1 | /* $Id: HMSVMR0.cpp 46562 2013-06-14 13:41:37Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * HM SVM (AMD-V) - Host Context Ring-0.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2013 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 | /*******************************************************************************
|
---|
19 | * Header Files *
|
---|
20 | *******************************************************************************/
|
---|
21 |
|
---|
22 | #ifdef DEBUG_ramshankar
|
---|
23 | # define HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
24 | # define HMSVM_ALWAYS_TRAP_PF
|
---|
25 | #endif
|
---|
26 |
|
---|
27 |
|
---|
28 | /*******************************************************************************
|
---|
29 | * Defined Constants And Macros *
|
---|
30 | *******************************************************************************/
|
---|
31 | #ifdef VBOX_WITH_STATISTICS
|
---|
32 | # define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { \
|
---|
33 | if ((u64ExitCode) == SVM_EXIT_NPF) \
|
---|
34 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitReasonNpf); \
|
---|
35 | else \
|
---|
36 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatExitReasonR0[(u64ExitCode) & MASK_EXITREASON_STAT]); \
|
---|
37 | } while (0)
|
---|
38 | #else
|
---|
39 | # define HMSVM_EXITCODE_STAM_COUNTER_INC(u64ExitCode) do { } while (0)
|
---|
40 | #endif
|
---|
41 |
|
---|
42 | /** If we decide to use a function table approach this can be useful to
|
---|
43 | * switch to a "static DECLCALLBACK(int)". */
|
---|
44 | #define HMSVM_EXIT_DECL static int
|
---|
45 |
|
---|
46 | /** @name Segment attribute conversion between CPU and AMD-V VMCB format.
|
---|
47 | *
|
---|
48 | * The CPU format of the segment attribute is described in X86DESCATTRBITS
|
---|
49 | * which is 16-bits (i.e. includes 4 bits of the segment limit).
|
---|
50 | *
|
---|
51 | * The AMD-V VMCB format the segment attribute is compact 12-bits (strictly
|
---|
52 | * only the attribute bits and nothing else). Upper 4-bits are unused.
|
---|
53 | *
|
---|
54 | * @{ */
|
---|
55 | #define HMSVM_CPU_2_VMCB_SEG_ATTR(a) (a & 0xff) | ((a & 0xf000) >> 4)
|
---|
56 | #define HMSVM_VMCB_2_CPU_SEG_ATTR(a) (a & 0xff) | ((a & 0x0f00) << 4)
|
---|
57 | /** @} */
|
---|
58 |
|
---|
59 | /** @name Macros for loading, storing segment registers to/from the VMCB.
|
---|
60 | * @{ */
|
---|
61 | #define HMSVM_LOAD_SEG_REG(REG, reg) \
|
---|
62 | do \
|
---|
63 | { \
|
---|
64 | Assert(pCtx->reg.fFlags & CPUMSELREG_FLAGS_VALID); \
|
---|
65 | Assert(pCtx->reg.ValidSel == pCtx->reg.Sel); \
|
---|
66 | pVmcb->guest.REG.u16Sel = pCtx->reg.Sel; \
|
---|
67 | pVmcb->guest.REG.u32Limit = pCtx->reg.u32Limit; \
|
---|
68 | pVmcb->guest.REG.u64Base = pCtx->reg.u64Base; \
|
---|
69 | pVmcb->guest.REG.u16Attr = HMSVM_CPU_2_VMCB_SEG_ATTR(pCtx->reg.Attr.u); \
|
---|
70 | } while (0)
|
---|
71 |
|
---|
72 | #define HMSVM_SAVE_SEG_REG(REG, reg) \
|
---|
73 | do \
|
---|
74 | { \
|
---|
75 | pCtx->reg.Sel = pVmcb->guest.REG.u16Sel; \
|
---|
76 | pCtx->reg.ValidSel = pVmcb->guest.REG.u16Sel; \
|
---|
77 | pCtx->reg.fFlags = CPUMSELREG_FLAGS_VALID; \
|
---|
78 | pCtx->reg.u32Limit = pVmcb->guest.REG.u32Limit; \
|
---|
79 | pCtx->reg.u64Base = pVmcb->guest.REG.u64Base; \
|
---|
80 | pCtx->reg.Attr.u = HMSVM_VMCB_2_CPU_SEG_ATTR(pVmcb->guest.REG.u16Attr); \
|
---|
81 | } while (0)
|
---|
82 | /** @} */
|
---|
83 |
|
---|
84 | /** @name VMCB Clean Bits.
|
---|
85 | *
|
---|
86 | * These flags are used for VMCB-state caching. A set VMCB Clean Bit indicates
|
---|
87 | * AMD-V doesn't need to reload the corresponding value(s) from the VMCB in
|
---|
88 | * memory.
|
---|
89 | *
|
---|
90 | * @{ */
|
---|
91 | /** All intercepts vectors, TSC offset, PAUSE filter counter. */
|
---|
92 | #define HMSVM_VMCB_CLEAN_INTERCEPTS RT_BIT(0)
|
---|
93 | /** I/O permission bitmap, MSR permission bitmap. */
|
---|
94 | #define HMSVM_VMCB_CLEAN_IOPM_MSRPM RT_BIT(1)
|
---|
95 | /** ASID. */
|
---|
96 | #define HMSVM_VMCB_CLEAN_ASID RT_BIT(2)
|
---|
97 | /** TRP: V_TPR, V_IRQ, V_INTR_PRIO, V_IGN_TPR, V_INTR_MASKING,
|
---|
98 | V_INTR_VECTOR. */
|
---|
99 | #define HMSVM_VMCB_CLEAN_TPR RT_BIT(3)
|
---|
100 | /** Nested Paging: Nested CR3 (nCR3), PAT. */
|
---|
101 | #define HMSVM_VMCB_CLEAN_NP RT_BIT(4)
|
---|
102 | /** Control registers (CR0, CR3, CR4, EFER). */
|
---|
103 | #define HMSVM_VMCB_CLEAN_CRX RT_BIT(5)
|
---|
104 | /** Debug registers (DR6, DR7). */
|
---|
105 | #define HMSVM_VMCB_CLEAN_DRX RT_BIT(6)
|
---|
106 | /** GDT, IDT limit and base. */
|
---|
107 | #define HMSVM_VMCB_CLEAN_DT RT_BIT(7)
|
---|
108 | /** Segment register: CS, SS, DS, ES limit and base. */
|
---|
109 | #define HMSVM_VMCB_CLEAN_SEG RT_BIT(8)
|
---|
110 | /** CR2.*/
|
---|
111 | #define HMSVM_VMCB_CLEAN_CR2 RT_BIT(9)
|
---|
112 | /** Last-branch record (DbgCtlMsr, br_from, br_to, lastint_from, lastint_to) */
|
---|
113 | #define HMSVM_VMCB_CLEAN_LBR RT_BIT(10)
|
---|
114 | /** AVIC (AVIC APIC_BAR; AVIC APIC_BACKING_PAGE, AVIC
|
---|
115 | PHYSICAL_TABLE and AVIC LOGICAL_TABLE Pointers). */
|
---|
116 | #define HMSVM_VMCB_CLEAN_AVIC RT_BIT(11)
|
---|
117 | /** Mask of all valid VMCB Clean bits. */
|
---|
118 | #define HMSVM_VMCB_CLEAN_ALL ( HMSVM_VMCB_CLEAN_INTERCEPTS
|
---|
119 | | HMSVM_VMCB_CLEAN_IOPM_MSRPM
|
---|
120 | | HMSVM_VMCB_CLEAN_ASID
|
---|
121 | | HMSVM_VMCB_CLEAN_TPR
|
---|
122 | | HMSVM_VMCB_CLEAN_NP
|
---|
123 | | HMSVM_VMCB_CLEAN_CRX
|
---|
124 | | HMSVM_VMCB_CLEAN_DRX
|
---|
125 | | HMSVM_VMCB_CLEAN_DT
|
---|
126 | | HMSVM_VMCB_CLEAN_SEG
|
---|
127 | | HMSVM_VMCB_CLEAN_CR2
|
---|
128 | | HMSVM_VMCB_CLEAN_LBR
|
---|
129 | | HMSVM_VMCB_CLEAN_AVIC)
|
---|
130 | /** @} */
|
---|
131 |
|
---|
132 | /** @name SVM transient.
|
---|
133 | *
|
---|
134 | * A state structure for holding miscellaneous information across AMD-V
|
---|
135 | * VMRUN/#VMEXIT operation, restored after the transition.
|
---|
136 | *
|
---|
137 | * @{ */
|
---|
138 | typedef struct SVMTRANSIENT
|
---|
139 | {
|
---|
140 | /** The host's rflags/eflags. */
|
---|
141 | RTCCUINTREG uEFlags;
|
---|
142 | #if HC_ARCH_BITS == 32
|
---|
143 | uint32_t u32Alignment0;
|
---|
144 | #endif
|
---|
145 |
|
---|
146 | /** The #VMEXIT exit code (the EXITCODE field in the VMCB). */
|
---|
147 | uint64_t u64ExitCode;
|
---|
148 | /** The guest's TPR value used for TPR shadowing. */
|
---|
149 | uint8_t u8GuestTpr;
|
---|
150 | } SVMTRANSIENT, *PSVMTRANSIENT;
|
---|
151 | /** @} */
|
---|
152 |
|
---|
153 |
|
---|
154 | /**
|
---|
155 | * MSRPM (MSR permission bitmap) read permissions (for guest RDMSR).
|
---|
156 | */
|
---|
157 | typedef enum SVMMSREXITREAD
|
---|
158 | {
|
---|
159 | /** Reading this MSR causes a VM-exit. */
|
---|
160 | SVMMSREXIT_INTERCEPT_READ = 0xb,
|
---|
161 | /** Reading this MSR does not cause a VM-exit. */
|
---|
162 | SVMMSREXIT_PASSTHRU_READ
|
---|
163 | } SVMMSREXITREAD;
|
---|
164 |
|
---|
165 | /**
|
---|
166 | * MSRPM (MSR permission bitmap) write permissions (for guest WRMSR).
|
---|
167 | */
|
---|
168 | typedef enum SVMMSREXITWRITE
|
---|
169 | {
|
---|
170 | /** Writing to this MSR causes a VM-exit. */
|
---|
171 | SVMMSREXIT_INTERCEPT_WRITE = 0xd,
|
---|
172 | /** Writing to this MSR does not cause a VM-exit. */
|
---|
173 | SVMMSREXIT_PASSTHRU_WRITE
|
---|
174 | } SVMMSREXITWRITE;
|
---|
175 |
|
---|
176 |
|
---|
177 | /*******************************************************************************
|
---|
178 | * Internal Functions *
|
---|
179 | *******************************************************************************/
|
---|
180 | static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, unsigned uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite);
|
---|
181 |
|
---|
182 | DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient);
|
---|
183 |
|
---|
184 |
|
---|
185 | /*******************************************************************************
|
---|
186 | * Global Variables *
|
---|
187 | *******************************************************************************/
|
---|
188 | /** Ring-0 memory object for the IO bitmap. */
|
---|
189 | RTR0MEMOBJ g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
|
---|
190 | /** Physical address of the IO bitmap. */
|
---|
191 | RTHCPHYS g_HCPhysIOBitmap = 0;
|
---|
192 | /** Virtual address of the IO bitmap. */
|
---|
193 | R0PTRTYPE(void *) g_pvIOBitmap = NULL;
|
---|
194 |
|
---|
195 |
|
---|
196 | /**
|
---|
197 | * Sets up and activates AMD-V on the current CPU.
|
---|
198 | *
|
---|
199 | * @returns VBox status code.
|
---|
200 | * @param pCpu Pointer to the CPU info struct.
|
---|
201 | * @param pVM Pointer to the VM (can be NULL after a resume!).
|
---|
202 | * @param pvCpuPage Pointer to the global CPU page.
|
---|
203 | * @param HCPhysCpuPage Physical address of the global CPU page.
|
---|
204 | */
|
---|
205 | VMMR0DECL(int) SVMR0EnableCpu(PHMGLOBLCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage, bool fEnabledByHost)
|
---|
206 | {
|
---|
207 | AssertReturn(!fEnabledByHost, VERR_INVALID_PARAMETER);
|
---|
208 | AssertReturn( HCPhysCpuPage
|
---|
209 | && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
|
---|
210 | AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
|
---|
211 |
|
---|
212 | /*
|
---|
213 | * We must turn on AMD-V and setup the host state physical address, as those MSRs are per CPU.
|
---|
214 | */
|
---|
215 | uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
|
---|
216 | if (u64HostEfer & MSR_K6_EFER_SVME)
|
---|
217 | {
|
---|
218 | /* If the VBOX_HWVIRTEX_IGNORE_SVM_IN_USE is active, then we blindly use AMD-V. */
|
---|
219 | if ( pVM
|
---|
220 | && pVM->hm.s.svm.fIgnoreInUseError)
|
---|
221 | {
|
---|
222 | pCpu->fIgnoreAMDVInUseError = true;
|
---|
223 | }
|
---|
224 |
|
---|
225 | if (!pCpu->fIgnoreAMDVInUseError)
|
---|
226 | return VERR_SVM_IN_USE;
|
---|
227 | }
|
---|
228 |
|
---|
229 | /* Turn on AMD-V in the EFER MSR. */
|
---|
230 | ASMWrMsr(MSR_K6_EFER, u64HostEfer | MSR_K6_EFER_SVME);
|
---|
231 |
|
---|
232 | /* Write the physical page address where the CPU will store the host state while executing the VM. */
|
---|
233 | ASMWrMsr(MSR_K8_VM_HSAVE_PA, HCPhysCpuPage);
|
---|
234 |
|
---|
235 | /*
|
---|
236 | * Theoretically, other hypervisors may have used ASIDs, ideally we should flush all non-zero ASIDs
|
---|
237 | * when enabling SVM. AMD doesn't have an SVM instruction to flush all ASIDs (flushing is done
|
---|
238 | * upon VMRUN). Therefore, just set the fFlushAsidBeforeUse flag which instructs hmR0SvmSetupTLB()
|
---|
239 | * to flush the TLB with before using a new ASID.
|
---|
240 | */
|
---|
241 | pCpu->fFlushAsidBeforeUse = true;
|
---|
242 |
|
---|
243 | /*
|
---|
244 | * Ensure each VCPU scheduled on this CPU gets a new VPID on resume. See @bugref{6255}.
|
---|
245 | */
|
---|
246 | ++pCpu->cTlbFlushes;
|
---|
247 |
|
---|
248 | return VINF_SUCCESS;
|
---|
249 | }
|
---|
250 |
|
---|
251 |
|
---|
252 | /**
|
---|
253 | * Deactivates AMD-V on the current CPU.
|
---|
254 | *
|
---|
255 | * @returns VBox status code.
|
---|
256 | * @param pCpu Pointer to the CPU info struct.
|
---|
257 | * @param pvCpuPage Pointer to the global CPU page.
|
---|
258 | * @param HCPhysCpuPage Physical address of the global CPU page.
|
---|
259 | */
|
---|
260 | VMMR0DECL(int) SVMR0DisableCpu(PHMGLOBLCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
|
---|
261 | {
|
---|
262 | AssertReturn( HCPhysCpuPage
|
---|
263 | && HCPhysCpuPage != NIL_RTHCPHYS, VERR_INVALID_PARAMETER);
|
---|
264 | AssertReturn(pvCpuPage, VERR_INVALID_PARAMETER);
|
---|
265 | NOREF(pCpu);
|
---|
266 |
|
---|
267 | /* Turn off AMD-V in the EFER MSR if AMD-V is active. */
|
---|
268 | uint64_t u64HostEfer = ASMRdMsr(MSR_K6_EFER);
|
---|
269 | if (u64HostEfer & MSR_K6_EFER_SVME)
|
---|
270 | {
|
---|
271 | ASMWrMsr(MSR_K6_EFER, u64HostEfer & ~MSR_K6_EFER_SVME);
|
---|
272 |
|
---|
273 | /* Invalidate host state physical address. */
|
---|
274 | ASMWrMsr(MSR_K8_VM_HSAVE_PA, 0);
|
---|
275 | }
|
---|
276 |
|
---|
277 | return VINF_SUCCESS;
|
---|
278 | }
|
---|
279 |
|
---|
280 |
|
---|
281 | /**
|
---|
282 | * Does global AMD-V initialization (called during module initialization).
|
---|
283 | *
|
---|
284 | * @returns VBox status code.
|
---|
285 | */
|
---|
286 | VMMR0DECL(int) SVMR0GlobalInit(void)
|
---|
287 | {
|
---|
288 | /*
|
---|
289 | * Allocate 12 KB for the IO bitmap. Since this is non-optional and we always intercept all IO accesses, it's done
|
---|
290 | * once globally here instead of per-VM.
|
---|
291 | */
|
---|
292 | int rc = RTR0MemObjAllocCont(&g_hMemObjIOBitmap, 3 << PAGE_SHIFT, false /* fExecutable */);
|
---|
293 | if (RT_FAILURE(rc))
|
---|
294 | return rc;
|
---|
295 |
|
---|
296 | g_pvIOBitmap = RTR0MemObjAddress(g_hMemObjIOBitmap);
|
---|
297 | g_HCPhysIOBitmap = RTR0MemObjGetPagePhysAddr(g_hMemObjIOBitmap, 0 /* iPage */);
|
---|
298 |
|
---|
299 | /* Set all bits to intercept all IO accesses. */
|
---|
300 | ASMMemFill32(pVM->hm.s.svm.pvIOBitmap, 3 << PAGE_SHIFT, UINT32_C(0xffffffff));
|
---|
301 | }
|
---|
302 |
|
---|
303 |
|
---|
304 | /**
|
---|
305 | * Does global VT-x termination (called during module termination).
|
---|
306 | */
|
---|
307 | VMMR0DECL(void) SVMR0GlobalTerm(void)
|
---|
308 | {
|
---|
309 | if (g_hMemObjIOBitmap != NIL_RTR0MEMOBJ)
|
---|
310 | {
|
---|
311 | RTR0MemObjFree(pVM->hm.s.svm.hMemObjIOBitmap, false /* fFreeMappings */);
|
---|
312 | g_pvIOBitmap = NULL;
|
---|
313 | g_HCPhysIOBitmap = 0;
|
---|
314 | g_hMemObjIOBitmap = NIL_RTR0MEMOBJ;
|
---|
315 | }
|
---|
316 | }
|
---|
317 |
|
---|
318 |
|
---|
319 | /**
|
---|
320 | * Frees any allocated per-VCPU structures for a VM.
|
---|
321 | *
|
---|
322 | * @param pVM Pointer to the VM.
|
---|
323 | */
|
---|
324 | DECLINLINE(void) hmR0SvmFreeStructs(PVM pVM)
|
---|
325 | {
|
---|
326 | for (uint32_t i = 0; i < pVM->cCpus; i++)
|
---|
327 | {
|
---|
328 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
329 | AssertPtr(pVCpu);
|
---|
330 |
|
---|
331 | if (pVCpu->hm.s.svm.hMemObjVmcbHost != NIL_RTR0MEMOBJ)
|
---|
332 | {
|
---|
333 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcbHost, false);
|
---|
334 | pVCpu->hm.s.svm.pvVmcbHost = 0;
|
---|
335 | pVCpu->hm.s.svm.HCPhysVmcbHost = 0;
|
---|
336 | pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
|
---|
337 | }
|
---|
338 |
|
---|
339 | if (pVCpu->hm.s.svm.hMemObjVmcb != NIL_RTR0MEMOBJ)
|
---|
340 | {
|
---|
341 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjVmcb, false);
|
---|
342 | pVCpu->hm.s.svm.pvVmcb = 0;
|
---|
343 | pVCpu->hm.s.svm.HCPhysVmcb = 0;
|
---|
344 | pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
|
---|
345 | }
|
---|
346 |
|
---|
347 | if (pVCpu->hm.s.svm.hMemObjMsrBitmap != NIL_RTR0MEMOBJ)
|
---|
348 | {
|
---|
349 | RTR0MemObjFree(pVCpu->hm.s.svm.hMemObjMsrBitmap, false);
|
---|
350 | pVCpu->hm.s.svm.pvMsrBitmap = 0;
|
---|
351 | pVCpu->hm.s.svm.HCPhysMsrBitmap = 0;
|
---|
352 | pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
353 | }
|
---|
354 | }
|
---|
355 | }
|
---|
356 |
|
---|
357 |
|
---|
358 | /**
|
---|
359 | * Does per-VM AMD-V initialization.
|
---|
360 | *
|
---|
361 | * @returns VBox status code.
|
---|
362 | * @param pVM Pointer to the VM.
|
---|
363 | */
|
---|
364 | VMMR0DECL(int) SVMR0InitVM(PVM pVM)
|
---|
365 | {
|
---|
366 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
367 |
|
---|
368 | /*
|
---|
369 | * Check for an AMD CPU erratum which requires us to flush the TLB before every world-switch.
|
---|
370 | */
|
---|
371 | uint32_t u32Family;
|
---|
372 | uint32_t u32Model;
|
---|
373 | uint32_t u32Stepping;
|
---|
374 | if (HMAmdIsSubjectToErratum170(&u32Family, &u32Model, &u32Stepping))
|
---|
375 | {
|
---|
376 | Log4(("SVMR0InitVM: AMD cpu with erratum 170 family %#x model %#x stepping %#x\n", u32Family, u32Model, u32Stepping));
|
---|
377 | pVM->hm.s.svm.fAlwaysFlushTLB = true;
|
---|
378 | }
|
---|
379 |
|
---|
380 | /*
|
---|
381 | * Initialize the R0 memory objects up-front so we can properly cleanup on allocation failures.
|
---|
382 | */
|
---|
383 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
384 | {
|
---|
385 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
386 | pVCpu->hm.s.svm.hMemObjVmcbHost = NIL_RTR0MEMOBJ;
|
---|
387 | pVCpu->hm.s.svm.hMemObjVmcb = NIL_RTR0MEMOBJ;
|
---|
388 | pVCpu->hm.s.svm.hMemObjMsrBitmap = NIL_RTR0MEMOBJ;
|
---|
389 | }
|
---|
390 |
|
---|
391 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
392 | {
|
---|
393 | /*
|
---|
394 | * Allocate one page for the host-context VM control block (VMCB). This is used for additional host-state (such as
|
---|
395 | * FS, GS, Kernel GS Base, etc.) apart from the host-state save area specified in MSR_K8_VM_HSAVE_PA.
|
---|
396 | */
|
---|
397 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcbHost, 1 << PAGE_SHIFT, false /* fExecutable */);
|
---|
398 | if (RT_FAILURE(rc))
|
---|
399 | goto failure_cleanup;
|
---|
400 |
|
---|
401 | pVCpu->hm.s.svm.pvVmcbHost = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcbHost);
|
---|
402 | pVCpu->hm.s.svm.HCPhysVmcbHost = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcbHost, 0 /* iPage */);
|
---|
403 | Assert(pVCpu->hm.s.svm.HCPhysVmcbHost < _4G);
|
---|
404 | ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcbHost);
|
---|
405 |
|
---|
406 | /*
|
---|
407 | * Allocate one page for the guest-state VMCB.
|
---|
408 | */
|
---|
409 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjVmcb, 1 << PAGE_SHIFT, false /* fExecutable */);
|
---|
410 | if (RT_FAILURE(rc))
|
---|
411 | goto failure_cleanup;
|
---|
412 |
|
---|
413 | pVCpu->hm.s.svm.pvVmcb = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjVmcb);
|
---|
414 | pVCpu->hm.s.svm.HCPhysVmcb = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjVmcb, 0 /* iPage */);
|
---|
415 | Assert(pVCpu->hm.s.svm.HCPhysVmcb < _4G);
|
---|
416 | ASMMemZeroPage(pVCpu->hm.s.svm.pvVmcb);
|
---|
417 |
|
---|
418 | /*
|
---|
419 | * Allocate two pages (8 KB) for the MSR permission bitmap. There doesn't seem to be a way to convince
|
---|
420 | * SVM to not require one.
|
---|
421 | */
|
---|
422 | rc = RTR0MemObjAllocCont(&pVCpu->hm.s.svm.hMemObjMsrBitmap, 2 << PAGE_SHIFT, false /* fExecutable */);
|
---|
423 | if (RT_FAILURE(rc))
|
---|
424 | failure_cleanup;
|
---|
425 |
|
---|
426 | pVCpu->hm.s.svm.pvMsrBitmap = RTR0MemObjAddress(pVCpu->hm.s.svm.hMemObjMsrBitmap);
|
---|
427 | pVCpu->hm.s.svm.HCPhysMsrBitmap = RTR0MemObjGetPagePhysAddr(pVCpu->hm.s.svm.hMemObjMsrBitmap, 0 /* iPage */);
|
---|
428 | /* Set all bits to intercept all MSR accesses (changed later on). */
|
---|
429 | ASMMemFill32(pVCpu->hm.s.svm.pvMsrBitmap, 2 << PAGE_SHIFT, 0xffffffff);
|
---|
430 | }
|
---|
431 |
|
---|
432 | return VINF_SUCCESS;
|
---|
433 |
|
---|
434 | failure_cleanup:
|
---|
435 | hmR0SvmFreeVMStructs(pVM);
|
---|
436 | return rc;
|
---|
437 | }
|
---|
438 |
|
---|
439 |
|
---|
440 | /**
|
---|
441 | * Does per-VM AMD-V termination.
|
---|
442 | *
|
---|
443 | * @returns VBox status code.
|
---|
444 | * @param pVM Pointer to the VM.
|
---|
445 | */
|
---|
446 | VMMR0DECL(int) SVMR0TermVM(PVM pVM)
|
---|
447 | {
|
---|
448 | hmR0SvmFreeVMStructs(pVM);
|
---|
449 | return VINF_SUCCESS;
|
---|
450 | }
|
---|
451 |
|
---|
452 |
|
---|
453 | /**
|
---|
454 | * Sets the permission bits for the specified MSR in the MSRPM.
|
---|
455 | *
|
---|
456 | * @param pVCpu Pointer to the VMCPU.
|
---|
457 | * @param uMsr The MSR for which the access permissions are being set.
|
---|
458 | * @param enmRead MSR read permissions.
|
---|
459 | * @param enmWrite MSR write permissions.
|
---|
460 | */
|
---|
461 | static void hmR0SvmSetMsrPermission(PVMCPU pVCpu, uint32_t uMsr, SVMMSREXITREAD enmRead, SVMMSREXITWRITE enmWrite)
|
---|
462 | {
|
---|
463 | unsigned ulBit;
|
---|
464 | uint8_t *pbMsrBitmap = (uint8_t *)pVCpu->hm.s.svm.pvMsrBitmap;
|
---|
465 |
|
---|
466 | /*
|
---|
467 | * Layout:
|
---|
468 | * Byte offset MSR range
|
---|
469 | * 0x000 - 0x7ff 0x00000000 - 0x00001fff
|
---|
470 | * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
|
---|
471 | * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
|
---|
472 | * 0x1800 - 0x1fff Reserved
|
---|
473 | */
|
---|
474 | if (uMsr <= 0x00001FFF)
|
---|
475 | {
|
---|
476 | /* Pentium-compatible MSRs. */
|
---|
477 | ulBit = uMsr * 2;
|
---|
478 | }
|
---|
479 | else if ( uMsr >= 0xC0000000
|
---|
480 | && uMsr <= 0xC0001FFF)
|
---|
481 | {
|
---|
482 | /* AMD Sixth Generation x86 Processor MSRs. */
|
---|
483 | ulBit = (uMsr - 0xC0000000) * 2;
|
---|
484 | pbMsrBitmap += 0x800;
|
---|
485 | }
|
---|
486 | else if ( uMsr >= 0xC0010000
|
---|
487 | && uMsr <= 0xC0011FFF)
|
---|
488 | {
|
---|
489 | /* AMD Seventh and Eighth Generation Processor MSRs. */
|
---|
490 | ulBit = (uMsr - 0xC0001000) * 2;
|
---|
491 | pbMsrBitmap += 0x1000;
|
---|
492 | }
|
---|
493 | else
|
---|
494 | {
|
---|
495 | AssertFailed();
|
---|
496 | return;
|
---|
497 | }
|
---|
498 |
|
---|
499 | Assert(ulBit < 0x3fff /* 16 * 1024 - 1 */);
|
---|
500 | if (enmRead == SVMMSREXIT_INTERCEPT_READ)
|
---|
501 | ASMBitSet(pbMsrBitmap, ulBit);
|
---|
502 | else
|
---|
503 | ASMBitClear(pbMsrBitmap, ulBit);
|
---|
504 |
|
---|
505 | if (enmWrite == SVMMSREXIT_INTERCEPT_WRITE)
|
---|
506 | ASMBitSet(pbMsrBitmap, ulBit + 1);
|
---|
507 | else
|
---|
508 | ASMBitClear(pbMsrBitmap, ulBit + 1);
|
---|
509 |
|
---|
510 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
|
---|
511 | }
|
---|
512 |
|
---|
513 |
|
---|
514 | /**
|
---|
515 | * Sets up AMD-V for the specified VM.
|
---|
516 | * This function is only called once per-VM during initalization.
|
---|
517 | *
|
---|
518 | * @returns VBox status code.
|
---|
519 | * @param pVM Pointer to the VM.
|
---|
520 | */
|
---|
521 | VMMR0DECL(int) SVMR0SetupVM(PVM pVM)
|
---|
522 | {
|
---|
523 | int rc = VINF_SUCCESS;
|
---|
524 |
|
---|
525 | AssertReturn(pVM, VERR_INVALID_PARAMETER);
|
---|
526 | Assert(pVM->hm.s.svm.fSupported);
|
---|
527 |
|
---|
528 | for (VMCPUID i = 0; i < pVM->cCpus; i++)
|
---|
529 | {
|
---|
530 | PVMCPU pVCpu = &pVM->aCpus[i];
|
---|
531 | PSVMVMCB pVmcb = (PSVMVMCB)pVM->aCpus[i].hm.s.svm.pvVmcb;
|
---|
532 |
|
---|
533 | AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
|
---|
534 |
|
---|
535 | /* Trap exceptions unconditionally (debug purposes). */
|
---|
536 | #ifdef HMSVM_ALWAYS_TRAP_PF
|
---|
537 | pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
|
---|
538 | #endif
|
---|
539 | #ifdef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
540 | pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_BP)
|
---|
541 | | RT_BIT(X86_XCPT_DB)
|
---|
542 | | RT_BIT(X86_XCPT_DE)
|
---|
543 | | RT_BIT(X86_XCPT_NM)
|
---|
544 | | RT_BIT(X86_XCPT_UD)
|
---|
545 | | RT_BIT(X86_XCPT_NP)
|
---|
546 | | RT_BIT(X86_XCPT_SS)
|
---|
547 | | RT_BIT(X86_XCPT_GP)
|
---|
548 | | RT_BIT(X86_XCPT_PF)
|
---|
549 | | RT_BIT(X86_XCPT_MF);
|
---|
550 | #endif
|
---|
551 |
|
---|
552 | /* Set up unconditional intercepts and conditions. */
|
---|
553 | pVmcb->ctrl.u32InterceptCtrl1 = SVM_CTRL1_INTERCEPT_INTR /* External interrupt causes a VM-exit. */
|
---|
554 | | SVM_CTRL1_INTERCEPT_VINTR /* When guest enables interrupts cause a VM-exit. */
|
---|
555 | | SVM_CTRL1_INTERCEPT_NMI /* Non-Maskable Interrupts causes a VM-exit. */
|
---|
556 | | SVM_CTRL1_INTERCEPT_SMI /* System Management Interrupt cause a VM-exit. */
|
---|
557 | | SVM_CTRL1_INTERCEPT_INIT /* INIT signal causes a VM-exit. */
|
---|
558 | | SVM_CTRL1_INTERCEPT_RDPMC /* RDPMC causes a VM-exit. */
|
---|
559 | | SVM_CTRL1_INTERCEPT_CPUID /* CPUID causes a VM-exit. */
|
---|
560 | | SVM_CTRL1_INTERCEPT_RSM /* RSM causes a VM-exit. */
|
---|
561 | | SVM_CTRL1_INTERCEPT_HLT /* HLT causes a VM-exit. */
|
---|
562 | | SVM_CTRL1_INTERCEPT_INOUT_BITMAP /* Use the IOPM to cause IOIO VM-exits. */
|
---|
563 | | SVM_CTRL1_INTERCEPT_MSR_SHADOW /* MSR access not covered by MSRPM causes a VM-exit.*/
|
---|
564 | | SVM_CTRL1_INTERCEPT_INVLPGA /* INVLPGA causes a VM-exit. */
|
---|
565 | | SVM_CTRL1_INTERCEPT_SHUTDOWN /* Shutdown events causes a VM-exit. */
|
---|
566 | | SVM_CTRL1_INTERCEPT_FERR_FREEZE; /* Intercept "freezing" during legacy FPU handling. */
|
---|
567 |
|
---|
568 | pVmcb->ctrl.u32InterceptCtrl2 = SVM_CTRL2_INTERCEPT_VMRUN /* VMRUN causes a VM-exit. */
|
---|
569 | | SVM_CTRL2_INTERCEPT_VMMCALL /* VMMCALL causes a VM-exit. */
|
---|
570 | | SVM_CTRL2_INTERCEPT_VMLOAD /* VMLOAD causes a VM-exit. */
|
---|
571 | | SVM_CTRL2_INTERCEPT_VMSAVE /* VMSAVE causes a VM-exit. */
|
---|
572 | | SVM_CTRL2_INTERCEPT_STGI /* STGI causes a VM-exit. */
|
---|
573 | | SVM_CTRL2_INTERCEPT_CLGI /* CLGI causes a VM-exit. */
|
---|
574 | | SVM_CTRL2_INTERCEPT_SKINIT /* SKINIT causes a VM-exit. */
|
---|
575 | | SVM_CTRL2_INTERCEPT_WBINVD /* WBINVD causes a VM-exit. */
|
---|
576 | | SVM_CTRL2_INTERCEPT_MONITOR /* MONITOR causes a VM-exit. */
|
---|
577 | | SVM_CTRL2_INTERCEPT_MWAIT; /* MWAIT causes a VM-exit. */
|
---|
578 |
|
---|
579 | /* CR0, CR4 reads must be intercepted, our shadow values are not necessarily the same as the guest's. */
|
---|
580 | pVmcb->ctrl.u16InterceptRdCRx = RT_BIT(0) | RT_BIT(4);
|
---|
581 |
|
---|
582 | /* CR0, CR4 writes must be intercepted for the same reasons as above. */
|
---|
583 | pVmcb->ctrl.u16InterceptWrCRx = RT_BIT(0) | RT_BIT(4);
|
---|
584 |
|
---|
585 | /* Intercept all DRx reads and writes by default. Changed later on. */
|
---|
586 | pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
|
---|
587 | pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
|
---|
588 |
|
---|
589 | /* Virtualize masking of INTR interrupts. (reads/writes from/to CR8 go to the V_TPR register) */
|
---|
590 | pVmcb->ctrl.IntCtrl.n.u1VIrqMasking = 1;
|
---|
591 |
|
---|
592 | /* Ignore the priority in the TPR; we take into account the guest TPR anyway while delivering interrupts. */
|
---|
593 | pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR = 1;
|
---|
594 |
|
---|
595 | /* Set IO and MSR bitmap permission bitmap physical addresses. */
|
---|
596 | pVmcb->ctrl.u64IOPMPhysAddr = g_HCPhysIOBitmap;
|
---|
597 | pVmcb->ctrl.u64MSRPMPhysAddr = pVCpu->hm.s.svm.HCPhysMsrBitmap;
|
---|
598 |
|
---|
599 | /* No LBR virtualization. */
|
---|
600 | pVmcb->ctrl.u64LBRVirt = 0;
|
---|
601 |
|
---|
602 | /* Initially set all VMCB clean bits to 0 indicating that everything should be loaded from memory. */
|
---|
603 | pVmcb->ctrl.u64VmcbCleanBits = 0;
|
---|
604 |
|
---|
605 | /* The guest ASID MBNZ, set it to 1. The host uses 0. */
|
---|
606 | pVmcb->ctrl.TLBCtrl.n.u32ASID = 1;
|
---|
607 |
|
---|
608 | /*
|
---|
609 | * Setup the PAT MSR (applicable for Nested Paging only).
|
---|
610 | * The default value should be 0x0007040600070406ULL, but we want to treat all guest memory as WB,
|
---|
611 | * so choose type 6 for all PAT slots.
|
---|
612 | */
|
---|
613 | pVmcb->guest.u64GPAT = UINT64_C(0x0006060606060606);
|
---|
614 |
|
---|
615 | /* Without Nested Paging, we need additionally intercepts. */
|
---|
616 | if (!pVM->hm.s.fNestedPaging)
|
---|
617 | {
|
---|
618 | /* CR3 reads/writes must be intercepted; our shadow values differ from the guest values. */
|
---|
619 | pVmcb->ctrl.u16InterceptRdCRx |= RT_BIT(3);
|
---|
620 | pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(3);
|
---|
621 |
|
---|
622 | /* Intercept INVLPG and task switches (may change CR3, EFLAGS, LDT). */
|
---|
623 | pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_INVLPG
|
---|
624 | | SVM_CTRL1_INTERCEPT_TASK_SWITCH;
|
---|
625 |
|
---|
626 | /* Page faults must be intercepted to implement shadow paging. */
|
---|
627 | pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_PF);
|
---|
628 | }
|
---|
629 |
|
---|
630 | /*
|
---|
631 | * The following MSRs are saved/restored automatically during the world-switch.
|
---|
632 | * Don't intercept guest read/write accesses to these MSRs.
|
---|
633 | */
|
---|
634 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
635 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_CSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
636 | hmR0SvmSetMsrPermission(pVCpu, MSR_K6_STAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
637 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_SF_MASK, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
638 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_FS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
639 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
640 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_KERNEL_GS_BASE, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
641 | hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_CS, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
642 | hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_ESP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
643 | hmR0SvmSetMsrPermission(pVCpu, MSR_IA32_SYSENTER_EIP, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
644 | }
|
---|
645 |
|
---|
646 | return rc;
|
---|
647 | }
|
---|
648 |
|
---|
649 |
|
---|
650 | /**
|
---|
651 | * Flushes the appropriate tagged-TLB entries.
|
---|
652 | *
|
---|
653 | * @param pVM Pointer to the VM.
|
---|
654 | * @param pVCpu Pointer to the VMCPU.
|
---|
655 | */
|
---|
656 | static void hmR0SvmFlushTaggedTlb(PVMCPU pVCpu)
|
---|
657 | {
|
---|
658 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
659 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
660 | PHMGLOBLCPUINFO pCpu = HMR0GetCurrentCpu();
|
---|
661 |
|
---|
662 | /*
|
---|
663 | * Force a TLB flush for the first world switch if the current CPU differs from the one we ran on last.
|
---|
664 | * This can happen both for start & resume due to long jumps back to ring-3.
|
---|
665 | * If the TLB flush count changed, another VM (VCPU rather) has hit the ASID limit while flushing the TLB,
|
---|
666 | * so we cannot reuse the ASIDs without flushing.
|
---|
667 | */
|
---|
668 | bool fNewAsid = false;
|
---|
669 | if ( pVCpu->hm.s.idLastCpu != pCpu->idCpu
|
---|
670 | || pVCpu->hm.s.cTlbFlushes != pCpu->cTlbFlushes)
|
---|
671 | {
|
---|
672 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlbWorldSwitch);
|
---|
673 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
674 | fNewAsid = true;
|
---|
675 | }
|
---|
676 |
|
---|
677 | /* Set TLB flush state as checked until we return from the world switch. */
|
---|
678 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true);
|
---|
679 |
|
---|
680 | /* Check for explicit TLB shootdowns. */
|
---|
681 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_TLB_FLUSH))
|
---|
682 | {
|
---|
683 | pVCpu->hm.s.fForceTLBFlush = true;
|
---|
684 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushTlb);
|
---|
685 | }
|
---|
686 |
|
---|
687 | pVCpu->hm.s.idLastCpu = pCpu->idCpu;
|
---|
688 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_NOTHING;
|
---|
689 |
|
---|
690 | if (pVM->hm.s.svm.fAlwaysFlushTLB)
|
---|
691 | {
|
---|
692 | /*
|
---|
693 | * This is the AMD erratum 170. We need to flush the entire TLB for each world switch. Sad.
|
---|
694 | */
|
---|
695 | pCpu->uCurrentAsid = 1;
|
---|
696 | pVCpu->hm.s.uCurrentAsid = 1;
|
---|
697 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
698 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
699 | }
|
---|
700 | else if (pVCpu->hm.s.fForceTLBFlush)
|
---|
701 | {
|
---|
702 | if (fNewAsid)
|
---|
703 | {
|
---|
704 | ++pCpu->uCurrentAsid;
|
---|
705 | bool fHitASIDLimit = false;
|
---|
706 | if (pCpu->uCurrentAsid >= pVM->hm.s.uMaxAsid)
|
---|
707 | {
|
---|
708 | pCpu->uCurrentAsid = 1; /* Wraparound at 1; host uses 0 */
|
---|
709 | pCpu->cTlbFlushes++; /* All VCPUs that run on this host CPU must use a new VPID. */
|
---|
710 | fHitASIDLimit = true;
|
---|
711 |
|
---|
712 | if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
713 | {
|
---|
714 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
715 | pCpu->fFlushAsidBeforeUse = true;
|
---|
716 | }
|
---|
717 | else
|
---|
718 | {
|
---|
719 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
720 | pCpu->fFlushAsidBeforeUse = false;
|
---|
721 | }
|
---|
722 | }
|
---|
723 |
|
---|
724 | if ( !fHitASIDLimit
|
---|
725 | && pCpu->fFlushAsidBeforeUse)
|
---|
726 | {
|
---|
727 | if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
728 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
729 | else
|
---|
730 | {
|
---|
731 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
732 | pCpu->fFlushAsidBeforeUse = false;
|
---|
733 | }
|
---|
734 | }
|
---|
735 |
|
---|
736 | pVCpu->hm.s.uCurrentAsid = pCpu->uCurrentAsid;
|
---|
737 | pVCpu->hm.s.cTlbFlushes = pCpu->cTlbFlushes;
|
---|
738 | }
|
---|
739 | else
|
---|
740 | {
|
---|
741 | if (pVM->hm.s.svm.u32Features & AMD_CPUID_SVM_FEATURE_EDX_FLUSH_BY_ASID)
|
---|
742 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_SINGLE_CONTEXT;
|
---|
743 | else
|
---|
744 | pVmcb->ctrl.TLBCtrl.n.u8TLBFlush = SVM_TLB_FLUSH_ENTIRE;
|
---|
745 | }
|
---|
746 |
|
---|
747 | pVCpu->hm.s.fForceTLBFlush = false;
|
---|
748 | }
|
---|
749 | else
|
---|
750 | {
|
---|
751 | /** @todo We never set VMCPU_FF_TLB_SHOOTDOWN anywhere so this path should
|
---|
752 | * not be executed. See hmQueueInvlPage() where it is commented
|
---|
753 | * out. Support individual entry flushing someday. */
|
---|
754 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_TLB_SHOOTDOWN))
|
---|
755 | {
|
---|
756 | /* Deal with pending TLB shootdown actions which were queued when we were not executing code. */
|
---|
757 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTlbShootdown);
|
---|
758 | for (uint32_t i = 0; i < pVCpu->hm.s.TlbShootdown.cPages; i++)
|
---|
759 | SVMR0InvlpgA(pVCpu->hm.s.TlbShootdown.aPages[i], pVmcb->ctrl.TLBCtrl.n.u32ASID);
|
---|
760 | }
|
---|
761 | }
|
---|
762 |
|
---|
763 | pVCpu->hm.s.TlbShootdown.cPages = 0;
|
---|
764 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TLB_SHOOTDOWN);
|
---|
765 |
|
---|
766 | /* Update VMCB with the ASID. */
|
---|
767 | if (pVmcb->ctrl.TLBCtrl.n.u32ASID != pVCpu->hm.s.uCurrentAsid)
|
---|
768 | {
|
---|
769 | pVmcb->ctrl.TLBCtrl.n.u32ASID = pVCpu->hm.s.uCurrentAsid;
|
---|
770 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_ASID;
|
---|
771 | }
|
---|
772 |
|
---|
773 | AssertMsg(pVCpu->hm.s.cTlbFlushes == pCpu->cTlbFlushes,
|
---|
774 | ("Flush count mismatch for cpu %d (%x vs %x)\n", pCpu->idCpu, pVCpu->hm.s.cTlbFlushes, pCpu->cTlbFlushes));
|
---|
775 | AssertMsg(pCpu->uCurrentAsid >= 1 && pCpu->uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
776 | ("cpu%d uCurrentAsid = %x\n", pCpu->idCpu, pCpu->uCurrentAsid));
|
---|
777 | AssertMsg(pVCpu->hm.s.uCurrentAsid >= 1 && pVCpu->hm.s.uCurrentAsid < pVM->hm.s.uMaxAsid,
|
---|
778 | ("cpu%d VM uCurrentAsid = %x\n", pCpu->idCpu, pVCpu->hm.s.uCurrentAsid));
|
---|
779 |
|
---|
780 | #ifdef VBOX_WITH_STATISTICS
|
---|
781 | if (pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_NOTHING)
|
---|
782 | STAM_COUNTER_INC(&pVCpu->hm.s.StatNoFlushTlbWorldSwitch);
|
---|
783 | else if ( pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT
|
---|
784 | || pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_SINGLE_CONTEXT_RETAIN_GLOBALS)
|
---|
785 | {
|
---|
786 | STAM_COUNTER_INC(&pVCpu->hm.s.StatFlushAsid);
|
---|
787 | }
|
---|
788 | else
|
---|
789 | Assert(pVmcb->ctrl.TLBCtrl.n.u8TLBFlush == SVM_TLB_FLUSH_ENTIRE)
|
---|
790 | #endif
|
---|
791 | }
|
---|
792 |
|
---|
793 |
|
---|
794 | /** @name 64-bit guest on 32-bit host OS helper functions.
|
---|
795 | *
|
---|
796 | * The host CPU is still 64-bit capable but the host OS is running in 32-bit
|
---|
797 | * mode (code segment, paging). These wrappers/helpers perform the necessary
|
---|
798 | * bits for the 32->64 switcher.
|
---|
799 | *
|
---|
800 | * @{ */
|
---|
801 | #if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
802 | /**
|
---|
803 | * Prepares for and executes VMRUN (64-bit guests on a 32-bit host).
|
---|
804 | *
|
---|
805 | * @returns VBox status code.
|
---|
806 | * @param HCPhysVmcbHost Physical address of host VMCB.
|
---|
807 | * @param HCPhysVmcb Physical address of the VMCB.
|
---|
808 | * @param pCtx Pointer to the guest-CPU context.
|
---|
809 | * @param pVM Pointer to the VM.
|
---|
810 | * @param pVCpu Pointer to the VMCPU.
|
---|
811 | */
|
---|
812 | DECLASM(int) SVMR0VMSwitcherRun64(RTHCPHYS HCPhysVmcbHost, RTHCPHYS HCPhysVmcb, PCPUMCTX pCtx, PVM pVM, PVMCPU pVCpu)
|
---|
813 | {
|
---|
814 | uint32_t aParam[4];
|
---|
815 | aParam[0] = (uint32_t)(HCPhysVmcbHost); /* Param 1: HCPhysVmcbHost - Lo. */
|
---|
816 | aParam[1] = (uint32_t)(HCPhysVmcbHost >> 32); /* Param 1: HCPhysVmcbHost - Hi. */
|
---|
817 | aParam[2] = (uint32_t)(HCPhysVmcb); /* Param 2: HCPhysVmcb - Lo. */
|
---|
818 | aParam[3] = (uint32_t)(HCPhysVmcb >> 32); /* Param 2: HCPhysVmcb - Hi. */
|
---|
819 |
|
---|
820 | return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_SVMRCVMRun64, 4, &aParam[0]);
|
---|
821 | }
|
---|
822 |
|
---|
823 |
|
---|
824 | /**
|
---|
825 | * Executes the specified VMRUN handler in 64-bit mode.
|
---|
826 | *
|
---|
827 | * @returns VBox status code.
|
---|
828 | * @param pVM Pointer to the VM.
|
---|
829 | * @param pVCpu Pointer to the VMCPU.
|
---|
830 | * @param pCtx Pointer to the guest-CPU context.
|
---|
831 | * @param enmOp The operation to perform.
|
---|
832 | * @param cbParam Number of parameters.
|
---|
833 | * @param paParam Array of 32-bit parameters.
|
---|
834 | */
|
---|
835 | VMMR0DECL(int) SVMR0Execute64BitsHandler(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, HM64ON32OP enmOp, uint32_t cbParam,
|
---|
836 | uint32_t *paParam)
|
---|
837 | {
|
---|
838 | AssertReturn(pVM->hm.s.pfnHost32ToGuest64R0, VERR_HM_NO_32_TO_64_SWITCHER);
|
---|
839 | Assert(enmOp > HM64ON32OP_INVALID && enmOp < HM64ON32OP_END);
|
---|
840 |
|
---|
841 | /* Disable interrupts. */
|
---|
842 | RTHCUINTREG uOldEFlags = ASMIntDisableFlags();
|
---|
843 |
|
---|
844 | #ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
|
---|
845 | RTCPUID idHostCpu = RTMpCpuId();
|
---|
846 | CPUMR0SetLApic(pVM, idHostCpu);
|
---|
847 | #endif
|
---|
848 |
|
---|
849 | CPUMSetHyperESP(pVCpu, VMMGetStackRC(pVCpu));
|
---|
850 | CPUMSetHyperEIP(pVCpu, enmOp);
|
---|
851 | for (int i = (int)cbParam - 1; i >= 0; i--)
|
---|
852 | CPUMPushHyper(pVCpu, paParam[i]);
|
---|
853 |
|
---|
854 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
855 | /* Call the switcher. */
|
---|
856 | int rc = pVM->hm.s.pfnHost32ToGuest64R0(pVM, RT_OFFSETOF(VM, aCpus[pVCpu->idCpu].cpum) - RT_OFFSETOF(VM, cpum));
|
---|
857 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
|
---|
858 |
|
---|
859 | /* Restore interrupts. */
|
---|
860 | ASMSetFlags(uOldEFlags);
|
---|
861 | return rc;
|
---|
862 | }
|
---|
863 |
|
---|
864 | #endif /* HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS) */
|
---|
865 | /** @} */
|
---|
866 |
|
---|
867 |
|
---|
868 | DECLINLINE(void) hmR0SvmAddXcptIntercept(uint32_t u32Xcpt)
|
---|
869 | {
|
---|
870 | if (!(pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
|
---|
871 | {
|
---|
872 | pVmcb->ctrl.u32InterceptException |= RT_BIT(u32Xcpt);
|
---|
873 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
874 | }
|
---|
875 | }
|
---|
876 |
|
---|
877 | DECLINLINE(void) hmR0SvmRemoveXcptIntercept(uint32_t u32Xcpt)
|
---|
878 | {
|
---|
879 | #ifndef HMSVM_ALWAYS_TRAP_ALL_XCPTS
|
---|
880 | if (pVmcb->ctrl.u32InterceptException & RT_BIT(u32Xcpt))
|
---|
881 | {
|
---|
882 | pVmcb->ctrl.u32InterceptException &= ~RT_BIT(u32Xcpt);
|
---|
883 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
884 | }
|
---|
885 | #endif
|
---|
886 | }
|
---|
887 |
|
---|
888 |
|
---|
889 | /**
|
---|
890 | * Loads the guest control registers (CR0, CR2, CR3, CR4) into the VMCB.
|
---|
891 | *
|
---|
892 | * @returns VBox status code.
|
---|
893 | * @param pVCpu Pointer to the VMCPU.
|
---|
894 | * @param pVmcb Pointer to the VMCB.
|
---|
895 | * @param pCtx Pointer the guest-CPU context.
|
---|
896 | *
|
---|
897 | * @remarks No-long-jump zone!!!
|
---|
898 | */
|
---|
899 | DECLINLINE(int) hmR0SvmLoadGuestControlRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
900 | {
|
---|
901 | /*
|
---|
902 | * Guest CR0.
|
---|
903 | */
|
---|
904 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR0)
|
---|
905 | {
|
---|
906 | uint64_t u64GuestCR0 = pCtx->cr0;
|
---|
907 |
|
---|
908 | /* Always enable caching. */
|
---|
909 | u64GuestCR0 &= ~(X86_CR0_CD | X86_CR0_NW);
|
---|
910 |
|
---|
911 | /*
|
---|
912 | * When Nested Paging is not available use shadow page tables and intercept #PFs (the latter done in SVMR0SetupVM()).
|
---|
913 | */
|
---|
914 | if (!pVM->hm.s.fNestedPaging)
|
---|
915 | {
|
---|
916 | u64GuestCR0 |= X86_CR0_PG; /* When Nested Paging is not available, use shadow page tables. */
|
---|
917 | u64GuestCR0 |= X86_CR0_WP; /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
|
---|
918 | }
|
---|
919 |
|
---|
920 | /*
|
---|
921 | * Guest FPU bits.
|
---|
922 | */
|
---|
923 | bool fInterceptNM = false;
|
---|
924 | bool fInterceptMF = false;
|
---|
925 | u64GuestCR0 |= X86_CR0_NE; /* Use internal x87 FPU exceptions handling rather than external interrupts. */
|
---|
926 | if (CPUMIsGuestFPUStateActive(pVCpu))
|
---|
927 | {
|
---|
928 | /* Catch floating point exceptions if we need to report them to the guest in a different way. */
|
---|
929 | if (!(u64GuestCR0 & X86_CR0_NE))
|
---|
930 | {
|
---|
931 | Log4(("hmR0SvmLoadGuestControlRegs: Intercepting Guest CR0.MP Old-style FPU handling!!!\n"));
|
---|
932 | pVmcb->ctrl.u32InterceptException |= RT_BIT(X86_XCPT_MF);
|
---|
933 | fInterceptMF = true;
|
---|
934 | }
|
---|
935 | }
|
---|
936 | else
|
---|
937 | {
|
---|
938 | fInterceptNM = true; /* Guest FPU inactive, VM-exit on #NM for lazy FPU loading. */
|
---|
939 | u32GuestCR0 |= X86_CR0_TS /* Guest can task switch quickly and do lazy FPU syncing. */
|
---|
940 | | X86_CR0_MP; /* FWAIT/WAIT should not ignore CR0.TS and should generate #NM. */
|
---|
941 | }
|
---|
942 |
|
---|
943 | /*
|
---|
944 | * Update the exception intercept bitmap.
|
---|
945 | */
|
---|
946 | if (fInterceptNM)
|
---|
947 | hmR0SvmAddXcptIntercept(X86_XCPT_NM);
|
---|
948 | else
|
---|
949 | hmR0SvmRemoveXcptIntercept(X86_XCPT_NM);
|
---|
950 |
|
---|
951 | if (fInterceptMF)
|
---|
952 | hmR0SvmAddXcptIntercept(X86_XCPT_MF);
|
---|
953 | else
|
---|
954 | hmR0SvmRemoveXcptIntercept(X86_XCPT_MF);
|
---|
955 |
|
---|
956 | pVmcb->guest.u64CR0 = u64GuestCR0;
|
---|
957 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX;
|
---|
958 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR0;
|
---|
959 | }
|
---|
960 |
|
---|
961 | /*
|
---|
962 | * Guest CR2.
|
---|
963 | */
|
---|
964 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR2)
|
---|
965 | {
|
---|
966 | pVmcb->guest.u64CR2 = pCtx->cr2;
|
---|
967 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CR2;
|
---|
968 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR2;
|
---|
969 | }
|
---|
970 |
|
---|
971 | /*
|
---|
972 | * Guest CR3.
|
---|
973 | */
|
---|
974 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR3)
|
---|
975 | {
|
---|
976 | if (pVM->hm.s.fNestedPaging)
|
---|
977 | {
|
---|
978 | PGMMODE enmShwPagingMode;
|
---|
979 | #if HC_ARCH_BITS == 32
|
---|
980 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
981 | enmShwPagingMode = PGMMODE_AMD64_NX;
|
---|
982 | else
|
---|
983 | #endif
|
---|
984 | enmShwPagingMode = PGMGetHostMode(pVM);
|
---|
985 |
|
---|
986 | pVmcb->ctrl.u64NestedPagingCR3 = PGMGetNestedCR3(pVCpu, enmShwPagingMode);
|
---|
987 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_NP;
|
---|
988 | Assert(pVmcb->ctrl.u64NestedPagingCR3);
|
---|
989 | pVmcb->guest.u64CR3 = pCtx->cr3;
|
---|
990 | }
|
---|
991 | else
|
---|
992 | pVmcb->guest.u64CR3 = PGMGetHyperCR3(pVCpu);
|
---|
993 |
|
---|
994 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX;
|
---|
995 | pVCpu->hm.s.fContextUseFlags &= HM_CHANGED_GUEST_CR3;
|
---|
996 | }
|
---|
997 |
|
---|
998 | /*
|
---|
999 | * Guest CR4.
|
---|
1000 | */
|
---|
1001 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_CR4)
|
---|
1002 | {
|
---|
1003 | uint64_t u64GuestCR4 = pCtx->cr4;
|
---|
1004 | if (!pVM->hm.s.fNestedPaging)
|
---|
1005 | {
|
---|
1006 | switch (pVCpu->hm.s.enmShadowMode)
|
---|
1007 | {
|
---|
1008 | case PGMMODE_REAL:
|
---|
1009 | case PGMMODE_PROTECTED: /* Protected mode, no paging. */
|
---|
1010 | AssertFailed();
|
---|
1011 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1012 |
|
---|
1013 | case PGMMODE_32_BIT: /* 32-bit paging. */
|
---|
1014 | u64GuestCR4 &= ~X86_CR4_PAE;
|
---|
1015 | break;
|
---|
1016 |
|
---|
1017 | case PGMMODE_PAE: /* PAE paging. */
|
---|
1018 | case PGMMODE_PAE_NX: /* PAE paging with NX enabled. */
|
---|
1019 | /** Must use PAE paging as we could use physical memory > 4 GB */
|
---|
1020 | u64GuestCR4 |= X86_CR4_PAE;
|
---|
1021 | break;
|
---|
1022 |
|
---|
1023 | case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
|
---|
1024 | case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
|
---|
1025 | #ifdef VBOX_ENABLE_64_BITS_GUESTS
|
---|
1026 | break;
|
---|
1027 | #else
|
---|
1028 | AssertFailed();
|
---|
1029 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1030 | #endif
|
---|
1031 |
|
---|
1032 | default: /* shut up gcc */
|
---|
1033 | AssertFailed();
|
---|
1034 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1035 | }
|
---|
1036 | }
|
---|
1037 |
|
---|
1038 | pVmcb->guest.u64CR4 = u64GuestCR4;
|
---|
1039 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_CRX;
|
---|
1040 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_CR4;
|
---|
1041 | }
|
---|
1042 |
|
---|
1043 | return VINF_SUCCESS;
|
---|
1044 | }
|
---|
1045 |
|
---|
1046 |
|
---|
1047 | /**
|
---|
1048 | * Loads the guest segment registers into the VMCB.
|
---|
1049 | *
|
---|
1050 | * @returns VBox status code.
|
---|
1051 | * @param pVCpu Pointer to the VMCPU.
|
---|
1052 | * @param pVmcb Pointer to the VMCB.
|
---|
1053 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1054 | *
|
---|
1055 | * @remarks No-long-jump zone!!!
|
---|
1056 | */
|
---|
1057 | DECLINLINE(void) hmR0SvmLoadGuestSegmentRegs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1058 | {
|
---|
1059 | /* Guest Segment registers: CS, SS, DS, ES, FS, GS. */
|
---|
1060 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_SEGMENT_REGS)
|
---|
1061 | {
|
---|
1062 | HMSVM_LOAD_SEG_REG(CS, cs);
|
---|
1063 | HMSVM_LOAD_SEG_REG(SS, cs);
|
---|
1064 | HMSVM_LOAD_SEG_REG(DS, cs);
|
---|
1065 | HMSVM_LOAD_SEG_REG(ES, cs);
|
---|
1066 | HMSVM_LOAD_SEG_REG(FS, cs);
|
---|
1067 | HMSVM_LOAD_SEG_REG(GS, cs);
|
---|
1068 |
|
---|
1069 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_SEG;
|
---|
1070 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_SEGMENT_REGS;
|
---|
1071 | }
|
---|
1072 |
|
---|
1073 | /* Guest TR. */
|
---|
1074 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_TR)
|
---|
1075 | {
|
---|
1076 | HMSVM_LOAD_SEG_REG(TR, tr);
|
---|
1077 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_TR;
|
---|
1078 | }
|
---|
1079 |
|
---|
1080 | /* Guest LDTR. */
|
---|
1081 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_LDTR)
|
---|
1082 | {
|
---|
1083 | HMSVM_LOAD_SEG_REG(LDTR, ldtr);
|
---|
1084 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_LDTR;
|
---|
1085 | }
|
---|
1086 |
|
---|
1087 | /* Guest GDTR. */
|
---|
1088 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_GDTR)
|
---|
1089 | {
|
---|
1090 | pVmcb->guest.GDTR.u32Limit = pCtx->gdtr.cbGdt;
|
---|
1091 | pVmcb->guest.GDTR.u64Base = pCtx->gdtr.pGdt;
|
---|
1092 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
|
---|
1093 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_GDTR;
|
---|
1094 | }
|
---|
1095 |
|
---|
1096 | /* Guest IDTR. */
|
---|
1097 | if (pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_IDTR)
|
---|
1098 | {
|
---|
1099 | pVmcb->guest.IDTR.u32Limit = pCtx->idtr.cbIdt;
|
---|
1100 | pVmcb->guest.IDTR.u64Base = pCtx->idtr.pIdt;
|
---|
1101 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DT;
|
---|
1102 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_IDTR;
|
---|
1103 | }
|
---|
1104 | }
|
---|
1105 |
|
---|
1106 |
|
---|
1107 | /**
|
---|
1108 | * Loads the guest MSRs into the VMCB.
|
---|
1109 | *
|
---|
1110 | * @param pVCpu Pointer to the VMCPU.
|
---|
1111 | * @param pVmcb Pointer to the VMCB.
|
---|
1112 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1113 | *
|
---|
1114 | * @remarks No-long-jump zone!!!
|
---|
1115 | */
|
---|
1116 | DECLINLINE(void) hmR0SvmLoadGuestMsrs(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1117 | {
|
---|
1118 | /* Guest Sysenter MSRs. */
|
---|
1119 | pVmcb->guest.u64SysEnterCS = pCtx->SysEnter.cs;
|
---|
1120 | pVmcb->guest.u64SysEnterEIP = pCtx->SysEnter.eip;
|
---|
1121 | pVmcb->guest.u64SysEnterESP = pCtx->SysEnter.esp;
|
---|
1122 |
|
---|
1123 | /*
|
---|
1124 | * Guest EFER MSR.
|
---|
1125 | * AMD-V requires guest EFER.SVME to be set. Weird. .
|
---|
1126 | * See AMD spec. 15.5.1 "Basic Operation" | "Canonicalization and Consistency Checks".
|
---|
1127 | */
|
---|
1128 | pVmcb->guest.u64EFER = pCtx->msrEFER | MSR_K6_EFER_SVME;
|
---|
1129 |
|
---|
1130 | /* 64-bit MSRs. */
|
---|
1131 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
1132 | {
|
---|
1133 | pVmcb->guest.FS.u64Base = pCtx->fs.u64Base;
|
---|
1134 | pVmcb->guest.GS.u64Base = pCtx->gs.u64Base;
|
---|
1135 | }
|
---|
1136 | else
|
---|
1137 | {
|
---|
1138 | /* If the guest isn't in 64-bit mode, clear MSR_K6_LME bit from guest EFER otherwise AMD-V expects amd64 shadow paging. */
|
---|
1139 | pVmcb->guest.u64EFER &= ~MSR_K6_EFER_LME;
|
---|
1140 | }
|
---|
1141 |
|
---|
1142 | /** @todo The following are used in 64-bit only (SYSCALL/SYSRET) but they might
|
---|
1143 | * be writable in 32-bit mode. Clarify with AMD spec. */
|
---|
1144 | pVmcb->guest.u64STAR = pCtx->msrSTAR;
|
---|
1145 | pVmcb->guest.u64LSTAR = pCtx->msrLSTAR;
|
---|
1146 | pVmcb->guest.u64CSTAR = pCtx->msrCSTAR;
|
---|
1147 | pVmcb->guest.u64SFMASK = pCtx->msrSFMASK;
|
---|
1148 | pVmcb->guest.u64KernelGSBase = pCtx->msrKERNELGSBASE;
|
---|
1149 | }
|
---|
1150 |
|
---|
1151 |
|
---|
1152 | /**
|
---|
1153 | * Loads the guest debug registers into the VMCB.
|
---|
1154 | *
|
---|
1155 | * @param pVCpu Pointer to the VMCPU.
|
---|
1156 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1157 | *
|
---|
1158 | * @remarks No-long-jump zone!!!
|
---|
1159 | * @remarks Requires EFLAGS to be up-to-date in the VMCB!
|
---|
1160 | */
|
---|
1161 | DECLINLINE(void) hmR0SvmLoadGuestDebugRegs(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1162 | {
|
---|
1163 | if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_GUEST_DEBUG))
|
---|
1164 | return;
|
---|
1165 |
|
---|
1166 | /** @todo Turn these into assertions if possible. */
|
---|
1167 | pCtx->dr[6] |= X86_DR6_INIT_VAL; /* Set reserved bits to 1. */
|
---|
1168 | pCtx->dr[6] &= ~RT_BIT(12); /* MBZ. */
|
---|
1169 |
|
---|
1170 | pCtx->dr[7] &= 0xffffffff; /* Upper 32 bits MBZ. */
|
---|
1171 | pCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* MBZ. */
|
---|
1172 | pCtx->dr[7] |= 0x400; /* MB1. */
|
---|
1173 |
|
---|
1174 | /* Update DR6, DR7 with the guest values. */
|
---|
1175 | pVmcb->guest.u64DR7 = pCtx->dr[7];
|
---|
1176 | pVmcb->guest.u64DR6 = pCtx->dr[6];
|
---|
1177 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
1178 |
|
---|
1179 | bool fInterceptDB = false;
|
---|
1180 | bool fInterceptMovDRx = false;
|
---|
1181 | if (DBGFIsStepping(pVCpu))
|
---|
1182 | {
|
---|
1183 | /* AMD-V doesn't have any monitor-trap flag equivalent. Instead, enable tracing in the guest and trap #DB. */
|
---|
1184 | pVmcb->guest.u64RFlags |= X86_EFL_TF;
|
---|
1185 | fInterceptDB = true;
|
---|
1186 | }
|
---|
1187 |
|
---|
1188 | if (CPUMGetHyperDR7(pVCpu) & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
|
---|
1189 | {
|
---|
1190 | if (!CPUMIsHyperDebugStateActive(pVCpu))
|
---|
1191 | {
|
---|
1192 | rc = CPUMR0LoadHyperDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
|
---|
1193 | AssertRC(rc);
|
---|
1194 |
|
---|
1195 | /* Update DR6, DR7 with the hypervisor values. */
|
---|
1196 | pVmcb->guest.u64DR7 = CPUMGetHyperDR7(pVCpu);
|
---|
1197 | pVmcb->guest.u64DR6 = CPUMGetHyperDR6(pVCpu);
|
---|
1198 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
1199 | }
|
---|
1200 | Assert(CPUMIsHyperDebugStateActive(pVCpu));
|
---|
1201 | fInterceptMovDRx = true;
|
---|
1202 | }
|
---|
1203 | else if (pCtx->dr[7] & (X86_DR7_ENABLED_MASK | X86_DR7_GD))
|
---|
1204 | {
|
---|
1205 | if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1206 | {
|
---|
1207 | rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
|
---|
1208 | AssertRC(rc);
|
---|
1209 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxArmed);
|
---|
1210 | }
|
---|
1211 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1212 | Assert(fInterceptMovDRx == false);
|
---|
1213 | }
|
---|
1214 | else if (!CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1215 | {
|
---|
1216 | /* For the first time we would need to intercept MOV DRx accesses even when the guest debug registers aren't loaded. */
|
---|
1217 | fInterceptMovDRx = true;
|
---|
1218 | }
|
---|
1219 |
|
---|
1220 | if (fInterceptDB)
|
---|
1221 | hmR0SvmAddXcptIntercept(X86_XCPT_DB);
|
---|
1222 | else
|
---|
1223 | hmR0SvmRemoveXcptIntercept(X86_XCPT_DB);
|
---|
1224 |
|
---|
1225 | if (fInterceptMovDRx)
|
---|
1226 | {
|
---|
1227 | if ( pVmcb->ctrl.u16InterceptRdDRx != 0xffff
|
---|
1228 | || pVmcb->ctrl.u16InterceptWrDRx != 0xffff)
|
---|
1229 | {
|
---|
1230 | pVmcb->ctrl.u16InterceptRdDRx = 0xffff;
|
---|
1231 | pVmcb->ctrl.u16InterceptWrDRx = 0xffff;
|
---|
1232 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1233 | }
|
---|
1234 | }
|
---|
1235 | else
|
---|
1236 | {
|
---|
1237 | if ( pVmcb->ctrl.u16InterceptRdDRx
|
---|
1238 | || pVmcb->ctrl.u16InterceptWrDRx)
|
---|
1239 | {
|
---|
1240 | pVmcb->ctrl.u16InterceptRdDRx = 0;
|
---|
1241 | pVmcb->ctrl.u16InterceptWrDRx = 0;
|
---|
1242 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1243 | }
|
---|
1244 | }
|
---|
1245 |
|
---|
1246 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_GUEST_DEBUG;
|
---|
1247 | }
|
---|
1248 |
|
---|
1249 |
|
---|
1250 | /**
|
---|
1251 | * Loads the guest APIC state (currently just the TPR).
|
---|
1252 | *
|
---|
1253 | * @returns VBox status code.
|
---|
1254 | * @param pVCpu Pointer to the VMCPU.
|
---|
1255 | * @param pVmcb Pointer to the VMCB.
|
---|
1256 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1257 | */
|
---|
1258 | DECLINLINE(int) hmR0SvmLoadGuestApicState(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx)
|
---|
1259 | {
|
---|
1260 | if (!(pVCpu->hm.s.fContextUseFlags & HM_CHANGED_SVM_GUEST_APIC_STATE))
|
---|
1261 | return VINF_SUCCESS;
|
---|
1262 |
|
---|
1263 | bool fPendingIntr;
|
---|
1264 | uint8_t u8Tpr;
|
---|
1265 | int rc = PDMApicGetTPR(pVCpu, &u8Tpr, &fPendingIntr, NULL /* pu8PendingIrq */);
|
---|
1266 | AssertRCReturn(rc, rc);
|
---|
1267 |
|
---|
1268 | /** Assume that we need to trap all TPR accesses and thus need not check on
|
---|
1269 | * every #VMEXIT if we should update the TPR. */
|
---|
1270 | Assert(pVmcb->ctrl.IntCtrl.n.u1VIrqMasking);
|
---|
1271 | pVCpu->hm.s.svm.fSyncVTpr = false;
|
---|
1272 |
|
---|
1273 | /* 32-bit guests uses LSTAR MSR for patching guest code which touches the TPR. */
|
---|
1274 | if (pVCpu->CTX_SUFF(pVM)->hm.s.fTPRPatchingActive)
|
---|
1275 | {
|
---|
1276 | pCtx->msrLSTAR = u8LastTPR;
|
---|
1277 |
|
---|
1278 | /* If there are interrupts pending, intercept LSTAR writes, otherwise don't intercept reads or writes. */
|
---|
1279 | if (fPendingIntr)
|
---|
1280 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_INTERCEPT_WRITE);
|
---|
1281 | else
|
---|
1282 | {
|
---|
1283 | hmR0SvmSetMsrPermission(pVCpu, MSR_K8_LSTAR, SVMMSREXIT_PASSTHRU_READ, SVMMSREXIT_PASSTHRU_WRITE);
|
---|
1284 | pVCpu->hm.s.svm.fSyncVTpr = true;
|
---|
1285 | }
|
---|
1286 |
|
---|
1287 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_IOPM_MSRPM;
|
---|
1288 | }
|
---|
1289 | else
|
---|
1290 | {
|
---|
1291 | /* Bits 3-0 of the VTPR field correspond to bits 7-4 of the TPR (which is the Task-Priority Class). */
|
---|
1292 | pVmcb->ctrl.IntCtrl.n.u8VTPR = (u8Tpr >> 4);
|
---|
1293 |
|
---|
1294 | /* If there are interrupts pending, intercept CR8 writes to evaluate ASAP if we can deliver the interrupt to the guest. */
|
---|
1295 | if (fPending)
|
---|
1296 | pVmcb->ctrl.u16InterceptWrCRx |= RT_BIT(8);
|
---|
1297 | else
|
---|
1298 | {
|
---|
1299 | pVmcb->ctrl.u16InterceptWrCRx &= ~RT_BIT(8);
|
---|
1300 | pVCpu->hm.s.svm.fSyncVTpr = true;
|
---|
1301 | }
|
---|
1302 |
|
---|
1303 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1304 | }
|
---|
1305 |
|
---|
1306 | pVCpu->hm.s.fContextUseFlags &= ~HM_CHANGED_SVM_GUEST_APIC_STATE;
|
---|
1307 | return rc;
|
---|
1308 | }
|
---|
1309 |
|
---|
1310 |
|
---|
1311 | /**
|
---|
1312 | * Sets up the appropriate function to run guest code.
|
---|
1313 | *
|
---|
1314 | * @returns VBox status code.
|
---|
1315 | * @param pVCpu Pointer to the VMCPU.
|
---|
1316 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1317 | *
|
---|
1318 | * @remarks No-long-jump zone!!!
|
---|
1319 | */
|
---|
1320 | static int hmR0SvmSetupVMRunHandler(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1321 | {
|
---|
1322 | if (CPUMIsGuestInLongModeEx(pCtx))
|
---|
1323 | {
|
---|
1324 | #ifndef VBOX_ENABLE_64_BITS_GUESTS
|
---|
1325 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
1326 | #endif
|
---|
1327 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.fAllow64BitGuests); /* Guaranteed by hmR3InitFinalizeR0(). */
|
---|
1328 | #if HC_ARCH_BITS == 32 && !defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
|
---|
1329 | /* 32-bit host. We need to switch to 64-bit before running the 64-bit guest. */
|
---|
1330 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMSwitcherRun64;
|
---|
1331 | #else
|
---|
1332 | /* 64-bit host or hybrid host. */
|
---|
1333 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun64;
|
---|
1334 | #endif
|
---|
1335 | }
|
---|
1336 | else
|
---|
1337 | {
|
---|
1338 | /* Guest is not in long mode, use the 32-bit handler. */
|
---|
1339 | pVCpu->hm.s.svm.pfnVMRun = SVMR0VMRun;
|
---|
1340 | }
|
---|
1341 | return VINF_SUCCESS;
|
---|
1342 | }
|
---|
1343 |
|
---|
1344 |
|
---|
1345 | /**
|
---|
1346 | * Enters the AMD-V session.
