VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp@ 92386

Last change on this file since 92386 was 91323, checked in by vboxsync, 3 years ago

VMM: bugref:10106 Fixed IA32_FEATURE_CONTROL MSR reported to the guest.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 68.2 KB
Line 
1/* $Id: HMR0.cpp 91323 2021-09-22 10:04:56Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <VBox/vmm/hm.h>
25#include <VBox/vmm/pgm.h>
26#include "HMInternal.h"
27#include <VBox/vmm/vmcc.h>
28#include <VBox/vmm/hm_svm.h>
29#include <VBox/vmm/hmvmxinline.h>
30#include <VBox/err.h>
31#include <VBox/log.h>
32#include <iprt/assert.h>
33#include <iprt/asm.h>
34#include <iprt/asm-amd64-x86.h>
35#include <iprt/cpuset.h>
36#include <iprt/mem.h>
37#include <iprt/memobj.h>
38#include <iprt/once.h>
39#include <iprt/param.h>
40#include <iprt/power.h>
41#include <iprt/string.h>
42#include <iprt/thread.h>
43#include <iprt/x86.h>
44#include "HMVMXR0.h"
45#include "HMSVMR0.h"
46
47
48/*********************************************************************************************************************************
49* Internal Functions *
50*********************************************************************************************************************************/
51static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
54static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
55
56
57/*********************************************************************************************************************************
58* Structures and Typedefs *
59*********************************************************************************************************************************/
60/**
61 * This is used to manage the status code of a RTMpOnAll in HM.
62 */
63typedef struct HMR0FIRSTRC
64{
65 /** The status code. */
66 int32_t volatile rc;
67 /** The ID of the CPU reporting the first failure. */
68 RTCPUID volatile idCpu;
69} HMR0FIRSTRC;
70/** Pointer to a first return code structure. */
71typedef HMR0FIRSTRC *PHMR0FIRSTRC;
72
73/**
74 * Ring-0 method table for AMD-V and VT-x specific operations.
75 */
76typedef struct HMR0VTABLE
77{
78 DECLR0CALLBACKMEMBER(int, pfnEnterSession, (PVMCPUCC pVCpu));
79 DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback, (RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit));
80 DECLR0CALLBACKMEMBER(int, pfnCallRing3Callback, (PVMCPUCC pVCpu, VMMCALLRING3 enmOperation));
81 DECLR0CALLBACKMEMBER(int, pfnExportHostState, (PVMCPUCC pVCpu));
82 DECLR0CALLBACKMEMBER(VBOXSTRICTRC, pfnRunGuestCode, (PVMCPUCC pVCpu));
83 DECLR0CALLBACKMEMBER(int, pfnEnableCpu, (PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
84 bool fEnabledByHost, PCSUPHWVIRTMSRS pHwvirtMsrs));
85 DECLR0CALLBACKMEMBER(int, pfnDisableCpu, (PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
86 DECLR0CALLBACKMEMBER(int, pfnInitVM, (PVMCC pVM));
87 DECLR0CALLBACKMEMBER(int, pfnTermVM, (PVMCC pVM));
88 DECLR0CALLBACKMEMBER(int, pfnSetupVM, (PVMCC pVM));
89} HMR0VTABLE;
90
91
92/*********************************************************************************************************************************
93* Global Variables *
94*********************************************************************************************************************************/
95/** The active ring-0 HM operations (copied from one of the table at init). */
96static HMR0VTABLE g_HmR0Ops;
97/** Indicates whether the host is suspending or not. We'll refuse a few
98 * actions when the host is being suspended to speed up the suspending and
99 * avoid trouble. */
100static bool volatile g_fHmSuspended;
101/** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
102 * enabled and disabled each time it's used to execute guest code. */
103static bool g_fHmGlobalInit;
104/** Host kernel flags that HM might need to know (SUPKERNELFEATURES_XXX). */
105uint32_t g_fHmHostKernelFeatures;
106/** Maximum allowed ASID/VPID (inclusive).
107 * @todo r=bird: This is exclusive for VT-x according to source code comment.
108 * Couldn't immediately find any docs on AMD-V, but suspect it is
109 * exclusive there as well given how hmR0SvmFlushTaggedTlb() use it. */
110uint32_t g_uHmMaxAsid;
111
112
113/** Set if VT-x (VMX) is supported by the CPU. */
114bool g_fHmVmxSupported = false;
115/** VMX: Whether we're using the preemption timer or not. */
116bool g_fHmVmxUsePreemptTimer;
117/** VMX: The shift mask employed by the VMX-Preemption timer. */
118uint8_t g_cHmVmxPreemptTimerShift;
119/** VMX: Set if swapping EFER is supported. */
120bool g_fHmVmxSupportsVmcsEfer = false;
121/** VMX: Whether we're using SUPR0EnableVTx or not. */
122static bool g_fHmVmxUsingSUPR0EnableVTx = false;
123/** VMX: Set if we've called SUPR0EnableVTx(true) and should disable it during
124 * module termination. */
125static bool g_fHmVmxCalledSUPR0EnableVTx = false;
126/** VMX: Host CR4 value (set by ring-0 VMX init) */
127uint64_t g_uHmVmxHostCr4;
128/** VMX: Host EFER value (set by ring-0 VMX init) */
129uint64_t g_uHmVmxHostMsrEfer;
130/** VMX: Host SMM monitor control (used for logging/diagnostics) */
131uint64_t g_uHmVmxHostSmmMonitorCtl;
132
133
134/** Set if AMD-V is supported by the CPU. */
135bool g_fHmSvmSupported = false;
136/** SVM revision. */
137uint32_t g_uHmSvmRev;
138/** SVM feature bits from cpuid 0x8000000a */
139uint32_t g_fHmSvmFeatures;
140
141
142/** MSRs. */
143SUPHWVIRTMSRS g_HmMsrs;
144
145/** Last recorded error code during HM ring-0 init. */
146static int32_t g_rcHmInit = VINF_SUCCESS;
147
148/** Per CPU globals. */
149static HMPHYSCPU g_aHmCpuInfo[RTCPUSET_MAX_CPUS];
150
151/** Whether we've already initialized all CPUs.
152 * @remarks We could check the EnableAllCpusOnce state, but this is
153 * simpler and hopefully easier to understand. */
154static bool g_fHmEnabled = false;
155/** Serialize initialization in HMR0EnableAllCpus. */
156static RTONCE g_HmEnableAllCpusOnce = RTONCE_INITIALIZER;
157
158
159/** HM ring-0 operations for VT-x. */
160static HMR0VTABLE const g_HmR0OpsVmx =
161{
162 /* .pfnEnterSession = */ VMXR0Enter,
163 /* .pfnThreadCtxCallback = */ VMXR0ThreadCtxCallback,
164 /* .pfnCallRing3Callback = */ VMXR0CallRing3Callback,
165 /* .pfnExportHostState = */ VMXR0ExportHostState,
166 /* .pfnRunGuestCode = */ VMXR0RunGuestCode,
167 /* .pfnEnableCpu = */ VMXR0EnableCpu,
168 /* .pfnDisableCpu = */ VMXR0DisableCpu,
169 /* .pfnInitVM = */ VMXR0InitVM,
170 /* .pfnTermVM = */ VMXR0TermVM,
171 /* .pfnSetupVM = */ VMXR0SetupVM,
172};
173
174/** HM ring-0 operations for AMD-V. */
175static HMR0VTABLE const g_HmR0OpsSvm =
176{
177 /* .pfnEnterSession = */ SVMR0Enter,
178 /* .pfnThreadCtxCallback = */ SVMR0ThreadCtxCallback,
179 /* .pfnCallRing3Callback = */ SVMR0CallRing3Callback,
180 /* .pfnExportHostState = */ SVMR0ExportHostState,
181 /* .pfnRunGuestCode = */ SVMR0RunGuestCode,
182 /* .pfnEnableCpu = */ SVMR0EnableCpu,
183 /* .pfnDisableCpu = */ SVMR0DisableCpu,
184 /* .pfnInitVM = */ SVMR0InitVM,
185 /* .pfnTermVM = */ SVMR0TermVM,
186 /* .pfnSetupVM = */ SVMR0SetupVM,
187};
188
189
190/** @name Dummy callback handlers for when neither VT-x nor AMD-V is supported.
191 * @{ */
192
193static DECLCALLBACK(int) hmR0DummyEnter(PVMCPUCC pVCpu)
194{
195 RT_NOREF(pVCpu);
196 return VINF_SUCCESS;
197}
198
199static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPUCC pVCpu, bool fGlobalInit)
200{
201 RT_NOREF(enmEvent, pVCpu, fGlobalInit);
202}
203
204static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMPHYSCPU pHostCpu, PVMCC pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
205 bool fEnabledBySystem, PCSUPHWVIRTMSRS pHwvirtMsrs)
206{
207 RT_NOREF(pHostCpu, pVM, pvCpuPage, HCPhysCpuPage, fEnabledBySystem, pHwvirtMsrs);
208 return VINF_SUCCESS;
209}
210
211static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMPHYSCPU pHostCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
212{
213 RT_NOREF(pHostCpu, pvCpuPage, HCPhysCpuPage);
214 return VINF_SUCCESS;
215}
216
217static DECLCALLBACK(int) hmR0DummyInitVM(PVMCC pVM)
218{
219 RT_NOREF(pVM);
220 return VINF_SUCCESS;
221}
222
223static DECLCALLBACK(int) hmR0DummyTermVM(PVMCC pVM)
224{
225 RT_NOREF(pVM);
226 return VINF_SUCCESS;
227}
228
229static DECLCALLBACK(int) hmR0DummySetupVM(PVMCC pVM)
230{
231 RT_NOREF(pVM);
232 return VINF_SUCCESS;
233}
234
235static DECLCALLBACK(int) hmR0DummyCallRing3Callback(PVMCPUCC pVCpu, VMMCALLRING3 enmOperation)
236{
237 RT_NOREF(pVCpu, enmOperation);
238 return VINF_SUCCESS;
239}
240
241static DECLCALLBACK(VBOXSTRICTRC) hmR0DummyRunGuestCode(PVMCPUCC pVCpu)
242{
243 RT_NOREF(pVCpu);
244 return VERR_NOT_SUPPORTED;
245}
246
247static DECLCALLBACK(int) hmR0DummyExportHostState(PVMCPUCC pVCpu)
248{
249 RT_NOREF(pVCpu);
250 return VINF_SUCCESS;
251}
252
253/** Dummy ops. */
254static HMR0VTABLE const g_HmR0OpsDummy =
255{
256 /* .pfnEnterSession = */ hmR0DummyEnter,
257 /* .pfnThreadCtxCallback = */ hmR0DummyThreadCtxCallback,
258 /* .pfnCallRing3Callback = */ hmR0DummyCallRing3Callback,
259 /* .pfnExportHostState = */ hmR0DummyExportHostState,
260 /* .pfnRunGuestCode = */ hmR0DummyRunGuestCode,
261 /* .pfnEnableCpu = */ hmR0DummyEnableCpu,
262 /* .pfnDisableCpu = */ hmR0DummyDisableCpu,
263 /* .pfnInitVM = */ hmR0DummyInitVM,
264 /* .pfnTermVM = */ hmR0DummyTermVM,
265 /* .pfnSetupVM = */ hmR0DummySetupVM,
266};
267
268/** @} */
269
270
271/**
272 * Initializes a first return code structure.
273 *
274 * @param pFirstRc The structure to init.
275 */
276static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
277{
278 pFirstRc->rc = VINF_SUCCESS;
279 pFirstRc->idCpu = NIL_RTCPUID;
280}
281
282
283/**
284 * Try set the status code (success ignored).
285 *
286 * @param pFirstRc The first return code structure.
287 * @param rc The status code.
288 */
289static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
290{
291 if ( RT_FAILURE(rc)
292 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
293 pFirstRc->idCpu = RTMpCpuId();
294}
295
296
297/**
298 * Get the status code of a first return code structure.
299 *
300 * @returns The status code; VINF_SUCCESS or error status, no informational or
301 * warning errors.
302 * @param pFirstRc The first return code structure.
303 */
304static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
305{
306 return pFirstRc->rc;
307}
308
309
310#ifdef VBOX_STRICT
311# ifndef DEBUG_bird
312/**
313 * Get the CPU ID on which the failure status code was reported.
314 *
315 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
316 * @param pFirstRc The first return code structure.
317 */
318static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
319{
320 return pFirstRc->idCpu;
321}
322# endif
323#endif /* VBOX_STRICT */
324
325
326
327/**
328 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize VT-x
329 * on a CPU.
330 *
331 * @param idCpu The identifier for the CPU the function is called on.
332 * @param pvUser1 Pointer to the first RC structure.
333 * @param pvUser2 Ignored.
334 */
335static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
336{
337 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
338 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
339 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
340 NOREF(idCpu); NOREF(pvUser2);
341
342 int rc = SUPR0GetVmxUsability(NULL /* pfIsSmxModeAmbiguous */);
343 hmR0FirstRcSetStatus(pFirstRc, rc);
344}
345
346
347/**
348 * Intel specific initialization code.
349 *
350 * @returns VBox status code (will only fail if out of memory).
351 */
352static int hmR0InitIntel(void)
353{
354 /* Read this MSR now as it may be useful for error reporting when initializing VT-x fails. */
355 g_HmMsrs.u.vmx.u64FeatCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
356
357 /*
358 * First try use native kernel API for controlling VT-x.
359 * (This is only supported by some Mac OS X kernels atm.)
360 */
361 int rc;
362 g_rcHmInit = rc = SUPR0EnableVTx(true /* fEnable */);
363 g_fHmVmxUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
364 if (g_fHmVmxUsingSUPR0EnableVTx)
365 {
366 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
367 if (RT_SUCCESS(rc))
368 {
369 g_fHmVmxSupported = true;
370 rc = SUPR0EnableVTx(false /* fEnable */);
371 AssertLogRelRC(rc);
372 rc = VINF_SUCCESS;
373 }
374 }
375 else
376 {
377 HMR0FIRSTRC FirstRc;
378 hmR0FirstRcInit(&FirstRc);
379 g_rcHmInit = rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
380 if (RT_SUCCESS(rc))
381 g_rcHmInit = rc = hmR0FirstRcGetStatus(&FirstRc);
382 }
383
384 if (RT_SUCCESS(rc))
385 {
386 /* Read CR4 and EFER for logging/diagnostic purposes. */
387 g_uHmVmxHostCr4 = ASMGetCR4();
388 g_uHmVmxHostMsrEfer = ASMRdMsr(MSR_K6_EFER);
389
390 /* Get VMX MSRs (and feature control MSR) for determining VMX features we can ultimately use. */
391 SUPR0GetHwvirtMsrs(&g_HmMsrs, SUPVTCAPS_VT_X, false /* fForce */);
392
393 /*
394 * Nested KVM workaround: Intel SDM section 34.15.5 describes that
395 * MSR_IA32_SMM_MONITOR_CTL depends on bit 49 of MSR_IA32_VMX_BASIC while
396 * table 35-2 says that this MSR is available if either VMX or SMX is supported.
397 */
398 uint64_t const uVmxBasicMsr = g_HmMsrs.u.vmx.u64Basic;
399 if (RT_BF_GET(uVmxBasicMsr, VMX_BF_BASIC_DUAL_MON))
400 g_uHmVmxHostSmmMonitorCtl = ASMRdMsr(MSR_IA32_SMM_MONITOR_CTL);
401
402 /* Initialize VPID - 16 bits ASID. */
403 g_uHmMaxAsid = 0x10000; /* exclusive */
404
405 /*
406 * If the host OS has not enabled VT-x for us, try enter VMX root mode
407 * to really verify if VT-x is usable.
408 */
409 if (!g_fHmVmxUsingSUPR0EnableVTx)
410 {
411 /* Allocate a temporary VMXON region. */
412 RTR0MEMOBJ hScatchMemObj;
413 rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, false /* fExecutable */);
414 if (RT_FAILURE(rc))
415 {
416 LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,PAGE_SIZE,false) -> %Rrc\n", rc));
417 return rc;
418 }
419 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
420 RTHCPHYS const HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
421 ASMMemZeroPage(pvScatchPage);
422
423 /* Set revision dword at the beginning of the VMXON structure. */
424 *(uint32_t *)pvScatchPage = RT_BF_GET(uVmxBasicMsr, VMX_BF_BASIC_VMCS_ID);
425
426 /* Make sure we don't get rescheduled to another CPU during this probe. */
427 RTCCUINTREG const fEFlags = ASMIntDisableFlags();
428
429 /* Enable CR4.VMXE if it isn't already set. */
430 RTCCUINTREG const uOldCr4 = SUPR0ChangeCR4(X86_CR4_VMXE, RTCCUINTREG_MAX);
431
432 /*
433 * The only way of checking if we're in VMX root mode or not is to try and enter it.
434 * There is no instruction or control bit that tells us if we're in VMX root mode.
435 * Therefore, try and enter VMX root mode here.
436 */
437 rc = VMXEnable(HCPhysScratchPage);
438 if (RT_SUCCESS(rc))
439 {
440 g_fHmVmxSupported = true;
441 VMXDisable();
442 }
443 else
444 {
445 /*
446 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
447 * it will crash the host when we enter raw mode, because:
448 *
449 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
450 * this bit), and
451 * (b) turning off paging causes a #GP (unavoidable when switching
452 * from long to 32 bits mode or 32 bits to PAE).
453 *
454 * They should fix their code, but until they do we simply refuse to run.
455 */
456 g_rcHmInit = VERR_VMX_IN_VMX_ROOT_MODE;
457 Assert(g_fHmVmxSupported == false);
458 }
459
460 /* Restore CR4.VMXE if it wasn't set prior to us setting it above. */
461 if (!(uOldCr4 & X86_CR4_VMXE))
462 SUPR0ChangeCR4(0 /* fOrMask */, ~(uint64_t)X86_CR4_VMXE);
463
464 /* Restore interrupts. */
465 ASMSetFlags(fEFlags);
466
467 RTR0MemObjFree(hScatchMemObj, false);
468 }
469
470 if (g_fHmVmxSupported)
471 {
472 rc = VMXR0GlobalInit();
473 if (RT_SUCCESS(rc))
474 {
475 /*
476 * Install the VT-x methods.
477 */
478 g_HmR0Ops = g_HmR0OpsVmx;
479
480 /*
481 * Check for the VMX-Preemption Timer and adjust for the "VMX-Preemption
482 * Timer Does Not Count Down at the Rate Specified" CPU erratum.
483 */
484 if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER)
485 {
486 g_fHmVmxUsePreemptTimer = true;
487 g_cHmVmxPreemptTimerShift = RT_BF_GET(g_HmMsrs.u.vmx.u64Misc, VMX_BF_MISC_PREEMPT_TIMER_TSC);
488 if (HMIsSubjectToVmxPreemptTimerErratum())
489 g_cHmVmxPreemptTimerShift = 0; /* This is about right most of the time here. */
490 }
491 else
492 g_fHmVmxUsePreemptTimer = false;
493
494 /*
495 * Check for EFER swapping support.
496 */
497 g_fHmVmxSupportsVmcsEfer = (g_HmMsrs.u.vmx.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
498 && (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
499 && (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR);
500 }
501 else
502 {
503 g_rcHmInit = rc;
504 g_fHmVmxSupported = false;
505 }
506 }
507 }
508#ifdef LOG_ENABLED
509 else
510 SUPR0Printf("hmR0InitIntelCpu failed with rc=%Rrc\n", g_rcHmInit);
511#endif
512 return VINF_SUCCESS;
513}
514
515
516/**
517 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V
518 * on a CPU.
519 *
520 * @param idCpu The identifier for the CPU the function is called on.
521 * @param pvUser1 Pointer to the first RC structure.
522 * @param pvUser2 Ignored.
523 */
524static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
525{
526 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
527 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
528 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
529 NOREF(idCpu); NOREF(pvUser2);
530
531 int rc = SUPR0GetSvmUsability(true /* fInitSvm */);
532 hmR0FirstRcSetStatus(pFirstRc, rc);
533}
534
535
536/**
537 * AMD-specific initialization code.
538 *
539 * @returns VBox status code (will only fail if out of memory).
540 */
541static int hmR0InitAmd(void)
542{
543 /* Call the global AMD-V initialization routine (should only fail in out-of-memory situations). */
544 int rc = SVMR0GlobalInit();
545 if (RT_SUCCESS(rc))
546 {
547 /*
548 * Install the AMD-V methods.
549 */
550 g_HmR0Ops = g_HmR0OpsSvm;
551
552 /* Query AMD features. */
553 uint32_t u32Dummy;
554 ASMCpuId(0x8000000a, &g_uHmSvmRev, &g_uHmMaxAsid, &u32Dummy, &g_fHmSvmFeatures);
555
556 /*
557 * We need to check if AMD-V has been properly initialized on all CPUs.
558 * Some BIOSes might do a poor job.
559 */
560 HMR0FIRSTRC FirstRc;
561 hmR0FirstRcInit(&FirstRc);
562 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
563 AssertRC(rc);
564 if (RT_SUCCESS(rc))
565 rc = hmR0FirstRcGetStatus(&FirstRc);
566#ifndef DEBUG_bird
567 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
568 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
569#endif
570 if (RT_SUCCESS(rc))
571 {
572 SUPR0GetHwvirtMsrs(&g_HmMsrs, SUPVTCAPS_AMD_V, false /* fForce */);
573 g_fHmSvmSupported = true;
574 }
575 else
576 {
577 g_rcHmInit = rc;
578 if (rc == VERR_SVM_DISABLED || rc == VERR_SVM_IN_USE)
579 rc = VINF_SUCCESS; /* Don't fail if AMD-V is disabled or in use. */
580 }
581 }
582 else
583 g_rcHmInit = rc;
584 return rc;
585}
586
587
588/**
589 * Does global Ring-0 HM initialization (at module init).
590 *
591 * @returns VBox status code.
592 */
593VMMR0_INT_DECL(int) HMR0Init(void)
594{
595 /*
596 * Initialize the globals.
597 */
598 g_fHmEnabled = false;
599 for (unsigned i = 0; i < RT_ELEMENTS(g_aHmCpuInfo); i++)
600 {
601 g_aHmCpuInfo[i].idCpu = NIL_RTCPUID;
602 g_aHmCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
603 g_aHmCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
604 g_aHmCpuInfo[i].pvMemObj = NULL;
605#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
606 g_aHmCpuInfo[i].n.svm.hNstGstMsrpm = NIL_RTR0MEMOBJ;
607 g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm = NIL_RTHCPHYS;
608 g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm = NULL;
609#endif
610 }
611
612 /* Fill in all callbacks with placeholders. */
613 g_HmR0Ops = g_HmR0OpsDummy;
614
615 /* Default is global VT-x/AMD-V init. */
616 g_fHmGlobalInit = true;
617
618 g_fHmVmxSupported = false;
619 g_fHmSvmSupported = false;
620 g_uHmMaxAsid = 0;
621
622 /*
623 * Get host kernel features that HM might need to know in order
624 * to co-operate and function properly with the host OS (e.g. SMAP).
625 */
626 g_fHmHostKernelFeatures = SUPR0GetKernelFeatures();
627
628 /*
629 * Make sure aCpuInfo is big enough for all the CPUs on this system.
630 */
631 if (RTMpGetArraySize() > RT_ELEMENTS(g_aHmCpuInfo))
632 {
633 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_aHmCpuInfo)));
634 return VERR_TOO_MANY_CPUS;
635 }
636
637 /*
638 * Check for VT-x or AMD-V support.
639 * Return failure only in out-of-memory situations.
640 */
641 uint32_t fCaps = 0;
642 int rc = SUPR0GetVTSupport(&fCaps);
643 if (RT_SUCCESS(rc))
644 {
645 if (fCaps & SUPVTCAPS_VT_X)
646 rc = hmR0InitIntel();
647 else
648 {
649 Assert(fCaps & SUPVTCAPS_AMD_V);
650 rc = hmR0InitAmd();
651 }
652 if (RT_SUCCESS(rc))
653 {
654 /*
655 * Register notification callbacks that we can use to disable/enable CPUs
656 * when brought offline/online or suspending/resuming.
657 */
658 if (!g_fHmVmxUsingSUPR0EnableVTx)
659 {
660 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
661 if (RT_SUCCESS(rc))
662 {
663 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
664 if (RT_FAILURE(rc))
665 RTMpNotificationDeregister(hmR0MpEventCallback, NULL);
666 }
667 if (RT_FAILURE(rc))
668 {
669 /* There shouldn't be any per-cpu allocations at this point,
670 so just have to call SVMR0GlobalTerm and VMXR0GlobalTerm. */
671 if (fCaps & SUPVTCAPS_VT_X)
672 VMXR0GlobalTerm();
673 else
674 SVMR0GlobalTerm();
675 g_HmR0Ops = g_HmR0OpsDummy;
676 g_rcHmInit = rc;
677 g_fHmSvmSupported = false;
678 g_fHmVmxSupported = false;
679 }
680 }
681 }
682 }
683 else
684 {
685 g_rcHmInit = rc;
686 rc = VINF_SUCCESS; /* We return success here because module init shall not fail if HM fails to initialize. */
687 }
688 return rc;
689}
690
691
692/**
693 * Does global Ring-0 HM termination (at module termination).
694 *
695 * @returns VBox status code (ignored).
696 */
697VMMR0_INT_DECL(int) HMR0Term(void)
698{
699 int rc;
700 if ( g_fHmVmxSupported
701 && g_fHmVmxUsingSUPR0EnableVTx)
702 {
703 /*
704 * Simple if the host OS manages VT-x.
705 */
706 Assert(g_fHmGlobalInit);
707
708 if (g_fHmVmxCalledSUPR0EnableVTx)
709 {
710 rc = SUPR0EnableVTx(false /* fEnable */);
711 g_fHmVmxCalledSUPR0EnableVTx = false;
712 }
713 else
714 rc = VINF_SUCCESS;
715
716 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_aHmCpuInfo); iCpu++)
717 {
718 g_aHmCpuInfo[iCpu].fConfigured = false;
719 Assert(g_aHmCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
720 }
721 }
722 else
723 {
724 Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx);
725
726 /* Doesn't really matter if this fails. */
727 RTMpNotificationDeregister(hmR0MpEventCallback, NULL);
728 RTPowerNotificationDeregister(hmR0PowerCallback, NULL);
729 rc = VINF_SUCCESS;
730
731 /*
732 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
733 */
734 if (g_fHmGlobalInit)
735 {
736 HMR0FIRSTRC FirstRc;
737 hmR0FirstRcInit(&FirstRc);
738 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
739 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
740 if (RT_SUCCESS(rc))
741 rc = hmR0FirstRcGetStatus(&FirstRc);
742 }
743
744 /*
745 * Free the per-cpu pages used for VT-x and AMD-V.
746 */
747 for (unsigned i = 0; i < RT_ELEMENTS(g_aHmCpuInfo); i++)
748 {
749 if (g_aHmCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
750 {
751 RTR0MemObjFree(g_aHmCpuInfo[i].hMemObj, false);
752 g_aHmCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
753 g_aHmCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
754 g_aHmCpuInfo[i].pvMemObj = NULL;
755 }
756#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
757 if (g_aHmCpuInfo[i].n.svm.hNstGstMsrpm != NIL_RTR0MEMOBJ)
758 {
759 RTR0MemObjFree(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm, false);
760 g_aHmCpuInfo[i].n.svm.hNstGstMsrpm = NIL_RTR0MEMOBJ;
761 g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm = NIL_RTHCPHYS;
762 g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm = NULL;
763 }
764#endif
765 }
766 }
767
768 /** @todo This needs cleaning up. There's no matching
769 * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits
770 * should move into their respective modules. */
771 /* Finally, call global VT-x/AMD-V termination. */
772 if (g_fHmVmxSupported)
773 VMXR0GlobalTerm();
774 else if (g_fHmSvmSupported)
775 SVMR0GlobalTerm();
776
777 return rc;
778}
779
780
781/**
782 * Enable VT-x or AMD-V on the current CPU
783 *
784 * @returns VBox status code.
785 * @param pVM The cross context VM structure. Can be NULL.
786 * @param idCpu The identifier for the CPU the function is called on.
787 *
788 * @remarks Maybe called with interrupts disabled!
789 */
790static int hmR0EnableCpu(PVMCC pVM, RTCPUID idCpu)
791{
792 PHMPHYSCPU pHostCpu = &g_aHmCpuInfo[idCpu];
793
794 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
795 Assert(idCpu < RT_ELEMENTS(g_aHmCpuInfo));
796 Assert(!pHostCpu->fConfigured);
797 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
798
799 pHostCpu->idCpu = idCpu;
800 /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
801
802 int rc;
803 if ( g_fHmVmxSupported
804 && g_fHmVmxUsingSUPR0EnableVTx)
805 rc = g_HmR0Ops.pfnEnableCpu(pHostCpu, pVM, NULL /* pvCpuPage */, NIL_RTHCPHYS, true, &g_HmMsrs);
806 else
807 {
808 AssertLogRelMsgReturn(pHostCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
809 rc = g_HmR0Ops.pfnEnableCpu(pHostCpu, pVM, pHostCpu->pvMemObj, pHostCpu->HCPhysMemObj, false, &g_HmMsrs);
810 }
811 if (RT_SUCCESS(rc))
812 pHostCpu->fConfigured = true;
813 return rc;
814}
815
816
817/**
818 * Worker function passed to RTMpOnAll() that is to be called on all CPUs.
819 *
820 * @param idCpu The identifier for the CPU the function is called on.
821 * @param pvUser1 Opaque pointer to the VM (can be NULL!).
822 * @param pvUser2 The 2nd user argument.
823 */
824static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
825{
826 PVMCC pVM = (PVMCC)pvUser1; /* can be NULL! */
827 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
828 AssertReturnVoid(g_fHmGlobalInit);
829 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
830 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
831}
832
833
834/**
835 * RTOnce callback employed by HMR0EnableAllCpus.
836 *
837 * @returns VBox status code.
838 * @param pvUser Pointer to the VM.
839 */
840static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
841{
842 PVMCC pVM = (PVMCC)pvUser;
843
844 /*
845 * Indicate that we've initialized.
846 *
847 * Note! There is a potential race between this function and the suspend
848 * notification. Kind of unlikely though, so ignored for now.
849 */
850 AssertReturn(!g_fHmEnabled, VERR_HM_ALREADY_ENABLED_IPE);
851 ASMAtomicWriteBool(&g_fHmEnabled, true);
852
853 /*
854 * The global init variable is set by the first VM.
855 */
856 g_fHmGlobalInit = pVM->hm.s.fGlobalInit;
857
858#ifdef VBOX_STRICT
859 for (unsigned i = 0; i < RT_ELEMENTS(g_aHmCpuInfo); i++)
860 {
861 Assert(g_aHmCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
862 Assert(g_aHmCpuInfo[i].HCPhysMemObj == NIL_RTHCPHYS);
863 Assert(g_aHmCpuInfo[i].pvMemObj == NULL);
864 Assert(!g_aHmCpuInfo[i].fConfigured);
865 Assert(!g_aHmCpuInfo[i].cTlbFlushes);
866 Assert(!g_aHmCpuInfo[i].uCurrentAsid);
867# ifdef VBOX_WITH_NESTED_HWVIRT_SVM
868 Assert(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm == NIL_RTR0MEMOBJ);
869 Assert(g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm == NIL_RTHCPHYS);
870 Assert(g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm == NULL);
871# endif
872 }
873#endif
874
875 int rc;
876 if ( g_fHmVmxSupported
877 && g_fHmVmxUsingSUPR0EnableVTx)
878 {
879 /*
880 * Global VT-x initialization API (only darwin for now).
881 */
882 rc = SUPR0EnableVTx(true /* fEnable */);
883 if (RT_SUCCESS(rc))
884 {
885 g_fHmVmxCalledSUPR0EnableVTx = true;
886 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
887 g_fHmGlobalInit = pVM->hm.s.fGlobalInit = true;
888 }
889 else
890 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
891 }
892 else
893 {
894 /*
895 * We're doing the job ourselves.
896 */
897 /* Allocate one page per cpu for the global VT-x and AMD-V pages */
898 for (unsigned i = 0; i < RT_ELEMENTS(g_aHmCpuInfo); i++)
899 {
900 Assert(g_aHmCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
901#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
902 Assert(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm == NIL_RTR0MEMOBJ);
903#endif
904 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
905 {
906 /** @todo NUMA */
907 rc = RTR0MemObjAllocCont(&g_aHmCpuInfo[i].hMemObj, PAGE_SIZE, false /* executable R0 mapping */);
908 AssertLogRelRCReturn(rc, rc);
909
910 g_aHmCpuInfo[i].HCPhysMemObj = RTR0MemObjGetPagePhysAddr(g_aHmCpuInfo[i].hMemObj, 0);
911 Assert(g_aHmCpuInfo[i].HCPhysMemObj != NIL_RTHCPHYS);
912 Assert(!(g_aHmCpuInfo[i].HCPhysMemObj & PAGE_OFFSET_MASK));
913
914 g_aHmCpuInfo[i].pvMemObj = RTR0MemObjAddress(g_aHmCpuInfo[i].hMemObj);
915 AssertPtr(g_aHmCpuInfo[i].pvMemObj);
916 ASMMemZeroPage(g_aHmCpuInfo[i].pvMemObj);
917
918#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
919 rc = RTR0MemObjAllocCont(&g_aHmCpuInfo[i].n.svm.hNstGstMsrpm, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT,
920 false /* executable R0 mapping */);
921 AssertLogRelRCReturn(rc, rc);
922
923 g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm = RTR0MemObjGetPagePhysAddr(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm, 0);
924 Assert(g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm != NIL_RTHCPHYS);
925 Assert(!(g_aHmCpuInfo[i].n.svm.HCPhysNstGstMsrpm & PAGE_OFFSET_MASK));
926
927 g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm = RTR0MemObjAddress(g_aHmCpuInfo[i].n.svm.hNstGstMsrpm);
928 AssertPtr(g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm);
929 ASMMemFill32(g_aHmCpuInfo[i].n.svm.pvNstGstMsrpm, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT, UINT32_C(0xffffffff));
930#endif
931 }
932 }
933
934 rc = VINF_SUCCESS;
935 }
936
937 if ( RT_SUCCESS(rc)
938 && g_fHmGlobalInit)
939 {
940 /* First time, so initialize each cpu/core. */
941 HMR0FIRSTRC FirstRc;
942 hmR0FirstRcInit(&FirstRc);
943 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
944 if (RT_SUCCESS(rc))
945 rc = hmR0FirstRcGetStatus(&FirstRc);
946 }
947
948 return rc;
949}
950
951
952/**
953 * Sets up HM on all cpus.
954 *
955 * @returns VBox status code.
956 * @param pVM The cross context VM structure.
957 */
958VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVMCC pVM)
959{
960 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
961 if (ASMAtomicReadBool(&g_fHmSuspended))
962 return VERR_HM_SUSPEND_PENDING;
963
964 return RTOnce(&g_HmEnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
965}
966
967
968/**
969 * Disable VT-x or AMD-V on the current CPU.
970 *
971 * @returns VBox status code.
972 * @param idCpu The identifier for the CPU this function is called on.
973 *
974 * @remarks Must be called with preemption disabled.
975 */
976static int hmR0DisableCpu(RTCPUID idCpu)
977{
978 PHMPHYSCPU pHostCpu = &g_aHmCpuInfo[idCpu];
979
980 Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx);
981 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
982 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
983 Assert(idCpu < RT_ELEMENTS(g_aHmCpuInfo));
984 Assert(!pHostCpu->fConfigured || pHostCpu->hMemObj != NIL_RTR0MEMOBJ);
985 AssertRelease(idCpu == RTMpCpuId());
986
987 if (pHostCpu->hMemObj == NIL_RTR0MEMOBJ)
988 return pHostCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
989 AssertPtr(pHostCpu->pvMemObj);
990 Assert(pHostCpu->HCPhysMemObj != NIL_RTHCPHYS);
991
992 int rc;
993 if (pHostCpu->fConfigured)
994 {
995 rc = g_HmR0Ops.pfnDisableCpu(pHostCpu, pHostCpu->pvMemObj, pHostCpu->HCPhysMemObj);
996 AssertRCReturn(rc, rc);
997
998 pHostCpu->fConfigured = false;
999 pHostCpu->idCpu = NIL_RTCPUID;
1000 }
1001 else
1002 rc = VINF_SUCCESS; /* nothing to do */
1003 return rc;
1004}
1005
1006
1007/**
1008 * Worker function passed to RTMpOnAll() that is to be called on the target
1009 * CPUs.
1010 *
1011 * @param idCpu The identifier for the CPU the function is called on.
1012 * @param pvUser1 The 1st user argument.
1013 * @param pvUser2 Opaque pointer to the FirstRc.
1014 */
1015static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1016{
1017 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1018 AssertReturnVoid(g_fHmGlobalInit);
1019 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1020}
1021
1022
1023/**
1024 * Worker function passed to RTMpOnSpecific() that is to be called on the target
1025 * CPU.
1026 *
1027 * @param idCpu The identifier for the CPU the function is called on.
1028 * @param pvUser1 Null, not used.
1029 * @param pvUser2 Null, not used.
1030 */
1031static DECLCALLBACK(void) hmR0DisableCpuOnSpecificCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1032{
1033 NOREF(pvUser1);
1034 NOREF(pvUser2);
1035 hmR0DisableCpu(idCpu);
1036}
1037
1038
1039/**
1040 * Callback function invoked when a cpu goes online or offline.
1041 *
1042 * @param enmEvent The Mp event.
1043 * @param idCpu The identifier for the CPU the function is called on.
1044 * @param pvData Opaque data (PVMCC pointer).
1045 */
1046static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1047{
1048 NOREF(pvData);
1049 Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx);
1050
1051 /*
1052 * We only care about uninitializing a CPU that is going offline. When a
1053 * CPU comes online, the initialization is done lazily in HMR0Enter().
1054 */
1055 switch (enmEvent)
1056 {
1057 case RTMPEVENT_OFFLINE:
1058 {
1059 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1060 RTThreadPreemptDisable(&PreemptState);
1061 if (idCpu == RTMpCpuId())
1062 {
1063 int rc = hmR0DisableCpu(idCpu);
1064 AssertRC(rc);
1065 RTThreadPreemptRestore(&PreemptState);
1066 }
1067 else
1068 {
1069 RTThreadPreemptRestore(&PreemptState);
1070 RTMpOnSpecific(idCpu, hmR0DisableCpuOnSpecificCallback, NULL /* pvUser1 */, NULL /* pvUser2 */);
1071 }
1072 break;
1073 }
1074
1075 default:
1076 break;
1077 }
1078}
1079
1080
1081/**
1082 * Called whenever a system power state change occurs.
1083 *
1084 * @param enmEvent The Power event.
1085 * @param pvUser User argument.
1086 */
1087static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1088{
1089 NOREF(pvUser);
1090 Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx);
1091
1092#ifdef LOG_ENABLED
1093 if (enmEvent == RTPOWEREVENT_SUSPEND)
1094 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1095 else
1096 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1097#endif
1098
1099 if (enmEvent == RTPOWEREVENT_SUSPEND)
1100 ASMAtomicWriteBool(&g_fHmSuspended, true);
1101
1102 if (g_fHmEnabled)
1103 {
1104 int rc;
1105 HMR0FIRSTRC FirstRc;
1106 hmR0FirstRcInit(&FirstRc);
1107
1108 if (enmEvent == RTPOWEREVENT_SUSPEND)
1109 {
1110 if (g_fHmGlobalInit)
1111 {
1112 /* Turn off VT-x or AMD-V on all CPUs. */
1113 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
1114 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1115 }
1116 /* else nothing to do here for the local init case */
1117 }
1118 else
1119 {
1120 /* Reinit the CPUs from scratch as the suspend state might have
1121 messed with the MSRs. (lousy BIOSes as usual) */
1122 if (g_fHmVmxSupported)
1123 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1124 else
1125 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1126 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1127 if (RT_SUCCESS(rc))
1128 rc = hmR0FirstRcGetStatus(&FirstRc);
1129#ifdef LOG_ENABLED
1130 if (RT_FAILURE(rc))
1131 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1132#endif
1133 if (g_fHmGlobalInit)
1134 {
1135 /* Turn VT-x or AMD-V back on on all CPUs. */
1136 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL /* pVM */, &FirstRc /* output ignored */);
1137 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1138 }
1139 /* else nothing to do here for the local init case */
1140 }
1141 }
1142
1143 if (enmEvent == RTPOWEREVENT_RESUME)
1144 ASMAtomicWriteBool(&g_fHmSuspended, false);
1145}
1146
1147
1148/**
1149 * Does ring-0 per-VM HM initialization.
1150 *
1151 * This will call the CPU specific init. routine which may initialize and allocate
1152 * resources for virtual CPUs.
1153 *
1154 * @returns VBox status code.
1155 * @param pVM The cross context VM structure.
1156 *
1157 * @remarks This is called after HMR3Init(), see vmR3CreateU() and
1158 * vmR3InitRing3().
1159 */
1160VMMR0_INT_DECL(int) HMR0InitVM(PVMCC pVM)
1161{
1162 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1163
1164 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1165 if (ASMAtomicReadBool(&g_fHmSuspended))
1166 return VERR_HM_SUSPEND_PENDING;
1167
1168 /*
1169 * Copy globals to the VM structure.
1170 */
1171 Assert(!(pVM->hm.s.vmx.fSupported && pVM->hm.s.svm.fSupported));
1172 if (pVM->hm.s.vmx.fSupported)
1173 {
1174 pVM->hmr0.s.vmx.fUsePreemptTimer = pVM->hm.s.vmx.fUsePreemptTimerCfg && g_fHmVmxUsePreemptTimer;
1175 pVM->hm.s.vmx.fUsePreemptTimerCfg = pVM->hmr0.s.vmx.fUsePreemptTimer;
1176 pVM->hm.s.vmx.cPreemptTimerShift = g_cHmVmxPreemptTimerShift;
1177 pVM->hm.s.ForR3.vmx.u64HostCr4 = g_uHmVmxHostCr4;
1178 pVM->hm.s.ForR3.vmx.u64HostMsrEfer = g_uHmVmxHostMsrEfer;
1179 pVM->hm.s.ForR3.vmx.u64HostSmmMonitorCtl = g_uHmVmxHostSmmMonitorCtl;
1180 pVM->hm.s.ForR3.vmx.u64HostFeatCtrl = g_HmMsrs.u.vmx.u64FeatCtrl;
1181 HMGetVmxMsrsFromHwvirtMsrs(&g_HmMsrs, &pVM->hm.s.ForR3.vmx.Msrs);
1182 /* If you need to tweak host MSRs for testing VMX R0 code, do it here. */
1183
1184 /* Enable VPID if supported and configured. */
1185 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VPID)
1186 pVM->hm.s.ForR3.vmx.fVpid = pVM->hmr0.s.vmx.fVpid = pVM->hm.s.vmx.fAllowVpid; /* Can be overridden by CFGM in HMR3Init(). */
1187
1188 /* Use VMCS shadowing if supported. */
1189 pVM->hmr0.s.vmx.fUseVmcsShadowing = pVM->cpum.ro.GuestFeatures.fVmx
1190 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VMCS_SHADOWING);
1191 pVM->hm.s.ForR3.vmx.fUseVmcsShadowing = pVM->hmr0.s.vmx.fUseVmcsShadowing;
1192
1193 /* Use the VMCS controls for swapping the EFER MSR if supported. */
1194 pVM->hm.s.ForR3.vmx.fSupportsVmcsEfer = g_fHmVmxSupportsVmcsEfer;
1195
1196#if 0
1197 /* Enable APIC register virtualization and virtual-interrupt delivery if supported. */
1198 if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT)
1199 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY))
1200 pVM->hm.s.fVirtApicRegs = true;
1201
1202 /* Enable posted-interrupt processing if supported. */
1203 /** @todo Add and query IPRT API for host OS support for posted-interrupt IPI
1204 * here. */
1205 if ( (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT)
1206 && (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT))
1207 pVM->hm.s.fPostedIntrs = true;
1208#endif
1209 }
1210 else if (pVM->hm.s.svm.fSupported)
1211 {
1212 pVM->hm.s.ForR3.svm.u32Rev = g_uHmSvmRev;
1213 pVM->hm.s.ForR3.svm.fFeatures = g_fHmSvmFeatures;
1214 pVM->hm.s.ForR3.svm.u64MsrHwcr = g_HmMsrs.u.svm.u64MsrHwcr;
1215 /* If you need to tweak host MSRs for testing SVM R0 code, do it here. */
1216 }
1217 pVM->hm.s.ForR3.rcInit = g_rcHmInit;
1218 pVM->hm.s.ForR3.uMaxAsid = g_uHmMaxAsid;
1219
1220 /*
1221 * Set default maximum inner loops in ring-0 before returning to ring-3.
1222 * Can be overriden using CFGM.
1223 */
1224 uint32_t cMaxResumeLoops = pVM->hm.s.cMaxResumeLoopsCfg;
1225 if (!cMaxResumeLoops)
1226 {
1227 cMaxResumeLoops = 1024;
1228 if (RTThreadPreemptIsPendingTrusty())
1229 cMaxResumeLoops = 8192;
1230 }
1231 else if (cMaxResumeLoops > 16384)
1232 cMaxResumeLoops = 16384;
1233 else if (cMaxResumeLoops < 32)
1234 cMaxResumeLoops = 32;
1235 pVM->hm.s.cMaxResumeLoopsCfg = pVM->hmr0.s.cMaxResumeLoops = cMaxResumeLoops;
1236
1237 /*
1238 * Initialize some per-VCPU fields.
1239 */
1240 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1241 {
1242 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
1243 pVCpu->hmr0.s.idEnteredCpu = NIL_RTCPUID;
1244 pVCpu->hmr0.s.idLastCpu = NIL_RTCPUID;
1245
1246 /* We'll aways increment this the first time (host uses ASID 0). */
1247 AssertReturn(!pVCpu->hmr0.s.uCurrentAsid, VERR_HM_IPE_3);
1248 }
1249
1250 /*
1251 * Configure defences against spectre and other CPU bugs.
1252 */
1253 uint32_t fWorldSwitcher = 0;
1254 uint32_t cLastStdLeaf = ASMCpuId_EAX(0);
1255 if (cLastStdLeaf >= 0x00000007 && ASMIsValidStdRange(cLastStdLeaf))
1256 {
1257 uint32_t uEdx = 0;
1258 ASMCpuIdExSlow(0x00000007, 0, 0, 0, NULL, NULL, NULL, &uEdx);
1259
1260 if (uEdx & X86_CPUID_STEXT_FEATURE_EDX_IBRS_IBPB)
1261 {
1262 if (pVM->hm.s.fIbpbOnVmExit)
1263 fWorldSwitcher |= HM_WSF_IBPB_EXIT;
1264 if (pVM->hm.s.fIbpbOnVmEntry)
1265 fWorldSwitcher |= HM_WSF_IBPB_ENTRY;
1266 }
1267 if (uEdx & X86_CPUID_STEXT_FEATURE_EDX_FLUSH_CMD)
1268 {
1269 if (pVM->hm.s.fL1dFlushOnVmEntry)
1270 fWorldSwitcher |= HM_WSF_L1D_ENTRY;
1271 else if (pVM->hm.s.fL1dFlushOnSched)
1272 fWorldSwitcher |= HM_WSF_L1D_SCHED;
1273 }
1274 if (uEdx & X86_CPUID_STEXT_FEATURE_EDX_MD_CLEAR)
1275 {
1276 if (pVM->hm.s.fMdsClearOnVmEntry)
1277 fWorldSwitcher |= HM_WSF_MDS_ENTRY;
1278 else if (pVM->hm.s.fMdsClearOnSched)
1279 fWorldSwitcher |= HM_WSF_MDS_SCHED;
1280 }
1281 }
1282 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1283 {
1284 PVMCPUCC pVCpu = VMCC_GET_CPU(pVM, idCpu);
1285 pVCpu->hmr0.s.fWorldSwitcher = fWorldSwitcher;
1286 }
1287 pVM->hm.s.ForR3.fWorldSwitcher = fWorldSwitcher;
1288
1289
1290 /*
1291 * Call the hardware specific initialization method.
1292 */
1293 return g_HmR0Ops.pfnInitVM(pVM);
1294}
1295
1296
1297/**
1298 * Does ring-0 per VM HM termination.
1299 *
1300 * @returns VBox status code.
1301 * @param pVM The cross context VM structure.
1302 */
1303VMMR0_INT_DECL(int) HMR0TermVM(PVMCC pVM)
1304{
1305 Log(("HMR0TermVM: %p\n", pVM));
1306 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1307
1308 /*
1309 * Call the hardware specific method.
1310 *
1311 * Note! We might be preparing for a suspend, so the pfnTermVM() functions should probably not
1312 * mess with VT-x/AMD-V features on the CPU, currently all they do is free memory so this is safe.
1313 */
1314 return g_HmR0Ops.pfnTermVM(pVM);
1315}
1316
1317
1318/**
1319 * Sets up a VT-x or AMD-V session.
1320 *
1321 * This is mostly about setting up the hardware VM state.
1322 *
1323 * @returns VBox status code.
1324 * @param pVM The cross context VM structure.
1325 */
1326VMMR0_INT_DECL(int) HMR0SetupVM(PVMCC pVM)
1327{
1328 Log(("HMR0SetupVM: %p\n", pVM));
1329 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1330
1331 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1332 AssertReturn(!ASMAtomicReadBool(&g_fHmSuspended), VERR_HM_SUSPEND_PENDING);
1333
1334 /* On first entry we'll sync everything. */
1335 VMCC_FOR_EACH_VMCPU_STMT(pVM, pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1336
1337 /*
1338 * Call the hardware specific setup VM method. This requires the CPU to be
1339 * enabled for AMD-V/VT-x and preemption to be prevented.
1340 */
1341 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1342 RTThreadPreemptDisable(&PreemptState);
1343 RTCPUID const idCpu = RTMpCpuId();
1344
1345 /* Enable VT-x or AMD-V if local init is required. */
1346 int rc;
1347 if (!g_fHmGlobalInit)
1348 {
1349 Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx);
1350 rc = hmR0EnableCpu(pVM, idCpu);
1351 if (RT_FAILURE(rc))
1352 {
1353 RTThreadPreemptRestore(&PreemptState);
1354 return rc;
1355 }
1356 }
1357
1358 /* Setup VT-x or AMD-V. */
1359 rc = g_HmR0Ops.pfnSetupVM(pVM);
1360
1361 /* Disable VT-x or AMD-V if local init was done before. */
1362 if (!g_fHmGlobalInit)
1363 {
1364 Assert(!g_fHmVmxSupported || !g_fHmVmxUsingSUPR0EnableVTx);
1365 int rc2 = hmR0DisableCpu(idCpu);
1366 AssertRC(rc2);
1367 }
1368
1369 RTThreadPreemptRestore(&PreemptState);
1370 return rc;
1371}
1372
1373
1374/**
1375 * Notification callback before performing a longjump to ring-3.
1376 *
1377 * @returns VBox status code.
1378 * @param pVCpu The cross context virtual CPU structure.
1379 * @param enmOperation The operation causing the ring-3 longjump.
1380 * @param pvUser User argument, currently unused, NULL.
1381 */
1382static DECLCALLBACK(int) hmR0CallRing3Callback(PVMCPUCC pVCpu, VMMCALLRING3 enmOperation, void *pvUser)
1383{
1384 RT_NOREF(pvUser);
1385 Assert(pVCpu);
1386 Assert(g_HmR0Ops.pfnCallRing3Callback);
1387 return g_HmR0Ops.pfnCallRing3Callback(pVCpu, enmOperation);
1388}
1389
1390
1391/**
1392 * Turns on HM on the CPU if necessary and initializes the bare minimum state
1393 * required for entering HM context.
1394 *
1395 * @returns VBox status code.
1396 * @param pVCpu The cross context virtual CPU structure.
1397 *
1398 * @remarks No-long-jump zone!!!
1399 */
1400VMMR0_INT_DECL(int) hmR0EnterCpu(PVMCPUCC pVCpu)
1401{
1402 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1403
1404 int rc = VINF_SUCCESS;
1405 RTCPUID const idCpu = RTMpCpuId();
1406 PHMPHYSCPU pHostCpu = &g_aHmCpuInfo[idCpu];
1407 AssertPtr(pHostCpu);
1408
1409 /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */
1410 if (!pHostCpu->fConfigured)
1411 rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu);
1412
1413 /* Register a callback to fire prior to performing a longjmp to ring-3 so HM can disable VT-x/AMD-V if needed. */
1414 VMMRZCallRing3SetNotification(pVCpu, hmR0CallRing3Callback, NULL /* pvUser */);
1415
1416 /* Reload host-state (back from ring-3/migrated CPUs) and shared guest/host bits. */
1417 if (g_fHmVmxSupported)
1418 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE;
1419 else
1420 pVCpu->hm.s.fCtxChanged |= HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE;
1421
1422 Assert(pHostCpu->idCpu == idCpu && pHostCpu->idCpu != NIL_RTCPUID);
1423 pVCpu->hmr0.s.idEnteredCpu = idCpu;
1424 return rc;
1425}
1426
1427
1428/**
1429 * Enters the VT-x or AMD-V session.
1430 *
1431 * @returns VBox status code.
1432 * @param pVCpu The cross context virtual CPU structure.
1433 *
1434 * @remarks This is called with preemption disabled.
1435 */
1436VMMR0_INT_DECL(int) HMR0Enter(PVMCPUCC pVCpu)
1437{
1438 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1439 AssertReturn(!ASMAtomicReadBool(&g_fHmSuspended), VERR_HM_SUSPEND_PENDING);
1440 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1441
1442 /* Load the bare minimum state required for entering HM. */
1443 int rc = hmR0EnterCpu(pVCpu);
1444 if (RT_SUCCESS(rc))
1445 {
1446 if (g_fHmVmxSupported)
1447 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE))
1448 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE));
1449 else
1450 Assert( (pVCpu->hm.s.fCtxChanged & (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE))
1451 == (HM_CHANGED_HOST_CONTEXT | HM_CHANGED_SVM_HOST_GUEST_SHARED_STATE));
1452
1453 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness and ring-3 calls. */
1454 rc = g_HmR0Ops.pfnEnterSession(pVCpu);
1455 AssertMsgRCReturnStmt(rc, ("rc=%Rrc pVCpu=%p\n", rc, pVCpu), pVCpu->hmr0.s.idEnteredCpu = NIL_RTCPUID, rc);
1456
1457 /* Exports the host-state as we may be resuming code after a longjmp and quite
1458 possibly now be scheduled on a different CPU. */
1459 rc = g_HmR0Ops.pfnExportHostState(pVCpu);
1460 AssertMsgRCReturnStmt(rc, ("rc=%Rrc pVCpu=%p\n", rc, pVCpu), pVCpu->hmr0.s.idEnteredCpu = NIL_RTCPUID, rc);
1461 }
1462 return rc;
1463}
1464
1465
1466/**
1467 * Deinitializes the bare minimum state used for HM context and if necessary
1468 * disable HM on the CPU.
1469 *
1470 * @returns VBox status code.
1471 * @param pVCpu The cross context virtual CPU structure.
1472 *
1473 * @remarks No-long-jump zone!!!
1474 */
1475VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPUCC pVCpu)
1476{
1477 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1478 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_HM_WRONG_CPU);
1479
1480 RTCPUID const idCpu = RTMpCpuId();
1481 PCHMPHYSCPU pHostCpu = &g_aHmCpuInfo[idCpu];
1482
1483 if ( !g_fHmGlobalInit
1484 && pHostCpu->fConfigured)
1485 {
1486 int rc = hmR0DisableCpu(idCpu);
1487 AssertRCReturn(rc, rc);
1488 Assert(!pHostCpu->fConfigured);
1489 Assert(pHostCpu->idCpu == NIL_RTCPUID);
1490
1491 /* For obtaining a non-zero ASID/VPID on next re-entry. */
1492 pVCpu->hmr0.s.idLastCpu = NIL_RTCPUID;
1493 }
1494
1495 /* Clear it while leaving HM context, hmPokeCpuForTlbFlush() relies on this. */
1496 pVCpu->hmr0.s.idEnteredCpu = NIL_RTCPUID;
1497
1498 /* De-register the longjmp-to-ring 3 callback now that we have reliquished hardware resources. */
1499 VMMRZCallRing3RemoveNotification(pVCpu);
1500 return VINF_SUCCESS;
1501}
1502
1503
1504/**
1505 * Thread-context hook for HM.
1506 *
1507 * This is used together with RTThreadCtxHookCreate() on platforms which
1508 * supports it, and directly from VMMR0EmtPrepareForBlocking() and
1509 * VMMR0EmtResumeAfterBlocking() on platforms which don't.
1510 *
1511 * @param enmEvent The thread-context event.
1512 * @param pvUser Opaque pointer to the VMCPU.
1513 */
1514VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
1515{
1516 PVMCPUCC pVCpu = (PVMCPUCC)pvUser;
1517 Assert(pVCpu);
1518 Assert(g_HmR0Ops.pfnThreadCtxCallback);
1519
1520 g_HmR0Ops.pfnThreadCtxCallback(enmEvent, pVCpu, g_fHmGlobalInit);
1521}
1522
1523
1524/**
1525 * Runs guest code in a hardware accelerated VM.
1526 *
1527 * @returns Strict VBox status code. (VBOXSTRICTRC isn't used because it's
1528 * called from setjmp assembly.)
1529 * @param pVM The cross context VM structure.
1530 * @param pVCpu The cross context virtual CPU structure.
1531 *
1532 * @remarks Can be called with preemption enabled if thread-context hooks are
1533 * used!!!
1534 */
1535VMMR0_INT_DECL(int) HMR0RunGuestCode(PVMCC pVM, PVMCPUCC pVCpu)
1536{
1537 RT_NOREF(pVM);
1538
1539#ifdef VBOX_STRICT
1540 /* With thread-context hooks we would be running this code with preemption enabled. */
1541 if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
1542 {
1543 PCHMPHYSCPU pHostCpu = &g_aHmCpuInfo[RTMpCpuId()];
1544 Assert(!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1545 Assert(pHostCpu->fConfigured);
1546 AssertReturn(!ASMAtomicReadBool(&g_fHmSuspended), VERR_HM_SUSPEND_PENDING);
1547 }
1548#endif
1549
1550 VBOXSTRICTRC rcStrict = g_HmR0Ops.pfnRunGuestCode(pVCpu);
1551 return VBOXSTRICTRC_VAL(rcStrict);
1552}
1553
1554
1555/**
1556 * Notification from CPUM that it has unloaded the guest FPU/SSE/AVX state from
1557 * the host CPU and that guest access to it must be intercepted.
1558 *
1559 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1560 */
1561VMMR0_INT_DECL(void) HMR0NotifyCpumUnloadedGuestFpuState(PVMCPUCC pVCpu)
1562{
1563 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_GUEST_CR0);
1564}
1565
1566
1567/**
1568 * Notification from CPUM that it has modified the host CR0 (because of FPU).
1569 *
1570 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1571 */
1572VMMR0_INT_DECL(void) HMR0NotifyCpumModifiedHostCr0(PVMCPUCC pVCpu)
1573{
1574 ASMAtomicUoOrU64(&pVCpu->hm.s.fCtxChanged, HM_CHANGED_HOST_CONTEXT);
1575}
1576
1577
1578/**
1579 * Returns suspend status of the host.
1580 *
1581 * @returns Suspend pending or not.
1582 */
1583VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
1584{
1585 return ASMAtomicReadBool(&g_fHmSuspended);
1586}
1587
1588
1589/**
1590 * Invalidates a guest page from the host TLB.
1591 *
1592 * @param pVCpu The cross context virtual CPU structure.
1593 * @param GCVirt Page to invalidate.
1594 */
1595VMMR0_INT_DECL(int) HMR0InvalidatePage(PVMCPUCC pVCpu, RTGCPTR GCVirt)
1596{
1597 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1598 if (pVM->hm.s.vmx.fSupported)
1599 return VMXR0InvalidatePage(pVCpu, GCVirt);
1600 return SVMR0InvalidatePage(pVCpu, GCVirt);
1601}
1602
1603
1604/**
1605 * Returns the cpu structure for the current cpu.
1606 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1607 *
1608 * @returns The cpu structure pointer.
1609 */
1610VMMR0_INT_DECL(PHMPHYSCPU) hmR0GetCurrentCpu(void)
1611{
1612 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1613 RTCPUID const idCpu = RTMpCpuId();
1614 Assert(idCpu < RT_ELEMENTS(g_aHmCpuInfo));
1615 return &g_aHmCpuInfo[idCpu];
1616}
1617
1618
1619/**
1620 * Interface for importing state on demand (used by IEM).
1621 *
1622 * @returns VBox status code.
1623 * @param pVCpu The cross context CPU structure.
1624 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
1625 */
1626VMMR0_INT_DECL(int) HMR0ImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
1627{
1628 if (pVCpu->CTX_SUFF(pVM)->hm.s.vmx.fSupported)
1629 return VMXR0ImportStateOnDemand(pVCpu, fWhat);
1630 return SVMR0ImportStateOnDemand(pVCpu, fWhat);
1631}
1632
1633#ifdef VBOX_STRICT
1634
1635/**
1636 * Dumps a descriptor.
1637 *
1638 * @param pDesc Descriptor to dump.
1639 * @param Sel The selector.
1640 * @param pszSel The name of the selector.
1641 */
1642VMMR0_INT_DECL(void) hmR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszSel)
1643{
1644 /*
1645 * Make variable description string.
1646 */
1647 static struct
1648 {
1649 unsigned cch;
1650 const char *psz;
1651 } const s_aTypes[32] =
1652 {
1653# define STRENTRY(str) { sizeof(str) - 1, str }
1654
1655 /* system */
1656# if HC_ARCH_BITS == 64
1657 STRENTRY("Reserved0 "), /* 0x00 */
1658 STRENTRY("Reserved1 "), /* 0x01 */
1659 STRENTRY("LDT "), /* 0x02 */
1660 STRENTRY("Reserved3 "), /* 0x03 */
1661 STRENTRY("Reserved4 "), /* 0x04 */
1662 STRENTRY("Reserved5 "), /* 0x05 */
1663 STRENTRY("Reserved6 "), /* 0x06 */
1664 STRENTRY("Reserved7 "), /* 0x07 */
1665 STRENTRY("Reserved8 "), /* 0x08 */
1666 STRENTRY("TSS64Avail "), /* 0x09 */
1667 STRENTRY("ReservedA "), /* 0x0a */
1668 STRENTRY("TSS64Busy "), /* 0x0b */
1669 STRENTRY("Call64 "), /* 0x0c */
1670 STRENTRY("ReservedD "), /* 0x0d */
1671 STRENTRY("Int64 "), /* 0x0e */
1672 STRENTRY("Trap64 "), /* 0x0f */
1673# else
1674 STRENTRY("Reserved0 "), /* 0x00 */
1675 STRENTRY("TSS16Avail "), /* 0x01 */
1676 STRENTRY("LDT "), /* 0x02 */
1677 STRENTRY("TSS16Busy "), /* 0x03 */
1678 STRENTRY("Call16 "), /* 0x04 */
1679 STRENTRY("Task "), /* 0x05 */
1680 STRENTRY("Int16 "), /* 0x06 */
1681 STRENTRY("Trap16 "), /* 0x07 */
1682 STRENTRY("Reserved8 "), /* 0x08 */
1683 STRENTRY("TSS32Avail "), /* 0x09 */
1684 STRENTRY("ReservedA "), /* 0x0a */
1685 STRENTRY("TSS32Busy "), /* 0x0b */
1686 STRENTRY("Call32 "), /* 0x0c */
1687 STRENTRY("ReservedD "), /* 0x0d */
1688 STRENTRY("Int32 "), /* 0x0e */
1689 STRENTRY("Trap32 "), /* 0x0f */
1690# endif
1691 /* non system */
1692 STRENTRY("DataRO "), /* 0x10 */
1693 STRENTRY("DataRO Accessed "), /* 0x11 */
1694 STRENTRY("DataRW "), /* 0x12 */
1695 STRENTRY("DataRW Accessed "), /* 0x13 */
1696 STRENTRY("DataDownRO "), /* 0x14 */
1697 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1698 STRENTRY("DataDownRW "), /* 0x16 */
1699 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1700 STRENTRY("CodeEO "), /* 0x18 */
1701 STRENTRY("CodeEO Accessed "), /* 0x19 */
1702 STRENTRY("CodeER "), /* 0x1a */
1703 STRENTRY("CodeER Accessed "), /* 0x1b */
1704 STRENTRY("CodeConfEO "), /* 0x1c */
1705 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1706 STRENTRY("CodeConfER "), /* 0x1e */
1707 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1708# undef SYSENTRY
1709 };
1710# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1711 char szMsg[128];
1712 char *psz = &szMsg[0];
1713 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1714 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1715 psz += s_aTypes[i].cch;
1716
1717 if (pDesc->Gen.u1Present)
1718 ADD_STR(psz, "Present ");
1719 else
1720 ADD_STR(psz, "Not-Present ");
1721# if HC_ARCH_BITS == 64
1722 if (pDesc->Gen.u1Long)
1723 ADD_STR(psz, "64-bit ");
1724 else
1725 ADD_STR(psz, "Comp ");
1726# else
1727 if (pDesc->Gen.u1Granularity)
1728 ADD_STR(psz, "Page ");
1729 if (pDesc->Gen.u1DefBig)
1730 ADD_STR(psz, "32-bit ");
1731 else
1732 ADD_STR(psz, "16-bit ");
1733# endif
1734# undef ADD_STR
1735 *psz = '\0';
1736
1737 /*
1738 * Limit and Base and format the output.
1739 */
1740#ifdef LOG_ENABLED
1741 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1742
1743# if HC_ARCH_BITS == 64
1744 uint64_t const u64Base = X86DESC64_BASE(pDesc);
1745 Log((" %s { %#04x - %#RX64 %#RX64 - base=%#RX64 limit=%#08x dpl=%d } %s\n", pszSel,
1746 Sel, pDesc->au64[0], pDesc->au64[1], u64Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1747# else
1748 uint32_t const u32Base = X86DESC_BASE(pDesc);
1749 Log((" %s { %#04x - %#08x %#08x - base=%#08x limit=%#08x dpl=%d } %s\n", pszSel,
1750 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1751# endif
1752#else
1753 NOREF(Sel); NOREF(pszSel);
1754#endif
1755}
1756
1757
1758/**
1759 * Formats a full register dump.
1760 *
1761 * @param pVCpu The cross context virtual CPU structure.
1762 * @param fFlags The dumping flags (HM_DUMP_REG_FLAGS_XXX).
1763 */
1764VMMR0_INT_DECL(void) hmR0DumpRegs(PVMCPUCC pVCpu, uint32_t fFlags)
1765{
1766 /*
1767 * Format the flags.
1768 */
1769 static struct
1770 {
1771 const char *pszSet;
1772 const char *pszClear;
1773 uint32_t fFlag;
1774 } const s_aFlags[] =
1775 {
1776 { "vip", NULL, X86_EFL_VIP },
1777 { "vif", NULL, X86_EFL_VIF },
1778 { "ac", NULL, X86_EFL_AC },
1779 { "vm", NULL, X86_EFL_VM },
1780 { "rf", NULL, X86_EFL_RF },
1781 { "nt", NULL, X86_EFL_NT },
1782 { "ov", "nv", X86_EFL_OF },
1783 { "dn", "up", X86_EFL_DF },
1784 { "ei", "di", X86_EFL_IF },
1785 { "tf", NULL, X86_EFL_TF },
1786 { "nt", "pl", X86_EFL_SF },
1787 { "nz", "zr", X86_EFL_ZF },
1788 { "ac", "na", X86_EFL_AF },
1789 { "po", "pe", X86_EFL_PF },
1790 { "cy", "nc", X86_EFL_CF },
1791 };
1792 char szEFlags[80];
1793 char *psz = szEFlags;
1794 PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
1795 uint32_t uEFlags = pCtx->eflags.u32;
1796 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1797 {
1798 const char *pszAdd = s_aFlags[i].fFlag & uEFlags ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1799 if (pszAdd)
1800 {
1801 strcpy(psz, pszAdd);
1802 psz += strlen(pszAdd);
1803 *psz++ = ' ';
1804 }
1805 }
1806 psz[-1] = '\0';
1807
1808 if (fFlags & HM_DUMP_REG_FLAGS_GPRS)
1809 {
1810 /*
1811 * Format the registers.
1812 */
1813 if (CPUMIsGuestIn64BitCode(pVCpu))
1814 {
1815 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
1816 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
1817 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1818 "r14=%016RX64 r15=%016RX64\n"
1819 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
1820 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1821 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1822 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1823 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1824 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1825 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1826 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
1827 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
1828 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1829 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1830 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1831 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1832 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1833 ,
1834 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
1835 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
1836 pCtx->r14, pCtx->r15,
1837 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1838 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1839 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1840 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
1841 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
1842 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
1843 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
1844 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
1845 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
1846 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
1847 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1848 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1849 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1850 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1851 }
1852 else
1853 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
1854 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
1855 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
1856 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
1857 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
1858 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
1859 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
1860 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
1861 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1862 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1863 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1864 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1865 ,
1866 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
1867 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1868 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
1869 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
1870 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
1871 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
1872 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
1873 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
1874 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1875 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1876 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1877 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1878 }
1879
1880 if (fFlags & HM_DUMP_REG_FLAGS_FPU)
1881 {
1882 PCX86FXSTATE pFpuCtx = &pCtx->XState.x87;
1883 Log(("FPU:\n"
1884 "FCW=%04x FSW=%04x FTW=%02x\n"
1885 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
1886 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
1887 ,
1888 pFpuCtx->FCW, pFpuCtx->FSW, pFpuCtx->FTW,
1889 pFpuCtx->FOP, pFpuCtx->FPUIP, pFpuCtx->CS, pFpuCtx->Rsrvd1,
1890 pFpuCtx->FPUDP, pFpuCtx->DS, pFpuCtx->Rsrvd2,
1891 pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK));
1892 NOREF(pFpuCtx);
1893 }
1894
1895 if (fFlags & HM_DUMP_REG_FLAGS_MSRS)
1896 {
1897 Log(("MSR:\n"
1898 "EFER =%016RX64\n"
1899 "PAT =%016RX64\n"
1900 "STAR =%016RX64\n"
1901 "CSTAR =%016RX64\n"
1902 "LSTAR =%016RX64\n"
1903 "SFMASK =%016RX64\n"
1904 "KERNELGSBASE =%016RX64\n",
1905 pCtx->msrEFER,
1906 pCtx->msrPAT,
1907 pCtx->msrSTAR,
1908 pCtx->msrCSTAR,
1909 pCtx->msrLSTAR,
1910 pCtx->msrSFMASK,
1911 pCtx->msrKERNELGSBASE));
1912 }
1913}
1914
1915#endif /* VBOX_STRICT */
1916
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette