/* $Id: GMMR0.cpp 6636 2008-01-30 21:46:07Z vboxsync $ */ /** @file * GMM - Global Memory Manager. */ /* * Copyright (C) 2007 innotek GmbH * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /** @page pg_gmm GMM - The Global Memory Manager * * As the name indicates, this component is responsible for global memory * management. Currently only guest RAM is allocated from the GMM, but this * may change to include shadow page tables and other bits later. * * Guest RAM is managed as individual pages, but allocated from the host OS * in chunks for reasons of portability / efficiency. To minimize the memory * footprint all tracking structure must be as small as possible without * unnecessary performance penalties. * * The allocation chunks has fixed sized, the size defined at compile time * by the #GMM_CHUNK_SIZE \#define. * * Each chunk is given an unquie ID. Each page also has a unique ID. The * relation ship between the two IDs is: * @code * GMM_CHUNK_SHIFT = log2(GMM_CHUNK_SIZE / PAGE_SIZE); * idPage = (idChunk << GMM_CHUNK_SHIFT) | iPage; * @endcode * Where iPage is the index of the page within the chunk. This ID scheme * permits for efficient chunk and page lookup, but it relies on the chunk size * to be set at compile time. The chunks are organized in an AVL tree with their * IDs being the keys. * * The physical address of each page in an allocation chunk is maintained by * the #RTR0MEMOBJ and obtained using #RTR0MemObjGetPagePhysAddr. There is no * need to duplicate this information (it'll cost 8-bytes per page if we did). * * So what do we need to track per page? Most importantly we need to know * which state the page is in: * - Private - Allocated for (eventually) backing one particular VM page. * - Shared - Readonly page that is used by one or more VMs and treated * as COW by PGM. * - Free - Not used by anyone. * * For the page replacement operations (sharing, defragmenting and freeing) * to be somewhat efficient, private pages needs to be associated with a * particular page in a particular VM. * * Tracking the usage of shared pages is impractical and expensive, so we'll * settle for a reference counting system instead. * * Free pages will be chained on LIFOs * * On 64-bit systems we will use a 64-bit bitfield per page, while on 32-bit * systems a 32-bit bitfield will have to suffice because of address space * limitations. The #GMMPAGE structure shows the details. * * * @section sec_gmm_alloc_strat Page Allocation Strategy * * The strategy for allocating pages has to take fragmentation and shared * pages into account, or we may end up with with 2000 chunks with only * a few pages in each. Shared pages cannot easily be reallocated because * of the inaccurate usage accounting (see above). Private pages can be * reallocated by a defragmentation thread in the same manner that sharing * is done. * * The first approach is to manage the free pages in two sets depending on * whether they are mainly for the allocation of shared or private pages. * In the initial implementation there will be almost no possibility for * mixing shared and private pages in the same chunk (only if we're really * stressed on memory), but when we implement forking of VMs and have to * deal with lots of COW pages it'll start getting kind of interesting. * * The sets are lists of chunks with approximately the same number of * free pages. Say the chunk size is 1MB, meaning 256 pages, and a set * consists of 16 lists. So, the first list will contain the chunks with * 1-7 free pages, the second covers 8-15, and so on. The chunks will be * moved between the lists as pages are freed up or allocated. * * * @section sec_gmm_costs Costs * * The per page cost in kernel space is 32-bit plus whatever RTR0MEMOBJ * entails. In addition there is the chunk cost of approximately * (sizeof(RT0MEMOBJ) + sizof(CHUNK)) / 2^CHUNK_SHIFT bytes per page. * * On Windows the per page #RTR0MEMOBJ cost is 32-bit on 32-bit windows * and 64-bit on 64-bit windows (a PFN_NUMBER in the MDL). So, 64-bit per page. * The cost on Linux is identical, but here it's because of sizeof(struct page *). * * * @section sec_gmm_legacy Legacy Mode for Non-Tier-1 Platforms * * In legacy mode the page source is locked user pages and not * #RTR0MemObjAllocPhysNC, this means that a page can only be allocated * by the VM that locked it. We will make no attempt at implementing * page sharing on these systems, just do enough to make it all work. * * * @subsection sub_gmm_locking Serializing * * One simple fast mutex will be employed in the initial implementation, not * two as metioned in @ref subsec_pgmPhys_Serializing. * * @see @ref subsec_pgmPhys_Serializing * * * @section sec_gmm_overcommit Memory Over-Commitment Management * * The GVM will have to do the system wide memory over-commitment * management. My current ideas are: * - Per VM oc policy that indicates how much to initially commit * to it and what to do in a out-of-memory situation. * - Prevent overtaxing the host. * * There are some challenges here, the main ones are configurability and * security. Should we for instance permit anyone to request 100% memory * commitment? Who should be allowed to do runtime adjustments of the * config. And how to prevent these settings from being lost when the last * VM process exits? The solution is probably to have an optional root * daemon the will keep VMMR0.r0 in memory and enable the security measures. * * * * @section sec_gmm_numa NUMA * * NUMA considerations will be designed and implemented a bit later. * * The preliminary guesses is that we will have to try allocate memory as * close as possible to the CPUs the VM is executed on (EMT and additional CPU * threads). Which means it's mostly about allocation and sharing policies. * Both the scheduler and allocator interface will to supply some NUMA info * and we'll need to have a way to calc access costs. * */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_GMM #include #include "GMMR0Internal.h" #include #include #include #include #include #include #include #include #include /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** Pointer to set of free chunks. */ typedef struct GMMCHUNKFREESET *PGMMCHUNKFREESET; /** Pointer to a GMM allocation chunk. */ typedef struct GMMCHUNK *PGMMCHUNK; /** * The per-page tracking structure employed by the GMM. * * On 32-bit hosts we'll some trickery is necessary to compress all * the information into 32-bits. When the fSharedFree member is set, * the 30th bit decides whether it's a free page or not. * * Because of the different layout on 32-bit and 64-bit hosts, macros * are used to get and set some of the data. */ typedef union GMMPAGE { #if HC_ARCH_BITS == 64 /** Unsigned integer view. */ uint64_t u; /** The common view. */ struct GMMPAGECOMMON { uint32_t uStuff1 : 32; uint32_t uStuff2 : 20; /** The page state. */ uint32_t u2State : 2; } Common; /** The view of a private page. */ struct GMMPAGEPRIVATE { /** The guest page frame number. (Max addressable: 2 ^ 44 - 16) */ uint32_t pfn; /** The GVM handle. (64K VMs) */ uint32_t hGVM : 16; /** Reserved. */ uint32_t u16Reserved : 14; /** The page state. */ uint32_t u2State : 2; } Private; /** The view of a shared page. */ struct GMMPAGESHARED { /** The reference count. */ uint32_t cRefs; /** Reserved. Checksum or something? Two hGVMs for forking? */ uint32_t u30Reserved : 30; /** The page state. */ uint32_t u2State : 2; } Shared; /** The view of a free page. */ struct GMMPAGEFREE { /** The index of the next page in the free list. UINT16_MAX is NIL. */ uint16_t iNext; /** Reserved. Checksum or something? */ uint16_t u16Reserved0; /** Reserved. Checksum or something? */ uint32_t u30Reserved1 : 30; /** The page state. */ uint32_t u2State : 2; } Free; #else /* 32-bit */ /** Unsigned integer view. */ uint32_t u; /** The common view. */ struct GMMPAGECOMMON { uint32_t uStuff : 30; /** The page state. */ uint32_t u2State : 2; } Common; /** The view of a private page. */ struct GMMPAGEPRIVATE { /** The guest page frame number. (Max addressable: 2 ^ 36) */ uint32_t pfn : 24; /** The GVM handle. (127 VMs) */ uint32_t hGVM : 7; /** The top page state bit, MBZ. */ uint32_t fZero : 1; } Private; /** The view of a shared page. */ struct GMMPAGESHARED { /** The reference count. */ uint32_t cRefs : 30; /** The page state. */ uint32_t u2State : 2; } Shared; /** The view of a free page. */ struct GMMPAGEFREE { /** The index of the next page in the free list. UINT16_MAX is NIL. */ uint32_t iNext : 16; /** Reserved. Checksum or something? */ uint32_t u14Reserved : 14; /** The page state. */ uint32_t u2State : 2; } Free; #endif } GMMPAGE; AssertCompileSize(GMMPAGE, sizeof(RTHCUINTPTR)); /** Pointer to a GMMPAGE. */ typedef GMMPAGE *PGMMPAGE; /** @name The Page States. * @{ */ /** A private page. */ #define GMM_PAGE_STATE_PRIVATE 0 /** A private page - alternative value used on the 32-bit implemenation. * This will never be used on 64-bit hosts. */ #define GMM_PAGE_STATE_PRIVATE_32 1 /** A shared page. */ #define GMM_PAGE_STATE_SHARED 2 /** A free page. */ #define GMM_PAGE_STATE_FREE 3 /** @} */ /** @def GMM_PAGE_IS_PRIVATE * * @returns true if free, false if not. * @param pPage The GMM page. */ #if HC_ARCH_BITS == 64 # define GMM_PAGE_IS_PRIVATE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_PRIVATE ) #else # define GMM_PAGE_IS_PRIVATE(pPage) ( (pPage)->Private.fZero == 0 ) #endif /** @def GMM_PAGE_IS_FREE * * @returns true if free, false if not. * @param pPage The GMM page. */ #define GMM_PAGE_IS_SHARED(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_SHARED ) /** @def GMM_PAGE_IS_FREE * * @returns true if free, false if not. * @param pPage The GMM page. */ #define GMM_PAGE_IS_FREE(pPage) ( (pPage)->Common.u2State == GMM_PAGE_STATE_FREE ) /** @def GMM_PAGE_PFN_END * The end of the the valid guest pfn range, {0..GMM_PAGE_PFN_END-1}. * @remark Some of the values outside the range has special meaning, see related \#defines. */ #if HC_ARCH_BITS == 64 # define GMM_PAGE_PFN_END UINT32_C(0xfffffff0) #else # define GMM_PAGE_PFN_END UINT32_C(0x00fffff0) #endif /** @def GMM_PAGE_PFN_UNSHAREABLE * Indicates that this page isn't used for normal guest memory and thus isn't shareable. */ #if HC_ARCH_BITS == 64 # define GMM_PAGE_PFN_UNSHAREABLE UINT32_C(0xfffffff1) #else # define GMM_PAGE_PFN_UNSHAREABLE UINT32_C(0x00fffff1) #endif /** @def GMM_GCPHYS_END * The end of the valid guest physical address as it applies to GMM pages. * * This must reflect the constraints imposed by the RTGCPHYS type and * the guest page frame number used internally in GMMPAGE. */ #define GMM_GCPHYS_END UINT32_C(0xfffff000) /** * A GMM allocation chunk ring-3 mapping record. * * This should really be associated with a session and not a VM, but * it's simpler to associated with a VM and cleanup with the VM object * is destroyed. */ typedef struct GMMCHUNKMAP { /** The mapping object. */ RTR0MEMOBJ MapObj; /** The VM owning the mapping. */ PGVM pGVM; } GMMCHUNKMAP; /** Pointer to a GMM allocation chunk mapping. */ typedef struct GMMCHUNKMAP *PGMMCHUNKMAP; /** * A GMM allocation chunk. */ typedef struct GMMCHUNK { /** The AVL node core. * The Key is the chunk ID. */ AVLU32NODECORE Core; /** The memory object. * Either from RTR0MemObjAllocPhysNC or RTR0MemObjLockUser depending on * what the host can dish up with. */ RTR0MEMOBJ MemObj; /** Pointer to the next chunk in the free list. */ PGMMCHUNK pFreeNext; /** Pointer to the previous chunk in the free list. */ PGMMCHUNK pFreePrev; /** Pointer to the free set this chunk belongs to. NULL for * chunks with no free pages. */ PGMMCHUNKFREESET pSet; /** Pointer to an array of mappings. */ PGMMCHUNKMAP paMappings; /** The number of mappings. */ uint16_t cMappings; /** The head of the list of free pages. UINT16_MAX is the NIL value. */ uint16_t iFreeHead; /** The number of free pages. */ uint16_t cFree; /** The GVM handle of the VM that first allocated pages from this chunk, this * is used as a preference when there are several chunks to choose from. * When in legacy mode this isn't a preference any longer. */ uint16_t hGVM; /** The number of private pages. */ uint16_t cPrivate; /** The number of shared pages. */ uint16_t cShared; #if HC_ARCH_BITS == 64 /** Reserved for later. */ uint16_t au16Reserved[2]; #endif /** The pages. */ GMMPAGE aPages[GMM_CHUNK_SIZE >> PAGE_SHIFT]; } GMMCHUNK; /** * An allocation chunk TLB entry. */ typedef struct GMMCHUNKTLBE { /** The chunk id. */ uint32_t idChunk; /** Pointer to the chunk. */ PGMMCHUNK pChunk; } GMMCHUNKTLBE; /** Pointer to an allocation chunk TLB entry. */ typedef GMMCHUNKTLBE *PGMMCHUNKTLBE; /** The number of entries tin the allocation chunk TLB. */ #define GMM_CHUNKTLB_ENTRIES 32 /** Gets the TLB entry index for the given Chunk ID. */ #define GMM_CHUNKTLB_IDX(idChunk) ( (idChunk) & (GMM_CHUNKTLB_ENTRIES - 1) ) /** * An allocation chunk TLB. */ typedef struct GMMCHUNKTLB { /** The TLB entries. */ GMMCHUNKTLBE aEntries[GMM_CHUNKTLB_ENTRIES]; } GMMCHUNKTLB; /** Pointer to an allocation chunk TLB. */ typedef GMMCHUNKTLB *PGMMCHUNKTLB; /** The number of lists in set. */ #define GMM_CHUNK_FREE_SET_LISTS 16 /** The GMMCHUNK::cFree shift count. */ #define GMM_CHUNK_FREE_SET_SHIFT 4 /** The GMMCHUNK::cFree mask for use when considering relinking a chunk. */ #define GMM_CHUNK_FREE_SET_MASK 15 /** * A set of free chunks. */ typedef struct GMMCHUNKFREESET { /** The number of free pages in the set. */ uint64_t cPages; /** */ PGMMCHUNK apLists[GMM_CHUNK_FREE_SET_LISTS]; } GMMCHUNKFREESET; /** * The GMM instance data. */ typedef struct GMM { /** Magic / eye catcher. GMM_MAGIC */ uint32_t u32Magic; /** The fast mutex protecting the GMM. * More fine grained locking can be implemented later if necessary. */ RTSEMFASTMUTEX Mtx; /** The chunk tree. */ PAVLU32NODECORE pChunks; /** The chunk TLB. */ GMMCHUNKTLB ChunkTLB; /** The private free set. */ GMMCHUNKFREESET Private; /** The shared free set. */ GMMCHUNKFREESET Shared; /** The maximum number of pages we're allowed to allocate. * @gcfgm 64-bit GMM/MaxPages Direct. * @gcfgm 32-bit GMM/PctPages Relative to the number of host pages. */ uint64_t cMaxPages; /** The number of pages that has been reserved. * The deal is that cReservedPages - cOverCommittedPages <= cMaxPages. */ uint64_t cReservedPages; /** The number of pages that we have over-committed in reservations. */ uint64_t cOverCommittedPages; /** The number of actually allocated (committed if you like) pages. */ uint64_t cAllocatedPages; /** The number of pages that are shared. A subset of cAllocatedPages. */ uint64_t cSharedPages; /** The number of pages that are shared that has been left behind by * VMs not doing proper cleanups. */ uint64_t cLeftBehindSharedPages; /** The number of allocation chunks. * (The number of pages we've allocated from the host can be derived from this.) */ uint32_t cChunks; /** The number of current ballooned pages. */ uint64_t cBalloonedPages; /** The legacy mode indicator. * This is determined at initialization time. */ bool fLegacyMode; /** The number of registered VMs. */ uint16_t cRegisteredVMs; /** The previous allocated Chunk ID. * Used as a hint to avoid scanning the whole bitmap. */ uint32_t idChunkPrev; /** Chunk ID allocation bitmap. * Bits of allocated IDs are set, free ones are cleared. * The NIL id (0) is marked allocated. */ uint32_t bmChunkId[(GMM_CHUNKID_LAST + 32) >> 10]; } GMM; /** Pointer to the GMM instance. */ typedef GMM *PGMM; /** The value of GMM::u32Magic (Katsuhiro Otomo). */ #define GMM_MAGIC 0x19540414 /******************************************************************************* * Global Variables * *******************************************************************************/ /** Pointer to the GMM instance data. */ static PGMM g_pGMM = NULL; /** Macro for obtaining and validating the g_pGMM pointer. * On failure it will return from the invoking function with the specified return value. * * @param pGMM The name of the pGMM variable. * @param rc The return value on failure. Use VERR_INTERNAL_ERROR for * VBox status codes. */ #define GMM_GET_VALID_INSTANCE(pGMM, rc) \ do { \ (pGMM) = g_pGMM; \ AssertPtrReturn((pGMM), (rc)); \ AssertMsgReturn((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic), (rc)); \ } while (0) /** Macro for obtaining and validating the g_pGMM pointer, void function variant. * On failure it will return from the invoking function. * * @param pGMM The name of the pGMM variable. */ #define GMM_GET_VALID_INSTANCE_VOID(pGMM) \ do { \ (pGMM) = g_pGMM; \ AssertPtrReturnVoid((pGMM)); \ AssertMsgReturnVoid((pGMM)->u32Magic == GMM_MAGIC, ("%p - %#x\n", (pGMM), (pGMM)->u32Magic)); \ } while (0) /******************************************************************************* * Internal Functions * *******************************************************************************/ static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM); static DECLCALLBACK(int) gmmR0CleanupVMScanChunk(PAVLU32NODECORE pNode, void *pvGMM); /*static*/ DECLCALLBACK(int) gmmR0CleanupVMDestroyChunk(PAVLU32NODECORE pNode, void *pvGVM); DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet); DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk); static void gmmR0FreeChunk(PGMM pGMM, PGMMCHUNK pChunk); static void gmmR0FreeSharedPage(PGMM pGMM, uint32_t idPage, PGMMPAGE pPage); /** * Initializes the GMM component. * * This is called when the VMMR0.r0 module is loaded and protected by the * loader semaphore. * * @returns VBox status code. */ GMMR0DECL(int) GMMR0Init(void) { LogFlow(("GMMInit:\n")); /* * Allocate the instance data and the lock(s). */ PGMM pGMM = (PGMM)RTMemAllocZ(sizeof(*pGMM)); if (!pGMM) return VERR_NO_MEMORY; pGMM->u32Magic = GMM_MAGIC; for (unsigned i = 0; i < RT_ELEMENTS(pGMM->ChunkTLB.aEntries); i++) pGMM->ChunkTLB.aEntries[i].idChunk = NIL_GMM_CHUNKID; ASMBitSet(&pGMM->bmChunkId[0], NIL_GMM_CHUNKID); int rc = RTSemFastMutexCreate(&pGMM->Mtx); if (RT_SUCCESS(rc)) { /* * Check and see if RTR0MemObjAllocPhysNC works. */ #if 0 /* later */ RTR0MEMOBJ MemObj; rc = RTR0MemObjAllocPhysNC(&MemObj, _64K, NIL_RTHCPHYS); if (RT_SUCCESS(rc)) { rc = RTR0MemObjFree(MemObj, true); AssertRC(rc); } else if (rc == VERR_NOT_SUPPORTED) pGMM->fLegacyMode = true; else SUPR0Printf("GMMR0Init: RTR0MemObjAllocPhysNC(,64K,Any) -> %d!\n", rc); #else pGMM->fLegacyMode = true; #endif g_pGMM = pGMM; LogFlow(("GMMInit: pGMM=%p fLegacy=%RTbool\n", pGMM, pGMM->fLegacyMode)); return VINF_SUCCESS; } RTMemFree(pGMM); SUPR0Printf("GMMR0Init: failed! rc=%d\n", rc); return rc; } /** * Terminates the GMM component. */ GMMR0DECL(void) GMMR0Term(void) { LogFlow(("GMMTerm:\n")); /* * Take care / be paranoid... */ PGMM pGMM = g_pGMM; if (!VALID_PTR(pGMM)) return; if (pGMM->u32Magic != GMM_MAGIC) { SUPR0Printf("GMMR0Term: u32Magic=%#x\n", pGMM->u32Magic); return; } /* * Undo what init did and free all the resources we've acquired. */ /* Destroy the fundamentals. */ g_pGMM = NULL; pGMM->u32Magic++; RTSemFastMutexDestroy(pGMM->Mtx); pGMM->Mtx = NIL_RTSEMFASTMUTEX; /* free any chunks still hanging around. */ RTAvlU32Destroy(&pGMM->pChunks, gmmR0TermDestroyChunk, pGMM); /* finally the instance data itself. */ RTMemFree(pGMM); LogFlow(("GMMTerm: done\n")); } /** * RTAvlU32Destroy callback. * * @returns 0 * @param pNode The node to destroy. * @param pvGMM The GMM handle. */ static DECLCALLBACK(int) gmmR0TermDestroyChunk(PAVLU32NODECORE pNode, void *pvGMM) { PGMMCHUNK pChunk = (PGMMCHUNK)pNode; if (pChunk->cFree != (GMM_CHUNK_SIZE >> PAGE_SHIFT)) SUPR0Printf("GMMR0Term: %p/%#x: cFree=%d cPrivate=%d cShared=%d cMappings=%d\n", pChunk, pChunk->Core.Key, pChunk->cFree, pChunk->cPrivate, pChunk->cShared, pChunk->cMappings); int rc = RTR0MemObjFree(pChunk->MemObj, true /* fFreeMappings */); if (RT_FAILURE(rc)) { SUPR0Printf("GMMR0Term: %p/%#x: RTRMemObjFree(%p,true) -> %d (cMappings=%d)\n", pChunk, pChunk->Core.Key, pChunk->MemObj, rc, pChunk->cMappings); AssertRC(rc); } pChunk->MemObj = NIL_RTR0MEMOBJ; RTMemFree(pChunk->paMappings); pChunk->paMappings = NULL; RTMemFree(pChunk); NOREF(pvGMM); return 0; } /** * Initializes the per-VM data for the GMM. * * This is called from within the GVMM lock (from GVMMR0CreateVM) * and should only initialize the data members so GMMR0CleanupVM * can deal with them. We reserve no memory or anything here, * that's done later in GMMR0InitVM. * * @param pGVM Pointer to the Global VM structure. */ GMMR0DECL(void) GMMR0InitPerVMData(PGVM pGVM) { AssertCompile(RT_SIZEOFMEMB(GVM,gmm.s) <= RT_SIZEOFMEMB(GVM,gmm.padding)); AssertRelease(RT_SIZEOFMEMB(GVM,gmm.s) <= RT_SIZEOFMEMB(GVM,gmm.padding)); pGVM->gmm.s.enmPolicy = GMMOCPOLICY_INVALID; pGVM->gmm.s.enmPriority = GMMPRIORITY_INVALID; pGVM->gmm.s.fMayAllocate = false; } /** * Cleans up when a VM is terminating. * * @param pGVM Pointer to the Global VM structure. */ GMMR0DECL(void) GMMR0CleanupVM(PGVM pGVM) { LogFlow(("GMMR0CleanupVM: pGVM=%p:{.pVM=%p, .hSelf=%#x}\n", pGVM, pGVM->pVM, pGVM->hSelf)); PGMM pGMM; GMM_GET_VALID_INSTANCE_VOID(pGMM); int rc = RTSemFastMutexRequest(pGMM->Mtx); AssertRC(rc); /* * The policy is 'INVALID' until the initial reservation * request has been serviced. */ if ( pGVM->gmm.s.enmPolicy > GMMOCPOLICY_INVALID || pGVM->gmm.s.enmPolicy < GMMOCPOLICY_END) { /* * If it's the last VM around, we can skip walking all the chunk looking * for the pages owned by this VM and instead flush the whole shebang. * * This takes care of the eventuality that a VM has left shared page * references behind (shouldn't happen of course, but you never know). */ Assert(pGMM->cRegisteredVMs); pGMM->cRegisteredVMs--; #if 0 /* disabled so it won't hide bugs. */ if (!pGMM->cRegisteredVMs) { RTAvlU32Destroy(&pGMM->pChunks, gmmR0CleanupVMDestroyChunk, pGMM); for (unsigned i = 0; i < RT_ELEMENTS(pGMM->ChunkTLB.aEntries); i++) { pGMM->ChunkTLB.aEntries[i].idChunk = NIL_GMM_CHUNKID; pGMM->ChunkTLB.aEntries[i].pChunk = NULL; } memset(&pGMM->Private, 0, sizeof(pGMM->Private)); memset(&pGMM->Shared, 0, sizeof(pGMM->Shared)); memset(&pGMM->bmChunkId[0], 0, sizeof(pGMM->bmChunkId)); ASMBitSet(&pGMM->bmChunkId[0], NIL_GMM_CHUNKID); pGMM->cReservedPages = 0; pGMM->cOverCommittedPages = 0; pGMM->cAllocatedPages = 0; pGMM->cSharedPages = 0; pGMM->cLeftBehindSharedPages = 0; pGMM->cChunks = 0; pGMM->cBalloonedPages = 0; } else #endif { /* * Walk the entire pool looking for pages that belongs to this VM * and left over mappings. (This'll only catch private pages, shared * pages will be 'left behind'.) */ uint64_t cPrivatePages = pGVM->gmm.s.cPrivatePages; /* save */ RTAvlU32DoWithAll(&pGMM->pChunks, true /* fFromLeft */, gmmR0CleanupVMScanChunk, pGVM); if (pGVM->gmm.s.cPrivatePages) SUPR0Printf("GMMR0CleanupVM: hGVM=%#x has %#x private pages that cannot be found!\n", pGVM->hSelf, pGVM->gmm.s.cPrivatePages); pGMM->cAllocatedPages -= cPrivatePages; /* free empty chunks. */ if (cPrivatePages) { PGMMCHUNK pCur = pGMM->Private.apLists[RT_ELEMENTS(pGMM->Private.apLists) - 1]; while (pCur) { PGMMCHUNK pNext = pCur->pFreeNext; if ( pCur->cFree == GMM_CHUNK_NUM_PAGES && (!pGMM->fLegacyMode || pCur->hGVM == pGVM->hSelf)) gmmR0FreeChunk(pGMM, pCur); pCur = pNext; } } /* account for shared pages that weren't freed. */ if (pGVM->gmm.s.cSharedPages) { Assert(pGMM->cSharedPages >= pGVM->gmm.s.cSharedPages); SUPR0Printf("GMMR0CleanupVM: hGVM=%#x left %#x shared pages behind!\n", pGVM->hSelf, pGVM->gmm.s.cSharedPages); pGMM->cLeftBehindSharedPages += pGVM->gmm.s.cSharedPages; } /* * Update the over-commitment management statistics. */ pGMM->cReservedPages -= pGVM->gmm.s.Reserved.cBasePages + pGVM->gmm.s.Reserved.cFixedPages + pGVM->gmm.s.Reserved.cShadowPages; switch (pGVM->gmm.s.enmPolicy) { case GMMOCPOLICY_NO_OC: break; default: /** @todo Update GMM->cOverCommittedPages */ break; } } } /* zap the GVM data. */ pGVM->gmm.s.enmPolicy = GMMOCPOLICY_INVALID; pGVM->gmm.s.enmPriority = GMMPRIORITY_INVALID; pGVM->gmm.s.fMayAllocate = false; RTSemFastMutexRelease(pGMM->Mtx); LogFlow(("GMMR0CleanupVM: returns\n")); } /** * RTAvlU32DoWithAll callback. * * @returns 0 * @param pNode The node to search. * @param pvGVM Pointer to the shared VM structure. */ static DECLCALLBACK(int) gmmR0CleanupVMScanChunk(PAVLU32NODECORE pNode, void *pvGVM) { PGMMCHUNK pChunk = (PGMMCHUNK)pNode; PGVM pGVM = (PGVM)pvGVM; /* * Look for pages belonging to the VM. * (Perform some internal checks while we're scanning.) */ #ifndef VBOX_STRICT if (pChunk->cFree != (GMM_CHUNK_SIZE >> PAGE_SHIFT)) #endif { unsigned cPrivate = 0; unsigned cShared = 0; unsigned cFree = 0; uint16_t hGVM = pGVM->hSelf; unsigned iPage = (GMM_CHUNK_SIZE >> PAGE_SHIFT); while (iPage-- > 0) if (GMM_PAGE_IS_PRIVATE(&pChunk->aPages[iPage])) { if (pChunk->aPages[iPage].Private.hGVM == hGVM) { /* * Free the page. * * The reason for not using gmmR0FreePrivatePage here is that we * must *not* cause the chunk to be freed from under us - we're in * a AVL tree walk here. */ pChunk->aPages[iPage].u = 0; pChunk->aPages[iPage].Free.iNext = pChunk->iFreeHead; pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE; pChunk->iFreeHead = iPage; pChunk->cPrivate--; if ((pChunk->cFree & GMM_CHUNK_FREE_SET_MASK) == 0) { gmmR0UnlinkChunk(pChunk); pChunk->cFree++; gmmR0LinkChunk(pChunk, pChunk->cShared ? &g_pGMM->Shared : &g_pGMM->Private); } else pChunk->cFree++; pGVM->gmm.s.cPrivatePages--; cFree++; } else cPrivate++; } else if (GMM_PAGE_IS_FREE(&pChunk->aPages[iPage])) cFree++; else cShared++; /* * Did it add up? */ if (RT_UNLIKELY( pChunk->cFree != cFree || pChunk->cPrivate != cPrivate || pChunk->cShared != cShared)) { SUPR0Printf("gmmR0CleanupVMScanChunk: Chunk %p/%#x has bogus stats - free=%d/%d private=%d/%d shared=%d/%d\n", pChunk->cFree, cFree, pChunk->cPrivate, cPrivate, pChunk->cShared, cShared); pChunk->cFree = cFree; pChunk->cPrivate = cPrivate; pChunk->cShared = cShared; } } /* * Look for the mapping belonging to the terminating VM. */ for (unsigned i = 0; i < pChunk->cMappings; i++) if (pChunk->paMappings[i].pGVM == pGVM) { RTR0MEMOBJ MemObj = pChunk->paMappings[i].MapObj; pChunk->cMappings--; if (i < pChunk->cMappings) pChunk->paMappings[i] = pChunk->paMappings[pChunk->cMappings]; pChunk->paMappings[pChunk->cMappings].pGVM = NULL; pChunk->paMappings[pChunk->cMappings].MapObj = NIL_RTR0MEMOBJ; int rc = RTR0MemObjFree(MemObj, false /* fFreeMappings (NA) */); if (RT_FAILURE(rc)) { SUPR0Printf("gmmR0CleanupVMScanChunk: %p/%#x: mapping #%x: RTRMemObjFree(%p,false) -> %d \n", pChunk, pChunk->Core.Key, i, MemObj, rc); AssertRC(rc); } break; } /* * If not in legacy mode, we should reset the hGVM field * if it has our handle in it. */ if (pChunk->hGVM == pGVM->hSelf) { if (!g_pGMM->fLegacyMode) pChunk->hGVM = NIL_GVM_HANDLE; else if (pChunk->cFree != GMM_CHUNK_NUM_PAGES) { SUPR0Printf("gmmR0CleanupVMScanChunk: %p/%#x: cFree=%#x - it should be 0 in legacy mode!\n", pChunk, pChunk->Core.Key, pChunk->cFree); AssertMsgFailed(("%p/%#x: cFree=%#x - it should be 0 in legacy mode!\n", pChunk, pChunk->Core.Key, pChunk->cFree)); gmmR0UnlinkChunk(pChunk); pChunk->cFree = GMM_CHUNK_NUM_PAGES; gmmR0LinkChunk(pChunk, pChunk->cShared ? &g_pGMM->Shared : &g_pGMM->Private); } } return 0; } /** * RTAvlU32Destroy callback for GMMR0CleanupVM. * * @returns 0 * @param pNode The node (allocation chunk) to destroy. * @param pvGVM Pointer to the shared VM structure. */ /*static*/ DECLCALLBACK(int) gmmR0CleanupVMDestroyChunk(PAVLU32NODECORE pNode, void *pvGVM) { PGMMCHUNK pChunk = (PGMMCHUNK)pNode; PGVM pGVM = (PGVM)pvGVM; for (unsigned i = 0; i < pChunk->cMappings; i++) { if (pChunk->paMappings[i].pGVM != pGVM) SUPR0Printf("gmmR0CleanupVMDestroyChunk: %p/%#x: mapping #%x: pGVM=%p exepcted %p\n", pChunk, pChunk->Core.Key, i, pChunk->paMappings[i].pGVM, pGVM); int rc = RTR0MemObjFree(pChunk->paMappings[i].MapObj, false /* fFreeMappings (NA) */); if (RT_FAILURE(rc)) { SUPR0Printf("gmmR0CleanupVMDestroyChunk: %p/%#x: mapping #%x: RTRMemObjFree(%p,false) -> %d \n", pChunk, pChunk->Core.Key, i, pChunk->paMappings[i].MapObj, rc); AssertRC(rc); } } int rc = RTR0MemObjFree(pChunk->MemObj, true /* fFreeMappings */); if (RT_FAILURE(rc)) { SUPR0Printf("gmmR0CleanupVMDestroyChunk: %p/%#x: RTRMemObjFree(%p,true) -> %d (cMappings=%d)\n", pChunk, pChunk->Core.Key, pChunk->MemObj, rc, pChunk->cMappings); AssertRC(rc); } pChunk->MemObj = NIL_RTR0MEMOBJ; RTMemFree(pChunk->paMappings); pChunk->paMappings = NULL; RTMemFree(pChunk); return 0; } /** * The initial resource reservations. * * This will make memory reservations according to policy and priority. If there isn't * sufficient resources available to sustain the VM this function will fail and all * future allocations requests will fail as well. * * These are just the initial reservations made very very early during the VM creation * process and will be adjusted later in the GMMR0UpdateReservation call after the * ring-3 init has completed. * * @returns VBox status code. * @retval VERR_GMM_MEMORY_RESERVATION_DECLINED * @retval VERR_GMM_ * * @param pVM Pointer to the shared VM structure. * @param cBasePages The number of pages that may be allocated for the base RAM and ROMs. * This does not include MMIO2 and similar. * @param cShadowPages The number of pages that may be allocated for shadow pageing structures. * @param cFixedPages The number of pages that may be allocated for fixed objects like the * hyper heap, MMIO2 and similar. * @param enmPolicy The OC policy to use on this VM. * @param enmPriority The priority in an out-of-memory situation. * * @thread The creator thread / EMT. */ GMMR0DECL(int) GMMR0InitialReservation(PVM pVM, uint64_t cBasePages, uint32_t cShadowPages, uint32_t cFixedPages, GMMOCPOLICY enmPolicy, GMMPRIORITY enmPriority) { LogFlow(("GMMR0InitialReservation: pVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x enmPolicy=%d enmPriority=%d\n", pVM, cBasePages, cShadowPages, cFixedPages, enmPolicy, enmPriority)); /* * Validate, get basics and take the semaphore. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM = GVMMR0ByVM(pVM); if (!pGVM) return VERR_INVALID_PARAMETER; if (pGVM->hEMT != RTThreadNativeSelf()) return VERR_NOT_OWNER; AssertReturn(cBasePages, VERR_INVALID_PARAMETER); AssertReturn(cShadowPages, VERR_INVALID_PARAMETER); AssertReturn(cFixedPages, VERR_INVALID_PARAMETER); AssertReturn(enmPolicy > GMMOCPOLICY_INVALID && enmPolicy < GMMOCPOLICY_END, VERR_INVALID_PARAMETER); AssertReturn(enmPriority > GMMPRIORITY_INVALID && enmPriority < GMMPRIORITY_END, VERR_INVALID_PARAMETER); int rc = RTSemFastMutexRequest(pGMM->Mtx); AssertRC(rc); if ( !pGVM->gmm.s.Reserved.cBasePages && !pGVM->gmm.s.Reserved.cFixedPages && !pGVM->gmm.s.Reserved.cShadowPages) { /* * Check if we can accomodate this. */ /* ... later ... */ if (RT_SUCCESS(rc)) { /* * Update the records. */ pGVM->gmm.s.Reserved.cBasePages = cBasePages; pGVM->gmm.s.Reserved.cFixedPages = cFixedPages; pGVM->gmm.s.Reserved.cShadowPages = cShadowPages; pGVM->gmm.s.enmPolicy = enmPolicy; pGVM->gmm.s.enmPriority = enmPriority; pGVM->gmm.s.fMayAllocate = true; pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages; pGMM->cRegisteredVMs++; } } else rc = VERR_WRONG_ORDER; RTSemFastMutexRelease(pGMM->Mtx); LogFlow(("GMMR0InitialReservation: returns %Rrc\n", rc)); return rc; } /** * VMMR0 request wrapper for GMMR0InitialReservation. * * @returns see GMMR0InitialReservation. * @param pVM Pointer to the shared VM structure. * @param pReq The request packet. */ GMMR0DECL(int) GMMR0InitialReservationReq(PVM pVM, PGMMINITIALRESERVATIONREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); return GMMR0InitialReservation(pVM, pReq->cBasePages, pReq->cShadowPages, pReq->cFixedPages, pReq->enmPolicy, pReq->enmPriority); } /** * This updates the memory reservation with the additional MMIO2 and ROM pages. * * @returns VBox status code. * @retval VERR_GMM_MEMORY_RESERVATION_DECLINED * * @param pVM Pointer to the shared VM structure. * @param cBasePages The number of pages that may be allocated for the base RAM and ROMs. * This does not include MMIO2 and similar. * @param cShadowPages The number of pages that may be allocated for shadow pageing structures. * @param cFixedPages The number of pages that may be allocated for fixed objects like the * hyper heap, MMIO2 and similar. * * @thread EMT. */ GMMR0DECL(int) GMMR0UpdateReservation(PVM pVM, uint64_t cBasePages, uint32_t cShadowPages, uint32_t cFixedPages) { LogFlow(("GMMR0UpdateReservation: pVM=%p cBasePages=%#llx cShadowPages=%#x cFixedPages=%#x\n", pVM, cBasePages, cShadowPages, cFixedPages)); /* * Validate, get basics and take the semaphore. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM = GVMMR0ByVM(pVM); if (!pGVM) return VERR_INVALID_PARAMETER; if (pGVM->hEMT != RTThreadNativeSelf()) return VERR_NOT_OWNER; AssertReturn(cBasePages, VERR_INVALID_PARAMETER); AssertReturn(cShadowPages, VERR_INVALID_PARAMETER); AssertReturn(cFixedPages, VERR_INVALID_PARAMETER); int rc = RTSemFastMutexRequest(pGMM->Mtx); AssertRC(rc); if ( pGVM->gmm.s.Reserved.cBasePages && pGVM->gmm.s.Reserved.cFixedPages && pGVM->gmm.s.Reserved.cShadowPages) { /* * Check if we can accomodate this. */ /* ... later ... */ if (RT_SUCCESS(rc)) { /* * Update the records. */ pGMM->cReservedPages -= pGVM->gmm.s.Reserved.cBasePages + pGVM->gmm.s.Reserved.cFixedPages + pGVM->gmm.s.Reserved.cShadowPages; pGMM->cReservedPages += cBasePages + cFixedPages + cShadowPages; pGVM->gmm.s.Reserved.cBasePages = cBasePages; pGVM->gmm.s.Reserved.cFixedPages = cFixedPages; pGVM->gmm.s.Reserved.cShadowPages = cShadowPages; } } else rc = VERR_WRONG_ORDER; RTSemFastMutexRelease(pGMM->Mtx); LogFlow(("GMMR0UpdateReservation: returns %Rrc\n", rc)); return rc; } /** * VMMR0 request wrapper for GMMR0UpdateReservation. * * @returns see GMMR0UpdateReservation. * @param pVM Pointer to the shared VM structure. * @param pReq The request packet. */ GMMR0DECL(int) GMMR0UpdateReservationReq(PVM pVM, PGMMUPDATERESERVATIONREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); return GMMR0UpdateReservation(pVM, pReq->cBasePages, pReq->cShadowPages, pReq->cFixedPages); } /** * Looks up a chunk in the tree and fill in the TLB entry for it. * * This is not expected to fail and will bitch if it does. * * @returns Pointer to the allocation chunk, NULL if not found. * @param pGMM Pointer to the GMM instance. * @param idChunk The ID of the chunk to find. * @param pTlbe Pointer to the TLB entry. */ static PGMMCHUNK gmmR0GetChunkSlow(PGMM pGMM, uint32_t idChunk, PGMMCHUNKTLBE pTlbe) { PGMMCHUNK pChunk = (PGMMCHUNK)RTAvlU32Get(&pGMM->pChunks, idChunk); AssertMsgReturn(pChunk, ("Chunk %#x not found!\n", idChunk), NULL); pTlbe->idChunk = idChunk; pTlbe->pChunk = pChunk; return pChunk; } /** * Finds a allocation chunk. * * This is not expected to fail and will bitch if it does. * * @returns Pointer to the allocation chunk, NULL if not found. * @param pGMM Pointer to the GMM instance. * @param idChunk The ID of the chunk to find. */ DECLINLINE(PGMMCHUNK) gmmR0GetChunk(PGMM pGMM, uint32_t idChunk) { /* * Do a TLB lookup, branch if not in the TLB. */ PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(idChunk)]; if ( pTlbe->idChunk != idChunk || !pTlbe->pChunk) return gmmR0GetChunkSlow(pGMM, idChunk, pTlbe); return pTlbe->pChunk; } /** * Finds a page. * * This is not expected to fail and will bitch if it does. * * @returns Pointer to the page, NULL if not found. * @param pGMM Pointer to the GMM instance. * @param idPage The ID of the page to find. */ DECLINLINE(PGMMPAGE) gmmR0GetPage(PGMM pGMM, uint32_t idPage) { PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); if (RT_LIKELY(pChunk)) return &pChunk->aPages[idPage & GMM_PAGEID_IDX_MASK]; return NULL; } /** * Unlinks the chunk from the free list it's currently on (if any). * * @param pChunk The allocation chunk. */ DECLINLINE(void) gmmR0UnlinkChunk(PGMMCHUNK pChunk) { PGMMCHUNKFREESET pSet = pChunk->pSet; if (RT_LIKELY(pSet)) { pSet->cPages -= pChunk->cFree; PGMMCHUNK pPrev = pChunk->pFreePrev; PGMMCHUNK pNext = pChunk->pFreeNext; if (pPrev) pPrev->pFreeNext = pNext; else pSet->apLists[(pChunk->cFree - 1) >> GMM_CHUNK_FREE_SET_SHIFT] = pNext; if (pNext) pNext->pFreePrev = pPrev; pChunk->pSet = NULL; pChunk->pFreeNext = NULL; pChunk->pFreePrev = NULL; } else { Assert(!pChunk->pFreeNext); Assert(!pChunk->pFreePrev); Assert(!pChunk->cFree); } } /** * Links the chunk onto the appropriate free list in the specified free set. * * If no free entries, it's not linked into any list. * * @param pChunk The allocation chunk. * @param pSet The free set. */ DECLINLINE(void) gmmR0LinkChunk(PGMMCHUNK pChunk, PGMMCHUNKFREESET pSet) { Assert(!pChunk->pSet); Assert(!pChunk->pFreeNext); Assert(!pChunk->pFreePrev); if (pChunk->cFree > 0) { pChunk->pFreePrev = NULL; unsigned iList = (pChunk->cFree - 1) >> GMM_CHUNK_FREE_SET_SHIFT; pChunk->pFreeNext = pSet->apLists[iList]; pSet->apLists[iList] = pChunk; pSet->cPages += pChunk->cFree; } } /** * Frees a Chunk ID. * * @param pGMM Pointer to the GMM instance. * @param idChunk The Chunk ID to free. */ static void gmmR0FreeChunkId(PGMM pGMM, uint32_t idChunk) { Assert(idChunk != NIL_GMM_CHUNKID); Assert(ASMBitTest(&pGMM->bmChunkId[0], idChunk)); ASMAtomicBitClear(&pGMM->bmChunkId[0], idChunk); } /** * Allocates a new Chunk ID. * * @returns The Chunk ID. * @param pGMM Pointer to the GMM instance. */ static uint32_t gmmR0AllocateChunkId(PGMM pGMM) { AssertCompile(!((GMM_CHUNKID_LAST + 1) & 31)); /* must be a multiple of 32 */ AssertCompile(NIL_GMM_CHUNKID == 0); /* * Try the next sequential one. */ int32_t idChunk = ++pGMM->idChunkPrev; #if 0 /* test the fallback first */ if ( idChunk <= GMM_CHUNKID_LAST && idChunk > NIL_GMM_CHUNKID && !ASMAtomicBitTestAndSet(&pVMM->bmChunkId[0], idChunk)) return idChunk; #endif /* * Scan sequentially from the last one. */ if ( (uint32_t)idChunk < GMM_CHUNKID_LAST && idChunk > NIL_GMM_CHUNKID) { idChunk = ASMBitNextClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1, idChunk); if (idChunk > NIL_GMM_CHUNKID) return pGMM->idChunkPrev = idChunk; } /* * Ok, scan from the start. * We're not racing anyone, so there is no need to expect failures or have restart loops. */ idChunk = ASMBitFirstClear(&pGMM->bmChunkId[0], GMM_CHUNKID_LAST + 1); AssertMsgReturn(idChunk > NIL_GMM_CHUNKID, ("%d\n", idChunk), NIL_GVM_HANDLE); AssertMsgReturn(!ASMAtomicBitTestAndSet(&pGMM->bmChunkId[0], idChunk), ("%d\n", idChunk), NIL_GVM_HANDLE); return pGMM->idChunkPrev = idChunk; } /** * Registers a new chunk of memory. * * This is called by both gmmR0AllocateOneChunk and GMMR0SeedChunk. * * @returns VBox status code. * @param pGMM Pointer to the GMM instance. * @param pSet Pointer to the set. * @param MemObj The memory object for the chunk. * @param hGVM The hGVM value. (Only used by GMMR0SeedChunk.) */ static int gmmR0RegisterChunk(PGMM pGMM, PGMMCHUNKFREESET pSet, RTR0MEMOBJ MemObj, uint16_t hGVM) { int rc; PGMMCHUNK pChunk = (PGMMCHUNK)RTMemAllocZ(sizeof(*pChunk)); if (pChunk) { /* * Initialize it. */ pChunk->MemObj = MemObj; pChunk->cFree = GMM_CHUNK_NUM_PAGES; pChunk->hGVM = hGVM; pChunk->iFreeHead = 0; for (unsigned iPage = 0; iPage < RT_ELEMENTS(pChunk->aPages) - 1; iPage++) { pChunk->aPages[iPage].Free.u2State = GMM_PAGE_STATE_FREE; pChunk->aPages[iPage].Free.iNext = iPage + 1; } pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.u2State = GMM_PAGE_STATE_FREE; pChunk->aPages[RT_ELEMENTS(pChunk->aPages) - 1].Free.iNext = UINT16_MAX; /* * Allocate a Chunk ID and insert it into the tree. * It doesn't cost anything to be careful here. */ pChunk->Core.Key = gmmR0AllocateChunkId(pGMM); if ( pChunk->Core.Key != NIL_GMM_CHUNKID && pChunk->Core.Key <= GMM_CHUNKID_LAST && RTAvlU32Insert(&pGMM->pChunks, &pChunk->Core)) { pGMM->cChunks++; gmmR0LinkChunk(pChunk, pSet); return VINF_SUCCESS; } rc = VERR_INTERNAL_ERROR; RTMemFree(pChunk); } else rc = VERR_NO_MEMORY; return rc; } /** * Allocate one new chunk and add it to the specified free set. * * @returns VBox status code. * @param pGMM Pointer to the GMM instance. * @param pSet Pointer to the set. */ static int gmmR0AllocateOneChunk(PGMM pGMM, PGMMCHUNKFREESET pSet) { /* * Allocate the memory. */ RTR0MEMOBJ MemObj; int rc = RTR0MemObjAllocPhysNC(&MemObj, GMM_CHUNK_SIZE, NIL_RTHCPHYS); if (RT_SUCCESS(rc)) { rc = gmmR0RegisterChunk(pGMM, pSet, MemObj, NIL_GVM_HANDLE); if (RT_FAILURE(rc)) RTR0MemObjFree(MemObj, false /* fFreeMappings */); } return rc; } /** * Attempts to allocate more pages until the requested amount is met. * * @returns VBox status code. * @param pGMM Pointer to the GMM instance data. * @param pSet Pointer to the free set to grow. * @param cPages The number of pages needed. */ static int gmmR0AllocateMoreChunks(PGMM pGMM, PGMMCHUNKFREESET pSet, uint32_t cPages) { Assert(!pGMM->fLegacyMode); /* * Try steal free chunks from the other set first. (Only take 100% free chunks.) */ PGMMCHUNKFREESET pOtherSet = pSet == &pGMM->Private ? &pGMM->Shared : &pGMM->Private; while ( pSet->cPages < cPages && pOtherSet->cPages >= GMM_CHUNK_NUM_PAGES) { PGMMCHUNK pChunk = pOtherSet->apLists[GMM_CHUNK_FREE_SET_LISTS - 1]; while (pChunk && pChunk->cFree != GMM_CHUNK_NUM_PAGES) pChunk = pChunk->pFreeNext; if (!pChunk) break; gmmR0UnlinkChunk(pChunk); gmmR0LinkChunk(pChunk, pSet); } /* * If we need still more pages, allocate new chunks. */ while (pSet->cPages < cPages) { int rc = gmmR0AllocateOneChunk(pGMM, pSet); if (RT_FAILURE(rc)) return rc; } return VINF_SUCCESS; } /** * Allocates one page. * * Worker for gmmR0AllocatePages. * * @param pGMM Pointer to the GMM instance data. * @param hGVM The GVM handle of the VM requesting memory. * @param pChunk The chunk to allocate it from. * @param pPageDesc The page descriptor. */ static void gmmR0AllocatePage(PGMM pGMM, uint32_t hGVM, PGMMCHUNK pChunk, PGMMPAGEDESC pPageDesc) { /* update the chunk stats. */ if (pChunk->hGVM == NIL_GVM_HANDLE) pChunk->hGVM = hGVM; Assert(pChunk->cFree); pChunk->cFree--; /* unlink the first free page. */ const uint32_t iPage = pChunk->iFreeHead; AssertReleaseMsg(iPage < RT_ELEMENTS(pChunk->aPages), ("%d\n", iPage)); PGMMPAGE pPage = &pChunk->aPages[iPage]; Assert(GMM_PAGE_IS_FREE(pPage)); pChunk->iFreeHead = pPage->Free.iNext; /* make the page private. */ pPage->u = 0; AssertCompile(GMM_PAGE_STATE_PRIVATE == 0); pPage->Private.hGVM = hGVM; AssertCompile(NIL_RTHCPHYS >= GMM_GCPHYS_END); AssertCompile(GMM_GCPHYS_UNSHAREABLE >= GMM_GCPHYS_END); if (pPageDesc->HCPhysGCPhys < GMM_GCPHYS_END) pPage->Private.pfn = pPageDesc->HCPhysGCPhys >> PAGE_SHIFT; else pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE; /* unshareable / unassigned - same thing. */ /* update the page descriptor. */ pPageDesc->HCPhysGCPhys = RTR0MemObjGetPagePhysAddr(pChunk->MemObj, iPage); Assert(pPageDesc->HCPhysGCPhys != NIL_RTHCPHYS); pPageDesc->idPage = (pChunk->Core.Key << GMM_CHUNKID_SHIFT) | iPage; pPageDesc->idSharedPage = NIL_GMM_PAGEID; } /** * Common worker for GMMR0AllocateHandyPages and GMMR0AllocatePages. * * @returns VBox status code: * @retval xxx * * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the shared VM structure. * @param cPages The number of pages to allocate. * @param paPages Pointer to the page descriptors. * See GMMPAGEDESC for details on what is expected on input. * @param enmAccount The account to charge. */ static int gmmR0AllocatePages(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount) { /* * Check allocation limits. */ if (RT_UNLIKELY(pGMM->cAllocatedPages + cPages > pGMM->cMaxPages)) return VERR_GMM_HIT_GLOBAL_LIMIT; switch (enmAccount) { case GMMACCOUNT_BASE: if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cBasePages + cPages > pGVM->gmm.s.Reserved.cBasePages)) { Log(("gmmR0AllocatePages: Reserved=%#llx Allocated+Requested=%#llx+%#x!\n", pGVM->gmm.s.Reserved.cBasePages, pGVM->gmm.s.Allocated.cBasePages, cPages)); return VERR_GMM_HIT_VM_ACCOUNT_LIMIT; } break; case GMMACCOUNT_SHADOW: if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cShadowPages + cPages > pGVM->gmm.s.Reserved.cShadowPages)) { Log(("gmmR0AllocatePages: Reserved=%#llx Allocated+Requested=%#llx+%#x!\n", pGVM->gmm.s.Reserved.cShadowPages, pGVM->gmm.s.Allocated.cShadowPages, cPages)); return VERR_GMM_HIT_VM_ACCOUNT_LIMIT; } break; case GMMACCOUNT_FIXED: if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cFixedPages + cPages > pGVM->gmm.s.Reserved.cFixedPages)) { Log(("gmmR0AllocatePages: Reserved=%#llx Allocated+Requested=%#llx+%#x!\n", pGVM->gmm.s.Reserved.cFixedPages, pGVM->gmm.s.Allocated.cFixedPages, cPages)); return VERR_GMM_HIT_VM_ACCOUNT_LIMIT; } break; default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR); } /* * Check if we need to allocate more memory or not. In legacy mode this is * a bit extra work but it's easier to do it upfront than bailing out later. */ PGMMCHUNKFREESET pSet = &pGMM->Private; if (pSet->cPages < cPages) { if (pGMM->fLegacyMode) return VERR_GMM_SEED_ME; int rc = gmmR0AllocateMoreChunks(pGMM, pSet, cPages); if (RT_FAILURE(rc)) return rc; Assert(pSet->cPages >= cPages); } else if (pGMM->fLegacyMode) { uint16_t hGVM = pGVM->hSelf; uint32_t cPagesFound = 0; for (unsigned i = 0; i < RT_ELEMENTS(pSet->apLists); i++) for (PGMMCHUNK pCur = pSet->apLists[i]; pCur; pCur = pCur->pFreeNext) if (pCur->hGVM == hGVM) { cPagesFound += pCur->cFree; if (cPagesFound >= cPages) break; } if (cPagesFound < cPages) return VERR_GMM_SEED_ME; } /* * Pick the pages. */ uint16_t hGVM = pGVM->hSelf; uint32_t iPage = 0; for (unsigned i = 0; i < RT_ELEMENTS(pSet->apLists) && iPage < cPages; i++) { /* first round, pick from chunks with an affinity to the VM. */ PGMMCHUNK pCur = pSet->apLists[i]; while (pCur && iPage < cPages) { PGMMCHUNK pNext = pCur->pFreeNext; if ( pCur->hGVM == hGVM && ( pCur->cFree < GMM_CHUNK_NUM_PAGES || pGMM->fLegacyMode)) { gmmR0UnlinkChunk(pCur); for (; pCur->cFree && iPage < cPages; iPage++) gmmR0AllocatePage(pGMM, hGVM, pCur, &paPages[iPage]); gmmR0LinkChunk(pCur, pSet); } pCur = pNext; } /* second round, take all free pages in this list. */ if (!pGMM->fLegacyMode) { PGMMCHUNK pCur = pSet->apLists[i]; while (pCur && iPage < cPages) { PGMMCHUNK pNext = pCur->pFreeNext; gmmR0UnlinkChunk(pCur); for (; pCur->cFree && iPage < cPages; iPage++) gmmR0AllocatePage(pGMM, hGVM, pCur, &paPages[iPage]); gmmR0LinkChunk(pCur, pSet); pCur = pNext; } } } /* * Update the account. */ switch (enmAccount) { case GMMACCOUNT_BASE: pGVM->gmm.s.Allocated.cBasePages += iPage; case GMMACCOUNT_SHADOW: pGVM->gmm.s.Allocated.cShadowPages += iPage; case GMMACCOUNT_FIXED: pGVM->gmm.s.Allocated.cFixedPages += iPage; default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR); } pGVM->gmm.s.cPrivatePages += iPage; pGMM->cAllocatedPages += iPage; AssertMsgReturn(iPage == cPages, ("%d != %d\n", iPage, cPages), VERR_INTERNAL_ERROR); /* * Check if we've reached some threshold and should kick one or two VMs and tell * them to inflate their balloons a bit more... later. */ return VINF_SUCCESS; } /** * Updates the previous allocations and allocates more pages. * * The handy pages are always taken from the 'base' memory account. * * @returns VBox status code: * @retval xxx * * @param pVM Pointer to the shared VM structure. * @param cPagesToUpdate The number of pages to update (starting from the head). * @param cPagesToAlloc The number of pages to allocate (starting from the head). * @param paPages The array of page descriptors. * See GMMPAGEDESC for details on what is expected on input. * @thread EMT. */ GMMR0DECL(int) GMMR0AllocateHandyPages(PVM pVM, uint32_t cPagesToUpdate, uint32_t cPagesToAlloc, PGMMPAGEDESC paPages) { LogFlow(("GMMR0AllocateHandyPages: pVM=%p cPagesToUpdate=%#x cPagesToAlloc=%#x paPages=%p\n", pVM, cPagesToUpdate, cPagesToAlloc, paPages)); /* * Validate, get basics and take the semaphore. * (This is a relatively busy path, so make predictions where possible.) */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM = GVMMR0ByVM(pVM); if (RT_UNLIKELY(!pGVM)) return VERR_INVALID_PARAMETER; if (RT_UNLIKELY(pGVM->hEMT != RTThreadNativeSelf())) return VERR_NOT_OWNER; AssertPtrReturn(paPages, VERR_INVALID_PARAMETER); AssertMsgReturn( (cPagesToUpdate && cPagesToUpdate < 1024) || (cPagesToAlloc && cPagesToAlloc < 1024), ("cPagesToUpdate=%#x cPagesToAlloc=%#x\n", cPagesToUpdate, cPagesToAlloc), VERR_INVALID_PARAMETER); unsigned iPage = 0; for (; iPage < cPagesToUpdate; iPage++) { AssertMsgReturn( ( paPages[iPage].HCPhysGCPhys < GMM_GCPHYS_END && !(paPages[iPage].HCPhysGCPhys & PAGE_OFFSET_MASK)) || paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS || paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE, ("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys), VERR_INVALID_PARAMETER); AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER); AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST /*|| paPages[iPage].idSharedPage == NIL_GMM_PAGEID*/, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER); } for (; iPage < cPagesToAlloc; iPage++) { AssertMsgReturn(paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS, ("#%#x: %RHp\n", iPage, paPages[iPage].HCPhysGCPhys), VERR_INVALID_PARAMETER); AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER); AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER); } int rc = RTSemFastMutexRequest(pGMM->Mtx); AssertRC(rc); /* No allocations before the initial reservation has been made! */ if (RT_LIKELY( pGVM->gmm.s.Reserved.cBasePages && pGVM->gmm.s.Reserved.cFixedPages && pGVM->gmm.s.Reserved.cShadowPages)) { /* * Perform the updates. * Stop on the first error. */ for (iPage = 0; iPage < cPagesToUpdate; iPage++) { if (paPages[iPage].idPage != NIL_GMM_PAGEID) { PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idPage); if (RT_LIKELY(pPage)) { if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage))) { if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf)) { AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_END && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_END); if (RT_LIKELY(paPages[iPage].HCPhysGCPhys < GMM_GCPHYS_END)) pPage->Private.pfn = paPages[iPage].HCPhysGCPhys >> PAGE_SHIFT; else if (paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE) pPage->Private.pfn = GMM_PAGE_PFN_UNSHAREABLE; /* else: NIL_RTHCPHYS nothing */ paPages[iPage].idPage = NIL_GMM_PAGEID; paPages[iPage].HCPhysGCPhys = NIL_RTHCPHYS; } else { Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not owner! hGVM=%#x hSelf=%#x\n", iPage, paPages[iPage].idPage, pPage->Private.hGVM, pGVM->hSelf)); rc = VERR_GMM_NOT_PAGE_OWNER; break; } } else { Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not private!\n", iPage, paPages[iPage].idPage)); rc = VERR_GMM_PAGE_NOT_PRIVATE; break; } } else { Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (private)\n", iPage, paPages[iPage].idPage)); rc = VERR_GMM_PAGE_NOT_FOUND; break; } } if (paPages[iPage].idSharedPage != NIL_GMM_PAGEID) { PGMMPAGE pPage = gmmR0GetPage(pGMM, paPages[iPage].idSharedPage); if (RT_LIKELY(pPage)) { if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage))) { AssertCompile(NIL_RTHCPHYS > GMM_GCPHYS_END && GMM_GCPHYS_UNSHAREABLE > GMM_GCPHYS_END); Assert(pPage->Shared.cRefs); Assert(pGVM->gmm.s.cSharedPages); Assert(pGVM->gmm.s.Allocated.cBasePages); pGVM->gmm.s.cSharedPages--; pGVM->gmm.s.Allocated.cBasePages--; if (!--pPage->Shared.cRefs) gmmR0FreeSharedPage(pGMM, paPages[iPage].idSharedPage, pPage); paPages[iPage].idSharedPage = NIL_GMM_PAGEID; } else { Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not shared!\n", iPage, paPages[iPage].idSharedPage)); rc = VERR_GMM_PAGE_NOT_SHARED; break; } } else { Log(("GMMR0AllocateHandyPages: #%#x/%#x: Not found! (shared)\n", iPage, paPages[iPage].idSharedPage)); rc = VERR_GMM_PAGE_NOT_FOUND; break; } } } /* * Join paths with GMMR0AllocatePages for the allocation. */ if (RT_SUCCESS(rc)) rc = gmmR0AllocatePages(pGMM, pGVM, cPagesToAlloc, paPages, GMMACCOUNT_BASE); } else rc = VERR_WRONG_ORDER; RTSemFastMutexRelease(pGMM->Mtx); LogFlow(("GMMR0AllocateHandyPages: returns %Rrc\n", rc)); return rc; } /** * Allocate one or more pages. * * This is typically used for ROMs and MMIO2 (VRAM) during VM creation. * * @returns VBox status code: * @retval xxx * * @param pVM Pointer to the shared VM structure. * @param cPages The number of pages to allocate. * @param paPages Pointer to the page descriptors. * See GMMPAGEDESC for details on what is expected on input. * @param enmAccount The account to charge. * * @thread EMT. */ GMMR0DECL(int) GMMR0AllocatePages(PVM pVM, uint32_t cPages, PGMMPAGEDESC paPages, GMMACCOUNT enmAccount) { LogFlow(("GMMR0AllocatePages: pVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pVM, cPages, paPages, enmAccount)); /* * Validate, get basics and take the semaphore. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM = GVMMR0ByVM(pVM); if (!pGVM) return VERR_INVALID_PARAMETER; if (pGVM->hEMT != RTThreadNativeSelf()) return VERR_NOT_OWNER; AssertPtrReturn(paPages, VERR_INVALID_PARAMETER); AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER); AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER); for (unsigned iPage = 0; iPage < cPages; iPage++) { AssertMsgReturn( paPages[iPage].HCPhysGCPhys == NIL_RTHCPHYS || paPages[iPage].HCPhysGCPhys == GMM_GCPHYS_UNSHAREABLE || ( enmAccount == GMMACCOUNT_BASE && paPages[iPage].HCPhysGCPhys < GMM_GCPHYS_END && !(paPages[iPage].HCPhysGCPhys & PAGE_OFFSET_MASK)), ("#%#x: %RHp enmAccount=%d\n", iPage, paPages[iPage].HCPhysGCPhys, enmAccount), VERR_INVALID_PARAMETER); AssertMsgReturn(paPages[iPage].idPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER); AssertMsgReturn(paPages[iPage].idSharedPage == NIL_GMM_PAGEID, ("#%#x: %#x\n", iPage, paPages[iPage].idSharedPage), VERR_INVALID_PARAMETER); } int rc = RTSemFastMutexRequest(pGMM->Mtx); AssertRC(rc); /* No allocations before the initial reservation has been made! */ if ( pGVM->gmm.s.Reserved.cBasePages && pGVM->gmm.s.Reserved.cFixedPages && pGVM->gmm.s.Reserved.cShadowPages) rc = gmmR0AllocatePages(pGMM, pGVM, cPages, paPages, enmAccount); else rc = VERR_WRONG_ORDER; RTSemFastMutexRelease(pGMM->Mtx); LogFlow(("GMMR0UpdateReservation: returns %Rrc\n", rc)); return rc; } /** * VMMR0 request wrapper for GMMR0AllocatePages. * * @returns see GMMR0AllocatePages. * @param pVM Pointer to the shared VM structure. * @param pReq The request packet. */ GMMR0DECL(int) GMMR0AllocatePagesReq(PVM pVM, PGMMALLOCATEPAGESREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0]), ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[0])), VERR_INVALID_PARAMETER); AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[pReq->cPages]), ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMALLOCATEPAGESREQ, aPages[pReq->cPages])), VERR_INVALID_PARAMETER); return GMMR0AllocatePages(pVM, pReq->cPages, &pReq->aPages[0], pReq->enmAccount); } /** * Frees a chunk, giving it back to the host OS. * * @param pGMM Pointer to the GMM instance. * @param pChunk The chunk to free. */ static void gmmR0FreeChunk(PGMM pGMM, PGMMCHUNK pChunk) { /* * If there are current mappings of the chunk, then request the * VMs to unmap them. Reposition the chunk in the free list so * it won't be a likely candidate for allocations. */ if (pChunk->cMappings) { /** @todo R0 -> VM request */ } else { /* * Try free the memory object. */ int rc = RTR0MemObjFree(pChunk->MemObj, false /* fFreeMappings */); if (RT_SUCCESS(rc)) { pChunk->MemObj = NIL_RTR0MEMOBJ; /* * Unlink it from everywhere. */ gmmR0UnlinkChunk(pChunk); PAVLU32NODECORE pCore = RTAvlU32Remove(&pGMM->pChunks, pChunk->Core.Key); Assert(pCore == &pChunk->Core); NOREF(pCore); PGMMCHUNKTLBE pTlbe = &pGMM->ChunkTLB.aEntries[GMM_CHUNKTLB_IDX(pCore->Key)]; if (pTlbe->pChunk == pChunk) { pTlbe->idChunk = NIL_GMM_CHUNKID; pTlbe->pChunk = NULL; } Assert(pGMM->cChunks > 0); pGMM->cChunks--; /* * Free the Chunk ID and struct. */ gmmR0FreeChunkId(pGMM, pChunk->Core.Key); pChunk->Core.Key = NIL_GMM_CHUNKID; RTMemFree(pChunk->paMappings); pChunk->paMappings = NULL; RTMemFree(pChunk); } else AssertRC(rc); } } /** * Free page worker. * * The caller does all the statistic decrementing, we do all the incrementing. * * @param pGMM Pointer to the GMM instance data. * @param pChunk Pointer to the chunk this page belongs to. * @param pPage Pointer to the page. */ static void gmmR0FreePageWorker(PGMM pGMM, PGMMCHUNK pChunk, PGMMPAGE pPage) { /* * Put the page on the free list. */ pPage->u = 0; pPage->Free.u2State = GMM_PAGE_STATE_FREE; Assert(pChunk->iFreeHead < RT_ELEMENTS(pChunk->aPages) || pChunk->iFreeHead == UINT16_MAX); pPage->Free.iNext = pChunk->iFreeHead; pChunk->iFreeHead = pPage - &pChunk->aPages[0]; /* * Update statistics (the cShared/cPrivate stats are up to date already), * and relink the chunk if necessary. */ if ((pChunk->cFree & GMM_CHUNK_FREE_SET_MASK) == 0) { gmmR0UnlinkChunk(pChunk); pChunk->cFree++; gmmR0LinkChunk(pChunk, pChunk->cShared ? &pGMM->Shared : &pGMM->Private); } else { pChunk->cFree++; pChunk->pSet->cPages++; /* * If the chunk becomes empty, consider giving memory back to the host OS. * * The current strategy is to try give it back if there are other chunks * in this free list, meaning if there are at least 240 free pages in this * category. Note that since there are probably mappings of the chunk, * it won't be freed up instantly, which probably screws up this logic * a bit... */ if (RT_UNLIKELY( pChunk->cFree == GMM_CHUNK_NUM_PAGES && pChunk->pFreeNext && pChunk->pFreePrev)) gmmR0FreeChunk(pGMM, pChunk); } } /** * Frees a shared page, the page is known to exist and be valid and such. * * @param pGMM Pointer to the GMM instance. * @param idPage The Page ID * @param pPage The page structure. */ DECLINLINE(void) gmmR0FreeSharedPage(PGMM pGMM, uint32_t idPage, PGMMPAGE pPage) { PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); Assert(pChunk); Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES); Assert(pChunk->cShared > 0); Assert(pGMM->cSharedPages > 0); Assert(pGMM->cAllocatedPages > 0); Assert(!pPage->Shared.cRefs); pChunk->cShared--; pGMM->cAllocatedPages--; pGMM->cSharedPages--; gmmR0FreePageWorker(pGMM, pChunk, pPage); } /** * Frees a private page, the page is known to exist and be valid and such. * * @param pGMM Pointer to the GMM instance. * @param idPage The Page ID * @param pPage The page structure. */ DECLINLINE(void) gmmR0FreePrivatePage(PGMM pGMM, uint32_t idPage, PGMMPAGE pPage) { PGMMCHUNK pChunk = gmmR0GetChunk(pGMM, idPage >> GMM_CHUNKID_SHIFT); Assert(pChunk); Assert(pChunk->cFree < GMM_CHUNK_NUM_PAGES); Assert(pChunk->cPrivate > 0); Assert(pGMM->cAllocatedPages > 0); pChunk->cPrivate--; pGMM->cAllocatedPages--; gmmR0FreePageWorker(pGMM, pChunk, pPage); } /** * Common worker for GMMR0FreePages and GMMR0BalloonedPages. * * @returns VBox status code: * @retval xxx * * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the shared VM structure. * @param cPages The number of pages to free. * @param paPages Pointer to the page descriptors. * @param enmAccount The account this relates to. */ static int gmmR0FreePages(PGMM pGMM, PGVM pGVM, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount) { /* * Check that the request isn't impossible wrt to the account status. */ switch (enmAccount) { case GMMACCOUNT_BASE: if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cBasePages < cPages)) { Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Allocated.cBasePages, cPages)); return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; } break; case GMMACCOUNT_SHADOW: if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cShadowPages < cPages)) { Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Allocated.cShadowPages, cPages)); return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; } break; case GMMACCOUNT_FIXED: if (RT_UNLIKELY(pGVM->gmm.s.Allocated.cFixedPages < cPages)) { Log(("gmmR0FreePages: allocated=%#llx cPages=%#x!\n", pGVM->gmm.s.Allocated.cFixedPages, cPages)); return VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; } break; default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR); } /* * Walk the descriptors and free the pages. * * Statistics (except the account) are being updated as we go along, * unlike the alloc code. Also, stop on the first error. */ int rc = VINF_SUCCESS; uint32_t iPage; for (iPage = 0; iPage < cPages; iPage++) { uint32_t idPage = paPages[iPage].idPage; PGMMPAGE pPage = gmmR0GetPage(pGMM, idPage); if (RT_LIKELY(pPage)) { if (RT_LIKELY(GMM_PAGE_IS_PRIVATE(pPage))) { if (RT_LIKELY(pPage->Private.hGVM == pGVM->hSelf)) { Assert(pGVM->gmm.s.cPrivatePages); pGVM->gmm.s.cPrivatePages--; gmmR0FreePrivatePage(pGMM, idPage, pPage); } else { Log(("gmmR0AllocatePages: #%#x/%#x: not owner! hGVM=%#x hSelf=%#x\n", iPage, idPage, pPage->Private.hGVM, pGVM->hEMT)); rc = VERR_GMM_NOT_PAGE_OWNER; break; } } else if (RT_LIKELY(GMM_PAGE_IS_SHARED(pPage))) { Assert(pGVM->gmm.s.cSharedPages); pGVM->gmm.s.cSharedPages--; Assert(pPage->Shared.cRefs); if (!--pPage->Shared.cRefs) gmmR0FreeSharedPage(pGMM, idPage, pPage); } else { Log(("gmmR0AllocatePages: #%#x/%#x: already free!\n", iPage, idPage)); rc = VERR_GMM_PAGE_ALREADY_FREE; break; } } else { Log(("gmmR0AllocatePages: #%#x/%#x: not found!\n", iPage, idPage)); rc = VERR_GMM_PAGE_NOT_FOUND; break; } paPages[iPage].idPage = NIL_GMM_PAGEID; } /* * Update the account. */ switch (enmAccount) { case GMMACCOUNT_BASE: pGVM->gmm.s.Allocated.cBasePages -= iPage; case GMMACCOUNT_SHADOW: pGVM->gmm.s.Allocated.cShadowPages -= iPage; case GMMACCOUNT_FIXED: pGVM->gmm.s.Allocated.cFixedPages -= iPage; default: AssertMsgFailedReturn(("enmAccount=%d\n", enmAccount), VERR_INTERNAL_ERROR); } /* * Any threshold stuff to be done here? */ return rc; } /** * Free one or more pages. * * This is typically used at reset time or power off. * * @returns VBox status code: * @retval xxx * * @param pVM Pointer to the shared VM structure. * @param cPages The number of pages to allocate. * @param paPages Pointer to the page descriptors containing the Page IDs for each page. * @param enmAccount The account this relates to. * @thread EMT. */ GMMR0DECL(int) GMMR0FreePages(PVM pVM, uint32_t cPages, PGMMFREEPAGEDESC paPages, GMMACCOUNT enmAccount) { LogFlow(("GMMR0FreePages: pVM=%p cPages=%#x paPages=%p enmAccount=%d\n", pVM, cPages, paPages, enmAccount)); /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM = GVMMR0ByVM(pVM); if (!pGVM) return VERR_INVALID_PARAMETER; if (pGVM->hEMT != RTThreadNativeSelf()) return VERR_NOT_OWNER; AssertPtrReturn(paPages, VERR_INVALID_PARAMETER); AssertMsgReturn(enmAccount > GMMACCOUNT_INVALID && enmAccount < GMMACCOUNT_END, ("%d\n", enmAccount), VERR_INVALID_PARAMETER); AssertMsgReturn(cPages > 0 && cPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER); for (unsigned iPage = 0; iPage < cPages; iPage++) AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER); /* * Take the semaphore and call the worker function. */ int rc = RTSemFastMutexRequest(pGMM->Mtx); AssertRC(rc); rc = gmmR0FreePages(pGMM, pGVM, cPages, paPages, enmAccount); RTSemFastMutexRelease(pGMM->Mtx); LogFlow(("GMMR0FreePages: returns %Rrc\n", rc)); return rc; } /** * VMMR0 request wrapper for GMMR0FreePages. * * @returns see GMMR0FreePages. * @param pVM Pointer to the shared VM structure. * @param pReq The request packet. */ GMMR0DECL(int) GMMR0FreePagesReq(PVM pVM, PGMMFREEPAGESREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0]), ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[0])), VERR_INVALID_PARAMETER); AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[pReq->cPages]), ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMFREEPAGESREQ, aPages[pReq->cPages])), VERR_INVALID_PARAMETER); return GMMR0FreePages(pVM, pReq->cPages, &pReq->aPages[0], pReq->enmAccount); } /** * Report back on a memory ballooning request. * * The request may or may not have been initiated by the GMM. If it was initiated * by the GMM it is important that this function is called even if no pages was * ballooned. * * Since the whole purpose of ballooning is to free up guest RAM pages, this API * may also be given a set of related pages to be freed. These pages are assumed * to be on the base account. * * @returns VBox status code: * @retval xxx * * @param pVM Pointer to the shared VM structure. * @param cBalloonedPages The number of pages that was ballooned. * @param cPagesToFree The number of pages to be freed. * @param paPages Pointer to the page descriptors for the pages that's to be freed. * @param fCompleted Indicates whether the ballooning request was completed (true) or * if there is more pages to come (false). If the ballooning was not * not triggered by the GMM, don't set this. * @thread EMT. */ GMMR0DECL(int) GMMR0BalloonedPages(PVM pVM, uint32_t cBalloonedPages, uint32_t cPagesToFree, PGMMFREEPAGEDESC paPages, bool fCompleted) { LogFlow(("GMMR0BalloonedPages: pVM=%p cBalloonedPages=%#x cPagestoFree=%#x paPages=%p enmAccount=%d fCompleted=%RTbool\n", pVM, cBalloonedPages, cPagesToFree, paPages, fCompleted)); /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM = GVMMR0ByVM(pVM); if (!pGVM) return VERR_INVALID_PARAMETER; if (pGVM->hEMT != RTThreadNativeSelf()) return VERR_NOT_OWNER; AssertPtrReturn(paPages, VERR_INVALID_PARAMETER); AssertMsgReturn(cBalloonedPages >= 0 && cBalloonedPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cBalloonedPages), VERR_INVALID_PARAMETER); AssertMsgReturn(cPagesToFree >= 0 && cPagesToFree <= cBalloonedPages, ("%#x\n", cPagesToFree), VERR_INVALID_PARAMETER); for (unsigned iPage = 0; iPage < cPagesToFree; iPage++) AssertMsgReturn( paPages[iPage].idPage <= GMM_PAGEID_LAST /*|| paPages[iPage].idPage == NIL_GMM_PAGEID*/, ("#%#x: %#x\n", iPage, paPages[iPage].idPage), VERR_INVALID_PARAMETER); /* * Take the sempahore and do some more validations. */ int rc = RTSemFastMutexRequest(pGMM->Mtx); AssertRC(rc); if (pGVM->gmm.s.Allocated.cBasePages >= cPagesToFree) { /* * Record the ballooned memory. */ pGMM->cBalloonedPages += cBalloonedPages; if (pGVM->gmm.s.cReqBalloonedPages) { pGVM->gmm.s.cBalloonedPages += cBalloonedPages; pGVM->gmm.s.cReqActuallyBalloonedPages += cBalloonedPages; if (fCompleted) { Log(("GMMR0BalloonedPages: +%#x - Global=%#llx; / VM: Total=%#llx Req=%#llx Actual=%#llx (completed)\n", cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages, pGVM->gmm.s.cReqBalloonedPages, pGVM->gmm.s.cReqActuallyBalloonedPages)); /* * Anything we need to do here now when the request has been completed? */ pGVM->gmm.s.cReqBalloonedPages = 0; } else Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx Req=%#llx Actual=%#llx (pending)\n", cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages, pGVM->gmm.s.cReqBalloonedPages, pGVM->gmm.s.cReqActuallyBalloonedPages)); } else { pGVM->gmm.s.cBalloonedPages += cBalloonedPages; Log(("GMMR0BalloonedPages: +%#x - Global=%#llx / VM: Total=%#llx (user)\n", cBalloonedPages, pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages)); } /* * Any pages to free? */ if (cPagesToFree) rc = gmmR0FreePages(pGMM, pGVM, cPagesToFree, paPages, GMMACCOUNT_BASE); } else { rc = VERR_GMM_ATTEMPT_TO_FREE_TOO_MUCH; } RTSemFastMutexRelease(pGMM->Mtx); LogFlow(("GMMR0BalloonedPages: returns %Rrc\n", rc)); return rc; } /** * VMMR0 request wrapper for GMMR0BalloonedPages. * * @returns see GMMR0BalloonedPages. * @param pVM Pointer to the shared VM structure. * @param pReq The request packet. */ GMMR0DECL(int) GMMR0BalloonedPagesReq(PVM pVM, PGMMBALLOONEDPAGESREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq >= RT_UOFFSETOF(GMMBALLOONEDPAGESREQ, aPages[0]), ("%#x < %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMBALLOONEDPAGESREQ, aPages[0])), VERR_INVALID_PARAMETER); AssertMsgReturn(pReq->Hdr.cbReq == RT_UOFFSETOF(GMMBALLOONEDPAGESREQ, aPages[pReq->cPagesToFree]), ("%#x != %#x\n", pReq->Hdr.cbReq, RT_UOFFSETOF(GMMBALLOONEDPAGESREQ, aPages[pReq->cPagesToFree])), VERR_INVALID_PARAMETER); return GMMR0BalloonedPages(pVM, pReq->cBalloonedPages, pReq->cPagesToFree, &pReq->aPages[0], pReq->fCompleted); } /** * Report balloon deflating. * * @returns VBox status code: * @retval xxx * * @param pVM Pointer to the shared VM structure. * @param cPages The number of pages that was let out of the balloon. * @thread EMT. */ GMMR0DECL(int) GMMR0DeflatedBalloon(PVM pVM, uint32_t cPages) { LogFlow(("GMMR0DeflatedBalloon: pVM=%p cPages=%#x\n", pVM, cPages)); /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM = GVMMR0ByVM(pVM); if (!pGVM) return VERR_INVALID_PARAMETER; if (pGVM->hEMT != RTThreadNativeSelf()) return VERR_NOT_OWNER; AssertMsgReturn(cPages >= 0 && cPages < RT_BIT(32 - PAGE_SHIFT), ("%#x\n", cPages), VERR_INVALID_PARAMETER); /* * Take the sempahore and do some more validations. */ int rc = RTSemFastMutexRequest(pGMM->Mtx); AssertRC(rc); if (pGVM->gmm.s.cBalloonedPages < cPages) { Assert(pGMM->cBalloonedPages >= pGVM->gmm.s.cBalloonedPages); /* * Record it. */ pGMM->cBalloonedPages -= cPages; pGVM->gmm.s.cBalloonedPages -= cPages; if (pGVM->gmm.s.cReqDeflatePages) { Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx Req=%#llx\n", cPages, pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages, pGVM->gmm.s.cReqDeflatePages)); /* * Anything we need to do here now when the request has been completed? */ pGVM->gmm.s.cReqDeflatePages = 0; } else Log(("GMMR0BalloonedPages: -%#x - Global=%#llx / VM: Total=%#llx\n", cPages, pGMM->cBalloonedPages, pGVM->gmm.s.cBalloonedPages)); } else { Log(("GMMR0DeflatedBalloon: cBalloonedPages=%#llx cPages=%#x\n", pGVM->gmm.s.cBalloonedPages, cPages)); rc = VERR_GMM_ATTEMPT_TO_DEFLATE_TOO_MUCH; } RTSemFastMutexRelease(pGMM->Mtx); LogFlow(("GMMR0BalloonedPages: returns %Rrc\n", rc)); return rc; } /** * Unmaps a chunk previously mapped into the address space of the current process. * * @returns VBox status code. * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the Global VM structure. * @param pChunk Pointer to the chunk to be unmapped. */ static int gmmR0UnmapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk) { /* * Find the mapping and try unmapping it. */ for (uint32_t i = 0; i < pChunk->cMappings; i++) { Assert(pChunk->paMappings[i].pGVM && pChunk->paMappings[i].MapObj != NIL_RTR0MEMOBJ); if (pChunk->paMappings[i].pGVM == pGVM) { /* unmap */ int rc = RTR0MemObjFree(pChunk->paMappings[i].MapObj, false /* fFreeMappings (NA) */); if (RT_SUCCESS(rc)) { /* update the record. */ pChunk->cMappings--; if (i < pChunk->cMappings) pChunk->paMappings[i] = pChunk->paMappings[pChunk->cMappings]; pChunk->paMappings[pChunk->cMappings].MapObj = NIL_RTR0MEMOBJ; pChunk->paMappings[pChunk->cMappings].pGVM = NULL; } return rc; } } Log(("gmmR0MapChunk: Chunk %#x is not mapped into pGVM=%p/%#x\n", pChunk->Core.Key, pGVM, pGVM->hSelf)); return VERR_GMM_CHUNK_NOT_MAPPED; } /** * Maps a chunk into the user address space of the current process. * * @returns VBox status code. * @param pGMM Pointer to the GMM instance data. * @param pGVM Pointer to the Global VM structure. * @param pChunk Pointer to the chunk to be mapped. * @param ppvR3 Where to store the ring-3 address of the mapping. * In the VERR_GMM_CHUNK_ALREADY_MAPPED case, this will be * contain the address of the existing mapping. */ static int gmmR0MapChunk(PGMM pGMM, PGVM pGVM, PGMMCHUNK pChunk, PRTR3PTR ppvR3) { /* * Check to see if the chunk is already mapped. */ for (uint32_t i = 0; i < pChunk->cMappings; i++) { Assert(pChunk->paMappings[i].pGVM && pChunk->paMappings[i].MapObj != NIL_RTR0MEMOBJ); if (pChunk->paMappings[i].pGVM == pGVM) { *ppvR3 = RTR0MemObjAddressR3(pChunk->paMappings[i].MapObj); Log(("gmmR0MapChunk: chunk %#x is already mapped at %p!\n", pChunk->Core.Key, *ppvR3)); return VERR_GMM_CHUNK_ALREADY_MAPPED; } } /* * Do the mapping. */ RTR0MEMOBJ MapObj; int rc = RTR0MemObjMapUser(&MapObj, pChunk->MemObj, (RTR3PTR)-1, 0, RTMEM_PROT_READ | RTMEM_PROT_WRITE, NIL_RTR0PROCESS); if (RT_SUCCESS(rc)) { /* reallocate the array? */ if ((pChunk->cMappings & 1 /*7*/) == 0) { void *pvMappings = RTMemRealloc(pChunk->paMappings, (pChunk->cMappings + 2 /*8*/) * sizeof(pChunk->paMappings[0])); if (RT_UNLIKELY(pvMappings)) { rc = RTR0MemObjFree(MapObj, false /* fFreeMappings (NA) */); AssertRC(rc); return VERR_NO_MEMORY; } pChunk->paMappings = (PGMMCHUNKMAP)pvMappings; } /* insert new entry */ pChunk->paMappings[pChunk->cMappings].MapObj = MapObj; pChunk->paMappings[pChunk->cMappings].pGVM = pGVM; pChunk->cMappings++; *ppvR3 = RTR0MemObjAddressR3(MapObj); } return rc; } /** * Map a chunk and/or unmap another chunk. * * The mapping and unmapping applies to the current process. * * This API does two things because it saves a kernel call per mapping when * when the ring-3 mapping cache is full. * * @returns VBox status code. * @param pVM The VM. * @param idChunkMap The chunk to map. NIL_GMM_CHUNKID if nothing to map. * @param idChunkUnmap The chunk to unmap. NIL_GMM_CHUNKID if nothing to unmap. * @param ppvR3 Where to store the address of the mapped chunk. NULL is ok if nothing to map. * @thread EMT */ GMMR0DECL(int) GMMR0MapUnmapChunk(PVM pVM, uint32_t idChunkMap, uint32_t idChunkUnmap, PRTR3PTR ppvR3) { LogFlow(("GMMR0MapUnmapChunk: pVM=%p idChunkMap=%#x idChunkUnmap=%#x ppvR3=%p\n", pVM, idChunkMap, idChunkUnmap, ppvR3)); /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM = GVMMR0ByVM(pVM); if (!pGVM) return VERR_INVALID_PARAMETER; if (pGVM->hEMT != RTThreadNativeSelf()) return VERR_NOT_OWNER; AssertCompile(NIL_GMM_CHUNKID == 0); AssertMsgReturn(idChunkMap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkMap), VERR_INVALID_PARAMETER); AssertMsgReturn(idChunkUnmap <= GMM_CHUNKID_LAST, ("%#x\n", idChunkUnmap), VERR_INVALID_PARAMETER); if ( idChunkMap == NIL_GMM_CHUNKID && idChunkUnmap == NIL_GMM_CHUNKID) return VERR_INVALID_PARAMETER; if (idChunkMap != NIL_GMM_CHUNKID) { AssertPtrReturn(ppvR3, VERR_INVALID_POINTER); *ppvR3 = NIL_RTR3PTR; } if (pGMM->fLegacyMode) { Log(("GMMR0MapUnmapChunk: legacy mode!\n")); return VERR_NOT_SUPPORTED; } /* * Take the semaphore and do the work. * * The unmapping is done last since it's easier to undo a mapping than * undoing an unmapping. The ring-3 mapping cache cannot not be so big * that it pushes the user virtual address space to within a chunk of * it it's limits, so, no problem here. */ int rc = RTSemFastMutexRequest(pGMM->Mtx); AssertRC(rc); PGMMCHUNK pMap = NULL; if (idChunkMap != NIL_GVM_HANDLE) { pMap = gmmR0GetChunk(pGMM, idChunkMap); if (RT_LIKELY(pMap)) rc = gmmR0MapChunk(pGMM, pGVM, pMap, ppvR3); else { Log(("GMMR0MapUnmapChunk: idChunkMap=%#x\n", idChunkMap)); rc = VERR_GMM_CHUNK_NOT_FOUND; } } if ( idChunkUnmap != NIL_GMM_CHUNKID && RT_SUCCESS(rc)) { PGMMCHUNK pUnmap = gmmR0GetChunk(pGMM, idChunkUnmap); if (RT_LIKELY(pUnmap)) rc = gmmR0UnmapChunk(pGMM, pGVM, pUnmap); else { Log(("GMMR0MapUnmapChunk: idChunkUnmap=%#x\n", idChunkUnmap)); rc = VERR_GMM_CHUNK_NOT_FOUND; } if (RT_FAILURE(rc) && pMap) gmmR0UnmapChunk(pGMM, pGVM, pMap); } RTSemFastMutexRelease(pGMM->Mtx); LogFlow(("GMMR0MapUnmapChunk: returns %Rrc\n", rc)); return rc; } /** * VMMR0 request wrapper for GMMR0MapUnmapChunk. * * @returns see GMMR0MapUnmapChunk. * @param pVM Pointer to the shared VM structure. * @param pReq The request packet. */ GMMR0DECL(int) GMMR0MapUnmapChunkReq(PVM pVM, PGMMMAPUNMAPCHUNKREQ pReq) { /* * Validate input and pass it on. */ AssertPtrReturn(pVM, VERR_INVALID_POINTER); AssertPtrReturn(pReq, VERR_INVALID_POINTER); AssertMsgReturn(pReq->Hdr.cbReq == sizeof(*pReq), ("%#x != %#x\n", pReq->Hdr.cbReq, sizeof(*pReq)), VERR_INVALID_PARAMETER); return GMMR0MapUnmapChunk(pVM, pReq->idChunkMap, pReq->idChunkUnmap, &pReq->pvR3); } /** * Legacy mode API for supplying pages. * * The specified user address points to a allocation chunk sized block that * will be locked down and used by the GMM when the GM asks for pages. * * @returns VBox status code. * @param pVM The VM. * @param pvR3 Pointer to the chunk size memory block to lock down. */ GMMR0DECL(int) GMMR0SeedChunk(PVM pVM, RTR3PTR pvR3) { /* * Validate input and get the basics. */ PGMM pGMM; GMM_GET_VALID_INSTANCE(pGMM, VERR_INTERNAL_ERROR); PGVM pGVM = GVMMR0ByVM(pVM); if (!pGVM) return VERR_INVALID_PARAMETER; if (pGVM->hEMT != RTThreadNativeSelf()) return VERR_NOT_OWNER; AssertPtrReturn(pvR3, VERR_INVALID_POINTER); AssertReturn(!(PAGE_OFFSET_MASK & pvR3), VERR_INVALID_POINTER); if (!pGMM->fLegacyMode) { Log(("GMMR0SeedChunk: not in legacy mode!\n")); return VERR_NOT_SUPPORTED; } /* * Lock the memory before taking the semaphore. */ RTR0MEMOBJ MemObj; int rc = RTR0MemObjLockUser(&MemObj, pvR3, GMM_CHUNK_SIZE, NIL_RTR0PROCESS); if (RT_SUCCESS(rc)) { /* * Take the semaphore and add a new chunk with our hGVM. */ int rc = RTSemFastMutexRequest(pGMM->Mtx); AssertRC(rc); rc = gmmR0RegisterChunk(pGMM, &pGMM->Private, MemObj, pGVM->hSelf); RTSemFastMutexRelease(pGMM->Mtx); if (RT_FAILURE(rc)) RTR0MemObjFree(MemObj, false /* fFreeMappings */); } return rc; }