VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMSVMR0.cpp@ 67994

Last change on this file since 67994 was 67875, checked in by vboxsync, 7 years ago

VMM/HMSVMR0: Fix regression with hypercalls introduced in r113826 (Affected Hyper-V debugging which uses
hypercall). Premature updating of the RIP caused us to guru rather than performing the hypercall.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 226.1 KB
Line 
1/* $Id: HMSVMR0.cpp 67875 2017-07-10 12:11:37Z vboxsync $ */
2/** @file
3 * HM SVM (AMD-V) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2013-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <iprt/asm-amd64-x86.h>
24#include <iprt/thread.h>
25
26#include <VBox/vmm/pdmapi.h>
27#include <VBox/vmm/dbgf.h>
28#include <VBox/vmm/iem.h>
29#include <VBox/vmm/iom.h>
30#include <VBox/vmm/tm.h>
31#include <VBox/vmm/gim.h>
32#include <VBox/vmm/apic.h>
33#include "HMInternal.h"
34#include <VBox/vmm/vm.h>
35#include "HMSVMR0.h"
36#include "dtrace/VBoxVMM.h"
37
38#define HMSVM_USE_IEM_EVENT_REFLECTION
39#ifdef DEBUG_ramshankar
40# define HMSVM_SYNC_FULL_GUEST_STATE
41# define HMSVM_ALWAYS_TRAP_ALL_XCPTS
42# define HMSVM_ALWAYS_TRAP_PF
43# define HMSVM_ALWAYS_TRAP_TASK_SWITCH
44#endif
45
46
47/*********************************************************************************************************************************
48* Defined Constants And Macros *
49*********************************************************************************************************************************/
50#ifdef VBOX_WITH_STATISTICS
51# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
52 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
53 if ((u64ExitCode) == SVM_EXIT_NPF) \
54 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
55 else \
56 STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
57 } while (0)
58#else
59# define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
60#endif
61
62/** If we decide to use a function table approach this can be useful to
63 * switch to a "static DECLCALLBACK(int)". */
64#define HMSVM_EXIT_DECL static int
65
66/** Macro for checking and returning from the using function for
67 * \#VMEXIT intercepts that maybe caused during delivering of another
68 * event in the guest. */
69#define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
70 do \
71 { \
72 int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
73 if (RT_LIKELY(rc == VINF_SUCCESS)) { /* likely */ } \
74 else if (rc == VINF_HM_DOUBLE_FAULT) \
75 return VINF_SUCCESS; \
76 else \
77 return rc; \
78 } while (0)
79
80/** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
81 * instruction that exited. */
82#define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
83 do { \
84 if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
85 (a_rc) = VINF_EM_DBG_STEPPED; \
86 } while (0)
87
88/** Assert that preemption is disabled or covered by thread-context hooks. */
89#define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
90 || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
91
92/** Assert that we haven't migrated CPUs when thread-context hooks are not
93 * used. */
94#define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
95 || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
96 ("Illegal migration! Entered on CPU %u Current %u\n", \
97 pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
98
99/** Exception bitmap mask for all contributory exceptions.
100 *
101 * Page fault is deliberately excluded here as it's conditional as to whether
102 * it's contributory or benign. Page faults are handled separately.
103 */
104#define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
105 | RT_BIT(X86_XCPT_DE))
106
107/** @name VMCB Clean Bits.
108 *
109 * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
110 * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
111 * memory.
112 *
113 * @{ */
114/** All intercepts vectors, TSC offset, PAUSE filter counter. */
115#define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
116/** I/O permission bitmap, MSR permission bitmap. */
117#define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
118/** ASID. */
119#define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
120/** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
121V_INTR_VECTOR. */
122#define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
123/** Nested Paging: Nested CR3 (nCR3), PAT. */
124#define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
125/** Control registers (CR0, CR3, CR4, EFER). */
126#define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
127/** Debug registers (DR6, DR7). */
128#define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
129/** GDT, IDT limit and base. */
130#define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
131/** Segment register: CS, SS, DS, ES limit and base. */
132#define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
133/** CR2.*/
134#define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
135/** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
136#define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
137/** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
138PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
139#define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
140/** Mask of all valid VMCB Clean bits. */
141#define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
142 | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
143 | HMSVM_VMCB_CLEAN_ASID \
144 | HMSVM_VMCB_CLEAN_TPR \
145 | HMSVM_VMCB_CLEAN_NP \
146 | HMSVM_VMCB_CLEAN_CRX_EFER \
147 | HMSVM_VMCB_CLEAN_DRX \
148 | HMSVM_VMCB_CLEAN_DT \
149 | HMSVM_VMCB_CLEAN_SEG \
150 | HMSVM_VMCB_CLEAN_CR2 \
151 | HMSVM_VMCB_CLEAN_LBR \
152 | HMSVM_VMCB_CLEAN_AVIC)
153/** @} */
154
155/** @name SVM transient.
156 *
157 * A state structure for holding miscellaneous information across AMD-V
158 * VMRUN/\#VMEXIT operation, restored after the transition.
159 *
160 * @{ */
161typedef struct SVMTRANSIENT
162{
163 /** The host's rflags/eflags. */
164 RTCCUINTREG fEFlags;
165#if HC_ARCH_BITS == 32
166 uint32_t u32Alignment0;
167#endif
168
169 /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
170 uint64_t u64ExitCode;
171 /** The guest's TPR value used for TPR shadowing. */
172 uint8_t u8GuestTpr;
173 /** Alignment. */
174 uint8_t abAlignment0[7];
175
176 /** Whether the guest FPU state was active at the time of \#VMEXIT. */
177 bool fWasGuestFPUStateActive;
178 /** Whether the guest debug state was active at the time of \#VMEXIT. */
179 bool fWasGuestDebugStateActive;
180 /** Whether the hyper debug state was active at the time of \#VMEXIT. */
181 bool fWasHyperDebugStateActive;
182 /** Whether the TSC offset mode needs to be updated. */
183 bool fUpdateTscOffsetting;
184 /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
185 bool fRestoreTscAuxMsr;
186 /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
187 * contributary exception or a page-fault. */
188 bool fVectoringDoublePF;
189 /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
190 * external interrupt or NMI. */
191 bool fVectoringPF;
192} SVMTRANSIENT, *PSVMTRANSIENT;
193AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
194AssertCompileMemberAlignment(SVMTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
195/** @} */
196
197/**
198 * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
199 */
200typedef enum SVMMSREXITREAD
201{
202 /** Reading this MSR causes a \#VMEXIT. */
203 SVMMSREXIT_INTERCEPT_READ = 0xb,
204 /** Reading this MSR does not cause a \#VMEXIT. */
205 SVMMSREXIT_PASSTHRU_READ
206} SVMMSREXITREAD;
207
208/**
209 * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
210 */
211typedef enum SVMMSREXITWRITE
212{
213 /** Writing to this MSR causes a \#VMEXIT. */
214 SVMMSREXIT_INTERCEPT_WRITE = 0xd,
215 /** Writing to this MSR does not cause a \#VMEXIT. */
216 SVMMSREXIT_PASSTHRU_WRITE
217} SVMMSREXITWRITE;
218
219/**
220 * SVM \#VMEXIT handler.
221 *
222 * @returns VBox status code.
223 * @param pVCpu The cross context virtual CPU structure.
224 * @param pMixedCtx Pointer to the guest-CPU context.
225 * @param pSvmTransient Pointer to the SVM-transient structure.
226 */
227typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
228
229
230/*********************************************************************************************************************************
231* Internal Functions *
232*********************************************************************************************************************************/
233static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
234static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
235static void hmR0SvmLeave(PVMCPU pVCpu);
236
237/** @name \#VMEXIT handlers.
238 * @{
239 */
240static FNSVMEXITHANDLER hmR0SvmExitIntr;
241static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
242static FNSVMEXITHANDLER hmR0SvmExitInvd;
243static FNSVMEXITHANDLER hmR0SvmExitCpuid;
244static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
245static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
246static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
247static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
248static FNSVMEXITHANDLER hmR0SvmExitHlt;
249static FNSVMEXITHANDLER hmR0SvmExitMonitor;
250static FNSVMEXITHANDLER hmR0SvmExitMwait;
251static FNSVMEXITHANDLER hmR0SvmExitShutdown;
252static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
253static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
254static FNSVMEXITHANDLER hmR0SvmExitSetPendingXcptUD;
255static FNSVMEXITHANDLER hmR0SvmExitMsr;
256static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
257static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
258static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
259static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
260static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
261static FNSVMEXITHANDLER hmR0SvmExitVIntr;
262static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
263static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
264static FNSVMEXITHANDLER hmR0SvmExitPause;
265static FNSVMEXITHANDLER hmR0SvmExitIret;
266static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
267static FNSVMEXITHANDLER hmR0SvmExitXcptNM;
268static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
269static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
270static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
271static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
272static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
273#ifdef VBOX_WITH_NESTED_HWVIRT
274static FNSVMEXITHANDLER hmR0SvmExitClgi;
275static FNSVMEXITHANDLER hmR0SvmExitStgi;
276static FNSVMEXITHANDLER hmR0SvmExitVmload;
277static FNSVMEXITHANDLER hmR0SvmExitVmsave;
278static FNSVMEXITHANDLER hmR0SvmExitInvlpga;
279static FNSVMEXITHANDLER hmR0SvmExitVmrun;
280#endif
281/** @} */
282
283DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
284
285
286/*********************************************************************************************************************************
287* Global Variables *
288*********************************************************************************************************************************/
289/** Ring-0 memory object for the IO bitmap. */
290RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
291/** Physical address of the IO bitmap. */
292RTHCPHYS g_HCPhysIOBitmap = 0;
293/** Virtual address of the IO bitmap. */
294R0PTRTYPE(void *) g_pvIOBitmap = NULL;
295
296
297/**
298 * Sets up and activates AMD-V on the current CPU.
299 *
300 * @returns VBox status code.
301 * @param pCpu Pointer to the CPU info struct.
302 * @param pVM The cross context VM structure. Can be
303 * NULL after a resume!
304 * @param pvCpuPage Pointer to the global CPU page.
305 * @param HCPhysCpuPage Physical address of the global CPU page.
306 * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
307 * @param pvArg Unused on AMD-V.
308 */
309VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
310 void *pvArg)
311{
312 Assert(!fEnabledByHost);
313 Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
314 Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
315 Assert(pvCpuPage); NOREF(pvCpuPage);
316 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
317
318 NOREF(pvArg);
319 NOREF(fEnabledByHost);
320
321 /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
322 RTCCUINTREG fEFlags = ASMIntDisableFlags();
323
324 /*
325 * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
326 */
327 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
328 if (u64HostEfer & MSR_K6_EFER_SVME)
329 {
330 /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
331 if ( pVM
332 && pVM->hm.s.svm.fIgnoreInUseError)
333 {
334 pCpu->fIgnoreAMDVInUseError = true;
335 }
336
337 if (!pCpu->fIgnoreAMDVInUseError)
338 {
339 ASMSetFlags(fEFlags);
340 return VERR_SVM_IN_USE;
341 }
342 }
343
344 /* Turn on AMD-V in the EFER MSR. */
345 ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
346
347 /* Write the physical page address where the CPU will store the host state while executing the VM. */
348 ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
349
350 /* Restore interrupts. */
351 ASMSetFlags(fEFlags);
352
353 /*
354 * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
355 * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
356 * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
357 * to flush the TLB with before using a new ASID.
358 */
359 pCpu->fFlushAsidBeforeUse = true;
360
361 /*
362 * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
363 */
364 ++pCpu->cTlbFlushes;
365
366 return VINF_SUCCESS;
367}
368
369
370/**
371 * Deactivates AMD-V on the current CPU.
372 *
373 * @returns VBox status code.
374 * @param pCpu Pointer to the CPU info struct.
375 * @param pvCpuPage Pointer to the global CPU page.
376 * @param HCPhysCpuPage Physical address of the global CPU page.
377 */
378VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
379{
380 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
381 AssertReturn( HCPhysCpuPage
382 && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
383 AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
384 NOREF(pCpu);
385
386 /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
387 RTCCUINTREG fEFlags = ASMIntDisableFlags();
388
389 /* Turn off AMD-V in the EFER MSR. */
390 uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
391 ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
392
393 /* Invalidate host state physical address. */
394 ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
395
396 /* Restore interrupts. */
397 ASMSetFlags(fEFlags);
398
399 return VINF_SUCCESS;
400}
401
402
403/**
404 * Does global AMD-V initialization (called during module initialization).
405 *
406 * @returns VBox status code.
407 */
408VMMR0DECL(int) SVMR0GlobalInit(void)
409{
410 /*
411 * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
412 * once globally here instead of per-VM.
413 */
414 Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
415 int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, false /* fExecutable */);
416 if (RT_FAILURE(rc))
417 return rc;
418
419 g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
420 g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
421
422 /* Set all bits to intercept all IO accesses. */
423 ASMMemFill32(g_pvIOBitmap, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
424 return VINF_SUCCESS;
425}
426
427
428/**
429 * Does global AMD-V termination (called during module termination).
430 */
431VMMR0DECL(void) SVMR0GlobalTerm(void)
432{
433 if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
434 {
435 RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
436 g_pvIOBitmap = NULL;
437 g_HCPhysIOBitmap = 0;
438 g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
439 }
440}
441
442
443/**
444 * Frees any allocated per-VCPU structures for a VM.
445 *
446 * @param pVM The cross context VM structure.
447 */
448DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
449{
450 for (uint32_t i = 0; i < pVM->cCpus; i++)
451 {
452 PVMCPU pVCpu = &pVM->aCpus[i];
453 AssertPtr(pVCpu);
454
455 if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
456 {
457 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
458 pVCpu->hm.s.svm.pvVmcbHost = 0;
459 pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
460 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
461 }
462
463 if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
464 {
465 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
466 pVCpu->hm.s.svm.pvVmcb = 0;
467 pVCpu->hm.s.svm.HCPhysVmcb = 0;
468 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
469 }
470
471 if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
472 {
473 RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
474 pVCpu->hm.s.svm.pvMsrBitmap = 0;
475 pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
476 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
477 }
478 }
479}
480
481
482/**
483 * Does per-VM AMD-V initialization.
484 *
485 * @returns VBox status code.
486 * @param pVM The cross context VM structure.
487 */
488VMMR0DECL(int) SVMR0InitVM(PVM pVM)
489{
490 int rc = VERR_INTERNAL_ERROR_5;
491
492 /*
493 * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
494 */
495 uint32_t u32Family;
496 uint32_t u32Model;
497 uint32_t u32Stepping;
498 if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
499 {
500 Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
501 pVM->hm.s.svm.fAlwaysFlushTLB = true;
502 }
503
504 /*
505 * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
506 */
507 for (VMCPUID i = 0; i < pVM->cCpus; i++)
508 {
509 PVMCPU pVCpu = &pVM->aCpus[i];
510 pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
511 pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
512 pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
513 }
514
515 for (VMCPUID i = 0; i < pVM->cCpus; i++)
516 {
517 PVMCPU pVCpu = &pVM->aCpus[i];
518
519 /*
520 * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
521 * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
522 */
523 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
524 if (RT_FAILURE(rc))
525 goto failure_cleanup;
526
527 pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
528 pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
529 Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
530 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
531
532 /*
533 * Allocate one page for the guest-state VMCB.
534 */
535 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, SVM_VMCB_PAGES << PAGE_SHIFT, false /* fExecutable */);
536 if (RT_FAILURE(rc))
537 goto failure_cleanup;
538
539 pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
540 pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
541 Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
542 ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
543
544 /*
545 * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
546 * SVM to not require one.
547 */
548 rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
549 false /* fExecutable */);
550 if (RT_FAILURE(rc))
551 goto failure_cleanup;
552
553 pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
554 pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
555 /* Set all bits to intercept all MSR accesses (changed later on). */
556 ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
557 }
558
559 return VINF_SUCCESS;
560
561failure_cleanup:
562 hmR0SvmFreeStructs(pVM);
563 return rc;
564}
565
566
567/**
568 * Does per-VM AMD-V termination.
569 *
570 * @returns VBox status code.
571 * @param pVM The cross context VM structure.
572 */
573VMMR0DECL(int) SVMR0TermVM(PVM pVM)
574{
575 hmR0SvmFreeStructs(pVM);
576 return VINF_SUCCESS;
577}
578
579
580/**
581 * Sets the permission bits for the specified MSR in the MSRPM.
582 *
583 * @param pVCpu The cross context virtual CPU structure.
584 * @param uMsr The MSR for which the access permissions are being set.
585 * @param enmRead MSR read permissions.
586 * @param enmWrite MSR write permissions.
587 */
588static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
589{
590 uint16_t offMsrpm;
591 uint32_t uMsrpmBit;
592 int rc = HMSvmGetMsrpmOffsetAndBit(uMsr, &offMsrpm, &uMsrpmBit);
593 AssertRC(rc);
594
595 Assert(uMsrpmBit < 0x3fff);
596 Assert(offMsrpm < SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
597
598 uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
599 pbMsrBitmap += offMsrpm;
600
601 if (enmRead == SVMMSREXIT_INTERCEPT_READ)
602 ASMBitSet(pbMsrBitmap, uMsrpmBit);
603 else
604 ASMBitClear(pbMsrBitmap, uMsrpmBit);
605
606 if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
607 ASMBitSet(pbMsrBitmap, uMsrpmBit + 1);
608 else
609 ASMBitClear(pbMsrBitmap, uMsrpmBit + 1);
610
611 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
612 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
613}
614
615
616/**
617 * Sets up AMD-V for the specified VM.
618 * This function is only called once per-VM during initalization.
619 *
620 * @returns VBox status code.
621 * @param pVM The cross context VM structure.
622 */
623VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
624{
625 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
626 AssertReturn(pVM, VERR_INVALID_PARAMETER);
627 Assert(pVM->hm.s.svm.fSupported);
628
629 bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
630 bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
631 bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter && pVM->hm.s.svm.cPauseFilterThresholdTicks;
632
633 for (VMCPUID i = 0; i < pVM->cCpus; i++)
634 {
635 PVMCPU pVCpu = &pVM->aCpus[i];
636 PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
637
638 AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
639
640 /* Initialize the #VMEXIT history array with end-of-array markers (UINT16_MAX). */
641 Assert(!pVCpu->hm.s.idxExitHistoryFree);
642 HMCPU_EXIT_HISTORY_RESET(pVCpu);
643
644 /* Always trap #AC for reasons of security. */
645 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT_32(X86_XCPT_AC);
646
647 /* Always trap #DB for reasons of security. */
648 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT_32(X86_XCPT_DB);
649
650 /* Trap exceptions unconditionally (debug purposes). */
651#ifdef HMSVM_ALWAYS_TRAP_PF
652 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
653#endif
654#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
655 /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
656 pVmcb->ctrl.u32InterceptXcpt |= 0
657 | RT_BIT(X86_XCPT_BP)
658 | RT_BIT(X86_XCPT_DE)
659 | RT_BIT(X86_XCPT_NM)
660 | RT_BIT(X86_XCPT_UD)
661 | RT_BIT(X86_XCPT_NP)
662 | RT_BIT(X86_XCPT_SS)
663 | RT_BIT(X86_XCPT_GP)
664 | RT_BIT(X86_XCPT_PF)
665 | RT_BIT(X86_XCPT_MF)
666 ;
667#endif
668
669 /* Set up unconditional intercepts and conditions. */
670 pVmcb->ctrl.u64InterceptCtrl = SVM_CTRL_INTERCEPT_INTR /* External interrupt causes a #VMEXIT. */
671 | SVM_CTRL_INTERCEPT_NMI /* Non-maskable interrupts causes a #VMEXIT. */
672 | SVM_CTRL_INTERCEPT_INIT /* INIT signal causes a #VMEXIT. */
673 | SVM_CTRL_INTERCEPT_RDPMC /* RDPMC causes a #VMEXIT. */
674 | SVM_CTRL_INTERCEPT_CPUID /* CPUID causes a #VMEXIT. */
675 | SVM_CTRL_INTERCEPT_RSM /* RSM causes a #VMEXIT. */
676 | SVM_CTRL_INTERCEPT_HLT /* HLT causes a #VMEXIT. */
677 | SVM_CTRL_INTERCEPT_IOIO_PROT /* Use the IOPM to cause IOIO #VMEXITs. */
678 | SVM_CTRL_INTERCEPT_MSR_PROT /* MSR access not covered by MSRPM causes a #VMEXIT.*/
679 | SVM_CTRL_INTERCEPT_INVLPGA /* INVLPGA causes a #VMEXIT. */
680 | SVM_CTRL_INTERCEPT_SHUTDOWN /* Shutdown events causes a #VMEXIT. */
681 | SVM_CTRL_INTERCEPT_FERR_FREEZE /* Intercept "freezing" during legacy FPU handling. */
682 | SVM_CTRL_INTERCEPT_VMRUN /* VMRUN causes a #VMEXIT. */
683 | SVM_CTRL_INTERCEPT_VMMCALL /* VMMCALL causes a #VMEXIT. */
684 | SVM_CTRL_INTERCEPT_VMLOAD /* VMLOAD causes a #VMEXIT. */
685 | SVM_CTRL_INTERCEPT_VMSAVE /* VMSAVE causes a #VMEXIT. */
686 | SVM_CTRL_INTERCEPT_STGI /* STGI causes a #VMEXIT. */
687 | SVM_CTRL_INTERCEPT_CLGI /* CLGI causes a #VMEXIT. */
688 | SVM_CTRL_INTERCEPT_SKINIT /* SKINIT causes a #VMEXIT. */
689 | SVM_CTRL_INTERCEPT_WBINVD /* WBINVD causes a #VMEXIT. */
690 | SVM_CTRL_INTERCEPT_MONITOR /* MONITOR causes a #VMEXIT. */
691 | SVM_CTRL_INTERCEPT_MWAIT /* MWAIT causes a #VMEXIT. */
692 | SVM_CTRL_INTERCEPT_XSETBV; /* XSETBV causes a #VMEXIT. */
693
694 /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
695 pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
696
697 /* CR0, CR4 writes must be intercepted for the same reasons as above. */
698 pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
699
700 /* Intercept all DRx reads and writes by default. Changed later on. */
701 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
702 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
703
704 /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
705 pVmcb->ctrl.IntCtrl.n.u1VIntrMasking = 1;
706
707 /* Ignore the priority in the virtual TPR. This is necessary for delivering PIC style (ExtInt) interrupts
708 and we currently deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
709 pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
710
711 /* Set IO and MSR bitmap permission bitmap physical addresses. */
712 pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
713 pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
714
715 /* No LBR virtualization. */
716 pVmcb->ctrl.u64LBRVirt = 0;
717
718 /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
719 pVmcb->ctrl.u64VmcbCleanBits = 0;
720
721 /* The host ASID MBZ, for the guest start with 1. */
722 pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
723
724 /*
725 * Setup the PAT MSR (applicable for Nested Paging only).
726 * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
727 * so choose type 6 for all PAT slots.
728 */
729 pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
730
731 /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
732 pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
733
734 /* Without Nested Paging, we need additionally intercepts. */
735 if (!pVM->hm.s.fNestedPaging)
736 {
737 /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
738 pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
739 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
740
741 /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
742 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
743 | SVM_CTRL_INTERCEPT_TASK_SWITCH;
744
745 /* Page faults must be intercepted to implement shadow paging. */
746 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_PF);
747 }
748
749#ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
750 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
751#endif
752
753 /* Apply the exceptions intercepts needed by the GIM provider. */
754 if (pVCpu->hm.s.fGIMTrapXcptUD)
755 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(X86_XCPT_UD);
756
757 /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
758 if (fUsePauseFilter)
759 {
760 pVmcb->ctrl.u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
761 if (fPauseFilterThreshold)
762 pVmcb->ctrl.u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
763 }
764
765 /*
766 * The following MSRs are saved/restored automatically during the world-switch.
767 * Don't intercept guest read/write accesses to these MSRs.
768 */
769 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
770 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
771 hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
772 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
773 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
774 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
775 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
776 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
777 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
778 hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
779 }
780
781 return VINF_SUCCESS;
782}
783
784
785/**
786 * Invalidates a guest page by guest virtual address.
787 *
788 * @returns VBox status code.
789 * @param pVM The cross context VM structure.
790 * @param pVCpu The cross context virtual CPU structure.
791 * @param GCVirt Guest virtual address of the page to invalidate.
792 */
793VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
794{
795 AssertReturn(pVM, VERR_INVALID_PARAMETER);
796 Assert(pVM->hm.s.svm.fSupported);
797
798 bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
799
800 /* Skip it if a TLB flush is already pending. */
801 if (!fFlushPending)
802 {
803 Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
804
805 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
806 AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
807
808#if HC_ARCH_BITS == 32
809 /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
810 if (CPUMIsGuestInLongMode(pVCpu))
811 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
812 else
813#endif
814 {
815 SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
816 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
817 }
818 }
819 return VINF_SUCCESS;
820}
821
822
823/**
824 * Flushes the appropriate tagged-TLB entries.
825 *
826 * @param pVCpu The cross context virtual CPU structure.
827 */
828static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
829{
830 PVM pVM = pVCpu->CTX_SUFF(pVM);
831 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
832 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
833
834 /*
835 * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
836 * This can happen both for start & resume due to long jumps back to ring-3.
837 * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
838 * so we cannot reuse the ASIDs without flushing.
839 */
840 bool fNewAsid = false;
841 Assert(pCpu->idCpu != NIL_RTCPUID);
842 if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
843 || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
844 {
845 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
846 pVCpu->hm.s.fForceTLBFlush = true;
847 fNewAsid = true;
848 }
849
850 /* Set TLB flush state as checked until we return from the world switch. */
851 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
852
853 /* Check for explicit TLB flushes. */
854 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
855 {
856 pVCpu->hm.s.fForceTLBFlush = true;
857 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
858 }
859
860 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
861
862 if (pVM->hm.s.svm.fAlwaysFlushTLB)
863 {
864 /*
865 * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
866 */
867 pCpu->uCurrentAsid = 1;
868 pVCpu->hm.s.uCurrentAsid = 1;
869 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
870 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
871
872 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
873 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
874
875 /* Keep track of last CPU ID even when flushing all the time. */
876 if (fNewAsid)
877 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
878 }
879 else if (pVCpu->hm.s.fForceTLBFlush)
880 {
881 /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
882 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
883
884 if (fNewAsid)
885 {
886 ++pCpu->uCurrentAsid;
887 bool fHitASIDLimit = false;
888 if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
889 {
890 pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
891 pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
892 fHitASIDLimit = true;
893
894 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
895 {
896 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
897 pCpu->fFlushAsidBeforeUse = true;
898 }
899 else
900 {
901 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
902 pCpu->fFlushAsidBeforeUse = false;
903 }
904 }
905
906 if ( !fHitASIDLimit
907 && pCpu->fFlushAsidBeforeUse)
908 {
909 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
910 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
911 else
912 {
913 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
914 pCpu->fFlushAsidBeforeUse = false;
915 }
916 }
917
918 pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
919 pVCpu->hm.s.idLastCpu = pCpu->idCpu;
920 pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
921 }
922 else
923 {
924 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
925 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
926 else
927 pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
928 }
929
930 pVCpu->hm.s.fForceTLBFlush = false;
931 }
932
933 /* Update VMCB with the ASID. */
934 if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
935 {
936 pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
937 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
938 }
939
940 AssertMsg(pVCpu->hm.s.idLastCpu == pCpu->idCpu,
941 ("vcpu idLastCpu=%u pcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pCpu->idCpu));
942 AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
943 ("Flush count mismatch for cpu %u (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
944 AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
945 ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
946 AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
947 ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
948
949#ifdef VBOX_WITH_STATISTICS
950 if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
951 STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
952 else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
953 || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
954 {
955 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
956 }
957 else
958 {
959 Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
960 STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
961 }
962#endif
963}
964
965
966/** @name 64-bit guest on 32-bit host OS helper functions.
967 *
968 * The host CPU is still 64-bit capable but the host OS is running in 32-bit
969 * mode (code segment, paging). These wrappers/helpers perform the necessary
970 * bits for the 32->64 switcher.
971 *
972 * @{ */
973#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
974/**
975 * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
976 *
977 * @returns VBox status code.
978 * @param HCPhysVmcbHost Physical address of host VMCB.
979 * @param HCPhysVmcb Physical address of the VMCB.
980 * @param pCtx Pointer to the guest-CPU context.
981 * @param pVM The cross context VM structure.
982 * @param pVCpu The cross context virtual CPU structure.
983 */
984DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
985{
986 uint32_t aParam[8];
987 aParam[0] = RT_LO_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
988 aParam[1] = RT_HI_U32(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Hi. */
989 aParam[2] = RT_LO_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
990 aParam[3] = RT_HI_U32(HCPhysVmcb); /* Param 2: HCPhysVmcb - Hi. */
991 aParam[4] = VM_RC_ADDR(pVM, pVM);
992 aParam[5] = 0;
993 aParam[6] = VM_RC_ADDR(pVM, pVCpu);
994 aParam[7] = 0;
995
996 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
997}
998
999
1000/**
1001 * Executes the specified VMRUN handler in 64-bit mode.
1002 *
1003 * @returns VBox status code.
1004 * @param pVM The cross context VM structure.
1005 * @param pVCpu The cross context virtual CPU structure.
1006 * @param pCtx Pointer to the guest-CPU context.
1007 * @param enmOp The operation to perform.
1008 * @param cParams Number of parameters.
1009 * @param paParam Array of 32-bit parameters.
1010 */
1011VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
1012 uint32_t cParams, uint32_t *paParam)
1013{
1014 AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
1015 Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
1016
1017 NOREF(pCtx);
1018
1019 /* Disable interrupts. */
1020 RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
1021
1022#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
1023 RTCPUID idHostCpu = RTMpCpuId();
1024 CPUMR0SetLApic(pVCpu, idHostCpu);
1025#endif
1026
1027 CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
1028 CPUMSetHyperEIP(pVCpu, enmOp);
1029 for (int i = (int)cParams - 1; i >= 0; i--)
1030 CPUMPushHyper(pVCpu, paParam[i]);
1031
1032 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1033 /* Call the switcher. */
1034 int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
1035 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1036
1037 /* Restore interrupts. */
1038 ASMSetFlags(uOldEFlags);
1039 return rc;
1040}
1041
1042#endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
1043/** @} */
1044
1045
1046/**
1047 * Adds an exception to the intercept exception bitmap in the VMCB and updates
1048 * the corresponding VMCB Clean bit.
1049 *
1050 * @param pVmcb Pointer to the VM control block.
1051 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1052 */
1053DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1054{
1055 if (!(pVmcb->ctrl.u32InterceptXcpt & RT_BIT(u32Xcpt)))
1056 {
1057 pVmcb->ctrl.u32InterceptXcpt |= RT_BIT(u32Xcpt);
1058 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1059 }
1060}
1061
1062
1063/**
1064 * Removes an exception from the intercept-exception bitmap in the VMCB and
1065 * updates the corresponding VMCB Clean bit.
1066 *
1067 * @param pVmcb Pointer to the VM control block.
1068 * @param u32Xcpt The value of the exception (X86_XCPT_*).
1069 */
1070DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
1071{
1072 Assert(u32Xcpt != X86_XCPT_DB);
1073 Assert(u32Xcpt != X86_XCPT_AC);
1074#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
1075 if (pVmcb->ctrl.u32InterceptXcpt & RT_BIT(u32Xcpt))
1076 {
1077 pVmcb->ctrl.u32InterceptXcpt &= ~RT_BIT(u32Xcpt);
1078 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1079 }
1080#endif
1081}
1082
1083
1084/**
1085 * Loads the guest CR0 control register into the guest-state area in the VMCB.
1086 * Although the guest CR0 is a separate field in the VMCB we have to consider
1087 * the FPU state itself which is shared between the host and the guest.
1088 *
1089 * @returns VBox status code.
1090 * @param pVCpu The cross context virtual CPU structure.
1091 * @param pVmcb Pointer to the VM control block.
1092 * @param pCtx Pointer to the guest-CPU context.
1093 *
1094 * @remarks No-long-jump zone!!!
1095 */
1096static void hmR0SvmLoadSharedCR0(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1097{
1098 /*
1099 * Guest CR0.
1100 */
1101 PVM pVM = pVCpu->CTX_SUFF(pVM);
1102 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
1103 {
1104 uint64_t u64GuestCR0 = pCtx->cr0;
1105
1106 /* Always enable caching. */
1107 u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
1108
1109 /*
1110 * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
1111 */
1112 if (!pVM->hm.s.fNestedPaging)
1113 {
1114 u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
1115 u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
1116 }
1117
1118 /*
1119 * Guest FPU bits.
1120 */
1121 bool fInterceptNM = false;
1122 bool fInterceptMF = false;
1123 u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
1124 if (CPUMIsGuestFPUStateActive(pVCpu))
1125 {
1126 /* Catch floating point exceptions if we need to report them to the guest in a different way. */
1127 if (!(pCtx->cr0 & X86_CR0_NE))
1128 {
1129 Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
1130 fInterceptMF = true;
1131 }
1132 }
1133 else
1134 {
1135 fInterceptNM = true; /* Guest FPU inactive, #VMEXIT on #NM for lazy FPU loading. */
1136 u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
1137 | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
1138 }
1139
1140 /*
1141 * Update the exception intercept bitmap.
1142 */
1143 if (fInterceptNM)
1144 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
1145 else
1146 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
1147
1148 if (fInterceptMF)
1149 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
1150 else
1151 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
1152
1153 pVmcb->guest.u64CR0 = u64GuestCR0;
1154 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1155 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
1156 }
1157}
1158
1159
1160/**
1161 * Loads the guest control registers (CR2, CR3, CR4) into the VMCB.
1162 *
1163 * @returns VBox status code.
1164 * @param pVCpu The cross context virtual CPU structure.
1165 * @param pVmcb Pointer to the VM control block.
1166 * @param pCtx Pointer to the guest-CPU context.
1167 *
1168 * @remarks No-long-jump zone!!!
1169 */
1170static int hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1171{
1172 PVM pVM = pVCpu->CTX_SUFF(pVM);
1173
1174 /*
1175 * Guest CR2.
1176 */
1177 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR2))
1178 {
1179 pVmcb->guest.u64CR2 = pCtx->cr2;
1180 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
1181 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
1182 }
1183
1184 /*
1185 * Guest CR3.
1186 */
1187 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
1188 {
1189 if (pVM->hm.s.fNestedPaging)
1190 {
1191 PGMMODE enmShwPagingMode;
1192#if HC_ARCH_BITS == 32
1193 if (CPUMIsGuestInLongModeEx(pCtx))
1194 enmShwPagingMode = PGMMODE_AMD64_NX;
1195 else
1196#endif
1197 enmShwPagingMode = PGMGetHostMode(pVM);
1198
1199 pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
1200 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
1201 Assert(pVmcb->ctrl.u64NestedPagingCR3);
1202 pVmcb->guest.u64CR3 = pCtx->cr3;
1203 }
1204 else
1205 pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
1206
1207 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1208 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
1209 }
1210
1211 /*
1212 * Guest CR4.
1213 * ASSUMES this is done everytime we get in from ring-3! (XCR0)
1214 */
1215 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
1216 {
1217 uint64_t u64GuestCR4 = pCtx->cr4;
1218 if (!pVM->hm.s.fNestedPaging)
1219 {
1220 switch (pVCpu->hm.s.enmShadowMode)
1221 {
1222 case PGMMODE_REAL:
1223 case PGMMODE_PROTECTED: /* Protected mode, no paging. */
1224 AssertFailed();
1225 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1226
1227 case PGMMODE_32_BIT: /* 32-bit paging. */
1228 u64GuestCR4 &= ~X86_CR4_PAE;
1229 break;
1230
1231 case PGMMODE_PAE: /* PAE paging. */
1232 case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
1233 /** Must use PAE paging as we could use physical memory > 4 GB */
1234 u64GuestCR4 |= X86_CR4_PAE;
1235 break;
1236
1237 case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
1238 case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
1239#ifdef VBOX_ENABLE_64_BITS_GUESTS
1240 break;
1241#else
1242 AssertFailed();
1243 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1244#endif
1245
1246 default: /* shut up gcc */
1247 AssertFailed();
1248 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1249 }
1250 }
1251
1252 pVmcb->guest.u64CR4 = u64GuestCR4;
1253 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1254
1255 /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
1256 pVCpu->hm.s.fLoadSaveGuestXcr0 = (u64GuestCR4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
1257
1258 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
1259 }
1260
1261 return VINF_SUCCESS;
1262}
1263
1264
1265/**
1266 * Loads the guest segment registers into the VMCB.
1267 *
1268 * @returns VBox status code.
1269 * @param pVCpu The cross context virtual CPU structure.
1270 * @param pVmcb Pointer to the VM control block.
1271 * @param pCtx Pointer to the guest-CPU context.
1272 *
1273 * @remarks No-long-jump zone!!!
1274 */
1275static void hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1276{
1277 /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
1278 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
1279 {
1280 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, CS, cs);
1281 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, SS, ss);
1282 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, DS, ds);
1283 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, ES, es);
1284 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, FS, fs);
1285 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, GS, gs);
1286
1287 pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
1288 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
1289 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
1290 }
1291
1292 /* Guest TR. */
1293 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
1294 {
1295 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, TR, tr);
1296 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
1297 }
1298
1299 /* Guest LDTR. */
1300 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
1301 {
1302 HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, &pVmcb->guest, LDTR, ldtr);
1303 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
1304 }
1305
1306 /* Guest GDTR. */
1307 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
1308 {
1309 pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
1310 pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
1311 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1312 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
1313 }
1314
1315 /* Guest IDTR. */
1316 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
1317 {
1318 pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
1319 pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
1320 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
1321 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
1322 }
1323}
1324
1325
1326/**
1327 * Loads the guest MSRs into the VMCB.
1328 *
1329 * @param pVCpu The cross context virtual CPU structure.
1330 * @param pVmcb Pointer to the VM control block.
1331 * @param pCtx Pointer to the guest-CPU context.
1332 *
1333 * @remarks No-long-jump zone!!!
1334 */
1335static void hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1336{
1337 /* Guest Sysenter MSRs. */
1338 pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
1339 pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
1340 pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
1341
1342 /*
1343 * Guest EFER MSR.
1344 * AMD-V requires guest EFER.SVME to be set. Weird.
1345 * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
1346 */
1347 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
1348 {
1349 pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
1350 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1351 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
1352 }
1353
1354 /* 64-bit MSRs. */
1355 if (CPUMIsGuestInLongModeEx(pCtx))
1356 {
1357 pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
1358 pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
1359 }
1360 else
1361 {
1362 /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
1363 if (pCtx->msrEFER & MSR_K6_EFER_LME)
1364 {
1365 pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
1366 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
1367 }
1368 }
1369
1370
1371 /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
1372 * be writable in 32-bit mode. Clarify with AMD spec. */
1373 pVmcb->guest.u64STAR = pCtx->msrSTAR;
1374 pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
1375 pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
1376 pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
1377 pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
1378}
1379
1380
1381/**
1382 * Loads the guest state into the VMCB and programs the necessary intercepts
1383 * accordingly.
1384 *
1385 * @param pVCpu The cross context virtual CPU structure.
1386 * @param pVmcb Pointer to the VM control block.
1387 * @param pCtx Pointer to the guest-CPU context.
1388 *
1389 * @remarks No-long-jump zone!!!
1390 * @remarks Requires EFLAGS to be up-to-date in the VMCB!
1391 */
1392static void hmR0SvmLoadSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1393{
1394 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
1395 return;
1396 Assert((pCtx->dr[6] & X86_DR6_RA1_MASK) == X86_DR6_RA1_MASK); Assert((pCtx->dr[6] & X86_DR6_RAZ_MASK) == 0);
1397 Assert((pCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); Assert((pCtx->dr[7] & X86_DR7_RAZ_MASK) == 0);
1398
1399 bool fInterceptMovDRx = false;
1400
1401 /*
1402 * Anyone single stepping on the host side? If so, we'll have to use the
1403 * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
1404 * the VMM level like the VT-x implementations does.
1405 */
1406 bool const fStepping = pVCpu->hm.s.fSingleInstruction;
1407 if (fStepping)
1408 {
1409 pVCpu->hm.s.fClearTrapFlag = true;
1410 pVmcb->guest.u64RFlags |= X86_EFL_TF;
1411 fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
1412 }
1413 else
1414 Assert(!DBGFIsStepping(pVCpu));
1415
1416 if ( fStepping
1417 || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
1418 {
1419 /*
1420 * Use the combined guest and host DRx values found in the hypervisor
1421 * register set because the debugger has breakpoints active or someone
1422 * is single stepping on the host side.
1423 *
1424 * Note! DBGF expects a clean DR6 state before executing guest code.
1425 */
1426#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1427 if ( CPUMIsGuestInLongModeEx(pCtx)
1428 && !CPUMIsHyperDebugStateActivePending(pVCpu))
1429 {
1430 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1431 Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
1432 Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
1433 }
1434 else
1435#endif
1436 if (!CPUMIsHyperDebugStateActive(pVCpu))
1437 {
1438 CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
1439 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
1440 Assert(CPUMIsHyperDebugStateActive(pVCpu));
1441 }
1442
1443 /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
1444 if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
1445 || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
1446 {
1447 pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
1448 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
1449 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1450 pVCpu->hm.s.fUsingHyperDR7 = true;
1451 }
1452
1453 /** @todo If we cared, we could optimize to allow the guest to read registers
1454 * with the same values. */
1455 fInterceptMovDRx = true;
1456 Log5(("hmR0SvmLoadSharedDebugState: Loaded hyper DRx\n"));
1457 }
1458 else
1459 {
1460 /*
1461 * Update DR6, DR7 with the guest values if necessary.
1462 */
1463 if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
1464 || pVmcb->guest.u64DR6 != pCtx->dr[6])
1465 {
1466 pVmcb->guest.u64DR7 = pCtx->dr[7];
1467 pVmcb->guest.u64DR6 = pCtx->dr[6];
1468 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
1469 pVCpu->hm.s.fUsingHyperDR7 = false;
1470 }
1471
1472 /*
1473 * If the guest has enabled debug registers, we need to load them prior to
1474 * executing guest code so they'll trigger at the right time.
1475 */
1476 if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
1477 {
1478#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1479 if ( CPUMIsGuestInLongModeEx(pCtx)
1480 && !CPUMIsGuestDebugStateActivePending(pVCpu))
1481 {
1482 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1483 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1484 Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
1485 Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
1486 }
1487 else
1488#endif
1489 if (!CPUMIsGuestDebugStateActive(pVCpu))
1490 {
1491 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
1492 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
1493 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
1494 Assert(CPUMIsGuestDebugStateActive(pVCpu));
1495 }
1496 Log5(("hmR0SvmLoadSharedDebugState: Loaded guest DRx\n"));
1497 }
1498 /*
1499 * If no debugging enabled, we'll lazy load DR0-3. We don't need to
1500 * intercept #DB as DR6 is updated in the VMCB.
1501 *
1502 * Note! If we cared and dared, we could skip intercepting \#DB here.
1503 * However, \#DB shouldn't be performance critical, so we'll play safe
1504 * and keep the code similar to the VT-x code and always intercept it.
1505 */
1506#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
1507 else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
1508 && !CPUMIsGuestDebugStateActive(pVCpu))
1509#else
1510 else if (!CPUMIsGuestDebugStateActive(pVCpu))
1511#endif
1512 {
1513 fInterceptMovDRx = true;
1514 }
1515 }
1516
1517 Assert(pVmcb->ctrl.u32InterceptXcpt & RT_BIT_32(X86_XCPT_DB));
1518 if (fInterceptMovDRx)
1519 {
1520 if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
1521 || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
1522 {
1523 pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
1524 pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
1525 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1526 }
1527 }
1528 else
1529 {
1530 if ( pVmcb->ctrl.u16InterceptRdDRx
1531 || pVmcb->ctrl.u16InterceptWrDRx)
1532 {
1533 pVmcb->ctrl.u16InterceptRdDRx = 0;
1534 pVmcb->ctrl.u16InterceptWrDRx = 0;
1535 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
1536 }
1537 }
1538
1539 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
1540}
1541
1542
1543/**
1544 * Loads the guest APIC state (currently just the TPR).
1545 *
1546 * @returns VBox status code.
1547 * @param pVCpu The cross context virtual CPU structure.
1548 * @param pVmcb Pointer to the VM control block.
1549 * @param pCtx Pointer to the guest-CPU context.
1550 */
1551static int hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1552{
1553 if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE))
1554 return VINF_SUCCESS;
1555
1556 int rc = VINF_SUCCESS;
1557 PVM pVM = pVCpu->CTX_SUFF(pVM);
1558 if ( PDMHasApic(pVM)
1559 && APICIsEnabled(pVCpu))
1560 {
1561 bool fPendingIntr;
1562 uint8_t u8Tpr;
1563 rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
1564 AssertRCReturn(rc, rc);
1565
1566 /* Assume that we need to trap all TPR accesses and thus need not check on
1567 every #VMEXIT if we should update the TPR. */
1568 Assert(pVmcb->ctrl.IntCtrl.n.u1VIntrMasking);
1569 pVCpu->hm.s.svm.fSyncVTpr = false;
1570
1571 /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
1572 if (pVM->hm.s.fTPRPatchingActive)
1573 {
1574 pCtx->msrLSTAR = u8Tpr;
1575
1576 /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
1577 if (fPendingIntr)
1578 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
1579 else
1580 {
1581 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
1582 pVCpu->hm.s.svm.fSyncVTpr = true;
1583 }
1584 }
1585 else
1586 {
1587 /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
1588 pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
1589
1590 /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
1591 if (fPendingIntr)
1592 pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
1593 else
1594 {
1595 pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
1596 pVCpu->hm.s.svm.fSyncVTpr = true;
1597 }
1598
1599 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
1600 }
1601 }
1602
1603 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
1604 return rc;
1605}
1606
1607
1608/**
1609 * Loads the exception interrupts required for guest execution in the VMCB.
1610 *
1611 * @returns VBox status code.
1612 * @param pVCpu The cross context virtual CPU structure.
1613 * @param pVmcb Pointer to the VM control block.
1614 * @param pCtx Pointer to the guest-CPU context.
1615 */
1616static int hmR0SvmLoadGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1617{
1618 NOREF(pCtx);
1619 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
1620 {
1621 /* Trap #UD for GIM provider (e.g. for hypercalls). */
1622 if (pVCpu->hm.s.fGIMTrapXcptUD)
1623 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_UD);
1624 else
1625 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_UD);
1626
1627 /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
1628 if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
1629 hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_BP);
1630 else
1631 hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_BP);
1632
1633 /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmLoadSharedCR0(). */
1634 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
1635 }
1636 return VINF_SUCCESS;
1637}
1638
1639
1640/**
1641 * Sets up the appropriate function to run guest code.
1642 *
1643 * @returns VBox status code.
1644 * @param pVCpu The cross context virtual CPU structure.
1645 * @param pCtx Pointer to the guest-CPU context.
1646 *
1647 * @remarks No-long-jump zone!!!
1648 */
1649static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
1650{
1651 if (CPUMIsGuestInLongModeEx(pCtx))
1652 {
1653#ifndef VBOX_ENABLE_64_BITS_GUESTS
1654 return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
1655#endif
1656 Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
1657#if HC_ARCH_BITS == 32
1658 /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
1659 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
1660#else
1661 /* 64-bit host or hybrid host. */
1662 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
1663#endif
1664 }
1665 else
1666 {
1667 /* Guest is not in long mode, use the 32-bit handler. */
1668 pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
1669 }
1670 return VINF_SUCCESS;
1671}
1672
1673
1674/**
1675 * Enters the AMD-V session.
1676 *
1677 * @returns VBox status code.
1678 * @param pVM The cross context VM structure.
1679 * @param pVCpu The cross context virtual CPU structure.
1680 * @param pCpu Pointer to the CPU info struct.
1681 */
1682VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
1683{
1684 AssertPtr(pVM);
1685 AssertPtr(pVCpu);
1686 Assert(pVM->hm.s.svm.fSupported);
1687 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1688 NOREF(pVM); NOREF(pCpu);
1689
1690 LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
1691 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1692
1693 pVCpu->hm.s.fLeaveDone = false;
1694 return VINF_SUCCESS;
1695}
1696
1697
1698/**
1699 * Thread-context callback for AMD-V.
1700 *
1701 * @param enmEvent The thread-context event.
1702 * @param pVCpu The cross context virtual CPU structure.
1703 * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
1704 * @thread EMT(pVCpu)
1705 */
1706VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
1707{
1708 NOREF(fGlobalInit);
1709
1710 switch (enmEvent)
1711 {
1712 case RTTHREADCTXEVENT_OUT:
1713 {
1714 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1715 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
1716 VMCPU_ASSERT_EMT(pVCpu);
1717
1718 /* No longjmps (log-flush, locks) in this fragile context. */
1719 VMMRZCallRing3Disable(pVCpu);
1720
1721 if (!pVCpu->hm.s.fLeaveDone)
1722 {
1723 hmR0SvmLeave(pVCpu);
1724 pVCpu->hm.s.fLeaveDone = true;
1725 }
1726
1727 /* Leave HM context, takes care of local init (term). */
1728 int rc = HMR0LeaveCpu(pVCpu);
1729 AssertRC(rc); NOREF(rc);
1730
1731 /* Restore longjmp state. */
1732 VMMRZCallRing3Enable(pVCpu);
1733 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
1734 break;
1735 }
1736
1737 case RTTHREADCTXEVENT_IN:
1738 {
1739 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1740 Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
1741 VMCPU_ASSERT_EMT(pVCpu);
1742
1743 /* No longjmps (log-flush, locks) in this fragile context. */
1744 VMMRZCallRing3Disable(pVCpu);
1745
1746 /*
1747 * Initialize the bare minimum state required for HM. This takes care of
1748 * initializing AMD-V if necessary (onlined CPUs, local init etc.)
1749 */
1750 int rc = HMR0EnterCpu(pVCpu);
1751 AssertRC(rc); NOREF(rc);
1752 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1753
1754 pVCpu->hm.s.fLeaveDone = false;
1755
1756 /* Restore longjmp state. */
1757 VMMRZCallRing3Enable(pVCpu);
1758 break;
1759 }
1760
1761 default:
1762 break;
1763 }
1764}
1765
1766
1767/**
1768 * Saves the host state.
1769 *
1770 * @returns VBox status code.
1771 * @param pVM The cross context VM structure.
1772 * @param pVCpu The cross context virtual CPU structure.
1773 *
1774 * @remarks No-long-jump zone!!!
1775 */
1776VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
1777{
1778 NOREF(pVM);
1779 NOREF(pVCpu);
1780 /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
1781 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
1782 return VINF_SUCCESS;
1783}
1784
1785
1786/**
1787 * Loads the guest state into the VMCB.
1788 *
1789 * The CPU state will be loaded from these fields on every successful VM-entry.
1790 * Also sets up the appropriate VMRUN function to execute guest code based on
1791 * the guest CPU mode.
1792 *
1793 * @returns VBox status code.
1794 * @param pVM The cross context VM structure.
1795 * @param pVCpu The cross context virtual CPU structure.
1796 * @param pCtx Pointer to the guest-CPU context.
1797 *
1798 * @remarks No-long-jump zone!!!
1799 */
1800static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1801{
1802 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1803 AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
1804
1805 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
1806
1807 int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
1808 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1809
1810 hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
1811 hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
1812
1813 pVmcb->guest.u64RIP = pCtx->rip;
1814 pVmcb->guest.u64RSP = pCtx->rsp;
1815 pVmcb->guest.u64RFlags = pCtx->eflags.u32;
1816 pVmcb->guest.u64RAX = pCtx->rax;
1817
1818 rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
1819 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1820
1821 rc = hmR0SvmLoadGuestXcptIntercepts(pVCpu, pVmcb, pCtx);
1822 AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1823
1824 rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
1825 AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
1826
1827 /* Clear any unused and reserved bits. */
1828 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
1829 | HM_CHANGED_GUEST_RSP
1830 | HM_CHANGED_GUEST_RFLAGS
1831 | HM_CHANGED_GUEST_SYSENTER_CS_MSR
1832 | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
1833 | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
1834 | HM_CHANGED_GUEST_LAZY_MSRS /* Unused. */
1835 | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
1836 | HM_CHANGED_SVM_RESERVED2
1837 | HM_CHANGED_SVM_RESERVED3
1838 | HM_CHANGED_SVM_RESERVED4);
1839
1840 /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
1841 AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
1842 || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
1843 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
1844
1845 Log4(("Load: CS:RIP=%04x:%RX64 EFL=%#x SS:RSP=%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->eflags.u, pCtx->ss.Sel, pCtx->rsp));
1846 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
1847 return rc;
1848}
1849
1850
1851/**
1852 * Loads the state shared between the host and guest into the
1853 * VMCB.
1854 *
1855 * @param pVCpu The cross context virtual CPU structure.
1856 * @param pVmcb Pointer to the VM control block.
1857 * @param pCtx Pointer to the guest-CPU context.
1858 *
1859 * @remarks No-long-jump zone!!!
1860 */
1861static void hmR0SvmLoadSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
1862{
1863 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1864 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
1865
1866 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
1867 hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
1868
1869 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
1870 hmR0SvmLoadSharedDebugState(pVCpu, pVmcb, pCtx);
1871
1872 /* Unused on AMD-V. */
1873 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
1874
1875 AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
1876 ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
1877}
1878
1879
1880/**
1881 * Saves the entire guest state from the VMCB into the
1882 * guest-CPU context. Currently there is no residual state left in the CPU that
1883 * is not updated in the VMCB.
1884 *
1885 * @returns VBox status code.
1886 * @param pVCpu The cross context virtual CPU structure.
1887 * @param pMixedCtx Pointer to the guest-CPU context. The data may be
1888 * out-of-sync. Make sure to update the required fields
1889 * before using them.
1890 */
1891static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
1892{
1893 Assert(VMMRZCallRing3IsEnabled(pVCpu));
1894
1895 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
1896
1897 pMixedCtx->rip = pVmcb->guest.u64RIP;
1898 pMixedCtx->rsp = pVmcb->guest.u64RSP;
1899 pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
1900 pMixedCtx->rax = pVmcb->guest.u64RAX;
1901
1902 /*
1903 * Guest interrupt shadow.
1904 */
1905 if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
1906 EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
1907 else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1908 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1909
1910 /*
1911 * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
1912 */
1913 pMixedCtx->cr2 = pVmcb->guest.u64CR2;
1914
1915 /*
1916 * Guest MSRs.
1917 */
1918 pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
1919 pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
1920 pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
1921 pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
1922 pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
1923 pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
1924 pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
1925 pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
1926
1927 /*
1928 * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
1929 */
1930 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, CS, cs);
1931 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, SS, ss);
1932 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, DS, ds);
1933 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, ES, es);
1934 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, FS, fs);
1935 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, GS, gs);
1936
1937 /*
1938 * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
1939 * register (yet).
1940 */
1941 /** @todo SELM might need to be fixed as it too should not care about the
1942 * granularity bit. See @bugref{6785}. */
1943 if ( !pMixedCtx->cs.Attr.n.u1Granularity
1944 && pMixedCtx->cs.Attr.n.u1Present
1945 && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
1946 {
1947 Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
1948 pMixedCtx->cs.Attr.n.u1Granularity = 1;
1949 }
1950
1951#ifdef VBOX_STRICT
1952# define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
1953 AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
1954 || ( pMixedCtx->reg.Attr.n.u1Granularity \
1955 ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
1956 : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
1957 ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
1958 pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
1959
1960 HMSVM_ASSERT_SEG_GRANULARITY(cs);
1961 HMSVM_ASSERT_SEG_GRANULARITY(ss);
1962 HMSVM_ASSERT_SEG_GRANULARITY(ds);
1963 HMSVM_ASSERT_SEG_GRANULARITY(es);
1964 HMSVM_ASSERT_SEG_GRANULARITY(fs);
1965 HMSVM_ASSERT_SEG_GRANULARITY(gs);
1966
1967# undef HMSVM_ASSERT_SEL_GRANULARITY
1968#endif
1969
1970 /*
1971 * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
1972 * and thus it's possible that when the CPL changes during guest execution that the SS DPL
1973 * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
1974 * See AMD spec. 15.5.1 "Basic operation".
1975 */
1976 Assert(!(pVmcb->guest.u8CPL & ~0x3));
1977 pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
1978
1979 /*
1980 * Guest TR.
1981 * Fixup TR attributes so it's compatible with Intel. Important when saved-states are used
1982 * between Intel and AMD. See @bugref{6208#c39}.
1983 * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
1984 */
1985 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, TR, tr);
1986 if (pMixedCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1987 {
1988 if ( pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1989 || CPUMIsGuestInLongModeEx(pMixedCtx))
1990 pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
1991 else if (pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
1992 pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
1993 }
1994
1995 /*
1996 * Guest Descriptor-Table registers.
1997 */
1998 HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, &pVmcb->guest, LDTR, ldtr);
1999 pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
2000 pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
2001
2002 pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
2003 pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
2004
2005 /*
2006 * Guest Debug registers.
2007 */
2008 if (!pVCpu->hm.s.fUsingHyperDR7)
2009 {
2010 pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
2011 pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
2012 }
2013 else
2014 {
2015 Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
2016 CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
2017 }
2018
2019 /*
2020 * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
2021 * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
2022 */
2023 if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
2024 && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
2025 {
2026 CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
2027 PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
2028 }
2029}
2030
2031
2032/**
2033 * Does the necessary state syncing before returning to ring-3 for any reason
2034 * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
2035 *
2036 * @param pVCpu The cross context virtual CPU structure.
2037 *
2038 * @remarks No-long-jmp zone!!!
2039 */
2040static void hmR0SvmLeave(PVMCPU pVCpu)
2041{
2042 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2043 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2044 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2045
2046 /*
2047 * !!! IMPORTANT !!!
2048 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
2049 */
2050
2051 /* Restore host FPU state if necessary and resync on next R0 reentry .*/
2052 if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
2053 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
2054
2055 /*
2056 * Restore host debug registers if necessary and resync on next R0 reentry.
2057 */
2058#ifdef VBOX_STRICT
2059 if (CPUMIsHyperDebugStateActive(pVCpu))
2060 {
2061 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2062 Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
2063 Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
2064 }
2065#endif
2066 if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
2067 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
2068
2069 Assert(!CPUMIsHyperDebugStateActive(pVCpu));
2070 Assert(!CPUMIsGuestDebugStateActive(pVCpu));
2071
2072 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
2073 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
2074 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
2075 STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
2076 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2077
2078 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
2079}
2080
2081
2082/**
2083 * Leaves the AMD-V session.
2084 *
2085 * @returns VBox status code.
2086 * @param pVCpu The cross context virtual CPU structure.
2087 */
2088static int hmR0SvmLeaveSession(PVMCPU pVCpu)
2089{
2090 HM_DISABLE_PREEMPT();
2091 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2092 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
2093
2094 /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
2095 and done this from the SVMR0ThreadCtxCallback(). */
2096 if (!pVCpu->hm.s.fLeaveDone)
2097 {
2098 hmR0SvmLeave(pVCpu);
2099 pVCpu->hm.s.fLeaveDone = true;
2100 }
2101
2102 /*
2103 * !!! IMPORTANT !!!
2104 * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
2105 */
2106
2107 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
2108 /* Deregister hook now that we've left HM context before re-enabling preemption. */
2109 VMMR0ThreadCtxHookDisable(pVCpu);
2110
2111 /* Leave HM context. This takes care of local init (term). */
2112 int rc = HMR0LeaveCpu(pVCpu);
2113
2114 HM_RESTORE_PREEMPT();
2115 return rc;
2116}
2117
2118
2119/**
2120 * Does the necessary state syncing before doing a longjmp to ring-3.
2121 *
2122 * @returns VBox status code.
2123 * @param pVCpu The cross context virtual CPU structure.
2124 *
2125 * @remarks No-long-jmp zone!!!
2126 */
2127static int hmR0SvmLongJmpToRing3(PVMCPU pVCpu)
2128{
2129 return hmR0SvmLeaveSession(pVCpu);
2130}
2131
2132
2133/**
2134 * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
2135 * any remaining host state) before we longjump to ring-3 and possibly get
2136 * preempted.
2137 *
2138 * @param pVCpu The cross context virtual CPU structure.
2139 * @param enmOperation The operation causing the ring-3 longjump.
2140 * @param pvUser The user argument (pointer to the possibly
2141 * out-of-date guest-CPU context).
2142 */
2143static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
2144{
2145 RT_NOREF_PV(pvUser);
2146
2147 if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
2148 {
2149 /*
2150 * !!! IMPORTANT !!!
2151 * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
2152 * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
2153 */
2154 VMMRZCallRing3RemoveNotification(pVCpu);
2155 VMMRZCallRing3Disable(pVCpu);
2156 HM_DISABLE_PREEMPT();
2157
2158 /* Restore host FPU state if necessary and resync on next R0 reentry. */
2159 CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
2160
2161 /* Restore host debug registers if necessary and resync on next R0 reentry. */
2162 CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
2163
2164 /* Deregister the hook now that we've left HM context before re-enabling preemption. */
2165 /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
2166 VMMR0ThreadCtxHookDisable(pVCpu);
2167
2168 /* Leave HM context. This takes care of local init (term). */
2169 HMR0LeaveCpu(pVCpu);
2170
2171 HM_RESTORE_PREEMPT();
2172 return VINF_SUCCESS;
2173 }
2174
2175 Assert(pVCpu);
2176 Assert(pvUser);
2177 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2178 HMSVM_ASSERT_PREEMPT_SAFE();
2179
2180 VMMRZCallRing3Disable(pVCpu);
2181 Assert(VMMR0IsLogFlushDisabled(pVCpu));
2182
2183 Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
2184 int rc = hmR0SvmLongJmpToRing3(pVCpu);
2185 AssertRCReturn(rc, rc);
2186
2187 VMMRZCallRing3Enable(pVCpu);
2188 return VINF_SUCCESS;
2189}
2190
2191
2192/**
2193 * Take necessary actions before going back to ring-3.
2194 *
2195 * An action requires us to go back to ring-3. This function does the necessary
2196 * steps before we can safely return to ring-3. This is not the same as longjmps
2197 * to ring-3, this is voluntary.
2198 *
2199 * @returns VBox status code.
2200 * @param pVM The cross context VM structure.
2201 * @param pVCpu The cross context virtual CPU structure.
2202 * @param pCtx Pointer to the guest-CPU context.
2203 * @param rcExit The reason for exiting to ring-3. Can be
2204 * VINF_VMM_UNKNOWN_RING3_CALL.
2205 */
2206static int hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
2207{
2208 Assert(pVM);
2209 Assert(pVCpu);
2210 Assert(pCtx);
2211 HMSVM_ASSERT_PREEMPT_SAFE();
2212
2213 /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
2214 VMMRZCallRing3Disable(pVCpu);
2215 Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
2216
2217 /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
2218 if (pVCpu->hm.s.Event.fPending)
2219 {
2220 hmR0SvmPendingEventToTrpmTrap(pVCpu);
2221 Assert(!pVCpu->hm.s.Event.fPending);
2222 }
2223
2224 /* Sync. the necessary state for going back to ring-3. */
2225 hmR0SvmLeaveSession(pVCpu);
2226 STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
2227
2228 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
2229 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
2230 | CPUM_CHANGED_LDTR
2231 | CPUM_CHANGED_GDTR
2232 | CPUM_CHANGED_IDTR
2233 | CPUM_CHANGED_TR
2234 | CPUM_CHANGED_HIDDEN_SEL_REGS);
2235 if ( pVM->hm.s.fNestedPaging
2236 && CPUMIsGuestPagingEnabledEx(pCtx))
2237 {
2238 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
2239 }
2240
2241 /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
2242 if (rcExit != VINF_EM_RAW_INTERRUPT)
2243 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
2244
2245 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
2246
2247 /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
2248 VMMRZCallRing3RemoveNotification(pVCpu);
2249 VMMRZCallRing3Enable(pVCpu);
2250
2251 /*
2252 * If we're emulating an instruction, we shouldn't have any TRPM traps pending
2253 * and if we're injecting an event we should have a TRPM trap pending.
2254 */
2255 AssertReturnStmt(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu),
2256 pVCpu->hm.s.u32HMError = rcExit,
2257 VERR_SVM_IPE_5);
2258 AssertReturnStmt(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu),
2259 pVCpu->hm.s.u32HMError = rcExit,
2260 VERR_SVM_IPE_4);
2261
2262 return rcExit;
2263}
2264
2265
2266/**
2267 * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
2268 * intercepts.
2269 *
2270 * @param pVM The cross context VM structure.
2271 * @param pVCpu The cross context virtual CPU structure.
2272 *
2273 * @remarks No-long-jump zone!!!
2274 */
2275static void hmR0SvmUpdateTscOffsetting(PVM pVM, PVMCPU pVCpu)
2276{
2277 bool fParavirtTsc;
2278 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2279 bool fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVmcb->ctrl.u64TSCOffset, &fParavirtTsc);
2280 if (fCanUseRealTsc)
2281 {
2282 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSC;
2283 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSCP;
2284 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
2285 }
2286 else
2287 {
2288 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSC;
2289 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSCP;
2290 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
2291 }
2292 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
2293
2294 /** @todo later optimize this to be done elsewhere and not before every
2295 * VM-entry. */
2296 if (fParavirtTsc)
2297 {
2298 /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
2299 information before every VM-entry, hence disable it for performance sake. */
2300#if 0
2301 int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
2302 AssertRC(rc);
2303#endif
2304 STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
2305 }
2306}
2307
2308
2309/**
2310 * Sets an event as a pending event to be injected into the guest.
2311 *
2312 * @param pVCpu The cross context virtual CPU structure.
2313 * @param pEvent Pointer to the SVM event.
2314 * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
2315 * page-fault.
2316 *
2317 * @remarks Statistics counter assumes this is a guest event being reflected to
2318 * the guest i.e. 'StatInjectPendingReflect' is incremented always.
2319 */
2320DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
2321{
2322 Assert(!pVCpu->hm.s.Event.fPending);
2323 Assert(pEvent->n.u1Valid);
2324
2325 pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
2326 pVCpu->hm.s.Event.fPending = true;
2327 pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
2328
2329 Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2330 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2331}
2332
2333
2334/**
2335 * Injects an event into the guest upon VMRUN by updating the relevant field
2336 * in the VMCB.
2337 *
2338 * @param pVCpu The cross context virtual CPU structure.
2339 * @param pVmcb Pointer to the guest VM control block.
2340 * @param pCtx Pointer to the guest-CPU context.
2341 * @param pEvent Pointer to the event.
2342 *
2343 * @remarks No-long-jump zone!!!
2344 * @remarks Requires CR0!
2345 */
2346DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
2347{
2348 NOREF(pVCpu); NOREF(pCtx);
2349
2350 pVmcb->ctrl.EventInject.u = pEvent->u;
2351 STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
2352
2353 Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
2354 pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
2355}
2356
2357
2358
2359/**
2360 * Converts any TRPM trap into a pending HM event. This is typically used when
2361 * entering from ring-3 (not longjmp returns).
2362 *
2363 * @param pVCpu The cross context virtual CPU structure.
2364 */
2365static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
2366{
2367 Assert(TRPMHasTrap(pVCpu));
2368 Assert(!pVCpu->hm.s.Event.fPending);
2369
2370 uint8_t uVector;
2371 TRPMEVENT enmTrpmEvent;
2372 RTGCUINT uErrCode;
2373 RTGCUINTPTR GCPtrFaultAddress;
2374 uint8_t cbInstr;
2375
2376 int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
2377 AssertRC(rc);
2378
2379 SVMEVENT Event;
2380 Event.u = 0;
2381 Event.n.u1Valid = 1;
2382 Event.n.u8Vector = uVector;
2383
2384 /* Refer AMD spec. 15.20 "Event Injection" for the format. */
2385 if (enmTrpmEvent == TRPM_TRAP)
2386 {
2387 Event.n.u3Type = SVM_EVENT_EXCEPTION;
2388 switch (uVector)
2389 {
2390 case X86_XCPT_NMI:
2391 {
2392 Event.n.u3Type = SVM_EVENT_NMI;
2393 break;
2394 }
2395
2396 case X86_XCPT_PF:
2397 case X86_XCPT_DF:
2398 case X86_XCPT_TS:
2399 case X86_XCPT_NP:
2400 case X86_XCPT_SS:
2401 case X86_XCPT_GP:
2402 case X86_XCPT_AC:
2403 {
2404 Event.n.u1ErrorCodeValid = 1;
2405 Event.n.u32ErrorCode = uErrCode;
2406 break;
2407 }
2408 }
2409 }
2410 else if (enmTrpmEvent == TRPM_HARDWARE_INT)
2411 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2412 else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
2413 Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
2414 else
2415 AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
2416
2417 rc = TRPMResetTrap(pVCpu);
2418 AssertRC(rc);
2419
2420 Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
2421 !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
2422
2423 hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
2424}
2425
2426
2427/**
2428 * Converts any pending SVM event into a TRPM trap. Typically used when leaving
2429 * AMD-V to execute any instruction.
2430 *
2431 * @param pVCpu The cross context virtual CPU structure.
2432 */
2433static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
2434{
2435 Assert(pVCpu->hm.s.Event.fPending);
2436 Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
2437
2438 SVMEVENT Event;
2439 Event.u = pVCpu->hm.s.Event.u64IntInfo;
2440
2441 uint8_t uVector = Event.n.u8Vector;
2442 uint8_t uVectorType = Event.n.u3Type;
2443 TRPMEVENT enmTrapType = HMSvmEventToTrpmEventType(&Event);
2444
2445 Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
2446
2447 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
2448 AssertRC(rc);
2449
2450 if (Event.n.u1ErrorCodeValid)
2451 TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
2452
2453 if ( uVectorType == SVM_EVENT_EXCEPTION
2454 && uVector == X86_XCPT_PF)
2455 {
2456 TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
2457 Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
2458 }
2459 else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
2460 {
2461 AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
2462 || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
2463 ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
2464 TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
2465 }
2466 pVCpu->hm.s.Event.fPending = false;
2467}
2468
2469
2470/**
2471 * Gets the guest's interrupt-shadow.
2472 *
2473 * @returns The guest's interrupt-shadow.
2474 * @param pVCpu The cross context virtual CPU structure.
2475 * @param pCtx Pointer to the guest-CPU context.
2476 *
2477 * @remarks No-long-jump zone!!!
2478 * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
2479 */
2480DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
2481{
2482 /*
2483 * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
2484 * inhibit interrupts or clear any existing interrupt-inhibition.
2485 */
2486 uint32_t uIntrState = 0;
2487 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2488 {
2489 if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
2490 {
2491 /*
2492 * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
2493 * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
2494 */
2495 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2496 }
2497 else
2498 uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
2499 }
2500 return uIntrState;
2501}
2502
2503
2504/**
2505 * Sets the virtual interrupt intercept control in the VMCB which
2506 * instructs AMD-V to cause a \#VMEXIT as soon as the guest is in a state to
2507 * receive interrupts.
2508 *
2509 * @param pVmcb Pointer to the VM control block.
2510 */
2511DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
2512{
2513 if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
2514 {
2515 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 1; /* A virtual interrupt is pending. */
2516 pVmcb->ctrl.IntCtrl.n.u8VIntrVector = 0; /* Vector not necessary as we #VMEXIT for delivering the interrupt. */
2517 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VINTR;
2518 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
2519
2520 Log4(("Setting VINTR intercept\n"));
2521 }
2522}
2523
2524
2525#if 0
2526/**
2527 * Clears the virtual interrupt intercept control in the VMCB as
2528 * we are figured the guest is unable process any interrupts
2529 * at this point of time.
2530 *
2531 * @param pVmcb Pointer to the VM control block.
2532 */
2533DECLINLINE(void) hmR0SvmClearVirtIntrIntercept(PSVMVMCB pVmcb)
2534{
2535 if (pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR)
2536 {
2537 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VINTR;
2538 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
2539 Log4(("Clearing VINTR intercept\n"));
2540 }
2541}
2542#endif
2543
2544
2545/**
2546 * Sets the IRET intercept control in the VMCB which instructs AMD-V to cause a
2547 * \#VMEXIT as soon as a guest starts executing an IRET. This is used to unblock
2548 * virtual NMIs.
2549 *
2550 * @param pVmcb Pointer to the VM control block.
2551 */
2552DECLINLINE(void) hmR0SvmSetIretIntercept(PSVMVMCB pVmcb)
2553{
2554 if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET))
2555 {
2556 pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_IRET;
2557 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
2558
2559 Log4(("Setting IRET intercept\n"));
2560 }
2561}
2562
2563
2564/**
2565 * Clears the IRET intercept control in the VMCB.
2566 *
2567 * @param pVmcb Pointer to the VM control block.
2568 */
2569DECLINLINE(void) hmR0SvmClearIretIntercept(PSVMVMCB pVmcb)
2570{
2571 if (pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET)
2572 {
2573 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_IRET;
2574 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
2575
2576 Log4(("Clearing IRET intercept\n"));
2577 }
2578}
2579
2580
2581/**
2582 * Evaluates the event to be delivered to the guest and sets it as the pending
2583 * event.
2584 *
2585 * @param pVCpu The cross context virtual CPU structure.
2586 * @param pCtx Pointer to the guest-CPU context.
2587 */
2588static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2589{
2590 Assert(!pVCpu->hm.s.Event.fPending);
2591 Log4Func(("\n"));
2592
2593 bool const fIntShadow = RT_BOOL(hmR0SvmGetGuestIntrShadow(pVCpu, pCtx));
2594 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2595 bool const fBlockNmi = VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS);
2596 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2597
2598 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
2599 APICUpdatePendingInterrupts(pVCpu);
2600
2601 SVMEVENT Event;
2602 Event.u = 0;
2603 /** @todo SMI. SMIs take priority over NMIs. */
2604 if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
2605 {
2606 if (fBlockNmi)
2607 hmR0SvmSetIretIntercept(pVmcb);
2608 else if (fIntShadow)
2609 hmR0SvmSetVirtIntrIntercept(pVmcb);
2610 else
2611 {
2612 Log4(("Pending NMI\n"));
2613
2614 Event.n.u1Valid = 1;
2615 Event.n.u8Vector = X86_XCPT_NMI;
2616 Event.n.u3Type = SVM_EVENT_NMI;
2617
2618 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2619 hmR0SvmSetIretIntercept(pVmcb);
2620 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
2621 }
2622 }
2623 else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
2624 && !pVCpu->hm.s.fSingleInstruction)
2625 {
2626 /*
2627 * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
2628 * a valid interrupt we -must- deliver the interrupt. We can no longer re-request it from the APIC.
2629 */
2630 if ( !fBlockInt
2631 && !fIntShadow)
2632 {
2633 uint8_t u8Interrupt;
2634 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
2635 if (RT_SUCCESS(rc))
2636 {
2637 Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
2638
2639 Event.n.u1Valid = 1;
2640 Event.n.u8Vector = u8Interrupt;
2641 Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
2642
2643 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
2644 }
2645 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
2646 {
2647 /*
2648 * AMD-V has no TPR thresholding feature. We just avoid posting the interrupt.
2649 * We just avoid delivering the TPR-masked interrupt here. TPR will be updated
2650 * always via hmR0SvmLoadGuestState() -> hmR0SvmLoadGuestApicState().
2651 */
2652 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
2653 }
2654 else
2655 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
2656 }
2657 else
2658 hmR0SvmSetVirtIntrIntercept(pVmcb);
2659 }
2660}
2661
2662
2663/**
2664 * Injects any pending events into the guest if the guest is in a state to
2665 * receive them.
2666 *
2667 * @param pVCpu The cross context virtual CPU structure.
2668 * @param pCtx Pointer to the guest-CPU context.
2669 */
2670static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
2671{
2672 Assert(!TRPMHasTrap(pVCpu));
2673 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
2674
2675 bool const fIntShadow = RT_BOOL(hmR0SvmGetGuestIntrShadow(pVCpu, pCtx));
2676 bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
2677 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2678
2679 if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
2680 {
2681 SVMEVENT Event;
2682 Event.u = pVCpu->hm.s.Event.u64IntInfo;
2683 Assert(Event.n.u1Valid);
2684#ifdef VBOX_STRICT
2685 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2686 {
2687 Assert(!fBlockInt);
2688 Assert(!fIntShadow);
2689 }
2690 else if (Event.n.u3Type == SVM_EVENT_NMI)
2691 Assert(!fIntShadow);
2692#endif
2693
2694#ifndef RT_OS_WINDOWS
2695 /* Temporary test for returning guru, later make this function return void as before. */
2696 if ( Event.n.u3Type == SVM_EVENT_EXCEPTION
2697 && Event.n.u8Vector == X86_XCPT_PF)
2698 {
2699 AssertRelease(pCtx->cr2 == pVCpu->hm.s.Event.GCPtrFaultAddress);
2700 }
2701#endif
2702
2703 Log4(("Injecting pending HM event.\n"));
2704 hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
2705 pVCpu->hm.s.Event.fPending = false;
2706
2707#ifdef VBOX_WITH_STATISTICS
2708 if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
2709 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
2710 else
2711 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
2712#endif
2713 }
2714
2715 /* Update the guest interrupt shadow in the VMCB. */
2716 pVmcb->ctrl.u64IntShadow = !!fIntShadow;
2717 NOREF(fBlockInt);
2718}
2719
2720
2721/**
2722 * Reports world-switch error and dumps some useful debug info.
2723 *
2724 * @param pVM The cross context VM structure.
2725 * @param pVCpu The cross context virtual CPU structure.
2726 * @param rcVMRun The return code from VMRUN (or
2727 * VERR_SVM_INVALID_GUEST_STATE for invalid
2728 * guest-state).
2729 * @param pCtx Pointer to the guest-CPU context.
2730 */
2731static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
2732{
2733 NOREF(pCtx);
2734 HMSVM_ASSERT_PREEMPT_SAFE();
2735 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
2736
2737 if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
2738 {
2739 hmR0DumpRegs(pVM, pVCpu, pCtx); NOREF(pVM);
2740#ifdef VBOX_STRICT
2741 Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
2742 Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
2743 Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
2744 Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
2745 Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
2746 Log4(("ctrl.u32InterceptXcpt %#x\n", pVmcb->ctrl.u32InterceptXcpt));
2747 Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
2748 Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
2749 Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
2750 Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
2751
2752 Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
2753 Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
2754 Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
2755
2756 Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
2757 Log4(("ctrl.IntCtrl.u1VIrqPending %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqPending));
2758 Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
2759 Log4(("ctrl.IntCtrl.u4VIntrPrio %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIntrPrio));
2760 Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
2761 Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
2762 Log4(("ctrl.IntCtrl.u1VIntrMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIntrMasking));
2763 Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
2764 Log4(("ctrl.IntCtrl.u8VIntrVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIntrVector));
2765 Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
2766
2767 Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
2768 Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
2769 Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
2770 Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
2771 Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
2772 Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
2773 Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
2774 Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
2775 Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
2776 Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
2777 Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
2778 Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
2779 Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
2780 Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
2781 Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
2782 Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
2783 Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
2784
2785 Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
2786 Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
2787
2788 Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
2789 Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
2790 Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
2791 Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
2792 Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
2793 Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
2794 Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
2795 Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
2796 Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
2797 Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
2798 Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
2799 Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
2800 Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
2801 Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
2802 Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
2803 Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
2804 Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
2805 Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
2806 Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
2807 Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
2808
2809 Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
2810 Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
2811
2812 Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
2813 Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
2814 Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
2815 Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
2816
2817 Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
2818 Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
2819
2820 Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
2821 Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
2822 Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
2823 Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
2824
2825 Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
2826 Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
2827 Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
2828 Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
2829 Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
2830 Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
2831 Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
2832
2833 Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
2834 Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
2835 Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
2836 Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
2837
2838 Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
2839 Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
2840 Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
2841
2842 Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
2843 Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
2844 Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
2845 Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
2846 Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
2847 Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
2848 Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
2849 Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
2850 Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
2851 Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
2852 Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
2853 Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
2854#endif /* VBOX_STRICT */
2855 }
2856 else
2857 Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
2858
2859 NOREF(pVmcb);
2860}
2861
2862
2863/**
2864 * Check per-VM and per-VCPU force flag actions that require us to go back to
2865 * ring-3 for one reason or another.
2866 *
2867 * @returns VBox status code (information status code included).
2868 * @retval VINF_SUCCESS if we don't have any actions that require going back to
2869 * ring-3.
2870 * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
2871 * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
2872 * interrupts)
2873 * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
2874 * all EMTs to be in ring-3.
2875 * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
2876 * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
2877 * to the EM loop.
2878 *
2879 * @param pVM The cross context VM structure.
2880 * @param pVCpu The cross context virtual CPU structure.
2881 * @param pCtx Pointer to the guest-CPU context.
2882 */
2883static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
2884{
2885 Assert(VMMRZCallRing3IsEnabled(pVCpu));
2886
2887 /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
2888 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
2889 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
2890
2891 if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
2892 ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2893 || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
2894 ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2895 {
2896 /* Pending PGM C3 sync. */
2897 if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
2898 {
2899 int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
2900 if (rc != VINF_SUCCESS)
2901 {
2902 Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
2903 return rc;
2904 }
2905 }
2906
2907 /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
2908 /* -XXX- what was that about single stepping? */
2909 if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
2910 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2911 {
2912 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
2913 int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
2914 Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
2915 return rc;
2916 }
2917
2918 /* Pending VM request packets, such as hardware interrupts. */
2919 if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
2920 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
2921 {
2922 Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
2923 return VINF_EM_PENDING_REQUEST;
2924 }
2925
2926 /* Pending PGM pool flushes. */
2927 if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
2928 {
2929 Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
2930 return VINF_PGM_POOL_FLUSH_PENDING;
2931 }
2932
2933 /* Pending DMA requests. */
2934 if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
2935 {
2936 Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
2937 return VINF_EM_RAW_TO_R3;
2938 }
2939 }
2940
2941 return VINF_SUCCESS;
2942}
2943
2944
2945/**
2946 * Does the preparations before executing guest code in AMD-V.
2947 *
2948 * This may cause longjmps to ring-3 and may even result in rescheduling to the
2949 * recompiler. We must be cautious what we do here regarding committing
2950 * guest-state information into the VMCB assuming we assuredly execute the guest
2951 * in AMD-V. If we fall back to the recompiler after updating the VMCB and
2952 * clearing the common-state (TRPM/forceflags), we must undo those changes so
2953 * that the recompiler can (and should) use them when it resumes guest
2954 * execution. Otherwise such operations must be done when we can no longer
2955 * exit to ring-3.
2956 *
2957 * @returns VBox status code (informational status codes included).
2958 * @retval VINF_SUCCESS if we can proceed with running the guest.
2959 * @retval VINF_* scheduling changes, we have to go back to ring-3.
2960 *
2961 * @param pVM The cross context VM structure.
2962 * @param pVCpu The cross context virtual CPU structure.
2963 * @param pCtx Pointer to the guest-CPU context.
2964 * @param pSvmTransient Pointer to the SVM transient structure.
2965 */
2966static int hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
2967{
2968 HMSVM_ASSERT_PREEMPT_SAFE();
2969
2970#if defined(VBOX_WITH_NESTED_HWVIRT) && defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM)
2971 /* Nested Hw. virt through SVM R0 execution is not yet implemented, IEM only, we shouldn't get here. */
2972 if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
2973 {
2974 Log2(("hmR0SvmPreRunGuest: Rescheduling to IEM due to nested-hwvirt or forced IEM exec -> VINF_EM_RESCHEDULE_REM\n"));
2975 return VINF_EM_RESCHEDULE_REM;
2976 }
2977#endif
2978
2979 /* Check force flag actions that might require us to go back to ring-3. */
2980 int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
2981 if (rc != VINF_SUCCESS)
2982 return rc;
2983
2984 if (TRPMHasTrap(pVCpu))
2985 hmR0SvmTrpmTrapToPendingEvent(pVCpu);
2986 else if (!pVCpu->hm.s.Event.fPending)
2987 hmR0SvmEvaluatePendingEvent(pVCpu, pCtx);
2988
2989 /*
2990 * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
2991 * Just do it in software, see @bugref{8411}.
2992 * NB: If we could continue a task switch exit we wouldn't need to do this.
2993 */
2994 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending && (((pVCpu->hm.s.Event.u64IntInfo >> 8) & 7) == SVM_EVENT_NMI)))
2995 if (RT_UNLIKELY(!pVM->hm.s.svm.u32Features))
2996 return VINF_EM_RAW_INJECT_TRPM_EVENT;
2997
2998#ifdef HMSVM_SYNC_FULL_GUEST_STATE
2999 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
3000#endif
3001
3002 /* Load the guest bits that are not shared with the host in any way since we can longjmp or get preempted. */
3003 rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
3004 AssertRCReturn(rc, rc);
3005 STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
3006
3007 /*
3008 * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
3009 * so we can update it on the way back if the guest changed the TPR.
3010 */
3011 if (pVCpu->hm.s.svm.fSyncVTpr)
3012 {
3013 if (pVM->hm.s.fTPRPatchingActive)
3014 pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
3015 else
3016 {
3017 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3018 pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
3019 }
3020 }
3021
3022 /*
3023 * No longjmps to ring-3 from this point on!!!
3024 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3025 * This also disables flushing of the R0-logger instance (if any).
3026 */
3027 VMMRZCallRing3Disable(pVCpu);
3028
3029 /*
3030 * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
3031 * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
3032 *
3033 * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
3034 * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
3035 *
3036 * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
3037 * executing guest code.
3038 */
3039 pSvmTransient->fEFlags = ASMIntDisableFlags();
3040 if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
3041 || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
3042 {
3043 ASMSetFlags(pSvmTransient->fEFlags);
3044 VMMRZCallRing3Enable(pVCpu);
3045 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
3046 return VINF_EM_RAW_TO_R3;
3047 }
3048 if (RTThreadPreemptIsPending(NIL_RTTHREAD))
3049 {
3050 ASMSetFlags(pSvmTransient->fEFlags);
3051 VMMRZCallRing3Enable(pVCpu);
3052 STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
3053 return VINF_EM_RAW_INTERRUPT;
3054 }
3055
3056 /*
3057 * If we are injecting an NMI, we must set VMCPU_FF_BLOCK_NMIS only when we are going to execute
3058 * guest code for certain (no exits to ring-3). Otherwise, we could re-read the flag on re-entry into
3059 * AMD-V and conclude that NMI inhibition is active when we have not even delivered the NMI.
3060 *
3061 * With VT-x, this is handled by the Guest interruptibility information VMCS field which will set the
3062 * VMCS field after actually delivering the NMI which we read on VM-exit to determine the state.
3063 */
3064 if (pVCpu->hm.s.Event.fPending)
3065 {
3066 SVMEVENT Event;
3067 Event.u = pVCpu->hm.s.Event.u64IntInfo;
3068 if ( Event.n.u1Valid
3069 && Event.n.u3Type == SVM_EVENT_NMI
3070 && Event.n.u8Vector == X86_XCPT_NMI
3071 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
3072 {
3073 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
3074 }
3075 }
3076
3077 return VINF_SUCCESS;
3078}
3079
3080
3081/**
3082 * Prepares to run guest code in AMD-V and we've committed to doing so. This
3083 * means there is no backing out to ring-3 or anywhere else at this
3084 * point.
3085 *
3086 * @param pVM The cross context VM structure.
3087 * @param pVCpu The cross context virtual CPU structure.
3088 * @param pCtx Pointer to the guest-CPU context.
3089 * @param pSvmTransient Pointer to the SVM transient structure.
3090 *
3091 * @remarks Called with preemption disabled.
3092 * @remarks No-long-jump zone!!!
3093 */
3094static void hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3095{
3096 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3097 Assert(VMMR0IsLogFlushDisabled(pVCpu));
3098 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
3099
3100 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
3101 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
3102
3103 hmR0SvmInjectPendingEvent(pVCpu, pCtx);
3104
3105 if ( pVCpu->hm.s.fPreloadGuestFpu
3106 && !CPUMIsGuestFPUStateActive(pVCpu))
3107 {
3108 CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
3109 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
3110 }
3111
3112 /* Load the state shared between host and guest (FPU, debug). */
3113 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3114 if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
3115 hmR0SvmLoadSharedState(pVCpu, pVmcb, pCtx);
3116 HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
3117 AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
3118
3119 /* Setup TSC offsetting. */
3120 RTCPUID idCurrentCpu = hmR0GetCurrentCpu()->idCpu;
3121 if ( pSvmTransient->fUpdateTscOffsetting
3122 || idCurrentCpu != pVCpu->hm.s.idLastCpu)
3123 {
3124 hmR0SvmUpdateTscOffsetting(pVM, pVCpu);
3125 pSvmTransient->fUpdateTscOffsetting = false;
3126 }
3127
3128 /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
3129 if (idCurrentCpu != pVCpu->hm.s.idLastCpu)
3130 pVmcb->ctrl.u64VmcbCleanBits = 0;
3131
3132 /* Store status of the shared guest-host state at the time of VMRUN. */
3133#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
3134 if (CPUMIsGuestInLongModeEx(pCtx))
3135 {
3136 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
3137 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
3138 }
3139 else
3140#endif
3141 {
3142 pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
3143 pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
3144 }
3145 pSvmTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
3146
3147 /* Flush the appropriate tagged-TLB entries. */
3148 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
3149 hmR0SvmFlushTaggedTlb(pVCpu);
3150 Assert(hmR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
3151
3152 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
3153
3154 TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
3155 to start executing. */
3156
3157 /*
3158 * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
3159 * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
3160 *
3161 * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
3162 */
3163 if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
3164 && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
3165 {
3166 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
3167 pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
3168 uint64_t u64GuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
3169 if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
3170 ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
3171 pSvmTransient->fRestoreTscAuxMsr = true;
3172 }
3173 else
3174 {
3175 hmR0SvmSetMsrPermission(pVCpu, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
3176 pSvmTransient->fRestoreTscAuxMsr = false;
3177 }
3178
3179 /* If VMCB Clean bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
3180 if (!(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
3181 pVmcb->ctrl.u64VmcbCleanBits = 0;
3182}
3183
3184
3185/**
3186 * Wrapper for running the guest code in AMD-V.
3187 *
3188 * @returns VBox strict status code.
3189 * @param pVM The cross context VM structure.
3190 * @param pVCpu The cross context virtual CPU structure.
3191 * @param pCtx Pointer to the guest-CPU context.
3192 *
3193 * @remarks No-long-jump zone!!!
3194 */
3195DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3196{
3197 /*
3198 * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
3199 * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
3200 * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
3201 */
3202#ifdef VBOX_WITH_KERNEL_USING_XMM
3203 return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
3204 pVCpu->hm.s.svm.pfnVMRun);
3205#else
3206 return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
3207#endif
3208}
3209
3210
3211/**
3212 * Performs some essential restoration of state after running guest code in
3213 * AMD-V.
3214 *
3215 * @param pVM The cross context VM structure.
3216 * @param pVCpu The cross context virtual CPU structure.
3217 * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
3218 * out-of-sync. Make sure to update the required fields
3219 * before using them.
3220 * @param pSvmTransient Pointer to the SVM transient structure.
3221 * @param rcVMRun Return code of VMRUN.
3222 *
3223 * @remarks Called with interrupts disabled.
3224 * @remarks No-long-jump zone!!! This function will however re-enable longjmps
3225 * unconditionally when it is safe to do so.
3226 */
3227static void hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
3228{
3229 Assert(!VMMRZCallRing3IsEnabled(pVCpu));
3230
3231 ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
3232 ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
3233
3234 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3235 pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
3236
3237 /* TSC read must be done early for maximum accuracy. */
3238 if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
3239 TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset);
3240
3241 if (pSvmTransient->fRestoreTscAuxMsr)
3242 {
3243 uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
3244 CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
3245 if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
3246 ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
3247 }
3248
3249 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
3250 TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
3251 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
3252
3253 Assert(!(ASMGetFlags() & X86_EFL_IF));
3254 ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
3255 VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
3256
3257 /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
3258 if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
3259 {
3260 Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
3261 return;
3262 }
3263
3264 pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
3265 HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmcb->ctrl.u64ExitCode); /* Update the #VMEXIT history array. */
3266 pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
3267 pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
3268
3269 hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
3270
3271 if (RT_LIKELY(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID))
3272 {
3273 if (pVCpu->hm.s.svm.fSyncVTpr)
3274 {
3275 /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
3276 if ( pVM->hm.s.fTPRPatchingActive
3277 && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
3278 {
3279 int rc = APICSetTpr(pVCpu, pMixedCtx->msrLSTAR & 0xff);
3280 AssertRC(rc);
3281 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
3282 }
3283 else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
3284 {
3285 int rc = APICSetTpr(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
3286 AssertRC(rc);
3287 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
3288 }
3289 }
3290 }
3291}
3292
3293
3294/**
3295 * Runs the guest code using AMD-V.
3296 *
3297 * @returns VBox status code.
3298 * @param pVM The cross context VM structure.
3299 * @param pVCpu The cross context virtual CPU structure.
3300 * @param pCtx Pointer to the guest-CPU context.
3301 */
3302static int hmR0SvmRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3303{
3304 SVMTRANSIENT SvmTransient;
3305 SvmTransient.fUpdateTscOffsetting = true;
3306 uint32_t cLoops = 0;
3307 int rc = VERR_INTERNAL_ERROR_5;
3308
3309 for (;; cLoops++)
3310 {
3311 Assert(!HMR0SuspendPending());
3312 HMSVM_ASSERT_CPU_SAFE();
3313
3314 /* Preparatory work for running guest code, this may force us to return
3315 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
3316 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
3317 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
3318 if (rc != VINF_SUCCESS)
3319 break;
3320
3321 /*
3322 * No longjmps to ring-3 from this point on!!!
3323 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3324 * This also disables flushing of the R0-logger instance (if any).
3325 */
3326 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
3327 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
3328
3329 /* Restore any residual host-state and save any bits shared between host
3330 and guest into the guest-CPU state. Re-enables interrupts! */
3331 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
3332
3333 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
3334 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
3335 {
3336 if (rc == VINF_SUCCESS)
3337 rc = VERR_SVM_INVALID_GUEST_STATE;
3338 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
3339 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
3340 break;
3341 }
3342
3343 /* Handle the #VMEXIT. */
3344 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
3345 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
3346 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb);
3347 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
3348 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
3349 if (rc != VINF_SUCCESS)
3350 break;
3351 if (cLoops > pVM->hm.s.cMaxResumeLoops)
3352 {
3353 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
3354 rc = VINF_EM_RAW_INTERRUPT;
3355 break;
3356 }
3357 }
3358
3359 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
3360 return rc;
3361}
3362
3363
3364/**
3365 * Runs the guest code using AMD-V in single step mode.
3366 *
3367 * @returns VBox status code.
3368 * @param pVM The cross context VM structure.
3369 * @param pVCpu The cross context virtual CPU structure.
3370 * @param pCtx Pointer to the guest-CPU context.
3371 */
3372static int hmR0SvmRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3373{
3374 SVMTRANSIENT SvmTransient;
3375 SvmTransient.fUpdateTscOffsetting = true;
3376 uint32_t cLoops = 0;
3377 int rc = VERR_INTERNAL_ERROR_5;
3378 uint16_t uCsStart = pCtx->cs.Sel;
3379 uint64_t uRipStart = pCtx->rip;
3380
3381 for (;; cLoops++)
3382 {
3383 Assert(!HMR0SuspendPending());
3384 AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
3385 ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
3386 (unsigned)RTMpCpuId(), cLoops));
3387
3388 /* Preparatory work for running guest code, this may force us to return
3389 to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
3390 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
3391 rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
3392 if (rc != VINF_SUCCESS)
3393 break;
3394
3395 /*
3396 * No longjmps to ring-3 from this point on!!!
3397 * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
3398 * This also disables flushing of the R0-logger instance (if any).
3399 */
3400 VMMRZCallRing3Disable(pVCpu);
3401 VMMRZCallRing3RemoveNotification(pVCpu);
3402 hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
3403
3404 rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
3405
3406 /*
3407 * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
3408 * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
3409 */
3410 hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
3411 if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
3412 || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
3413 {
3414 if (rc == VINF_SUCCESS)
3415 rc = VERR_SVM_INVALID_GUEST_STATE;
3416 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
3417 hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
3418 return rc;
3419 }
3420
3421 /* Handle the #VMEXIT. */
3422 HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
3423 STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
3424 VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb);
3425 rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
3426 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
3427 if (rc != VINF_SUCCESS)
3428 break;
3429 if (cLoops > pVM->hm.s.cMaxResumeLoops)
3430 {
3431 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
3432 rc = VINF_EM_RAW_INTERRUPT;
3433 break;
3434 }
3435
3436 /*
3437 * Did the RIP change, if so, consider it a single step.
3438 * Otherwise, make sure one of the TFs gets set.
3439 */
3440 if ( pCtx->rip != uRipStart
3441 || pCtx->cs.Sel != uCsStart)
3442 {
3443 rc = VINF_EM_DBG_STEPPED;
3444 break;
3445 }
3446 pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
3447 }
3448
3449 /*
3450 * Clear the X86_EFL_TF if necessary.
3451 */
3452 if (pVCpu->hm.s.fClearTrapFlag)
3453 {
3454 pVCpu->hm.s.fClearTrapFlag = false;
3455 pCtx->eflags.Bits.u1TF = 0;
3456 }
3457
3458 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
3459 return rc;
3460}
3461
3462
3463/**
3464 * Runs the guest code using AMD-V.
3465 *
3466 * @returns Strict VBox status code.
3467 * @param pVM The cross context VM structure.
3468 * @param pVCpu The cross context virtual CPU structure.
3469 * @param pCtx Pointer to the guest-CPU context.
3470 */
3471VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3472{
3473 Assert(VMMRZCallRing3IsEnabled(pVCpu));
3474 HMSVM_ASSERT_PREEMPT_SAFE();
3475 VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pCtx);
3476
3477 int rc;
3478 if (!pVCpu->hm.s.fSingleInstruction)
3479 rc = hmR0SvmRunGuestCodeNormal(pVM, pVCpu, pCtx);
3480 else
3481 rc = hmR0SvmRunGuestCodeStep(pVM, pVCpu, pCtx);
3482
3483 if (rc == VERR_EM_INTERPRETER)
3484 rc = VINF_EM_RAW_EMULATE_INSTR;
3485 else if (rc == VINF_EM_RESET)
3486 rc = VINF_EM_TRIPLE_FAULT;
3487
3488 /* Prepare to return to ring-3. This will remove longjmp notifications. */
3489 rc = hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
3490 Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
3491 return rc;
3492}
3493
3494
3495/**
3496 * Handles a \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
3497 *
3498 * @returns VBox status code (informational status codes included).
3499 * @param pVCpu The cross context virtual CPU structure.
3500 * @param pCtx Pointer to the guest-CPU context.
3501 * @param pSvmTransient Pointer to the SVM transient structure.
3502 */
3503DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
3504{
3505 Assert(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID);
3506 Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
3507
3508 /*
3509 * The ordering of the case labels is based on most-frequently-occurring #VMEXITs for most guests under
3510 * normal workloads (for some definition of "normal").
3511 */
3512 uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
3513 switch (pSvmTransient->u64ExitCode)
3514 {
3515 case SVM_EXIT_NPF:
3516 return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
3517
3518 case SVM_EXIT_IOIO:
3519 return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
3520
3521 case SVM_EXIT_RDTSC:
3522 return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
3523
3524 case SVM_EXIT_RDTSCP:
3525 return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
3526
3527 case SVM_EXIT_CPUID:
3528 return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
3529
3530 case SVM_EXIT_EXCEPTION_14: /* X86_XCPT_PF */
3531 return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
3532
3533 case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
3534 return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
3535
3536 case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
3537 return hmR0SvmExitXcptUD(pVCpu, pCtx, pSvmTransient);
3538
3539 case SVM_EXIT_EXCEPTION_16: /* X86_XCPT_MF */
3540 return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
3541
3542 case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
3543 return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
3544
3545 case SVM_EXIT_EXCEPTION_17: /* X86_XCPT_AC */
3546 return hmR0SvmExitXcptAC(pVCpu, pCtx, pSvmTransient);
3547
3548 case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
3549 return hmR0SvmExitXcptBP(pVCpu, pCtx, pSvmTransient);
3550
3551 case SVM_EXIT_MONITOR:
3552 return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
3553
3554 case SVM_EXIT_MWAIT:
3555 return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
3556
3557 case SVM_EXIT_HLT:
3558 return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
3559
3560 case SVM_EXIT_READ_CR0:
3561 case SVM_EXIT_READ_CR3:
3562 case SVM_EXIT_READ_CR4:
3563 return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
3564
3565 case SVM_EXIT_WRITE_CR0:
3566 case SVM_EXIT_WRITE_CR3:
3567 case SVM_EXIT_WRITE_CR4:
3568 case SVM_EXIT_WRITE_CR8:
3569 return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
3570
3571 case SVM_EXIT_PAUSE:
3572 return hmR0SvmExitPause(pVCpu, pCtx, pSvmTransient);
3573
3574 case SVM_EXIT_VMMCALL:
3575 return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
3576
3577 case SVM_EXIT_VINTR:
3578 return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
3579
3580 case SVM_EXIT_INTR:
3581 case SVM_EXIT_FERR_FREEZE:
3582 case SVM_EXIT_NMI:
3583 return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
3584
3585 case SVM_EXIT_MSR:
3586 return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
3587
3588 case SVM_EXIT_INVLPG:
3589 return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
3590
3591 case SVM_EXIT_WBINVD:
3592 return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
3593
3594 case SVM_EXIT_INVD:
3595 return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
3596
3597 case SVM_EXIT_RDPMC:
3598 return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
3599
3600 default:
3601 {
3602 switch (pSvmTransient->u64ExitCode)
3603 {
3604 case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
3605 case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
3606 case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
3607 case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
3608 return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
3609
3610 case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
3611 case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
3612 case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
3613 case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
3614 return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
3615
3616 case SVM_EXIT_XSETBV:
3617 return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
3618
3619 case SVM_EXIT_TASK_SWITCH:
3620 return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
3621
3622 case SVM_EXIT_IRET:
3623 return hmR0SvmExitIret(pVCpu, pCtx, pSvmTransient);
3624
3625 case SVM_EXIT_SHUTDOWN:
3626 return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
3627
3628 case SVM_EXIT_SMI:
3629 case SVM_EXIT_INIT:
3630 {
3631 /*
3632 * We don't intercept NMIs. As for INIT signals, it really shouldn't ever happen here. If it ever does,
3633 * we want to know about it so log the exit code and bail.
3634 */
3635 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
3636 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
3637 return VERR_SVM_UNEXPECTED_EXIT;
3638 }
3639
3640#ifdef VBOX_WITH_NESTED_HWVIRT
3641 case SVM_EXIT_CLGI: return hmR0SvmExitClgi(pVCpu, pCtx, pSvmTransient);
3642 case SVM_EXIT_STGI: return hmR0SvmExitStgi(pVCpu, pCtx, pSvmTransient);
3643 case SVM_EXIT_VMLOAD: return hmR0SvmExitVmload(pVCpu, pCtx, pSvmTransient);
3644 case SVM_EXIT_VMSAVE: return hmR0SvmExitVmsave(pVCpu, pCtx, pSvmTransient);
3645 case SVM_EXIT_INVLPGA: return hmR0SvmExitInvlpga(pVCpu, pCtx, pSvmTransient);
3646 case SVM_EXIT_VMRUN: return hmR0SvmExitVmrun(pVCpu, pCtx, pSvmTransient);
3647#else
3648 case SVM_EXIT_CLGI:
3649 case SVM_EXIT_STGI:
3650 case SVM_EXIT_VMLOAD:
3651 case SVM_EXIT_VMSAVE:
3652 case SVM_EXIT_INVLPGA:
3653 case SVM_EXIT_VMRUN:
3654#endif
3655 case SVM_EXIT_RSM:
3656 case SVM_EXIT_SKINIT:
3657 return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
3658
3659#ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
3660 case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
3661 /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
3662 case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
3663 /* SVM_EXIT_EXCEPTION_3: */ /* X86_XCPT_BP - Handled above. */
3664 case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
3665 case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
3666 /* SVM_EXIT_EXCEPTION_6: */ /* X86_XCPT_UD - Handled above. */
3667 /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
3668 case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
3669 case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
3670 case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_TS */
3671 case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_NP */
3672 case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_SS */
3673 case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_GP */
3674 /* SVM_EXIT_EXCEPTION_14: */ /* X86_XCPT_PF - Handled above. */
3675 case SVM_EXIT_EXCEPTION_15: /* Reserved. */
3676 /* SVM_EXIT_EXCEPTION_16: */ /* X86_XCPT_MF - Handled above. */
3677 /* SVM_EXIT_EXCEPTION_17: */ /* X86_XCPT_AC - Handled above. */
3678 case SVM_EXIT_EXCEPTION_18: /* X86_XCPT_MC */
3679 case SVM_EXIT_EXCEPTION_19: /* X86_XCPT_XF */
3680 case SVM_EXIT_EXCEPTION_20: case SVM_EXIT_EXCEPTION_21: case SVM_EXIT_EXCEPTION_22:
3681 case SVM_EXIT_EXCEPTION_23: case SVM_EXIT_EXCEPTION_24: case SVM_EXIT_EXCEPTION_25:
3682 case SVM_EXIT_EXCEPTION_26: case SVM_EXIT_EXCEPTION_27: case SVM_EXIT_EXCEPTION_28:
3683 case SVM_EXIT_EXCEPTION_29: case SVM_EXIT_EXCEPTION_30: case SVM_EXIT_EXCEPTION_31:
3684 {
3685 /** @todo r=ramshankar; We should be doing
3686 * HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY here! */
3687
3688 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
3689 SVMEVENT Event;
3690 Event.u = 0;
3691 Event.n.u1Valid = 1;
3692 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3693 Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
3694
3695 switch (Event.n.u8Vector)
3696 {
3697 case X86_XCPT_DE:
3698 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
3699 break;
3700
3701 case X86_XCPT_NP:
3702 Event.n.u1ErrorCodeValid = 1;
3703 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3704 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
3705 break;
3706
3707 case X86_XCPT_SS:
3708 Event.n.u1ErrorCodeValid = 1;
3709 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3710 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
3711 break;
3712
3713 case X86_XCPT_GP:
3714 Event.n.u1ErrorCodeValid = 1;
3715 Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
3716 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
3717 break;
3718
3719 default:
3720 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
3721 pVCpu->hm.s.u32HMError = Event.n.u8Vector;
3722 return VERR_SVM_UNEXPECTED_XCPT_EXIT;
3723 }
3724
3725 Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
3726 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3727 return VINF_SUCCESS;
3728 }
3729#endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
3730
3731 default:
3732 {
3733 AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
3734 pVCpu->hm.s.u32HMError = u32ExitCode;
3735 return VERR_SVM_UNKNOWN_EXIT;
3736 }
3737 }
3738 }
3739 }
3740 /* not reached */
3741}
3742
3743
3744#ifdef DEBUG
3745/* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
3746# define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
3747 RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
3748
3749# define HMSVM_ASSERT_PREEMPT_CPUID() \
3750 do \
3751 { \
3752 RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
3753 AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
3754 } while (0)
3755
3756# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
3757 do { \
3758 AssertPtr(pVCpu); \
3759 AssertPtr(pCtx); \
3760 AssertPtr(pSvmTransient); \
3761 Assert(ASMIntAreEnabled()); \
3762 HMSVM_ASSERT_PREEMPT_SAFE(); \
3763 HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
3764 Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
3765 HMSVM_ASSERT_PREEMPT_SAFE(); \
3766 if (VMMR0IsLogFlushDisabled(pVCpu)) \
3767 HMSVM_ASSERT_PREEMPT_CPUID(); \
3768 } while (0)
3769#else /* Release builds */
3770# define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { NOREF(pVCpu); NOREF(pCtx); NOREF(pSvmTransient); } while (0)
3771#endif
3772
3773
3774/**
3775 * Worker for hmR0SvmInterpretInvlpg().
3776 *
3777 * @return VBox status code.
3778 * @param pVCpu The cross context virtual CPU structure.
3779 * @param pCpu Pointer to the disassembler state.
3780 * @param pCtx The guest CPU context.
3781 */
3782static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTX pCtx)
3783{
3784 DISQPVPARAMVAL Param1;
3785 RTGCPTR GCPtrPage;
3786
3787 int rc = DISQueryParamVal(CPUMCTX2CORE(pCtx), pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
3788 if (RT_FAILURE(rc))
3789 return VERR_EM_INTERPRETER;
3790
3791 if ( Param1.type == DISQPV_TYPE_IMMEDIATE
3792 || Param1.type == DISQPV_TYPE_ADDRESS)
3793 {
3794 if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
3795 return VERR_EM_INTERPRETER;
3796
3797 GCPtrPage = Param1.val.val64;
3798 VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), GCPtrPage);
3799 rc = VBOXSTRICTRC_VAL(rc2);
3800 }
3801 else
3802 {
3803 Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
3804 rc = VERR_EM_INTERPRETER;
3805 }
3806
3807 return rc;
3808}
3809
3810
3811/**
3812 * Interprets INVLPG.
3813 *
3814 * @returns VBox status code.
3815 * @retval VINF_* Scheduling instructions.
3816 * @retval VERR_EM_INTERPRETER Something we can't cope with.
3817 * @retval VERR_* Fatal errors.
3818 *
3819 * @param pVM The cross context VM structure.
3820 * @param pVCpu The cross context virtual CPU structure.
3821 * @param pCtx The guest CPU context.
3822 *
3823 * @remarks Updates the RIP if the instruction was executed successfully.
3824 */
3825static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
3826{
3827 /* Only allow 32 & 64 bit code. */
3828 if (CPUMGetGuestCodeBits(pVCpu) != 16)
3829 {
3830 PDISSTATE pDis = &pVCpu->hm.s.DisState;
3831 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
3832 if ( RT_SUCCESS(rc)
3833 && pDis->pCurInstr->uOpcode == OP_INVLPG)
3834 {
3835 rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pCtx);
3836 if (RT_SUCCESS(rc))
3837 pCtx->rip += pDis->cbInstr;
3838 return rc;
3839 }
3840 else
3841 Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
3842 }
3843 return VERR_EM_INTERPRETER;
3844}
3845
3846
3847/**
3848 * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
3849 *
3850 * @param pVCpu The cross context virtual CPU structure.
3851 */
3852DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
3853{
3854 SVMEVENT Event;
3855 Event.u = 0;
3856 Event.n.u1Valid = 1;
3857 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3858 Event.n.u8Vector = X86_XCPT_UD;
3859 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3860}
3861
3862
3863/**
3864 * Sets a debug (\#DB) exception as pending-for-injection into the VM.
3865 *
3866 * @param pVCpu The cross context virtual CPU structure.
3867 */
3868DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
3869{
3870 SVMEVENT Event;
3871 Event.u = 0;
3872 Event.n.u1Valid = 1;
3873 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3874 Event.n.u8Vector = X86_XCPT_DB;
3875 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3876}
3877
3878
3879/**
3880 * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
3881 *
3882 * @param pVCpu The cross context virtual CPU structure.
3883 * @param pCtx Pointer to the guest-CPU context.
3884 * @param u32ErrCode The error-code for the page-fault.
3885 * @param uFaultAddress The page fault address (CR2).
3886 *
3887 * @remarks This updates the guest CR2 with @a uFaultAddress!
3888 */
3889DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
3890{
3891 SVMEVENT Event;
3892 Event.u = 0;
3893 Event.n.u1Valid = 1;
3894 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3895 Event.n.u8Vector = X86_XCPT_PF;
3896 Event.n.u1ErrorCodeValid = 1;
3897 Event.n.u32ErrorCode = u32ErrCode;
3898
3899 /* Update CR2 of the guest. */
3900 if (pCtx->cr2 != uFaultAddress)
3901 {
3902 pCtx->cr2 = uFaultAddress;
3903 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR2);
3904 }
3905
3906 hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
3907}
3908
3909
3910/**
3911 * Sets a device-not-available (\#NM) exception as pending-for-injection into
3912 * the VM.
3913 *
3914 * @param pVCpu The cross context virtual CPU structure.
3915 */
3916DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
3917{
3918 SVMEVENT Event;
3919 Event.u = 0;
3920 Event.n.u1Valid = 1;
3921 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3922 Event.n.u8Vector = X86_XCPT_NM;
3923 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3924}
3925
3926
3927/**
3928 * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
3929 *
3930 * @param pVCpu The cross context virtual CPU structure.
3931 */
3932DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
3933{
3934 SVMEVENT Event;
3935 Event.u = 0;
3936 Event.n.u1Valid = 1;
3937 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3938 Event.n.u8Vector = X86_XCPT_MF;
3939 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3940}
3941
3942
3943/**
3944 * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
3945 *
3946 * @param pVCpu The cross context virtual CPU structure.
3947 */
3948DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
3949{
3950 SVMEVENT Event;
3951 Event.u = 0;
3952 Event.n.u1Valid = 1;
3953 Event.n.u3Type = SVM_EVENT_EXCEPTION;
3954 Event.n.u8Vector = X86_XCPT_DF;
3955 Event.n.u1ErrorCodeValid = 1;
3956 Event.n.u32ErrorCode = 0;
3957 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
3958}
3959
3960#ifdef HMSVM_USE_IEM_EVENT_REFLECTION
3961/**
3962 * Gets the IEM exception flags for the specified SVM event.
3963 *
3964 * @returns The IEM exception flags.
3965 * @param pEvent Pointer to the SVM event.
3966 *
3967 * @remarks This function currently only constructs flags required for
3968 * IEMEvaluateRecursiveXcpt and not the complete flags (e.g. error-code
3969 * and CR2 aspects of an exception are not included).
3970 */
3971static uint32_t hmR0SvmGetIemXcptFlags(PCSVMEVENT pEvent)
3972{
3973 uint8_t const uEventType = pEvent->n.u3Type;
3974 uint32_t fIemXcptFlags;
3975 switch (uEventType)
3976 {
3977 case SVM_EVENT_EXCEPTION:
3978 /*
3979 * Only INT3 and INTO instructions can raise #BP and #OF exceptions.
3980 * See AMD spec. Table 8-1. "Interrupt Vector Source and Cause".
3981 */
3982 if (pEvent->n.u8Vector == X86_XCPT_BP)
3983 {
3984 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_BP_INSTR;
3985 break;
3986 }
3987 if (pEvent->n.u8Vector == X86_XCPT_OF)
3988 {
3989 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_OF_INSTR;
3990 break;
3991 }
3992 /** @todo How do we distinguish ICEBP \#DB from the regular one? */
3993 /* fall thru */
3994 case SVM_EVENT_NMI:
3995 fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
3996 break;
3997
3998 case SVM_EVENT_EXTERNAL_IRQ:
3999 fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
4000 break;
4001
4002 case SVM_EVENT_SOFTWARE_INT:
4003 fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
4004 break;
4005
4006 default:
4007 fIemXcptFlags = 0;
4008 AssertMsgFailed(("Unexpected event type! uEventType=%#x uVector=%#x", uEventType, pEvent->n.u8Vector));
4009 break;
4010 }
4011 return fIemXcptFlags;
4012}
4013
4014#else
4015/**
4016 * Determines if an exception is a contributory exception.
4017 *
4018 * Contributory exceptions are ones which can cause double-faults unless the
4019 * original exception was a benign exception. Page-fault is intentionally not
4020 * included here as it's a conditional contributory exception.
4021 *
4022 * @returns true if the exception is contributory, false otherwise.
4023 * @param uVector The exception vector.
4024 */
4025DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
4026{
4027 switch (uVector)
4028 {
4029 case X86_XCPT_GP:
4030 case X86_XCPT_SS:
4031 case X86_XCPT_NP:
4032 case X86_XCPT_TS:
4033 case X86_XCPT_DE:
4034 return true;
4035 default:
4036 break;
4037 }
4038 return false;
4039}
4040#endif /* HMSVM_USE_IEM_EVENT_REFLECTION */
4041
4042
4043/**
4044 * Handle a condition that occurred while delivering an event through the guest
4045 * IDT.
4046 *
4047 * @returns VBox status code (informational error codes included).
4048 * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
4049 * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
4050 * continue execution of the guest which will delivery the \#DF.
4051 * @retval VINF_EM_RESET if we detected a triple-fault condition.
4052 * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
4053 *
4054 * @param pVCpu The cross context virtual CPU structure.
4055 * @param pCtx Pointer to the guest-CPU context.
4056 * @param pSvmTransient Pointer to the SVM transient structure.
4057 *
4058 * @remarks No-long-jump zone!!!
4059 */
4060static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4061{
4062 int rc = VINF_SUCCESS;
4063 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4064
4065 Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
4066 pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
4067 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
4068
4069 /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
4070 * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
4071 if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
4072 {
4073#ifdef HMSVM_USE_IEM_EVENT_REFLECTION
4074 IEMXCPTRAISE enmRaise;
4075 IEMXCPTRAISEINFO fRaiseInfo;
4076 bool const fExitIsHwXcpt = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31;
4077 uint8_t const uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
4078 if (fExitIsHwXcpt)
4079 {
4080 uint8_t const uExitVector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
4081 uint32_t const fIdtVectorFlags = hmR0SvmGetIemXcptFlags(&pVmcb->ctrl.ExitIntInfo);
4082 uint32_t const fExitVectorFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
4083 enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
4084 }
4085 else
4086 {
4087 /*
4088 * If delivery of an event caused a #VMEXIT that is not an exception (e.g. #NPF) then we
4089 * end up here.
4090 *
4091 * If the event was:
4092 * - a software interrupt, we can re-execute the instruction which will regenerate
4093 * the event.
4094 * - an NMI, we need to clear NMI blocking and re-inject the NMI.
4095 * - a hardware exception or external interrupt, we re-inject it.
4096 */
4097 fRaiseInfo = IEMXCPTRAISEINFO_NONE;
4098 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_SOFTWARE_INT)
4099 enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
4100 else
4101 enmRaise = IEMXCPTRAISE_PREV_EVENT;
4102 }
4103
4104 switch (enmRaise)
4105 {
4106 case IEMXCPTRAISE_CURRENT_XCPT:
4107 case IEMXCPTRAISE_PREV_EVENT:
4108 {
4109 /* For software interrupts, we shall re-execute the instruction. */
4110 if (!(fRaiseInfo & IEMXCPTRAISEINFO_SOFT_INT_XCPT))
4111 {
4112 RTGCUINTPTR GCPtrFaultAddress = 0;
4113
4114 /* If we are re-injecting an NMI, clear NMI blocking. */
4115 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
4116 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
4117
4118 /* Determine a vectoring #PF condition, see comment in hmR0SvmExitXcptPF(). */
4119 if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
4120 pSvmTransient->fVectoringPF = true;
4121 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION
4122 && uIdtVector == X86_XCPT_PF)
4123 {
4124 /*
4125 * If the previous exception was a #PF, we need to recover the CR2 value.
4126 * This can't happen with shadow paging.
4127 */
4128 GCPtrFaultAddress = pCtx->cr2;
4129 }
4130
4131 /*
4132 * Without nested paging, when uExitVector is #PF, CR2 value will be updated from the VMCB's
4133 * exit info. fields, if it's a guest #PF, see hmR0SvmExitXcptPF().
4134 */
4135 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
4136 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
4137 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, GCPtrFaultAddress);
4138
4139 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32 GCPtrFaultAddress=%#RX64\n",
4140 pVmcb->ctrl.ExitIntInfo.u, RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid),
4141 pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, GCPtrFaultAddress));
4142 }
4143 break;
4144 }
4145
4146 case IEMXCPTRAISE_REEXEC_INSTR:
4147 {
4148 Assert(rc == VINF_SUCCESS);
4149 break;
4150 }
4151
4152 case IEMXCPTRAISE_DOUBLE_FAULT:
4153 {
4154 /*
4155 * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
4156 * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
4157 */
4158 if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
4159 {
4160 pSvmTransient->fVectoringDoublePF = true;
4161 Assert(rc == VINF_SUCCESS);
4162 }
4163 else
4164 {
4165 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
4166 hmR0SvmSetPendingXcptDF(pVCpu);
4167 rc = VINF_HM_DOUBLE_FAULT;
4168 }
4169 break;
4170 }
4171
4172 case IEMXCPTRAISE_TRIPLE_FAULT:
4173 {
4174 rc = VINF_EM_RESET;
4175 break;
4176 }
4177
4178 case IEMXCPTRAISE_CPU_HANG:
4179 {
4180 rc = VERR_EM_GUEST_CPU_HANG;
4181 break;
4182 }
4183
4184 default:
4185 {
4186 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
4187 rc = VERR_SVM_IPE_2;
4188 break;
4189 }
4190 }
4191#else
4192 uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
4193
4194 typedef enum
4195 {
4196 SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
4197 SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
4198 SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
4199 SVMREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
4200 SVMREFLECTXCPT_NONE /* Nothing to reflect. */
4201 } SVMREFLECTXCPT;
4202
4203 SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
4204 bool fReflectingNmi = false;
4205 if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
4206 {
4207 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31)
4208 {
4209 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
4210
4211#ifdef VBOX_STRICT
4212 if ( hmR0SvmIsContributoryXcpt(uIdtVector)
4213 && uExitVector == X86_XCPT_PF)
4214 {
4215 Log4(("IDT: Contributory #PF idCpu=%u uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
4216 }
4217#endif
4218
4219 if ( uIdtVector == X86_XCPT_BP
4220 || uIdtVector == X86_XCPT_OF)
4221 {
4222 /* Ignore INT3/INTO, just re-execute. See @bugref{8357}. */
4223 }
4224 else if ( uExitVector == X86_XCPT_PF
4225 && uIdtVector == X86_XCPT_PF)
4226 {
4227 pSvmTransient->fVectoringDoublePF = true;
4228 Log4(("IDT: Vectoring double #PF uCR2=%#RX64\n", pCtx->cr2));
4229 }
4230 else if ( uExitVector == X86_XCPT_AC
4231 && uIdtVector == X86_XCPT_AC)
4232 {
4233 enmReflect = SVMREFLECTXCPT_HANG;
4234 Log4(("IDT: Nested #AC - Bad guest\n"));
4235 }
4236 else if ( (pVmcb->ctrl.u32InterceptXcpt & HMSVM_CONTRIBUTORY_XCPT_MASK)
4237 && hmR0SvmIsContributoryXcpt(uExitVector)
4238 && ( hmR0SvmIsContributoryXcpt(uIdtVector)
4239 || uIdtVector == X86_XCPT_PF))
4240 {
4241 enmReflect = SVMREFLECTXCPT_DF;
4242 Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
4243 uIdtVector, uExitVector));
4244 }
4245 else if (uIdtVector == X86_XCPT_DF)
4246 {
4247 enmReflect = SVMREFLECTXCPT_TF;
4248 Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n",
4249 pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
4250 }
4251 else
4252 enmReflect = SVMREFLECTXCPT_XCPT;
4253 }
4254 else
4255 {
4256 /*
4257 * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
4258 * exception to the guest after handling the #VMEXIT.
4259 */
4260 enmReflect = SVMREFLECTXCPT_XCPT;
4261 }
4262 }
4263 else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
4264 || pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
4265 {
4266 enmReflect = SVMREFLECTXCPT_XCPT;
4267 fReflectingNmi = RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI);
4268
4269 if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_31)
4270 {
4271 uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
4272 if (uExitVector == X86_XCPT_PF)
4273 {
4274 pSvmTransient->fVectoringPF = true;
4275 Log4(("IDT: Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pCtx->cr2));
4276 }
4277 }
4278 }
4279 /* else: Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
4280
4281 switch (enmReflect)
4282 {
4283 case SVMREFLECTXCPT_XCPT:
4284 {
4285 /* If we are re-injecting the NMI, clear NMI blocking. */
4286 if (fReflectingNmi)
4287 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
4288
4289 Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
4290 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
4291 hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
4292
4293 /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
4294 Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
4295 !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
4296 break;
4297 }
4298
4299 case SVMREFLECTXCPT_DF:
4300 {
4301 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
4302 hmR0SvmSetPendingXcptDF(pVCpu);
4303 rc = VINF_HM_DOUBLE_FAULT;
4304 break;
4305 }
4306
4307 case SVMREFLECTXCPT_TF:
4308 {
4309 rc = VINF_EM_RESET;
4310 break;
4311 }
4312
4313 case SVMREFLECTXCPT_HANG:
4314 {
4315 rc = VERR_EM_GUEST_CPU_HANG;
4316 break;
4317 }
4318
4319 default:
4320 Assert(rc == VINF_SUCCESS);
4321 break;
4322 }
4323#endif /* HMSVM_USE_IEM_EVENT_REFLECTION */
4324 }
4325 Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
4326 NOREF(pCtx);
4327 return rc;
4328}
4329
4330
4331/**
4332 * Updates interrupt shadow for the current RIP.
4333 */
4334#define HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx) \
4335 do { \
4336 /* Update interrupt shadow. */ \
4337 if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) \
4338 && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu)) \
4339 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); \
4340 } while (0)
4341
4342
4343/**
4344 * Advances the guest RIP making use of the CPU's NRIP_SAVE feature if
4345 * supported, otherwise advances the RIP by the number of bytes specified in
4346 * @a cb.
4347 *
4348 * @param pVCpu The cross context virtual CPU structure.
4349 * @param pCtx Pointer to the guest-CPU context.
4350 * @param cb RIP increment value in bytes.
4351 *
4352 * @remarks Use this function only from \#VMEXIT's where the NRIP value is valid
4353 * when NRIP_SAVE is supported by the CPU, otherwise use
4354 * hmR0SvmAdvanceRipDumb!
4355 */
4356DECLINLINE(void) hmR0SvmAdvanceRipHwAssist(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
4357{
4358 if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4359 {
4360 PCSVMVMCB pVmcb = (PCSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4361 Assert(pVmcb->ctrl.u64NextRIP);
4362 AssertRelease(pVmcb->ctrl.u64NextRIP - pCtx->rip == cb); /* temporary, remove later */
4363 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4364 }
4365 else
4366 pCtx->rip += cb;
4367
4368 HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
4369}
4370
4371/* Currently only used by nested hw.virt instructions, so ifdef'd as such, otherwise compilers start whining. */
4372#ifdef VBOX_WITH_NESTED_HWVIRT
4373/**
4374 * Gets the length of the current instruction if the CPU supports the NRIP_SAVE
4375 * feature. Otherwise, returns the value in @a cbLikely.
4376 *
4377 * @param pVCpu The cross context virtual CPU structure.
4378 * @param pCtx Pointer to the guest-CPU context.
4379 * @param cbLikely The likely instruction length.
4380 */
4381DECLINLINE(uint8_t) hmR0SvmGetInstrLengthHwAssist(PVMCPU pVCpu, PCPUMCTX pCtx, uint8_t cbLikely)
4382{
4383 Assert(cbLikely <= 15); /* See Intel spec. 2.3.11 "AVX Instruction Length" */
4384 if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4385 {
4386 PCSVMVMCB pVmcb = (PCSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4387 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
4388 Assert(cbInstr == cbLikely);
4389 return cbInstr;
4390 }
4391 return cbLikely;
4392}
4393#endif
4394
4395/**
4396 * Advances the guest RIP by the number of bytes specified in @a cb. This does
4397 * not make use of any hardware features to determine the instruction length.
4398 *
4399 * @param pVCpu The cross context virtual CPU structure.
4400 * @param pCtx Pointer to the guest-CPU context.
4401 * @param cb RIP increment value in bytes.
4402 */
4403DECLINLINE(void) hmR0SvmAdvanceRipDumb(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
4404{
4405 pCtx->rip += cb;
4406 HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
4407}
4408#undef HMSVM_UPDATE_INTR_SHADOW
4409
4410
4411/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
4412/* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
4413/* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
4414
4415/** @name \#VMEXIT handlers.
4416 * @{
4417 */
4418
4419/**
4420 * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
4421 * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
4422 */
4423HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4424{
4425 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4426
4427 if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
4428 STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
4429 else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
4430 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
4431
4432 /*
4433 * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
4434 * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
4435 * interrupt it is until the host actually take the interrupt.
4436 *
4437 * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
4438 * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
4439 */
4440 return VINF_EM_RAW_INTERRUPT;
4441}
4442
4443
4444/**
4445 * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
4446 */
4447HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4448{
4449 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4450
4451 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
4452 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
4453 int rc = VINF_SUCCESS;
4454 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4455 return rc;
4456}
4457
4458
4459/**
4460 * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
4461 */
4462HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4463{
4464 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4465
4466 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
4467 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
4468 int rc = VINF_SUCCESS;
4469 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4470 return rc;
4471}
4472
4473
4474/**
4475 * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
4476 */
4477HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4478{
4479 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4480 PVM pVM = pVCpu->CTX_SUFF(pVM);
4481 int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4482 if (RT_LIKELY(rc == VINF_SUCCESS))
4483 {
4484 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
4485 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4486 }
4487 else
4488 {
4489 AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
4490 rc = VERR_EM_INTERPRETER;
4491 }
4492 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
4493 return rc;
4494}
4495
4496
4497/**
4498 * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
4499 */
4500HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4501{
4502 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4503 PVM pVM = pVCpu->CTX_SUFF(pVM);
4504 int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4505 if (RT_LIKELY(rc == VINF_SUCCESS))
4506 {
4507 pSvmTransient->fUpdateTscOffsetting = true;
4508 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
4509 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4510 }
4511 else
4512 {
4513 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
4514 rc = VERR_EM_INTERPRETER;
4515 }
4516 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
4517 return rc;
4518}
4519
4520
4521/**
4522 * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
4523 */
4524HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4525{
4526 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4527 int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
4528 if (RT_LIKELY(rc == VINF_SUCCESS))
4529 {
4530 pSvmTransient->fUpdateTscOffsetting = true;
4531 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
4532 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4533 }
4534 else
4535 {
4536 AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
4537 rc = VERR_EM_INTERPRETER;
4538 }
4539 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
4540 return rc;
4541}
4542
4543
4544/**
4545 * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
4546 */
4547HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4548{
4549 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4550 int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
4551 if (RT_LIKELY(rc == VINF_SUCCESS))
4552 {
4553 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
4554 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4555 }
4556 else
4557 {
4558 AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
4559 rc = VERR_EM_INTERPRETER;
4560 }
4561 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
4562 return rc;
4563}
4564
4565
4566/**
4567 * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
4568 */
4569HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4570{
4571 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4572 PVM pVM = pVCpu->CTX_SUFF(pVM);
4573 Assert(!pVM->hm.s.fNestedPaging);
4574 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
4575
4576 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST)
4577 {
4578 Assert(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
4579 PCSVMVMCB pVmcb = (PCSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4580 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
4581 RTGCPTR const GCPtrPage = pVmcb->ctrl.u64ExitInfo1;
4582 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, cbInstr, GCPtrPage);
4583 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4584 return VBOXSTRICTRC_VAL(rcStrict);
4585 }
4586
4587 int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, pCtx); /* Updates RIP if successful. */
4588 Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
4589 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4590 return rc;
4591}
4592
4593
4594/**
4595 * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
4596 */
4597HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4598{
4599 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4600
4601 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 1);
4602 int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
4603 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4604 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
4605 if (rc != VINF_SUCCESS)
4606 STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
4607 return rc;
4608}
4609
4610
4611/**
4612 * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
4613 */
4614HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4615{
4616 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4617 int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
4618 if (RT_LIKELY(rc == VINF_SUCCESS))
4619 {
4620 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
4621 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4622 }
4623 else
4624 {
4625 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
4626 rc = VERR_EM_INTERPRETER;
4627 }
4628 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
4629 return rc;
4630}
4631
4632
4633/**
4634 * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
4635 */
4636HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4637{
4638 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4639 VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
4640 int rc = VBOXSTRICTRC_VAL(rc2);
4641 if ( rc == VINF_EM_HALT
4642 || rc == VINF_SUCCESS)
4643 {
4644 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
4645
4646 if ( rc == VINF_EM_HALT
4647 && EMMonitorWaitShouldContinue(pVCpu, pCtx))
4648 {
4649 rc = VINF_SUCCESS;
4650 }
4651 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4652 }
4653 else
4654 {
4655 AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
4656 rc = VERR_EM_INTERPRETER;
4657 }
4658 AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
4659 ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
4660 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
4661 return rc;
4662}
4663
4664
4665/**
4666 * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
4667 * \#VMEXIT.
4668 */
4669HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4670{
4671 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4672 return VINF_EM_RESET;
4673}
4674
4675
4676/**
4677 * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
4678 */
4679HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4680{
4681 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4682
4683 Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
4684 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
4685
4686 PVM pVM = pVCpu->CTX_SUFF(pVM);
4687 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST)
4688 {
4689 Assert(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
4690 PCSVMVMCB pVmcb = (PCSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4691 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
4692 if (fMovCRx)
4693 {
4694 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
4695 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0;
4696 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
4697 VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
4698 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4699 return VBOXSTRICTRC_VAL(rcStrict);
4700 }
4701 /* else: SMSW instruction, fall back below to IEM for this. */
4702 }
4703
4704 VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4705 int rc = VBOXSTRICTRC_VAL(rc2);
4706 AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
4707 ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
4708 Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
4709 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4710 return rc;
4711}
4712
4713
4714/**
4715 * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
4716 */
4717HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4718{
4719 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4720
4721 uint8_t const iCrReg = pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0;
4722 Assert(iCrReg <= 15);
4723
4724 VBOXSTRICTRC rcStrict = VERR_SVM_IPE_5;
4725 PVM pVM = pVCpu->CTX_SUFF(pVM);
4726 bool fDecodedInstr = false;
4727 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_DECODE_ASSIST)
4728 {
4729 Assert(pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE);
4730 PCSVMVMCB pVmcb = (PCSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4731 bool const fMovCRx = RT_BOOL(pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_MASK);
4732 if (fMovCRx)
4733 {
4734 uint8_t const cbInstr = pVmcb->ctrl.u64NextRIP - pCtx->rip;
4735 uint8_t const iGReg = pVmcb->ctrl.u64ExitInfo1 & SVM_EXIT1_MOV_CRX_GPR_NUMBER;
4736 rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
4737 fDecodedInstr = true;
4738 }
4739 /* else: LMSW or CLTS instruction, fall back below to IEM for this. */
4740 }
4741
4742 if (!fDecodedInstr)
4743 {
4744 rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(pCtx), NULL);
4745 if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
4746 || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
4747 rcStrict = VERR_EM_INTERPRETER;
4748 }
4749
4750 if (rcStrict == VINF_SUCCESS)
4751 {
4752 switch (iCrReg)
4753 {
4754 case 0: /* CR0. */
4755 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
4756 break;
4757
4758 case 3: /* CR3. */
4759 Assert(!pVM->hm.s.fNestedPaging);
4760 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
4761 break;
4762
4763 case 4: /* CR4. */
4764 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
4765 break;
4766
4767 case 8: /* CR8 (TPR). */
4768 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4769 break;
4770
4771 default:
4772 AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
4773 pSvmTransient->u64ExitCode, iCrReg));
4774 break;
4775 }
4776 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
4777 }
4778 else
4779 Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_CHANGE_MODE || rcStrict == VINF_PGM_SYNC_CR3);
4780 return VBOXSTRICTRC_TODO(rcStrict);
4781}
4782
4783
4784/**
4785 * \#VMEXIT handler for instructions that result in a \#UD exception delivered
4786 * to the guest.
4787 */
4788HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4789{
4790 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4791 hmR0SvmSetPendingXcptUD(pVCpu);
4792 return VINF_SUCCESS;
4793}
4794
4795
4796/**
4797 * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
4798 * \#VMEXIT.
4799 */
4800HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4801{
4802 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4803 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4804 PVM pVM = pVCpu->CTX_SUFF(pVM);
4805
4806 int rc;
4807 if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
4808 {
4809 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
4810
4811 /* Handle TPR patching; intercepted LSTAR write. */
4812 if ( pVM->hm.s.fTPRPatchingActive
4813 && pCtx->ecx == MSR_K8_LSTAR)
4814 {
4815 if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
4816 {
4817 /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
4818 int rc2 = APICSetTpr(pVCpu, pCtx->eax & 0xff);
4819 AssertRC(rc2);
4820 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4821 }
4822 rc = VINF_SUCCESS;
4823 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
4824 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4825 return rc;
4826 }
4827
4828 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4829 {
4830 rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4831 if (RT_LIKELY(rc == VINF_SUCCESS))
4832 {
4833 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4834 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4835 }
4836 else
4837 AssertMsg( rc == VERR_EM_INTERPRETER
4838 || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
4839 }
4840 else
4841 {
4842 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
4843 if (RT_LIKELY(rc == VINF_SUCCESS))
4844 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc); /* RIP updated by EMInterpretInstruction(). */
4845 else
4846 AssertMsg( rc == VERR_EM_INTERPRETER
4847 || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4848 }
4849
4850 if (rc == VINF_SUCCESS)
4851 {
4852 /* If this is an X2APIC WRMSR access, update the APIC state as well. */
4853 if ( pCtx->ecx >= MSR_IA32_X2APIC_START
4854 && pCtx->ecx <= MSR_IA32_X2APIC_END)
4855 {
4856 /*
4857 * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
4858 * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
4859 * EMInterpretWrmsr() changes it.
4860 */
4861 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
4862 }
4863 else if (pCtx->ecx == MSR_K6_EFER)
4864 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
4865 else if (pCtx->ecx == MSR_IA32_TSC)
4866 pSvmTransient->fUpdateTscOffsetting = true;
4867 }
4868 }
4869 else
4870 {
4871 /* MSR Read access. */
4872 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
4873 Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
4874
4875 if (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
4876 {
4877 rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
4878 if (RT_LIKELY(rc == VINF_SUCCESS))
4879 {
4880 pCtx->rip = pVmcb->ctrl.u64NextRIP;
4881 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4882 }
4883 else
4884 AssertMsg( rc == VERR_EM_INTERPRETER
4885 || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
4886 }
4887 else
4888 {
4889 rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
4890 if (RT_UNLIKELY(rc != VINF_SUCCESS))
4891 {
4892 AssertMsg( rc == VERR_EM_INTERPRETER
4893 || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
4894 }
4895 /* RIP updated by EMInterpretInstruction(). */
4896 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4897 }
4898 }
4899
4900 /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
4901 return rc;
4902}
4903
4904
4905/**
4906 * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
4907 */
4908HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4909{
4910 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4911 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
4912
4913 /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
4914 if (pSvmTransient->fWasGuestDebugStateActive)
4915 {
4916 AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
4917 pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
4918 return VERR_SVM_UNEXPECTED_EXIT;
4919 }
4920
4921 /*
4922 * Lazy DR0-3 loading.
4923 */
4924 if (!pSvmTransient->fWasHyperDebugStateActive)
4925 {
4926 Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
4927 Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
4928
4929 /* Don't intercept DRx read and writes. */
4930 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
4931 pVmcb->ctrl.u16InterceptRdDRx = 0;
4932 pVmcb->ctrl.u16InterceptWrDRx = 0;
4933 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
4934
4935 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
4936 VMMRZCallRing3Disable(pVCpu);
4937 HM_DISABLE_PREEMPT();
4938
4939 /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
4940 CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
4941 Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
4942
4943 HM_RESTORE_PREEMPT();
4944 VMMRZCallRing3Enable(pVCpu);
4945
4946 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
4947 return VINF_SUCCESS;
4948 }
4949
4950 /*
4951 * Interpret the read/writing of DRx.
4952 */
4953 /** @todo Decode assist. */
4954 VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
4955 Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
4956 if (RT_LIKELY(rc == VINF_SUCCESS))
4957 {
4958 /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
4959 /** @todo CPUM should set this flag! */
4960 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
4961 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
4962 }
4963 else
4964 Assert(rc == VERR_EM_INTERPRETER);
4965 return VBOXSTRICTRC_TODO(rc);
4966}
4967
4968
4969/**
4970 * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
4971 */
4972HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4973{
4974 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4975 /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
4976 int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
4977 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
4978 STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
4979 return rc;
4980}
4981
4982
4983/**
4984 * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
4985 */
4986HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
4987{
4988 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
4989
4990 /** @todo decode assists... */
4991 VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
4992 if (rcStrict == VINF_IEM_RAISED_XCPT)
4993 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
4994
4995 pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
4996 Log4(("hmR0SvmExitXsetbv: New XCR0=%#RX64 fLoadSaveGuestXcr0=%d (cr4=%RX64) rcStrict=%Rrc\n",
4997 pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0, pCtx->cr4, VBOXSTRICTRC_VAL(rcStrict)));
4998
4999 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5000 return VBOXSTRICTRC_TODO(rcStrict);
5001}
5002
5003
5004/**
5005 * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
5006 */
5007HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5008{
5009 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5010
5011 /* I/O operation lookup arrays. */
5012 static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
5013 static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
5014 the result (in AL/AX/EAX). */
5015 Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
5016
5017 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5018 PVM pVM = pVCpu->CTX_SUFF(pVM);
5019
5020 /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
5021 SVMIOIOEXITINFO IoExitInfo;
5022 IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
5023 uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
5024 uint32_t cbValue = s_aIOSize[uIOWidth];
5025 uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
5026
5027 if (RT_UNLIKELY(!cbValue))
5028 {
5029 AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
5030 return VERR_EM_INTERPRETER;
5031 }
5032
5033 VBOXSTRICTRC rcStrict;
5034 bool fUpdateRipAlready = false;
5035 if (IoExitInfo.n.u1STR)
5036 {
5037#ifdef VBOX_WITH_2ND_IEM_STEP
5038 /* INS/OUTS - I/O String instruction. */
5039 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
5040 * in EXITINFO1? Investigate once this thing is up and running. */
5041 Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
5042 IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
5043 AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
5044 static IEMMODE const s_aenmAddrMode[8] =
5045 {
5046 (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
5047 };
5048 IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
5049 if (enmAddrMode != (IEMMODE)-1)
5050 {
5051 uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
5052 if (cbInstr <= 15 && cbInstr >= 1)
5053 {
5054 Assert(cbInstr >= 1U + IoExitInfo.n.u1REP);
5055 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
5056 {
5057 /* Don't know exactly how to detect whether u3SEG is valid, currently
5058 only enabling it for Bulldozer and later with NRIP. OS/2 broke on
5059 2384 Opterons when only checking NRIP. */
5060 if ( (pVM->hm.s.svm.u32Features & X86_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
5061 && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
5062 {
5063 AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1REP,
5064 ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3SEG, cbInstr, IoExitInfo.n.u1REP));
5065 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
5066 IoExitInfo.n.u3SEG, true /*fIoChecked*/);
5067 }
5068 else if (cbInstr == 1U + IoExitInfo.n.u1REP)
5069 rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
5070 X86_SREG_DS, true /*fIoChecked*/);
5071 else
5072 rcStrict = IEMExecOne(pVCpu);
5073 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
5074 }
5075 else
5076 {
5077 AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3SEG));
5078 rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
5079 true /*fIoChecked*/);
5080 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
5081 }
5082 }
5083 else
5084 {
5085 AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
5086 rcStrict = IEMExecOne(pVCpu);
5087 }
5088 }
5089 else
5090 {
5091 AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
5092 rcStrict = IEMExecOne(pVCpu);
5093 }
5094 fUpdateRipAlready = true;
5095
5096#else
5097 /* INS/OUTS - I/O String instruction. */
5098 PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
5099
5100 /** @todo Huh? why can't we use the segment prefix information given by AMD-V
5101 * in EXITINFO1? Investigate once this thing is up and running. */
5102
5103 rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
5104 if (rcStrict == VINF_SUCCESS)
5105 {
5106 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
5107 {
5108 rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
5109 (DISCPUMODE)pDis->uAddrMode, cbValue);
5110 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
5111 }
5112 else
5113 {
5114 rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
5115 (DISCPUMODE)pDis->uAddrMode, cbValue);
5116 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
5117 }
5118 }
5119 else
5120 rcStrict = VINF_EM_RAW_EMULATE_INSTR;
5121#endif
5122 }
5123 else
5124 {
5125 /* IN/OUT - I/O instruction. */
5126 Assert(!IoExitInfo.n.u1REP);
5127
5128 if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
5129 {
5130 rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
5131 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
5132 }
5133 else
5134 {
5135 uint32_t u32Val = 0;
5136 rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
5137 if (IOM_SUCCESS(rcStrict))
5138 {
5139 /* Save result of I/O IN instr. in AL/AX/EAX. */
5140 /** @todo r=bird: 32-bit op size should clear high bits of rax! */
5141 pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
5142 }
5143 else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
5144 HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
5145
5146 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
5147 }
5148 }
5149
5150 if (IOM_SUCCESS(rcStrict))
5151 {
5152 /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
5153 if (!fUpdateRipAlready)
5154 pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
5155
5156 /*
5157 * If any I/O breakpoints are armed, we need to check if one triggered
5158 * and take appropriate action.
5159 * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
5160 */
5161 /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
5162 * execution engines about whether hyper BPs and such are pending. */
5163 uint32_t const uDr7 = pCtx->dr[7];
5164 if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
5165 && X86_DR7_ANY_RW_IO(uDr7)
5166 && (pCtx->cr4 & X86_CR4_DE))
5167 || DBGFBpIsHwIoArmed(pVM)))
5168 {
5169 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
5170 VMMRZCallRing3Disable(pVCpu);
5171 HM_DISABLE_PREEMPT();
5172
5173 STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
5174 CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
5175
5176 VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
5177 if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
5178 {
5179 /* Raise #DB. */
5180 pVmcb->guest.u64DR6 = pCtx->dr[6];
5181 pVmcb->guest.u64DR7 = pCtx->dr[7];
5182 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
5183 hmR0SvmSetPendingXcptDB(pVCpu);
5184 }
5185 /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
5186 however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
5187 else if ( rcStrict2 != VINF_SUCCESS
5188 && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
5189 rcStrict = rcStrict2;
5190 AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
5191
5192 HM_RESTORE_PREEMPT();
5193 VMMRZCallRing3Enable(pVCpu);
5194 }
5195
5196 HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
5197 }
5198
5199#ifdef VBOX_STRICT
5200 if (rcStrict == VINF_IOM_R3_IOPORT_READ)
5201 Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
5202 else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
5203 Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
5204 else
5205 {
5206 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
5207 * statuses, that the VMM device and some others may return. See
5208 * IOM_SUCCESS() for guidance. */
5209 AssertMsg( RT_FAILURE(rcStrict)
5210 || rcStrict == VINF_SUCCESS
5211 || rcStrict == VINF_EM_RAW_EMULATE_INSTR
5212 || rcStrict == VINF_EM_DBG_BREAKPOINT
5213 || rcStrict == VINF_EM_RAW_GUEST_TRAP
5214 || rcStrict == VINF_EM_RAW_TO_R3
5215 || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
5216 }
5217#endif
5218 return VBOXSTRICTRC_TODO(rcStrict);
5219}
5220
5221
5222/**
5223 * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
5224 */
5225HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5226{
5227 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5228 PVM pVM = pVCpu->CTX_SUFF(pVM);
5229 Assert(pVM->hm.s.fNestedPaging);
5230
5231 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5232
5233 /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
5234 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5235 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
5236 RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
5237
5238 Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
5239
5240#ifdef VBOX_HM_WITH_GUEST_PATCHING
5241 /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
5242 if ( pVM->hm.s.fTprPatchingAllowed
5243 && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
5244 && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
5245 || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
5246 && !CPUMIsGuestInLongModeEx(pCtx)
5247 && !CPUMGetGuestCPL(pVCpu)
5248 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
5249 {
5250 RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
5251 GCPhysApicBase &= PAGE_BASE_GC_MASK;
5252
5253 if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
5254 {
5255 /* Only attempt to patch the instruction once. */
5256 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
5257 if (!pPatch)
5258 return VINF_EM_HM_PATCH_TPR_INSTR;
5259 }
5260 }
5261#endif
5262
5263 /*
5264 * Determine the nested paging mode.
5265 */
5266 PGMMODE enmNestedPagingMode;
5267#if HC_ARCH_BITS == 32
5268 if (CPUMIsGuestInLongModeEx(pCtx))
5269 enmNestedPagingMode = PGMMODE_AMD64_NX;
5270 else
5271#endif
5272 enmNestedPagingMode = PGMGetHostMode(pVM);
5273
5274 /*
5275 * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
5276 */
5277 int rc;
5278 Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
5279 if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
5280 {
5281 /* If event delivery causes an MMIO #NPF, go back to instruction emulation as
5282 otherwise injecting the original pending event would most likely cause the same MMIO #NPF. */
5283 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
5284 return VINF_EM_RAW_INJECT_TRPM_EVENT;
5285
5286 VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
5287 u32ErrCode);
5288 rc = VBOXSTRICTRC_VAL(rc2);
5289
5290 /*
5291 * If we succeed, resume guest execution.
5292 * If we fail in interpreting the instruction because we couldn't get the guest physical address
5293 * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
5294 * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
5295 * weird case. See @bugref{6043}.
5296 */
5297 if ( rc == VINF_SUCCESS
5298 || rc == VERR_PAGE_TABLE_NOT_PRESENT
5299 || rc == VERR_PAGE_NOT_PRESENT)
5300 {
5301 /* Successfully handled MMIO operation. */
5302 HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
5303 rc = VINF_SUCCESS;
5304 }
5305 return rc;
5306 }
5307
5308 TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
5309 rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
5310 TRPMResetTrap(pVCpu);
5311
5312 Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
5313
5314 /*
5315 * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
5316 */
5317 if ( rc == VINF_SUCCESS
5318 || rc == VERR_PAGE_TABLE_NOT_PRESENT
5319 || rc == VERR_PAGE_NOT_PRESENT)
5320 {
5321 /* We've successfully synced our shadow page tables. */
5322 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
5323 rc = VINF_SUCCESS;
5324 }
5325
5326 return rc;
5327}
5328
5329
5330/**
5331 * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
5332 * \#VMEXIT.
5333 */
5334HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5335{
5336 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5337
5338 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5339 pVmcb->ctrl.IntCtrl.n.u1VIrqPending = 0; /* No virtual interrupts pending, we'll inject the current one/NMI before reentry. */
5340 pVmcb->ctrl.IntCtrl.n.u8VIntrVector = 0;
5341
5342 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive interrupts/NMIs, it is now ready. */
5343 pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VINTR;
5344 pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
5345
5346 /* Deliver the pending interrupt/NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
5347 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
5348 return VINF_SUCCESS;
5349}
5350
5351
5352/**
5353 * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
5354 * \#VMEXIT.
5355 */
5356HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5357{
5358 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5359
5360 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5361
5362#ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
5363 Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
5364#endif
5365
5366 /* Check if this task-switch occurred while delivering an event through the guest IDT. */
5367 if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
5368 {
5369 /*
5370 * AMD-V provides us with the exception which caused the TS; we collect
5371 * the information in the call to hmR0SvmCheckExitDueToEventDelivery.
5372 */
5373 Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery.\n"));
5374 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
5375 return VINF_EM_RAW_INJECT_TRPM_EVENT;
5376 }
5377
5378 /** @todo Emulate task switch someday, currently just going back to ring-3 for
5379 * emulation. */
5380 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
5381 return VERR_EM_INTERPRETER;
5382}
5383
5384
5385/**
5386 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
5387 */
5388HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5389{
5390 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5391 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
5392
5393 bool fRipUpdated;
5394 VBOXSTRICTRC rcStrict = HMSvmVmmcall(pVCpu, pCtx, &fRipUpdated);
5395 if (RT_SUCCESS(rcStrict))
5396 {
5397 /* Only update the RIP if we're continuing guest execution and not
5398 in the case of say VINF_GIM_R3_HYPERCALL. */
5399 if ( rcStrict == VINF_SUCCESS
5400 && !fRipUpdated)
5401 {
5402 hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3 /* cbInstr */);
5403 }
5404
5405 /* If the hypercall or TPR patching changes anything other than guest's general-purpose registers,
5406 we would need to reload the guest changed bits here before VM-entry. */
5407 return VBOXSTRICTRC_VAL(rcStrict);
5408 }
5409
5410 hmR0SvmSetPendingXcptUD(pVCpu);
5411 return VINF_SUCCESS;
5412}
5413
5414
5415/**
5416 * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
5417 */
5418HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5419{
5420 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5421 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
5422 return VINF_EM_RAW_INTERRUPT;
5423}
5424
5425
5426/**
5427 * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
5428 */
5429HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5430{
5431 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5432
5433 /* Clear NMI blocking. */
5434 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
5435
5436 /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
5437 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5438 hmR0SvmClearIretIntercept(pVmcb);
5439
5440 /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
5441 return VINF_SUCCESS;
5442}
5443
5444
5445/**
5446 * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_14).
5447 * Conditional \#VMEXIT.
5448 */
5449HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5450{
5451 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5452
5453 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5454
5455 /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
5456 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5457 uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
5458 RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
5459 PVM pVM = pVCpu->CTX_SUFF(pVM);
5460
5461#if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
5462 if (pVM->hm.s.fNestedPaging)
5463 {
5464 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
5465 if (!pSvmTransient->fVectoringDoublePF)
5466 {
5467 /* A genuine guest #PF, reflect it to the guest. */
5468 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
5469 Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
5470 uFaultAddress, u32ErrCode));
5471 }
5472 else
5473 {
5474 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
5475 hmR0SvmSetPendingXcptDF(pVCpu);
5476 Log4(("Pending #DF due to vectoring #PF. NP\n"));
5477 }
5478 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
5479 return VINF_SUCCESS;
5480 }
5481#endif
5482
5483 Assert(!pVM->hm.s.fNestedPaging);
5484
5485#ifdef VBOX_HM_WITH_GUEST_PATCHING
5486 /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
5487 if ( pVM->hm.s.fTprPatchingAllowed
5488 && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
5489 && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
5490 && !CPUMIsGuestInLongModeEx(pCtx)
5491 && !CPUMGetGuestCPL(pVCpu)
5492 && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
5493 {
5494 RTGCPHYS GCPhysApicBase;
5495 GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
5496 GCPhysApicBase &= PAGE_BASE_GC_MASK;
5497
5498 /* Check if the page at the fault-address is the APIC base. */
5499 RTGCPHYS GCPhysPage;
5500 int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
5501 if ( rc2 == VINF_SUCCESS
5502 && GCPhysPage == GCPhysApicBase)
5503 {
5504 /* Only attempt to patch the instruction once. */
5505 PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
5506 if (!pPatch)
5507 return VINF_EM_HM_PATCH_TPR_INSTR;
5508 }
5509 }
5510#endif
5511
5512 Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
5513 pCtx->rip, u32ErrCode, pCtx->cr3));
5514
5515 /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
5516 of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
5517 if (pSvmTransient->fVectoringPF)
5518 {
5519 Assert(pVCpu->hm.s.Event.fPending);
5520 return VINF_EM_RAW_INJECT_TRPM_EVENT;
5521 }
5522
5523 TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
5524 int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
5525
5526 Log4(("#PF rc=%Rrc\n", rc));
5527
5528 if (rc == VINF_SUCCESS)
5529 {
5530 /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
5531 TRPMResetTrap(pVCpu);
5532 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
5533 HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
5534 return rc;
5535 }
5536 else if (rc == VINF_EM_RAW_GUEST_TRAP)
5537 {
5538 pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
5539
5540 if (!pSvmTransient->fVectoringDoublePF)
5541 {
5542 /* It's a guest page fault and needs to be reflected to the guest. */
5543 u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
5544 TRPMResetTrap(pVCpu);
5545 hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
5546 }
5547 else
5548 {
5549 /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
5550 TRPMResetTrap(pVCpu);
5551 hmR0SvmSetPendingXcptDF(pVCpu);
5552 Log4(("#PF: Pending #DF due to vectoring #PF\n"));
5553 }
5554
5555 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
5556 return VINF_SUCCESS;
5557 }
5558
5559 TRPMResetTrap(pVCpu);
5560 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
5561 return rc;
5562}
5563
5564
5565/**
5566 * \#VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
5567 * Conditional \#VMEXIT.
5568 */
5569HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5570{
5571 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5572
5573 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
5574 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb; NOREF(pVmcb);
5575 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid);
5576
5577 /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
5578 VMMRZCallRing3Disable(pVCpu);
5579 HM_DISABLE_PREEMPT();
5580
5581 int rc;
5582 /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
5583 if (pSvmTransient->fWasGuestFPUStateActive)
5584 {
5585 rc = VINF_EM_RAW_GUEST_TRAP;
5586 Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
5587 }
5588 else
5589 {
5590#ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
5591 Assert(!pSvmTransient->fWasGuestFPUStateActive);
5592#endif
5593 rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu); /* (No need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
5594 Assert( rc == VINF_EM_RAW_GUEST_TRAP
5595 || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
5596 }
5597
5598 HM_RESTORE_PREEMPT();
5599 VMMRZCallRing3Enable(pVCpu);
5600
5601 if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
5602 {
5603 /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
5604 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
5605 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
5606 pVCpu->hm.s.fPreloadGuestFpu = true;
5607 }
5608 else
5609 {
5610 /* Forward #NM to the guest. */
5611 Assert(rc == VINF_EM_RAW_GUEST_TRAP);
5612 hmR0SvmSetPendingXcptNM(pVCpu);
5613 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
5614 }
5615 return VINF_SUCCESS;
5616}
5617
5618
5619/**
5620 * \#VMEXIT handler for undefined opcode (SVM_EXIT_EXCEPTION_6).
5621 * Conditional \#VMEXIT.
5622 */
5623HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5624{
5625 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5626
5627 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
5628 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb; NOREF(pVmcb);
5629 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid);
5630
5631 int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
5632 if (pVCpu->hm.s.fGIMTrapXcptUD)
5633 {
5634 uint8_t cbInstr = 0;
5635 VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, pCtx, NULL /* pDis */, &cbInstr);
5636 if (rcStrict == VINF_SUCCESS)
5637 {
5638 /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
5639 hmR0SvmAdvanceRipDumb(pVCpu, pCtx, cbInstr);
5640 rc = VINF_SUCCESS;
5641 HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
5642 }
5643 else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
5644 rc = VINF_SUCCESS;
5645 else if (rcStrict == VINF_GIM_R3_HYPERCALL)
5646 rc = VINF_GIM_R3_HYPERCALL;
5647 else
5648 Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
5649 }
5650
5651 /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
5652 if (RT_FAILURE(rc))
5653 {
5654 hmR0SvmSetPendingXcptUD(pVCpu);
5655 rc = VINF_SUCCESS;
5656 }
5657
5658 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
5659 return rc;
5660}
5661
5662
5663/**
5664 * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_16).
5665 * Conditional \#VMEXIT.
5666 */
5667HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5668{
5669 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5670
5671 /* Paranoia; Ensure we cannot be called as a result of event delivery. */
5672 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb; NOREF(pVmcb);
5673 Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid);
5674
5675 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
5676
5677 if (!(pCtx->cr0 & X86_CR0_NE))
5678 {
5679 PVM pVM = pVCpu->CTX_SUFF(pVM);
5680 PDISSTATE pDis = &pVCpu->hm.s.DisState;
5681 unsigned cbOp;
5682 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
5683 if (RT_SUCCESS(rc))
5684 {
5685 /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
5686 rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
5687 if (RT_SUCCESS(rc))
5688 pCtx->rip += cbOp;
5689 }
5690 else
5691 Log4(("hmR0SvmExitXcptMF: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
5692 return rc;
5693 }
5694
5695 hmR0SvmSetPendingXcptMF(pVCpu);
5696 return VINF_SUCCESS;
5697}
5698
5699
5700/**
5701 * \#VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
5702 * \#VMEXIT.
5703 */
5704HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5705{
5706 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5707
5708 /* If this #DB is the result of delivering an event, go back to the interpreter. */
5709 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5710 if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
5711 {
5712 STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
5713 return VINF_EM_RAW_INJECT_TRPM_EVENT;
5714 }
5715
5716 STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
5717
5718 /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
5719 DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
5720 PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
5721 PVM pVM = pVCpu->CTX_SUFF(pVM);
5722 int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
5723 if (rc == VINF_EM_RAW_GUEST_TRAP)
5724 {
5725 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
5726 if (CPUMIsHyperDebugStateActive(pVCpu))
5727 CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
5728
5729 /* Reflect the exception back to the guest. */
5730 hmR0SvmSetPendingXcptDB(pVCpu);
5731 rc = VINF_SUCCESS;
5732 }
5733
5734 /*
5735 * Update DR6.
5736 */
5737 if (CPUMIsHyperDebugStateActive(pVCpu))
5738 {
5739 Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
5740 pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
5741 pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
5742 }
5743 else
5744 {
5745 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
5746 Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
5747 }
5748
5749 return rc;
5750}
5751
5752
5753/**
5754 * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_EXCEPTION_17).
5755 * Conditional \#VMEXIT.
5756 */
5757HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5758{
5759 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5760
5761 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5762
5763 SVMEVENT Event;
5764 Event.u = 0;
5765 Event.n.u1Valid = 1;
5766 Event.n.u3Type = SVM_EVENT_EXCEPTION;
5767 Event.n.u8Vector = X86_XCPT_AC;
5768 Event.n.u1ErrorCodeValid = 1;
5769 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
5770 return VINF_SUCCESS;
5771}
5772
5773
5774/**
5775 * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_EXCEPTION_3).
5776 * Conditional \#VMEXIT.
5777 */
5778HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5779{
5780 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5781
5782 HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
5783
5784 int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
5785 if (rc == VINF_EM_RAW_GUEST_TRAP)
5786 {
5787 SVMEVENT Event;
5788 Event.u = 0;
5789 Event.n.u1Valid = 1;
5790 Event.n.u3Type = SVM_EVENT_EXCEPTION;
5791 Event.n.u8Vector = X86_XCPT_BP;
5792 Event.n.u1ErrorCodeValid = 0;
5793 hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
5794 }
5795
5796 Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
5797 return rc;
5798}
5799
5800
5801#ifdef VBOX_WITH_NESTED_HWVIRT
5802/**
5803 * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
5804 */
5805HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5806{
5807 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5808 /** @todo Stat. */
5809 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClgi); */
5810 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
5811 VBOXSTRICTRC rcStrict = IEMExecDecodedClgi(pVCpu, cbInstr);
5812 return VBOXSTRICTRC_VAL(rcStrict);
5813}
5814
5815
5816/**
5817 * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
5818 */
5819HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5820{
5821 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5822 /** @todo Stat. */
5823 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitStgi); */
5824 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
5825 VBOXSTRICTRC rcStrict = IEMExecDecodedStgi(pVCpu, cbInstr);
5826 return VBOXSTRICTRC_VAL(rcStrict);
5827}
5828
5829
5830/**
5831 * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
5832 */
5833HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5834{
5835 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5836 /** @todo Stat. */
5837 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmload); */
5838 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
5839 VBOXSTRICTRC rcStrict = IEMExecDecodedVmload(pVCpu, cbInstr);
5840 return VBOXSTRICTRC_VAL(rcStrict);
5841}
5842
5843
5844/**
5845 * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
5846 */
5847HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5848{
5849 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5850 /** @todo Stat. */
5851 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmsave); */
5852 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
5853 VBOXSTRICTRC rcStrict = IEMExecDecodedVmsave(pVCpu, cbInstr);
5854 return VBOXSTRICTRC_VAL(rcStrict);
5855}
5856
5857
5858/**
5859 * \#VMEXIT handler for INVLPGA (SVM_EXIT_INVLPGA). Conditional \#VMEXIT.
5860 */
5861HMSVM_EXIT_DECL hmR0SvmExitInvlpga(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5862{
5863 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5864 /** @todo Stat. */
5865 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpga); */
5866 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
5867 VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpga(pVCpu, cbInstr);
5868 return VBOXSTRICTRC_VAL(rcStrict);
5869}
5870
5871
5872/**
5873 * \#VMEXIT handler for STGI (SVM_EXIT_VMRUN). Conditional \#VMEXIT.
5874 */
5875HMSVM_EXIT_DECL hmR0SvmExitVmrun(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
5876{
5877 HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
5878 /** @todo Stat. */
5879 /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmrun); */
5880 uint8_t const cbInstr = hmR0SvmGetInstrLengthHwAssist(pVCpu, pCtx, 3);
5881 VBOXSTRICTRC rcStrict = IEMExecDecodedVmrun(pVCpu, cbInstr);
5882 return VBOXSTRICTRC_VAL(rcStrict);
5883}
5884#endif /* VBOX_WITH_NESTED_HWVIRT */
5885
5886
5887/** @} */
5888
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette