VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp@ 64733

Last change on this file since 64733 was 62869, checked in by vboxsync, 8 years ago

VMM: warnings.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 72.3 KB
Line 
1/* $Id: HMR0.cpp 62869 2016-08-02 12:01:23Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <VBox/vmm/hm.h>
24#include <VBox/vmm/pgm.h>
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include <VBox/vmm/hm_vmx.h>
28#include <VBox/vmm/hm_svm.h>
29#include <VBox/vmm/gim.h>
30#include <VBox/err.h>
31#include <VBox/log.h>
32#include <iprt/assert.h>
33#include <iprt/asm.h>
34#include <iprt/asm-amd64-x86.h>
35#include <iprt/cpuset.h>
36#include <iprt/mem.h>
37#include <iprt/memobj.h>
38#include <iprt/once.h>
39#include <iprt/param.h>
40#include <iprt/power.h>
41#include <iprt/string.h>
42#include <iprt/thread.h>
43#include <iprt/x86.h>
44#include "HMVMXR0.h"
45#include "HMSVMR0.h"
46
47
48/*********************************************************************************************************************************
49* Internal Functions *
50*********************************************************************************************************************************/
51static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
54static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
55static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
56static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
57
58
59/*********************************************************************************************************************************
60* Structures and Typedefs *
61*********************************************************************************************************************************/
62/**
63 * This is used to manage the status code of a RTMpOnAll in HM.
64 */
65typedef struct HMR0FIRSTRC
66{
67 /** The status code. */
68 int32_t volatile rc;
69 /** The ID of the CPU reporting the first failure. */
70 RTCPUID volatile idCpu;
71} HMR0FIRSTRC;
72/** Pointer to a first return code structure. */
73typedef HMR0FIRSTRC *PHMR0FIRSTRC;
74
75
76/*********************************************************************************************************************************
77* Global Variables *
78*********************************************************************************************************************************/
79/**
80 * Global data.
81 */
82static struct
83{
84 /** Per CPU globals. */
85 HMGLOBALCPUINFO aCpuInfo[RTCPUSET_MAX_CPUS];
86
87 /** @name Ring-0 method table for AMD-V and VT-x specific operations.
88 * @{ */
89 DECLR0CALLBACKMEMBER(int, pfnEnterSession, (PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu));
90 DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback, (RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit));
91 DECLR0CALLBACKMEMBER(int, pfnSaveHostState, (PVM pVM, PVMCPU pVCpu));
92 DECLR0CALLBACKMEMBER(VBOXSTRICTRC, pfnRunGuestCode, (PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
93 DECLR0CALLBACKMEMBER(int, pfnEnableCpu, (PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
94 bool fEnabledByHost, void *pvArg));
95 DECLR0CALLBACKMEMBER(int, pfnDisableCpu, (PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
96 DECLR0CALLBACKMEMBER(int, pfnInitVM, (PVM pVM));
97 DECLR0CALLBACKMEMBER(int, pfnTermVM, (PVM pVM));
98 DECLR0CALLBACKMEMBER(int, pfnSetupVM ,(PVM pVM));
99 /** @} */
100
101 /** Maximum ASID allowed. */
102 uint32_t uMaxAsid;
103
104 /** VT-x data. */
105 struct
106 {
107 /** Set to by us to indicate VMX is supported by the CPU. */
108 bool fSupported;
109 /** Whether we're using SUPR0EnableVTx or not. */
110 bool fUsingSUPR0EnableVTx;
111 /** Whether we're using the preemption timer or not. */
112 bool fUsePreemptTimer;
113 /** The shift mask employed by the VMX-Preemption timer. */
114 uint8_t cPreemptTimerShift;
115
116 /** Host CR4 value (set by ring-0 VMX init) */
117 uint64_t u64HostCr4;
118
119 /** Host EFER value (set by ring-0 VMX init) */
120 uint64_t u64HostEfer;
121
122 /** Host SMM monitor control (used for logging/diagnostics) */
123 uint64_t u64HostSmmMonitorCtl;
124
125 /** VMX MSR values */
126 VMXMSRS Msrs;
127
128 /** Last instruction error. */
129 uint32_t ulLastInstrError;
130
131 /** Set if we've called SUPR0EnableVTx(true) and should disable it during
132 * module termination. */
133 bool fCalledSUPR0EnableVTx;
134 } vmx;
135
136 /** AMD-V information. */
137 struct
138 {
139 /* HWCR MSR (for diagnostics) */
140 uint64_t u64MsrHwcr;
141
142 /** SVM revision. */
143 uint32_t u32Rev;
144
145 /** SVM feature bits from cpuid 0x8000000a */
146 uint32_t u32Features;
147
148 /** Set by us to indicate SVM is supported by the CPU. */
149 bool fSupported;
150 } svm;
151 /** Saved error from detection */
152 int32_t lLastError;
153
154 /** CPUID 0x80000001 ecx:edx features */
155 struct
156 {
157 uint32_t u32AMDFeatureECX;
158 uint32_t u32AMDFeatureEDX;
159 } cpuid;
160
161 /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
162 * enabled and disabled each time it's used to execute guest code. */
163 bool fGlobalInit;
164 /** Indicates whether the host is suspending or not. We'll refuse a few
165 * actions when the host is being suspended to speed up the suspending and
166 * avoid trouble. */
167 volatile bool fSuspended;
168
169 /** Whether we've already initialized all CPUs.
170 * @remarks We could check the EnableAllCpusOnce state, but this is
171 * simpler and hopefully easier to understand. */
172 bool fEnabled;
173 /** Serialize initialization in HMR0EnableAllCpus. */
174 RTONCE EnableAllCpusOnce;
175} g_HmR0;
176
177
178
179/**
180 * Initializes a first return code structure.
181 *
182 * @param pFirstRc The structure to init.
183 */
184static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
185{
186 pFirstRc->rc = VINF_SUCCESS;
187 pFirstRc->idCpu = NIL_RTCPUID;
188}
189
190
191/**
192 * Try set the status code (success ignored).
193 *
194 * @param pFirstRc The first return code structure.
195 * @param rc The status code.
196 */
197static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
198{
199 if ( RT_FAILURE(rc)
200 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
201 pFirstRc->idCpu = RTMpCpuId();
202}
203
204
205/**
206 * Get the status code of a first return code structure.
207 *
208 * @returns The status code; VINF_SUCCESS or error status, no informational or
209 * warning errors.
210 * @param pFirstRc The first return code structure.
211 */
212static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
213{
214 return pFirstRc->rc;
215}
216
217
218#ifdef VBOX_STRICT
219# ifndef DEBUG_bird
220/**
221 * Get the CPU ID on which the failure status code was reported.
222 *
223 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
224 * @param pFirstRc The first return code structure.
225 */
226static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
227{
228 return pFirstRc->idCpu;
229}
230# endif
231#endif /* VBOX_STRICT */
232
233
234/** @name Dummy callback handlers.
235 * @{ */
236
237static DECLCALLBACK(int) hmR0DummyEnter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
238{
239 NOREF(pVM); NOREF(pVCpu); NOREF(pCpu);
240 return VINF_SUCCESS;
241}
242
243static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
244{
245 NOREF(enmEvent); NOREF(pVCpu); NOREF(fGlobalInit);
246}
247
248static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
249 bool fEnabledBySystem, void *pvArg)
250{
251 NOREF(pCpu); NOREF(pVM); NOREF(pvCpuPage); NOREF(HCPhysCpuPage); NOREF(fEnabledBySystem); NOREF(pvArg);
252 return VINF_SUCCESS;
253}
254
255static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
256{
257 NOREF(pCpu); NOREF(pvCpuPage); NOREF(HCPhysCpuPage);
258 return VINF_SUCCESS;
259}
260
261static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM)
262{
263 NOREF(pVM);
264 return VINF_SUCCESS;
265}
266
267static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM)
268{
269 NOREF(pVM);
270 return VINF_SUCCESS;
271}
272
273static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM)
274{
275 NOREF(pVM);
276 return VINF_SUCCESS;
277}
278
279static DECLCALLBACK(VBOXSTRICTRC) hmR0DummyRunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
280{
281 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
282 return VINF_SUCCESS;
283}
284
285static DECLCALLBACK(int) hmR0DummySaveHostState(PVM pVM, PVMCPU pVCpu)
286{
287 NOREF(pVM); NOREF(pVCpu);
288 return VINF_SUCCESS;
289}
290
291/** @} */
292
293
294/**
295 * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count
296 * Down at the Rate Specified" erratum.
297 *
298 * Errata names and related steppings:
299 * - BA86 - D0.
300 * - AAX65 - C2.
301 * - AAU65 - C2, K0.
302 * - AAO95 - B1.
303 * - AAT59 - C2.
304 * - AAK139 - D0.
305 * - AAM126 - C0, C1, D0.
306 * - AAN92 - B1.
307 * - AAJ124 - C0, D0.
308 *
309 * - AAP86 - B1.
310 *
311 * Steppings: B1, C0, C1, C2, D0, K0.
312 *
313 * @returns true if subject to it, false if not.
314 */
315static bool hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum(void)
316{
317 uint32_t u = ASMCpuId_EAX(1);
318 u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31));
319 if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */
320 || u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */
321 || u == UINT32_C(0x00020652) /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */
322 || u == UINT32_C(0x00020652) /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
323 || u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
324 || u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */
325 || u == UINT32_C(0x000106E5) /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */
326 || u == UINT32_C(0x000106E5) /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */
327 || u == UINT32_C(0x000106A0) /* 321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */
328 || u == UINT32_C(0x000106A1) /* 321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */
329 || u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
330 || u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */
331 || u == UINT32_C(0x000106A5) /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */
332 || u == UINT32_C(0x000106A5) /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
333 )
334 return true;
335 return false;
336}
337
338
339/**
340 * Intel specific initialization code.
341 *
342 * @returns VBox status code (will only fail if out of memory).
343 */
344static int hmR0InitIntel(uint32_t u32FeaturesECX, uint32_t u32FeaturesEDX)
345{
346 /*
347 * Check that all the required VT-x features are present.
348 * We also assume all VT-x-enabled CPUs support fxsave/fxrstor.
349 */
350 if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
351 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
352 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
353 )
354 {
355 /* Read this MSR now as it may be useful for error reporting when initializing VT-x fails. */
356 g_HmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
357
358 /*
359 * First try use native kernel API for controlling VT-x.
360 * (This is only supported by some Mac OS X kernels atm.)
361 */
362 int rc = g_HmR0.lLastError = SUPR0EnableVTx(true /* fEnable */);
363 g_HmR0.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
364 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
365 {
366 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
367 if (RT_SUCCESS(rc))
368 {
369 g_HmR0.vmx.fSupported = true;
370 rc = SUPR0EnableVTx(false /* fEnable */);
371 AssertLogRelRC(rc);
372 }
373 }
374 else
375 {
376 HMR0FIRSTRC FirstRc;
377 hmR0FirstRcInit(&FirstRc);
378 g_HmR0.lLastError = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
379 if (RT_SUCCESS(g_HmR0.lLastError))
380 g_HmR0.lLastError = hmR0FirstRcGetStatus(&FirstRc);
381 }
382 if (RT_SUCCESS(g_HmR0.lLastError))
383 {
384 /* Reread in case it was changed by SUPR0GetVmxUsability(). */
385 g_HmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
386
387 /*
388 * Read all relevant registers and MSRs.
389 */
390 g_HmR0.vmx.u64HostCr4 = ASMGetCR4();
391 g_HmR0.vmx.u64HostSmmMonitorCtl = ASMRdMsr(MSR_IA32_SMM_MONITOR_CTL);
392 g_HmR0.vmx.u64HostEfer = ASMRdMsr(MSR_K6_EFER);
393 g_HmR0.vmx.Msrs.u64BasicInfo = ASMRdMsr(MSR_IA32_VMX_BASIC_INFO);
394 g_HmR0.vmx.Msrs.VmxPinCtls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS);
395 g_HmR0.vmx.Msrs.VmxProcCtls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
396 g_HmR0.vmx.Msrs.VmxExit.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS);
397 g_HmR0.vmx.Msrs.VmxEntry.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS);
398 g_HmR0.vmx.Msrs.u64Misc = ASMRdMsr(MSR_IA32_VMX_MISC);
399 g_HmR0.vmx.Msrs.u64Cr0Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0);
400 g_HmR0.vmx.Msrs.u64Cr0Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1);
401 g_HmR0.vmx.Msrs.u64Cr4Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0);
402 g_HmR0.vmx.Msrs.u64Cr4Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1);
403 g_HmR0.vmx.Msrs.u64VmcsEnum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM);
404 /* VPID 16 bits ASID. */
405 g_HmR0.uMaxAsid = 0x10000; /* exclusive */
406
407 if (g_HmR0.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
408 {
409 g_HmR0.vmx.Msrs.VmxProcCtls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
410 if (g_HmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & (VMX_VMCS_CTRL_PROC_EXEC2_EPT | VMX_VMCS_CTRL_PROC_EXEC2_VPID))
411 g_HmR0.vmx.Msrs.u64EptVpidCaps = ASMRdMsr(MSR_IA32_VMX_EPT_VPID_CAP);
412
413 if (g_HmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC)
414 g_HmR0.vmx.Msrs.u64Vmfunc = ASMRdMsr(MSR_IA32_VMX_VMFUNC);
415 }
416
417 if (!g_HmR0.vmx.fUsingSUPR0EnableVTx)
418 {
419 /*
420 * Enter root mode
421 */
422 RTR0MEMOBJ hScatchMemObj;
423 rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, false /* fExecutable */);
424 if (RT_FAILURE(rc))
425 {
426 LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,PAGE_SIZE,false) -> %Rrc\n", rc));
427 return rc;
428 }
429
430 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
431 RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
432 ASMMemZeroPage(pvScatchPage);
433
434 /* Set revision dword at the beginning of the structure. */
435 *(uint32_t *)pvScatchPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(g_HmR0.vmx.Msrs.u64BasicInfo);
436
437 /* Make sure we don't get rescheduled to another cpu during this probe. */
438 RTCCUINTREG fFlags = ASMIntDisableFlags();
439
440 /*
441 * Check CR4.VMXE
442 */
443 g_HmR0.vmx.u64HostCr4 = ASMGetCR4();
444 if (!(g_HmR0.vmx.u64HostCr4 & X86_CR4_VMXE))
445 {
446 /* In theory this bit could be cleared behind our back. Which would cause
447 #UD faults when we try to execute the VMX instructions... */
448 ASMSetCR4(g_HmR0.vmx.u64HostCr4 | X86_CR4_VMXE);
449 }
450
451 /*
452 * The only way of checking if we're in VMX root mode or not is to try and enter it.
453 * There is no instruction or control bit that tells us if we're in VMX root mode.
454 * Therefore, try and enter VMX root mode here.
455 */
456 rc = VMXEnable(HCPhysScratchPage);
457 if (RT_SUCCESS(rc))
458 {
459 g_HmR0.vmx.fSupported = true;
460 VMXDisable();
461 }
462 else
463 {
464 /*
465 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
466 * it will crash the host when we enter raw mode, because:
467 *
468 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
469 * this bit), and
470 * (b) turning off paging causes a #GP (unavoidable when switching
471 * from long to 32 bits mode or 32 bits to PAE).
472 *
473 * They should fix their code, but until they do we simply refuse to run.
474 */
475 g_HmR0.lLastError = VERR_VMX_IN_VMX_ROOT_MODE;
476 Assert(g_HmR0.vmx.fSupported == false);
477 }
478
479 /* Restore CR4 again; don't leave the X86_CR4_VMXE flag set
480 if it wasn't so before (some software could incorrectly
481 think it's in VMX mode). */
482 ASMSetCR4(g_HmR0.vmx.u64HostCr4);
483 ASMSetFlags(fFlags);
484
485 RTR0MemObjFree(hScatchMemObj, false);
486 }
487
488 if (g_HmR0.vmx.fSupported)
489 {
490 rc = VMXR0GlobalInit();
491 if (RT_FAILURE(rc))
492 g_HmR0.lLastError = rc;
493
494 /*
495 * Install the VT-x methods.
496 */
497 g_HmR0.pfnEnterSession = VMXR0Enter;
498 g_HmR0.pfnThreadCtxCallback = VMXR0ThreadCtxCallback;
499 g_HmR0.pfnSaveHostState = VMXR0SaveHostState;
500 g_HmR0.pfnRunGuestCode = VMXR0RunGuestCode;
501 g_HmR0.pfnEnableCpu = VMXR0EnableCpu;
502 g_HmR0.pfnDisableCpu = VMXR0DisableCpu;
503 g_HmR0.pfnInitVM = VMXR0InitVM;
504 g_HmR0.pfnTermVM = VMXR0TermVM;
505 g_HmR0.pfnSetupVM = VMXR0SetupVM;
506
507 /*
508 * Check for the VMX-Preemption Timer and adjust for the "VMX-Preemption
509 * Timer Does Not Count Down at the Rate Specified" erratum.
510 */
511 if (g_HmR0.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER)
512 {
513 g_HmR0.vmx.fUsePreemptTimer = true;
514 g_HmR0.vmx.cPreemptTimerShift = MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(g_HmR0.vmx.Msrs.u64Misc);
515 if (hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum())
516 g_HmR0.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */
517 }
518 }
519 }
520#ifdef LOG_ENABLED
521 else
522 SUPR0Printf("hmR0InitIntelCpu failed with rc=%d\n", g_HmR0.lLastError);
523#endif
524 }
525 else
526 g_HmR0.lLastError = VERR_VMX_NO_VMX;
527 return VINF_SUCCESS;
528}
529
530
531/**
532 * AMD-specific initialization code.
533 *
534 * @returns VBox status code.
535 */
536static int hmR0InitAmd(uint32_t u32FeaturesEDX, uint32_t uMaxExtLeaf)
537{
538 /*
539 * Read all SVM MSRs if SVM is available. (same goes for RDMSR/WRMSR)
540 * We also assume all SVM-enabled CPUs support fxsave/fxrstor.
541 */
542 int rc;
543 if ( (g_HmR0.cpuid.u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
544 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
545 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
546 && ASMIsValidExtRange(uMaxExtLeaf)
547 && uMaxExtLeaf >= 0x8000000a
548 )
549 {
550 /* Call the global AMD-V initialization routine. */
551 rc = SVMR0GlobalInit();
552 if (RT_FAILURE(rc))
553 {
554 g_HmR0.lLastError = rc;
555 return rc;
556 }
557
558 /*
559 * Install the AMD-V methods.
560 */
561 g_HmR0.pfnEnterSession = SVMR0Enter;
562 g_HmR0.pfnThreadCtxCallback = SVMR0ThreadCtxCallback;
563 g_HmR0.pfnSaveHostState = SVMR0SaveHostState;
564 g_HmR0.pfnRunGuestCode = SVMR0RunGuestCode;
565 g_HmR0.pfnEnableCpu = SVMR0EnableCpu;
566 g_HmR0.pfnDisableCpu = SVMR0DisableCpu;
567 g_HmR0.pfnInitVM = SVMR0InitVM;
568 g_HmR0.pfnTermVM = SVMR0TermVM;
569 g_HmR0.pfnSetupVM = SVMR0SetupVM;
570
571 /* Query AMD features. */
572 uint32_t u32Dummy;
573 ASMCpuId(0x8000000a, &g_HmR0.svm.u32Rev, &g_HmR0.uMaxAsid, &u32Dummy, &g_HmR0.svm.u32Features);
574
575 /*
576 * We need to check if AMD-V has been properly initialized on all CPUs.
577 * Some BIOSes might do a poor job.
578 */
579 HMR0FIRSTRC FirstRc;
580 hmR0FirstRcInit(&FirstRc);
581 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
582 AssertRC(rc);
583 if (RT_SUCCESS(rc))
584 rc = hmR0FirstRcGetStatus(&FirstRc);
585#ifndef DEBUG_bird
586 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
587 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
588#endif
589 if (RT_SUCCESS(rc))
590 {
591 /* Read the HWCR MSR for diagnostics. */
592 g_HmR0.svm.u64MsrHwcr = ASMRdMsr(MSR_K8_HWCR);
593 g_HmR0.svm.fSupported = true;
594 }
595 else
596 {
597 g_HmR0.lLastError = rc;
598 if (rc == VERR_SVM_DISABLED || rc == VERR_SVM_IN_USE)
599 rc = VINF_SUCCESS; /* Don't fail if AMD-V is disabled or in use. */
600 }
601 }
602 else
603 {
604 rc = VINF_SUCCESS; /* Don't fail if AMD-V is not supported. See @bugref{6785}. */
605 g_HmR0.lLastError = VERR_SVM_NO_SVM;
606 }
607 return rc;
608}
609
610
611/**
612 * Does global Ring-0 HM initialization (at module init).
613 *
614 * @returns VBox status code.
615 */
616VMMR0_INT_DECL(int) HMR0Init(void)
617{
618 /*
619 * Initialize the globals.
620 */
621 g_HmR0.fEnabled = false;
622 static RTONCE s_OnceInit = RTONCE_INITIALIZER;
623 g_HmR0.EnableAllCpusOnce = s_OnceInit;
624 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
625 {
626 g_HmR0.aCpuInfo[i].idCpu = NIL_RTCPUID;
627 g_HmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
628 g_HmR0.aCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
629 g_HmR0.aCpuInfo[i].pvMemObj = NULL;
630 }
631
632 /* Fill in all callbacks with placeholders. */
633 g_HmR0.pfnEnterSession = hmR0DummyEnter;
634 g_HmR0.pfnThreadCtxCallback = hmR0DummyThreadCtxCallback;
635 g_HmR0.pfnSaveHostState = hmR0DummySaveHostState;
636 g_HmR0.pfnRunGuestCode = hmR0DummyRunGuestCode;
637 g_HmR0.pfnEnableCpu = hmR0DummyEnableCpu;
638 g_HmR0.pfnDisableCpu = hmR0DummyDisableCpu;
639 g_HmR0.pfnInitVM = hmR0DummyInitVM;
640 g_HmR0.pfnTermVM = hmR0DummyTermVM;
641 g_HmR0.pfnSetupVM = hmR0DummySetupVM;
642
643 /* Default is global VT-x/AMD-V init. */
644 g_HmR0.fGlobalInit = true;
645
646 /*
647 * Make sure aCpuInfo is big enough for all the CPUs on this system.
648 */
649 if (RTMpGetArraySize() > RT_ELEMENTS(g_HmR0.aCpuInfo))
650 {
651 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HmR0.aCpuInfo)));
652 return VERR_TOO_MANY_CPUS;
653 }
654
655 /*
656 * Check for VT-x and AMD-V capabilities.
657 */
658 int rc;
659 if (ASMHasCpuId())
660 {
661 /* Standard features. */
662 uint32_t uMaxLeaf, u32VendorEBX, u32VendorECX, u32VendorEDX;
663 ASMCpuId(0, &uMaxLeaf, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
664 if (ASMIsValidStdRange(uMaxLeaf))
665 {
666 uint32_t u32FeaturesECX, u32FeaturesEDX, u32Dummy;
667 ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
668
669 /* Query AMD features. */
670 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
671 if (ASMIsValidExtRange(uMaxExtLeaf))
672 ASMCpuId(0x80000001, &u32Dummy, &u32Dummy,
673 &g_HmR0.cpuid.u32AMDFeatureECX,
674 &g_HmR0.cpuid.u32AMDFeatureEDX);
675 else
676 g_HmR0.cpuid.u32AMDFeatureECX = g_HmR0.cpuid.u32AMDFeatureEDX = 0;
677
678 /* Go to CPU specific initialization code. */
679 if ( ASMIsIntelCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX)
680 || ASMIsViaCentaurCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
681 {
682 rc = hmR0InitIntel(u32FeaturesECX, u32FeaturesEDX);
683 if (RT_FAILURE(rc))
684 return rc;
685 }
686 else if (ASMIsAmdCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
687 {
688 rc = hmR0InitAmd(u32FeaturesEDX, uMaxExtLeaf);
689 if (RT_FAILURE(rc))
690 return rc;
691 }
692 else
693 g_HmR0.lLastError = VERR_HM_UNKNOWN_CPU;
694 }
695 else
696 g_HmR0.lLastError = VERR_HM_UNKNOWN_CPU;
697 }
698 else
699 g_HmR0.lLastError = VERR_HM_NO_CPUID;
700
701 /*
702 * Register notification callbacks that we can use to disable/enable CPUs
703 * when brought offline/online or suspending/resuming.
704 */
705 if (!g_HmR0.vmx.fUsingSUPR0EnableVTx)
706 {
707 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
708 AssertRC(rc);
709
710 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
711 AssertRC(rc);
712 }
713
714 /* We return success here because module init shall not fail if HM
715 fails to initialize. */
716 return VINF_SUCCESS;
717}
718
719
720/**
721 * Does global Ring-0 HM termination (at module termination).
722 *
723 * @returns VBox status code.
724 */
725VMMR0_INT_DECL(int) HMR0Term(void)
726{
727 int rc;
728 if ( g_HmR0.vmx.fSupported
729 && g_HmR0.vmx.fUsingSUPR0EnableVTx)
730 {
731 /*
732 * Simple if the host OS manages VT-x.
733 */
734 Assert(g_HmR0.fGlobalInit);
735
736 if (g_HmR0.vmx.fCalledSUPR0EnableVTx)
737 {
738 rc = SUPR0EnableVTx(false /* fEnable */);
739 g_HmR0.vmx.fCalledSUPR0EnableVTx = false;
740 }
741 else
742 rc = VINF_SUCCESS;
743
744 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HmR0.aCpuInfo); iCpu++)
745 {
746 g_HmR0.aCpuInfo[iCpu].fConfigured = false;
747 Assert(g_HmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
748 }
749 }
750 else
751 {
752 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
753
754 /* Doesn't really matter if this fails. */
755 rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc);
756 rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc);
757
758 /*
759 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
760 */
761 if (g_HmR0.fGlobalInit)
762 {
763 HMR0FIRSTRC FirstRc;
764 hmR0FirstRcInit(&FirstRc);
765 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
766 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
767 if (RT_SUCCESS(rc))
768 rc = hmR0FirstRcGetStatus(&FirstRc);
769 }
770
771 /*
772 * Free the per-cpu pages used for VT-x and AMD-V.
773 */
774 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
775 {
776 if (g_HmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
777 {
778 RTR0MemObjFree(g_HmR0.aCpuInfo[i].hMemObj, false);
779 g_HmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
780 g_HmR0.aCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
781 g_HmR0.aCpuInfo[i].pvMemObj = NULL;
782 }
783 }
784 }
785
786 /** @todo This needs cleaning up. There's no matching
787 * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits
788 * should move into their respective modules. */
789 /* Finally, call global VT-x/AMD-V termination. */
790 if (g_HmR0.vmx.fSupported)
791 VMXR0GlobalTerm();
792 else if (g_HmR0.svm.fSupported)
793 SVMR0GlobalTerm();
794
795 return rc;
796}
797
798
799/**
800 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize VT-x
801 * on a CPU.
802 *
803 * @param idCpu The identifier for the CPU the function is called on.
804 * @param pvUser1 Pointer to the first RC structure.
805 * @param pvUser2 Ignored.
806 */
807static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
808{
809 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
810 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
811 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
812 NOREF(idCpu); NOREF(pvUser2);
813
814 int rc = SUPR0GetVmxUsability(NULL /* pfIsSmxModeAmbiguous */);
815 hmR0FirstRcSetStatus(pFirstRc, rc);
816}
817
818
819/**
820 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V
821 * on a CPU.
822 *
823 * @param idCpu The identifier for the CPU the function is called on.
824 * @param pvUser1 Pointer to the first RC structure.
825 * @param pvUser2 Ignored.
826 */
827static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
828{
829 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
830 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
831 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
832 NOREF(idCpu); NOREF(pvUser2);
833
834 int rc = SUPR0GetSvmUsability(true /* fInitSvm */);
835 hmR0FirstRcSetStatus(pFirstRc, rc);
836}
837
838
839/**
840 * Enable VT-x or AMD-V on the current CPU
841 *
842 * @returns VBox status code.
843 * @param pVM The cross context VM structure. Can be NULL.
844 * @param idCpu The identifier for the CPU the function is called on.
845 *
846 * @remarks Maybe called with interrupts disabled!
847 */
848static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu)
849{
850 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
851
852 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
853 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
854 Assert(!pCpu->fConfigured);
855 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
856
857 pCpu->idCpu = idCpu;
858 /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
859
860 int rc;
861 if (g_HmR0.vmx.fSupported && g_HmR0.vmx.fUsingSUPR0EnableVTx)
862 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, NULL /* pvCpuPage */, NIL_RTHCPHYS, true, &g_HmR0.vmx.Msrs);
863 else
864 {
865 AssertLogRelMsgReturn(pCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
866 if (g_HmR0.vmx.fSupported)
867 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, &g_HmR0.vmx.Msrs);
868 else
869 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, NULL /* pvArg */);
870 }
871 if (RT_SUCCESS(rc))
872 pCpu->fConfigured = true;
873
874 return rc;
875}
876
877
878/**
879 * Worker function passed to RTMpOnAll() that is to be called on all CPUs.
880 *
881 * @param idCpu The identifier for the CPU the function is called on.
882 * @param pvUser1 Opaque pointer to the VM (can be NULL!).
883 * @param pvUser2 The 2nd user argument.
884 */
885static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
886{
887 PVM pVM = (PVM)pvUser1; /* can be NULL! */
888 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
889 AssertReturnVoid(g_HmR0.fGlobalInit);
890 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
891 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
892}
893
894
895/**
896 * RTOnce callback employed by HMR0EnableAllCpus.
897 *
898 * @returns VBox status code.
899 * @param pvUser Pointer to the VM.
900 */
901static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
902{
903 PVM pVM = (PVM)pvUser;
904
905 /*
906 * Indicate that we've initialized.
907 *
908 * Note! There is a potential race between this function and the suspend
909 * notification. Kind of unlikely though, so ignored for now.
910 */
911 AssertReturn(!g_HmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE);
912 ASMAtomicWriteBool(&g_HmR0.fEnabled, true);
913
914 /*
915 * The global init variable is set by the first VM.
916 */
917 g_HmR0.fGlobalInit = pVM->hm.s.fGlobalInit;
918
919#ifdef VBOX_STRICT
920 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
921 {
922 Assert(g_HmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
923 Assert(g_HmR0.aCpuInfo[i].HCPhysMemObj == NIL_RTHCPHYS);
924 Assert(g_HmR0.aCpuInfo[i].pvMemObj == NULL);
925 Assert(!g_HmR0.aCpuInfo[i].fConfigured);
926 Assert(!g_HmR0.aCpuInfo[i].cTlbFlushes);
927 Assert(!g_HmR0.aCpuInfo[i].uCurrentAsid);
928 }
929#endif
930
931 int rc;
932 if ( g_HmR0.vmx.fSupported
933 && g_HmR0.vmx.fUsingSUPR0EnableVTx)
934 {
935 /*
936 * Global VT-x initialization API (only darwin for now).
937 */
938 rc = SUPR0EnableVTx(true /* fEnable */);
939 if (RT_SUCCESS(rc))
940 {
941 g_HmR0.vmx.fCalledSUPR0EnableVTx = true;
942 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
943 g_HmR0.fGlobalInit = pVM->hm.s.fGlobalInit = true;
944 }
945 else
946 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
947 }
948 else
949 {
950 /*
951 * We're doing the job ourselves.
952 */
953 /* Allocate one page per cpu for the global VT-x and AMD-V pages */
954 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
955 {
956 Assert(g_HmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
957
958 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
959 {
960 /** @todo NUMA */
961 rc = RTR0MemObjAllocCont(&g_HmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, false /* executable R0 mapping */);
962 AssertLogRelRCReturn(rc, rc);
963
964 g_HmR0.aCpuInfo[i].HCPhysMemObj = RTR0MemObjGetPagePhysAddr(g_HmR0.aCpuInfo[i].hMemObj, 0);
965 Assert(g_HmR0.aCpuInfo[i].HCPhysMemObj != NIL_RTHCPHYS);
966 Assert(!(g_HmR0.aCpuInfo[i].HCPhysMemObj & PAGE_OFFSET_MASK));
967
968 g_HmR0.aCpuInfo[i].pvMemObj = RTR0MemObjAddress(g_HmR0.aCpuInfo[i].hMemObj);
969 AssertPtr(g_HmR0.aCpuInfo[i].pvMemObj);
970 ASMMemZeroPage(g_HmR0.aCpuInfo[i].pvMemObj);
971 }
972 }
973
974 rc = VINF_SUCCESS;
975 }
976
977 if ( RT_SUCCESS(rc)
978 && g_HmR0.fGlobalInit)
979 {
980 /* First time, so initialize each cpu/core. */
981 HMR0FIRSTRC FirstRc;
982 hmR0FirstRcInit(&FirstRc);
983 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
984 if (RT_SUCCESS(rc))
985 rc = hmR0FirstRcGetStatus(&FirstRc);
986 }
987
988 return rc;
989}
990
991
992/**
993 * Sets up HM on all cpus.
994 *
995 * @returns VBox status code.
996 * @param pVM The cross context VM structure.
997 */
998VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVM pVM)
999{
1000 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1001 if (ASMAtomicReadBool(&g_HmR0.fSuspended))
1002 return VERR_HM_SUSPEND_PENDING;
1003
1004 return RTOnce(&g_HmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
1005}
1006
1007
1008/**
1009 * Disable VT-x or AMD-V on the current CPU.
1010 *
1011 * @returns VBox status code.
1012 * @param idCpu The identifier for the CPU this function is called on.
1013 *
1014 * @remarks Must be called with preemption disabled.
1015 */
1016static int hmR0DisableCpu(RTCPUID idCpu)
1017{
1018 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1019
1020 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1021 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1022 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
1023 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
1024 Assert(!pCpu->fConfigured || pCpu->hMemObj != NIL_RTR0MEMOBJ);
1025 AssertRelease(idCpu == RTMpCpuId());
1026
1027 if (pCpu->hMemObj == NIL_RTR0MEMOBJ)
1028 return pCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
1029 AssertPtr(pCpu->pvMemObj);
1030 Assert(pCpu->HCPhysMemObj != NIL_RTHCPHYS);
1031
1032 int rc;
1033 if (pCpu->fConfigured)
1034 {
1035 rc = g_HmR0.pfnDisableCpu(pCpu, pCpu->pvMemObj, pCpu->HCPhysMemObj);
1036 AssertRCReturn(rc, rc);
1037
1038 pCpu->fConfigured = false;
1039 pCpu->idCpu = NIL_RTCPUID;
1040 }
1041 else
1042 rc = VINF_SUCCESS; /* nothing to do */
1043 return rc;
1044}
1045
1046
1047/**
1048 * Worker function passed to RTMpOnAll() that is to be called on the target
1049 * CPUs.
1050 *
1051 * @param idCpu The identifier for the CPU the function is called on.
1052 * @param pvUser1 The 1st user argument.
1053 * @param pvUser2 Opaque pointer to the FirstRc.
1054 */
1055static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1056{
1057 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1058 AssertReturnVoid(g_HmR0.fGlobalInit);
1059 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1060}
1061
1062
1063/**
1064 * Worker function passed to RTMpOnSpecific() that is to be called on the target
1065 * CPU.
1066 *
1067 * @param idCpu The identifier for the CPU the function is called on.
1068 * @param pvUser1 Null, not used.
1069 * @param pvUser2 Null, not used.
1070 */
1071static DECLCALLBACK(void) hmR0DisableCpuOnSpecificCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1072{
1073 NOREF(pvUser1);
1074 NOREF(pvUser2);
1075 hmR0DisableCpu(idCpu);
1076}
1077
1078
1079/**
1080 * Callback function invoked when a cpu goes online or offline.
1081 *
1082 * @param enmEvent The Mp event.
1083 * @param idCpu The identifier for the CPU the function is called on.
1084 * @param pvData Opaque data (PVM pointer).
1085 */
1086static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1087{
1088 NOREF(pvData);
1089 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1090
1091 /*
1092 * We only care about uninitializing a CPU that is going offline. When a
1093 * CPU comes online, the initialization is done lazily in HMR0Enter().
1094 */
1095 switch (enmEvent)
1096 {
1097 case RTMPEVENT_OFFLINE:
1098 {
1099 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1100 RTThreadPreemptDisable(&PreemptState);
1101 if (idCpu == RTMpCpuId())
1102 {
1103 int rc = hmR0DisableCpu(idCpu);
1104 AssertRC(rc);
1105 RTThreadPreemptRestore(&PreemptState);
1106 }
1107 else
1108 {
1109 RTThreadPreemptRestore(&PreemptState);
1110 RTMpOnSpecific(idCpu, hmR0DisableCpuOnSpecificCallback, NULL /* pvUser1 */, NULL /* pvUser2 */);
1111 }
1112 break;
1113 }
1114
1115 default:
1116 break;
1117 }
1118}
1119
1120
1121/**
1122 * Called whenever a system power state change occurs.
1123 *
1124 * @param enmEvent The Power event.
1125 * @param pvUser User argument.
1126 */
1127static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1128{
1129 NOREF(pvUser);
1130 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1131
1132#ifdef LOG_ENABLED
1133 if (enmEvent == RTPOWEREVENT_SUSPEND)
1134 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1135 else
1136 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1137#endif
1138
1139 if (enmEvent == RTPOWEREVENT_SUSPEND)
1140 ASMAtomicWriteBool(&g_HmR0.fSuspended, true);
1141
1142 if (g_HmR0.fEnabled)
1143 {
1144 int rc;
1145 HMR0FIRSTRC FirstRc;
1146 hmR0FirstRcInit(&FirstRc);
1147
1148 if (enmEvent == RTPOWEREVENT_SUSPEND)
1149 {
1150 if (g_HmR0.fGlobalInit)
1151 {
1152 /* Turn off VT-x or AMD-V on all CPUs. */
1153 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
1154 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1155 }
1156 /* else nothing to do here for the local init case */
1157 }
1158 else
1159 {
1160 /* Reinit the CPUs from scratch as the suspend state might have
1161 messed with the MSRs. (lousy BIOSes as usual) */
1162 if (g_HmR0.vmx.fSupported)
1163 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1164 else
1165 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1166 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1167 if (RT_SUCCESS(rc))
1168 rc = hmR0FirstRcGetStatus(&FirstRc);
1169#ifdef LOG_ENABLED
1170 if (RT_FAILURE(rc))
1171 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1172#endif
1173 if (g_HmR0.fGlobalInit)
1174 {
1175 /* Turn VT-x or AMD-V back on on all CPUs. */
1176 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL /* pVM */, &FirstRc /* output ignored */);
1177 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1178 }
1179 /* else nothing to do here for the local init case */
1180 }
1181 }
1182
1183 if (enmEvent == RTPOWEREVENT_RESUME)
1184 ASMAtomicWriteBool(&g_HmR0.fSuspended, false);
1185}
1186
1187
1188/**
1189 * Does ring-0 per-VM HM initialization.
1190 *
1191 * This will copy HM global into the VM structure and call the CPU specific
1192 * init routine which will allocate resources for each virtual CPU and such.
1193 *
1194 * @returns VBox status code.
1195 * @param pVM The cross context VM structure.
1196 *
1197 * @remarks This is called after HMR3Init(), see vmR3CreateU() and
1198 * vmR3InitRing3().
1199 */
1200VMMR0_INT_DECL(int) HMR0InitVM(PVM pVM)
1201{
1202 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1203
1204#ifdef LOG_ENABLED
1205 SUPR0Printf("HMR0InitVM: %p\n", pVM);
1206#endif
1207
1208 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1209 if (ASMAtomicReadBool(&g_HmR0.fSuspended))
1210 return VERR_HM_SUSPEND_PENDING;
1211
1212 /*
1213 * Copy globals to the VM structure.
1214 */
1215 pVM->hm.s.vmx.fSupported = g_HmR0.vmx.fSupported;
1216 pVM->hm.s.svm.fSupported = g_HmR0.svm.fSupported;
1217
1218 pVM->hm.s.vmx.fUsePreemptTimer &= g_HmR0.vmx.fUsePreemptTimer; /* Can be overridden by CFGM. See HMR3Init(). */
1219 pVM->hm.s.vmx.cPreemptTimerShift = g_HmR0.vmx.cPreemptTimerShift;
1220 pVM->hm.s.vmx.u64HostCr4 = g_HmR0.vmx.u64HostCr4;
1221 pVM->hm.s.vmx.u64HostEfer = g_HmR0.vmx.u64HostEfer;
1222 pVM->hm.s.vmx.u64HostSmmMonitorCtl = g_HmR0.vmx.u64HostSmmMonitorCtl;
1223 pVM->hm.s.vmx.Msrs = g_HmR0.vmx.Msrs;
1224 pVM->hm.s.svm.u64MsrHwcr = g_HmR0.svm.u64MsrHwcr;
1225 pVM->hm.s.svm.u32Rev = g_HmR0.svm.u32Rev;
1226 pVM->hm.s.svm.u32Features = g_HmR0.svm.u32Features;
1227 pVM->hm.s.cpuid.u32AMDFeatureECX = g_HmR0.cpuid.u32AMDFeatureECX;
1228 pVM->hm.s.cpuid.u32AMDFeatureEDX = g_HmR0.cpuid.u32AMDFeatureEDX;
1229 pVM->hm.s.lLastError = g_HmR0.lLastError;
1230 pVM->hm.s.uMaxAsid = g_HmR0.uMaxAsid;
1231
1232 if (!pVM->hm.s.cMaxResumeLoops) /* allow ring-3 overrides */
1233 {
1234 pVM->hm.s.cMaxResumeLoops = 1024;
1235 if (RTThreadPreemptIsPendingTrusty())
1236 pVM->hm.s.cMaxResumeLoops = 8192;
1237 }
1238
1239 /*
1240 * Initialize some per-VCPU fields.
1241 */
1242 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1243 {
1244 PVMCPU pVCpu = &pVM->aCpus[i];
1245 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1246 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1247 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu);
1248
1249 /* We'll aways increment this the first time (host uses ASID 0). */
1250 AssertReturn(!pVCpu->hm.s.uCurrentAsid, VERR_HM_IPE_3);
1251 }
1252
1253 pVM->hm.s.fHostKernelFeatures = SUPR0GetKernelFeatures();
1254
1255 /*
1256 * Call the hardware specific initialization method.
1257 */
1258 return g_HmR0.pfnInitVM(pVM);
1259}
1260
1261
1262/**
1263 * Does ring-0 per VM HM termination.
1264 *
1265 * @returns VBox status code.
1266 * @param pVM The cross context VM structure.
1267 */
1268VMMR0_INT_DECL(int) HMR0TermVM(PVM pVM)
1269{
1270 Log(("HMR0TermVM: %p\n", pVM));
1271 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1272
1273 /*
1274 * Call the hardware specific method.
1275 *
1276 * Note! We might be preparing for a suspend, so the pfnTermVM() functions should probably not
1277 * mess with VT-x/AMD-V features on the CPU, currently all they do is free memory so this is safe.
1278 */
1279 return g_HmR0.pfnTermVM(pVM);
1280}
1281
1282
1283/**
1284 * Sets up a VT-x or AMD-V session.
1285 *
1286 * This is mostly about setting up the hardware VM state.
1287 *
1288 * @returns VBox status code.
1289 * @param pVM The cross context VM structure.
1290 */
1291VMMR0_INT_DECL(int) HMR0SetupVM(PVM pVM)
1292{
1293 Log(("HMR0SetupVM: %p\n", pVM));
1294 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1295
1296 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1297 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1298
1299 /* On first entry we'll sync everything. */
1300 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1301 HMCPU_CF_RESET_TO(&pVM->aCpus[i], HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1302
1303 /*
1304 * Call the hardware specific setup VM method. This requires the CPU to be
1305 * enabled for AMD-V/VT-x and preemption to be prevented.
1306 */
1307 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1308 RTThreadPreemptDisable(&PreemptState);
1309 RTCPUID idCpu = RTMpCpuId();
1310
1311 /* Enable VT-x or AMD-V if local init is required. */
1312 int rc;
1313 if (!g_HmR0.fGlobalInit)
1314 {
1315 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1316 rc = hmR0EnableCpu(pVM, idCpu);
1317 if (RT_FAILURE(rc))
1318 {
1319 RTThreadPreemptRestore(&PreemptState);
1320 return rc;
1321 }
1322 }
1323
1324 /* Setup VT-x or AMD-V. */
1325 rc = g_HmR0.pfnSetupVM(pVM);
1326
1327 /* Disable VT-x or AMD-V if local init was done before. */
1328 if (!g_HmR0.fGlobalInit)
1329 {
1330 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1331 int rc2 = hmR0DisableCpu(idCpu);
1332 AssertRC(rc2);
1333 }
1334
1335 RTThreadPreemptRestore(&PreemptState);
1336 return rc;
1337}
1338
1339
1340/**
1341 * Turns on HM on the CPU if necessary and initializes the bare minimum state
1342 * required for entering HM context.
1343 *
1344 * @returns VBox status code.
1345 * @param pVCpu The cross context virtual CPU structure.
1346 *
1347 * @remarks No-long-jump zone!!!
1348 */
1349VMMR0_INT_DECL(int) HMR0EnterCpu(PVMCPU pVCpu)
1350{
1351 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1352
1353 int rc = VINF_SUCCESS;
1354 RTCPUID idCpu = RTMpCpuId();
1355 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1356 AssertPtr(pCpu);
1357
1358 /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */
1359 if (!pCpu->fConfigured)
1360 rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu);
1361
1362 /* Reload host-state (back from ring-3/migrated CPUs) and shared guest/host bits. */
1363 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE);
1364
1365 Assert(pCpu->idCpu == idCpu && pCpu->idCpu != NIL_RTCPUID);
1366 pVCpu->hm.s.idEnteredCpu = idCpu;
1367 return rc;
1368}
1369
1370
1371/**
1372 * Enters the VT-x or AMD-V session.
1373 *
1374 * @returns VBox status code.
1375 * @param pVM The cross context VM structure.
1376 * @param pVCpu The cross context virtual CPU structure.
1377 *
1378 * @remarks This is called with preemption disabled.
1379 */
1380VMMR0_INT_DECL(int) HMR0Enter(PVM pVM, PVMCPU pVCpu)
1381{
1382 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1383 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1384 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1385
1386 /* Load the bare minimum state required for entering HM. */
1387 int rc = HMR0EnterCpu(pVCpu);
1388 AssertRCReturn(rc, rc);
1389
1390#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1391 AssertReturn(!VMMR0ThreadCtxHookIsEnabled(pVCpu), VERR_HM_IPE_5);
1392 bool fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu);
1393#endif
1394
1395 RTCPUID idCpu = RTMpCpuId();
1396 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1397 Assert(pCpu);
1398 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1399
1400 rc = g_HmR0.pfnEnterSession(pVM, pVCpu, pCpu);
1401 AssertMsgRCReturn(rc, ("pfnEnterSession failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1402
1403 /* Load the host-state as we may be resuming code after a longjmp and quite
1404 possibly now be scheduled on a different CPU. */
1405 rc = g_HmR0.pfnSaveHostState(pVM, pVCpu);
1406 AssertMsgRCReturn(rc, ("pfnSaveHostState failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1407
1408#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1409 if (fStartedSet)
1410 PGMRZDynMapReleaseAutoSet(pVCpu);
1411#endif
1412
1413 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness and ring-3 calls. */
1414 if (RT_FAILURE(rc))
1415 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1416 return rc;
1417}
1418
1419
1420/**
1421 * Deinitializes the bare minimum state used for HM context and if necessary
1422 * disable HM on the CPU.
1423 *
1424 * @returns VBox status code.
1425 * @param pVCpu The cross context virtual CPU structure.
1426 *
1427 * @remarks No-long-jump zone!!!
1428 */
1429VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPU pVCpu)
1430{
1431 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1432 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_HM_WRONG_CPU);
1433
1434 RTCPUID idCpu = RTMpCpuId();
1435 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1436
1437 if ( !g_HmR0.fGlobalInit
1438 && pCpu->fConfigured)
1439 {
1440 int rc = hmR0DisableCpu(idCpu);
1441 AssertRCReturn(rc, rc);
1442 Assert(!pCpu->fConfigured);
1443 Assert(pCpu->idCpu == NIL_RTCPUID);
1444
1445 /* For obtaining a non-zero ASID/VPID on next re-entry. */
1446 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1447 }
1448
1449 /* Clear it while leaving HM context, hmPokeCpuForTlbFlush() relies on this. */
1450 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1451
1452 return VINF_SUCCESS;
1453}
1454
1455
1456/**
1457 * Thread-context hook for HM.
1458 *
1459 * @param enmEvent The thread-context event.
1460 * @param pvUser Opaque pointer to the VMCPU.
1461 */
1462VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
1463{
1464 PVMCPU pVCpu = (PVMCPU)pvUser;
1465 Assert(pVCpu);
1466 Assert(g_HmR0.pfnThreadCtxCallback);
1467
1468 g_HmR0.pfnThreadCtxCallback(enmEvent, pVCpu, g_HmR0.fGlobalInit);
1469}
1470
1471
1472/**
1473 * Runs guest code in a hardware accelerated VM.
1474 *
1475 * @returns Strict VBox status code. (VBOXSTRICTRC isn't used because it's
1476 * called from setjmp assembly.)
1477 * @param pVM The cross context VM structure.
1478 * @param pVCpu The cross context virtual CPU structure.
1479 *
1480 * @remarks Can be called with preemption enabled if thread-context hooks are
1481 * used!!!
1482 */
1483VMMR0_INT_DECL(int) HMR0RunGuestCode(PVM pVM, PVMCPU pVCpu)
1484{
1485#ifdef VBOX_STRICT
1486 /* With thread-context hooks we would be running this code with preemption enabled. */
1487 if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
1488 {
1489 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[RTMpCpuId()];
1490 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1491 Assert(pCpu->fConfigured);
1492 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1493 }
1494#endif
1495
1496#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1497 AssertReturn(!VMMR0ThreadCtxHookIsEnabled(pVCpu), VERR_HM_IPE_4);
1498 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1499 PGMRZDynMapStartAutoSet(pVCpu);
1500#endif
1501
1502 VBOXSTRICTRC rcStrict = g_HmR0.pfnRunGuestCode(pVM, pVCpu, CPUMQueryGuestCtxPtr(pVCpu));
1503
1504#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1505 PGMRZDynMapReleaseAutoSet(pVCpu);
1506#endif
1507 return VBOXSTRICTRC_VAL(rcStrict);
1508}
1509
1510
1511/**
1512 * Notification from CPUM that it has unloaded the guest FPU/SSE/AVX state from
1513 * the host CPU and that guest access to it must be intercepted.
1514 *
1515 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1516 */
1517VMMR0_INT_DECL(void) HMR0NotifyCpumUnloadedGuestFpuState(PVMCPU pVCpu)
1518{
1519 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
1520}
1521
1522
1523/**
1524 * Notification from CPUM that it has modified the host CR0 (because of FPU).
1525 *
1526 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1527 */
1528VMMR0_INT_DECL(void) HMR0NotifyCpumModifiedHostCr0(PVMCPU pVCpu)
1529{
1530 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
1531}
1532
1533
1534#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1535
1536/**
1537 * Save guest FPU/XMM state (64 bits guest mode & 32 bits host only)
1538 *
1539 * @returns VBox status code.
1540 * @param pVM The cross context VM structure.
1541 * @param pVCpu The cross context virtual CPU structure.
1542 * @param pCtx Pointer to the guest CPU context.
1543 */
1544VMMR0_INT_DECL(int) HMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1545{
1546 STAM_COUNTER_INC(&pVCpu->hm.s.StatFpu64SwitchBack);
1547 if (pVM->hm.s.vmx.fSupported)
1548 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1549 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1550}
1551
1552
1553/**
1554 * Save guest debug state (64 bits guest mode & 32 bits host only)
1555 *
1556 * @returns VBox status code.
1557 * @param pVM The cross context VM structure.
1558 * @param pVCpu The cross context virtual CPU structure.
1559 * @param pCtx Pointer to the guest CPU context.
1560 */
1561VMMR0_INT_DECL(int) HMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1562{
1563 STAM_COUNTER_INC(&pVCpu->hm.s.StatDebug64SwitchBack);
1564 if (pVM->hm.s.vmx.fSupported)
1565 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1566 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1567}
1568
1569
1570/**
1571 * Test the 32->64 bits switcher.
1572 *
1573 * @returns VBox status code.
1574 * @param pVM The cross context VM structure.
1575 */
1576VMMR0_INT_DECL(int) HMR0TestSwitcher3264(PVM pVM)
1577{
1578 PVMCPU pVCpu = &pVM->aCpus[0];
1579 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1580 uint32_t aParam[5] = {0, 1, 2, 3, 4};
1581 int rc;
1582
1583 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1584 if (pVM->hm.s.vmx.fSupported)
1585 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1586 else
1587 rc = SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1588 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1589
1590 return rc;
1591}
1592
1593#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) */
1594
1595/**
1596 * Returns suspend status of the host.
1597 *
1598 * @returns Suspend pending or not.
1599 */
1600VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
1601{
1602 return ASMAtomicReadBool(&g_HmR0.fSuspended);
1603}
1604
1605
1606/**
1607 * Returns the cpu structure for the current cpu.
1608 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1609 *
1610 * @returns The cpu structure pointer.
1611 */
1612VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpu(void)
1613{
1614 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1615 RTCPUID idCpu = RTMpCpuId();
1616 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
1617 return &g_HmR0.aCpuInfo[idCpu];
1618}
1619
1620
1621/**
1622 * Returns the cpu structure for the current cpu.
1623 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1624 *
1625 * @returns The cpu structure pointer.
1626 * @param idCpu id of the VCPU.
1627 */
1628VMMR0DECL(PHMGLOBALCPUINFO) HMR0GetCurrentCpuEx(RTCPUID idCpu)
1629{
1630 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
1631 return &g_HmR0.aCpuInfo[idCpu];
1632}
1633
1634
1635/**
1636 * Save a pending IO read.
1637 *
1638 * @param pVCpu The cross context virtual CPU structure.
1639 * @param GCPtrRip Address of IO instruction.
1640 * @param GCPtrRipNext Address of the next instruction.
1641 * @param uPort Port address.
1642 * @param uAndVal AND mask for saving the result in eax.
1643 * @param cbSize Read size.
1644 */
1645VMMR0_INT_DECL(void) HMR0SavePendingIOPortRead(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1646 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1647{
1648 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_READ;
1649 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1650 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1651 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1652 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1653 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1654 return;
1655}
1656
1657#ifdef VBOX_WITH_RAW_MODE
1658
1659/**
1660 * Raw-mode switcher hook - disable VT-x if it's active *and* the current
1661 * switcher turns off paging.
1662 *
1663 * @returns VBox status code.
1664 * @param pVM The cross context VM structure.
1665 * @param enmSwitcher The switcher we're about to use.
1666 * @param pfVTxDisabled Where to store whether VT-x was disabled or not.
1667 */
1668VMMR0_INT_DECL(int) HMR0EnterSwitcher(PVM pVM, VMMSWITCHER enmSwitcher, bool *pfVTxDisabled)
1669{
1670 NOREF(pVM);
1671
1672 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1673
1674 *pfVTxDisabled = false;
1675
1676 /* No such issues with AMD-V */
1677 if (!g_HmR0.vmx.fSupported)
1678 return VINF_SUCCESS;
1679
1680 /* Check if the switching we're up to is safe. */
1681 switch (enmSwitcher)
1682 {
1683 case VMMSWITCHER_32_TO_32:
1684 case VMMSWITCHER_PAE_TO_PAE:
1685 return VINF_SUCCESS; /* safe switchers as they don't turn off paging */
1686
1687 case VMMSWITCHER_32_TO_PAE:
1688 case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */
1689 case VMMSWITCHER_AMD64_TO_32:
1690 case VMMSWITCHER_AMD64_TO_PAE:
1691 break; /* unsafe switchers */
1692
1693 default:
1694 AssertFailedReturn(VERR_HM_WRONG_SWITCHER);
1695 }
1696
1697 /* When using SUPR0EnableVTx we must let the host suspend and resume VT-x,
1698 regardless of whether we're currently using VT-x or not. */
1699 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
1700 {
1701 *pfVTxDisabled = SUPR0SuspendVTxOnCpu();
1702 return VINF_SUCCESS;
1703 }
1704
1705 /** @todo Check if this code is presumptive wrt other VT-x users on the
1706 * system... */
1707
1708 /* Nothing to do if we haven't enabled VT-x. */
1709 if (!g_HmR0.fEnabled)
1710 return VINF_SUCCESS;
1711
1712 /* Local init implies the CPU is currently not in VMX root mode. */
1713 if (!g_HmR0.fGlobalInit)
1714 return VINF_SUCCESS;
1715
1716 /* Ok, disable VT-x. */
1717 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1718 AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ && pCpu->pvMemObj && pCpu->HCPhysMemObj != NIL_RTHCPHYS, VERR_HM_IPE_2);
1719
1720 *pfVTxDisabled = true;
1721 return VMXR0DisableCpu(pCpu, pCpu->pvMemObj, pCpu->HCPhysMemObj);
1722}
1723
1724
1725/**
1726 * Raw-mode switcher hook - re-enable VT-x if was active *and* the current
1727 * switcher turned off paging.
1728 *
1729 * @param pVM The cross context VM structure.
1730 * @param fVTxDisabled Whether VT-x was disabled or not.
1731 */
1732VMMR0_INT_DECL(void) HMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled)
1733{
1734 Assert(!ASMIntAreEnabled());
1735
1736 if (!fVTxDisabled)
1737 return; /* nothing to do */
1738
1739 Assert(g_HmR0.vmx.fSupported);
1740 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
1741 SUPR0ResumeVTxOnCpu(fVTxDisabled);
1742 else
1743 {
1744 Assert(g_HmR0.fEnabled);
1745 Assert(g_HmR0.fGlobalInit);
1746
1747 PHMGLOBALCPUINFO pCpu = HMR0GetCurrentCpu();
1748 AssertReturnVoid(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ && pCpu->pvMemObj && pCpu->HCPhysMemObj != NIL_RTHCPHYS);
1749
1750 VMXR0EnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, &g_HmR0.vmx.Msrs);
1751 }
1752}
1753
1754#endif /* VBOX_WITH_RAW_MODE */
1755#ifdef VBOX_STRICT
1756
1757/**
1758 * Dumps a descriptor.
1759 *
1760 * @param pDesc Descriptor to dump.
1761 * @param Sel Selector number.
1762 * @param pszMsg Message to prepend the log entry with.
1763 */
1764VMMR0DECL(void) HMR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg)
1765{
1766 /*
1767 * Make variable description string.
1768 */
1769 static struct
1770 {
1771 unsigned cch;
1772 const char *psz;
1773 } const s_aTypes[32] =
1774 {
1775# define STRENTRY(str) { sizeof(str) - 1, str }
1776
1777 /* system */
1778# if HC_ARCH_BITS == 64
1779 STRENTRY("Reserved0 "), /* 0x00 */
1780 STRENTRY("Reserved1 "), /* 0x01 */
1781 STRENTRY("LDT "), /* 0x02 */
1782 STRENTRY("Reserved3 "), /* 0x03 */
1783 STRENTRY("Reserved4 "), /* 0x04 */
1784 STRENTRY("Reserved5 "), /* 0x05 */
1785 STRENTRY("Reserved6 "), /* 0x06 */
1786 STRENTRY("Reserved7 "), /* 0x07 */
1787 STRENTRY("Reserved8 "), /* 0x08 */
1788 STRENTRY("TSS64Avail "), /* 0x09 */
1789 STRENTRY("ReservedA "), /* 0x0a */
1790 STRENTRY("TSS64Busy "), /* 0x0b */
1791 STRENTRY("Call64 "), /* 0x0c */
1792 STRENTRY("ReservedD "), /* 0x0d */
1793 STRENTRY("Int64 "), /* 0x0e */
1794 STRENTRY("Trap64 "), /* 0x0f */
1795# else
1796 STRENTRY("Reserved0 "), /* 0x00 */
1797 STRENTRY("TSS16Avail "), /* 0x01 */
1798 STRENTRY("LDT "), /* 0x02 */
1799 STRENTRY("TSS16Busy "), /* 0x03 */
1800 STRENTRY("Call16 "), /* 0x04 */
1801 STRENTRY("Task "), /* 0x05 */
1802 STRENTRY("Int16 "), /* 0x06 */
1803 STRENTRY("Trap16 "), /* 0x07 */
1804 STRENTRY("Reserved8 "), /* 0x08 */
1805 STRENTRY("TSS32Avail "), /* 0x09 */
1806 STRENTRY("ReservedA "), /* 0x0a */
1807 STRENTRY("TSS32Busy "), /* 0x0b */
1808 STRENTRY("Call32 "), /* 0x0c */
1809 STRENTRY("ReservedD "), /* 0x0d */
1810 STRENTRY("Int32 "), /* 0x0e */
1811 STRENTRY("Trap32 "), /* 0x0f */
1812# endif
1813 /* non system */
1814 STRENTRY("DataRO "), /* 0x10 */
1815 STRENTRY("DataRO Accessed "), /* 0x11 */
1816 STRENTRY("DataRW "), /* 0x12 */
1817 STRENTRY("DataRW Accessed "), /* 0x13 */
1818 STRENTRY("DataDownRO "), /* 0x14 */
1819 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1820 STRENTRY("DataDownRW "), /* 0x16 */
1821 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1822 STRENTRY("CodeEO "), /* 0x18 */
1823 STRENTRY("CodeEO Accessed "), /* 0x19 */
1824 STRENTRY("CodeER "), /* 0x1a */
1825 STRENTRY("CodeER Accessed "), /* 0x1b */
1826 STRENTRY("CodeConfEO "), /* 0x1c */
1827 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1828 STRENTRY("CodeConfER "), /* 0x1e */
1829 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1830# undef SYSENTRY
1831 };
1832# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1833 char szMsg[128];
1834 char *psz = &szMsg[0];
1835 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1836 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1837 psz += s_aTypes[i].cch;
1838
1839 if (pDesc->Gen.u1Present)
1840 ADD_STR(psz, "Present ");
1841 else
1842 ADD_STR(psz, "Not-Present ");
1843# if HC_ARCH_BITS == 64
1844 if (pDesc->Gen.u1Long)
1845 ADD_STR(psz, "64-bit ");
1846 else
1847 ADD_STR(psz, "Comp ");
1848# else
1849 if (pDesc->Gen.u1Granularity)
1850 ADD_STR(psz, "Page ");
1851 if (pDesc->Gen.u1DefBig)
1852 ADD_STR(psz, "32-bit ");
1853 else
1854 ADD_STR(psz, "16-bit ");
1855# endif
1856# undef ADD_STR
1857 *psz = '\0';
1858
1859 /*
1860 * Limit and Base and format the output.
1861 */
1862#ifdef LOG_ENABLED
1863 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1864
1865# if HC_ARCH_BITS == 64
1866 uint64_t u32Base = X86DESC64_BASE(pDesc);
1867 Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg,
1868 Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1869# else
1870 uint32_t u32Base = X86DESC_BASE(pDesc);
1871 Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg,
1872 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1873# endif
1874#else
1875 NOREF(Sel); NOREF(pszMsg);
1876#endif
1877}
1878
1879
1880/**
1881 * Formats a full register dump.
1882 *
1883 * @param pVM The cross context VM structure.
1884 * @param pVCpu The cross context virtual CPU structure.
1885 * @param pCtx Pointer to the CPU context.
1886 */
1887VMMR0DECL(void) HMDumpRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1888{
1889 NOREF(pVM);
1890
1891 /*
1892 * Format the flags.
1893 */
1894 static struct
1895 {
1896 const char *pszSet; const char *pszClear; uint32_t fFlag;
1897 } const s_aFlags[] =
1898 {
1899 { "vip", NULL, X86_EFL_VIP },
1900 { "vif", NULL, X86_EFL_VIF },
1901 { "ac", NULL, X86_EFL_AC },
1902 { "vm", NULL, X86_EFL_VM },
1903 { "rf", NULL, X86_EFL_RF },
1904 { "nt", NULL, X86_EFL_NT },
1905 { "ov", "nv", X86_EFL_OF },
1906 { "dn", "up", X86_EFL_DF },
1907 { "ei", "di", X86_EFL_IF },
1908 { "tf", NULL, X86_EFL_TF },
1909 { "nt", "pl", X86_EFL_SF },
1910 { "nz", "zr", X86_EFL_ZF },
1911 { "ac", "na", X86_EFL_AF },
1912 { "po", "pe", X86_EFL_PF },
1913 { "cy", "nc", X86_EFL_CF },
1914 };
1915 char szEFlags[80];
1916 char *psz = szEFlags;
1917 uint32_t uEFlags = pCtx->eflags.u32;
1918 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1919 {
1920 const char *pszAdd = s_aFlags[i].fFlag & uEFlags ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1921 if (pszAdd)
1922 {
1923 strcpy(psz, pszAdd);
1924 psz += strlen(pszAdd);
1925 *psz++ = ' ';
1926 }
1927 }
1928 psz[-1] = '\0';
1929
1930
1931 /*
1932 * Format the registers.
1933 */
1934 if (CPUMIsGuestIn64BitCode(pVCpu))
1935 {
1936 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
1937 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
1938 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1939 "r14=%016RX64 r15=%016RX64\n"
1940 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
1941 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1942 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1943 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1944 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1945 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1946 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1947 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
1948 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
1949 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1950 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1951 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1952 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1953 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1954 ,
1955 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
1956 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
1957 pCtx->r14, pCtx->r15,
1958 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1959 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1960 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1961 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
1962 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
1963 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
1964 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
1965 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
1966 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
1967 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
1968 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1969 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1970 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1971 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1972 }
1973 else
1974 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
1975 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
1976 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
1977 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
1978 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
1979 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
1980 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
1981 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
1982 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1983 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1984 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1985 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1986 ,
1987 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
1988 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1989 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
1990 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
1991 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
1992 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
1993 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
1994 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
1995 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1996 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1997 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1998 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1999
2000 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
2001 Log(("FPU:\n"
2002 "FCW=%04x FSW=%04x FTW=%02x\n"
2003 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
2004 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
2005 ,
2006 pFpuCtx->FCW, pFpuCtx->FSW, pFpuCtx->FTW,
2007 pFpuCtx->FOP, pFpuCtx->FPUIP, pFpuCtx->CS, pFpuCtx->Rsrvd1,
2008 pFpuCtx->FPUDP, pFpuCtx->DS, pFpuCtx->Rsrvd2,
2009 pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK));
2010
2011 Log(("MSR:\n"
2012 "EFER =%016RX64\n"
2013 "PAT =%016RX64\n"
2014 "STAR =%016RX64\n"
2015 "CSTAR =%016RX64\n"
2016 "LSTAR =%016RX64\n"
2017 "SFMASK =%016RX64\n"
2018 "KERNELGSBASE =%016RX64\n",
2019 pCtx->msrEFER,
2020 pCtx->msrPAT,
2021 pCtx->msrSTAR,
2022 pCtx->msrCSTAR,
2023 pCtx->msrLSTAR,
2024 pCtx->msrSFMASK,
2025 pCtx->msrKERNELGSBASE));
2026
2027 NOREF(pFpuCtx);
2028}
2029
2030#endif /* VBOX_STRICT */
2031
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette