VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp@ 95248

Last change on this file since 95248 was 93963, checked in by vboxsync, 3 years ago

VMM: Nested VMX: bugref:10092 Add HM ring-0 API for querying transient VMX/SVM info.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 69.3 KB
Line 
1/* $Id: HMR0.cpp 93963 2022-02-28 08:39:08Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <VBox/vmm/hm.h>
25#include <VBox/vmm/pgm.h>
26#include "HMInternal.h"
27#include <VBox/vmm/vmcc.h>
28#include <VBox/vmm/hm_svm.h>
29#include <VBox/vmm/hmvmxinline.h>
30#include <VBox/err.h>
31#include <VBox/log.h>
32#include <iprt/assert.h>
33#include <iprt/asm.h>
34#include <iprt/asm-amd64-x86.h>
35#include <iprt/cpuset.h>
36#include <iprt/mem.h>
37#include <iprt/memobj.h>
38#include <iprt/once.h>
39#include <iprt/param.h>
40#include <iprt/power.h>
41#include <iprt/string.h>
42#include <iprt/thread.h>
43#include <iprt/x86.h>
44#include "HMVMXR0.h"
45#include "HMSVMR0.h"
46
47
48/*********************************************************************************************************************************
49* Internal Functions *
50*********************************************************************************************************************************/
51static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
54static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
55
56
57/*********************************************************************************************************************************
58* Structures and Typedefs *
59*********************************************************************************************************************************/
60/**
61 * This is used to manage the status code of a RTMpOnAll in HM.
62 */
63typedef struct HMR0FIRSTRC
64{
65 /** The status code. */
66 int32_t volatile rc;
67 /** The ID of the CPU reporting the first failure. */
68 RTCPUID volatile idCpu;
69} HMR0FIRSTRC;
70/** Pointer to a first return code structure. */
71typedef HMR0FIRSTRC *PHMR0FIRSTRC;
72
73/**
74 * Ring-0 method table for AMD-V and VT-x specific operations.
75 */
76typedef struct HMR0VTABLE
77{
78 DECLR0CALLBACKMEMBER(int, pfnEnterSession, (PVMCPUCC pVCpu));
79 DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback, (RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit));
80 DECLR0CALLBACKMEMBER(int, pfnAssertionCallback, (PVMCPUCC pVCpu));
81 DECLR0CALLBACKMEMBER(int, pfnExportHostState, (PVMCPUCC pVCpu));
82 DECLR0CALLBACKMEMBER(VBOXSTRICTRC, pfnRunGuestCode, (PVMCPUCC pVCpu));
83 DECLR0CALLBACKMEMBER(int, pfnEnableCpu, (PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
84 bool fEnabledByHost, PCSUPHWVIRTMSRS pHwvirtMsrs));
85 DECLR0CALLBACKMEMBER(int, pfnDisableCpu, (PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
86 DECLR0CALLBACKMEMBER(int, pfnInitVM, (PVMCC pVM));
87 DECLR0CALLBACKMEMBER(int, pfnTermVM, (PVMCC pVM));
88 DECLR0CALLBACKMEMBER(int, pfnSetupVM, (PVMCC pVM));
89} HMR0VTABLE;
90
91
92/*********************************************************************************************************************************
93* Global Variables *
94*********************************************************************************************************************************/
95/** The active ring-0 HM operations (copied from one of the table at init). */
96static HMR0VTABLE g_HmR0Ops;
97/** Indicates whether the host is suspending or not. We'll refuse a few
98 * actions when the host is being suspended to speed up the suspending and
99 * avoid trouble. */
100static bool volatile g_fHmSuspended;
101/** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
102 * enabled and disabled each time it's used to execute guest code. */
103static bool g_fHmGlobalInit;
104/** Host kernel flags that HM might need to know (SUPKERNELFEATURES_XXX). */
105uint32_t g_fHmHostKernelFeatures;
106/** Maximum allowed ASID/VPID (inclusive).
107 * @todo r=bird: This is exclusive for VT-x according to source code comment.
108 * Couldn't immediately find any docs on AMD-V, but suspect it is
109 * exclusive there as well given how hmR0SvmFlushTaggedTlb() use it. */
110uint32_t g_uHmMaxAsid;
111
112
113/** Set if VT-x (VMX) is supported by the CPU. */
114bool g_fHmVmxSupported = false;
115/** VMX: Whether we're using the preemption timer or not. */
116bool g_fHmVmxUsePreemptTimer;
117/** VMX: The shift mask employed by the VMX-Preemption timer. */
118uint8_t g_cHmVmxPreemptTimerShift;
119/** VMX: Set if swapping EFER is supported. */
120bool g_fHmVmxSupportsVmcsEfer = false;
121/** VMX: Whether we're using SUPR0EnableVTx or not. */
122static bool g_fHmVmxUsingSUPR0EnableVTx = false;
123/** VMX: Set if we've called SUPR0EnableVTx(true) and should disable it during
124 * module termination. */
125static bool g_fHmVmxCalledSUPR0EnableVTx = false;
126/** VMX: Host CR4 value (set by ring-0 VMX init) */
127uint64_t g_uHmVmxHostCr4;
128/** VMX: Host EFER value (set by ring-0 VMX init) */
129uint64_t g_uHmVmxHostMsrEfer;
130/** VMX: Host SMM monitor control (used for logging/diagnostics) */
131uint64_t g_uHmVmxHostSmmMonitorCtl;
132
133
134/** Set if AMD-V is supported by the CPU. */
135bool g_fHmSvmSupported = false;
136/** SVM revision. */
137uint32_t g_uHmSvmRev;
138/** SVM feature bits from cpuid 0x8000000a */
139uint32_t g_fHmSvmFeatures;
140
141
142/** MSRs. */
143SUPHWVIRTMSRS g_HmMsrs;
144
145/** Last recorded error code during HM ring-0 init. */
146static int32_t g_rcHmInit = VINF_SUCCESS;
147
148/** Per CPU globals. */
149static HMPHYSCPU g_aHmCpuInfo[RTCPUSET_MAX_CPUS];
150
151/** Whether we've already initialized all CPUs.
152 * @remarks We could check the EnableAllCpusOnce state, but this is
153 * simpler and hopefully easier to understand. */
154static bool g_fHmEnabled = false;
155/** Serialize initialization in HMR0EnableAllCpus. */
156static RTONCE g_HmEnableAllCpusOnce = RTONCE_INITIALIZER;
157
158
159/** HM ring-0 operations for VT-x. */
160static HMR0VTABLE const g_HmR0OpsVmx =
161{
162 /* .pfnEnterSession = */ VMXR0Enter,
163 /* .pfnThreadCtxCallback = */ VMXR0ThreadCtxCallback,
164 /* .pfnAssertionCallback = */ VMXR0AssertionCallback,
165 /* .pfnExportHostState = */ VMXR0ExportHostState,
166 /* .pfnRunGuestCode = */ VMXR0RunGuestCode,
167 /* .pfnEnableCpu = */ VMXR0EnableCpu,
168 /* .pfnDisableCpu = */ VMXR0DisableCpu,
169 /* .pfnInitVM = */ VMXR0InitVM,
170 /* .pfnTermVM = */ VMXR0TermVM,
171 /* .pfnSetupVM = */ VMXR0SetupVM,
172};
173
174/** HM ring-0 operations for AMD-V. */
175static HMR0VTABLE const g_HmR0OpsSvm =
176{
177 /* .pfnEnterSession = */ SVMR0Enter,
178 /* .pfnThreadCtxCallback = */ SVMR0ThreadCtxCallback,
179 /* .pfnAssertionCallback = */ SVMR0AssertionCallback,
180 /* .pfnExportHostState = */ SVMR0ExportHostState,
181 /* .pfnRunGuestCode = */ SVMR0RunGuestCode,
182 /* .pfnEnableCpu = */ SVMR0EnableCpu,
183 /* .pfnDisableCpu = */ SVMR0DisableCpu,
184 /* .pfnInitVM = */ SVMR0InitVM,
185 /* .pfnTermVM = */ SVMR0TermVM,
186 /* .pfnSetupVM = */ SVMR0SetupVM,
187};
188
189
190/** @name Dummy callback handlers for when neither VT-x nor AMD-V is supported.
