VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/CPUMR0.cpp@ 61068

Last change on this file since 61068 was 61068, checked in by vboxsync, 8 years ago

CPUM,IEM: FPU/SSE/AVX state and host resources APIs, first installment. This should fix the win 8.1 issue.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id Revision
File size: 35.5 KB
Line 
1/* $Id: CPUMR0.cpp 61068 2016-05-20 01:24:53Z vboxsync $ */
2/** @file
3 * CPUM - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2015 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_CPUM
23#include <VBox/vmm/cpum.h>
24#include "CPUMInternal.h"
25#include <VBox/vmm/vm.h>
26#include <VBox/err.h>
27#include <VBox/log.h>
28#include <VBox/vmm/hm.h>
29#include <iprt/assert.h>
30#include <iprt/asm-amd64-x86.h>
31#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
32# include <iprt/mem.h>
33# include <iprt/memobj.h>
34# include <VBox/apic.h>
35#endif
36#include <iprt/x86.h>
37
38
39/*********************************************************************************************************************************
40* Structures and Typedefs *
41*********************************************************************************************************************************/
42#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
43/**
44 * Local APIC mappings.
45 */
46typedef struct CPUMHOSTLAPIC
47{
48 /** Indicates that the entry is in use and have valid data. */
49 bool fEnabled;
50 /** Whether it's operating in X2APIC mode (EXTD). */
51 bool fX2Apic;
52 /** The APIC version number. */
53 uint32_t uVersion;
54 /** The physical address of the APIC registers. */
55 RTHCPHYS PhysBase;
56 /** The memory object entering the physical address. */
57 RTR0MEMOBJ hMemObj;
58 /** The mapping object for hMemObj. */
59 RTR0MEMOBJ hMapObj;
60 /** The mapping address APIC registers.
61 * @remarks Different CPUs may use the same physical address to map their
62 * APICs, so this pointer is only valid when on the CPU owning the
63 * APIC. */
64 void *pv;
65} CPUMHOSTLAPIC;
66#endif
67
68
69/*********************************************************************************************************************************
70* Global Variables *
71*********************************************************************************************************************************/
72#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
73static CPUMHOSTLAPIC g_aLApics[RTCPUSET_MAX_CPUS];
74#endif
75
76/**
77 * CPUID bits to unify among all cores.
78 */
79static struct
80{
81 uint32_t uLeaf; /**< Leaf to check. */
82 uint32_t uEcx; /**< which bits in ecx to unify between CPUs. */
83 uint32_t uEdx; /**< which bits in edx to unify between CPUs. */
84}
85const g_aCpuidUnifyBits[] =
86{
87 {
88 0x00000001,
89 X86_CPUID_FEATURE_ECX_CX16 | X86_CPUID_FEATURE_ECX_MONITOR,
90 X86_CPUID_FEATURE_EDX_CX8
91 }
92};
93
94
95
96/*********************************************************************************************************************************
97* Internal Functions *
98*********************************************************************************************************************************/
99#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
100static int cpumR0MapLocalApics(void);
101static void cpumR0UnmapLocalApics(void);
102#endif
103static int cpumR0SaveHostDebugState(PVMCPU pVCpu);
104
105
106/**
107 * Does the Ring-0 CPU initialization once during module load.
108 * XXX Host-CPU hot-plugging?
109 */
110VMMR0_INT_DECL(int) CPUMR0ModuleInit(void)
111{
112 int rc = VINF_SUCCESS;
113#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
114 rc = cpumR0MapLocalApics();
115#endif
116 return rc;
117}
118
119
120/**
121 * Terminate the module.
122 */
123VMMR0_INT_DECL(int) CPUMR0ModuleTerm(void)
124{
125#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
126 cpumR0UnmapLocalApics();
127#endif
128 return VINF_SUCCESS;
129}
130
131
132/**
133 *
134 *
135 * Check the CPUID features of this particular CPU and disable relevant features
136 * for the guest which do not exist on this CPU. We have seen systems where the
137 * X86_CPUID_FEATURE_ECX_MONITOR feature flag is only set on some host CPUs, see
138 * @bugref{5436}.
139 *
140 * @note This function might be called simultaneously on more than one CPU!
141 *
142 * @param idCpu The identifier for the CPU the function is called on.
143 * @param pvUser1 Pointer to the VM structure.
144 * @param pvUser2 Ignored.
145 */
146static DECLCALLBACK(void) cpumR0CheckCpuid(RTCPUID idCpu, void *pvUser1, void *pvUser2)
147{
148 PVM pVM = (PVM)pvUser1;
149
150 NOREF(idCpu); NOREF(pvUser2);
151 for (uint32_t i = 0; i < RT_ELEMENTS(g_aCpuidUnifyBits); i++)
152 {
153 /* Note! Cannot use cpumCpuIdGetLeaf from here because we're not
154 necessarily in the VM process context. So, we using the
155 legacy arrays as temporary storage. */
156
157 uint32_t uLeaf = g_aCpuidUnifyBits[i].uLeaf;
158 PCPUMCPUID pLegacyLeaf;
159 if (uLeaf < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmStd))
160 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmStd[uLeaf];
161 else if (uLeaf - UINT32_C(0x80000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmExt))
162 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmExt[uLeaf - UINT32_C(0x80000000)];
163 else if (uLeaf - UINT32_C(0xc0000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmCentaur))
164 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmCentaur[uLeaf - UINT32_C(0xc0000000)];
165 else
166 continue;
167
168 uint32_t eax, ebx, ecx, edx;
169 ASMCpuIdExSlow(uLeaf, 0, 0, 0, &eax, &ebx, &ecx, &edx);
170
171 ASMAtomicAndU32(&pLegacyLeaf->uEcx, ecx | ~g_aCpuidUnifyBits[i].uEcx);
172 ASMAtomicAndU32(&pLegacyLeaf->uEdx, edx | ~g_aCpuidUnifyBits[i].uEdx);
173 }
174}
175
176
177/**
178 * Does Ring-0 CPUM initialization.
179 *
180 * This is mainly to check that the Host CPU mode is compatible
181 * with VBox.
182 *
183 * @returns VBox status code.
184 * @param pVM The cross context VM structure.
185 */
186VMMR0_INT_DECL(int) CPUMR0InitVM(PVM pVM)
187{
188 LogFlow(("CPUMR0Init: %p\n", pVM));
189
190 /*
191 * Check CR0 & CR4 flags.
192 */
193 uint32_t u32CR0 = ASMGetCR0();
194 if ((u32CR0 & (X86_CR0_PE | X86_CR0_PG)) != (X86_CR0_PE | X86_CR0_PG)) /* a bit paranoid perhaps.. */
195 {
196 Log(("CPUMR0Init: PE or PG not set. cr0=%#x\n", u32CR0));
197 return VERR_UNSUPPORTED_CPU_MODE;
198 }
199
200 /*
201 * Check for sysenter and syscall usage.
202 */
203 if (ASMHasCpuId())
204 {
205 /*
206 * SYSENTER/SYSEXIT
207 *
208 * Intel docs claim you should test both the flag and family, model &
209 * stepping because some Pentium Pro CPUs have the SEP cpuid flag set,
210 * but don't support it. AMD CPUs may support this feature in legacy
211 * mode, they've banned it from long mode. Since we switch to 32-bit
212 * mode when entering raw-mode context the feature would become
213 * accessible again on AMD CPUs, so we have to check regardless of
214 * host bitness.
215 */
216 uint32_t u32CpuVersion;
217 uint32_t u32Dummy;
218 uint32_t fFeatures;
219 ASMCpuId(1, &u32CpuVersion, &u32Dummy, &u32Dummy, &fFeatures);
220 uint32_t const u32Family = u32CpuVersion >> 8;
221 uint32_t const u32Model = (u32CpuVersion >> 4) & 0xF;
222 uint32_t const u32Stepping = u32CpuVersion & 0xF;
223 if ( (fFeatures & X86_CPUID_FEATURE_EDX_SEP)
224 && ( u32Family != 6 /* (> pentium pro) */
225 || u32Model >= 3
226 || u32Stepping >= 3
227 || !ASMIsIntelCpu())
228 )
229 {
230 /*
231 * Read the MSR and see if it's in use or not.
232 */
233 uint32_t u32 = ASMRdMsr_Low(MSR_IA32_SYSENTER_CS);
234 if (u32)
235 {
236 pVM->cpum.s.fHostUseFlags |= CPUM_USE_SYSENTER;
237 Log(("CPUMR0Init: host uses sysenter cs=%08x%08x\n", ASMRdMsr_High(MSR_IA32_SYSENTER_CS), u32));
238 }
239 }
240
241 /*
242 * SYSCALL/SYSRET
243 *
244 * This feature is indicated by the SEP bit returned in EDX by CPUID
245 * function 0x80000001. Intel CPUs only supports this feature in
246 * long mode. Since we're not running 64-bit guests in raw-mode there
247 * are no issues with 32-bit intel hosts.
248 */
249 uint32_t cExt = 0;
250 ASMCpuId(0x80000000, &cExt, &u32Dummy, &u32Dummy, &u32Dummy);
251 if (ASMIsValidExtRange(cExt))
252 {
253 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
254 if (fExtFeaturesEDX & X86_CPUID_EXT_FEATURE_EDX_SYSCALL)
255 {
256#ifdef RT_ARCH_X86
257 if (!ASMIsIntelCpu())
258#endif
259 {
260 uint64_t fEfer = ASMRdMsr(MSR_K6_EFER);
261 if (fEfer & MSR_K6_EFER_SCE)
262 {
263 pVM->cpum.s.fHostUseFlags |= CPUM_USE_SYSCALL;
264 Log(("CPUMR0Init: host uses syscall\n"));
265 }
266 }
267 }
268 }
269
270 /*
271 * Unify/cross check some CPUID feature bits on all available CPU cores
272 * and threads. We've seen CPUs where the monitor support differed.
273 *
274 * Because the hyper heap isn't always mapped into ring-0, we cannot
275 * access it from a RTMpOnAll callback. We use the legacy CPUID arrays
276 * as temp ring-0 accessible memory instead, ASSUMING that they're all
277 * up to date when we get here.
278 */
279 RTMpOnAll(cpumR0CheckCpuid, pVM, NULL);
280
281 for (uint32_t i = 0; i < RT_ELEMENTS(g_aCpuidUnifyBits); i++)
282 {
283 bool fIgnored;
284 uint32_t uLeaf = g_aCpuidUnifyBits[i].uLeaf;
285 PCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, 0, &fIgnored);
286 if (pLeaf)
287 {
288 PCPUMCPUID pLegacyLeaf;
289 if (uLeaf < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmStd))
290 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmStd[uLeaf];
291 else if (uLeaf - UINT32_C(0x80000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmExt))
292 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmExt[uLeaf - UINT32_C(0x80000000)];
293 else if (uLeaf - UINT32_C(0xc0000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdPatmCentaur))
294 pLegacyLeaf = &pVM->cpum.s.aGuestCpuIdPatmCentaur[uLeaf - UINT32_C(0xc0000000)];
295 else
296 continue;
297
298 pLeaf->uEcx = pLegacyLeaf->uEcx;
299 pLeaf->uEdx = pLegacyLeaf->uEdx;
300 }
301 }
302
303 }
304
305
306 /*
307 * Check if debug registers are armed.
308 * This ASSUMES that DR7.GD is not set, or that it's handled transparently!
309 */
310 uint32_t u32DR7 = ASMGetDR7();
311 if (u32DR7 & X86_DR7_ENABLED_MASK)
312 {
313 for (VMCPUID i = 0; i < pVM->cCpus; i++)
314 pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HOST;
315 Log(("CPUMR0Init: host uses debug registers (dr7=%x)\n", u32DR7));
316 }
317
318 return VINF_SUCCESS;
319}
320
321
322/**
323 * Trap handler for device-not-available fault (\#NM).
324 * Device not available, FP or (F)WAIT instruction.
325 *
326 * @returns VBox status code.
327 * @retval VINF_SUCCESS if the guest FPU state is loaded.
328 * @retval VINF_EM_RAW_GUEST_TRAP if it is a guest trap.
329 *
330 * @param pVM The cross context VM structure.
331 * @param pVCpu The cross context virtual CPU structure.
332 */
333VMMR0_INT_DECL(int) CPUMR0Trap07Handler(PVM pVM, PVMCPU pVCpu)
334{
335 Assert(pVM->cpum.s.HostFeatures.fFxSaveRstor);
336 Assert(ASMGetCR4() & X86_CR4_OSFXSR);
337
338 /* If the FPU state has already been loaded, then it's a guest trap. */
339 if (CPUMIsGuestFPUStateActive(pVCpu))
340 {
341 Assert( ((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS))
342 || ((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS)) == (X86_CR0_MP | X86_CR0_TS | X86_CR0_EM)));
343 return VINF_EM_RAW_GUEST_TRAP;
344 }
345
346 /*
347 * There are two basic actions:
348 * 1. Save host fpu and restore guest fpu.
349 * 2. Generate guest trap.
350 *
351 * When entering the hypervisor we'll always enable MP (for proper wait
352 * trapping) and TS (for intercepting all fpu/mmx/sse stuff). The EM flag
353 * is taken from the guest OS in order to get proper SSE handling.
354 *
355 *
356 * Actions taken depending on the guest CR0 flags:
357 *
358 * 3 2 1
359 * TS | EM | MP | FPUInstr | WAIT :: VMM Action
360 * ------------------------------------------------------------------------
361 * 0 | 0 | 0 | Exec | Exec :: Clear TS & MP, Save HC, Load GC.
362 * 0 | 0 | 1 | Exec | Exec :: Clear TS, Save HC, Load GC.
363 * 0 | 1 | 0 | #NM | Exec :: Clear TS & MP, Save HC, Load GC.
364 * 0 | 1 | 1 | #NM | Exec :: Clear TS, Save HC, Load GC.
365 * 1 | 0 | 0 | #NM | Exec :: Clear MP, Save HC, Load GC. (EM is already cleared.)
366 * 1 | 0 | 1 | #NM | #NM :: Go to guest taking trap there.
367 * 1 | 1 | 0 | #NM | Exec :: Clear MP, Save HC, Load GC. (EM is already set.)
368 * 1 | 1 | 1 | #NM | #NM :: Go to guest taking trap there.
369 */
370
371 switch (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_MP | X86_CR0_EM | X86_CR0_TS))
372 {
373 case X86_CR0_MP | X86_CR0_TS:
374 case X86_CR0_MP | X86_CR0_TS | X86_CR0_EM:
375 return VINF_EM_RAW_GUEST_TRAP;
376 default:
377 break;
378 }
379
380 return CPUMR0LoadGuestFPU(pVM, pVCpu);
381}
382
383
384/**
385 * Saves the host-FPU/XMM state (if necessary) and (always) loads the guest-FPU
386 * state into the CPU.
387 *
388 * @returns VINF_SUCCESS (for CPUMR0Trap07Handler).
389 *
390 * @param pVM The cross context VM structure.
391 * @param pVCpu The cross context virtual CPU structure.
392 */
393VMMR0_INT_DECL(int) CPUMR0LoadGuestFPU(PVM pVM, PVMCPU pVCpu)
394{
395 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
396 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST));
397 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_FPU_STATE));
398
399#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
400 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
401 {
402 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE));
403
404 /* Save the host state if necessary. */
405 if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST))
406 cpumRZSaveHostFPUState(&pVCpu->cpum.s);
407
408 /* Restore the state on entry as we need to be in 64-bit mode to access the full state. */
409 pVCpu->cpum.s.fUseFlags |= CPUM_SYNC_FPU_STATE;
410
411 Assert( (pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM))
412 == (CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM));
413 }
414 else
415#endif
416 {
417 if (!pVM->cpum.s.HostFeatures.fLeakyFxSR)
418 {
419 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE));
420 cpumR0SaveHostRestoreGuestFPUState(&pVCpu->cpum.s);
421 }
422 else
423 {
424 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE) || (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST));
425 /** @todo r=ramshankar: Can't we used a cached value here
426 * instead of reading the MSR? host EFER doesn't usually
427 * change. */
428 uint64_t uHostEfer = ASMRdMsr(MSR_K6_EFER);
429 if (!(uHostEfer & MSR_K6_EFER_FFXSR))
430 cpumR0SaveHostRestoreGuestFPUState(&pVCpu->cpum.s);
431 else
432 {
433 RTCCUINTREG const uSavedFlags = ASMIntDisableFlags();
434 pVCpu->cpum.s.fUseFlags |= CPUM_USED_MANUAL_XMM_RESTORE;
435 ASMWrMsr(MSR_K6_EFER, uHostEfer & ~MSR_K6_EFER_FFXSR);
436 cpumR0SaveHostRestoreGuestFPUState(&pVCpu->cpum.s);
437 ASMWrMsr(MSR_K6_EFER, uHostEfer | MSR_K6_EFER_FFXSR);
438 ASMSetFlags(uSavedFlags);
439 }
440 }
441 Assert( (pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM))
442 == (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST | CPUM_USED_FPU_SINCE_REM));
443 }
444 return VINF_SUCCESS;
445}
446
447
448/**
449 * Saves the guest FPU/XMM state if needed, restores the host FPU/XMM state as
450 * needed.
451 *
452 * @returns true if we saved the guest state.
453 * @param pVCpu The cross context virtual CPU structure.
454 */
455VMMR0_INT_DECL(bool) CPUMR0FpuStateMaybeSaveGuestAndRestoreHost(PVMCPU pVCpu)
456{
457 bool fSavedGuest;
458 Assert(pVCpu->CTX_SUFF(pVM)->cpum.s.HostFeatures.fFxSaveRstor);
459 Assert(ASMGetCR4() & X86_CR4_OSFXSR);
460 if (pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST))
461 {
462 fSavedGuest = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
463#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
464 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
465 {
466 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST)
467 {
468 Assert(!(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_FPU_STATE));
469 HMR0SaveFPUState(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.s.Guest);
470 }
471 else
472 pVCpu->cpum.s.fUseFlags &= ~CPUM_SYNC_FPU_STATE;
473 cpumR0RestoreHostFPUState(&pVCpu->cpum.s);
474 }
475 else
476#endif
477 {
478 if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_MANUAL_XMM_RESTORE))
479 cpumR0SaveGuestRestoreHostFPUState(&pVCpu->cpum.s);
480 else
481 {
482 /* Temporarily clear MSR_K6_EFER_FFXSR or else we'll be unable to
483 save/restore the XMM state with fxsave/fxrstor. */
484 uint64_t uHostEfer = ASMRdMsr(MSR_K6_EFER);
485 if (uHostEfer & MSR_K6_EFER_FFXSR)
486 {
487 RTCCUINTREG const uSavedFlags = ASMIntDisableFlags();
488 ASMWrMsr(MSR_K6_EFER, uHostEfer & ~MSR_K6_EFER_FFXSR);
489 cpumR0SaveGuestRestoreHostFPUState(&pVCpu->cpum.s);
490 ASMWrMsr(MSR_K6_EFER, uHostEfer | MSR_K6_EFER_FFXSR);
491 ASMSetFlags(uSavedFlags);
492 }
493 else
494 cpumR0SaveGuestRestoreHostFPUState(&pVCpu->cpum.s);
495 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_MANUAL_XMM_RESTORE;
496 }
497 }
498 }
499 else
500 fSavedGuest = false;
501 Assert(!( pVCpu->cpum.s.fUseFlags
502 & (CPUM_USED_FPU_GUEST | CPUM_USED_FPU_HOST | CPUM_SYNC_FPU_STATE | CPUM_USED_MANUAL_XMM_RESTORE)));
503 return fSavedGuest;
504}
505
506
507/**
508 * Saves the host debug state, setting CPUM_USED_HOST_DEBUG_STATE and loading
509 * DR7 with safe values.
510 *
511 * @returns VBox status code.
512 * @param pVCpu The cross context virtual CPU structure.
513 */
514static int cpumR0SaveHostDebugState(PVMCPU pVCpu)
515{
516 /*
517 * Save the host state.
518 */
519 pVCpu->cpum.s.Host.dr0 = ASMGetDR0();
520 pVCpu->cpum.s.Host.dr1 = ASMGetDR1();
521 pVCpu->cpum.s.Host.dr2 = ASMGetDR2();
522 pVCpu->cpum.s.Host.dr3 = ASMGetDR3();
523 pVCpu->cpum.s.Host.dr6 = ASMGetDR6();
524 /** @todo dr7 might already have been changed to 0x400; don't care right now as it's harmless. */
525 pVCpu->cpum.s.Host.dr7 = ASMGetDR7();
526
527 /* Preemption paranoia. */
528 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_HOST);
529
530 /*
531 * Make sure DR7 is harmless or else we could trigger breakpoints when
532 * load guest or hypervisor DRx values later.
533 */
534 if (pVCpu->cpum.s.Host.dr7 != X86_DR7_INIT_VAL)
535 ASMSetDR7(X86_DR7_INIT_VAL);
536
537 return VINF_SUCCESS;
538}
539
540
541/**
542 * Saves the guest DRx state residing in host registers and restore the host
543 * register values.
544 *
545 * The guest DRx state is only saved if CPUMR0LoadGuestDebugState was called,
546 * since it's assumed that we're shadowing the guest DRx register values
547 * accurately when using the combined hypervisor debug register values
548 * (CPUMR0LoadHyperDebugState).
549 *
550 * @returns true if either guest or hypervisor debug registers were loaded.
551 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
552 * @param fDr6 Whether to include DR6 or not.
553 * @thread EMT(pVCpu)
554 */
555VMMR0_INT_DECL(bool) CPUMR0DebugStateMaybeSaveGuestAndRestoreHost(PVMCPU pVCpu, bool fDr6)
556{
557 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
558 bool const fDrXLoaded = RT_BOOL(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER));
559
560 /*
561 * Do we need to save the guest DRx registered loaded into host registers?
562 * (DR7 and DR6 (if fDr6 is true) are left to the caller.)
563 */
564 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST)
565 {
566#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
567 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
568 {
569 uint64_t uDr6 = pVCpu->cpum.s.Guest.dr[6];
570 HMR0SaveDebugState(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.s.Guest);
571 if (!fDr6)
572 pVCpu->cpum.s.Guest.dr[6] = uDr6;
573 }
574 else
575#endif
576 {
577 pVCpu->cpum.s.Guest.dr[0] = ASMGetDR0();
578 pVCpu->cpum.s.Guest.dr[1] = ASMGetDR1();
579 pVCpu->cpum.s.Guest.dr[2] = ASMGetDR2();
580 pVCpu->cpum.s.Guest.dr[3] = ASMGetDR3();
581 if (fDr6)
582 pVCpu->cpum.s.Guest.dr[6] = ASMGetDR6();
583 }
584 }
585 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~( CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER
586 | CPUM_SYNC_DEBUG_REGS_GUEST | CPUM_SYNC_DEBUG_REGS_HYPER));
587
588 /*
589 * Restore the host's debug state. DR0-3, DR6 and only then DR7!
590 */
591 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HOST)
592 {
593 /* A bit of paranoia first... */
594 uint64_t uCurDR7 = ASMGetDR7();
595 if (uCurDR7 != X86_DR7_INIT_VAL)
596 ASMSetDR7(X86_DR7_INIT_VAL);
597
598 ASMSetDR0(pVCpu->cpum.s.Host.dr0);
599 ASMSetDR1(pVCpu->cpum.s.Host.dr1);
600 ASMSetDR2(pVCpu->cpum.s.Host.dr2);
601 ASMSetDR3(pVCpu->cpum.s.Host.dr3);
602 /** @todo consider only updating if they differ, esp. DR6. Need to figure how
603 * expensive DRx reads are over DRx writes. */
604 ASMSetDR6(pVCpu->cpum.s.Host.dr6);
605 ASMSetDR7(pVCpu->cpum.s.Host.dr7);
606
607 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_HOST);
608 }
609
610 return fDrXLoaded;
611}
612
613
614/**
615 * Saves the guest DRx state if it resides host registers.
616 *
617 * This does NOT clear any use flags, so the host registers remains loaded with
618 * the guest DRx state upon return. The purpose is only to make sure the values
619 * in the CPU context structure is up to date.
620 *
621 * @returns true if the host registers contains guest values, false if not.
622 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
623 * @param fDr6 Whether to include DR6 or not.
624 * @thread EMT(pVCpu)
625 */
626VMMR0_INT_DECL(bool) CPUMR0DebugStateMaybeSaveGuest(PVMCPU pVCpu, bool fDr6)
627{
628 /*
629 * Do we need to save the guest DRx registered loaded into host registers?
630 * (DR7 and DR6 (if fDr6 is true) are left to the caller.)
631 */
632 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST)
633 {
634#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
635 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
636 {
637 uint64_t uDr6 = pVCpu->cpum.s.Guest.dr[6];
638 HMR0SaveDebugState(pVCpu->CTX_SUFF(pVM), pVCpu, &pVCpu->cpum.s.Guest);
639 if (!fDr6)
640 pVCpu->cpum.s.Guest.dr[6] = uDr6;
641 }
642 else
643#endif
644 {
645 pVCpu->cpum.s.Guest.dr[0] = ASMGetDR0();
646 pVCpu->cpum.s.Guest.dr[1] = ASMGetDR1();
647 pVCpu->cpum.s.Guest.dr[2] = ASMGetDR2();
648 pVCpu->cpum.s.Guest.dr[3] = ASMGetDR3();
649 if (fDr6)
650 pVCpu->cpum.s.Guest.dr[6] = ASMGetDR6();
651 }
652 return true;
653 }
654 return false;
655}
656
657
658/**
659 * Lazily sync in the debug state.
660 *
661 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
662 * @param fDr6 Whether to include DR6 or not.
663 * @thread EMT(pVCpu)
664 */
665VMMR0_INT_DECL(void) CPUMR0LoadGuestDebugState(PVMCPU pVCpu, bool fDr6)
666{
667 /*
668 * Save the host state and disarm all host BPs.
669 */
670 cpumR0SaveHostDebugState(pVCpu);
671 Assert(ASMGetDR7() == X86_DR7_INIT_VAL);
672
673 /*
674 * Activate the guest state DR0-3.
675 * DR7 and DR6 (if fDr6 is true) are left to the caller.
676 */
677#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
678 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
679 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_SYNC_DEBUG_REGS_GUEST); /* Postpone it to the world switch. */
680 else
681#endif
682 {
683 ASMSetDR0(pVCpu->cpum.s.Guest.dr[0]);
684 ASMSetDR1(pVCpu->cpum.s.Guest.dr[1]);
685 ASMSetDR2(pVCpu->cpum.s.Guest.dr[2]);
686 ASMSetDR3(pVCpu->cpum.s.Guest.dr[3]);
687 if (fDr6)
688 ASMSetDR6(pVCpu->cpum.s.Guest.dr[6]);
689
690 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_GUEST);
691 }
692}
693
694
695/**
696 * Lazily sync in the hypervisor debug state
697 *
698 * @returns VBox status code.
699 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
700 * @param fDr6 Whether to include DR6 or not.
701 * @thread EMT(pVCpu)
702 */
703VMMR0_INT_DECL(void) CPUMR0LoadHyperDebugState(PVMCPU pVCpu, bool fDr6)
704{
705 /*
706 * Save the host state and disarm all host BPs.
707 */
708 cpumR0SaveHostDebugState(pVCpu);
709 Assert(ASMGetDR7() == X86_DR7_INIT_VAL);
710
711 /*
712 * Make sure the hypervisor values are up to date.
713 */
714 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */, true);
715
716 /*
717 * Activate the guest state DR0-3.
718 * DR7 and DR6 (if fDr6 is true) are left to the caller.
719 */
720#if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
721 if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.s.Guest))
722 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_SYNC_DEBUG_REGS_HYPER); /* Postpone it. */
723 else
724#endif
725 {
726 ASMSetDR0(pVCpu->cpum.s.Hyper.dr[0]);
727 ASMSetDR1(pVCpu->cpum.s.Hyper.dr[1]);
728 ASMSetDR2(pVCpu->cpum.s.Hyper.dr[2]);
729 ASMSetDR3(pVCpu->cpum.s.Hyper.dr[3]);
730 if (fDr6)
731 ASMSetDR6(X86_DR6_INIT_VAL);
732
733 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_HYPER);
734 }
735}
736
737#ifdef VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI
738
739/**
740 * Per-CPU callback that probes the CPU for APIC support.
741 *
742 * @param idCpu The identifier for the CPU the function is called on.
743 * @param pvUser1 Ignored.
744 * @param pvUser2 Ignored.
745 */
746static DECLCALLBACK(void) cpumR0MapLocalApicCpuProber(RTCPUID idCpu, void *pvUser1, void *pvUser2)
747{
748 NOREF(pvUser1); NOREF(pvUser2);
749 int iCpu = RTMpCpuIdToSetIndex(idCpu);
750 AssertReturnVoid(iCpu >= 0 && (unsigned)iCpu < RT_ELEMENTS(g_aLApics));
751
752 /*
753 * Check for APIC support.
754 */
755 uint32_t uMaxLeaf, u32EBX, u32ECX, u32EDX;
756 ASMCpuId(0, &uMaxLeaf, &u32EBX, &u32ECX, &u32EDX);
757 if ( ( ASMIsIntelCpuEx(u32EBX, u32ECX, u32EDX)
758 || ASMIsAmdCpuEx(u32EBX, u32ECX, u32EDX)
759 || ASMIsViaCentaurCpuEx(u32EBX, u32ECX, u32EDX))
760 && ASMIsValidStdRange(uMaxLeaf))
761 {
762 uint32_t uDummy;
763 ASMCpuId(1, &uDummy, &u32EBX, &u32ECX, &u32EDX);
764 if ( (u32EDX & X86_CPUID_FEATURE_EDX_APIC)
765 && (u32EDX & X86_CPUID_FEATURE_EDX_MSR))
766 {
767 /*
768 * Safe to access the MSR. Read it and calc the BASE (a little complicated).
769 */
770 uint64_t u64ApicBase = ASMRdMsr(MSR_IA32_APICBASE);
771 uint64_t u64Mask = MSR_IA32_APICBASE_BASE_MIN;
772
773 /* see Intel Manual: Local APIC Status and Location: MAXPHYADDR default is bit 36 */
774 uint32_t uMaxExtLeaf;
775 ASMCpuId(0x80000000, &uMaxExtLeaf, &u32EBX, &u32ECX, &u32EDX);
776 if ( uMaxExtLeaf >= UINT32_C(0x80000008)
777 && ASMIsValidExtRange(uMaxExtLeaf))
778 {
779 uint32_t u32PhysBits;
780 ASMCpuId(0x80000008, &u32PhysBits, &u32EBX, &u32ECX, &u32EDX);
781 u32PhysBits &= 0xff;
782 u64Mask = ((UINT64_C(1) << u32PhysBits) - 1) & UINT64_C(0xfffffffffffff000);
783 }
784
785 AssertCompile(sizeof(g_aLApics[iCpu].PhysBase) == sizeof(u64ApicBase));
786 g_aLApics[iCpu].PhysBase = u64ApicBase & u64Mask;
787 g_aLApics[iCpu].fEnabled = RT_BOOL(u64ApicBase & MSR_IA32_APICBASE_EN);
788 g_aLApics[iCpu].fX2Apic = (u64ApicBase & (MSR_IA32_APICBASE_EXTD | MSR_IA32_APICBASE_EN))
789 == (MSR_IA32_APICBASE_EXTD | MSR_IA32_APICBASE_EN);
790 }
791 }
792}
793
794
795
796/**
797 * Per-CPU callback that verifies our APIC expectations.
798 *
799 * @param idCpu The identifier for the CPU the function is called on.
800 * @param pvUser1 Ignored.
801 * @param pvUser2 Ignored.
802 */
803static DECLCALLBACK(void) cpumR0MapLocalApicCpuChecker(RTCPUID idCpu, void *pvUser1, void *pvUser2)
804{
805 NOREF(pvUser1); NOREF(pvUser2);
806
807 int iCpu = RTMpCpuIdToSetIndex(idCpu);
808 AssertReturnVoid(iCpu >= 0 && (unsigned)iCpu < RT_ELEMENTS(g_aLApics));
809 if (!g_aLApics[iCpu].fEnabled)
810 return;
811
812 /*
813 * 0x0X 82489 external APIC
814 * 0x1X Local APIC
815 * 0x2X..0xFF reserved
816 */
817 uint32_t uApicVersion;
818 if (g_aLApics[iCpu].fX2Apic)
819 uApicVersion = ApicX2RegRead32(APIC_REG_VERSION);
820 else
821 uApicVersion = ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_VERSION);
822 if ((APIC_REG_VERSION_GET_VER(uApicVersion) & 0xF0) == 0x10)
823 {
824 g_aLApics[iCpu].uVersion = uApicVersion;
825
826#if 0 /* enable if you need it. */
827 if (g_aLApics[iCpu].fX2Apic)
828 SUPR0Printf("CPUM: X2APIC %02u - ver %#010x, lint0=%#07x lint1=%#07x pc=%#07x thmr=%#07x cmci=%#07x\n",
829 iCpu, uApicVersion,
830 ApicX2RegRead32(APIC_REG_LVT_LINT0), ApicX2RegRead32(APIC_REG_LVT_LINT1),
831 ApicX2RegRead32(APIC_REG_LVT_PC), ApicX2RegRead32(APIC_REG_LVT_THMR),
832 ApicX2RegRead32(APIC_REG_LVT_CMCI));
833 else
834 {
835 SUPR0Printf("CPUM: APIC %02u at %RGp (mapped at %p) - ver %#010x, lint0=%#07x lint1=%#07x pc=%#07x thmr=%#07x cmci=%#07x\n",
836 iCpu, g_aLApics[iCpu].PhysBase, g_aLApics[iCpu].pv, uApicVersion,
837 ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_LINT0), ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_LINT1),
838 ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_PC), ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_THMR),
839 ApicRegRead(g_aLApics[iCpu].pv, APIC_REG_LVT_CMCI));
840 if (uApicVersion & 0x80000000)
841 {
842 uint32_t uExtFeatures = ApicRegRead(g_aLApics[iCpu].pv, 0x400);
843 uint32_t cEiLvt = (uExtFeatures >> 16) & 0xff;
844 SUPR0Printf("CPUM: APIC %02u: ExtSpace available. extfeat=%08x eilvt[0..3]=%08x %08x %08x %08x\n",
845 iCpu,
846 ApicRegRead(g_aLApics[iCpu].pv, 0x400),
847 cEiLvt >= 1 ? ApicRegRead(g_aLApics[iCpu].pv, 0x500) : 0,
848 cEiLvt >= 2 ? ApicRegRead(g_aLApics[iCpu].pv, 0x510) : 0,
849 cEiLvt >= 3 ? ApicRegRead(g_aLApics[iCpu].pv, 0x520) : 0,
850 cEiLvt >= 4 ? ApicRegRead(g_aLApics[iCpu].pv, 0x530) : 0);
851 }
852 }
853#endif
854 }
855 else
856 {
857 g_aLApics[iCpu].fEnabled = false;
858 g_aLApics[iCpu].fX2Apic = false;
859 SUPR0Printf("VBox/CPUM: Unsupported APIC version %#x (iCpu=%d)\n", uApicVersion, iCpu);
860 }
861}
862
863
864/**
865 * Map the MMIO page of each local APIC in the system.
866 */
867static int cpumR0MapLocalApics(void)
868{
869 /*
870 * Check that we'll always stay within the array bounds.
871 */
872 if (RTMpGetArraySize() > RT_ELEMENTS(g_aLApics))
873 {
874 LogRel(("CPUM: Too many real CPUs/cores/threads - %u, max %u\n", RTMpGetArraySize(), RT_ELEMENTS(g_aLApics)));
875 return VERR_TOO_MANY_CPUS;
876 }
877
878 /*
879 * Create mappings for all online CPUs we think have legacy APICs.
880 */
881 int rc = RTMpOnAll(cpumR0MapLocalApicCpuProber, NULL, NULL);
882
883 for (unsigned iCpu = 0; RT_SUCCESS(rc) && iCpu < RT_ELEMENTS(g_aLApics); iCpu++)
884 {
885 if (g_aLApics[iCpu].fEnabled && !g_aLApics[iCpu].fX2Apic)
886 {
887 rc = RTR0MemObjEnterPhys(&g_aLApics[iCpu].hMemObj, g_aLApics[iCpu].PhysBase,
888 PAGE_SIZE, RTMEM_CACHE_POLICY_MMIO);
889 if (RT_SUCCESS(rc))
890 {
891 rc = RTR0MemObjMapKernel(&g_aLApics[iCpu].hMapObj, g_aLApics[iCpu].hMemObj, (void *)-1,
892 PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
893 if (RT_SUCCESS(rc))
894 {
895 g_aLApics[iCpu].pv = RTR0MemObjAddress(g_aLApics[iCpu].hMapObj);
896 continue;
897 }
898 RTR0MemObjFree(g_aLApics[iCpu].hMemObj, true /* fFreeMappings */);
899 }
900 g_aLApics[iCpu].fEnabled = false;
901 }
902 g_aLApics[iCpu].pv = NULL;
903 }
904
905 /*
906 * Check the APICs.
907 */
908 if (RT_SUCCESS(rc))
909 rc = RTMpOnAll(cpumR0MapLocalApicCpuChecker, NULL, NULL);
910
911 if (RT_FAILURE(rc))
912 {
913 cpumR0UnmapLocalApics();
914 return rc;
915 }
916
917#ifdef LOG_ENABLED
918 /*
919 * Log the result (pretty useless, requires enabling CPUM in VBoxDrv
920 * and !VBOX_WITH_R0_LOGGING).
921 */
922 if (LogIsEnabled())
923 {
924 uint32_t cEnabled = 0;
925 uint32_t cX2Apics = 0;
926 for (unsigned iCpu = 0; iCpu < RT_ELEMENTS(g_aLApics); iCpu++)
927 if (g_aLApics[iCpu].fEnabled)
928 {
929 cEnabled++;
930 cX2Apics += g_aLApics[iCpu].fX2Apic;
931 }
932 Log(("CPUM: %u APICs, %u X2APICs\n", cEnabled, cX2Apics));
933 }
934#endif
935
936 return VINF_SUCCESS;
937}
938
939
940/**
941 * Unmap the Local APIC of all host CPUs.
942 */
943static void cpumR0UnmapLocalApics(void)
944{
945 for (unsigned iCpu = RT_ELEMENTS(g_aLApics); iCpu-- > 0;)
946 {
947 if (g_aLApics[iCpu].pv)
948 {
949 RTR0MemObjFree(g_aLApics[iCpu].hMapObj, true /* fFreeMappings */);
950 RTR0MemObjFree(g_aLApics[iCpu].hMemObj, true /* fFreeMappings */);
951 g_aLApics[iCpu].hMapObj = NIL_RTR0MEMOBJ;
952 g_aLApics[iCpu].hMemObj = NIL_RTR0MEMOBJ;
953 g_aLApics[iCpu].fEnabled = false;
954 g_aLApics[iCpu].fX2Apic = false;
955 g_aLApics[iCpu].pv = NULL;
956 }
957 }
958}
959
960
961/**
962 * Updates CPUMCPU::pvApicBase and CPUMCPU::fX2Apic prior to world switch.
963 *
964 * Writes the Local APIC mapping address of the current host CPU to CPUMCPU so
965 * the world switchers can access the APIC registers for the purpose of
966 * disabling and re-enabling the NMIs. Must be called with disabled preemption
967 * or disabled interrupts!
968 *
969 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
970 * @param iHostCpuSet The CPU set index of the current host CPU.
971 */
972VMMR0_INT_DECL(void) CPUMR0SetLApic(PVMCPU pVCpu, uint32_t iHostCpuSet)
973{
974 Assert(iHostCpuSet <= RT_ELEMENTS(g_aLApics));
975 pVCpu->cpum.s.pvApicBase = g_aLApics[iHostCpuSet].pv;
976 pVCpu->cpum.s.fX2Apic = g_aLApics[iHostCpuSet].fX2Apic;
977// Log6(("CPUMR0SetLApic: pvApicBase=%p fX2Apic=%d\n", g_aLApics[idxCpu].pv, g_aLApics[idxCpu].fX2Apic));
978}
979
980#endif /* VBOX_WITH_VMMR0_DISABLE_LAPIC_NMI */
981
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette