VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp@ 70314

Last change on this file since 70314 was 69111, checked in by vboxsync, 7 years ago

(C) year

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 72.2 KB
Line 
1/* $Id: HMR0.cpp 69111 2017-10-17 14:26:02Z vboxsync $ */
2/** @file
3 * Hardware Assisted Virtualization Manager (HM) - Host Context Ring-0.
4 */
5
6/*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_HM
23#include <VBox/vmm/hm.h>
24#include <VBox/vmm/pgm.h>
25#include "HMInternal.h"
26#include <VBox/vmm/vm.h>
27#include <VBox/vmm/hm_vmx.h>
28#include <VBox/vmm/hm_svm.h>
29#include <VBox/vmm/gim.h>
30#include <VBox/err.h>
31#include <VBox/log.h>
32#include <iprt/assert.h>
33#include <iprt/asm.h>
34#include <iprt/asm-amd64-x86.h>
35#include <iprt/cpuset.h>
36#include <iprt/mem.h>
37#include <iprt/memobj.h>
38#include <iprt/once.h>
39#include <iprt/param.h>
40#include <iprt/power.h>
41#include <iprt/string.h>
42#include <iprt/thread.h>
43#include <iprt/x86.h>
44#include "HMVMXR0.h"
45#include "HMSVMR0.h"
46
47
48/*********************************************************************************************************************************
49* Internal Functions *
50*********************************************************************************************************************************/
51static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
52static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2);
53static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
54static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2);
55static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser);
56static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData);
57
58
59/*********************************************************************************************************************************
60* Structures and Typedefs *
61*********************************************************************************************************************************/
62/**
63 * This is used to manage the status code of a RTMpOnAll in HM.
64 */
65typedef struct HMR0FIRSTRC
66{
67 /** The status code. */
68 int32_t volatile rc;
69 /** The ID of the CPU reporting the first failure. */
70 RTCPUID volatile idCpu;
71} HMR0FIRSTRC;
72/** Pointer to a first return code structure. */
73typedef HMR0FIRSTRC *PHMR0FIRSTRC;
74
75
76/*********************************************************************************************************************************
77* Global Variables *
78*********************************************************************************************************************************/
79/**
80 * Global data.
81 */
82static struct
83{
84 /** Per CPU globals. */
85 HMGLOBALCPUINFO aCpuInfo[RTCPUSET_MAX_CPUS];
86
87 /** @name Ring-0 method table for AMD-V and VT-x specific operations.
88 * @{ */
89 DECLR0CALLBACKMEMBER(int, pfnEnterSession, (PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu));
90 DECLR0CALLBACKMEMBER(void, pfnThreadCtxCallback, (RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit));
91 DECLR0CALLBACKMEMBER(int, pfnSaveHostState, (PVM pVM, PVMCPU pVCpu));
92 DECLR0CALLBACKMEMBER(VBOXSTRICTRC, pfnRunGuestCode, (PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx));
93 DECLR0CALLBACKMEMBER(int, pfnEnableCpu, (PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
94 bool fEnabledByHost, void *pvArg));
95 DECLR0CALLBACKMEMBER(int, pfnDisableCpu, (PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage));
96 DECLR0CALLBACKMEMBER(int, pfnInitVM, (PVM pVM));
97 DECLR0CALLBACKMEMBER(int, pfnTermVM, (PVM pVM));
98 DECLR0CALLBACKMEMBER(int, pfnSetupVM ,(PVM pVM));
99 /** @} */
100
101 /** Maximum ASID allowed. */
102 uint32_t uMaxAsid;
103
104 /** VT-x data. */
105 struct
106 {
107 /** Set to by us to indicate VMX is supported by the CPU. */
108 bool fSupported;
109 /** Whether we're using SUPR0EnableVTx or not. */
110 bool fUsingSUPR0EnableVTx;
111 /** Whether we're using the preemption timer or not. */
112 bool fUsePreemptTimer;
113 /** The shift mask employed by the VMX-Preemption timer. */
114 uint8_t cPreemptTimerShift;
115
116 /** Host CR4 value (set by ring-0 VMX init) */
117 uint64_t u64HostCr4;
118
119 /** Host EFER value (set by ring-0 VMX init) */
120 uint64_t u64HostEfer;
121
122 /** Host SMM monitor control (used for logging/diagnostics) */
123 uint64_t u64HostSmmMonitorCtl;
124
125 /** VMX MSR values */
126 VMXMSRS Msrs;
127
128 /** Last instruction error. */
129 uint32_t ulLastInstrError;
130
131 /** Set if we've called SUPR0EnableVTx(true) and should disable it during
132 * module termination. */
133 bool fCalledSUPR0EnableVTx;
134 } vmx;
135
136 /** AMD-V information. */
137 struct
138 {
139 /* HWCR MSR (for diagnostics) */
140 uint64_t u64MsrHwcr;
141
142 /** SVM revision. */
143 uint32_t u32Rev;
144
145 /** SVM feature bits from cpuid 0x8000000a */
146 uint32_t u32Features;
147
148 /** Set by us to indicate SVM is supported by the CPU. */
149 bool fSupported;
150 } svm;
151 /** Saved error from detection */
152 int32_t lLastError;
153
154 /** CPUID 0x80000001 ecx:edx features */
155 struct
156 {
157 uint32_t u32AMDFeatureECX;
158 uint32_t u32AMDFeatureEDX;
159 } cpuid;
160
161 /** If set, VT-x/AMD-V is enabled globally at init time, otherwise it's
162 * enabled and disabled each time it's used to execute guest code. */
163 bool fGlobalInit;
164 /** Indicates whether the host is suspending or not. We'll refuse a few
165 * actions when the host is being suspended to speed up the suspending and
166 * avoid trouble. */
167 volatile bool fSuspended;
168
169 /** Whether we've already initialized all CPUs.
170 * @remarks We could check the EnableAllCpusOnce state, but this is
171 * simpler and hopefully easier to understand. */
172 bool fEnabled;
173 /** Serialize initialization in HMR0EnableAllCpus. */
174 RTONCE EnableAllCpusOnce;
175} g_HmR0;
176
177
178
179/**
180 * Initializes a first return code structure.
181 *
182 * @param pFirstRc The structure to init.
183 */
184static void hmR0FirstRcInit(PHMR0FIRSTRC pFirstRc)
185{
186 pFirstRc->rc = VINF_SUCCESS;
187 pFirstRc->idCpu = NIL_RTCPUID;
188}
189
190
191/**
192 * Try set the status code (success ignored).
193 *
194 * @param pFirstRc The first return code structure.
195 * @param rc The status code.
196 */
197static void hmR0FirstRcSetStatus(PHMR0FIRSTRC pFirstRc, int rc)
198{
199 if ( RT_FAILURE(rc)
200 && ASMAtomicCmpXchgS32(&pFirstRc->rc, rc, VINF_SUCCESS))
201 pFirstRc->idCpu = RTMpCpuId();
202}
203
204
205/**
206 * Get the status code of a first return code structure.
207 *
208 * @returns The status code; VINF_SUCCESS or error status, no informational or
209 * warning errors.
210 * @param pFirstRc The first return code structure.
211 */
212static int hmR0FirstRcGetStatus(PHMR0FIRSTRC pFirstRc)
213{
214 return pFirstRc->rc;
215}
216
217
218#ifdef VBOX_STRICT
219# ifndef DEBUG_bird
220/**
221 * Get the CPU ID on which the failure status code was reported.
222 *
223 * @returns The CPU ID, NIL_RTCPUID if no failure was reported.
224 * @param pFirstRc The first return code structure.
225 */
226static RTCPUID hmR0FirstRcGetCpuId(PHMR0FIRSTRC pFirstRc)
227{
228 return pFirstRc->idCpu;
229}
230# endif
231#endif /* VBOX_STRICT */
232
233
234/** @name Dummy callback handlers.
235 * @{ */
236
237static DECLCALLBACK(int) hmR0DummyEnter(PVM pVM, PVMCPU pVCpu, PHMGLOBALCPUINFO pCpu)
238{
239 NOREF(pVM); NOREF(pVCpu); NOREF(pCpu);
240 return VINF_SUCCESS;
241}
242
243static DECLCALLBACK(void) hmR0DummyThreadCtxCallback(RTTHREADCTXEVENT enmEvent, PVMCPU pVCpu, bool fGlobalInit)
244{
245 NOREF(enmEvent); NOREF(pVCpu); NOREF(fGlobalInit);
246}
247
248static DECLCALLBACK(int) hmR0DummyEnableCpu(PHMGLOBALCPUINFO pCpu, PVM pVM, void *pvCpuPage, RTHCPHYS HCPhysCpuPage,
249 bool fEnabledBySystem, void *pvArg)
250{
251 NOREF(pCpu); NOREF(pVM); NOREF(pvCpuPage); NOREF(HCPhysCpuPage); NOREF(fEnabledBySystem); NOREF(pvArg);
252 return VINF_SUCCESS;
253}
254
255static DECLCALLBACK(int) hmR0DummyDisableCpu(PHMGLOBALCPUINFO pCpu, void *pvCpuPage, RTHCPHYS HCPhysCpuPage)
256{
257 NOREF(pCpu); NOREF(pvCpuPage); NOREF(HCPhysCpuPage);
258 return VINF_SUCCESS;
259}
260
261static DECLCALLBACK(int) hmR0DummyInitVM(PVM pVM)
262{
263 NOREF(pVM);
264 return VINF_SUCCESS;
265}
266
267static DECLCALLBACK(int) hmR0DummyTermVM(PVM pVM)
268{
269 NOREF(pVM);
270 return VINF_SUCCESS;
271}
272
273static DECLCALLBACK(int) hmR0DummySetupVM(PVM pVM)
274{
275 NOREF(pVM);
276 return VINF_SUCCESS;
277}
278
279static DECLCALLBACK(VBOXSTRICTRC) hmR0DummyRunGuestCode(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
280{
281 NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
282 return VINF_SUCCESS;
283}
284
285static DECLCALLBACK(int) hmR0DummySaveHostState(PVM pVM, PVMCPU pVCpu)
286{
287 NOREF(pVM); NOREF(pVCpu);
288 return VINF_SUCCESS;
289}
290
291/** @} */
292
293
294/**
295 * Checks if the CPU is subject to the "VMX-Preemption Timer Does Not Count
296 * Down at the Rate Specified" erratum.
297 *
298 * Errata names and related steppings:
299 * - BA86 - D0.
300 * - AAX65 - C2.
301 * - AAU65 - C2, K0.
302 * - AAO95 - B1.
303 * - AAT59 - C2.
304 * - AAK139 - D0.
305 * - AAM126 - C0, C1, D0.
306 * - AAN92 - B1.
307 * - AAJ124 - C0, D0.
308 *
309 * - AAP86 - B1.
310 *
311 * Steppings: B1, C0, C1, C2, D0, K0.
312 *
313 * @returns true if subject to it, false if not.
314 */
315static bool hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum(void)
316{
317 uint32_t u = ASMCpuId_EAX(1);
318 u &= ~(RT_BIT_32(14) | RT_BIT_32(15) | RT_BIT_32(28) | RT_BIT_32(29) | RT_BIT_32(30) | RT_BIT_32(31));
319 if ( u == UINT32_C(0x000206E6) /* 323344.pdf - BA86 - D0 - Intel Xeon Processor 7500 Series */
320 || u == UINT32_C(0x00020652) /* 323056.pdf - AAX65 - C2 - Intel Xeon Processor L3406 */
321 || u == UINT32_C(0x00020652) /* 322814.pdf - AAT59 - C2 - Intel CoreTM i7-600, i5-500, i5-400 and i3-300 Mobile Processor Series */
322 || u == UINT32_C(0x00020652) /* 322911.pdf - AAU65 - C2 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
323 || u == UINT32_C(0x00020655) /* 322911.pdf - AAU65 - K0 - Intel CoreTM i5-600, i3-500 Desktop Processor Series and Intel Pentium Processor G6950 */
324 || u == UINT32_C(0x000106E5) /* 322373.pdf - AAO95 - B1 - Intel Xeon Processor 3400 Series */
325 || u == UINT32_C(0x000106E5) /* 322166.pdf - AAN92 - B1 - Intel CoreTM i7-800 and i5-700 Desktop Processor Series */
326 || u == UINT32_C(0x000106E5) /* 320767.pdf - AAP86 - B1 - Intel Core i7-900 Mobile Processor Extreme Edition Series, Intel Core i7-800 and i7-700 Mobile Processor Series */
327 || u == UINT32_C(0x000106A0) /* 321333.pdf - AAM126 - C0 - Intel Xeon Processor 3500 Series Specification */
328 || u == UINT32_C(0x000106A1) /* 321333.pdf - AAM126 - C1 - Intel Xeon Processor 3500 Series Specification */
329 || u == UINT32_C(0x000106A4) /* 320836.pdf - AAJ124 - C0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
330 || u == UINT32_C(0x000106A5) /* 321333.pdf - AAM126 - D0 - Intel Xeon Processor 3500 Series Specification */
331 || u == UINT32_C(0x000106A5) /* 321324.pdf - AAK139 - D0 - Intel Xeon Processor 5500 Series Specification */
332 || u == UINT32_C(0x000106A5) /* 320836.pdf - AAJ124 - D0 - Intel Core i7-900 Desktop Processor Extreme Edition Series and Intel Core i7-900 Desktop Processor Series */
333 )
334 return true;
335 return false;
336}
337
338
339/**
340 * Intel specific initialization code.
341 *
342 * @returns VBox status code (will only fail if out of memory).
343 */
344static int hmR0InitIntel(uint32_t u32FeaturesECX, uint32_t u32FeaturesEDX)
345{
346 /*
347 * Check that all the required VT-x features are present.
348 * We also assume all VT-x-enabled CPUs support fxsave/fxrstor.
349 */
350 if ( (u32FeaturesECX & X86_CPUID_FEATURE_ECX_VMX)
351 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
352 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
353 )
354 {
355 /* Read this MSR now as it may be useful for error reporting when initializing VT-x fails. */
356 g_HmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
357
358 /*
359 * First try use native kernel API for controlling VT-x.
360 * (This is only supported by some Mac OS X kernels atm.)
361 */
362 int rc = g_HmR0.lLastError = SUPR0EnableVTx(true /* fEnable */);
363 g_HmR0.vmx.fUsingSUPR0EnableVTx = rc != VERR_NOT_SUPPORTED;
364 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
365 {
366 AssertLogRelMsg(rc == VINF_SUCCESS || rc == VERR_VMX_IN_VMX_ROOT_MODE || rc == VERR_VMX_NO_VMX, ("%Rrc\n", rc));
367 if (RT_SUCCESS(rc))
368 {
369 g_HmR0.vmx.fSupported = true;
370 rc = SUPR0EnableVTx(false /* fEnable */);
371 AssertLogRelRC(rc);
372 }
373 }
374 else
375 {
376 HMR0FIRSTRC FirstRc;
377 hmR0FirstRcInit(&FirstRc);
378 g_HmR0.lLastError = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
379 if (RT_SUCCESS(g_HmR0.lLastError))
380 g_HmR0.lLastError = hmR0FirstRcGetStatus(&FirstRc);
381 }
382 if (RT_SUCCESS(g_HmR0.lLastError))
383 {
384 /* Reread in case it was changed by SUPR0GetVmxUsability(). */
385 g_HmR0.vmx.Msrs.u64FeatureCtrl = ASMRdMsr(MSR_IA32_FEATURE_CONTROL);
386
387 /*
388 * Read all relevant registers and MSRs.
389 */
390 g_HmR0.vmx.u64HostCr4 = ASMGetCR4();
391 g_HmR0.vmx.u64HostEfer = ASMRdMsr(MSR_K6_EFER);
392 g_HmR0.vmx.Msrs.u64BasicInfo = ASMRdMsr(MSR_IA32_VMX_BASIC_INFO);
393 /* KVM workaround: Intel SDM section 34.15.5 describes that MSR_IA32_SMM_MONITOR_CTL
394 * depends on bit 49 of MSR_IA32_VMX_BASIC_INFO while table 35-2 says that this MSR
395 * is available if either VMX or SMX is supported. */
396 if (MSR_IA32_VMX_BASIC_INFO_VMCS_DUAL_MON(g_HmR0.vmx.Msrs.u64BasicInfo))
397 g_HmR0.vmx.u64HostSmmMonitorCtl = ASMRdMsr(MSR_IA32_SMM_MONITOR_CTL);
398 g_HmR0.vmx.Msrs.VmxPinCtls.u = ASMRdMsr(MSR_IA32_VMX_PINBASED_CTLS);
399 g_HmR0.vmx.Msrs.VmxProcCtls.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS);
400 g_HmR0.vmx.Msrs.VmxExit.u = ASMRdMsr(MSR_IA32_VMX_EXIT_CTLS);
401 g_HmR0.vmx.Msrs.VmxEntry.u = ASMRdMsr(MSR_IA32_VMX_ENTRY_CTLS);
402 g_HmR0.vmx.Msrs.u64Misc = ASMRdMsr(MSR_IA32_VMX_MISC);
403 g_HmR0.vmx.Msrs.u64Cr0Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED0);
404 g_HmR0.vmx.Msrs.u64Cr0Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR0_FIXED1);
405 g_HmR0.vmx.Msrs.u64Cr4Fixed0 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED0);
406 g_HmR0.vmx.Msrs.u64Cr4Fixed1 = ASMRdMsr(MSR_IA32_VMX_CR4_FIXED1);
407 g_HmR0.vmx.Msrs.u64VmcsEnum = ASMRdMsr(MSR_IA32_VMX_VMCS_ENUM);
408 /* VPID 16 bits ASID. */
409 g_HmR0.uMaxAsid = 0x10000; /* exclusive */
410
411 if (g_HmR0.vmx.Msrs.VmxProcCtls.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC_USE_SECONDARY_EXEC_CTRL)
412 {
413 g_HmR0.vmx.Msrs.VmxProcCtls2.u = ASMRdMsr(MSR_IA32_VMX_PROCBASED_CTLS2);
414 if (g_HmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & (VMX_VMCS_CTRL_PROC_EXEC2_EPT | VMX_VMCS_CTRL_PROC_EXEC2_VPID))
415 g_HmR0.vmx.Msrs.u64EptVpidCaps = ASMRdMsr(MSR_IA32_VMX_EPT_VPID_CAP);
416
417 if (g_HmR0.vmx.Msrs.VmxProcCtls2.n.allowed1 & VMX_VMCS_CTRL_PROC_EXEC2_VMFUNC)
418 g_HmR0.vmx.Msrs.u64Vmfunc = ASMRdMsr(MSR_IA32_VMX_VMFUNC);
419 }
420
421 if (!g_HmR0.vmx.fUsingSUPR0EnableVTx)
422 {
423 /*
424 * Enter root mode
425 */
426 RTR0MEMOBJ hScatchMemObj;
427 rc = RTR0MemObjAllocCont(&hScatchMemObj, PAGE_SIZE, false /* fExecutable */);
428 if (RT_FAILURE(rc))
429 {
430 LogRel(("hmR0InitIntel: RTR0MemObjAllocCont(,PAGE_SIZE,false) -> %Rrc\n", rc));
431 return rc;
432 }
433
434 void *pvScatchPage = RTR0MemObjAddress(hScatchMemObj);
435 RTHCPHYS HCPhysScratchPage = RTR0MemObjGetPagePhysAddr(hScatchMemObj, 0);
436 ASMMemZeroPage(pvScatchPage);
437
438 /* Set revision dword at the beginning of the structure. */
439 *(uint32_t *)pvScatchPage = MSR_IA32_VMX_BASIC_INFO_VMCS_ID(g_HmR0.vmx.Msrs.u64BasicInfo);
440
441 /* Make sure we don't get rescheduled to another cpu during this probe. */
442 RTCCUINTREG fFlags = ASMIntDisableFlags();
443
444 /*
445 * Check CR4.VMXE
446 */
447 g_HmR0.vmx.u64HostCr4 = ASMGetCR4();
448 if (!(g_HmR0.vmx.u64HostCr4 & X86_CR4_VMXE))
449 {
450 /* In theory this bit could be cleared behind our back. Which would cause
451 #UD faults when we try to execute the VMX instructions... */
452 ASMSetCR4(g_HmR0.vmx.u64HostCr4 | X86_CR4_VMXE);
453 }
454
455 /*
456 * The only way of checking if we're in VMX root mode or not is to try and enter it.
457 * There is no instruction or control bit that tells us if we're in VMX root mode.
458 * Therefore, try and enter VMX root mode here.
459 */
460 rc = VMXEnable(HCPhysScratchPage);
461 if (RT_SUCCESS(rc))
462 {
463 g_HmR0.vmx.fSupported = true;
464 VMXDisable();
465 }
466 else
467 {
468 /*
469 * KVM leaves the CPU in VMX root mode. Not only is this not allowed,
470 * it will crash the host when we enter raw mode, because:
471 *
472 * (a) clearing X86_CR4_VMXE in CR4 causes a #GP (we no longer modify
473 * this bit), and
474 * (b) turning off paging causes a #GP (unavoidable when switching
475 * from long to 32 bits mode or 32 bits to PAE).
476 *
477 * They should fix their code, but until they do we simply refuse to run.
478 */
479 g_HmR0.lLastError = VERR_VMX_IN_VMX_ROOT_MODE;
480 Assert(g_HmR0.vmx.fSupported == false);
481 }
482
483 /* Restore CR4 again; don't leave the X86_CR4_VMXE flag set
484 if it wasn't so before (some software could incorrectly
485 think it's in VMX mode). */
486 ASMSetCR4(g_HmR0.vmx.u64HostCr4);
487 ASMSetFlags(fFlags);
488
489 RTR0MemObjFree(hScatchMemObj, false);
490 }
491
492 if (g_HmR0.vmx.fSupported)
493 {
494 rc = VMXR0GlobalInit();
495 if (RT_FAILURE(rc))
496 g_HmR0.lLastError = rc;
497
498 /*
499 * Install the VT-x methods.
500 */
501 g_HmR0.pfnEnterSession = VMXR0Enter;
502 g_HmR0.pfnThreadCtxCallback = VMXR0ThreadCtxCallback;
503 g_HmR0.pfnSaveHostState = VMXR0SaveHostState;
504 g_HmR0.pfnRunGuestCode = VMXR0RunGuestCode;
505 g_HmR0.pfnEnableCpu = VMXR0EnableCpu;
506 g_HmR0.pfnDisableCpu = VMXR0DisableCpu;
507 g_HmR0.pfnInitVM = VMXR0InitVM;
508 g_HmR0.pfnTermVM = VMXR0TermVM;
509 g_HmR0.pfnSetupVM = VMXR0SetupVM;
510
511 /*
512 * Check for the VMX-Preemption Timer and adjust for the "VMX-Preemption
513 * Timer Does Not Count Down at the Rate Specified" erratum.
514 */
515 if (g_HmR0.vmx.Msrs.VmxPinCtls.n.allowed1 & VMX_VMCS_CTRL_PIN_EXEC_PREEMPT_TIMER)
516 {
517 g_HmR0.vmx.fUsePreemptTimer = true;
518 g_HmR0.vmx.cPreemptTimerShift = MSR_IA32_VMX_MISC_PREEMPT_TSC_BIT(g_HmR0.vmx.Msrs.u64Misc);
519 if (hmR0InitIntelIsSubjectToVmxPreemptionTimerErratum())
520 g_HmR0.vmx.cPreemptTimerShift = 0; /* This is about right most of the time here. */
521 }
522 }
523 }
524#ifdef LOG_ENABLED
525 else
526 SUPR0Printf("hmR0InitIntelCpu failed with rc=%d\n", g_HmR0.lLastError);
527#endif
528 }
529 else
530 g_HmR0.lLastError = VERR_VMX_NO_VMX;
531 return VINF_SUCCESS;
532}
533
534
535/**
536 * AMD-specific initialization code.
537 *
538 * @returns VBox status code.
539 */
540static int hmR0InitAmd(uint32_t u32FeaturesEDX, uint32_t uMaxExtLeaf)
541{
542 /*
543 * Read all SVM MSRs if SVM is available. (same goes for RDMSR/WRMSR)
544 * We also assume all SVM-enabled CPUs support fxsave/fxrstor.
545 */
546 int rc;
547 if ( (g_HmR0.cpuid.u32AMDFeatureECX & X86_CPUID_AMD_FEATURE_ECX_SVM)
548 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_MSR)
549 && (u32FeaturesEDX & X86_CPUID_FEATURE_EDX_FXSR)
550 && ASMIsValidExtRange(uMaxExtLeaf)
551 && uMaxExtLeaf >= 0x8000000a
552 )
553 {
554 /* Call the global AMD-V initialization routine. */
555 rc = SVMR0GlobalInit();
556 if (RT_FAILURE(rc))
557 {
558 g_HmR0.lLastError = rc;
559 return rc;
560 }
561
562 /*
563 * Install the AMD-V methods.
564 */
565 g_HmR0.pfnEnterSession = SVMR0Enter;
566 g_HmR0.pfnThreadCtxCallback = SVMR0ThreadCtxCallback;
567 g_HmR0.pfnSaveHostState = SVMR0SaveHostState;
568 g_HmR0.pfnRunGuestCode = SVMR0RunGuestCode;
569 g_HmR0.pfnEnableCpu = SVMR0EnableCpu;
570 g_HmR0.pfnDisableCpu = SVMR0DisableCpu;
571 g_HmR0.pfnInitVM = SVMR0InitVM;
572 g_HmR0.pfnTermVM = SVMR0TermVM;
573 g_HmR0.pfnSetupVM = SVMR0SetupVM;
574
575 /* Query AMD features. */
576 uint32_t u32Dummy;
577 ASMCpuId(0x8000000a, &g_HmR0.svm.u32Rev, &g_HmR0.uMaxAsid, &u32Dummy, &g_HmR0.svm.u32Features);
578
579 /*
580 * We need to check if AMD-V has been properly initialized on all CPUs.
581 * Some BIOSes might do a poor job.
582 */
583 HMR0FIRSTRC FirstRc;
584 hmR0FirstRcInit(&FirstRc);
585 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
586 AssertRC(rc);
587 if (RT_SUCCESS(rc))
588 rc = hmR0FirstRcGetStatus(&FirstRc);
589#ifndef DEBUG_bird
590 AssertMsg(rc == VINF_SUCCESS || rc == VERR_SVM_IN_USE,
591 ("hmR0InitAmdCpu failed for cpu %d with rc=%Rrc\n", hmR0FirstRcGetCpuId(&FirstRc), rc));
592#endif
593 if (RT_SUCCESS(rc))
594 {
595 /* Read the HWCR MSR for diagnostics. */
596 g_HmR0.svm.u64MsrHwcr = ASMRdMsr(MSR_K8_HWCR);
597 g_HmR0.svm.fSupported = true;
598 }
599 else
600 {
601 g_HmR0.lLastError = rc;
602 if (rc == VERR_SVM_DISABLED || rc == VERR_SVM_IN_USE)
603 rc = VINF_SUCCESS; /* Don't fail if AMD-V is disabled or in use. */
604 }
605 }
606 else
607 {
608 rc = VINF_SUCCESS; /* Don't fail if AMD-V is not supported. See @bugref{6785}. */
609 g_HmR0.lLastError = VERR_SVM_NO_SVM;
610 }
611 return rc;
612}
613
614
615/**
616 * Does global Ring-0 HM initialization (at module init).
617 *
618 * @returns VBox status code.
619 */
620VMMR0_INT_DECL(int) HMR0Init(void)
621{
622 /*
623 * Initialize the globals.
624 */
625 g_HmR0.fEnabled = false;
626 static RTONCE s_OnceInit = RTONCE_INITIALIZER;
627 g_HmR0.EnableAllCpusOnce = s_OnceInit;
628 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
629 {
630 g_HmR0.aCpuInfo[i].idCpu = NIL_RTCPUID;
631 g_HmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
632 g_HmR0.aCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
633 g_HmR0.aCpuInfo[i].pvMemObj = NULL;
634 }
635
636 /* Fill in all callbacks with placeholders. */
637 g_HmR0.pfnEnterSession = hmR0DummyEnter;
638 g_HmR0.pfnThreadCtxCallback = hmR0DummyThreadCtxCallback;
639 g_HmR0.pfnSaveHostState = hmR0DummySaveHostState;
640 g_HmR0.pfnRunGuestCode = hmR0DummyRunGuestCode;
641 g_HmR0.pfnEnableCpu = hmR0DummyEnableCpu;
642 g_HmR0.pfnDisableCpu = hmR0DummyDisableCpu;
643 g_HmR0.pfnInitVM = hmR0DummyInitVM;
644 g_HmR0.pfnTermVM = hmR0DummyTermVM;
645 g_HmR0.pfnSetupVM = hmR0DummySetupVM;
646
647 /* Default is global VT-x/AMD-V init. */
648 g_HmR0.fGlobalInit = true;
649
650 /*
651 * Make sure aCpuInfo is big enough for all the CPUs on this system.
652 */
653 if (RTMpGetArraySize() > RT_ELEMENTS(g_HmR0.aCpuInfo))
654 {
655 LogRel(("HM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_HmR0.aCpuInfo)));
656 return VERR_TOO_MANY_CPUS;
657 }
658
659 /*
660 * Check for VT-x and AMD-V capabilities.
661 */
662 int rc;
663 if (ASMHasCpuId())
664 {
665 /* Standard features. */
666 uint32_t uMaxLeaf, u32VendorEBX, u32VendorECX, u32VendorEDX;
667 ASMCpuId(0, &uMaxLeaf, &u32VendorEBX, &u32VendorECX, &u32VendorEDX);
668 if (ASMIsValidStdRange(uMaxLeaf))
669 {
670 uint32_t u32FeaturesECX, u32FeaturesEDX, u32Dummy;
671 ASMCpuId(1, &u32Dummy, &u32Dummy, &u32FeaturesECX, &u32FeaturesEDX);
672
673 /* Query AMD features. */
674 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
675 if (ASMIsValidExtRange(uMaxExtLeaf))
676 ASMCpuId(0x80000001, &u32Dummy, &u32Dummy,
677 &g_HmR0.cpuid.u32AMDFeatureECX,
678 &g_HmR0.cpuid.u32AMDFeatureEDX);
679 else
680 g_HmR0.cpuid.u32AMDFeatureECX = g_HmR0.cpuid.u32AMDFeatureEDX = 0;
681
682 /* Go to CPU specific initialization code. */
683 if ( ASMIsIntelCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX)
684 || ASMIsViaCentaurCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
685 {
686 rc = hmR0InitIntel(u32FeaturesECX, u32FeaturesEDX);
687 if (RT_FAILURE(rc))
688 return rc;
689 }
690 else if (ASMIsAmdCpuEx(u32VendorEBX, u32VendorECX, u32VendorEDX))
691 {
692 rc = hmR0InitAmd(u32FeaturesEDX, uMaxExtLeaf);
693 if (RT_FAILURE(rc))
694 return rc;
695 }
696 else
697 g_HmR0.lLastError = VERR_HM_UNKNOWN_CPU;
698 }
699 else
700 g_HmR0.lLastError = VERR_HM_UNKNOWN_CPU;
701 }
702 else
703 g_HmR0.lLastError = VERR_HM_NO_CPUID;
704
705 /*
706 * Register notification callbacks that we can use to disable/enable CPUs
707 * when brought offline/online or suspending/resuming.
708 */
709 if (!g_HmR0.vmx.fUsingSUPR0EnableVTx)
710 {
711 rc = RTMpNotificationRegister(hmR0MpEventCallback, NULL);
712 AssertRC(rc);
713
714 rc = RTPowerNotificationRegister(hmR0PowerCallback, NULL);
715 AssertRC(rc);
716 }
717
718 /* We return success here because module init shall not fail if HM
719 fails to initialize. */
720 return VINF_SUCCESS;
721}
722
723
724/**
725 * Does global Ring-0 HM termination (at module termination).
726 *
727 * @returns VBox status code.
728 */
729VMMR0_INT_DECL(int) HMR0Term(void)
730{
731 int rc;
732 if ( g_HmR0.vmx.fSupported
733 && g_HmR0.vmx.fUsingSUPR0EnableVTx)
734 {
735 /*
736 * Simple if the host OS manages VT-x.
737 */
738 Assert(g_HmR0.fGlobalInit);
739
740 if (g_HmR0.vmx.fCalledSUPR0EnableVTx)
741 {
742 rc = SUPR0EnableVTx(false /* fEnable */);
743 g_HmR0.vmx.fCalledSUPR0EnableVTx = false;
744 }
745 else
746 rc = VINF_SUCCESS;
747
748 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_HmR0.aCpuInfo); iCpu++)
749 {
750 g_HmR0.aCpuInfo[iCpu].fConfigured = false;
751 Assert(g_HmR0.aCpuInfo[iCpu].hMemObj == NIL_RTR0MEMOBJ);
752 }
753 }
754 else
755 {
756 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
757
758 /* Doesn't really matter if this fails. */
759 rc = RTMpNotificationDeregister(hmR0MpEventCallback, NULL); AssertRC(rc);
760 rc = RTPowerNotificationDeregister(hmR0PowerCallback, NULL); AssertRC(rc);
761
762 /*
763 * Disable VT-x/AMD-V on all CPUs if we enabled it before.
764 */
765 if (g_HmR0.fGlobalInit)
766 {
767 HMR0FIRSTRC FirstRc;
768 hmR0FirstRcInit(&FirstRc);
769 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
770 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
771 if (RT_SUCCESS(rc))
772 rc = hmR0FirstRcGetStatus(&FirstRc);
773 }
774
775 /*
776 * Free the per-cpu pages used for VT-x and AMD-V.
777 */
778 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
779 {
780 if (g_HmR0.aCpuInfo[i].hMemObj != NIL_RTR0MEMOBJ)
781 {
782 RTR0MemObjFree(g_HmR0.aCpuInfo[i].hMemObj, false);
783 g_HmR0.aCpuInfo[i].hMemObj = NIL_RTR0MEMOBJ;
784 g_HmR0.aCpuInfo[i].HCPhysMemObj = NIL_RTHCPHYS;
785 g_HmR0.aCpuInfo[i].pvMemObj = NULL;
786 }
787 }
788 }
789
790 /** @todo This needs cleaning up. There's no matching
791 * hmR0TermIntel()/hmR0TermAmd() and all the VT-x/AMD-V specific bits
792 * should move into their respective modules. */
793 /* Finally, call global VT-x/AMD-V termination. */
794 if (g_HmR0.vmx.fSupported)
795 VMXR0GlobalTerm();
796 else if (g_HmR0.svm.fSupported)
797 SVMR0GlobalTerm();
798
799 return rc;
800}
801
802
803/**
804 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize VT-x
805 * on a CPU.
806 *
807 * @param idCpu The identifier for the CPU the function is called on.
808 * @param pvUser1 Pointer to the first RC structure.
809 * @param pvUser2 Ignored.
810 */
811static DECLCALLBACK(void) hmR0InitIntelCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
812{
813 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
814 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
815 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
816 NOREF(idCpu); NOREF(pvUser2);
817
818 int rc = SUPR0GetVmxUsability(NULL /* pfIsSmxModeAmbiguous */);
819 hmR0FirstRcSetStatus(pFirstRc, rc);
820}
821
822
823/**
824 * Worker function used by hmR0PowerCallback() and HMR0Init() to initalize AMD-V
825 * on a CPU.
826 *
827 * @param idCpu The identifier for the CPU the function is called on.
828 * @param pvUser1 Pointer to the first RC structure.
829 * @param pvUser2 Ignored.
830 */
831static DECLCALLBACK(void) hmR0InitAmdCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
832{
833 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser1;
834 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
835 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
836 NOREF(idCpu); NOREF(pvUser2);
837
838 int rc = SUPR0GetSvmUsability(true /* fInitSvm */);
839 hmR0FirstRcSetStatus(pFirstRc, rc);
840}
841
842
843/**
844 * Enable VT-x or AMD-V on the current CPU
845 *
846 * @returns VBox status code.
847 * @param pVM The cross context VM structure. Can be NULL.
848 * @param idCpu The identifier for the CPU the function is called on.
849 *
850 * @remarks Maybe called with interrupts disabled!
851 */
852static int hmR0EnableCpu(PVM pVM, RTCPUID idCpu)
853{
854 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
855
856 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
857 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
858 Assert(!pCpu->fConfigured);
859 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
860
861 pCpu->idCpu = idCpu;
862 /* Do NOT reset cTlbFlushes here, see @bugref{6255}. */
863
864 int rc;
865 if (g_HmR0.vmx.fSupported && g_HmR0.vmx.fUsingSUPR0EnableVTx)
866 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, NULL /* pvCpuPage */, NIL_RTHCPHYS, true, &g_HmR0.vmx.Msrs);
867 else
868 {
869 AssertLogRelMsgReturn(pCpu->hMemObj != NIL_RTR0MEMOBJ, ("hmR0EnableCpu failed idCpu=%u.\n", idCpu), VERR_HM_IPE_1);
870 if (g_HmR0.vmx.fSupported)
871 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, &g_HmR0.vmx.Msrs);
872 else
873 rc = g_HmR0.pfnEnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, NULL /* pvArg */);
874 }
875 if (RT_SUCCESS(rc))
876 pCpu->fConfigured = true;
877
878 return rc;
879}
880
881
882/**
883 * Worker function passed to RTMpOnAll() that is to be called on all CPUs.
884 *
885 * @param idCpu The identifier for the CPU the function is called on.
886 * @param pvUser1 Opaque pointer to the VM (can be NULL!).
887 * @param pvUser2 The 2nd user argument.
888 */
889static DECLCALLBACK(void) hmR0EnableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
890{
891 PVM pVM = (PVM)pvUser1; /* can be NULL! */
892 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2;
893 AssertReturnVoid(g_HmR0.fGlobalInit);
894 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
895 hmR0FirstRcSetStatus(pFirstRc, hmR0EnableCpu(pVM, idCpu));
896}
897
898
899/**
900 * RTOnce callback employed by HMR0EnableAllCpus.
901 *
902 * @returns VBox status code.
903 * @param pvUser Pointer to the VM.
904 */
905static DECLCALLBACK(int32_t) hmR0EnableAllCpuOnce(void *pvUser)
906{
907 PVM pVM = (PVM)pvUser;
908
909 /*
910 * Indicate that we've initialized.
911 *
912 * Note! There is a potential race between this function and the suspend
913 * notification. Kind of unlikely though, so ignored for now.
914 */
915 AssertReturn(!g_HmR0.fEnabled, VERR_HM_ALREADY_ENABLED_IPE);
916 ASMAtomicWriteBool(&g_HmR0.fEnabled, true);
917
918 /*
919 * The global init variable is set by the first VM.
920 */
921 g_HmR0.fGlobalInit = pVM->hm.s.fGlobalInit;
922
923#ifdef VBOX_STRICT
924 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
925 {
926 Assert(g_HmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
927 Assert(g_HmR0.aCpuInfo[i].HCPhysMemObj == NIL_RTHCPHYS);
928 Assert(g_HmR0.aCpuInfo[i].pvMemObj == NULL);
929 Assert(!g_HmR0.aCpuInfo[i].fConfigured);
930 Assert(!g_HmR0.aCpuInfo[i].cTlbFlushes);
931 Assert(!g_HmR0.aCpuInfo[i].uCurrentAsid);
932 }
933#endif
934
935 int rc;
936 if ( g_HmR0.vmx.fSupported
937 && g_HmR0.vmx.fUsingSUPR0EnableVTx)
938 {
939 /*
940 * Global VT-x initialization API (only darwin for now).
941 */
942 rc = SUPR0EnableVTx(true /* fEnable */);
943 if (RT_SUCCESS(rc))
944 {
945 g_HmR0.vmx.fCalledSUPR0EnableVTx = true;
946 /* If the host provides a VT-x init API, then we'll rely on that for global init. */
947 g_HmR0.fGlobalInit = pVM->hm.s.fGlobalInit = true;
948 }
949 else
950 AssertMsgFailed(("hmR0EnableAllCpuOnce/SUPR0EnableVTx: rc=%Rrc\n", rc));
951 }
952 else
953 {
954 /*
955 * We're doing the job ourselves.
956 */
957 /* Allocate one page per cpu for the global VT-x and AMD-V pages */
958 for (unsigned i = 0; i < RT_ELEMENTS(g_HmR0.aCpuInfo); i++)
959 {
960 Assert(g_HmR0.aCpuInfo[i].hMemObj == NIL_RTR0MEMOBJ);
961
962 if (RTMpIsCpuPossible(RTMpCpuIdFromSetIndex(i)))
963 {
964 /** @todo NUMA */
965 rc = RTR0MemObjAllocCont(&g_HmR0.aCpuInfo[i].hMemObj, PAGE_SIZE, false /* executable R0 mapping */);
966 AssertLogRelRCReturn(rc, rc);
967
968 g_HmR0.aCpuInfo[i].HCPhysMemObj = RTR0MemObjGetPagePhysAddr(g_HmR0.aCpuInfo[i].hMemObj, 0);
969 Assert(g_HmR0.aCpuInfo[i].HCPhysMemObj != NIL_RTHCPHYS);
970 Assert(!(g_HmR0.aCpuInfo[i].HCPhysMemObj & PAGE_OFFSET_MASK));
971
972 g_HmR0.aCpuInfo[i].pvMemObj = RTR0MemObjAddress(g_HmR0.aCpuInfo[i].hMemObj);
973 AssertPtr(g_HmR0.aCpuInfo[i].pvMemObj);
974 ASMMemZeroPage(g_HmR0.aCpuInfo[i].pvMemObj);
975 }
976 }
977
978 rc = VINF_SUCCESS;
979 }
980
981 if ( RT_SUCCESS(rc)
982 && g_HmR0.fGlobalInit)
983 {
984 /* First time, so initialize each cpu/core. */
985 HMR0FIRSTRC FirstRc;
986 hmR0FirstRcInit(&FirstRc);
987 rc = RTMpOnAll(hmR0EnableCpuCallback, (void *)pVM, &FirstRc);
988 if (RT_SUCCESS(rc))
989 rc = hmR0FirstRcGetStatus(&FirstRc);
990 }
991
992 return rc;
993}
994
995
996/**
997 * Sets up HM on all cpus.
998 *
999 * @returns VBox status code.
1000 * @param pVM The cross context VM structure.
1001 */
1002VMMR0_INT_DECL(int) HMR0EnableAllCpus(PVM pVM)
1003{
1004 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1005 if (ASMAtomicReadBool(&g_HmR0.fSuspended))
1006 return VERR_HM_SUSPEND_PENDING;
1007
1008 return RTOnce(&g_HmR0.EnableAllCpusOnce, hmR0EnableAllCpuOnce, pVM);
1009}
1010
1011
1012/**
1013 * Disable VT-x or AMD-V on the current CPU.
1014 *
1015 * @returns VBox status code.
1016 * @param idCpu The identifier for the CPU this function is called on.
1017 *
1018 * @remarks Must be called with preemption disabled.
1019 */
1020static int hmR0DisableCpu(RTCPUID idCpu)
1021{
1022 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1023
1024 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1025 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1026 Assert(idCpu == (RTCPUID)RTMpCpuIdToSetIndex(idCpu)); /** @todo fix idCpu == index assumption (rainy day) */
1027 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
1028 Assert(!pCpu->fConfigured || pCpu->hMemObj != NIL_RTR0MEMOBJ);
1029 AssertRelease(idCpu == RTMpCpuId());
1030
1031 if (pCpu->hMemObj == NIL_RTR0MEMOBJ)
1032 return pCpu->fConfigured ? VERR_NO_MEMORY : VINF_SUCCESS /* not initialized. */;
1033 AssertPtr(pCpu->pvMemObj);
1034 Assert(pCpu->HCPhysMemObj != NIL_RTHCPHYS);
1035
1036 int rc;
1037 if (pCpu->fConfigured)
1038 {
1039 rc = g_HmR0.pfnDisableCpu(pCpu, pCpu->pvMemObj, pCpu->HCPhysMemObj);
1040 AssertRCReturn(rc, rc);
1041
1042 pCpu->fConfigured = false;
1043 pCpu->idCpu = NIL_RTCPUID;
1044 }
1045 else
1046 rc = VINF_SUCCESS; /* nothing to do */
1047 return rc;
1048}
1049
1050
1051/**
1052 * Worker function passed to RTMpOnAll() that is to be called on the target
1053 * CPUs.
1054 *
1055 * @param idCpu The identifier for the CPU the function is called on.
1056 * @param pvUser1 The 1st user argument.
1057 * @param pvUser2 Opaque pointer to the FirstRc.
1058 */
1059static DECLCALLBACK(void) hmR0DisableCpuCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1060{
1061 PHMR0FIRSTRC pFirstRc = (PHMR0FIRSTRC)pvUser2; NOREF(pvUser1);
1062 AssertReturnVoid(g_HmR0.fGlobalInit);
1063 hmR0FirstRcSetStatus(pFirstRc, hmR0DisableCpu(idCpu));
1064}
1065
1066
1067/**
1068 * Worker function passed to RTMpOnSpecific() that is to be called on the target
1069 * CPU.
1070 *
1071 * @param idCpu The identifier for the CPU the function is called on.
1072 * @param pvUser1 Null, not used.
1073 * @param pvUser2 Null, not used.
1074 */
1075static DECLCALLBACK(void) hmR0DisableCpuOnSpecificCallback(RTCPUID idCpu, void *pvUser1, void *pvUser2)
1076{
1077 NOREF(pvUser1);
1078 NOREF(pvUser2);
1079 hmR0DisableCpu(idCpu);
1080}
1081
1082
1083/**
1084 * Callback function invoked when a cpu goes online or offline.
1085 *
1086 * @param enmEvent The Mp event.
1087 * @param idCpu The identifier for the CPU the function is called on.
1088 * @param pvData Opaque data (PVM pointer).
1089 */
1090static DECLCALLBACK(void) hmR0MpEventCallback(RTMPEVENT enmEvent, RTCPUID idCpu, void *pvData)
1091{
1092 NOREF(pvData);
1093 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1094
1095 /*
1096 * We only care about uninitializing a CPU that is going offline. When a
1097 * CPU comes online, the initialization is done lazily in HMR0Enter().
1098 */
1099 switch (enmEvent)
1100 {
1101 case RTMPEVENT_OFFLINE:
1102 {
1103 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1104 RTThreadPreemptDisable(&PreemptState);
1105 if (idCpu == RTMpCpuId())
1106 {
1107 int rc = hmR0DisableCpu(idCpu);
1108 AssertRC(rc);
1109 RTThreadPreemptRestore(&PreemptState);
1110 }
1111 else
1112 {
1113 RTThreadPreemptRestore(&PreemptState);
1114 RTMpOnSpecific(idCpu, hmR0DisableCpuOnSpecificCallback, NULL /* pvUser1 */, NULL /* pvUser2 */);
1115 }
1116 break;
1117 }
1118
1119 default:
1120 break;
1121 }
1122}
1123
1124
1125/**
1126 * Called whenever a system power state change occurs.
1127 *
1128 * @param enmEvent The Power event.
1129 * @param pvUser User argument.
1130 */
1131static DECLCALLBACK(void) hmR0PowerCallback(RTPOWEREVENT enmEvent, void *pvUser)
1132{
1133 NOREF(pvUser);
1134 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1135
1136#ifdef LOG_ENABLED
1137 if (enmEvent == RTPOWEREVENT_SUSPEND)
1138 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_SUSPEND\n");
1139 else
1140 SUPR0Printf("hmR0PowerCallback RTPOWEREVENT_RESUME\n");
1141#endif
1142
1143 if (enmEvent == RTPOWEREVENT_SUSPEND)
1144 ASMAtomicWriteBool(&g_HmR0.fSuspended, true);
1145
1146 if (g_HmR0.fEnabled)
1147 {
1148 int rc;
1149 HMR0FIRSTRC FirstRc;
1150 hmR0FirstRcInit(&FirstRc);
1151
1152 if (enmEvent == RTPOWEREVENT_SUSPEND)
1153 {
1154 if (g_HmR0.fGlobalInit)
1155 {
1156 /* Turn off VT-x or AMD-V on all CPUs. */
1157 rc = RTMpOnAll(hmR0DisableCpuCallback, NULL /* pvUser 1 */, &FirstRc);
1158 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1159 }
1160 /* else nothing to do here for the local init case */
1161 }
1162 else
1163 {
1164 /* Reinit the CPUs from scratch as the suspend state might have
1165 messed with the MSRs. (lousy BIOSes as usual) */
1166 if (g_HmR0.vmx.fSupported)
1167 rc = RTMpOnAll(hmR0InitIntelCpu, &FirstRc, NULL);
1168 else
1169 rc = RTMpOnAll(hmR0InitAmdCpu, &FirstRc, NULL);
1170 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1171 if (RT_SUCCESS(rc))
1172 rc = hmR0FirstRcGetStatus(&FirstRc);
1173#ifdef LOG_ENABLED
1174 if (RT_FAILURE(rc))
1175 SUPR0Printf("hmR0PowerCallback hmR0InitXxxCpu failed with %Rc\n", rc);
1176#endif
1177 if (g_HmR0.fGlobalInit)
1178 {
1179 /* Turn VT-x or AMD-V back on on all CPUs. */
1180 rc = RTMpOnAll(hmR0EnableCpuCallback, NULL /* pVM */, &FirstRc /* output ignored */);
1181 Assert(RT_SUCCESS(rc) || rc == VERR_NOT_SUPPORTED);
1182 }
1183 /* else nothing to do here for the local init case */
1184 }
1185 }
1186
1187 if (enmEvent == RTPOWEREVENT_RESUME)
1188 ASMAtomicWriteBool(&g_HmR0.fSuspended, false);
1189}
1190
1191
1192/**
1193 * Does ring-0 per-VM HM initialization.
1194 *
1195 * This will copy HM global into the VM structure and call the CPU specific
1196 * init routine which will allocate resources for each virtual CPU and such.
1197 *
1198 * @returns VBox status code.
1199 * @param pVM The cross context VM structure.
1200 *
1201 * @remarks This is called after HMR3Init(), see vmR3CreateU() and
1202 * vmR3InitRing3().
1203 */
1204VMMR0_INT_DECL(int) HMR0InitVM(PVM pVM)
1205{
1206 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1207
1208#ifdef LOG_ENABLED
1209 SUPR0Printf("HMR0InitVM: %p\n", pVM);
1210#endif
1211
1212 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1213 if (ASMAtomicReadBool(&g_HmR0.fSuspended))
1214 return VERR_HM_SUSPEND_PENDING;
1215
1216 /*
1217 * Copy globals to the VM structure.
1218 */
1219 pVM->hm.s.vmx.fSupported = g_HmR0.vmx.fSupported;
1220 pVM->hm.s.svm.fSupported = g_HmR0.svm.fSupported;
1221
1222 pVM->hm.s.vmx.fUsePreemptTimer &= g_HmR0.vmx.fUsePreemptTimer; /* Can be overridden by CFGM. See HMR3Init(). */
1223 pVM->hm.s.vmx.cPreemptTimerShift = g_HmR0.vmx.cPreemptTimerShift;
1224 pVM->hm.s.vmx.u64HostCr4 = g_HmR0.vmx.u64HostCr4;
1225 pVM->hm.s.vmx.u64HostEfer = g_HmR0.vmx.u64HostEfer;
1226 pVM->hm.s.vmx.u64HostSmmMonitorCtl = g_HmR0.vmx.u64HostSmmMonitorCtl;
1227 pVM->hm.s.vmx.Msrs = g_HmR0.vmx.Msrs;
1228 pVM->hm.s.svm.u64MsrHwcr = g_HmR0.svm.u64MsrHwcr;
1229 pVM->hm.s.svm.u32Rev = g_HmR0.svm.u32Rev;
1230 pVM->hm.s.svm.u32Features = g_HmR0.svm.u32Features;
1231 pVM->hm.s.cpuid.u32AMDFeatureECX = g_HmR0.cpuid.u32AMDFeatureECX;
1232 pVM->hm.s.cpuid.u32AMDFeatureEDX = g_HmR0.cpuid.u32AMDFeatureEDX;
1233 pVM->hm.s.lLastError = g_HmR0.lLastError;
1234 pVM->hm.s.uMaxAsid = g_HmR0.uMaxAsid;
1235
1236 if (!pVM->hm.s.cMaxResumeLoops) /* allow ring-3 overrides */
1237 {
1238 pVM->hm.s.cMaxResumeLoops = 1024;
1239 if (RTThreadPreemptIsPendingTrusty())
1240 pVM->hm.s.cMaxResumeLoops = 8192;
1241 }
1242
1243 /*
1244 * Initialize some per-VCPU fields.
1245 */
1246 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1247 {
1248 PVMCPU pVCpu = &pVM->aCpus[i];
1249 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1250 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1251 pVCpu->hm.s.fGIMTrapXcptUD = GIMShouldTrapXcptUD(pVCpu);
1252
1253 /* We'll aways increment this the first time (host uses ASID 0). */
1254 AssertReturn(!pVCpu->hm.s.uCurrentAsid, VERR_HM_IPE_3);
1255 }
1256
1257 pVM->hm.s.fHostKernelFeatures = SUPR0GetKernelFeatures();
1258
1259 /*
1260 * Call the hardware specific initialization method.
1261 */
1262 return g_HmR0.pfnInitVM(pVM);
1263}
1264
1265
1266/**
1267 * Does ring-0 per VM HM termination.
1268 *
1269 * @returns VBox status code.
1270 * @param pVM The cross context VM structure.
1271 */
1272VMMR0_INT_DECL(int) HMR0TermVM(PVM pVM)
1273{
1274 Log(("HMR0TermVM: %p\n", pVM));
1275 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1276
1277 /*
1278 * Call the hardware specific method.
1279 *
1280 * Note! We might be preparing for a suspend, so the pfnTermVM() functions should probably not
1281 * mess with VT-x/AMD-V features on the CPU, currently all they do is free memory so this is safe.
1282 */
1283 return g_HmR0.pfnTermVM(pVM);
1284}
1285
1286
1287/**
1288 * Sets up a VT-x or AMD-V session.
1289 *
1290 * This is mostly about setting up the hardware VM state.
1291 *
1292 * @returns VBox status code.
1293 * @param pVM The cross context VM structure.
1294 */
1295VMMR0_INT_DECL(int) HMR0SetupVM(PVM pVM)
1296{
1297 Log(("HMR0SetupVM: %p\n", pVM));
1298 AssertReturn(pVM, VERR_INVALID_PARAMETER);
1299
1300 /* Make sure we don't touch HM after we've disabled HM in preparation of a suspend. */
1301 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1302
1303 /* On first entry we'll sync everything. */
1304 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1305 HMCPU_CF_RESET_TO(&pVM->aCpus[i], HM_CHANGED_HOST_CONTEXT | HM_CHANGED_ALL_GUEST);
1306
1307 /*
1308 * Call the hardware specific setup VM method. This requires the CPU to be
1309 * enabled for AMD-V/VT-x and preemption to be prevented.
1310 */
1311 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1312 RTThreadPreemptDisable(&PreemptState);
1313 RTCPUID idCpu = RTMpCpuId();
1314
1315 /* Enable VT-x or AMD-V if local init is required. */
1316 int rc;
1317 if (!g_HmR0.fGlobalInit)
1318 {
1319 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1320 rc = hmR0EnableCpu(pVM, idCpu);
1321 if (RT_FAILURE(rc))
1322 {
1323 RTThreadPreemptRestore(&PreemptState);
1324 return rc;
1325 }
1326 }
1327
1328 /* Setup VT-x or AMD-V. */
1329 rc = g_HmR0.pfnSetupVM(pVM);
1330
1331 /* Disable VT-x or AMD-V if local init was done before. */
1332 if (!g_HmR0.fGlobalInit)
1333 {
1334 Assert(!g_HmR0.vmx.fSupported || !g_HmR0.vmx.fUsingSUPR0EnableVTx);
1335 int rc2 = hmR0DisableCpu(idCpu);
1336 AssertRC(rc2);
1337 }
1338
1339 RTThreadPreemptRestore(&PreemptState);
1340 return rc;
1341}
1342
1343
1344/**
1345 * Turns on HM on the CPU if necessary and initializes the bare minimum state
1346 * required for entering HM context.
1347 *
1348 * @returns VBox status code.
1349 * @param pVCpu The cross context virtual CPU structure.
1350 *
1351 * @remarks No-long-jump zone!!!
1352 */
1353VMMR0_INT_DECL(int) HMR0EnterCpu(PVMCPU pVCpu)
1354{
1355 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1356
1357 int rc = VINF_SUCCESS;
1358 RTCPUID idCpu = RTMpCpuId();
1359 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1360 AssertPtr(pCpu);
1361
1362 /* Enable VT-x or AMD-V if local init is required, or enable if it's a freshly onlined CPU. */
1363 if (!pCpu->fConfigured)
1364 rc = hmR0EnableCpu(pVCpu->CTX_SUFF(pVM), idCpu);
1365
1366 /* Reload host-state (back from ring-3/migrated CPUs) and shared guest/host bits. */
1367 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE);
1368
1369 Assert(pCpu->idCpu == idCpu && pCpu->idCpu != NIL_RTCPUID);
1370 pVCpu->hm.s.idEnteredCpu = idCpu;
1371 return rc;
1372}
1373
1374
1375/**
1376 * Enters the VT-x or AMD-V session.
1377 *
1378 * @returns VBox status code.
1379 * @param pVM The cross context VM structure.
1380 * @param pVCpu The cross context virtual CPU structure.
1381 *
1382 * @remarks This is called with preemption disabled.
1383 */
1384VMMR0_INT_DECL(int) HMR0Enter(PVM pVM, PVMCPU pVCpu)
1385{
1386 /* Make sure we can't enter a session after we've disabled HM in preparation of a suspend. */
1387 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1388 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1389
1390 /* Load the bare minimum state required for entering HM. */
1391 int rc = HMR0EnterCpu(pVCpu);
1392 AssertRCReturn(rc, rc);
1393
1394#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1395 AssertReturn(!VMMR0ThreadCtxHookIsEnabled(pVCpu), VERR_HM_IPE_5);
1396 bool fStartedSet = PGMR0DynMapStartOrMigrateAutoSet(pVCpu);
1397#endif
1398
1399 RTCPUID idCpu = RTMpCpuId();
1400 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1401 Assert(pCpu);
1402 Assert(HMCPU_CF_IS_SET(pVCpu, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_HOST_GUEST_SHARED_STATE));
1403
1404 rc = g_HmR0.pfnEnterSession(pVM, pVCpu, pCpu);
1405 AssertMsgRCReturn(rc, ("pfnEnterSession failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1406
1407 /* Load the host-state as we may be resuming code after a longjmp and quite
1408 possibly now be scheduled on a different CPU. */
1409 rc = g_HmR0.pfnSaveHostState(pVM, pVCpu);
1410 AssertMsgRCReturn(rc, ("pfnSaveHostState failed. rc=%Rrc pVCpu=%p HostCpuId=%u\n", rc, pVCpu, idCpu), rc);
1411
1412#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1413 if (fStartedSet)
1414 PGMRZDynMapReleaseAutoSet(pVCpu);
1415#endif
1416
1417 /* Keep track of the CPU owning the VMCS for debugging scheduling weirdness and ring-3 calls. */
1418 if (RT_FAILURE(rc))
1419 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1420 return rc;
1421}
1422
1423
1424/**
1425 * Deinitializes the bare minimum state used for HM context and if necessary
1426 * disable HM on the CPU.
1427 *
1428 * @returns VBox status code.
1429 * @param pVCpu The cross context virtual CPU structure.
1430 *
1431 * @remarks No-long-jump zone!!!
1432 */
1433VMMR0_INT_DECL(int) HMR0LeaveCpu(PVMCPU pVCpu)
1434{
1435 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1436 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_HM_WRONG_CPU);
1437
1438 RTCPUID idCpu = RTMpCpuId();
1439 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[idCpu];
1440
1441 if ( !g_HmR0.fGlobalInit
1442 && pCpu->fConfigured)
1443 {
1444 int rc = hmR0DisableCpu(idCpu);
1445 AssertRCReturn(rc, rc);
1446 Assert(!pCpu->fConfigured);
1447 Assert(pCpu->idCpu == NIL_RTCPUID);
1448
1449 /* For obtaining a non-zero ASID/VPID on next re-entry. */
1450 pVCpu->hm.s.idLastCpu = NIL_RTCPUID;
1451 }
1452
1453 /* Clear it while leaving HM context, hmPokeCpuForTlbFlush() relies on this. */
1454 pVCpu->hm.s.idEnteredCpu = NIL_RTCPUID;
1455
1456 return VINF_SUCCESS;
1457}
1458
1459
1460/**
1461 * Thread-context hook for HM.
1462 *
1463 * @param enmEvent The thread-context event.
1464 * @param pvUser Opaque pointer to the VMCPU.
1465 */
1466VMMR0_INT_DECL(void) HMR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
1467{
1468 PVMCPU pVCpu = (PVMCPU)pvUser;
1469 Assert(pVCpu);
1470 Assert(g_HmR0.pfnThreadCtxCallback);
1471
1472 g_HmR0.pfnThreadCtxCallback(enmEvent, pVCpu, g_HmR0.fGlobalInit);
1473}
1474
1475
1476/**
1477 * Runs guest code in a hardware accelerated VM.
1478 *
1479 * @returns Strict VBox status code. (VBOXSTRICTRC isn't used because it's
1480 * called from setjmp assembly.)
1481 * @param pVM The cross context VM structure.
1482 * @param pVCpu The cross context virtual CPU structure.
1483 *
1484 * @remarks Can be called with preemption enabled if thread-context hooks are
1485 * used!!!
1486 */
1487VMMR0_INT_DECL(int) HMR0RunGuestCode(PVM pVM, PVMCPU pVCpu)
1488{
1489#ifdef VBOX_STRICT
1490 /* With thread-context hooks we would be running this code with preemption enabled. */
1491 if (!RTThreadPreemptIsEnabled(NIL_RTTHREAD))
1492 {
1493 PHMGLOBALCPUINFO pCpu = &g_HmR0.aCpuInfo[RTMpCpuId()];
1494 Assert(!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL));
1495 Assert(pCpu->fConfigured);
1496 AssertReturn(!ASMAtomicReadBool(&g_HmR0.fSuspended), VERR_HM_SUSPEND_PENDING);
1497 }
1498#endif
1499
1500#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1501 AssertReturn(!VMMR0ThreadCtxHookIsEnabled(pVCpu), VERR_HM_IPE_4);
1502 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1503 PGMRZDynMapStartAutoSet(pVCpu);
1504#endif
1505
1506 VBOXSTRICTRC rcStrict = g_HmR0.pfnRunGuestCode(pVM, pVCpu, CPUMQueryGuestCtxPtr(pVCpu));
1507
1508#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1509 PGMRZDynMapReleaseAutoSet(pVCpu);
1510#endif
1511 return VBOXSTRICTRC_VAL(rcStrict);
1512}
1513
1514
1515/**
1516 * Notification from CPUM that it has unloaded the guest FPU/SSE/AVX state from
1517 * the host CPU and that guest access to it must be intercepted.
1518 *
1519 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1520 */
1521VMMR0_INT_DECL(void) HMR0NotifyCpumUnloadedGuestFpuState(PVMCPU pVCpu)
1522{
1523 HMCPU_CF_SET(pVCpu, HM_CHANGED_GUEST_CR0);
1524}
1525
1526
1527/**
1528 * Notification from CPUM that it has modified the host CR0 (because of FPU).
1529 *
1530 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1531 */
1532VMMR0_INT_DECL(void) HMR0NotifyCpumModifiedHostCr0(PVMCPU pVCpu)
1533{
1534 HMCPU_CF_SET(pVCpu, HM_CHANGED_HOST_CONTEXT);
1535}
1536
1537
1538#if HC_ARCH_BITS == 32 && defined(VBOX_ENABLE_64_BITS_GUESTS)
1539
1540/**
1541 * Save guest FPU/XMM state (64 bits guest mode & 32 bits host only)
1542 *
1543 * @returns VBox status code.
1544 * @param pVM The cross context VM structure.
1545 * @param pVCpu The cross context virtual CPU structure.
1546 * @param pCtx Pointer to the guest CPU context.
1547 */
1548VMMR0_INT_DECL(int) HMR0SaveFPUState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1549{
1550 STAM_COUNTER_INC(&pVCpu->hm.s.StatFpu64SwitchBack);
1551 if (pVM->hm.s.vmx.fSupported)
1552 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1553 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestFPU64, 0, NULL);
1554}
1555
1556
1557/**
1558 * Save guest debug state (64 bits guest mode & 32 bits host only)
1559 *
1560 * @returns VBox status code.
1561 * @param pVM The cross context VM structure.
1562 * @param pVCpu The cross context virtual CPU structure.
1563 * @param pCtx Pointer to the guest CPU context.
1564 */
1565VMMR0_INT_DECL(int) HMR0SaveDebugState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1566{
1567 STAM_COUNTER_INC(&pVCpu->hm.s.StatDebug64SwitchBack);
1568 if (pVM->hm.s.vmx.fSupported)
1569 return VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1570 return SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCSaveGuestDebug64, 0, NULL);
1571}
1572
1573
1574/**
1575 * Test the 32->64 bits switcher.
1576 *
1577 * @returns VBox status code.
1578 * @param pVM The cross context VM structure.
1579 */
1580VMMR0_INT_DECL(int) HMR0TestSwitcher3264(PVM pVM)
1581{
1582 PVMCPU pVCpu = &pVM->aCpus[0];
1583 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1584 uint32_t aParam[5] = {0, 1, 2, 3, 4};
1585 int rc;
1586
1587 STAM_PROFILE_ADV_START(&pVCpu->hm.s.StatWorldSwitch3264, z);
1588 if (pVM->hm.s.vmx.fSupported)
1589 rc = VMXR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1590 else
1591 rc = SVMR0Execute64BitsHandler(pVM, pVCpu, pCtx, HM64ON32OP_HMRCTestSwitcher64, 5, &aParam[0]);
1592 STAM_PROFILE_ADV_STOP(&pVCpu->hm.s.StatWorldSwitch3264, z);
1593
1594 return rc;
1595}
1596
1597#endif /* HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) */
1598
1599/**
1600 * Returns suspend status of the host.
1601 *
1602 * @returns Suspend pending or not.
1603 */
1604VMMR0_INT_DECL(bool) HMR0SuspendPending(void)
1605{
1606 return ASMAtomicReadBool(&g_HmR0.fSuspended);
1607}
1608
1609
1610/**
1611 * Returns the cpu structure for the current cpu.
1612 * Keep in mind that there is no guarantee it will stay the same (long jumps to ring 3!!!).
1613 *
1614 * @returns The cpu structure pointer.
1615 */
1616VMMR0_INT_DECL(PHMGLOBALCPUINFO) hmR0GetCurrentCpu(void)
1617{
1618 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1619 RTCPUID idCpu = RTMpCpuId();
1620 Assert(idCpu < RT_ELEMENTS(g_HmR0.aCpuInfo));
1621 return &g_HmR0.aCpuInfo[idCpu];
1622}
1623
1624
1625/**
1626 * Save a pending IO read.
1627 *
1628 * @param pVCpu The cross context virtual CPU structure.
1629 * @param GCPtrRip Address of IO instruction.
1630 * @param GCPtrRipNext Address of the next instruction.
1631 * @param uPort Port address.
1632 * @param uAndVal AND mask for saving the result in eax.
1633 * @param cbSize Read size.
1634 */
1635VMMR0_INT_DECL(void) HMR0SavePendingIOPortRead(PVMCPU pVCpu, RTGCPTR GCPtrRip, RTGCPTR GCPtrRipNext,
1636 unsigned uPort, unsigned uAndVal, unsigned cbSize)
1637{
1638 pVCpu->hm.s.PendingIO.enmType = HMPENDINGIO_PORT_READ;
1639 pVCpu->hm.s.PendingIO.GCPtrRip = GCPtrRip;
1640 pVCpu->hm.s.PendingIO.GCPtrRipNext = GCPtrRipNext;
1641 pVCpu->hm.s.PendingIO.s.Port.uPort = uPort;
1642 pVCpu->hm.s.PendingIO.s.Port.uAndVal = uAndVal;
1643 pVCpu->hm.s.PendingIO.s.Port.cbSize = cbSize;
1644 return;
1645}
1646
1647#ifdef VBOX_WITH_RAW_MODE
1648
1649/**
1650 * Raw-mode switcher hook - disable VT-x if it's active *and* the current
1651 * switcher turns off paging.
1652 *
1653 * @returns VBox status code.
1654 * @param pVM The cross context VM structure.
1655 * @param enmSwitcher The switcher we're about to use.
1656 * @param pfVTxDisabled Where to store whether VT-x was disabled or not.
1657 */
1658VMMR0_INT_DECL(int) HMR0EnterSwitcher(PVM pVM, VMMSWITCHER enmSwitcher, bool *pfVTxDisabled)
1659{
1660 NOREF(pVM);
1661
1662 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1663
1664 *pfVTxDisabled = false;
1665
1666 /* No such issues with AMD-V */
1667 if (!g_HmR0.vmx.fSupported)
1668 return VINF_SUCCESS;
1669
1670 /* Check if the switching we're up to is safe. */
1671 switch (enmSwitcher)
1672 {
1673 case VMMSWITCHER_32_TO_32:
1674 case VMMSWITCHER_PAE_TO_PAE:
1675 return VINF_SUCCESS; /* safe switchers as they don't turn off paging */
1676
1677 case VMMSWITCHER_32_TO_PAE:
1678 case VMMSWITCHER_PAE_TO_32: /* is this one actually used?? */
1679 case VMMSWITCHER_AMD64_TO_32:
1680 case VMMSWITCHER_AMD64_TO_PAE:
1681 break; /* unsafe switchers */
1682
1683 default:
1684 AssertFailedReturn(VERR_HM_WRONG_SWITCHER);
1685 }
1686
1687 /* When using SUPR0EnableVTx we must let the host suspend and resume VT-x,
1688 regardless of whether we're currently using VT-x or not. */
1689 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
1690 {
1691 *pfVTxDisabled = SUPR0SuspendVTxOnCpu();
1692 return VINF_SUCCESS;
1693 }
1694
1695 /** @todo Check if this code is presumptive wrt other VT-x users on the
1696 * system... */
1697
1698 /* Nothing to do if we haven't enabled VT-x. */
1699 if (!g_HmR0.fEnabled)
1700 return VINF_SUCCESS;
1701
1702 /* Local init implies the CPU is currently not in VMX root mode. */
1703 if (!g_HmR0.fGlobalInit)
1704 return VINF_SUCCESS;
1705
1706 /* Ok, disable VT-x. */
1707 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
1708 AssertReturn(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ && pCpu->pvMemObj && pCpu->HCPhysMemObj != NIL_RTHCPHYS, VERR_HM_IPE_2);
1709
1710 *pfVTxDisabled = true;
1711 return VMXR0DisableCpu(pCpu, pCpu->pvMemObj, pCpu->HCPhysMemObj);
1712}
1713
1714
1715/**
1716 * Raw-mode switcher hook - re-enable VT-x if was active *and* the current
1717 * switcher turned off paging.
1718 *
1719 * @param pVM The cross context VM structure.
1720 * @param fVTxDisabled Whether VT-x was disabled or not.
1721 */
1722VMMR0_INT_DECL(void) HMR0LeaveSwitcher(PVM pVM, bool fVTxDisabled)
1723{
1724 Assert(!ASMIntAreEnabled());
1725
1726 if (!fVTxDisabled)
1727 return; /* nothing to do */
1728
1729 Assert(g_HmR0.vmx.fSupported);
1730 if (g_HmR0.vmx.fUsingSUPR0EnableVTx)
1731 SUPR0ResumeVTxOnCpu(fVTxDisabled);
1732 else
1733 {
1734 Assert(g_HmR0.fEnabled);
1735 Assert(g_HmR0.fGlobalInit);
1736
1737 PHMGLOBALCPUINFO pCpu = hmR0GetCurrentCpu();
1738 AssertReturnVoid(pCpu && pCpu->hMemObj != NIL_RTR0MEMOBJ && pCpu->pvMemObj && pCpu->HCPhysMemObj != NIL_RTHCPHYS);
1739
1740 VMXR0EnableCpu(pCpu, pVM, pCpu->pvMemObj, pCpu->HCPhysMemObj, false, &g_HmR0.vmx.Msrs);
1741 }
1742}
1743
1744#endif /* VBOX_WITH_RAW_MODE */
1745#ifdef VBOX_STRICT
1746
1747/**
1748 * Dumps a descriptor.
1749 *
1750 * @param pDesc Descriptor to dump.
1751 * @param Sel Selector number.
1752 * @param pszMsg Message to prepend the log entry with.
1753 */
1754VMMR0_INT_DECL(void) hmR0DumpDescriptor(PCX86DESCHC pDesc, RTSEL Sel, const char *pszMsg)
1755{
1756 /*
1757 * Make variable description string.
1758 */
1759 static struct
1760 {
1761 unsigned cch;
1762 const char *psz;
1763 } const s_aTypes[32] =
1764 {
1765# define STRENTRY(str) { sizeof(str) - 1, str }
1766
1767 /* system */
1768# if HC_ARCH_BITS == 64
1769 STRENTRY("Reserved0 "), /* 0x00 */
1770 STRENTRY("Reserved1 "), /* 0x01 */
1771 STRENTRY("LDT "), /* 0x02 */
1772 STRENTRY("Reserved3 "), /* 0x03 */
1773 STRENTRY("Reserved4 "), /* 0x04 */
1774 STRENTRY("Reserved5 "), /* 0x05 */
1775 STRENTRY("Reserved6 "), /* 0x06 */
1776 STRENTRY("Reserved7 "), /* 0x07 */
1777 STRENTRY("Reserved8 "), /* 0x08 */
1778 STRENTRY("TSS64Avail "), /* 0x09 */
1779 STRENTRY("ReservedA "), /* 0x0a */
1780 STRENTRY("TSS64Busy "), /* 0x0b */
1781 STRENTRY("Call64 "), /* 0x0c */
1782 STRENTRY("ReservedD "), /* 0x0d */
1783 STRENTRY("Int64 "), /* 0x0e */
1784 STRENTRY("Trap64 "), /* 0x0f */
1785# else
1786 STRENTRY("Reserved0 "), /* 0x00 */
1787 STRENTRY("TSS16Avail "), /* 0x01 */
1788 STRENTRY("LDT "), /* 0x02 */
1789 STRENTRY("TSS16Busy "), /* 0x03 */
1790 STRENTRY("Call16 "), /* 0x04 */
1791 STRENTRY("Task "), /* 0x05 */
1792 STRENTRY("Int16 "), /* 0x06 */
1793 STRENTRY("Trap16 "), /* 0x07 */
1794 STRENTRY("Reserved8 "), /* 0x08 */
1795 STRENTRY("TSS32Avail "), /* 0x09 */
1796 STRENTRY("ReservedA "), /* 0x0a */
1797 STRENTRY("TSS32Busy "), /* 0x0b */
1798 STRENTRY("Call32 "), /* 0x0c */
1799 STRENTRY("ReservedD "), /* 0x0d */
1800 STRENTRY("Int32 "), /* 0x0e */
1801 STRENTRY("Trap32 "), /* 0x0f */
1802# endif
1803 /* non system */
1804 STRENTRY("DataRO "), /* 0x10 */
1805 STRENTRY("DataRO Accessed "), /* 0x11 */
1806 STRENTRY("DataRW "), /* 0x12 */
1807 STRENTRY("DataRW Accessed "), /* 0x13 */
1808 STRENTRY("DataDownRO "), /* 0x14 */
1809 STRENTRY("DataDownRO Accessed "), /* 0x15 */
1810 STRENTRY("DataDownRW "), /* 0x16 */
1811 STRENTRY("DataDownRW Accessed "), /* 0x17 */
1812 STRENTRY("CodeEO "), /* 0x18 */
1813 STRENTRY("CodeEO Accessed "), /* 0x19 */
1814 STRENTRY("CodeER "), /* 0x1a */
1815 STRENTRY("CodeER Accessed "), /* 0x1b */
1816 STRENTRY("CodeConfEO "), /* 0x1c */
1817 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
1818 STRENTRY("CodeConfER "), /* 0x1e */
1819 STRENTRY("CodeConfER Accessed ") /* 0x1f */
1820# undef SYSENTRY
1821 };
1822# define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
1823 char szMsg[128];
1824 char *psz = &szMsg[0];
1825 unsigned i = pDesc->Gen.u1DescType << 4 | pDesc->Gen.u4Type;
1826 memcpy(psz, s_aTypes[i].psz, s_aTypes[i].cch);
1827 psz += s_aTypes[i].cch;
1828
1829 if (pDesc->Gen.u1Present)
1830 ADD_STR(psz, "Present ");
1831 else
1832 ADD_STR(psz, "Not-Present ");
1833# if HC_ARCH_BITS == 64
1834 if (pDesc->Gen.u1Long)
1835 ADD_STR(psz, "64-bit ");
1836 else
1837 ADD_STR(psz, "Comp ");
1838# else
1839 if (pDesc->Gen.u1Granularity)
1840 ADD_STR(psz, "Page ");
1841 if (pDesc->Gen.u1DefBig)
1842 ADD_STR(psz, "32-bit ");
1843 else
1844 ADD_STR(psz, "16-bit ");
1845# endif
1846# undef ADD_STR
1847 *psz = '\0';
1848
1849 /*
1850 * Limit and Base and format the output.
1851 */
1852#ifdef LOG_ENABLED
1853 uint32_t u32Limit = X86DESC_LIMIT_G(pDesc);
1854
1855# if HC_ARCH_BITS == 64
1856 uint64_t u32Base = X86DESC64_BASE(pDesc);
1857 Log(("%s %04x - %RX64 %RX64 - base=%RX64 limit=%08x dpl=%d %s\n", pszMsg,
1858 Sel, pDesc->au64[0], pDesc->au64[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1859# else
1860 uint32_t u32Base = X86DESC_BASE(pDesc);
1861 Log(("%s %04x - %08x %08x - base=%08x limit=%08x dpl=%d %s\n", pszMsg,
1862 Sel, pDesc->au32[0], pDesc->au32[1], u32Base, u32Limit, pDesc->Gen.u2Dpl, szMsg));
1863# endif
1864#else
1865 NOREF(Sel); NOREF(pszMsg);
1866#endif
1867}
1868
1869
1870/**
1871 * Formats a full register dump.
1872 *
1873 * @param pVM The cross context VM structure.
1874 * @param pVCpu The cross context virtual CPU structure.
1875 * @param pCtx Pointer to the CPU context.
1876 */
1877VMMR0_INT_DECL(void) hmR0DumpRegs(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
1878{
1879 NOREF(pVM);
1880
1881 /*
1882 * Format the flags.
1883 */
1884 static struct
1885 {
1886 const char *pszSet; const char *pszClear; uint32_t fFlag;
1887 } const s_aFlags[] =
1888 {
1889 { "vip", NULL, X86_EFL_VIP },
1890 { "vif", NULL, X86_EFL_VIF },
1891 { "ac", NULL, X86_EFL_AC },
1892 { "vm", NULL, X86_EFL_VM },
1893 { "rf", NULL, X86_EFL_RF },
1894 { "nt", NULL, X86_EFL_NT },
1895 { "ov", "nv", X86_EFL_OF },
1896 { "dn", "up", X86_EFL_DF },
1897 { "ei", "di", X86_EFL_IF },
1898 { "tf", NULL, X86_EFL_TF },
1899 { "nt", "pl", X86_EFL_SF },
1900 { "nz", "zr", X86_EFL_ZF },
1901 { "ac", "na", X86_EFL_AF },
1902 { "po", "pe", X86_EFL_PF },
1903 { "cy", "nc", X86_EFL_CF },
1904 };
1905 char szEFlags[80];
1906 char *psz = szEFlags;
1907 uint32_t uEFlags = pCtx->eflags.u32;
1908 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1909 {
1910 const char *pszAdd = s_aFlags[i].fFlag & uEFlags ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1911 if (pszAdd)
1912 {
1913 strcpy(psz, pszAdd);
1914 psz += strlen(pszAdd);
1915 *psz++ = ' ';
1916 }
1917 }
1918 psz[-1] = '\0';
1919
1920
1921 /*
1922 * Format the registers.
1923 */
1924 if (CPUMIsGuestIn64BitCode(pVCpu))
1925 {
1926 Log(("rax=%016RX64 rbx=%016RX64 rcx=%016RX64 rdx=%016RX64\n"
1927 "rsi=%016RX64 rdi=%016RX64 r8 =%016RX64 r9 =%016RX64\n"
1928 "r10=%016RX64 r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1929 "r14=%016RX64 r15=%016RX64\n"
1930 "rip=%016RX64 rsp=%016RX64 rbp=%016RX64 iopl=%d %*s\n"
1931 "cs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1932 "ds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1933 "es={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1934 "fs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1935 "gs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1936 "ss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1937 "cr0=%016RX64 cr2=%016RX64 cr3=%016RX64 cr4=%016RX64\n"
1938 "dr0=%016RX64 dr1=%016RX64 dr2=%016RX64 dr3=%016RX64\n"
1939 "dr4=%016RX64 dr5=%016RX64 dr6=%016RX64 dr7=%016RX64\n"
1940 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1941 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1942 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1943 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1944 ,
1945 pCtx->rax, pCtx->rbx, pCtx->rcx, pCtx->rdx, pCtx->rsi, pCtx->rdi,
1946 pCtx->r8, pCtx->r9, pCtx->r10, pCtx->r11, pCtx->r12, pCtx->r13,
1947 pCtx->r14, pCtx->r15,
1948 pCtx->rip, pCtx->rsp, pCtx->rbp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1949 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
1950 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
1951 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
1952 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
1953 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
1954 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
1955 pCtx->cr0, pCtx->cr2, pCtx->cr3, pCtx->cr4,
1956 pCtx->dr[0], pCtx->dr[1], pCtx->dr[2], pCtx->dr[3],
1957 pCtx->dr[4], pCtx->dr[5], pCtx->dr[6], pCtx->dr[7],
1958 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1959 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1960 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1961 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1962 }
1963 else
1964 Log(("eax=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x\n"
1965 "eip=%08x esp=%08x ebp=%08x iopl=%d %*s\n"
1966 "cs={%04x base=%016RX64 limit=%08x flags=%08x} dr0=%08RX64 dr1=%08RX64\n"
1967 "ds={%04x base=%016RX64 limit=%08x flags=%08x} dr2=%08RX64 dr3=%08RX64\n"
1968 "es={%04x base=%016RX64 limit=%08x flags=%08x} dr4=%08RX64 dr5=%08RX64\n"
1969 "fs={%04x base=%016RX64 limit=%08x flags=%08x} dr6=%08RX64 dr7=%08RX64\n"
1970 "gs={%04x base=%016RX64 limit=%08x flags=%08x} cr0=%08RX64 cr2=%08RX64\n"
1971 "ss={%04x base=%016RX64 limit=%08x flags=%08x} cr3=%08RX64 cr4=%08RX64\n"
1972 "gdtr=%016RX64:%04x idtr=%016RX64:%04x eflags=%08x\n"
1973 "ldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1974 "tr ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1975 "SysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1976 ,
1977 pCtx->eax, pCtx->ebx, pCtx->ecx, pCtx->edx, pCtx->esi, pCtx->edi,
1978 pCtx->eip, pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(uEFlags), 31, szEFlags,
1979 pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pCtx->dr[0], pCtx->dr[1],
1980 pCtx->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pCtx->dr[2], pCtx->dr[3],
1981 pCtx->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pCtx->dr[4], pCtx->dr[5],
1982 pCtx->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pCtx->dr[6], pCtx->dr[7],
1983 pCtx->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pCtx->cr0, pCtx->cr2,
1984 pCtx->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pCtx->cr3, pCtx->cr4,
1985 pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, uEFlags,
1986 pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
1987 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
1988 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp));
1989
1990 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
1991 Log(("FPU:\n"
1992 "FCW=%04x FSW=%04x FTW=%02x\n"
1993 "FOP=%04x FPUIP=%08x CS=%04x Rsrvd1=%04x\n"
1994 "FPUDP=%04x DS=%04x Rsvrd2=%04x MXCSR=%08x MXCSR_MASK=%08x\n"
1995 ,
1996 pFpuCtx->FCW, pFpuCtx->FSW, pFpuCtx->FTW,
1997 pFpuCtx->FOP, pFpuCtx->FPUIP, pFpuCtx->CS, pFpuCtx->Rsrvd1,
1998 pFpuCtx->FPUDP, pFpuCtx->DS, pFpuCtx->Rsrvd2,
1999 pFpuCtx->MXCSR, pFpuCtx->MXCSR_MASK));
2000
2001 Log(("MSR:\n"
2002 "EFER =%016RX64\n"
2003 "PAT =%016RX64\n"
2004 "STAR =%016RX64\n"
2005 "CSTAR =%016RX64\n"
2006 "LSTAR =%016RX64\n"
2007 "SFMASK =%016RX64\n"
2008 "KERNELGSBASE =%016RX64\n",
2009 pCtx->msrEFER,
2010 pCtx->msrPAT,
2011 pCtx->msrSTAR,
2012 pCtx->msrCSTAR,
2013 pCtx->msrLSTAR,
2014 pCtx->msrSFMASK,
2015 pCtx->msrKERNELGSBASE));
2016
2017 NOREF(pFpuCtx);
2018}
2019
2020#endif /* VBOX_STRICT */
2021
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette