|
4993 | break;
|
---|
4994 | }
|
---|
4995 |
|
---|
4996 | case VMXREFLECTXCPT_TF:
|
---|
4997 | {
|
---|
4998 | rc = VINF_EM_RESET;
|
---|
4999 | Log4(("IDT: vcpu[%RU32] Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", pVCpu->idCpu, uIdtVector,
|
---|
5000 | uExitVector));
|
---|
5001 | break;
|
---|
5002 | }
|
---|
5003 |
|
---|
5004 | default:
|
---|
5005 | Assert(rc == VINF_SUCCESS);
|
---|
5006 | break;
|
---|
5007 | }
|
---|
5008 | }
|
---|
5009 | Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET);
|
---|
5010 | return rc;
|
---|
5011 | }
|
---|
5012 |
|
---|
5013 |
|
---|
5014 | /**
|
---|
5015 | * Saves the guest's CR0 register from the VMCS into the guest-CPU context.
|
---|
5016 | *
|
---|
5017 | * @returns VBox status code.
|
---|
5018 | * @param pVCpu Pointer to the VMCPU.
|
---|
5019 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5020 | * out-of-sync. Make sure to update the required fields
|
---|
5021 | * before using them.
|
---|
5022 | *
|
---|
5023 | * @remarks No-long-jump zone!!!
|
---|
5024 | */
|
---|
5025 | static int hmR0VmxSaveGuestCR0(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5026 | {
|
---|
5027 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR0))
|
---|
5028 | {
|
---|
5029 | uint32_t uVal = 0;
|
---|
5030 | int rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &uVal);
|
---|
5031 | AssertRCReturn(rc, rc);
|
---|
5032 | uint32_t uShadow = 0;
|
---|
5033 | rc = VMXReadVmcs32(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uShadow);
|
---|
5034 | AssertRCReturn(rc, rc);
|
---|
5035 |
|
---|
5036 | uVal = (uShadow & pVCpu->hm.s.vmx.u32CR0Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR0Mask);
|
---|
5037 | CPUMSetGuestCR0(pVCpu, uVal);
|
---|
5038 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_CR0;
|
---|
5039 | }
|
---|
5040 | return VINF_SUCCESS;
|
---|
5041 | }
|
---|
5042 |
|
---|
5043 |
|
---|
5044 | /**
|
---|
5045 | * Saves the guest's CR4 register from the VMCS into the guest-CPU context.
|
---|
5046 | *
|
---|
5047 | * @returns VBox status code.
|
---|
5048 | * @param pVCpu Pointer to the VMCPU.
|
---|
5049 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5050 | * out-of-sync. Make sure to update the required fields
|
---|
5051 | * before using them.
|
---|
5052 | *
|
---|
5053 | * @remarks No-long-jump zone!!!
|
---|
5054 | */
|
---|
5055 | static int hmR0VmxSaveGuestCR4(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5056 | {
|
---|
5057 | int rc = VINF_SUCCESS;
|
---|
5058 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR4))
|
---|
5059 | {
|
---|
5060 | uint32_t uVal = 0;
|
---|
5061 | uint32_t uShadow = 0;
|
---|
5062 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &uVal);
|
---|
5063 | AssertRCReturn(rc, rc);
|
---|
5064 | rc = VMXReadVmcs32(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uShadow);
|
---|
5065 | AssertRCReturn(rc, rc);
|
---|
5066 |
|
---|
5067 | uVal = (uShadow & pVCpu->hm.s.vmx.u32CR4Mask) | (uVal & ~pVCpu->hm.s.vmx.u32CR4Mask);
|
---|
5068 | CPUMSetGuestCR4(pVCpu, uVal);
|
---|
5069 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_CR4;
|
---|
5070 | }
|
---|
5071 | return rc;
|
---|
5072 | }
|
---|
5073 |
|
---|
5074 |
|
---|
5075 | /**
|
---|
5076 | * Saves the guest's RIP register from the VMCS into the guest-CPU context.
|
---|
5077 | *
|
---|
5078 | * @returns VBox status code.
|
---|
5079 | * @param pVCpu Pointer to the VMCPU.
|
---|
5080 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5081 | * out-of-sync. Make sure to update the required fields
|
---|
5082 | * before using them.
|
---|
5083 | *
|
---|
5084 | * @remarks No-long-jump zone!!!
|
---|
5085 | */
|
---|
5086 | static int hmR0VmxSaveGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5087 | {
|
---|
5088 | int rc = VINF_SUCCESS;
|
---|
5089 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RIP))
|
---|
5090 | {
|
---|
5091 | uint64_t u64Val = 0;
|
---|
5092 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RIP, &u64Val);
|
---|
5093 | AssertRCReturn(rc, rc);
|
---|
5094 |
|
---|
5095 | pMixedCtx->rip = u64Val;
|
---|
5096 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_RIP;
|
---|
5097 | }
|
---|
5098 | return rc;
|
---|
5099 | }
|
---|
5100 |
|
---|
5101 |
|
---|
5102 | /**
|
---|
5103 | * Saves the guest's RSP register from the VMCS into the guest-CPU context.
|
---|
5104 | *
|
---|
5105 | * @returns VBox status code.
|
---|
5106 | * @param pVCpu Pointer to the VMCPU.
|
---|
5107 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5108 | * out-of-sync. Make sure to update the required fields
|
---|
5109 | * before using them.
|
---|
5110 | *
|
---|
5111 | * @remarks No-long-jump zone!!!
|
---|
5112 | */
|
---|
5113 | static int hmR0VmxSaveGuestRsp(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5114 | {
|
---|
5115 | int rc = VINF_SUCCESS;
|
---|
5116 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RSP))
|
---|
5117 | {
|
---|
5118 | uint64_t u64Val = 0;
|
---|
5119 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_RSP, &u64Val);
|
---|
5120 | AssertRCReturn(rc, rc);
|
---|
5121 |
|
---|
5122 | pMixedCtx->rsp = u64Val;
|
---|
5123 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_RSP;
|
---|
5124 | }
|
---|
5125 | return rc;
|
---|
5126 | }
|
---|
5127 |
|
---|
5128 |
|
---|
5129 | /**
|
---|
5130 | * Saves the guest's RFLAGS from the VMCS into the guest-CPU context.
|
---|
5131 | *
|
---|
5132 | * @returns VBox status code.
|
---|
5133 | * @param pVCpu Pointer to the VMCPU.
|
---|
5134 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5135 | * out-of-sync. Make sure to update the required fields
|
---|
5136 | * before using them.
|
---|
5137 | *
|
---|
5138 | * @remarks No-long-jump zone!!!
|
---|
5139 | */
|
---|
5140 | static int hmR0VmxSaveGuestRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5141 | {
|
---|
5142 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RFLAGS))
|
---|
5143 | {
|
---|
5144 | uint32_t uVal = 0;
|
---|
5145 | int rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &uVal);
|
---|
5146 | AssertRCReturn(rc, rc);
|
---|
5147 |
|
---|
5148 | pMixedCtx->eflags.u32 = uVal;
|
---|
5149 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active) /* Undo our real-on-v86-mode changes to eflags if necessary. */
|
---|
5150 | {
|
---|
5151 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
|
---|
5152 | Log4(("Saving real-mode EFLAGS VT-x view=%#RX32\n", pMixedCtx->eflags.u32));
|
---|
5153 |
|
---|
5154 | pMixedCtx->eflags.Bits.u1VM = 0;
|
---|
5155 | pMixedCtx->eflags.Bits.u2IOPL = pVCpu->hm.s.vmx.RealMode.eflags.Bits.u2IOPL;
|
---|
5156 | }
|
---|
5157 |
|
---|
5158 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_RFLAGS;
|
---|
5159 | }
|
---|
5160 | return VINF_SUCCESS;
|
---|
5161 | }
|
---|
5162 |
|
---|
5163 |
|
---|
5164 | /**
|
---|
5165 | * Wrapper for saving the guest's RIP, RSP and RFLAGS from the VMCS into the
|
---|
5166 | * guest-CPU context.
|
---|
5167 | */
|
---|
5168 | DECLINLINE(int) hmR0VmxSaveGuestRipRspRflags(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5169 | {
|
---|
5170 | int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
|
---|
5171 | rc |= hmR0VmxSaveGuestRsp(pVCpu, pMixedCtx);
|
---|
5172 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
5173 | return rc;
|
---|
5174 | }
|
---|
5175 |
|
---|
5176 |
|
---|
5177 | /**
|
---|
5178 | * Saves the guest's interruptibility-state ("interrupt shadow" as AMD calls it)
|
---|
5179 | * from the guest-state area in the VMCS.
|
---|
5180 | *
|
---|
5181 | * @param pVCpu Pointer to the VMCPU.
|
---|
5182 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5183 | * out-of-sync. Make sure to update the required fields
|
---|
5184 | * before using them.
|
---|
5185 | *
|
---|
5186 | * @remarks No-long-jump zone!!!
|
---|
5187 | */
|
---|
5188 | static void hmR0VmxSaveGuestIntrState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5189 | {
|
---|
5190 | uint32_t uIntrState = 0;
|
---|
5191 | int rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
|
---|
5192 | AssertRC(rc);
|
---|
5193 |
|
---|
5194 | if (!uIntrState)
|
---|
5195 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
5196 | else
|
---|
5197 | {
|
---|
5198 | Assert( uIntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
|
---|
5199 | || uIntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
|
---|
5200 | rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
|
---|
5201 | AssertRC(rc);
|
---|
5202 | rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* for hmR0VmxGetGuestIntrState(). */
|
---|
5203 | AssertRC(rc);
|
---|
5204 |
|
---|
5205 | EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
|
---|
5206 | Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
|
---|
5207 | }
|
---|
5208 | }
|
---|
5209 |
|
---|
5210 |
|
---|
5211 | /**
|
---|
5212 | * Saves the guest's activity state.
|
---|
5213 | *
|
---|
5214 | * @returns VBox status code.
|
---|
5215 | * @param pVCpu Pointer to the VMCPU.
|
---|
5216 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5217 | * out-of-sync. Make sure to update the required fields
|
---|
5218 | * before using them.
|
---|
5219 | *
|
---|
5220 | * @remarks No-long-jump zone!!!
|
---|
5221 | */
|
---|
5222 | static int hmR0VmxSaveGuestActivityState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5223 | {
|
---|
5224 | /* Nothing to do for now until we make use of different guest-CPU activity state. Just update the flag. */
|
---|
5225 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_ACTIVITY_STATE;
|
---|
5226 | return VINF_SUCCESS;
|
---|
5227 | }
|
---|
5228 |
|
---|
5229 |
|
---|
5230 | /**
|
---|
5231 | * Saves the guest SYSENTER MSRs (SYSENTER_CS, SYSENTER_EIP, SYSENTER_ESP) from
|
---|
5232 | * the current VMCS into the guest-CPU context.
|
---|
5233 | *
|
---|
5234 | * @returns VBox status code.
|
---|
5235 | * @param pVCpu Pointer to the VMCPU.
|
---|
5236 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5237 | * out-of-sync. Make sure to update the required fields
|
---|
5238 | * before using them.
|
---|
5239 | *
|
---|
5240 | * @remarks No-long-jump zone!!!
|
---|
5241 | */
|
---|
5242 | static int hmR0VmxSaveGuestSysenterMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5243 | {
|
---|
5244 | int rc = VINF_SUCCESS;
|
---|
5245 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR))
|
---|
5246 | {
|
---|
5247 | uint32_t u32Val = 0;
|
---|
5248 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRCReturn(rc, rc);
|
---|
5249 | pMixedCtx->SysEnter.cs = u32Val;
|
---|
5250 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_SYSENTER_CS_MSR;
|
---|
5251 | }
|
---|
5252 |
|
---|
5253 | uint64_t u64Val = 0;
|
---|
5254 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR))
|
---|
5255 | {
|
---|
5256 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_EIP, &u64Val); AssertRCReturn(rc, rc);
|
---|
5257 | pMixedCtx->SysEnter.eip = u64Val;
|
---|
5258 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_SYSENTER_EIP_MSR;
|
---|
5259 | }
|
---|
5260 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR))
|
---|
5261 | {
|
---|
5262 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_SYSENTER_ESP, &u64Val); AssertRCReturn(rc, rc);
|
---|
5263 | pMixedCtx->SysEnter.esp = u64Val;
|
---|
5264 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_SYSENTER_ESP_MSR;
|
---|
5265 | }
|
---|
5266 | return rc;
|
---|
5267 | }
|
---|
5268 |
|
---|
5269 |
|
---|
5270 | /**
|
---|
5271 | * Saves the guest FS_BASE MSRs from the current VMCS into the guest-CPU
|
---|
5272 | * context.
|
---|
5273 | *
|
---|
5274 | * @returns VBox status code.
|
---|
5275 | * @param pVCpu Pointer to the VMCPU.
|
---|
5276 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5277 | * out-of-sync. Make sure to update the required fields
|
---|
5278 | * before using them.
|
---|
5279 | *
|
---|
5280 | * @remarks No-long-jump zone!!!
|
---|
5281 | */
|
---|
5282 | static int hmR0VmxSaveGuestFSBaseMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5283 | {
|
---|
5284 | int rc = VINF_SUCCESS;
|
---|
5285 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_FS_BASE_MSR))
|
---|
5286 | {
|
---|
5287 | uint64_t u64Val = 0;
|
---|
5288 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_FS_BASE, &u64Val); AssertRCReturn(rc, rc);
|
---|
5289 | pMixedCtx->fs.u64Base = u64Val;
|
---|
5290 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_FS_BASE_MSR;
|
---|
5291 | }
|
---|
5292 | return rc;
|
---|
5293 | }
|
---|
5294 |
|
---|
5295 |
|
---|
5296 | /**
|
---|
5297 | * Saves the guest GS_BASE MSRs from the current VMCS into the guest-CPU
|
---|
5298 | * context.
|
---|
5299 | *
|
---|
5300 | * @returns VBox status code.
|
---|
5301 | * @param pVCpu Pointer to the VMCPU.
|
---|
5302 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5303 | * out-of-sync. Make sure to update the required fields
|
---|
5304 | * before using them.
|
---|
5305 | *
|
---|
5306 | * @remarks No-long-jump zone!!!
|
---|
5307 | */
|
---|
5308 | static int hmR0VmxSaveGuestGSBaseMsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5309 | {
|
---|
5310 | int rc = VINF_SUCCESS;
|
---|
5311 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_GS_BASE_MSR))
|
---|
5312 | {
|
---|
5313 | uint64_t u64Val = 0;
|
---|
5314 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GS_BASE, &u64Val); AssertRCReturn(rc, rc);
|
---|
5315 | pMixedCtx->gs.u64Base = u64Val;
|
---|
5316 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_GS_BASE_MSR;
|
---|
5317 | }
|
---|
5318 | return rc;
|
---|
5319 | }
|
---|
5320 |
|
---|
5321 |
|
---|
5322 | /**
|
---|
5323 | * Saves the auto load/store'd guest MSRs from the current VMCS into the
|
---|
5324 | * guest-CPU context. Currently these are LSTAR, STAR, SFMASK, KERNEL-GS BASE
|
---|
5325 | * and TSC_AUX.
|
---|
5326 | *
|
---|
5327 | * @returns VBox status code.
|
---|
5328 | * @param pVCpu Pointer to the VMCPU.
|
---|
5329 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5330 | * out-of-sync. Make sure to update the required fields
|
---|
5331 | * before using them.
|
---|
5332 | *
|
---|
5333 | * @remarks No-long-jump zone!!!
|
---|
5334 | */
|
---|
5335 | static int hmR0VmxSaveGuestAutoLoadStoreMsrs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5336 | {
|
---|
5337 | if (pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS)
|
---|
5338 | return VINF_SUCCESS;
|
---|
5339 |
|
---|
5340 | #ifdef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
|
---|
5341 | for (uint32_t i = 0; i < pVCpu->hm.s.vmx.cGuestMsrs; i++)
|
---|
5342 | {
|
---|
5343 | PVMXMSR pMsr = (PVMXMSR)pVCpu->hm.s.vmx.pvGuestMsr;
|
---|
5344 | pMsr += i;
|
---|
5345 | switch (pMsr->u32IndexMSR)
|
---|
5346 | {
|
---|
5347 | case MSR_K8_LSTAR: pMixedCtx->msrLSTAR = pMsr->u64Value; break;
|
---|
5348 | case MSR_K6_STAR: pMixedCtx->msrSTAR = pMsr->u64Value; break;
|
---|
5349 | case MSR_K8_SF_MASK: pMixedCtx->msrSFMASK = pMsr->u64Value; break;
|
---|
5350 | case MSR_K8_TSC_AUX: CPUMSetGuestMsr(pVCpu, MSR_K8_TSC_AUX, pMsr->u64Value); break;
|
---|
5351 | case MSR_K8_KERNEL_GS_BASE: pMixedCtx->msrKERNELGSBASE = pMsr->u64Value; break;
|
---|
5352 | case MSR_K6_EFER: /* EFER can't be changed without causing a VM-exit. */ break;
|
---|
5353 | default:
|
---|
5354 | {
|
---|
5355 | AssertFailed();
|
---|
5356 | return VERR_HM_UNEXPECTED_LD_ST_MSR;
|
---|
5357 | }
|
---|
5358 | }
|
---|
5359 | }
|
---|
5360 | #endif
|
---|
5361 |
|
---|
5362 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_AUTO_LOAD_STORE_MSRS;
|
---|
5363 | return VINF_SUCCESS;
|
---|
5364 | }
|
---|
5365 |
|
---|
5366 |
|
---|
5367 | /**
|
---|
5368 | * Saves the guest control registers from the current VMCS into the guest-CPU
|
---|
5369 | * context.
|
---|
5370 | *
|
---|
5371 | * @returns VBox status code.
|
---|
5372 | * @param pVCpu Pointer to the VMCPU.
|
---|
5373 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5374 | * out-of-sync. Make sure to update the required fields
|
---|
5375 | * before using them.
|
---|
5376 | *
|
---|
5377 | * @remarks No-long-jump zone!!!
|
---|
5378 | */
|
---|
5379 | static int hmR0VmxSaveGuestControlRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5380 | {
|
---|
5381 | /* Guest CR0. Guest FPU. */
|
---|
5382 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
5383 | AssertRCReturn(rc, rc);
|
---|
5384 |
|
---|
5385 | /* Guest CR4. */
|
---|
5386 | rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
|
---|
5387 | AssertRCReturn(rc, rc);
|
---|
5388 |
|
---|
5389 | /* Guest CR2 - updated always during the world-switch or in #PF. */
|
---|
5390 | /* Guest CR3. Only changes with Nested Paging. This must be done -after- saving CR0 and CR4 from the guest! */
|
---|
5391 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR3))
|
---|
5392 | {
|
---|
5393 | Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR0);
|
---|
5394 | Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR4);
|
---|
5395 |
|
---|
5396 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5397 | if ( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
5398 | || ( pVM->hm.s.fNestedPaging
|
---|
5399 | && CPUMIsGuestPagingEnabledEx(pMixedCtx)))
|
---|
5400 | {
|
---|
5401 | uint64_t u64Val = 0;
|
---|
5402 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_CR3, &u64Val);
|
---|
5403 | if (pMixedCtx->cr3 != u64Val)
|
---|
5404 | {
|
---|
5405 | CPUMSetGuestCR3(pVCpu, u64Val);
|
---|
5406 | if (VMMRZCallRing3IsEnabled(pVCpu))
|
---|
5407 | {
|
---|
5408 | PGMUpdateCR3(pVCpu, u64Val);
|
---|
5409 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
5410 | }
|
---|
5411 | else
|
---|
5412 | {
|
---|
5413 | /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMUpdateCR3().*/
|
---|
5414 | VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
|
---|
5415 | }
|
---|
5416 | }
|
---|
5417 |
|
---|
5418 | /* If the guest is in PAE mode, sync back the PDPE's into the guest state. */
|
---|
5419 | if (CPUMIsGuestInPAEModeEx(pMixedCtx)) /* Reads CR0, CR4 and EFER MSR (EFER is always up-to-date). */
|
---|
5420 | {
|
---|
5421 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE0_FULL, &pVCpu->hm.s.aPdpes[0].u); AssertRCReturn(rc, rc);
|
---|
5422 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE1_FULL, &pVCpu->hm.s.aPdpes[1].u); AssertRCReturn(rc, rc);
|
---|
5423 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE2_FULL, &pVCpu->hm.s.aPdpes[2].u); AssertRCReturn(rc, rc);
|
---|
5424 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PDPTE3_FULL, &pVCpu->hm.s.aPdpes[3].u); AssertRCReturn(rc, rc);
|
---|
5425 |
|
---|
5426 | if (VMMRZCallRing3IsEnabled(pVCpu))
|
---|
5427 | {
|
---|
5428 | PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
|
---|
5429 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
|
---|
5430 | }
|
---|
5431 | else
|
---|
5432 | {
|
---|
5433 | /* Set the force flag to inform PGM about it when necessary. It is cleared by PGMGstUpdatePaePdpes(). */
|
---|
5434 | VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES);
|
---|
5435 | }
|
---|
5436 | }
|
---|
5437 | }
|
---|
5438 |
|
---|
5439 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_CR3;
|
---|
5440 | }
|
---|
5441 |
|
---|
5442 | /*
|
---|
5443 | * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> hmR0VmxCallRing3Callback()
|
---|
5444 | * -> VMMRZCallRing3Disable() -> hmR0VmxSaveGuestState() -> Set VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
|
---|
5445 | * -> continue with VM-exit handling -> hmR0VmxSaveGuestControlRegs() and here we are.
|
---|
5446 | *
|
---|
5447 | * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
|
---|
5448 | */
|
---|
5449 | if (VMMRZCallRing3IsEnabled(pVCpu))
|
---|
5450 | {
|
---|
5451 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
|
---|
5452 | PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
|
---|
5453 |
|
---|
5454 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
|
---|
5455 | PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
|
---|
5456 |
|
---|
5457 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
5458 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
|
---|
5459 | }
|
---|
5460 |
|
---|
5461 | return rc;
|
---|
5462 | }
|
---|
5463 |
|
---|
5464 |
|
---|
5465 | /**
|
---|
5466 | * Reads a guest segment register from the current VMCS into the guest-CPU
|
---|
5467 | * context.
|
---|
5468 | *
|
---|
5469 | * @returns VBox status code.
|
---|
5470 | * @param pVCpu Pointer to the VMCPU.
|
---|
5471 | * @param idxSel Index of the selector in the VMCS.
|
---|
5472 | * @param idxLimit Index of the segment limit in the VMCS.
|
---|
5473 | * @param idxBase Index of the segment base in the VMCS.
|
---|
5474 | * @param idxAccess Index of the access rights of the segment in the VMCS.
|
---|
5475 | * @param pSelReg Pointer to the segment selector.
|
---|
5476 | *
|
---|
5477 | * @remarks No-long-jump zone!!!
|
---|
5478 | * @remarks Never call this function directly!!! Use the VMXLOCAL_READ_SEG()
|
---|
5479 | * macro as that takes care of whether to read from the VMCS cache or
|
---|
5480 | * not.
|
---|
5481 | */
|
---|
5482 | DECLINLINE(int) hmR0VmxReadSegmentReg(PVMCPU pVCpu, uint32_t idxSel, uint32_t idxLimit, uint32_t idxBase, uint32_t idxAccess,
|
---|
5483 | PCPUMSELREG pSelReg)
|
---|
5484 | {
|
---|
5485 | uint32_t u32Val = 0;
|
---|
5486 | int rc = VMXReadVmcs32(idxSel, &u32Val);
|
---|
5487 | AssertRCReturn(rc, rc);
|
---|
5488 | pSelReg->Sel = (uint16_t)u32Val;
|
---|
5489 | pSelReg->ValidSel = (uint16_t)u32Val;
|
---|
5490 | pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
5491 |
|
---|
5492 | rc = VMXReadVmcs32(idxLimit, &u32Val);
|
---|
5493 | AssertRCReturn(rc, rc);
|
---|
5494 | pSelReg->u32Limit = u32Val;
|
---|
5495 |
|
---|
5496 | uint64_t u64Val = 0;
|
---|
5497 | rc = VMXReadVmcsGstNByIdxVal(idxBase, &u64Val);
|
---|
5498 | AssertRCReturn(rc, rc);
|
---|
5499 | pSelReg->u64Base = u64Val;
|
---|
5500 |
|
---|
5501 | rc = VMXReadVmcs32(idxAccess, &u32Val);
|
---|
5502 | AssertRCReturn(rc, rc);
|
---|
5503 | pSelReg->Attr.u = u32Val;
|
---|
5504 |
|
---|
5505 | /*
|
---|
5506 | * If VT-x marks the segment as unusable, the rest of the attributes are undefined with certain exceptions (some bits in
|
---|
5507 | * CS, SS). Regardless, we have to clear the bits here and only retain the unusable bit because the unusable bit is specific
|
---|
5508 | * to VT-x, everyone else relies on the attribute being zero and have no clue what the unusable bit is.
|
---|
5509 | *
|
---|
5510 | * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
|
---|
5511 | *
|
---|
5512 | * bird: This isn't quite as simple. VT-x and VBox(!) requires the DPL for SS to be the same as CPL. In 64-bit mode it
|
---|
5513 | * is possible (int/trap/xxx injects does this when switching rings) to load SS with a NULL selector and RPL=CPL.
|
---|
5514 | * The Attr.u = X86DESCATTR_UNUSABLE works fine as long as nobody uses ring-1 or ring-2. VT-x updates the DPL
|
---|
5515 | * correctly in the attributes of SS even when the unusable bit is set, we need to preserve the DPL or we get invalid
|
---|
5516 | * guest state trouble. Try bs2-cpu-hidden-regs-1.
|
---|
5517 | */
|
---|
5518 | if (pSelReg->Attr.u & X86DESCATTR_UNUSABLE)
|
---|
5519 | {
|
---|
5520 | Assert(idxSel != VMX_VMCS16_GUEST_FIELD_TR); /* TR is the only selector that can never be unusable. */
|
---|
5521 | Log4(("hmR0VmxReadSegmentReg: Unusable idxSel=%#x attr=%#x\n", idxSel, pSelReg->Attr.u));
|
---|
5522 |
|
---|
5523 | if (idxSel == VMX_VMCS16_GUEST_FIELD_SS)
|
---|
5524 | pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_DPL;
|
---|
5525 | else if (idxSel == VMX_VMCS16_GUEST_FIELD_CS)
|
---|
5526 | pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G;
|
---|
5527 | else
|
---|
5528 | pSelReg->Attr.u = X86DESCATTR_UNUSABLE;
|
---|
5529 | }
|
---|
5530 | return VINF_SUCCESS;
|
---|
5531 | }
|
---|
5532 |
|
---|
5533 |
|
---|
5534 | #ifdef VMX_USE_CACHED_VMCS_ACCESSES
|
---|
5535 | # define VMXLOCAL_READ_SEG(Sel, CtxSel) \
|
---|
5536 | hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
|
---|
5537 | VMX_VMCS_GUEST_##Sel##_BASE_CACHE_IDX, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
|
---|
5538 | #else
|
---|
5539 | # define VMXLOCAL_READ_SEG(Sel, CtxSel) \
|
---|
5540 | hmR0VmxReadSegmentReg(pVCpu, VMX_VMCS16_GUEST_FIELD_##Sel, VMX_VMCS32_GUEST_##Sel##_LIMIT, \
|
---|
5541 | VMX_VMCS_GUEST_##Sel##_BASE, VMX_VMCS32_GUEST_##Sel##_ACCESS_RIGHTS, &pMixedCtx->CtxSel)
|
---|
5542 | #endif
|
---|
5543 |
|
---|
5544 |
|
---|
5545 | /**
|
---|
5546 | * Saves the guest segment registers from the current VMCS into the guest-CPU
|
---|
5547 | * context.
|
---|
5548 | *
|
---|
5549 | * @returns VBox status code.
|
---|
5550 | * @param pVCpu Pointer to the VMCPU.
|
---|
5551 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5552 | * out-of-sync. Make sure to update the required fields
|
---|
5553 | * before using them.
|
---|
5554 | *
|
---|
5555 | * @remarks No-long-jump zone!!!
|
---|
5556 | */
|
---|
5557 | static int hmR0VmxSaveGuestSegmentRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5558 | {
|
---|
5559 | /* Guest segment registers. */
|
---|
5560 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_SEGMENT_REGS))
|
---|
5561 | {
|
---|
5562 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx); AssertRCReturn(rc, rc);
|
---|
5563 | rc = VMXLOCAL_READ_SEG(CS, cs); AssertRCReturn(rc, rc);
|
---|
5564 | rc = VMXLOCAL_READ_SEG(SS, ss); AssertRCReturn(rc, rc);
|
---|
5565 | rc = VMXLOCAL_READ_SEG(DS, ds); AssertRCReturn(rc, rc);
|
---|
5566 | rc = VMXLOCAL_READ_SEG(ES, es); AssertRCReturn(rc, rc);
|
---|
5567 | rc = VMXLOCAL_READ_SEG(FS, fs); AssertRCReturn(rc, rc);
|
---|
5568 | rc = VMXLOCAL_READ_SEG(GS, gs); AssertRCReturn(rc, rc);
|
---|
5569 |
|
---|
5570 | /* Restore segment attributes for real-on-v86 mode hack. */
|
---|
5571 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
5572 | {
|
---|
5573 | pMixedCtx->cs.Attr.u = pVCpu->hm.s.vmx.RealMode.uAttrCS.u;
|
---|
5574 | pMixedCtx->ss.Attr.u = pVCpu->hm.s.vmx.RealMode.uAttrSS.u;
|
---|
5575 | pMixedCtx->ds.Attr.u = pVCpu->hm.s.vmx.RealMode.uAttrDS.u;
|
---|
5576 | pMixedCtx->es.Attr.u = pVCpu->hm.s.vmx.RealMode.uAttrES.u;
|
---|
5577 | pMixedCtx->fs.Attr.u = pVCpu->hm.s.vmx.RealMode.uAttrFS.u;
|
---|
5578 | pMixedCtx->gs.Attr.u = pVCpu->hm.s.vmx.RealMode.uAttrGS.u;
|
---|
5579 | }
|
---|
5580 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_SEGMENT_REGS;
|
---|
5581 | }
|
---|
5582 |
|
---|
5583 | return VINF_SUCCESS;
|
---|
5584 | }
|
---|
5585 |
|
---|
5586 |
|
---|
5587 | /**
|
---|
5588 | * Saves the guest descriptor table registers and task register from the current
|
---|
5589 | * VMCS into the guest-CPU context.
|
---|
5590 | *
|
---|
5591 | * @returns VBox status code.
|
---|
5592 | * @param pVCpu Pointer to the VMCPU.
|
---|
5593 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5594 | * out-of-sync. Make sure to update the required fields
|
---|
5595 | * before using them.
|
---|
5596 | *
|
---|
5597 | * @remarks No-long-jump zone!!!
|
---|
5598 | */
|
---|
5599 | static int hmR0VmxSaveGuestTableRegs(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5600 | {
|
---|
5601 | int rc = VINF_SUCCESS;
|
---|
5602 |
|
---|
5603 | /* Guest LDTR. */
|
---|
5604 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_LDTR))
|
---|
5605 | {
|
---|
5606 | rc = VMXLOCAL_READ_SEG(LDTR, ldtr);
|
---|
5607 | AssertRCReturn(rc, rc);
|
---|
5608 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_LDTR;
|
---|
5609 | }
|
---|
5610 |
|
---|
5611 | /* Guest GDTR. */
|
---|
5612 | uint64_t u64Val = 0;
|
---|
5613 | uint32_t u32Val = 0;
|
---|
5614 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_GDTR))
|
---|
5615 | {
|
---|
5616 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_GDTR_BASE, &u64Val); AssertRCReturn(rc, rc);
|
---|
5617 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
|
---|
5618 | pMixedCtx->gdtr.pGdt = u64Val;
|
---|
5619 | pMixedCtx->gdtr.cbGdt = u32Val;
|
---|
5620 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_GDTR;
|
---|
5621 | }
|
---|
5622 |
|
---|
5623 | /* Guest IDTR. */
|
---|
5624 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_IDTR))
|
---|
5625 | {
|
---|
5626 | rc = VMXReadVmcsGstN(VMX_VMCS_GUEST_IDTR_BASE, &u64Val); AssertRCReturn(rc, rc);
|
---|
5627 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRCReturn(rc, rc);
|
---|
5628 | pMixedCtx->idtr.pIdt = u64Val;
|
---|
5629 | pMixedCtx->idtr.cbIdt = u32Val;
|
---|
5630 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_IDTR;
|
---|
5631 | }
|
---|
5632 |
|
---|
5633 | /* Guest TR. */
|
---|
5634 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_TR))
|
---|
5635 | {
|
---|
5636 | rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
5637 | AssertRCReturn(rc, rc);
|
---|
5638 |
|
---|
5639 | /* For real-mode emulation using virtual-8086 mode we have the fake TSS (pRealModeTSS) in TR, don't save the fake one. */
|
---|
5640 | if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
5641 | {
|
---|
5642 | rc = VMXLOCAL_READ_SEG(TR, tr);
|
---|
5643 | AssertRCReturn(rc, rc);
|
---|
5644 | }
|
---|
5645 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_TR;
|
---|
5646 | }
|
---|
5647 | return rc;
|
---|
5648 | }
|
---|
5649 |
|
---|
5650 | #undef VMXLOCAL_READ_SEG
|
---|
5651 |
|
---|
5652 |
|
---|
5653 | /**
|
---|
5654 | * Saves the guest debug-register DR7 from the current VMCS into the guest-CPU
|
---|
5655 | * context.
|
---|
5656 | *
|
---|
5657 | * @returns VBox status code.
|
---|
5658 | * @param pVCpu Pointer to the VMCPU.
|
---|
5659 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5660 | * out-of-sync. Make sure to update the required fields
|
---|
5661 | * before using them.
|
---|
5662 | *
|
---|
5663 | * @remarks No-long-jump zone!!!
|
---|
5664 | */
|
---|
5665 | static int hmR0VmxSaveGuestDR7(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5666 | {
|
---|
5667 | if (!(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_DEBUG))
|
---|
5668 | {
|
---|
5669 | if (!CPUMIsHyperDebugStateActive(pVCpu))
|
---|
5670 | {
|
---|
5671 | /* Upper 32-bits are always zero. See Intel spec. 2.7.3 "Loading and Storing Debug Registers". */
|
---|
5672 | uint32_t u32Val;
|
---|
5673 | int rc = VMXReadVmcs32(VMX_VMCS_GUEST_DR7, &u32Val); AssertRCReturn(rc, rc);
|
---|
5674 | pMixedCtx->dr[7] = u32Val;
|
---|
5675 | }
|
---|
5676 |
|
---|
5677 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_DEBUG;
|
---|
5678 | }
|
---|
5679 | return VINF_SUCCESS;
|
---|
5680 | }
|
---|
5681 |
|
---|
5682 |
|
---|
5683 | /**
|
---|
5684 | * Saves the guest APIC state from the current VMCS into the guest-CPU context.
|
---|
5685 | *
|
---|
5686 | * @returns VBox status code.
|
---|
5687 | * @param pVCpu Pointer to the VMCPU.
|
---|
5688 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
5689 | * out-of-sync. Make sure to update the required fields
|
---|
5690 | * before using them.
|
---|
5691 | *
|
---|
5692 | * @remarks No-long-jump zone!!!
|
---|
5693 | */
|
---|
5694 | static int hmR0VmxSaveGuestApicState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5695 | {
|
---|
5696 | /* Updating TPR is already done in hmR0VmxPostRunGuest(). Just update the flag. */
|
---|
5697 | pVCpu->hm.s.vmx.fUpdatedGuestState |= HMVMX_UPDATED_GUEST_APIC_STATE;
|
---|
5698 | return VINF_SUCCESS;
|
---|
5699 | }
|
---|
5700 |
|
---|
5701 |
|
---|
5702 | /**
|
---|
5703 | * Saves the entire guest state from the currently active VMCS into the
|
---|
5704 | * guest-CPU context. This essentially VMREADs all guest-data.
|
---|
5705 | *
|
---|
5706 | * @returns VBox status code.
|
---|
5707 | * @param pVCpu Pointer to the VMCPU.
|
---|
5708 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
5709 | * out-of-sync. Make sure to update the required fields
|
---|
5710 | * before using them.
|
---|
5711 | */
|
---|
5712 | static int hmR0VmxSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5713 | {
|
---|
5714 | Assert(pVCpu);
|
---|
5715 | Assert(pMixedCtx);
|
---|
5716 |
|
---|
5717 | if (pVCpu->hm.s.vmx.fUpdatedGuestState == HMVMX_UPDATED_GUEST_ALL)
|
---|
5718 | return VINF_SUCCESS;
|
---|
5719 |
|
---|
5720 | /* Though we can longjmp to ring-3 due to log-flushes here and get recalled again on the ring-3 callback path,
|
---|
5721 | there is no real need to. */
|
---|
5722 | if (VMMRZCallRing3IsEnabled(pVCpu))
|
---|
5723 | VMMR0LogFlushDisable(pVCpu);
|
---|
5724 | else
|
---|
5725 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
5726 | Log4Func(("vcpu[%RU32]\n", pVCpu->idCpu));
|
---|
5727 |
|
---|
5728 | int rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
|
---|
5729 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestRipRspRflags failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
5730 |
|
---|
5731 | rc = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
5732 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestControlRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
5733 |
|
---|
5734 | rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
5735 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSegmentRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
5736 |
|
---|
5737 | rc = hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
|
---|
5738 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestTableRegs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
5739 |
|
---|
5740 | rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
|
---|
5741 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestDR7 failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
5742 |
|
---|
5743 | rc = hmR0VmxSaveGuestSysenterMsrs(pVCpu, pMixedCtx);
|
---|
5744 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestSysenterMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
5745 |
|
---|
5746 | rc = hmR0VmxSaveGuestFSBaseMsr(pVCpu, pMixedCtx);
|
---|
5747 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestFSBaseMsr failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
5748 |
|
---|
5749 | rc = hmR0VmxSaveGuestGSBaseMsr(pVCpu, pMixedCtx);
|
---|
5750 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestGSBaseMsr failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
5751 |
|
---|
5752 | rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
|
---|
5753 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestAutoLoadStoreMsrs failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
5754 |
|
---|
5755 | rc = hmR0VmxSaveGuestActivityState(pVCpu, pMixedCtx);
|
---|
5756 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestActivityState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
5757 |
|
---|
5758 | rc = hmR0VmxSaveGuestApicState(pVCpu, pMixedCtx);
|
---|
5759 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveGuestApicState failed! rc=%Rrc (pVCpu=%p)\n", rc, pVCpu), rc);
|
---|
5760 |
|
---|
5761 | AssertMsg(pVCpu->hm.s.vmx.fUpdatedGuestState == HMVMX_UPDATED_GUEST_ALL,
|
---|
5762 | ("Missed guest state bits while saving state; residue %RX32\n", pVCpu->hm.s.vmx.fUpdatedGuestState));
|
---|
5763 |
|
---|
5764 | if (VMMRZCallRing3IsEnabled(pVCpu))
|
---|
5765 | VMMR0LogFlushEnable(pVCpu);
|
---|
5766 |
|
---|
5767 | return rc;
|
---|
5768 | }
|
---|
5769 |
|
---|
5770 |
|
---|
5771 | /**
|
---|
5772 | * Check per-VM and per-VCPU force flag actions that require us to go back to
|
---|
5773 | * ring-3 for one reason or another.
|
---|
5774 | *
|
---|
5775 | * @returns VBox status code (information status code included).
|
---|
5776 | * @retval VINF_SUCCESS if we don't have any actions that require going back to
|
---|
5777 | * ring-3.
|
---|
5778 | * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
|
---|
5779 | * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
|
---|
5780 | * interrupts)
|
---|
5781 | * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
|
---|
5782 | * all EMTs to be in ring-3.
|
---|
5783 | * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
|
---|
5784 | * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
|
---|
5785 | * to the EM loop.
|
---|
5786 | *
|
---|
5787 | * @param pVM Pointer to the VM.
|
---|
5788 | * @param pVCpu Pointer to the VMCPU.
|
---|
5789 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
5790 | * out-of-sync. Make sure to update the required fields
|
---|
5791 | * before using them.
|
---|
5792 | */
|
---|
5793 | static int hmR0VmxCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
5794 | {
|
---|
5795 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
5796 |
|
---|
5797 | if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
|
---|
5798 | ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
|
---|
5799 | || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
|
---|
5800 | ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
|
---|
5801 | {
|
---|
5802 | /* We need the control registers now, make sure the guest-CPU context is updated. */
|
---|
5803 | int rc3 = hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
5804 | AssertRCReturn(rc3, rc3);
|
---|
5805 |
|
---|
5806 | /* Pending HM CR3 sync. */
|
---|
5807 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
|
---|
5808 | {
|
---|
5809 | int rc2 = PGMUpdateCR3(pVCpu, pMixedCtx->cr3);
|
---|
5810 | AssertMsgReturn(rc2 == VINF_SUCCESS || rc2 == VINF_PGM_SYNC_CR3,
|
---|
5811 | ("%Rrc\n", rc2), RT_FAILURE_NP(rc2) ? rc2 : VERR_IPE_UNEXPECTED_INFO_STATUS);
|
---|
5812 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
5813 | }
|
---|
5814 |
|
---|
5815 | /* Pending HM PAE PDPEs. */
|
---|
5816 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES))
|
---|
5817 | {
|
---|
5818 | PGMGstUpdatePaePdpes(pVCpu, &pVCpu->hm.s.aPdpes[0]);
|
---|
5819 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
|
---|
5820 | }
|
---|
5821 |
|
---|
5822 | /* Pending PGM C3 sync. */
|
---|
5823 | if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
|
---|
5824 | {
|
---|
5825 | int rc2 = PGMSyncCR3(pVCpu, pMixedCtx->cr0, pMixedCtx->cr3, pMixedCtx->cr4, VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
|
---|
5826 | if (rc2 != VINF_SUCCESS)
|
---|
5827 | {
|
---|
5828 | AssertRC(rc2);
|
---|
5829 | Log4(("hmR0VmxCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", rc2));
|
---|
5830 | return rc2;
|
---|
5831 | }
|
---|
5832 | }
|
---|
5833 |
|
---|
5834 | /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
|
---|
5835 | /* -XXX- what was that about single stepping? */
|
---|
5836 | if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
|
---|
5837 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
5838 | {
|
---|
5839 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
5840 | int rc2 = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
|
---|
5841 | Log4(("hmR0VmxCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc2));
|
---|
5842 | return rc2;
|
---|
5843 | }
|
---|
5844 |
|
---|
5845 | /* Pending VM request packets, such as hardware interrupts. */
|
---|
5846 | if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
|
---|
5847 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
|
---|
5848 | {
|
---|
5849 | Log4(("hmR0VmxCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
|
---|
5850 | return VINF_EM_PENDING_REQUEST;
|
---|
5851 | }
|
---|
5852 |
|
---|
5853 | /* Pending PGM pool flushes. */
|
---|
5854 | if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
|
---|
5855 | {
|
---|
5856 | Log4(("hmR0VmxCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
|
---|
5857 | return VINF_PGM_POOL_FLUSH_PENDING;
|
---|
5858 | }
|
---|
5859 |
|
---|
5860 | /* Pending DMA requests. */
|
---|
5861 | if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
|
---|
5862 | {
|
---|
5863 | Log4(("hmR0VmxCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
|
---|
5864 | return VINF_EM_RAW_TO_R3;
|
---|
5865 | }
|
---|
5866 | }
|
---|
5867 |
|
---|
5868 | /* Paranoia. */
|
---|
5869 | return VINF_SUCCESS;
|
---|
5870 | }
|
---|
5871 |
|
---|
5872 |
|
---|
5873 | /**
|
---|
5874 | * Converts any TRPM trap into a pending HM event. This is typically used when
|
---|
5875 | * entering from ring-3 (not longjmp returns).
|
---|
5876 | *
|
---|
5877 | * @param pVCpu Pointer to the VMCPU.
|
---|
5878 | */
|
---|
5879 | static void hmR0VmxTrpmTrapToPendingEvent(PVMCPU pVCpu)
|
---|
5880 | {
|
---|
5881 | Assert(TRPMHasTrap(pVCpu));
|
---|
5882 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
5883 |
|
---|
5884 | uint8_t uVector;
|
---|
5885 | TRPMEVENT enmTrpmEvent;
|
---|
5886 | RTGCUINT uErrCode;
|
---|
5887 | RTGCUINTPTR GCPtrFaultAddress;
|
---|
5888 | uint8_t cbInstr;
|
---|
5889 |
|
---|
5890 | int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
|
---|
5891 | AssertRC(rc);
|
---|
5892 |
|
---|
5893 | /* Refer Intel spec. 24.8.3 "VM-entry Controls for Event Injection" for the format of u32IntrInfo. */
|
---|
5894 | uint32_t u32IntrInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
5895 | if (enmTrpmEvent == TRPM_TRAP)
|
---|
5896 | {
|
---|
5897 | switch (uVector)
|
---|
5898 | {
|
---|
5899 | case X86_XCPT_BP:
|
---|
5900 | case X86_XCPT_OF:
|
---|
5901 | {
|
---|
5902 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
5903 | break;
|
---|
5904 | }
|
---|
5905 |
|
---|
5906 | case X86_XCPT_PF:
|
---|
5907 | case X86_XCPT_DF:
|
---|
5908 | case X86_XCPT_TS:
|
---|
5909 | case X86_XCPT_NP:
|
---|
5910 | case X86_XCPT_SS:
|
---|
5911 | case X86_XCPT_GP:
|
---|
5912 | case X86_XCPT_AC:
|
---|
5913 | u32IntrInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
|
---|
5914 | /* no break! */
|
---|
5915 | default:
|
---|
5916 | {
|
---|
5917 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
5918 | break;
|
---|
5919 | }
|
---|
5920 | }
|
---|
5921 | }
|
---|
5922 | else if (enmTrpmEvent == TRPM_HARDWARE_INT)
|
---|
5923 | {
|
---|
5924 | if (uVector == X86_XCPT_NMI)
|
---|
5925 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
5926 | else
|
---|
5927 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
5928 | }
|
---|
5929 | else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
|
---|
5930 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
5931 | else
|
---|
5932 | AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
|
---|
5933 |
|
---|
5934 | rc = TRPMResetTrap(pVCpu);
|
---|
5935 | AssertRC(rc);
|
---|
5936 | Log4(("TRPM->HM event: u32IntrInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
|
---|
5937 | u32IntrInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
|
---|
5938 |
|
---|
5939 | hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, cbInstr, uErrCode, GCPtrFaultAddress);
|
---|
5940 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
5941 | }
|
---|
5942 |
|
---|
5943 |
|
---|
5944 | /**
|
---|
5945 | * Converts any pending HM event into a TRPM trap. Typically used when leaving
|
---|
5946 | * VT-x to execute any instruction.
|
---|
5947 | *
|
---|
5948 | * @param pvCpu Pointer to the VMCPU.
|
---|
5949 | */
|
---|
5950 | static void hmR0VmxPendingEventToTrpmTrap(PVMCPU pVCpu)
|
---|
5951 | {
|
---|
5952 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
5953 |
|
---|
5954 | uint32_t uVectorType = VMX_IDT_VECTORING_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo);
|
---|
5955 | uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVCpu->hm.s.Event.u64IntrInfo);
|
---|
5956 | bool fErrorCodeValid = !!VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVCpu->hm.s.Event.u64IntrInfo);
|
---|
5957 | uint32_t uErrorCode = pVCpu->hm.s.Event.u32ErrCode;
|
---|
5958 |
|
---|
5959 | /* If a trap was already pending, we did something wrong! */
|
---|
5960 | Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
|
---|
5961 |
|
---|
5962 | TRPMEVENT enmTrapType;
|
---|
5963 | switch (uVectorType)
|
---|
5964 | {
|
---|
5965 | case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
|
---|
5966 | case VMX_IDT_VECTORING_INFO_TYPE_NMI:
|
---|
5967 | enmTrapType = TRPM_HARDWARE_INT;
|
---|
5968 | break;
|
---|
5969 | case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
|
---|
5970 | enmTrapType = TRPM_SOFTWARE_INT;
|
---|
5971 | break;
|
---|
5972 | case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
|
---|
5973 | case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT: /* #BP and #OF */
|
---|
5974 | case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
|
---|
5975 | enmTrapType = TRPM_TRAP;
|
---|
5976 | break;
|
---|
5977 | default:
|
---|
5978 | AssertMsgFailed(("Invalid trap type %#x\n", uVectorType));
|
---|
5979 | enmTrapType = TRPM_32BIT_HACK;
|
---|
5980 | break;
|
---|
5981 | }
|
---|
5982 |
|
---|
5983 | Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
|
---|
5984 |
|
---|
5985 | int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
|
---|
5986 | AssertRC(rc);
|
---|
5987 |
|
---|
5988 | if (fErrorCodeValid)
|
---|
5989 | TRPMSetErrorCode(pVCpu, uErrorCode);
|
---|
5990 |
|
---|
5991 | if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
|
---|
5992 | && uVector == X86_XCPT_PF)
|
---|
5993 | {
|
---|
5994 | TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
|
---|
5995 | }
|
---|
5996 | else if ( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
|
---|
5997 | || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
|
---|
5998 | || uVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
|
---|
5999 | {
|
---|
6000 | AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
|
---|
6001 | || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
|
---|
6002 | ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
|
---|
6003 | TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
|
---|
6004 | }
|
---|
6005 | pVCpu->hm.s.Event.fPending = false;
|
---|
6006 | }
|
---|
6007 |
|
---|
6008 |
|
---|
6009 | /**
|
---|
6010 | * Does the necessary state syncing before returning to ring-3 for any reason
|
---|
6011 | * (longjmp, preemption, voluntary exits to ring-3) from VT-x.
|
---|
6012 | *
|
---|
6013 | * @param pVM Pointer to the VM.
|
---|
6014 | * @param pVCpu Pointer to the VMCPU.
|
---|
6015 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
6016 | * out-of-sync. Make sure to update the required fields
|
---|
6017 | * before using them.
|
---|
6018 | *
|
---|
6019 | * @remarks No-long-jmp zone!!!
|
---|
6020 | */
|
---|
6021 | static void hmR0VmxLeave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6022 | {
|
---|
6023 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
6024 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
6025 |
|
---|
6026 | /* Save the guest state if necessary. */
|
---|
6027 | if (pVCpu->hm.s.vmx.fUpdatedGuestState != HMVMX_UPDATED_GUEST_ALL)
|
---|
6028 | {
|
---|
6029 | int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
6030 | AssertRC(rc);
|
---|
6031 | Assert(pVCpu->hm.s.vmx.fUpdatedGuestState == HMVMX_UPDATED_GUEST_ALL);
|
---|
6032 | }
|
---|
6033 |
|
---|
6034 | /* Restore host FPU state if necessary and resync on next R0 reentry .*/
|
---|
6035 | if (CPUMIsGuestFPUStateActive(pVCpu))
|
---|
6036 | {
|
---|
6037 | CPUMR0SaveGuestFPU(pVM, pVCpu, pMixedCtx);
|
---|
6038 | Assert(!CPUMIsGuestFPUStateActive(pVCpu));
|
---|
6039 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
|
---|
6040 | }
|
---|
6041 |
|
---|
6042 | /* Restore host debug registers if necessary and resync on next R0 reentry. */
|
---|
6043 | #ifdef VBOX_STRICT
|
---|
6044 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
6045 | Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT);
|
---|
6046 | #endif
|
---|
6047 | if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, true /* save DR6 */))
|
---|
6048 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
|
---|
6049 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
6050 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
6051 |
|
---|
6052 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
|
---|
6053 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
|
---|
6054 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
|
---|
6055 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
|
---|
6056 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitIO);
|
---|
6057 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitMovCRx);
|
---|
6058 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExitXcptNmi);
|
---|
6059 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
6060 |
|
---|
6061 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
|
---|
6062 | }
|
---|
6063 |
|
---|
6064 |
|
---|
6065 | /**
|
---|
6066 | * Does the necessary state syncing before doing a longjmp to ring-3.
|
---|
6067 | *
|
---|
6068 | * @param pVM Pointer to the VM.
|
---|
6069 | * @param pVCpu Pointer to the VMCPU.
|
---|
6070 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
6071 | * out-of-sync. Make sure to update the required fields
|
---|
6072 | * before using them.
|
---|
6073 | *
|
---|
6074 | * @remarks No-long-jmp zone!!!
|
---|
6075 | */
|
---|
6076 | DECLINLINE(void) hmR0VmxLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6077 | {
|
---|
6078 | hmR0VmxLeave(pVM, pVCpu, pMixedCtx);
|
---|
6079 | }
|
---|
6080 |
|
---|
6081 |
|
---|
6082 | /**
|
---|
6083 | * An action requires us to go back to ring-3. This function does the necessary
|
---|
6084 | * steps before we can safely return to ring-3. This is not the same as longjmps
|
---|
6085 | * to ring-3, this is voluntary and prepares the guest so it may continue
|
---|
6086 | * executing outside HM (recompiler/IEM).
|
---|
6087 | *
|
---|
6088 | * @param pVM Pointer to the VM.
|
---|
6089 | * @param pVCpu Pointer to the VMCPU.
|
---|
6090 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
6091 | * out-of-sync. Make sure to update the required fields
|
---|
6092 | * before using them.
|
---|
6093 | * @param rcExit The reason for exiting to ring-3. Can be
|
---|
6094 | * VINF_VMM_UNKNOWN_RING3_CALL.
|
---|
6095 | */
|
---|
6096 | static void hmR0VmxExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, int rcExit)
|
---|
6097 | {
|
---|
6098 | Assert(pVM);
|
---|
6099 | Assert(pVCpu);
|
---|
6100 | Assert(pMixedCtx);
|
---|
6101 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
6102 |
|
---|
6103 | if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_GUEST_STATE))
|
---|
6104 | {
|
---|
6105 | /* We want to see what the guest-state was before VM-entry, don't resync here, as we won't continue guest execution. */
|
---|
6106 | return;
|
---|
6107 | }
|
---|
6108 | else if (RT_UNLIKELY(rcExit == VERR_VMX_INVALID_VMCS_PTR))
|
---|
6109 | {
|
---|
6110 | VMXGetActivateVMCS(&pVCpu->hm.s.vmx.LastError.u64VMCSPhys);
|
---|
6111 | pVCpu->hm.s.vmx.LastError.u32VMCSRevision = *(uint32_t *)pVCpu->hm.s.vmx.pvVmcs;
|
---|
6112 | pVCpu->hm.s.vmx.LastError.idEnteredCpu = pVCpu->hm.s.idEnteredCpu;
|
---|
6113 | pVCpu->hm.s.vmx.LastError.idCurrentCpu = RTMpCpuId();
|
---|
6114 | return;
|
---|
6115 | }
|
---|
6116 |
|
---|
6117 | /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
|
---|
6118 | VMMRZCallRing3Disable(pVCpu);
|
---|
6119 | Log4(("hmR0VmxExitToRing3: pVCpu=%p idCpu=%RU32 rcExit=%d\n", pVCpu, pVCpu->idCpu, rcExit));
|
---|
6120 |
|
---|
6121 | /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
|
---|
6122 | if (pVCpu->hm.s.Event.fPending)
|
---|
6123 | {
|
---|
6124 | hmR0VmxPendingEventToTrpmTrap(pVCpu);
|
---|
6125 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
6126 | }
|
---|
6127 |
|
---|
6128 | /* Save guest state and restore host state bits. */
|
---|
6129 | hmR0VmxLeave(pVM, pVCpu, pMixedCtx);
|
---|
6130 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
6131 |
|
---|
6132 | /* Sync recompiler state. */
|
---|
6133 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
|
---|
6134 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
|
---|
6135 | | CPUM_CHANGED_LDTR
|
---|
6136 | | CPUM_CHANGED_GDTR
|
---|
6137 | | CPUM_CHANGED_IDTR
|
---|
6138 | | CPUM_CHANGED_TR
|
---|
6139 | | CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
6140 | Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_CR0);
|
---|
6141 | if ( pVM->hm.s.fNestedPaging
|
---|
6142 | && CPUMIsGuestPagingEnabledEx(pMixedCtx))
|
---|
6143 | {
|
---|
6144 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
6145 | }
|
---|
6146 |
|
---|
6147 | /* On our way back from ring-3 the following needs to be done. */
|
---|
6148 | /** @todo This can change with preemption hooks. */
|
---|
6149 | if (rcExit == VINF_EM_RAW_INTERRUPT)
|
---|
6150 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
|
---|
6151 | else
|
---|
6152 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
|
---|
6153 |
|
---|
6154 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
|
---|
6155 | VMMRZCallRing3Enable(pVCpu);
|
---|
6156 | }
|
---|
6157 |
|
---|
6158 |
|
---|
6159 | /**
|
---|
6160 | * VMMRZCallRing3() callback wrapper which saves the guest state before we
|
---|
6161 | * longjump to ring-3 and possibly get preempted.
|
---|
6162 | *
|
---|
6163 | * @param pVCpu Pointer to the VMCPU.
|
---|
6164 | * @param enmOperation The operation causing the ring-3 longjump.
|
---|
6165 | * @param pvUser The user argument (pointer to the possibly
|
---|
6166 | * out-of-date guest-CPU context).
|
---|
6167 | *
|
---|
6168 | * @remarks Must never be called with @a enmOperation ==
|
---|
6169 | * VMMCALLRING3_VM_R0_ASSERTION.
|
---|
6170 | */
|
---|
6171 | DECLCALLBACK(void) hmR0VmxCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
|
---|
6172 | {
|
---|
6173 | /* VMMRZCallRing3() already makes sure we never get called as a result of an longjmp due to an assertion. */
|
---|
6174 | Assert(pVCpu);
|
---|
6175 | Assert(pvUser);
|
---|
6176 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
6177 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
6178 |
|
---|
6179 | VMMRZCallRing3Disable(pVCpu);
|
---|
6180 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
6181 | Log4(("hmR0VmxCallRing3Callback->hmR0VmxLongJmpToRing3 pVCpu=%p idCpu=%RU32\n", pVCpu, pVCpu->idCpu));
|
---|
6182 | hmR0VmxLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser);
|
---|
6183 | VMMRZCallRing3Enable(pVCpu);
|
---|
6184 | }
|
---|
6185 |
|
---|
6186 |
|
---|
6187 | /**
|
---|
6188 | * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
|
---|
6189 | * cause a VM-exit as soon as the guest is in a state to receive interrupts.
|
---|
6190 | *
|
---|
6191 | * @param pVCpu Pointer to the VMCPU.
|
---|
6192 | */
|
---|
6193 | DECLINLINE(void) hmR0VmxSetIntWindowExitVmcs(PVMCPU pVCpu)
|
---|
6194 | {
|
---|
6195 | if (RT_LIKELY(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
|
---|
6196 | {
|
---|
6197 | if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT))
|
---|
6198 | {
|
---|
6199 | pVCpu->hm.s.vmx.u32ProcCtls |= VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
|
---|
6200 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
6201 | AssertRC(rc);
|
---|
6202 | }
|
---|
6203 | } /* else we will deliver interrupts whenever the guest exits next and is in a state to receive events. */
|
---|
6204 | }
|
---|
6205 |
|
---|
6206 |
|
---|
6207 | /**
|
---|
6208 | * Injects any pending events into the guest if the guest is in a state to
|
---|
6209 | * receive them.
|
---|
6210 | *
|
---|
6211 | * @returns VBox status code (informational status codes included).
|
---|
6212 | * @param pVCpu Pointer to the VMCPU.
|
---|
6213 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
6214 | * out-of-sync. Make sure to update the required fields
|
---|
6215 | * before using them.
|
---|
6216 | */
|
---|
6217 | static int hmR0VmxInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6218 | {
|
---|
6219 | /* Get the current interruptibility-state of the guest and then figure out what can be injected. */
|
---|
6220 | uint32_t uIntrState = hmR0VmxGetGuestIntrState(pVCpu, pMixedCtx);
|
---|
6221 | bool fBlockMovSS = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
|
---|
6222 | bool fBlockSti = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
|
---|
6223 |
|
---|
6224 | Assert(!fBlockSti || (pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RFLAGS));
|
---|
6225 | Assert( !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI) /* We don't support block-by-NMI and SMI yet.*/
|
---|
6226 | && !(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI));
|
---|
6227 | Assert(!fBlockSti || pMixedCtx->eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
|
---|
6228 | Assert(!TRPMHasTrap(pVCpu));
|
---|
6229 |
|
---|
6230 | int rc = VINF_SUCCESS;
|
---|
6231 | if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
|
---|
6232 | {
|
---|
6233 | uint32_t uIntrType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVCpu->hm.s.Event.u64IntrInfo);
|
---|
6234 | bool fInject = true;
|
---|
6235 | if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
|
---|
6236 | {
|
---|
6237 | rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
6238 | AssertRCReturn(rc, rc);
|
---|
6239 | const bool fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
|
---|
6240 | if ( fBlockInt
|
---|
6241 | || fBlockSti
|
---|
6242 | || fBlockMovSS)
|
---|
6243 | {
|
---|
6244 | fInject = false;
|
---|
6245 | }
|
---|
6246 | }
|
---|
6247 | else if ( uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
|
---|
6248 | && ( fBlockMovSS
|
---|
6249 | || fBlockSti))
|
---|
6250 | {
|
---|
6251 | /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
|
---|
6252 | fInject = false;
|
---|
6253 | }
|
---|
6254 |
|
---|
6255 | if (fInject)
|
---|
6256 | {
|
---|
6257 | Log4(("Injecting pending event vcpu[%RU32]\n", pVCpu->idCpu));
|
---|
6258 | rc = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, pVCpu->hm.s.Event.u64IntrInfo, pVCpu->hm.s.Event.cbInstr,
|
---|
6259 | pVCpu->hm.s.Event.u32ErrCode, pVCpu->hm.s.Event.GCPtrFaultAddress, &uIntrState);
|
---|
6260 | AssertRCReturn(rc, rc);
|
---|
6261 | pVCpu->hm.s.Event.fPending = false;
|
---|
6262 |
|
---|
6263 | #ifdef VBOX_WITH_STATISTICS
|
---|
6264 | if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
|
---|
6265 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
|
---|
6266 | else
|
---|
6267 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
|
---|
6268 | #endif
|
---|
6269 | }
|
---|
6270 | else
|
---|
6271 | hmR0VmxSetIntWindowExitVmcs(pVCpu);
|
---|
6272 | } /** @todo SMI. SMIs take priority over NMIs. */
|
---|
6273 | else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
|
---|
6274 | {
|
---|
6275 | /* On some CPUs block-by-STI also blocks NMIs. See Intel spec. 26.3.1.5 "Checks On Guest Non-Register State". */
|
---|
6276 | if ( !fBlockMovSS
|
---|
6277 | && !fBlockSti)
|
---|
6278 | {
|
---|
6279 | Log4(("Injecting NMI\n"));
|
---|
6280 | uint32_t u32IntrInfo = X86_XCPT_NMI | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
6281 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
6282 | rc = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */,
|
---|
6283 | 0 /* GCPtrFaultAddress */, &uIntrState);
|
---|
6284 | AssertRCReturn(rc, rc);
|
---|
6285 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
6286 |
|
---|
6287 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
|
---|
6288 | }
|
---|
6289 | else
|
---|
6290 | hmR0VmxSetIntWindowExitVmcs(pVCpu);
|
---|
6291 | }
|
---|
6292 | else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
|
---|
6293 | {
|
---|
6294 | /* Check if there are guest external interrupts (PIC/APIC) pending and inject them if the guest can receive them. */
|
---|
6295 | rc = hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
6296 | AssertRCReturn(rc, rc);
|
---|
6297 | const bool fBlockInt = !(pMixedCtx->eflags.u32 & X86_EFL_IF);
|
---|
6298 | if ( !fBlockInt
|
---|
6299 | && !fBlockSti
|
---|
6300 | && !fBlockMovSS)
|
---|
6301 | {
|
---|
6302 | uint8_t u8Interrupt;
|
---|
6303 | rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
|
---|
6304 | if (RT_SUCCESS(rc))
|
---|
6305 | {
|
---|
6306 | Log4(("Injecting interrupt u8Interrupt=%#x\n", u8Interrupt));
|
---|
6307 | uint32_t u32IntrInfo = u8Interrupt | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
6308 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
6309 | rc = hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */,
|
---|
6310 | 0 /* GCPtrFaultAddress */, &uIntrState);
|
---|
6311 |
|
---|
6312 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
|
---|
6313 | }
|
---|
6314 | else
|
---|
6315 | {
|
---|
6316 | /** @todo Does this actually happen? If not turn it into an assertion. */
|
---|
6317 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
|
---|
6318 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
|
---|
6319 | rc = VINF_SUCCESS;
|
---|
6320 | }
|
---|
6321 | }
|
---|
6322 | else
|
---|
6323 | hmR0VmxSetIntWindowExitVmcs(pVCpu);
|
---|
6324 | }
|
---|
6325 |
|
---|
6326 | /*
|
---|
6327 | * Delivery pending debug exception if the guest is single-stepping. The interruptibility-state could have been changed by
|
---|
6328 | * hmR0VmxInjectEventVmcs() (e.g. real-on-v86 injecting software interrupts), re-evaluate it and set the BS bit.