191 * @{ */
192
193static DECLCALLBACK(int) hmR0DummyEnter(PVMCPUCC pVCpu)
194{
195 RT_NOREF(pVCpu);
196 return VINF_SUCCESS;
197}
198
199static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
200{
201 RT_NOREF(enmEvent, pVCpu, fGlobalInit);
202}
203
204static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
205 bool fEnabledBySystem, PCSUPHWVIRTMSRS pHwvirtMsrs)
206{
207 RT_NOREF(pHostCpu, pVM, pvCpuPage, HCPhysCpuPage, fEnabledBySystem, pHwvirtMsrs);
208 return VINF_SUCCESS;
209}
210
211static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
212{
213 RT_NOREF(pHostCpu, pvCpuPage, HCPhysCpuPage);
214 return VINF_SUCCESS;
215}
216
217static DECLCALLBACK(int) hmR0DummyInitVM(PVMCC pVM)
218{
219 RT_NOREF(pVM);
220 return VINF_SUCCESS;
221}
222
223static DECLCALLBACK(int) hmR0DummyTermVM(PVMCC pVM)
224{
225 RT_NOREF(pVM);
226 return VINF_SUCCESS;
227}
228
229static DECLCALLBACK(int) hmR0DummySetupVM(PVMCC pVM)
230{
231 RT_NOREF(pVM);
232 return VINF_SUCCESS;
233}
234
235static DECLCALLBACK(int) hmR0DummyAssertionCallback(PVMCPUCC pVCpu)
236{
237 RT_NOREF(pVCpu);
238 return VINF_SUCCESS;
239}
240
241static DECLCALLBACK(VBOXSTRICTRC) hmR0DummyRunGuestCode(PVMCPUCC pVCpu)
242{
243 RT_NOREF(pVCpu);
244 return VERR_NOT_SUPPORTED;
245}
246
247static DECLCALLBACK(int) hmR0DummyExportHostState(PVMCPUCC pVCpu)
248{
249 RT_NOREF(pVCpu);
250 return VINF_SUCCESS;
251}
252
253/** Dummy ops. */
254static HMR0VTABLE const g_HmR0OpsDummy =
255{
256 /* .pfnEnterSession = */ hmR0DummyEnter,
257 /* .pfnThreadCtxCallback = */ hmR0DummyThreadCtxCallback,
258 /* .pfnAssertionCallback = */ hmR0DummyAssertionCallback,
259 /* .pfnExportHostState = */ hmR0DummyExportHostState,
260 /* .pfnRunGuestCode = */ hmR0DummyRunGuestCode,
261 /* .pfnEnableCpu = */ hmR0DummyEnableCpu,
262 /* .pfnDisableCpu = */ hmR0DummyDisableCpu,
263 /* .pfnInitVM = */ hmR0DummyInitVM,
264 /* .pfnTermVM = */ hmR0DummyTermVM,
265 /* .pfnSetupVM = */ hmR0DummySetupVM,
266};
267
268/** @} */
269
270
271/**
272 * Initializes a first return code structure.
273 *
274 * @param pFirstRc The structure to init.
275 */
276static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
277{
278 pFirstRc->rc = VINF_SUCCESS;
279 pFirstRc->idCpu = NIL_RTCPUID;
280}
281
282
283/**
284 * Try set the status code (success ignored).
285 *
286 * @param pFirstRc The first return code structure.
287 * @param rc The status code.
288 */
289static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
290{
291 if ( RT_FAILURE(rc)
292 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
293 pFirstRc->idCpu = RTMpCpuId();
294}
295
296
297/**
298 * Get the status code of a first return code structure.
299 *
300 * @returns The status code; VINF_SUCCESS or error status, no informational or
301 * warning errors.
302 * @param pFirstRc The first return code structure.
303 */
304static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
305{
306 return pFirstRc->rc;
307}
308
309
310#ifdef VBOX_STRICT
311# ifndef DEBUG_bird
312/**
313 * Get the CPU ID on which the failure status code was reported.
314 *
315 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
316 * @param pFirstRc The first return code structure.
317 */
318static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
319{
320 return pFirstRc->idCpu;
321}
322# endif
323#endif /* VBOX_STRICT */
324
325
326
327/**
328 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize VT-x
329 * on a CPU.
330 *
331 * @param idCpu The identifier for the CPU the function is called on.
332 * @param pvUser1 Pointer to the first RC structure.
333 * @param pvUser2 Ignored.
334 */
335static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
336{
337 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
338 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
339 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
340 NOREF(idCpu); NOREF(pvUser2);
341
342 int rc = SUPR0GetVmxUsability(NULL /* pfIsSmxModeAmbiguous */);
343 hmR0FirstRcSetStatus(pFirstRc, rc);
344}
345
346
347/**
348 * Intel specific initialization code.
349 *
350 * @returns VBox status code (will only fail if out of memory).
351 */
352static int hmR0InitIntel(void)
353{
354 /* Read this MSR now as it may be useful for error reporting when initializing VT-x fails. */
355 g_HmMsrs.u.vmx.u64FeatCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
356
357 /*
358 * First try use native kernel API for controlling VT-x.
359 * (This is only supported by some Mac OS X kernels atm.)
360 */
361 int rc;
362 g_rcHmInit = rc = SUPR0EnableVTx(true /* fEnable */);
363 g_fHmVmxUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
364 if (g_fHmVmxUsingSUPR0EnableVTx)
365 {
366 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
367 if (RT_SUCCESS(rc))
368 {
369 g_fHmVmxSupported = true;
370 rc = SUPR0EnableVTx(false /* fEnable */);
371 AssertLogRelRC(rc);
372 rc = VINF_SUCCESS;
373 }
374 }
375 else
376 {
377 HMR0FIRSTRC FirstRc;
378 hmR0FirstRcInit(&FirstRc);
379 g_rcHmInit = rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
380 if (RT_SUCCESS(rc))
381 g_rcHmInit = rc = hmR0FirstRcGetStatus(&FirstRc);
382 }
383
384 if (RT_SUCCESS(rc))
385 {
386 /* Read CR4 and EFER for logging/diagnostic purposes. */
387 g_uHmVmxHostCr4 = ASMGetCR4();
388 g_uHmVmxHostMsrEfer = ASMRdMsr(MSR_K6_EFER);
389
390 /* Get VMX MSRs (and feature control MSR) for determining VMX features we can ultimately use. */
391 SUPR0GetHwvirtMsrs(&g_HmMsrs, SUPVTCAPS_VT_X, false /* fForce */);
392
393 /*
394 * Nested KVM workaround: Intel SDM section 34.15.5 describes that
395 * MSR_IA32_SMM_MONITOR_CTL depends on bit 49 of MSR_IA32_VMX_BASIC while
396 * table 35-2 says that this MSR is available if either VMX or SMX is supported.
397 */
398 uint64_t const uVmxBasicMsr = g_HmMsrs.u.vmx.u64Basic;
399 if (RT_BF_GET(uVmxBasicMsr, VMX_BF_BASIC_DUAL_MON))
400 g_uHmVmxHostSmmMonitorCtl = ASMRdMsr(MSR_IA32_SMM_MONITOR_CTL);
401
402 /* Initialize VPID - 16 bits ASID. */
403 g_uHmMaxAsid = 0x10000; /* exclusive */
404
405 /*
406 * If the host OS has not enabled VT-x for us, try enter VMX root mode
407 * to really verify if VT-x is usable.
408 */
409 if (!g_fHmVmxUsingSUPR0EnableVTx)
410 {
411 /* Allocate a temporary VMXON region. */
412 RTR0MEMOBJ hScatchMemObj;
413 rc = RTR0MemObjAllocCont(&hScatchMemObj, HOST_PAGE_SIZE, false /* fExecutable */);
414 if (RT_FAILURE(rc))
415 {
416 LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,HOST_PAGE_SIZE,false) -> %Rrc\n", rc));
417 return rc;
418 }
419 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
420 RTHCPHYS const HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
421 RT_BZERO(pvScatchPage, HOST_PAGE_SIZE);
422
423 /* Set revision dword at the beginning of the VMXON structure. */
424 *(uint32_t *)pvScatchPage = RT_BF_GET(uVmxBasicMsr, VMX_BF_BASIC_VMCS_ID);
425
426 /* Make sure we don't get rescheduled to another CPU during this probe. */
427 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
428
429 /* Enable CR4.VMXE if it isn't already set. */
430 RTCCUINTREG const uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
431
432 /*
433 * The only way of checking if we're in VMX root mode or not is to try and enter it.
434 * There is no instruction or control bit that tells us if we're in VMX root mode.
435 * Therefore, try and enter VMX root mode here.
436 */
437 rc = VMXEnable(HCPhysScratchPage);
438 if (RT_SUCCESS(rc))
439 {
440 g_fHmVmxSupported = true;
441 VMXDisable();
442 }
443 else
444 {
445 /*
446 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
447 * it will crash the host when we enter raw mode, because:
448 *
449 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
450 * this bit), and
451 * (b) turning off paging causes a #GP (unavoidable when switching
452 * from long to 32 bits mode or 32 bits to PAE).
453 *
454 * They should fix their code, but until they do we simply refuse to run.
455 */
456 g_rcHmInit = VERR_VMX_IN_VMX_ROOT_MODE;
457 Assert(g_fHmVmxSupported == false);
458 }
459
460 /* Restore CR4.VMXE if it wasn't set prior to us setting it above. */
461 if (!(uOldCr4 & X86_CR4_VMXE))
462 SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
463
464 /* Restore interrupts. */
465 ASMSetFlags(fEFlags);
466
467 RTR0MemObjFree(hScatchMemObj, false);
468 }
469
470 if (g_fHmVmxSupported)
471 {
472 rc = VMXR0GlobalInit();
473 if (RT_SUCCESS(rc))
474 {
475 /*
476 * Install the VT-x methods.
477 */
478 g_HmR0Ops = g_HmR0OpsVmx;
479
480 /*
481 * Check for the VMX-Preemption Timer and adjust for the "VMX-Preemption
482 * Timer Does Not Count Down at the Rate Specified" CPU erratum.
483 */
484 if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER)
485 {
486 g_fHmVmxUsePreemptTimer = true;
487 g_cHmVmxPreemptTimerShift = RT_BF_GET(g_HmMsrs.u.vmx.u64Misc, VMX_BF_MISC_PREEMPT_TIMER_TSC);
488 if (HMIsSubjectToVmxPreemptTimerErratum())
489 g_cHmVmxPreemptTimerShift = 0; /* This is about right most of the time here. */
490 }
491 else
492 g_fHmVmxUsePreemptTimer = false;
493
494 /*
495 * Check for EFER swapping support.
496 */
497 g_fHmVmxSupportsVmcsEfer = (g_HmMsrs.u.vmx.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
498 && (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
499 && (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR);
500 }
501 else
502 {
503 g_rcHmInit = rc;
504 g_fHmVmxSupported = false;
505 }
506 }
507 }
508#ifdef LOG_ENABLED
509 else
510 SUPR0Printf("hmR0InitIntelCpu failed with rc=%Rrc\n", g_rcHmInit);
511#endif
512 return VINF_SUCCESS;
513}
514
515
516/**
517 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V
518 * on a CPU.
519 *
520 * @param idCpu The identifier for the CPU the function is called on.
521 * @param pvUser1 Pointer to the first RC structure.
522 * @param pvUser2 Ignored.
523 */
524static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
525{
526 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
527 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
528 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
529 NOREF(idCpu); NOREF(pvUser2);
530
531 int rc = SUPR0GetSvmUsability(true /* fInitSvm */);
532 hmR0FirstRcSetStatus(pFirstRc, rc);
533}
534
535
536/**
537 * AMD-specific initialization code.
538 *
539 * @returns VBox status code (will only fail if out of memory).
540 */
541static int hmR0InitAmd(void)
542{
543 /* Call the global AMD-V initialization routine (should only fail in out-of-memory situations). */
544 int rc = SVMR0GlobalInit();
545 if (RT_SUCCESS(rc))
546 {
547 /*
548 * Install the AMD-V methods.
549 */
550 g_HmR0Ops = g_HmR0OpsSvm;
551
552 /* Query AMD features. */
553 uint32_t u32Dummy;
554 ASMCpuId(0x8000000a, &g_uHmSvmRev, &g_uHmMaxAsid, &u32Dummy, &g_fHmSvmFeatures);
555
556 /*
557 * We need to check if AMD-V has been properly initialized on all CPUs.
558 * Some BIOSes might do a poor job.
559 */
560 HMR0FIRSTRC FirstRc;
561 hmR0FirstRcInit(&FirstRc);
562 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
563 AssertRC(rc);
564 if (RT_SUCCESS(rc))
565 rc = hmR0FirstRcGetStatus(&FirstRc);
566#ifndef DEBUG_bird
567 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
568 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
569#endif
570 if (RT_SUCCESS(rc))
571 {
572 SUPR0GetHwvirtMsrs(&g_HmMsrs, SUPVTCAPS_AMD_V, false /* fForce */);
573 g_fHmSvmSupported = true;
574 }
575 else
576 {
577 g_rcHmInit = rc;
578 if (rc == VERR_SVM_DISABLED || rc == VERR_SVM_IN_USE)
579 rc = VINF_SUCCESS; /* Don't fail if AMD-V is disabled or in use. */
580 }
581 }
582 else
583 g_rcHmInit = rc;
584 return rc;
585}
586
587
588/**
589 * Does global Ring-0 HM initialization (at module init).
590 *
591 * @returns VBox status code.
592 */
593VMMR0_INT_DECL(int) HMR0Init(void)
594{
595 /*
596 * Initialize the globals.
597 */
598 g_fHmEnabled = false;
599 for (unsigned i = 0; i < RT_ELEMENTS(g_aHmCpuInfo); i++)
600 {
601 g_aHmCpuInfo[i].idCpu = NIL_RTCPUID;
602 g_aHmCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
603 g_aHmCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
604 g_aHmCpuInfo[i].pvMemObj = NULL;
605#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
606 g_aHmCpuInfo[i].n.svm.hNstGstMsrpm = NIL_RTR0MEMOBJ;
607 g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm = NIL_RTHCPHYS;
608 g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm = NULL;
609#endif
610 }
611
612 /* Fill in all callbacks with placeholders. */
613 g_HmR0Ops = g_HmR0OpsDummy;
614
615 /* Default is global VT-x/AMD-V init. */
616 g_fHmGlobalInit = true;
617
618 g_fHmVmxSupported = false;
619 g_fHmSvmSupported = false;
620 g_uHmMaxAsid = 0;
621
622 /*
623 * Get host kernel features that HM might need to know in order
624 * to co-operate and function properly with the host OS (e.g. SMAP).
625 */
626 g_fHmHostKernelFeatures = SUPR0GetKernelFeatures();
627
628 /*
629 * Make sure aCpuInfo is big enough for all the CPUs on this system.
630 */
631 if (RTMpGetArraySize() > RT_ELEMENTS(g_aHmCpuInfo))
632 {
633 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_aHmCpuInfo)));
634 return VERR_TOO_MANY_CPUS;
635 }
636
637 /*
638 * Check for VT-x or AMD-V support.
639 * Return failure only in out-of-memory situations.
640 */
641 uint32_t fCaps = 0;
642 int rc = SUPR0GetVTSupport(&fCaps);
643 if (RT_SUCCESS(rc))
644 {
645 if (fCaps & SUPVTCAPS_VT_X)
646 rc = hmR0InitIntel();
647 else
648 {
649 Assert(fCaps & SUPVTCAPS_AMD_V);
650 rc = hmR0InitAmd();
651 }
652 if (RT_SUCCESS(rc))
653 {
654 /*
655 * Register notification callbacks that we can use to disable/enable CPUs
656 * when brought offline/online or suspending/resuming.
657 */
658 if (!g_fHmVmxUsingSUPR0EnableVTx)
659 {
660 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
661 if (RT_SUCCESS(rc))
662 {
663 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
664 if (RT_FAILURE(rc))
665 RTMpNotificationDeregister(hmR0MpEventCallback, NULL);
666 }
667 if (RT_FAILURE(rc))
668 {
669 /* There shouldn't be any per-cpu allocations at this point,
670 so just have to call SVMR0GlobalTerm and VMXR0GlobalTerm. */
671 if (fCaps & SUPVTCAPS_VT_X)
672 VMXR0GlobalTerm();
673 else
674 SVMR0GlobalTerm();
675 g_HmR0Ops = g_HmR0OpsDummy;
676 g_rcHmInit = rc;
677 g_fHmSvmSupported = false;
678 g_fHmVmxSupported = false;
679 }
680 }
681 }
682 }
683 else
684 {
685 g_rcHmInit = rc;
686 rc = VINF_SUCCESS; /* We return success here because module init shall not fail if HM fails to initialize. */
687 }
688 return rc;
689}
690
691
692/**
693 * Does global Ring-0 HM termination (at module termination).
694 *
695 * @returns VBox status code (ignored).
696 */
697VMMR0_INT_DECL(int) HMR0Term(void)
698{
699 int rc;
700 if ( g_fHmVmxSupported
701 && g_fHmVmxUsingSUPR0EnableVTx)
702 {
703 /*
704 * Simple if the host OS manages VT-x.
705 */
706 Assert(g_fHmGlobalInit);
707
708 if (g_fHmVmxCalledSUPR0EnableVTx)
709 {
710 rc = SUPR0EnableVTx(false /* fEnable */);
711 g_fHmVmxCalledSUPR0EnableVTx = false;
712 }
713 else
714 rc = VINF_SUCCESS;
715
716 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_aHmCpuInfo); iCpu++)
717 {
718 g_aHmCpuInfo[iCpu].fConfigured = false;
719 Assert(g_aHmCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
720 }
721 }
722 else
723 {
724 Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx);
725
726 /* Doesn't really matter if this fails. */
727 RTMpNotificationDeregister(hmR0MpEventCallback, NULL);
728 RTPowerNotificationDeregister(hmR0PowerCallback, NULL);
729 rc = VINF_SUCCESS;
730
731 /*
732 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
733 */
734 if (g_fHmGlobalInit)
735 {
736 HMR0FIRSTRC FirstRc;
737 hmR0FirstRcInit(&FirstRc);
738 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
739 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
740 if (RT_SUCCESS(rc))
741 rc = hmR0FirstRcGetStatus(&FirstRc);
742 }
743
744 /*
745 * Free the per-cpu pages used for VT-x and AMD-V.
746 */
747 for (unsigned i = 0; i < RT_ELEMENTS(g_aHmCpuInfo); i++)
748 {
749 if (g_aHmCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
750 {
751 RTR0MemObjFree(g_aHmCpuInfo[i].hMemObj, false);
752 g_aHmCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
753 g_aHmCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
754 g_aHmCpuInfo[i].pvMemObj = NULL;
755 }
756#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
757 if (g_aHmCpuInfo[i].n.svm.hNstGstMsrpm != NIL_RTR0MEMOBJ)
758 {
759 RTR0MemObjFree(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm, false);
760 g_aHmCpuInfo[i].n.svm.hNstGstMsrpm = NIL_RTR0MEMOBJ;
761 g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm = NIL_RTHCPHYS;
762 g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm = NULL;
763 }
764#endif
765 }
766 }
767
768 /** @todo This needs cleaning up. There's no matching
769 * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits
770 * should move into their respective modules. */
771 /* Finally, call global VT-x/AMD-V termination. */
772 if (g_fHmVmxSupported)
773 VMXR0GlobalTerm();
774 else if (g_fHmSvmSupported)
775 SVMR0GlobalTerm();
776
777 return rc;
778}
779
780
781/**
782 * Enable VT-x or AMD-V on the current CPU
783 *
784 * @returns VBox status code.
785 * @param pVM The cross context VM structure. Can be NULL.
786 * @param idCpu The identifier for the CPU the function is called on.
787 *
788 * @remarks Maybe called with interrupts disabled!
789 */
790static int hmR0EnableCpu(PVMCC pVM, RTCPUID idCpu)
791{
792 PHMPHYSCPU pHostCpu = &g_aHmCpuInfo[idCpu];
793
794 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
795 Assert(idCpu < RT_ELEMENTS(g_aHmCpuInfo));
796 Assert(!pHostCpu->fConfigured);
797 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
798
799 pHostCpu->idCpu = idCpu;
800 /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
801
802 int rc;
803 if ( g_fHmVmxSupported
804 && g_fHmVmxUsingSUPR0EnableVTx)
805 rc = g_HmR0Ops.pfnEnableCpu(pHostCpu, pVM, NULL /* pvCpuPage */, NIL_RTHCPHYS, true, &g_HmMsrs);
806 else
807 {
808 AssertLogRelMsgReturn(pHostCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
809 rc = g_HmR0Ops.pfnEnableCpu(pHostCpu, pVM, pHostCpu->pvMemObj, pHostCpu->HCPhysMemObj, false, &g_HmMsrs);
810 }
811 if (RT_SUCCESS(rc))
812 pHostCpu->fConfigured = true;
813 return rc;
814}
815
816
817/**
818 * Worker function passed to RTMpOnAll() that is to be called on all CPUs.
819 *
820 * @param idCpu The identifier for the CPU the function is called on.
821 * @param pvUser1 Opaque pointer to the VM (can be NULL!).
822 * @param pvUser2 The 2nd user argument.
823 */
824static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
825{
826 PVMCC pVM = (PVMCC)pvUser1; /* can be NULL! */
827 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
828 AssertReturnVoid(g_fHmGlobalInit);
829 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
830 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
831}
832
833
834/**
835 * RTOnce callback employed by HMR0EnableAllCpus.
836 *
837 * @returns VBox status code.
838 * @param pvUser Pointer to the VM.
839 */
840static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
841{
842 PVMCC pVM = (PVMCC)pvUser;
843
844 /*
845 * Indicate that we've initialized.
846 *
847 * Note! There is a potential race between this function and the suspend
848 * notification. Kind of unlikely though, so ignored for now.
849 */
850 AssertReturn(!g_fHmEnabled, VERR_HM_ALREADY_ENABLED_IPE);
851 ASMAtomicWriteBool(&g_fHmEnabled, true);
852
853 /*
854 * The global init variable is set by the first VM.
855 */
856 g_fHmGlobalInit = pVM->hm.s.fGlobalInit;
857
858#ifdef VBOX_STRICT
859 for (unsigned i = 0; i < RT_ELEMENTS(g_aHmCpuInfo); i++)
860 {
861 Assert(g_aHmCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
862 Assert(g_aHmCpuInfo[i].HCPhysMemObj == NIL_RTHCPHYS);
863 Assert(g_aHmCpuInfo[i].pvMemObj == NULL);
864 Assert(!g_aHmCpuInfo[i].fConfigured);
865 Assert(!g_aHmCpuInfo[i].cTlbFlushes);
866 Assert(!g_aHmCpuInfo[i].uCurrentAsid);
867# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
868 Assert(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm == NIL_RTR0MEMOBJ);
869 Assert(g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm == NIL_RTHCPHYS);
870 Assert(g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm == NULL);
871# endif
872 }
873#endif
874
875 int rc;
876 if ( g_fHmVmxSupported
877 && g_fHmVmxUsingSUPR0EnableVTx)
878 {
879 /*
880 * Global VT-x initialization API (only darwin for now).
881 */
882 rc = SUPR0EnableVTx(true /* fEnable */);
883 if (RT_SUCCESS(rc))
884 {
885 g_fHmVmxCalledSUPR0EnableVTx = true;
886 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
887 g_fHmGlobalInit = pVM->hm.s.fGlobalInit = true;
888 }
889 else
890 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
891 }
892 else
893 {
894 /*
895 * We're doing the job ourselves.
896 */
897 /* Allocate one page per cpu for the global VT-x and AMD-V pages */
898 for (unsigned i = 0; i < RT_ELEMENTS(g_aHmCpuInfo); i++)
899 {
900 Assert(g_aHmCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
901#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
902 Assert(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm == NIL_RTR0MEMOBJ);
903#endif
904 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
905 {
906 /** @todo NUMA */
907 rc = RTR0MemObjAllocCont(&g_aHmCpuInfo[i].hMemObj, HOST_PAGE_SIZE, false /* executable R0 mapping */);
908 AssertLogRelRCReturn(rc, rc);
909
910 g_aHmCpuInfo[i].HCPhysMemObj = RTR0MemObjGetPagePhysAddr(g_aHmCpuInfo[i].hMemObj, 0);
911 Assert(g_aHmCpuInfo[i].HCPhysMemObj != NIL_RTHCPHYS);
912 Assert(!(g_aHmCpuInfo[i].HCPhysMemObj & HOST_PAGE_OFFSET_MASK));
913
914 g_aHmCpuInfo[i].pvMemObj = RTR0MemObjAddress(g_aHmCpuInfo[i].hMemObj);
915 AssertPtr(g_aHmCpuInfo[i].pvMemObj);
916 RT_BZERO(g_aHmCpuInfo[i].pvMemObj, HOST_PAGE_SIZE);
917
918#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
919 rc = RTR0MemObjAllocCont(&g_aHmCpuInfo[i].n.svm.hNstGstMsrpm, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
920 false /* executable R0 mapping */);
921 AssertLogRelRCReturn(rc, rc);
922
923 g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm = RTR0MemObjGetPagePhysAddr(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm, 0);
924 Assert(g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm != NIL_RTHCPHYS);
925 Assert(!(g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm & HOST_PAGE_OFFSET_MASK));
926
927 g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm = RTR0MemObjAddress(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm);
928 AssertPtr(g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm);
929 ASMMemFill32(g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
930#endif
931 }
932 }
933
934 rc = VINF_SUCCESS;
935 }
936
937 if ( RT_SUCCESS(rc)
938 && g_fHmGlobalInit)
939 {
940 /* First time, so initialize each cpu/core. */
941 HMR0FIRSTRC FirstRc;
942 hmR0FirstRcInit(&FirstRc);
943 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
944 if (RT_SUCCESS(rc))
945 rc = hmR0FirstRcGetStatus(&FirstRc);
946 }
947
948 return rc;
949}
950
951
952/**
953 * Sets up HM on all cpus.
954 *
955 * @returns VBox status code.
956 * @param pVM The cross context VM structure.
957 */
958VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVMCC pVM)
959{
960 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
961 if (ASMAtomicReadBool(&g_fHmSuspended))
962 return VERR_HM_SUSPEND_PENDING;
963
964 return RTOnce(&g_HmEnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
965}
966
967
968/**
969 * Disable VT-x or AMD-V on the current CPU.
970 *
971 * @returns VBox status code.
972 * @param idCpu The identifier for the CPU this function is called on.
973 *
974 * @remarks Must be called with preemption disabled.
975 */
976static int hmR0DisableCpu(RTCPUID idCpu)
977{
978 PHMPHYSCPU pHostCpu = &g_aHmCpuInfo[idCpu];
979
980 Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx);
981 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
982 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
983 Assert(idCpu < RT_ELEMENTS(g_aHmCpuInfo));
984 Assert(!pHostCpu->fConfigured || pHostCpu->hMemObj != NIL_RTR0MEMOBJ);
985 AssertRelease(idCpu == RTMpCpuId());
986
987 if (pHostCpu->hMemObj == NIL_RTR0MEMOBJ)
988 return pHostCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
989 AssertPtr(pHostCpu->pvMemObj);
990 Assert(pHostCpu->HCPhysMemObj != NIL_RTHCPHYS);
991
992 int rc;
993 if (pHostCpu->fConfigured)
994 {
995 rc = g_HmR0Ops.pfnDisableCpu(pHostCpu, pHostCpu->pvMemObj, pHostCpu->HCPhysMemObj);
996 AssertRCReturn(rc, rc);
997
998 pHostCpu->fConfigured = false;
999 pHostCpu->idCpu = NIL_RTCPUID;
1000 }
1001 else
1002 rc = VINF_SUCCESS; /* nothing to do */
1003 return rc;
1004}
1005
1006
1007/**
1008 * Worker function passed to RTMpOnAll() that is to be called on the target
1009 * CPUs.
1010 *
1011 * @param idCpu The identifier for the CPU the function is called on.
1012 * @param pvUser1 The 1st user argument.
1013 * @param pvUser2 Opaque pointer to the FirstRc.
1014 */
1015static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1016{
1017 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1018 AssertReturnVoid(g_fHmGlobalInit);
1019 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1020}
1021
1022
1023/**
1024 * Worker function passed to RTMpOnSpecific() that is to be called on the target
1025 * CPU.
1026 *
1027 * @param idCpu The identifier for the CPU the function is called on.
1028 * @param pvUser1 Null, not used.
1029 * @param pvUser2 Null, not used.
1030 */
1031static DECLCALLBACK(void) hmR0DisableCpuOnSpecificCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1032{
1033 NOREF(pvUser1);
1034 NOREF(pvUser2);
1035 hmR0DisableCpu(idCpu);
1036}
1037
1038
1039/**
1040 * Callback function invoked when a cpu goes online or offline.
1041 *
1042 * @param enmEvent The Mp event.
1043 * @param idCpu The identifier for the CPU the function is called on.
1044 * @param pvData Opaque data (PVMCC pointer).
1045 */
1046static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1047{
1048 NOREF(pvData);
1049 Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx);
1050
1051 /*
1052 * We only care about uninitializing a CPU that is going offline. When a
1053 * CPU comes online, the initialization is done lazily in HMR0Enter().
1054 */
1055 switch (enmEvent)
1056 {
1057 case RTMPEVENT_OFFLINE:
1058 {
1059 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1060 RTThreadPreemptDisable(&PreemptState);
1061 if (idCpu == RTMpCpuId())
1062 {
1063 int rc = hmR0DisableCpu(idCpu);
1064 AssertRC(rc);
1065 RTThreadPreemptRestore(&PreemptState);
1066 }
1067 else
1068 {
1069 RTThreadPreemptRestore(&PreemptState);
1070 RTMpOnSpecific(idCpu, hmR0DisableCpuOnSpecificCallback, NULL /* pvUser1 */, NULL /* pvUser2 */);
1071 }
1072 break;
1073 }
1074
1075 default:
1076 break;
1077 }
1078}
1079
1080
1081/**
1082 * Called whenever a system power state change occurs.
1083 *
1084 * @param enmEvent The Power event.
1085 * @param pvUser User argument.
1086 */
1087static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1088{
1089 NOREF(pvUser);
1090 Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx);
1091
1092#ifdef LOG_ENABLED
1093 if (enmEvent == RTPOWEREVENT_SUSPEND)
1094 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1095 else
1096 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1097#endif
1098
1099 if (enmEvent == RTPOWEREVENT_SUSPEND)
1100 ASMAtomicWriteBool(&g_fHmSuspended, true);
1101
1102 if (g_fHmEnabled)
1103 {
1104 int rc;
1105 HMR0FIRSTRC FirstRc;
1106 hmR0FirstRcInit(&FirstRc);
1107
1108 if (enmEvent == RTPOWEREVENT_SUSPEND)
1109 {
1110 if (g_fHmGlobalInit)
1111 {
1112 /* Turn off VT-x or AMD-V on all CPUs. */
1113 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
1114 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1115 }
1116 /* else nothing to do here for the local init case */
1117 }
1118 else
1119 {
1120 /* Reinit the CPUs from scratch as the suspend state might have
1121 messed with the MSRs. (lousy BIOSes as usual) */
1122 if (g_fHmVmxSupported)
1123 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1124 else
1125 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1126 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1127 if (RT_SUCCESS(rc))
1128 rc = hmR0FirstRcGetStatus(&FirstRc);
1129#ifdef LOG_ENABLED
1130 if (RT_FAILURE(rc))
1131 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1132#endif
1133 if (g_fHmGlobalInit)
1134 {
1135 /* Turn VT-x or AMD-V back on on all CPUs. */
1136 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL /* pVM */, &FirstRc /* output ignored */);
1137 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1138 }
1139 /* else nothing to do here for the local init case */
1140 }
1141 }
1142
1143 if (enmEvent == RTPOWEREVENT_RESUME)
1144 ASMAtomicWriteBool(&g_fHmSuspended, false);
1145}
1146
1147
1148/**
1149 * Does ring-0 per-VM HM initialization.
1150 *
1151 * This will call the CPU specific init. routine which may initialize and allocate
1152 * resources for virtual CPUs.
1153 *
1154 * @returns VBox status code.
1155 * @param pVM The cross context VM structure.
1156 *
1157 * @remarks This is called after HMR3Init(), see vmR3CreateU() and
1158 * vmR3InitRing3().
1159 */
1160VMMR0_INT_DECL(int) HMR0InitVM(PVMCC pVM)
1161{
1162 AssertCompile(sizeof(pVM->hm.s) <= sizeof(pVM->hm.padding));
1163 AssertCompile(sizeof(pVM->hmr0.s) <= sizeof(pVM->hmr0.padding));
1164 AssertCompile(sizeof(pVM->aCpus[0].hm.s) <= sizeof(pVM->aCpus[0].hm.padding));
1165 AssertCompile(sizeof(pVM->aCpus[0].hmr0.s) <= sizeof(pVM->aCpus[0].hmr0.padding));
1166 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1167
1168 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1169 if (ASMAtomicReadBool(&g_fHmSuspended))
1170 return VERR_HM_SUSPEND_PENDING;
1171
1172 /*
1173 * Copy globals to the VM structure.
1174 */
1175 Assert(!(pVM->hm.s.vmx.fSupported && pVM->hm.s.svm.fSupported));
1176 if (pVM->hm.s.vmx.fSupported)
1177 {
1178 pVM->hmr0.s.vmx.fUsePreemptTimer = pVM->hm.s.vmx.fUsePreemptTimerCfg && g_fHmVmxUsePreemptTimer;
1179 pVM->hm.s.vmx.fUsePreemptTimerCfg = pVM->hmr0.s.vmx.fUsePreemptTimer;
1180 pVM->hm.s.vmx.cPreemptTimerShift = g_cHmVmxPreemptTimerShift;
1181 pVM->hm.s.ForR3.vmx.u64HostCr4 = g_uHmVmxHostCr4;
1182 pVM->hm.s.ForR3.vmx.u64HostMsrEfer = g_uHmVmxHostMsrEfer;
1183 pVM->hm.s.ForR3.vmx.u64HostSmmMonitorCtl = g_uHmVmxHostSmmMonitorCtl;
1184 pVM->hm.s.ForR3.vmx.u64HostFeatCtrl = g_HmMsrs.u.vmx.u64FeatCtrl;
1185 HMGetVmxMsrsFromHwvirtMsrs(&g_HmMsrs, &pVM->hm.s.ForR3.vmx.Msrs);
1186 /* If you need to tweak host MSRs for testing VMX R0 code, do it here. */
1187
1188 /* Enable VPID if supported and configured. */
1189 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VPID)
1190 pVM->hm.s.ForR3.vmx.fVpid = pVM->hmr0.s.vmx.fVpid = pVM->hm.s.vmx.fAllowVpid; /* Can be overridden by CFGM in HMR3Init(). */
1191
1192 /* Use VMCS shadowing if supported. */
1193 pVM->hmr0.s.vmx.fUseVmcsShadowing = pVM->cpum.ro.GuestFeatures.fVmx
1194 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VMCS_SHADOWING);
1195 pVM->hm.s.ForR3.vmx.fUseVmcsShadowing = pVM->hmr0.s.vmx.fUseVmcsShadowing;
1196
1197 /* Use the VMCS controls for swapping the EFER MSR if supported. */
1198 pVM->hm.s.ForR3.vmx.fSupportsVmcsEfer = g_fHmVmxSupportsVmcsEfer;
1199
1200#if 0
1201 /* Enable APIC register virtualization and virtual-interrupt delivery if supported. */
1202 if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT)
1203 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY))
1204 pVM->hm.s.fVirtApicRegs = true;
1205
1206 /* Enable posted-interrupt processing if supported. */
1207 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1208 * here. */
1209 if ( (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT)
1210 && (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT))
1211 pVM->hm.s.fPostedIntrs = true;
1212#endif
1213 }
1214 else if (pVM->hm.s.svm.fSupported)
1215 {
1216 pVM->hm.s.ForR3.svm.u32Rev = g_uHmSvmRev;
1217 pVM->hm.s.ForR3.svm.fFeatures = g_fHmSvmFeatures;
1218 pVM->hm.s.ForR3.svm.u64MsrHwcr = g_HmMsrs.u.svm.u64MsrHwcr;
1219 /* If you need to tweak host MSRs for testing SVM R0 code, do it here. */
1220 }
1221 pVM->hm.s.ForR3.rcInit = g_rcHmInit;
1222 pVM->hm.s.ForR3.uMaxAsid = g_uHmMaxAsid;
1223
1224 /*
1225 * Set default maximum inner loops in ring-0 before returning to ring-3.
1226 * Can be overriden using CFGM.
1227 */
1228 uint32_t cMaxResumeLoops = pVM->hm.s.cMaxResumeLoopsCfg;
1229 if (!cMaxResumeLoops)
1230 {
1231 cMaxResumeLoops = 1024;
1232 if (RTThreadPreemptIsPendingTrusty())
1233 cMaxResumeLoops = 8192;
1234 }
1235 else if (cMaxResumeLoops > 16384)
1236 cMaxResumeLoops = 16384;
1237 else if (cMaxResumeLoops < 32)
1238 cMaxResumeLoops = 32;
1239 pVM->hm.s.cMaxResumeLoopsCfg = pVM->hmr0.s.cMaxResumeLoops = cMaxResumeLoops;
1240
1241 /*
1242 * Initialize some per-VCPU fields.
1243 */
1244 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1245 {
1246 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
1247 pVCpu->hmr0.s.idEnteredCpu = NIL_RTCPUID;
1248 pVCpu->hmr0.s.idLastCpu = NIL_RTCPUID;
1249
1250 /* We'll aways increment this the first time (host uses ASID 0). */
1251 AssertReturn(!pVCpu->hmr0.s.uCurrentAsid, VERR_HM_IPE_3);
1252 }
1253
1254 /*
1255 * Configure defences against spectre and other CPU bugs.
1256 */
1257 uint32_t fWorldSwitcher = 0;
1258 uint32_t cLastStdLeaf = ASMCpuId_EAX(0);
1259 if (cLastStdLeaf >= 0x00000007 && RTX86IsValidStdRange(cLastStdLeaf))
1260 {
1261 uint32_t uEdx = 0;
1262 ASMCpuIdExSlow(0x00000007, 0, 0, 0, NULL, NULL, NULL, &uEdx);
1263
1264 if (uEdx & X86_CPUID_STEXT_FEATURE_EDX_IBRS_IBPB)
1265 {
1266 if (pVM->hm.s.fIbpbOnVmExit)
1267 fWorldSwitcher |= HM_WSF_IBPB_EXIT;
1268 if (pVM->hm.s.fIbpbOnVmEntry)
1269 fWorldSwitcher |= HM_WSF_IBPB_ENTRY;
1270 }
1271 if (uEdx & X86_CPUID_STEXT_FEATURE_EDX_FLUSH_CMD)
1272 {
1273 if (pVM->hm.s.fL1dFlushOnVmEntry)
1274 fWorldSwitcher |= HM_WSF_L1D_ENTRY;
1275 else if (pVM->hm.s.fL1dFlushOnSched)
1276 fWorldSwitcher |= HM_WSF_L1D_SCHED;
1277 }
1278 if (uEdx & X86_CPUID_STEXT_FEATURE_EDX_MD_CLEAR)
1279 {
1280 if (pVM->hm.s.fMdsClearOnVmEntry)
1281 fWorldSwitcher |= HM_WSF_MDS_ENTRY;
1282 else if (pVM->hm.s.fMdsClearOnSched)
1283 fWorldSwitcher |= HM_WSF_MDS_SCHED;
1284 }
1285 }
1286 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1287 {
1288 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
1289 pVCpu->hmr0.s.fWorldSwitcher = fWorldSwitcher;
1290 }
1291 pVM->hm.s.ForR3.fWorldSwitcher = fWorldSwitcher;
1292
1293
1294 /*
1295 * Call the hardware specific initialization method.
1296 */
1297 return g_HmR0Ops.pfnInitVM(pVM);
1298}
1299
1300
1301/**
1302 * Does ring-0 per VM HM termination.
1303 *
1304 * @returns VBox status code.
1305 * @param pVM The cross context VM structure.
1306 */
1307VMMR0_INT_DECL(int) HMR0TermVM(PVMCC pVM)
1308{
1309 Log(("HMR0TermVM: %p\n", pVM));
1310 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1311
1312 /*
1313 * Call the hardware specific method.
1314 *
1315 * Note! We might be preparing for a suspend, so the pfnTermVM() functions should probably not
1316 * mess with VT-x/AMD-V features on the CPU, currently all they do is free memory so this is safe.
1317 */
1318 return g_HmR0Ops.pfnTermVM(pVM);
1319}
1320
1321
1322/**
1323 * Sets up a VT-x or AMD-V session.
1324 *
1325 * This is mostly about setting up the hardware VM state.
1326 *
1327 * @returns VBox status code.
1328 * @param pVM The cross context VM structure.
1329 */
1330VMMR0_INT_DECL(int) HMR0SetupVM(PVMCC pVM)
1331{
1332 Log(("HMR0SetupVM: %p\n", pVM));
1333 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1334
1335 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1336 AssertReturn(!ASMAtomicReadBool(&g_fHmSuspended), VERR_HM_SUSPEND_PENDING);
1337
1338 /* On first entry we'll sync everything. */
1339 VMCC_FOR_EACH_VMCPU_STMT(pVM, pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1340
1341 /*
1342 * Call the hardware specific setup VM method. This requires the CPU to be
1343 * enabled for AMD-V/VT-x and preemption to be prevented.
1344 */
1345 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1346 RTThreadPreemptDisable(&PreemptState);
1347 RTCPUID const idCpu = RTMpCpuId();
1348
1349 /* Enable VT-x or AMD-V if local init is required. */
1350 int rc;
1351 if (!g_fHmGlobalInit)
1352 {
1353 Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx);
1354 rc = hmR0EnableCpu(pVM, idCpu);
1355 if (RT_FAILURE(rc))
1356 {
1357 RTThreadPreemptRestore(&PreemptState);
1358 return rc;
1359 }
1360 }
1361
1362 /* Setup VT-x or AMD-V. */
1363 rc = g_HmR0Ops.pfnSetupVM(pVM);
1364
1365 /* Disable VT-x or AMD-V if local init was done before. */
1366 if (!g_fHmGlobalInit)
1367 {
1368 Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx);
1369 int rc2 = hmR0DisableCpu(idCpu);
1370 AssertRC(rc2);
1371 }
1372
1373 RTThreadPreemptRestore(&PreemptState);
1374 return rc;
1375}
1376
1377
1378/**
1379 * Notification callback before an assertion longjump and guru mediation.
1380 *
1381 * @returns VBox status code.
1382 * @param pVCpu The cross context virtual CPU structure.
1383 * @param pvUser User argument, currently unused, NULL.
1384 */
1385static DECLCALLBACK(int) hmR0AssertionCallback(PVMCPUCC pVCpu, void *pvUser)
1386{
1387 RT_NOREF(pvUser);
1388 Assert(pVCpu);
1389 Assert(g_HmR0Ops.pfnAssertionCallback);
1390 return g_HmR0Ops.pfnAssertionCallback(pVCpu);
1391}
1392
1393
1394/**
1395 * Turns on HM on the CPU if necessary and initializes the bare minimum state
1396 * required for entering HM context.
1397 *
1398 * @returns VBox status code.
1399 * @param pVCpu The cross context virtual CPU structure.
1400 *
1401 * @remarks No-long-jump zone!!!
1402 */
1403VMMR0_INT_DECL(int) hmR0EnterCpu(PVMCPUCC pVCpu)
1404{
1405 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1406
1407 int rc = VINF_SUCCESS;
1408 RTCPUID const idCpu = RTMpCpuId();
1409 PHMPHYSCPU pHostCpu = &g_aHmCpuInfo[idCpu];
1410 AssertPtr(pHostCpu);
1411
1412 /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */
1413 if (!pHostCpu->fConfigured)
1414 rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu);
1415
1416 /* Register a callback to fire prior to performing a longjmp to ring-3 so HM can disable VT-x/AMD-V if needed. */
1417 VMMR0AssertionSetNotification(pVCpu, hmR0AssertionCallback, NULL /*pvUser*/);
1418
1419 /* Reload host-state (back from ring-3/migrated CPUs) and shared guest/host bits. */
1420 if (g_fHmVmxSupported)
1421 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE;
1422 else
1423 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE;
1424
1425 Assert(pHostCpu->idCpu == idCpu && pHostCpu->idCpu != NIL_RTCPUID);
1426 pVCpu->hmr0.s.idEnteredCpu = idCpu;
1427 return rc;
1428}
1429
1430
1431/**
1432 * Enters the VT-x or AMD-V session.
1433 *
1434 * @returns VBox status code.
1435 * @param pVCpu The cross context virtual CPU structure.
1436 *
1437 * @remarks This is called with preemption disabled.
1438 */
1439VMMR0_INT_DECL(int) HMR0Enter(PVMCPUCC pVCpu)
1440{
1441 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1442 AssertReturn(!ASMAtomicReadBool(&g_fHmSuspended), VERR_HM_SUSPEND_PENDING);
1443 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1444
1445 /* Load the bare minimum state required for entering HM. */
1446 int rc = hmR0EnterCpu(pVCpu);
1447 if (RT_SUCCESS(rc))
1448 {
1449 if (g_fHmVmxSupported)
1450 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
1451 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
1452 else
1453 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
1454 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
1455
1456 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness and ring-3 calls. */
1457 rc = g_HmR0Ops.pfnEnterSession(pVCpu);
1458 AssertMsgRCReturnStmt(rc, ("rc=%Rrc pVCpu=%p\n", rc, pVCpu), pVCpu->hmr0.s.idEnteredCpu = NIL_RTCPUID, rc);
1459
1460 /* Exports the host-state as we may be resuming code after a longjmp and quite
1461 possibly now be scheduled on a different CPU. */
1462 rc = g_HmR0Ops.pfnExportHostState(pVCpu);
1463 AssertMsgRCReturnStmt(rc, ("rc=%Rrc pVCpu=%p\n", rc, pVCpu), pVCpu->hmr0.s.idEnteredCpu = NIL_RTCPUID, rc);
1464 }
1465 return rc;
1466}
1467
1468
1469/**
1470 * Deinitializes the bare minimum state used for HM context and if necessary
1471 * disable HM on the CPU.
1472 *
1473 * @returns VBox status code.
1474 * @param pVCpu The cross context virtual CPU structure.
1475 *
1476 * @remarks No-long-jump zone!!!
1477 */
1478VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPUCC pVCpu)
1479{
1480 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1481 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_HM_WRONG_CPU);
1482
1483 RTCPUID const idCpu = RTMpCpuId();
1484 PCHMPHYSCPU pHostCpu = &g_aHmCpuInfo[idCpu];
1485
1486 if ( !g_fHmGlobalInit
1487 && pHostCpu->fConfigured)
1488 {
1489 int rc = hmR0DisableCpu(idCpu);
1490 AssertRCReturn(rc, rc);
1491 Assert(!pHostCpu->fConfigured);
1492 Assert(pHostCpu->idCpu == NIL_RTCPUID);
1493
1494 /* For obtaining a non-zero ASID/VPID on next re-entry. */
1495 pVCpu->hmr0.s.idLastCpu = NIL_RTCPUID;
1496 }
1497
1498 /* Clear it while leaving HM context, hmPokeCpuForTlbFlush() relies on this. */
1499 pVCpu->hmr0.s.idEnteredCpu = NIL_RTCPUID;
1500
1501 /* De-register the longjmp-to-ring 3 callback now that we have reliquished hardware resources. */
1502 VMMR0AssertionRemoveNotification(pVCpu);
1503 return VINF_SUCCESS;
1504}
1505
1506
1507/**
1508 * Thread-context hook for HM.
1509 *
1510 * This is used together with RTThreadCtxHookCreate() on platforms which
1511 * supports it, and directly from VMMR0EmtPrepareForBlocking() and
1512 * VMMR0EmtResumeAfterBlocking() on platforms which don't.
1513 *
1514 * @param enmEvent The thread-context event.
1515 * @param pvUser Opaque pointer to the VMCPU.
1516 */
1517VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
1518{
1519 PVMCPUCC pVCpu = (PVMCPUCC)pvUser;
1520 Assert(pVCpu);
1521 Assert(g_HmR0Ops.pfnThreadCtxCallback);
1522
1523 g_HmR0Ops.pfnThreadCtxCallback(enmEvent, pVCpu, g_fHmGlobalInit);
1524}
1525
1526
1527/**
1528 * Runs guest code in a hardware accelerated VM.
1529 *
1530 * @returns Strict VBox status code. (VBOXSTRICTRC isn't used because it's
1531 * called from setjmp assembly.)
1532 * @param pVM The cross context VM structure.
1533 * @param pVCpu The cross context virtual CPU structure.
1534 *
1535 * @remarks Can be called with preemption enabled if thread-context hooks are
1536 * used!!!
1537 */
1538VMMR0_INT_DECL(int) HMR0RunGuestCode(PVMCC pVM, PVMCPUCC pVCpu)
1539{
1540 RT_NOREF(pVM);
1541
1542#ifdef VBOX_STRICT
1543 /* With thread-context hooks we would be running this code with preemption enabled. */
1544 if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
1545 {
1546 PCHMPHYSCPU pHostCpu = &g_aHmCpuInfo[RTMpCpuId()];
1547 Assert(!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1548 Assert(pHostCpu->fConfigured);
1549 AssertReturn(!ASMAtomicReadBool(&g_fHmSuspended), VERR_HM_SUSPEND_PENDING);
1550 }
1551#endif
1552
1553 VBOXSTRICTRC rcStrict = g_HmR0Ops.pfnRunGuestCode(pVCpu);
1554 return VBOXSTRICTRC_VAL(rcStrict);
1555}
1556
1557
1558/**
1559 * Notification from CPUM that it has unloaded the guest FPU/SSE/AVX state from
1560 * the host CPU and that guest access to it must be intercepted.
1561 *
1562 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1563 */
1564VMMR0_INT_DECL(void) HMR0NotifyCpumUnloadedGuestFpuState(PVMCPUCC pVCpu)
1565{
1566 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
1567}
1568
1569
1570/**
1571 * Notification from CPUM that it has modified the host CR0 (because of FPU).
1572 *
1573 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1574 */
1575VMMR0_INT_DECL(void) HMR0NotifyCpumModifiedHostCr0(PVMCPUCC pVCpu)
1576{
1577 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT);
1578}
1579
1580
1581/**
1582 * Returns suspend status of the host.
1583 *
1584 * @returns Suspend pending or not.
1585 */
1586VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
1587{
1588 return ASMAtomicReadBool(&g_fHmSuspended);
1589}
1590
1591
1592/**
1593 * Invalidates a guest page from the host TLB.
1594 *
1595 * @param pVCpu The cross context virtual CPU structure.
1596 * @param GCVirt Page to invalidate.
1597 */
1598VMMR0_INT_DECL(int) HMR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
1599{
1600 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1601 if (pVM->hm.s.vmx.fSupported)
1602 return VMXR0InvalidatePage(pVCpu, GCVirt);
1603 return SVMR0InvalidatePage(pVCpu, GCVirt);
1604}
1605
1606
1607/**
1608 * Returns the cpu structure for the current cpu.
1609 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1610 *
1611 * @returns The cpu structure pointer.
1612 */
1613VMMR0_INT_DECL(PHMPHYSCPU) hmR0GetCurrentCpu(void)
1614{
1615 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1616 RTCPUID const idCpu = RTMpCpuId();
1617 Assert(idCpu < RT_ELEMENTS(g_aHmCpuInfo));
1618 return &g_aHmCpuInfo[idCpu];
1619}
1620
1621
1622/**
1623 * Interface for importing state on demand (used by IEM).
1624 *
1625 * @returns VBox status code.
1626 * @param pVCpu The cross context CPU structure.
1627 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
1628 */
1629VMMR0_INT_DECL(int) HMR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
1630{
1631 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
1632 return VMXR0ImportStateOnDemand(pVCpu, fWhat);
1633 return SVMR0ImportStateOnDemand(pVCpu, fWhat);
1634}
1635
1636
1637/**
1638 * Gets HM VM-exit auxiliary information.
1639 *
1640 * @returns VBox status code.
1641 * @param pVCpu The cross context CPU structure.
1642 * @param pHmExitAux Where to store the auxiliary info.
1643 * @param fWhat What to get, see HMVMX_READ_XXX. This is ignored/unused
1644 * on AMD-V.
1645 *
1646 * @remarks Currently this works only when executing a nested-guest using
1647 * hardware-assisted execution as it's where the auxiliary information is
1648 * required outside of HM. In the future we can make this available while
1649 * executing a regular (non-nested) guest if necessary.
1650 */
1651VMMR0_INT_DECL(int) HMR0GetExitAuxInfo(PVMCPUCC pVCpu, PHMEXITAUX pHmExitAux, uint32_t fWhat)
1652{
1653 Assert(pHmExitAux);
1654 Assert(!(fWhat & ~HMVMX_READ_VALID_MASK));
1655 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
1656 return VMXR0GetExitAuxInfo(pVCpu, &pHmExitAux->Vmx, fWhat);
1657 return SVMR0GetExitAuxInfo(pVCpu, &pHmExitAux->Svm);
1658}
1659
1660
1661#ifdef VBOX_STRICT
1662
1663/**
1664 * Dumps a descriptor.
1665 *
1666 * @param pDesc Descriptor to dump.
1667 * @param Sel The selector.
1668 * @param pszSel The name of the selector.
1669 */
1670VMMR0_INT_DECL(void) hmR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszSel)
1671{
1672 /*
1673 * Make variable description string.
1674 */
1675 static struct
1676 {
1677 unsigned cch;
1678 const char *psz;
1679 } const s_aTypes[32] =
1680 {
1681# define STRENTRY(str) { sizeof(str) - 1, str }
1682
1683 /* system */
1684# if HC_ARCH_BITS == 64
1685 STRENTRY("Reserved0 "), /* 0x00 */
1686 STRENTRY("Reserved1 "), /* 0x01 */
1687 STRENTRY("LDT "), /* 0x02 */
1688 STRENTRY("Reserved3 "), /* 0x03 */
1689 STRENTRY("Reserved4 "), /* 0x04 */
1690 STRENTRY("Reserved5 "), /* 0x05 */
1691 STRENTRY("Reserved6 "), /* 0x06 */
1692 STRENTRY("Reserved7 "), /* 0x07 */
1693 STRENTRY("Reserved8 "), /* 0x08 */
1694 STRENTRY("TSS64Avail "), /* 0x09 */
1695 STRENTRY("ReservedA "), /* 0x0a */
1696 STRENTRY("TSS64Busy "), /* 0x0b */
1697 STRENTRY("Call64 "), /* 0x0c */
1698 STRENTRY("ReservedD "), /* 0x0d */
1699 STRENTRY("Int64 "), /* 0x0e */
1700 STRENTRY("Trap64 "), /* 0x0f */
1701# else
1702 STRENTRY("Reserved0 "), /* 0x00 */
1703 STRENTRY("TSS16Avail "), /* 0x01 */
1704 STRENTRY("LDT "), /* 0x02 */
1705 STRENTRY("TSS16Busy "), /* 0x03 */
1706 STRENTRY("Call16 "), /* 0x04 */
1707 STRENTRY("Task "), /* 0x05 */
1708 STRENTRY("Int16 "), /* 0x06 */
1709 STRENTRY("Trap16 "), /* 0x07 */
1710 STRENTRY("Reserved8 "), /* 0x08 */
1711 STRENTRY("TSS32Avail "), /* 0x09 */
1712 STRENTRY("ReservedA "), /* 0x0a */
1713 STRENTRY("TSS32Busy "), /* 0x0b */
1714 STRENTRY("Call32 "), /* 0x0c */
1715 STRENTRY("ReservedD "), /* 0x0d */
1716 STRENTRY("Int32 "), /* 0x0e */
1717 STRENTRY("Trap32 "), /* 0x0f */
1718# endif
1719 /* non system */
1720 STRENTRY("DataRO "), /* 0x10 */
1721 STRENTRY("DataRO Accessed "), /* 0x11 */
1722 STRENTRY("DataRW "), /* 0x12 */
1723 STRENTRY("DataRW Accessed "), /* 0x13 */
1724 STRENTRY("DataDownRO "), /* 0x14 */
1725 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1726 STRENTRY("DataDownRW "), /* 0x16 */
1727 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1728 STRENTRY("CodeEO "), /* 0x18 */
1729 STRENTRY("CodeEO Accessed "), /* 0x19 */
1730 STRENTRY("CodeER "), /* 0x1a */
1731 STRENTRY("CodeER Accessed "), /* 0x1b */
1732 STRENTRY("CodeConfEO "), /* 0x1c */
1733 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1734 STRENTRY("CodeConfER "), /* 0x1e */
1735 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1736# undef SYSENTRY
1737 };
1738# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1739 char szMsg[128];
1740 char *psz = &szMsg[0];
1741 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1742 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1743 psz += s_aTypes[i].cch;
1744
1745 if (pDesc->Gen.u1Present)
1746 ADD_STR(psz, "Present ");
1747 else
1748 ADD_STR(psz, "Not-Present ");
1749# if HC_ARCH_BITS == 64
1750 if (pDesc->Gen.u1Long)
1751 ADD_STR(psz, "64-bit ");
1752 else
1753 ADD_STR(psz, "Comp ");
1754# else
1755 if (pDesc->Gen.u1Granularity)
1756 ADD_STR(psz, "Page ");
1757 if (pDesc->Gen.u1DefBig)
1758 ADD_STR(psz, "32-bit ");
1759 else
1760 ADD_STR(psz, "16-bit ");
1761# endif
1762# undef ADD_STR
1763 *psz = '\0';
1764
1765 /*
1766 * Limit and Base and format the output.
1767 */
1768#ifdef LOG_ENABLED
1769 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1770
1771# if HC_ARCH_BITS == 64
1772 uint64_t const u64Base = X86DESC64_BASE(pDesc);
1773 Log((" %s { %#04x - %#RX64 %#RX64 - base=%#RX64 limit=%#08x dpl=%d } %s\n", pszSel,
1774 Sel, pDesc->au64[0], pDesc->au64[1], u64Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1775# else
1776 uint32_t const u32Base = X86DESC_BASE(pDesc);
1777 Log((" %s { %#04x - %#08x %#08x - base=%#08x limit=%#08x dpl=%d } %s\n", pszSel,
1778 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1779# endif
1780#else
1781 NOREF(Sel); NOREF(pszSel);
1782#endif
1783}
1784
1785
1786/**
1787 * Formats a full register dump.
1788 *
1789 * @param pVCpu The cross context virtual CPU structure.
1790 * @param fFlags The dumping flags (HM_DUMP_REG_FLAGS_XXX).
1791 */
1792VMMR0_INT_DECL(void) hmR0DumpRegs(PVMCPUCC pVCpu, uint32_t fFlags)
1793{
1794 /*
1795 * Format the flags.
1796 */
1797 static struct
1798 {
1799 const char *pszSet;
1800 const char *pszClear;
1801 uint32_t fFlag;
1802 } const s_aFlags[] =
1803 {
1804 { "vip", NULL, X86_EFL_VIP },
1805 { "vif", NULL, X86_EFL_VIF },
1806 { "ac", NULL, X86_EFL_AC },
1807 { "vm", NULL, X86_EFL_VM },
1808 { "rf", NULL, X86_EFL_RF },
1809 { "nt", NULL, X86_EFL_NT },
1810 { "ov", "nv", X86_EFL_OF },
1811 { "dn", "up", X86_EFL_DF },
1812 { "ei", "di", X86_EFL_IF },
1813 { "tf", NULL, X86_EFL_TF },
1814 { "nt", "pl", X86_EFL_SF },
1815 { "nz", "zr", X86_EFL_ZF },
1816 { "ac", "na", X86_EFL_AF },
1817 { "po", "pe", X86_EFL_PF },
1818 { "cy", "nc", X86_EFL_CF },
1819 };
1820 char szEFlags[80];
1821 char *psz = szEFlags;
1822 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1823 uint32_t uEFlags = pCtx->eflags.u32;
1824 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1825 {
1826 const char *pszAdd = s_aFlags[i].fFlag & uEFlags ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1827 if (pszAdd)
1828 {
1829 strcpy(psz, pszAdd);
1830 psz += strlen(pszAdd);
1831 *psz++ = ' ';
1832 }
1833 }
1834 psz[-1] = '\0';
1835
1836 if (fFlags & HM_DUMP_REG_FLAGS_GPRS)
1837 {
1838 /*
1839 * Format the registers.
1840 */
1841 if (CPUMIsGuestIn64BitCode(pVCpu))
1842 {
1843 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
1844 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
1845 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1846 "r14=%016RX64 r15=%016RX64\n"
1847 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
1848 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1849 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1850 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1851 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1852 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1853 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1854 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
1855 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
1856 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1857 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1858 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1859 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1860 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1861 ,
1862 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
1863 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
1864 pCtx->r14, pCtx->r15,
1865 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1866 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1867 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1868 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
1869 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
1870 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
1871 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
1872 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
1873 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
1874 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
1875 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1876 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1877 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1878 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1879 }
1880 else
1881 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
1882 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
1883 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
1884 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
1885 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
1886 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
1887 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
1888 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
1889 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1890 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1891 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1892 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1893 ,
1894 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
1895 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1896 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
1897 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
1898 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
1899 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
1900 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
1901 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
1902 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1903 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1904 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1905 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1906 }
1907
1908 if (fFlags & HM_DUMP_REG_FLAGS_FPU)
1909 {
1910 PCX86FXSTATE pFpuCtx = &pCtx->XState.x87;
1911 Log(("FPU:\n"
1912 "FCW=%04x FSW=%04x FTW=%02x\n"
1913 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
1914 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
1915 ,
1916 pFpuCtx->FCW, pFpuCtx->FSW, pFpuCtx->FTW,
1917 pFpuCtx->FOP, pFpuCtx->FPUIP, pFpuCtx->CS, pFpuCtx->Rsrvd1,
1918 pFpuCtx->FPUDP, pFpuCtx->DS, pFpuCtx->Rsrvd2,
1919 pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK));
1920 NOREF(pFpuCtx);
1921 }
1922
1923 if (fFlags & HM_DUMP_REG_FLAGS_MSRS)
1924 {
1925 Log(("MSR:\n"
1926 "EFER =%016RX64\n"
1927 "PAT =%016RX64\n"
1928 "STAR =%016RX64\n"
1929 "CSTAR =%016RX64\n"
1930 "LSTAR =%016RX64\n"
1931 "SFMASK =%016RX64\n"
1932 "KERNELGSBASE =%016RX64\n",
1933 pCtx->msrEFER,
1934 pCtx->msrPAT,
1935 pCtx->msrSTAR,
1936 pCtx->msrCSTAR,
1937 pCtx->msrLSTAR,
1938 pCtx->msrSFMASK,
1939 pCtx->msrKERNELGSBASE));
1940 }
1941}
1942
1943#endif /* VBOX_STRICT */
1944
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette