1 | /* $Id: HMSVMR0.cpp 65933 2017-03-03 13:21:40Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * HM SVM (AMD-V) - Host Context Ring-0.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2013-2016 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #define LOG_GROUP LOG_GROUP_HM
|
---|
23 | #include <iprt/asm-amd64-x86.h>
|
---|
24 | #include <iprt/thread.h>
|
---|
25 |
|
---|
26 | #include <VBox/vmm/pdmapi.h>
|
---|
27 | #include <VBox/vmm/dbgf.h>
|
---|
28 | #include <VBox/vmm/iem.h>
|
---|
29 | #include <VBox/vmm/iom.h>
|
---|
30 | #include <VBox/vmm/tm.h>
|
---|
31 | #include <VBox/vmm/gim.h>
|
---|
32 | #include <VBox/vmm/apic.h>
|
---|
33 | #include "HMInternal.h"
|
---|
34 | #include <VBox/vmm/vm.h>
|
---|
35 | #include "HMSVMR0.h"
|
---|
36 | #include "dtrace/VBoxVMM.h"
|
---|
37 |
|
---|
38 | #ifdef DEBUG_ramshankar
|
---|
39 | # define HMSVM_SYNC_FULL_GUEST_STATE
|
---|
40 | # define HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
41 | # define HMSVM_ALWAYS_TRAP_PF
|
---|
42 | # define HMSVM_ALWAYS_TRAP_TASK_SWITCH
|
---|
43 | #endif
|
---|
44 |
|
---|
45 |
|
---|
46 | /*********************************************************************************************************************************
|
---|
47 | * Defined Constants And Macros *
|
---|
48 | *********************************************************************************************************************************/
|
---|
49 | #ifdef VBOX_WITH_STATISTICS
|
---|
50 | # define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
|
---|
51 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitAll); \
|
---|
52 | if ((u64ExitCode) == SVM_EXIT_NPF) \
|
---|
53 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
|
---|
54 | else \
|
---|
55 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
|
---|
56 | } while (0)
|
---|
57 | #else
|
---|
58 | # define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
|
---|
59 | #endif
|
---|
60 |
|
---|
61 | /** If we decide to use a function table approach this can be useful to
|
---|
62 | * switch to a "static DECLCALLBACK(int)". */
|
---|
63 | #define HMSVM_EXIT_DECL static int
|
---|
64 |
|
---|
65 | /** Macro for checking and returning from the using function for
|
---|
66 | * \#VMEXIT intercepts that maybe caused during delivering of another
|
---|
67 | * event in the guest. */
|
---|
68 | #define HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY() \
|
---|
69 | do \
|
---|
70 | { \
|
---|
71 | int rc = hmR0SvmCheckExitDueToEventDelivery(pVCpu, pCtx, pSvmTransient); \
|
---|
72 | if (RT_LIKELY(rc == VINF_SUCCESS)) { /* likely */ } \
|
---|
73 | else if (rc == VINF_HM_DOUBLE_FAULT) \
|
---|
74 | return VINF_SUCCESS; \
|
---|
75 | else \
|
---|
76 | return rc; \
|
---|
77 | } while (0)
|
---|
78 |
|
---|
79 | /** Macro for upgrading a @a a_rc to VINF_EM_DBG_STEPPED after emulating an
|
---|
80 | * instruction that exited. */
|
---|
81 | #define HMSVM_CHECK_SINGLE_STEP(a_pVCpu, a_rc) \
|
---|
82 | do { \
|
---|
83 | if ((a_pVCpu)->hm.s.fSingleInstruction && (a_rc) == VINF_SUCCESS) \
|
---|
84 | (a_rc) = VINF_EM_DBG_STEPPED; \
|
---|
85 | } while (0)
|
---|
86 |
|
---|
87 | /** Assert that preemption is disabled or covered by thread-context hooks. */
|
---|
88 | #define HMSVM_ASSERT_PREEMPT_SAFE() Assert( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
|
---|
89 | || !RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
90 |
|
---|
91 | /** Assert that we haven't migrated CPUs when thread-context hooks are not
|
---|
92 | * used. */
|
---|
93 | #define HMSVM_ASSERT_CPU_SAFE() AssertMsg( VMMR0ThreadCtxHookIsEnabled(pVCpu) \
|
---|
94 | || pVCpu->hm.s.idEnteredCpu == RTMpCpuId(), \
|
---|
95 | ("Illegal migration! Entered on CPU %u Current %u\n", \
|
---|
96 | pVCpu->hm.s.idEnteredCpu, RTMpCpuId()));
|
---|
97 |
|
---|
98 | /** Exception bitmap mask for all contributory exceptions.
|
---|
99 | *
|
---|
100 | * Page fault is deliberately excluded here as it's conditional as to whether
|
---|
101 | * it's contributory or benign. Page faults are handled separately.
|
---|
102 | */
|
---|
103 | #define HMSVM_CONTRIBUTORY_XCPT_MASK ( RT_BIT(X86_XCPT_GP) | RT_BIT(X86_XCPT_NP) | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_TS) \
|
---|
104 | | RT_BIT(X86_XCPT_DE))
|
---|
105 |
|
---|
106 | /** @name VMCB Clean Bits.
|
---|
107 | *
|
---|
108 | * These flags are used for VMCB-state caching. A set VMCB Clean bit indicates
|
---|
109 | * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
|
---|
110 | * memory.
|
---|
111 | *
|
---|
112 | * @{ */
|
---|
113 | /** All intercepts vectors, TSC offset, PAUSE filter counter. */
|
---|
114 | #define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
|
---|
115 | /** I/O permission bitmap, MSR permission bitmap. */
|
---|
116 | #define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
|
---|
117 | /** ASID. */
|
---|
118 | #define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
|
---|
119 | /** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
|
---|
120 | V_INTR_VECTOR. */
|
---|
121 | #define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
|
---|
122 | /** Nested Paging: Nested CR3 (nCR3), PAT. */
|
---|
123 | #define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
|
---|
124 | /** Control registers (CR0, CR3, CR4, EFER). */
|
---|
125 | #define HMSVM_VMCB_CLEAN_CRX_EFER RT_BIT(5)
|
---|
126 | /** Debug registers (DR6, DR7). */
|
---|
127 | #define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
|
---|
128 | /** GDT, IDT limit and base. */
|
---|
129 | #define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
|
---|
130 | /** Segment register: CS, SS, DS, ES limit and base. */
|
---|
131 | #define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
|
---|
132 | /** CR2.*/
|
---|
133 | #define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
|
---|
134 | /** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
|
---|
135 | #define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
|
---|
136 | /** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
|
---|
137 | PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
|
---|
138 | #define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
|
---|
139 | /** Mask of all valid VMCB Clean bits. */
|
---|
140 | #define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS \
|
---|
141 | | HMSVM_VMCB_CLEAN_IOPM_MSRPM \
|
---|
142 | | HMSVM_VMCB_CLEAN_ASID \
|
---|
143 | | HMSVM_VMCB_CLEAN_TPR \
|
---|
144 | | HMSVM_VMCB_CLEAN_NP \
|
---|
145 | | HMSVM_VMCB_CLEAN_CRX_EFER \
|
---|
146 | | HMSVM_VMCB_CLEAN_DRX \
|
---|
147 | | HMSVM_VMCB_CLEAN_DT \
|
---|
148 | | HMSVM_VMCB_CLEAN_SEG \
|
---|
149 | | HMSVM_VMCB_CLEAN_CR2 \
|
---|
150 | | HMSVM_VMCB_CLEAN_LBR \
|
---|
151 | | HMSVM_VMCB_CLEAN_AVIC)
|
---|
152 | /** @} */
|
---|
153 |
|
---|
154 | /** @name SVM transient.
|
---|
155 | *
|
---|
156 | * A state structure for holding miscellaneous information across AMD-V
|
---|
157 | * VMRUN/\#VMEXIT operation, restored after the transition.
|
---|
158 | *
|
---|
159 | * @{ */
|
---|
160 | typedef struct SVMTRANSIENT
|
---|
161 | {
|
---|
162 | /** The host's rflags/eflags. */
|
---|
163 | RTCCUINTREG fEFlags;
|
---|
164 | #if HC_ARCH_BITS == 32
|
---|
165 | uint32_t u32Alignment0;
|
---|
166 | #endif
|
---|
167 |
|
---|
168 | /** The \#VMEXIT exit code (the EXITCODE field in the VMCB). */
|
---|
169 | uint64_t u64ExitCode;
|
---|
170 | /** The guest's TPR value used for TPR shadowing. */
|
---|
171 | uint8_t u8GuestTpr;
|
---|
172 | /** Alignment. */
|
---|
173 | uint8_t abAlignment0[7];
|
---|
174 |
|
---|
175 | /** Whether the guest FPU state was active at the time of \#VMEXIT. */
|
---|
176 | bool fWasGuestFPUStateActive;
|
---|
177 | /** Whether the guest debug state was active at the time of \#VMEXIT. */
|
---|
178 | bool fWasGuestDebugStateActive;
|
---|
179 | /** Whether the hyper debug state was active at the time of \#VMEXIT. */
|
---|
180 | bool fWasHyperDebugStateActive;
|
---|
181 | /** Whether the TSC offset mode needs to be updated. */
|
---|
182 | bool fUpdateTscOffsetting;
|
---|
183 | /** Whether the TSC_AUX MSR needs restoring on \#VMEXIT. */
|
---|
184 | bool fRestoreTscAuxMsr;
|
---|
185 | /** Whether the \#VMEXIT was caused by a page-fault during delivery of a
|
---|
186 | * contributary exception or a page-fault. */
|
---|
187 | bool fVectoringDoublePF;
|
---|
188 | /** Whether the \#VMEXIT was caused by a page-fault during delivery of an
|
---|
189 | * external interrupt or NMI. */
|
---|
190 | bool fVectoringPF;
|
---|
191 | } SVMTRANSIENT, *PSVMTRANSIENT;
|
---|
192 | AssertCompileMemberAlignment(SVMTRANSIENT, u64ExitCode, sizeof(uint64_t));
|
---|
193 | AssertCompileMemberAlignment(SVMTRANSIENT, fWasGuestFPUStateActive, sizeof(uint64_t));
|
---|
194 | /** @} */
|
---|
195 |
|
---|
196 | /**
|
---|
197 | * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
|
---|
198 | */
|
---|
199 | typedef enum SVMMSREXITREAD
|
---|
200 | {
|
---|
201 | /** Reading this MSR causes a \#VMEXIT. */
|
---|
202 | SVMMSREXIT_INTERCEPT_READ = 0xb,
|
---|
203 | /** Reading this MSR does not cause a \#VMEXIT. */
|
---|
204 | SVMMSREXIT_PASSTHRU_READ
|
---|
205 | } SVMMSREXITREAD;
|
---|
206 |
|
---|
207 | /**
|
---|
208 | * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
|
---|
209 | */
|
---|
210 | typedef enum SVMMSREXITWRITE
|
---|
211 | {
|
---|
212 | /** Writing to this MSR causes a \#VMEXIT. */
|
---|
213 | SVMMSREXIT_INTERCEPT_WRITE = 0xd,
|
---|
214 | /** Writing to this MSR does not cause a \#VMEXIT. */
|
---|
215 | SVMMSREXIT_PASSTHRU_WRITE
|
---|
216 | } SVMMSREXITWRITE;
|
---|
217 |
|
---|
218 | /**
|
---|
219 | * SVM \#VMEXIT handler.
|
---|
220 | *
|
---|
221 | * @returns VBox status code.
|
---|
222 | * @param pVCpu The cross context virtual CPU structure.
|
---|
223 | * @param pMixedCtx Pointer to the guest-CPU context.
|
---|
224 | * @param pSvmTransient Pointer to the SVM-transient structure.
|
---|
225 | */
|
---|
226 | typedef int FNSVMEXITHANDLER(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient);
|
---|
227 |
|
---|
228 |
|
---|
229 | /*********************************************************************************************************************************
|
---|
230 | * Internal Functions *
|
---|
231 | *********************************************************************************************************************************/
|
---|
232 | static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
|
---|
233 | static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu);
|
---|
234 | static void hmR0SvmLeave(PVMCPU pVCpu);
|
---|
235 |
|
---|
236 | /** @name \#VMEXIT handlers.
|
---|
237 | * @{
|
---|
238 | */
|
---|
239 | static FNSVMEXITHANDLER hmR0SvmExitIntr;
|
---|
240 | static FNSVMEXITHANDLER hmR0SvmExitWbinvd;
|
---|
241 | static FNSVMEXITHANDLER hmR0SvmExitInvd;
|
---|
242 | static FNSVMEXITHANDLER hmR0SvmExitCpuid;
|
---|
243 | static FNSVMEXITHANDLER hmR0SvmExitRdtsc;
|
---|
244 | static FNSVMEXITHANDLER hmR0SvmExitRdtscp;
|
---|
245 | static FNSVMEXITHANDLER hmR0SvmExitRdpmc;
|
---|
246 | static FNSVMEXITHANDLER hmR0SvmExitInvlpg;
|
---|
247 | static FNSVMEXITHANDLER hmR0SvmExitHlt;
|
---|
248 | static FNSVMEXITHANDLER hmR0SvmExitMonitor;
|
---|
249 | static FNSVMEXITHANDLER hmR0SvmExitMwait;
|
---|
250 | static FNSVMEXITHANDLER hmR0SvmExitShutdown;
|
---|
251 | static FNSVMEXITHANDLER hmR0SvmExitReadCRx;
|
---|
252 | static FNSVMEXITHANDLER hmR0SvmExitWriteCRx;
|
---|
253 | static FNSVMEXITHANDLER hmR0SvmExitSetPendingXcptUD;
|
---|
254 | static FNSVMEXITHANDLER hmR0SvmExitMsr;
|
---|
255 | static FNSVMEXITHANDLER hmR0SvmExitReadDRx;
|
---|
256 | static FNSVMEXITHANDLER hmR0SvmExitWriteDRx;
|
---|
257 | static FNSVMEXITHANDLER hmR0SvmExitXsetbv;
|
---|
258 | static FNSVMEXITHANDLER hmR0SvmExitIOInstr;
|
---|
259 | static FNSVMEXITHANDLER hmR0SvmExitNestedPF;
|
---|
260 | static FNSVMEXITHANDLER hmR0SvmExitVIntr;
|
---|
261 | static FNSVMEXITHANDLER hmR0SvmExitTaskSwitch;
|
---|
262 | static FNSVMEXITHANDLER hmR0SvmExitVmmCall;
|
---|
263 | static FNSVMEXITHANDLER hmR0SvmExitPause;
|
---|
264 | static FNSVMEXITHANDLER hmR0SvmExitIret;
|
---|
265 | static FNSVMEXITHANDLER hmR0SvmExitXcptPF;
|
---|
266 | static FNSVMEXITHANDLER hmR0SvmExitXcptNM;
|
---|
267 | static FNSVMEXITHANDLER hmR0SvmExitXcptUD;
|
---|
268 | static FNSVMEXITHANDLER hmR0SvmExitXcptMF;
|
---|
269 | static FNSVMEXITHANDLER hmR0SvmExitXcptDB;
|
---|
270 | static FNSVMEXITHANDLER hmR0SvmExitXcptAC;
|
---|
271 | static FNSVMEXITHANDLER hmR0SvmExitXcptBP;
|
---|
272 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
273 | static FNSVMEXITHANDLER hmR0SvmExitClgi;
|
---|
274 | static FNSVMEXITHANDLER hmR0SvmExitStgi;
|
---|
275 | static FNSVMEXITHANDLER hmR0SvmExitVmload;
|
---|
276 | static FNSVMEXITHANDLER hmR0SvmExitVmsave;
|
---|
277 | #endif
|
---|
278 | /** @} */
|
---|
279 |
|
---|
280 | DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
|
---|
281 |
|
---|
282 |
|
---|
283 | /*********************************************************************************************************************************
|
---|
284 | * Global Variables *
|
---|
285 | *********************************************************************************************************************************/
|
---|
286 | /** Ring-0 memory object for the IO bitmap. */
|
---|
287 | RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
|
---|
288 | /** Physical address of the IO bitmap. */
|
---|
289 | RTHCPHYS g_HCPhysIOBitmap = 0;
|
---|
290 | /** Virtual address of the IO bitmap. */
|
---|
291 | R0PTRTYPE(void *) g_pvIOBitmap = NULL;
|
---|
292 |
|
---|
293 |
|
---|
294 | /**
|
---|
295 | * Sets up and activates AMD-V on the current CPU.
|
---|
296 | *
|
---|
297 | * @returns VBox status code.
|
---|
298 | * @param pCpu Pointer to the CPU info struct.
|
---|
299 | * @param pVM The cross context VM structure. Can be
|
---|
300 | * NULL after a resume!
|
---|
301 | * @param pvCpuPage Pointer to the global CPU page.
|
---|
302 | * @param HCPhysCpuPage Physical address of the global CPU page.
|
---|
303 | * @param fEnabledByHost Whether the host OS has already initialized AMD-V.
|
---|
304 | * @param pvArg Unused on AMD-V.
|
---|
305 | */
|
---|
306 | VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost,
|
---|
307 | void *pvArg)
|
---|
308 | {
|
---|
309 | Assert(!fEnabledByHost);
|
---|
310 | Assert(HCPhysCpuPage && HCPhysCpuPage != NIL_RTHCPHYS);
|
---|
311 | Assert(RT_ALIGN_T(HCPhysCpuPage, _4K, RTHCPHYS) == HCPhysCpuPage);
|
---|
312 | Assert(pvCpuPage); NOREF(pvCpuPage);
|
---|
313 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
314 |
|
---|
315 | NOREF(pvArg);
|
---|
316 | NOREF(fEnabledByHost);
|
---|
317 |
|
---|
318 | /* Paranoid: Disable interrupt as, in theory, interrupt handlers might mess with EFER. */
|
---|
319 | RTCCUINTREG fEFlags = ASMIntDisableFlags();
|
---|
320 |
|
---|
321 | /*
|
---|
322 | * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
|
---|
323 | */
|
---|
324 | uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
|
---|
325 | if (u64HostEfer & MSR_K6_EFER_SVME)
|
---|
326 | {
|
---|
327 | /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
|
---|
328 | if ( pVM
|
---|
329 | && pVM->hm.s.svm.fIgnoreInUseError)
|
---|
330 | {
|
---|
331 | pCpu->fIgnoreAMDVInUseError = true;
|
---|
332 | }
|
---|
333 |
|
---|
334 | if (!pCpu->fIgnoreAMDVInUseError)
|
---|
335 | {
|
---|
336 | ASMSetFlags(fEFlags);
|
---|
337 | return VERR_SVM_IN_USE;
|
---|
338 | }
|
---|
339 | }
|
---|
340 |
|
---|
341 | /* Turn on AMD-V in the EFER MSR. */
|
---|
342 | ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
|
---|
343 |
|
---|
344 | /* Write the physical page address where the CPU will store the host state while executing the VM. */
|
---|
345 | ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
|
---|
346 |
|
---|
347 | /* Restore interrupts. */
|
---|
348 | ASMSetFlags(fEFlags);
|
---|
349 |
|
---|
350 | /*
|
---|
351 | * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
|
---|
352 | * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
|
---|
353 | * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
|
---|
354 | * to flush the TLB with before using a new ASID.
|
---|
355 | */
|
---|
356 | pCpu->fFlushAsidBeforeUse = true;
|
---|
357 |
|
---|
358 | /*
|
---|
359 | * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
|
---|
360 | */
|
---|
361 | ++pCpu->cTlbFlushes;
|
---|
362 |
|
---|
363 | return VINF_SUCCESS;
|
---|
364 | }
|
---|
365 |
|
---|
366 |
|
---|
367 | /**
|
---|
368 | * Deactivates AMD-V on the current CPU.
|
---|
369 | *
|
---|
370 | * @returns VBox status code.
|
---|
371 | * @param pCpu Pointer to the CPU info struct.
|
---|
372 | * @param pvCpuPage Pointer to the global CPU page.
|
---|
373 | * @param HCPhysCpuPage Physical address of the global CPU page.
|
---|
374 | */
|
---|
375 | VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
|
---|
376 | {
|
---|
377 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
378 | AssertReturn( HCPhysCpuPage
|
---|
379 | && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
|
---|
380 | AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
|
---|
381 | NOREF(pCpu);
|
---|
382 |
|
---|
383 | /* Paranoid: Disable interrupts as, in theory, interrupt handlers might mess with EFER. */
|
---|
384 | RTCCUINTREG fEFlags = ASMIntDisableFlags();
|
---|
385 |
|
---|
386 | /* Turn off AMD-V in the EFER MSR. */
|
---|
387 | uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
|
---|
388 | ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
|
---|
389 |
|
---|
390 | /* Invalidate host state physical address. */
|
---|
391 | ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
|
---|
392 |
|
---|
393 | /* Restore interrupts. */
|
---|
394 | ASMSetFlags(fEFlags);
|
---|
395 |
|
---|
396 | return VINF_SUCCESS;
|
---|
397 | }
|
---|
398 |
|
---|
399 |
|
---|
400 | /**
|
---|
401 | * Does global AMD-V initialization (called during module initialization).
|
---|
402 | *
|
---|
403 | * @returns VBox status code.
|
---|
404 | */
|
---|
405 | VMMR0DECL(int) SVMR0GlobalInit(void)
|
---|
406 | {
|
---|
407 | /*
|
---|
408 | * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
|
---|
409 | * once globally here instead of per-VM.
|
---|
410 | */
|
---|
411 | Assert(g_hMemObjIOBitmap == NIL_RTR0MEMOBJ);
|
---|
412 | int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
|
---|
413 | if (RT_FAILURE(rc))
|
---|
414 | return rc;
|
---|
415 |
|
---|
416 | g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
|
---|
417 | g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
|
---|
418 |
|
---|
419 | /* Set all bits to intercept all IO accesses. */
|
---|
420 | ASMMemFill32(g_pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
|
---|
421 | return VINF_SUCCESS;
|
---|
422 | }
|
---|
423 |
|
---|
424 |
|
---|
425 | /**
|
---|
426 | * Does global AMD-V termination (called during module termination).
|
---|
427 | */
|
---|
428 | VMMR0DECL(void) SVMR0GlobalTerm(void)
|
---|
429 | {
|
---|
430 | if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
|
---|
431 | {
|
---|
432 | RTR0MemObjFree(g_hMemObjIOBitmap, true /* fFreeMappings */);
|
---|
433 | g_pvIOBitmap = NULL;
|
---|
434 | g_HCPhysIOBitmap = 0;
|
---|
435 | g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
|
---|
436 | }
|
---|
437 | }
|
---|
438 |
|
---|
439 |
|
---|
440 | /**
|
---|
441 | * Frees any allocated per-VCPU structures for a VM.
|
---|
442 | *
|
---|
443 | * @param pVM The cross context VM structure.
|
---|
444 | */
|
---|
445 | DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
|
---|
446 | {
|
---|
447 | for (uint32_t i = 0; i < pVM->cCpus; i++)
|
---|
448 | {
|
---|
449 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
450 | AssertPtr(pVCpu);
|
---|
451 |
|
---|
452 | if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
|
---|
453 | {
|
---|
454 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
|
---|
455 | pVCpu->hm.s.svm.pvVmcbHost = 0;
|
---|
456 | pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
|
---|
457 | pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
|
---|
458 | }
|
---|
459 |
|
---|
460 | if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
|
---|
461 | {
|
---|
462 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
|
---|
463 | pVCpu->hm.s.svm.pvVmcb = 0;
|
---|
464 | pVCpu->hm.s.svm.HCPhysVmcb = 0;
|
---|
465 | pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
|
---|
466 | }
|
---|
467 |
|
---|
468 | if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
|
---|
469 | {
|
---|
470 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
|
---|
471 | pVCpu->hm.s.svm.pvMsrBitmap = 0;
|
---|
472 | pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
|
---|
473 | pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
474 | }
|
---|
475 | }
|
---|
476 | }
|
---|
477 |
|
---|
478 |
|
---|
479 | /**
|
---|
480 | * Does per-VM AMD-V initialization.
|
---|
481 | *
|
---|
482 | * @returns VBox status code.
|
---|
483 | * @param pVM The cross context VM structure.
|
---|
484 | */
|
---|
485 | VMMR0DECL(int) SVMR0InitVM(PVM pVM)
|
---|
486 | {
|
---|
487 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
488 |
|
---|
489 | /*
|
---|
490 | * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
|
---|
491 | */
|
---|
492 | uint32_t u32Family;
|
---|
493 | uint32_t u32Model;
|
---|
494 | uint32_t u32Stepping;
|
---|
495 | if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
|
---|
496 | {
|
---|
497 | Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
|
---|
498 | pVM->hm.s.svm.fAlwaysFlushTLB = true;
|
---|
499 | }
|
---|
500 |
|
---|
501 | /*
|
---|
502 | * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
|
---|
503 | */
|
---|
504 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
505 | {
|
---|
506 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
507 | pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
|
---|
508 | pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
|
---|
509 | pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
510 | }
|
---|
511 |
|
---|
512 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
513 | {
|
---|
514 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
515 |
|
---|
516 | /*
|
---|
517 | * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
|
---|
518 | * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
|
---|
519 | */
|
---|
520 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
|
---|
521 | if (RT_FAILURE(rc))
|
---|
522 | goto failure_cleanup;
|
---|
523 |
|
---|
524 | pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
|
---|
525 | pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
|
---|
526 | Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
|
---|
527 | ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
|
---|
528 |
|
---|
529 | /*
|
---|
530 | * Allocate one page for the guest-state VMCB.
|
---|
531 | */
|
---|
532 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
|
---|
533 | if (RT_FAILURE(rc))
|
---|
534 | goto failure_cleanup;
|
---|
535 |
|
---|
536 | pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
|
---|
537 | pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
|
---|
538 | Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
|
---|
539 | ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
|
---|
540 |
|
---|
541 | /*
|
---|
542 | * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
|
---|
543 | * SVM to not require one.
|
---|
544 | */
|
---|
545 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
|
---|
546 | if (RT_FAILURE(rc))
|
---|
547 | goto failure_cleanup;
|
---|
548 |
|
---|
549 | pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
|
---|
550 | pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
|
---|
551 | /* Set all bits to intercept all MSR accesses (changed later on). */
|
---|
552 | ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, UINT32_C(0xffffffff));
|
---|
553 | }
|
---|
554 |
|
---|
555 | return VINF_SUCCESS;
|
---|
556 |
|
---|
557 | failure_cleanup:
|
---|
558 | hmR0SvmFreeStructs(pVM);
|
---|
559 | return rc;
|
---|
560 | }
|
---|
561 |
|
---|
562 |
|
---|
563 | /**
|
---|
564 | * Does per-VM AMD-V termination.
|
---|
565 | *
|
---|
566 | * @returns VBox status code.
|
---|
567 | * @param pVM The cross context VM structure.
|
---|
568 | */
|
---|
569 | VMMR0DECL(int) SVMR0TermVM(PVM pVM)
|
---|
570 | {
|
---|
571 | hmR0SvmFreeStructs(pVM);
|
---|
572 | return VINF_SUCCESS;
|
---|
573 | }
|
---|
574 |
|
---|
575 |
|
---|
576 | /**
|
---|
577 | * Sets the permission bits for the specified MSR in the MSRPM.
|
---|
578 | *
|
---|
579 | * @param pVCpu The cross context virtual CPU structure.
|
---|
580 | * @param uMsr The MSR for which the access permissions are being set.
|
---|
581 | * @param enmRead MSR read permissions.
|
---|
582 | * @param enmWrite MSR write permissions.
|
---|
583 | */
|
---|
584 | static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
|
---|
585 | {
|
---|
586 | unsigned uBit;
|
---|
587 | uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
|
---|
588 |
|
---|
589 | /*
|
---|
590 | * Layout:
|
---|
591 | * Byte offset MSR range
|
---|
592 | * 0x000 - 0x7ff 0x00000000 - 0x00001fff
|
---|
593 | * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
|
---|
594 | * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
|
---|
595 | * 0x1800 - 0x1fff Reserved
|
---|
596 | */
|
---|
597 | if (uMsr <= 0x00001FFF)
|
---|
598 | {
|
---|
599 | /* Pentium-compatible MSRs. */
|
---|
600 | uBit = uMsr * 2;
|
---|
601 | }
|
---|
602 | else if ( uMsr >= 0xC0000000
|
---|
603 | && uMsr <= 0xC0001FFF)
|
---|
604 | {
|
---|
605 | /* AMD Sixth Generation x86 Processor MSRs. */
|
---|
606 | uBit = (uMsr - 0xC0000000) * 2;
|
---|
607 | pbMsrBitmap += 0x800;
|
---|
608 | }
|
---|
609 | else if ( uMsr >= 0xC0010000
|
---|
610 | && uMsr <= 0xC0011FFF)
|
---|
611 | {
|
---|
612 | /* AMD Seventh and Eighth Generation Processor MSRs. */
|
---|
613 | uBit = (uMsr - 0xC0001000) * 2;
|
---|
614 | pbMsrBitmap += 0x1000;
|
---|
615 | }
|
---|
616 | else
|
---|
617 | {
|
---|
618 | AssertFailed();
|
---|
619 | return;
|
---|
620 | }
|
---|
621 |
|
---|
622 | Assert(uBit < 0x3fff /* 16 * 1024 - 1 */);
|
---|
623 | if (enmRead == SVMMSREXIT_INTERCEPT_READ)
|
---|
624 | ASMBitSet(pbMsrBitmap, uBit);
|
---|
625 | else
|
---|
626 | ASMBitClear(pbMsrBitmap, uBit);
|
---|
627 |
|
---|
628 | if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
|
---|
629 | ASMBitSet(pbMsrBitmap, uBit + 1);
|
---|
630 | else
|
---|
631 | ASMBitClear(pbMsrBitmap, uBit + 1);
|
---|
632 |
|
---|
633 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
634 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
|
---|
635 | }
|
---|
636 |
|
---|
637 |
|
---|
638 | /**
|
---|
639 | * Sets up AMD-V for the specified VM.
|
---|
640 | * This function is only called once per-VM during initalization.
|
---|
641 | *
|
---|
642 | * @returns VBox status code.
|
---|
643 | * @param pVM The cross context VM structure.
|
---|
644 | */
|
---|
645 | VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
|
---|
646 | {
|
---|
647 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
648 | AssertReturn(pVM, VERR_INVALID_PARAMETER);
|
---|
649 | Assert(pVM->hm.s.svm.fSupported);
|
---|
650 |
|
---|
651 | bool const fPauseFilter = RT_BOOL(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER);
|
---|
652 | bool const fPauseFilterThreshold = RT_BOOL(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_PAUSE_FILTER_THRESHOLD);
|
---|
653 | bool const fUsePauseFilter = fPauseFilter && pVM->hm.s.svm.cPauseFilter && pVM->hm.s.svm.cPauseFilterThresholdTicks;
|
---|
654 |
|
---|
655 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
656 | {
|
---|
657 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
658 | PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
|
---|
659 |
|
---|
660 | AssertMsgReturn(pVmcb, ("Invalid pVmcb for vcpu[%u]\n", i), VERR_SVM_INVALID_PVMCB);
|
---|
661 |
|
---|
662 | /* Initialize the #VMEXIT history array with end-of-array markers (UINT16_MAX). */
|
---|
663 | Assert(!pVCpu->hm.s.idxExitHistoryFree);
|
---|
664 | HMCPU_EXIT_HISTORY_RESET(pVCpu);
|
---|
665 |
|
---|
666 | /* Always trap #AC for reasons of security. */
|
---|
667 | pVmcb->ctrl.u32InterceptException |= RT_BIT_32(X86_XCPT_AC);
|
---|
668 |
|
---|
669 | /* Always trap #DB for reasons of security. */
|
---|
670 | pVmcb->ctrl.u32InterceptException |= RT_BIT_32(X86_XCPT_DB);
|
---|
671 |
|
---|
672 | /* Trap exceptions unconditionally (debug purposes). */
|
---|
673 | #ifdef HMSVM_ALWAYS_TRAP_PF
|
---|
674 | pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
|
---|
675 | #endif
|
---|
676 | #ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
677 | /* If you add any exceptions here, make sure to update hmR0SvmHandleExit(). */
|
---|
678 | pVmcb->ctrl.u32InterceptException |= 0
|
---|
679 | | RT_BIT(X86_XCPT_BP)
|
---|
680 | | RT_BIT(X86_XCPT_DE)
|
---|
681 | | RT_BIT(X86_XCPT_NM)
|
---|
682 | | RT_BIT(X86_XCPT_UD)
|
---|
683 | | RT_BIT(X86_XCPT_NP)
|
---|
684 | | RT_BIT(X86_XCPT_SS)
|
---|
685 | | RT_BIT(X86_XCPT_GP)
|
---|
686 | | RT_BIT(X86_XCPT_PF)
|
---|
687 | | RT_BIT(X86_XCPT_MF)
|
---|
688 | ;
|
---|
689 | #endif
|
---|
690 |
|
---|
691 | /* Set up unconditional intercepts and conditions. */
|
---|
692 | pVmcb->ctrl.u64InterceptCtrl = SVM_CTRL_INTERCEPT_INTR /* External interrupt causes a #VMEXIT. */
|
---|
693 | | SVM_CTRL_INTERCEPT_NMI /* Non-maskable interrupts causes a #VMEXIT. */
|
---|
694 | | SVM_CTRL_INTERCEPT_INIT /* INIT signal causes a #VMEXIT. */
|
---|
695 | | SVM_CTRL_INTERCEPT_RDPMC /* RDPMC causes a #VMEXIT. */
|
---|
696 | | SVM_CTRL_INTERCEPT_CPUID /* CPUID causes a #VMEXIT. */
|
---|
697 | | SVM_CTRL_INTERCEPT_RSM /* RSM causes a #VMEXIT. */
|
---|
698 | | SVM_CTRL_INTERCEPT_HLT /* HLT causes a #VMEXIT. */
|
---|
699 | | SVM_CTRL_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO #VMEXITs. */
|
---|
700 | | SVM_CTRL_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a #VMEXIT.*/
|
---|
701 | | SVM_CTRL_INTERCEPT_INVLPGA /* INVLPGA causes a #VMEXIT. */
|
---|
702 | | SVM_CTRL_INTERCEPT_SHUTDOWN /* Shutdown events causes a #VMEXIT. */
|
---|
703 | | SVM_CTRL_INTERCEPT_FERR_FREEZE /* Intercept "freezing" during legacy FPU handling. */
|
---|
704 | | SVM_CTRL_INTERCEPT_VMRUN /* VMRUN causes a #VMEXIT. */
|
---|
705 | | SVM_CTRL_INTERCEPT_VMMCALL /* VMMCALL causes a #VMEXIT. */
|
---|
706 | | SVM_CTRL_INTERCEPT_VMLOAD /* VMLOAD causes a #VMEXIT. */
|
---|
707 | | SVM_CTRL_INTERCEPT_VMSAVE /* VMSAVE causes a #VMEXIT. */
|
---|
708 | | SVM_CTRL_INTERCEPT_STGI /* STGI causes a #VMEXIT. */
|
---|
709 | | SVM_CTRL_INTERCEPT_CLGI /* CLGI causes a #VMEXIT. */
|
---|
710 | | SVM_CTRL_INTERCEPT_SKINIT /* SKINIT causes a #VMEXIT. */
|
---|
711 | | SVM_CTRL_INTERCEPT_WBINVD /* WBINVD causes a #VMEXIT. */
|
---|
712 | | SVM_CTRL_INTERCEPT_MONITOR /* MONITOR causes a #VMEXIT. */
|
---|
713 | | SVM_CTRL_INTERCEPT_MWAIT /* MWAIT causes a #VMEXIT. */
|
---|
714 | | SVM_CTRL_INTERCEPT_XSETBV; /* XSETBV causes a #VMEXIT. */
|
---|
715 |
|
---|
716 | /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
|
---|
717 | pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
|
---|
718 |
|
---|
719 | /* CR0, CR4 writes must be intercepted for the same reasons as above. */
|
---|
720 | pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
|
---|
721 |
|
---|
722 | /* Intercept all DRx reads and writes by default. Changed later on. */
|
---|
723 | pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
|
---|
724 | pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
|
---|
725 |
|
---|
726 | /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
|
---|
727 | pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
|
---|
728 |
|
---|
729 | /* Ignore the priority in the TPR. This is necessary for delivering PIC style (ExtInt) interrupts and we currently
|
---|
730 | deliver both PIC and APIC interrupts alike. See hmR0SvmInjectPendingEvent() */
|
---|
731 | pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
|
---|
732 |
|
---|
733 | /* Set IO and MSR bitmap permission bitmap physical addresses. */
|
---|
734 | pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
|
---|
735 | pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
|
---|
736 |
|
---|
737 | /* No LBR virtualization. */
|
---|
738 | pVmcb->ctrl.u64LBRVirt = 0;
|
---|
739 |
|
---|
740 | /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from the VMCB in memory. */
|
---|
741 | pVmcb->ctrl.u64VmcbCleanBits = 0;
|
---|
742 |
|
---|
743 | /* The host ASID MBZ, for the guest start with 1. */
|
---|
744 | pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
|
---|
745 |
|
---|
746 | /*
|
---|
747 | * Setup the PAT MSR (applicable for Nested Paging only).
|
---|
748 | * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
|
---|
749 | * so choose type 6 for all PAT slots.
|
---|
750 | */
|
---|
751 | pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
|
---|
752 |
|
---|
753 | /* Setup Nested Paging. This doesn't change throughout the execution time of the VM. */
|
---|
754 | pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
|
---|
755 |
|
---|
756 | /* Without Nested Paging, we need additionally intercepts. */
|
---|
757 | if (!pVM->hm.s.fNestedPaging)
|
---|
758 | {
|
---|
759 | /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
|
---|
760 | pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
|
---|
761 | pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
|
---|
762 |
|
---|
763 | /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
|
---|
764 | pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_INVLPG
|
---|
765 | | SVM_CTRL_INTERCEPT_TASK_SWITCH;
|
---|
766 |
|
---|
767 | /* Page faults must be intercepted to implement shadow paging. */
|
---|
768 | pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
|
---|
769 | }
|
---|
770 |
|
---|
771 | #ifdef HMSVM_ALWAYS_TRAP_TASK_SWITCH
|
---|
772 | pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_TASK_SWITCH;
|
---|
773 | #endif
|
---|
774 |
|
---|
775 | /* Apply the exceptions intercepts needed by the GIM provider. */
|
---|
776 | if (pVCpu->hm.s.fGIMTrapXcptUD)
|
---|
777 | pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_UD);
|
---|
778 |
|
---|
779 | /* Setup Pause Filter for guest pause-loop (spinlock) exiting. */
|
---|
780 | if (fUsePauseFilter)
|
---|
781 | {
|
---|
782 | pVmcb->ctrl.u16PauseFilterCount = pVM->hm.s.svm.cPauseFilter;
|
---|
783 | if (fPauseFilterThreshold)
|
---|
784 | pVmcb->ctrl.u16PauseFilterThreshold = pVM->hm.s.svm.cPauseFilterThresholdTicks;
|
---|
785 | }
|
---|
786 |
|
---|
787 | /*
|
---|
788 | * The following MSRs are saved/restored automatically during the world-switch.
|
---|
789 | * Don't intercept guest read/write accesses to these MSRs.
|
---|
790 | */
|
---|
791 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
792 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
793 | hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
794 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
795 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
796 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
797 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
798 | hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
799 | hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
800 | hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
801 | }
|
---|
802 |
|
---|
803 | return VINF_SUCCESS;
|
---|
804 | }
|
---|
805 |
|
---|
806 |
|
---|
807 | /**
|
---|
808 | * Invalidates a guest page by guest virtual address.
|
---|
809 | *
|
---|
810 | * @returns VBox status code.
|
---|
811 | * @param pVM The cross context VM structure.
|
---|
812 | * @param pVCpu The cross context virtual CPU structure.
|
---|
813 | * @param GCVirt Guest virtual address of the page to invalidate.
|
---|
814 | */
|
---|
815 | VMMR0DECL(int) SVMR0InvalidatePage(PVM pVM, PVMCPU pVCpu, RTGCPTR GCVirt)
|
---|
816 | {
|
---|
817 | AssertReturn(pVM, VERR_INVALID_PARAMETER);
|
---|
818 | Assert(pVM->hm.s.svm.fSupported);
|
---|
819 |
|
---|
820 | bool fFlushPending = pVM->hm.s.svm.fAlwaysFlushTLB || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
821 |
|
---|
822 | /* Skip it if a TLB flush is already pending. */
|
---|
823 | if (!fFlushPending)
|
---|
824 | {
|
---|
825 | Log4(("SVMR0InvalidatePage %RGv\n", GCVirt));
|
---|
826 |
|
---|
827 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
828 | AssertMsgReturn(pVmcb, ("Invalid pVmcb!\n"), VERR_SVM_INVALID_PVMCB);
|
---|
829 |
|
---|
830 | #if HC_ARCH_BITS == 32
|
---|
831 | /* If we get a flush in 64-bit guest mode, then force a full TLB flush. INVLPGA takes only 32-bit addresses. */
|
---|
832 | if (CPUMIsGuestInLongMode(pVCpu))
|
---|
833 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
|
---|
834 | else
|
---|
835 | #endif
|
---|
836 | {
|
---|
837 | SVMR0InvlpgA(GCVirt, pVmcb->ctrl.TLBCtrl.n.u32ASID);
|
---|
838 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbInvlpgVirt);
|
---|
839 | }
|
---|
840 | }
|
---|
841 | return VINF_SUCCESS;
|
---|
842 | }
|
---|
843 |
|
---|
844 |
|
---|
845 | /**
|
---|
846 | * Flushes the appropriate tagged-TLB entries.
|
---|
847 | *
|
---|
848 | * @param pVCpu The cross context virtual CPU structure.
|
---|
849 | */
|
---|
850 | static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
|
---|
851 | {
|
---|
852 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
853 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
854 | PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
|
---|
855 |
|
---|
856 | /*
|
---|
857 | * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
|
---|
858 | * This can happen both for start & resume due to long jumps back to ring-3.
|
---|
859 | * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
|
---|
860 | * so we cannot reuse the ASIDs without flushing.
|
---|
861 | */
|
---|
862 | bool fNewAsid = false;
|
---|
863 | Assert(pCpu->idCpu != NIL_RTCPUID);
|
---|
864 | if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|
---|
865 | || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
|
---|
866 | {
|
---|
867 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
868 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
869 | fNewAsid = true;
|
---|
870 | }
|
---|
871 |
|
---|
872 | /* Set TLB flush state as checked until we return from the world switch. */
|
---|
873 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
|
---|
874 |
|
---|
875 | /* Check for explicit TLB flushes. */
|
---|
876 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
877 | {
|
---|
878 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
879 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
880 | }
|
---|
881 |
|
---|
882 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
|
---|
883 |
|
---|
884 | if (pVM->hm.s.svm.fAlwaysFlushTLB)
|
---|
885 | {
|
---|
886 | /*
|
---|
887 | * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
|
---|
888 | */
|
---|
889 | pCpu->uCurrentAsid = 1;
|
---|
890 | pVCpu->hm.s.uCurrentAsid = 1;
|
---|
891 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
892 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
893 |
|
---|
894 | /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
|
---|
895 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
|
---|
896 |
|
---|
897 | /* Keep track of last CPU ID even when flushing all the time. */
|
---|
898 | if (fNewAsid)
|
---|
899 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
900 | }
|
---|
901 | else if (pVCpu->hm.s.fForceTLBFlush)
|
---|
902 | {
|
---|
903 | /* Clear the VMCB Clean Bit for NP while flushing the TLB. See @bugref{7152}. */
|
---|
904 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
|
---|
905 |
|
---|
906 | if (fNewAsid)
|
---|
907 | {
|
---|
908 | ++pCpu->uCurrentAsid;
|
---|
909 | bool fHitASIDLimit = false;
|
---|
910 | if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
|
---|
911 | {
|
---|
912 | pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
|
---|
913 | pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
|
---|
914 | fHitASIDLimit = true;
|
---|
915 |
|
---|
916 | if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
917 | {
|
---|
918 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
919 | pCpu->fFlushAsidBeforeUse = true;
|
---|
920 | }
|
---|
921 | else
|
---|
922 | {
|
---|
923 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
924 | pCpu->fFlushAsidBeforeUse = false;
|
---|
925 | }
|
---|
926 | }
|
---|
927 |
|
---|
928 | if ( !fHitASIDLimit
|
---|
929 | && pCpu->fFlushAsidBeforeUse)
|
---|
930 | {
|
---|
931 | if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
932 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
933 | else
|
---|
934 | {
|
---|
935 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
936 | pCpu->fFlushAsidBeforeUse = false;
|
---|
937 | }
|
---|
938 | }
|
---|
939 |
|
---|
940 | pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
|
---|
941 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
942 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
943 | }
|
---|
944 | else
|
---|
945 | {
|
---|
946 | if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
947 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
948 | else
|
---|
949 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
950 | }
|
---|
951 |
|
---|
952 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
953 | }
|
---|
954 |
|
---|
955 | /* Update VMCB with the ASID. */
|
---|
956 | if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
|
---|
957 | {
|
---|
958 | pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
|
---|
959 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
|
---|
960 | }
|
---|
961 |
|
---|
962 | AssertMsg(pVCpu->hm.s.idLastCpu == pCpu->idCpu,
|
---|
963 | ("vcpu idLastCpu=%u pcpu idCpu=%u\n", pVCpu->hm.s.idLastCpu, pCpu->idCpu));
|
---|
964 | AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
|
---|
965 | ("Flush count mismatch for cpu %u (%u vs %u)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
|
---|
966 | AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
967 | ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
|
---|
968 | AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
969 | ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
|
---|
970 |
|
---|
971 | #ifdef VBOX_WITH_STATISTICS
|
---|
972 | if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
|
---|
973 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
|
---|
974 | else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
|
---|
975 | || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
|
---|
976 | {
|
---|
977 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
|
---|
978 | }
|
---|
979 | else
|
---|
980 | {
|
---|
981 | Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE);
|
---|
982 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushEntire);
|
---|
983 | }
|
---|
984 | #endif
|
---|
985 | }
|
---|
986 |
|
---|
987 |
|
---|
988 | /** @name 64-bit guest on 32-bit host OS helper functions.
|
---|
989 | *
|
---|
990 | * The host CPU is still 64-bit capable but the host OS is running in 32-bit
|
---|
991 | * mode (code segment, paging). These wrappers/helpers perform the necessary
|
---|
992 | * bits for the 32->64 switcher.
|
---|
993 | *
|
---|
994 | * @{ */
|
---|
995 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
|
---|
996 | /**
|
---|
997 | * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
|
---|
998 | *
|
---|
999 | * @returns VBox status code.
|
---|
1000 | * @param HCPhysVmcbHost Physical address of host VMCB.
|
---|
1001 | * @param HCPhysVmcb Physical address of the VMCB.
|
---|
1002 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1003 | * @param pVM The cross context VM structure.
|
---|
1004 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1005 | */
|
---|
1006 | DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
|
---|
1007 | {
|
---|
1008 | uint32_t aParam[8];
|
---|
1009 | aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
|
---|
1010 | aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
|
---|
1011 | aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
|
---|
1012 | aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
|
---|
1013 | aParam[4] = VM_RC_ADDR(pVM, pVM);
|
---|
1014 | aParam[5] = 0;
|
---|
1015 | aParam[6] = VM_RC_ADDR(pVM, pVCpu);
|
---|
1016 | aParam[7] = 0;
|
---|
1017 |
|
---|
1018 | return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, RT_ELEMENTS(aParam), &aParam[0]);
|
---|
1019 | }
|
---|
1020 |
|
---|
1021 |
|
---|
1022 | /**
|
---|
1023 | * Executes the specified VMRUN handler in 64-bit mode.
|
---|
1024 | *
|
---|
1025 | * @returns VBox status code.
|
---|
1026 | * @param pVM The cross context VM structure.
|
---|
1027 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1028 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1029 | * @param enmOp The operation to perform.
|
---|
1030 | * @param cParams Number of parameters.
|
---|
1031 | * @param paParam Array of 32-bit parameters.
|
---|
1032 | */
|
---|
1033 | VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp,
|
---|
1034 | uint32_t cParams, uint32_t *paParam)
|
---|
1035 | {
|
---|
1036 | AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
|
---|
1037 | Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
|
---|
1038 |
|
---|
1039 | NOREF(pCtx);
|
---|
1040 |
|
---|
1041 | /* Disable interrupts. */
|
---|
1042 | RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
|
---|
1043 |
|
---|
1044 | #ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
|
---|
1045 | RTCPUID idHostCpu = RTMpCpuId();
|
---|
1046 | CPUMR0SetLApic(pVCpu, idHostCpu);
|
---|
1047 | #endif
|
---|
1048 |
|
---|
1049 | CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
|
---|
1050 | CPUMSetHyperEIP(pVCpu, enmOp);
|
---|
1051 | for (int i = (int)cParams - 1; i >= 0; i--)
|
---|
1052 | CPUMPushHyper(pVCpu, paParam[i]);
|
---|
1053 |
|
---|
1054 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
1055 | /* Call the switcher. */
|
---|
1056 | int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
|
---|
1057 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
1058 |
|
---|
1059 | /* Restore interrupts. */
|
---|
1060 | ASMSetFlags(uOldEFlags);
|
---|
1061 | return rc;
|
---|
1062 | }
|
---|
1063 |
|
---|
1064 | #endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
|
---|
1065 | /** @} */
|
---|
1066 |
|
---|
1067 |
|
---|
1068 | /**
|
---|
1069 | * Adds an exception to the intercept exception bitmap in the VMCB and updates
|
---|
1070 | * the corresponding VMCB Clean bit.
|
---|
1071 | *
|
---|
1072 | * @param pVmcb Pointer to the VM control block.
|
---|
1073 | * @param u32Xcpt The value of the exception (X86_XCPT_*).
|
---|
1074 | */
|
---|
1075 | DECLINLINE(void) hmR0SvmAddXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
|
---|
1076 | {
|
---|
1077 | if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt)))
|
---|
1078 | {
|
---|
1079 | pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
|
---|
1080 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1081 | }
|
---|
1082 | }
|
---|
1083 |
|
---|
1084 |
|
---|
1085 | /**
|
---|
1086 | * Removes an exception from the intercept-exception bitmap in the VMCB and
|
---|
1087 | * updates the corresponding VMCB Clean bit.
|
---|
1088 | *
|
---|
1089 | * @param pVmcb Pointer to the VM control block.
|
---|
1090 | * @param u32Xcpt The value of the exception (X86_XCPT_*).
|
---|
1091 | */
|
---|
1092 | DECLINLINE(void) hmR0SvmRemoveXcptIntercept(PSVMVMCB pVmcb, uint32_t u32Xcpt)
|
---|
1093 | {
|
---|
1094 | Assert(u32Xcpt != X86_XCPT_DB);
|
---|
1095 | Assert(u32Xcpt != X86_XCPT_AC);
|
---|
1096 | #ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
1097 | if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
|
---|
1098 | {
|
---|
1099 | pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
|
---|
1100 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1101 | }
|
---|
1102 | #endif
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 |
|
---|
1106 | /**
|
---|
1107 | * Loads the guest CR0 control register into the guest-state area in the VMCB.
|
---|
1108 | * Although the guest CR0 is a separate field in the VMCB we have to consider
|
---|
1109 | * the FPU state itself which is shared between the host and the guest.
|
---|
1110 | *
|
---|
1111 | * @returns VBox status code.
|
---|
1112 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1113 | * @param pVmcb Pointer to the VM control block.
|
---|
1114 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1115 | *
|
---|
1116 | * @remarks No-long-jump zone!!!
|
---|
1117 | */
|
---|
1118 | static void hmR0SvmLoadSharedCR0(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1119 | {
|
---|
1120 | /*
|
---|
1121 | * Guest CR0.
|
---|
1122 | */
|
---|
1123 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1124 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
|
---|
1125 | {
|
---|
1126 | uint64_t u64GuestCR0 = pCtx->cr0;
|
---|
1127 |
|
---|
1128 | /* Always enable caching. */
|
---|
1129 | u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
|
---|
1130 |
|
---|
1131 | /*
|
---|
1132 | * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
|
---|
1133 | */
|
---|
1134 | if (!pVM->hm.s.fNestedPaging)
|
---|
1135 | {
|
---|
1136 | u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
|
---|
1137 | u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF #VMEXIT. */
|
---|
1138 | }
|
---|
1139 |
|
---|
1140 | /*
|
---|
1141 | * Guest FPU bits.
|
---|
1142 | */
|
---|
1143 | bool fInterceptNM = false;
|
---|
1144 | bool fInterceptMF = false;
|
---|
1145 | u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
|
---|
1146 | if (CPUMIsGuestFPUStateActive(pVCpu))
|
---|
1147 | {
|
---|
1148 | /* Catch floating point exceptions if we need to report them to the guest in a different way. */
|
---|
1149 | if (!(pCtx->cr0 & X86_CR0_NE))
|
---|
1150 | {
|
---|
1151 | Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
|
---|
1152 | fInterceptMF = true;
|
---|
1153 | }
|
---|
1154 | }
|
---|
1155 | else
|
---|
1156 | {
|
---|
1157 | fInterceptNM = true; /* Guest FPU inactive, #VMEXIT on #NM for lazy FPU loading. */
|
---|
1158 | u64GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
|
---|
1159 | | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
|
---|
1160 | }
|
---|
1161 |
|
---|
1162 | /*
|
---|
1163 | * Update the exception intercept bitmap.
|
---|
1164 | */
|
---|
1165 | if (fInterceptNM)
|
---|
1166 | hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_NM);
|
---|
1167 | else
|
---|
1168 | hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_NM);
|
---|
1169 |
|
---|
1170 | if (fInterceptMF)
|
---|
1171 | hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_MF);
|
---|
1172 | else
|
---|
1173 | hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_MF);
|
---|
1174 |
|
---|
1175 | pVmcb->guest.u64CR0 = u64GuestCR0;
|
---|
1176 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1177 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
1178 | }
|
---|
1179 | }
|
---|
1180 |
|
---|
1181 |
|
---|
1182 | /**
|
---|
1183 | * Loads the guest control registers (CR2, CR3, CR4) into the VMCB.
|
---|
1184 | *
|
---|
1185 | * @returns VBox status code.
|
---|
1186 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1187 | * @param pVmcb Pointer to the VM control block.
|
---|
1188 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1189 | *
|
---|
1190 | * @remarks No-long-jump zone!!!
|
---|
1191 | */
|
---|
1192 | static int hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1193 | {
|
---|
1194 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1195 |
|
---|
1196 | /*
|
---|
1197 | * Guest CR2.
|
---|
1198 | */
|
---|
1199 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR2))
|
---|
1200 | {
|
---|
1201 | pVmcb->guest.u64CR2 = pCtx->cr2;
|
---|
1202 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
|
---|
1203 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR2);
|
---|
1204 | }
|
---|
1205 |
|
---|
1206 | /*
|
---|
1207 | * Guest CR3.
|
---|
1208 | */
|
---|
1209 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR3))
|
---|
1210 | {
|
---|
1211 | if (pVM->hm.s.fNestedPaging)
|
---|
1212 | {
|
---|
1213 | PGMMODE enmShwPagingMode;
|
---|
1214 | #if HC_ARCH_BITS == 32
|
---|
1215 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
1216 | enmShwPagingMode = PGMMODE_AMD64_NX;
|
---|
1217 | else
|
---|
1218 | #endif
|
---|
1219 | enmShwPagingMode = PGMGetHostMode(pVM);
|
---|
1220 |
|
---|
1221 | pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
|
---|
1222 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
|
---|
1223 | Assert(pVmcb->ctrl.u64NestedPagingCR3);
|
---|
1224 | pVmcb->guest.u64CR3 = pCtx->cr3;
|
---|
1225 | }
|
---|
1226 | else
|
---|
1227 | pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
|
---|
1228 |
|
---|
1229 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1230 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR3);
|
---|
1231 | }
|
---|
1232 |
|
---|
1233 | /*
|
---|
1234 | * Guest CR4.
|
---|
1235 | * ASSUMES this is done everytime we get in from ring-3! (XCR0)
|
---|
1236 | */
|
---|
1237 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR4))
|
---|
1238 | {
|
---|
1239 | uint64_t u64GuestCR4 = pCtx->cr4;
|
---|
1240 | if (!pVM->hm.s.fNestedPaging)
|
---|
1241 | {
|
---|
1242 | switch (pVCpu->hm.s.enmShadowMode)
|
---|
1243 | {
|
---|
1244 | case PGMMODE_REAL:
|
---|
1245 | case PGMMODE_PROTECTED: /* Protected mode, no paging. */
|
---|
1246 | AssertFailed();
|
---|
1247 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1248 |
|
---|
1249 | case PGMMODE_32_BIT: /* 32-bit paging. */
|
---|
1250 | u64GuestCR4 &= ~X86_CR4_PAE;
|
---|
1251 | break;
|
---|
1252 |
|
---|
1253 | case PGMMODE_PAE: /* PAE paging. */
|
---|
1254 | case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
|
---|
1255 | /** Must use PAE paging as we could use physical memory > 4 GB */
|
---|
1256 | u64GuestCR4 |= X86_CR4_PAE;
|
---|
1257 | break;
|
---|
1258 |
|
---|
1259 | case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
|
---|
1260 | case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
|
---|
1261 | #ifdef VBOX_ENABLE_64_BITS_GUESTS
|
---|
1262 | break;
|
---|
1263 | #else
|
---|
1264 | AssertFailed();
|
---|
1265 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1266 | #endif
|
---|
1267 |
|
---|
1268 | default: /* shut up gcc */
|
---|
1269 | AssertFailed();
|
---|
1270 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1271 | }
|
---|
1272 | }
|
---|
1273 |
|
---|
1274 | pVmcb->guest.u64CR4 = u64GuestCR4;
|
---|
1275 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1276 |
|
---|
1277 | /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
|
---|
1278 | pVCpu->hm.s.fLoadSaveGuestXcr0 = (u64GuestCR4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
|
---|
1279 |
|
---|
1280 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_CR4);
|
---|
1281 | }
|
---|
1282 |
|
---|
1283 | return VINF_SUCCESS;
|
---|
1284 | }
|
---|
1285 |
|
---|
1286 |
|
---|
1287 | /**
|
---|
1288 | * Loads the guest segment registers into the VMCB.
|
---|
1289 | *
|
---|
1290 | * @returns VBox status code.
|
---|
1291 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1292 | * @param pVmcb Pointer to the VM control block.
|
---|
1293 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1294 | *
|
---|
1295 | * @remarks No-long-jump zone!!!
|
---|
1296 | */
|
---|
1297 | static void hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1298 | {
|
---|
1299 | /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
|
---|
1300 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS))
|
---|
1301 | {
|
---|
1302 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcb, CS, cs);
|
---|
1303 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcb, SS, ss);
|
---|
1304 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcb, DS, ds);
|
---|
1305 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcb, ES, es);
|
---|
1306 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcb, FS, fs);
|
---|
1307 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcb, GS, gs);
|
---|
1308 |
|
---|
1309 | pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
|
---|
1310 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
|
---|
1311 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_SEGMENT_REGS);
|
---|
1312 | }
|
---|
1313 |
|
---|
1314 | /* Guest TR. */
|
---|
1315 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_TR))
|
---|
1316 | {
|
---|
1317 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcb, TR, tr);
|
---|
1318 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_TR);
|
---|
1319 | }
|
---|
1320 |
|
---|
1321 | /* Guest LDTR. */
|
---|
1322 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_LDTR))
|
---|
1323 | {
|
---|
1324 | HMSVM_SEG_REG_COPY_TO_VMCB(pCtx, pVmcb, LDTR, ldtr);
|
---|
1325 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LDTR);
|
---|
1326 | }
|
---|
1327 |
|
---|
1328 | /* Guest GDTR. */
|
---|
1329 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_GDTR))
|
---|
1330 | {
|
---|
1331 | pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
|
---|
1332 | pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
|
---|
1333 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
|
---|
1334 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_GDTR);
|
---|
1335 | }
|
---|
1336 |
|
---|
1337 | /* Guest IDTR. */
|
---|
1338 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_IDTR))
|
---|
1339 | {
|
---|
1340 | pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
|
---|
1341 | pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
|
---|
1342 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
|
---|
1343 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_IDTR);
|
---|
1344 | }
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 |
|
---|
1348 | /**
|
---|
1349 | * Loads the guest MSRs into the VMCB.
|
---|
1350 | *
|
---|
1351 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1352 | * @param pVmcb Pointer to the VM control block.
|
---|
1353 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1354 | *
|
---|
1355 | * @remarks No-long-jump zone!!!
|
---|
1356 | */
|
---|
1357 | static void hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1358 | {
|
---|
1359 | /* Guest Sysenter MSRs. */
|
---|
1360 | pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
|
---|
1361 | pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
|
---|
1362 | pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
|
---|
1363 |
|
---|
1364 | /*
|
---|
1365 | * Guest EFER MSR.
|
---|
1366 | * AMD-V requires guest EFER.SVME to be set. Weird.
|
---|
1367 | * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
|
---|
1368 | */
|
---|
1369 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_EFER_MSR))
|
---|
1370 | {
|
---|
1371 | pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
|
---|
1372 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1373 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
|
---|
1374 | }
|
---|
1375 |
|
---|
1376 | /* 64-bit MSRs. */
|
---|
1377 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
1378 | {
|
---|
1379 | pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
|
---|
1380 | pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
|
---|
1381 | }
|
---|
1382 | else
|
---|
1383 | {
|
---|
1384 | /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
|
---|
1385 | if (pCtx->msrEFER & MSR_K6_EFER_LME)
|
---|
1386 | {
|
---|
1387 | pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
|
---|
1388 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX_EFER;
|
---|
1389 | }
|
---|
1390 | }
|
---|
1391 |
|
---|
1392 |
|
---|
1393 | /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
|
---|
1394 | * be writable in 32-bit mode. Clarify with AMD spec. */
|
---|
1395 | pVmcb->guest.u64STAR = pCtx->msrSTAR;
|
---|
1396 | pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
|
---|
1397 | pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
|
---|
1398 | pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
|
---|
1399 | pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
|
---|
1400 | }
|
---|
1401 |
|
---|
1402 |
|
---|
1403 | /**
|
---|
1404 | * Loads the guest state into the VMCB and programs the necessary intercepts
|
---|
1405 | * accordingly.
|
---|
1406 | *
|
---|
1407 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1408 | * @param pVmcb Pointer to the VM control block.
|
---|
1409 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1410 | *
|
---|
1411 | * @remarks No-long-jump zone!!!
|
---|
1412 | * @remarks Requires EFLAGS to be up-to-date in the VMCB!
|
---|
1413 | */
|
---|
1414 | static void hmR0SvmLoadSharedDebugState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1415 | {
|
---|
1416 | if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
|
---|
1417 | return;
|
---|
1418 | Assert((pCtx->dr[6] & X86_DR6_RA1_MASK) == X86_DR6_RA1_MASK); Assert((pCtx->dr[6] & X86_DR6_RAZ_MASK) == 0);
|
---|
1419 | Assert((pCtx->dr[7] & X86_DR7_RA1_MASK) == X86_DR7_RA1_MASK); Assert((pCtx->dr[7] & X86_DR7_RAZ_MASK) == 0);
|
---|
1420 |
|
---|
1421 | bool fInterceptMovDRx = false;
|
---|
1422 |
|
---|
1423 | /*
|
---|
1424 | * Anyone single stepping on the host side? If so, we'll have to use the
|
---|
1425 | * trap flag in the guest EFLAGS since AMD-V doesn't have a trap flag on
|
---|
1426 | * the VMM level like the VT-x implementations does.
|
---|
1427 | */
|
---|
1428 | bool const fStepping = pVCpu->hm.s.fSingleInstruction;
|
---|
1429 | if (fStepping)
|
---|
1430 | {
|
---|
1431 | pVCpu->hm.s.fClearTrapFlag = true;
|
---|
1432 | pVmcb->guest.u64RFlags |= X86_EFL_TF;
|
---|
1433 | fInterceptMovDRx = true; /* Need clean DR6, no guest mess. */
|
---|
1434 | }
|
---|
1435 | else
|
---|
1436 | Assert(!DBGFIsStepping(pVCpu));
|
---|
1437 |
|
---|
1438 | if ( fStepping
|
---|
1439 | || (CPUMGetHyperDR7(pVCpu) & X86_DR7_ENABLED_MASK))
|
---|
1440 | {
|
---|
1441 | /*
|
---|
1442 | * Use the combined guest and host DRx values found in the hypervisor
|
---|
1443 | * register set because the debugger has breakpoints active or someone
|
---|
1444 | * is single stepping on the host side.
|
---|
1445 | *
|
---|
1446 | * Note! DBGF expects a clean DR6 state before executing guest code.
|
---|
1447 | */
|
---|
1448 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
1449 | if ( CPUMIsGuestInLongModeEx(pCtx)
|
---|
1450 | && !CPUMIsHyperDebugStateActivePending(pVCpu))
|
---|
1451 | {
|
---|
1452 | CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
|
---|
1453 | Assert(!CPUMIsGuestDebugStateActivePending(pVCpu));
|
---|
1454 | Assert(CPUMIsHyperDebugStateActivePending(pVCpu));
|
---|
1455 | }
|
---|
1456 | else
|
---|
1457 | #endif
|
---|
1458 | if (!CPUMIsHyperDebugStateActive(pVCpu))
|
---|
1459 | {
|
---|
1460 | CPUMR0LoadHyperDebugState(pVCpu, false /* include DR6 */);
|
---|
1461 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1462 | Assert(CPUMIsHyperDebugStateActive(pVCpu));
|
---|
1463 | }
|
---|
1464 |
|
---|
1465 | /* Update DR6 & DR7. (The other DRx values are handled by CPUM one way or the other.) */
|
---|
1466 | if ( pVmcb->guest.u64DR6 != X86_DR6_INIT_VAL
|
---|
1467 | || pVmcb->guest.u64DR7 != CPUMGetHyperDR7(pVCpu))
|
---|
1468 | {
|
---|
1469 | pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
|
---|
1470 | pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
|
---|
1471 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
1472 | pVCpu->hm.s.fUsingHyperDR7 = true;
|
---|
1473 | }
|
---|
1474 |
|
---|
1475 | /** @todo If we cared, we could optimize to allow the guest to read registers
|
---|
1476 | * with the same values. */
|
---|
1477 | fInterceptMovDRx = true;
|
---|
1478 | Log5(("hmR0SvmLoadSharedDebugState: Loaded hyper DRx\n"));
|
---|
1479 | }
|
---|
1480 | else
|
---|
1481 | {
|
---|
1482 | /*
|
---|
1483 | * Update DR6, DR7 with the guest values if necessary.
|
---|
1484 | */
|
---|
1485 | if ( pVmcb->guest.u64DR7 != pCtx->dr[7]
|
---|
1486 | || pVmcb->guest.u64DR6 != pCtx->dr[6])
|
---|
1487 | {
|
---|
1488 | pVmcb->guest.u64DR7 = pCtx->dr[7];
|
---|
1489 | pVmcb->guest.u64DR6 = pCtx->dr[6];
|
---|
1490 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
1491 | pVCpu->hm.s.fUsingHyperDR7 = false;
|
---|
1492 | }
|
---|
1493 |
|
---|
1494 | /*
|
---|
1495 | * If the guest has enabled debug registers, we need to load them prior to
|
---|
1496 | * executing guest code so they'll trigger at the right time.
|
---|
1497 | */
|
---|
1498 | if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD)) /** @todo Why GD? */
|
---|
1499 | {
|
---|
1500 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
1501 | if ( CPUMIsGuestInLongModeEx(pCtx)
|
---|
1502 | && !CPUMIsGuestDebugStateActivePending(pVCpu))
|
---|
1503 | {
|
---|
1504 | CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
|
---|
1505 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
1506 | Assert(!CPUMIsHyperDebugStateActivePending(pVCpu));
|
---|
1507 | Assert(CPUMIsGuestDebugStateActivePending(pVCpu));
|
---|
1508 | }
|
---|
1509 | else
|
---|
1510 | #endif
|
---|
1511 | if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1512 | {
|
---|
1513 | CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
|
---|
1514 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
1515 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
1516 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1517 | }
|
---|
1518 | Log5(("hmR0SvmLoadSharedDebugState: Loaded guest DRx\n"));
|
---|
1519 | }
|
---|
1520 | /*
|
---|
1521 | * If no debugging enabled, we'll lazy load DR0-3. We don't need to
|
---|
1522 | * intercept #DB as DR6 is updated in the VMCB.
|
---|
1523 | *
|
---|
1524 | * Note! If we cared and dared, we could skip intercepting \#DB here.
|
---|
1525 | * However, \#DB shouldn't be performance critical, so we'll play safe
|
---|
1526 | * and keep the code similar to the VT-x code and always intercept it.
|
---|
1527 | */
|
---|
1528 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
1529 | else if ( !CPUMIsGuestDebugStateActivePending(pVCpu)
|
---|
1530 | && !CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1531 | #else
|
---|
1532 | else if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1533 | #endif
|
---|
1534 | {
|
---|
1535 | fInterceptMovDRx = true;
|
---|
1536 | }
|
---|
1537 | }
|
---|
1538 |
|
---|
1539 | Assert(pVmcb->ctrl.u32InterceptException & RT_BIT_32(X86_XCPT_DB));
|
---|
1540 | if (fInterceptMovDRx)
|
---|
1541 | {
|
---|
1542 | if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
|
---|
1543 | || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
|
---|
1544 | {
|
---|
1545 | pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
|
---|
1546 | pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
|
---|
1547 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1548 | }
|
---|
1549 | }
|
---|
1550 | else
|
---|
1551 | {
|
---|
1552 | if ( pVmcb->ctrl.u16InterceptRdDRx
|
---|
1553 | || pVmcb->ctrl.u16InterceptWrDRx)
|
---|
1554 | {
|
---|
1555 | pVmcb->ctrl.u16InterceptRdDRx = 0;
|
---|
1556 | pVmcb->ctrl.u16InterceptWrDRx = 0;
|
---|
1557 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1558 | }
|
---|
1559 | }
|
---|
1560 |
|
---|
1561 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_DEBUG);
|
---|
1562 | }
|
---|
1563 |
|
---|
1564 |
|
---|
1565 | /**
|
---|
1566 | * Loads the guest APIC state (currently just the TPR).
|
---|
1567 | *
|
---|
1568 | * @returns VBox status code.
|
---|
1569 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1570 | * @param pVmcb Pointer to the VM control block.
|
---|
1571 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1572 | */
|
---|
1573 | static int hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1574 | {
|
---|
1575 | if (!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE))
|
---|
1576 | return VINF_SUCCESS;
|
---|
1577 |
|
---|
1578 | int rc = VINF_SUCCESS;
|
---|
1579 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1580 | if ( PDMHasApic(pVM)
|
---|
1581 | && APICIsEnabled(pVCpu))
|
---|
1582 | {
|
---|
1583 | bool fPendingIntr;
|
---|
1584 | uint8_t u8Tpr;
|
---|
1585 | rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
|
---|
1586 | AssertRCReturn(rc, rc);
|
---|
1587 |
|
---|
1588 | /* Assume that we need to trap all TPR accesses and thus need not check on
|
---|
1589 | every #VMEXIT if we should update the TPR. */
|
---|
1590 | Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
|
---|
1591 | pVCpu->hm.s.svm.fSyncVTpr = false;
|
---|
1592 |
|
---|
1593 | /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
|
---|
1594 | if (pVM->hm.s.fTPRPatchingActive)
|
---|
1595 | {
|
---|
1596 | pCtx->msrLSTAR = u8Tpr;
|
---|
1597 |
|
---|
1598 | /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
|
---|
1599 | if (fPendingIntr)
|
---|
1600 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
|
---|
1601 | else
|
---|
1602 | {
|
---|
1603 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1604 | pVCpu->hm.s.svm.fSyncVTpr = true;
|
---|
1605 | }
|
---|
1606 | }
|
---|
1607 | else
|
---|
1608 | {
|
---|
1609 | /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
|
---|
1610 | pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
|
---|
1611 |
|
---|
1612 | /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
|
---|
1613 | if (fPendingIntr)
|
---|
1614 | pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
|
---|
1615 | else
|
---|
1616 | {
|
---|
1617 | pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
|
---|
1618 | pVCpu->hm.s.svm.fSyncVTpr = true;
|
---|
1619 | }
|
---|
1620 |
|
---|
1621 | pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
|
---|
1622 | }
|
---|
1623 | }
|
---|
1624 |
|
---|
1625 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
1626 | return rc;
|
---|
1627 | }
|
---|
1628 |
|
---|
1629 |
|
---|
1630 | /**
|
---|
1631 | * Loads the exception interrupts required for guest execution in the VMCB.
|
---|
1632 | *
|
---|
1633 | * @returns VBox status code.
|
---|
1634 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1635 | * @param pVmcb Pointer to the VM control block.
|
---|
1636 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1637 | */
|
---|
1638 | static int hmR0SvmLoadGuestXcptIntercepts(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1639 | {
|
---|
1640 | NOREF(pCtx);
|
---|
1641 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS))
|
---|
1642 | {
|
---|
1643 | /* Trap #UD for GIM provider (e.g. for hypercalls). */
|
---|
1644 | if (pVCpu->hm.s.fGIMTrapXcptUD)
|
---|
1645 | hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_UD);
|
---|
1646 | else
|
---|
1647 | hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_UD);
|
---|
1648 |
|
---|
1649 | /* Trap #BP for INT3 debug breakpoints set by the VM debugger. */
|
---|
1650 | if (pVCpu->CTX_SUFF(pVM)->dbgf.ro.cEnabledInt3Breakpoints)
|
---|
1651 | hmR0SvmAddXcptIntercept(pVmcb, X86_XCPT_BP);
|
---|
1652 | else
|
---|
1653 | hmR0SvmRemoveXcptIntercept(pVmcb, X86_XCPT_BP);
|
---|
1654 |
|
---|
1655 | /* The remaining intercepts are handled elsewhere, e.g. in hmR0SvmLoadSharedCR0(). */
|
---|
1656 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_XCPT_INTERCEPTS);
|
---|
1657 | }
|
---|
1658 | return VINF_SUCCESS;
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 |
|
---|
1662 | /**
|
---|
1663 | * Sets up the appropriate function to run guest code.
|
---|
1664 | *
|
---|
1665 | * @returns VBox status code.
|
---|
1666 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1667 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1668 | *
|
---|
1669 | * @remarks No-long-jump zone!!!
|
---|
1670 | */
|
---|
1671 | static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1672 | {
|
---|
1673 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
1674 | {
|
---|
1675 | #ifndef VBOX_ENABLE_64_BITS_GUESTS
|
---|
1676 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1677 | #endif
|
---|
1678 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
|
---|
1679 | #if HC_ARCH_BITS == 32
|
---|
1680 | /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
|
---|
1681 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
|
---|
1682 | #else
|
---|
1683 | /* 64-bit host or hybrid host. */
|
---|
1684 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
|
---|
1685 | #endif
|
---|
1686 | }
|
---|
1687 | else
|
---|
1688 | {
|
---|
1689 | /* Guest is not in long mode, use the 32-bit handler. */
|
---|
1690 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
|
---|
1691 | }
|
---|
1692 | return VINF_SUCCESS;
|
---|
1693 | }
|
---|
1694 |
|
---|
1695 |
|
---|
1696 | /**
|
---|
1697 | * Enters the AMD-V session.
|
---|
1698 | *
|
---|
1699 | * @returns VBox status code.
|
---|
1700 | * @param pVM The cross context VM structure.
|
---|
1701 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1702 | * @param pCpu Pointer to the CPU info struct.
|
---|
1703 | */
|
---|
1704 | VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
|
---|
1705 | {
|
---|
1706 | AssertPtr(pVM);
|
---|
1707 | AssertPtr(pVCpu);
|
---|
1708 | Assert(pVM->hm.s.svm.fSupported);
|
---|
1709 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1710 | NOREF(pVM); NOREF(pCpu);
|
---|
1711 |
|
---|
1712 | LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
|
---|
1713 | Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
|
---|
1714 |
|
---|
1715 | pVCpu->hm.s.fLeaveDone = false;
|
---|
1716 | return VINF_SUCCESS;
|
---|
1717 | }
|
---|
1718 |
|
---|
1719 |
|
---|
1720 | /**
|
---|
1721 | * Thread-context callback for AMD-V.
|
---|
1722 | *
|
---|
1723 | * @param enmEvent The thread-context event.
|
---|
1724 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1725 | * @param fGlobalInit Whether global VT-x/AMD-V init. is used.
|
---|
1726 | * @thread EMT(pVCpu)
|
---|
1727 | */
|
---|
1728 | VMMR0DECL(void) SVMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
|
---|
1729 | {
|
---|
1730 | NOREF(fGlobalInit);
|
---|
1731 |
|
---|
1732 | switch (enmEvent)
|
---|
1733 | {
|
---|
1734 | case RTTHREADCTXEVENT_OUT:
|
---|
1735 | {
|
---|
1736 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1737 | Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
|
---|
1738 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
1739 |
|
---|
1740 | /* No longjmps (log-flush, locks) in this fragile context. */
|
---|
1741 | VMMRZCallRing3Disable(pVCpu);
|
---|
1742 |
|
---|
1743 | if (!pVCpu->hm.s.fLeaveDone)
|
---|
1744 | {
|
---|
1745 | hmR0SvmLeave(pVCpu);
|
---|
1746 | pVCpu->hm.s.fLeaveDone = true;
|
---|
1747 | }
|
---|
1748 |
|
---|
1749 | /* Leave HM context, takes care of local init (term). */
|
---|
1750 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
1751 | AssertRC(rc); NOREF(rc);
|
---|
1752 |
|
---|
1753 | /* Restore longjmp state. */
|
---|
1754 | VMMRZCallRing3Enable(pVCpu);
|
---|
1755 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatSwitchPreempt);
|
---|
1756 | break;
|
---|
1757 | }
|
---|
1758 |
|
---|
1759 | case RTTHREADCTXEVENT_IN:
|
---|
1760 | {
|
---|
1761 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1762 | Assert(VMMR0ThreadCtxHookIsEnabled(pVCpu));
|
---|
1763 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
1764 |
|
---|
1765 | /* No longjmps (log-flush, locks) in this fragile context. */
|
---|
1766 | VMMRZCallRing3Disable(pVCpu);
|
---|
1767 |
|
---|
1768 | /*
|
---|
1769 | * Initialize the bare minimum state required for HM. This takes care of
|
---|
1770 | * initializing AMD-V if necessary (onlined CPUs, local init etc.)
|
---|
1771 | */
|
---|
1772 | int rc = HMR0EnterCpu(pVCpu);
|
---|
1773 | AssertRC(rc); NOREF(rc);
|
---|
1774 | Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
|
---|
1775 |
|
---|
1776 | pVCpu->hm.s.fLeaveDone = false;
|
---|
1777 |
|
---|
1778 | /* Restore longjmp state. */
|
---|
1779 | VMMRZCallRing3Enable(pVCpu);
|
---|
1780 | break;
|
---|
1781 | }
|
---|
1782 |
|
---|
1783 | default:
|
---|
1784 | break;
|
---|
1785 | }
|
---|
1786 | }
|
---|
1787 |
|
---|
1788 |
|
---|
1789 | /**
|
---|
1790 | * Saves the host state.
|
---|
1791 | *
|
---|
1792 | * @returns VBox status code.
|
---|
1793 | * @param pVM The cross context VM structure.
|
---|
1794 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1795 | *
|
---|
1796 | * @remarks No-long-jump zone!!!
|
---|
1797 | */
|
---|
1798 | VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
|
---|
1799 | {
|
---|
1800 | NOREF(pVM);
|
---|
1801 | NOREF(pVCpu);
|
---|
1802 | /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
|
---|
1803 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT);
|
---|
1804 | return VINF_SUCCESS;
|
---|
1805 | }
|
---|
1806 |
|
---|
1807 |
|
---|
1808 | /**
|
---|
1809 | * Loads the guest state into the VMCB.
|
---|
1810 | *
|
---|
1811 | * The CPU state will be loaded from these fields on every successful VM-entry.
|
---|
1812 | * Also sets up the appropriate VMRUN function to execute guest code based on
|
---|
1813 | * the guest CPU mode.
|
---|
1814 | *
|
---|
1815 | * @returns VBox status code.
|
---|
1816 | * @param pVM The cross context VM structure.
|
---|
1817 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1818 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1819 | *
|
---|
1820 | * @remarks No-long-jump zone!!!
|
---|
1821 | */
|
---|
1822 | static int hmR0SvmLoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1823 | {
|
---|
1824 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
1825 | AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
|
---|
1826 |
|
---|
1827 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
1828 |
|
---|
1829 | int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
|
---|
1830 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
1831 |
|
---|
1832 | hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
|
---|
1833 | hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
|
---|
1834 |
|
---|
1835 | pVmcb->guest.u64RIP = pCtx->rip;
|
---|
1836 | pVmcb->guest.u64RSP = pCtx->rsp;
|
---|
1837 | pVmcb->guest.u64RFlags = pCtx->eflags.u32;
|
---|
1838 | pVmcb->guest.u64RAX = pCtx->rax;
|
---|
1839 |
|
---|
1840 | rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
|
---|
1841 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
1842 |
|
---|
1843 | rc = hmR0SvmLoadGuestXcptIntercepts(pVCpu, pVmcb, pCtx);
|
---|
1844 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestXcptIntercepts! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
1845 |
|
---|
1846 | rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
|
---|
1847 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
1848 |
|
---|
1849 | /* Clear any unused and reserved bits. */
|
---|
1850 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_RIP /* Unused (loaded unconditionally). */
|
---|
1851 | | HM_CHANGED_GUEST_RSP
|
---|
1852 | | HM_CHANGED_GUEST_RFLAGS
|
---|
1853 | | HM_CHANGED_GUEST_SYSENTER_CS_MSR
|
---|
1854 | | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
|
---|
1855 | | HM_CHANGED_GUEST_SYSENTER_ESP_MSR
|
---|
1856 | | HM_CHANGED_GUEST_LAZY_MSRS /* Unused. */
|
---|
1857 | | HM_CHANGED_SVM_RESERVED1 /* Reserved. */
|
---|
1858 | | HM_CHANGED_SVM_RESERVED2
|
---|
1859 | | HM_CHANGED_SVM_RESERVED3
|
---|
1860 | | HM_CHANGED_SVM_RESERVED4);
|
---|
1861 |
|
---|
1862 | /* All the guest state bits should be loaded except maybe the host context and/or shared host/guest bits. */
|
---|
1863 | AssertMsg( !HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_ALL_GUEST)
|
---|
1864 | || HMCPU_CF_IS_PENDING_ONLY(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE),
|
---|
1865 | ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
1866 |
|
---|
1867 | Log4(("Load: CS:RIP=%04x:%RX64 EFL=%#x SS:RSP=%04x:%RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->eflags.u, pCtx->ss.Sel, pCtx->rsp));
|
---|
1868 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
1869 | return rc;
|
---|
1870 | }
|
---|
1871 |
|
---|
1872 |
|
---|
1873 | /**
|
---|
1874 | * Loads the state shared between the host and guest into the
|
---|
1875 | * VMCB.
|
---|
1876 | *
|
---|
1877 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1878 | * @param pVmcb Pointer to the VM control block.
|
---|
1879 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1880 | *
|
---|
1881 | * @remarks No-long-jump zone!!!
|
---|
1882 | */
|
---|
1883 | static void hmR0SvmLoadSharedState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1884 | {
|
---|
1885 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1886 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
1887 |
|
---|
1888 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0))
|
---|
1889 | hmR0SvmLoadSharedCR0(pVCpu, pVmcb, pCtx);
|
---|
1890 |
|
---|
1891 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_DEBUG))
|
---|
1892 | hmR0SvmLoadSharedDebugState(pVCpu, pVmcb, pCtx);
|
---|
1893 |
|
---|
1894 | /* Unused on AMD-V. */
|
---|
1895 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_GUEST_LAZY_MSRS);
|
---|
1896 |
|
---|
1897 | AssertMsg(!HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE),
|
---|
1898 | ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
1899 | }
|
---|
1900 |
|
---|
1901 |
|
---|
1902 | /**
|
---|
1903 | * Saves the entire guest state from the VMCB into the
|
---|
1904 | * guest-CPU context. Currently there is no residual state left in the CPU that
|
---|
1905 | * is not updated in the VMCB.
|
---|
1906 | *
|
---|
1907 | * @returns VBox status code.
|
---|
1908 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1909 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
1910 | * out-of-sync. Make sure to update the required fields
|
---|
1911 | * before using them.
|
---|
1912 | */
|
---|
1913 | static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
1914 | {
|
---|
1915 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
1916 |
|
---|
1917 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
1918 |
|
---|
1919 | pMixedCtx->rip = pVmcb->guest.u64RIP;
|
---|
1920 | pMixedCtx->rsp = pVmcb->guest.u64RSP;
|
---|
1921 | pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
|
---|
1922 | pMixedCtx->rax = pVmcb->guest.u64RAX;
|
---|
1923 |
|
---|
1924 | /*
|
---|
1925 | * Guest interrupt shadow.
|
---|
1926 | */
|
---|
1927 | if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
|
---|
1928 | EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
|
---|
1929 | else if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1930 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1931 |
|
---|
1932 | /*
|
---|
1933 | * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
|
---|
1934 | */
|
---|
1935 | pMixedCtx->cr2 = pVmcb->guest.u64CR2;
|
---|
1936 |
|
---|
1937 | /*
|
---|
1938 | * Guest MSRs.
|
---|
1939 | */
|
---|
1940 | pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
|
---|
1941 | pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
|
---|
1942 | pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
|
---|
1943 | pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
|
---|
1944 | pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
|
---|
1945 | pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
|
---|
1946 | pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
|
---|
1947 | pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
|
---|
1948 |
|
---|
1949 | /*
|
---|
1950 | * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
|
---|
1951 | */
|
---|
1952 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, pVmcb, CS, cs);
|
---|
1953 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, pVmcb, SS, ss);
|
---|
1954 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, pVmcb, DS, ds);
|
---|
1955 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, pVmcb, ES, es);
|
---|
1956 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, pVmcb, FS, fs);
|
---|
1957 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, pVmcb, GS, gs);
|
---|
1958 |
|
---|
1959 | /*
|
---|
1960 | * Correct the hidden CS granularity bit. Haven't seen it being wrong in any other
|
---|
1961 | * register (yet).
|
---|
1962 | */
|
---|
1963 | /** @todo SELM might need to be fixed as it too should not care about the
|
---|
1964 | * granularity bit. See @bugref{6785}. */
|
---|
1965 | if ( !pMixedCtx->cs.Attr.n.u1Granularity
|
---|
1966 | && pMixedCtx->cs.Attr.n.u1Present
|
---|
1967 | && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
|
---|
1968 | {
|
---|
1969 | Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
|
---|
1970 | pMixedCtx->cs.Attr.n.u1Granularity = 1;
|
---|
1971 | }
|
---|
1972 |
|
---|
1973 | #ifdef VBOX_STRICT
|
---|
1974 | # define HMSVM_ASSERT_SEG_GRANULARITY(reg) \
|
---|
1975 | AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
|
---|
1976 | || ( pMixedCtx->reg.Attr.n.u1Granularity \
|
---|
1977 | ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
|
---|
1978 | : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
|
---|
1979 | ("Invalid Segment Attributes Limit=%#RX32 Attr=%#RX32 Base=%#RX64\n", pMixedCtx->reg.u32Limit, \
|
---|
1980 | pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
|
---|
1981 |
|
---|
1982 | HMSVM_ASSERT_SEG_GRANULARITY(cs);
|
---|
1983 | HMSVM_ASSERT_SEG_GRANULARITY(ss);
|
---|
1984 | HMSVM_ASSERT_SEG_GRANULARITY(ds);
|
---|
1985 | HMSVM_ASSERT_SEG_GRANULARITY(es);
|
---|
1986 | HMSVM_ASSERT_SEG_GRANULARITY(fs);
|
---|
1987 | HMSVM_ASSERT_SEG_GRANULARITY(gs);
|
---|
1988 |
|
---|
1989 | # undef HMSVM_ASSERT_SEL_GRANULARITY
|
---|
1990 | #endif
|
---|
1991 |
|
---|
1992 | /*
|
---|
1993 | * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
|
---|
1994 | * and thus it's possible that when the CPL changes during guest execution that the SS DPL
|
---|
1995 | * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
|
---|
1996 | * See AMD spec. 15.5.1 "Basic operation".
|
---|
1997 | */
|
---|
1998 | Assert(!(pVmcb->guest.u8CPL & ~0x3));
|
---|
1999 | pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
|
---|
2000 |
|
---|
2001 | /*
|
---|
2002 | * Guest TR.
|
---|
2003 | * Fixup TR attributes so it's compatible with Intel. Important when saved-states are used
|
---|
2004 | * between Intel and AMD. See @bugref{6208#c39}.
|
---|
2005 | * ASSUME that it's normally correct and that we're in 32-bit or 64-bit mode.
|
---|
2006 | */
|
---|
2007 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, pVmcb, TR, tr);
|
---|
2008 | if (pMixedCtx->tr.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
|
---|
2009 | {
|
---|
2010 | if ( pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
|
---|
2011 | || CPUMIsGuestInLongModeEx(pMixedCtx))
|
---|
2012 | pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
|
---|
2013 | else if (pMixedCtx->tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_AVAIL)
|
---|
2014 | pMixedCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
|
---|
2015 | }
|
---|
2016 |
|
---|
2017 | /*
|
---|
2018 | * Guest Descriptor-Table registers.
|
---|
2019 | */
|
---|
2020 | HMSVM_SEG_REG_COPY_FROM_VMCB(pMixedCtx, pVmcb, LDTR, ldtr);
|
---|
2021 | pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
|
---|
2022 | pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
|
---|
2023 |
|
---|
2024 | pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
|
---|
2025 | pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
|
---|
2026 |
|
---|
2027 | /*
|
---|
2028 | * Guest Debug registers.
|
---|
2029 | */
|
---|
2030 | if (!pVCpu->hm.s.fUsingHyperDR7)
|
---|
2031 | {
|
---|
2032 | pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
|
---|
2033 | pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
|
---|
2034 | }
|
---|
2035 | else
|
---|
2036 | {
|
---|
2037 | Assert(pVmcb->guest.u64DR7 == CPUMGetHyperDR7(pVCpu));
|
---|
2038 | CPUMSetHyperDR6(pVCpu, pVmcb->guest.u64DR6);
|
---|
2039 | }
|
---|
2040 |
|
---|
2041 | /*
|
---|
2042 | * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
|
---|
2043 | * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
|
---|
2044 | */
|
---|
2045 | if ( pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging
|
---|
2046 | && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
|
---|
2047 | {
|
---|
2048 | CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
|
---|
2049 | PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
|
---|
2050 | }
|
---|
2051 | }
|
---|
2052 |
|
---|
2053 |
|
---|
2054 | /**
|
---|
2055 | * Does the necessary state syncing before returning to ring-3 for any reason
|
---|
2056 | * (longjmp, preemption, voluntary exits to ring-3) from AMD-V.
|
---|
2057 | *
|
---|
2058 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2059 | *
|
---|
2060 | * @remarks No-long-jmp zone!!!
|
---|
2061 | */
|
---|
2062 | static void hmR0SvmLeave(PVMCPU pVCpu)
|
---|
2063 | {
|
---|
2064 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2065 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2066 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
2067 |
|
---|
2068 | /*
|
---|
2069 | * !!! IMPORTANT !!!
|
---|
2070 | * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
|
---|
2071 | */
|
---|
2072 |
|
---|
2073 | /* Restore host FPU state if necessary and resync on next R0 reentry .*/
|
---|
2074 | if (CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu))
|
---|
2075 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
2076 |
|
---|
2077 | /*
|
---|
2078 | * Restore host debug registers if necessary and resync on next R0 reentry.
|
---|
2079 | */
|
---|
2080 | #ifdef VBOX_STRICT
|
---|
2081 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
2082 | {
|
---|
2083 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
2084 | Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
|
---|
2085 | Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
|
---|
2086 | }
|
---|
2087 | #endif
|
---|
2088 | if (CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */))
|
---|
2089 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
|
---|
2090 |
|
---|
2091 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
2092 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
2093 |
|
---|
2094 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatEntry);
|
---|
2095 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatLoadGuestState);
|
---|
2096 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit1);
|
---|
2097 | STAM_PROFILE_ADV_SET_STOPPED(&pVCpu->hm.s.StatExit2);
|
---|
2098 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
2099 |
|
---|
2100 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
|
---|
2101 | }
|
---|
2102 |
|
---|
2103 |
|
---|
2104 | /**
|
---|
2105 | * Leaves the AMD-V session.
|
---|
2106 | *
|
---|
2107 | * @returns VBox status code.
|
---|
2108 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2109 | */
|
---|
2110 | static int hmR0SvmLeaveSession(PVMCPU pVCpu)
|
---|
2111 | {
|
---|
2112 | HM_DISABLE_PREEMPT();
|
---|
2113 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2114 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2115 |
|
---|
2116 | /* When thread-context hooks are used, we can avoid doing the leave again if we had been preempted before
|
---|
2117 | and done this from the SVMR0ThreadCtxCallback(). */
|
---|
2118 | if (!pVCpu->hm.s.fLeaveDone)
|
---|
2119 | {
|
---|
2120 | hmR0SvmLeave(pVCpu);
|
---|
2121 | pVCpu->hm.s.fLeaveDone = true;
|
---|
2122 | }
|
---|
2123 |
|
---|
2124 | /*
|
---|
2125 | * !!! IMPORTANT !!!
|
---|
2126 | * If you modify code here, make sure to check whether hmR0SvmCallRing3Callback() needs to be updated too.
|
---|
2127 | */
|
---|
2128 |
|
---|
2129 | /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
|
---|
2130 | /* Deregister hook now that we've left HM context before re-enabling preemption. */
|
---|
2131 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
2132 |
|
---|
2133 | /* Leave HM context. This takes care of local init (term). */
|
---|
2134 | int rc = HMR0LeaveCpu(pVCpu);
|
---|
2135 |
|
---|
2136 | HM_RESTORE_PREEMPT();
|
---|
2137 | return rc;
|
---|
2138 | }
|
---|
2139 |
|
---|
2140 |
|
---|
2141 | /**
|
---|
2142 | * Does the necessary state syncing before doing a longjmp to ring-3.
|
---|
2143 | *
|
---|
2144 | * @returns VBox status code.
|
---|
2145 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2146 | *
|
---|
2147 | * @remarks No-long-jmp zone!!!
|
---|
2148 | */
|
---|
2149 | static int hmR0SvmLongJmpToRing3(PVMCPU pVCpu)
|
---|
2150 | {
|
---|
2151 | return hmR0SvmLeaveSession(pVCpu);
|
---|
2152 | }
|
---|
2153 |
|
---|
2154 |
|
---|
2155 | /**
|
---|
2156 | * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
|
---|
2157 | * any remaining host state) before we longjump to ring-3 and possibly get
|
---|
2158 | * preempted.
|
---|
2159 | *
|
---|
2160 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2161 | * @param enmOperation The operation causing the ring-3 longjump.
|
---|
2162 | * @param pvUser The user argument (pointer to the possibly
|
---|
2163 | * out-of-date guest-CPU context).
|
---|
2164 | */
|
---|
2165 | static DECLCALLBACK(int) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
|
---|
2166 | {
|
---|
2167 | RT_NOREF_PV(pvUser);
|
---|
2168 |
|
---|
2169 | if (enmOperation == VMMCALLRING3_VM_R0_ASSERTION)
|
---|
2170 | {
|
---|
2171 | /*
|
---|
2172 | * !!! IMPORTANT !!!
|
---|
2173 | * If you modify code here, make sure to check whether hmR0SvmLeave() and hmR0SvmLeaveSession() needs
|
---|
2174 | * to be updated too. This is a stripped down version which gets out ASAP trying to not trigger any assertion.
|
---|
2175 | */
|
---|
2176 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
2177 | VMMRZCallRing3Disable(pVCpu);
|
---|
2178 | HM_DISABLE_PREEMPT();
|
---|
2179 |
|
---|
2180 | /* Restore host FPU state if necessary and resync on next R0 reentry. */
|
---|
2181 | CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(pVCpu);
|
---|
2182 |
|
---|
2183 | /* Restore host debug registers if necessary and resync on next R0 reentry. */
|
---|
2184 | CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(pVCpu, false /* save DR6 */);
|
---|
2185 |
|
---|
2186 | /* Deregister the hook now that we've left HM context before re-enabling preemption. */
|
---|
2187 | /** @todo eliminate the need for calling VMMR0ThreadCtxHookDisable here! */
|
---|
2188 | VMMR0ThreadCtxHookDisable(pVCpu);
|
---|
2189 |
|
---|
2190 | /* Leave HM context. This takes care of local init (term). */
|
---|
2191 | HMR0LeaveCpu(pVCpu);
|
---|
2192 |
|
---|
2193 | HM_RESTORE_PREEMPT();
|
---|
2194 | return VINF_SUCCESS;
|
---|
2195 | }
|
---|
2196 |
|
---|
2197 | Assert(pVCpu);
|
---|
2198 | Assert(pvUser);
|
---|
2199 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2200 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
2201 |
|
---|
2202 | VMMRZCallRing3Disable(pVCpu);
|
---|
2203 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
2204 |
|
---|
2205 | Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
|
---|
2206 | int rc = hmR0SvmLongJmpToRing3(pVCpu);
|
---|
2207 | AssertRCReturn(rc, rc);
|
---|
2208 |
|
---|
2209 | VMMRZCallRing3Enable(pVCpu);
|
---|
2210 | return VINF_SUCCESS;
|
---|
2211 | }
|
---|
2212 |
|
---|
2213 |
|
---|
2214 | /**
|
---|
2215 | * Take necessary actions before going back to ring-3.
|
---|
2216 | *
|
---|
2217 | * An action requires us to go back to ring-3. This function does the necessary
|
---|
2218 | * steps before we can safely return to ring-3. This is not the same as longjmps
|
---|
2219 | * to ring-3, this is voluntary.
|
---|
2220 | *
|
---|
2221 | * @param pVM The cross context VM structure.
|
---|
2222 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2223 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2224 | * @param rcExit The reason for exiting to ring-3. Can be
|
---|
2225 | * VINF_VMM_UNKNOWN_RING3_CALL.
|
---|
2226 | */
|
---|
2227 | static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
|
---|
2228 | {
|
---|
2229 | Assert(pVM);
|
---|
2230 | Assert(pVCpu);
|
---|
2231 | Assert(pCtx);
|
---|
2232 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
2233 |
|
---|
2234 | /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
|
---|
2235 | VMMRZCallRing3Disable(pVCpu);
|
---|
2236 | Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
|
---|
2237 |
|
---|
2238 | /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
|
---|
2239 | if (pVCpu->hm.s.Event.fPending)
|
---|
2240 | {
|
---|
2241 | hmR0SvmPendingEventToTrpmTrap(pVCpu);
|
---|
2242 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
2243 | }
|
---|
2244 |
|
---|
2245 | /* If we're emulating an instruction, we shouldn't have any TRPM traps pending
|
---|
2246 | and if we're injecting an event we should have a TRPM trap pending. */
|
---|
2247 | AssertMsg(rcExit != VINF_EM_RAW_INJECT_TRPM_EVENT || TRPMHasTrap(pVCpu), ("rcExit=%Rrc\n", rcExit));
|
---|
2248 | AssertMsg(rcExit != VINF_EM_RAW_EMULATE_INSTR || !TRPMHasTrap(pVCpu), ("rcExit=%Rrc\n", rcExit));
|
---|
2249 |
|
---|
2250 | /* Sync. the necessary state for going back to ring-3. */
|
---|
2251 | hmR0SvmLeaveSession(pVCpu);
|
---|
2252 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
2253 |
|
---|
2254 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
|
---|
2255 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
|
---|
2256 | | CPUM_CHANGED_LDTR
|
---|
2257 | | CPUM_CHANGED_GDTR
|
---|
2258 | | CPUM_CHANGED_IDTR
|
---|
2259 | | CPUM_CHANGED_TR
|
---|
2260 | | CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
2261 | if ( pVM->hm.s.fNestedPaging
|
---|
2262 | && CPUMIsGuestPagingEnabledEx(pCtx))
|
---|
2263 | {
|
---|
2264 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_GLOBAL_TLB_FLUSH);
|
---|
2265 | }
|
---|
2266 |
|
---|
2267 | /* On our way back from ring-3 reload the guest state if there is a possibility of it being changed. */
|
---|
2268 | if (rcExit != VINF_EM_RAW_INTERRUPT)
|
---|
2269 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
2270 |
|
---|
2271 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
|
---|
2272 |
|
---|
2273 | /* We do -not- want any longjmp notifications after this! We must return to ring-3 ASAP. */
|
---|
2274 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
2275 | VMMRZCallRing3Enable(pVCpu);
|
---|
2276 | }
|
---|
2277 |
|
---|
2278 |
|
---|
2279 | /**
|
---|
2280 | * Updates the use of TSC offsetting mode for the CPU and adjusts the necessary
|
---|
2281 | * intercepts.
|
---|
2282 | *
|
---|
2283 | * @param pVM The cross context VM structure.
|
---|
2284 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2285 | *
|
---|
2286 | * @remarks No-long-jump zone!!!
|
---|
2287 | */
|
---|
2288 | static void hmR0SvmUpdateTscOffsetting(PVM pVM, PVMCPU pVCpu)
|
---|
2289 | {
|
---|
2290 | bool fParavirtTsc;
|
---|
2291 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
2292 | bool fCanUseRealTsc = TMCpuTickCanUseRealTSC(pVM, pVCpu, &pVmcb->ctrl.u64TSCOffset, &fParavirtTsc);
|
---|
2293 | if (fCanUseRealTsc)
|
---|
2294 | {
|
---|
2295 | pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSC;
|
---|
2296 | pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_RDTSCP;
|
---|
2297 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
|
---|
2298 | }
|
---|
2299 | else
|
---|
2300 | {
|
---|
2301 | pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSC;
|
---|
2302 | pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_RDTSCP;
|
---|
2303 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
|
---|
2304 | }
|
---|
2305 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
2306 |
|
---|
2307 | /** @todo later optimize this to be done elsewhere and not before every
|
---|
2308 | * VM-entry. */
|
---|
2309 | if (fParavirtTsc)
|
---|
2310 | {
|
---|
2311 | /* Currently neither Hyper-V nor KVM need to update their paravirt. TSC
|
---|
2312 | information before every VM-entry, hence disable it for performance sake. */
|
---|
2313 | #if 0
|
---|
2314 | int rc = GIMR0UpdateParavirtTsc(pVM, 0 /* u64Offset */);
|
---|
2315 | AssertRC(rc);
|
---|
2316 | #endif
|
---|
2317 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscParavirt);
|
---|
2318 | }
|
---|
2319 | }
|
---|
2320 |
|
---|
2321 |
|
---|
2322 | /**
|
---|
2323 | * Sets an event as a pending event to be injected into the guest.
|
---|
2324 | *
|
---|
2325 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2326 | * @param pEvent Pointer to the SVM event.
|
---|
2327 | * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
|
---|
2328 | * page-fault.
|
---|
2329 | *
|
---|
2330 | * @remarks Statistics counter assumes this is a guest event being reflected to
|
---|
2331 | * the guest i.e. 'StatInjectPendingReflect' is incremented always.
|
---|
2332 | */
|
---|
2333 | DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
|
---|
2334 | {
|
---|
2335 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
2336 | Assert(pEvent->n.u1Valid);
|
---|
2337 |
|
---|
2338 | pVCpu->hm.s.Event.u64IntInfo = pEvent->u;
|
---|
2339 | pVCpu->hm.s.Event.fPending = true;
|
---|
2340 | pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
|
---|
2341 |
|
---|
2342 | Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
|
---|
2343 | pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
|
---|
2344 | }
|
---|
2345 |
|
---|
2346 |
|
---|
2347 | /**
|
---|
2348 | * Injects an event into the guest upon VMRUN by updating the relevant field
|
---|
2349 | * in the VMCB.
|
---|
2350 | *
|
---|
2351 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2352 | * @param pVmcb Pointer to the guest VM control block.
|
---|
2353 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2354 | * @param pEvent Pointer to the event.
|
---|
2355 | *
|
---|
2356 | * @remarks No-long-jump zone!!!
|
---|
2357 | * @remarks Requires CR0!
|
---|
2358 | */
|
---|
2359 | DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
|
---|
2360 | {
|
---|
2361 | NOREF(pVCpu); NOREF(pCtx);
|
---|
2362 |
|
---|
2363 | pVmcb->ctrl.EventInject.u = pEvent->u;
|
---|
2364 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
|
---|
2365 |
|
---|
2366 | Log4(("hmR0SvmInjectEventVmcb: u=%#RX64 u8Vector=%#x Type=%#x ErrorCodeValid=%RTbool ErrorCode=%#RX32\n", pEvent->u,
|
---|
2367 | pEvent->n.u8Vector, (uint8_t)pEvent->n.u3Type, !!pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
|
---|
2368 | }
|
---|
2369 |
|
---|
2370 |
|
---|
2371 |
|
---|
2372 | /**
|
---|
2373 | * Converts any TRPM trap into a pending HM event. This is typically used when
|
---|
2374 | * entering from ring-3 (not longjmp returns).
|
---|
2375 | *
|
---|
2376 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2377 | */
|
---|
2378 | static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
|
---|
2379 | {
|
---|
2380 | Assert(TRPMHasTrap(pVCpu));
|
---|
2381 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
2382 |
|
---|
2383 | uint8_t uVector;
|
---|
2384 | TRPMEVENT enmTrpmEvent;
|
---|
2385 | RTGCUINT uErrCode;
|
---|
2386 | RTGCUINTPTR GCPtrFaultAddress;
|
---|
2387 | uint8_t cbInstr;
|
---|
2388 |
|
---|
2389 | int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
|
---|
2390 | AssertRC(rc);
|
---|
2391 |
|
---|
2392 | SVMEVENT Event;
|
---|
2393 | Event.u = 0;
|
---|
2394 | Event.n.u1Valid = 1;
|
---|
2395 | Event.n.u8Vector = uVector;
|
---|
2396 |
|
---|
2397 | /* Refer AMD spec. 15.20 "Event Injection" for the format. */
|
---|
2398 | if (enmTrpmEvent == TRPM_TRAP)
|
---|
2399 | {
|
---|
2400 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
2401 | switch (uVector)
|
---|
2402 | {
|
---|
2403 | case X86_XCPT_NMI:
|
---|
2404 | {
|
---|
2405 | Event.n.u3Type = SVM_EVENT_NMI;
|
---|
2406 | break;
|
---|
2407 | }
|
---|
2408 |
|
---|
2409 | case X86_XCPT_PF:
|
---|
2410 | case X86_XCPT_DF:
|
---|
2411 | case X86_XCPT_TS:
|
---|
2412 | case X86_XCPT_NP:
|
---|
2413 | case X86_XCPT_SS:
|
---|
2414 | case X86_XCPT_GP:
|
---|
2415 | case X86_XCPT_AC:
|
---|
2416 | {
|
---|
2417 | Event.n.u1ErrorCodeValid = 1;
|
---|
2418 | Event.n.u32ErrorCode = uErrCode;
|
---|
2419 | break;
|
---|
2420 | }
|
---|
2421 | }
|
---|
2422 | }
|
---|
2423 | else if (enmTrpmEvent == TRPM_HARDWARE_INT)
|
---|
2424 | Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
|
---|
2425 | else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
|
---|
2426 | Event.n.u3Type = SVM_EVENT_SOFTWARE_INT;
|
---|
2427 | else
|
---|
2428 | AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
|
---|
2429 |
|
---|
2430 | rc = TRPMResetTrap(pVCpu);
|
---|
2431 | AssertRC(rc);
|
---|
2432 |
|
---|
2433 | Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%RTbool uErrorCode=%#RX32\n", Event.u, Event.n.u8Vector,
|
---|
2434 | !!Event.n.u1ErrorCodeValid, Event.n.u32ErrorCode));
|
---|
2435 |
|
---|
2436 | hmR0SvmSetPendingEvent(pVCpu, &Event, GCPtrFaultAddress);
|
---|
2437 | }
|
---|
2438 |
|
---|
2439 |
|
---|
2440 | /**
|
---|
2441 | * Converts any pending SVM event into a TRPM trap. Typically used when leaving
|
---|
2442 | * AMD-V to execute any instruction.
|
---|
2443 | *
|
---|
2444 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2445 | */
|
---|
2446 | static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
|
---|
2447 | {
|
---|
2448 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
2449 | Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
|
---|
2450 |
|
---|
2451 | SVMEVENT Event;
|
---|
2452 | Event.u = pVCpu->hm.s.Event.u64IntInfo;
|
---|
2453 |
|
---|
2454 | uint8_t uVector = Event.n.u8Vector;
|
---|
2455 | uint8_t uVectorType = Event.n.u3Type;
|
---|
2456 |
|
---|
2457 | TRPMEVENT enmTrapType;
|
---|
2458 | switch (uVectorType)
|
---|
2459 | {
|
---|
2460 | case SVM_EVENT_EXTERNAL_IRQ:
|
---|
2461 | enmTrapType = TRPM_HARDWARE_INT;
|
---|
2462 | break;
|
---|
2463 | case SVM_EVENT_SOFTWARE_INT:
|
---|
2464 | enmTrapType = TRPM_SOFTWARE_INT;
|
---|
2465 | break;
|
---|
2466 | case SVM_EVENT_EXCEPTION:
|
---|
2467 | case SVM_EVENT_NMI:
|
---|
2468 | enmTrapType = TRPM_TRAP;
|
---|
2469 | break;
|
---|
2470 | default:
|
---|
2471 | AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
|
---|
2472 | enmTrapType = TRPM_32BIT_HACK;
|
---|
2473 | break;
|
---|
2474 | }
|
---|
2475 |
|
---|
2476 | Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
|
---|
2477 |
|
---|
2478 | int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
|
---|
2479 | AssertRC(rc);
|
---|
2480 |
|
---|
2481 | if (Event.n.u1ErrorCodeValid)
|
---|
2482 | TRPMSetErrorCode(pVCpu, Event.n.u32ErrorCode);
|
---|
2483 |
|
---|
2484 | if ( uVectorType == SVM_EVENT_EXCEPTION
|
---|
2485 | && uVector == X86_XCPT_PF)
|
---|
2486 | {
|
---|
2487 | TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
|
---|
2488 | Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
|
---|
2489 | }
|
---|
2490 | else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
|
---|
2491 | {
|
---|
2492 | AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
|
---|
2493 | || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
|
---|
2494 | ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
|
---|
2495 | TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
|
---|
2496 | }
|
---|
2497 | pVCpu->hm.s.Event.fPending = false;
|
---|
2498 | }
|
---|
2499 |
|
---|
2500 |
|
---|
2501 | /**
|
---|
2502 | * Gets the guest's interrupt-shadow.
|
---|
2503 | *
|
---|
2504 | * @returns The guest's interrupt-shadow.
|
---|
2505 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2506 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2507 | *
|
---|
2508 | * @remarks No-long-jump zone!!!
|
---|
2509 | * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
|
---|
2510 | */
|
---|
2511 | DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2512 | {
|
---|
2513 | /*
|
---|
2514 | * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
|
---|
2515 | * inhibit interrupts or clear any existing interrupt-inhibition.
|
---|
2516 | */
|
---|
2517 | uint32_t uIntrState = 0;
|
---|
2518 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
2519 | {
|
---|
2520 | if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
2521 | {
|
---|
2522 | /*
|
---|
2523 | * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
|
---|
2524 | * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
|
---|
2525 | */
|
---|
2526 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
2527 | }
|
---|
2528 | else
|
---|
2529 | uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
|
---|
2530 | }
|
---|
2531 | return uIntrState;
|
---|
2532 | }
|
---|
2533 |
|
---|
2534 |
|
---|
2535 | /**
|
---|
2536 | * Sets the virtual interrupt intercept control in the VMCB which
|
---|
2537 | * instructs AMD-V to cause a \#VMEXIT as soon as the guest is in a state to
|
---|
2538 | * receive interrupts.
|
---|
2539 | *
|
---|
2540 | * @param pVmcb Pointer to the VM control block.
|
---|
2541 | */
|
---|
2542 | DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
|
---|
2543 | {
|
---|
2544 | if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR))
|
---|
2545 | {
|
---|
2546 | pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
|
---|
2547 | pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
|
---|
2548 | pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_VINTR;
|
---|
2549 | pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
|
---|
2550 |
|
---|
2551 | Log4(("Setting VINTR intercept\n"));
|
---|
2552 | }
|
---|
2553 | }
|
---|
2554 |
|
---|
2555 |
|
---|
2556 | #if 0
|
---|
2557 | /**
|
---|
2558 | * Clears the virtual interrupt intercept control in the VMCB as
|
---|
2559 | * we are figured the guest is unable process any interrupts
|
---|
2560 | * at this point of time.
|
---|
2561 | *
|
---|
2562 | * @param pVmcb Pointer to the VM control block.
|
---|
2563 | */
|
---|
2564 | DECLINLINE(void) hmR0SvmClearVirtIntrIntercept(PSVMVMCB pVmcb)
|
---|
2565 | {
|
---|
2566 | if (pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_VINTR)
|
---|
2567 | {
|
---|
2568 | pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VINTR;
|
---|
2569 | pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
|
---|
2570 | Log4(("Clearing VINTR intercept\n"));
|
---|
2571 | }
|
---|
2572 | }
|
---|
2573 | #endif
|
---|
2574 |
|
---|
2575 |
|
---|
2576 | /**
|
---|
2577 | * Sets the IRET intercept control in the VMCB which instructs AMD-V to cause a
|
---|
2578 | * \#VMEXIT as soon as a guest starts executing an IRET. This is used to unblock
|
---|
2579 | * virtual NMIs.
|
---|
2580 | *
|
---|
2581 | * @param pVmcb Pointer to the VM control block.
|
---|
2582 | */
|
---|
2583 | DECLINLINE(void) hmR0SvmSetIretIntercept(PSVMVMCB pVmcb)
|
---|
2584 | {
|
---|
2585 | if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET))
|
---|
2586 | {
|
---|
2587 | pVmcb->ctrl.u64InterceptCtrl |= SVM_CTRL_INTERCEPT_IRET;
|
---|
2588 | pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
|
---|
2589 |
|
---|
2590 | Log4(("Setting IRET intercept\n"));
|
---|
2591 | }
|
---|
2592 | }
|
---|
2593 |
|
---|
2594 |
|
---|
2595 | /**
|
---|
2596 | * Clears the IRET intercept control in the VMCB.
|
---|
2597 | *
|
---|
2598 | * @param pVmcb Pointer to the VM control block.
|
---|
2599 | */
|
---|
2600 | DECLINLINE(void) hmR0SvmClearIretIntercept(PSVMVMCB pVmcb)
|
---|
2601 | {
|
---|
2602 | if (pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_IRET)
|
---|
2603 | {
|
---|
2604 | pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_IRET;
|
---|
2605 | pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS);
|
---|
2606 |
|
---|
2607 | Log4(("Clearing IRET intercept\n"));
|
---|
2608 | }
|
---|
2609 | }
|
---|
2610 |
|
---|
2611 |
|
---|
2612 | /**
|
---|
2613 | * Evaluates the event to be delivered to the guest and sets it as the pending
|
---|
2614 | * event.
|
---|
2615 | *
|
---|
2616 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2617 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2618 | */
|
---|
2619 | static void hmR0SvmEvaluatePendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2620 | {
|
---|
2621 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
2622 | Log4Func(("\n"));
|
---|
2623 |
|
---|
2624 | bool const fIntShadow = RT_BOOL(hmR0SvmGetGuestIntrShadow(pVCpu, pCtx));
|
---|
2625 | bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
|
---|
2626 | bool const fBlockNmi = RT_BOOL(VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS));
|
---|
2627 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
2628 |
|
---|
2629 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
|
---|
2630 | APICUpdatePendingInterrupts(pVCpu);
|
---|
2631 |
|
---|
2632 | SVMEVENT Event;
|
---|
2633 | Event.u = 0;
|
---|
2634 | /** @todo SMI. SMIs take priority over NMIs. */
|
---|
2635 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
|
---|
2636 | {
|
---|
2637 | if (fBlockNmi)
|
---|
2638 | hmR0SvmSetIretIntercept(pVmcb);
|
---|
2639 | else if (fIntShadow)
|
---|
2640 | hmR0SvmSetVirtIntrIntercept(pVmcb);
|
---|
2641 | else
|
---|
2642 | {
|
---|
2643 | Log4(("Pending NMI\n"));
|
---|
2644 |
|
---|
2645 | Event.n.u1Valid = 1;
|
---|
2646 | Event.n.u8Vector = X86_XCPT_NMI;
|
---|
2647 | Event.n.u3Type = SVM_EVENT_NMI;
|
---|
2648 |
|
---|
2649 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
2650 | hmR0SvmSetIretIntercept(pVmcb);
|
---|
2651 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
2652 | }
|
---|
2653 | }
|
---|
2654 | else if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
|
---|
2655 | && !pVCpu->hm.s.fSingleInstruction)
|
---|
2656 | {
|
---|
2657 | /*
|
---|
2658 | * Check if the guest can receive external interrupts (PIC/APIC). Once PDMGetInterrupt() returns
|
---|
2659 | * a valid interrupt we must- deliver the interrupt. We can no longer re-request it from the APIC.
|
---|
2660 | */
|
---|
2661 | if ( !fBlockInt
|
---|
2662 | && !fIntShadow)
|
---|
2663 | {
|
---|
2664 | uint8_t u8Interrupt;
|
---|
2665 | int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
|
---|
2666 | if (RT_SUCCESS(rc))
|
---|
2667 | {
|
---|
2668 | Log4(("Injecting external interrupt u8Interrupt=%#x\n", u8Interrupt));
|
---|
2669 |
|
---|
2670 | Event.n.u1Valid = 1;
|
---|
2671 | Event.n.u8Vector = u8Interrupt;
|
---|
2672 | Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
|
---|
2673 |
|
---|
2674 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
2675 | }
|
---|
2676 | else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
|
---|
2677 | {
|
---|
2678 | /*
|
---|
2679 | * AMD-V has no TPR thresholding feature. We just avoid posting the interrupt.
|
---|
2680 | * We just avoid delivering the TPR-masked interrupt here. TPR will be updated
|
---|
2681 | * always via hmR0SvmLoadGuestState() -> hmR0SvmLoadGuestApicState().
|
---|
2682 | */
|
---|
2683 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchTprMaskedIrq);
|
---|
2684 | }
|
---|
2685 | else
|
---|
2686 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
|
---|
2687 | }
|
---|
2688 | else
|
---|
2689 | hmR0SvmSetVirtIntrIntercept(pVmcb);
|
---|
2690 | }
|
---|
2691 | }
|
---|
2692 |
|
---|
2693 |
|
---|
2694 | /**
|
---|
2695 | * Injects any pending events into the guest if the guest is in a state to
|
---|
2696 | * receive them.
|
---|
2697 | *
|
---|
2698 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2699 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2700 | */
|
---|
2701 | static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2702 | {
|
---|
2703 | Assert(!TRPMHasTrap(pVCpu));
|
---|
2704 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2705 |
|
---|
2706 | bool const fIntShadow = RT_BOOL(hmR0SvmGetGuestIntrShadow(pVCpu, pCtx));
|
---|
2707 | bool const fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
|
---|
2708 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
2709 |
|
---|
2710 | if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
|
---|
2711 | {
|
---|
2712 | SVMEVENT Event;
|
---|
2713 | Event.u = pVCpu->hm.s.Event.u64IntInfo;
|
---|
2714 | Assert(Event.n.u1Valid);
|
---|
2715 | #ifdef VBOX_STRICT
|
---|
2716 | if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
|
---|
2717 | {
|
---|
2718 | Assert(!fBlockInt);
|
---|
2719 | Assert(!fIntShadow);
|
---|
2720 | }
|
---|
2721 | else if (Event.n.u3Type == SVM_EVENT_NMI)
|
---|
2722 | Assert(!fIntShadow);
|
---|
2723 | #endif
|
---|
2724 |
|
---|
2725 | Log4(("Injecting pending HM event.\n"));
|
---|
2726 | hmR0SvmInjectEventVmcb(pVCpu, pVmcb, pCtx, &Event);
|
---|
2727 | pVCpu->hm.s.Event.fPending = false;
|
---|
2728 |
|
---|
2729 | #ifdef VBOX_WITH_STATISTICS
|
---|
2730 | if (Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ)
|
---|
2731 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectInterrupt);
|
---|
2732 | else
|
---|
2733 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectXcpt);
|
---|
2734 | #endif
|
---|
2735 | }
|
---|
2736 |
|
---|
2737 | /* Update the guest interrupt shadow in the VMCB. */
|
---|
2738 | pVmcb->ctrl.u64IntShadow = !!fIntShadow;
|
---|
2739 | NOREF(fBlockInt);
|
---|
2740 | }
|
---|
2741 |
|
---|
2742 |
|
---|
2743 | /**
|
---|
2744 | * Reports world-switch error and dumps some useful debug info.
|
---|
2745 | *
|
---|
2746 | * @param pVM The cross context VM structure.
|
---|
2747 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2748 | * @param rcVMRun The return code from VMRUN (or
|
---|
2749 | * VERR_SVM_INVALID_GUEST_STATE for invalid
|
---|
2750 | * guest-state).
|
---|
2751 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2752 | */
|
---|
2753 | static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
|
---|
2754 | {
|
---|
2755 | NOREF(pCtx);
|
---|
2756 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
2757 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
2758 |
|
---|
2759 | if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
|
---|
2760 | {
|
---|
2761 | hmDumpRegs(pVM, pVCpu, pCtx); NOREF(pVM);
|
---|
2762 | #ifdef VBOX_STRICT
|
---|
2763 | Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
|
---|
2764 | Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
|
---|
2765 | Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
|
---|
2766 | Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
|
---|
2767 | Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
|
---|
2768 | Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
|
---|
2769 | Log4(("ctrl.u64InterceptCtrl %#RX64\n", pVmcb->ctrl.u64InterceptCtrl));
|
---|
2770 | Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
|
---|
2771 | Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
|
---|
2772 | Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
|
---|
2773 |
|
---|
2774 | Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
|
---|
2775 | Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
|
---|
2776 | Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
|
---|
2777 |
|
---|
2778 | Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
|
---|
2779 | Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
|
---|
2780 | Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
|
---|
2781 | Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
|
---|
2782 | Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
|
---|
2783 | Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
|
---|
2784 | Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
|
---|
2785 | Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
|
---|
2786 | Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
|
---|
2787 | Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
|
---|
2788 |
|
---|
2789 | Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
|
---|
2790 | Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
|
---|
2791 | Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
|
---|
2792 | Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
|
---|
2793 | Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
|
---|
2794 | Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
|
---|
2795 | Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
|
---|
2796 | Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
|
---|
2797 | Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
|
---|
2798 | Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
|
---|
2799 | Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
|
---|
2800 | Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
|
---|
2801 | Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
|
---|
2802 | Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
|
---|
2803 | Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
|
---|
2804 | Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
|
---|
2805 | Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
|
---|
2806 |
|
---|
2807 | Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
|
---|
2808 | Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
|
---|
2809 |
|
---|
2810 | Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
|
---|
2811 | Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
|
---|
2812 | Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
|
---|
2813 | Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
|
---|
2814 | Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
|
---|
2815 | Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
|
---|
2816 | Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
|
---|
2817 | Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
|
---|
2818 | Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
|
---|
2819 | Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
|
---|
2820 | Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
|
---|
2821 | Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
|
---|
2822 | Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
|
---|
2823 | Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
|
---|
2824 | Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
|
---|
2825 | Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
|
---|
2826 | Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
|
---|
2827 | Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
|
---|
2828 | Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
|
---|
2829 | Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
|
---|
2830 |
|
---|
2831 | Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
|
---|
2832 | Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
|
---|
2833 |
|
---|
2834 | Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
|
---|
2835 | Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
|
---|
2836 | Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
|
---|
2837 | Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
|
---|
2838 |
|
---|
2839 | Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
|
---|
2840 | Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
|
---|
2841 |
|
---|
2842 | Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
|
---|
2843 | Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
|
---|
2844 | Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
|
---|
2845 | Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
|
---|
2846 |
|
---|
2847 | Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
|
---|
2848 | Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
|
---|
2849 | Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
|
---|
2850 | Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
|
---|
2851 | Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
|
---|
2852 | Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
|
---|
2853 | Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
|
---|
2854 |
|
---|
2855 | Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
|
---|
2856 | Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
|
---|
2857 | Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
|
---|
2858 | Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
|
---|
2859 |
|
---|
2860 | Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
|
---|
2861 | Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
|
---|
2862 | Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
|
---|
2863 |
|
---|
2864 | Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
|
---|
2865 | Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
|
---|
2866 | Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
|
---|
2867 | Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
|
---|
2868 | Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
|
---|
2869 | Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
|
---|
2870 | Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
|
---|
2871 | Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
|
---|
2872 | Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
|
---|
2873 | Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
|
---|
2874 | Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
|
---|
2875 | Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
|
---|
2876 | #endif /* VBOX_STRICT */
|
---|
2877 | }
|
---|
2878 | else
|
---|
2879 | Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
|
---|
2880 |
|
---|
2881 | NOREF(pVmcb);
|
---|
2882 | }
|
---|
2883 |
|
---|
2884 |
|
---|
2885 | /**
|
---|
2886 | * Check per-VM and per-VCPU force flag actions that require us to go back to
|
---|
2887 | * ring-3 for one reason or another.
|
---|
2888 | *
|
---|
2889 | * @returns VBox status code (information status code included).
|
---|
2890 | * @retval VINF_SUCCESS if we don't have any actions that require going back to
|
---|
2891 | * ring-3.
|
---|
2892 | * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
|
---|
2893 | * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
|
---|
2894 | * interrupts)
|
---|
2895 | * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
|
---|
2896 | * all EMTs to be in ring-3.
|
---|
2897 | * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
|
---|
2898 | * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
|
---|
2899 | * to the EM loop.
|
---|
2900 | *
|
---|
2901 | * @param pVM The cross context VM structure.
|
---|
2902 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2903 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2904 | */
|
---|
2905 | static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2906 | {
|
---|
2907 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2908 |
|
---|
2909 | /* On AMD-V we don't need to update CR3, PAE PDPES lazily. See hmR0SvmSaveGuestState(). */
|
---|
2910 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
2911 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_PAE_PDPES));
|
---|
2912 |
|
---|
2913 | if ( VM_FF_IS_PENDING(pVM, !pVCpu->hm.s.fSingleInstruction
|
---|
2914 | ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
|
---|
2915 | || VMCPU_FF_IS_PENDING(pVCpu, !pVCpu->hm.s.fSingleInstruction
|
---|
2916 | ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
|
---|
2917 | {
|
---|
2918 | /* Pending PGM C3 sync. */
|
---|
2919 | if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
|
---|
2920 | {
|
---|
2921 | int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
|
---|
2922 | if (rc != VINF_SUCCESS)
|
---|
2923 | {
|
---|
2924 | Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
|
---|
2925 | return rc;
|
---|
2926 | }
|
---|
2927 | }
|
---|
2928 |
|
---|
2929 | /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
|
---|
2930 | /* -XXX- what was that about single stepping? */
|
---|
2931 | if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
|
---|
2932 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
2933 | {
|
---|
2934 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
2935 | int rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
|
---|
2936 | Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
|
---|
2937 | return rc;
|
---|
2938 | }
|
---|
2939 |
|
---|
2940 | /* Pending VM request packets, such as hardware interrupts. */
|
---|
2941 | if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
|
---|
2942 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
|
---|
2943 | {
|
---|
2944 | Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
|
---|
2945 | return VINF_EM_PENDING_REQUEST;
|
---|
2946 | }
|
---|
2947 |
|
---|
2948 | /* Pending PGM pool flushes. */
|
---|
2949 | if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
|
---|
2950 | {
|
---|
2951 | Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
|
---|
2952 | return VINF_PGM_POOL_FLUSH_PENDING;
|
---|
2953 | }
|
---|
2954 |
|
---|
2955 | /* Pending DMA requests. */
|
---|
2956 | if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
|
---|
2957 | {
|
---|
2958 | Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
|
---|
2959 | return VINF_EM_RAW_TO_R3;
|
---|
2960 | }
|
---|
2961 | }
|
---|
2962 |
|
---|
2963 | return VINF_SUCCESS;
|
---|
2964 | }
|
---|
2965 |
|
---|
2966 |
|
---|
2967 | /**
|
---|
2968 | * Does the preparations before executing guest code in AMD-V.
|
---|
2969 | *
|
---|
2970 | * This may cause longjmps to ring-3 and may even result in rescheduling to the
|
---|
2971 | * recompiler. We must be cautious what we do here regarding committing
|
---|
2972 | * guest-state information into the VMCB assuming we assuredly execute the guest
|
---|
2973 | * in AMD-V. If we fall back to the recompiler after updating the VMCB and
|
---|
2974 | * clearing the common-state (TRPM/forceflags), we must undo those changes so
|
---|
2975 | * that the recompiler can (and should) use them when it resumes guest
|
---|
2976 | * execution. Otherwise such operations must be done when we can no longer
|
---|
2977 | * exit to ring-3.
|
---|
2978 | *
|
---|
2979 | * @returns VBox status code (informational status codes included).
|
---|
2980 | * @retval VINF_SUCCESS if we can proceed with running the guest.
|
---|
2981 | * @retval VINF_* scheduling changes, we have to go back to ring-3.
|
---|
2982 | *
|
---|
2983 | * @param pVM The cross context VM structure.
|
---|
2984 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2985 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2986 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
2987 | */
|
---|
2988 | static int hmR0SvmPreRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
2989 | {
|
---|
2990 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
2991 |
|
---|
2992 | /* Check force flag actions that might require us to go back to ring-3. */
|
---|
2993 | int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
|
---|
2994 | if (rc != VINF_SUCCESS)
|
---|
2995 | return rc;
|
---|
2996 |
|
---|
2997 | if (TRPMHasTrap(pVCpu))
|
---|
2998 | hmR0SvmTrpmTrapToPendingEvent(pVCpu);
|
---|
2999 | else if (!pVCpu->hm.s.Event.fPending)
|
---|
3000 | hmR0SvmEvaluatePendingEvent(pVCpu, pCtx);
|
---|
3001 |
|
---|
3002 | /*
|
---|
3003 | * On the oldest AMD-V systems, we may not get enough information to reinject an NMI.
|
---|
3004 | * Just do it in software, see @bugref{8411}.
|
---|
3005 | * NB: If we could continue a task switch exit we wouldn't need to do this.
|
---|
3006 | */
|
---|
3007 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending && (((pVCpu->hm.s.Event.u64IntInfo >> 8) & 7) == SVM_EVENT_NMI)))
|
---|
3008 | if (RT_UNLIKELY(!pVM->hm.s.svm.u32Features))
|
---|
3009 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
3010 |
|
---|
3011 | #ifdef HMSVM_SYNC_FULL_GUEST_STATE
|
---|
3012 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
3013 | #endif
|
---|
3014 |
|
---|
3015 | /* Load the guest bits that are not shared with the host in any way since we can longjmp or get preempted. */
|
---|
3016 | rc = hmR0SvmLoadGuestState(pVM, pVCpu, pCtx);
|
---|
3017 | AssertRCReturn(rc, rc);
|
---|
3018 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
|
---|
3019 |
|
---|
3020 | /*
|
---|
3021 | * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
|
---|
3022 | * so we can update it on the way back if the guest changed the TPR.
|
---|
3023 | */
|
---|
3024 | if (pVCpu->hm.s.svm.fSyncVTpr)
|
---|
3025 | {
|
---|
3026 | if (pVM->hm.s.fTPRPatchingActive)
|
---|
3027 | pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
|
---|
3028 | else
|
---|
3029 | {
|
---|
3030 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
3031 | pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
|
---|
3032 | }
|
---|
3033 | }
|
---|
3034 |
|
---|
3035 | /*
|
---|
3036 | * No longjmps to ring-3 from this point on!!!
|
---|
3037 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
3038 | * This also disables flushing of the R0-logger instance (if any).
|
---|
3039 | */
|
---|
3040 | VMMRZCallRing3Disable(pVCpu);
|
---|
3041 |
|
---|
3042 | /*
|
---|
3043 | * We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.)
|
---|
3044 | * when thread-context hooks aren't used and we've been running with preemption disabled for a while.
|
---|
3045 | *
|
---|
3046 | * We need to check for force-flags that could've possible been altered since we last checked them (e.g.
|
---|
3047 | * by PDMGetInterrupt() leaving the PDM critical section, see @bugref{6398}).
|
---|
3048 | *
|
---|
3049 | * We also check a couple of other force-flags as a last opportunity to get the EMT back to ring-3 before
|
---|
3050 | * executing guest code.
|
---|
3051 | */
|
---|
3052 | pSvmTransient->fEFlags = ASMIntDisableFlags();
|
---|
3053 | if ( VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
|
---|
3054 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
3055 | {
|
---|
3056 | ASMSetFlags(pSvmTransient->fEFlags);
|
---|
3057 | VMMRZCallRing3Enable(pVCpu);
|
---|
3058 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
3059 | return VINF_EM_RAW_TO_R3;
|
---|
3060 | }
|
---|
3061 | if (RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
3062 | {
|
---|
3063 | ASMSetFlags(pSvmTransient->fEFlags);
|
---|
3064 | VMMRZCallRing3Enable(pVCpu);
|
---|
3065 | STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
|
---|
3066 | return VINF_EM_RAW_INTERRUPT;
|
---|
3067 | }
|
---|
3068 |
|
---|
3069 | /*
|
---|
3070 | * If we are injecting an NMI, we must set VMCPU_FF_BLOCK_NMIS only when we are going to execute
|
---|
3071 | * guest code for certain (no exits to ring-3). Otherwise, we could re-read the flag on re-entry into
|
---|
3072 | * AMD-V and conclude that NMI inhibition is active when we have not even delivered the NMI.
|
---|
3073 | *
|
---|
3074 | * With VT-x, this is handled by the Guest interruptibility information VMCS field which will set the
|
---|
3075 | * VMCS field after actually delivering the NMI which we read on VM-exit to determine the state.
|
---|
3076 | */
|
---|
3077 | if (pVCpu->hm.s.Event.fPending)
|
---|
3078 | {
|
---|
3079 | SVMEVENT Event;
|
---|
3080 | Event.u = pVCpu->hm.s.Event.u64IntInfo;
|
---|
3081 | if ( Event.n.u1Valid
|
---|
3082 | && Event.n.u3Type == SVM_EVENT_NMI
|
---|
3083 | && Event.n.u8Vector == X86_XCPT_NMI
|
---|
3084 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
3085 | {
|
---|
3086 | VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
3087 | }
|
---|
3088 | }
|
---|
3089 |
|
---|
3090 | return VINF_SUCCESS;
|
---|
3091 | }
|
---|
3092 |
|
---|
3093 |
|
---|
3094 | /**
|
---|
3095 | * Prepares to run guest code in AMD-V and we've committed to doing so. This
|
---|
3096 | * means there is no backing out to ring-3 or anywhere else at this
|
---|
3097 | * point.
|
---|
3098 | *
|
---|
3099 | * @param pVM The cross context VM structure.
|
---|
3100 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3101 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3102 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
3103 | *
|
---|
3104 | * @remarks Called with preemption disabled.
|
---|
3105 | * @remarks No-long-jump zone!!!
|
---|
3106 | */
|
---|
3107 | static void hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3108 | {
|
---|
3109 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
3110 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
3111 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
3112 |
|
---|
3113 | VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
3114 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC); /* Indicate the start of guest execution. */
|
---|
3115 |
|
---|
3116 | hmR0SvmInjectPendingEvent(pVCpu, pCtx);
|
---|
3117 |
|
---|
3118 | if ( pVCpu->hm.s.fPreloadGuestFpu
|
---|
3119 | && !CPUMIsGuestFPUStateActive(pVCpu))
|
---|
3120 | {
|
---|
3121 | CPUMR0LoadGuestFPU(pVM, pVCpu); /* (Ignore rc, no need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
|
---|
3122 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
3123 | }
|
---|
3124 |
|
---|
3125 | /* Load the state shared between host and guest (FPU, debug). */
|
---|
3126 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
3127 | if (HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_HOST_GUEST_SHARED_STATE))
|
---|
3128 | hmR0SvmLoadSharedState(pVCpu, pVmcb, pCtx);
|
---|
3129 | HMCPU_CF_CLEAR(pVCpu, HM_CHANGED_HOST_CONTEXT); /* Preemption might set this, nothing to do on AMD-V. */
|
---|
3130 | AssertMsg(!HMCPU_CF_VALUE(pVCpu), ("fContextUseFlags=%#RX32\n", HMCPU_CF_VALUE(pVCpu)));
|
---|
3131 |
|
---|
3132 | /* Setup TSC offsetting. */
|
---|
3133 | RTCPUID idCurrentCpu = hmR0GetCurrentCpu()->idCpu;
|
---|
3134 | if ( pSvmTransient->fUpdateTscOffsetting
|
---|
3135 | || idCurrentCpu != pVCpu->hm.s.idLastCpu)
|
---|
3136 | {
|
---|
3137 | hmR0SvmUpdateTscOffsetting(pVM, pVCpu);
|
---|
3138 | pSvmTransient->fUpdateTscOffsetting = false;
|
---|
3139 | }
|
---|
3140 |
|
---|
3141 | /* If we've migrating CPUs, mark the VMCB Clean bits as dirty. */
|
---|
3142 | if (idCurrentCpu != pVCpu->hm.s.idLastCpu)
|
---|
3143 | pVmcb->ctrl.u64VmcbCleanBits = 0;
|
---|
3144 |
|
---|
3145 | /* Store status of the shared guest-host state at the time of VMRUN. */
|
---|
3146 | #if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
3147 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
3148 | {
|
---|
3149 | pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActivePending(pVCpu);
|
---|
3150 | pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActivePending(pVCpu);
|
---|
3151 | }
|
---|
3152 | else
|
---|
3153 | #endif
|
---|
3154 | {
|
---|
3155 | pSvmTransient->fWasGuestDebugStateActive = CPUMIsGuestDebugStateActive(pVCpu);
|
---|
3156 | pSvmTransient->fWasHyperDebugStateActive = CPUMIsHyperDebugStateActive(pVCpu);
|
---|
3157 | }
|
---|
3158 | pSvmTransient->fWasGuestFPUStateActive = CPUMIsGuestFPUStateActive(pVCpu);
|
---|
3159 |
|
---|
3160 | /* Flush the appropriate tagged-TLB entries. */
|
---|
3161 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB flushing, set this across the world switch. */
|
---|
3162 | hmR0SvmFlushTaggedTlb(pVCpu);
|
---|
3163 | Assert(hmR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
|
---|
3164 |
|
---|
3165 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatEntry, &pVCpu->hm.s.StatInGC, x);
|
---|
3166 |
|
---|
3167 | TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
|
---|
3168 | to start executing. */
|
---|
3169 |
|
---|
3170 | /*
|
---|
3171 | * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
|
---|
3172 | * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
|
---|
3173 | *
|
---|
3174 | * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
|
---|
3175 | */
|
---|
3176 | if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
|
---|
3177 | && !(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSCP))
|
---|
3178 | {
|
---|
3179 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_TSC_AUX, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
3180 | pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
|
---|
3181 | uint64_t u64GuestTscAux = CPUMR0GetGuestTscAux(pVCpu);
|
---|
3182 | if (u64GuestTscAux != pVCpu->hm.s.u64HostTscAux)
|
---|
3183 | ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
|
---|
3184 | pSvmTransient->fRestoreTscAuxMsr = true;
|
---|
3185 | }
|
---|
3186 | else
|
---|
3187 | {
|
---|
3188 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_TSC_AUX, SVMMSREXIT_INTERCEPT_READ, SVMMSREXIT_INTERCEPT_WRITE);
|
---|
3189 | pSvmTransient->fRestoreTscAuxMsr = false;
|
---|
3190 | }
|
---|
3191 |
|
---|
3192 | /* If VMCB Clean bits isn't supported by the CPU, simply mark all state-bits as dirty, indicating (re)load-from-VMCB. */
|
---|
3193 | if (!(pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_VMCB_CLEAN))
|
---|
3194 | pVmcb->ctrl.u64VmcbCleanBits = 0;
|
---|
3195 | }
|
---|
3196 |
|
---|
3197 |
|
---|
3198 | /**
|
---|
3199 | * Wrapper for running the guest code in AMD-V.
|
---|
3200 | *
|
---|
3201 | * @returns VBox strict status code.
|
---|
3202 | * @param pVM The cross context VM structure.
|
---|
3203 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3204 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3205 | *
|
---|
3206 | * @remarks No-long-jump zone!!!
|
---|
3207 | */
|
---|
3208 | DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3209 | {
|
---|
3210 | /*
|
---|
3211 | * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
|
---|
3212 | * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
|
---|
3213 | * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
|
---|
3214 | */
|
---|
3215 | #ifdef VBOX_WITH_KERNEL_USING_XMM
|
---|
3216 | return hmR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
|
---|
3217 | pVCpu->hm.s.svm.pfnVMRun);
|
---|
3218 | #else
|
---|
3219 | return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
|
---|
3220 | #endif
|
---|
3221 | }
|
---|
3222 |
|
---|
3223 |
|
---|
3224 | /**
|
---|
3225 | * Performs some essential restoration of state after running guest code in
|
---|
3226 | * AMD-V.
|
---|
3227 | *
|
---|
3228 | * @param pVM The cross context VM structure.
|
---|
3229 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3230 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
3231 | * out-of-sync. Make sure to update the required fields
|
---|
3232 | * before using them.
|
---|
3233 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
3234 | * @param rcVMRun Return code of VMRUN.
|
---|
3235 | *
|
---|
3236 | * @remarks Called with interrupts disabled.
|
---|
3237 | * @remarks No-long-jump zone!!! This function will however re-enable longjmps
|
---|
3238 | * unconditionally when it is safe to do so.
|
---|
3239 | */
|
---|
3240 | static void hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, int rcVMRun)
|
---|
3241 | {
|
---|
3242 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
3243 |
|
---|
3244 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB flushing. */
|
---|
3245 | ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for EMT poking. */
|
---|
3246 |
|
---|
3247 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
3248 | pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
|
---|
3249 |
|
---|
3250 | /* TSC read must be done early for maximum accuracy. */
|
---|
3251 | if (!(pVmcb->ctrl.u64InterceptCtrl & SVM_CTRL_INTERCEPT_RDTSC))
|
---|
3252 | TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() + pVmcb->ctrl.u64TSCOffset);
|
---|
3253 |
|
---|
3254 | if (pSvmTransient->fRestoreTscAuxMsr)
|
---|
3255 | {
|
---|
3256 | uint64_t u64GuestTscAuxMsr = ASMRdMsr(MSR_K8_TSC_AUX);
|
---|
3257 | CPUMR0SetGuestTscAux(pVCpu, u64GuestTscAuxMsr);
|
---|
3258 | if (u64GuestTscAuxMsr != pVCpu->hm.s.u64HostTscAux)
|
---|
3259 | ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
|
---|
3260 | }
|
---|
3261 |
|
---|
3262 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatInGC, &pVCpu->hm.s.StatExit1, x);
|
---|
3263 | TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
|
---|
3264 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
3265 |
|
---|
3266 | Assert(!(ASMGetFlags() & X86_EFL_IF));
|
---|
3267 | ASMSetFlags(pSvmTransient->fEFlags); /* Enable interrupts. */
|
---|
3268 | VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
|
---|
3269 |
|
---|
3270 | /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
|
---|
3271 | if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
|
---|
3272 | {
|
---|
3273 | Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
|
---|
3274 | return;
|
---|
3275 | }
|
---|
3276 |
|
---|
3277 | pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode; /* Save the #VMEXIT reason. */
|
---|
3278 | HMCPU_EXIT_HISTORY_ADD(pVCpu, pVmcb->ctrl.u64ExitCode); /* Update the #VMEXIT history array. */
|
---|
3279 | pSvmTransient->fVectoringDoublePF = false; /* Vectoring double page-fault needs to be determined later. */
|
---|
3280 | pSvmTransient->fVectoringPF = false; /* Vectoring page-fault needs to be determined later. */
|
---|
3281 |
|
---|
3282 | hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
|
---|
3283 |
|
---|
3284 | if (RT_LIKELY(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID))
|
---|
3285 | {
|
---|
3286 | if (pVCpu->hm.s.svm.fSyncVTpr)
|
---|
3287 | {
|
---|
3288 | /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
|
---|
3289 | if ( pVM->hm.s.fTPRPatchingActive
|
---|
3290 | && (pMixedCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
|
---|
3291 | {
|
---|
3292 | int rc = APICSetTpr(pVCpu, pMixedCtx->msrLSTAR & 0xff);
|
---|
3293 | AssertRC(rc);
|
---|
3294 | HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
3295 | }
|
---|
3296 | else if (pSvmTransient->u8GuestTpr != pVmcb->ctrl.IntCtrl.n.u8VTPR)
|
---|
3297 | {
|
---|
3298 | int rc = APICSetTpr(pVCpu, pVmcb->ctrl.IntCtrl.n.u8VTPR << 4);
|
---|
3299 | AssertRC(rc);
|
---|
3300 | HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
3301 | }
|
---|
3302 | }
|
---|
3303 | }
|
---|
3304 | }
|
---|
3305 |
|
---|
3306 |
|
---|
3307 | /**
|
---|
3308 | * Runs the guest code using AMD-V.
|
---|
3309 | *
|
---|
3310 | * @returns VBox status code.
|
---|
3311 | * @param pVM The cross context VM structure.
|
---|
3312 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3313 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3314 | */
|
---|
3315 | static int hmR0SvmRunGuestCodeNormal(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3316 | {
|
---|
3317 | SVMTRANSIENT SvmTransient;
|
---|
3318 | SvmTransient.fUpdateTscOffsetting = true;
|
---|
3319 | uint32_t cLoops = 0;
|
---|
3320 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
3321 |
|
---|
3322 | for (;; cLoops++)
|
---|
3323 | {
|
---|
3324 | Assert(!HMR0SuspendPending());
|
---|
3325 | HMSVM_ASSERT_CPU_SAFE();
|
---|
3326 |
|
---|
3327 | /* Preparatory work for running guest code, this may force us to return
|
---|
3328 | to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
|
---|
3329 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
3330 | rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
3331 | if (rc != VINF_SUCCESS)
|
---|
3332 | break;
|
---|
3333 |
|
---|
3334 | /*
|
---|
3335 | * No longjmps to ring-3 from this point on!!!
|
---|
3336 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
3337 | * This also disables flushing of the R0-logger instance (if any).
|
---|
3338 | */
|
---|
3339 | hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
3340 | rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
|
---|
3341 |
|
---|
3342 | /* Restore any residual host-state and save any bits shared between host
|
---|
3343 | and guest into the guest-CPU state. Re-enables interrupts! */
|
---|
3344 | hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
|
---|
3345 |
|
---|
3346 | if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
|
---|
3347 | || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
|
---|
3348 | {
|
---|
3349 | if (rc == VINF_SUCCESS)
|
---|
3350 | rc = VERR_SVM_INVALID_GUEST_STATE;
|
---|
3351 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
|
---|
3352 | hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
|
---|
3353 | break;
|
---|
3354 | }
|
---|
3355 |
|
---|
3356 | /* Handle the #VMEXIT. */
|
---|
3357 | HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
|
---|
3358 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
|
---|
3359 | VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb);
|
---|
3360 | rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
|
---|
3361 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
|
---|
3362 | if (rc != VINF_SUCCESS)
|
---|
3363 | break;
|
---|
3364 | if (cLoops > pVM->hm.s.cMaxResumeLoops)
|
---|
3365 | {
|
---|
3366 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
3367 | rc = VINF_EM_RAW_INTERRUPT;
|
---|
3368 | break;
|
---|
3369 | }
|
---|
3370 | }
|
---|
3371 |
|
---|
3372 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
3373 | return rc;
|
---|
3374 | }
|
---|
3375 |
|
---|
3376 |
|
---|
3377 | /**
|
---|
3378 | * Runs the guest code using AMD-V in single step mode.
|
---|
3379 | *
|
---|
3380 | * @returns VBox status code.
|
---|
3381 | * @param pVM The cross context VM structure.
|
---|
3382 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3383 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3384 | */
|
---|
3385 | static int hmR0SvmRunGuestCodeStep(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3386 | {
|
---|
3387 | SVMTRANSIENT SvmTransient;
|
---|
3388 | SvmTransient.fUpdateTscOffsetting = true;
|
---|
3389 | uint32_t cLoops = 0;
|
---|
3390 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
3391 | uint16_t uCsStart = pCtx->cs.Sel;
|
---|
3392 | uint64_t uRipStart = pCtx->rip;
|
---|
3393 |
|
---|
3394 | for (;; cLoops++)
|
---|
3395 | {
|
---|
3396 | Assert(!HMR0SuspendPending());
|
---|
3397 | AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
|
---|
3398 | ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
|
---|
3399 | (unsigned)RTMpCpuId(), cLoops));
|
---|
3400 |
|
---|
3401 | /* Preparatory work for running guest code, this may force us to return
|
---|
3402 | to ring-3. This bugger disables interrupts on VINF_SUCCESS! */
|
---|
3403 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
3404 | rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
3405 | if (rc != VINF_SUCCESS)
|
---|
3406 | break;
|
---|
3407 |
|
---|
3408 | /*
|
---|
3409 | * No longjmps to ring-3 from this point on!!!
|
---|
3410 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
3411 | * This also disables flushing of the R0-logger instance (if any).
|
---|
3412 | */
|
---|
3413 | VMMRZCallRing3Disable(pVCpu);
|
---|
3414 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
3415 | hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
3416 |
|
---|
3417 | rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
|
---|
3418 |
|
---|
3419 | /*
|
---|
3420 | * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
|
---|
3421 | * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
|
---|
3422 | */
|
---|
3423 | hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
|
---|
3424 | if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for VMRUN errors. */
|
---|
3425 | || SvmTransient.u64ExitCode == (uint64_t)SVM_EXIT_INVALID)) /* Check for invalid guest-state errors. */
|
---|
3426 | {
|
---|
3427 | if (rc == VINF_SUCCESS)
|
---|
3428 | rc = VERR_SVM_INVALID_GUEST_STATE;
|
---|
3429 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit1, x);
|
---|
3430 | hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx);
|
---|
3431 | return rc;
|
---|
3432 | }
|
---|
3433 |
|
---|
3434 | /* Handle the #VMEXIT. */
|
---|
3435 | HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
|
---|
3436 | STAM_PROFILE_ADV_STOP_START(&pVCpu->hm.s.StatExit1, &pVCpu->hm.s.StatExit2, x);
|
---|
3437 | VBOXVMM_R0_HMSVM_VMEXIT(pVCpu, pCtx, SvmTransient.u64ExitCode, (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb);
|
---|
3438 | rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
|
---|
3439 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatExit2, x);
|
---|
3440 | if (rc != VINF_SUCCESS)
|
---|
3441 | break;
|
---|
3442 | if (cLoops > pVM->hm.s.cMaxResumeLoops)
|
---|
3443 | {
|
---|
3444 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchMaxResumeLoops);
|
---|
3445 | rc = VINF_EM_RAW_INTERRUPT;
|
---|
3446 | break;
|
---|
3447 | }
|
---|
3448 |
|
---|
3449 | /*
|
---|
3450 | * Did the RIP change, if so, consider it a single step.
|
---|
3451 | * Otherwise, make sure one of the TFs gets set.
|
---|
3452 | */
|
---|
3453 | if ( pCtx->rip != uRipStart
|
---|
3454 | || pCtx->cs.Sel != uCsStart)
|
---|
3455 | {
|
---|
3456 | rc = VINF_EM_DBG_STEPPED;
|
---|
3457 | break;
|
---|
3458 | }
|
---|
3459 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
|
---|
3460 | }
|
---|
3461 |
|
---|
3462 | /*
|
---|
3463 | * Clear the X86_EFL_TF if necessary.
|
---|
3464 | */
|
---|
3465 | if (pVCpu->hm.s.fClearTrapFlag)
|
---|
3466 | {
|
---|
3467 | pVCpu->hm.s.fClearTrapFlag = false;
|
---|
3468 | pCtx->eflags.Bits.u1TF = 0;
|
---|
3469 | }
|
---|
3470 |
|
---|
3471 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatEntry, x);
|
---|
3472 | return rc;
|
---|
3473 | }
|
---|
3474 |
|
---|
3475 |
|
---|
3476 | /**
|
---|
3477 | * Runs the guest code using AMD-V.
|
---|
3478 | *
|
---|
3479 | * @returns Strict VBox status code.
|
---|
3480 | * @param pVM The cross context VM structure.
|
---|
3481 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3482 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3483 | */
|
---|
3484 | VMMR0DECL(VBOXSTRICTRC) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3485 | {
|
---|
3486 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
3487 | HMSVM_ASSERT_PREEMPT_SAFE();
|
---|
3488 | VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pCtx);
|
---|
3489 |
|
---|
3490 | int rc;
|
---|
3491 | if (!pVCpu->hm.s.fSingleInstruction)
|
---|
3492 | rc = hmR0SvmRunGuestCodeNormal(pVM, pVCpu, pCtx);
|
---|
3493 | else
|
---|
3494 | rc = hmR0SvmRunGuestCodeStep(pVM, pVCpu, pCtx);
|
---|
3495 |
|
---|
3496 | if (rc == VERR_EM_INTERPRETER)
|
---|
3497 | rc = VINF_EM_RAW_EMULATE_INSTR;
|
---|
3498 | else if (rc == VINF_EM_RESET)
|
---|
3499 | rc = VINF_EM_TRIPLE_FAULT;
|
---|
3500 |
|
---|
3501 | /* Prepare to return to ring-3. This will remove longjmp notifications. */
|
---|
3502 | hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
|
---|
3503 | Assert(!VMMRZCallRing3IsNotificationSet(pVCpu));
|
---|
3504 | return rc;
|
---|
3505 | }
|
---|
3506 |
|
---|
3507 |
|
---|
3508 | /**
|
---|
3509 | * Handles a \#VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
|
---|
3510 | *
|
---|
3511 | * @returns VBox status code (informational status codes included).
|
---|
3512 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3513 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3514 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
3515 | */
|
---|
3516 | DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3517 | {
|
---|
3518 | Assert(pSvmTransient->u64ExitCode != (uint64_t)SVM_EXIT_INVALID);
|
---|
3519 | Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
|
---|
3520 |
|
---|
3521 | /*
|
---|
3522 | * The ordering of the case labels is based on most-frequently-occurring #VMEXITs for most guests under
|
---|
3523 | * normal workloads (for some definition of "normal").
|
---|
3524 | */
|
---|
3525 | uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
|
---|
3526 | switch (pSvmTransient->u64ExitCode)
|
---|
3527 | {
|
---|
3528 | case SVM_EXIT_NPF:
|
---|
3529 | return hmR0SvmExitNestedPF(pVCpu, pCtx, pSvmTransient);
|
---|
3530 |
|
---|
3531 | case SVM_EXIT_IOIO:
|
---|
3532 | return hmR0SvmExitIOInstr(pVCpu, pCtx, pSvmTransient);
|
---|
3533 |
|
---|
3534 | case SVM_EXIT_RDTSC:
|
---|
3535 | return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
|
---|
3536 |
|
---|
3537 | case SVM_EXIT_RDTSCP:
|
---|
3538 | return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
|
---|
3539 |
|
---|
3540 | case SVM_EXIT_CPUID:
|
---|
3541 | return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
|
---|
3542 |
|
---|
3543 | case SVM_EXIT_EXCEPTION_E: /* X86_XCPT_PF */
|
---|
3544 | return hmR0SvmExitXcptPF(pVCpu, pCtx, pSvmTransient);
|
---|
3545 |
|
---|
3546 | case SVM_EXIT_EXCEPTION_7: /* X86_XCPT_NM */
|
---|
3547 | return hmR0SvmExitXcptNM(pVCpu, pCtx, pSvmTransient);
|
---|
3548 |
|
---|
3549 | case SVM_EXIT_EXCEPTION_6: /* X86_XCPT_UD */
|
---|
3550 | return hmR0SvmExitXcptUD(pVCpu, pCtx, pSvmTransient);
|
---|
3551 |
|
---|
3552 | case SVM_EXIT_EXCEPTION_10: /* X86_XCPT_MF */
|
---|
3553 | return hmR0SvmExitXcptMF(pVCpu, pCtx, pSvmTransient);
|
---|
3554 |
|
---|
3555 | case SVM_EXIT_EXCEPTION_1: /* X86_XCPT_DB */
|
---|
3556 | return hmR0SvmExitXcptDB(pVCpu, pCtx, pSvmTransient);
|
---|
3557 |
|
---|
3558 | case SVM_EXIT_EXCEPTION_11: /* X86_XCPT_AC */
|
---|
3559 | return hmR0SvmExitXcptAC(pVCpu, pCtx, pSvmTransient);
|
---|
3560 |
|
---|
3561 | case SVM_EXIT_EXCEPTION_3: /* X86_XCPT_BP */
|
---|
3562 | return hmR0SvmExitXcptBP(pVCpu, pCtx, pSvmTransient);
|
---|
3563 |
|
---|
3564 | case SVM_EXIT_MONITOR:
|
---|
3565 | return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
|
---|
3566 |
|
---|
3567 | case SVM_EXIT_MWAIT:
|
---|
3568 | return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
|
---|
3569 |
|
---|
3570 | case SVM_EXIT_HLT:
|
---|
3571 | return hmR0SvmExitHlt(pVCpu, pCtx, pSvmTransient);
|
---|
3572 |
|
---|
3573 | case SVM_EXIT_READ_CR0:
|
---|
3574 | case SVM_EXIT_READ_CR3:
|
---|
3575 | case SVM_EXIT_READ_CR4:
|
---|
3576 | return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
|
---|
3577 |
|
---|
3578 | case SVM_EXIT_WRITE_CR0:
|
---|
3579 | case SVM_EXIT_WRITE_CR3:
|
---|
3580 | case SVM_EXIT_WRITE_CR4:
|
---|
3581 | case SVM_EXIT_WRITE_CR8:
|
---|
3582 | return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
|
---|
3583 |
|
---|
3584 | case SVM_EXIT_PAUSE:
|
---|
3585 | return hmR0SvmExitPause(pVCpu, pCtx, pSvmTransient);
|
---|
3586 |
|
---|
3587 | case SVM_EXIT_VMMCALL:
|
---|
3588 | return hmR0SvmExitVmmCall(pVCpu, pCtx, pSvmTransient);
|
---|
3589 |
|
---|
3590 | case SVM_EXIT_VINTR:
|
---|
3591 | return hmR0SvmExitVIntr(pVCpu, pCtx, pSvmTransient);
|
---|
3592 |
|
---|
3593 | case SVM_EXIT_INTR:
|
---|
3594 | case SVM_EXIT_FERR_FREEZE:
|
---|
3595 | case SVM_EXIT_NMI:
|
---|
3596 | return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
|
---|
3597 |
|
---|
3598 | case SVM_EXIT_MSR:
|
---|
3599 | return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
|
---|
3600 |
|
---|
3601 | case SVM_EXIT_INVLPG:
|
---|
3602 | return hmR0SvmExitInvlpg(pVCpu, pCtx, pSvmTransient);
|
---|
3603 |
|
---|
3604 | case SVM_EXIT_WBINVD:
|
---|
3605 | return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
|
---|
3606 |
|
---|
3607 | case SVM_EXIT_INVD:
|
---|
3608 | return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
|
---|
3609 |
|
---|
3610 | case SVM_EXIT_RDPMC:
|
---|
3611 | return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
|
---|
3612 |
|
---|
3613 | default:
|
---|
3614 | {
|
---|
3615 | switch (pSvmTransient->u64ExitCode)
|
---|
3616 | {
|
---|
3617 | case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
|
---|
3618 | case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
|
---|
3619 | case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
|
---|
3620 | case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
|
---|
3621 | return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
|
---|
3622 |
|
---|
3623 | case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
|
---|
3624 | case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
|
---|
3625 | case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
|
---|
3626 | case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
|
---|
3627 | return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
|
---|
3628 |
|
---|
3629 | case SVM_EXIT_XSETBV:
|
---|
3630 | return hmR0SvmExitXsetbv(pVCpu, pCtx, pSvmTransient);
|
---|
3631 |
|
---|
3632 | case SVM_EXIT_TASK_SWITCH:
|
---|
3633 | return hmR0SvmExitTaskSwitch(pVCpu, pCtx, pSvmTransient);
|
---|
3634 |
|
---|
3635 | case SVM_EXIT_IRET:
|
---|
3636 | return hmR0SvmExitIret(pVCpu, pCtx, pSvmTransient);
|
---|
3637 |
|
---|
3638 | case SVM_EXIT_SHUTDOWN:
|
---|
3639 | return hmR0SvmExitShutdown(pVCpu, pCtx, pSvmTransient);
|
---|
3640 |
|
---|
3641 | case SVM_EXIT_SMI:
|
---|
3642 | case SVM_EXIT_INIT:
|
---|
3643 | {
|
---|
3644 | /*
|
---|
3645 | * We don't intercept NMIs. As for INIT signals, it really shouldn't ever happen here. If it ever does,
|
---|
3646 | * we want to know about it so log the exit code and bail.
|
---|
3647 | */
|
---|
3648 | AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
|
---|
3649 | pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
|
---|
3650 | return VERR_SVM_UNEXPECTED_EXIT;
|
---|
3651 | }
|
---|
3652 |
|
---|
3653 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
3654 | case SVM_EXIT_CLGI: return hmR0SvmExitClgi(pVCpu, pCtx, pSvmTransient);
|
---|
3655 | case SVM_EXIT_STGI: return hmR0SvmExitStgi(pVCpu, pCtx, pSvmTransient);
|
---|
3656 | case SVM_EXIT_VMLOAD: return hmR0SvmExitVmload(pVCpu, pCtx, pSvmTransient);
|
---|
3657 | case SVM_EXIT_VMSAVE: return hmR0SvmExitVmsave(pVCpu, pCtx, pSvmTransient);
|
---|
3658 | #else
|
---|
3659 | case SVM_EXIT_CLGI:
|
---|
3660 | case SVM_EXIT_STGI:
|
---|
3661 | case SVM_EXIT_VMLOAD:
|
---|
3662 | case SVM_EXIT_VMSAVE:
|
---|
3663 | #endif
|
---|
3664 | case SVM_EXIT_INVLPGA:
|
---|
3665 | case SVM_EXIT_RSM:
|
---|
3666 | case SVM_EXIT_VMRUN:
|
---|
3667 | case SVM_EXIT_SKINIT:
|
---|
3668 | return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
|
---|
3669 |
|
---|
3670 | #ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
3671 | case SVM_EXIT_EXCEPTION_0: /* X86_XCPT_DE */
|
---|
3672 | /* SVM_EXIT_EXCEPTION_1: */ /* X86_XCPT_DB - Handled above. */
|
---|
3673 | case SVM_EXIT_EXCEPTION_2: /* X86_XCPT_NMI */
|
---|
3674 | /* case SVM_EXIT_EXCEPTION_3: */ /* X86_XCPT_BP - Handled above. */
|
---|
3675 | case SVM_EXIT_EXCEPTION_4: /* X86_XCPT_OF */
|
---|
3676 | case SVM_EXIT_EXCEPTION_5: /* X86_XCPT_BR */
|
---|
3677 | /* case SVM_EXIT_EXCEPTION_6: */ /* X86_XCPT_UD - Handled above. */
|
---|
3678 | /* SVM_EXIT_EXCEPTION_7: */ /* X86_XCPT_NM - Handled above. */
|
---|
3679 | case SVM_EXIT_EXCEPTION_8: /* X86_XCPT_DF */
|
---|
3680 | case SVM_EXIT_EXCEPTION_9: /* X86_XCPT_CO_SEG_OVERRUN */
|
---|
3681 | case SVM_EXIT_EXCEPTION_A: /* X86_XCPT_TS */
|
---|
3682 | case SVM_EXIT_EXCEPTION_B: /* X86_XCPT_NP */
|
---|
3683 | case SVM_EXIT_EXCEPTION_C: /* X86_XCPT_SS */
|
---|
3684 | case SVM_EXIT_EXCEPTION_D: /* X86_XCPT_GP */
|
---|
3685 | /* SVM_EXIT_EXCEPTION_E: */ /* X86_XCPT_PF - Handled above. */
|
---|
3686 | /* SVM_EXIT_EXCEPTION_10: */ /* X86_XCPT_MF - Handled above. */
|
---|
3687 | /* SVM_EXIT_EXCEPTION_11: */ /* X86_XCPT_AC - Handled above. */
|
---|
3688 | case SVM_EXIT_EXCEPTION_12: /* X86_XCPT_MC */
|
---|
3689 | case SVM_EXIT_EXCEPTION_13: /* X86_XCPT_XF */
|
---|
3690 | case SVM_EXIT_EXCEPTION_F: /* Reserved */
|
---|
3691 | case SVM_EXIT_EXCEPTION_14: case SVM_EXIT_EXCEPTION_15: case SVM_EXIT_EXCEPTION_16:
|
---|
3692 | case SVM_EXIT_EXCEPTION_17: case SVM_EXIT_EXCEPTION_18: case SVM_EXIT_EXCEPTION_19:
|
---|
3693 | case SVM_EXIT_EXCEPTION_1A: case SVM_EXIT_EXCEPTION_1B: case SVM_EXIT_EXCEPTION_1C:
|
---|
3694 | case SVM_EXIT_EXCEPTION_1D: case SVM_EXIT_EXCEPTION_1E: case SVM_EXIT_EXCEPTION_1F:
|
---|
3695 | {
|
---|
3696 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
3697 | SVMEVENT Event;
|
---|
3698 | Event.u = 0;
|
---|
3699 | Event.n.u1Valid = 1;
|
---|
3700 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3701 | Event.n.u8Vector = pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0;
|
---|
3702 |
|
---|
3703 | switch (Event.n.u8Vector)
|
---|
3704 | {
|
---|
3705 | case X86_XCPT_DE:
|
---|
3706 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDE);
|
---|
3707 | break;
|
---|
3708 |
|
---|
3709 | case X86_XCPT_NP:
|
---|
3710 | Event.n.u1ErrorCodeValid = 1;
|
---|
3711 | Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
|
---|
3712 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNP);
|
---|
3713 | break;
|
---|
3714 |
|
---|
3715 | case X86_XCPT_SS:
|
---|
3716 | Event.n.u1ErrorCodeValid = 1;
|
---|
3717 | Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
|
---|
3718 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestSS);
|
---|
3719 | break;
|
---|
3720 |
|
---|
3721 | case X86_XCPT_GP:
|
---|
3722 | Event.n.u1ErrorCodeValid = 1;
|
---|
3723 | Event.n.u32ErrorCode = pVmcb->ctrl.u64ExitInfo1;
|
---|
3724 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestGP);
|
---|
3725 | break;
|
---|
3726 |
|
---|
3727 | default:
|
---|
3728 | AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit caused by exception %#x\n", Event.n.u8Vector));
|
---|
3729 | pVCpu->hm.s.u32HMError = Event.n.u8Vector;
|
---|
3730 | return VERR_SVM_UNEXPECTED_XCPT_EXIT;
|
---|
3731 | }
|
---|
3732 |
|
---|
3733 | Log4(("#Xcpt: Vector=%#x at CS:RIP=%04x:%RGv\n", Event.n.u8Vector, pCtx->cs.Sel, (RTGCPTR)pCtx->rip));
|
---|
3734 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3735 | return VINF_SUCCESS;
|
---|
3736 | }
|
---|
3737 | #endif /* HMSVM_ALWAYS_TRAP_ALL_XCPTS */
|
---|
3738 |
|
---|
3739 | default:
|
---|
3740 | {
|
---|
3741 | AssertMsgFailed(("hmR0SvmHandleExit: Unknown exit code %#x\n", u32ExitCode));
|
---|
3742 | pVCpu->hm.s.u32HMError = u32ExitCode;
|
---|
3743 | return VERR_SVM_UNKNOWN_EXIT;
|
---|
3744 | }
|
---|
3745 | }
|
---|
3746 | }
|
---|
3747 | }
|
---|
3748 | /* not reached */
|
---|
3749 | }
|
---|
3750 |
|
---|
3751 |
|
---|
3752 | #ifdef DEBUG
|
---|
3753 | /* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
|
---|
3754 | # define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
|
---|
3755 | RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
|
---|
3756 |
|
---|
3757 | # define HMSVM_ASSERT_PREEMPT_CPUID() \
|
---|
3758 | do \
|
---|
3759 | { \
|
---|
3760 | RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
|
---|
3761 | AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
|
---|
3762 | } while (0)
|
---|
3763 |
|
---|
3764 | # define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
|
---|
3765 | do { \
|
---|
3766 | AssertPtr(pVCpu); \
|
---|
3767 | AssertPtr(pCtx); \
|
---|
3768 | AssertPtr(pSvmTransient); \
|
---|
3769 | Assert(ASMIntAreEnabled()); \
|
---|
3770 | HMSVM_ASSERT_PREEMPT_SAFE(); \
|
---|
3771 | HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
|
---|
3772 | Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
|
---|
3773 | HMSVM_ASSERT_PREEMPT_SAFE(); \
|
---|
3774 | if (VMMR0IsLogFlushDisabled(pVCpu)) \
|
---|
3775 | HMSVM_ASSERT_PREEMPT_CPUID(); \
|
---|
3776 | } while (0)
|
---|
3777 | #else /* Release builds */
|
---|
3778 | # define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { NOREF(pVCpu); NOREF(pCtx); NOREF(pSvmTransient); } while (0)
|
---|
3779 | #endif
|
---|
3780 |
|
---|
3781 |
|
---|
3782 | /**
|
---|
3783 | * Worker for hmR0SvmInterpretInvlpg().
|
---|
3784 | *
|
---|
3785 | * @return VBox status code.
|
---|
3786 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3787 | * @param pCpu Pointer to the disassembler state.
|
---|
3788 | * @param pCtx The guest CPU context.
|
---|
3789 | */
|
---|
3790 | static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTX pCtx)
|
---|
3791 | {
|
---|
3792 | DISQPVPARAMVAL Param1;
|
---|
3793 | RTGCPTR GCPtrPage;
|
---|
3794 |
|
---|
3795 | int rc = DISQueryParamVal(CPUMCTX2CORE(pCtx), pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
|
---|
3796 | if (RT_FAILURE(rc))
|
---|
3797 | return VERR_EM_INTERPRETER;
|
---|
3798 |
|
---|
3799 | if ( Param1.type == DISQPV_TYPE_IMMEDIATE
|
---|
3800 | || Param1.type == DISQPV_TYPE_ADDRESS)
|
---|
3801 | {
|
---|
3802 | if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
|
---|
3803 | return VERR_EM_INTERPRETER;
|
---|
3804 |
|
---|
3805 | GCPtrPage = Param1.val.val64;
|
---|
3806 | VBOXSTRICTRC rc2 = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), GCPtrPage);
|
---|
3807 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
3808 | }
|
---|
3809 | else
|
---|
3810 | {
|
---|
3811 | Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
|
---|
3812 | rc = VERR_EM_INTERPRETER;
|
---|
3813 | }
|
---|
3814 |
|
---|
3815 | return rc;
|
---|
3816 | }
|
---|
3817 |
|
---|
3818 |
|
---|
3819 | /**
|
---|
3820 | * Interprets INVLPG.
|
---|
3821 | *
|
---|
3822 | * @returns VBox status code.
|
---|
3823 | * @retval VINF_* Scheduling instructions.
|
---|
3824 | * @retval VERR_EM_INTERPRETER Something we can't cope with.
|
---|
3825 | * @retval VERR_* Fatal errors.
|
---|
3826 | *
|
---|
3827 | * @param pVM The cross context VM structure.
|
---|
3828 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3829 | * @param pCtx The guest CPU context.
|
---|
3830 | *
|
---|
3831 | * @remarks Updates the RIP if the instruction was executed successfully.
|
---|
3832 | */
|
---|
3833 | static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3834 | {
|
---|
3835 | /* Only allow 32 & 64 bit code. */
|
---|
3836 | if (CPUMGetGuestCodeBits(pVCpu) != 16)
|
---|
3837 | {
|
---|
3838 | PDISSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
3839 | int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
|
---|
3840 | if ( RT_SUCCESS(rc)
|
---|
3841 | && pDis->pCurInstr->uOpcode == OP_INVLPG)
|
---|
3842 | {
|
---|
3843 | rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pCtx);
|
---|
3844 | if (RT_SUCCESS(rc))
|
---|
3845 | pCtx->rip += pDis->cbInstr;
|
---|
3846 | return rc;
|
---|
3847 | }
|
---|
3848 | else
|
---|
3849 | Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
|
---|
3850 | }
|
---|
3851 | return VERR_EM_INTERPRETER;
|
---|
3852 | }
|
---|
3853 |
|
---|
3854 |
|
---|
3855 | /**
|
---|
3856 | * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
|
---|
3857 | *
|
---|
3858 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3859 | */
|
---|
3860 | DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
|
---|
3861 | {
|
---|
3862 | SVMEVENT Event;
|
---|
3863 | Event.u = 0;
|
---|
3864 | Event.n.u1Valid = 1;
|
---|
3865 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3866 | Event.n.u8Vector = X86_XCPT_UD;
|
---|
3867 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3868 | }
|
---|
3869 |
|
---|
3870 |
|
---|
3871 | /**
|
---|
3872 | * Sets a debug (\#DB) exception as pending-for-injection into the VM.
|
---|
3873 | *
|
---|
3874 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3875 | */
|
---|
3876 | DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
|
---|
3877 | {
|
---|
3878 | SVMEVENT Event;
|
---|
3879 | Event.u = 0;
|
---|
3880 | Event.n.u1Valid = 1;
|
---|
3881 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3882 | Event.n.u8Vector = X86_XCPT_DB;
|
---|
3883 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3884 | }
|
---|
3885 |
|
---|
3886 |
|
---|
3887 | /**
|
---|
3888 | * Sets a page fault (\#PF) exception as pending-for-injection into the VM.
|
---|
3889 | *
|
---|
3890 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3891 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3892 | * @param u32ErrCode The error-code for the page-fault.
|
---|
3893 | * @param uFaultAddress The page fault address (CR2).
|
---|
3894 | *
|
---|
3895 | * @remarks This updates the guest CR2 with @a uFaultAddress!
|
---|
3896 | */
|
---|
3897 | DECLINLINE(void) hmR0SvmSetPendingXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t u32ErrCode, RTGCUINTPTR uFaultAddress)
|
---|
3898 | {
|
---|
3899 | SVMEVENT Event;
|
---|
3900 | Event.u = 0;
|
---|
3901 | Event.n.u1Valid = 1;
|
---|
3902 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3903 | Event.n.u8Vector = X86_XCPT_PF;
|
---|
3904 | Event.n.u1ErrorCodeValid = 1;
|
---|
3905 | Event.n.u32ErrorCode = u32ErrCode;
|
---|
3906 |
|
---|
3907 | /* Update CR2 of the guest. */
|
---|
3908 | if (pCtx->cr2 != uFaultAddress)
|
---|
3909 | {
|
---|
3910 | pCtx->cr2 = uFaultAddress;
|
---|
3911 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR2);
|
---|
3912 | }
|
---|
3913 |
|
---|
3914 | hmR0SvmSetPendingEvent(pVCpu, &Event, uFaultAddress);
|
---|
3915 | }
|
---|
3916 |
|
---|
3917 |
|
---|
3918 | /**
|
---|
3919 | * Sets a device-not-available (\#NM) exception as pending-for-injection into
|
---|
3920 | * the VM.
|
---|
3921 | *
|
---|
3922 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3923 | */
|
---|
3924 | DECLINLINE(void) hmR0SvmSetPendingXcptNM(PVMCPU pVCpu)
|
---|
3925 | {
|
---|
3926 | SVMEVENT Event;
|
---|
3927 | Event.u = 0;
|
---|
3928 | Event.n.u1Valid = 1;
|
---|
3929 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3930 | Event.n.u8Vector = X86_XCPT_NM;
|
---|
3931 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3932 | }
|
---|
3933 |
|
---|
3934 |
|
---|
3935 | /**
|
---|
3936 | * Sets a math-fault (\#MF) exception as pending-for-injection into the VM.
|
---|
3937 | *
|
---|
3938 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3939 | */
|
---|
3940 | DECLINLINE(void) hmR0SvmSetPendingXcptMF(PVMCPU pVCpu)
|
---|
3941 | {
|
---|
3942 | SVMEVENT Event;
|
---|
3943 | Event.u = 0;
|
---|
3944 | Event.n.u1Valid = 1;
|
---|
3945 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3946 | Event.n.u8Vector = X86_XCPT_MF;
|
---|
3947 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3948 | }
|
---|
3949 |
|
---|
3950 |
|
---|
3951 | /**
|
---|
3952 | * Sets a double fault (\#DF) exception as pending-for-injection into the VM.
|
---|
3953 | *
|
---|
3954 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3955 | */
|
---|
3956 | DECLINLINE(void) hmR0SvmSetPendingXcptDF(PVMCPU pVCpu)
|
---|
3957 | {
|
---|
3958 | SVMEVENT Event;
|
---|
3959 | Event.u = 0;
|
---|
3960 | Event.n.u1Valid = 1;
|
---|
3961 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
3962 | Event.n.u8Vector = X86_XCPT_DF;
|
---|
3963 | Event.n.u1ErrorCodeValid = 1;
|
---|
3964 | Event.n.u32ErrorCode = 0;
|
---|
3965 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
3966 | }
|
---|
3967 |
|
---|
3968 |
|
---|
3969 | /**
|
---|
3970 | * Emulates a simple MOV TPR (CR8) instruction, used for TPR patching on 32-bit
|
---|
3971 | * guests. This simply looks up the patch record at EIP and does the required.
|
---|
3972 | *
|
---|
3973 | * This VMMCALL is used a fallback mechanism when mov to/from cr8 isn't exactly
|
---|
3974 | * like how we want it to be (e.g. not followed by shr 4 as is usually done for
|
---|
3975 | * TPR). See hmR3ReplaceTprInstr() for the details.
|
---|
3976 | *
|
---|
3977 | * @returns VBox status code.
|
---|
3978 | * @retval VINF_SUCCESS if the access was handled successfully.
|
---|
3979 | * @retval VERR_NOT_FOUND if no patch record for this RIP could be found.
|
---|
3980 | * @retval VERR_SVM_UNEXPECTED_PATCH_TYPE if the found patch type is invalid.
|
---|
3981 | *
|
---|
3982 | * @param pVM The cross context VM structure.
|
---|
3983 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3984 | * @param pCtx Pointer to the guest-CPU context.
|
---|
3985 | */
|
---|
3986 | static int hmR0SvmEmulateMovTpr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
3987 | {
|
---|
3988 | Log4(("Emulated VMMCall TPR access replacement at RIP=%RGv\n", pCtx->rip));
|
---|
3989 |
|
---|
3990 | /*
|
---|
3991 | * We do this in a loop as we increment the RIP after a successful emulation
|
---|
3992 | * and the new RIP may be a patched instruction which needs emulation as well.
|
---|
3993 | */
|
---|
3994 | bool fPatchFound = false;
|
---|
3995 | for (;;)
|
---|
3996 | {
|
---|
3997 | bool fPending;
|
---|
3998 | uint8_t u8Tpr;
|
---|
3999 |
|
---|
4000 | PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
|
---|
4001 | if (!pPatch)
|
---|
4002 | break;
|
---|
4003 |
|
---|
4004 | fPatchFound = true;
|
---|
4005 | switch (pPatch->enmType)
|
---|
4006 | {
|
---|
4007 | case HMTPRINSTR_READ:
|
---|
4008 | {
|
---|
4009 | int rc = APICGetTpr(pVCpu, &u8Tpr, &fPending, NULL /* pu8PendingIrq */);
|
---|
4010 | AssertRC(rc);
|
---|
4011 |
|
---|
4012 | rc = DISWriteReg32(CPUMCTX2CORE(pCtx), pPatch->uDstOperand, u8Tpr);
|
---|
4013 | AssertRC(rc);
|
---|
4014 | pCtx->rip += pPatch->cbOp;
|
---|
4015 | break;
|
---|
4016 | }
|
---|
4017 |
|
---|
4018 | case HMTPRINSTR_WRITE_REG:
|
---|
4019 | case HMTPRINSTR_WRITE_IMM:
|
---|
4020 | {
|
---|
4021 | if (pPatch->enmType == HMTPRINSTR_WRITE_REG)
|
---|
4022 | {
|
---|
4023 | uint32_t u32Val;
|
---|
4024 | int rc = DISFetchReg32(CPUMCTX2CORE(pCtx), pPatch->uSrcOperand, &u32Val);
|
---|
4025 | AssertRC(rc);
|
---|
4026 | u8Tpr = u32Val;
|
---|
4027 | }
|
---|
4028 | else
|
---|
4029 | u8Tpr = (uint8_t)pPatch->uSrcOperand;
|
---|
4030 |
|
---|
4031 | int rc2 = APICSetTpr(pVCpu, u8Tpr);
|
---|
4032 | AssertRC(rc2);
|
---|
4033 | HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
4034 |
|
---|
4035 | pCtx->rip += pPatch->cbOp;
|
---|
4036 | break;
|
---|
4037 | }
|
---|
4038 |
|
---|
4039 | default:
|
---|
4040 | AssertMsgFailed(("Unexpected patch type %d\n", pPatch->enmType));
|
---|
4041 | pVCpu->hm.s.u32HMError = pPatch->enmType;
|
---|
4042 | return VERR_SVM_UNEXPECTED_PATCH_TYPE;
|
---|
4043 | }
|
---|
4044 | }
|
---|
4045 |
|
---|
4046 | if (fPatchFound)
|
---|
4047 | return VINF_SUCCESS;
|
---|
4048 | return VERR_NOT_FOUND;
|
---|
4049 | }
|
---|
4050 |
|
---|
4051 |
|
---|
4052 | /**
|
---|
4053 | * Determines if an exception is a contributory exception.
|
---|
4054 | *
|
---|
4055 | * Contributory exceptions are ones which can cause double-faults unless the
|
---|
4056 | * original exception was a benign exception. Page-fault is intentionally not
|
---|
4057 | * included here as it's a conditional contributory exception.
|
---|
4058 | *
|
---|
4059 | * @returns true if the exception is contributory, false otherwise.
|
---|
4060 | * @param uVector The exception vector.
|
---|
4061 | */
|
---|
4062 | DECLINLINE(bool) hmR0SvmIsContributoryXcpt(const uint32_t uVector)
|
---|
4063 | {
|
---|
4064 | switch (uVector)
|
---|
4065 | {
|
---|
4066 | case X86_XCPT_GP:
|
---|
4067 | case X86_XCPT_SS:
|
---|
4068 | case X86_XCPT_NP:
|
---|
4069 | case X86_XCPT_TS:
|
---|
4070 | case X86_XCPT_DE:
|
---|
4071 | return true;
|
---|
4072 | default:
|
---|
4073 | break;
|
---|
4074 | }
|
---|
4075 | return false;
|
---|
4076 | }
|
---|
4077 |
|
---|
4078 |
|
---|
4079 | /**
|
---|
4080 | * Handle a condition that occurred while delivering an event through the guest
|
---|
4081 | * IDT.
|
---|
4082 | *
|
---|
4083 | * @returns VBox status code (informational error codes included).
|
---|
4084 | * @retval VINF_SUCCESS if we should continue handling the \#VMEXIT.
|
---|
4085 | * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought to
|
---|
4086 | * continue execution of the guest which will delivery the \#DF.
|
---|
4087 | * @retval VINF_EM_RESET if we detected a triple-fault condition.
|
---|
4088 | * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
|
---|
4089 | *
|
---|
4090 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4091 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4092 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
4093 | *
|
---|
4094 | * @remarks No-long-jump zone!!!
|
---|
4095 | */
|
---|
4096 | static int hmR0SvmCheckExitDueToEventDelivery(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4097 | {
|
---|
4098 | int rc = VINF_SUCCESS;
|
---|
4099 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
4100 |
|
---|
4101 | Log4(("EXITINTINFO: Pending vectoring event %#RX64 Valid=%RTbool ErrValid=%RTbool Err=%#RX32 Type=%u Vector=%u\n",
|
---|
4102 | pVmcb->ctrl.ExitIntInfo.u, !!pVmcb->ctrl.ExitIntInfo.n.u1Valid, !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid,
|
---|
4103 | pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode, pVmcb->ctrl.ExitIntInfo.n.u3Type, pVmcb->ctrl.ExitIntInfo.n.u8Vector));
|
---|
4104 |
|
---|
4105 | /* See AMD spec. 15.7.3 "EXITINFO Pseudo-Code". The EXITINTINFO (if valid) contains the prior exception (IDT vector)
|
---|
4106 | * that was trying to be delivered to the guest which caused a #VMEXIT which was intercepted (Exit vector). */
|
---|
4107 | if (pVmcb->ctrl.ExitIntInfo.n.u1Valid)
|
---|
4108 | {
|
---|
4109 | uint8_t uIdtVector = pVmcb->ctrl.ExitIntInfo.n.u8Vector;
|
---|
4110 |
|
---|
4111 | typedef enum
|
---|
4112 | {
|
---|
4113 | SVMREFLECTXCPT_XCPT, /* Reflect the exception to the guest or for further evaluation by VMM. */
|
---|
4114 | SVMREFLECTXCPT_DF, /* Reflect the exception as a double-fault to the guest. */
|
---|
4115 | SVMREFLECTXCPT_TF, /* Indicate a triple faulted state to the VMM. */
|
---|
4116 | SVMREFLECTXCPT_HANG, /* Indicate bad VM trying to deadlock the CPU. */
|
---|
4117 | SVMREFLECTXCPT_NONE /* Nothing to reflect. */
|
---|
4118 | } SVMREFLECTXCPT;
|
---|
4119 |
|
---|
4120 | SVMREFLECTXCPT enmReflect = SVMREFLECTXCPT_NONE;
|
---|
4121 | bool fReflectingNmi = false;
|
---|
4122 | if (pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXCEPTION)
|
---|
4123 | {
|
---|
4124 | if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
|
---|
4125 | {
|
---|
4126 | uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
|
---|
4127 |
|
---|
4128 | #ifdef VBOX_STRICT
|
---|
4129 | if ( hmR0SvmIsContributoryXcpt(uIdtVector)
|
---|
4130 | && uExitVector == X86_XCPT_PF)
|
---|
4131 | {
|
---|
4132 | Log4(("IDT: Contributory #PF idCpu=%u uCR2=%#RX64\n", pVCpu->idCpu, pCtx->cr2));
|
---|
4133 | }
|
---|
4134 | #endif
|
---|
4135 |
|
---|
4136 | if ( uIdtVector == X86_XCPT_BP
|
---|
4137 | || uIdtVector == X86_XCPT_OF)
|
---|
4138 | {
|
---|
4139 | /* Ignore INT3/INTO, just re-execute. See @bugref{8357}. */
|
---|
4140 | }
|
---|
4141 | else if ( uExitVector == X86_XCPT_PF
|
---|
4142 | && uIdtVector == X86_XCPT_PF)
|
---|
4143 | {
|
---|
4144 | pSvmTransient->fVectoringDoublePF = true;
|
---|
4145 | Log4(("IDT: Vectoring double #PF uCR2=%#RX64\n", pCtx->cr2));
|
---|
4146 | }
|
---|
4147 | else if ( uExitVector == X86_XCPT_AC
|
---|
4148 | && uIdtVector == X86_XCPT_AC)
|
---|
4149 | {
|
---|
4150 | enmReflect = SVMREFLECTXCPT_HANG;
|
---|
4151 | Log4(("IDT: Nested #AC - Bad guest\n"));
|
---|
4152 | }
|
---|
4153 | else if ( (pVmcb->ctrl.u32InterceptException & HMSVM_CONTRIBUTORY_XCPT_MASK)
|
---|
4154 | && hmR0SvmIsContributoryXcpt(uExitVector)
|
---|
4155 | && ( hmR0SvmIsContributoryXcpt(uIdtVector)
|
---|
4156 | || uIdtVector == X86_XCPT_PF))
|
---|
4157 | {
|
---|
4158 | enmReflect = SVMREFLECTXCPT_DF;
|
---|
4159 | Log4(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", pVCpu->hm.s.Event.u64IntInfo,
|
---|
4160 | uIdtVector, uExitVector));
|
---|
4161 | }
|
---|
4162 | else if (uIdtVector == X86_XCPT_DF)
|
---|
4163 | {
|
---|
4164 | enmReflect = SVMREFLECTXCPT_TF;
|
---|
4165 | Log4(("IDT: Pending vectoring triple-fault %#RX64 uIdtVector=%#x uExitVector=%#x\n",
|
---|
4166 | pVCpu->hm.s.Event.u64IntInfo, uIdtVector, uExitVector));
|
---|
4167 | }
|
---|
4168 | else
|
---|
4169 | enmReflect = SVMREFLECTXCPT_XCPT;
|
---|
4170 | }
|
---|
4171 | else
|
---|
4172 | {
|
---|
4173 | /*
|
---|
4174 | * If event delivery caused an #VMEXIT that is not an exception (e.g. #NPF) then reflect the original
|
---|
4175 | * exception to the guest after handling the #VMEXIT.
|
---|
4176 | */
|
---|
4177 | enmReflect = SVMREFLECTXCPT_XCPT;
|
---|
4178 | }
|
---|
4179 | }
|
---|
4180 | else if ( pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
|
---|
4181 | || pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI)
|
---|
4182 | {
|
---|
4183 | enmReflect = SVMREFLECTXCPT_XCPT;
|
---|
4184 | fReflectingNmi = RT_BOOL(pVmcb->ctrl.ExitIntInfo.n.u3Type == SVM_EVENT_NMI);
|
---|
4185 |
|
---|
4186 | if (pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0 <= SVM_EXIT_EXCEPTION_1F)
|
---|
4187 | {
|
---|
4188 | uint8_t uExitVector = (uint8_t)(pSvmTransient->u64ExitCode - SVM_EXIT_EXCEPTION_0);
|
---|
4189 | if (uExitVector == X86_XCPT_PF)
|
---|
4190 | {
|
---|
4191 | pSvmTransient->fVectoringPF = true;
|
---|
4192 | Log4(("IDT: Vectoring #PF due to Ext-Int/NMI. uCR2=%#RX64\n", pCtx->cr2));
|
---|
4193 | }
|
---|
4194 | }
|
---|
4195 | }
|
---|
4196 | /* else: Ignore software interrupts (INT n) as they reoccur when restarting the instruction. */
|
---|
4197 |
|
---|
4198 | switch (enmReflect)
|
---|
4199 | {
|
---|
4200 | case SVMREFLECTXCPT_XCPT:
|
---|
4201 | {
|
---|
4202 | /* If we are re-injecting the NMI, clear NMI blocking. */
|
---|
4203 | if (fReflectingNmi)
|
---|
4204 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
4205 |
|
---|
4206 | Assert(pVmcb->ctrl.ExitIntInfo.n.u3Type != SVM_EVENT_SOFTWARE_INT);
|
---|
4207 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
4208 | hmR0SvmSetPendingEvent(pVCpu, &pVmcb->ctrl.ExitIntInfo, 0 /* GCPtrFaultAddress */);
|
---|
4209 |
|
---|
4210 | /* If uExitVector is #PF, CR2 value will be updated from the VMCB if it's a guest #PF. See hmR0SvmExitXcptPF(). */
|
---|
4211 | Log4(("IDT: Pending vectoring event %#RX64 ErrValid=%RTbool Err=%#RX32\n", pVmcb->ctrl.ExitIntInfo.u,
|
---|
4212 | !!pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid, pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
|
---|
4213 | break;
|
---|
4214 | }
|
---|
4215 |
|
---|
4216 | case SVMREFLECTXCPT_DF:
|
---|
4217 | {
|
---|
4218 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingReflect);
|
---|
4219 | hmR0SvmSetPendingXcptDF(pVCpu);
|
---|
4220 | rc = VINF_HM_DOUBLE_FAULT;
|
---|
4221 | break;
|
---|
4222 | }
|
---|
4223 |
|
---|
4224 | case SVMREFLECTXCPT_TF:
|
---|
4225 | {
|
---|
4226 | rc = VINF_EM_RESET;
|
---|
4227 | break;
|
---|
4228 | }
|
---|
4229 |
|
---|
4230 | case SVMREFLECTXCPT_HANG:
|
---|
4231 | {
|
---|
4232 | rc = VERR_EM_GUEST_CPU_HANG;
|
---|
4233 | break;
|
---|
4234 | }
|
---|
4235 |
|
---|
4236 | default:
|
---|
4237 | Assert(rc == VINF_SUCCESS);
|
---|
4238 | break;
|
---|
4239 | }
|
---|
4240 | }
|
---|
4241 | Assert(rc == VINF_SUCCESS || rc == VINF_HM_DOUBLE_FAULT || rc == VINF_EM_RESET || rc == VERR_EM_GUEST_CPU_HANG);
|
---|
4242 | NOREF(pCtx);
|
---|
4243 | return rc;
|
---|
4244 | }
|
---|
4245 |
|
---|
4246 | /**
|
---|
4247 | * Updates interrupt shadow for the current RIP.
|
---|
4248 | */
|
---|
4249 | #define HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx) \
|
---|
4250 | do { \
|
---|
4251 | /* Update interrupt shadow. */ \
|
---|
4252 | if ( VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) \
|
---|
4253 | && pCtx->rip != EMGetInhibitInterruptsPC(pVCpu)) \
|
---|
4254 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); \
|
---|
4255 | } while (0)
|
---|
4256 |
|
---|
4257 | /**
|
---|
4258 | * Advances the guest RIP making use of the CPU's NRIP_SAVE feature if
|
---|
4259 | * supported, otherwise advances the RIP by the number of bytes specified in
|
---|
4260 | * @a cb.
|
---|
4261 | *
|
---|
4262 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4263 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4264 | * @param cb RIP increment value in bytes.
|
---|
4265 | *
|
---|
4266 | * @remarks Use this function only from \#VMEXIT's where the NRIP value is valid
|
---|
4267 | * when NRIP_SAVE is supported by the CPU, otherwise use
|
---|
4268 | * hmR0SvmAdvanceRipDumb!
|
---|
4269 | */
|
---|
4270 | DECLINLINE(void) hmR0SvmAdvanceRipHwAssist(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
|
---|
4271 | {
|
---|
4272 | if (pVCpu->CTX_SUFF(pVM)->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
|
---|
4273 | {
|
---|
4274 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
4275 | Assert(pVmcb->ctrl.u64NextRIP);
|
---|
4276 | Assert(pVmcb->ctrl.u64NextRIP - pCtx->rip == cb);
|
---|
4277 | pCtx->rip = pVmcb->ctrl.u64NextRIP;
|
---|
4278 | }
|
---|
4279 | else
|
---|
4280 | pCtx->rip += cb;
|
---|
4281 |
|
---|
4282 | HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
|
---|
4283 | }
|
---|
4284 |
|
---|
4285 |
|
---|
4286 | /**
|
---|
4287 | * Advances the guest RIP by the number of bytes specified in @a cb. This does
|
---|
4288 | * not make use of any hardware features to determine the instruction length.
|
---|
4289 | *
|
---|
4290 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4291 | * @param pCtx Pointer to the guest-CPU context.
|
---|
4292 | * @param cb RIP increment value in bytes.
|
---|
4293 | */
|
---|
4294 | DECLINLINE(void) hmR0SvmAdvanceRipDumb(PVMCPU pVCpu, PCPUMCTX pCtx, uint32_t cb)
|
---|
4295 | {
|
---|
4296 | pCtx->rip += cb;
|
---|
4297 | HMSVM_UPDATE_INTR_SHADOW(pVCpu, pCtx);
|
---|
4298 | }
|
---|
4299 | #undef HMSVM_UPDATE_INTR_SHADOW
|
---|
4300 |
|
---|
4301 |
|
---|
4302 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
4303 | /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
|
---|
4304 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
4305 |
|
---|
4306 | /** @name \#VMEXIT handlers.
|
---|
4307 | * @{
|
---|
4308 | */
|
---|
4309 |
|
---|
4310 | /**
|
---|
4311 | * \#VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
|
---|
4312 | * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
|
---|
4313 | */
|
---|
4314 | HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4315 | {
|
---|
4316 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4317 |
|
---|
4318 | if (pSvmTransient->u64ExitCode == SVM_EXIT_NMI)
|
---|
4319 | STAM_REL_COUNTER_INC(&pVCpu->hm.s.StatExitHostNmiInGC);
|
---|
4320 | else if (pSvmTransient->u64ExitCode == SVM_EXIT_INTR)
|
---|
4321 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
|
---|
4322 |
|
---|
4323 | /*
|
---|
4324 | * AMD-V has no preemption timer and the generic periodic preemption timer has no way to signal -before- the timer
|
---|
4325 | * fires if the current interrupt is our own timer or a some other host interrupt. We also cannot examine what
|
---|
4326 | * interrupt it is until the host actually take the interrupt.
|
---|
4327 | *
|
---|
4328 | * Going back to executing guest code here unconditionally causes random scheduling problems (observed on an
|
---|
4329 | * AMD Phenom 9850 Quad-Core on Windows 64-bit host).
|
---|
4330 | */
|
---|
4331 | return VINF_EM_RAW_INTERRUPT;
|
---|
4332 | }
|
---|
4333 |
|
---|
4334 |
|
---|
4335 | /**
|
---|
4336 | * \#VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional \#VMEXIT.
|
---|
4337 | */
|
---|
4338 | HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4339 | {
|
---|
4340 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4341 |
|
---|
4342 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
4343 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
|
---|
4344 | int rc = VINF_SUCCESS;
|
---|
4345 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4346 | return rc;
|
---|
4347 | }
|
---|
4348 |
|
---|
4349 |
|
---|
4350 | /**
|
---|
4351 | * \#VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional \#VMEXIT.
|
---|
4352 | */
|
---|
4353 | HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4354 | {
|
---|
4355 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4356 |
|
---|
4357 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
4358 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
|
---|
4359 | int rc = VINF_SUCCESS;
|
---|
4360 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4361 | return rc;
|
---|
4362 | }
|
---|
4363 |
|
---|
4364 |
|
---|
4365 | /**
|
---|
4366 | * \#VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional \#VMEXIT.
|
---|
4367 | */
|
---|
4368 | HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4369 | {
|
---|
4370 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4371 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4372 | int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
4373 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
4374 | {
|
---|
4375 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
4376 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4377 | }
|
---|
4378 | else
|
---|
4379 | {
|
---|
4380 | AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
|
---|
4381 | rc = VERR_EM_INTERPRETER;
|
---|
4382 | }
|
---|
4383 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
|
---|
4384 | return rc;
|
---|
4385 | }
|
---|
4386 |
|
---|
4387 |
|
---|
4388 | /**
|
---|
4389 | * \#VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional \#VMEXIT.
|
---|
4390 | */
|
---|
4391 | HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4392 | {
|
---|
4393 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4394 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4395 | int rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
4396 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
4397 | {
|
---|
4398 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
4399 | pSvmTransient->fUpdateTscOffsetting = true;
|
---|
4400 |
|
---|
4401 | /* Single step check. */
|
---|
4402 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4403 | }
|
---|
4404 | else
|
---|
4405 | {
|
---|
4406 | AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
|
---|
4407 | rc = VERR_EM_INTERPRETER;
|
---|
4408 | }
|
---|
4409 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
|
---|
4410 | return rc;
|
---|
4411 | }
|
---|
4412 |
|
---|
4413 |
|
---|
4414 | /**
|
---|
4415 | * \#VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional \#VMEXIT.
|
---|
4416 | */
|
---|
4417 | HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4418 | {
|
---|
4419 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4420 | int rc = EMInterpretRdtscp(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
|
---|
4421 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
4422 | {
|
---|
4423 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
|
---|
4424 | pSvmTransient->fUpdateTscOffsetting = true;
|
---|
4425 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4426 | }
|
---|
4427 | else
|
---|
4428 | {
|
---|
4429 | AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
|
---|
4430 | rc = VERR_EM_INTERPRETER;
|
---|
4431 | }
|
---|
4432 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
|
---|
4433 | return rc;
|
---|
4434 | }
|
---|
4435 |
|
---|
4436 |
|
---|
4437 | /**
|
---|
4438 | * \#VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional \#VMEXIT.
|
---|
4439 | */
|
---|
4440 | HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4441 | {
|
---|
4442 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4443 | int rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
4444 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
4445 | {
|
---|
4446 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
4447 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4448 | }
|
---|
4449 | else
|
---|
4450 | {
|
---|
4451 | AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
|
---|
4452 | rc = VERR_EM_INTERPRETER;
|
---|
4453 | }
|
---|
4454 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
|
---|
4455 | return rc;
|
---|
4456 | }
|
---|
4457 |
|
---|
4458 |
|
---|
4459 | /**
|
---|
4460 | * \#VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional \#VMEXIT.
|
---|
4461 | */
|
---|
4462 | HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4463 | {
|
---|
4464 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4465 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4466 | Assert(!pVM->hm.s.fNestedPaging);
|
---|
4467 |
|
---|
4468 | /** @todo Decode Assist. */
|
---|
4469 | int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, pCtx); /* Updates RIP if successful. */
|
---|
4470 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
|
---|
4471 | Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
|
---|
4472 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4473 | return rc;
|
---|
4474 | }
|
---|
4475 |
|
---|
4476 |
|
---|
4477 | /**
|
---|
4478 | * \#VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional \#VMEXIT.
|
---|
4479 | */
|
---|
4480 | HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4481 | {
|
---|
4482 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4483 |
|
---|
4484 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 1);
|
---|
4485 | int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
|
---|
4486 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4487 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
|
---|
4488 | if (rc != VINF_SUCCESS)
|
---|
4489 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHltToR3);
|
---|
4490 | return rc;
|
---|
4491 | }
|
---|
4492 |
|
---|
4493 |
|
---|
4494 | /**
|
---|
4495 | * \#VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional \#VMEXIT.
|
---|
4496 | */
|
---|
4497 | HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4498 | {
|
---|
4499 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4500 | int rc = EMInterpretMonitor(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
4501 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
4502 | {
|
---|
4503 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
|
---|
4504 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4505 | }
|
---|
4506 | else
|
---|
4507 | {
|
---|
4508 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
|
---|
4509 | rc = VERR_EM_INTERPRETER;
|
---|
4510 | }
|
---|
4511 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
|
---|
4512 | return rc;
|
---|
4513 | }
|
---|
4514 |
|
---|
4515 |
|
---|
4516 | /**
|
---|
4517 | * \#VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional \#VMEXIT.
|
---|
4518 | */
|
---|
4519 | HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4520 | {
|
---|
4521 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4522 | VBOXSTRICTRC rc2 = EMInterpretMWait(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
4523 | int rc = VBOXSTRICTRC_VAL(rc2);
|
---|
4524 | if ( rc == VINF_EM_HALT
|
---|
4525 | || rc == VINF_SUCCESS)
|
---|
4526 | {
|
---|
4527 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3);
|
---|
4528 |
|
---|
4529 | if ( rc == VINF_EM_HALT
|
---|
4530 | && EMMonitorWaitShouldContinue(pVCpu, pCtx))
|
---|
4531 | {
|
---|
4532 | rc = VINF_SUCCESS;
|
---|
4533 | }
|
---|
4534 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4535 | }
|
---|
4536 | else
|
---|
4537 | {
|
---|
4538 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
|
---|
4539 | rc = VERR_EM_INTERPRETER;
|
---|
4540 | }
|
---|
4541 | AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
|
---|
4542 | ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
|
---|
4543 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
|
---|
4544 | return rc;
|
---|
4545 | }
|
---|
4546 |
|
---|
4547 |
|
---|
4548 | /**
|
---|
4549 | * \#VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN). Conditional
|
---|
4550 | * \#VMEXIT.
|
---|
4551 | */
|
---|
4552 | HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4553 | {
|
---|
4554 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4555 | return VINF_EM_RESET;
|
---|
4556 | }
|
---|
4557 |
|
---|
4558 |
|
---|
4559 | /**
|
---|
4560 | * \#VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional \#VMEXIT.
|
---|
4561 | */
|
---|
4562 | HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4563 | {
|
---|
4564 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4565 |
|
---|
4566 | Log4(("hmR0SvmExitReadCRx: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
|
---|
4567 |
|
---|
4568 | /** @todo Decode Assist. */
|
---|
4569 | VBOXSTRICTRC rc2 = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
|
---|
4570 | int rc = VBOXSTRICTRC_VAL(rc2);
|
---|
4571 | AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3,
|
---|
4572 | ("hmR0SvmExitReadCRx: EMInterpretInstruction failed rc=%Rrc\n", rc));
|
---|
4573 | Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
|
---|
4574 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
|
---|
4575 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4576 | return rc;
|
---|
4577 | }
|
---|
4578 |
|
---|
4579 |
|
---|
4580 | /**
|
---|
4581 | * \#VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional \#VMEXIT.
|
---|
4582 | */
|
---|
4583 | HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4584 | {
|
---|
4585 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4586 |
|
---|
4587 | /** @todo Decode Assist. */
|
---|
4588 | VBOXSTRICTRC rcStrict = IEMExecOneBypassEx(pVCpu, CPUMCTX2CORE(pCtx), NULL);
|
---|
4589 | if (RT_UNLIKELY( rcStrict == VERR_IEM_ASPECT_NOT_IMPLEMENTED
|
---|
4590 | || rcStrict == VERR_IEM_INSTR_NOT_IMPLEMENTED))
|
---|
4591 | rcStrict = VERR_EM_INTERPRETER;
|
---|
4592 | if (rcStrict == VINF_SUCCESS)
|
---|
4593 | {
|
---|
4594 | /* RIP has been updated by EMInterpretInstruction(). */
|
---|
4595 | Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
|
---|
4596 | switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
|
---|
4597 | {
|
---|
4598 | case 0: /* CR0. */
|
---|
4599 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
4600 | break;
|
---|
4601 |
|
---|
4602 | case 3: /* CR3. */
|
---|
4603 | Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
|
---|
4604 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR3);
|
---|
4605 | break;
|
---|
4606 |
|
---|
4607 | case 4: /* CR4. */
|
---|
4608 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR4);
|
---|
4609 | break;
|
---|
4610 |
|
---|
4611 | case 8: /* CR8 (TPR). */
|
---|
4612 | HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
4613 | break;
|
---|
4614 |
|
---|
4615 | default:
|
---|
4616 | AssertMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x\n",
|
---|
4617 | pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
|
---|
4618 | break;
|
---|
4619 | }
|
---|
4620 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
|
---|
4621 | }
|
---|
4622 | else
|
---|
4623 | Assert(rcStrict == VERR_EM_INTERPRETER || rcStrict == VINF_PGM_CHANGE_MODE || rcStrict == VINF_PGM_SYNC_CR3);
|
---|
4624 | return VBOXSTRICTRC_TODO(rcStrict);
|
---|
4625 | }
|
---|
4626 |
|
---|
4627 |
|
---|
4628 | /**
|
---|
4629 | * \#VMEXIT handler for instructions that result in a \#UD exception delivered
|
---|
4630 | * to the guest.
|
---|
4631 | */
|
---|
4632 | HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4633 | {
|
---|
4634 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4635 | hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
4636 | return VINF_SUCCESS;
|
---|
4637 | }
|
---|
4638 |
|
---|
4639 |
|
---|
4640 | /**
|
---|
4641 | * \#VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional
|
---|
4642 | * \#VMEXIT.
|
---|
4643 | */
|
---|
4644 | HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4645 | {
|
---|
4646 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4647 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
4648 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4649 |
|
---|
4650 | int rc;
|
---|
4651 | if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
|
---|
4652 | {
|
---|
4653 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
|
---|
4654 |
|
---|
4655 | /* Handle TPR patching; intercepted LSTAR write. */
|
---|
4656 | if ( pVM->hm.s.fTPRPatchingActive
|
---|
4657 | && pCtx->ecx == MSR_K8_LSTAR)
|
---|
4658 | {
|
---|
4659 | if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
|
---|
4660 | {
|
---|
4661 | /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
|
---|
4662 | int rc2 = APICSetTpr(pVCpu, pCtx->eax & 0xff);
|
---|
4663 | AssertRC(rc2);
|
---|
4664 | HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
4665 | }
|
---|
4666 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 2);
|
---|
4667 | rc = VINF_SUCCESS;
|
---|
4668 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4669 | return rc;
|
---|
4670 | }
|
---|
4671 |
|
---|
4672 | if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
|
---|
4673 | {
|
---|
4674 | rc = EMInterpretWrmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
4675 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
4676 | {
|
---|
4677 | pCtx->rip = pVmcb->ctrl.u64NextRIP;
|
---|
4678 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4679 | }
|
---|
4680 | else
|
---|
4681 | AssertMsg( rc == VERR_EM_INTERPRETER
|
---|
4682 | || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
|
---|
4683 | }
|
---|
4684 | else
|
---|
4685 | {
|
---|
4686 | rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */));
|
---|
4687 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
4688 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc); /* RIP updated by EMInterpretInstruction(). */
|
---|
4689 | else
|
---|
4690 | AssertMsg( rc == VERR_EM_INTERPRETER
|
---|
4691 | || rc == VINF_CPUM_R3_MSR_WRITE, ("hmR0SvmExitMsr: WrMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
|
---|
4692 | }
|
---|
4693 |
|
---|
4694 | if (rc == VINF_SUCCESS)
|
---|
4695 | {
|
---|
4696 | /* If this is an X2APIC WRMSR access, update the APIC state as well. */
|
---|
4697 | if ( pCtx->ecx >= MSR_IA32_X2APIC_START
|
---|
4698 | && pCtx->ecx <= MSR_IA32_X2APIC_END)
|
---|
4699 | {
|
---|
4700 | /*
|
---|
4701 | * We've already saved the APIC related guest-state (TPR) in hmR0SvmPostRunGuest(). When full APIC register
|
---|
4702 | * virtualization is implemented we'll have to make sure APIC state is saved from the VMCB before
|
---|
4703 | * EMInterpretWrmsr() changes it.
|
---|
4704 | */
|
---|
4705 | HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
4706 | }
|
---|
4707 | else if (pCtx->ecx == MSR_K6_EFER)
|
---|
4708 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_EFER_MSR);
|
---|
4709 | else if (pCtx->ecx == MSR_IA32_TSC)
|
---|
4710 | pSvmTransient->fUpdateTscOffsetting = true;
|
---|
4711 | }
|
---|
4712 | }
|
---|
4713 | else
|
---|
4714 | {
|
---|
4715 | /* MSR Read access. */
|
---|
4716 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
|
---|
4717 | Assert(pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_READ);
|
---|
4718 |
|
---|
4719 | if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
|
---|
4720 | {
|
---|
4721 | rc = EMInterpretRdmsr(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
4722 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
4723 | {
|
---|
4724 | pCtx->rip = pVmcb->ctrl.u64NextRIP;
|
---|
4725 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4726 | }
|
---|
4727 | else
|
---|
4728 | AssertMsg( rc == VERR_EM_INTERPRETER
|
---|
4729 | || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
|
---|
4730 | }
|
---|
4731 | else
|
---|
4732 | {
|
---|
4733 | rc = VBOXSTRICTRC_TODO(EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0));
|
---|
4734 | if (RT_UNLIKELY(rc != VINF_SUCCESS))
|
---|
4735 | {
|
---|
4736 | AssertMsg( rc == VERR_EM_INTERPRETER
|
---|
4737 | || rc == VINF_CPUM_R3_MSR_READ, ("hmR0SvmExitMsr: RdMsr. EMInterpretInstruction failed rc=%Rrc\n", rc));
|
---|
4738 | }
|
---|
4739 | /* RIP updated by EMInterpretInstruction(). */
|
---|
4740 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4741 | }
|
---|
4742 | }
|
---|
4743 |
|
---|
4744 | /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
|
---|
4745 | return rc;
|
---|
4746 | }
|
---|
4747 |
|
---|
4748 |
|
---|
4749 | /**
|
---|
4750 | * \#VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional \#VMEXIT.
|
---|
4751 | */
|
---|
4752 | HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4753 | {
|
---|
4754 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4755 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
4756 |
|
---|
4757 | /* We should -not- get this #VMEXIT if the guest's debug registers were active. */
|
---|
4758 | if (pSvmTransient->fWasGuestDebugStateActive)
|
---|
4759 | {
|
---|
4760 | AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit %#RX32\n", (uint32_t)pSvmTransient->u64ExitCode));
|
---|
4761 | pVCpu->hm.s.u32HMError = (uint32_t)pSvmTransient->u64ExitCode;
|
---|
4762 | return VERR_SVM_UNEXPECTED_EXIT;
|
---|
4763 | }
|
---|
4764 |
|
---|
4765 | /*
|
---|
4766 | * Lazy DR0-3 loading.
|
---|
4767 | */
|
---|
4768 | if (!pSvmTransient->fWasHyperDebugStateActive)
|
---|
4769 | {
|
---|
4770 | Assert(!DBGFIsStepping(pVCpu)); Assert(!pVCpu->hm.s.fSingleInstruction);
|
---|
4771 | Log5(("hmR0SvmExitReadDRx: Lazy loading guest debug registers\n"));
|
---|
4772 |
|
---|
4773 | /* Don't intercept DRx read and writes. */
|
---|
4774 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
4775 | pVmcb->ctrl.u16InterceptRdDRx = 0;
|
---|
4776 | pVmcb->ctrl.u16InterceptWrDRx = 0;
|
---|
4777 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
4778 |
|
---|
4779 | /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
|
---|
4780 | VMMRZCallRing3Disable(pVCpu);
|
---|
4781 | HM_DISABLE_PREEMPT();
|
---|
4782 |
|
---|
4783 | /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
|
---|
4784 | CPUMR0LoadGuestDebugState(pVCpu, false /* include DR6 */);
|
---|
4785 | Assert(CPUMIsGuestDebugStateActive(pVCpu) || HC_ARCH_BITS == 32);
|
---|
4786 |
|
---|
4787 | HM_RESTORE_PREEMPT();
|
---|
4788 | VMMRZCallRing3Enable(pVCpu);
|
---|
4789 |
|
---|
4790 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
|
---|
4791 | return VINF_SUCCESS;
|
---|
4792 | }
|
---|
4793 |
|
---|
4794 | /*
|
---|
4795 | * Interpret the read/writing of DRx.
|
---|
4796 | */
|
---|
4797 | /** @todo Decode assist. */
|
---|
4798 | VBOXSTRICTRC rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
|
---|
4799 | Log5(("hmR0SvmExitReadDRx: Emulated DRx access: rc=%Rrc\n", VBOXSTRICTRC_VAL(rc)));
|
---|
4800 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
4801 | {
|
---|
4802 | /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
|
---|
4803 | /** @todo CPUM should set this flag! */
|
---|
4804 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_DEBUG);
|
---|
4805 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
4806 | }
|
---|
4807 | else
|
---|
4808 | Assert(rc == VERR_EM_INTERPRETER);
|
---|
4809 | return VBOXSTRICTRC_TODO(rc);
|
---|
4810 | }
|
---|
4811 |
|
---|
4812 |
|
---|
4813 | /**
|
---|
4814 | * \#VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional \#VMEXIT.
|
---|
4815 | */
|
---|
4816 | HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4817 | {
|
---|
4818 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4819 | /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
|
---|
4820 | int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
|
---|
4821 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
|
---|
4822 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
4823 | return rc;
|
---|
4824 | }
|
---|
4825 |
|
---|
4826 |
|
---|
4827 | /**
|
---|
4828 | * \#VMEXIT handler for XCRx write (SVM_EXIT_XSETBV). Conditional \#VMEXIT.
|
---|
4829 | */
|
---|
4830 | HMSVM_EXIT_DECL hmR0SvmExitXsetbv(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4831 | {
|
---|
4832 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4833 |
|
---|
4834 | /** @todo decode assists... */
|
---|
4835 | VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
|
---|
4836 | if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
4837 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
4838 |
|
---|
4839 | pVCpu->hm.s.fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
|
---|
4840 | Log4(("hmR0SvmExitXsetbv: New XCR0=%#RX64 fLoadSaveGuestXcr0=%d (cr4=%RX64) rcStrict=%Rrc\n",
|
---|
4841 | pCtx->aXcr[0], pVCpu->hm.s.fLoadSaveGuestXcr0, pCtx->cr4, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
4842 |
|
---|
4843 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
|
---|
4844 | return VBOXSTRICTRC_TODO(rcStrict);
|
---|
4845 | }
|
---|
4846 |
|
---|
4847 |
|
---|
4848 | /**
|
---|
4849 | * \#VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional \#VMEXIT.
|
---|
4850 | */
|
---|
4851 | HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
4852 | {
|
---|
4853 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
4854 |
|
---|
4855 | /* I/O operation lookup arrays. */
|
---|
4856 | static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
|
---|
4857 | static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
|
---|
4858 | the result (in AL/AX/EAX). */
|
---|
4859 | Log4(("hmR0SvmExitIOInstr: CS:RIP=%04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
|
---|
4860 |
|
---|
4861 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
4862 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4863 |
|
---|
4864 | /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
|
---|
4865 | SVMIOIOEXIT IoExitInfo;
|
---|
4866 | IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
|
---|
4867 | uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
|
---|
4868 | uint32_t cbValue = s_aIOSize[uIOWidth];
|
---|
4869 | uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
|
---|
4870 |
|
---|
4871 | if (RT_UNLIKELY(!cbValue))
|
---|
4872 | {
|
---|
4873 | AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
|
---|
4874 | return VERR_EM_INTERPRETER;
|
---|
4875 | }
|
---|
4876 |
|
---|
4877 | VBOXSTRICTRC rcStrict;
|
---|
4878 | bool fUpdateRipAlready = false;
|
---|
4879 | if (IoExitInfo.n.u1STR)
|
---|
4880 | {
|
---|
4881 | #ifdef VBOX_WITH_2ND_IEM_STEP
|
---|
4882 | /* INS/OUTS - I/O String instruction. */
|
---|
4883 | /** @todo Huh? why can't we use the segment prefix information given by AMD-V
|
---|
4884 | * in EXITINFO1? Investigate once this thing is up and running. */
|
---|
4885 | Log4(("CS:RIP=%04x:%08RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, IoExitInfo.n.u16Port, cbValue,
|
---|
4886 | IoExitInfo.n.u1Type == SVM_IOIO_WRITE ? 'w' : 'r'));
|
---|
4887 | AssertReturn(pCtx->dx == IoExitInfo.n.u16Port, VERR_SVM_IPE_2);
|
---|
4888 | static IEMMODE const s_aenmAddrMode[8] =
|
---|
4889 | {
|
---|
4890 | (IEMMODE)-1, IEMMODE_16BIT, IEMMODE_32BIT, (IEMMODE)-1, IEMMODE_64BIT, (IEMMODE)-1, (IEMMODE)-1, (IEMMODE)-1
|
---|
4891 | };
|
---|
4892 | IEMMODE enmAddrMode = s_aenmAddrMode[(IoExitInfo.u >> 7) & 0x7];
|
---|
4893 | if (enmAddrMode != (IEMMODE)-1)
|
---|
4894 | {
|
---|
4895 | uint64_t cbInstr = pVmcb->ctrl.u64ExitInfo2 - pCtx->rip;
|
---|
4896 | if (cbInstr <= 15 && cbInstr >= 1)
|
---|
4897 | {
|
---|
4898 | Assert(cbInstr >= 1U + IoExitInfo.n.u1REP);
|
---|
4899 | if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
|
---|
4900 | {
|
---|
4901 | /* Don't know exactly how to detect whether u3SEG is valid, currently
|
---|
4902 | only enabling it for Bulldozer and later with NRIP. OS/2 broke on
|
---|
4903 | 2384 Opterons when only checking NRIP. */
|
---|
4904 | if ( (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_NRIP_SAVE)
|
---|
4905 | && pVM->cpum.ro.GuestFeatures.enmMicroarch >= kCpumMicroarch_AMD_15h_First)
|
---|
4906 | {
|
---|
4907 | AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_DS || cbInstr > 1U + IoExitInfo.n.u1REP,
|
---|
4908 | ("u32Seg=%d cbInstr=%d u1REP=%d", IoExitInfo.n.u3SEG, cbInstr, IoExitInfo.n.u1REP));
|
---|
4909 | rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
|
---|
4910 | IoExitInfo.n.u3SEG, true /*fIoChecked*/);
|
---|
4911 | }
|
---|
4912 | else if (cbInstr == 1U + IoExitInfo.n.u1REP)
|
---|
4913 | rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
|
---|
4914 | X86_SREG_DS, true /*fIoChecked*/);
|
---|
4915 | else
|
---|
4916 | rcStrict = IEMExecOne(pVCpu);
|
---|
4917 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
|
---|
4918 | }
|
---|
4919 | else
|
---|
4920 | {
|
---|
4921 | AssertMsg(IoExitInfo.n.u3SEG == X86_SREG_ES /*=0*/, ("%#x\n", IoExitInfo.n.u3SEG));
|
---|
4922 | rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, IoExitInfo.n.u1REP, (uint8_t)cbInstr,
|
---|
4923 | true /*fIoChecked*/);
|
---|
4924 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
|
---|
4925 | }
|
---|
4926 | }
|
---|
4927 | else
|
---|
4928 | {
|
---|
4929 | AssertMsgFailed(("rip=%RX64 nrip=%#RX64 cbInstr=%#RX64\n", pCtx->rip, pVmcb->ctrl.u64ExitInfo2, cbInstr));
|
---|
4930 | rcStrict = IEMExecOne(pVCpu);
|
---|
4931 | }
|
---|
4932 | }
|
---|
4933 | else
|
---|
4934 | {
|
---|
4935 | AssertMsgFailed(("IoExitInfo=%RX64\n", IoExitInfo.u));
|
---|
4936 | rcStrict = IEMExecOne(pVCpu);
|
---|
4937 | }
|
---|
4938 | fUpdateRipAlready = true;
|
---|
4939 |
|
---|
4940 | #else
|
---|
4941 | /* INS/OUTS - I/O String instruction. */
|
---|
4942 | PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
4943 |
|
---|
4944 | /** @todo Huh? why can't we use the segment prefix information given by AMD-V
|
---|
4945 | * in EXITINFO1? Investigate once this thing is up and running. */
|
---|
4946 |
|
---|
4947 | rcStrict = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
|
---|
4948 | if (rcStrict == VINF_SUCCESS)
|
---|
4949 | {
|
---|
4950 | if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
|
---|
4951 | {
|
---|
4952 | rcStrict = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
|
---|
4953 | (DISCPUMODE)pDis->uAddrMode, cbValue);
|
---|
4954 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
|
---|
4955 | }
|
---|
4956 | else
|
---|
4957 | {
|
---|
4958 | rcStrict = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
|
---|
4959 | (DISCPUMODE)pDis->uAddrMode, cbValue);
|
---|
4960 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
|
---|
4961 | }
|
---|
4962 | }
|
---|
4963 | else
|
---|
4964 | rcStrict = VINF_EM_RAW_EMULATE_INSTR;
|
---|
4965 | #endif
|
---|
4966 | }
|
---|
4967 | else
|
---|
4968 | {
|
---|
4969 | /* IN/OUT - I/O instruction. */
|
---|
4970 | Assert(!IoExitInfo.n.u1REP);
|
---|
4971 |
|
---|
4972 | if (IoExitInfo.n.u1Type == SVM_IOIO_WRITE)
|
---|
4973 | {
|
---|
4974 | rcStrict = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, cbValue);
|
---|
4975 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
|
---|
4976 | }
|
---|
4977 | else
|
---|
4978 | {
|
---|
4979 | uint32_t u32Val = 0;
|
---|
4980 | rcStrict = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, cbValue);
|
---|
4981 | if (IOM_SUCCESS(rcStrict))
|
---|
4982 | {
|
---|
4983 | /* Save result of I/O IN instr. in AL/AX/EAX. */
|
---|
4984 | /** @todo r=bird: 32-bit op size should clear high bits of rax! */
|
---|
4985 | pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
|
---|
4986 | }
|
---|
4987 | else if (rcStrict == VINF_IOM_R3_IOPORT_READ)
|
---|
4988 | HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, cbValue);
|
---|
4989 |
|
---|
4990 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
|
---|
4991 | }
|
---|
4992 | }
|
---|
4993 |
|
---|
4994 | if (IOM_SUCCESS(rcStrict))
|
---|
4995 | {
|
---|
4996 | /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
|
---|
4997 | if (!fUpdateRipAlready)
|
---|
4998 | pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
|
---|
4999 |
|
---|
5000 | /*
|
---|
5001 | * If any I/O breakpoints are armed, we need to check if one triggered
|
---|
5002 | * and take appropriate action.
|
---|
5003 | * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
|
---|
5004 | */
|
---|
5005 | /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
|
---|
5006 | * execution engines about whether hyper BPs and such are pending. */
|
---|
5007 | uint32_t const uDr7 = pCtx->dr[7];
|
---|
5008 | if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
|
---|
5009 | && X86_DR7_ANY_RW_IO(uDr7)
|
---|
5010 | && (pCtx->cr4 & X86_CR4_DE))
|
---|
5011 | || DBGFBpIsHwIoArmed(pVM)))
|
---|
5012 | {
|
---|
5013 | /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
|
---|
5014 | VMMRZCallRing3Disable(pVCpu);
|
---|
5015 | HM_DISABLE_PREEMPT();
|
---|
5016 |
|
---|
5017 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
|
---|
5018 | CPUMR0DebugStateMaybeSaveGuest(pVCpu, false /*fDr6*/);
|
---|
5019 |
|
---|
5020 | VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, IoExitInfo.n.u16Port, cbValue);
|
---|
5021 | if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
|
---|
5022 | {
|
---|
5023 | /* Raise #DB. */
|
---|
5024 | pVmcb->guest.u64DR6 = pCtx->dr[6];
|
---|
5025 | pVmcb->guest.u64DR7 = pCtx->dr[7];
|
---|
5026 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
5027 | hmR0SvmSetPendingXcptDB(pVCpu);
|
---|
5028 | }
|
---|
5029 | /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
|
---|
5030 | however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
|
---|
5031 | else if ( rcStrict2 != VINF_SUCCESS
|
---|
5032 | && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
|
---|
5033 | rcStrict = rcStrict2;
|
---|
5034 | AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
|
---|
5035 |
|
---|
5036 | HM_RESTORE_PREEMPT();
|
---|
5037 | VMMRZCallRing3Enable(pVCpu);
|
---|
5038 | }
|
---|
5039 |
|
---|
5040 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rcStrict);
|
---|
5041 | }
|
---|
5042 |
|
---|
5043 | #ifdef VBOX_STRICT
|
---|
5044 | if (rcStrict == VINF_IOM_R3_IOPORT_READ)
|
---|
5045 | Assert(IoExitInfo.n.u1Type == SVM_IOIO_READ);
|
---|
5046 | else if (rcStrict == VINF_IOM_R3_IOPORT_WRITE || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE)
|
---|
5047 | Assert(IoExitInfo.n.u1Type == SVM_IOIO_WRITE);
|
---|
5048 | else
|
---|
5049 | {
|
---|
5050 | /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
|
---|
5051 | * statuses, that the VMM device and some others may return. See
|
---|
5052 | * IOM_SUCCESS() for guidance. */
|
---|
5053 | AssertMsg( RT_FAILURE(rcStrict)
|
---|
5054 | || rcStrict == VINF_SUCCESS
|
---|
5055 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR
|
---|
5056 | || rcStrict == VINF_EM_DBG_BREAKPOINT
|
---|
5057 | || rcStrict == VINF_EM_RAW_GUEST_TRAP
|
---|
5058 | || rcStrict == VINF_EM_RAW_TO_R3
|
---|
5059 | || rcStrict == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5060 | }
|
---|
5061 | #endif
|
---|
5062 | return VBOXSTRICTRC_TODO(rcStrict);
|
---|
5063 | }
|
---|
5064 |
|
---|
5065 |
|
---|
5066 | /**
|
---|
5067 | * \#VMEXIT handler for Nested Page-faults (SVM_EXIT_NPF). Conditional \#VMEXIT.
|
---|
5068 | */
|
---|
5069 | HMSVM_EXIT_DECL hmR0SvmExitNestedPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5070 | {
|
---|
5071 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5072 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5073 | Assert(pVM->hm.s.fNestedPaging);
|
---|
5074 |
|
---|
5075 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
5076 |
|
---|
5077 | /* See AMD spec. 15.25.6 "Nested versus Guest Page Faults, Fault Ordering" for VMCB details for #NPF. */
|
---|
5078 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
5079 | uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
|
---|
5080 | RTGCPHYS GCPhysFaultAddr = pVmcb->ctrl.u64ExitInfo2;
|
---|
5081 |
|
---|
5082 | Log4(("#NPF at CS:RIP=%04x:%#RX64 faultaddr=%RGp errcode=%#x \n", pCtx->cs.Sel, pCtx->rip, GCPhysFaultAddr, u32ErrCode));
|
---|
5083 |
|
---|
5084 | #ifdef VBOX_HM_WITH_GUEST_PATCHING
|
---|
5085 | /* TPR patching for 32-bit guests, using the reserved bit in the page tables for MMIO regions. */
|
---|
5086 | if ( pVM->hm.s.fTprPatchingAllowed
|
---|
5087 | && (GCPhysFaultAddr & PAGE_OFFSET_MASK) == XAPIC_OFF_TPR
|
---|
5088 | && ( !(u32ErrCode & X86_TRAP_PF_P) /* Not present */
|
---|
5089 | || (u32ErrCode & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) == (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) /* MMIO page. */
|
---|
5090 | && !CPUMIsGuestInLongModeEx(pCtx)
|
---|
5091 | && !CPUMGetGuestCPL(pVCpu)
|
---|
5092 | && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
|
---|
5093 | {
|
---|
5094 | RTGCPHYS GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
|
---|
5095 | GCPhysApicBase &= PAGE_BASE_GC_MASK;
|
---|
5096 |
|
---|
5097 | if (GCPhysFaultAddr == GCPhysApicBase + XAPIC_OFF_TPR)
|
---|
5098 | {
|
---|
5099 | /* Only attempt to patch the instruction once. */
|
---|
5100 | PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
|
---|
5101 | if (!pPatch)
|
---|
5102 | return VINF_EM_HM_PATCH_TPR_INSTR;
|
---|
5103 | }
|
---|
5104 | }
|
---|
5105 | #endif
|
---|
5106 |
|
---|
5107 | /*
|
---|
5108 | * Determine the nested paging mode.
|
---|
5109 | */
|
---|
5110 | PGMMODE enmNestedPagingMode;
|
---|
5111 | #if HC_ARCH_BITS == 32
|
---|
5112 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
5113 | enmNestedPagingMode = PGMMODE_AMD64_NX;
|
---|
5114 | else
|
---|
5115 | #endif
|
---|
5116 | enmNestedPagingMode = PGMGetHostMode(pVM);
|
---|
5117 |
|
---|
5118 | /*
|
---|
5119 | * MMIO optimization using the reserved (RSVD) bit in the guest page tables for MMIO pages.
|
---|
5120 | */
|
---|
5121 | int rc;
|
---|
5122 | Assert((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != X86_TRAP_PF_RSVD);
|
---|
5123 | if ((u32ErrCode & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) == (X86_TRAP_PF_RSVD | X86_TRAP_PF_P))
|
---|
5124 | {
|
---|
5125 | /* If event delivery causes an MMIO #NPF, go back to instruction emulation as
|
---|
5126 | otherwise injecting the original pending event would most likely cause the same MMIO #NPF. */
|
---|
5127 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
|
---|
5128 | return VERR_EM_INTERPRETER;
|
---|
5129 |
|
---|
5130 | VBOXSTRICTRC rc2 = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, enmNestedPagingMode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr,
|
---|
5131 | u32ErrCode);
|
---|
5132 | rc = VBOXSTRICTRC_VAL(rc2);
|
---|
5133 |
|
---|
5134 | /*
|
---|
5135 | * If we succeed, resume guest execution.
|
---|
5136 | * If we fail in interpreting the instruction because we couldn't get the guest physical address
|
---|
5137 | * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
|
---|
5138 | * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
|
---|
5139 | * weird case. See @bugref{6043}.
|
---|
5140 | */
|
---|
5141 | if ( rc == VINF_SUCCESS
|
---|
5142 | || rc == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
5143 | || rc == VERR_PAGE_NOT_PRESENT)
|
---|
5144 | {
|
---|
5145 | /* Successfully handled MMIO operation. */
|
---|
5146 | HMCPU_CF_SET(pVCpu, HM_CHANGED_SVM_GUEST_APIC_STATE);
|
---|
5147 | rc = VINF_SUCCESS;
|
---|
5148 | }
|
---|
5149 | return rc;
|
---|
5150 | }
|
---|
5151 |
|
---|
5152 | TRPMAssertXcptPF(pVCpu, GCPhysFaultAddr, u32ErrCode);
|
---|
5153 | rc = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, enmNestedPagingMode, u32ErrCode, CPUMCTX2CORE(pCtx), GCPhysFaultAddr);
|
---|
5154 | TRPMResetTrap(pVCpu);
|
---|
5155 |
|
---|
5156 | Log4(("#NPF: PGMR0Trap0eHandlerNestedPaging returned %Rrc CS:RIP=%04x:%#RX64\n", rc, pCtx->cs.Sel, pCtx->rip));
|
---|
5157 |
|
---|
5158 | /*
|
---|
5159 | * Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}.
|
---|
5160 | */
|
---|
5161 | if ( rc == VINF_SUCCESS
|
---|
5162 | || rc == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
5163 | || rc == VERR_PAGE_NOT_PRESENT)
|
---|
5164 | {
|
---|
5165 | /* We've successfully synced our shadow page tables. */
|
---|
5166 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
|
---|
5167 | rc = VINF_SUCCESS;
|
---|
5168 | }
|
---|
5169 |
|
---|
5170 | return rc;
|
---|
5171 | }
|
---|
5172 |
|
---|
5173 |
|
---|
5174 | /**
|
---|
5175 | * \#VMEXIT handler for virtual interrupt (SVM_EXIT_VINTR). Conditional
|
---|
5176 | * \#VMEXIT.
|
---|
5177 | */
|
---|
5178 | HMSVM_EXIT_DECL hmR0SvmExitVIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5179 | {
|
---|
5180 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5181 |
|
---|
5182 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
5183 | pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 0; /* No virtual interrupts pending, we'll inject the current one/NMI before reentry. */
|
---|
5184 | pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0;
|
---|
5185 |
|
---|
5186 | /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive interrupts/NMIs, it is now ready. */
|
---|
5187 | pVmcb->ctrl.u64InterceptCtrl &= ~SVM_CTRL_INTERCEPT_VINTR;
|
---|
5188 | pVmcb->ctrl.u64VmcbCleanBits &= ~(HMSVM_VMCB_CLEAN_INTERCEPTS | HMSVM_VMCB_CLEAN_TPR);
|
---|
5189 |
|
---|
5190 | /* Deliver the pending interrupt/NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
|
---|
5191 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIntWindow);
|
---|
5192 | return VINF_SUCCESS;
|
---|
5193 | }
|
---|
5194 |
|
---|
5195 |
|
---|
5196 | /**
|
---|
5197 | * \#VMEXIT handler for task switches (SVM_EXIT_TASK_SWITCH). Conditional
|
---|
5198 | * \#VMEXIT.
|
---|
5199 | */
|
---|
5200 | HMSVM_EXIT_DECL hmR0SvmExitTaskSwitch(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5201 | {
|
---|
5202 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5203 |
|
---|
5204 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
5205 |
|
---|
5206 | #ifndef HMSVM_ALWAYS_TRAP_TASK_SWITCH
|
---|
5207 | Assert(!pVCpu->CTX_SUFF(pVM)->hm.s.fNestedPaging);
|
---|
5208 | #endif
|
---|
5209 |
|
---|
5210 | /* Check if this task-switch occurred while delivering an event through the guest IDT. */
|
---|
5211 | if (pVCpu->hm.s.Event.fPending) /* Can happen with exceptions/NMI. See @bugref{8411}. */
|
---|
5212 | {
|
---|
5213 | /*
|
---|
5214 | * AMD-V provides us with the exception which caused the TS; we collect
|
---|
5215 | * the information in the call to hmR0SvmCheckExitDueToEventDelivery.
|
---|
5216 | */
|
---|
5217 | Log4(("hmR0SvmExitTaskSwitch: TS occurred during event delivery.\n"));
|
---|
5218 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
|
---|
5219 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
5220 | }
|
---|
5221 |
|
---|
5222 | /** @todo Emulate task switch someday, currently just going back to ring-3 for
|
---|
5223 | * emulation. */
|
---|
5224 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitTaskSwitch);
|
---|
5225 | return VERR_EM_INTERPRETER;
|
---|
5226 | }
|
---|
5227 |
|
---|
5228 |
|
---|
5229 | /**
|
---|
5230 | * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
|
---|
5231 | */
|
---|
5232 | HMSVM_EXIT_DECL hmR0SvmExitVmmCall(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5233 | {
|
---|
5234 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5235 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmcall);
|
---|
5236 |
|
---|
5237 | /* First check if this is a patched VMMCALL for mov TPR */
|
---|
5238 | int rc = hmR0SvmEmulateMovTpr(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx);
|
---|
5239 | if (rc == VINF_SUCCESS)
|
---|
5240 | {
|
---|
5241 | HMSVM_CHECK_SINGLE_STEP(pVCpu, rc);
|
---|
5242 | return VINF_SUCCESS;
|
---|
5243 | }
|
---|
5244 |
|
---|
5245 | if (rc == VERR_NOT_FOUND)
|
---|
5246 | {
|
---|
5247 | if (pVCpu->hm.s.fHypercallsEnabled)
|
---|
5248 | {
|
---|
5249 | VBOXSTRICTRC rcStrict = GIMHypercall(pVCpu, pCtx);
|
---|
5250 | if (RT_SUCCESS(VBOXSTRICTRC_VAL(rcStrict)))
|
---|
5251 | {
|
---|
5252 | if (rcStrict == VINF_SUCCESS)
|
---|
5253 | hmR0SvmAdvanceRipHwAssist(pVCpu, pCtx, 3 /* cbInstr */);
|
---|
5254 | else
|
---|
5255 | Assert( rcStrict == VINF_GIM_HYPERCALL_CONTINUING
|
---|
5256 | || rcStrict == VINF_GIM_R3_HYPERCALL);
|
---|
5257 |
|
---|
5258 | /* If the hypercall changes anything other than guest's general-purpose registers,
|
---|
5259 | we would need to reload the guest changed bits here before VM-entry. */
|
---|
5260 | }
|
---|
5261 | rc = VBOXSTRICTRC_VAL(rcStrict);
|
---|
5262 | }
|
---|
5263 | else
|
---|
5264 | Log4(("hmR0SvmExitVmmCall: Hypercalls not enabled\n"));
|
---|
5265 | }
|
---|
5266 |
|
---|
5267 | /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
|
---|
5268 | if (RT_FAILURE(rc))
|
---|
5269 | {
|
---|
5270 | hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
5271 | rc = VINF_SUCCESS;
|
---|
5272 | }
|
---|
5273 |
|
---|
5274 | return rc;
|
---|
5275 | }
|
---|
5276 |
|
---|
5277 |
|
---|
5278 | /**
|
---|
5279 | * \#VMEXIT handler for VMMCALL (SVM_EXIT_VMMCALL). Conditional \#VMEXIT.
|
---|
5280 | */
|
---|
5281 | HMSVM_EXIT_DECL hmR0SvmExitPause(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5282 | {
|
---|
5283 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5284 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitPause);
|
---|
5285 | return VINF_EM_RAW_INTERRUPT;
|
---|
5286 | }
|
---|
5287 |
|
---|
5288 |
|
---|
5289 | /**
|
---|
5290 | * \#VMEXIT handler for IRET (SVM_EXIT_IRET). Conditional \#VMEXIT.
|
---|
5291 | */
|
---|
5292 | HMSVM_EXIT_DECL hmR0SvmExitIret(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5293 | {
|
---|
5294 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5295 |
|
---|
5296 | /* Clear NMI blocking. */
|
---|
5297 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
|
---|
5298 |
|
---|
5299 | /* Indicate that we no longer need to #VMEXIT when the guest is ready to receive NMIs, it is now ready. */
|
---|
5300 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
5301 | hmR0SvmClearIretIntercept(pVmcb);
|
---|
5302 |
|
---|
5303 | /* Deliver the pending NMI via hmR0SvmEvaluatePendingEvent() and resume guest execution. */
|
---|
5304 | return VINF_SUCCESS;
|
---|
5305 | }
|
---|
5306 |
|
---|
5307 |
|
---|
5308 | /**
|
---|
5309 | * \#VMEXIT handler for page-fault exceptions (SVM_EXIT_EXCEPTION_E).
|
---|
5310 | * Conditional \#VMEXIT.
|
---|
5311 | */
|
---|
5312 | HMSVM_EXIT_DECL hmR0SvmExitXcptPF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5313 | {
|
---|
5314 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5315 |
|
---|
5316 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
5317 |
|
---|
5318 | /* See AMD spec. 15.12.15 "#PF (Page Fault)". */
|
---|
5319 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
5320 | uint32_t u32ErrCode = pVmcb->ctrl.u64ExitInfo1;
|
---|
5321 | RTGCUINTPTR uFaultAddress = pVmcb->ctrl.u64ExitInfo2;
|
---|
5322 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5323 |
|
---|
5324 | #if defined(HMSVM_ALWAYS_TRAP_ALL_XCPTS) || defined(HMSVM_ALWAYS_TRAP_PF)
|
---|
5325 | if (pVM->hm.s.fNestedPaging)
|
---|
5326 | {
|
---|
5327 | pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
|
---|
5328 | if (!pSvmTransient->fVectoringDoublePF)
|
---|
5329 | {
|
---|
5330 | /* A genuine guest #PF, reflect it to the guest. */
|
---|
5331 | hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
|
---|
5332 | Log4(("#PF: Guest page fault at %04X:%RGv FaultAddr=%RGv ErrCode=%#x\n", pCtx->cs.Sel, (RTGCPTR)pCtx->rip,
|
---|
5333 | uFaultAddress, u32ErrCode));
|
---|
5334 | }
|
---|
5335 | else
|
---|
5336 | {
|
---|
5337 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
5338 | hmR0SvmSetPendingXcptDF(pVCpu);
|
---|
5339 | Log4(("Pending #DF due to vectoring #PF. NP\n"));
|
---|
5340 | }
|
---|
5341 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
|
---|
5342 | return VINF_SUCCESS;
|
---|
5343 | }
|
---|
5344 | #endif
|
---|
5345 |
|
---|
5346 | Assert(!pVM->hm.s.fNestedPaging);
|
---|
5347 |
|
---|
5348 | #ifdef VBOX_HM_WITH_GUEST_PATCHING
|
---|
5349 | /* Shortcut for APIC TPR reads and writes; only applicable to 32-bit guests. */
|
---|
5350 | if ( pVM->hm.s.fTprPatchingAllowed
|
---|
5351 | && (uFaultAddress & 0xfff) == XAPIC_OFF_TPR
|
---|
5352 | && !(u32ErrCode & X86_TRAP_PF_P) /* Not present. */
|
---|
5353 | && !CPUMIsGuestInLongModeEx(pCtx)
|
---|
5354 | && !CPUMGetGuestCPL(pVCpu)
|
---|
5355 | && pVM->hm.s.cPatches < RT_ELEMENTS(pVM->hm.s.aPatches))
|
---|
5356 | {
|
---|
5357 | RTGCPHYS GCPhysApicBase;
|
---|
5358 | GCPhysApicBase = APICGetBaseMsrNoCheck(pVCpu);
|
---|
5359 | GCPhysApicBase &= PAGE_BASE_GC_MASK;
|
---|
5360 |
|
---|
5361 | /* Check if the page at the fault-address is the APIC base. */
|
---|
5362 | RTGCPHYS GCPhysPage;
|
---|
5363 | int rc2 = PGMGstGetPage(pVCpu, (RTGCPTR)uFaultAddress, NULL /* pfFlags */, &GCPhysPage);
|
---|
5364 | if ( rc2 == VINF_SUCCESS
|
---|
5365 | && GCPhysPage == GCPhysApicBase)
|
---|
5366 | {
|
---|
5367 | /* Only attempt to patch the instruction once. */
|
---|
5368 | PHMTPRPATCH pPatch = (PHMTPRPATCH)RTAvloU32Get(&pVM->hm.s.PatchTree, (AVLOU32KEY)pCtx->eip);
|
---|
5369 | if (!pPatch)
|
---|
5370 | return VINF_EM_HM_PATCH_TPR_INSTR;
|
---|
5371 | }
|
---|
5372 | }
|
---|
5373 | #endif
|
---|
5374 |
|
---|
5375 | Log4(("#PF: uFaultAddress=%#RX64 CS:RIP=%#04x:%#RX64 u32ErrCode %#RX32 cr3=%#RX64\n", uFaultAddress, pCtx->cs.Sel,
|
---|
5376 | pCtx->rip, u32ErrCode, pCtx->cr3));
|
---|
5377 |
|
---|
5378 | /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
|
---|
5379 | of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
|
---|
5380 | if (pSvmTransient->fVectoringPF)
|
---|
5381 | {
|
---|
5382 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
5383 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
5384 | }
|
---|
5385 |
|
---|
5386 | TRPMAssertXcptPF(pVCpu, uFaultAddress, u32ErrCode);
|
---|
5387 | int rc = PGMTrap0eHandler(pVCpu, u32ErrCode, CPUMCTX2CORE(pCtx), (RTGCPTR)uFaultAddress);
|
---|
5388 |
|
---|
5389 | Log4(("#PF rc=%Rrc\n", rc));
|
---|
5390 |
|
---|
5391 | if (rc == VINF_SUCCESS)
|
---|
5392 | {
|
---|
5393 | /* Successfully synced shadow pages tables or emulated an MMIO instruction. */
|
---|
5394 | TRPMResetTrap(pVCpu);
|
---|
5395 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPF);
|
---|
5396 | HMCPU_CF_SET(pVCpu, HM_CHANGED_ALL_GUEST);
|
---|
5397 | return rc;
|
---|
5398 | }
|
---|
5399 | else if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
5400 | {
|
---|
5401 | pVCpu->hm.s.Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
|
---|
5402 |
|
---|
5403 | if (!pSvmTransient->fVectoringDoublePF)
|
---|
5404 | {
|
---|
5405 | /* It's a guest page fault and needs to be reflected to the guest. */
|
---|
5406 | u32ErrCode = TRPMGetErrorCode(pVCpu); /* The error code might have been changed. */
|
---|
5407 | TRPMResetTrap(pVCpu);
|
---|
5408 | hmR0SvmSetPendingXcptPF(pVCpu, pCtx, u32ErrCode, uFaultAddress);
|
---|
5409 | }
|
---|
5410 | else
|
---|
5411 | {
|
---|
5412 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
5413 | TRPMResetTrap(pVCpu);
|
---|
5414 | hmR0SvmSetPendingXcptDF(pVCpu);
|
---|
5415 | Log4(("#PF: Pending #DF due to vectoring #PF\n"));
|
---|
5416 | }
|
---|
5417 |
|
---|
5418 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestPF);
|
---|
5419 | return VINF_SUCCESS;
|
---|
5420 | }
|
---|
5421 |
|
---|
5422 | TRPMResetTrap(pVCpu);
|
---|
5423 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowPFEM);
|
---|
5424 | return rc;
|
---|
5425 | }
|
---|
5426 |
|
---|
5427 |
|
---|
5428 | /**
|
---|
5429 | * \#VMEXIT handler for device-not-available exceptions (SVM_EXIT_EXCEPTION_7).
|
---|
5430 | * Conditional \#VMEXIT.
|
---|
5431 | */
|
---|
5432 | HMSVM_EXIT_DECL hmR0SvmExitXcptNM(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5433 | {
|
---|
5434 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5435 |
|
---|
5436 | /* Paranoia; Ensure we cannot be called as a result of event delivery. */
|
---|
5437 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb; NOREF(pVmcb);
|
---|
5438 | Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid);
|
---|
5439 |
|
---|
5440 | /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
|
---|
5441 | VMMRZCallRing3Disable(pVCpu);
|
---|
5442 | HM_DISABLE_PREEMPT();
|
---|
5443 |
|
---|
5444 | int rc;
|
---|
5445 | /* If the guest FPU was active at the time of the #NM exit, then it's a guest fault. */
|
---|
5446 | if (pSvmTransient->fWasGuestFPUStateActive)
|
---|
5447 | {
|
---|
5448 | rc = VINF_EM_RAW_GUEST_TRAP;
|
---|
5449 | Assert(CPUMIsGuestFPUStateActive(pVCpu) || HMCPU_CF_IS_PENDING(pVCpu, HM_CHANGED_GUEST_CR0));
|
---|
5450 | }
|
---|
5451 | else
|
---|
5452 | {
|
---|
5453 | #ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
5454 | Assert(!pSvmTransient->fWasGuestFPUStateActive);
|
---|
5455 | #endif
|
---|
5456 | rc = CPUMR0Trap07Handler(pVCpu->CTX_SUFF(pVM), pVCpu); /* (No need to set HM_CHANGED_HOST_CONTEXT for SVM.) */
|
---|
5457 | Assert( rc == VINF_EM_RAW_GUEST_TRAP
|
---|
5458 | || ((rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED) && CPUMIsGuestFPUStateActive(pVCpu)));
|
---|
5459 | }
|
---|
5460 |
|
---|
5461 | HM_RESTORE_PREEMPT();
|
---|
5462 | VMMRZCallRing3Enable(pVCpu);
|
---|
5463 |
|
---|
5464 | if (rc == VINF_SUCCESS || rc == VINF_CPUM_HOST_CR0_MODIFIED)
|
---|
5465 | {
|
---|
5466 | /* Guest FPU state was activated, we'll want to change CR0 FPU intercepts before the next VM-reentry. */
|
---|
5467 | HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
|
---|
5468 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitShadowNM);
|
---|
5469 | pVCpu->hm.s.fPreloadGuestFpu = true;
|
---|
5470 | }
|
---|
5471 | else
|
---|
5472 | {
|
---|
5473 | /* Forward #NM to the guest. */
|
---|
5474 | Assert(rc == VINF_EM_RAW_GUEST_TRAP);
|
---|
5475 | hmR0SvmSetPendingXcptNM(pVCpu);
|
---|
5476 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestNM);
|
---|
5477 | }
|
---|
5478 | return VINF_SUCCESS;
|
---|
5479 | }
|
---|
5480 |
|
---|
5481 |
|
---|
5482 | /**
|
---|
5483 | * \#VMEXIT handler for undefined opcode (SVM_EXIT_EXCEPTION_6).
|
---|
5484 | * Conditional \#VMEXIT.
|
---|
5485 | */
|
---|
5486 | HMSVM_EXIT_DECL hmR0SvmExitXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5487 | {
|
---|
5488 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5489 |
|
---|
5490 | /* Paranoia; Ensure we cannot be called as a result of event delivery. */
|
---|
5491 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb; NOREF(pVmcb);
|
---|
5492 | Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid);
|
---|
5493 |
|
---|
5494 | int rc = VERR_SVM_UNEXPECTED_XCPT_EXIT;
|
---|
5495 | if (pVCpu->hm.s.fGIMTrapXcptUD)
|
---|
5496 | {
|
---|
5497 | uint8_t cbInstr = 0;
|
---|
5498 | VBOXSTRICTRC rcStrict = GIMXcptUD(pVCpu, pCtx, NULL /* pDis */, &cbInstr);
|
---|
5499 | if (rcStrict == VINF_SUCCESS)
|
---|
5500 | {
|
---|
5501 | /* #UD #VMEXIT does not have valid NRIP information, manually advance RIP. See @bugref{7270#c170}. */
|
---|
5502 | hmR0SvmAdvanceRipDumb(pVCpu, pCtx, cbInstr);
|
---|
5503 | rc = VINF_SUCCESS;
|
---|
5504 | }
|
---|
5505 | else if (rcStrict == VINF_GIM_HYPERCALL_CONTINUING)
|
---|
5506 | rc = VINF_SUCCESS;
|
---|
5507 | else if (rcStrict == VINF_GIM_R3_HYPERCALL)
|
---|
5508 | rc = VINF_GIM_R3_HYPERCALL;
|
---|
5509 | else
|
---|
5510 | Assert(RT_FAILURE(VBOXSTRICTRC_VAL(rcStrict)));
|
---|
5511 | }
|
---|
5512 |
|
---|
5513 | /* If the GIM #UD exception handler didn't succeed for some reason or wasn't needed, raise #UD. */
|
---|
5514 | if (RT_FAILURE(rc))
|
---|
5515 | {
|
---|
5516 | hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
5517 | rc = VINF_SUCCESS;
|
---|
5518 | }
|
---|
5519 |
|
---|
5520 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestUD);
|
---|
5521 | return rc;
|
---|
5522 | }
|
---|
5523 |
|
---|
5524 |
|
---|
5525 | /**
|
---|
5526 | * \#VMEXIT handler for math-fault exceptions (SVM_EXIT_EXCEPTION_10).
|
---|
5527 | * Conditional \#VMEXIT.
|
---|
5528 | */
|
---|
5529 | HMSVM_EXIT_DECL hmR0SvmExitXcptMF(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5530 | {
|
---|
5531 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5532 |
|
---|
5533 | /* Paranoia; Ensure we cannot be called as a result of event delivery. */
|
---|
5534 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb; NOREF(pVmcb);
|
---|
5535 | Assert(!pVmcb->ctrl.ExitIntInfo.n.u1Valid);
|
---|
5536 |
|
---|
5537 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestMF);
|
---|
5538 |
|
---|
5539 | if (!(pCtx->cr0 & X86_CR0_NE))
|
---|
5540 | {
|
---|
5541 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5542 | PDISSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
5543 | unsigned cbOp;
|
---|
5544 | int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp);
|
---|
5545 | if (RT_SUCCESS(rc))
|
---|
5546 | {
|
---|
5547 | /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
|
---|
5548 | rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
|
---|
5549 | if (RT_SUCCESS(rc))
|
---|
5550 | pCtx->rip += cbOp;
|
---|
5551 | }
|
---|
5552 | else
|
---|
5553 | Log4(("hmR0SvmExitXcptMF: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
|
---|
5554 | return rc;
|
---|
5555 | }
|
---|
5556 |
|
---|
5557 | hmR0SvmSetPendingXcptMF(pVCpu);
|
---|
5558 | return VINF_SUCCESS;
|
---|
5559 | }
|
---|
5560 |
|
---|
5561 |
|
---|
5562 | /**
|
---|
5563 | * \#VMEXIT handler for debug exceptions (SVM_EXIT_EXCEPTION_1). Conditional
|
---|
5564 | * \#VMEXIT.
|
---|
5565 | */
|
---|
5566 | HMSVM_EXIT_DECL hmR0SvmExitXcptDB(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5567 | {
|
---|
5568 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5569 |
|
---|
5570 | /* If this #DB is the result of delivering an event, go back to the interpreter. */
|
---|
5571 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
5572 | if (RT_UNLIKELY(pVCpu->hm.s.Event.fPending))
|
---|
5573 | {
|
---|
5574 | STAM_COUNTER_INC(&pVCpu->hm.s.StatInjectPendingInterpret);
|
---|
5575 | return VERR_EM_INTERPRETER;
|
---|
5576 | }
|
---|
5577 |
|
---|
5578 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitGuestDB);
|
---|
5579 |
|
---|
5580 | /* This can be a fault-type #DB (instruction breakpoint) or a trap-type #DB (data breakpoint). However, for both cases
|
---|
5581 | DR6 and DR7 are updated to what the exception handler expects. See AMD spec. 15.12.2 "#DB (Debug)". */
|
---|
5582 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
5583 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
5584 | int rc = DBGFRZTrap01Handler(pVM, pVCpu, CPUMCTX2CORE(pCtx), pVmcb->guest.u64DR6, pVCpu->hm.s.fSingleInstruction);
|
---|
5585 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
5586 | {
|
---|
5587 | Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> guest trap\n", pVmcb->guest.u64DR6));
|
---|
5588 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
5589 | CPUMSetGuestDR6(pVCpu, CPUMGetGuestDR6(pVCpu) | pVmcb->guest.u64DR6);
|
---|
5590 |
|
---|
5591 | /* Reflect the exception back to the guest. */
|
---|
5592 | hmR0SvmSetPendingXcptDB(pVCpu);
|
---|
5593 | rc = VINF_SUCCESS;
|
---|
5594 | }
|
---|
5595 |
|
---|
5596 | /*
|
---|
5597 | * Update DR6.
|
---|
5598 | */
|
---|
5599 | if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
5600 | {
|
---|
5601 | Log5(("hmR0SvmExitXcptDB: DR6=%#RX64 -> %Rrc\n", pVmcb->guest.u64DR6, rc));
|
---|
5602 | pVmcb->guest.u64DR6 = X86_DR6_INIT_VAL;
|
---|
5603 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
5604 | }
|
---|
5605 | else
|
---|
5606 | {
|
---|
5607 | AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc));
|
---|
5608 | Assert(!pVCpu->hm.s.fSingleInstruction && !DBGFIsStepping(pVCpu));
|
---|
5609 | }
|
---|
5610 |
|
---|
5611 | return rc;
|
---|
5612 | }
|
---|
5613 |
|
---|
5614 |
|
---|
5615 | /**
|
---|
5616 | * \#VMEXIT handler for alignment check exceptions (SVM_EXIT_EXCEPTION_11).
|
---|
5617 | * Conditional \#VMEXIT.
|
---|
5618 | */
|
---|
5619 | HMSVM_EXIT_DECL hmR0SvmExitXcptAC(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5620 | {
|
---|
5621 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5622 |
|
---|
5623 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
5624 |
|
---|
5625 | SVMEVENT Event;
|
---|
5626 | Event.u = 0;
|
---|
5627 | Event.n.u1Valid = 1;
|
---|
5628 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
5629 | Event.n.u8Vector = X86_XCPT_AC;
|
---|
5630 | Event.n.u1ErrorCodeValid = 1;
|
---|
5631 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
5632 | return VINF_SUCCESS;
|
---|
5633 | }
|
---|
5634 |
|
---|
5635 |
|
---|
5636 | /**
|
---|
5637 | * \#VMEXIT handler for breakpoint exceptions (SVM_EXIT_EXCEPTION_3).
|
---|
5638 | * Conditional \#VMEXIT.
|
---|
5639 | */
|
---|
5640 | HMSVM_EXIT_DECL hmR0SvmExitXcptBP(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5641 | {
|
---|
5642 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5643 |
|
---|
5644 | HMSVM_CHECK_EXIT_DUE_TO_EVENT_DELIVERY();
|
---|
5645 |
|
---|
5646 | int rc = DBGFRZTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
5647 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
5648 | {
|
---|
5649 | SVMEVENT Event;
|
---|
5650 | Event.u = 0;
|
---|
5651 | Event.n.u1Valid = 1;
|
---|
5652 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
5653 | Event.n.u8Vector = X86_XCPT_BP;
|
---|
5654 | Event.n.u1ErrorCodeValid = 0;
|
---|
5655 | hmR0SvmSetPendingEvent(pVCpu, &Event, 0 /* GCPtrFaultAddress */);
|
---|
5656 | }
|
---|
5657 |
|
---|
5658 | Assert(rc == VINF_SUCCESS || rc == VINF_EM_RAW_GUEST_TRAP || rc == VINF_EM_DBG_BREAKPOINT);
|
---|
5659 | return rc;
|
---|
5660 | }
|
---|
5661 |
|
---|
5662 |
|
---|
5663 | #ifdef VBOX_WITH_NESTED_HWVIRT
|
---|
5664 | /**
|
---|
5665 | * \#VMEXIT handler for CLGI (SVM_EXIT_CLGI). Conditional \#VMEXIT.
|
---|
5666 | */
|
---|
5667 | HMSVM_EXIT_DECL hmR0SvmExitClgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5668 | {
|
---|
5669 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5670 | /** @todo Stat. */
|
---|
5671 | /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitClgi); */
|
---|
5672 | VBOXSTRICTRC rcStrict = IEMExecDecodedClgi(pVCpu, 3);
|
---|
5673 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
5674 | }
|
---|
5675 |
|
---|
5676 |
|
---|
5677 | /**
|
---|
5678 | * \#VMEXIT handler for STGI (SVM_EXIT_STGI). Conditional \#VMEXIT.
|
---|
5679 | */
|
---|
5680 | HMSVM_EXIT_DECL hmR0SvmExitStgi(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5681 | {
|
---|
5682 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5683 | /** @todo Stat. */
|
---|
5684 | /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitStgi); */
|
---|
5685 | VBOXSTRICTRC rcStrict = IEMExecDecodedStgi(pVCpu, 3);
|
---|
5686 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
5687 | }
|
---|
5688 |
|
---|
5689 |
|
---|
5690 | /**
|
---|
5691 | * \#VMEXIT handler for VMLOAD (SVM_EXIT_VMLOAD). Conditional \#VMEXIT.
|
---|
5692 | */
|
---|
5693 | HMSVM_EXIT_DECL hmR0SvmExitVmload(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5694 | {
|
---|
5695 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5696 | /** @todo Stat. */
|
---|
5697 | /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmload); */
|
---|
5698 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmload(pVCpu, 3);
|
---|
5699 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
5700 | }
|
---|
5701 |
|
---|
5702 |
|
---|
5703 | /**
|
---|
5704 | * \#VMEXIT handler for VMSAVE (SVM_EXIT_VMSAVE). Conditional \#VMEXIT.
|
---|
5705 | */
|
---|
5706 | HMSVM_EXIT_DECL hmR0SvmExitVmsave(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
5707 | {
|
---|
5708 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
5709 | /** @todo Stat. */
|
---|
5710 | /* STAM_COUNTER_INC(&pVCpu->hm.s.StatExitVmsave); */
|
---|
5711 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmsave(pVCpu, 3);
|
---|
5712 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
5713 | }
|
---|
5714 | #endif /* VBOX_WITH_NESTED_HWVIRT */
|
---|
5715 |
|
---|
5716 |
|
---|
5717 | /** @} */
|
---|
5718 |
|
---|