|
---|
6329 | */
|
---|
6330 | fBlockMovSS = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS);
|
---|
6331 | fBlockSti = !!(uIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI);
|
---|
6332 | int rc2 = VINF_SUCCESS;
|
---|
6333 | if ( fBlockSti
|
---|
6334 | || fBlockMovSS)
|
---|
6335 | {
|
---|
6336 | if (!DBGFIsStepping(pVCpu))
|
---|
6337 | {
|
---|
6338 | Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RFLAGS);
|
---|
6339 | if (pMixedCtx->eflags.Bits.u1TF) /* We don't have any IA32_DEBUGCTL MSR for guests. Treat as all bits 0. */
|
---|
6340 | {
|
---|
6341 | /*
|
---|
6342 | * The pending-debug exceptions field is cleared on all VM-exits except VMX_EXIT_TPR_BELOW_THRESHOLD,
|
---|
6343 | * VMX_EXIT_MTF, VMX_EXIT_APIC_WRITE and VMX_EXIT_VIRTUALIZED_EOI.
|
---|
6344 | * See Intel spec. 27.3.4 "Saving Non-Register State".
|
---|
6345 | */
|
---|
6346 | rc2 = VMXWriteVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, VMX_VMCS_GUEST_DEBUG_EXCEPTIONS_BS);
|
---|
6347 | AssertRCReturn(rc, rc);
|
---|
6348 | }
|
---|
6349 | }
|
---|
6350 | else
|
---|
6351 | {
|
---|
6352 | /* We are single-stepping in the hypervisor debugger, clear interrupt inhibition as setting the BS bit would mean
|
---|
6353 | delivering a #DB to the guest upon VM-entry when it shouldn't be. */
|
---|
6354 | uIntrState = 0;
|
---|
6355 | }
|
---|
6356 | }
|
---|
6357 |
|
---|
6358 | /*
|
---|
6359 | * There's no need to clear the VM entry-interruption information field here if we're not injecting anything.
|
---|
6360 | * VT-x clears the valid bit on every VM-exit. See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
|
---|
6361 | */
|
---|
6362 | rc2 = hmR0VmxLoadGuestIntrState(pVCpu, uIntrState);
|
---|
6363 | AssertRC(rc2);
|
---|
6364 |
|
---|
6365 | Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET);
|
---|
6366 | return rc;
|
---|
6367 | }
|
---|
6368 |
|
---|
6369 |
|
---|
6370 | /**
|
---|
6371 | * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
|
---|
6372 | *
|
---|
6373 | * @param pVCpu Pointer to the VMCPU.
|
---|
6374 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
6375 | * out-of-sync. Make sure to update the required fields
|
---|
6376 | * before using them.
|
---|
6377 | */
|
---|
6378 | DECLINLINE(void) hmR0VmxSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6379 | {
|
---|
6380 | uint32_t u32IntrInfo = X86_XCPT_UD | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
6381 | hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
6382 | }
|
---|
6383 |
|
---|
6384 |
|
---|
6385 | /**
|
---|
6386 | * Injects a double-fault (#DF) exception into the VM.
|
---|
6387 | *
|
---|
6388 | * @returns VBox status code (informational status code included).
|
---|
6389 | * @param pVCpu Pointer to the VMCPU.
|
---|
6390 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
6391 | * out-of-sync. Make sure to update the required fields
|
---|
6392 | * before using them.
|
---|
6393 | */
|
---|
6394 | DECLINLINE(int) hmR0VmxInjectXcptDF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t *puIntrState)
|
---|
6395 | {
|
---|
6396 | uint32_t u32IntrInfo = X86_XCPT_DF | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
6397 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
6398 | u32IntrInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
|
---|
6399 | return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */,
|
---|
6400 | puIntrState);
|
---|
6401 | }
|
---|
6402 |
|
---|
6403 |
|
---|
6404 | /**
|
---|
6405 | * Sets a debug (#DB) exception as pending-for-injection into the VM.
|
---|
6406 | *
|
---|
6407 | * @param pVCpu Pointer to the VMCPU.
|
---|
6408 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
6409 | * out-of-sync. Make sure to update the required fields
|
---|
6410 | * before using them.
|
---|
6411 | */
|
---|
6412 | DECLINLINE(void) hmR0VmxSetPendingXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6413 | {
|
---|
6414 | uint32_t u32IntrInfo = X86_XCPT_DB | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
6415 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
6416 | hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
6417 | }
|
---|
6418 |
|
---|
6419 |
|
---|
6420 | /**
|
---|
6421 | * Sets an overflow (#OF) exception as pending-for-injection into the VM.
|
---|
6422 | *
|
---|
6423 | * @param pVCpu Pointer to the VMCPU.
|
---|
6424 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
6425 | * out-of-sync. Make sure to update the required fields
|
---|
6426 | * before using them.
|
---|
6427 | * @param cbInstr The value of RIP that is to be pushed on the guest
|
---|
6428 | * stack.
|
---|
6429 | */
|
---|
6430 | DECLINLINE(void) hmR0VmxSetPendingXcptOF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint32_t cbInstr)
|
---|
6431 | {
|
---|
6432 | uint32_t u32IntrInfo = X86_XCPT_OF | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
6433 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
6434 | hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
6435 | }
|
---|
6436 |
|
---|
6437 |
|
---|
6438 | /**
|
---|
6439 | * Injects a general-protection (#GP) fault into the VM.
|
---|
6440 | *
|
---|
6441 | * @returns VBox status code (informational status code included).
|
---|
6442 | * @param pVCpu Pointer to the VMCPU.
|
---|
6443 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
6444 | * out-of-sync. Make sure to update the required fields
|
---|
6445 | * before using them.
|
---|
6446 | * @param u32ErrorCode The error code associated with the #GP.
|
---|
6447 | */
|
---|
6448 | DECLINLINE(int) hmR0VmxInjectXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, bool fErrorCodeValid, uint32_t u32ErrorCode,
|
---|
6449 | uint32_t *puIntrState)
|
---|
6450 | {
|
---|
6451 | uint32_t u32IntrInfo = X86_XCPT_GP | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
6452 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
6453 | if (fErrorCodeValid)
|
---|
6454 | u32IntrInfo |= VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
|
---|
6455 | return hmR0VmxInjectEventVmcs(pVCpu, pMixedCtx, u32IntrInfo, 0 /* cbInstr */, u32ErrorCode, 0 /* GCPtrFaultAddress */,
|
---|
6456 | puIntrState);
|
---|
6457 | }
|
---|
6458 |
|
---|
6459 |
|
---|
6460 | /**
|
---|
6461 | * Sets a software interrupt (INTn) as pending-for-injection into the VM.
|
---|
6462 | *
|
---|
6463 | * @param pVCpu Pointer to the VMCPU.
|
---|
6464 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
6465 | * out-of-sync. Make sure to update the required fields
|
---|
6466 | * before using them.
|
---|
6467 | * @param uVector The software interrupt vector number.
|
---|
6468 | * @param cbInstr The value of RIP that is to be pushed on the guest
|
---|
6469 | * stack.
|
---|
6470 | */
|
---|
6471 | DECLINLINE(void) hmR0VmxSetPendingIntN(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint16_t uVector, uint32_t cbInstr)
|
---|
6472 | {
|
---|
6473 | uint32_t u32IntrInfo = uVector | VMX_EXIT_INTERRUPTION_INFO_VALID;
|
---|
6474 | if ( uVector == X86_XCPT_BP
|
---|
6475 | || uVector == X86_XCPT_OF)
|
---|
6476 | {
|
---|
6477 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
6478 | }
|
---|
6479 | else
|
---|
6480 | u32IntrInfo |= (VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT << VMX_EXIT_INTERRUPTION_INFO_TYPE_SHIFT);
|
---|
6481 | hmR0VmxSetPendingEvent(pVCpu, u32IntrInfo, cbInstr, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
6482 | }
|
---|
6483 |
|
---|
6484 |
|
---|
6485 | /**
|
---|
6486 | * Pushes a 2-byte value onto the real-mode (in virtual-8086 mode) guest's
|
---|
6487 | * stack.
|
---|
6488 | *
|
---|
6489 | * @returns VBox status code (information status code included).
|
---|
6490 | * @retval VINF_EM_RESET if pushing a value to the stack caused a triple-fault.
|
---|
6491 | * @param pVM Pointer to the VM.
|
---|
6492 | * @param pMixedCtx Pointer to the guest-CPU context.
|
---|
6493 | * @param uValue The value to push to the guest stack.
|
---|
6494 | */
|
---|
6495 | DECLINLINE(int) hmR0VmxRealModeGuestStackPush(PVM pVM, PCPUMCTX pMixedCtx, uint16_t uValue)
|
---|
6496 | {
|
---|
6497 | /*
|
---|
6498 | * The stack limit is 0xffff in real-on-virtual 8086 mode. Real-mode with weird stack limits cannot be run in
|
---|
6499 | * virtual 8086 mode in VT-x. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
|
---|
6500 | * See Intel Instruction reference for PUSH and Intel spec. 22.33.1 "Segment Wraparound".
|
---|
6501 | */
|
---|
6502 | if (pMixedCtx->sp == 1)
|
---|
6503 | return VINF_EM_RESET;
|
---|
6504 | pMixedCtx->sp -= sizeof(uint16_t); /* May wrap around which is expected behaviour. */
|
---|
6505 | int rc = PGMPhysSimpleWriteGCPhys(pVM, pMixedCtx->ss.u64Base + pMixedCtx->sp, &uValue, sizeof(uint16_t));
|
---|
6506 | AssertRCReturn(rc, rc);
|
---|
6507 | return rc;
|
---|
6508 | }
|
---|
6509 |
|
---|
6510 |
|
---|
6511 | /**
|
---|
6512 | * Injects an event into the guest upon VM-entry by updating the relevant fields
|
---|
6513 | * in the VM-entry area in the VMCS.
|
---|
6514 | *
|
---|
6515 | * @returns VBox status code (informational error codes included).
|
---|
6516 | * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
|
---|
6517 | * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
|
---|
6518 | *
|
---|
6519 | * @param pVCpu Pointer to the VMCPU.
|
---|
6520 | * @param pMixedCtx Pointer to the guest-CPU context. The data may
|
---|
6521 | * be out-of-sync. Make sure to update the required
|
---|
6522 | * fields before using them.
|
---|
6523 | * @param u64IntrInfo The VM-entry interruption-information field.
|
---|
6524 | * @param cbInstr The VM-entry instruction length in bytes (for
|
---|
6525 | * software interrupts, exceptions and privileged
|
---|
6526 | * software exceptions).
|
---|
6527 | * @param u32ErrCode The VM-entry exception error code.
|
---|
6528 | * @param GCPtrFaultAddress The page-fault address for #PF exceptions.
|
---|
6529 | * @param puIntrState Pointer to the current guest interruptibility-state.
|
---|
6530 | * This interruptibility-state will be updated if
|
---|
6531 | * necessary. This cannot not be NULL.
|
---|
6532 | *
|
---|
6533 | * @remarks No-long-jump zone!!!
|
---|
6534 | * @remarks Requires CR0!
|
---|
6535 | */
|
---|
6536 | static int hmR0VmxInjectEventVmcs(PVMCPU pVCpu, PCPUMCTX pMixedCtx, uint64_t u64IntrInfo, uint32_t cbInstr,
|
---|
6537 | uint32_t u32ErrCode, RTGCUINTREG GCPtrFaultAddress, uint32_t *puIntrState)
|
---|
6538 | {
|
---|
6539 | /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
|
---|
6540 | AssertMsg(u64IntrInfo >> 32 == 0, ("%#RX64\n", u64IntrInfo));
|
---|
6541 | Assert(puIntrState);
|
---|
6542 | uint32_t u32IntrInfo = (uint32_t)u64IntrInfo;
|
---|
6543 |
|
---|
6544 | const uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(u32IntrInfo);
|
---|
6545 | const uint32_t uIntrType = VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntrInfo);
|
---|
6546 |
|
---|
6547 | #ifdef VBOX_STRICT
|
---|
6548 | /* Validate the error-code-valid bit for hardware exceptions. */
|
---|
6549 | if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT)
|
---|
6550 | {
|
---|
6551 | switch (uVector)
|
---|
6552 | {
|
---|
6553 | case X86_XCPT_PF:
|
---|
6554 | case X86_XCPT_DF:
|
---|
6555 | case X86_XCPT_TS:
|
---|
6556 | case X86_XCPT_NP:
|
---|
6557 | case X86_XCPT_SS:
|
---|
6558 | case X86_XCPT_GP:
|
---|
6559 | case X86_XCPT_AC:
|
---|
6560 | AssertMsg(VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntrInfo),
|
---|
6561 | ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
|
---|
6562 | /* fallthru */
|
---|
6563 | default:
|
---|
6564 | break;
|
---|
6565 | }
|
---|
6566 | }
|
---|
6567 | #endif
|
---|
6568 |
|
---|
6569 | /* Cannot inject an NMI when block-by-MOV SS is in effect. */
|
---|
6570 | Assert( uIntrType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
|
---|
6571 | || !(*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS));
|
---|
6572 |
|
---|
6573 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[uVector & MASK_INJECT_IRQ_STAT]);
|
---|
6574 |
|
---|
6575 | /* We require CR0 to check if the guest is in real-mode. */
|
---|
6576 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
6577 | AssertRCReturn(rc, rc);
|
---|
6578 |
|
---|
6579 | /*
|
---|
6580 | * Hardware interrupts & exceptions cannot be delivered through the software interrupt redirection bitmap to the real
|
---|
6581 | * mode task in virtual-8086 mode. We must jump to the interrupt handler in the (real-mode) guest.
|
---|
6582 | * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode" for interrupt & exception classes.
|
---|
6583 | * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
|
---|
6584 | */
|
---|
6585 | if (CPUMIsGuestInRealModeEx(pMixedCtx))
|
---|
6586 | {
|
---|
6587 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6588 | if (!pVM->hm.s.vmx.fUnrestrictedGuest)
|
---|
6589 | {
|
---|
6590 | Assert(PDMVmmDevHeapIsEnabled(pVM));
|
---|
6591 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
6592 |
|
---|
6593 | /* We require RIP, RSP, RFLAGS, CS, IDTR. Save the required ones from the VMCS. */
|
---|
6594 | rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
6595 | rc |= hmR0VmxSaveGuestTableRegs(pVCpu, pMixedCtx);
|
---|
6596 | rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
|
---|
6597 | AssertRCReturn(rc, rc);
|
---|
6598 | Assert(pVCpu->hm.s.vmx.fUpdatedGuestState & HMVMX_UPDATED_GUEST_RIP);
|
---|
6599 |
|
---|
6600 | /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
|
---|
6601 | const size_t cbIdtEntry = 4;
|
---|
6602 | if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pMixedCtx->idtr.cbIdt)
|
---|
6603 | {
|
---|
6604 | /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
|
---|
6605 | if (uVector == X86_XCPT_DF)
|
---|
6606 | return VINF_EM_RESET;
|
---|
6607 | else if (uVector == X86_XCPT_GP)
|
---|
6608 | {
|
---|
6609 | /* If we're injecting a #GP with no valid IDT entry, inject a double-fault. */
|
---|
6610 | return hmR0VmxInjectXcptDF(pVCpu, pMixedCtx, puIntrState);
|
---|
6611 | }
|
---|
6612 |
|
---|
6613 | /* If we're injecting an interrupt/exception with no valid IDT entry, inject a general-protection fault. */
|
---|
6614 | /* No error codes for exceptions in real-mode. See Intel spec. 20.1.4 "Interrupt and Exception Handling" */
|
---|
6615 | return hmR0VmxInjectXcptGP(pVCpu, pMixedCtx, false /* fErrCodeValid */, 0 /* u32ErrCode */, puIntrState);
|
---|
6616 | }
|
---|
6617 |
|
---|
6618 | /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
|
---|
6619 | uint16_t uGuestIp = pMixedCtx->ip;
|
---|
6620 | if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT)
|
---|
6621 | {
|
---|
6622 | Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
|
---|
6623 | /* #BP and #OF are both benign traps, we need to resume the next instruction. */
|
---|
6624 | uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
|
---|
6625 | }
|
---|
6626 | else if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_INT)
|
---|
6627 | uGuestIp = pMixedCtx->ip + (uint16_t)cbInstr;
|
---|
6628 |
|
---|
6629 | /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
|
---|
6630 | uint16_t offIdtEntry = 0;
|
---|
6631 | RTSEL selIdtEntry = 0;
|
---|
6632 | RTGCPHYS GCPhysIdtEntry = (RTGCPHYS)pMixedCtx->idtr.pIdt + uVector * cbIdtEntry;
|
---|
6633 | rc = PGMPhysSimpleReadGCPhys(pVM, &offIdtEntry, GCPhysIdtEntry, sizeof(offIdtEntry));
|
---|
6634 | rc |= PGMPhysSimpleReadGCPhys(pVM, &selIdtEntry, GCPhysIdtEntry + 2, sizeof(selIdtEntry));
|
---|
6635 | AssertRCReturn(rc, rc);
|
---|
6636 |
|
---|
6637 | /* Construct the stack frame for the interrupt/exception handler. */
|
---|
6638 | rc = hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->eflags.u32);
|
---|
6639 | rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, pMixedCtx->cs.Sel);
|
---|
6640 | rc |= hmR0VmxRealModeGuestStackPush(pVM, pMixedCtx, uGuestIp);
|
---|
6641 | AssertRCReturn(rc, rc);
|
---|
6642 |
|
---|
6643 | /* Clear the required eflag bits and jump to the interrupt/exception handler. */
|
---|
6644 | if (rc == VINF_SUCCESS)
|
---|
6645 | {
|
---|
6646 | pMixedCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
|
---|
6647 | pMixedCtx->rip = offIdtEntry;
|
---|
6648 | pMixedCtx->cs.Sel = selIdtEntry;
|
---|
6649 | pMixedCtx->cs.u64Base = selIdtEntry << cbIdtEntry;
|
---|
6650 | if ( uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
|
---|
6651 | && uVector == X86_XCPT_PF)
|
---|
6652 | {
|
---|
6653 | pMixedCtx->cr2 = GCPtrFaultAddress;
|
---|
6654 | }
|
---|
6655 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SEGMENT_REGS
|
---|
6656 | | HM_CHANGED_GUEST_RIP
|
---|
6657 | | HM_CHANGED_GUEST_RFLAGS
|
---|
6658 | | HM_CHANGED_GUEST_RSP;
|
---|
6659 |
|
---|
6660 | /* We're clearing interrupts, which means no block-by-STI interrupt-inhibition. */
|
---|
6661 | if (*puIntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
|
---|
6662 | {
|
---|
6663 | Assert( uIntrType != VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI
|
---|
6664 | && uIntrType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
|
---|
6665 | Log4(("Clearing inhibition due to STI.\n"));
|
---|
6666 | *puIntrState &= ~VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI;
|
---|
6667 | }
|
---|
6668 | Log4(("Injecting real-mode: u32IntrInfo=%#x u32ErrCode=%#x instrlen=%#x\n", u32IntrInfo, u32ErrCode, cbInstr));
|
---|
6669 | }
|
---|
6670 | Assert(rc == VINF_SUCCESS || rc == VINF_EM_RESET);
|
---|
6671 | return rc;
|
---|
6672 | }
|
---|
6673 | else
|
---|
6674 | {
|
---|
6675 | /*
|
---|
6676 | * For unrestricted execution enabled CPUs running real-mode guests, we must not set the deliver-error-code bit.
|
---|
6677 | * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
|
---|
6678 | */
|
---|
6679 | u32IntrInfo &= ~VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_VALID;
|
---|
6680 | }
|
---|
6681 | }
|
---|
6682 |
|
---|
6683 | /* Validate. */
|
---|
6684 | Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(u32IntrInfo)); /* Bit 31 (Valid bit) must be set by caller. */
|
---|
6685 | Assert(!VMX_EXIT_INTERRUPTION_INFO_NMI_UNBLOCK(u32IntrInfo)); /* Bit 12 MBZ. */
|
---|
6686 | Assert(!(u32IntrInfo & 0x7ffff000)); /* Bits 30:12 MBZ. */
|
---|
6687 |
|
---|
6688 | /* Inject. */
|
---|
6689 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntrInfo);
|
---|
6690 | if (VMX_EXIT_INTERRUPTION_INFO_ERROR_CODE_IS_VALID(u32IntrInfo))
|
---|
6691 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
|
---|
6692 | rc |= VMXWriteVmcs32(VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
|
---|
6693 |
|
---|
6694 | if ( VMX_EXIT_INTERRUPTION_INFO_TYPE(u32IntrInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT
|
---|
6695 | && uVector == X86_XCPT_PF)
|
---|
6696 | {
|
---|
6697 | pMixedCtx->cr2 = GCPtrFaultAddress;
|
---|
6698 | }
|
---|
6699 |
|
---|
6700 | Log4(("Injecting vcpu[%RU32] u32IntrInfo=%#x u32ErrCode=%#x cbInstr=%#x pMixedCtx->uCR2=%#RX64\n", pVCpu->idCpu,
|
---|
6701 | u32IntrInfo, u32ErrCode, cbInstr, pMixedCtx->cr2));
|
---|
6702 |
|
---|
6703 | AssertRCReturn(rc, rc);
|
---|
6704 | return rc;
|
---|
6705 | }
|
---|
6706 |
|
---|
6707 |
|
---|
6708 | /**
|
---|
6709 | * Enters the VT-x session.
|
---|
6710 | *
|
---|
6711 | * @returns VBox status code.
|
---|
6712 | * @param pVM Pointer to the VM.
|
---|
6713 | * @param pVCpu Pointer to the VMCPU.
|
---|
6714 | * @param pCpu Pointer to the CPU info struct.
|
---|
6715 | */
|
---|
6716 | VMMR0DECL(int) VMXR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
|
---|
6717 | {
|
---|
6718 | AssertPtr(pVM);
|
---|
6719 | AssertPtr(pVCpu);
|
---|
6720 | Assert(pVM->hm.s.vmx.fSupported);
|
---|
6721 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
6722 | NOREF(pCpu);
|
---|
6723 |
|
---|
6724 | LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
|
---|
6725 |
|
---|
6726 | #ifdef VBOX_STRICT
|
---|
6727 | /* Make sure we're in VMX root mode. */
|
---|
6728 | RTCCUINTREG u32HostCR4 = ASMGetCR4();
|
---|
6729 | if (!(u32HostCR4 & X86_CR4_VMXE))
|
---|
6730 | {
|
---|
6731 | LogRel(("VMXR0Enter: X86_CR4_VMXE bit in CR4 is not set!\n"));
|
---|
6732 | return VERR_VMX_X86_CR4_VMXE_CLEARED;
|
---|
6733 | }
|
---|
6734 | #endif
|
---|
6735 |
|
---|
6736 | /* Load the active VMCS as the current one. */
|
---|
6737 | int rc = VMXActivateVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
6738 | if (RT_FAILURE(rc))
|
---|
6739 | return rc;
|
---|
6740 |
|
---|
6741 | /** @todo this will change with preemption hooks where can VMRESUME as long
|
---|
6742 | * as we're no preempted. */
|
---|
6743 | pVCpu->hm.s.fResumeVM = false;
|
---|
6744 | return VINF_SUCCESS;
|
---|
6745 | }
|
---|
6746 |
|
---|
6747 |
|
---|
6748 | /**
|
---|
6749 | * Leaves the VT-x session.
|
---|
6750 | *
|
---|
6751 | * @returns VBox status code.
|
---|
6752 | * @param pVM Pointer to the VM.
|
---|
6753 | * @param pVCpu Pointer to the VMCPU.
|
---|
6754 | * @param pCtx Pointer to the guest-CPU context.
|
---|
6755 | */
|
---|
6756 | VMMR0DECL(int) VMXR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
6757 | {
|
---|
6758 | AssertPtr(pVCpu);
|
---|
6759 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
6760 | NOREF(pVM);
|
---|
6761 | NOREF(pCtx);
|
---|
6762 |
|
---|
6763 | /** @todo this will change with preemption hooks where we only VMCLEAR when
|
---|
6764 | * we are actually going to be preempted, not all the time like we
|
---|
6765 | * currently do. */
|
---|
6766 |
|
---|
6767 | /* Restore host-state bits that VT-x only restores partially. */
|
---|
6768 | if (pVCpu->hm.s.vmx.fRestoreHostFlags)
|
---|
6769 | {
|
---|
6770 | VMXRestoreHostState(pVCpu->hm.s.vmx.fRestoreHostFlags, &pVCpu->hm.s.vmx.RestoreHost);
|
---|
6771 | pVCpu->hm.s.vmx.fRestoreHostFlags = 0;
|
---|
6772 | }
|
---|
6773 |
|
---|
6774 | /*
|
---|
6775 | * Sync the current VMCS (writes back internal data back into the VMCS region in memory)
|
---|
6776 | * and mark the VMCS launch-state as "clear".
|
---|
6777 | */
|
---|
6778 | int rc = VMXClearVMCS(pVCpu->hm.s.vmx.HCPhysVmcs);
|
---|
6779 | return rc;
|
---|
6780 | }
|
---|
6781 |
|
---|
6782 |
|
---|
6783 | /**
|
---|
6784 | * Saves the host state in the VMCS host-state.
|
---|
6785 | * Sets up the VM-exit MSR-load area.
|
---|
6786 | *
|
---|
6787 | * The CPU state will be loaded from these fields on every successful VM-exit.
|
---|
6788 | *
|
---|
6789 | * @returns VBox status code.
|
---|
6790 | * @param pVM Pointer to the VM.
|
---|
6791 | * @param pVCpu Pointer to the VMCPU.
|
---|
6792 | *
|
---|
6793 | * @remarks No-long-jump zone!!!
|
---|
6794 | */
|
---|
6795 | VMMR0DECL(int) VMXR0SaveHostState(PVM pVM, PVMCPU pVCpu)
|
---|
6796 | {
|
---|
6797 | AssertPtr(pVM);
|
---|
6798 | AssertPtr(pVCpu);
|
---|
6799 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
6800 |
|
---|
6801 | LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
|
---|
6802 |
|
---|
6803 | /* Nothing to do if the host-state-changed flag isn't set. This will later be optimized when preemption hooks are in place. */
|
---|
6804 | if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_CONTEXT))
|
---|
6805 | return VINF_SUCCESS;
|
---|
6806 |
|
---|
6807 | int rc = hmR0VmxSaveHostControlRegs(pVM, pVCpu);
|
---|
6808 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostControlRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
6809 |
|
---|
6810 | rc = hmR0VmxSaveHostSegmentRegs(pVM, pVCpu);
|
---|
6811 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostSegmentRegisters failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
6812 |
|
---|
6813 | rc = hmR0VmxSaveHostMsrs(pVM, pVCpu);
|
---|
6814 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSaveHostMsrs failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
6815 |
|
---|
6816 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_HOST_CONTEXT;
|
---|
6817 | return rc;
|
---|
6818 | }
|
---|
6819 |
|
---|
6820 |
|
---|
6821 | /**
|
---|
6822 | * Loads the guest state into the VMCS guest-state area. The CPU state will be
|
---|
6823 | * loaded from these fields on every successful VM-entry.
|
---|
6824 | *
|
---|
6825 | * Sets up the VM-entry MSR-load and VM-exit MSR-store areas.
|
---|
6826 | * Sets up the VM-entry controls.
|
---|
6827 | * Sets up the appropriate VMX non-root function to execute guest code based on
|
---|
6828 | * the guest CPU mode.
|
---|
6829 | *
|
---|
6830 | * @returns VBox status code.
|
---|
6831 | * @param pVM Pointer to the VM.
|
---|
6832 | * @param pVCpu Pointer to the VMCPU.
|
---|
6833 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
6834 | * out-of-sync. Make sure to update the required fields
|
---|
6835 | * before using them.
|
---|
6836 | *
|
---|
6837 | * @remarks No-long-jump zone!!!
|
---|
6838 | */
|
---|
6839 | static int hmR0VmxLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6840 | {
|
---|
6841 | AssertPtr(pVM);
|
---|
6842 | AssertPtr(pVCpu);
|
---|
6843 | AssertPtr(pMixedCtx);
|
---|
6844 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
6845 |
|
---|
6846 | #ifdef LOG_ENABLED
|
---|
6847 | /** @todo r=ramshankar: I'm not able to use VMMRZCallRing3Disable() here,
|
---|
6848 | * probably not initialized yet? Anyway this will do for now. */
|
---|
6849 | bool fCallerDisabledLogFlush = VMMR0IsLogFlushDisabled(pVCpu);
|
---|
6850 | VMMR0LogFlushDisable(pVCpu);
|
---|
6851 | #endif
|
---|
6852 |
|
---|
6853 | LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
|
---|
6854 |
|
---|
6855 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
6856 |
|
---|
6857 | /* Determine real-on-v86 mode. */
|
---|
6858 | pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = false;
|
---|
6859 | if ( !pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
6860 | && CPUMIsGuestInRealModeEx(pMixedCtx))
|
---|
6861 | {
|
---|
6862 | pVCpu->hm.s.vmx.RealMode.fRealOnV86Active = true;
|
---|
6863 | }
|
---|
6864 |
|
---|
6865 | /*
|
---|
6866 | * Load the guest-state into the VMCS.
|
---|
6867 | * Any ordering dependency among the sub-functions below must be explicitly stated using comments.
|
---|
6868 | * Ideally, assert that the cross-dependent bits are up to date at the point of using it.
|
---|
6869 | */
|
---|
6870 | int rc = hmR0VmxLoadGuestEntryCtls(pVCpu, pMixedCtx);
|
---|
6871 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestEntryCtls! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
6872 |
|
---|
6873 | rc = hmR0VmxLoadGuestExitCtls(pVCpu, pMixedCtx);
|
---|
6874 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupExitCtls failed! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
6875 |
|
---|
6876 | rc = hmR0VmxLoadGuestActivityState(pVCpu, pMixedCtx);
|
---|
6877 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestActivityState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
6878 |
|
---|
6879 | rc = hmR0VmxLoadGuestControlRegs(pVCpu, pMixedCtx);
|
---|
6880 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestControlRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
6881 |
|
---|
6882 | /* Must be done after CR0 is loaded (strict builds require CR0 for segment register validation checks). */
|
---|
6883 | rc = hmR0VmxLoadGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
6884 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestSegmentRegs: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
6885 |
|
---|
6886 | rc = hmR0VmxLoadGuestDebugState(pVCpu, pMixedCtx);
|
---|
6887 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestDebugState: rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
6888 |
|
---|
6889 | rc = hmR0VmxLoadGuestMsrs(pVCpu, pMixedCtx);
|
---|
6890 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestMsrs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
6891 |
|
---|
6892 | rc = hmR0VmxLoadGuestApicState(pVCpu, pMixedCtx);
|
---|
6893 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
6894 |
|
---|
6895 | /* Must be done after hmR0VmxLoadGuestDebugState() as it may have updated eflags.TF for debugging purposes. */
|
---|
6896 | rc = hmR0VmxLoadGuestRipRspRflags(pVCpu, pMixedCtx);
|
---|
6897 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxLoadGuestRipRspRflags! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
6898 |
|
---|
6899 | rc = hmR0VmxSetupVMRunHandler(pVCpu, pMixedCtx);
|
---|
6900 | AssertLogRelMsgRCReturn(rc, ("hmR0VmxSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
6901 |
|
---|
6902 | /* Clear any unused and reserved bits. */
|
---|
6903 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR2;
|
---|
6904 |
|
---|
6905 | AssertMsg(!pVCpu->hm.s.fContextUseFlags,
|
---|
6906 | ("Missed updating flags while loading guest state. pVM=%p pVCpu=%p idCpu=%RU32 fContextUseFlags=%#RX32\n",
|
---|
6907 | pVM, pVCpu, pVCpu->idCpu, pVCpu->hm.s.fContextUseFlags));
|
---|
6908 |
|
---|
6909 | #ifdef LOG_ENABLED
|
---|
6910 | /* Only reenable log-flushing if the caller has it enabled. */
|
---|
6911 | if (!fCallerDisabledLogFlush)
|
---|
6912 | VMMR0LogFlushEnable(pVCpu);
|
---|
6913 | #endif
|
---|
6914 |
|
---|
6915 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
6916 | return rc;
|
---|
6917 | }
|
---|
6918 |
|
---|
6919 |
|
---|
6920 | /**
|
---|
6921 | * Loads the guest state into the VMCS guest-state area.
|
---|
6922 | *
|
---|
6923 | * @returns VBox status code.
|
---|
6924 | * @param pVM Pointer to the VM.
|
---|
6925 | * @param pVCpu Pointer to the VMCPU.
|
---|
6926 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
6927 | * out-of-sync. Make sure to update the required fields
|
---|
6928 | * before using them.
|
---|
6929 | *
|
---|
6930 | * @remarks No-long-jump zone!!!
|
---|
6931 | */
|
---|
6932 | VMMR0DECL(int) VMXR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
6933 | {
|
---|
6934 | /*
|
---|
6935 | * Avoid reloading the guest state on longjmp reentrants and do it lazily just before executing the guest.
|
---|
6936 | * This only helps when we get rescheduled more than once to a different host CPU on a longjmp trip before
|
---|
6937 | * finally executing guest code.
|
---|
6938 | */
|
---|
6939 | return VINF_SUCCESS;
|
---|
6940 | }
|
---|
6941 |
|
---|
6942 |
|
---|
6943 | /**
|
---|
6944 | * Does the preparations before executing guest code in VT-x.
|
---|
6945 | *
|
---|
6946 | * This may cause longjmps to ring-3 and may even result in rescheduling to the
|
---|
6947 | * recompiler. We must be cautious what we do here regarding committing
|
---|
6948 | * guest-state information into the VMCS assuming we assuredly execute the
|
---|
6949 | * guest in VT-x. If we fall back to the recompiler after updating the VMCS and
|
---|
6950 | * clearing the common-state (TRPM/forceflags), we must undo those changes so
|
---|
6951 | * that the recompiler can (and should) use them when it resumes guest
|
---|
6952 | * execution. Otherwise such operations must be done when we can no longer
|
---|
6953 | * exit to ring-3.
|
---|
6954 | *
|
---|
6955 | * @returns VBox status code (informational status codes included).
|
---|
6956 | * @retval VINF_SUCCESS if we can proceed with running the guest.
|
---|
6957 | * @retval VINF_EM_RESET if a triple-fault occurs while injecting a double-fault
|
---|
6958 | * into the guest.
|
---|
6959 | * @retval VINF_* scheduling changes, we have to go back to ring-3.
|
---|
6960 | *
|
---|
6961 | * @param pVM Pointer to the VM.
|
---|
6962 | * @param pVCpu Pointer to the VMCPU.
|
---|
6963 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
6964 | * out-of-sync. Make sure to update the required fields
|
---|
6965 | * before using them.
|
---|
6966 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
6967 | *
|
---|
6968 | * @remarks Called with preemption disabled.
|
---|
6969 | */
|
---|
6970 | static int hmR0VmxPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
6971 | {
|
---|
6972 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
6973 |
|
---|
6974 | #ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
|
---|
6975 | PGMRZDynMapFlushAutoSet(pVCpu);
|
---|
6976 | #endif
|
---|
6977 |
|
---|
6978 | /* Check force flag actions that might require us to go back to ring-3. */
|
---|
6979 | int rc = hmR0VmxCheckForceFlags(pVM, pVCpu, pMixedCtx);
|
---|
6980 | if (rc != VINF_SUCCESS)
|
---|
6981 | return rc;
|
---|
6982 |
|
---|
6983 | /* Setup the Virtualized APIC accesses. pMixedCtx->msrApicBase is always up-to-date. It's not part of the VMCS. */
|
---|
6984 | if ( pVCpu->hm.s.vmx.u64MsrApicBase != pMixedCtx->msrApicBase
|
---|
6985 | && (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_VIRT_APIC))
|
---|
6986 | {
|
---|
6987 | Assert(pVM->hm.s.vmx.HCPhysApicAccess);
|
---|
6988 | RTGCPHYS GCPhysApicBase;
|
---|
6989 | GCPhysApicBase = pMixedCtx->msrApicBase;
|
---|
6990 | GCPhysApicBase &= PAGE_BASE_GC_MASK;
|
---|
6991 |
|
---|
6992 | /* Unalias any existing mapping. */
|
---|
6993 | rc = PGMHandlerPhysicalReset(pVM, GCPhysApicBase);
|
---|
6994 | AssertRCReturn(rc, rc);
|
---|
6995 |
|
---|
6996 | /* Map the HC APIC-access page into the GC space, this also updates the shadow page tables if necessary. */
|
---|
6997 | Log4(("Mapped HC APIC-access page into GC: GCPhysApicBase=%#RGv\n", GCPhysApicBase));
|
---|
6998 | rc = IOMMMIOMapMMIOHCPage(pVM, pVCpu, GCPhysApicBase, pVM->hm.s.vmx.HCPhysApicAccess, X86_PTE_RW | X86_PTE_P);
|
---|
6999 | AssertRCReturn(rc, rc);
|
---|
7000 |
|
---|
7001 | pVCpu->hm.s.vmx.u64MsrApicBase = pMixedCtx->msrApicBase;
|
---|
7002 | }
|
---|
7003 |
|
---|
7004 | #ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
|
---|
7005 | /* We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.) */
|
---|
7006 | pVmxTransient->uEFlags = ASMIntDisableFlags();
|
---|
7007 | if (RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
7008 | {
|
---|
7009 | ASMSetFlags(pVmxTransient->uEFlags);
|
---|
7010 | STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
|
---|
7011 | /* Don't use VINF_EM_RAW_INTERRUPT_HYPER as we can't assume the host does kernel preemption. Maybe some day? */
|
---|
7012 | return VINF_EM_RAW_INTERRUPT;
|
---|
7013 | }
|
---|
7014 | VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
7015 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
|
---|
7016 | #endif
|
---|
7017 |
|
---|
7018 | /*
|
---|
7019 | * Evaluates and injects any pending events, toggling force-flags and updating the guest-interruptibility
|
---|
7020 | * state (interrupt shadow) in the VMCS. This -can- potentially be reworked to be done before disabling
|
---|
7021 | * interrupts and handle returning to ring-3 afterwards, but requires very careful state restoration.
|
---|
7022 | */
|
---|
7023 | /** @todo Rework event evaluation and injection to be completely separate. */
|
---|
7024 | if (TRPMHasTrap(pVCpu))
|
---|
7025 | hmR0VmxTrpmTrapToPendingEvent(pVCpu);
|
---|
7026 |
|
---|
7027 | rc = hmR0VmxInjectPendingEvent(pVCpu, pMixedCtx);
|
---|
7028 | AssertRCReturn(rc, rc);
|
---|
7029 | return rc;
|
---|
7030 | }
|
---|
7031 |
|
---|
7032 |
|
---|
7033 | /**
|
---|
7034 | * Prepares to run guest code in VT-x and we've committed to doing so. This
|
---|
7035 | * means there is no backing out to ring-3 or anywhere else at this
|
---|
7036 | * point.
|
---|
7037 | *
|
---|
7038 | * @param pVM Pointer to the VM.
|
---|
7039 | * @param pVCpu Pointer to the VMCPU.
|
---|
7040 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
7041 | * out-of-sync. Make sure to update the required fields
|
---|
7042 | * before using them.
|
---|
7043 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
7044 | *
|
---|
7045 | * @remarks Called with preemption disabled.
|
---|
7046 | * @remarks No-long-jump zone!!!
|
---|
7047 | */
|
---|
7048 | static void hmR0VmxPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
7049 | {
|
---|
7050 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
7051 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
7052 |
|
---|
7053 | #ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
|
---|
7054 | /** @todo I don't see the point of this, VMMR0EntryFast() already disables interrupts for the entire period. */
|
---|
7055 | pVmxTransient->uEFlags = ASMIntDisableFlags();
|
---|
7056 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
|
---|
7057 | #endif
|
---|
7058 |
|
---|
7059 | /* Load the required guest state bits (for guest-state changes in the inner execution loop). */
|
---|
7060 | Assert(!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_HOST_CONTEXT));
|
---|
7061 | Log5(("LoadFlags=%#RX32\n", pVCpu->hm.s.fContextUseFlags));
|
---|
7062 | #ifdef HMVMX_SYNC_FULL_GUEST_STATE
|
---|
7063 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
|
---|
7064 | #endif
|
---|
7065 | int rc = VINF_SUCCESS;
|
---|
7066 | if (pVCpu->hm.s.fContextUseFlags == HM_CHANGED_GUEST_RIP)
|
---|
7067 | {
|
---|
7068 | rc = hmR0VmxLoadGuestRip(pVCpu, pMixedCtx);
|
---|
7069 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadMinimal);
|
---|
7070 | }
|
---|
7071 | else if (pVCpu->hm.s.fContextUseFlags)
|
---|
7072 | {
|
---|
7073 | rc = hmR0VmxLoadGuestState(pVM, pVCpu, pMixedCtx);
|
---|
7074 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
|
---|
7075 | }
|
---|
7076 | AssertRC(rc);
|
---|
7077 | AssertMsg(!pVCpu->hm.s.fContextUseFlags, ("fContextUseFlags =%#x\n", pVCpu->hm.s.fContextUseFlags));
|
---|
7078 |
|
---|
7079 | #ifdef HMVMX_ALWAYS_CHECK_GUEST_STATE
|
---|
7080 | uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVM, pVCpu, pMixedCtx);
|
---|
7081 | if (uInvalidReason != VMX_IGS_REASON_NOT_FOUND)
|
---|
7082 | Log4(("hmR0VmxCheckGuestState returned %#x\n", uInvalidReason));
|
---|
7083 | #endif
|
---|
7084 |
|
---|
7085 | /* Cache the TPR-shadow for checking on every VM-exit if it might have changed. */
|
---|
7086 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
|
---|
7087 | pVmxTransient->u8GuestTpr = pVCpu->hm.s.vmx.pbVirtApic[0x80];
|
---|
7088 |
|
---|
7089 | if ( pVmxTransient->fUpdateTscOffsettingAndPreemptTimer
|
---|
7090 | || HMR0GetCurrentCpu()->idCpu != pVCpu->hm.s.idLastCpu)
|
---|
7091 | {
|
---|
7092 | hmR0VmxUpdateTscOffsettingAndPreemptTimer(pVCpu, pMixedCtx);
|
---|
7093 | pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = false;
|
---|
7094 | }
|
---|
7095 |
|
---|
7096 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
|
---|
7097 | hmR0VmxFlushTaggedTlb(pVCpu); /* Invalidate the appropriate guest entries from the TLB. */
|
---|
7098 | Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
|
---|
7099 |
|
---|
7100 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
|
---|
7101 |
|
---|
7102 | TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
|
---|
7103 | to start executing. */
|
---|
7104 |
|
---|
7105 | #ifndef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
|
---|
7106 | /*
|
---|
7107 | * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
|
---|
7108 | * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
|
---|
7109 | */
|
---|
7110 | if ( (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
|
---|
7111 | && !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
|
---|
7112 | {
|
---|
7113 | pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
|
---|
7114 | uint64_t u64HostTscAux = 0;
|
---|
7115 | int rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64HostTscAux);
|
---|
7116 | AssertRC(rc2);
|
---|
7117 | ASMWrMsr(MSR_K8_TSC_AUX, u64HostTscAux);
|
---|
7118 | }
|
---|
7119 | #endif
|
---|
7120 | }
|
---|
7121 |
|
---|
7122 |
|
---|
7123 | /**
|
---|
7124 | * Performs some essential restoration of state after running guest code in
|
---|
7125 | * VT-x.
|
---|
7126 | *
|
---|
7127 | * @param pVM Pointer to the VM.
|
---|
7128 | * @param pVCpu Pointer to the VMCPU.
|
---|
7129 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
7130 | * out-of-sync. Make sure to update the required fields
|
---|
7131 | * before using them.
|
---|
7132 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
7133 | * @param rcVMRun Return code of VMLAUNCH/VMRESUME.
|
---|
7134 | *
|
---|
7135 | * @remarks Called with interrupts disabled.
|
---|
7136 | * @remarks No-long-jump zone!!! This function will however re-enable longjmps
|
---|
7137 | * unconditionally when it is safe to do so.
|
---|
7138 | */
|
---|
7139 | static void hmR0VmxPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, int rcVMRun)
|
---|
7140 | {
|
---|
7141 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
7142 |
|
---|
7143 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
|
---|
7144 | ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
|
---|
7145 | pVCpu->hm.s.vmx.fUpdatedGuestState = 0; /* Exits/longjmps to ring-3 requires saving the guest state. */
|
---|
7146 | pVmxTransient->fVmcsFieldsRead = 0; /* Transient fields need to be read from the VMCS. */
|
---|
7147 | pVmxTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
|
---|
7148 |
|
---|
7149 | if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_RDTSC_EXIT))
|
---|
7150 | {
|
---|
7151 | #ifndef VBOX_WITH_AUTO_MSR_LOAD_RESTORE
|
---|
7152 | /* Restore host's TSC_AUX. */
|
---|
7153 | if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDTSCP)
|
---|
7154 | ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
|
---|
7155 | #endif
|
---|
7156 | /** @todo Find a way to fix hardcoding a guestimate. */
|
---|
7157 | TMCpuTickSetLastSeen(pVCpu, ASMReadTSC()
|
---|
7158 | + pVCpu->hm.s.vmx.u64TSCOffset - 0x400 /* guestimate of world switch overhead in clock ticks */);
|
---|
7159 | }
|
---|
7160 |
|
---|
7161 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
|
---|
7162 | TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
|
---|
7163 | Assert(!(ASMGetFlags() & X86_EFL_IF));
|
---|
7164 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
7165 |
|
---|
7166 | ASMSetFlags(pVmxTransient->uEFlags); /* Enable interrupts. */
|
---|
7167 | pVCpu->hm.s.fResumeVM = true; /* Use VMRESUME instead of VMLAUNCH in the next run. */
|
---|
7168 |
|
---|
7169 | /* Save the basic VM-exit reason. Refer Intel spec. 24.9.1 "Basic VM-exit Information". */
|
---|
7170 | uint32_t uExitReason;
|
---|
7171 | int rc = VMXReadVmcs32(VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
|
---|
7172 | rc |= hmR0VmxReadEntryIntrInfoVmcs(pVmxTransient);
|
---|
7173 | AssertRC(rc);
|
---|
7174 | pVmxTransient->uExitReason = (uint16_t)VMX_EXIT_REASON_BASIC(uExitReason);
|
---|
7175 | pVmxTransient->fVMEntryFailed = !!VMX_ENTRY_INTERRUPTION_INFO_VALID(pVmxTransient->uEntryIntrInfo);
|
---|
7176 |
|
---|
7177 | VMMRZCallRing3SetNotification(pVCpu, hmR0VmxCallRing3Callback, pMixedCtx);
|
---|
7178 | VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
|
---|
7179 |
|
---|
7180 | /* If the VMLAUNCH/VMRESUME failed, we can bail out early. This does -not- cover VMX_EXIT_ERR_*. */
|
---|
7181 | if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
|
---|
7182 | {
|
---|
7183 | Log4(("VM-entry failure: pVCpu=%p idCpu=%RU32 rcVMRun=%Rrc fVMEntryFailed=%RTbool\n", pVCpu, pVCpu->idCpu, rcVMRun,
|
---|
7184 | pVmxTransient->fVMEntryFailed));
|
---|
7185 | return;
|
---|
7186 | }
|
---|
7187 |
|
---|
7188 | if (RT_LIKELY(!pVmxTransient->fVMEntryFailed))
|
---|
7189 | {
|
---|
7190 | /* Update the guest interruptibility-state from the VMCS. */
|
---|
7191 | hmR0VmxSaveGuestIntrState(pVCpu, pMixedCtx);
|
---|
7192 | #if defined(HMVMX_SYNC_FULL_GUEST_STATE) || defined(HMVMX_SAVE_FULL_GUEST_STATE)
|
---|
7193 | rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
7194 | AssertRC(rc);
|
---|
7195 | #endif
|
---|
7196 | /*
|
---|
7197 | * If the TPR was raised by the guest, it wouldn't cause a VM-exit immediately. Instead we sync the TPR lazily whenever
|
---|
7198 | * we eventually get a VM-exit for any reason. This maybe expensive as PDMApicSetTPR() can longjmp to ring-3 and which is
|
---|
7199 | * why it's done here as it's easier and no less efficient to deal with it here than making hmR0VmxSaveGuestState()
|
---|
7200 | * cope with longjmps safely (see VMCPU_FF_HM_UPDATE_CR3 handling).
|
---|
7201 | */
|
---|
7202 | if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
|
---|
7203 | && pVmxTransient->u8GuestTpr != pVCpu->hm.s.vmx.pbVirtApic[0x80])
|
---|
7204 | {
|
---|
7205 | rc = PDMApicSetTPR(pVCpu, pVCpu->hm.s.vmx.pbVirtApic[0x80]);
|
---|
7206 | AssertRC(rc);
|
---|
7207 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_APIC_STATE;
|
---|
7208 | }
|
---|
7209 | }
|
---|
7210 | }
|
---|
7211 |
|
---|
7212 |
|
---|
7213 | /**
|
---|
7214 | * Runs the guest code using VT-x.
|
---|
7215 | *
|
---|
7216 | * @returns VBox status code.
|
---|
7217 | * @param pVM Pointer to the VM.
|
---|
7218 | * @param pVCpu Pointer to the VMCPU.
|
---|
7219 | * @param pCtx Pointer to the guest-CPU context.
|
---|
7220 | *
|
---|
7221 | * @remarks Called with preemption disabled.
|
---|
7222 | */
|
---|
7223 | VMMR0DECL(int) VMXR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
7224 | {
|
---|
7225 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
7226 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
7227 |
|
---|
7228 | VMXTRANSIENT VmxTransient;
|
---|
7229 | VmxTransient.fUpdateTscOffsettingAndPreemptTimer = true;
|
---|
7230 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
7231 | uint32_t cLoops = 0;
|
---|
7232 |
|
---|
7233 | for (;; cLoops++)
|
---|
7234 | {
|
---|
7235 | Assert(!HMR0SuspendPending());
|
---|
7236 | AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
|
---|
7237 | ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
|
---|
7238 | (unsigned)RTMpCpuId(), cLoops));
|
---|
7239 |
|
---|
7240 | /* Preparatory work for running guest code, this may return to ring-3 for some last minute updates. */
|
---|
7241 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
7242 | rc = hmR0VmxPreRunGuest(pVM, pVCpu, pCtx, &VmxTransient);
|
---|
7243 | if (rc != VINF_SUCCESS)
|
---|
7244 | break;
|
---|
7245 |
|
---|
7246 | /*
|
---|
7247 | * No longjmps to ring-3 from this point on!!!
|
---|
7248 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
7249 | * This also disables flushing of the R0-logger instance (if any).
|
---|
7250 | */
|
---|
7251 | VMMRZCallRing3Disable(pVCpu);
|
---|
7252 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
7253 | hmR0VmxPreRunGuestCommitted(pVM, pVCpu, pCtx, &VmxTransient);
|
---|
7254 |
|
---|
7255 | rc = hmR0VmxRunGuest(pVM, pVCpu, pCtx);
|
---|
7256 | /* The guest-CPU context is now outdated, 'pCtx' is to be treated as 'pMixedCtx' from this point on!!! */
|
---|
7257 |
|
---|
7258 | /*
|
---|
7259 | * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
|
---|
7260 | * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
|
---|
7261 | */
|
---|
7262 | hmR0VmxPostRunGuest(pVM, pVCpu, pCtx, &VmxTransient, rc);
|
---|
7263 | if (RT_UNLIKELY(rc != VINF_SUCCESS)) /* Check for errors with running the VM (VMLAUNCH/VMRESUME). */
|
---|
7264 | {
|
---|
7265 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
|
---|
7266 | hmR0VmxReportWorldSwitchError(pVM, pVCpu, rc, pCtx, &VmxTransient);
|
---|
7267 | return rc;
|
---|
7268 | }
|
---|
7269 |
|
---|
7270 | /* Handle the VM-exit. */
|
---|
7271 | AssertMsg(VmxTransient.uExitReason <= VMX_EXIT_MAX, ("%#x\n", VmxTransient.uExitReason));
|
---|
7272 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[VmxTransient.uExitReason & MASK_EXITREASON_STAT]);
|
---|
7273 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
|
---|
7274 | HMVMX_START_EXIT_DISPATCH_PROF();
|
---|
7275 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
7276 | rc = g_apfnVMExitHandlers[VmxTransient.uExitReason](pVCpu, pCtx, &VmxTransient);
|
---|
7277 | #else
|
---|
7278 | rc = hmR0VmxHandleExit(pVCpu, pCtx, &VmxTransient, VmxTransient.uExitReason);
|
---|
7279 | #endif
|
---|
7280 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
|
---|
7281 | if (rc != VINF_SUCCESS)
|
---|
7282 | break;
|
---|
7283 | else if (cLoops > pVM->hm.s.cMaxResumeLoops)
|
---|
7284 | {
|
---|
7285 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
|
---|
7286 | rc = VINF_EM_RAW_INTERRUPT;
|
---|
7287 | break;
|
---|
7288 | }
|
---|
7289 | }
|
---|
7290 |
|
---|
7291 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
7292 | if (rc == VERR_EM_INTERPRETER)
|
---|
7293 | rc = VINF_EM_RAW_EMULATE_INSTR;
|
---|
7294 | else if (rc == VINF_EM_RESET)
|
---|
7295 | rc = VINF_EM_TRIPLE_FAULT;
|
---|
7296 | hmR0VmxExitToRing3(pVM, pVCpu, pCtx, rc);
|
---|
7297 | return rc;
|
---|
7298 | }
|
---|
7299 |
|
---|
7300 |
|
---|
7301 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
7302 | DECLINLINE(int) hmR0VmxHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient, uint32_t rcReason)
|
---|
7303 | {
|
---|
7304 | int rc;
|
---|
7305 | switch (rcReason)
|
---|
7306 | {
|
---|
7307 | case VMX_EXIT_EPT_MISCONFIG: rc = hmR0VmxExitEptMisconfig(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7308 | case VMX_EXIT_EPT_VIOLATION: rc = hmR0VmxExitEptViolation(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7309 | case VMX_EXIT_IO_INSTR: rc = hmR0VmxExitIoInstr(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7310 | case VMX_EXIT_CPUID: rc = hmR0VmxExitCpuid(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7311 | case VMX_EXIT_RDTSC: rc = hmR0VmxExitRdtsc(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7312 | case VMX_EXIT_RDTSCP: rc = hmR0VmxExitRdtscp(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7313 | case VMX_EXIT_APIC_ACCESS: rc = hmR0VmxExitApicAccess(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7314 | case VMX_EXIT_XCPT_OR_NMI: rc = hmR0VmxExitXcptOrNmi(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7315 | case VMX_EXIT_MOV_CRX: rc = hmR0VmxExitMovCRx(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7316 | case VMX_EXIT_EXT_INT: rc = hmR0VmxExitExtInt(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7317 | case VMX_EXIT_INT_WINDOW: rc = hmR0VmxExitIntWindow(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7318 | case VMX_EXIT_MWAIT: rc = hmR0VmxExitMwait(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7319 | case VMX_EXIT_MONITOR: rc = hmR0VmxExitMonitor(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7320 | case VMX_EXIT_TASK_SWITCH: rc = hmR0VmxExitTaskSwitch(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7321 | case VMX_EXIT_PREEMPT_TIMER: rc = hmR0VmxExitPreemptTimer(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7322 | case VMX_EXIT_RDMSR: rc = hmR0VmxExitRdmsr(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7323 | case VMX_EXIT_WRMSR: rc = hmR0VmxExitWrmsr(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7324 | case VMX_EXIT_MOV_DRX: rc = hmR0VmxExitMovDRx(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7325 | case VMX_EXIT_TPR_BELOW_THRESHOLD: rc = hmR0VmxExitTprBelowThreshold(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7326 | case VMX_EXIT_HLT: rc = hmR0VmxExitHlt(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7327 | case VMX_EXIT_INVD: rc = hmR0VmxExitInvd(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7328 | case VMX_EXIT_INVLPG: rc = hmR0VmxExitInvlpg(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7329 | case VMX_EXIT_RSM: rc = hmR0VmxExitRsm(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7330 | case VMX_EXIT_MTF: rc = hmR0VmxExitMtf(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7331 | case VMX_EXIT_PAUSE: rc = hmR0VmxExitPause(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7332 | case VMX_EXIT_XDTR_ACCESS: rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7333 | case VMX_EXIT_TR_ACCESS: rc = hmR0VmxExitXdtrAccess(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7334 | case VMX_EXIT_WBINVD: rc = hmR0VmxExitWbinvd(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7335 | case VMX_EXIT_XSETBV: rc = hmR0VmxExitXsetbv(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7336 | case VMX_EXIT_RDRAND: rc = hmR0VmxExitRdrand(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7337 | case VMX_EXIT_INVPCID: rc = hmR0VmxExitInvpcid(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7338 | case VMX_EXIT_GETSEC: rc = hmR0VmxExitGetsec(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7339 | case VMX_EXIT_RDPMC: rc = hmR0VmxExitRdpmc(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7340 |
|
---|
7341 | case VMX_EXIT_TRIPLE_FAULT: rc = hmR0VmxExitTripleFault(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7342 | case VMX_EXIT_NMI_WINDOW: rc = hmR0VmxExitNmiWindow(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7343 | case VMX_EXIT_INIT_SIGNAL: rc = hmR0VmxExitInitSignal(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7344 | case VMX_EXIT_SIPI: rc = hmR0VmxExitSipi(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7345 | case VMX_EXIT_IO_SMI: rc = hmR0VmxExitIoSmi(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7346 | case VMX_EXIT_SMI: rc = hmR0VmxExitSmi(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7347 | case VMX_EXIT_ERR_MSR_LOAD: rc = hmR0VmxExitErrMsrLoad(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7348 | case VMX_EXIT_ERR_INVALID_GUEST_STATE: rc = hmR0VmxExitErrInvalidGuestState(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7349 | case VMX_EXIT_ERR_MACHINE_CHECK: rc = hmR0VmxExitErrMachineCheck(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
7350 |
|
---|
7351 | case VMX_EXIT_VMCALL:
|
---|
7352 | case VMX_EXIT_VMCLEAR:
|
---|
7353 | case VMX_EXIT_VMLAUNCH:
|
---|
7354 | case VMX_EXIT_VMPTRLD:
|
---|
7355 | case VMX_EXIT_VMPTRST:
|
---|
7356 | case VMX_EXIT_VMREAD:
|
---|
7357 | case VMX_EXIT_VMRESUME:
|
---|
7358 | case VMX_EXIT_VMWRITE:
|
---|
7359 | case VMX_EXIT_VMXOFF:
|
---|
7360 | case VMX_EXIT_VMXON:
|
---|
7361 | case VMX_EXIT_INVEPT:
|
---|
7362 | case VMX_EXIT_INVVPID:
|
---|
7363 | case VMX_EXIT_VMFUNC:
|
---|
7364 | rc = hmR0VmxExitSetPendingXcptUD(pVCpu, pMixedCtx, pVmxTransient);
|
---|
7365 | break;
|
---|
7366 | default:
|
---|
7367 | rc = hmR0VmxExitErrUndefined(pVCpu, pMixedCtx, pVmxTransient);
|
---|
7368 | break;
|
---|
7369 | }
|
---|
7370 | return rc;
|
---|
7371 | }
|
---|
7372 | #endif
|
---|
7373 |
|
---|
7374 | #ifdef DEBUG
|
---|
7375 | /* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
|
---|
7376 | # define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
|
---|
7377 | RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
|
---|
7378 |
|
---|
7379 | # define HMVMX_ASSERT_PREEMPT_CPUID() \
|
---|
7380 | do \
|
---|
7381 | { \
|
---|
7382 | RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
|
---|
7383 | AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
|
---|
7384 | } while (0)
|
---|
7385 |
|
---|
7386 | # define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() \
|
---|
7387 | do { \
|
---|
7388 | AssertPtr(pVCpu); \
|
---|
7389 | AssertPtr(pMixedCtx); \
|
---|
7390 | AssertPtr(pVmxTransient); \
|
---|
7391 | Assert(pVmxTransient->fVMEntryFailed == false); \
|
---|
7392 | Assert(ASMIntAreEnabled()); \
|
---|
7393 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
|
---|
7394 | HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
|
---|
7395 | Log4Func(("vcpu[%RU32] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v\n", pVCpu->idCpu)); \
|
---|
7396 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
|
---|
7397 | if (VMMR0IsLogFlushDisabled(pVCpu)) \
|
---|
7398 | HMVMX_ASSERT_PREEMPT_CPUID(); \
|
---|
7399 | HMVMX_STOP_EXIT_DISPATCH_PROF(); \
|
---|
7400 | } while (0)
|
---|
7401 |
|
---|
7402 | # define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() \
|
---|
7403 | do { \
|
---|
7404 | Log4Func(("\n")); \
|
---|
7405 | } while(0)
|
---|
7406 | #else /* Release builds */
|
---|
7407 | # define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS() do { HMVMX_STOP_EXIT_DISPATCH_PROF(); } while(0)
|
---|
7408 | # define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS() do { } while(0)
|
---|
7409 | #endif
|
---|
7410 |
|
---|
7411 |
|
---|
7412 | /**
|
---|
7413 | * Advances the guest RIP after reading it from the VMCS.
|
---|
7414 | *
|
---|
7415 | * @returns VBox status code.
|
---|
7416 | * @param pVCpu Pointer to the VMCPU.
|
---|
7417 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
7418 | * out-of-sync. Make sure to update the required fields
|
---|
7419 | * before using them.
|
---|
7420 | * @param pVmxTransient Pointer to the VMX transient structure.
|
---|
7421 | *
|
---|
7422 | * @remarks No-long-jump zone!!!
|
---|
7423 | */
|
---|
7424 | DECLINLINE(int) hmR0VmxAdvanceGuestRip(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
7425 | {
|
---|
7426 | int rc = hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7427 | rc |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
|
---|
7428 | AssertRCReturn(rc, rc);
|
---|
7429 |
|
---|
7430 | pMixedCtx->rip += pVmxTransient->cbInstr;
|
---|
7431 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
|
---|
7432 | return rc;
|
---|
7433 | }
|
---|
7434 |
|
---|
7435 |
|
---|
7436 | /**
|
---|
7437 | * Tries to determine what part of the guest-state VT-x has deemed as invalid
|
---|
7438 | * and update error record fields accordingly.
|
---|
7439 | *
|
---|
7440 | * @return VMX_IGS_* return codes.
|
---|
7441 | * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
|
---|
7442 | * wrong with the guest state.
|
---|
7443 | *
|
---|
7444 | * @param pVM Pointer to the VM.
|
---|
7445 | * @param pVCpu Pointer to the VMCPU.
|
---|
7446 | * @param pCtx Pointer to the guest-CPU state.
|
---|
7447 | */
|
---|
7448 | static uint32_t hmR0VmxCheckGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
7449 | {
|
---|
7450 | #define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
|
---|
7451 | #define HMVMX_CHECK_BREAK(expr, err) if (!(expr)) { \
|
---|
7452 | uError = (err); \
|
---|
7453 | break; \
|
---|
7454 | } else do {} while (0)
|
---|
7455 | /* Duplicate of IEM_IS_CANONICAL(). */
|
---|
7456 | #define HMVMX_IS_CANONICAL(a_u64Addr) ((uint64_t)(a_u64Addr) + UINT64_C(0x800000000000) < UINT64_C(0x1000000000000))
|
---|
7457 |
|
---|
7458 | int rc;
|
---|
7459 | uint64_t u64Val;
|
---|
7460 | uint32_t u32Val;
|
---|
7461 | uint32_t uError = VMX_IGS_ERROR;
|
---|
7462 | bool fUnrestrictedGuest = pVM->hm.s.vmx.fUnrestrictedGuest;
|
---|
7463 |
|
---|
7464 | do
|
---|
7465 | {
|
---|
7466 | /*
|
---|
7467 | * CR0.
|
---|
7468 | */
|
---|
7469 | uint32_t uSetCR0 = (uint32_t)(pVM->hm.s.vmx.msr.vmx_cr0_fixed0 & pVM->hm.s.vmx.msr.vmx_cr0_fixed1);
|
---|
7470 | uint32_t uZapCR0 = (uint32_t)(pVM->hm.s.vmx.msr.vmx_cr0_fixed0 | pVM->hm.s.vmx.msr.vmx_cr0_fixed1);
|
---|
7471 | /* Exceptions for unrestricted-guests for fixed CR0 bits (PE, PG).
|
---|
7472 | See Intel spec. 26.3.1 "Checks on guest Guest Control Registers, Debug Registers and MSRs." */
|
---|
7473 | if (fUnrestrictedGuest)
|
---|
7474 | uSetCR0 &= ~(X86_CR0_PE | X86_CR0_PG);
|
---|
7475 |
|
---|
7476 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val);
|
---|
7477 | AssertRCBreak(rc);
|
---|
7478 | HMVMX_CHECK_BREAK((u32Val & uSetCR0) == uSetCR0, VMX_IGS_CR0_FIXED1);
|
---|
7479 | HMVMX_CHECK_BREAK(!(u32Val & ~uZapCR0), VMX_IGS_CR0_FIXED0);
|
---|
7480 | if ( !fUnrestrictedGuest
|
---|
7481 | && (u32Val & X86_CR0_PG)
|
---|
7482 | && !(u32Val & X86_CR0_PE))
|
---|
7483 | {
|
---|
7484 | HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
|
---|
7485 | }
|
---|
7486 |
|
---|
7487 | /*
|
---|
7488 | * CR4.
|
---|
7489 | */
|
---|
7490 | uint64_t uSetCR4 = (pVM->hm.s.vmx.msr.vmx_cr4_fixed0 & pVM->hm.s.vmx.msr.vmx_cr4_fixed1);
|
---|
7491 | uint64_t uZapCR4 = (pVM->hm.s.vmx.msr.vmx_cr4_fixed0 | pVM->hm.s.vmx.msr.vmx_cr4_fixed1);
|
---|
7492 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR4, &u32Val);
|
---|
7493 | AssertRCBreak(rc);
|
---|
7494 | HMVMX_CHECK_BREAK((u32Val & uSetCR4) == uSetCR4, VMX_IGS_CR4_FIXED1);
|
---|
7495 | HMVMX_CHECK_BREAK(!(u32Val & ~uZapCR4), VMX_IGS_CR4_FIXED0);
|
---|
7496 |
|
---|
7497 | /*
|
---|
7498 | * IA32_DEBUGCTL MSR.
|
---|
7499 | */
|
---|
7500 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
|
---|
7501 | AssertRCBreak(rc);
|
---|
7502 | if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
|
---|
7503 | && (u64Val & 0xfffffe3c)) /* Bits 31-9, bits 2-5 MBZ. */
|
---|
7504 | {
|
---|
7505 | HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
|
---|
7506 | }
|
---|
7507 | uint64_t u64DebugCtlMsr = u64Val;
|
---|
7508 |
|
---|
7509 | #ifdef VBOX_STRICT
|
---|
7510 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
|
---|
7511 | AssertRCBreak(rc);
|
---|
7512 | Assert(u32Val == pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
7513 | #endif
|
---|
7514 | const bool fLongModeGuest = !!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST);
|
---|
7515 |
|
---|
7516 | /*
|
---|
7517 | * RIP and RFLAGS.
|
---|
7518 | */
|
---|
7519 | uint32_t u32EFlags;
|
---|
7520 | #if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
7521 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
7522 | {
|
---|
7523 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_RIP, &u64Val);
|
---|
7524 | AssertRCBreak(rc);
|
---|
7525 | /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
|
---|
7526 | if ( !fLongModeGuest
|
---|
7527 | || !pCtx->cs.Attr.n.u1Long)
|
---|
7528 | {
|
---|
7529 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
|
---|
7530 | }
|
---|
7531 | /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
|
---|
7532 | * must be identical if the "IA32e mode guest" VM-entry control is 1
|
---|
7533 | * and CS.L is 1. No check applies if the CPU supports 64
|
---|
7534 | * linear-address bits. */
|
---|
7535 |
|
---|
7536 | /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
|
---|
7537 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_RFLAGS, &u64Val);
|
---|
7538 | AssertRCBreak(rc);
|
---|
7539 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
|
---|
7540 | VMX_IGS_RFLAGS_RESERVED);
|
---|
7541 | HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
|
---|
7542 | u32EFlags = u64Val;
|
---|
7543 | }
|
---|
7544 | else
|
---|
7545 | #endif
|
---|
7546 | {
|
---|
7547 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_RFLAGS, &u32EFlags);
|
---|
7548 | AssertRCBreak(rc);
|
---|
7549 | HMVMX_CHECK_BREAK(!(u32EFlags & 0xffc08028), VMX_IGS_RFLAGS_RESERVED); /* Bit 31:22, Bit 15, 5, 3 MBZ. */
|
---|
7550 | HMVMX_CHECK_BREAK((u32EFlags & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
|
---|
7551 | }
|
---|
7552 |
|
---|
7553 | if ( fLongModeGuest
|
---|
7554 | || !(pCtx->cr0 & X86_CR0_PE))
|
---|
7555 | {
|
---|
7556 | HMVMX_CHECK_BREAK(!(u32EFlags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
|
---|
7557 | }
|
---|
7558 |
|
---|
7559 | uint32_t u32EntryInfo;
|
---|
7560 | rc = VMXReadVmcs32(VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
|
---|
7561 | AssertRCBreak(rc);
|
---|
7562 | if ( VMX_ENTRY_INTERRUPTION_INFO_VALID(u32EntryInfo)
|
---|
7563 | && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
|
---|
7564 | {
|
---|
7565 | HMVMX_CHECK_BREAK(u32Val & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
|
---|
7566 | }
|
---|
7567 |
|
---|
7568 | /*
|
---|
7569 | * 64-bit checks.
|
---|
7570 | */
|
---|
7571 | #if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
7572 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
7573 | {
|
---|
7574 | if ( fLongModeGuest
|
---|
7575 | && !fUnrestrictedGuest)
|
---|
7576 | {
|
---|
7577 | HMVMX_CHECK_BREAK(CPUMIsGuestPagingEnabledEx(pCtx), VMX_IGS_CR0_PG_LONGMODE);
|
---|
7578 | HMVMX_CHECK_BREAK((pCtx->cr4 & X86_CR4_PAE), VMX_IGS_CR4_PAE_LONGMODE);
|
---|
7579 | }
|
---|
7580 |
|
---|
7581 | if ( !fLongModeGuest
|
---|
7582 | && (pCtx->cr4 & X86_CR4_PCIDE))
|
---|
7583 | {
|
---|
7584 | HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
|
---|
7585 | }
|
---|
7586 |
|
---|
7587 | /** @todo CR3 field must be such that bits 63:52 and bits in the range
|
---|
7588 | * 51:32 beyond the processor's physical-address width are 0. */
|
---|
7589 |
|
---|
7590 | if ( (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_DEBUG)
|
---|
7591 | && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
|
---|
7592 | {
|
---|
7593 | HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
|
---|
7594 | }
|
---|
7595 |
|
---|
7596 | rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
|
---|
7597 | AssertRCBreak(rc);
|
---|
7598 | HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
|
---|
7599 |
|
---|
7600 | rc = VMXReadVmcs64(VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
|
---|
7601 | AssertRCBreak(rc);
|
---|
7602 | HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
|
---|
7603 | }
|
---|
7604 | #endif
|
---|
7605 |
|
---|
7606 | /*
|
---|
7607 | * PERF_GLOBAL MSR.
|
---|
7608 | */
|
---|
7609 | if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PERF_MSR)
|
---|
7610 | {
|
---|
7611 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
|
---|
7612 | AssertRCBreak(rc);
|
---|
7613 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
|
---|
7614 | VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63-35, bits 31-2 MBZ. */
|
---|
7615 | }
|
---|
7616 |
|
---|
7617 | /*
|
---|
7618 | * PAT MSR.
|
---|
7619 | */
|
---|
7620 | if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_PAT_MSR)
|
---|
7621 | {
|
---|
7622 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
|
---|
7623 | AssertRCBreak(rc);
|
---|
7624 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
|
---|
7625 | for (unsigned i = 0; i < 8; i++)
|
---|
7626 | {
|
---|
7627 | uint8_t u8Val = (u64Val & 0x7);
|
---|
7628 | if ( u8Val != 0 /* UC */
|
---|
7629 | || u8Val != 1 /* WC */
|
---|
7630 | || u8Val != 4 /* WT */
|
---|
7631 | || u8Val != 5 /* WP */
|
---|
7632 | || u8Val != 6 /* WB */
|
---|
7633 | || u8Val != 7 /* UC- */)
|
---|
7634 | {
|
---|
7635 | HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
|
---|
7636 | }
|
---|
7637 | u64Val >>= 3;
|
---|
7638 | }
|
---|
7639 | }
|
---|
7640 |
|
---|
7641 | /*
|
---|
7642 | * EFER MSR.
|
---|
7643 | */
|
---|
7644 | if (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_LOAD_GUEST_EFER_MSR)
|
---|
7645 | {
|
---|
7646 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
|
---|
7647 | AssertRCBreak(rc);
|
---|
7648 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
|
---|
7649 | VMX_IGS_EFER_MSR_RESERVED); /* Bits 63-12, bit 9, bits 7-1 MBZ. */
|
---|
7650 | HMVMX_CHECK_BREAK((u64Val & MSR_K6_EFER_LMA) == (pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_IA32E_MODE_GUEST),
|
---|
7651 | VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
|
---|
7652 | HMVMX_CHECK_BREAK( fUnrestrictedGuest
|
---|
7653 | || (u64Val & MSR_K6_EFER_LMA) == (pCtx->cr0 & X86_CR0_PG), VMX_IGS_EFER_LMA_PG_MISMATCH);
|
---|
7654 | }
|
---|
7655 |
|
---|
7656 | /*
|
---|
7657 | * Segment registers.
|
---|
7658 | */
|
---|
7659 | HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
|
---|
7660 | || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
|
---|
7661 | if (!(u32EFlags & X86_EFL_VM))
|
---|
7662 | {
|
---|
7663 | /* CS */
|
---|
7664 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
|
---|
7665 | HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
|
---|
7666 | HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
|
---|
7667 | HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
|
---|
7668 | || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
|
---|
7669 | HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
|
---|
7670 | || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
|
---|
7671 | /* CS cannot be loaded with NULL in protected mode. */
|
---|
7672 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
|
---|
7673 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
|
---|
7674 | if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
|
---|
7675 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
|
---|
7676 | else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
|
---|
7677 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
|
---|
7678 | else if (pVM->hm.s.vmx.fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
|
---|
7679 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
|
---|
7680 | else
|
---|
7681 | HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
|
---|
7682 |
|
---|
7683 | /* SS */
|
---|
7684 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
7685 | || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
|
---|
7686 | HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
|
---|
7687 | if ( !(pCtx->cr0 & X86_CR0_PE)
|
---|
7688 | || pCtx->cs.Attr.n.u4Type == 3)
|
---|
7689 | {
|
---|
7690 | HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
|
---|
7691 | }
|
---|
7692 | if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
7693 | {
|
---|
7694 | HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
|
---|
7695 | HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
|
---|
7696 | HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
|
---|
7697 | HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
|
---|
7698 | HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
|
---|
7699 | || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
|
---|
7700 | HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
|
---|
7701 | || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
|
---|
7702 | }
|
---|
7703 |
|
---|
7704 | /* DS, ES, FS, GS - only check for usable selectors, see hmR0VmxWriteSegmentReg(). */
|
---|
7705 | if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
7706 | {
|
---|
7707 | HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
|
---|
7708 | HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
|
---|
7709 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
7710 | || pCtx->ds.Attr.n.u4Type > 11
|
---|
7711 | || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
|
---|
7712 | HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
|
---|
7713 | HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
|
---|
7714 | HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
|
---|
7715 | || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
|
---|
7716 | HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
|
---|
7717 | || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
|
---|
7718 | HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
7719 | || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
|
---|
7720 | }
|
---|
7721 | if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
7722 | {
|
---|
7723 | HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
|
---|
7724 | HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
|
---|
7725 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
7726 | || pCtx->es.Attr.n.u4Type > 11
|
---|
7727 | || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
|
---|
7728 | HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
|
---|
7729 | HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
|
---|
7730 | HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
|
---|
7731 | || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
|
---|
7732 | HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
|
---|
7733 | || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
|
---|
7734 | HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
7735 | || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
|
---|
7736 | }
|
---|
7737 | if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
7738 | {
|
---|
7739 | HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
|
---|
7740 | HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
|
---|
7741 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
7742 | || pCtx->fs.Attr.n.u4Type > 11
|
---|
7743 | || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
|
---|
7744 | HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
|
---|
7745 | HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
|
---|
7746 | HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
|
---|
7747 | || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
|
---|
7748 | HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
|
---|
7749 | || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
|
---|
7750 | HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
7751 | || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
|
---|
7752 | }
|
---|
7753 | if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
7754 | {
|
---|
7755 | HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
|
---|
7756 | HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
|
---|
7757 | HMVMX_CHECK_BREAK( pVM->hm.s.vmx.fUnrestrictedGuest
|
---|
7758 | || pCtx->gs.Attr.n.u4Type > 11
|
---|
7759 | || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
|
---|
7760 | HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
|
---|
7761 | HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
|
---|
7762 | HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
|
---|
7763 | || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
|
---|
7764 | HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
|
---|
7765 | || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
|
---|
7766 | HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
7767 | || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
|
---|
7768 | }
|
---|
7769 | /* 64-bit capable CPUs. */
|
---|
7770 | #if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
7771 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
7772 | {
|
---|
7773 | HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
|
---|
7774 | HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
|
---|
7775 | HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
|
---|
7776 | || HMVMX_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
|
---|
7777 | HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
|
---|
7778 | HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
|
---|
7779 | VMX_IGS_LONGMODE_SS_BASE_INVALID);
|
---|
7780 | HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
|
---|
7781 | VMX_IGS_LONGMODE_DS_BASE_INVALID);
|
---|
7782 | HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
|
---|
7783 | VMX_IGS_LONGMODE_ES_BASE_INVALID);
|
---|
7784 | }
|
---|
7785 | #endif
|
---|
7786 | }
|
---|
7787 | else
|
---|
7788 | {
|
---|
7789 | /* V86 mode checks. */
|
---|
7790 | uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
|
---|
7791 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
7792 | {
|
---|
7793 | u32CSAttr = 0xf3; u32SSAttr = 0xf3;
|
---|
7794 | u32DSAttr = 0xf3; u32ESAttr = 0xf3;
|
---|
7795 | u32FSAttr = 0xf3; u32GSAttr = 0xf3;
|
---|
7796 | }
|
---|
7797 | else
|
---|
7798 | {
|
---|
7799 | u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
|
---|
7800 | u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
|
---|
7801 | u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
|
---|
7802 | }
|
---|
7803 |
|
---|
7804 | /* CS */
|
---|
7805 | HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
|
---|
7806 | HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
|
---|
7807 | HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
|
---|
7808 | /* SS */
|
---|
7809 | HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
|
---|
7810 | HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
|
---|
7811 | HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
|
---|
7812 | /* DS */
|
---|
7813 | HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
|
---|
7814 | HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
|
---|
7815 | HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
|
---|
7816 | /* ES */
|
---|
7817 | HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
|
---|
7818 | HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
|
---|
7819 | HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
|
---|
7820 | /* FS */
|
---|
7821 | HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
|
---|
7822 | HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
|
---|
7823 | HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
|
---|
7824 | /* GS */
|
---|
7825 | HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
|
---|
7826 | HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
|
---|
7827 | HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
|
---|
7828 | /* 64-bit capable CPUs. */
|
---|
7829 | #if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
7830 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
7831 | {
|
---|
7832 | HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
|
---|
7833 | HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
|
---|
7834 | HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
|
---|
7835 | || HMVMX_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
|
---|
7836 | HMVMX_CHECK_BREAK(!(pCtx->cs.u64Base >> 32), VMX_IGS_LONGMODE_CS_BASE_INVALID);
|
---|
7837 | HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ss.u64Base >> 32),
|
---|
7838 | VMX_IGS_LONGMODE_SS_BASE_INVALID);
|
---|
7839 | HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->ds.u64Base >> 32),
|
---|
7840 | VMX_IGS_LONGMODE_DS_BASE_INVALID);
|
---|
7841 | HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !(pCtx->es.u64Base >> 32),
|
---|
7842 | VMX_IGS_LONGMODE_ES_BASE_INVALID);
|
---|
7843 | }
|
---|
7844 | #endif
|
---|
7845 | }
|
---|
7846 |
|
---|
7847 | /*
|
---|
7848 | * TR.
|
---|
7849 | */
|
---|
7850 | HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
|
---|
7851 | /* 64-bit capable CPUs. */
|
---|
7852 | #if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
7853 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
7854 | {
|
---|
7855 | HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
|
---|
7856 | }
|
---|
7857 | #endif
|
---|
7858 | if (fLongModeGuest)
|
---|
7859 | {
|
---|
7860 | HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
|
---|
7861 | VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
|
---|
7862 | }
|
---|
7863 | else
|
---|
7864 | {
|
---|
7865 | HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
|
---|
7866 | || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
|
---|
7867 | VMX_IGS_TR_ATTR_TYPE_INVALID);
|
---|
7868 | }
|
---|
7869 | HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
|
---|
7870 | HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
|
---|
7871 | HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11-8 MBZ. */
|
---|
7872 | HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
|
---|
7873 | || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
|
---|
7874 | HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
|
---|
7875 | || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
|
---|
7876 | HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
|
---|
7877 |
|
---|
7878 | /*
|
---|
7879 | * GDTR and IDTR.
|
---|
7880 | */
|
---|
7881 | #if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
7882 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
7883 | {
|
---|
7884 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
|
---|
7885 | AssertRCBreak(rc);
|
---|
7886 | HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
|
---|
7887 |
|
---|
7888 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
|
---|
7889 | AssertRCBreak(rc);
|
---|
7890 | HMVMX_CHECK_BREAK(HMVMX_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
|
---|
7891 | }
|
---|
7892 | #endif
|
---|
7893 |
|
---|
7894 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
|
---|
7895 | AssertRCBreak(rc);
|
---|
7896 | HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
|
---|
7897 |
|
---|
7898 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
|
---|
7899 | AssertRCBreak(rc);
|
---|
7900 | HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
|
---|
7901 |
|
---|
7902 | /*
|
---|
7903 | * Guest Non-Register State.
|
---|
7904 | */
|
---|
7905 | /* Activity State. */
|
---|
7906 | uint32_t u32ActivityState;
|
---|
7907 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
|
---|
7908 | AssertRCBreak(rc);
|
---|
7909 | HMVMX_CHECK_BREAK( !u32ActivityState
|
---|
7910 | || (u32ActivityState & MSR_IA32_VMX_MISC_ACTIVITY_STATES(pVM->hm.s.vmx.msr.vmx_misc)),
|
---|
7911 | VMX_IGS_ACTIVITY_STATE_INVALID);
|
---|
7912 | HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
|
---|
7913 | || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
|
---|
7914 | uint32_t u32IntrState;
|
---|
7915 | rc = VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &u32IntrState);
|
---|
7916 | AssertRCBreak(rc);
|
---|
7917 | if ( u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS
|
---|
7918 | || u32IntrState == VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
|
---|
7919 | {
|
---|
7920 | HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
|
---|
7921 | }
|
---|
7922 |
|
---|
7923 | /** @todo Activity state and injecting interrupts. Left as a todo since we
|
---|
7924 | * currently don't use activity states but ACTIVE. */
|
---|
7925 |
|
---|
7926 | HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
|
---|
7927 | || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
|
---|
7928 |
|
---|
7929 | /* Guest interruptibility-state. */
|
---|
7930 | HMVMX_CHECK_BREAK(!(u32IntrState & 0xfffffff0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
|
---|
7931 | HMVMX_CHECK_BREAK((u32IntrState & ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
|
---|
7932 | | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS))
|
---|
7933 | != ( VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI
|
---|
7934 | | VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
|
---|
7935 | VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
|
---|
7936 | HMVMX_CHECK_BREAK( (u32EFlags & X86_EFL_IF)
|
---|
7937 | || !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
|
---|
7938 | VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
|
---|
7939 | if (VMX_ENTRY_INTERRUPTION_INFO_VALID(u32EntryInfo))
|
---|
7940 | {
|
---|
7941 | if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT)
|
---|
7942 | {
|
---|
7943 | HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
|
---|
7944 | && !(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
|
---|
7945 | VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
|
---|
7946 | }
|
---|
7947 | else if (VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
|
---|
7948 | {
|
---|
7949 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS),
|
---|
7950 | VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
|
---|
7951 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI),
|
---|
7952 | VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
|
---|
7953 | }
|
---|
7954 | }
|
---|
7955 | /** @todo Assumes the processor is not in SMM. */
|
---|
7956 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
|
---|
7957 | VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
|
---|
7958 | HMVMX_CHECK_BREAK( !(pVCpu->hm.s.vmx.u32EntryCtls & VMX_VMCS_CTRL_ENTRY_ENTRY_SMM)
|
---|
7959 | || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_SMI),
|
---|
7960 | VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
|
---|
7961 | if ( (pVCpu->hm.s.vmx.u32PinCtls & VMX_VMCS_CTRL_PIN_EXEC_VIRTUAL_NMI)
|
---|
7962 | && VMX_ENTRY_INTERRUPTION_INFO_VALID(u32EntryInfo)
|
---|
7963 | && VMX_ENTRY_INTERRUPTION_INFO_TYPE(u32EntryInfo) == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
|
---|
7964 | {
|
---|
7965 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_NMI),
|
---|
7966 | VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
|
---|
7967 | }
|
---|
7968 |
|
---|
7969 | /* Pending debug exceptions. */
|
---|
7970 | if (HMVMX_IS_64BIT_HOST_MODE())
|
---|
7971 | {
|
---|
7972 | rc = VMXReadVmcs64(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u64Val);
|
---|
7973 | AssertRCBreak(rc);
|
---|
7974 | /* Bits 63-15, Bit 13, Bits 11-4 MBZ. */
|
---|
7975 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
|
---|
7976 | u32Val = u64Val; /* For pending debug exceptions checks below. */
|
---|
7977 | }
|
---|
7978 | else
|
---|
7979 | {
|
---|
7980 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_PENDING_DEBUG_EXCEPTIONS, &u32Val);
|
---|
7981 | AssertRCBreak(rc);
|
---|
7982 | /* Bits 31-15, Bit 13, Bits 11-4 MBZ. */
|
---|
7983 | HMVMX_CHECK_BREAK(!(u64Val & 0xffffaff0), VMX_IGS_PENDING_DEBUG_RESERVED);
|
---|
7984 | }
|
---|
7985 |
|
---|
7986 | if ( (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_STI)
|
---|
7987 | || (u32IntrState & VMX_VMCS_GUEST_INTERRUPTIBILITY_STATE_BLOCK_MOVSS)
|
---|
7988 | || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
|
---|
7989 | {
|
---|
7990 | if ( (u32EFlags & X86_EFL_TF)
|
---|
7991 | && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
|
---|
7992 | {
|
---|
7993 | /* Bit 14 is PendingDebug.BS. */
|
---|
7994 | HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
|
---|
7995 | }
|
---|
7996 | if ( !(u32EFlags & X86_EFL_TF)
|
---|
7997 | || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
|
---|
7998 | {
|
---|
7999 | /* Bit 14 is PendingDebug.BS. */
|
---|
8000 | HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
|
---|
8001 | }
|
---|
8002 | }
|
---|
8003 |
|
---|
8004 | /* VMCS link pointer. */
|
---|
8005 | rc = VMXReadVmcs64(VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
|
---|
8006 | AssertRCBreak(rc);
|
---|
8007 | if (u64Val != UINT64_C(0xffffffffffffffff))
|
---|
8008 | {
|
---|
8009 | HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
|
---|
8010 | /** @todo Bits beyond the processor's physical-address width MBZ. */
|
---|
8011 | /** @todo 32-bit located in memory referenced by value of this field (as a
|
---|
8012 | * physical address) must contain the processor's VMCS revision ID. */
|
---|
8013 | /** @todo SMM checks. */
|
---|
8014 | }
|
---|
8015 |
|
---|
8016 | /** @todo Checks on Guest Page-Directory-Pointer-Table Entries. */
|
---|
8017 |
|
---|
8018 | /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
|
---|
8019 | if (uError == VMX_IGS_ERROR)
|
---|
8020 | uError = VMX_IGS_REASON_NOT_FOUND;
|
---|
8021 | } while (0);
|
---|
8022 |
|
---|
8023 | pVCpu->hm.s.u32HMError = uError;
|
---|
8024 | return uError;
|
---|
8025 |
|
---|
8026 | #undef HMVMX_ERROR_BREAK
|
---|
8027 | #undef HMVMX_CHECK_BREAK
|
---|
8028 | #undef HMVMX_IS_CANONICAL
|
---|
8029 | }
|
---|
8030 |
|
---|
8031 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
8032 | /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
|
---|
8033 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
8034 |
|
---|
8035 | /** @name VM-exit handlers.
|
---|
8036 | * @{
|
---|
8037 | */
|
---|
8038 |
|
---|
8039 | /**
|
---|
8040 | * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
|
---|
8041 | */
|
---|
8042 | HMVMX_EXIT_DECL hmR0VmxExitExtInt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8043 | {
|
---|
8044 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8045 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
|
---|
8046 | /* 32-bit Windows hosts (4 cores) has trouble with this; causes higher interrupt latency. */
|
---|
8047 | #if HC_ARCH_BITS == 64 && defined(VBOX_WITH_VMMR0_DISABLE_PREEMPTION)
|
---|
8048 | Assert(ASMIntAreEnabled());
|
---|
8049 | if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUsePreemptTimer)
|
---|
8050 | return VINF_SUCCESS;
|
---|
8051 | #endif
|
---|
8052 | return VINF_EM_RAW_INTERRUPT;
|
---|
8053 | }
|
---|
8054 |
|
---|
8055 |
|
---|
8056 | /**
|
---|
8057 | * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
|
---|
8058 | */
|
---|
8059 | HMVMX_EXIT_DECL hmR0VmxExitXcptOrNmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8060 | {
|
---|
8061 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8062 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitXcptNmi, y3);
|
---|
8063 |
|
---|
8064 | int rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
|
---|
8065 | AssertRCReturn(rc, rc);
|
---|
8066 |
|
---|
8067 | uint32_t uIntrType = VMX_EXIT_INTERRUPTION_INFO_TYPE(pVmxTransient->uExitIntrInfo);
|
---|
8068 | Assert( !(pVCpu->hm.s.vmx.u32ExitCtls & VMX_VMCS_CTRL_EXIT_ACK_EXT_INT)
|
---|
8069 | && uIntrType != VMX_EXIT_INTERRUPTION_INFO_TYPE_EXT_INT);
|
---|
8070 | Assert(VMX_EXIT_INTERRUPTION_INFO_IS_VALID(pVmxTransient->uExitIntrInfo));
|
---|
8071 |
|
---|
8072 | if (uIntrType == VMX_EXIT_INTERRUPTION_INFO_TYPE_NMI)
|
---|
8073 | {
|
---|
8074 | /*
|
---|
8075 | * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we injected it ourselves and
|
---|
8076 | * anything we inject is not going to cause a VM-exit directly for the event being injected.
|
---|
8077 | * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
|
---|
8078 | *
|
---|
8079 | * Dispatch the NMI to the host. See Intel spec. 27.5.5 "Updating Non-Register State".
|
---|
8080 | */
|
---|
8081 | VMXDispatchHostNmi();
|
---|
8082 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmi);
|
---|
8083 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
|
---|
8084 | return VINF_SUCCESS;
|
---|
8085 | }
|
---|
8086 |
|
---|
8087 | /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
|
---|
8088 | rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
|
---|
8089 | if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
|
---|
8090 | {
|
---|
8091 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
|
---|
8092 | return VINF_SUCCESS;
|
---|
8093 | }
|
---|
8094 | else if (RT_UNLIKELY(rc == VINF_EM_RESET))
|
---|
8095 | {
|
---|
8096 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
|
---|
8097 | return rc;
|
---|
8098 | }
|
---|
8099 |
|
---|
8100 | uint32_t uExitIntrInfo = pVmxTransient->uExitIntrInfo;
|
---|
8101 | uint32_t uVector = VMX_EXIT_INTERRUPTION_INFO_VECTOR(uExitIntrInfo);
|
---|
8102 | switch (uIntrType)
|
---|
8103 | {
|
---|
8104 | case VMX_EXIT_INTERRUPTION_INFO_TYPE_SW_XCPT: /* Software exception. (#BP or #OF) */
|
---|
8105 | Assert(uVector == X86_XCPT_DB || uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
|
---|
8106 | /* no break */
|
---|
8107 | case VMX_EXIT_INTERRUPTION_INFO_TYPE_HW_XCPT:
|
---|
8108 | {
|
---|
8109 | switch (uVector)
|
---|
8110 | {
|
---|
8111 | case X86_XCPT_PF: rc = hmR0VmxExitXcptPF(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
8112 | case X86_XCPT_GP: rc = hmR0VmxExitXcptGP(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
8113 | case X86_XCPT_NM: rc = hmR0VmxExitXcptNM(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
8114 | case X86_XCPT_MF: rc = hmR0VmxExitXcptMF(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
8115 | case X86_XCPT_DB: rc = hmR0VmxExitXcptDB(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
8116 | case X86_XCPT_BP: rc = hmR0VmxExitXcptBP(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
8117 | #ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
8118 | case X86_XCPT_XF: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXF);
|
---|
8119 | rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
8120 | case X86_XCPT_DE: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
|
---|
8121 | rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
8122 | case X86_XCPT_UD: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
|
---|
8123 | rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
8124 | case X86_XCPT_SS: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
|
---|
8125 | rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
8126 | case X86_XCPT_NP: STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
|
---|
8127 | rc = hmR0VmxExitXcptGeneric(pVCpu, pMixedCtx, pVmxTransient); break;
|
---|
8128 | #endif
|
---|
8129 | default:
|
---|
8130 | {
|
---|
8131 | rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
8132 | AssertRCReturn(rc, rc);
|
---|
8133 |
|
---|
8134 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestXcpUnk);
|
---|
8135 | if (pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
8136 | {
|
---|
8137 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
|
---|
8138 | Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
|
---|
8139 | rc = hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
8140 | rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
8141 | AssertRCReturn(rc, rc);
|
---|
8142 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(uExitIntrInfo),
|
---|
8143 | pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode,
|
---|
8144 | 0 /* GCPtrFaultAddress */);
|
---|
8145 | AssertRCReturn(rc, rc);
|
---|
8146 | }
|
---|
8147 | else
|
---|
8148 | {
|
---|
8149 | AssertMsgFailed(("Unexpected VM-exit caused by exception %#x\n", uVector));
|
---|
8150 | pVCpu->hm.s.u32HMError = uVector;
|
---|
8151 | rc = VERR_VMX_UNEXPECTED_EXCEPTION;
|
---|
8152 | }
|
---|
8153 | break;
|
---|
8154 | }
|
---|
8155 | }
|
---|
8156 | break;
|
---|
8157 | }
|
---|
8158 |
|
---|
8159 | default:
|
---|
8160 | {
|
---|
8161 | pVCpu->hm.s.u32HMError = uExitIntrInfo;
|
---|
8162 | rc = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_CODE;
|
---|
8163 | AssertMsgFailed(("Unexpected interruption code %#x\n", VMX_EXIT_INTERRUPTION_INFO_TYPE(uExitIntrInfo)));
|
---|
8164 | break;
|
---|
8165 | }
|
---|
8166 | }
|
---|
8167 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitXcptNmi, y3);
|
---|
8168 | return rc;
|
---|
8169 | }
|
---|
8170 |
|
---|
8171 |
|
---|
8172 | /**
|
---|
8173 | * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
|
---|
8174 | */
|
---|
8175 | HMVMX_EXIT_DECL hmR0VmxExitIntWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8176 | {
|
---|
8177 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8178 |
|
---|
8179 | /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
|
---|
8180 | Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT);
|
---|
8181 | pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_INT_WINDOW_EXIT;
|
---|
8182 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
8183 | AssertRCReturn(rc, rc);
|
---|
8184 |
|
---|
8185 | /* Deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectEvent() and resume guest execution. */
|
---|
8186 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
|
---|
8187 | return VINF_SUCCESS;
|
---|
8188 | }
|
---|
8189 |
|
---|
8190 |
|
---|
8191 | /**
|
---|
8192 | * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
|
---|
8193 | */
|
---|
8194 | HMVMX_EXIT_DECL hmR0VmxExitNmiWindow(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8195 | {
|
---|
8196 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8197 | AssertMsgFailed(("Unexpected NMI-window exit.\n"));
|
---|
8198 | pVCpu->hm.s.u32HMError = VMX_EXIT_NMI_WINDOW;
|
---|
8199 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
8200 | }
|
---|
8201 |
|
---|
8202 |
|
---|
8203 | /**
|
---|
8204 | * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
|
---|
8205 | */
|
---|
8206 | HMVMX_EXIT_DECL hmR0VmxExitWbinvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8207 | {
|
---|
8208 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8209 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
|
---|
8210 | return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
8211 | }
|
---|
8212 |
|
---|
8213 |
|
---|
8214 | /**
|
---|
8215 | * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
|
---|
8216 | */
|
---|
8217 | HMVMX_EXIT_DECL hmR0VmxExitInvd(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8218 | {
|
---|
8219 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8220 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
|
---|
8221 | return hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
8222 | }
|
---|
8223 |
|
---|
8224 |
|
---|
8225 | /**
|
---|
8226 | * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
|
---|
8227 | */
|
---|
8228 | HMVMX_EXIT_DECL hmR0VmxExitCpuid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8229 | {
|
---|
8230 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8231 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8232 | int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
8233 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
8234 | {
|
---|
8235 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
8236 | Assert(pVmxTransient->cbInstr == 2);
|
---|
8237 | }
|
---|
8238 | else
|
---|
8239 | {
|
---|
8240 | AssertMsgFailed(("hmR0VmxExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
|
---|
8241 | rc = VERR_EM_INTERPRETER;
|
---|
8242 | }
|
---|
8243 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
|
---|
8244 | return rc;
|
---|
8245 | }
|
---|
8246 |
|
---|
8247 |
|
---|
8248 | /**
|
---|
8249 | * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
|
---|
8250 | */
|
---|
8251 | HMVMX_EXIT_DECL hmR0VmxExitGetsec(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8252 | {
|
---|
8253 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8254 | int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx);
|
---|
8255 | AssertRCReturn(rc, rc);
|
---|
8256 |
|
---|
8257 | if (pMixedCtx->cr4 & X86_CR4_SMXE)
|
---|
8258 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
8259 |
|
---|
8260 | AssertMsgFailed(("hmR0VmxExitGetsec: unexpected VM-exit when CR4.SMXE is 0.\n"));
|
---|
8261 | pVCpu->hm.s.u32HMError = VMX_EXIT_GETSEC;
|
---|
8262 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
8263 | }
|
---|
8264 |
|
---|
8265 |
|
---|
8266 | /**
|
---|
8267 | * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
|
---|
8268 | */
|
---|
8269 | HMVMX_EXIT_DECL hmR0VmxExitRdtsc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8270 | {
|
---|
8271 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8272 | int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
|
---|
8273 | AssertRCReturn(rc, rc);
|
---|
8274 |
|
---|
8275 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8276 | rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
8277 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
8278 | {
|
---|
8279 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
8280 | Assert(pVmxTransient->cbInstr == 2);
|
---|
8281 | /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
|
---|
8282 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
|
---|
8283 | pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
|
---|
8284 | }
|
---|
8285 | else
|
---|
8286 | {
|
---|
8287 | AssertMsgFailed(("hmR0VmxExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
|
---|
8288 | rc = VERR_EM_INTERPRETER;
|
---|
8289 | }
|
---|
8290 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
|
---|
8291 | return rc;
|
---|
8292 | }
|
---|
8293 |
|
---|
8294 |
|
---|
8295 | /**
|
---|
8296 | * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
|
---|
8297 | */
|
---|
8298 | HMVMX_EXIT_DECL hmR0VmxExitRdtscp(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8299 | {
|
---|
8300 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8301 | int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
|
---|
8302 | rc |= hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx); /* For MSR_K8_TSC_AUX */
|
---|
8303 | AssertRCReturn(rc, rc);
|
---|
8304 |
|
---|
8305 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8306 | rc = EMInterpretRdtscp(pVM, pVCpu, pMixedCtx);
|
---|
8307 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
8308 | {
|
---|
8309 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
8310 | Assert(pVmxTransient->cbInstr == 3);
|
---|
8311 | /* If we get a spurious VM-exit when offsetting is enabled, we must reset offsetting on VM-reentry. See @bugref{6634}. */
|
---|
8312 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TSC_OFFSETTING)
|
---|
8313 | pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
|
---|
8314 | }
|
---|
8315 | else
|
---|
8316 | {
|
---|
8317 | AssertMsgFailed(("hmR0VmxExitRdtscp: EMInterpretRdtscp failed with %Rrc\n", rc));
|
---|
8318 | rc = VERR_EM_INTERPRETER;
|
---|
8319 | }
|
---|
8320 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
|
---|
8321 | return rc;
|
---|
8322 | }
|
---|
8323 |
|
---|
8324 |
|
---|
8325 | /**
|
---|
8326 | * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
|
---|
8327 | */
|
---|
8328 | HMVMX_EXIT_DECL hmR0VmxExitRdpmc(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8329 | {
|
---|
8330 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8331 | int rc = hmR0VmxSaveGuestCR4(pVCpu, pMixedCtx); /** @todo review if CR4 is really required by EM. */
|
---|
8332 | rc |= hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx); /** @todo review if CR0 is really required by EM. */
|
---|
8333 | AssertRCReturn(rc, rc);
|
---|
8334 |
|
---|
8335 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8336 | rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
8337 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
8338 | {
|
---|
8339 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
8340 | Assert(pVmxTransient->cbInstr == 2);
|
---|
8341 | }
|
---|
8342 | else
|
---|
8343 | {
|
---|
8344 | AssertMsgFailed(("hmR0VmxExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
|
---|
8345 | rc = VERR_EM_INTERPRETER;
|
---|
8346 | }
|
---|
8347 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
|
---|
8348 | return rc;
|
---|
8349 | }
|
---|
8350 |
|
---|
8351 |
|
---|
8352 | /**
|
---|
8353 | * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
|
---|
8354 | */
|
---|
8355 | HMVMX_EXIT_DECL hmR0VmxExitInvlpg(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8356 | {
|
---|
8357 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8358 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8359 | Assert(!pVM->hm.s.fNestedPaging);
|
---|
8360 |
|
---|
8361 | int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
8362 | rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
8363 | AssertRCReturn(rc, rc);
|
---|
8364 |
|
---|
8365 | VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), pVmxTransient->uExitQualification);
|
---|
8366 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
8367 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
8368 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
8369 | else
|
---|
8370 | {
|
---|
8371 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitInvlpg: EMInterpretInvlpg %#RX64 failed with %Rrc\n",
|
---|
8372 | pVmxTransient->uExitQualification, rc));
|
---|
8373 | }
|
---|
8374 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
|
---|
8375 | return rc;
|
---|
8376 | }
|
---|
8377 |
|
---|
8378 |
|
---|
8379 | /**
|
---|
8380 | * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
|
---|
8381 | */
|
---|
8382 | HMVMX_EXIT_DECL hmR0VmxExitMonitor(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8383 | {
|
---|
8384 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8385 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
8386 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
8387 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
8388 | AssertRCReturn(rc, rc);
|
---|
8389 |
|
---|
8390 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8391 | rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
8392 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
8393 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
8394 | else
|
---|
8395 | {
|
---|
8396 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
|
---|
8397 | rc = VERR_EM_INTERPRETER;
|
---|
8398 | }
|
---|
8399 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
|
---|
8400 | return rc;
|
---|
8401 | }
|
---|
8402 |
|
---|
8403 |
|
---|
8404 | /**
|
---|
8405 | * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
|
---|
8406 | */
|
---|
8407 | HMVMX_EXIT_DECL hmR0VmxExitMwait(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8408 | {
|
---|
8409 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8410 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
8411 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
8412 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
8413 | AssertRCReturn(rc, rc);
|
---|
8414 |
|
---|
8415 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8416 | VBOXSTRICTRC rc2 = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
8417 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
8418 | if (RT_LIKELY( rc == VINF_SUCCESS
|
---|
8419 | || rc == VINF_EM_HALT))
|
---|
8420 | {
|
---|
8421 | int rc3 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
8422 | AssertRCReturn(rc3, rc3);
|
---|
8423 |
|
---|
8424 | if ( rc == VINF_EM_HALT
|
---|
8425 | && EMShouldContinueAfterHalt(pVCpu, pMixedCtx))
|
---|
8426 | {
|
---|
8427 | rc = VINF_SUCCESS;
|
---|
8428 | }
|
---|
8429 | }
|
---|
8430 | else
|
---|
8431 | {
|
---|
8432 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0VmxExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
|
---|
8433 | rc = VERR_EM_INTERPRETER;
|
---|
8434 | }
|
---|
8435 | AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
|
---|
8436 | ("hmR0VmxExitMwait: failed, invalid error code %Rrc\n", rc));
|
---|
8437 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
|
---|
8438 | return rc;
|
---|
8439 | }
|
---|
8440 |
|
---|
8441 |
|
---|
8442 | /**
|
---|
8443 | * VM-exit handler for RSM (VMX_EXIT_RSM). Unconditional VM-exit.
|
---|
8444 | */
|
---|
8445 | HMVMX_EXIT_DECL hmR0VmxExitRsm(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8446 | {
|
---|
8447 | /*
|
---|
8448 | * Execution of RSM outside of SMM mode causes #UD regardless of VMX root or VMX non-root mode. In theory, we should never
|
---|
8449 | * get this VM-exit. This can happen only if dual-monitor treatment of SMI and VMX is enabled, which can (only?) be done by
|
---|
8450 | * executing VMCALL in VMX root operation. If we get here, something funny is going on.
|
---|
8451 | * See Intel spec. "33.15.5 Enabling the Dual-Monitor Treatment".
|
---|
8452 | */
|
---|
8453 | AssertMsgFailed(("Unexpected RSM VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
8454 | pVCpu->hm.s.u32HMError = VMX_EXIT_RSM;
|
---|
8455 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
8456 | }
|
---|
8457 |
|
---|
8458 |
|
---|
8459 | /**
|
---|
8460 | * VM-exit handler for SMI (VMX_EXIT_SMI). Unconditional VM-exit.
|
---|
8461 | */
|
---|
8462 | HMVMX_EXIT_DECL hmR0VmxExitSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8463 | {
|
---|
8464 | /*
|
---|
8465 | * This can only happen if we support dual-monitor treatment of SMI, which can be activated by executing VMCALL in VMX
|
---|
8466 | * root operation. Only an STM (SMM transfer monitor) would get this exit when we (the executive monitor) execute a VMCALL
|
---|
8467 | * in VMX root mode or receive an SMI. If we get here, something funny is going on.
|
---|
8468 | * See Intel spec. "33.15.6 Activating the Dual-Monitor Treatment" and Intel spec. 25.3 "Other Causes of VM-Exits"
|
---|
8469 | */
|
---|
8470 | AssertMsgFailed(("Unexpected SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
8471 | pVCpu->hm.s.u32HMError = VMX_EXIT_SMI;
|
---|
8472 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
8473 | }
|
---|
8474 |
|
---|
8475 |
|
---|
8476 | /**
|
---|
8477 | * VM-exit handler for IO SMI (VMX_EXIT_IO_SMI). Unconditional VM-exit.
|
---|
8478 | */
|
---|
8479 | HMVMX_EXIT_DECL hmR0VmxExitIoSmi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8480 | {
|
---|
8481 | /* Same treatment as VMX_EXIT_SMI. See comment in hmR0VmxExitSmi(). */
|
---|
8482 | AssertMsgFailed(("Unexpected IO SMI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
8483 | pVCpu->hm.s.u32HMError = VMX_EXIT_IO_SMI;
|
---|
8484 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
8485 | }
|
---|
8486 |
|
---|
8487 |
|
---|
8488 | /**
|
---|
8489 | * VM-exit handler for SIPI (VMX_EXIT_SIPI). Conditional VM-exit.
|
---|
8490 | */
|
---|
8491 | HMVMX_EXIT_DECL hmR0VmxExitSipi(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8492 | {
|
---|
8493 | /*
|
---|
8494 | * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest activity state is used. We currently
|
---|
8495 | * don't make use of it (see hmR0VmxLoadGuestActivityState()) as our guests don't have direct access to the host LAPIC.
|
---|
8496 | * See Intel spec. 25.3 "Other Causes of VM-exits".
|
---|
8497 | */
|
---|
8498 | AssertMsgFailed(("Unexpected SIPI VM-exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
8499 | pVCpu->hm.s.u32HMError = VMX_EXIT_SIPI;
|
---|
8500 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
8501 | }
|
---|
8502 |
|
---|
8503 |
|
---|
8504 | /**
|
---|
8505 | * VM-exit handler for INIT signal (VMX_EXIT_INIT_SIGNAL). Unconditional
|
---|
8506 | * VM-exit.
|
---|
8507 | */
|
---|
8508 | HMVMX_EXIT_DECL hmR0VmxExitInitSignal(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8509 | {
|
---|
8510 | /*
|
---|
8511 | * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
|
---|
8512 | * See Intel spec. 33.14.1 Default Treatment of SMI Delivery" and Intel spec. 29.3 "VMX Instructions" for "VMXON".
|
---|
8513 | *
|
---|
8514 | * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these VM-exits.
|
---|
8515 | * See Intel spec. "23.8 Restrictions on VMX operation".
|
---|
8516 | */
|
---|
8517 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8518 | return VINF_SUCCESS;
|
---|
8519 | }
|
---|
8520 |
|
---|
8521 |
|
---|
8522 | /**
|
---|
8523 | * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
|
---|
8524 | * VM-exit.
|
---|
8525 | */
|
---|
8526 | HMVMX_EXIT_DECL hmR0VmxExitTripleFault(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8527 | {
|
---|
8528 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8529 | return VINF_EM_RESET;
|
---|
8530 | }
|
---|
8531 |
|
---|
8532 |
|
---|
8533 | /**
|
---|
8534 | * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
|
---|
8535 | */
|
---|
8536 | HMVMX_EXIT_DECL hmR0VmxExitHlt(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8537 | {
|
---|
8538 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8539 | Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_HLT_EXIT);
|
---|
8540 | int rc = hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
|
---|
8541 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
8542 | AssertRCReturn(rc, rc);
|
---|
8543 |
|
---|
8544 | pMixedCtx->rip++;
|
---|
8545 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
|
---|
8546 | if (EMShouldContinueAfterHalt(pVCpu, pMixedCtx)) /* Requires eflags. */
|
---|
8547 | rc = VINF_SUCCESS;
|
---|
8548 | else
|
---|
8549 | rc = VINF_EM_HALT;
|
---|
8550 |
|
---|
8551 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
|
---|
8552 | return rc;
|
---|
8553 | }
|
---|
8554 |
|
---|
8555 |
|
---|
8556 | /**
|
---|
8557 | * VM-exit handler for instructions that result in a #UD exception delivered to
|
---|
8558 | * the guest.
|
---|
8559 | */
|
---|
8560 | HMVMX_EXIT_DECL hmR0VmxExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8561 | {
|
---|
8562 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8563 | hmR0VmxSetPendingXcptUD(pVCpu, pMixedCtx);
|
---|
8564 | return VINF_SUCCESS;
|
---|
8565 | }
|
---|
8566 |
|
---|
8567 |
|
---|
8568 | /**
|
---|
8569 | * VM-exit handler for expiry of the VMX preemption timer.
|
---|
8570 | */
|
---|
8571 | HMVMX_EXIT_DECL hmR0VmxExitPreemptTimer(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8572 | {
|
---|
8573 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8574 |
|
---|
8575 | /* If the preemption-timer has expired, reinitialize the preemption timer on next VM-entry. */
|
---|
8576 | pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
|
---|
8577 |
|
---|
8578 | /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
|
---|
8579 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8580 | bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
|
---|
8581 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPreemptTimer);
|
---|
8582 | return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
|
---|
8583 | }
|
---|
8584 |
|
---|
8585 |
|
---|
8586 | /**
|
---|
8587 | * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
|
---|
8588 | */
|
---|
8589 | HMVMX_EXIT_DECL hmR0VmxExitXsetbv(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8590 | {
|
---|
8591 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8592 |
|
---|
8593 | /* We expose XSETBV to the guest, fallback to the recompiler for emulation. */
|
---|
8594 | /** @todo check if XSETBV is supported by the recompiler. */
|
---|
8595 | return VERR_EM_INTERPRETER;
|
---|
8596 | }
|
---|
8597 |
|
---|
8598 |
|
---|
8599 | /**
|
---|
8600 | * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
|
---|
8601 | */
|
---|
8602 | HMVMX_EXIT_DECL hmR0VmxExitInvpcid(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8603 | {
|
---|
8604 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8605 |
|
---|
8606 | /* The guest should not invalidate the host CPU's TLBs, fallback to recompiler. */
|
---|
8607 | /** @todo implement EMInterpretInvpcid() */
|
---|
8608 | return VERR_EM_INTERPRETER;
|
---|
8609 | }
|
---|
8610 |
|
---|
8611 |
|
---|
8612 | /**
|
---|
8613 | * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE).
|
---|
8614 | * Error VM-exit.
|
---|
8615 | */
|
---|
8616 | HMVMX_EXIT_DECL hmR0VmxExitErrInvalidGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8617 | {
|
---|
8618 | uint32_t uIntrState;
|
---|
8619 | HMVMXHCUINTREG uHCReg;
|
---|
8620 | uint64_t u64Val;
|
---|
8621 | uint32_t u32Val;
|
---|
8622 |
|
---|
8623 | int rc = hmR0VmxReadEntryIntrInfoVmcs(pVmxTransient);
|
---|
8624 | rc |= hmR0VmxReadEntryXcptErrorCodeVmcs(pVmxTransient);
|
---|
8625 | rc |= hmR0VmxReadEntryInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
8626 | rc |= VMXReadVmcs32(VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE, &uIntrState);
|
---|
8627 | rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
8628 | AssertRCReturn(rc, rc);
|
---|
8629 |
|
---|
8630 | uint32_t uInvalidReason = hmR0VmxCheckGuestState(pVCpu->CTX_SUFF(pVM), pVCpu, pMixedCtx);
|
---|
8631 | NOREF(uInvalidReason);
|
---|
8632 |
|
---|
8633 | Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntrInfo));
|
---|
8634 | Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
|
---|
8635 | Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
|
---|
8636 | Log4(("VMX_VMCS32_GUEST_INTERRUPTIBILITY_STATE %#RX32\n", uIntrState));
|
---|
8637 |
|
---|
8638 | rc = VMXReadVmcs32(VMX_VMCS_GUEST_CR0, &u32Val); AssertRC(rc);
|
---|
8639 | Log4(("VMX_VMCS_GUEST_CR0 %#RX32\n", u32Val));
|
---|
8640 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_MASK, &uHCReg); AssertRC(rc);
|
---|
8641 | Log4(("VMX_VMCS_CTRL_CR0_MASK %#RHr\n", uHCReg));
|
---|
8642 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR0_READ_SHADOW, &uHCReg); AssertRC(rc);
|
---|
8643 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
|
---|
8644 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_MASK, &uHCReg); AssertRC(rc);
|
---|
8645 | Log4(("VMX_VMCS_CTRL_CR4_MASK %#RHr\n", uHCReg));
|
---|
8646 | rc = VMXReadVmcsHstN(VMX_VMCS_CTRL_CR4_READ_SHADOW, &uHCReg); AssertRC(rc);
|
---|
8647 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RHr\n", uHCReg));
|
---|
8648 | rc = VMXReadVmcs64(VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
|
---|
8649 | Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
|
---|
8650 |
|
---|
8651 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8652 | HMDumpRegs(pVM, pVCpu, pMixedCtx);
|
---|
8653 |
|
---|
8654 | return VERR_VMX_INVALID_GUEST_STATE;
|
---|
8655 | }
|
---|
8656 |
|
---|
8657 |
|
---|
8658 | /**
|
---|
8659 | * VM-exit handler for VM-entry failure due to an MSR-load
|
---|
8660 | * (VMX_EXIT_ERR_MSR_LOAD). Error VM-exit.
|
---|
8661 | */
|
---|
8662 | HMVMX_EXIT_DECL hmR0VmxExitErrMsrLoad(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8663 | {
|
---|
8664 | AssertMsgFailed(("Unexpected MSR-load exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
8665 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
8666 | }
|
---|
8667 |
|
---|
8668 |
|
---|
8669 | /**
|
---|
8670 | * VM-exit handler for VM-entry failure due to a machine-check event
|
---|
8671 | * (VMX_EXIT_ERR_MACHINE_CHECK). Error VM-exit.
|
---|
8672 | */
|
---|
8673 | HMVMX_EXIT_DECL hmR0VmxExitErrMachineCheck(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8674 | {
|
---|
8675 | AssertMsgFailed(("Unexpected machine-check event exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
8676 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
8677 | }
|
---|
8678 |
|
---|
8679 |
|
---|
8680 | /**
|
---|
8681 | * VM-exit handler for all undefined reasons. Should never ever happen.. in
|
---|
8682 | * theory.
|
---|
8683 | */
|
---|
8684 | HMVMX_EXIT_DECL hmR0VmxExitErrUndefined(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8685 | {
|
---|
8686 | AssertMsgFailed(("Huh!? Undefined VM-exit reason %d. pVCpu=%p pMixedCtx=%p\n", pVmxTransient->uExitReason, pVCpu, pMixedCtx));
|
---|
8687 | return VERR_VMX_UNDEFINED_EXIT_CODE;
|
---|
8688 | }
|
---|
8689 |
|
---|
8690 |
|
---|
8691 | /**
|
---|
8692 | * VM-exit handler for XDTR (LGDT, SGDT, LIDT, SIDT) accesses
|
---|
8693 | * (VMX_EXIT_XDTR_ACCESS) and LDT and TR access (LLDT, LTR, SLDT, STR).
|
---|
8694 | * Conditional VM-exit.
|
---|
8695 | */
|
---|
8696 | HMVMX_EXIT_DECL hmR0VmxExitXdtrAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8697 | {
|
---|
8698 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8699 |
|
---|
8700 | /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT. */
|
---|
8701 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitXdtrAccess);
|
---|
8702 | if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_DESCRIPTOR_TABLE_EXIT)
|
---|
8703 | return VERR_EM_INTERPRETER;
|
---|
8704 | AssertMsgFailed(("Unexpected XDTR access. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
8705 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
8706 | }
|
---|
8707 |
|
---|
8708 |
|
---|
8709 | /**
|
---|
8710 | * VM-exit handler for RDRAND (VMX_EXIT_RDRAND). Conditional VM-exit.
|
---|
8711 | */
|
---|
8712 | HMVMX_EXIT_DECL hmR0VmxExitRdrand(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8713 | {
|
---|
8714 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8715 |
|
---|
8716 | /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT. */
|
---|
8717 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdrand);
|
---|
8718 | if (pVCpu->hm.s.vmx.u32ProcCtls2 & VMX_VMCS_CTRL_PROC_EXEC2_RDRAND_EXIT)
|
---|
8719 | return VERR_EM_INTERPRETER;
|
---|
8720 | AssertMsgFailed(("Unexpected RDRAND exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
8721 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
8722 | }
|
---|
8723 |
|
---|
8724 |
|
---|
8725 | /**
|
---|
8726 | * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
|
---|
8727 | */
|
---|
8728 | HMVMX_EXIT_DECL hmR0VmxExitRdmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8729 | {
|
---|
8730 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8731 |
|
---|
8732 | /* EMInterpretRdmsr() requires CR0, Eflags and SS segment register. */
|
---|
8733 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
8734 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
8735 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
8736 | AssertRCReturn(rc, rc);
|
---|
8737 |
|
---|
8738 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8739 | rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
8740 | AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER,
|
---|
8741 | ("hmR0VmxExitRdmsr: failed, invalid error code %Rrc\n", rc));
|
---|
8742 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
|
---|
8743 |
|
---|
8744 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
8745 | {
|
---|
8746 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
8747 | Assert(pVmxTransient->cbInstr == 2);
|
---|
8748 | }
|
---|
8749 | return rc;
|
---|
8750 | }
|
---|
8751 |
|
---|
8752 |
|
---|
8753 | /**
|
---|
8754 | * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
|
---|
8755 | */
|
---|
8756 | HMVMX_EXIT_DECL hmR0VmxExitWrmsr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8757 | {
|
---|
8758 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8759 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8760 | int rc = VINF_SUCCESS;
|
---|
8761 |
|
---|
8762 | /* EMInterpretWrmsr() requires CR0, EFLAGS and SS segment register. */
|
---|
8763 | rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
8764 | rc |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx);
|
---|
8765 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
8766 | AssertRCReturn(rc, rc);
|
---|
8767 | Log4(("ecx=%#RX32\n", pMixedCtx->ecx));
|
---|
8768 |
|
---|
8769 | rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
8770 | AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0VmxExitWrmsr: failed, invalid error code %Rrc\n", rc));
|
---|
8771 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
|
---|
8772 |
|
---|
8773 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
8774 | {
|
---|
8775 | rc = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
8776 |
|
---|
8777 | /* If this is an X2APIC WRMSR access, update the APIC state as well. */
|
---|
8778 | if ( pMixedCtx->ecx >= MSR_IA32_X2APIC_START
|
---|
8779 | && pMixedCtx->ecx <= MSR_IA32_X2APIC_END)
|
---|
8780 | {
|
---|
8781 | /* We've already saved the APIC related guest-state (TPR) in hmR0VmxPostRunGuest(). When full APIC register
|
---|
8782 | * virtualization is implemented we'll have to make sure APIC state is saved from the VMCS before
|
---|
8783 | EMInterpretWrmsr() changes it. */
|
---|
8784 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_APIC_STATE;
|
---|
8785 | }
|
---|
8786 | else if (pMixedCtx->ecx == MSR_K6_EFER) /* EFER is the only MSR we auto-load but don't allow write-passthrough. */
|
---|
8787 | {
|
---|
8788 | rc = hmR0VmxSaveGuestAutoLoadStoreMsrs(pVCpu, pMixedCtx);
|
---|
8789 | AssertRCReturn(rc, rc);
|
---|
8790 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_AUTO_MSRS;
|
---|
8791 | }
|
---|
8792 | else if (pMixedCtx->ecx == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
|
---|
8793 | pVmxTransient->fUpdateTscOffsettingAndPreemptTimer = true;
|
---|
8794 |
|
---|
8795 | /* Update MSRs that are part of the VMCS when MSR-bitmaps are not supported. */
|
---|
8796 | if (!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_MSR_BITMAPS))
|
---|
8797 | {
|
---|
8798 | switch (pMixedCtx->ecx)
|
---|
8799 | {
|
---|
8800 | case MSR_IA32_SYSENTER_CS: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SYSENTER_CS_MSR; break;
|
---|
8801 | case MSR_IA32_SYSENTER_EIP: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SYSENTER_EIP_MSR; break;
|
---|
8802 | case MSR_IA32_SYSENTER_ESP: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SYSENTER_ESP_MSR; break;
|
---|
8803 | case MSR_K8_FS_BASE: /* no break */
|
---|
8804 | case MSR_K8_GS_BASE: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_SEGMENT_REGS; break;
|
---|
8805 | case MSR_K8_KERNEL_GS_BASE: pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_AUTO_MSRS; break;
|
---|
8806 | }
|
---|
8807 | }
|
---|
8808 | #ifdef VBOX_STRICT
|
---|
8809 | else
|
---|
8810 | {
|
---|
8811 | /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
|
---|
8812 | switch (pMixedCtx->ecx)
|
---|
8813 | {
|
---|
8814 | case MSR_IA32_SYSENTER_CS:
|
---|
8815 | case MSR_IA32_SYSENTER_EIP:
|
---|
8816 | case MSR_IA32_SYSENTER_ESP:
|
---|
8817 | case MSR_K8_FS_BASE:
|
---|
8818 | case MSR_K8_GS_BASE:
|
---|
8819 | {
|
---|
8820 | AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", pMixedCtx->ecx));
|
---|
8821 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
8822 | }
|
---|
8823 |
|
---|
8824 | case MSR_K8_LSTAR:
|
---|
8825 | case MSR_K6_STAR:
|
---|
8826 | case MSR_K8_SF_MASK:
|
---|
8827 | case MSR_K8_TSC_AUX:
|
---|
8828 | case MSR_K8_KERNEL_GS_BASE:
|
---|
8829 | {
|
---|
8830 | AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
|
---|
8831 | pMixedCtx->ecx));
|
---|
8832 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
8833 | }
|
---|
8834 | }
|
---|
8835 | }
|
---|
8836 | #endif /* VBOX_STRICT */
|
---|
8837 | }
|
---|
8838 | return rc;
|
---|
8839 | }
|
---|
8840 |
|
---|
8841 |
|
---|
8842 | /**
|
---|
8843 | * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
|
---|
8844 | */
|
---|
8845 | HMVMX_EXIT_DECL hmR0VmxExitPause(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8846 | {
|
---|
8847 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8848 |
|
---|
8849 | /* By default, we don't enable VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT. */
|
---|
8850 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
|
---|
8851 | if (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_PAUSE_EXIT)
|
---|
8852 | return VERR_EM_INTERPRETER;
|
---|
8853 | AssertMsgFailed(("Unexpected PAUSE exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
8854 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
8855 | }
|
---|
8856 |
|
---|
8857 |
|
---|
8858 | /**
|
---|
8859 | * VM-exit handler for when the TPR value is lowered below the specified
|
---|
8860 | * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
|
---|
8861 | */
|
---|
8862 | HMVMX_EXIT_DECL hmR0VmxExitTprBelowThreshold(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8863 | {
|
---|
8864 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8865 | Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW);
|
---|
8866 |
|
---|
8867 | /*
|
---|
8868 | * The TPR has already been updated, see hmR0VMXPostRunGuest(). RIP is also updated as part of the VM-exit by VT-x. Update
|
---|
8869 | * the threshold in the VMCS, deliver the pending interrupt via hmR0VmxPreRunGuest()->hmR0VmxInjectEvent() and
|
---|
8870 | * resume guest execution.
|
---|
8871 | */
|
---|
8872 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_APIC_STATE;
|
---|
8873 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTprBelowThreshold);
|
---|
8874 | return VINF_SUCCESS;
|
---|
8875 | }
|
---|
8876 |
|
---|
8877 |
|
---|
8878 | /**
|
---|
8879 | * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
|
---|
8880 | * VM-exit.
|
---|
8881 | *
|
---|
8882 | * @retval VINF_SUCCESS when guest execution can continue.
|
---|
8883 | * @retval VINF_PGM_CHANGE_MODE when shadow paging mode changed, back to ring-3.
|
---|
8884 | * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
|
---|
8885 | * @retval VERR_EM_INTERPRETER when something unexpected happened, fallback to
|
---|
8886 | * recompiler.
|
---|
8887 | */
|
---|
8888 | HMVMX_EXIT_DECL hmR0VmxExitMovCRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
8889 | {
|
---|
8890 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
8891 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitMovCRx, y2);
|
---|
8892 | int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
8893 | AssertRCReturn(rc, rc);
|
---|
8894 |
|
---|
8895 | const RTGCUINTPTR uExitQualification = pVmxTransient->uExitQualification;
|
---|
8896 | const uint32_t uAccessType = VMX_EXIT_QUALIFICATION_CRX_ACCESS(uExitQualification);
|
---|
8897 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8898 | switch (uAccessType)
|
---|
8899 | {
|
---|
8900 | case VMX_EXIT_QUALIFICATION_CRX_ACCESS_WRITE: /* MOV to CRx */
|
---|
8901 | {
|
---|
8902 | #if 0
|
---|
8903 | /* EMInterpretCRxWrite() references a lot of guest state (EFER, RFLAGS, Segment Registers, etc.) Sync entire state */
|
---|
8904 | rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
8905 | #else
|
---|
8906 | rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
|
---|
8907 | rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
8908 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
8909 | #endif
|
---|
8910 | AssertRCReturn(rc, rc);
|
---|
8911 |
|
---|
8912 | rc = EMInterpretCRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
|
---|
8913 | VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification),
|
---|
8914 | VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification));
|
---|
8915 | Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
|
---|
8916 |
|
---|
8917 | switch (VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification))
|
---|
8918 | {
|
---|
8919 | case 0: /* CR0 */
|
---|
8920 | Log4(("CRX CR0 write rc=%d CR0=%#RX64\n", rc, pMixedCtx->cr0));
|
---|
8921 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
|
---|
8922 | break;
|
---|
8923 | case 2: /* C2 **/
|
---|
8924 | /* Nothing to do here, CR2 it's not part of the VMCS. */
|
---|
8925 | break;
|
---|
8926 | case 3: /* CR3 */
|
---|
8927 | Assert(!pVM->hm.s.fNestedPaging || !CPUMIsGuestPagingEnabledEx(pMixedCtx));
|
---|
8928 | Log4(("CRX CR3 write rc=%d CR3=%#RX64\n", rc, pMixedCtx->cr3));
|
---|
8929 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
|
---|
8930 | break;
|
---|
8931 | case 4: /* CR4 */
|
---|
8932 | Log4(("CRX CR4 write rc=%d CR4=%#RX64\n", rc, pMixedCtx->cr4));
|
---|
8933 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
|
---|
8934 | break;
|
---|
8935 | case 8: /* CR8 */
|
---|
8936 | Assert(!(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
|
---|
8937 | /* CR8 contains the APIC TPR. Was updated by EMInterpretCRxWrite(). */
|
---|
8938 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_VMX_GUEST_APIC_STATE;
|
---|
8939 | break;
|
---|
8940 | default:
|
---|
8941 | AssertMsgFailed(("Invalid CRx register %#x\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)));
|
---|
8942 | break;
|
---|
8943 | }
|
---|
8944 |
|
---|
8945 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxWrite[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
|
---|
8946 | break;
|
---|
8947 | }
|
---|
8948 |
|
---|
8949 | case VMX_EXIT_QUALIFICATION_CRX_ACCESS_READ: /* MOV from CRx */
|
---|
8950 | {
|
---|
8951 | /* EMInterpretCRxRead() requires EFER MSR, CS. */
|
---|
8952 | rc = hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
8953 | AssertRCReturn(rc, rc);
|
---|
8954 | Assert( !pVM->hm.s.fNestedPaging
|
---|
8955 | || !CPUMIsGuestPagingEnabledEx(pMixedCtx)
|
---|
8956 | || VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 3);
|
---|
8957 |
|
---|
8958 | /* CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
|
---|
8959 | Assert( VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification) != 8
|
---|
8960 | || !(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW));
|
---|
8961 |
|
---|
8962 | rc = EMInterpretCRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
|
---|
8963 | VMX_EXIT_QUALIFICATION_CRX_GENREG(uExitQualification),
|
---|
8964 | VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification));
|
---|
8965 | Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
|
---|
8966 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification)]);
|
---|
8967 | Log4(("CRX CR%d Read access rc=%d\n", VMX_EXIT_QUALIFICATION_CRX_REGISTER(uExitQualification), rc));
|
---|
8968 | break;
|
---|
8969 | }
|
---|
8970 |
|
---|
8971 | case VMX_EXIT_QUALIFICATION_CRX_ACCESS_CLTS: /* CLTS (Clear Task-Switch Flag in CR0) */
|
---|
8972 | {
|
---|
8973 | rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
8974 | AssertRCReturn(rc, rc);
|
---|
8975 | rc = EMInterpretCLTS(pVM, pVCpu);
|
---|
8976 | AssertRCReturn(rc, rc);
|
---|
8977 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
|
---|
8978 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClts);
|
---|
8979 | Log4(("CRX CLTS write rc=%d\n", rc));
|
---|
8980 | break;
|
---|
8981 | }
|
---|
8982 |
|
---|
8983 | case VMX_EXIT_QUALIFICATION_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
|
---|
8984 | {
|
---|
8985 | rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
8986 | AssertRCReturn(rc, rc);
|
---|
8987 | rc = EMInterpretLMSW(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), VMX_EXIT_QUALIFICATION_CRX_LMSW_DATA(uExitQualification));
|
---|
8988 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
8989 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
|
---|
8990 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitLmsw);
|
---|
8991 | Log4(("CRX LMSW write rc=%d\n", rc));
|
---|
8992 | break;
|
---|
8993 | }
|
---|
8994 |
|
---|
8995 | default:
|
---|
8996 | {
|
---|
8997 | AssertMsgFailed(("Invalid access-type in Mov CRx exit qualification %#x\n", uAccessType));
|
---|
8998 | rc = VERR_VMX_UNEXPECTED_EXCEPTION;
|
---|
8999 | }
|
---|
9000 | }
|
---|
9001 |
|
---|
9002 | /* Validate possible error codes. */
|
---|
9003 | Assert(rc == VINF_SUCCESS || rc == VINF_PGM_CHANGE_MODE || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_SYNC_CR3
|
---|
9004 | || rc == VERR_VMX_UNEXPECTED_EXCEPTION);
|
---|
9005 | if (RT_SUCCESS(rc))
|
---|
9006 | {
|
---|
9007 | int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
9008 | AssertRCReturn(rc2, rc2);
|
---|
9009 | }
|
---|
9010 |
|
---|
9011 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitMovCRx, y2);
|
---|
9012 | return rc;
|
---|
9013 | }
|
---|
9014 |
|
---|
9015 |
|
---|
9016 | /**
|
---|
9017 | * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
|
---|
9018 | * VM-exit.
|
---|
9019 | */
|
---|
9020 | HMVMX_EXIT_DECL hmR0VmxExitIoInstr(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
9021 | {
|
---|
9022 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
9023 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatExitIO, y1);
|
---|
9024 |
|
---|
9025 | int rc2 = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
9026 | rc2 |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9027 | rc2 |= hmR0VmxSaveGuestRip(pVCpu, pMixedCtx);
|
---|
9028 | rc2 |= hmR0VmxSaveGuestRflags(pVCpu, pMixedCtx); /* Eflag checks in EMInterpretDisasCurrent(). */
|
---|
9029 | rc2 |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx); /* CR0 checks & PGM* in EMInterpretDisasCurrent(). */
|
---|
9030 | rc2 |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx); /* SELM checks in EMInterpretDisasCurrent(). */
|
---|
9031 | /* EFER also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
|
---|
9032 | AssertRCReturn(rc2, rc2);
|
---|
9033 |
|
---|
9034 | /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
|
---|
9035 | uint32_t uIOPort = VMX_EXIT_QUALIFICATION_IO_PORT(pVmxTransient->uExitQualification);
|
---|
9036 | uint8_t uIOWidth = VMX_EXIT_QUALIFICATION_IO_WIDTH(pVmxTransient->uExitQualification);
|
---|
9037 | bool fIOWrite = ( VMX_EXIT_QUALIFICATION_IO_DIRECTION(pVmxTransient->uExitQualification)
|
---|
9038 | == VMX_EXIT_QUALIFICATION_IO_DIRECTION_OUT);
|
---|
9039 | bool fIOString = VMX_EXIT_QUALIFICATION_IO_IS_STRING(pVmxTransient->uExitQualification);
|
---|
9040 | AssertReturn(uIOWidth <= 3 && uIOWidth != 2, VERR_HMVMX_IPE_1);
|
---|
9041 |
|
---|
9042 | /* I/O operation lookup arrays. */
|
---|
9043 | static const uint32_t s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses. */
|
---|
9044 | static const uint32_t s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving the result (in AL/AX/EAX). */
|
---|
9045 |
|
---|
9046 | VBOXSTRICTRC rcStrict;
|
---|
9047 | const uint32_t cbValue = s_aIOSizes[uIOWidth];
|
---|
9048 | const uint32_t cbInstr = pVmxTransient->cbInstr;
|
---|
9049 | bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
|
---|
9050 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9051 | if (fIOString)
|
---|
9052 | {
|
---|
9053 | /*
|
---|
9054 | * INS/OUTS - I/O String instruction.
|
---|
9055 | *
|
---|
9056 | * Use instruction-information if available, otherwise fall back on
|
---|
9057 | * interpreting the instruction.
|
---|
9058 | */
|
---|
9059 | Log4(("CS:RIP=%04x:%#RX64 %#06x/%u %c str\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
|
---|
9060 | #if 0 /* Not quite ready, seem iSegReg assertion trigger once... Do we perhaps need to always read that in longjmp / preempt scenario? */
|
---|
9061 | AssertReturn(pMixedCtx->dx == uIOPort, VERR_HMVMX_IPE_2);
|
---|
9062 | if (MSR_IA32_VMX_BASIC_INFO_VMCS_INS_OUTS(pVM->hm.s.vmx.msr.vmx_basic_info))
|
---|
9063 | {
|
---|
9064 | rc2 = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
|
---|
9065 | /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
|
---|
9066 | rc2 |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
9067 | AssertRCReturn(rc2, rc2);
|
---|
9068 | AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_HMVMX_IPE_3);
|
---|
9069 | AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
|
---|
9070 | IEMMODE enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
|
---|
9071 | bool fRep = VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification);
|
---|
9072 | if (fIOWrite)
|
---|
9073 | {
|
---|
9074 | rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
|
---|
9075 | pVmxTransient->ExitInstrInfo.StrIo.iSegReg);
|
---|
9076 | //if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
|
---|
9077 | // hmR0SavePendingIOPortWriteStr(pVCpu, pMixedCtx->rip, cbValue, enmAddrMode, fRep, cbInstr,
|
---|
9078 | // pVmxTransient->ExitInstrInfo.StrIo.iSegReg);
|
---|
9079 | }
|
---|
9080 | else
|
---|
9081 | {
|
---|
9082 | AssertMsgReturn(pVmxTransient->ExitInstrInfo.StrIo.iSegReg == X86_SREG_ES,
|
---|
9083 | ("%#x (%#llx)\n", pVmxTransient->ExitInstrInfo.StrIo.iSegReg, pVmxTransient->ExitInstrInfo.u),
|
---|
9084 | VERR_HMVMX_IPE_4);
|
---|
9085 | rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr);
|
---|
9086 | //if (rcStrict == VINF_IOM_R3_IOPORT_READ)
|
---|
9087 | // hmR0SavePendingIOPortReadStr(pVCpu, pMixedCtx->rip, cbValue, enmAddrMode, fRep, cbInstr);
|
---|
9088 | }
|
---|
9089 | }
|
---|
9090 | else
|
---|
9091 | {
|
---|
9092 | /** @todo optimize this, IEM should request the additional state if it needs it (GP, PF, ++). */
|
---|
9093 | rc2 = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
9094 | AssertRCReturn(rc2, rc2);
|
---|
9095 | rcStrict = IEMExecOne(pVCpu);
|
---|
9096 | }
|
---|
9097 | /** @todo IEM needs to be setting these flags somehow. */
|
---|
9098 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
|
---|
9099 | fUpdateRipAlready = true;
|
---|
9100 |
|
---|
9101 | #else
|
---|
9102 | PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
9103 | rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
|
---|
9104 | if (RT_SUCCESS(rcStrict))
|
---|
9105 | {
|
---|
9106 | if (fIOWrite)
|
---|
9107 | {
|
---|
9108 | rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
|
---|
9109 | (DISCPUMODE)pDis->uAddrMode, cbValue);
|
---|
9110 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
|
---|
9111 | }
|
---|
9112 | else
|
---|
9113 | {
|
---|
9114 | rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx), uIOPort, pDis->fPrefix,
|
---|
9115 | (DISCPUMODE)pDis->uAddrMode, cbValue);
|
---|
9116 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
|
---|
9117 | }
|
---|
9118 | }
|
---|
9119 | else
|
---|
9120 | {
|
---|
9121 | AssertMsg(rcStrict == VERR_EM_INTERPRETER, ("rcStrict=%Rrc RIP %#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pMixedCtx->rip));
|
---|
9122 | rcStrict = VINF_EM_RAW_EMULATE_INSTR;
|
---|
9123 | }
|
---|
9124 | #endif
|
---|
9125 | }
|
---|
9126 | else
|
---|
9127 | {
|
---|
9128 | /*
|
---|
9129 | * IN/OUT - I/O instruction.
|
---|
9130 | */
|
---|
9131 | Log4(("CS:RIP=%04x:%#RX64 %#06x/%u %c\n", pMixedCtx->cs.Sel, pMixedCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
|
---|
9132 | const uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
|
---|
9133 | Assert(!VMX_EXIT_QUALIFICATION_IO_IS_REP(pVmxTransient->uExitQualification));
|
---|
9134 | if (fIOWrite)
|
---|
9135 | {
|
---|
9136 | rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pMixedCtx->eax & uAndVal, cbValue);
|
---|
9137 | if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
|
---|
9138 | HMR0SavePendingIOPortWrite(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
|
---|
9139 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
|
---|
9140 | }
|
---|
9141 | else
|
---|
9142 | {
|
---|
9143 | uint32_t u32Result = 0;
|
---|
9144 | rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
|
---|
9145 | if (IOM_SUCCESS(rcStrict))
|
---|
9146 | {
|
---|
9147 | /* Save result of I/O IN instr. in AL/AX/EAX. */
|
---|
9148 | pMixedCtx->eax = (pMixedCtx->eax & ~uAndVal) | (u32Result & uAndVal);
|
---|
9149 | }
|
---|
9150 | else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
|
---|
9151 | HMR0SavePendingIOPortRead(pVCpu, pMixedCtx->rip, pMixedCtx->rip + cbInstr, uIOPort, uAndVal, cbValue);
|
---|
9152 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
|
---|
9153 | }
|
---|
9154 | }
|
---|
9155 |
|
---|
9156 | if (IOM_SUCCESS(rcStrict))
|
---|
9157 | {
|
---|
9158 | if (!fUpdateRipAlready)
|
---|
9159 | {
|
---|
9160 | pMixedCtx->rip += cbInstr;
|
---|
9161 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
|
---|
9162 | }
|
---|
9163 |
|
---|
9164 | /*
|
---|
9165 | * If any I/O breakpoints are armed, we need to check if one triggered
|
---|
9166 | * and take appropriate action.
|
---|
9167 | * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
|
---|
9168 | */
|
---|
9169 | rc2 = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
|
---|
9170 | AssertRCReturn(rc2, rc2);
|
---|
9171 |
|
---|
9172 | /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
|
---|
9173 | * execution engines about whether hyper BPs and such are pending. */
|
---|
9174 | uint32_t const uDr7 = pMixedCtx->dr[7];
|
---|
9175 | if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
|
---|
9176 | && X86_DR7_ANY_RW_IO(uDr7)
|
---|
9177 | && (pMixedCtx->cr4 & X86_CR4_DE))
|
---|
9178 | || DBGFBpIsHwIoArmed(pVM)))
|
---|
9179 | {
|
---|
9180 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
|
---|
9181 | bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /*fDr6*/);
|
---|
9182 |
|
---|
9183 | VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pMixedCtx, uIOPort, cbValue);
|
---|
9184 | if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
|
---|
9185 | {
|
---|
9186 | /* Raise #DB. */
|
---|
9187 | if (fIsGuestDbgActive)
|
---|
9188 | ASMSetDR6(pMixedCtx->dr[6]);
|
---|
9189 | if (pMixedCtx->dr[7] != uDr7)
|
---|
9190 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
|
---|
9191 |
|
---|
9192 | hmR0VmxSetPendingXcptDB(pVCpu, pMixedCtx);
|
---|
9193 | }
|
---|
9194 | /* rcStrict is VINF_SUCCESS or in [VINF_EM_FIRST..VINF_EM_LAST]. */
|
---|
9195 | else if ( rcStrict2 != VINF_SUCCESS
|
---|
9196 | && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
|
---|
9197 | rcStrict = rcStrict2;
|
---|
9198 | }
|
---|
9199 | }
|
---|
9200 |
|
---|
9201 | #ifdef DEBUG
|
---|
9202 | if (rcStrict == VINF_IOM_R3_IOPORT_READ)
|
---|
9203 | Assert(!fIOWrite);
|
---|
9204 | else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE)
|
---|
9205 | Assert(fIOWrite);
|
---|
9206 | else
|
---|
9207 | {
|
---|
9208 | /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
|
---|
9209 | * statuses, that the VMM device and some others may return. See
|
---|
9210 | * IOM_SUCCESS() for guidance. */
|
---|
9211 | AssertMsg( RT_FAILURE(rcStrict)
|
---|
9212 | || rcStrict == VINF_SUCCESS
|
---|
9213 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR
|
---|
9214 | || rcStrict == VINF_EM_DBG_BREAKPOINT
|
---|
9215 | || rcStrict == VINF_EM_RAW_GUEST_TRAP
|
---|
9216 | || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
9217 | }
|
---|
9218 | #endif
|
---|
9219 |
|
---|
9220 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExitIO, y1);
|
---|
9221 | return VBOXSTRICTRC_TODO(rcStrict);
|
---|
9222 | }
|
---|
9223 |
|
---|
9224 |
|
---|
9225 | /**
|
---|
9226 | * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
|
---|
9227 | * VM-exit.
|
---|
9228 | */
|
---|
9229 | HMVMX_EXIT_DECL hmR0VmxExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
9230 | {
|
---|
9231 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
9232 |
|
---|
9233 | /* Check if this task-switch occurred while delivery an event through the guest IDT. */
|
---|
9234 | int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
9235 | AssertRCReturn(rc, rc);
|
---|
9236 | if (VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_TASK_SWITCH_TYPE_IDT)
|
---|
9237 | {
|
---|
9238 | rc = hmR0VmxReadIdtVectoringInfoVmcs(pVmxTransient);
|
---|
9239 | AssertRCReturn(rc, rc);
|
---|
9240 | if (VMX_IDT_VECTORING_INFO_VALID(pVmxTransient->uIdtVectoringInfo))
|
---|
9241 | {
|
---|
9242 | uint32_t uIntType = VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo);
|
---|
9243 |
|
---|
9244 | /* Software interrupts and exceptions will be regenerated when the recompiler restarts the instruction. */
|
---|
9245 | if ( uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_INT
|
---|
9246 | && uIntType != VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
|
---|
9247 | && uIntType != VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
|
---|
9248 | {
|
---|
9249 | uint32_t uVector = VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo);
|
---|
9250 | bool fErrorCodeValid = !!VMX_IDT_VECTORING_INFO_ERROR_CODE_IS_VALID(pVmxTransient->uIdtVectoringInfo);
|
---|
9251 |
|
---|
9252 | /* Save it as a pending event and it'll be converted to a TRPM event on the way out to ring-3. */
|
---|
9253 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
9254 | pVCpu->hm.s.Event.fPending = true;
|
---|
9255 | pVCpu->hm.s.Event.u64IntrInfo = pVmxTransient->uIdtVectoringInfo;
|
---|
9256 | rc = hmR0VmxReadIdtVectoringErrorCodeVmcs(pVmxTransient);
|
---|
9257 | AssertRCReturn(rc, rc);
|
---|
9258 | if (fErrorCodeValid)
|
---|
9259 | pVCpu->hm.s.Event.u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
|
---|
9260 | else
|
---|
9261 | pVCpu->hm.s.Event.u32ErrCode = 0;
|
---|
9262 | if ( uIntType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
|
---|
9263 | && uVector == X86_XCPT_PF)
|
---|
9264 | {
|
---|
9265 | pVCpu->hm.s.Event.GCPtrFaultAddress = pMixedCtx->cr2;
|
---|
9266 | }
|
---|
9267 |
|
---|
9268 | Log4(("Pending event on TaskSwitch uIntType=%#x uVector=%#x\n", uIntType, uVector));
|
---|
9269 | }
|
---|
9270 | }
|
---|
9271 | }
|
---|
9272 |
|
---|
9273 | /** @todo Emulate task switch someday, currently just going back to ring-3 for
|
---|
9274 | * emulation. */
|
---|
9275 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
|
---|
9276 | return VERR_EM_INTERPRETER;
|
---|
9277 | }
|
---|
9278 |
|
---|
9279 |
|
---|
9280 | /**
|
---|
9281 | * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
|
---|
9282 | */
|
---|
9283 | HMVMX_EXIT_DECL hmR0VmxExitMtf(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
9284 | {
|
---|
9285 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
9286 | Assert(pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG);
|
---|
9287 | pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG;
|
---|
9288 | int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
9289 | AssertRCReturn(rc, rc);
|
---|
9290 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMtf);
|
---|
9291 | return VINF_EM_DBG_STEPPED;
|
---|
9292 | }
|
---|
9293 |
|
---|
9294 |
|
---|
9295 | /**
|
---|
9296 | * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
|
---|
9297 | */
|
---|
9298 | HMVMX_EXIT_DECL hmR0VmxExitApicAccess(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
9299 | {
|
---|
9300 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
9301 |
|
---|
9302 | /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
|
---|
9303 | int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
|
---|
9304 | if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
|
---|
9305 | return VINF_SUCCESS;
|
---|
9306 | else if (RT_UNLIKELY(rc == VINF_EM_RESET))
|
---|
9307 | return rc;
|
---|
9308 |
|
---|
9309 | #if 0
|
---|
9310 | /** @todo Investigate if IOMMMIOPhysHandler() requires a lot of state, for now
|
---|
9311 | * just sync the whole thing. */
|
---|
9312 | rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
9313 | #else
|
---|
9314 | /* Aggressive state sync. for now. */
|
---|
9315 | rc = hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
|
---|
9316 | rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
9317 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
9318 | #endif
|
---|
9319 | rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
9320 | AssertRCReturn(rc, rc);
|
---|
9321 |
|
---|
9322 | /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
|
---|
9323 | uint32_t uAccessType = VMX_EXIT_QUALIFICATION_APIC_ACCESS_TYPE(pVmxTransient->uExitQualification);
|
---|
9324 | switch (uAccessType)
|
---|
9325 | {
|
---|
9326 | case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
|
---|
9327 | case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
|
---|
9328 | {
|
---|
9329 | if ( (pVCpu->hm.s.vmx.u32ProcCtls & VMX_VMCS_CTRL_PROC_EXEC_USE_TPR_SHADOW)
|
---|
9330 | && VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification) == 0x80)
|
---|
9331 | {
|
---|
9332 | AssertMsgFailed(("hmR0VmxExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
|
---|
9333 | }
|
---|
9334 |
|
---|
9335 | RTGCPHYS GCPhys = pMixedCtx->msrApicBase; /* Always up-to-date, msrApicBase is not part of the VMCS. */
|
---|
9336 | GCPhys &= PAGE_BASE_GC_MASK;
|
---|
9337 | GCPhys += VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification);
|
---|
9338 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9339 | Log4(("ApicAccess uAccessType=%#x GCPhys=%#RGv Off=%#x\n", uAccessType, GCPhys,
|
---|
9340 | VMX_EXIT_QUALIFICATION_APIC_ACCESS_OFFSET(pVmxTransient->uExitQualification)));
|
---|
9341 |
|
---|
9342 | VBOXSTRICTRC rc2 = IOMMMIOPhysHandler(pVM, pVCpu,
|
---|
9343 | (uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ) ? 0 : X86_TRAP_PF_RW,
|
---|
9344 | CPUMCTX2CORE(pMixedCtx), GCPhys);
|
---|
9345 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
9346 | Log4(("ApicAccess rc=%d\n", rc));
|
---|
9347 | if ( rc == VINF_SUCCESS
|
---|
9348 | || rc == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
9349 | || rc == VERR_PAGE_NOT_PRESENT)
|
---|
9350 | {
|
---|
9351 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
|
---|
9352 | | HM_CHANGED_VMX_GUEST_APIC_STATE;
|
---|
9353 | rc = VINF_SUCCESS;
|
---|
9354 | }
|
---|
9355 | break;
|
---|
9356 | }
|
---|
9357 |
|
---|
9358 | default:
|
---|
9359 | Log4(("ApicAccess uAccessType=%#x\n", uAccessType));
|
---|
9360 | rc = VINF_EM_RAW_EMULATE_INSTR;
|
---|
9361 | break;
|
---|
9362 | }
|
---|
9363 |
|
---|
9364 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitApicAccess);
|
---|
9365 | return rc;
|
---|
9366 | }
|
---|
9367 |
|
---|
9368 |
|
---|
9369 | /**
|
---|
9370 | * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
|
---|
9371 | * VM-exit.
|
---|
9372 | */
|
---|
9373 | HMVMX_EXIT_DECL hmR0VmxExitMovDRx(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
9374 | {
|
---|
9375 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
9376 |
|
---|
9377 | /* We should -not- get this VM-exit if the guest is debugging. */
|
---|
9378 | if (CPUMIsGuestDebugStateActive(pVCpu))
|
---|
9379 | {
|
---|
9380 | AssertMsgFailed(("Unexpected MOV DRx exit. pVCpu=%p pMixedCtx=%p\n", pVCpu, pMixedCtx));
|
---|
9381 | return VERR_VMX_UNEXPECTED_EXIT_CODE;
|
---|
9382 | }
|
---|
9383 |
|
---|
9384 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
9385 | if ( !DBGFIsStepping(pVCpu)
|
---|
9386 | && !pVCpu->hm.s.fSingleInstruction
|
---|
9387 | && !CPUMIsHyperDebugStateActive(pVCpu))
|
---|
9388 | {
|
---|
9389 | /* Don't intercept MOV DRx and #DB any more. */
|
---|
9390 | pVCpu->hm.s.vmx.u32ProcCtls &= ~VMX_VMCS_CTRL_PROC_EXEC_MOV_DR_EXIT;
|
---|
9391 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PROC_EXEC, pVCpu->hm.s.vmx.u32ProcCtls);
|
---|
9392 | AssertRCReturn(rc, rc);
|
---|
9393 |
|
---|
9394 | if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
9395 | {
|
---|
9396 | #ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
9397 | pVCpu->hm.s.vmx.u32XcptBitmap &= ~RT_BIT(X86_XCPT_DB);
|
---|
9398 | rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_EXCEPTION_BITMAP, pVCpu->hm.s.vmx.u32XcptBitmap);
|
---|
9399 | AssertRCReturn(rc, rc);
|
---|
9400 | #endif
|
---|
9401 | }
|
---|
9402 |
|
---|
9403 | /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
|
---|
9404 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9405 | CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
|
---|
9406 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
9407 |
|
---|
9408 | #ifdef VBOX_WITH_STATISTICS
|
---|
9409 | rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
9410 | AssertRCReturn(rc, rc);
|
---|
9411 | if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
|
---|
9412 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
|
---|
9413 | else
|
---|
9414 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
9415 | #endif
|
---|
9416 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
|
---|
9417 | return VINF_SUCCESS;
|
---|
9418 | }
|
---|
9419 |
|
---|
9420 | /*
|
---|
9421 | * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER, CS. EFER is always up-to-date, see
|
---|
9422 | * hmR0VmxSaveGuestAutoLoadStoreMsrs(). Update only the segment registers from the CPU.
|
---|
9423 | */
|
---|
9424 | rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
9425 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
9426 | AssertRCReturn(rc, rc);
|
---|
9427 |
|
---|
9428 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9429 | if (VMX_EXIT_QUALIFICATION_DRX_DIRECTION(pVmxTransient->uExitQualification) == VMX_EXIT_QUALIFICATION_DRX_DIRECTION_WRITE)
|
---|
9430 | {
|
---|
9431 | rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
|
---|
9432 | VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification),
|
---|
9433 | VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification));
|
---|
9434 | if (RT_SUCCESS(rc))
|
---|
9435 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
|
---|
9436 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
|
---|
9437 | }
|
---|
9438 | else
|
---|
9439 | {
|
---|
9440 | rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx),
|
---|
9441 | VMX_EXIT_QUALIFICATION_DRX_GENREG(pVmxTransient->uExitQualification),
|
---|
9442 | VMX_EXIT_QUALIFICATION_DRX_REGISTER(pVmxTransient->uExitQualification));
|
---|
9443 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
9444 | }
|
---|
9445 |
|
---|
9446 | Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
|
---|
9447 | if (RT_SUCCESS(rc))
|
---|
9448 | {
|
---|
9449 | int rc2 = hmR0VmxAdvanceGuestRip(pVCpu, pMixedCtx, pVmxTransient);
|
---|
9450 | AssertRCReturn(rc2, rc2);
|
---|
9451 | }
|
---|
9452 | return rc;
|
---|
9453 | }
|
---|
9454 |
|
---|
9455 |
|
---|
9456 | /**
|
---|
9457 | * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
|
---|
9458 | * Conditional VM-exit.
|
---|
9459 | */
|
---|
9460 | HMVMX_EXIT_DECL hmR0VmxExitEptMisconfig(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
9461 | {
|
---|
9462 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
9463 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
|
---|
9464 |
|
---|
9465 | /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
|
---|
9466 | int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
|
---|
9467 | if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
|
---|
9468 | return VINF_SUCCESS;
|
---|
9469 | else if (RT_UNLIKELY(rc == VINF_EM_RESET))
|
---|
9470 | return rc;
|
---|
9471 |
|
---|
9472 | RTGCPHYS GCPhys = 0;
|
---|
9473 | rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
|
---|
9474 |
|
---|
9475 | #if 0
|
---|
9476 | rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
|
---|
9477 | #else
|
---|
9478 | /* Aggressive state sync. for now. */
|
---|
9479 | rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
|
---|
9480 | rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
9481 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
9482 | #endif
|
---|
9483 | AssertRCReturn(rc, rc);
|
---|
9484 |
|
---|
9485 | /*
|
---|
9486 | * If we succeed, resume guest execution.
|
---|
9487 | * If we fail in interpreting the instruction because we couldn't get the guest physical address
|
---|
9488 | * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
|
---|
9489 | * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
|
---|
9490 | * weird case. See @bugref{6043}.
|
---|
9491 | */
|
---|
9492 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9493 | VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pMixedCtx), GCPhys, UINT32_MAX);
|
---|
9494 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
9495 | Log4(("EPT misconfig at %#RGv RIP=%#RX64 rc=%d\n", GCPhys, pMixedCtx->rip, rc));
|
---|
9496 | if ( rc == VINF_SUCCESS
|
---|
9497 | || rc == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
9498 | || rc == VERR_PAGE_NOT_PRESENT)
|
---|
9499 | {
|
---|
9500 | /* Successfully handled MMIO operation. */
|
---|
9501 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
|
---|
9502 | | HM_CHANGED_VMX_GUEST_APIC_STATE;
|
---|
9503 | rc = VINF_SUCCESS;
|
---|
9504 | }
|
---|
9505 | return rc;
|
---|
9506 | }
|
---|
9507 |
|
---|
9508 |
|
---|
9509 | /**
|
---|
9510 | * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
|
---|
9511 | * VM-exit.
|
---|
9512 | */
|
---|
9513 | HMVMX_EXIT_DECL hmR0VmxExitEptViolation(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
9514 | {
|
---|
9515 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
9516 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
|
---|
9517 |
|
---|
9518 | /* If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly. */
|
---|
9519 | int rc = hmR0VmxCheckExitDueToEventDelivery(pVCpu, pMixedCtx, pVmxTransient);
|
---|
9520 | if (RT_UNLIKELY(rc == VINF_HM_DOUBLE_FAULT))
|
---|
9521 | return VINF_SUCCESS;
|
---|
9522 | else if (RT_UNLIKELY(rc == VINF_EM_RESET))
|
---|
9523 | return rc;
|
---|
9524 |
|
---|
9525 | RTGCPHYS GCPhys = 0;
|
---|
9526 | rc = VMXReadVmcs64(VMX_VMCS64_EXIT_GUEST_PHYS_ADDR_FULL, &GCPhys);
|
---|
9527 | rc |= hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
9528 | #if 0
|
---|
9529 | rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx); /** @todo Can we do better? */
|
---|
9530 | #else
|
---|
9531 | /* Aggressive state sync. for now. */
|
---|
9532 | rc |= hmR0VmxSaveGuestRipRspRflags(pVCpu, pMixedCtx);
|
---|
9533 | rc |= hmR0VmxSaveGuestControlRegs(pVCpu, pMixedCtx);
|
---|
9534 | rc |= hmR0VmxSaveGuestSegmentRegs(pVCpu, pMixedCtx);
|
---|
9535 | #endif
|
---|
9536 | AssertRCReturn(rc, rc);
|
---|
9537 |
|
---|
9538 | /* Intel spec. Table 27-7 "Exit Qualifications for EPT violations". */
|
---|
9539 | AssertMsg(((pVmxTransient->uExitQualification >> 7) & 3) != 2, ("%#RX64", pVmxTransient->uExitQualification));
|
---|
9540 |
|
---|
9541 | RTGCUINT uErrorCode = 0;
|
---|
9542 | if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_INSTR_FETCH)
|
---|
9543 | uErrorCode |= X86_TRAP_PF_ID;
|
---|
9544 | if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_DATA_WRITE)
|
---|
9545 | uErrorCode |= X86_TRAP_PF_RW;
|
---|
9546 | if (pVmxTransient->uExitQualification & VMX_EXIT_QUALIFICATION_EPT_ENTRY_PRESENT)
|
---|
9547 | uErrorCode |= X86_TRAP_PF_P;
|
---|
9548 |
|
---|
9549 | TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
|
---|
9550 |
|
---|
9551 | Log4(("EPT violation %#x at %#RX64 ErrorCode %#x CS:EIP=%04x:%#RX64\n", pVmxTransient->uExitQualification, GCPhys,
|
---|
9552 | uErrorCode, pMixedCtx->cs.Sel, pMixedCtx->rip));
|
---|
9553 |
|
---|
9554 | /* Handle the pagefault trap for the nested shadow table. */
|
---|
9555 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9556 | rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pMixedCtx), GCPhys);
|
---|
9557 | TRPMResetTrap(pVCpu);
|
---|
9558 |
|
---|
9559 | /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
|
---|
9560 | if ( rc == VINF_SUCCESS
|
---|
9561 | || rc == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
9562 | || rc == VERR_PAGE_NOT_PRESENT)
|
---|
9563 | {
|
---|
9564 | /* Successfully synced our nested page tables. */
|
---|
9565 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf);
|
---|
9566 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS;
|
---|
9567 | return VINF_SUCCESS;
|
---|
9568 | }
|
---|
9569 |
|
---|
9570 | Log4(("EPT return to ring-3 rc=%d\n"));
|
---|
9571 | return rc;
|
---|
9572 | }
|
---|
9573 |
|
---|
9574 | /** @} */
|
---|
9575 |
|
---|
9576 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
9577 | /* -=-=-=-=-=-=-=-=-=- VM-exit Exception Handlers -=-=-=-=-=-=-=-=-=-=- */
|
---|
9578 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
9579 |
|
---|
9580 | /** @name VM-exit exception handlers.
|
---|
9581 | * @{
|
---|
9582 | */
|
---|
9583 |
|
---|
9584 | /**
|
---|
9585 | * VM-exit exception handler for #MF (Math Fault: floating point exception).
|
---|
9586 | */
|
---|
9587 | static int hmR0VmxExitXcptMF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
9588 | {
|
---|
9589 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
9590 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
|
---|
9591 |
|
---|
9592 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
9593 | AssertRCReturn(rc, rc);
|
---|
9594 |
|
---|
9595 | if (!(pMixedCtx->cr0 & X86_CR0_NE))
|
---|
9596 | {
|
---|
9597 | /* Old-style FPU error reporting needs some extra work. */
|
---|
9598 | /** @todo don't fall back to the recompiler, but do it manually. */
|
---|
9599 | return VERR_EM_INTERPRETER;
|
---|
9600 | }
|
---|
9601 |
|
---|
9602 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
|
---|
9603 | pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
9604 | return rc;
|
---|
9605 | }
|
---|
9606 |
|
---|
9607 |
|
---|
9608 | /**
|
---|
9609 | * VM-exit exception handler for #BP (Breakpoint exception).
|
---|
9610 | */
|
---|
9611 | static int hmR0VmxExitXcptBP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
9612 | {
|
---|
9613 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
9614 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestBP);
|
---|
9615 |
|
---|
9616 | /** @todo Try optimize this by not saving the entire guest state unless
|
---|
9617 | * really needed. */
|
---|
9618 | int rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
9619 | AssertRCReturn(rc, rc);
|
---|
9620 |
|
---|
9621 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9622 | rc = DBGFRZTrap03Handler(pVM, pVCpu, CPUMCTX2CORE(pMixedCtx));
|
---|
9623 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
9624 | {
|
---|
9625 | rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
|
---|
9626 | rc |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9627 | rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
9628 | AssertRCReturn(rc, rc);
|
---|
9629 |
|
---|
9630 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
|
---|
9631 | pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
9632 | }
|
---|
9633 |
|
---|
9634 | Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
|
---|
9635 | return rc;
|
---|
9636 | }
|
---|
9637 |
|
---|
9638 |
|
---|
9639 | /**
|
---|
9640 | * VM-exit exception handler for #DB (Debug exception).
|
---|
9641 | */
|
---|
9642 | static int hmR0VmxExitXcptDB(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
9643 | {
|
---|
9644 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
9645 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
|
---|
9646 | Log6(("XcptDB\n"));
|
---|
9647 |
|
---|
9648 | /*
|
---|
9649 | * Get the DR6-like values from the exit qualification and pass it to DBGF
|
---|
9650 | * for processing.
|
---|
9651 | */
|
---|
9652 | int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
9653 | AssertRCReturn(rc, rc);
|
---|
9654 |
|
---|
9655 | /* If we sat the trap flag above, we have to clear it. */ /** @todo HM should remember what it does and possibly do this elsewhere! */
|
---|
9656 | if ( (pVCpu->hm.s.fSingleInstruction || DBGFIsStepping(pVCpu))
|
---|
9657 | && !(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.msr.vmx_proc_ctls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_MONITOR_TRAP_FLAG))
|
---|
9658 | pMixedCtx->eflags.Bits.u1TF = 0;
|
---|
9659 |
|
---|
9660 | /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
|
---|
9661 | uint64_t uDR6 = X86_DR6_INIT_VAL;
|
---|
9662 | uDR6 |= ( pVmxTransient->uExitQualification
|
---|
9663 | & (X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3 | X86_DR6_BD | X86_DR6_BS));
|
---|
9664 |
|
---|
9665 | rc = DBGFRZTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pMixedCtx), uDR6, pVCpu->hm.s.fSingleInstruction);
|
---|
9666 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
9667 | {
|
---|
9668 | /*
|
---|
9669 | * The exception was for the guest. Update DR6, DR7.GD and
|
---|
9670 | * IA32_DEBUGCTL.LBR before forwarding it.
|
---|
9671 | * (See Intel spec. 27.1 "Architectural State before a VM-Exit".)
|
---|
9672 | */
|
---|
9673 | pMixedCtx->dr[6] &= ~X86_DR6_B_MASK;
|
---|
9674 | pMixedCtx->dr[6] |= uDR6;
|
---|
9675 | if (CPUMIsGuestDebugStateActive(pVCpu))
|
---|
9676 | ASMSetDR6(pMixedCtx->dr[6]);
|
---|
9677 |
|
---|
9678 | rc = hmR0VmxSaveGuestDR7(pVCpu, pMixedCtx);
|
---|
9679 | AssertRCReturn(rc, rc);
|
---|
9680 |
|
---|
9681 | /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
|
---|
9682 | pMixedCtx->dr[7] &= ~X86_DR7_GD;
|
---|
9683 |
|
---|
9684 | /* Paranoia. */
|
---|
9685 | pMixedCtx->dr[7] &= ~X86_DR7_RAZ_MASK;
|
---|
9686 | pMixedCtx->dr[7] |= X86_DR7_RA1_MASK;
|
---|
9687 |
|
---|
9688 | rc = VMXWriteVmcs32(VMX_VMCS_GUEST_DR7, (uint32_t)pMixedCtx->dr[7]);
|
---|
9689 | AssertRCReturn(rc, rc);
|
---|
9690 |
|
---|
9691 | /*
|
---|
9692 | * Raise #DB in the guest.
|
---|
9693 | */
|
---|
9694 | rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
|
---|
9695 | rc |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9696 | rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
9697 | AssertRCReturn(rc, rc);
|
---|
9698 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
|
---|
9699 | pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
9700 | return VINF_SUCCESS;
|
---|
9701 | }
|
---|
9702 |
|
---|
9703 | /*
|
---|
9704 | * Not a guest trap, must be a hypervisor related debug event then.
|
---|
9705 | * Update DR6 in case someone is interested in it.
|
---|
9706 | */
|
---|
9707 | AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
|
---|
9708 | AssertReturn(CPUMIsHyperDebugStateActive(pVCpu), VERR_HM_IPE_5);
|
---|
9709 | CPUMSetHyperDR6(pVCpu, uDR6);
|
---|
9710 |
|
---|
9711 | return rc;
|
---|
9712 | }
|
---|
9713 |
|
---|
9714 |
|
---|
9715 | /**
|
---|
9716 | * VM-exit exception handler for #NM (Device-not-available exception: floating
|
---|
9717 | * point exception).
|
---|
9718 | */
|
---|
9719 | static int hmR0VmxExitXcptNM(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
9720 | {
|
---|
9721 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
9722 |
|
---|
9723 | #ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
9724 | Assert(!CPUMIsGuestFPUStateActive(pVCpu));
|
---|
9725 | #endif
|
---|
9726 |
|
---|
9727 | /* We require CR0 and EFER. EFER is always up-to-date. */
|
---|
9728 | int rc = hmR0VmxSaveGuestCR0(pVCpu, pMixedCtx);
|
---|
9729 | AssertRCReturn(rc, rc);
|
---|
9730 |
|
---|
9731 | /* Lazy FPU loading; load the guest-FPU state transparently and continue execution of the guest. */
|
---|
9732 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9733 | rc = CPUMR0LoadGuestFPU(pVM, pVCpu, pMixedCtx);
|
---|
9734 | if (rc == VINF_SUCCESS)
|
---|
9735 | {
|
---|
9736 | Assert(CPUMIsGuestFPUStateActive(pVCpu));
|
---|
9737 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
|
---|
9738 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
|
---|
9739 | return VINF_SUCCESS;
|
---|
9740 | }
|
---|
9741 |
|
---|
9742 | /* Forward #NM to the guest. */
|
---|
9743 | Assert(rc == VINF_EM_RAW_GUEST_TRAP);
|
---|
9744 | rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
|
---|
9745 | AssertRCReturn(rc, rc);
|
---|
9746 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
|
---|
9747 | pVmxTransient->cbInstr, 0 /* error code */, 0 /* GCPtrFaultAddress */);
|
---|
9748 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
|
---|
9749 | return rc;
|
---|
9750 | }
|
---|
9751 |
|
---|
9752 |
|
---|
9753 | /**
|
---|
9754 | * VM-exit exception handler for #GP (General-protection exception).
|
---|
9755 | *
|
---|
9756 | * @remarks Requires pVmxTransient->uExitIntrInfo to be up-to-date.
|
---|
9757 | */
|
---|
9758 | static int hmR0VmxExitXcptGP(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
9759 | {
|
---|
9760 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
9761 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
|
---|
9762 |
|
---|
9763 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
9764 | if (!pVCpu->hm.s.vmx.RealMode.fRealOnV86Active)
|
---|
9765 | {
|
---|
9766 | #ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
9767 | /* If the guest is not in real-mode or we have unrestricted execution support, reflect #GP to the guest. */
|
---|
9768 | rc = hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
|
---|
9769 | rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
9770 | rc |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9771 | rc |= hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
9772 | AssertRCReturn(rc, rc);
|
---|
9773 | Log4(("#GP Gst: RIP %#RX64 ErrorCode=%#x CR0=%#RX64 CPL=%u\n", pMixedCtx->rip, pVmxTransient->uExitIntrErrorCode,
|
---|
9774 | pMixedCtx->cr0, CPUMGetGuestCPL(pVCpu)));
|
---|
9775 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
|
---|
9776 | pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
9777 | return rc;
|
---|
9778 | #else
|
---|
9779 | /* We don't intercept #GP. */
|
---|
9780 | AssertMsgFailed(("Unexpected VM-exit caused by #GP exception\n"));
|
---|
9781 | return VERR_VMX_UNEXPECTED_EXCEPTION;
|
---|
9782 | #endif
|
---|
9783 | }
|
---|
9784 |
|
---|
9785 | Assert(CPUMIsGuestInRealModeEx(pMixedCtx));
|
---|
9786 | Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fUnrestrictedGuest);
|
---|
9787 |
|
---|
9788 | /* EMInterpretDisasCurrent() requires a lot of the state, save the entire state. */
|
---|
9789 | rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
9790 | AssertRCReturn(rc, rc);
|
---|
9791 |
|
---|
9792 | PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
9793 | uint32_t cbOp = 0;
|
---|
9794 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9795 | rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
|
---|
9796 | if (RT_SUCCESS(rc))
|
---|
9797 | {
|
---|
9798 | rc = VINF_SUCCESS;
|
---|
9799 | Assert(cbOp == pDis->cbInstr);
|
---|
9800 | Log4(("#GP Disas OpCode=%u CS:EIP %04x:%#RX64\n", pDis->pCurInstr->uOpcode, pMixedCtx->cs.Sel, pMixedCtx->rip));
|
---|
9801 | switch (pDis->pCurInstr->uOpcode)
|
---|
9802 | {
|
---|
9803 | case OP_CLI:
|
---|
9804 | {
|
---|
9805 | pMixedCtx->eflags.Bits.u1IF = 0;
|
---|
9806 | pMixedCtx->rip += pDis->cbInstr;
|
---|
9807 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS;
|
---|
9808 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCli);
|
---|
9809 | break;
|
---|
9810 | }
|
---|
9811 |
|
---|
9812 | case OP_STI:
|
---|
9813 | {
|
---|
9814 | pMixedCtx->eflags.Bits.u1IF = 1;
|
---|
9815 | pMixedCtx->rip += pDis->cbInstr;
|
---|
9816 | EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
|
---|
9817 | Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS));
|
---|
9818 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS;
|
---|
9819 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitSti);
|
---|
9820 | break;
|
---|
9821 | }
|
---|
9822 |
|
---|
9823 | case OP_HLT:
|
---|
9824 | {
|
---|
9825 | rc = VINF_EM_HALT;
|
---|
9826 | pMixedCtx->rip += pDis->cbInstr;
|
---|
9827 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP;
|
---|
9828 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
|
---|
9829 | break;
|
---|
9830 | }
|
---|
9831 |
|
---|
9832 | case OP_POPF:
|
---|
9833 | {
|
---|
9834 | Log4(("POPF CS:RIP %04x:%#RX64\n", pMixedCtx->cs.Sel, pMixedCtx->rip));
|
---|
9835 | uint32_t cbParm = 0;
|
---|
9836 | uint32_t uMask = 0;
|
---|
9837 | if (pDis->fPrefix & DISPREFIX_OPSIZE)
|
---|
9838 | {
|
---|
9839 | cbParm = 4;
|
---|
9840 | uMask = 0xffffffff;
|
---|
9841 | }
|
---|
9842 | else
|
---|
9843 | {
|
---|
9844 | cbParm = 2;
|
---|
9845 | uMask = 0xffff;
|
---|
9846 | }
|
---|
9847 |
|
---|
9848 | /* Get the stack pointer & pop the contents of the stack onto EFlags. */
|
---|
9849 | RTGCPTR GCPtrStack = 0;
|
---|
9850 | X86EFLAGS uEflags;
|
---|
9851 | rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
|
---|
9852 | &GCPtrStack);
|
---|
9853 | if (RT_SUCCESS(rc))
|
---|
9854 | {
|
---|
9855 | Assert(sizeof(uEflags.u32) >= cbParm);
|
---|
9856 | uEflags.u32 = 0;
|
---|
9857 | rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &uEflags.u32, cbParm);
|
---|
9858 | }
|
---|
9859 | if (RT_FAILURE(rc))
|
---|
9860 | {
|
---|
9861 | rc = VERR_EM_INTERPRETER;
|
---|
9862 | break;
|
---|
9863 | }
|
---|
9864 | Log4(("POPF %x -> %#RX64 mask=%x RIP=%#RX64\n", uEflags.u, pMixedCtx->rsp, uMask, pMixedCtx->rip));
|
---|
9865 | pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~(X86_EFL_POPF_BITS & uMask))
|
---|
9866 | | (uEflags.u32 & X86_EFL_POPF_BITS & uMask);
|
---|
9867 | /* The RF bit is always cleared by POPF; see Intel Instruction reference for POPF. */
|
---|
9868 | pMixedCtx->eflags.Bits.u1RF = 0;
|
---|
9869 | pMixedCtx->esp += cbParm;
|
---|
9870 | pMixedCtx->esp &= uMask;
|
---|
9871 | pMixedCtx->rip += pDis->cbInstr;
|
---|
9872 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS;
|
---|
9873 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPopf);
|
---|
9874 | break;
|
---|
9875 | }
|
---|
9876 |
|
---|
9877 | case OP_PUSHF:
|
---|
9878 | {
|
---|
9879 | uint32_t cbParm = 0;
|
---|
9880 | uint32_t uMask = 0;
|
---|
9881 | if (pDis->fPrefix & DISPREFIX_OPSIZE)
|
---|
9882 | {
|
---|
9883 | cbParm = 4;
|
---|
9884 | uMask = 0xffffffff;
|
---|
9885 | }
|
---|
9886 | else
|
---|
9887 | {
|
---|
9888 | cbParm = 2;
|
---|
9889 | uMask = 0xffff;
|
---|
9890 | }
|
---|
9891 |
|
---|
9892 | /* Get the stack pointer & push the contents of eflags onto the stack. */
|
---|
9893 | RTGCPTR GCPtrStack = 0;
|
---|
9894 | rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), (pMixedCtx->esp - cbParm) & uMask,
|
---|
9895 | SELMTOFLAT_FLAGS_CPL0, &GCPtrStack);
|
---|
9896 | if (RT_FAILURE(rc))
|
---|
9897 | {
|
---|
9898 | rc = VERR_EM_INTERPRETER;
|
---|
9899 | break;
|
---|
9900 | }
|
---|
9901 | X86EFLAGS uEflags;
|
---|
9902 | uEflags = pMixedCtx->eflags;
|
---|
9903 | /* The RF & VM bits are cleared on image stored on stack; see Intel Instruction reference for PUSHF. */
|
---|
9904 | uEflags.Bits.u1RF = 0;
|
---|
9905 | uEflags.Bits.u1VM = 0;
|
---|
9906 |
|
---|
9907 | rc = PGMPhysWrite(pVM, (RTGCPHYS)GCPtrStack, &uEflags.u, cbParm);
|
---|
9908 | if (RT_FAILURE(rc))
|
---|
9909 | {
|
---|
9910 | rc = VERR_EM_INTERPRETER;
|
---|
9911 | break;
|
---|
9912 | }
|
---|
9913 | Log4(("PUSHF %x -> %#RGv\n", uEflags.u, GCPtrStack));
|
---|
9914 | pMixedCtx->esp -= cbParm;
|
---|
9915 | pMixedCtx->esp &= uMask;
|
---|
9916 | pMixedCtx->rip += pDis->cbInstr;
|
---|
9917 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP;
|
---|
9918 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPushf);
|
---|
9919 | break;
|
---|
9920 | }
|
---|
9921 |
|
---|
9922 | case OP_IRET:
|
---|
9923 | {
|
---|
9924 | /** @todo Handle 32-bit operand sizes and check stack limits. See Intel
|
---|
9925 | * instruction reference. */
|
---|
9926 | RTGCPTR GCPtrStack = 0;
|
---|
9927 | uint32_t uMask = 0xffff;
|
---|
9928 | uint16_t aIretFrame[3];
|
---|
9929 | if (pDis->fPrefix & (DISPREFIX_OPSIZE | DISPREFIX_ADDRSIZE))
|
---|
9930 | {
|
---|
9931 | rc = VERR_EM_INTERPRETER;
|
---|
9932 | break;
|
---|
9933 | }
|
---|
9934 | rc = SELMToFlatEx(pVCpu, DISSELREG_SS, CPUMCTX2CORE(pMixedCtx), pMixedCtx->esp & uMask, SELMTOFLAT_FLAGS_CPL0,
|
---|
9935 | &GCPtrStack);
|
---|
9936 | if (RT_SUCCESS(rc))
|
---|
9937 | rc = PGMPhysRead(pVM, (RTGCPHYS)GCPtrStack, &aIretFrame[0], sizeof(aIretFrame));
|
---|
9938 | if (RT_FAILURE(rc))
|
---|
9939 | {
|
---|
9940 | rc = VERR_EM_INTERPRETER;
|
---|
9941 | break;
|
---|
9942 | }
|
---|
9943 | pMixedCtx->eip = 0;
|
---|
9944 | pMixedCtx->ip = aIretFrame[0];
|
---|
9945 | pMixedCtx->cs.Sel = aIretFrame[1];
|
---|
9946 | pMixedCtx->cs.ValidSel = aIretFrame[1];
|
---|
9947 | pMixedCtx->cs.u64Base = (uint64_t)pMixedCtx->cs.Sel << 4;
|
---|
9948 | pMixedCtx->eflags.u32 = (pMixedCtx->eflags.u32 & ~(X86_EFL_POPF_BITS & uMask))
|
---|
9949 | | (aIretFrame[2] & X86_EFL_POPF_BITS & uMask);
|
---|
9950 | pMixedCtx->sp += sizeof(aIretFrame);
|
---|
9951 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_SEGMENT_REGS | HM_CHANGED_GUEST_RSP
|
---|
9952 | | HM_CHANGED_GUEST_RFLAGS;
|
---|
9953 | Log4(("IRET %#RX32 to %04x:%x\n", GCPtrStack, pMixedCtx->cs.Sel, pMixedCtx->ip));
|
---|
9954 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIret);
|
---|
9955 | break;
|
---|
9956 | }
|
---|
9957 |
|
---|
9958 | case OP_INT:
|
---|
9959 | {
|
---|
9960 | uint16_t uVector = pDis->Param1.uValue & 0xff;
|
---|
9961 | hmR0VmxSetPendingIntN(pVCpu, pMixedCtx, uVector, pDis->cbInstr);
|
---|
9962 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
|
---|
9963 | break;
|
---|
9964 | }
|
---|
9965 |
|
---|
9966 | case OP_INTO:
|
---|
9967 | {
|
---|
9968 | if (pMixedCtx->eflags.Bits.u1OF)
|
---|
9969 | {
|
---|
9970 | hmR0VmxSetPendingXcptOF(pVCpu, pMixedCtx, pDis->cbInstr);
|
---|
9971 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInt);
|
---|
9972 | }
|
---|
9973 | break;
|
---|
9974 | }
|
---|
9975 |
|
---|
9976 | default:
|
---|
9977 | {
|
---|
9978 | VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, CPUMCTX2CORE(pMixedCtx), 0 /* pvFault */,
|
---|
9979 | EMCODETYPE_SUPERVISOR);
|
---|
9980 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
9981 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_ALL_GUEST;
|
---|
9982 | Log4(("#GP rc=%Rrc\n", rc));
|
---|
9983 | break;
|
---|
9984 | }
|
---|
9985 | }
|
---|
9986 | }
|
---|
9987 | else
|
---|
9988 | rc = VERR_EM_INTERPRETER;
|
---|
9989 |
|
---|
9990 | AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_EM_HALT,
|
---|
9991 | ("#GP Unexpected rc=%Rrc\n", rc));
|
---|
9992 | return rc;
|
---|
9993 | }
|
---|
9994 |
|
---|
9995 |
|
---|
9996 | /**
|
---|
9997 | * VM-exit exception handler wrapper for generic exceptions. Simply re-injects
|
---|
9998 | * the exception reported in the VMX transient structure back into the VM.
|
---|
9999 | *
|
---|
10000 | * @remarks Requires uExitIntrInfo in the VMX transient structure to be
|
---|
10001 | * up-to-date.
|
---|
10002 | */
|
---|
10003 | static int hmR0VmxExitXcptGeneric(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
10004 | {
|
---|
10005 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
10006 |
|
---|
10007 | /* Re-inject the exception into the guest. This cannot be a double-fault condition which would have been handled in
|
---|
10008 | hmR0VmxCheckExitDueToEventDelivery(). */
|
---|
10009 | int rc = hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
10010 | rc |= hmR0VmxReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
10011 | AssertRCReturn(rc, rc);
|
---|
10012 | Assert(pVmxTransient->fVmcsFieldsRead & HMVMX_UPDATED_TRANSIENT_EXIT_INTERRUPTION_INFO);
|
---|
10013 |
|
---|
10014 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
|
---|
10015 | pVmxTransient->cbInstr, pVmxTransient->uExitIntrErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
10016 | return VINF_SUCCESS;
|
---|
10017 | }
|
---|
10018 |
|
---|
10019 |
|
---|
10020 | /**
|
---|
10021 | * VM-exit exception handler for #PF (Page-fault exception).
|
---|
10022 | */
|
---|
10023 | static int hmR0VmxExitXcptPF(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PVMXTRANSIENT pVmxTransient)
|
---|
10024 | {
|
---|
10025 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS();
|
---|
10026 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
10027 | int rc = hmR0VmxReadExitQualificationVmcs(pVCpu, pVmxTransient);
|
---|
10028 | rc |= hmR0VmxReadExitIntrInfoVmcs(pVCpu, pVmxTransient);
|
---|
10029 | rc |= hmR0VmxReadExitIntrErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
10030 | AssertRCReturn(rc, rc);
|
---|
10031 |
|
---|
10032 | #if defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) || defined(HMVMX_ALWAYS_TRAP_PF)
|
---|
10033 | if (pVM->hm.s.fNestedPaging)
|
---|
10034 | {
|
---|
10035 | pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
|
---|
10036 | if (RT_LIKELY(!pVmxTransient->fVectoringPF))
|
---|
10037 | {
|
---|
10038 | pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
|
---|
10039 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
|
---|
10040 | 0 /* cbInstr */, pVmxTransient->uExitIntrErrorCode, pVmxTransient->uExitQualification);
|
---|
10041 | }
|
---|
10042 | else
|
---|
10043 | {
|
---|
10044 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
10045 | hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
|
---|
10046 | Log4(("Pending #DF due to vectoring #PF. NP\n"));
|
---|
10047 | }
|
---|
10048 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
|
---|
10049 | return rc;
|
---|
10050 | }
|
---|
10051 | #else
|
---|
10052 | Assert(!pVM->hm.s.fNestedPaging);
|
---|
10053 | #endif
|
---|
10054 |
|
---|
10055 | rc = hmR0VmxSaveGuestState(pVCpu, pMixedCtx);
|
---|
10056 | AssertRCReturn(rc, rc);
|
---|
10057 |
|
---|
10058 | Log4(("#PF: cr2=%#RX64 cs:rip=%#04x:%#RX64 uErrCode %#RX32 cr3=%#RX64\n", pVmxTransient->uExitQualification,
|
---|
10059 | pMixedCtx->cs.Sel, pMixedCtx->rip, pVmxTransient->uExitIntrErrorCode, pMixedCtx->cr3));
|
---|
10060 |
|
---|
10061 | TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQualification, (RTGCUINT)pVmxTransient->uExitIntrErrorCode);
|
---|
10062 | rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntrErrorCode, CPUMCTX2CORE(pMixedCtx),
|
---|
10063 | (RTGCPTR)pVmxTransient->uExitQualification);
|
---|
10064 |
|
---|
10065 | Log4(("#PF: rc=%Rrc\n", rc));
|
---|
10066 | if (rc == VINF_SUCCESS)
|
---|
10067 | {
|
---|
10068 | /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
|
---|
10069 | /** @todo this isn't quite right, what if guest does lgdt with some MMIO
|
---|
10070 | * memory? We don't update the whole state here... */
|
---|
10071 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
|
---|
10072 | | HM_CHANGED_VMX_GUEST_APIC_STATE;
|
---|
10073 | TRPMResetTrap(pVCpu);
|
---|
10074 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
|
---|
10075 | return rc;
|
---|
10076 | }
|
---|
10077 | else if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
10078 | {
|
---|
10079 | if (!pVmxTransient->fVectoringPF)
|
---|
10080 | {
|
---|
10081 | /* It's a guest page fault and needs to be reflected to the guest. */
|
---|
10082 | uint32_t uGstErrorCode = TRPMGetErrorCode(pVCpu);
|
---|
10083 | TRPMResetTrap(pVCpu);
|
---|
10084 | pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory #PF. */
|
---|
10085 | pMixedCtx->cr2 = pVmxTransient->uExitQualification; /* Update here in case we go back to ring-3 before injection. */
|
---|
10086 | hmR0VmxSetPendingEvent(pVCpu, VMX_VMCS_CTRL_ENTRY_IRQ_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntrInfo),
|
---|
10087 | 0 /* cbInstr */, uGstErrorCode, pVmxTransient->uExitQualification);
|
---|
10088 | }
|
---|
10089 | else
|
---|
10090 | {
|
---|
10091 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
10092 | TRPMResetTrap(pVCpu);
|
---|
10093 | pVCpu->hm.s.Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
|
---|
10094 | hmR0VmxSetPendingXcptDF(pVCpu, pMixedCtx);
|
---|
10095 | Log4(("#PF: Pending #DF due to vectoring #PF\n"));
|
---|
10096 | }
|
---|
10097 |
|
---|
10098 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
|
---|
10099 | return VINF_SUCCESS;
|
---|
10100 | }
|
---|
10101 |
|
---|
10102 | TRPMResetTrap(pVCpu);
|
---|
10103 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
|
---|
10104 | return rc;
|
---|
10105 | }
|
---|
10106 |
|
---|
10107 | /** @} */
|
---|
10108 |
|
---|