|
---|
1347 | *
|
---|
1348 | * @returns VBox status code.
|
---|
1349 | * @param pVM Pointer to the VM.
|
---|
1350 | * @param pVCpu Pointer to the VMCPU.
|
---|
1351 | * @param pCpu Pointer to the CPU info struct.
|
---|
1352 | */
|
---|
1353 | VMMR0DECL(int) SVMR0Enter(PVM pVM, PVMCPU pVCpu, PHMGLOBLCPUINFO pCpu)
|
---|
1354 | {
|
---|
1355 | AssertPtr(pVM);
|
---|
1356 | AssertPtr(pVCpu);
|
---|
1357 | Assert(pVM->hm.s.svm.fSupported);
|
---|
1358 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1359 | NOREF(pCpu);
|
---|
1360 |
|
---|
1361 | LogFlowFunc(("pVM=%p pVCpu=%p\n", pVM, pVCpu));
|
---|
1362 |
|
---|
1363 | /* Nothing to do here. */
|
---|
1364 | return VINF_SUCCESS;
|
---|
1365 | }
|
---|
1366 |
|
---|
1367 |
|
---|
1368 | /**
|
---|
1369 | * Leaves the AMD-V session.
|
---|
1370 | *
|
---|
1371 | * @returns VBox status code.
|
---|
1372 | * @param pVM Pointer to the VM.
|
---|
1373 | * @param pVCpu Pointer to the VMCPU.
|
---|
1374 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1375 | */
|
---|
1376 | VMMR0DECL(int) SVMR0Leave(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1377 | {
|
---|
1378 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1379 | NOREF(pVM);
|
---|
1380 | NOREF(pVCpu);
|
---|
1381 | NOREF(pCtx);
|
---|
1382 |
|
---|
1383 | /* Nothing to do here. Everything is taken care of in hmR0SvmLongJmpToRing3(). */
|
---|
1384 | return VINF_SUCCESS;
|
---|
1385 | }
|
---|
1386 |
|
---|
1387 |
|
---|
1388 | /**
|
---|
1389 | * Saves the host state.
|
---|
1390 | *
|
---|
1391 | * @returns VBox status code.
|
---|
1392 | * @param pVM Pointer to the VM.
|
---|
1393 | * @param pVCpu Pointer to the VMCPU.
|
---|
1394 | *
|
---|
1395 | * @remarks No-long-jump zone!!!
|
---|
1396 | */
|
---|
1397 | VMMR0DECL(int) SVMR0SaveHostState(PVM pVM, PVMCPU pVCpu)
|
---|
1398 | {
|
---|
1399 | NOREF(pVM);
|
---|
1400 | NOREF(pVCpu);
|
---|
1401 | /* Nothing to do here. AMD-V does this for us automatically during the world-switch. */
|
---|
1402 | return VINF_SUCCESS;
|
---|
1403 | }
|
---|
1404 |
|
---|
1405 |
|
---|
1406 | /**
|
---|
1407 | * Loads the guest state.
|
---|
1408 | *
|
---|
1409 | * @returns VBox status code.
|
---|
1410 | * @param pVM Pointer to the VM.
|
---|
1411 | * @param pVCpu Pointer to the VMCPU.
|
---|
1412 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1413 | *
|
---|
1414 | * @remarks No-long-jump zone!!!
|
---|
1415 | */
|
---|
1416 | VMMR0DECL(int) SVMR0LoadGuestState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1417 | {
|
---|
1418 | AssertPtr(pVM);
|
---|
1419 | AssertPtr(pVCpu);
|
---|
1420 | AssertPtr(pCtx);
|
---|
1421 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1422 |
|
---|
1423 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
1424 | AssertMsgReturn(pVmcb, ("Invalid pVmcb\n"), VERR_SVM_INVALID_PVMCB);
|
---|
1425 |
|
---|
1426 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
1427 |
|
---|
1428 | int rc = hmR0SvmLoadGuestControlRegs(pVCpu, pVmcb, pCtx);
|
---|
1429 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestControlRegs! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
1430 |
|
---|
1431 | hmR0SvmLoadGuestSegmentRegs(pVCpu, pVmcb, pCtx);
|
---|
1432 | hmR0SvmLoadGuestMsrs(pVCpu, pVmcb, pCtx);
|
---|
1433 |
|
---|
1434 | pVmcb->guest.u64RIP = pCtx->rip;
|
---|
1435 | pVmcb->guest.u64RSP = pCtx->rsp;
|
---|
1436 | pVmcb->guest.u64RFlags = pCtx->eflags.u32;
|
---|
1437 | pVmcb->guest.u8CPL = pCtx->ss.Attr.n.u2Dpl;
|
---|
1438 | pVmcb->guest.u64RAX = pCtx->rax;
|
---|
1439 |
|
---|
1440 | /* hmR0SvmLoadGuestDebugRegs() must be called -after- updating guest RFLAGS as the RFLAGS may need to be changed. */
|
---|
1441 | hmR0SvmLoadGuestDebugRegs(pVCpu, pVmcb, pCtx);
|
---|
1442 |
|
---|
1443 | rc = hmR0SvmLoadGuestApicState(pVCpu, pVmcb, pCtx);
|
---|
1444 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmLoadGuestApicState! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
1445 |
|
---|
1446 | rc = hmR0SvmSetupVMRunHandler(pVCpu, pCtx);
|
---|
1447 | AssertLogRelMsgRCReturn(rc, ("hmR0SvmSetupVMRunHandler! rc=%Rrc (pVM=%p pVCpu=%p)\n", rc, pVM, pVCpu), rc);
|
---|
1448 |
|
---|
1449 | /* Clear any unused and reserved bits. */
|
---|
1450 | pVCpu->hm.s.fContextUseFlags &= ~( HM_CHANGED_GUEST_SYSENTER_CS_MSR
|
---|
1451 | | HM_CHANGED_GUEST_SYSENTER_EIP_MSR
|
---|
1452 | | HM_CHANGED_GUEST_SYSENTER_ESP_MSR);
|
---|
1453 |
|
---|
1454 | AssertMsg(!pVCpu->hm.s.fContextUseFlags,
|
---|
1455 | ("Missed updating flags while loading guest state. pVM=%p pVCpu=%p fContextUseFlags=%#RX32\n",
|
---|
1456 | pVM, pVCpu, pVCpu->hm.s.fContextUseFlags));
|
---|
1457 |
|
---|
1458 | STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatLoadGuestState, x);
|
---|
1459 |
|
---|
1460 | return rc;
|
---|
1461 | }
|
---|
1462 |
|
---|
1463 |
|
---|
1464 |
|
---|
1465 | /**
|
---|
1466 | * Saves the entire guest state from the VMCB into the
|
---|
1467 | * guest-CPU context. Currently there is no residual state left in the CPU that
|
---|
1468 | * is not updated in the VMCB.
|
---|
1469 | *
|
---|
1470 | * @returns VBox status code.
|
---|
1471 | * @param pVCpu Pointer to the VMCPU.
|
---|
1472 | * @param pMixedCtx Pointer to the guest-CPU context. The data may be
|
---|
1473 | * out-of-sync. Make sure to update the required fields
|
---|
1474 | * before using them.
|
---|
1475 | */
|
---|
1476 | static void hmR0SvmSaveGuestState(PVMCPU pVCpu, PCPUMCTX pMixedCtx)
|
---|
1477 | {
|
---|
1478 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
1479 |
|
---|
1480 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
1481 |
|
---|
1482 | pMixedCtx->rip = pVmcb->guest.u64RIP;
|
---|
1483 | pMixedCtx->rsp = pVmcb->guest.u64RSP;
|
---|
1484 | pMixedCtx->eflags.u32 = pVmcb->guest.u64RFlags;
|
---|
1485 | pMixedCtx->rax = pVmcb->guest.u64RAX;
|
---|
1486 |
|
---|
1487 | /*
|
---|
1488 | * Guest interrupt shadow.
|
---|
1489 | */
|
---|
1490 | if (pVmcb->ctrl.u64IntShadow & SVM_INTERRUPT_SHADOW_ACTIVE)
|
---|
1491 | EMSetInhibitInterruptsPC(pVCpu, pMixedCtx->rip);
|
---|
1492 | else
|
---|
1493 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1494 |
|
---|
1495 | /*
|
---|
1496 | * Guest Control registers: CR2, CR3 (handled at the end) - accesses to other control registers are always intercepted.
|
---|
1497 | */
|
---|
1498 | pMixedCtx->cr2 = pVmcb->guest.u64CR2;
|
---|
1499 |
|
---|
1500 | /*
|
---|
1501 | * Guest MSRs.
|
---|
1502 | */
|
---|
1503 | pMixedCtx->msrSTAR = pVmcb->guest.u64STAR; /* legacy syscall eip, cs & ss */
|
---|
1504 | pMixedCtx->msrLSTAR = pVmcb->guest.u64LSTAR; /* 64-bit mode syscall rip */
|
---|
1505 | pMixedCtx->msrCSTAR = pVmcb->guest.u64CSTAR; /* compatibility mode syscall rip */
|
---|
1506 | pMixedCtx->msrSFMASK = pVmcb->guest.u64SFMASK; /* syscall flag mask */
|
---|
1507 | pMixedCtx->msrKERNELGSBASE = pVmcb->guest.u64KernelGSBase; /* swapgs exchange value */
|
---|
1508 | pMixedCtx->SysEnter.cs = pVmcb->guest.u64SysEnterCS;
|
---|
1509 | pMixedCtx->SysEnter.eip = pVmcb->guest.u64SysEnterEIP;
|
---|
1510 | pMixedCtx->SysEnter.esp = pVmcb->guest.u64SysEnterESP;
|
---|
1511 |
|
---|
1512 | /*
|
---|
1513 | * Guest segment registers (includes FS, GS base MSRs for 64-bit guests).
|
---|
1514 | */
|
---|
1515 | HMSVM_SAVE_SEG_REG(CS, ss);
|
---|
1516 | HMSVM_SAVE_SEG_REG(SS, cs);
|
---|
1517 | HMSVM_SAVE_SEG_REG(DS, ds);
|
---|
1518 | HMSVM_SAVE_SEG_REG(ES, es);
|
---|
1519 | HMSVM_SAVE_SEG_REG(FS, fs);
|
---|
1520 | HMSVM_SAVE_SEG_REG(GS, gs);
|
---|
1521 |
|
---|
1522 | /*
|
---|
1523 | * Correct the hidden CS granularity flag. Haven't seen it being wrong in any other
|
---|
1524 | * register (yet).
|
---|
1525 | */
|
---|
1526 | /** @todo Verify this. */
|
---|
1527 | if ( !pMixedCtx->cs.Attr.n.u1Granularity
|
---|
1528 | && pMixedCtx->cs.Attr.n.u1Present
|
---|
1529 | && pMixedCtx->cs.u32Limit > UINT32_C(0xfffff))
|
---|
1530 | {
|
---|
1531 | Assert((pMixedCtx->cs.u32Limit & 0xfff) == 0xfff);
|
---|
1532 | pMixedCtx->cs.Attr.n.u1Granularity = 1;
|
---|
1533 | }
|
---|
1534 | #ifdef VBOX_STRICT
|
---|
1535 | # define HMSVM_ASSERT_SEL_GRANULARITY(reg) \
|
---|
1536 | AssertMsg( !pMixedCtx->reg.Attr.n.u1Present \
|
---|
1537 | || ( pMixedCtx->reg.Attr.n.u1Granularity \
|
---|
1538 | ? (pMixedCtx->reg.u32Limit & 0xfff) == 0xfff \
|
---|
1539 | : pMixedCtx->reg.u32Limit <= UINT32_C(0xfffff)), \
|
---|
1540 | ("Invalid Segment Attributes %#x %#x %#llx\n", pMixedCtx->reg.u32Limit,
|
---|
1541 | pMixedCtx->reg.Attr.u, pMixedCtx->reg.u64Base))
|
---|
1542 |
|
---|
1543 | HMSVM_ASSERT_SEG_GRANULARITY(cs);
|
---|
1544 | HMSVM_ASSERT_SEG_GRANULARITY(ss);
|
---|
1545 | HMSVM_ASSERT_SEG_GRANULARITY(ds);
|
---|
1546 | HMSVM_ASSERT_SEG_GRANULARITY(es);
|
---|
1547 | HMSVM_ASSERT_SEG_GRANULARITY(fs);
|
---|
1548 | HMSVM_ASSERT_SEG_GRANULARITY(gs);
|
---|
1549 |
|
---|
1550 | # undef HMSVM_ASSERT_SEL_GRANULARITY
|
---|
1551 | #endif
|
---|
1552 |
|
---|
1553 | /*
|
---|
1554 | * Sync the hidden SS DPL field. AMD CPUs have a separate CPL field in the VMCB and uses that
|
---|
1555 | * and thus it's possible that when the CPL changes during guest execution that the SS DPL
|
---|
1556 | * isn't updated by AMD-V. Observed on some AMD Fusion CPUs with 64-bit guests.
|
---|
1557 | * See AMD spec. 15.5.1 "Basic operation".
|
---|
1558 | */
|
---|
1559 | Assert(!(pVmcb->guest.u8CPL & ~0x3));
|
---|
1560 | pMixedCtx->ss.Attr.n.u2Dpl = pVmcb->guest.u8CPL & 0x3;
|
---|
1561 |
|
---|
1562 | /*
|
---|
1563 | * Guest Descriptor-Table registers.
|
---|
1564 | */
|
---|
1565 | HMSVM_SAVE_SEG_REG(TR, tr);
|
---|
1566 | HMSVM_SAVE_SEG_REG(LDTR, ldtr);
|
---|
1567 | pMixedCtx->gdtr.cbGdt = pVmcb->guest.GDTR.u32Limit;
|
---|
1568 | pMixedCtx->gdtr.pGdt = pVmcb->guest.GDTR.u64Base;
|
---|
1569 |
|
---|
1570 | pMixedCtx->idtr.cbIdt = pVmcb->guest.IDTR.u32Limit;
|
---|
1571 | pMixedCtx->idtr.pIdt = pVmcb->guest.IDTR.u64Base;
|
---|
1572 |
|
---|
1573 | /*
|
---|
1574 | * Guest Debug registers.
|
---|
1575 | */
|
---|
1576 | pMixedCtx->dr[6] = pVmcb->guest.u64DR6;
|
---|
1577 | pMixedCtx->dr[7] = pVmcb->guest.u64DR7;
|
---|
1578 |
|
---|
1579 | /*
|
---|
1580 | * With Nested Paging, CR3 changes are not intercepted. Therefore, sync. it now.
|
---|
1581 | * This is done as the very last step of syncing the guest state, as PGMUpdateCR3() may cause longjmp's to ring-3.
|
---|
1582 | */
|
---|
1583 | if ( pVM->hm.s.fNestedPaging
|
---|
1584 | && pMixedCtx->cr3 != pVmcb->guest.u64CR3)
|
---|
1585 | {
|
---|
1586 | CPUMSetGuestCR3(pVCpu, pVmcb->guest.u64CR3);
|
---|
1587 | PGMUpdateCR3(pVCpu, pVmcb->guest.u64CR3);
|
---|
1588 | }
|
---|
1589 | }
|
---|
1590 |
|
---|
1591 |
|
---|
1592 | /**
|
---|
1593 | * Does the necessary state syncing before doing a longjmp to ring-3.
|
---|
1594 | *
|
---|
1595 | * @param pVM Pointer to the VM.
|
---|
1596 | * @param pVCpu Pointer to the VMCPU.
|
---|
1597 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1598 | * @param rcExit The reason for exiting to ring-3. Can be
|
---|
1599 | * VINF_VMM_UNKNOWN_RING3_CALL.
|
---|
1600 | *
|
---|
1601 | * @remarks No-long-jmp zone!!!
|
---|
1602 | */
|
---|
1603 | static void hmR0SvmLongJmpToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
|
---|
1604 | {
|
---|
1605 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
1606 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
1607 |
|
---|
1608 | /* Restore host FPU state if necessary and resync on next R0 reentry .*/
|
---|
1609 | if (CPUMIsGuestFPUStateActive(pVCpu))
|
---|
1610 | {
|
---|
1611 | CPUMR0SaveGuestFPU(pVM, pVCpu, pCtx);
|
---|
1612 | Assert(!CPUMIsGuestFPUStateActive(pVCpu));
|
---|
1613 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
|
---|
1614 | }
|
---|
1615 |
|
---|
1616 | /* Restore host debug registers if necessary and resync on next R0 reentry. */
|
---|
1617 | if (CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1618 | {
|
---|
1619 | CPUMR0SaveGuestDebugState(pVM, pVCpu, pCtx, true /* save DR6 */);
|
---|
1620 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1621 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
|
---|
1622 | }
|
---|
1623 | else if (CPUMIsHyperDebugStateActive(pVCpu))
|
---|
1624 | {
|
---|
1625 | CPUMR0LoadHostDebugState(pVM, pVCpu);
|
---|
1626 | Assert(!CPUMIsHyperDebugStateActive(pVCpu));
|
---|
1627 | Assert(pVmcb->ctrl.u16InterceptRdDRx == 0xffff);
|
---|
1628 | Assert(pVmcb->ctrl.u16InterceptWrDRx == 0xffff);
|
---|
1629 | }
|
---|
1630 |
|
---|
1631 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
1632 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_HM, VMCPUSTATE_STARTED_EXEC);
|
---|
1633 | }
|
---|
1634 |
|
---|
1635 |
|
---|
1636 | /**
|
---|
1637 | * VMMRZCallRing3() callback wrapper which saves the guest state (or restores
|
---|
1638 | * any remaining host state) before we longjump to ring-3 and possibly get
|
---|
1639 | * preempted.
|
---|
1640 | *
|
---|
1641 | * @param pVCpu Pointer to the VMCPU.
|
---|
1642 | * @param enmOperation The operation causing the ring-3 longjump.
|
---|
1643 | * @param pvUser The user argument (pointer to the possibly
|
---|
1644 | * out-of-date guest-CPU context).
|
---|
1645 | *
|
---|
1646 | * @remarks Must never be called with @a enmOperation ==
|
---|
1647 | * VMMCALLRING3_VM_R0_ASSERTION.
|
---|
1648 | */
|
---|
1649 | DECLCALLBACK(void) hmR0SvmCallRing3Callback(PVMCPU pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
|
---|
1650 | {
|
---|
1651 | /* VMMRZCallRing3() already makes sure we never get called as a result of an longjmp due to an assertion, */
|
---|
1652 | Assert(pVCpu);
|
---|
1653 | Assert(pvUser);
|
---|
1654 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
1655 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1656 |
|
---|
1657 | VMMRZCallRing3Disable(pVCpu);
|
---|
1658 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
1659 | Log4(("hmR0SvmCallRing3Callback->hmR0SvmLongJmpToRing3\n"));
|
---|
1660 | hmR0SvmLongJmpToRing3(pVCpu->CTX_SUFF(pVM), pVCpu, (PCPUMCTX)pvUser, VINF_VMM_UNKNOWN_RING3_CALL);
|
---|
1661 | VMMRZCallRing3Enable(pVCpu);
|
---|
1662 | }
|
---|
1663 |
|
---|
1664 |
|
---|
1665 | /**
|
---|
1666 | * An action requires us to go back to ring-3. This function does the necessary
|
---|
1667 | * steps before we can safely return to ring-3. This is not the same as longjmps
|
---|
1668 | * to ring-3, this is voluntary.
|
---|
1669 | *
|
---|
1670 | * @param pVM Pointer to the VM.
|
---|
1671 | * @param pVCpu Pointer to the VMCPU.
|
---|
1672 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1673 | * @param rcExit The reason for exiting to ring-3. Can be
|
---|
1674 | * VINF_VMM_UNKNOWN_RING3_CALL.
|
---|
1675 | */
|
---|
1676 | static void hmR0SvmExitToRing3(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rcExit)
|
---|
1677 | {
|
---|
1678 | Assert(pVM);
|
---|
1679 | Assert(pVCpu);
|
---|
1680 | Assert(pCtx);
|
---|
1681 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1682 |
|
---|
1683 | if (RT_UNLIKELY(rcExit == VERR_SVM_INVALID_GUEST_STATE))
|
---|
1684 | {
|
---|
1685 | /* We don't need to do any syncing here, we're not going to come back to execute anything again. */
|
---|
1686 | return;
|
---|
1687 | }
|
---|
1688 |
|
---|
1689 | /* Please, no longjumps here (any logging shouldn't flush jump back to ring-3). NO LOGGING BEFORE THIS POINT! */
|
---|
1690 | VMMRZCallRing3Disable(pVCpu);
|
---|
1691 | Log4(("hmR0SvmExitToRing3: rcExit=%d\n", rcExit));
|
---|
1692 |
|
---|
1693 | /* We need to do this only while truly exiting the "inner loop" back to ring-3 and -not- for any longjmp to ring3. */
|
---|
1694 | if (pVCpu->hm.s.Event.fPending)
|
---|
1695 | {
|
---|
1696 | hmR0SvmPendingEventToTrpmTrap(pVCpu);
|
---|
1697 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
1698 | }
|
---|
1699 |
|
---|
1700 | /* Sync. the guest state. */
|
---|
1701 | hmR0SvmLongJmpToRing3(pVM, pVCpu, pCtx, rcExit);
|
---|
1702 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatSwitchLongJmpToR3);
|
---|
1703 |
|
---|
1704 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_TO_R3);
|
---|
1705 | CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_SYSENTER_MSR
|
---|
1706 | | CPUM_CHANGED_LDTR
|
---|
1707 | | CPUM_CHANGED_GDTR
|
---|
1708 | | CPUM_CHANGED_IDTR
|
---|
1709 | | CPUM_CHANGED_TR
|
---|
1710 | | CPUM_CHANGED_HIDDEN_SEL_REGS);
|
---|
1711 |
|
---|
1712 | /* On our way back from ring-3 the following needs to be done. */
|
---|
1713 | /** @todo This can change with preemption hooks. */
|
---|
1714 | if (rcExit == VINF_EM_RAW_INTERRUPT)
|
---|
1715 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT;
|
---|
1716 | else
|
---|
1717 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST;
|
---|
1718 |
|
---|
1719 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchExitToR3);
|
---|
1720 | VMMRZCallRing3Enable(pVCpu);
|
---|
1721 | }
|
---|
1722 |
|
---|
1723 |
|
---|
1724 | /**
|
---|
1725 | * Sets up the usage of TSC offsetting for the VCPU.
|
---|
1726 | *
|
---|
1727 | * @param pVCpu Pointer to the VMCPU.
|
---|
1728 | *
|
---|
1729 | * @remarks No-long-jump zone!!!
|
---|
1730 | */
|
---|
1731 | static void hmR0SvmSetupTscOffsetting(PVMCPU pVCpu)
|
---|
1732 | {
|
---|
1733 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
1734 | if (TMCpuTickCanUseRealTSC(pVCpu, &pVmcb->ctrl.u64TSCOffset))
|
---|
1735 | {
|
---|
1736 | uint64_t u64CurTSC = ASMReadTSC();
|
---|
1737 | if (u64CurTSC + pVmcb->ctrl.u64TSCOffset > TMCpuTickGetLastSeen(pVCpu))
|
---|
1738 | {
|
---|
1739 | pVmcb->ctrl.u32InterceptCtrl1 &= ~SVM_CTRL1_INTERCEPT_RDTSC;
|
---|
1740 | pVmcb->ctrl.u32InterceptCtrl2 &= ~SVM_CTRL2_INTERCEPT_RDTSCP;
|
---|
1741 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscOffset);
|
---|
1742 | }
|
---|
1743 | else
|
---|
1744 | {
|
---|
1745 | pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
|
---|
1746 | pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
|
---|
1747 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscInterceptOverFlow);
|
---|
1748 | }
|
---|
1749 | }
|
---|
1750 | else
|
---|
1751 | {
|
---|
1752 | pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_RDTSC;
|
---|
1753 | pVmcb->ctrl.u32InterceptCtrl2 |= SVM_CTRL2_INTERCEPT_RDTSCP;
|
---|
1754 | STAM_COUNTER_INC(&pVCpu->hm.s.StatTscIntercept);
|
---|
1755 | }
|
---|
1756 |
|
---|
1757 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1758 | }
|
---|
1759 |
|
---|
1760 |
|
---|
1761 | /**
|
---|
1762 | * Sets an event as a pending event to be injected into the guest.
|
---|
1763 | *
|
---|
1764 | * @param pVCpu Pointer to the VMCPU.
|
---|
1765 | * @param pEvent Pointer to the SVM event.
|
---|
1766 | * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
|
---|
1767 | * page-fault.
|
---|
1768 | */
|
---|
1769 | DECLINLINE(void) hmR0SvmSetPendingEvent(PVMCPU pVCpu, PSVMEVENT pEvent, RTGCUINTPTR GCPtrFaultAddress)
|
---|
1770 | {
|
---|
1771 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
1772 |
|
---|
1773 | pVCpu->hm.s.Event.u64IntrInfo = pEvent->u;
|
---|
1774 | pVCpu->hm.s.Event.fPending = true;
|
---|
1775 | pVCpu->hm.s.Event.GCPtrFaultAddress = GCPtrFaultAddress;
|
---|
1776 |
|
---|
1777 | #ifdef VBOX_STRICT
|
---|
1778 | if (GCPtrFaultAddress)
|
---|
1779 | {
|
---|
1780 | AssertMsg( pEvent->n.u8Vector == X86_XCPT_PF
|
---|
1781 | && pEvent->n.u3Type == SVM_EVENT_EXCEPTION,
|
---|
1782 | ("hmR0SvmSetPendingEvent: Setting fault-address for non-#PF. u8Vector=%#x Type=%#RX32 GCPtrFaultAddr=%#RGx\n",
|
---|
1783 | pEvent->n.u8Vector, (uint32_t)pEvent->n.u3Type, GCPtrFaultAddress));
|
---|
1784 | Assert(GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
|
---|
1785 | }
|
---|
1786 | #endif
|
---|
1787 |
|
---|
1788 | Log4(("hmR0SvmSetPendingEvent: u=%#RX64 u8Vector=%#x ErrorCodeValid=%#x ErrorCode=%#RX32\n", pEvent->u,
|
---|
1789 | pEvent->n.u8Vector, pEvent->n.u3Type, (uint8_t)pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
|
---|
1790 | }
|
---|
1791 |
|
---|
1792 |
|
---|
1793 | /**
|
---|
1794 | * Injects an event into the guest upon VMRUN by updating the relevant field
|
---|
1795 | * in the VMCB.
|
---|
1796 | *
|
---|
1797 | * @param pVCpu Pointer to the VMCPU.
|
---|
1798 | * @param pVmcb Pointer to the guest VMCB.
|
---|
1799 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1800 | * @param pEvent Pointer to the event.
|
---|
1801 | *
|
---|
1802 | * @remarks No-long-jump zone!!!
|
---|
1803 | * @remarks Requires CR0!
|
---|
1804 | */
|
---|
1805 | DECLINLINE(void) hmR0SvmInjectEventVmcb(PVMCPU pVCpu, PSVMVMCB pVmcb, PCPUMCTX pCtx, PSVMEVENT pEvent)
|
---|
1806 | {
|
---|
1807 | pVmcb->ctrl.EventInject.u = pEvent->u;
|
---|
1808 | STAM_COUNTER_INC(&pVCpu->hm.s.paStatInjectedIrqsR0[pEvent->n.u8Vector & MASK_INJECT_IRQ_STAT]);
|
---|
1809 | }
|
---|
1810 |
|
---|
1811 |
|
---|
1812 | /**
|
---|
1813 | * Converts any TRPM trap into a pending SVM event. This is typically used when
|
---|
1814 | * entering from ring-3 (not longjmp returns).
|
---|
1815 | *
|
---|
1816 | * @param pVCpu Pointer to the VMCPU.
|
---|
1817 | */
|
---|
1818 | static void hmR0SvmTrpmTrapToPendingEvent(PVMCPU pVCpu)
|
---|
1819 | {
|
---|
1820 | Assert(TRPMHasTrap(pVCpu));
|
---|
1821 | Assert(!pVCpu->hm.s.Event.fPending);
|
---|
1822 |
|
---|
1823 | uint8_t uVector;
|
---|
1824 | TRPMEVENT enmTrpmEvent;
|
---|
1825 | RTGCUINT uErrCode;
|
---|
1826 | RTGCUINTPTR GCPtrFaultAddress;
|
---|
1827 | uint8_t cbInstr;
|
---|
1828 |
|
---|
1829 | int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr);
|
---|
1830 | AssertRC(rc);
|
---|
1831 |
|
---|
1832 | PSVMEVENT pEvent = &pVCpu->hm.s.Event;
|
---|
1833 | pEvent->u = 0;
|
---|
1834 | pEvent->n.u1Valid = 1;
|
---|
1835 |
|
---|
1836 | /* Refer AMD spec. 15.20 "Event Injection" for the format. */
|
---|
1837 | if (enmTrpmEvent == TRPM_TRAP)
|
---|
1838 | {
|
---|
1839 | pEvent->n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
1840 | switch (uVector)
|
---|
1841 | {
|
---|
1842 | case X86_XCPT_PF:
|
---|
1843 | case X86_XCPT_DF:
|
---|
1844 | case X86_XCPT_TS:
|
---|
1845 | case X86_XCPT_NP:
|
---|
1846 | case X86_XCPT_SS:
|
---|
1847 | case X86_XCPT_GP:
|
---|
1848 | case X86_XCPT_AC:
|
---|
1849 | {
|
---|
1850 | pEvent->n.u32ErrorCode = uErrCode;
|
---|
1851 | pEvent->n.u1ErrorCodeValid = 1;
|
---|
1852 | break;
|
---|
1853 | }
|
---|
1854 | }
|
---|
1855 | }
|
---|
1856 | else if (enmTrpmEvent == TRPM_HARDWARE_INT)
|
---|
1857 | {
|
---|
1858 | if (uVector == X86_XCPT_NMI)
|
---|
1859 | pEvent->n.u3Type = SVM_EVENT_NMI;
|
---|
1860 | else
|
---|
1861 | pEvent->n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
|
---|
1862 | }
|
---|
1863 | else if (enmTrpmEvent == TRPM_SOFTWARE_INT)
|
---|
1864 | pEvent->n.u3Type = SVM_EVENT_SOFTWARE_INT;
|
---|
1865 | else
|
---|
1866 | AssertMsgFailed(("Invalid TRPM event type %d\n", enmTrpmEvent));
|
---|
1867 |
|
---|
1868 | rc = TRPMResetTrap(pVCpu);
|
---|
1869 | AssertRC(rc);
|
---|
1870 |
|
---|
1871 | Log4(("TRPM->HM event: u=%#RX64 u8Vector=%#x uErrorCodeValid=%#x uErrorCode=%#RX32\n", pEvent->u, pEvent->n.u8Vector,
|
---|
1872 | pEvent->n.u1ErrorCodeValid, pEvent->n.u32ErrorCode));
|
---|
1873 | }
|
---|
1874 |
|
---|
1875 |
|
---|
1876 | /**
|
---|
1877 | * Converts any pending SVM event into a TRPM trap. Typically used when leaving
|
---|
1878 | * AMD-V to execute any instruction.
|
---|
1879 | *
|
---|
1880 | * @param pvCpu Pointer to the VMCPU.
|
---|
1881 | */
|
---|
1882 | static void hmR0SvmPendingEventToTrpmTrap(PVMCPU pVCpu)
|
---|
1883 | {
|
---|
1884 | Assert(pVCpu->hm.s.Event.fPending);
|
---|
1885 | Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
|
---|
1886 |
|
---|
1887 | PSVMEVENT pEvent = &pVCpu->hm.s.Event;
|
---|
1888 | uint8_t uVector = pEvent->n.u8Vector;
|
---|
1889 | uint8_t uVectorType = pEvent->n.u3Type;
|
---|
1890 |
|
---|
1891 | TRPMEVENT enmTrapType;
|
---|
1892 | switch (uVectorType)
|
---|
1893 | {
|
---|
1894 | case SVM_EVENT_EXTERNAL_IRQ
|
---|
1895 | case SVM_EVENT_NMI:
|
---|
1896 | enmTrapType = TRPM_HARDWARE_INT;
|
---|
1897 | break;
|
---|
1898 | case SVM_EVENT_SOFTWARE_INT:
|
---|
1899 | enmTrapType = TRPM_SOFTWARE_INT;
|
---|
1900 | break;
|
---|
1901 | case SVM_EVENT_EXCEPTION:
|
---|
1902 | enmTrapType = TRPM_TRAP;
|
---|
1903 | break;
|
---|
1904 | default:
|
---|
1905 | AssertMsgFailed(("Invalid pending-event type %#x\n", uVectorType));
|
---|
1906 | enmTrapType = TRPM_32BIT_HACK;
|
---|
1907 | break;
|
---|
1908 | }
|
---|
1909 |
|
---|
1910 | Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, uVectorType));
|
---|
1911 |
|
---|
1912 | int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
|
---|
1913 | AssertRC(rc);
|
---|
1914 |
|
---|
1915 | if (pEvent->n.u1ErrorCodeValid)
|
---|
1916 | TRPMSetErrorCode(pVCpu, pEvent->n.u32ErrorCode);
|
---|
1917 |
|
---|
1918 | if ( uVectorType == SVM_EVENT_EXCEPTION
|
---|
1919 | && uVector == X86_XCPT_PF)
|
---|
1920 | {
|
---|
1921 | TRPMSetFaultAddress(pVCpu, pVCpu->hm.s.Event.GCPtrFaultAddress);
|
---|
1922 | Assert(pVCpu->hm.s.Event.GCPtrFaultAddress == CPUMGetGuestCR2(pVCpu));
|
---|
1923 | }
|
---|
1924 | else if (uVectorType == SVM_EVENT_SOFTWARE_INT)
|
---|
1925 | {
|
---|
1926 | AssertMsg( uVectorType == SVM_EVENT_SOFTWARE_INT
|
---|
1927 | || (uVector == X86_XCPT_BP || uVector == X86_XCPT_OF),
|
---|
1928 | ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
|
---|
1929 | TRPMSetInstrLength(pVCpu, pVCpu->hm.s.Event.cbInstr);
|
---|
1930 | }
|
---|
1931 | pVCpu->hm.s.Event.fPending = false;
|
---|
1932 | }
|
---|
1933 |
|
---|
1934 |
|
---|
1935 | /**
|
---|
1936 | * Gets the guest's interrupt-shadow.
|
---|
1937 | *
|
---|
1938 | * @returns The guest's interrupt-shadow.
|
---|
1939 | * @param pVCpu Pointer to the VMCPU.
|
---|
1940 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1941 | *
|
---|
1942 | * @remarks No-long-jump zone!!!
|
---|
1943 | * @remarks Has side-effects with VMCPU_FF_INHIBIT_INTERRUPTS force-flag.
|
---|
1944 | */
|
---|
1945 | DECLINLINE(uint32_t) hmR0SvmGetGuestIntrShadow(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1946 | {
|
---|
1947 | /*
|
---|
1948 | * Instructions like STI and MOV SS inhibit interrupts till the next instruction completes. Check if we should
|
---|
1949 | * inhibit interrupts or clear any existing interrupt-inhibition.
|
---|
1950 | */
|
---|
1951 | uint32_t uIntrState = 0;
|
---|
1952 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1953 | {
|
---|
1954 | if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
1955 | {
|
---|
1956 | /*
|
---|
1957 | * We can clear the inhibit force flag as even if we go back to the recompiler without executing guest code in
|
---|
1958 | * AMD-V, the flag's condition to be cleared is met and thus the cleared state is correct.
|
---|
1959 | */
|
---|
1960 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1961 | }
|
---|
1962 | else
|
---|
1963 | uIntrState = SVM_INTERRUPT_SHADOW_ACTIVE;
|
---|
1964 | }
|
---|
1965 | return uIntrState;
|
---|
1966 | }
|
---|
1967 |
|
---|
1968 |
|
---|
1969 | /**
|
---|
1970 | * Sets the virtual interrupt intercept control in the VMCB which
|
---|
1971 | * instructs AMD-V to cause a #VMEXIT as soon as the guest is in a state to
|
---|
1972 | * receive interrupts.
|
---|
1973 | *
|
---|
1974 | * @param pVmcb Pointer to the VMCB.
|
---|
1975 | */
|
---|
1976 | DECLINLINE(void) hmR0SvmSetVirtIntrIntercept(PSVMVMCB pVmcb)
|
---|
1977 | {
|
---|
1978 | if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_VINTR))
|
---|
1979 | {
|
---|
1980 | pVmcb->ctrl.IntCtrl.n.u1VIrqValid = 1; /* A virtual interrupt is pending. */
|
---|
1981 | pVmcb->ctrl.IntCtrl.n.u8VIrqVector = 0; /* Not necessary as we #VMEXIT for delivering the interrupt. */
|
---|
1982 | pVmcb->ctrl.u32InterceptCtrl1 |= SVM_CTRL1_INTERCEPT_VINTR;
|
---|
1983 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
1984 | }
|
---|
1985 | }
|
---|
1986 |
|
---|
1987 |
|
---|
1988 | /**
|
---|
1989 | * Injects any pending events into the guest if the guest is in a state to
|
---|
1990 | * receive them.
|
---|
1991 | *
|
---|
1992 | * @param pVCpu Pointer to the VMCPU.
|
---|
1993 | * @param pCtx Pointer to the guest-CPU context.
|
---|
1994 | */
|
---|
1995 | static void hmR0SvmInjectPendingEvent(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1996 | {
|
---|
1997 | Assert(!TRPMHasTrap(pVCpu));
|
---|
1998 |
|
---|
1999 | const bool fIntShadow = !!hmR0SvmGetGuestIntrShadow(pVCpu, pCtx);
|
---|
2000 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
2001 |
|
---|
2002 | SVMEVENT Event;
|
---|
2003 | Event.u = 0;
|
---|
2004 | if (pVCpu->hm.s.Event.fPending) /* First, inject any pending HM events. */
|
---|
2005 | {
|
---|
2006 | Event.u = pVCpu->hm.s.Event.u64IntrInfo;
|
---|
2007 | bool fInject = true;
|
---|
2008 | if ( fIntShadow
|
---|
2009 | && ( Event.n.u3Type == SVM_EVENT_EXTERNAL_IRQ
|
---|
2010 | || Event.n.u3Type == SVM_EVENT_NMI))
|
---|
2011 | {
|
---|
2012 | fInject = false;
|
---|
2013 | }
|
---|
2014 |
|
---|
2015 | if ( fInject
|
---|
2016 | && Event.n.u1Valid)
|
---|
2017 | {
|
---|
2018 | pVCpu->hm.s.Event.fPending = false;
|
---|
2019 | hmR0SvmInjectEvent(pVCpu, pVmcb, pCtx, &Event);
|
---|
2020 | }
|
---|
2021 | else
|
---|
2022 | hmR0SvmSetVirtIntrIntercept(pVmcb);
|
---|
2023 | } /** @todo SMI. SMIs take priority over NMIs. */
|
---|
2024 | else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI)) /* NMI. NMIs take priority over regular interrupts . */
|
---|
2025 | {
|
---|
2026 | if (!fIntShadow)
|
---|
2027 | {
|
---|
2028 | Log4(("Injecting NMI\n"));
|
---|
2029 | Event.n.u1Valid = 1;
|
---|
2030 | Event.n.u8Vector = X86_XCPT_NMI;
|
---|
2031 | Event.n.u3Type = SVM_EVENT_NMI;
|
---|
2032 |
|
---|
2033 | hmR0SvmInjectEvent(pVCpu, pVmcb, pCtx, &Event);
|
---|
2034 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
2035 | }
|
---|
2036 | else
|
---|
2037 | hmR0SvmSetVirtIntrIntercept(pVmcb);
|
---|
2038 | }
|
---|
2039 | else if (VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)))
|
---|
2040 | {
|
---|
2041 | /* Check if there are guest external interrupts (PIC/APIC) pending and inject them if the guest can receive them. */
|
---|
2042 | const bool fBlockInt = !(pCtx->eflags.u32 & X86_EFL_IF);
|
---|
2043 | if ( !fBlockInt
|
---|
2044 | && !fIntShadow)
|
---|
2045 | {
|
---|
2046 | uint8_t u8Interrupt;
|
---|
2047 | rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
|
---|
2048 | if (RT_SUCCESS(rc))
|
---|
2049 | {
|
---|
2050 | Log4(("Injecting interrupt u8Interrupt=%#x\n", u8Interrupt));
|
---|
2051 |
|
---|
2052 | Event.n.u1Valid = 1;
|
---|
2053 | Event.n.u8Vector = u8Interrupt;
|
---|
2054 | Event.n.u3Type = SVM_EVENT_EXTERNAL_IRQ;
|
---|
2055 |
|
---|
2056 | hmR0SvmInjectEvent(pVCpu, pVmcb, pCtx, &Event);
|
---|
2057 | STAM_COUNTER_INC(&pVCpu->hm.s.StatIntInject);
|
---|
2058 | }
|
---|
2059 | else
|
---|
2060 | {
|
---|
2061 | /** @todo Does this actually happen? If not turn it into an assertion. */
|
---|
2062 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, (VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)));
|
---|
2063 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchGuestIrq);
|
---|
2064 | }
|
---|
2065 | }
|
---|
2066 | else
|
---|
2067 | hmR0SvmSetVirtIntrIntercept(pVmcb);
|
---|
2068 | }
|
---|
2069 |
|
---|
2070 | /* Update the guest interrupt shadow in the VMCB. */
|
---|
2071 | pVmcb->ctrl.u64IntShadow = !!fIntShadow;
|
---|
2072 | }
|
---|
2073 |
|
---|
2074 |
|
---|
2075 | /**
|
---|
2076 | * Reports world-switch error and dumps some useful debug info.
|
---|
2077 | *
|
---|
2078 | * @param pVM Pointer to the VM.
|
---|
2079 | * @param pVCpu Pointer to the VMCPU.
|
---|
2080 | * @param rcVMRun The return code from VMRUN (or
|
---|
2081 | * VERR_SVM_INVALID_GUEST_STATE for invalid
|
---|
2082 | * guest-state).
|
---|
2083 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2084 | */
|
---|
2085 | static void hmR0SvmReportWorldSwitchError(PVM pVM, PVMCPU pVCpu, int rcVMRun, PCPUMCTX pCtx)
|
---|
2086 | {
|
---|
2087 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2088 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
2089 |
|
---|
2090 | if (rcVMRun == VERR_SVM_INVALID_GUEST_STATE)
|
---|
2091 | {
|
---|
2092 | HMDumpRegs(pVM, pVCpu, pCtx);
|
---|
2093 | #ifdef VBOX_STRICT
|
---|
2094 | Log4(("ctrl.u64VmcbCleanBits %#RX64\n", pVmcb->ctrl.u64VmcbCleanBits));
|
---|
2095 | Log4(("ctrl.u16InterceptRdCRx %#x\n", pVmcb->ctrl.u16InterceptRdCRx));
|
---|
2096 | Log4(("ctrl.u16InterceptWrCRx %#x\n", pVmcb->ctrl.u16InterceptWrCRx));
|
---|
2097 | Log4(("ctrl.u16InterceptRdDRx %#x\n", pVmcb->ctrl.u16InterceptRdDRx));
|
---|
2098 | Log4(("ctrl.u16InterceptWrDRx %#x\n", pVmcb->ctrl.u16InterceptWrDRx));
|
---|
2099 | Log4(("ctrl.u32InterceptException %#x\n", pVmcb->ctrl.u32InterceptException));
|
---|
2100 | Log4(("ctrl.u32InterceptCtrl1 %#x\n", pVmcb->ctrl.u32InterceptCtrl1));
|
---|
2101 | Log4(("ctrl.u32InterceptCtrl2 %#x\n", pVmcb->ctrl.u32InterceptCtrl2));
|
---|
2102 | Log4(("ctrl.u64IOPMPhysAddr %#RX64\n", pVmcb->ctrl.u64IOPMPhysAddr));
|
---|
2103 | Log4(("ctrl.u64MSRPMPhysAddr %#RX64\n", pVmcb->ctrl.u64MSRPMPhysAddr));
|
---|
2104 | Log4(("ctrl.u64TSCOffset %#RX64\n", pVmcb->ctrl.u64TSCOffset));
|
---|
2105 |
|
---|
2106 | Log4(("ctrl.TLBCtrl.u32ASID %#x\n", pVmcb->ctrl.TLBCtrl.n.u32ASID));
|
---|
2107 | Log4(("ctrl.TLBCtrl.u8TLBFlush %#x\n", pVmcb->ctrl.TLBCtrl.n.u8TLBFlush));
|
---|
2108 | Log4(("ctrl.TLBCtrl.u24Reserved %#x\n", pVmcb->ctrl.TLBCtrl.n.u24Reserved));
|
---|
2109 |
|
---|
2110 | Log4(("ctrl.IntCtrl.u8VTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u8VTPR));
|
---|
2111 | Log4(("ctrl.IntCtrl.u1VIrqValid %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqValid));
|
---|
2112 | Log4(("ctrl.IntCtrl.u7Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u7Reserved));
|
---|
2113 | Log4(("ctrl.IntCtrl.u4VIrqPriority %#x\n", pVmcb->ctrl.IntCtrl.n.u4VIrqPriority));
|
---|
2114 | Log4(("ctrl.IntCtrl.u1IgnoreTPR %#x\n", pVmcb->ctrl.IntCtrl.n.u1IgnoreTPR));
|
---|
2115 | Log4(("ctrl.IntCtrl.u3Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u3Reserved));
|
---|
2116 | Log4(("ctrl.IntCtrl.u1VIrqMasking %#x\n", pVmcb->ctrl.IntCtrl.n.u1VIrqMasking));
|
---|
2117 | Log4(("ctrl.IntCtrl.u6Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u6Reserved));
|
---|
2118 | Log4(("ctrl.IntCtrl.u8VIrqVector %#x\n", pVmcb->ctrl.IntCtrl.n.u8VIrqVector));
|
---|
2119 | Log4(("ctrl.IntCtrl.u24Reserved %#x\n", pVmcb->ctrl.IntCtrl.n.u24Reserved));
|
---|
2120 |
|
---|
2121 | Log4(("ctrl.u64IntShadow %#RX64\n", pVmcb->ctrl.u64IntShadow));
|
---|
2122 | Log4(("ctrl.u64ExitCode %#RX64\n", pVmcb->ctrl.u64ExitCode));
|
---|
2123 | Log4(("ctrl.u64ExitInfo1 %#RX64\n", pVmcb->ctrl.u64ExitInfo1));
|
---|
2124 | Log4(("ctrl.u64ExitInfo2 %#RX64\n", pVmcb->ctrl.u64ExitInfo2));
|
---|
2125 | Log4(("ctrl.ExitIntInfo.u8Vector %#x\n", pVmcb->ctrl.ExitIntInfo.n.u8Vector));
|
---|
2126 | Log4(("ctrl.ExitIntInfo.u3Type %#x\n", pVmcb->ctrl.ExitIntInfo.n.u3Type));
|
---|
2127 | Log4(("ctrl.ExitIntInfo.u1ErrorCodeValid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1ErrorCodeValid));
|
---|
2128 | Log4(("ctrl.ExitIntInfo.u19Reserved %#x\n", pVmcb->ctrl.ExitIntInfo.n.u19Reserved));
|
---|
2129 | Log4(("ctrl.ExitIntInfo.u1Valid %#x\n", pVmcb->ctrl.ExitIntInfo.n.u1Valid));
|
---|
2130 | Log4(("ctrl.ExitIntInfo.u32ErrorCode %#x\n", pVmcb->ctrl.ExitIntInfo.n.u32ErrorCode));
|
---|
2131 | Log4(("ctrl.NestedPaging %#RX64\n", pVmcb->ctrl.NestedPaging.u));
|
---|
2132 | Log4(("ctrl.EventInject.u8Vector %#x\n", pVmcb->ctrl.EventInject.n.u8Vector));
|
---|
2133 | Log4(("ctrl.EventInject.u3Type %#x\n", pVmcb->ctrl.EventInject.n.u3Type));
|
---|
2134 | Log4(("ctrl.EventInject.u1ErrorCodeValid %#x\n", pVmcb->ctrl.EventInject.n.u1ErrorCodeValid));
|
---|
2135 | Log4(("ctrl.EventInject.u19Reserved %#x\n", pVmcb->ctrl.EventInject.n.u19Reserved));
|
---|
2136 | Log4(("ctrl.EventInject.u1Valid %#x\n", pVmcb->ctrl.EventInject.n.u1Valid));
|
---|
2137 | Log4(("ctrl.EventInject.u32ErrorCode %#x\n", pVmcb->ctrl.EventInject.n.u32ErrorCode));
|
---|
2138 |
|
---|
2139 | Log4(("ctrl.u64NestedPagingCR3 %#RX64\n", pVmcb->ctrl.u64NestedPagingCR3));
|
---|
2140 | Log4(("ctrl.u64LBRVirt %#RX64\n", pVmcb->ctrl.u64LBRVirt));
|
---|
2141 |
|
---|
2142 | Log4(("guest.CS.u16Sel %RTsel\n", pVmcb->guest.CS.u16Sel));
|
---|
2143 | Log4(("guest.CS.u16Attr %#x\n", pVmcb->guest.CS.u16Attr));
|
---|
2144 | Log4(("guest.CS.u32Limit %#RX32\n", pVmcb->guest.CS.u32Limit));
|
---|
2145 | Log4(("guest.CS.u64Base %#RX64\n", pVmcb->guest.CS.u64Base));
|
---|
2146 | Log4(("guest.DS.u16Sel %#RTsel\n", pVmcb->guest.DS.u16Sel));
|
---|
2147 | Log4(("guest.DS.u16Attr %#x\n", pVmcb->guest.DS.u16Attr));
|
---|
2148 | Log4(("guest.DS.u32Limit %#RX32\n", pVmcb->guest.DS.u32Limit));
|
---|
2149 | Log4(("guest.DS.u64Base %#RX64\n", pVmcb->guest.DS.u64Base));
|
---|
2150 | Log4(("guest.ES.u16Sel %RTsel\n", pVmcb->guest.ES.u16Sel));
|
---|
2151 | Log4(("guest.ES.u16Attr %#x\n", pVmcb->guest.ES.u16Attr));
|
---|
2152 | Log4(("guest.ES.u32Limit %#RX32\n", pVmcb->guest.ES.u32Limit));
|
---|
2153 | Log4(("guest.ES.u64Base %#RX64\n", pVmcb->guest.ES.u64Base));
|
---|
2154 | Log4(("guest.FS.u16Sel %RTsel\n", pVmcb->guest.FS.u16Sel));
|
---|
2155 | Log4(("guest.FS.u16Attr %#x\n", pVmcb->guest.FS.u16Attr));
|
---|
2156 | Log4(("guest.FS.u32Limit %#RX32\n", pVmcb->guest.FS.u32Limit));
|
---|
2157 | Log4(("guest.FS.u64Base %#RX64\n", pVmcb->guest.FS.u64Base));
|
---|
2158 | Log4(("guest.GS.u16Sel %RTsel\n", pVmcb->guest.GS.u16Sel));
|
---|
2159 | Log4(("guest.GS.u16Attr %#x\n", pVmcb->guest.GS.u16Attr));
|
---|
2160 | Log4(("guest.GS.u32Limit %#RX32\n", pVmcb->guest.GS.u32Limit));
|
---|
2161 | Log4(("guest.GS.u64Base %#RX64\n", pVmcb->guest.GS.u64Base));
|
---|
2162 |
|
---|
2163 | Log4(("guest.GDTR.u32Limit %#RX32\n", pVmcb->guest.GDTR.u32Limit));
|
---|
2164 | Log4(("guest.GDTR.u64Base %#RX64\n", pVmcb->guest.GDTR.u64Base));
|
---|
2165 |
|
---|
2166 | Log4(("guest.LDTR.u16Sel %RTsel\n", pVmcb->guest.LDTR.u16Sel));
|
---|
2167 | Log4(("guest.LDTR.u16Attr %#x\n", pVmcb->guest.LDTR.u16Attr));
|
---|
2168 | Log4(("guest.LDTR.u32Limit %#RX32\n", pVmcb->guest.LDTR.u32Limit));
|
---|
2169 | Log4(("guest.LDTR.u64Base %#RX64\n", pVmcb->guest.LDTR.u64Base));
|
---|
2170 |
|
---|
2171 | Log4(("guest.IDTR.u32Limit %#RX32\n", pVmcb->guest.IDTR.u32Limit));
|
---|
2172 | Log4(("guest.IDTR.u64Base %#RX64\n", pVmcb->guest.IDTR.u64Base));
|
---|
2173 |
|
---|
2174 | Log4(("guest.TR.u16Sel %RTsel\n", pVmcb->guest.TR.u16Sel));
|
---|
2175 | Log4(("guest.TR.u16Attr %#x\n", pVmcb->guest.TR.u16Attr));
|
---|
2176 | Log4(("guest.TR.u32Limit %#RX32\n", pVmcb->guest.TR.u32Limit));
|
---|
2177 | Log4(("guest.TR.u64Base %#RX64\n", pVmcb->guest.TR.u64Base));
|
---|
2178 |
|
---|
2179 | Log4(("guest.u8CPL %#x\n", pVmcb->guest.u8CPL));
|
---|
2180 | Log4(("guest.u64CR0 %#RX64\n", pVmcb->guest.u64CR0));
|
---|
2181 | Log4(("guest.u64CR2 %#RX64\n", pVmcb->guest.u64CR2));
|
---|
2182 | Log4(("guest.u64CR3 %#RX64\n", pVmcb->guest.u64CR3));
|
---|
2183 | Log4(("guest.u64CR4 %#RX64\n", pVmcb->guest.u64CR4));
|
---|
2184 | Log4(("guest.u64DR6 %#RX64\n", pVmcb->guest.u64DR6));
|
---|
2185 | Log4(("guest.u64DR7 %#RX64\n", pVmcb->guest.u64DR7));
|
---|
2186 |
|
---|
2187 | Log4(("guest.u64RIP %#RX64\n", pVmcb->guest.u64RIP));
|
---|
2188 | Log4(("guest.u64RSP %#RX64\n", pVmcb->guest.u64RSP));
|
---|
2189 | Log4(("guest.u64RAX %#RX64\n", pVmcb->guest.u64RAX));
|
---|
2190 | Log4(("guest.u64RFlags %#RX64\n", pVmcb->guest.u64RFlags));
|
---|
2191 |
|
---|
2192 | Log4(("guest.u64SysEnterCS %#RX64\n", pVmcb->guest.u64SysEnterCS));
|
---|
2193 | Log4(("guest.u64SysEnterEIP %#RX64\n", pVmcb->guest.u64SysEnterEIP));
|
---|
2194 | Log4(("guest.u64SysEnterESP %#RX64\n", pVmcb->guest.u64SysEnterESP));
|
---|
2195 |
|
---|
2196 | Log4(("guest.u64EFER %#RX64\n", pVmcb->guest.u64EFER));
|
---|
2197 | Log4(("guest.u64STAR %#RX64\n", pVmcb->guest.u64STAR));
|
---|
2198 | Log4(("guest.u64LSTAR %#RX64\n", pVmcb->guest.u64LSTAR));
|
---|
2199 | Log4(("guest.u64CSTAR %#RX64\n", pVmcb->guest.u64CSTAR));
|
---|
2200 | Log4(("guest.u64SFMASK %#RX64\n", pVmcb->guest.u64SFMASK));
|
---|
2201 | Log4(("guest.u64KernelGSBase %#RX64\n", pVmcb->guest.u64KernelGSBase));
|
---|
2202 | Log4(("guest.u64GPAT %#RX64\n", pVmcb->guest.u64GPAT));
|
---|
2203 | Log4(("guest.u64DBGCTL %#RX64\n", pVmcb->guest.u64DBGCTL));
|
---|
2204 | Log4(("guest.u64BR_FROM %#RX64\n", pVmcb->guest.u64BR_FROM));
|
---|
2205 | Log4(("guest.u64BR_TO %#RX64\n", pVmcb->guest.u64BR_TO));
|
---|
2206 | Log4(("guest.u64LASTEXCPFROM %#RX64\n", pVmcb->guest.u64LASTEXCPFROM));
|
---|
2207 | Log4(("guest.u64LASTEXCPTO %#RX64\n", pVmcb->guest.u64LASTEXCPTO));
|
---|
2208 | #endif
|
---|
2209 | }
|
---|
2210 | else
|
---|
2211 | Log4(("hmR0SvmReportWorldSwitchError: rcVMRun=%d\n", rcVMRun));
|
---|
2212 | }
|
---|
2213 |
|
---|
2214 |
|
---|
2215 | /**
|
---|
2216 | * Check per-VM and per-VCPU force flag actions that require us to go back to
|
---|
2217 | * ring-3 for one reason or another.
|
---|
2218 | *
|
---|
2219 | * @returns VBox status code (information status code included).
|
---|
2220 | * @retval VINF_SUCCESS if we don't have any actions that require going back to
|
---|
2221 | * ring-3.
|
---|
2222 | * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
|
---|
2223 | * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
|
---|
2224 | * interrupts)
|
---|
2225 | * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
|
---|
2226 | * all EMTs to be in ring-3.
|
---|
2227 | * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
|
---|
2228 | * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
|
---|
2229 | * to the EM loop.
|
---|
2230 | *
|
---|
2231 | * @param pVM Pointer to the VM.
|
---|
2232 | * @param pVCpu Pointer to the VMCPU.
|
---|
2233 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2234 | */
|
---|
2235 | static int hmR0SvmCheckForceFlags(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2236 | {
|
---|
2237 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2238 |
|
---|
2239 | if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK | VM_FF_REQUEST | VM_FF_PGM_POOL_FLUSH_PENDING | VM_FF_PDM_DMA)
|
---|
2240 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
|
---|
2241 | | VMCPU_FF_REQUEST | VMCPU_FF_HM_UPDATE_CR3))
|
---|
2242 | {
|
---|
2243 | /* Pending HM CR3 sync. No PAE PDPEs (VMCPU_FF_HM_UPDATE_PAE_PDPES) on AMD-V. */
|
---|
2244 | if (VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3))
|
---|
2245 | {
|
---|
2246 | rc = PGMUpdateCR3(pVCpu, pCtx->cr3);
|
---|
2247 | Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3);
|
---|
2248 | Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
2249 | }
|
---|
2250 |
|
---|
2251 | /* Pending PGM C3 sync. */
|
---|
2252 | if (VMCPU_FF_IS_PENDING(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
|
---|
2253 | {
|
---|
2254 | rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
|
---|
2255 | if (rc != VINF_SUCCESS)
|
---|
2256 | {
|
---|
2257 | AssertRC(rc);
|
---|
2258 | Log4(("hmR0SvmCheckForceFlags: PGMSyncCR3 forcing us back to ring-3. rc=%d\n", rc));
|
---|
2259 | return rc;
|
---|
2260 | }
|
---|
2261 | }
|
---|
2262 |
|
---|
2263 | /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
|
---|
2264 | /* -XXX- what was that about single stepping? */
|
---|
2265 | if ( VM_FF_IS_PENDING(pVM, VM_FF_HM_TO_R3_MASK)
|
---|
2266 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
2267 | {
|
---|
2268 | STAM_COUNTER_INC(&pVCpu->hm.s.StatSwitchHmToR3FF);
|
---|
2269 | rc = RT_UNLIKELY(VM_FF_IS_PENDING(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_NO_MEMORY : VINF_EM_RAW_TO_R3;
|
---|
2270 | Log4(("hmR0SvmCheckForceFlags: HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
|
---|
2271 | return rc;
|
---|
2272 | }
|
---|
2273 |
|
---|
2274 | /* Pending VM request packets, such as hardware interrupts. */
|
---|
2275 | if ( VM_FF_IS_PENDING(pVM, VM_FF_REQUEST)
|
---|
2276 | || VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_REQUEST))
|
---|
2277 | {
|
---|
2278 | Log4(("hmR0SvmCheckForceFlags: Pending VM request forcing us back to ring-3\n"));
|
---|
2279 | return VINF_EM_PENDING_REQUEST;
|
---|
2280 | }
|
---|
2281 |
|
---|
2282 | /* Pending PGM pool flushes. */
|
---|
2283 | if (VM_FF_IS_PENDING(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
|
---|
2284 | {
|
---|
2285 | Log4(("hmR0SvmCheckForceFlags: PGM pool flush pending forcing us back to ring-3\n"));
|
---|
2286 | return VINF_PGM_POOL_FLUSH_PENDING;
|
---|
2287 | }
|
---|
2288 |
|
---|
2289 | /* Pending DMA requests. */
|
---|
2290 | if (VM_FF_IS_PENDING(pVM, VM_FF_PDM_DMA))
|
---|
2291 | {
|
---|
2292 | Log4(("hmR0SvmCheckForceFlags: Pending DMA request forcing us back to ring-3\n"));
|
---|
2293 | return VINF_EM_RAW_TO_R3;
|
---|
2294 | }
|
---|
2295 | }
|
---|
2296 |
|
---|
2297 | /* Paranoia. */
|
---|
2298 | Assert(rc != VERR_EM_INTERPRETER);
|
---|
2299 | return VINF_SUCCESS;
|
---|
2300 | }
|
---|
2301 |
|
---|
2302 |
|
---|
2303 | /**
|
---|
2304 | * Does the preparations before executing guest code in AMD-V.
|
---|
2305 | *
|
---|
2306 | * This may cause longjmps to ring-3 and may even result in rescheduling to the
|
---|
2307 | * recompiler. We must be cautious what we do here regarding committing
|
---|
2308 | * guest-state information into the the VMCB assuming we assuredly execute the
|
---|
2309 | * guest in AMD-V. If we fall back to the recompiler after updating the VMCB and
|
---|
2310 | * clearing the common-state (TRPM/forceflags), we must undo those changes so
|
---|
2311 | * that the recompiler can (and should) use them when it resumes guest
|
---|
2312 | * execution. Otherwise such operations must be done when we can no longer
|
---|
2313 | * exit to ring-3.
|
---|
2314 | *
|
---|
2315 | * @returns VBox status code (informational status codes included).
|
---|
2316 | * @retval VINF_SUCCESS if we can proceed with running the guest.
|
---|
2317 | * @retval VINF_* scheduling changes, we have to go back to ring-3.
|
---|
2318 | *
|
---|
2319 | * @param pVCpu Pointer to the VMCPU.
|
---|
2320 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2321 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
2322 | */
|
---|
2323 | DECLINE(int) hmR0SvmPreRunGuest(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
2324 | {
|
---|
2325 | /* Check force flag actions that might require us to go back to ring-3. */
|
---|
2326 | int rc = hmR0SvmCheckForceFlags(pVM, pVCpu, pCtx);
|
---|
2327 | if (rc != VINF_SUCCESS)
|
---|
2328 | return rc;
|
---|
2329 |
|
---|
2330 | #ifdef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
|
---|
2331 | /* We disable interrupts so that we don't miss any interrupts that would flag preemption (IPI/timers etc.) */
|
---|
2332 | pSvmTransient->uEFlags = ASMIntDisableFlags();
|
---|
2333 | if (RTThreadPreemptIsPending(NIL_RTTHREAD))
|
---|
2334 | {
|
---|
2335 | ASMSetFlags(pSvmTransient->uEFlags);
|
---|
2336 | STAM_COUNTER_INC(&pVCpu->hm.s.StatPendingHostIrq);
|
---|
2337 | /* Don't use VINF_EM_RAW_INTERRUPT_HYPER as we can't assume the host does kernel preemption. Maybe some day? */
|
---|
2338 | return VINF_EM_RAW_INTERRUPT;
|
---|
2339 | }
|
---|
2340 | VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
2341 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
|
---|
2342 | #endif
|
---|
2343 |
|
---|
2344 | /* Convert any pending TRPM traps to HM events for injection. */
|
---|
2345 | /** @todo Optimization: move this before disabling interrupts, restore state
|
---|
2346 | * using pVmcb->ctrl.EventInject.u. */
|
---|
2347 | if (TRPMHasTrap(pVCpu))
|
---|
2348 | hmR0SvmTrpmTrapToPendingEvent(pVCpu);
|
---|
2349 |
|
---|
2350 | hmR0SvmInjectPendingEvent(pVCpu, pCtx);
|
---|
2351 |
|
---|
2352 | return VINF_SUCCESS;
|
---|
2353 | }
|
---|
2354 |
|
---|
2355 |
|
---|
2356 | /**
|
---|
2357 | * Prepares to run guest code in VT-x and we've committed to doing so. This
|
---|
2358 | * means there is no backing out to ring-3 or anywhere else at this
|
---|
2359 | * point.
|
---|
2360 | *
|
---|
2361 | * @param pVM Pointer to the VM.
|
---|
2362 | * @param pVCpu Pointer to the VMCPU.
|
---|
2363 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2364 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
2365 | *
|
---|
2366 | * @remarks Called with preemption disabled.
|
---|
2367 | * @remarks No-long-jump zone!!!
|
---|
2368 | */
|
---|
2369 | DECLINLINE(void) hmR0SvmPreRunGuestCommitted(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
2370 | {
|
---|
2371 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2372 | Assert(VMMR0IsLogFlushDisabled(pVCpu));
|
---|
2373 |
|
---|
2374 | #ifndef VBOX_WITH_VMMR0_DISABLE_PREEMPTION
|
---|
2375 | /** @todo I don't see the point of this, VMMR0EntryFast() already disables interrupts for the entire period. */
|
---|
2376 | pSvmTransient->uEFlags = ASMIntDisableFlags();
|
---|
2377 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC);
|
---|
2378 | #endif
|
---|
2379 |
|
---|
2380 | /*
|
---|
2381 | * Re-enable nested paging (automatically disabled on every VM-exit). See AMD spec. 15.25.3 "Enabling Nested Paging".
|
---|
2382 | * We avoid changing the corresponding VMCB Clean Bit as we're not changing it to a different value since the previous run.
|
---|
2383 | */
|
---|
2384 | /** @todo The above assumption could be wrong. It's not documented what
|
---|
2385 | * should be done wrt to the VMCB Clean Bit, but we'll find out the
|
---|
2386 | * hard way. */
|
---|
2387 | pVmcb->ctrl.NestedPaging.n.u1NestedPaging = pVM->hm.s.fNestedPaging;
|
---|
2388 |
|
---|
2389 | /* Load the guest state. */
|
---|
2390 | int rc = SVMR0LoadGuestState(pVM, pVCpu, pCtx);
|
---|
2391 | AssertRC(rc);
|
---|
2392 | AssertMsg(!pVCpu->hm.s.fContextUseFlags, ("fContextUseFlags =%#x\n", pVCpu->hm.s.fContextUseFlags));
|
---|
2393 | STAM_COUNTER_INC(&pVCpu->hm.s.StatLoadFull);
|
---|
2394 |
|
---|
2395 | /*
|
---|
2396 | * If we're not intercepting TPR changes in the guest, save the guest TPR before the world-switch
|
---|
2397 | * so we can update it on the way back if the guest changed the TPR.
|
---|
2398 | */
|
---|
2399 | if (pVCpu->hm.s.svm.fSyncVTpr)
|
---|
2400 | {
|
---|
2401 | if (pVM->hm.s.fTPRPatchingActive)
|
---|
2402 | pSvmTransient->u8GuestTpr = pCtx->msrLSTAR;
|
---|
2403 | else
|
---|
2404 | pSvmTransient->u8GuestTpr = pVmcb->ctrl.IntCtrl.n.u8VTPR;
|
---|
2405 | }
|
---|
2406 |
|
---|
2407 | /* Flush the appropriate tagged-TLB entries. */
|
---|
2408 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, true); /* Used for TLB-shootdowns, set this across the world switch. */
|
---|
2409 | hmR0SvmFlushTaggedTlb(pVCpu);
|
---|
2410 | Assert(HMR0GetCurrentCpu()->idCpu == pVCpu->hm.s.idLastCpu);
|
---|
2411 |
|
---|
2412 | TMNotifyStartOfExecution(pVCpu); /* Finally, notify TM to resume its clocks as we're about
|
---|
2413 | to start executing. */
|
---|
2414 |
|
---|
2415 | /*
|
---|
2416 | * Save the current Host TSC_AUX and write the guest TSC_AUX to the host, so that
|
---|
2417 | * RDTSCPs (that don't cause exits) reads the guest MSR. See @bugref{3324}.
|
---|
2418 | *
|
---|
2419 | * This should be done -after- any RDTSCPs for obtaining the host timestamp (TM, STAM etc).
|
---|
2420 | */
|
---|
2421 | if ( (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
|
---|
2422 | && !(pVmcb->ctrl.u32InterceptCtrl2 & SVM_CTRL2_INTERCEPT_RDTSCP))
|
---|
2423 | {
|
---|
2424 | pVCpu->hm.s.u64HostTscAux = ASMRdMsr(MSR_K8_TSC_AUX);
|
---|
2425 | uint64_t u64GuestTscAux = 0;
|
---|
2426 | rc2 = CPUMQueryGuestMsr(pVCpu, MSR_K8_TSC_AUX, &u64GuestTscAux);
|
---|
2427 | AssertRC(rc2);
|
---|
2428 | ASMWrMsr(MSR_K8_TSC_AUX, u64GuestTscAux);
|
---|
2429 | }
|
---|
2430 | }
|
---|
2431 |
|
---|
2432 |
|
---|
2433 | /**
|
---|
2434 | * Wrapper for running the guest code in AMD-V.
|
---|
2435 | *
|
---|
2436 | * @returns VBox strict status code.
|
---|
2437 | * @param pVM Pointer to the VM.
|
---|
2438 | * @param pVCpu Pointer to the VMCPU.
|
---|
2439 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2440 | *
|
---|
2441 | * @remarks No-long-jump zone!!!
|
---|
2442 | */
|
---|
2443 | DECLINLINE(int) hmR0SvmRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2444 | {
|
---|
2445 | /*
|
---|
2446 | * 64-bit Windows uses XMM registers in the kernel as the Microsoft compiler expresses floating-point operations
|
---|
2447 | * using SSE instructions. Some XMM registers (XMM6-XMM15) are callee-saved and thus the need for this XMM wrapper.
|
---|
2448 | * Refer MSDN docs. "Configuring Programs for 64-bit / x64 Software Conventions / Register Usage" for details.
|
---|
2449 | */
|
---|
2450 | #ifdef VBOX_WITH_KERNEL_USING_XMM
|
---|
2451 | return HMR0SVMRunWrapXMM(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu,
|
---|
2452 | pVCpu->hm.s.svm.pfnVMRun);
|
---|
2453 | #else
|
---|
2454 | return pVCpu->hm.s.svm.pfnVMRun(pVCpu->hm.s.svm.HCPhysVmcbHost, pVCpu->hm.s.svm.HCPhysVmcb, pCtx, pVM, pVCpu);
|
---|
2455 | #endif
|
---|
2456 | }
|
---|
2457 |
|
---|
2458 |
|
---|
2459 | /**
|
---|
2460 | * Performs some essential restoration of state after running guest code in
|
---|
2461 | * AMD-V.
|
---|
2462 | *
|
---|
2463 | * @param pVM Pointer to the VM.
|
---|
2464 | * @param pVCpu Pointer to the VMCPU.
|
---|
2465 | * @param pMixedCtx Pointer to the guest-CPU context. The data maybe
|
---|
2466 | * out-of-sync. Make sure to update the required fields
|
---|
2467 | * before using them.
|
---|
2468 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
2469 | * @param rcVMRun Return code of VMRUN.
|
---|
2470 | *
|
---|
2471 | * @remarks Called with interrupts disabled.
|
---|
2472 | * @remarks No-long-jump zone!!! This function will however re-enable longjmps
|
---|
2473 | * unconditionally when it is safe to do so.
|
---|
2474 | */
|
---|
2475 | DECLINLINE(void) hmR0SvmPostRunGuest(PVM pVM, PVMCPU pVCpu, PCPUMCTX pMixedCtx, PSVMTRANSIENT pSvmTransient, rcVMRun)
|
---|
2476 | {
|
---|
2477 | Assert(!VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2478 |
|
---|
2479 | ASMAtomicWriteBool(&pVCpu->hm.s.fCheckedTLBFlush, false); /* See HMInvalidatePageOnAllVCpus(): used for TLB-shootdowns. */
|
---|
2480 | ASMAtomicIncU32(&pVCpu->hm.s.cWorldSwitchExits); /* Initialized in vmR3CreateUVM(): used for TLB-shootdowns. */
|
---|
2481 |
|
---|
2482 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
2483 | pVmcb->ctrl.u64VmcbCleanBits = HMSVM_VMCB_CLEAN_ALL; /* Mark the VMCB-state cache as unmodified by VMM. */
|
---|
2484 |
|
---|
2485 | /* Restore host's TSC_AUX if required. */
|
---|
2486 | if (!(pVmcb->ctrl.u32InterceptCtrl1 & SVM_CTRL1_INTERCEPT_RDTSC))
|
---|
2487 | {
|
---|
2488 | if (pVM->hm.s.cpuid.u32AMDFeatureEDX & X86_CPUID_EXT_FEATURE_EDX_RDTSCP)
|
---|
2489 | ASMWrMsr(MSR_K8_TSC_AUX, pVCpu->hm.s.u64HostTscAux);
|
---|
2490 |
|
---|
2491 | /** @todo Find a way to fix hardcoding a guestimate. */
|
---|
2492 | TMCpuTickSetLastSeen(pVCpu, ASMReadTSC() +
|
---|
2493 | pVmcb->ctrl.u64TSCOffset - 0x400);
|
---|
2494 | }
|
---|
2495 |
|
---|
2496 | TMNotifyEndOfExecution(pVCpu); /* Notify TM that the guest is no longer running. */
|
---|
2497 | VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_HM);
|
---|
2498 |
|
---|
2499 | Assert(!(ASMGetFlags() & X86_EFL_IF));
|
---|
2500 | ASMSetFlags(pSvmTransient->uEFlags); /* Enable interrupts. */
|
---|
2501 |
|
---|
2502 | VMMRZCallRing3SetNotification(pVCpu, hmR0SvmCallRing3Callback, pMixedCtx);
|
---|
2503 | VMMRZCallRing3Enable(pVCpu); /* It is now safe to do longjmps to ring-3!!! */
|
---|
2504 |
|
---|
2505 | /* If VMRUN failed, we can bail out early. This does -not- cover SVM_EXIT_INVALID. */
|
---|
2506 | if (RT_UNLIKELY(rcVMRun != VINF_SUCCESS))
|
---|
2507 | {
|
---|
2508 | Log4(("VMRUN failure: rcVMRun=%Rrc\n", rcVMRun));
|
---|
2509 | return;
|
---|
2510 | }
|
---|
2511 |
|
---|
2512 | pSvmTransient->u64ExitCode = pVmcb->ctrl.u64ExitCode;
|
---|
2513 | hmR0SvmSaveGuestState(pVCpu, pMixedCtx); /* Save the guest state from the VMCB to the guest-CPU context. */
|
---|
2514 |
|
---|
2515 | if (RT_LIKELY(pSvmTransient->u64ExitCode != SVM_EXIT_INVALID))
|
---|
2516 | {
|
---|
2517 | if (pVCpu->hm.s.svm.fSyncVTpr)
|
---|
2518 | {
|
---|
2519 | /* TPR patching (for 32-bit guests) uses LSTAR MSR for holding the TPR value, otherwise uses the VTPR. */
|
---|
2520 | if ( pVM->hm.s.fTPRPatchingActive
|
---|
2521 | && (pCtx->msrLSTAR & 0xff) != pSvmTransient->u8GuestTpr)
|
---|
2522 | {
|
---|
2523 | int rc = PDMApicSetTPR(pVCpu, pCtx->msrLSTAR & 0xff);
|
---|
2524 | AssertRC(rc);
|
---|
2525 | }
|
---|
2526 | else if ((uint8_t)(pSvmTransient->u8GuestTpr >> 4) != pVmcb->ctrl.IntCtrl.n.u8VTPR)
|
---|
2527 | {
|
---|
2528 | int rc = PDMApicSetTPR(pVCpu, (pVmcb->ctrl.IntCtrl.n.u8VTPR << 4));
|
---|
2529 | AssertRC(rc);
|
---|
2530 | }
|
---|
2531 | }
|
---|
2532 |
|
---|
2533 | /* -XXX- premature interruption during event injection */
|
---|
2534 | }
|
---|
2535 | }
|
---|
2536 |
|
---|
2537 |
|
---|
2538 | /**
|
---|
2539 | * Runs the guest code using AMD-V.
|
---|
2540 | *
|
---|
2541 | * @returns VBox status code.
|
---|
2542 | * @param pVM Pointer to the VM.
|
---|
2543 | * @param pVCpu Pointer to the VMCPU.
|
---|
2544 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2545 | */
|
---|
2546 | VMMR0DECL(int) SVMR0RunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2547 | {
|
---|
2548 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
2549 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
2550 |
|
---|
2551 | SVMTRANSIENT SvmTransient;
|
---|
2552 | uint32_t cLoops = 0;
|
---|
2553 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
2554 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
2555 |
|
---|
2556 | for (;; cLoops++)
|
---|
2557 | {
|
---|
2558 | Assert(!HMR0SuspendPending());
|
---|
2559 | AssertMsg(pVCpu->hm.s.idEnteredCpu == RTMpCpuId(),
|
---|
2560 | ("Illegal migration! Entered on CPU %u Current %u cLoops=%u\n", (unsigned)pVCpu->hm.s.idEnteredCpu,
|
---|
2561 | (unsigned)RTMpCpuId(), cLoops));
|
---|
2562 |
|
---|
2563 | /* Preparatory work for running guest code, this may return to ring-3 for some last minute updates. */
|
---|
2564 | STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatEntry, x);
|
---|
2565 | rc = hmR0SvmPreRunGuest(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
2566 | if (rc != VINF_SUCCESS)
|
---|
2567 | break;
|
---|
2568 |
|
---|
2569 | /*
|
---|
2570 | * No longjmps to ring-3 from this point on!!!
|
---|
2571 | * Asserts() will still longjmp to ring-3 (but won't return), which is intentional, better than a kernel panic.
|
---|
2572 | * This also disables flushing of the R0-logger instance (if any).
|
---|
2573 | */
|
---|
2574 | VMMRZCallRing3Disable(pVCpu);
|
---|
2575 | VMMRZCallRing3RemoveNotification(pVCpu);
|
---|
2576 | hmR0SvmPreRunGuestCommitted(pVM, pVCpu, pCtx, &SvmTransient);
|
---|
2577 |
|
---|
2578 | rc = hmR0SvmRunGuest(pVM, pVCpu, pCtx);
|
---|
2579 |
|
---|
2580 | /*
|
---|
2581 | * Restore any residual host-state and save any bits shared between host and guest into the guest-CPU state.
|
---|
2582 | * This will also re-enable longjmps to ring-3 when it has reached a safe point!!!
|
---|
2583 | */
|
---|
2584 | hmR0SvmPostRunGuest(pVM, pVCpu, pCtx, &SvmTransient, rc);
|
---|
2585 | if (RT_UNLIKELY( rc != VINF_SUCCESS /* Check for errors with running the VM (VMRUN). */
|
---|
2586 | || SvmTransient.u64ExitCode == SVM_EXIT_INVALID)) /* Check for errors due to invalid guest state. */
|
---|
2587 | {
|
---|
2588 | if (rc == VINF_SUCCESS);
|
---|
2589 | rc = VERR_SVM_INVALID_GUEST_STATE;
|
---|
2590 | hmR0SvmReportWorldSwitchError(pVM, pVCpu, rc, pCtx, &SvmTransient);
|
---|
2591 | return rc;
|
---|
2592 | }
|
---|
2593 |
|
---|
2594 | /* Handle the #VMEXIT. */
|
---|
2595 | AssertMsg(SvmTransient.u64ExitCode != SVM_EXIT_INVALID, ("%#x\n", SvmTransient.u64ExitCode));
|
---|
2596 | HMSVM_EXITCODE_STAM_COUNTER_INC(SvmTransient.u64ExitCode);
|
---|
2597 | rc = hmR0SvmHandleExit(pVCpu, pCtx, &SvmTransient);
|
---|
2598 | if (rc != VINF_SUCCESS)
|
---|
2599 | break;
|
---|
2600 | else if (cLoops > pVM->hm.s.cMaxResumeLoops)
|
---|
2601 | {
|
---|
2602 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMaxResume);
|
---|
2603 | rc = VINF_EM_RAW_INTERRUPT;
|
---|
2604 | break;
|
---|
2605 | }
|
---|
2606 | }
|
---|
2607 |
|
---|
2608 | if (rc == VERR_EM_INTERPRETER)
|
---|
2609 | rc = VINF_EM_RAW_EMULATE_INSTR;
|
---|
2610 | else if (rc == VINF_EM_RESET)
|
---|
2611 | rc = VINF_EM_TRIPLE_FAULT;
|
---|
2612 | hmR0SvmExitToRing3(pVM, pVCpu, pCtx, rc);
|
---|
2613 | return rc;
|
---|
2614 | }
|
---|
2615 |
|
---|
2616 |
|
---|
2617 | /**
|
---|
2618 | * Handles a #VMEXIT (for all EXITCODE values except SVM_EXIT_INVALID).
|
---|
2619 | *
|
---|
2620 | * @returns VBox status code (informational status codes included).
|
---|
2621 | * @param pVCpu Pointer to the VMCPU.
|
---|
2622 | * @param pCtx Pointer to the guest-CPU context.
|
---|
2623 | * @param pSvmTransient Pointer to the SVM transient structure.
|
---|
2624 | */
|
---|
2625 | DECLINLINE(int) hmR0SvmHandleExit(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
2626 | {
|
---|
2627 | Assert(pSvmTransient->u64ExitCode > 0);
|
---|
2628 | Assert(pSvmTransient->u64ExitCode <= SVM_EXIT_MAX);
|
---|
2629 |
|
---|
2630 | int rc;
|
---|
2631 | uint32_t u32ExitCode = pSvmTransient->u64ExitCode;
|
---|
2632 | switch (pSvmTransient->u64ExitCode)
|
---|
2633 | {
|
---|
2634 | case SVM_EXIT_CPUID:
|
---|
2635 | return hmR0SvmExitCpuid(pVCpu, pCtx, pSvmTransient);
|
---|
2636 |
|
---|
2637 | case SVM_EXIT_RDTSC:
|
---|
2638 | return hmR0SvmExitRdtsc(pVCpu, pCtx, pSvmTransient);
|
---|
2639 |
|
---|
2640 | case SVM_EXIT_RDTSCP:
|
---|
2641 | return hmR0SvmExitRdtscp(pVCpu, pCtx, pSvmTransient);
|
---|
2642 |
|
---|
2643 | case SVM_EXIT_MONITOR:
|
---|
2644 | return hmR0SvmExitMonitor(pVCpu, pCtx, pSvmTransient);
|
---|
2645 |
|
---|
2646 | case SVM_EXIT_MWAIT:
|
---|
2647 | return hmR0SvmExitMwait(pVCpu, pCtx, pSvmTransient);
|
---|
2648 |
|
---|
2649 | case SVM_EXIT_WRITE_CR0:
|
---|
2650 | case SVM_EXIT_WRITE_CR3:
|
---|
2651 | case SVM_EXIT_WRITE_CR4:
|
---|
2652 | case SVM_EXIT_WRITE_CR8:
|
---|
2653 | return hmR0SvmExitWriteCRx(pVCpu, pCtx, pSvmTransient);
|
---|
2654 |
|
---|
2655 | case SVM_EXIT_READ_CR0:
|
---|
2656 | case SVM_EXIT_READ_CR3:
|
---|
2657 | case SVM_EXIT_READ_CR4:
|
---|
2658 | return hmR0SvmExitReadCRx(pVCpu, pCtx, pSvmTransient);
|
---|
2659 |
|
---|
2660 | case SVM_EXIT_MSR:
|
---|
2661 | return hmR0SvmExitMsr(pVCpu, pCtx, pSvmTransient);
|
---|
2662 |
|
---|
2663 | case SVM_EXIT_INTR:
|
---|
2664 | case SVM_EXIT_FERR_FREEZE:
|
---|
2665 | case SVM_EXIT_NMI:
|
---|
2666 | case SVM_EXIT_INIT:
|
---|
2667 | return hmR0SvmExitIntr(pVCpu, pCtx, pSvmTransient);
|
---|
2668 |
|
---|
2669 | case SVM_EXIT_WBINVD:
|
---|
2670 | return hmR0SvmExitWbinvd(pVCpu, pCtx, pSvmTransient);
|
---|
2671 |
|
---|
2672 | case SVM_EXIT_INVD:
|
---|
2673 | return hmR0SvmExitInvd(pVCpu, pCtx, pSvmTransient);
|
---|
2674 |
|
---|
2675 | case SVM_EXIT_RDPMC:
|
---|
2676 | return hmR0SvmExitRdpmc(pVCpu, pCtx, pSvmTransient);
|
---|
2677 |
|
---|
2678 | case SVM_EXIT_READ_DR0: case SVM_EXIT_READ_DR1: case SVM_EXIT_READ_DR2: case SVM_EXIT_READ_DR3:
|
---|
2679 | case SVM_EXIT_READ_DR6: case SVM_EXIT_READ_DR7: case SVM_EXIT_READ_DR8: case SVM_EXIT_READ_DR9:
|
---|
2680 | case SVM_EXIT_READ_DR10: case SVM_EXIT_READ_DR11: case SVM_EXIT_READ_DR12: case SVM_EXIT_READ_DR13:
|
---|
2681 | case SVM_EXIT_READ_DR14: case SVM_EXIT_READ_DR15:
|
---|
2682 | return hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
|
---|
2683 |
|
---|
2684 | case SVM_EXIT_WRITE_DR0: case SVM_EXIT_WRITE_DR1: case SVM_EXIT_WRITE_DR2: case SVM_EXIT_WRITE_DR3:
|
---|
2685 | case SVM_EXIT_WRITE_DR6: case SVM_EXIT_WRITE_DR7: case SVM_EXIT_WRITE_DR8: case SVM_EXIT_WRITE_DR9:
|
---|
2686 | case SVM_EXIT_WRITE_DR10: case SVM_EXIT_WRITE_DR11: case SVM_EXIT_WRITE_DR12: case SVM_EXIT_WRITE_DR13:
|
---|
2687 | case SVM_EXIT_WRITE_DR14: case SVM_EXIT_WRITE_DR15:
|
---|
2688 | return hmR0SvmExitWriteDRx(pVCpu, pCtx, pSvmTransient);
|
---|
2689 |
|
---|
2690 | default:
|
---|
2691 | {
|
---|
2692 | case SVM_EXIT_INVLPGA:
|
---|
2693 | case SVM_EXIT_RSM:
|
---|
2694 | case SVM_EXIT_VMRUN:
|
---|
2695 | case SVM_EXIT_VMLOAD:
|
---|
2696 | case SVM_EXIT_VMSAVE:
|
---|
2697 | case SVM_EXIT_STGI:
|
---|
2698 | case SVM_EXIT_CLGI:
|
---|
2699 | case SVM_EXIT_SKINIT:
|
---|
2700 | return hmR0SvmExitSetPendingXcptUD(pVCpu, pCtx, pSvmTransient);
|
---|
2701 |
|
---|
2702 | default:
|
---|
2703 | {
|
---|
2704 | rc = VERR_SVM_UNEXPECTED_EXIT;
|
---|
2705 | AssertMsgFailed(("hmR0SvmHandleExit: Unexpected exit code %#x\n", u32ExitCode));
|
---|
2706 | break;
|
---|
2707 | }
|
---|
2708 | }
|
---|
2709 | }
|
---|
2710 | return rc;
|
---|
2711 | }
|
---|
2712 |
|
---|
2713 |
|
---|
2714 | #ifdef DEBUG
|
---|
2715 | /* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
|
---|
2716 | # define HMSVM_ASSERT_PREEMPT_CPUID_VAR() \
|
---|
2717 | RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
|
---|
2718 |
|
---|
2719 | # define HMSVM_ASSERT_PREEMPT_CPUID() \
|
---|
2720 | do \
|
---|
2721 | { \
|
---|
2722 | RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
|
---|
2723 | AssertMsg(idAssertCpu == idAssertCpuNow, ("SVM %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
|
---|
2724 | } while (0)
|
---|
2725 |
|
---|
2726 | # define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() \
|
---|
2727 | do { \
|
---|
2728 | AssertPtr(pVCpu); \
|
---|
2729 | AssertPtr(pMixedCtx); \
|
---|
2730 | AssertPtr(pSvmTransient); \
|
---|
2731 | Assert(ASMIntAreEnabled()); \
|
---|
2732 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
|
---|
2733 | HMSVM_ASSERT_PREEMPT_CPUID_VAR(); \
|
---|
2734 | Log4Func(("vcpu[%u] -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (uint32_t)pVCpu->idCpu)); \
|
---|
2735 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD)); \
|
---|
2736 | if (VMMR0IsLogFlushDisabled(pVCpu)) \
|
---|
2737 | HMSVM_ASSERT_PREEMPT_CPUID(); \
|
---|
2738 | HMSVM_STOP_EXIT_DISPATCH_PROF(); \
|
---|
2739 | } while (0)
|
---|
2740 | #else /* Release builds */
|
---|
2741 | # define HMSVM_VALIDATE_EXIT_HANDLER_PARAMS() do { } while(0)
|
---|
2742 | #endif
|
---|
2743 |
|
---|
2744 |
|
---|
2745 | /**
|
---|
2746 | * Worker for hmR0SvmInterpretInvlpg().
|
---|
2747 | *
|
---|
2748 | * @return VBox status code.
|
---|
2749 | * @param pVCpu Pointer to the VMCPU.
|
---|
2750 | * @param pCpu Pointer to the disassembler state.
|
---|
2751 | * @param pRegFrame Pointer to the register frame.
|
---|
2752 | */
|
---|
2753 | static int hmR0SvmInterpretInvlPgEx(PVMCPU pVCpu, PDISCPUSTATE pCpu, PCPUMCTXCORE pRegFrame)
|
---|
2754 | {
|
---|
2755 | DISQPVPARAMVAL Param1;
|
---|
2756 | RTGCPTR GCPtrPage;
|
---|
2757 |
|
---|
2758 | int rc = DISQueryParamVal(pRegFrame, pCpu, &pCpu->Param1, &Param1, DISQPVWHICH_SRC);
|
---|
2759 | if (RT_FAILURE(rc))
|
---|
2760 | return VERR_EM_INTERPRETER;
|
---|
2761 |
|
---|
2762 | if ( Param1.type == DISQPV_TYPE_IMMEDIATE
|
---|
2763 | || Param1.type == DISQPV_TYPE_ADDRESS)
|
---|
2764 | {
|
---|
2765 | if (!(Param1.flags & (DISQPV_FLAG_32 | DISQPV_FLAG_64)))
|
---|
2766 | return VERR_EM_INTERPRETER;
|
---|
2767 |
|
---|
2768 | GCPtrPage = Param1.val.val64;
|
---|
2769 | rc = EMInterpretInvlpg(pVCpu->CTX_SUFF(pVM), pVCpu, pRegFrame, GCPtrPage);
|
---|
2770 | }
|
---|
2771 | else
|
---|
2772 | {
|
---|
2773 | Log4(("hmR0SvmInterpretInvlPgEx invalid parameter type %#x\n", Param1.type));
|
---|
2774 | rc = VERR_EM_INTERPRETER;
|
---|
2775 | }
|
---|
2776 |
|
---|
2777 | return rc;
|
---|
2778 | }
|
---|
2779 |
|
---|
2780 |
|
---|
2781 | /**
|
---|
2782 | * Interprets INVLPG.
|
---|
2783 | *
|
---|
2784 | * @returns VBox status code.
|
---|
2785 | * @retval VINF_* Scheduling instructions.
|
---|
2786 | * @retval VERR_EM_INTERPRETER Something we can't cope with.
|
---|
2787 | * @retval VERR_* Fatal errors.
|
---|
2788 | *
|
---|
2789 | * @param pVM Pointer to the VM.
|
---|
2790 | * @param pRegFrame Pointer to the register frame.
|
---|
2791 | *
|
---|
2792 | * @remarks Updates the RIP if the instruction was executed successfully.
|
---|
2793 | */
|
---|
2794 | static int hmR0SvmInterpretInvlpg(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame)
|
---|
2795 | {
|
---|
2796 | /* Only allow 32 & 64 bit code. */
|
---|
2797 | if (CPUMGetGuestCodeBits(pVCpu) != 16)
|
---|
2798 | {
|
---|
2799 | PDISSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
2800 | int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL /* pcbInstr */);
|
---|
2801 | if ( RT_SUCCESS(rc)
|
---|
2802 | && pDis->pCurInstr->uOpcode == OP_INVLPG)
|
---|
2803 | {
|
---|
2804 | rc = hmR0SvmInterpretInvlPgEx(pVCpu, pDis, pRegFrame);
|
---|
2805 | if (RT_SUCCESS(rc))
|
---|
2806 | pRegFrame->rip += pDis->cbInstr;
|
---|
2807 | return rc;
|
---|
2808 | }
|
---|
2809 | else
|
---|
2810 | Log4(("hmR0SvmInterpretInvlpg: EMInterpretDisasCurrent returned %Rrc uOpCode=%#x\n", rc, pDis->pCurInstr->uOpcode));
|
---|
2811 | }
|
---|
2812 | return VERR_EM_INTERPRETER;
|
---|
2813 | }
|
---|
2814 |
|
---|
2815 |
|
---|
2816 | /**
|
---|
2817 | * Sets an invalid-opcode (#UD) exception as pending-for-injection into the VM.
|
---|
2818 | *
|
---|
2819 | * @param pVCpu Pointer to the VMCPU.
|
---|
2820 | */
|
---|
2821 | DECLINLINE(void) hmR0SvmSetPendingXcptUD(PVMCPU pVCpu)
|
---|
2822 | {
|
---|
2823 | SVMEVENT Event;
|
---|
2824 | Event.u = 0;
|
---|
2825 | Event.n.u1Valid = 1;
|
---|
2826 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
2827 | Event.n.u8Vector = X86_XCPT_UD;
|
---|
2828 | hmR0SvmSetPendingEvent(pVCpu, &Event);
|
---|
2829 | }
|
---|
2830 |
|
---|
2831 |
|
---|
2832 | /**
|
---|
2833 | * Sets an debug (#DB) exception as pending-for-injection into the VM.
|
---|
2834 | *
|
---|
2835 | * @param pVCpu Pointer to the VMCPU.
|
---|
2836 | */
|
---|
2837 | DECLINLINE(void) hmR0SvmSetPendingXcptDB(PVMCPU pVCpu)
|
---|
2838 | {
|
---|
2839 | SVMEVENT Event;
|
---|
2840 | Event.u = 0;
|
---|
2841 | Event.n.u1Valid = 1;
|
---|
2842 | Event.n.u3Type = SVM_EVENT_EXCEPTION;
|
---|
2843 | Event.n.u8Vector = X86_XCPT_DB;
|
---|
2844 | hmR0SvmSetPendingEvent(pVCpu, &Event);
|
---|
2845 | }
|
---|
2846 |
|
---|
2847 |
|
---|
2848 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
2849 | /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #VMEXIT handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
|
---|
2850 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
2851 |
|
---|
2852 | /**
|
---|
2853 | * #VMEXIT handler for external interrupts, NMIs, FPU assertion freeze and INIT
|
---|
2854 | * signals (SVM_EXIT_INTR, SVM_EXIT_NMI, SVM_EXIT_FERR_FREEZE, SVM_EXIT_INIT).
|
---|
2855 | */
|
---|
2856 | HMSVM_EXIT_DECL hmR0SvmExitIntr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
2857 | {
|
---|
2858 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
2859 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitExtInt);
|
---|
2860 | /* 32-bit Windows hosts (4 cores) has trouble with this on Intel; causes higher interrupt latency. Assuming the
|
---|
2861 | same for AMD-V.*/
|
---|
2862 | #if HC_ARCH_BITS == 64 && defined(VBOX_WITH_VMMR0_DISABLE_PREEMPTION)
|
---|
2863 | Assert(ASMIntAreEnabled());
|
---|
2864 | return VINF_SUCCESS;
|
---|
2865 | #else
|
---|
2866 | return VINF_EM_RAW_INTERRUPT;
|
---|
2867 | #endif
|
---|
2868 | }
|
---|
2869 |
|
---|
2870 |
|
---|
2871 | /**
|
---|
2872 | * #VMEXIT handler for WBINVD (SVM_EXIT_WBINVD). Conditional #VMEXIT.
|
---|
2873 | */
|
---|
2874 | HMSVM_EXIT_DECL hmR0SvmExitWbinvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
2875 | {
|
---|
2876 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
2877 | pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
|
---|
2878 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWbinvd);
|
---|
2879 | return VINF_SUCCESS;
|
---|
2880 | }
|
---|
2881 |
|
---|
2882 |
|
---|
2883 | /**
|
---|
2884 | * #VMEXIT handler for INVD (SVM_EXIT_INVD). Unconditional #VMEXIT.
|
---|
2885 | */
|
---|
2886 | HMSVM_EXIT_DECL hmR0SvmExitInvd(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
2887 | {
|
---|
2888 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
2889 | pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
|
---|
2890 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvd);
|
---|
2891 | return VINF_SUCCESS;
|
---|
2892 | }
|
---|
2893 |
|
---|
2894 |
|
---|
2895 | /**
|
---|
2896 | * #VMEXIT handler for INVD (SVM_EXIT_CPUID). Conditional #VMEXIT.
|
---|
2897 | */
|
---|
2898 | HMSVM_EXIT_DECL hmR0SvmExitCpuid(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
2899 | {
|
---|
2900 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
2901 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2902 | int rc = EMInterpretCpuId(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
2903 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
2904 | pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
|
---|
2905 | else
|
---|
2906 | {
|
---|
2907 | AssertMsgFailed(("hmR0SvmExitCpuid: EMInterpretCpuId failed with %Rrc\n", rc));
|
---|
2908 | rc = VERR_EM_INTERPRETER;
|
---|
2909 | }
|
---|
2910 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCpuid);
|
---|
2911 | return rc;
|
---|
2912 | }
|
---|
2913 |
|
---|
2914 |
|
---|
2915 | /**
|
---|
2916 | * #VMEXIT handler for RDTSC (SVM_EXIT_RDTSC). Conditional #VMEXIT.
|
---|
2917 | */
|
---|
2918 | HMSVM_EXIT_DECL hmR0SvmExitRdtsc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
2919 | {
|
---|
2920 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
2921 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2922 | rc = EMInterpretRdtsc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
2923 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
2924 | pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
|
---|
2925 | else
|
---|
2926 | {
|
---|
2927 | AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtsc failed with %Rrc\n", rc));
|
---|
2928 | rc = VERR_EM_INTERPRETER;
|
---|
2929 | }
|
---|
2930 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtsc);
|
---|
2931 | return rc;
|
---|
2932 | }
|
---|
2933 |
|
---|
2934 |
|
---|
2935 | /**
|
---|
2936 | * #VMEXIT handler for RDTSCP (SVM_EXIT_RDTSCP). Conditional #VMEXIT.
|
---|
2937 | */
|
---|
2938 | HMSVM_EXIT_DECL hmR0SvmExitRdtscp(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
2939 | {
|
---|
2940 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
2941 | int rc = EMInterpretRdtscp(pVM, pVCpu, pCtx);
|
---|
2942 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
2943 | pCtx->rip += 3; /* Hardcoded opcode, AMD-V doesn't give us this information. */
|
---|
2944 | else
|
---|
2945 | {
|
---|
2946 | AssertMsgFailed(("hmR0SvmExitRdtsc: EMInterpretRdtscp failed with %Rrc\n", rc));
|
---|
2947 | rc = VERR_EM_INTERPRETER;
|
---|
2948 | }
|
---|
2949 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdtscp);
|
---|
2950 | return rc;
|
---|
2951 | }
|
---|
2952 |
|
---|
2953 |
|
---|
2954 | /**
|
---|
2955 | * #VMEXIT handler for RDPMC (SVM_EXIT_RDPMC). Conditional #VMEXIT.
|
---|
2956 | */
|
---|
2957 | HMSVM_EXIT_DECL hmR0SvmExitRdpmc(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
2958 | {
|
---|
2959 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
2960 | int rc = EMInterpretRdpmc(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
2961 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
2962 | pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
|
---|
2963 | else
|
---|
2964 | {
|
---|
2965 | AssertMsgFailed(("hmR0SvmExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
|
---|
2966 | rc = VERR_EM_INTERPRETER;
|
---|
2967 | }
|
---|
2968 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdpmc);
|
---|
2969 | return rc;
|
---|
2970 | }
|
---|
2971 |
|
---|
2972 |
|
---|
2973 | /**
|
---|
2974 | * #VMEXIT handler for INVLPG (SVM_EXIT_INVLPG). Conditional #VMEXIT.
|
---|
2975 | */
|
---|
2976 | HMSVM_EXIT_DECL hmR0SvmExitInvlpg(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
2977 | {
|
---|
2978 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
2979 | Assert(!pVM->hm.s.fNestedPaging);
|
---|
2980 |
|
---|
2981 | /** @todo Decode Assist. */
|
---|
2982 | int rc = hmR0SvmInterpretInvlpg(pVM, pVCpu, CPUMCTX2CORE(pCtx)); /* Updates RIP if successful. */
|
---|
2983 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitInvlpg);
|
---|
2984 | Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
|
---|
2985 | return rc;
|
---|
2986 | }
|
---|
2987 |
|
---|
2988 |
|
---|
2989 | /**
|
---|
2990 | * #VMEXIT handler for HLT (SVM_EXIT_HLT). Conditional #VMEXIT.
|
---|
2991 | */
|
---|
2992 | HMSVM_EXIT_DECL hmR0SvmExitHlt(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
2993 | {
|
---|
2994 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
2995 | pCtx->rip++; /* Hardcoded opcode, AMD-V doesn't give us this information. */
|
---|
2996 | int rc = EMShouldContinueAfterHalt(pVCpu, pCtx) ? VINF_SUCCESS : VINF_EM_HALT;
|
---|
2997 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitHlt);
|
---|
2998 | return rc;
|
---|
2999 | }
|
---|
3000 |
|
---|
3001 |
|
---|
3002 | /**
|
---|
3003 | * #VMEXIT handler for MONITOR (SVM_EXIT_MONITOR). Conditional #VMEXIT.
|
---|
3004 | */
|
---|
3005 | HMSVM_EXIT_DECL hmR0SvmExitMonitor(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3006 | {
|
---|
3007 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
3008 | int rc = EMInterpretMonitor(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
3009 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
3010 | pCtx->rip += 3; /* Hardcoded opcode, AMD-V doesn't give us this information. */
|
---|
3011 | else
|
---|
3012 | {
|
---|
3013 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMonitor: EMInterpretMonitor failed with %Rrc\n", rc));
|
---|
3014 | rc = VERR_EM_INTERPRETER;
|
---|
3015 | }
|
---|
3016 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMonitor);
|
---|
3017 | return rc;
|
---|
3018 | }
|
---|
3019 |
|
---|
3020 |
|
---|
3021 | /**
|
---|
3022 | * #VMEXIT handler for MWAIT (SVM_EXIT_MWAIT). Conditional #VMEXIT.
|
---|
3023 | */
|
---|
3024 | HMSVM_EXIT_DECL hmR0SvmExitMwait(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3025 | {
|
---|
3026 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
3027 | int rc = EMInterpretMWait(pVM, pVCpu, CPUMCTX2CORE(pCtx));
|
---|
3028 | if ( rc == VINF_EM_HALT
|
---|
3029 | || rc == VINF_SUCCESS)
|
---|
3030 | {
|
---|
3031 | pCtx->rip += 3; /* Hardcoded opcode, AMD-V doesn't give us this information. */
|
---|
3032 |
|
---|
3033 | if ( rc == VINF_EM_HALT
|
---|
3034 | && EMShouldContinueAfterHalt(pVCpu, pMixedCtx))
|
---|
3035 | {
|
---|
3036 | rc = VINF_SUCCESS;
|
---|
3037 | }
|
---|
3038 | }
|
---|
3039 | else
|
---|
3040 | {
|
---|
3041 | AssertMsg(rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMwait: EMInterpretMWait failed with %Rrc\n", rc));
|
---|
3042 | rc = VERR_EM_INTERPRETER;
|
---|
3043 | }
|
---|
3044 | AssertMsg(rc == VINF_SUCCESS || rc == VINF_EM_HALT || rc == VERR_EM_INTERPRETER,
|
---|
3045 | ("hmR0SvmExitMwait: EMInterpretMWait failed rc=%Rrc\n", rc));
|
---|
3046 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitMwait);
|
---|
3047 | return rc;
|
---|
3048 | }
|
---|
3049 |
|
---|
3050 |
|
---|
3051 | /**
|
---|
3052 | * #VMEXIT handler for shutdown (triple-fault) (SVM_EXIT_SHUTDOWN).
|
---|
3053 | * Conditional #VMEXIT.
|
---|
3054 | */
|
---|
3055 | HMSVM_EXIT_DECL hmR0SvmExitShutdown(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3056 | {
|
---|
3057 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
3058 | return VINF_EM_RESET;
|
---|
3059 | }
|
---|
3060 |
|
---|
3061 |
|
---|
3062 | /**
|
---|
3063 | * #VMEXIT handler for CRx reads (SVM_EXIT_READ_CR*). Conditional #VMEXIT.
|
---|
3064 | */
|
---|
3065 | HMSVM_EXIT_DECL hmR0SvmExitReadCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3066 | {
|
---|
3067 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
3068 | /** @todo Decode Assist. */
|
---|
3069 | int rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
|
---|
3070 | Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
|
---|
3071 | Assert((pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0) <= 15);
|
---|
3072 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitCRxRead[pSvmTransient->u64ExitCode - SVM_EXIT_READ_CR0]);
|
---|
3073 | return rc;
|
---|
3074 | }
|
---|
3075 |
|
---|
3076 |
|
---|
3077 | /**
|
---|
3078 | * #VMEXIT handler for CRx writes (SVM_EXIT_WRITE_CR*). Conditional #VMEXIT.
|
---|
3079 | */
|
---|
3080 | HMSVM_EXIT_DECL hmR0SvmExitWriteCRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3081 | {
|
---|
3082 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
3083 | /** @todo Decode Assist. */
|
---|
3084 | int rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
|
---|
3085 | if (rc == VINF_SUCCCES)
|
---|
3086 | {
|
---|
3087 | /* RIP has been updated by EMInterpretInstruction(). */
|
---|
3088 | Assert((pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0) <= 15);
|
---|
3089 | switch (pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0)
|
---|
3090 | {
|
---|
3091 | case 0: /* CR0. */
|
---|
3092 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR0;
|
---|
3093 | break;
|
---|
3094 |
|
---|
3095 | case 3: /* CR3. */
|
---|
3096 | Assert(!pVM->hm.s.fNestedPaging);
|
---|
3097 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR3;
|
---|
3098 | break;
|
---|
3099 |
|
---|
3100 | case 4: /* CR4. */
|
---|
3101 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_CR4;
|
---|
3102 | break;
|
---|
3103 |
|
---|
3104 | case 8: /* CR8 (TPR). */
|
---|
3105 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_SVM_GUEST_APIC_STATE;
|
---|
3106 | break;
|
---|
3107 |
|
---|
3108 | default:
|
---|
3109 | AsserMsgFailed(("hmR0SvmExitWriteCRx: Invalid/Unexpected Write-CRx exit. u64ExitCode=%#RX64 %#x CRx=%#RX64\n",
|
---|
3110 | pSvmTransient->u64ExitCode, pSvmTransient->u64ExitCode - SVM_EXIT_WRITE_CR0));
|
---|
3111 | break;
|
---|
3112 | }
|
---|
3113 | }
|
---|
3114 | else
|
---|
3115 | Assert(rc == VERR_EM_INTERPRETER || rc == VINF_PGM_CHANGE_MODE || rc == VINF_PGM_SYNC_CR3);
|
---|
3116 | return rc;
|
---|
3117 | }
|
---|
3118 |
|
---|
3119 |
|
---|
3120 | /**
|
---|
3121 | * #VMEXIT handler for instructions that result in a #UD exception delivered to
|
---|
3122 | * the guest.
|
---|
3123 | */
|
---|
3124 | HMSVM_EXIT_DECL hmR0SvmExitSetPendingXcptUD(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3125 | {
|
---|
3126 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
3127 | return hmR0SvmSetPendingXcptUD(pVCpu);
|
---|
3128 | }
|
---|
3129 |
|
---|
3130 |
|
---|
3131 | /**
|
---|
3132 | * #VMEXIT handler for MSR read and writes (SVM_EXIT_MSR). Conditional #VMEXIT.
|
---|
3133 | */
|
---|
3134 | HMSVM_EXIT_DECL hmR0SvmExitMsr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3135 | {
|
---|
3136 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
3137 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
3138 |
|
---|
3139 | int rc;
|
---|
3140 | if (pVmcb->ctrl.u64ExitInfo1 == SVM_EXIT1_MSR_WRITE)
|
---|
3141 | {
|
---|
3142 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitWrmsr);
|
---|
3143 |
|
---|
3144 | /* Handle TPR patching; intercepted LSTAR write. */
|
---|
3145 | if ( pVM->hm.s.fTPRPatchingActive
|
---|
3146 | && pCtx->ecx == MSR_K8_LSTAR)
|
---|
3147 | {
|
---|
3148 | if ((pCtx->eax & 0xff) != pSvmTransient->u8GuestTpr)
|
---|
3149 | {
|
---|
3150 | /* Our patch code uses LSTAR for TPR caching for 32-bit guests. */
|
---|
3151 | int rc2 = PDMApicSetTPR(pVCpu, pCtx->eax & 0xff);
|
---|
3152 | AssertRC(rc2);
|
---|
3153 | }
|
---|
3154 | pCtx->rip += 2; /* Hardcoded opcode, AMD-V doesn't give us this information. */
|
---|
3155 | return VINF_SUCCESS;
|
---|
3156 | }
|
---|
3157 |
|
---|
3158 | rc = EMInterpretWrmsr(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
3159 | AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretWrmsr failed rc=%Rrc\n", rc));
|
---|
3160 | }
|
---|
3161 | else
|
---|
3162 | {
|
---|
3163 | /* MSR Read access. */
|
---|
3164 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitRdmsr);
|
---|
3165 | int rc = EMInterpretRdmsr(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
3166 | AssertMsg(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER, ("hmR0SvmExitMsr: EMInterpretRdmsr failed rc=%Rrc\n", rc));
|
---|
3167 | }
|
---|
3168 |
|
---|
3169 | /* RIP has been updated by EMInterpret[Rd|Wr]msr(). */
|
---|
3170 | return rc;
|
---|
3171 | }
|
---|
3172 |
|
---|
3173 |
|
---|
3174 | /**
|
---|
3175 | * #VMEXIT handler for DRx read (SVM_EXIT_READ_DRx). Conditional #VMEXIT.
|
---|
3176 | */
|
---|
3177 | HMSVM_EXIT_DECL hmR0SvmExitReadDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3178 | {
|
---|
3179 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
3180 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
3181 |
|
---|
3182 | /* We should -not- get this VM-exit if the guest is debugging. */
|
---|
3183 | if (CPUMIsGuestDebugStateActive(pVCpu))
|
---|
3184 | {
|
---|
3185 | AssertMsgFailed(("hmR0SvmExitReadDRx: Unexpected exit. pVCpu=%p pCtx=%p\n", pVCpu, pCtx));
|
---|
3186 | return VERR_SVM_UNEXPECTED_EXIT;
|
---|
3187 | }
|
---|
3188 |
|
---|
3189 | if ( !DBGFIsStepping(pVCpu)
|
---|
3190 | && !CPUMIsHyperDebugStateActive(pVCpu))
|
---|
3191 | {
|
---|
3192 | /* Don't intercept DRx read and writes. */
|
---|
3193 | PSVMVMCB pVmcb = (PSVMVMCB)pVCpu->hm.s.svm.pvVmcb;
|
---|
3194 | pVmcb->ctrl.u16InterceptRdDRx = 0;
|
---|
3195 | pVmcb->ctrl.u16InterceptWrDRx = 0;
|
---|
3196 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_INTERCEPTS;
|
---|
3197 |
|
---|
3198 | /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
|
---|
3199 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3200 | rc = CPUMR0LoadGuestDebugState(pVM, pVCpu, pCtx, true /* include DR6 */);
|
---|
3201 | AssertRC(rc);
|
---|
3202 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
3203 |
|
---|
3204 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxContextSwitch);
|
---|
3205 | return VINF_SUCCESS;
|
---|
3206 | }
|
---|
3207 |
|
---|
3208 | /** @todo Decode assist. */
|
---|
3209 | int rc = EMInterpretInstruction(pVCpu, CPUMCTX2CORE(pCtx), 0 /* pvFault */);
|
---|
3210 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
3211 | {
|
---|
3212 | /* Not necessary for read accesses but whatever doesn't hurt for now, will be fixed with decode assist. */
|
---|
3213 | pVCpu->hm.s.fContextUseFlags |= HM_CHANGED_GUEST_DEBUG;
|
---|
3214 | }
|
---|
3215 | else
|
---|
3216 | Assert(c == VERR_EM_INTERPRETER);
|
---|
3217 | return rc;
|
---|
3218 | }
|
---|
3219 |
|
---|
3220 |
|
---|
3221 | /**
|
---|
3222 | * #VMEXIT handler for DRx write (SVM_EXIT_WRITE_DRx). Conditional #VMEXIT.
|
---|
3223 | */
|
---|
3224 | HMSVM_EXIT_DECL hmR0SvmExitWriteDRx(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3225 | {
|
---|
3226 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
3227 | /* For now it's the same since we interpret the instruction anyway. Will change when using of Decode Assist is implemented. */
|
---|
3228 | int rc = hmR0SvmExitReadDRx(pVCpu, pCtx, pSvmTransient);
|
---|
3229 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitDRxWrite);
|
---|
3230 | STAM_COUNTER_DEC(&pVCpu->hm.s.StatExitDRxRead);
|
---|
3231 | return rc;
|
---|
3232 | }
|
---|
3233 |
|
---|
3234 |
|
---|
3235 | /**
|
---|
3236 | * #VMEXIT handler for I/O instructions (SVM_EXIT_IOIO). Conditional #VMEXIT.
|
---|
3237 | */
|
---|
3238 | HMSVM_EXIT_DECL hmR0SvmExitIOInstr(PVMCPU pVCpu, PCPUMCTX pCtx, PSVMTRANSIENT pSvmTransient)
|
---|
3239 | {
|
---|
3240 | HMSVM_VALIDATE_EXIT_HANDLER_PARAMS();
|
---|
3241 |
|
---|
3242 | /* I/O operation lookup arrays. */
|
---|
3243 | static uint32_t const s_aIOSize[8] = { 0, 1, 2, 0, 4, 0, 0, 0 }; /* Size of the I/O accesses in bytes. */
|
---|
3244 | static uint32_t const s_aIOOpAnd[8] = { 0, 0xff, 0xffff, 0, 0xffffffff, 0, 0, 0 }; /* AND masks for saving
|
---|
3245 | the result (in AL/AX/EAX). */
|
---|
3246 |
|
---|
3247 | /* Refer AMD spec. 15.10.2 "IN and OUT Behaviour" and Figure 15-2. "EXITINFO1 for IOIO Intercept" for the format. */
|
---|
3248 | SVMIOIOEXIT IoExitInfo;
|
---|
3249 | IoExitInfo.u = (uint32_t)pVmcb->ctrl.u64ExitInfo1;
|
---|
3250 | uint32_t uIOWidth = (IoExitInfo.u >> 4) & 0x7;
|
---|
3251 | uint32_t uIOSize = s_aIOSize[uIOWidth];
|
---|
3252 | uint32_t uAndVal = s_aIOOpAnd[uIOWidth];
|
---|
3253 |
|
---|
3254 | if (RT_UNLIKELY(!uIOSize))
|
---|
3255 | {
|
---|
3256 | AssertMsgFailed(("hmR0SvmExitIOInstr: Invalid IO operation. uIOWidth=%u\n", uIOWidth));
|
---|
3257 | return VERR_EM_INTERPRETER;
|
---|
3258 | }
|
---|
3259 |
|
---|
3260 | int rc;
|
---|
3261 | if (IoExitInfo.n.u1STR)
|
---|
3262 | {
|
---|
3263 | /* INS/OUTS - I/O String instruction. */
|
---|
3264 | PDISCPUSTATE pDis = &pVCpu->hm.s.DisState;
|
---|
3265 |
|
---|
3266 | /** @todo Huh? why can't we use the segment prefix information given by AMD-V
|
---|
3267 | * in EXITINFO1? Investigate once this thing is up and running. */
|
---|
3268 |
|
---|
3269 | rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
|
---|
3270 | if (rc == VINF_SUCCESS)
|
---|
3271 | {
|
---|
3272 | if (IoExitInfo.n.u1Type == 0) /* OUT */
|
---|
3273 | {
|
---|
3274 | rc = IOMInterpretOUTSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
|
---|
3275 | (DISCPUMODE)pDis->uAddrMode, uIOSize);
|
---|
3276 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringWrite);
|
---|
3277 | }
|
---|
3278 | else
|
---|
3279 | {
|
---|
3280 | rc = IOMInterpretINSEx(pVM, pVCpu, CPUMCTX2CORE(pCtx), IoExitInfo.n.u16Port, pDis->fPrefix,
|
---|
3281 | (DISCPUMODE)pDis->uAddrMode, uIOSize);
|
---|
3282 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOStringRead);
|
---|
3283 | }
|
---|
3284 | }
|
---|
3285 | else
|
---|
3286 | rc = VINF_EM_RAW_EMULATE_INSTR;
|
---|
3287 | }
|
---|
3288 | else
|
---|
3289 | {
|
---|
3290 | /* IN/OUT - I/O instruction. */
|
---|
3291 | Assert(!IoExitInfo.n.u1REP);
|
---|
3292 |
|
---|
3293 | if (IoExitInfo.n.u1Type == 0) /* OUT */
|
---|
3294 | {
|
---|
3295 | rc = IOMIOPortWrite(pVM, pVCpu, IoExitInfo.n.u16Port, pCtx->eax & uAndVal, uIOSize);
|
---|
3296 | if (rc == VINF_IOM_R3_IOPORT_WRITE)
|
---|
3297 | HMR0SavePendingIOPortWrite(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
|
---|
3298 |
|
---|
3299 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIOWrite);
|
---|
3300 | }
|
---|
3301 | else
|
---|
3302 | {
|
---|
3303 | uint32_t u32Val = 0;
|
---|
3304 |
|
---|
3305 | rc = IOMIOPortRead(pVM, pVCpu, IoExitInfo.n.u16Port, &u32Val, uIOSize);
|
---|
3306 | if (IOM_SUCCESS(rc))
|
---|
3307 | {
|
---|
3308 | /* Save result of I/O IN instr. in AL/AX/EAX. */
|
---|
3309 | pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Val & uAndVal);
|
---|
3310 | }
|
---|
3311 | else if (rc == VINF_IOM_R3_IOPORT_READ)
|
---|
3312 | HMR0SavePendingIOPortRead(pVCpu, pCtx->rip, pVmcb->ctrl.u64ExitInfo2, IoExitInfo.n.u16Port, uAndVal, uIOSize);
|
---|
3313 |
|
---|
3314 | STAM_COUNTER_INC(&pVCpu->hm.s.StatExitIORead);
|
---|
3315 | }
|
---|
3316 | }
|
---|
3317 |
|
---|
3318 | if (IOM_SUCCESS(rc))
|
---|
3319 | {
|
---|
3320 | /* AMD-V saves the RIP of the instruction following the IO instruction in EXITINFO2. */
|
---|
3321 | pCtx->rip = pVmcb->ctrl.u64ExitInfo2;
|
---|
3322 |
|
---|
3323 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
3324 | {
|
---|
3325 | /* If any IO breakpoints are armed, then we should check if a debug trap needs to be generated. */
|
---|
3326 | if (pCtx->dr[7] & X86_DR7_ENABLED_MASK)
|
---|
3327 | {
|
---|
3328 | /* I/O breakpoint length, in bytes. */
|
---|
3329 | static uint32_t const s_aIOBPLen[4] = { 1, 2, 0, 4 };
|
---|
3330 |
|
---|
3331 | STAM_COUNTER_INC(&pVCpu->hm.s.StatDRxIoCheck);
|
---|
3332 | for (unsigned i = 0; i < 4; i++)
|
---|
3333 | {
|
---|
3334 | unsigned uBPLen = s_aIOBPLen[X86_DR7_GET_LEN(pCtx->dr[7], i)];
|
---|
3335 |
|
---|
3336 | if ( IoExitInfo.n.u16Port >= pCtx->dr[i]
|
---|
3337 | && IoExitInfo.n.u16Port < pCtx->dr[i] + uBPLen
|
---|
3338 | && (pCtx->dr[7] & (X86_DR7_L(i) | X86_DR7_G(i)))
|
---|
3339 | && (pCtx->dr[7] & X86_DR7_RW(i, X86_DR7_RW_IO)) == X86_DR7_RW(i, X86_DR7_RW_IO))
|
---|
3340 | {
|
---|
3341 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
3342 |
|
---|
3343 | /* Clear all breakpoint status flags and set the one we just hit. */
|
---|
3344 | pCtx->dr[6] &= ~(X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3);
|
---|
3345 | pCtx->dr[6] |= (uint64_t)RT_BIT(i);
|
---|
3346 |
|
---|
3347 | /*
|
---|
3348 | * Note: AMD64 Architecture Programmer's Manual 13.1:
|
---|
3349 | * Bits 15:13 of the DR6 register is never cleared by the processor and must be cleared
|
---|
3350 | * by software after the contents have been read.
|
---|
3351 | */
|
---|
3352 | pVmcb->guest.u64DR6 = pCtx->dr[6];
|
---|
3353 |
|
---|
3354 | /* X86_DR7_GD will be cleared if drx accesses should be trapped inside the guest. */
|
---|
3355 | pCtx->dr[7] &= ~X86_DR7_GD;
|
---|
3356 |
|
---|
3357 | /* Paranoia. */
|
---|
3358 | pMixedCtx->dr[7] &= 0xffffffff; /* Upper 32 bits MBZ. */
|
---|
3359 | pMixedCtx->dr[7] &= ~(RT_BIT(11) | RT_BIT(12) | RT_BIT(14) | RT_BIT(15)); /* MBZ. */
|
---|
3360 | pMixedCtx->dr[7] |= 0x400; /* MB1. */
|
---|
3361 |
|
---|
3362 | pVmcb->guest.u64DR7 = pCtx->dr[7];
|
---|
3363 | pVmcb->ctrl.u64VmcbCleanBits &= ~HMSVM_VMCB_CLEAN_DRX;
|
---|
3364 |
|
---|
3365 | /* Inject the debug exception. */
|
---|
3366 | hmR0SvmSetPendingXcptDB(pVCpu);
|
---|
3367 | break;
|
---|
3368 | }
|
---|
3369 | }
|
---|
3370 | }
|
---|
3371 | }
|
---|
3372 | }
|
---|
3373 |
|
---|
3374 | #ifdef DEBUG
|
---|
3375 | if (rc == VINF_IOM_R3_IOPORT_READ)
|
---|
3376 | Assert(IoExitInfo.n.u1Type != 0);
|
---|
3377 | else if (rc == VINF_IOM_R3_IOPORT_WRITE)
|
---|
3378 | Assert(IoExitInfo.n.u1Type == 0);
|
---|
3379 | else
|
---|
3380 | {
|
---|
3381 | AssertMsg( RT_FAILURE(rc)
|
---|
3382 | || rc == VINF_SUCCESS
|
---|
3383 | || rc == VINF_EM_RAW_EMULATE_INSTR
|
---|
3384 | || rc == VINF_EM_RAW_GUEST_TRAP
|
---|
3385 | || rc == VINF_TRPM_XCPT_DISPATCHED, ("%Rrc\n", rc));
|
---|
3386 | }
|
---|
3387 | #endif
|
---|
3388 | return rc;
|
---|
3389 | }
|
---|
3390 |
|
---|