1 | /* $Id: VMXAllTemplate.cpp.h 93583 2022-02-03 14:21:09Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * HM VMX (Intel VT-x) - Code template for our own hypervisor and the NEM darwin backend using Apple's Hypervisor.framework.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2012-2022 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Defined Constants And Macros *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #if !defined(VMX_VMCS_WRITE_16) || !defined(VMX_VMCS_WRITE_32) || !defined(VMX_VMCS_WRITE_64) || !defined(VMX_VMCS_WRITE_64)
|
---|
23 | # error "At least one of the VMX_VMCS_WRITE_16, VMX_VMCS_WRITE_32, VMX_VMCS_WRITE_64 or VMX_VMCS_WRITE_64 is missing"
|
---|
24 | #endif
|
---|
25 |
|
---|
26 |
|
---|
27 | #if !defined(VMX_VMCS_READ_16) || !defined(VMX_VMCS_READ_32) || !defined(VMX_VMCS_READ_64) || !defined(VMX_VMCS_READ_64)
|
---|
28 | # error "At least one of the VMX_VMCS_READ_16, VMX_VMCS_READ_32, VMX_VMCS_READ_64 or VMX_VMCS_READ_64 is missing"
|
---|
29 | #endif
|
---|
30 |
|
---|
31 |
|
---|
32 | /** Use the function table. */
|
---|
33 | #define HMVMX_USE_FUNCTION_TABLE
|
---|
34 |
|
---|
35 | /** Determine which tagged-TLB flush handler to use. */
|
---|
36 | #define HMVMX_FLUSH_TAGGED_TLB_EPT_VPID 0
|
---|
37 | #define HMVMX_FLUSH_TAGGED_TLB_EPT 1
|
---|
38 | #define HMVMX_FLUSH_TAGGED_TLB_VPID 2
|
---|
39 | #define HMVMX_FLUSH_TAGGED_TLB_NONE 3
|
---|
40 |
|
---|
41 | /**
|
---|
42 | * Flags to skip redundant reads of some common VMCS fields that are not part of
|
---|
43 | * the guest-CPU or VCPU state but are needed while handling VM-exits.
|
---|
44 | */
|
---|
45 | #define HMVMX_READ_IDT_VECTORING_INFO RT_BIT_32(0)
|
---|
46 | #define HMVMX_READ_IDT_VECTORING_ERROR_CODE RT_BIT_32(1)
|
---|
47 | #define HMVMX_READ_EXIT_QUALIFICATION RT_BIT_32(2)
|
---|
48 | #define HMVMX_READ_EXIT_INSTR_LEN RT_BIT_32(3)
|
---|
49 | #define HMVMX_READ_EXIT_INTERRUPTION_INFO RT_BIT_32(4)
|
---|
50 | #define HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE RT_BIT_32(5)
|
---|
51 | #define HMVMX_READ_EXIT_INSTR_INFO RT_BIT_32(6)
|
---|
52 | #define HMVMX_READ_GUEST_LINEAR_ADDR RT_BIT_32(7)
|
---|
53 | #define HMVMX_READ_GUEST_PHYSICAL_ADDR RT_BIT_32(8)
|
---|
54 | #define HMVMX_READ_GUEST_PENDING_DBG_XCPTS RT_BIT_32(9)
|
---|
55 |
|
---|
56 | /** All the VMCS fields required for processing of exception/NMI VM-exits. */
|
---|
57 | #define HMVMX_READ_XCPT_INFO ( HMVMX_READ_EXIT_INTERRUPTION_INFO \
|
---|
58 | | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE \
|
---|
59 | | HMVMX_READ_EXIT_INSTR_LEN \
|
---|
60 | | HMVMX_READ_IDT_VECTORING_INFO \
|
---|
61 | | HMVMX_READ_IDT_VECTORING_ERROR_CODE)
|
---|
62 |
|
---|
63 | /** Assert that all the given fields have been read from the VMCS. */
|
---|
64 | #ifdef VBOX_STRICT
|
---|
65 | # define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) \
|
---|
66 | do { \
|
---|
67 | uint32_t const fVmcsFieldRead = ASMAtomicUoReadU32(&pVmxTransient->fVmcsFieldsRead); \
|
---|
68 | Assert((fVmcsFieldRead & (a_fReadFields)) == (a_fReadFields)); \
|
---|
69 | } while (0)
|
---|
70 | #else
|
---|
71 | # define HMVMX_ASSERT_READ(a_pVmxTransient, a_fReadFields) do { } while (0)
|
---|
72 | #endif
|
---|
73 |
|
---|
74 | /**
|
---|
75 | * Subset of the guest-CPU state that is kept by VMX R0 code while executing the
|
---|
76 | * guest using hardware-assisted VMX.
|
---|
77 | *
|
---|
78 | * This excludes state like GPRs (other than RSP) which are always are
|
---|
79 | * swapped and restored across the world-switch and also registers like EFER,
|
---|
80 | * MSR which cannot be modified by the guest without causing a VM-exit.
|
---|
81 | */
|
---|
82 | #define HMVMX_CPUMCTX_EXTRN_ALL ( CPUMCTX_EXTRN_RIP \
|
---|
83 | | CPUMCTX_EXTRN_RFLAGS \
|
---|
84 | | CPUMCTX_EXTRN_RSP \
|
---|
85 | | CPUMCTX_EXTRN_SREG_MASK \
|
---|
86 | | CPUMCTX_EXTRN_TABLE_MASK \
|
---|
87 | | CPUMCTX_EXTRN_KERNEL_GS_BASE \
|
---|
88 | | CPUMCTX_EXTRN_SYSCALL_MSRS \
|
---|
89 | | CPUMCTX_EXTRN_SYSENTER_MSRS \
|
---|
90 | | CPUMCTX_EXTRN_TSC_AUX \
|
---|
91 | | CPUMCTX_EXTRN_OTHER_MSRS \
|
---|
92 | | CPUMCTX_EXTRN_CR0 \
|
---|
93 | | CPUMCTX_EXTRN_CR3 \
|
---|
94 | | CPUMCTX_EXTRN_CR4 \
|
---|
95 | | CPUMCTX_EXTRN_DR7 \
|
---|
96 | | CPUMCTX_EXTRN_HWVIRT \
|
---|
97 | | CPUMCTX_EXTRN_INHIBIT_INT \
|
---|
98 | | CPUMCTX_EXTRN_INHIBIT_NMI)
|
---|
99 |
|
---|
100 | /**
|
---|
101 | * Exception bitmap mask for real-mode guests (real-on-v86).
|
---|
102 | *
|
---|
103 | * We need to intercept all exceptions manually except:
|
---|
104 | * - \#AC and \#DB are always intercepted to prevent the CPU from deadlocking
|
---|
105 | * due to bugs in Intel CPUs.
|
---|
106 | * - \#PF need not be intercepted even in real-mode if we have nested paging
|
---|
107 | * support.
|
---|
108 | */
|
---|
109 | #define HMVMX_REAL_MODE_XCPT_MASK ( RT_BIT(X86_XCPT_DE) /* always: | RT_BIT(X86_XCPT_DB) */ | RT_BIT(X86_XCPT_NMI) \
|
---|
110 | | RT_BIT(X86_XCPT_BP) | RT_BIT(X86_XCPT_OF) | RT_BIT(X86_XCPT_BR) \
|
---|
111 | | RT_BIT(X86_XCPT_UD) | RT_BIT(X86_XCPT_NM) | RT_BIT(X86_XCPT_DF) \
|
---|
112 | | RT_BIT(X86_XCPT_CO_SEG_OVERRUN) | RT_BIT(X86_XCPT_TS) | RT_BIT(X86_XCPT_NP) \
|
---|
113 | | RT_BIT(X86_XCPT_SS) | RT_BIT(X86_XCPT_GP) /* RT_BIT(X86_XCPT_PF) */ \
|
---|
114 | | RT_BIT(X86_XCPT_MF) /* always: | RT_BIT(X86_XCPT_AC) */ | RT_BIT(X86_XCPT_MC) \
|
---|
115 | | RT_BIT(X86_XCPT_XF))
|
---|
116 |
|
---|
117 | /** Maximum VM-instruction error number. */
|
---|
118 | #define HMVMX_INSTR_ERROR_MAX 28
|
---|
119 |
|
---|
120 | /** Profiling macro. */
|
---|
121 | #ifdef HM_PROFILE_EXIT_DISPATCH
|
---|
122 | # define HMVMX_START_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitDispatch, ed)
|
---|
123 | # define HMVMX_STOP_EXIT_DISPATCH_PROF() STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitDispatch, ed)
|
---|
124 | #else
|
---|
125 | # define HMVMX_START_EXIT_DISPATCH_PROF() do { } while (0)
|
---|
126 | # define HMVMX_STOP_EXIT_DISPATCH_PROF() do { } while (0)
|
---|
127 | #endif
|
---|
128 |
|
---|
129 | #ifndef IN_NEM_DARWIN
|
---|
130 | /** Assert that preemption is disabled or covered by thread-context hooks. */
|
---|
131 | # define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) Assert( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
|
---|
132 | || !RTThreadPreemptIsEnabled(NIL_RTTHREAD))
|
---|
133 |
|
---|
134 | /** Assert that we haven't migrated CPUs when thread-context hooks are not
|
---|
135 | * used. */
|
---|
136 | # define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) AssertMsg( VMMR0ThreadCtxHookIsEnabled((a_pVCpu)) \
|
---|
137 | || (a_pVCpu)->hmr0.s.idEnteredCpu == RTMpCpuId(), \
|
---|
138 | ("Illegal migration! Entered on CPU %u Current %u\n", \
|
---|
139 | (a_pVCpu)->hmr0.s.idEnteredCpu, RTMpCpuId()))
|
---|
140 | #else
|
---|
141 | # define HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu) do { } while (0)
|
---|
142 | # define HMVMX_ASSERT_CPU_SAFE(a_pVCpu) do { } while (0)
|
---|
143 | #endif
|
---|
144 |
|
---|
145 | /** Asserts that the given CPUMCTX_EXTRN_XXX bits are present in the guest-CPU
|
---|
146 | * context. */
|
---|
147 | #define HMVMX_CPUMCTX_ASSERT(a_pVCpu, a_fExtrnMbz) AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
|
---|
148 | ("fExtrn=%#RX64 fExtrnMbz=%#RX64\n", \
|
---|
149 | (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz)))
|
---|
150 |
|
---|
151 | /** Log the VM-exit reason with an easily visible marker to identify it in a
|
---|
152 | * potential sea of logging data. */
|
---|
153 | #define HMVMX_LOG_EXIT(a_pVCpu, a_uExitReason) \
|
---|
154 | do { \
|
---|
155 | Log4(("VM-exit: vcpu[%RU32] %85s -v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-v-\n", (a_pVCpu)->idCpu, \
|
---|
156 | HMGetVmxExitName(a_uExitReason))); \
|
---|
157 | } while (0) \
|
---|
158 |
|
---|
159 |
|
---|
160 | /*********************************************************************************************************************************
|
---|
161 | * Structures and Typedefs *
|
---|
162 | *********************************************************************************************************************************/
|
---|
163 | /**
|
---|
164 | * Memory operand read or write access.
|
---|
165 | */
|
---|
166 | typedef enum VMXMEMACCESS
|
---|
167 | {
|
---|
168 | VMXMEMACCESS_READ = 0,
|
---|
169 | VMXMEMACCESS_WRITE = 1
|
---|
170 | } VMXMEMACCESS;
|
---|
171 |
|
---|
172 |
|
---|
173 | /**
|
---|
174 | * VMX VM-exit handler.
|
---|
175 | *
|
---|
176 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
177 | * @param pVCpu The cross context virtual CPU structure.
|
---|
178 | * @param pVmxTransient The VMX-transient structure.
|
---|
179 | */
|
---|
180 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
181 | typedef VBOXSTRICTRC FNVMXEXITHANDLER(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
182 | #else
|
---|
183 | typedef DECLCALLBACKTYPE(VBOXSTRICTRC, FNVMXEXITHANDLER,(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient));
|
---|
184 | /** Pointer to VM-exit handler. */
|
---|
185 | typedef FNVMXEXITHANDLER *PFNVMXEXITHANDLER;
|
---|
186 | #endif
|
---|
187 |
|
---|
188 | /**
|
---|
189 | * VMX VM-exit handler, non-strict status code.
|
---|
190 | *
|
---|
191 | * This is generally the same as FNVMXEXITHANDLER, the NSRC bit is just FYI.
|
---|
192 | *
|
---|
193 | * @returns VBox status code, no informational status code returned.
|
---|
194 | * @param pVCpu The cross context virtual CPU structure.
|
---|
195 | * @param pVmxTransient The VMX-transient structure.
|
---|
196 | *
|
---|
197 | * @remarks This is not used on anything returning VERR_EM_INTERPRETER as the
|
---|
198 | * use of that status code will be replaced with VINF_EM_SOMETHING
|
---|
199 | * later when switching over to IEM.
|
---|
200 | */
|
---|
201 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
202 | typedef int FNVMXEXITHANDLERNSRC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
203 | #else
|
---|
204 | typedef FNVMXEXITHANDLER FNVMXEXITHANDLERNSRC;
|
---|
205 | #endif
|
---|
206 |
|
---|
207 |
|
---|
208 | /*********************************************************************************************************************************
|
---|
209 | * Internal Functions *
|
---|
210 | *********************************************************************************************************************************/
|
---|
211 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
212 | DECLINLINE(VBOXSTRICTRC) vmxHCHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
213 | # define HMVMX_EXIT_DECL DECLINLINE(VBOXSTRICTRC)
|
---|
214 | # define HMVMX_EXIT_NSRC_DECL DECLINLINE(int)
|
---|
215 | #else
|
---|
216 | # define HMVMX_EXIT_DECL static DECLCALLBACK(VBOXSTRICTRC)
|
---|
217 | # define HMVMX_EXIT_NSRC_DECL HMVMX_EXIT_DECL
|
---|
218 | #endif
|
---|
219 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
220 | DECLINLINE(VBOXSTRICTRC) vmxHCHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient);
|
---|
221 | #endif
|
---|
222 |
|
---|
223 | static int vmxHCImportGuestState(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat);
|
---|
224 |
|
---|
225 | /** @name VM-exit handler prototypes.
|
---|
226 | * @{
|
---|
227 | */
|
---|
228 | static FNVMXEXITHANDLER vmxHCExitXcptOrNmi;
|
---|
229 | static FNVMXEXITHANDLER vmxHCExitExtInt;
|
---|
230 | static FNVMXEXITHANDLER vmxHCExitTripleFault;
|
---|
231 | static FNVMXEXITHANDLERNSRC vmxHCExitIntWindow;
|
---|
232 | static FNVMXEXITHANDLERNSRC vmxHCExitNmiWindow;
|
---|
233 | static FNVMXEXITHANDLER vmxHCExitTaskSwitch;
|
---|
234 | static FNVMXEXITHANDLER vmxHCExitCpuid;
|
---|
235 | static FNVMXEXITHANDLER vmxHCExitGetsec;
|
---|
236 | static FNVMXEXITHANDLER vmxHCExitHlt;
|
---|
237 | static FNVMXEXITHANDLERNSRC vmxHCExitInvd;
|
---|
238 | static FNVMXEXITHANDLER vmxHCExitInvlpg;
|
---|
239 | static FNVMXEXITHANDLER vmxHCExitRdpmc;
|
---|
240 | static FNVMXEXITHANDLER vmxHCExitVmcall;
|
---|
241 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
242 | static FNVMXEXITHANDLER vmxHCExitVmclear;
|
---|
243 | static FNVMXEXITHANDLER vmxHCExitVmlaunch;
|
---|
244 | static FNVMXEXITHANDLER vmxHCExitVmptrld;
|
---|
245 | static FNVMXEXITHANDLER vmxHCExitVmptrst;
|
---|
246 | static FNVMXEXITHANDLER vmxHCExitVmread;
|
---|
247 | static FNVMXEXITHANDLER vmxHCExitVmresume;
|
---|
248 | static FNVMXEXITHANDLER vmxHCExitVmwrite;
|
---|
249 | static FNVMXEXITHANDLER vmxHCExitVmxoff;
|
---|
250 | static FNVMXEXITHANDLER vmxHCExitVmxon;
|
---|
251 | static FNVMXEXITHANDLER vmxHCExitInvvpid;
|
---|
252 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
253 | static FNVMXEXITHANDLER vmxHCExitInvept;
|
---|
254 | # endif
|
---|
255 | #endif
|
---|
256 | static FNVMXEXITHANDLER vmxHCExitRdtsc;
|
---|
257 | static FNVMXEXITHANDLER vmxHCExitMovCRx;
|
---|
258 | static FNVMXEXITHANDLER vmxHCExitMovDRx;
|
---|
259 | static FNVMXEXITHANDLER vmxHCExitIoInstr;
|
---|
260 | static FNVMXEXITHANDLER vmxHCExitRdmsr;
|
---|
261 | static FNVMXEXITHANDLER vmxHCExitWrmsr;
|
---|
262 | static FNVMXEXITHANDLER vmxHCExitMwait;
|
---|
263 | static FNVMXEXITHANDLER vmxHCExitMtf;
|
---|
264 | static FNVMXEXITHANDLER vmxHCExitMonitor;
|
---|
265 | static FNVMXEXITHANDLER vmxHCExitPause;
|
---|
266 | static FNVMXEXITHANDLERNSRC vmxHCExitTprBelowThreshold;
|
---|
267 | static FNVMXEXITHANDLER vmxHCExitApicAccess;
|
---|
268 | static FNVMXEXITHANDLER vmxHCExitEptViolation;
|
---|
269 | static FNVMXEXITHANDLER vmxHCExitEptMisconfig;
|
---|
270 | static FNVMXEXITHANDLER vmxHCExitRdtscp;
|
---|
271 | static FNVMXEXITHANDLER vmxHCExitPreemptTimer;
|
---|
272 | static FNVMXEXITHANDLERNSRC vmxHCExitWbinvd;
|
---|
273 | static FNVMXEXITHANDLER vmxHCExitXsetbv;
|
---|
274 | static FNVMXEXITHANDLER vmxHCExitInvpcid;
|
---|
275 | static FNVMXEXITHANDLERNSRC vmxHCExitSetPendingXcptUD;
|
---|
276 | static FNVMXEXITHANDLERNSRC vmxHCExitErrInvalidGuestState;
|
---|
277 | static FNVMXEXITHANDLERNSRC vmxHCExitErrUnexpected;
|
---|
278 | /** @} */
|
---|
279 |
|
---|
280 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
281 | /** @name Nested-guest VM-exit handler prototypes.
|
---|
282 | * @{
|
---|
283 | */
|
---|
284 | static FNVMXEXITHANDLER vmxHCExitXcptOrNmiNested;
|
---|
285 | static FNVMXEXITHANDLER vmxHCExitTripleFaultNested;
|
---|
286 | static FNVMXEXITHANDLERNSRC vmxHCExitIntWindowNested;
|
---|
287 | static FNVMXEXITHANDLERNSRC vmxHCExitNmiWindowNested;
|
---|
288 | static FNVMXEXITHANDLER vmxHCExitTaskSwitchNested;
|
---|
289 | static FNVMXEXITHANDLER vmxHCExitHltNested;
|
---|
290 | static FNVMXEXITHANDLER vmxHCExitInvlpgNested;
|
---|
291 | static FNVMXEXITHANDLER vmxHCExitRdpmcNested;
|
---|
292 | static FNVMXEXITHANDLER vmxHCExitVmreadVmwriteNested;
|
---|
293 | static FNVMXEXITHANDLER vmxHCExitRdtscNested;
|
---|
294 | static FNVMXEXITHANDLER vmxHCExitMovCRxNested;
|
---|
295 | static FNVMXEXITHANDLER vmxHCExitMovDRxNested;
|
---|
296 | static FNVMXEXITHANDLER vmxHCExitIoInstrNested;
|
---|
297 | static FNVMXEXITHANDLER vmxHCExitRdmsrNested;
|
---|
298 | static FNVMXEXITHANDLER vmxHCExitWrmsrNested;
|
---|
299 | static FNVMXEXITHANDLER vmxHCExitMwaitNested;
|
---|
300 | static FNVMXEXITHANDLER vmxHCExitMtfNested;
|
---|
301 | static FNVMXEXITHANDLER vmxHCExitMonitorNested;
|
---|
302 | static FNVMXEXITHANDLER vmxHCExitPauseNested;
|
---|
303 | static FNVMXEXITHANDLERNSRC vmxHCExitTprBelowThresholdNested;
|
---|
304 | static FNVMXEXITHANDLER vmxHCExitApicAccessNested;
|
---|
305 | static FNVMXEXITHANDLER vmxHCExitApicWriteNested;
|
---|
306 | static FNVMXEXITHANDLER vmxHCExitVirtEoiNested;
|
---|
307 | static FNVMXEXITHANDLER vmxHCExitRdtscpNested;
|
---|
308 | static FNVMXEXITHANDLERNSRC vmxHCExitWbinvdNested;
|
---|
309 | static FNVMXEXITHANDLER vmxHCExitInvpcidNested;
|
---|
310 | static FNVMXEXITHANDLERNSRC vmxHCExitErrInvalidGuestStateNested;
|
---|
311 | static FNVMXEXITHANDLER vmxHCExitInstrNested;
|
---|
312 | static FNVMXEXITHANDLER vmxHCExitInstrWithInfoNested;
|
---|
313 | /** @} */
|
---|
314 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
315 |
|
---|
316 |
|
---|
317 | /*********************************************************************************************************************************
|
---|
318 | * Global Variables *
|
---|
319 | *********************************************************************************************************************************/
|
---|
320 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
321 | /**
|
---|
322 | * Array of all VMCS fields.
|
---|
323 | * Any fields added to the VT-x spec. should be added here.
|
---|
324 | *
|
---|
325 | * Currently only used to derive shadow VMCS fields for hardware-assisted execution
|
---|
326 | * of nested-guests.
|
---|
327 | */
|
---|
328 | static const uint32_t g_aVmcsFields[] =
|
---|
329 | {
|
---|
330 | /* 16-bit control fields. */
|
---|
331 | VMX_VMCS16_VPID,
|
---|
332 | VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR,
|
---|
333 | VMX_VMCS16_EPTP_INDEX,
|
---|
334 |
|
---|
335 | /* 16-bit guest-state fields. */
|
---|
336 | VMX_VMCS16_GUEST_ES_SEL,
|
---|
337 | VMX_VMCS16_GUEST_CS_SEL,
|
---|
338 | VMX_VMCS16_GUEST_SS_SEL,
|
---|
339 | VMX_VMCS16_GUEST_DS_SEL,
|
---|
340 | VMX_VMCS16_GUEST_FS_SEL,
|
---|
341 | VMX_VMCS16_GUEST_GS_SEL,
|
---|
342 | VMX_VMCS16_GUEST_LDTR_SEL,
|
---|
343 | VMX_VMCS16_GUEST_TR_SEL,
|
---|
344 | VMX_VMCS16_GUEST_INTR_STATUS,
|
---|
345 | VMX_VMCS16_GUEST_PML_INDEX,
|
---|
346 |
|
---|
347 | /* 16-bits host-state fields. */
|
---|
348 | VMX_VMCS16_HOST_ES_SEL,
|
---|
349 | VMX_VMCS16_HOST_CS_SEL,
|
---|
350 | VMX_VMCS16_HOST_SS_SEL,
|
---|
351 | VMX_VMCS16_HOST_DS_SEL,
|
---|
352 | VMX_VMCS16_HOST_FS_SEL,
|
---|
353 | VMX_VMCS16_HOST_GS_SEL,
|
---|
354 | VMX_VMCS16_HOST_TR_SEL,
|
---|
355 |
|
---|
356 | /* 64-bit control fields. */
|
---|
357 | VMX_VMCS64_CTRL_IO_BITMAP_A_FULL,
|
---|
358 | VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH,
|
---|
359 | VMX_VMCS64_CTRL_IO_BITMAP_B_FULL,
|
---|
360 | VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH,
|
---|
361 | VMX_VMCS64_CTRL_MSR_BITMAP_FULL,
|
---|
362 | VMX_VMCS64_CTRL_MSR_BITMAP_HIGH,
|
---|
363 | VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL,
|
---|
364 | VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH,
|
---|
365 | VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL,
|
---|
366 | VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH,
|
---|
367 | VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL,
|
---|
368 | VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH,
|
---|
369 | VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL,
|
---|
370 | VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH,
|
---|
371 | VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL,
|
---|
372 | VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH,
|
---|
373 | VMX_VMCS64_CTRL_TSC_OFFSET_FULL,
|
---|
374 | VMX_VMCS64_CTRL_TSC_OFFSET_HIGH,
|
---|
375 | VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL,
|
---|
376 | VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH,
|
---|
377 | VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL,
|
---|
378 | VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH,
|
---|
379 | VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL,
|
---|
380 | VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH,
|
---|
381 | VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL,
|
---|
382 | VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH,
|
---|
383 | VMX_VMCS64_CTRL_EPTP_FULL,
|
---|
384 | VMX_VMCS64_CTRL_EPTP_HIGH,
|
---|
385 | VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL,
|
---|
386 | VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH,
|
---|
387 | VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL,
|
---|
388 | VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH,
|
---|
389 | VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL,
|
---|
390 | VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH,
|
---|
391 | VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL,
|
---|
392 | VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH,
|
---|
393 | VMX_VMCS64_CTRL_EPTP_LIST_FULL,
|
---|
394 | VMX_VMCS64_CTRL_EPTP_LIST_HIGH,
|
---|
395 | VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL,
|
---|
396 | VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH,
|
---|
397 | VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL,
|
---|
398 | VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH,
|
---|
399 | VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_FULL,
|
---|
400 | VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_HIGH,
|
---|
401 | VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL,
|
---|
402 | VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH,
|
---|
403 | VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_FULL,
|
---|
404 | VMX_VMCS64_CTRL_ENCLS_EXITING_BITMAP_HIGH,
|
---|
405 | VMX_VMCS64_CTRL_SPPTP_FULL,
|
---|
406 | VMX_VMCS64_CTRL_SPPTP_HIGH,
|
---|
407 | VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL,
|
---|
408 | VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH,
|
---|
409 | VMX_VMCS64_CTRL_PROC_EXEC3_FULL,
|
---|
410 | VMX_VMCS64_CTRL_PROC_EXEC3_HIGH,
|
---|
411 | VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_FULL,
|
---|
412 | VMX_VMCS64_CTRL_ENCLV_EXITING_BITMAP_HIGH,
|
---|
413 |
|
---|
414 | /* 64-bit read-only data fields. */
|
---|
415 | VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL,
|
---|
416 | VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH,
|
---|
417 |
|
---|
418 | /* 64-bit guest-state fields. */
|
---|
419 | VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL,
|
---|
420 | VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH,
|
---|
421 | VMX_VMCS64_GUEST_DEBUGCTL_FULL,
|
---|
422 | VMX_VMCS64_GUEST_DEBUGCTL_HIGH,
|
---|
423 | VMX_VMCS64_GUEST_PAT_FULL,
|
---|
424 | VMX_VMCS64_GUEST_PAT_HIGH,
|
---|
425 | VMX_VMCS64_GUEST_EFER_FULL,
|
---|
426 | VMX_VMCS64_GUEST_EFER_HIGH,
|
---|
427 | VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL,
|
---|
428 | VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_HIGH,
|
---|
429 | VMX_VMCS64_GUEST_PDPTE0_FULL,
|
---|
430 | VMX_VMCS64_GUEST_PDPTE0_HIGH,
|
---|
431 | VMX_VMCS64_GUEST_PDPTE1_FULL,
|
---|
432 | VMX_VMCS64_GUEST_PDPTE1_HIGH,
|
---|
433 | VMX_VMCS64_GUEST_PDPTE2_FULL,
|
---|
434 | VMX_VMCS64_GUEST_PDPTE2_HIGH,
|
---|
435 | VMX_VMCS64_GUEST_PDPTE3_FULL,
|
---|
436 | VMX_VMCS64_GUEST_PDPTE3_HIGH,
|
---|
437 | VMX_VMCS64_GUEST_BNDCFGS_FULL,
|
---|
438 | VMX_VMCS64_GUEST_BNDCFGS_HIGH,
|
---|
439 | VMX_VMCS64_GUEST_RTIT_CTL_FULL,
|
---|
440 | VMX_VMCS64_GUEST_RTIT_CTL_HIGH,
|
---|
441 | VMX_VMCS64_GUEST_PKRS_FULL,
|
---|
442 | VMX_VMCS64_GUEST_PKRS_HIGH,
|
---|
443 |
|
---|
444 | /* 64-bit host-state fields. */
|
---|
445 | VMX_VMCS64_HOST_PAT_FULL,
|
---|
446 | VMX_VMCS64_HOST_PAT_HIGH,
|
---|
447 | VMX_VMCS64_HOST_EFER_FULL,
|
---|
448 | VMX_VMCS64_HOST_EFER_HIGH,
|
---|
449 | VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_FULL,
|
---|
450 | VMX_VMCS64_HOST_PERF_GLOBAL_CTRL_HIGH,
|
---|
451 | VMX_VMCS64_HOST_PKRS_FULL,
|
---|
452 | VMX_VMCS64_HOST_PKRS_HIGH,
|
---|
453 |
|
---|
454 | /* 32-bit control fields. */
|
---|
455 | VMX_VMCS32_CTRL_PIN_EXEC,
|
---|
456 | VMX_VMCS32_CTRL_PROC_EXEC,
|
---|
457 | VMX_VMCS32_CTRL_EXCEPTION_BITMAP,
|
---|
458 | VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK,
|
---|
459 | VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH,
|
---|
460 | VMX_VMCS32_CTRL_CR3_TARGET_COUNT,
|
---|
461 | VMX_VMCS32_CTRL_EXIT,
|
---|
462 | VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT,
|
---|
463 | VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT,
|
---|
464 | VMX_VMCS32_CTRL_ENTRY,
|
---|
465 | VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT,
|
---|
466 | VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO,
|
---|
467 | VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE,
|
---|
468 | VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH,
|
---|
469 | VMX_VMCS32_CTRL_TPR_THRESHOLD,
|
---|
470 | VMX_VMCS32_CTRL_PROC_EXEC2,
|
---|
471 | VMX_VMCS32_CTRL_PLE_GAP,
|
---|
472 | VMX_VMCS32_CTRL_PLE_WINDOW,
|
---|
473 |
|
---|
474 | /* 32-bits read-only fields. */
|
---|
475 | VMX_VMCS32_RO_VM_INSTR_ERROR,
|
---|
476 | VMX_VMCS32_RO_EXIT_REASON,
|
---|
477 | VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO,
|
---|
478 | VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE,
|
---|
479 | VMX_VMCS32_RO_IDT_VECTORING_INFO,
|
---|
480 | VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE,
|
---|
481 | VMX_VMCS32_RO_EXIT_INSTR_LENGTH,
|
---|
482 | VMX_VMCS32_RO_EXIT_INSTR_INFO,
|
---|
483 |
|
---|
484 | /* 32-bit guest-state fields. */
|
---|
485 | VMX_VMCS32_GUEST_ES_LIMIT,
|
---|
486 | VMX_VMCS32_GUEST_CS_LIMIT,
|
---|
487 | VMX_VMCS32_GUEST_SS_LIMIT,
|
---|
488 | VMX_VMCS32_GUEST_DS_LIMIT,
|
---|
489 | VMX_VMCS32_GUEST_FS_LIMIT,
|
---|
490 | VMX_VMCS32_GUEST_GS_LIMIT,
|
---|
491 | VMX_VMCS32_GUEST_LDTR_LIMIT,
|
---|
492 | VMX_VMCS32_GUEST_TR_LIMIT,
|
---|
493 | VMX_VMCS32_GUEST_GDTR_LIMIT,
|
---|
494 | VMX_VMCS32_GUEST_IDTR_LIMIT,
|
---|
495 | VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
|
---|
496 | VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
|
---|
497 | VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
|
---|
498 | VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
|
---|
499 | VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
|
---|
500 | VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS,
|
---|
501 | VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS,
|
---|
502 | VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS,
|
---|
503 | VMX_VMCS32_GUEST_INT_STATE,
|
---|
504 | VMX_VMCS32_GUEST_ACTIVITY_STATE,
|
---|
505 | VMX_VMCS32_GUEST_SMBASE,
|
---|
506 | VMX_VMCS32_GUEST_SYSENTER_CS,
|
---|
507 | VMX_VMCS32_PREEMPT_TIMER_VALUE,
|
---|
508 |
|
---|
509 | /* 32-bit host-state fields. */
|
---|
510 | VMX_VMCS32_HOST_SYSENTER_CS,
|
---|
511 |
|
---|
512 | /* Natural-width control fields. */
|
---|
513 | VMX_VMCS_CTRL_CR0_MASK,
|
---|
514 | VMX_VMCS_CTRL_CR4_MASK,
|
---|
515 | VMX_VMCS_CTRL_CR0_READ_SHADOW,
|
---|
516 | VMX_VMCS_CTRL_CR4_READ_SHADOW,
|
---|
517 | VMX_VMCS_CTRL_CR3_TARGET_VAL0,
|
---|
518 | VMX_VMCS_CTRL_CR3_TARGET_VAL1,
|
---|
519 | VMX_VMCS_CTRL_CR3_TARGET_VAL2,
|
---|
520 | VMX_VMCS_CTRL_CR3_TARGET_VAL3,
|
---|
521 |
|
---|
522 | /* Natural-width read-only data fields. */
|
---|
523 | VMX_VMCS_RO_EXIT_QUALIFICATION,
|
---|
524 | VMX_VMCS_RO_IO_RCX,
|
---|
525 | VMX_VMCS_RO_IO_RSI,
|
---|
526 | VMX_VMCS_RO_IO_RDI,
|
---|
527 | VMX_VMCS_RO_IO_RIP,
|
---|
528 | VMX_VMCS_RO_GUEST_LINEAR_ADDR,
|
---|
529 |
|
---|
530 | /* Natural-width guest-state field */
|
---|
531 | VMX_VMCS_GUEST_CR0,
|
---|
532 | VMX_VMCS_GUEST_CR3,
|
---|
533 | VMX_VMCS_GUEST_CR4,
|
---|
534 | VMX_VMCS_GUEST_ES_BASE,
|
---|
535 | VMX_VMCS_GUEST_CS_BASE,
|
---|
536 | VMX_VMCS_GUEST_SS_BASE,
|
---|
537 | VMX_VMCS_GUEST_DS_BASE,
|
---|
538 | VMX_VMCS_GUEST_FS_BASE,
|
---|
539 | VMX_VMCS_GUEST_GS_BASE,
|
---|
540 | VMX_VMCS_GUEST_LDTR_BASE,
|
---|
541 | VMX_VMCS_GUEST_TR_BASE,
|
---|
542 | VMX_VMCS_GUEST_GDTR_BASE,
|
---|
543 | VMX_VMCS_GUEST_IDTR_BASE,
|
---|
544 | VMX_VMCS_GUEST_DR7,
|
---|
545 | VMX_VMCS_GUEST_RSP,
|
---|
546 | VMX_VMCS_GUEST_RIP,
|
---|
547 | VMX_VMCS_GUEST_RFLAGS,
|
---|
548 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS,
|
---|
549 | VMX_VMCS_GUEST_SYSENTER_ESP,
|
---|
550 | VMX_VMCS_GUEST_SYSENTER_EIP,
|
---|
551 | VMX_VMCS_GUEST_S_CET,
|
---|
552 | VMX_VMCS_GUEST_SSP,
|
---|
553 | VMX_VMCS_GUEST_INTR_SSP_TABLE_ADDR,
|
---|
554 |
|
---|
555 | /* Natural-width host-state fields */
|
---|
556 | VMX_VMCS_HOST_CR0,
|
---|
557 | VMX_VMCS_HOST_CR3,
|
---|
558 | VMX_VMCS_HOST_CR4,
|
---|
559 | VMX_VMCS_HOST_FS_BASE,
|
---|
560 | VMX_VMCS_HOST_GS_BASE,
|
---|
561 | VMX_VMCS_HOST_TR_BASE,
|
---|
562 | VMX_VMCS_HOST_GDTR_BASE,
|
---|
563 | VMX_VMCS_HOST_IDTR_BASE,
|
---|
564 | VMX_VMCS_HOST_SYSENTER_ESP,
|
---|
565 | VMX_VMCS_HOST_SYSENTER_EIP,
|
---|
566 | VMX_VMCS_HOST_RSP,
|
---|
567 | VMX_VMCS_HOST_RIP,
|
---|
568 | VMX_VMCS_HOST_S_CET,
|
---|
569 | VMX_VMCS_HOST_SSP,
|
---|
570 | VMX_VMCS_HOST_INTR_SSP_TABLE_ADDR
|
---|
571 | };
|
---|
572 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
573 |
|
---|
574 | #ifdef VBOX_STRICT
|
---|
575 | static const uint32_t g_aVmcsSegBase[] =
|
---|
576 | {
|
---|
577 | VMX_VMCS_GUEST_ES_BASE,
|
---|
578 | VMX_VMCS_GUEST_CS_BASE,
|
---|
579 | VMX_VMCS_GUEST_SS_BASE,
|
---|
580 | VMX_VMCS_GUEST_DS_BASE,
|
---|
581 | VMX_VMCS_GUEST_FS_BASE,
|
---|
582 | VMX_VMCS_GUEST_GS_BASE
|
---|
583 | };
|
---|
584 | static const uint32_t g_aVmcsSegSel[] =
|
---|
585 | {
|
---|
586 | VMX_VMCS16_GUEST_ES_SEL,
|
---|
587 | VMX_VMCS16_GUEST_CS_SEL,
|
---|
588 | VMX_VMCS16_GUEST_SS_SEL,
|
---|
589 | VMX_VMCS16_GUEST_DS_SEL,
|
---|
590 | VMX_VMCS16_GUEST_FS_SEL,
|
---|
591 | VMX_VMCS16_GUEST_GS_SEL
|
---|
592 | };
|
---|
593 | static const uint32_t g_aVmcsSegLimit[] =
|
---|
594 | {
|
---|
595 | VMX_VMCS32_GUEST_ES_LIMIT,
|
---|
596 | VMX_VMCS32_GUEST_CS_LIMIT,
|
---|
597 | VMX_VMCS32_GUEST_SS_LIMIT,
|
---|
598 | VMX_VMCS32_GUEST_DS_LIMIT,
|
---|
599 | VMX_VMCS32_GUEST_FS_LIMIT,
|
---|
600 | VMX_VMCS32_GUEST_GS_LIMIT
|
---|
601 | };
|
---|
602 | static const uint32_t g_aVmcsSegAttr[] =
|
---|
603 | {
|
---|
604 | VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS,
|
---|
605 | VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS,
|
---|
606 | VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS,
|
---|
607 | VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS,
|
---|
608 | VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS,
|
---|
609 | VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS
|
---|
610 | };
|
---|
611 | AssertCompile(RT_ELEMENTS(g_aVmcsSegSel) == X86_SREG_COUNT);
|
---|
612 | AssertCompile(RT_ELEMENTS(g_aVmcsSegLimit) == X86_SREG_COUNT);
|
---|
613 | AssertCompile(RT_ELEMENTS(g_aVmcsSegBase) == X86_SREG_COUNT);
|
---|
614 | AssertCompile(RT_ELEMENTS(g_aVmcsSegAttr) == X86_SREG_COUNT);
|
---|
615 | #endif /* VBOX_STRICT */
|
---|
616 |
|
---|
617 | #ifdef HMVMX_USE_FUNCTION_TABLE
|
---|
618 | /**
|
---|
619 | * VMX_EXIT dispatch table.
|
---|
620 | */
|
---|
621 | static const struct CLANG11NOTHROWWEIRDNESS { PFNVMXEXITHANDLER pfn; } g_aVMExitHandlers[VMX_EXIT_MAX + 1] =
|
---|
622 | {
|
---|
623 | /* 0 VMX_EXIT_XCPT_OR_NMI */ { vmxHCExitXcptOrNmi },
|
---|
624 | /* 1 VMX_EXIT_EXT_INT */ { vmxHCExitExtInt },
|
---|
625 | /* 2 VMX_EXIT_TRIPLE_FAULT */ { vmxHCExitTripleFault },
|
---|
626 | /* 3 VMX_EXIT_INIT_SIGNAL */ { vmxHCExitErrUnexpected },
|
---|
627 | /* 4 VMX_EXIT_SIPI */ { vmxHCExitErrUnexpected },
|
---|
628 | /* 5 VMX_EXIT_IO_SMI */ { vmxHCExitErrUnexpected },
|
---|
629 | /* 6 VMX_EXIT_SMI */ { vmxHCExitErrUnexpected },
|
---|
630 | /* 7 VMX_EXIT_INT_WINDOW */ { vmxHCExitIntWindow },
|
---|
631 | /* 8 VMX_EXIT_NMI_WINDOW */ { vmxHCExitNmiWindow },
|
---|
632 | /* 9 VMX_EXIT_TASK_SWITCH */ { vmxHCExitTaskSwitch },
|
---|
633 | /* 10 VMX_EXIT_CPUID */ { vmxHCExitCpuid },
|
---|
634 | /* 11 VMX_EXIT_GETSEC */ { vmxHCExitGetsec },
|
---|
635 | /* 12 VMX_EXIT_HLT */ { vmxHCExitHlt },
|
---|
636 | /* 13 VMX_EXIT_INVD */ { vmxHCExitInvd },
|
---|
637 | /* 14 VMX_EXIT_INVLPG */ { vmxHCExitInvlpg },
|
---|
638 | /* 15 VMX_EXIT_RDPMC */ { vmxHCExitRdpmc },
|
---|
639 | /* 16 VMX_EXIT_RDTSC */ { vmxHCExitRdtsc },
|
---|
640 | /* 17 VMX_EXIT_RSM */ { vmxHCExitErrUnexpected },
|
---|
641 | /* 18 VMX_EXIT_VMCALL */ { vmxHCExitVmcall },
|
---|
642 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
643 | /* 19 VMX_EXIT_VMCLEAR */ { vmxHCExitVmclear },
|
---|
644 | /* 20 VMX_EXIT_VMLAUNCH */ { vmxHCExitVmlaunch },
|
---|
645 | /* 21 VMX_EXIT_VMPTRLD */ { vmxHCExitVmptrld },
|
---|
646 | /* 22 VMX_EXIT_VMPTRST */ { vmxHCExitVmptrst },
|
---|
647 | /* 23 VMX_EXIT_VMREAD */ { vmxHCExitVmread },
|
---|
648 | /* 24 VMX_EXIT_VMRESUME */ { vmxHCExitVmresume },
|
---|
649 | /* 25 VMX_EXIT_VMWRITE */ { vmxHCExitVmwrite },
|
---|
650 | /* 26 VMX_EXIT_VMXOFF */ { vmxHCExitVmxoff },
|
---|
651 | /* 27 VMX_EXIT_VMXON */ { vmxHCExitVmxon },
|
---|
652 | #else
|
---|
653 | /* 19 VMX_EXIT_VMCLEAR */ { vmxHCExitSetPendingXcptUD },
|
---|
654 | /* 20 VMX_EXIT_VMLAUNCH */ { vmxHCExitSetPendingXcptUD },
|
---|
655 | /* 21 VMX_EXIT_VMPTRLD */ { vmxHCExitSetPendingXcptUD },
|
---|
656 | /* 22 VMX_EXIT_VMPTRST */ { vmxHCExitSetPendingXcptUD },
|
---|
657 | /* 23 VMX_EXIT_VMREAD */ { vmxHCExitSetPendingXcptUD },
|
---|
658 | /* 24 VMX_EXIT_VMRESUME */ { vmxHCExitSetPendingXcptUD },
|
---|
659 | /* 25 VMX_EXIT_VMWRITE */ { vmxHCExitSetPendingXcptUD },
|
---|
660 | /* 26 VMX_EXIT_VMXOFF */ { vmxHCExitSetPendingXcptUD },
|
---|
661 | /* 27 VMX_EXIT_VMXON */ { vmxHCExitSetPendingXcptUD },
|
---|
662 | #endif
|
---|
663 | /* 28 VMX_EXIT_MOV_CRX */ { vmxHCExitMovCRx },
|
---|
664 | /* 29 VMX_EXIT_MOV_DRX */ { vmxHCExitMovDRx },
|
---|
665 | /* 30 VMX_EXIT_IO_INSTR */ { vmxHCExitIoInstr },
|
---|
666 | /* 31 VMX_EXIT_RDMSR */ { vmxHCExitRdmsr },
|
---|
667 | /* 32 VMX_EXIT_WRMSR */ { vmxHCExitWrmsr },
|
---|
668 | /* 33 VMX_EXIT_ERR_INVALID_GUEST_STATE */ { vmxHCExitErrInvalidGuestState },
|
---|
669 | /* 34 VMX_EXIT_ERR_MSR_LOAD */ { vmxHCExitErrUnexpected },
|
---|
670 | /* 35 UNDEFINED */ { vmxHCExitErrUnexpected },
|
---|
671 | /* 36 VMX_EXIT_MWAIT */ { vmxHCExitMwait },
|
---|
672 | /* 37 VMX_EXIT_MTF */ { vmxHCExitMtf },
|
---|
673 | /* 38 UNDEFINED */ { vmxHCExitErrUnexpected },
|
---|
674 | /* 39 VMX_EXIT_MONITOR */ { vmxHCExitMonitor },
|
---|
675 | /* 40 VMX_EXIT_PAUSE */ { vmxHCExitPause },
|
---|
676 | /* 41 VMX_EXIT_ERR_MACHINE_CHECK */ { vmxHCExitErrUnexpected },
|
---|
677 | /* 42 UNDEFINED */ { vmxHCExitErrUnexpected },
|
---|
678 | /* 43 VMX_EXIT_TPR_BELOW_THRESHOLD */ { vmxHCExitTprBelowThreshold },
|
---|
679 | /* 44 VMX_EXIT_APIC_ACCESS */ { vmxHCExitApicAccess },
|
---|
680 | /* 45 VMX_EXIT_VIRTUALIZED_EOI */ { vmxHCExitErrUnexpected },
|
---|
681 | /* 46 VMX_EXIT_GDTR_IDTR_ACCESS */ { vmxHCExitErrUnexpected },
|
---|
682 | /* 47 VMX_EXIT_LDTR_TR_ACCESS */ { vmxHCExitErrUnexpected },
|
---|
683 | /* 48 VMX_EXIT_EPT_VIOLATION */ { vmxHCExitEptViolation },
|
---|
684 | /* 49 VMX_EXIT_EPT_MISCONFIG */ { vmxHCExitEptMisconfig },
|
---|
685 | #if defined(VBOX_WITH_NESTED_HWVIRT_VMX) && defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT)
|
---|
686 | /* 50 VMX_EXIT_INVEPT */ { vmxHCExitInvept },
|
---|
687 | #else
|
---|
688 | /* 50 VMX_EXIT_INVEPT */ { vmxHCExitSetPendingXcptUD },
|
---|
689 | #endif
|
---|
690 | /* 51 VMX_EXIT_RDTSCP */ { vmxHCExitRdtscp },
|
---|
691 | /* 52 VMX_EXIT_PREEMPT_TIMER */ { vmxHCExitPreemptTimer },
|
---|
692 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
693 | /* 53 VMX_EXIT_INVVPID */ { vmxHCExitInvvpid },
|
---|
694 | #else
|
---|
695 | /* 53 VMX_EXIT_INVVPID */ { vmxHCExitSetPendingXcptUD },
|
---|
696 | #endif
|
---|
697 | /* 54 VMX_EXIT_WBINVD */ { vmxHCExitWbinvd },
|
---|
698 | /* 55 VMX_EXIT_XSETBV */ { vmxHCExitXsetbv },
|
---|
699 | /* 56 VMX_EXIT_APIC_WRITE */ { vmxHCExitErrUnexpected },
|
---|
700 | /* 57 VMX_EXIT_RDRAND */ { vmxHCExitErrUnexpected },
|
---|
701 | /* 58 VMX_EXIT_INVPCID */ { vmxHCExitInvpcid },
|
---|
702 | /* 59 VMX_EXIT_VMFUNC */ { vmxHCExitErrUnexpected },
|
---|
703 | /* 60 VMX_EXIT_ENCLS */ { vmxHCExitErrUnexpected },
|
---|
704 | /* 61 VMX_EXIT_RDSEED */ { vmxHCExitErrUnexpected },
|
---|
705 | /* 62 VMX_EXIT_PML_FULL */ { vmxHCExitErrUnexpected },
|
---|
706 | /* 63 VMX_EXIT_XSAVES */ { vmxHCExitErrUnexpected },
|
---|
707 | /* 64 VMX_EXIT_XRSTORS */ { vmxHCExitErrUnexpected },
|
---|
708 | /* 65 UNDEFINED */ { vmxHCExitErrUnexpected },
|
---|
709 | /* 66 VMX_EXIT_SPP_EVENT */ { vmxHCExitErrUnexpected },
|
---|
710 | /* 67 VMX_EXIT_UMWAIT */ { vmxHCExitErrUnexpected },
|
---|
711 | /* 68 VMX_EXIT_TPAUSE */ { vmxHCExitErrUnexpected },
|
---|
712 | /* 69 VMX_EXIT_LOADIWKEY */ { vmxHCExitErrUnexpected },
|
---|
713 | };
|
---|
714 | #endif /* HMVMX_USE_FUNCTION_TABLE */
|
---|
715 |
|
---|
716 | #if defined(VBOX_STRICT) && defined(LOG_ENABLED)
|
---|
717 | static const char * const g_apszVmxInstrErrors[HMVMX_INSTR_ERROR_MAX + 1] =
|
---|
718 | {
|
---|
719 | /* 0 */ "(Not Used)",
|
---|
720 | /* 1 */ "VMCALL executed in VMX root operation.",
|
---|
721 | /* 2 */ "VMCLEAR with invalid physical address.",
|
---|
722 | /* 3 */ "VMCLEAR with VMXON pointer.",
|
---|
723 | /* 4 */ "VMLAUNCH with non-clear VMCS.",
|
---|
724 | /* 5 */ "VMRESUME with non-launched VMCS.",
|
---|
725 | /* 6 */ "VMRESUME after VMXOFF",
|
---|
726 | /* 7 */ "VM-entry with invalid control fields.",
|
---|
727 | /* 8 */ "VM-entry with invalid host state fields.",
|
---|
728 | /* 9 */ "VMPTRLD with invalid physical address.",
|
---|
729 | /* 10 */ "VMPTRLD with VMXON pointer.",
|
---|
730 | /* 11 */ "VMPTRLD with incorrect revision identifier.",
|
---|
731 | /* 12 */ "VMREAD/VMWRITE from/to unsupported VMCS component.",
|
---|
732 | /* 13 */ "VMWRITE to read-only VMCS component.",
|
---|
733 | /* 14 */ "(Not Used)",
|
---|
734 | /* 15 */ "VMXON executed in VMX root operation.",
|
---|
735 | /* 16 */ "VM-entry with invalid executive-VMCS pointer.",
|
---|
736 | /* 17 */ "VM-entry with non-launched executing VMCS.",
|
---|
737 | /* 18 */ "VM-entry with executive-VMCS pointer not VMXON pointer.",
|
---|
738 | /* 19 */ "VMCALL with non-clear VMCS.",
|
---|
739 | /* 20 */ "VMCALL with invalid VM-exit control fields.",
|
---|
740 | /* 21 */ "(Not Used)",
|
---|
741 | /* 22 */ "VMCALL with incorrect MSEG revision identifier.",
|
---|
742 | /* 23 */ "VMXOFF under dual monitor treatment of SMIs and SMM.",
|
---|
743 | /* 24 */ "VMCALL with invalid SMM-monitor features.",
|
---|
744 | /* 25 */ "VM-entry with invalid VM-execution control fields in executive VMCS.",
|
---|
745 | /* 26 */ "VM-entry with events blocked by MOV SS.",
|
---|
746 | /* 27 */ "(Not Used)",
|
---|
747 | /* 28 */ "Invalid operand to INVEPT/INVVPID."
|
---|
748 | };
|
---|
749 | #endif /* VBOX_STRICT && LOG_ENABLED */
|
---|
750 |
|
---|
751 |
|
---|
752 | /**
|
---|
753 | * Gets the CR0 guest/host mask.
|
---|
754 | *
|
---|
755 | * These bits typically does not change through the lifetime of a VM. Any bit set in
|
---|
756 | * this mask is owned by the host/hypervisor and would cause a VM-exit when modified
|
---|
757 | * by the guest.
|
---|
758 | *
|
---|
759 | * @returns The CR0 guest/host mask.
|
---|
760 | * @param pVCpu The cross context virtual CPU structure.
|
---|
761 | */
|
---|
762 | static uint64_t vmxHCGetFixedCr0Mask(PCVMCPUCC pVCpu)
|
---|
763 | {
|
---|
764 | /*
|
---|
765 | * Modifications to CR0 bits that VT-x ignores saving/restoring (CD, ET, NW) and
|
---|
766 | * to CR0 bits that we require for shadow paging (PG) by the guest must cause VM-exits.
|
---|
767 | *
|
---|
768 | * Furthermore, modifications to any bits that are reserved/unspecified currently
|
---|
769 | * by the Intel spec. must also cause a VM-exit. This prevents unpredictable behavior
|
---|
770 | * when future CPUs specify and use currently reserved/unspecified bits.
|
---|
771 | */
|
---|
772 | /** @todo Avoid intercepting CR0.PE with unrestricted guest execution. Fix PGM
|
---|
773 | * enmGuestMode to be in-sync with the current mode. See @bugref{6398}
|
---|
774 | * and @bugref{6944}. */
|
---|
775 | PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
776 | return ( X86_CR0_PE
|
---|
777 | | X86_CR0_NE
|
---|
778 | | (VM_IS_VMX_NESTED_PAGING(pVM) ? 0 : X86_CR0_WP)
|
---|
779 | | X86_CR0_PG
|
---|
780 | | VMX_EXIT_HOST_CR0_IGNORE_MASK);
|
---|
781 | }
|
---|
782 |
|
---|
783 |
|
---|
784 | /**
|
---|
785 | * Gets the CR4 guest/host mask.
|
---|
786 | *
|
---|
787 | * These bits typically does not change through the lifetime of a VM. Any bit set in
|
---|
788 | * this mask is owned by the host/hypervisor and would cause a VM-exit when modified
|
---|
789 | * by the guest.
|
---|
790 | *
|
---|
791 | * @returns The CR4 guest/host mask.
|
---|
792 | * @param pVCpu The cross context virtual CPU structure.
|
---|
793 | */
|
---|
794 | static uint64_t vmxHCGetFixedCr4Mask(PCVMCPUCC pVCpu)
|
---|
795 | {
|
---|
796 | /*
|
---|
797 | * We construct a mask of all CR4 bits that the guest can modify without causing
|
---|
798 | * a VM-exit. Then invert this mask to obtain all CR4 bits that should cause
|
---|
799 | * a VM-exit when the guest attempts to modify them when executing using
|
---|
800 | * hardware-assisted VMX.
|
---|
801 | *
|
---|
802 | * When a feature is not exposed to the guest (and may be present on the host),
|
---|
803 | * we want to intercept guest modifications to the bit so we can emulate proper
|
---|
804 | * behavior (e.g., #GP).
|
---|
805 | *
|
---|
806 | * Furthermore, only modifications to those bits that don't require immediate
|
---|
807 | * emulation is allowed. For e.g., PCIDE is excluded because the behavior
|
---|
808 | * depends on CR3 which might not always be the guest value while executing
|
---|
809 | * using hardware-assisted VMX.
|
---|
810 | */
|
---|
811 | PCVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
812 | bool const fFsGsBase = pVM->cpum.ro.GuestFeatures.fFsGsBase;
|
---|
813 | bool const fXSaveRstor = pVM->cpum.ro.GuestFeatures.fXSaveRstor;
|
---|
814 | bool const fFxSaveRstor = pVM->cpum.ro.GuestFeatures.fFxSaveRstor;
|
---|
815 |
|
---|
816 | /*
|
---|
817 | * Paranoia.
|
---|
818 | * Ensure features exposed to the guest are present on the host.
|
---|
819 | */
|
---|
820 | Assert(!fFsGsBase || pVM->cpum.ro.HostFeatures.fFsGsBase);
|
---|
821 | Assert(!fXSaveRstor || pVM->cpum.ro.HostFeatures.fXSaveRstor);
|
---|
822 | Assert(!fFxSaveRstor || pVM->cpum.ro.HostFeatures.fFxSaveRstor);
|
---|
823 |
|
---|
824 | uint64_t const fGstMask = ( X86_CR4_PVI
|
---|
825 | | X86_CR4_TSD
|
---|
826 | | X86_CR4_DE
|
---|
827 | | X86_CR4_MCE
|
---|
828 | | X86_CR4_PCE
|
---|
829 | | X86_CR4_OSXMMEEXCPT
|
---|
830 | | (fFsGsBase ? X86_CR4_FSGSBASE : 0)
|
---|
831 | | (fXSaveRstor ? X86_CR4_OSXSAVE : 0)
|
---|
832 | | (fFxSaveRstor ? X86_CR4_OSFXSR : 0));
|
---|
833 | return ~fGstMask;
|
---|
834 | }
|
---|
835 |
|
---|
836 |
|
---|
837 | /**
|
---|
838 | * Adds one or more exceptions to the exception bitmap and commits it to the current
|
---|
839 | * VMCS.
|
---|
840 | *
|
---|
841 | * @param pVCpu The cross context virtual CPU structure.
|
---|
842 | * @param pVmxTransient The VMX-transient structure.
|
---|
843 | * @param uXcptMask The exception(s) to add.
|
---|
844 | */
|
---|
845 | static void vmxHCAddXcptInterceptMask(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
|
---|
846 | {
|
---|
847 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
848 | uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
|
---|
849 | if ((uXcptBitmap & uXcptMask) != uXcptMask)
|
---|
850 | {
|
---|
851 | uXcptBitmap |= uXcptMask;
|
---|
852 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
|
---|
853 | AssertRC(rc);
|
---|
854 | pVmcsInfo->u32XcptBitmap = uXcptBitmap;
|
---|
855 | }
|
---|
856 | }
|
---|
857 |
|
---|
858 |
|
---|
859 | /**
|
---|
860 | * Adds an exception to the exception bitmap and commits it to the current VMCS.
|
---|
861 | *
|
---|
862 | * @param pVCpu The cross context virtual CPU structure.
|
---|
863 | * @param pVmxTransient The VMX-transient structure.
|
---|
864 | * @param uXcpt The exception to add.
|
---|
865 | */
|
---|
866 | static void vmxHCAddXcptIntercept(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
|
---|
867 | {
|
---|
868 | Assert(uXcpt <= X86_XCPT_LAST);
|
---|
869 | vmxHCAddXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT_32(uXcpt));
|
---|
870 | }
|
---|
871 |
|
---|
872 |
|
---|
873 | /**
|
---|
874 | * Remove one or more exceptions from the exception bitmap and commits it to the
|
---|
875 | * current VMCS.
|
---|
876 | *
|
---|
877 | * This takes care of not removing the exception intercept if a nested-guest
|
---|
878 | * requires the exception to be intercepted.
|
---|
879 | *
|
---|
880 | * @returns VBox status code.
|
---|
881 | * @param pVCpu The cross context virtual CPU structure.
|
---|
882 | * @param pVmxTransient The VMX-transient structure.
|
---|
883 | * @param uXcptMask The exception(s) to remove.
|
---|
884 | */
|
---|
885 | static int vmxHCRemoveXcptInterceptMask(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint32_t uXcptMask)
|
---|
886 | {
|
---|
887 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
888 | uint32_t u32XcptBitmap = pVmcsInfo->u32XcptBitmap;
|
---|
889 | if (u32XcptBitmap & uXcptMask)
|
---|
890 | {
|
---|
891 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
892 | if (!pVmxTransient->fIsNestedGuest)
|
---|
893 | { /* likely */ }
|
---|
894 | else
|
---|
895 | uXcptMask &= ~pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32XcptBitmap;
|
---|
896 | #endif
|
---|
897 | #ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
898 | uXcptMask &= ~( RT_BIT(X86_XCPT_BP)
|
---|
899 | | RT_BIT(X86_XCPT_DE)
|
---|
900 | | RT_BIT(X86_XCPT_NM)
|
---|
901 | | RT_BIT(X86_XCPT_TS)
|
---|
902 | | RT_BIT(X86_XCPT_UD)
|
---|
903 | | RT_BIT(X86_XCPT_NP)
|
---|
904 | | RT_BIT(X86_XCPT_SS)
|
---|
905 | | RT_BIT(X86_XCPT_GP)
|
---|
906 | | RT_BIT(X86_XCPT_PF)
|
---|
907 | | RT_BIT(X86_XCPT_MF));
|
---|
908 | #elif defined(HMVMX_ALWAYS_TRAP_PF)
|
---|
909 | uXcptMask &= ~RT_BIT(X86_XCPT_PF);
|
---|
910 | #endif
|
---|
911 | if (uXcptMask)
|
---|
912 | {
|
---|
913 | /* Validate we are not removing any essential exception intercepts. */
|
---|
914 | #ifndef IN_NEM_DARWIN
|
---|
915 | Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging || !(uXcptMask & RT_BIT(X86_XCPT_PF)));
|
---|
916 | #else
|
---|
917 | Assert(!(uXcptMask & RT_BIT(X86_XCPT_PF)));
|
---|
918 | #endif
|
---|
919 | NOREF(pVCpu);
|
---|
920 | Assert(!(uXcptMask & RT_BIT(X86_XCPT_DB)));
|
---|
921 | Assert(!(uXcptMask & RT_BIT(X86_XCPT_AC)));
|
---|
922 |
|
---|
923 | /* Remove it from the exception bitmap. */
|
---|
924 | u32XcptBitmap &= ~uXcptMask;
|
---|
925 |
|
---|
926 | /* Commit and update the cache if necessary. */
|
---|
927 | if (pVmcsInfo->u32XcptBitmap != u32XcptBitmap)
|
---|
928 | {
|
---|
929 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, u32XcptBitmap);
|
---|
930 | AssertRC(rc);
|
---|
931 | pVmcsInfo->u32XcptBitmap = u32XcptBitmap;
|
---|
932 | }
|
---|
933 | }
|
---|
934 | }
|
---|
935 | return VINF_SUCCESS;
|
---|
936 | }
|
---|
937 |
|
---|
938 |
|
---|
939 | /**
|
---|
940 | * Remove an exceptions from the exception bitmap and commits it to the current
|
---|
941 | * VMCS.
|
---|
942 | *
|
---|
943 | * @returns VBox status code.
|
---|
944 | * @param pVCpu The cross context virtual CPU structure.
|
---|
945 | * @param pVmxTransient The VMX-transient structure.
|
---|
946 | * @param uXcpt The exception to remove.
|
---|
947 | */
|
---|
948 | static int vmxHCRemoveXcptIntercept(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient, uint8_t uXcpt)
|
---|
949 | {
|
---|
950 | return vmxHCRemoveXcptInterceptMask(pVCpu, pVmxTransient, RT_BIT(uXcpt));
|
---|
951 | }
|
---|
952 |
|
---|
953 |
|
---|
954 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
955 | /**
|
---|
956 | * Loads the shadow VMCS specified by the VMCS info. object.
|
---|
957 | *
|
---|
958 | * @returns VBox status code.
|
---|
959 | * @param pVmcsInfo The VMCS info. object.
|
---|
960 | *
|
---|
961 | * @remarks Can be called with interrupts disabled.
|
---|
962 | */
|
---|
963 | static int vmxHCLoadShadowVmcs(PVMXVMCSINFO pVmcsInfo)
|
---|
964 | {
|
---|
965 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
966 | Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
|
---|
967 |
|
---|
968 | int rc = VMXLoadVmcs(pVmcsInfo->HCPhysShadowVmcs);
|
---|
969 | if (RT_SUCCESS(rc))
|
---|
970 | pVmcsInfo->fShadowVmcsState |= VMX_V_VMCS_LAUNCH_STATE_CURRENT;
|
---|
971 | return rc;
|
---|
972 | }
|
---|
973 |
|
---|
974 |
|
---|
975 | /**
|
---|
976 | * Clears the shadow VMCS specified by the VMCS info. object.
|
---|
977 | *
|
---|
978 | * @returns VBox status code.
|
---|
979 | * @param pVmcsInfo The VMCS info. object.
|
---|
980 | *
|
---|
981 | * @remarks Can be called with interrupts disabled.
|
---|
982 | */
|
---|
983 | static int vmxHCClearShadowVmcs(PVMXVMCSINFO pVmcsInfo)
|
---|
984 | {
|
---|
985 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
986 | Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
|
---|
987 |
|
---|
988 | int rc = VMXClearVmcs(pVmcsInfo->HCPhysShadowVmcs);
|
---|
989 | if (RT_SUCCESS(rc))
|
---|
990 | pVmcsInfo->fShadowVmcsState = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
|
---|
991 | return rc;
|
---|
992 | }
|
---|
993 |
|
---|
994 |
|
---|
995 | /**
|
---|
996 | * Switches from and to the specified VMCSes.
|
---|
997 | *
|
---|
998 | * @returns VBox status code.
|
---|
999 | * @param pVmcsInfoFrom The VMCS info. object we are switching from.
|
---|
1000 | * @param pVmcsInfoTo The VMCS info. object we are switching to.
|
---|
1001 | *
|
---|
1002 | * @remarks Called with interrupts disabled.
|
---|
1003 | */
|
---|
1004 | static int vmxHCSwitchVmcs(PVMXVMCSINFO pVmcsInfoFrom, PVMXVMCSINFO pVmcsInfoTo)
|
---|
1005 | {
|
---|
1006 | /*
|
---|
1007 | * Clear the VMCS we are switching out if it has not already been cleared.
|
---|
1008 | * This will sync any CPU internal data back to the VMCS.
|
---|
1009 | */
|
---|
1010 | if (pVmcsInfoFrom->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
|
---|
1011 | {
|
---|
1012 | int rc = hmR0VmxClearVmcs(pVmcsInfoFrom);
|
---|
1013 | if (RT_SUCCESS(rc))
|
---|
1014 | {
|
---|
1015 | /*
|
---|
1016 | * The shadow VMCS, if any, would not be active at this point since we
|
---|
1017 | * would have cleared it while importing the virtual hardware-virtualization
|
---|
1018 | * state as part the VMLAUNCH/VMRESUME VM-exit. Hence, there's no need to
|
---|
1019 | * clear the shadow VMCS here, just assert for safety.
|
---|
1020 | */
|
---|
1021 | Assert(!pVmcsInfoFrom->pvShadowVmcs || pVmcsInfoFrom->fShadowVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR);
|
---|
1022 | }
|
---|
1023 | else
|
---|
1024 | return rc;
|
---|
1025 | }
|
---|
1026 |
|
---|
1027 | /*
|
---|
1028 | * Clear the VMCS we are switching to if it has not already been cleared.
|
---|
1029 | * This will initialize the VMCS launch state to "clear" required for loading it.
|
---|
1030 | *
|
---|
1031 | * See Intel spec. 31.6 "Preparation And Launching A Virtual Machine".
|
---|
1032 | */
|
---|
1033 | if (pVmcsInfoTo->fVmcsState != VMX_V_VMCS_LAUNCH_STATE_CLEAR)
|
---|
1034 | {
|
---|
1035 | int rc = hmR0VmxClearVmcs(pVmcsInfoTo);
|
---|
1036 | if (RT_SUCCESS(rc))
|
---|
1037 | { /* likely */ }
|
---|
1038 | else
|
---|
1039 | return rc;
|
---|
1040 | }
|
---|
1041 |
|
---|
1042 | /*
|
---|
1043 | * Finally, load the VMCS we are switching to.
|
---|
1044 | */
|
---|
1045 | return hmR0VmxLoadVmcs(pVmcsInfoTo);
|
---|
1046 | }
|
---|
1047 |
|
---|
1048 |
|
---|
1049 | /**
|
---|
1050 | * Switches between the guest VMCS and the nested-guest VMCS as specified by the
|
---|
1051 | * caller.
|
---|
1052 | *
|
---|
1053 | * @returns VBox status code.
|
---|
1054 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1055 | * @param fSwitchToNstGstVmcs Whether to switch to the nested-guest VMCS (pass
|
---|
1056 | * true) or guest VMCS (pass false).
|
---|
1057 | */
|
---|
1058 | static int vmxHCSwitchToGstOrNstGstVmcs(PVMCPUCC pVCpu, bool fSwitchToNstGstVmcs)
|
---|
1059 | {
|
---|
1060 | /* Ensure we have synced everything from the guest-CPU context to the VMCS before switching. */
|
---|
1061 | HMVMX_CPUMCTX_ASSERT(pVCpu, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
1062 |
|
---|
1063 | PVMXVMCSINFO pVmcsInfoFrom;
|
---|
1064 | PVMXVMCSINFO pVmcsInfoTo;
|
---|
1065 | if (fSwitchToNstGstVmcs)
|
---|
1066 | {
|
---|
1067 | pVmcsInfoFrom = &pVCpu->hmr0.s.vmx.VmcsInfo;
|
---|
1068 | pVmcsInfoTo = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
|
---|
1069 | }
|
---|
1070 | else
|
---|
1071 | {
|
---|
1072 | pVmcsInfoFrom = &pVCpu->hmr0.s.vmx.VmcsInfoNstGst;
|
---|
1073 | pVmcsInfoTo = &pVCpu->hmr0.s.vmx.VmcsInfo;
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 | /*
|
---|
1077 | * Disable interrupts to prevent being preempted while we switch the current VMCS as the
|
---|
1078 | * preemption hook code path acquires the current VMCS.
|
---|
1079 | */
|
---|
1080 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
1081 |
|
---|
1082 | int rc = vmxHCSwitchVmcs(pVmcsInfoFrom, pVmcsInfoTo);
|
---|
1083 | if (RT_SUCCESS(rc))
|
---|
1084 | {
|
---|
1085 | pVCpu->hmr0.s.vmx.fSwitchedToNstGstVmcs = fSwitchToNstGstVmcs;
|
---|
1086 | pVCpu->hm.s.vmx.fSwitchedToNstGstVmcsCopyForRing3 = fSwitchToNstGstVmcs;
|
---|
1087 |
|
---|
1088 | /*
|
---|
1089 | * If we are switching to a VMCS that was executed on a different host CPU or was
|
---|
1090 | * never executed before, flag that we need to export the host state before executing
|
---|
1091 | * guest/nested-guest code using hardware-assisted VMX.
|
---|
1092 | *
|
---|
1093 | * This could probably be done in a preemptible context since the preemption hook
|
---|
1094 | * will flag the necessary change in host context. However, since preemption is
|
---|
1095 | * already disabled and to avoid making assumptions about host specific code in
|
---|
1096 | * RTMpCpuId when called with preemption enabled, we'll do this while preemption is
|
---|
1097 | * disabled.
|
---|
1098 | */
|
---|
1099 | if (pVmcsInfoTo->idHostCpuState == RTMpCpuId())
|
---|
1100 | { /* likely */ }
|
---|
1101 | else
|
---|
1102 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_HOST_CONTEXT | HM_CHANGED_VMX_HOST_GUEST_SHARED_STATE);
|
---|
1103 |
|
---|
1104 | ASMSetFlags(fEFlags);
|
---|
1105 |
|
---|
1106 | /*
|
---|
1107 | * We use a different VM-exit MSR-store areas for the guest and nested-guest. Hence,
|
---|
1108 | * flag that we need to update the host MSR values there. Even if we decide in the
|
---|
1109 | * future to share the VM-exit MSR-store area page between the guest and nested-guest,
|
---|
1110 | * if its content differs, we would have to update the host MSRs anyway.
|
---|
1111 | */
|
---|
1112 | pVCpu->hmr0.s.vmx.fUpdatedHostAutoMsrs = false;
|
---|
1113 | }
|
---|
1114 | else
|
---|
1115 | ASMSetFlags(fEFlags);
|
---|
1116 | return rc;
|
---|
1117 | }
|
---|
1118 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
1119 |
|
---|
1120 |
|
---|
1121 | #ifdef VBOX_STRICT
|
---|
1122 | /**
|
---|
1123 | * Reads the VM-entry interruption-information field from the VMCS into the VMX
|
---|
1124 | * transient structure.
|
---|
1125 | *
|
---|
1126 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1127 | * @param pVmxTransient The VMX-transient structure.
|
---|
1128 | */
|
---|
1129 | DECLINLINE(void) vmxHCReadEntryIntInfoVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1130 | {
|
---|
1131 | int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &pVmxTransient->uEntryIntInfo);
|
---|
1132 | AssertRC(rc);
|
---|
1133 | }
|
---|
1134 |
|
---|
1135 |
|
---|
1136 | /**
|
---|
1137 | * Reads the VM-entry exception error code field from the VMCS into
|
---|
1138 | * the VMX transient structure.
|
---|
1139 | *
|
---|
1140 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1141 | * @param pVmxTransient The VMX-transient structure.
|
---|
1142 | */
|
---|
1143 | DECLINLINE(void) vmxHCReadEntryXcptErrorCodeVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1144 | {
|
---|
1145 | int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, &pVmxTransient->uEntryXcptErrorCode);
|
---|
1146 | AssertRC(rc);
|
---|
1147 | }
|
---|
1148 |
|
---|
1149 |
|
---|
1150 | /**
|
---|
1151 | * Reads the VM-entry exception error code field from the VMCS into
|
---|
1152 | * the VMX transient structure.
|
---|
1153 | *
|
---|
1154 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1155 | * @param pVmxTransient The VMX-transient structure.
|
---|
1156 | */
|
---|
1157 | DECLINLINE(void) vmxHCReadEntryInstrLenVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1158 | {
|
---|
1159 | int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, &pVmxTransient->cbEntryInstr);
|
---|
1160 | AssertRC(rc);
|
---|
1161 | }
|
---|
1162 | #endif /* VBOX_STRICT */
|
---|
1163 |
|
---|
1164 |
|
---|
1165 | /**
|
---|
1166 | * Reads the VM-exit interruption-information field from the VMCS into the VMX
|
---|
1167 | * transient structure.
|
---|
1168 | *
|
---|
1169 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1170 | * @param pVmxTransient The VMX-transient structure.
|
---|
1171 | */
|
---|
1172 | DECLINLINE(void) vmxHCReadExitIntInfoVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1173 | {
|
---|
1174 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_INFO))
|
---|
1175 | {
|
---|
1176 | int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
|
---|
1177 | AssertRC(rc);
|
---|
1178 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_INFO;
|
---|
1179 | }
|
---|
1180 | }
|
---|
1181 |
|
---|
1182 |
|
---|
1183 | /**
|
---|
1184 | * Reads the VM-exit interruption error code from the VMCS into the VMX
|
---|
1185 | * transient structure.
|
---|
1186 | *
|
---|
1187 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1188 | * @param pVmxTransient The VMX-transient structure.
|
---|
1189 | */
|
---|
1190 | DECLINLINE(void) vmxHCReadExitIntErrorCodeVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1191 | {
|
---|
1192 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE))
|
---|
1193 | {
|
---|
1194 | int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
|
---|
1195 | AssertRC(rc);
|
---|
1196 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE;
|
---|
1197 | }
|
---|
1198 | }
|
---|
1199 |
|
---|
1200 |
|
---|
1201 | /**
|
---|
1202 | * Reads the VM-exit instruction length field from the VMCS into the VMX
|
---|
1203 | * transient structure.
|
---|
1204 | *
|
---|
1205 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1206 | * @param pVmxTransient The VMX-transient structure.
|
---|
1207 | */
|
---|
1208 | DECLINLINE(void) vmxHCReadExitInstrLenVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1209 | {
|
---|
1210 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_LEN))
|
---|
1211 | {
|
---|
1212 | int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbExitInstr);
|
---|
1213 | AssertRC(rc);
|
---|
1214 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_LEN;
|
---|
1215 | }
|
---|
1216 | }
|
---|
1217 |
|
---|
1218 |
|
---|
1219 | /**
|
---|
1220 | * Reads the VM-exit instruction-information field from the VMCS into
|
---|
1221 | * the VMX transient structure.
|
---|
1222 | *
|
---|
1223 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1224 | * @param pVmxTransient The VMX-transient structure.
|
---|
1225 | */
|
---|
1226 | DECLINLINE(void) vmxHCReadExitInstrInfoVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1227 | {
|
---|
1228 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_INSTR_INFO))
|
---|
1229 | {
|
---|
1230 | int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
|
---|
1231 | AssertRC(rc);
|
---|
1232 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_INSTR_INFO;
|
---|
1233 | }
|
---|
1234 | }
|
---|
1235 |
|
---|
1236 |
|
---|
1237 | /**
|
---|
1238 | * Reads the Exit Qualification from the VMCS into the VMX transient structure.
|
---|
1239 | *
|
---|
1240 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1241 | * @param pVmxTransient The VMX-transient structure.
|
---|
1242 | */
|
---|
1243 | DECLINLINE(void) vmxHCReadExitQualVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1244 | {
|
---|
1245 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_EXIT_QUALIFICATION))
|
---|
1246 | {
|
---|
1247 | int rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual);
|
---|
1248 | AssertRC(rc);
|
---|
1249 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION;
|
---|
1250 | }
|
---|
1251 | }
|
---|
1252 |
|
---|
1253 |
|
---|
1254 | /**
|
---|
1255 | * Reads the Guest-linear address from the VMCS into the VMX transient structure.
|
---|
1256 | *
|
---|
1257 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1258 | * @param pVmxTransient The VMX-transient structure.
|
---|
1259 | */
|
---|
1260 | DECLINLINE(void) vmxHCReadGuestLinearAddrVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1261 | {
|
---|
1262 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_LINEAR_ADDR))
|
---|
1263 | {
|
---|
1264 | int rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr);
|
---|
1265 | AssertRC(rc);
|
---|
1266 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_LINEAR_ADDR;
|
---|
1267 | }
|
---|
1268 | }
|
---|
1269 |
|
---|
1270 |
|
---|
1271 | /**
|
---|
1272 | * Reads the Guest-physical address from the VMCS into the VMX transient structure.
|
---|
1273 | *
|
---|
1274 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1275 | * @param pVmxTransient The VMX-transient structure.
|
---|
1276 | */
|
---|
1277 | DECLINLINE(void) vmxHCReadGuestPhysicalAddrVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1278 | {
|
---|
1279 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_PHYSICAL_ADDR))
|
---|
1280 | {
|
---|
1281 | int rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &pVmxTransient->uGuestPhysicalAddr);
|
---|
1282 | AssertRC(rc);
|
---|
1283 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_PHYSICAL_ADDR;
|
---|
1284 | }
|
---|
1285 | }
|
---|
1286 |
|
---|
1287 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1288 | /**
|
---|
1289 | * Reads the Guest pending-debug exceptions from the VMCS into the VMX transient
|
---|
1290 | * structure.
|
---|
1291 | *
|
---|
1292 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1293 | * @param pVmxTransient The VMX-transient structure.
|
---|
1294 | */
|
---|
1295 | DECLINLINE(void) vmxHCReadGuestPendingDbgXctps(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1296 | {
|
---|
1297 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_GUEST_PENDING_DBG_XCPTS))
|
---|
1298 | {
|
---|
1299 | int rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &pVmxTransient->uGuestPendingDbgXcpts);
|
---|
1300 | AssertRC(rc);
|
---|
1301 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_GUEST_PENDING_DBG_XCPTS;
|
---|
1302 | }
|
---|
1303 | }
|
---|
1304 | #endif
|
---|
1305 |
|
---|
1306 | /**
|
---|
1307 | * Reads the IDT-vectoring information field from the VMCS into the VMX
|
---|
1308 | * transient structure.
|
---|
1309 | *
|
---|
1310 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1311 | * @param pVmxTransient The VMX-transient structure.
|
---|
1312 | *
|
---|
1313 | * @remarks No-long-jump zone!!!
|
---|
1314 | */
|
---|
1315 | DECLINLINE(void) vmxHCReadIdtVectoringInfoVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1316 | {
|
---|
1317 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_INFO))
|
---|
1318 | {
|
---|
1319 | int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
|
---|
1320 | AssertRC(rc);
|
---|
1321 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_INFO;
|
---|
1322 | }
|
---|
1323 | }
|
---|
1324 |
|
---|
1325 |
|
---|
1326 | /**
|
---|
1327 | * Reads the IDT-vectoring error code from the VMCS into the VMX
|
---|
1328 | * transient structure.
|
---|
1329 | *
|
---|
1330 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1331 | * @param pVmxTransient The VMX-transient structure.
|
---|
1332 | */
|
---|
1333 | DECLINLINE(void) vmxHCReadIdtVectoringErrorCodeVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1334 | {
|
---|
1335 | if (!(pVmxTransient->fVmcsFieldsRead & HMVMX_READ_IDT_VECTORING_ERROR_CODE))
|
---|
1336 | {
|
---|
1337 | int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
|
---|
1338 | AssertRC(rc);
|
---|
1339 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_IDT_VECTORING_ERROR_CODE;
|
---|
1340 | }
|
---|
1341 | }
|
---|
1342 |
|
---|
1343 | #ifdef HMVMX_ALWAYS_SAVE_RO_GUEST_STATE
|
---|
1344 | /**
|
---|
1345 | * Reads all relevant read-only VMCS fields into the VMX transient structure.
|
---|
1346 | *
|
---|
1347 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1348 | * @param pVmxTransient The VMX-transient structure.
|
---|
1349 | */
|
---|
1350 | static void vmxHCReadAllRoFieldsVmcs(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
1351 | {
|
---|
1352 | int rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_EXIT_QUALIFICATION, &pVmxTransient->uExitQual);
|
---|
1353 | rc |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_LENGTH, &pVmxTransient->cbExitInstr);
|
---|
1354 | rc |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INSTR_INFO, &pVmxTransient->ExitInstrInfo.u);
|
---|
1355 | rc |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_INFO, &pVmxTransient->uIdtVectoringInfo);
|
---|
1356 | rc |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE, &pVmxTransient->uIdtVectoringErrorCode);
|
---|
1357 | rc |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO, &pVmxTransient->uExitIntInfo);
|
---|
1358 | rc |= VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE, &pVmxTransient->uExitIntErrorCode);
|
---|
1359 | rc |= VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_RO_GUEST_LINEAR_ADDR, &pVmxTransient->uGuestLinearAddr);
|
---|
1360 | rc |= VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL, &pVmxTransient->uGuestPhysicalAddr);
|
---|
1361 | AssertRC(rc);
|
---|
1362 | pVmxTransient->fVmcsFieldsRead |= HMVMX_READ_EXIT_QUALIFICATION
|
---|
1363 | | HMVMX_READ_EXIT_INSTR_LEN
|
---|
1364 | | HMVMX_READ_EXIT_INSTR_INFO
|
---|
1365 | | HMVMX_READ_IDT_VECTORING_INFO
|
---|
1366 | | HMVMX_READ_IDT_VECTORING_ERROR_CODE
|
---|
1367 | | HMVMX_READ_EXIT_INTERRUPTION_INFO
|
---|
1368 | | HMVMX_READ_EXIT_INTERRUPTION_ERROR_CODE
|
---|
1369 | | HMVMX_READ_GUEST_LINEAR_ADDR
|
---|
1370 | | HMVMX_READ_GUEST_PHYSICAL_ADDR;
|
---|
1371 | }
|
---|
1372 | #endif
|
---|
1373 |
|
---|
1374 | /**
|
---|
1375 | * Verifies that our cached values of the VMCS fields are all consistent with
|
---|
1376 | * what's actually present in the VMCS.
|
---|
1377 | *
|
---|
1378 | * @returns VBox status code.
|
---|
1379 | * @retval VINF_SUCCESS if all our caches match their respective VMCS fields.
|
---|
1380 | * @retval VERR_VMX_VMCS_FIELD_CACHE_INVALID if a cache field doesn't match the
|
---|
1381 | * VMCS content. HMCPU error-field is
|
---|
1382 | * updated, see VMX_VCI_XXX.
|
---|
1383 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1384 | * @param pVmcsInfo The VMCS info. object.
|
---|
1385 | * @param fIsNstGstVmcs Whether this is a nested-guest VMCS.
|
---|
1386 | */
|
---|
1387 | static int vmxHCCheckCachedVmcsCtls(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, bool fIsNstGstVmcs)
|
---|
1388 | {
|
---|
1389 | const char * const pcszVmcs = fIsNstGstVmcs ? "Nested-guest VMCS" : "VMCS";
|
---|
1390 |
|
---|
1391 | uint32_t u32Val;
|
---|
1392 | int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &u32Val);
|
---|
1393 | AssertRC(rc);
|
---|
1394 | AssertMsgReturnStmt(pVmcsInfo->u32EntryCtls == u32Val,
|
---|
1395 | ("%s entry controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32EntryCtls, u32Val),
|
---|
1396 | VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_ENTRY,
|
---|
1397 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
1398 |
|
---|
1399 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_EXIT, &u32Val);
|
---|
1400 | AssertRC(rc);
|
---|
1401 | AssertMsgReturnStmt(pVmcsInfo->u32ExitCtls == u32Val,
|
---|
1402 | ("%s exit controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ExitCtls, u32Val),
|
---|
1403 | VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_EXIT,
|
---|
1404 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
1405 |
|
---|
1406 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_PIN_EXEC, &u32Val);
|
---|
1407 | AssertRC(rc);
|
---|
1408 | AssertMsgReturnStmt(pVmcsInfo->u32PinCtls == u32Val,
|
---|
1409 | ("%s pin controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32PinCtls, u32Val),
|
---|
1410 | VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_PIN_EXEC,
|
---|
1411 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
1412 |
|
---|
1413 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, &u32Val);
|
---|
1414 | AssertRC(rc);
|
---|
1415 | AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls == u32Val,
|
---|
1416 | ("%s proc controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls, u32Val),
|
---|
1417 | VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_PROC_EXEC,
|
---|
1418 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
1419 |
|
---|
1420 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
|
---|
1421 | {
|
---|
1422 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, &u32Val);
|
---|
1423 | AssertRC(rc);
|
---|
1424 | AssertMsgReturnStmt(pVmcsInfo->u32ProcCtls2 == u32Val,
|
---|
1425 | ("%s proc2 controls mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32ProcCtls2, u32Val),
|
---|
1426 | VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_PROC_EXEC2,
|
---|
1427 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
1428 | }
|
---|
1429 |
|
---|
1430 | uint64_t u64Val;
|
---|
1431 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TERTIARY_CTLS)
|
---|
1432 | {
|
---|
1433 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_CTRL_PROC_EXEC3_FULL, &u64Val);
|
---|
1434 | AssertRC(rc);
|
---|
1435 | AssertMsgReturnStmt(pVmcsInfo->u64ProcCtls3 == u64Val,
|
---|
1436 | ("%s proc3 controls mismatch: Cache=%#RX32 VMCS=%#RX64\n", pcszVmcs, pVmcsInfo->u64ProcCtls3, u64Val),
|
---|
1437 | VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_PROC_EXEC3,
|
---|
1438 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
1439 | }
|
---|
1440 |
|
---|
1441 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, &u32Val);
|
---|
1442 | AssertRC(rc);
|
---|
1443 | AssertMsgReturnStmt(pVmcsInfo->u32XcptBitmap == u32Val,
|
---|
1444 | ("%s exception bitmap mismatch: Cache=%#RX32 VMCS=%#RX32\n", pcszVmcs, pVmcsInfo->u32XcptBitmap, u32Val),
|
---|
1445 | VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_XCPT_BITMAP,
|
---|
1446 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
1447 |
|
---|
1448 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_CTRL_TSC_OFFSET_FULL, &u64Val);
|
---|
1449 | AssertRC(rc);
|
---|
1450 | AssertMsgReturnStmt(pVmcsInfo->u64TscOffset == u64Val,
|
---|
1451 | ("%s TSC offset mismatch: Cache=%#RX64 VMCS=%#RX64\n", pcszVmcs, pVmcsInfo->u64TscOffset, u64Val),
|
---|
1452 | VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_VCI_CTRL_TSC_OFFSET,
|
---|
1453 | VERR_VMX_VMCS_FIELD_CACHE_INVALID);
|
---|
1454 |
|
---|
1455 | NOREF(pcszVmcs);
|
---|
1456 | return VINF_SUCCESS;
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 |
|
---|
1460 | /**
|
---|
1461 | * Exports the guest state with appropriate VM-entry and VM-exit controls in the
|
---|
1462 | * VMCS.
|
---|
1463 | *
|
---|
1464 | * This is typically required when the guest changes paging mode.
|
---|
1465 | *
|
---|
1466 | * @returns VBox status code.
|
---|
1467 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1468 | * @param pVmxTransient The VMX-transient structure.
|
---|
1469 | *
|
---|
1470 | * @remarks Requires EFER.
|
---|
1471 | * @remarks No-long-jump zone!!!
|
---|
1472 | */
|
---|
1473 | static int vmxHCExportGuestEntryExitCtls(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
|
---|
1474 | {
|
---|
1475 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_VMX_ENTRY_EXIT_CTLS)
|
---|
1476 | {
|
---|
1477 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1478 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
1479 |
|
---|
1480 | /*
|
---|
1481 | * VM-entry controls.
|
---|
1482 | */
|
---|
1483 | {
|
---|
1484 | uint32_t fVal = g_HmMsrs.u.vmx.EntryCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
|
---|
1485 | uint32_t const fZap = g_HmMsrs.u.vmx.EntryCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
1486 |
|
---|
1487 | /*
|
---|
1488 | * Load the guest debug controls (DR7 and IA32_DEBUGCTL MSR) on VM-entry.
|
---|
1489 | * The first VT-x capable CPUs only supported the 1-setting of this bit.
|
---|
1490 | *
|
---|
1491 | * For nested-guests, this is a mandatory VM-entry control. It's also
|
---|
1492 | * required because we do not want to leak host bits to the nested-guest.
|
---|
1493 | */
|
---|
1494 | fVal |= VMX_ENTRY_CTLS_LOAD_DEBUG;
|
---|
1495 |
|
---|
1496 | /*
|
---|
1497 | * Set if the guest is in long mode. This will set/clear the EFER.LMA bit on VM-entry.
|
---|
1498 | *
|
---|
1499 | * For nested-guests, the "IA-32e mode guest" control we initialize with what is
|
---|
1500 | * required to get the nested-guest working with hardware-assisted VMX execution.
|
---|
1501 | * It depends on the nested-guest's IA32_EFER.LMA bit. Remember, a nested hypervisor
|
---|
1502 | * can skip intercepting changes to the EFER MSR. This is why it needs to be done
|
---|
1503 | * here rather than while merging the guest VMCS controls.
|
---|
1504 | */
|
---|
1505 | if (CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
|
---|
1506 | {
|
---|
1507 | Assert(pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LME);
|
---|
1508 | fVal |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
|
---|
1509 | }
|
---|
1510 | else
|
---|
1511 | Assert(!(fVal & VMX_ENTRY_CTLS_IA32E_MODE_GUEST));
|
---|
1512 |
|
---|
1513 | /*
|
---|
1514 | * If the CPU supports the newer VMCS controls for managing guest/host EFER, use it.
|
---|
1515 | *
|
---|
1516 | * For nested-guests, we use the "load IA32_EFER" if the hardware supports it,
|
---|
1517 | * regardless of whether the nested-guest VMCS specifies it because we are free to
|
---|
1518 | * load whatever MSRs we require and we do not need to modify the guest visible copy
|
---|
1519 | * of the VM-entry MSR load area.
|
---|
1520 | */
|
---|
1521 | if ( g_fHmVmxSupportsVmcsEfer
|
---|
1522 | #ifndef IN_NEM_DARWIN
|
---|
1523 | && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient)
|
---|
1524 | #endif
|
---|
1525 | )
|
---|
1526 | fVal |= VMX_ENTRY_CTLS_LOAD_EFER_MSR;
|
---|
1527 | else
|
---|
1528 | Assert(!(fVal & VMX_ENTRY_CTLS_LOAD_EFER_MSR));
|
---|
1529 |
|
---|
1530 | /*
|
---|
1531 | * The following should -not- be set (since we're not in SMM mode):
|
---|
1532 | * - VMX_ENTRY_CTLS_ENTRY_TO_SMM
|
---|
1533 | * - VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON
|
---|
1534 | */
|
---|
1535 |
|
---|
1536 | /** @todo VMX_ENTRY_CTLS_LOAD_PERF_MSR,
|
---|
1537 | * VMX_ENTRY_CTLS_LOAD_PAT_MSR. */
|
---|
1538 |
|
---|
1539 | if ((fVal & fZap) == fVal)
|
---|
1540 | { /* likely */ }
|
---|
1541 | else
|
---|
1542 | {
|
---|
1543 | Log4Func(("Invalid VM-entry controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
|
---|
1544 | g_HmMsrs.u.vmx.EntryCtls.n.allowed0, fVal, fZap));
|
---|
1545 | VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_UFC_CTRL_ENTRY;
|
---|
1546 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1547 | }
|
---|
1548 |
|
---|
1549 | /* Commit it to the VMCS. */
|
---|
1550 | if (pVmcsInfo->u32EntryCtls != fVal)
|
---|
1551 | {
|
---|
1552 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_ENTRY, fVal);
|
---|
1553 | AssertRC(rc);
|
---|
1554 | pVmcsInfo->u32EntryCtls = fVal;
|
---|
1555 | }
|
---|
1556 | }
|
---|
1557 |
|
---|
1558 | /*
|
---|
1559 | * VM-exit controls.
|
---|
1560 | */
|
---|
1561 | {
|
---|
1562 | uint32_t fVal = g_HmMsrs.u.vmx.ExitCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
|
---|
1563 | uint32_t const fZap = g_HmMsrs.u.vmx.ExitCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
|
---|
1564 |
|
---|
1565 | /*
|
---|
1566 | * Save debug controls (DR7 & IA32_DEBUGCTL_MSR). The first VT-x CPUs only
|
---|
1567 | * supported the 1-setting of this bit.
|
---|
1568 | *
|
---|
1569 | * For nested-guests, we set the "save debug controls" as the converse
|
---|
1570 | * "load debug controls" is mandatory for nested-guests anyway.
|
---|
1571 | */
|
---|
1572 | fVal |= VMX_EXIT_CTLS_SAVE_DEBUG;
|
---|
1573 |
|
---|
1574 | /*
|
---|
1575 | * Set the host long mode active (EFER.LMA) bit (which Intel calls
|
---|
1576 | * "Host address-space size") if necessary. On VM-exit, VT-x sets both the
|
---|
1577 | * host EFER.LMA and EFER.LME bit to this value. See assertion in
|
---|
1578 | * vmxHCExportHostMsrs().
|
---|
1579 | *
|
---|
1580 | * For nested-guests, we always set this bit as we do not support 32-bit
|
---|
1581 | * hosts.
|
---|
1582 | */
|
---|
1583 | fVal |= VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE;
|
---|
1584 |
|
---|
1585 | #ifndef IN_NEM_DARWIN
|
---|
1586 | /*
|
---|
1587 | * If the VMCS EFER MSR fields are supported by the hardware, we use it.
|
---|
1588 | *
|
---|
1589 | * For nested-guests, we should use the "save IA32_EFER" control if we also
|
---|
1590 | * used the "load IA32_EFER" control while exporting VM-entry controls.
|
---|
1591 | */
|
---|
1592 | if ( g_fHmVmxSupportsVmcsEfer
|
---|
1593 | && hmR0VmxShouldSwapEferMsr(pVCpu, pVmxTransient))
|
---|
1594 | {
|
---|
1595 | fVal |= VMX_EXIT_CTLS_SAVE_EFER_MSR
|
---|
1596 | | VMX_EXIT_CTLS_LOAD_EFER_MSR;
|
---|
1597 | }
|
---|
1598 | #endif
|
---|
1599 |
|
---|
1600 | /*
|
---|
1601 | * Enable saving of the VMX-preemption timer value on VM-exit.
|
---|
1602 | * For nested-guests, currently not exposed/used.
|
---|
1603 | */
|
---|
1604 | /** @todo r=bird: Measure performance hit because of this vs. always rewriting
|
---|
1605 | * the timer value. */
|
---|
1606 | if (VM_IS_VMX_PREEMPT_TIMER_USED(pVM))
|
---|
1607 | {
|
---|
1608 | Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER);
|
---|
1609 | fVal |= VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER;
|
---|
1610 | }
|
---|
1611 |
|
---|
1612 | /* Don't acknowledge external interrupts on VM-exit. We want to let the host do that. */
|
---|
1613 | Assert(!(fVal & VMX_EXIT_CTLS_ACK_EXT_INT));
|
---|
1614 |
|
---|
1615 | /** @todo VMX_EXIT_CTLS_LOAD_PERF_MSR,
|
---|
1616 | * VMX_EXIT_CTLS_SAVE_PAT_MSR,
|
---|
1617 | * VMX_EXIT_CTLS_LOAD_PAT_MSR. */
|
---|
1618 |
|
---|
1619 | if ((fVal & fZap) == fVal)
|
---|
1620 | { /* likely */ }
|
---|
1621 | else
|
---|
1622 | {
|
---|
1623 | Log4Func(("Invalid VM-exit controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
|
---|
1624 | g_HmMsrs.u.vmx.ExitCtls.n.allowed0, fVal, fZap));
|
---|
1625 | VCPU_2_VMXSTATE(pVCpu).u32HMError = VMX_UFC_CTRL_EXIT;
|
---|
1626 | return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
|
---|
1627 | }
|
---|
1628 |
|
---|
1629 | /* Commit it to the VMCS. */
|
---|
1630 | if (pVmcsInfo->u32ExitCtls != fVal)
|
---|
1631 | {
|
---|
1632 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXIT, fVal);
|
---|
1633 | AssertRC(rc);
|
---|
1634 | pVmcsInfo->u32ExitCtls = fVal;
|
---|
1635 | }
|
---|
1636 | }
|
---|
1637 |
|
---|
1638 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
|
---|
1639 | }
|
---|
1640 | return VINF_SUCCESS;
|
---|
1641 | }
|
---|
1642 |
|
---|
1643 |
|
---|
1644 | /**
|
---|
1645 | * Sets the TPR threshold in the VMCS.
|
---|
1646 | *
|
---|
1647 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1648 | * @param pVmcsInfo The VMCS info. object.
|
---|
1649 | * @param u32TprThreshold The TPR threshold (task-priority class only).
|
---|
1650 | */
|
---|
1651 | DECLINLINE(void) vmxHCApicSetTprThreshold(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint32_t u32TprThreshold)
|
---|
1652 | {
|
---|
1653 | Assert(!(u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)); /* Bits 31:4 MBZ. */
|
---|
1654 | Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
|
---|
1655 | RT_NOREF(pVmcsInfo);
|
---|
1656 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_TPR_THRESHOLD, u32TprThreshold);
|
---|
1657 | AssertRC(rc);
|
---|
1658 | }
|
---|
1659 |
|
---|
1660 |
|
---|
1661 | /**
|
---|
1662 | * Exports the guest APIC TPR state into the VMCS.
|
---|
1663 | *
|
---|
1664 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1665 | * @param pVmxTransient The VMX-transient structure.
|
---|
1666 | *
|
---|
1667 | * @remarks No-long-jump zone!!!
|
---|
1668 | */
|
---|
1669 | static void vmxHCExportGuestApicTpr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
|
---|
1670 | {
|
---|
1671 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_APIC_TPR)
|
---|
1672 | {
|
---|
1673 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
|
---|
1674 |
|
---|
1675 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
1676 | if (!pVmxTransient->fIsNestedGuest)
|
---|
1677 | {
|
---|
1678 | if ( PDMHasApic(pVCpu->CTX_SUFF(pVM))
|
---|
1679 | && APICIsEnabled(pVCpu))
|
---|
1680 | {
|
---|
1681 | /*
|
---|
1682 | * Setup TPR shadowing.
|
---|
1683 | */
|
---|
1684 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
1685 | {
|
---|
1686 | bool fPendingIntr = false;
|
---|
1687 | uint8_t u8Tpr = 0;
|
---|
1688 | uint8_t u8PendingIntr = 0;
|
---|
1689 | int rc = APICGetTpr(pVCpu, &u8Tpr, &fPendingIntr, &u8PendingIntr);
|
---|
1690 | AssertRC(rc);
|
---|
1691 |
|
---|
1692 | /*
|
---|
1693 | * If there are interrupts pending but masked by the TPR, instruct VT-x to
|
---|
1694 | * cause a TPR-below-threshold VM-exit when the guest lowers its TPR below the
|
---|
1695 | * priority of the pending interrupt so we can deliver the interrupt. If there
|
---|
1696 | * are no interrupts pending, set threshold to 0 to not cause any
|
---|
1697 | * TPR-below-threshold VM-exits.
|
---|
1698 | */
|
---|
1699 | uint32_t u32TprThreshold = 0;
|
---|
1700 | if (fPendingIntr)
|
---|
1701 | {
|
---|
1702 | /* Bits 3:0 of the TPR threshold field correspond to bits 7:4 of the TPR
|
---|
1703 | (which is the Task-Priority Class). */
|
---|
1704 | const uint8_t u8PendingPriority = u8PendingIntr >> 4;
|
---|
1705 | const uint8_t u8TprPriority = u8Tpr >> 4;
|
---|
1706 | if (u8PendingPriority <= u8TprPriority)
|
---|
1707 | u32TprThreshold = u8PendingPriority;
|
---|
1708 | }
|
---|
1709 |
|
---|
1710 | vmxHCApicSetTprThreshold(pVCpu, pVmcsInfo, u32TprThreshold);
|
---|
1711 | }
|
---|
1712 | }
|
---|
1713 | }
|
---|
1714 | /* else: the TPR threshold has already been updated while merging the nested-guest VMCS. */
|
---|
1715 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
|
---|
1716 | }
|
---|
1717 | }
|
---|
1718 |
|
---|
1719 |
|
---|
1720 | /**
|
---|
1721 | * Gets the guest interruptibility-state and updates related force-flags.
|
---|
1722 | *
|
---|
1723 | * @returns Guest's interruptibility-state.
|
---|
1724 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1725 | *
|
---|
1726 | * @remarks No-long-jump zone!!!
|
---|
1727 | */
|
---|
1728 | static uint32_t vmxHCGetGuestIntrStateAndUpdateFFs(PVMCPUCC pVCpu)
|
---|
1729 | {
|
---|
1730 | /*
|
---|
1731 | * Check if we should inhibit interrupt delivery due to instructions like STI and MOV SS.
|
---|
1732 | */
|
---|
1733 | uint32_t fIntrState = 0;
|
---|
1734 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1735 | {
|
---|
1736 | /* If inhibition is active, RIP and RFLAGS should've been imported from the VMCS already. */
|
---|
1737 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
|
---|
1738 |
|
---|
1739 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
1740 | if (pCtx->rip == EMGetInhibitInterruptsPC(pVCpu))
|
---|
1741 | {
|
---|
1742 | if (pCtx->eflags.Bits.u1IF)
|
---|
1743 | fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
|
---|
1744 | else
|
---|
1745 | fIntrState = VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS;
|
---|
1746 | }
|
---|
1747 | else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1748 | {
|
---|
1749 | /*
|
---|
1750 | * We can clear the inhibit force flag as even if we go back to the recompiler
|
---|
1751 | * without executing guest code in VT-x, the flag's condition to be cleared is
|
---|
1752 | * met and thus the cleared state is correct.
|
---|
1753 | */
|
---|
1754 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1755 | }
|
---|
1756 | }
|
---|
1757 |
|
---|
1758 | /*
|
---|
1759 | * Check if we should inhibit NMI delivery.
|
---|
1760 | */
|
---|
1761 | if (CPUMIsGuestNmiBlocking(pVCpu))
|
---|
1762 | fIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
|
---|
1763 |
|
---|
1764 | /*
|
---|
1765 | * Validate.
|
---|
1766 | */
|
---|
1767 | #ifdef VBOX_STRICT
|
---|
1768 | /* We don't support block-by-SMI yet.*/
|
---|
1769 | Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI));
|
---|
1770 |
|
---|
1771 | /* Block-by-STI must not be set when interrupts are disabled. */
|
---|
1772 | if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
|
---|
1773 | {
|
---|
1774 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
|
---|
1775 | Assert(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_IF);
|
---|
1776 | }
|
---|
1777 | #endif
|
---|
1778 |
|
---|
1779 | return fIntrState;
|
---|
1780 | }
|
---|
1781 |
|
---|
1782 |
|
---|
1783 | /**
|
---|
1784 | * Exports the exception intercepts required for guest execution in the VMCS.
|
---|
1785 | *
|
---|
1786 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1787 | * @param pVmxTransient The VMX-transient structure.
|
---|
1788 | *
|
---|
1789 | * @remarks No-long-jump zone!!!
|
---|
1790 | */
|
---|
1791 | static void vmxHCExportGuestXcptIntercepts(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
|
---|
1792 | {
|
---|
1793 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_VMX_XCPT_INTERCEPTS)
|
---|
1794 | {
|
---|
1795 | /* When executing a nested-guest, we do not need to trap GIM hypercalls by intercepting #UD. */
|
---|
1796 | if ( !pVmxTransient->fIsNestedGuest
|
---|
1797 | && VCPU_2_VMXSTATE(pVCpu).fGIMTrapXcptUD)
|
---|
1798 | vmxHCAddXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD);
|
---|
1799 | else
|
---|
1800 | vmxHCRemoveXcptIntercept(pVCpu, pVmxTransient, X86_XCPT_UD);
|
---|
1801 |
|
---|
1802 | /* Other exception intercepts are handled elsewhere, e.g. while exporting guest CR0. */
|
---|
1803 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_VMX_XCPT_INTERCEPTS);
|
---|
1804 | }
|
---|
1805 | }
|
---|
1806 |
|
---|
1807 |
|
---|
1808 | /**
|
---|
1809 | * Exports the guest's RIP into the guest-state area in the VMCS.
|
---|
1810 | *
|
---|
1811 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1812 | *
|
---|
1813 | * @remarks No-long-jump zone!!!
|
---|
1814 | */
|
---|
1815 | static void vmxHCExportGuestRip(PVMCPUCC pVCpu)
|
---|
1816 | {
|
---|
1817 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_RIP)
|
---|
1818 | {
|
---|
1819 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP);
|
---|
1820 |
|
---|
1821 | int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_RIP, pVCpu->cpum.GstCtx.rip);
|
---|
1822 | AssertRC(rc);
|
---|
1823 |
|
---|
1824 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_RIP);
|
---|
1825 | Log4Func(("rip=%#RX64\n", pVCpu->cpum.GstCtx.rip));
|
---|
1826 | }
|
---|
1827 | }
|
---|
1828 |
|
---|
1829 |
|
---|
1830 | /**
|
---|
1831 | * Exports the guest's RFLAGS into the guest-state area in the VMCS.
|
---|
1832 | *
|
---|
1833 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1834 | * @param pVmxTransient The VMX-transient structure.
|
---|
1835 | *
|
---|
1836 | * @remarks No-long-jump zone!!!
|
---|
1837 | */
|
---|
1838 | static void vmxHCExportGuestRflags(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
|
---|
1839 | {
|
---|
1840 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_RFLAGS)
|
---|
1841 | {
|
---|
1842 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
|
---|
1843 |
|
---|
1844 | /* Intel spec. 2.3.1 "System Flags and Fields in IA-32e Mode" claims the upper 32-bits of RFLAGS are reserved (MBZ).
|
---|
1845 | Let us assert it as such and use 32-bit VMWRITE. */
|
---|
1846 | Assert(!RT_HI_U32(pVCpu->cpum.GstCtx.rflags.u64));
|
---|
1847 | X86EFLAGS fEFlags = pVCpu->cpum.GstCtx.eflags;
|
---|
1848 | Assert(fEFlags.u32 & X86_EFL_RA1_MASK);
|
---|
1849 | Assert(!(fEFlags.u32 & ~(X86_EFL_1 | X86_EFL_LIVE_MASK)));
|
---|
1850 |
|
---|
1851 | #ifndef IN_NEM_DARWIN
|
---|
1852 | /*
|
---|
1853 | * If we're emulating real-mode using Virtual 8086 mode, save the real-mode eflags so
|
---|
1854 | * we can restore them on VM-exit. Modify the real-mode guest's eflags so that VT-x
|
---|
1855 | * can run the real-mode guest code under Virtual 8086 mode.
|
---|
1856 | */
|
---|
1857 | PVMXVMCSINFOSHARED pVmcsInfo = pVmxTransient->pVmcsInfo->pShared;
|
---|
1858 | if (pVmcsInfo->RealMode.fRealOnV86Active)
|
---|
1859 | {
|
---|
1860 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
|
---|
1861 | Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
|
---|
1862 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
1863 | pVmcsInfo->RealMode.Eflags.u32 = fEFlags.u32; /* Save the original eflags of the real-mode guest. */
|
---|
1864 | fEFlags.Bits.u1VM = 1; /* Set the Virtual 8086 mode bit. */
|
---|
1865 | fEFlags.Bits.u2IOPL = 0; /* Change IOPL to 0, otherwise certain instructions won't fault. */
|
---|
1866 | }
|
---|
1867 | #else
|
---|
1868 | RT_NOREF(pVmxTransient);
|
---|
1869 | #endif
|
---|
1870 |
|
---|
1871 | int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_RFLAGS, fEFlags.u32);
|
---|
1872 | AssertRC(rc);
|
---|
1873 |
|
---|
1874 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_RFLAGS);
|
---|
1875 | Log4Func(("eflags=%#RX32\n", fEFlags.u32));
|
---|
1876 | }
|
---|
1877 | }
|
---|
1878 |
|
---|
1879 |
|
---|
1880 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
1881 | /**
|
---|
1882 | * Copies the nested-guest VMCS to the shadow VMCS.
|
---|
1883 | *
|
---|
1884 | * @returns VBox status code.
|
---|
1885 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1886 | * @param pVmcsInfo The VMCS info. object.
|
---|
1887 | *
|
---|
1888 | * @remarks No-long-jump zone!!!
|
---|
1889 | */
|
---|
1890 | static int vmxHCCopyNstGstToShadowVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
1891 | {
|
---|
1892 | PVMCC const pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1893 | PCVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
1894 |
|
---|
1895 | /*
|
---|
1896 | * Disable interrupts so we don't get preempted while the shadow VMCS is the
|
---|
1897 | * current VMCS, as we may try saving guest lazy MSRs.
|
---|
1898 | *
|
---|
1899 | * Strictly speaking the lazy MSRs are not in the VMCS, but I'd rather not risk
|
---|
1900 | * calling the import VMCS code which is currently performing the guest MSR reads
|
---|
1901 | * (on 64-bit hosts) and accessing the auto-load/store MSR area on 32-bit hosts
|
---|
1902 | * and the rest of the VMX leave session machinery.
|
---|
1903 | */
|
---|
1904 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
1905 |
|
---|
1906 | int rc = vmxHCLoadShadowVmcs(pVmcsInfo);
|
---|
1907 | if (RT_SUCCESS(rc))
|
---|
1908 | {
|
---|
1909 | /*
|
---|
1910 | * Copy all guest read/write VMCS fields.
|
---|
1911 | *
|
---|
1912 | * We don't check for VMWRITE failures here for performance reasons and
|
---|
1913 | * because they are not expected to fail, barring irrecoverable conditions
|
---|
1914 | * like hardware errors.
|
---|
1915 | */
|
---|
1916 | uint32_t const cShadowVmcsFields = pVM->hmr0.s.vmx.cShadowVmcsFields;
|
---|
1917 | for (uint32_t i = 0; i < cShadowVmcsFields; i++)
|
---|
1918 | {
|
---|
1919 | uint64_t u64Val;
|
---|
1920 | uint32_t const uVmcsField = pVM->hmr0.s.vmx.paShadowVmcsFields[i];
|
---|
1921 | IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val);
|
---|
1922 | VMX_VMCS_WRITE_64(pVCpu, uVmcsField, u64Val);
|
---|
1923 | }
|
---|
1924 |
|
---|
1925 | /*
|
---|
1926 | * If the host CPU supports writing all VMCS fields, copy the guest read-only
|
---|
1927 | * VMCS fields, so the guest can VMREAD them without causing a VM-exit.
|
---|
1928 | */
|
---|
1929 | if (g_HmMsrs.u.vmx.u64Misc & VMX_MISC_VMWRITE_ALL)
|
---|
1930 | {
|
---|
1931 | uint32_t const cShadowVmcsRoFields = pVM->hmr0.s.vmx.cShadowVmcsRoFields;
|
---|
1932 | for (uint32_t i = 0; i < cShadowVmcsRoFields; i++)
|
---|
1933 | {
|
---|
1934 | uint64_t u64Val;
|
---|
1935 | uint32_t const uVmcsField = pVM->hmr0.s.vmx.paShadowVmcsRoFields[i];
|
---|
1936 | IEMReadVmxVmcsField(pVmcsNstGst, uVmcsField, &u64Val);
|
---|
1937 | VMX_VMCS_WRITE_64(pVCpu, uVmcsField, u64Val);
|
---|
1938 | }
|
---|
1939 | }
|
---|
1940 |
|
---|
1941 | rc = vmxHCClearShadowVmcs(pVmcsInfo);
|
---|
1942 | rc |= hmR0VmxLoadVmcs(pVmcsInfo);
|
---|
1943 | }
|
---|
1944 |
|
---|
1945 | ASMSetFlags(fEFlags);
|
---|
1946 | return rc;
|
---|
1947 | }
|
---|
1948 |
|
---|
1949 |
|
---|
1950 | /**
|
---|
1951 | * Copies the shadow VMCS to the nested-guest VMCS.
|
---|
1952 | *
|
---|
1953 | * @returns VBox status code.
|
---|
1954 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1955 | * @param pVmcsInfo The VMCS info. object.
|
---|
1956 | *
|
---|
1957 | * @remarks Called with interrupts disabled.
|
---|
1958 | */
|
---|
1959 | static int vmxHCCopyShadowToNstGstVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
1960 | {
|
---|
1961 | Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
|
---|
1962 | PVMCC const pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1963 | PVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
1964 |
|
---|
1965 | int rc = vmxHCLoadShadowVmcs(pVmcsInfo);
|
---|
1966 | if (RT_SUCCESS(rc))
|
---|
1967 | {
|
---|
1968 | /*
|
---|
1969 | * Copy guest read/write fields from the shadow VMCS.
|
---|
1970 | * Guest read-only fields cannot be modified, so no need to copy them.
|
---|
1971 | *
|
---|
1972 | * We don't check for VMREAD failures here for performance reasons and
|
---|
1973 | * because they are not expected to fail, barring irrecoverable conditions
|
---|
1974 | * like hardware errors.
|
---|
1975 | */
|
---|
1976 | uint32_t const cShadowVmcsFields = pVM->hmr0.s.vmx.cShadowVmcsFields;
|
---|
1977 | for (uint32_t i = 0; i < cShadowVmcsFields; i++)
|
---|
1978 | {
|
---|
1979 | uint64_t u64Val;
|
---|
1980 | uint32_t const uVmcsField = pVM->hmr0.s.vmx.paShadowVmcsFields[i];
|
---|
1981 | VMX_VMCS_READ_64(pVCpu, uVmcsField, &u64Val);
|
---|
1982 | IEMWriteVmxVmcsField(pVmcsNstGst, uVmcsField, u64Val);
|
---|
1983 | }
|
---|
1984 |
|
---|
1985 | rc = vmxHCClearShadowVmcs(pVmcsInfo);
|
---|
1986 | rc |= hmR0VmxLoadVmcs(pVmcsInfo);
|
---|
1987 | }
|
---|
1988 | return rc;
|
---|
1989 | }
|
---|
1990 |
|
---|
1991 |
|
---|
1992 | /**
|
---|
1993 | * Enables VMCS shadowing for the given VMCS info. object.
|
---|
1994 | *
|
---|
1995 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1996 | * @param pVmcsInfo The VMCS info. object.
|
---|
1997 | *
|
---|
1998 | * @remarks No-long-jump zone!!!
|
---|
1999 | */
|
---|
2000 | static void vmxHCEnableVmcsShadowing(PCVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2001 | {
|
---|
2002 | uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2;
|
---|
2003 | if (!(uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING))
|
---|
2004 | {
|
---|
2005 | Assert(pVmcsInfo->HCPhysShadowVmcs != 0 && pVmcsInfo->HCPhysShadowVmcs != NIL_RTHCPHYS);
|
---|
2006 | uProcCtls2 |= VMX_PROC_CTLS2_VMCS_SHADOWING;
|
---|
2007 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2); AssertRC(rc);
|
---|
2008 | rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, pVmcsInfo->HCPhysShadowVmcs); AssertRC(rc);
|
---|
2009 | pVmcsInfo->u32ProcCtls2 = uProcCtls2;
|
---|
2010 | pVmcsInfo->u64VmcsLinkPtr = pVmcsInfo->HCPhysShadowVmcs;
|
---|
2011 | Log4Func(("Enabled\n"));
|
---|
2012 | }
|
---|
2013 | }
|
---|
2014 |
|
---|
2015 |
|
---|
2016 | /**
|
---|
2017 | * Disables VMCS shadowing for the given VMCS info. object.
|
---|
2018 | *
|
---|
2019 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2020 | * @param pVmcsInfo The VMCS info. object.
|
---|
2021 | *
|
---|
2022 | * @remarks No-long-jump zone!!!
|
---|
2023 | */
|
---|
2024 | static void vmxHCDisableVmcsShadowing(PCVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2025 | {
|
---|
2026 | /*
|
---|
2027 | * We want all VMREAD and VMWRITE instructions to cause VM-exits, so we clear the
|
---|
2028 | * VMCS shadowing control. However, VM-entry requires the shadow VMCS indicator bit
|
---|
2029 | * to match the VMCS shadowing control if the VMCS link pointer is not NIL_RTHCPHYS.
|
---|
2030 | * Hence, we must also reset the VMCS link pointer to ensure VM-entry does not fail.
|
---|
2031 | *
|
---|
2032 | * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
|
---|
2033 | * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
|
---|
2034 | */
|
---|
2035 | uint32_t uProcCtls2 = pVmcsInfo->u32ProcCtls2;
|
---|
2036 | if (uProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
|
---|
2037 | {
|
---|
2038 | uProcCtls2 &= ~VMX_PROC_CTLS2_VMCS_SHADOWING;
|
---|
2039 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, uProcCtls2); AssertRC(rc);
|
---|
2040 | rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, NIL_RTHCPHYS); AssertRC(rc);
|
---|
2041 | pVmcsInfo->u32ProcCtls2 = uProcCtls2;
|
---|
2042 | pVmcsInfo->u64VmcsLinkPtr = NIL_RTHCPHYS;
|
---|
2043 | Log4Func(("Disabled\n"));
|
---|
2044 | }
|
---|
2045 | }
|
---|
2046 | #endif
|
---|
2047 |
|
---|
2048 |
|
---|
2049 | /**
|
---|
2050 | * Exports the guest CR0 control register into the guest-state area in the VMCS.
|
---|
2051 | *
|
---|
2052 | * The guest FPU state is always pre-loaded hence we don't need to bother about
|
---|
2053 | * sharing FPU related CR0 bits between the guest and host.
|
---|
2054 | *
|
---|
2055 | * @returns VBox status code.
|
---|
2056 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2057 | * @param pVmxTransient The VMX-transient structure.
|
---|
2058 | *
|
---|
2059 | * @remarks No-long-jump zone!!!
|
---|
2060 | */
|
---|
2061 | static int vmxHCExportGuestCR0(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
|
---|
2062 | {
|
---|
2063 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_CR0)
|
---|
2064 | {
|
---|
2065 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2066 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
2067 |
|
---|
2068 | uint64_t fSetCr0 = g_HmMsrs.u.vmx.u64Cr0Fixed0;
|
---|
2069 | uint64_t const fZapCr0 = g_HmMsrs.u.vmx.u64Cr0Fixed1;
|
---|
2070 | if (VM_IS_VMX_UNRESTRICTED_GUEST(pVM))
|
---|
2071 | fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
|
---|
2072 | else
|
---|
2073 | Assert((fSetCr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG));
|
---|
2074 |
|
---|
2075 | if (!pVmxTransient->fIsNestedGuest)
|
---|
2076 | {
|
---|
2077 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
2078 | uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
|
---|
2079 | uint64_t const u64ShadowCr0 = u64GuestCr0;
|
---|
2080 | Assert(!RT_HI_U32(u64GuestCr0));
|
---|
2081 |
|
---|
2082 | /*
|
---|
2083 | * Setup VT-x's view of the guest CR0.
|
---|
2084 | */
|
---|
2085 | uint32_t uProcCtls = pVmcsInfo->u32ProcCtls;
|
---|
2086 | if (VM_IS_VMX_NESTED_PAGING(pVM))
|
---|
2087 | {
|
---|
2088 | #ifndef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
|
---|
2089 | if (CPUMIsGuestPagingEnabled(pVCpu))
|
---|
2090 | {
|
---|
2091 | /* The guest has paging enabled, let it access CR3 without causing a VM-exit if supported. */
|
---|
2092 | uProcCtls &= ~( VMX_PROC_CTLS_CR3_LOAD_EXIT
|
---|
2093 | | VMX_PROC_CTLS_CR3_STORE_EXIT);
|
---|
2094 | }
|
---|
2095 | else
|
---|
2096 | {
|
---|
2097 | /* The guest doesn't have paging enabled, make CR3 access cause a VM-exit to update our shadow. */
|
---|
2098 | uProcCtls |= VMX_PROC_CTLS_CR3_LOAD_EXIT
|
---|
2099 | | VMX_PROC_CTLS_CR3_STORE_EXIT;
|
---|
2100 | }
|
---|
2101 |
|
---|
2102 | /* If we have unrestricted guest execution, we never have to intercept CR3 reads. */
|
---|
2103 | if (VM_IS_VMX_UNRESTRICTED_GUEST(pVM))
|
---|
2104 | uProcCtls &= ~VMX_PROC_CTLS_CR3_STORE_EXIT;
|
---|
2105 | #endif
|
---|
2106 | }
|
---|
2107 | else
|
---|
2108 | {
|
---|
2109 | /* Guest CPL 0 writes to its read-only pages should cause a #PF VM-exit. */
|
---|
2110 | u64GuestCr0 |= X86_CR0_WP;
|
---|
2111 | }
|
---|
2112 |
|
---|
2113 | /*
|
---|
2114 | * Guest FPU bits.
|
---|
2115 | *
|
---|
2116 | * Since we pre-load the guest FPU always before VM-entry there is no need to track lazy state
|
---|
2117 | * using CR0.TS.
|
---|
2118 | *
|
---|
2119 | * Intel spec. 23.8 "Restrictions on VMX operation" mentions that CR0.NE bit must always be
|
---|
2120 | * set on the first CPUs to support VT-x and no mention of with regards to UX in VM-entry checks.
|
---|
2121 | */
|
---|
2122 | u64GuestCr0 |= X86_CR0_NE;
|
---|
2123 |
|
---|
2124 | /* If CR0.NE isn't set, we need to intercept #MF exceptions and report them to the guest differently. */
|
---|
2125 | bool const fInterceptMF = !(u64ShadowCr0 & X86_CR0_NE);
|
---|
2126 |
|
---|
2127 | /*
|
---|
2128 | * Update exception intercepts.
|
---|
2129 | */
|
---|
2130 | uint32_t uXcptBitmap = pVmcsInfo->u32XcptBitmap;
|
---|
2131 | #ifndef IN_NEM_DARWIN
|
---|
2132 | if (pVmcsInfo->pShared->RealMode.fRealOnV86Active)
|
---|
2133 | {
|
---|
2134 | Assert(PDMVmmDevHeapIsEnabled(pVM));
|
---|
2135 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
2136 | uXcptBitmap |= HMVMX_REAL_MODE_XCPT_MASK;
|
---|
2137 | }
|
---|
2138 | else
|
---|
2139 | #endif
|
---|
2140 | {
|
---|
2141 | /* For now, cleared here as mode-switches can happen outside HM/VT-x. See @bugref{7626#c11}. */
|
---|
2142 | uXcptBitmap &= ~HMVMX_REAL_MODE_XCPT_MASK;
|
---|
2143 | if (fInterceptMF)
|
---|
2144 | uXcptBitmap |= RT_BIT(X86_XCPT_MF);
|
---|
2145 | }
|
---|
2146 |
|
---|
2147 | /* Additional intercepts for debugging, define these yourself explicitly. */
|
---|
2148 | #ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
2149 | uXcptBitmap |= 0
|
---|
2150 | | RT_BIT(X86_XCPT_BP)
|
---|
2151 | | RT_BIT(X86_XCPT_DE)
|
---|
2152 | | RT_BIT(X86_XCPT_NM)
|
---|
2153 | | RT_BIT(X86_XCPT_TS)
|
---|
2154 | | RT_BIT(X86_XCPT_UD)
|
---|
2155 | | RT_BIT(X86_XCPT_NP)
|
---|
2156 | | RT_BIT(X86_XCPT_SS)
|
---|
2157 | | RT_BIT(X86_XCPT_GP)
|
---|
2158 | | RT_BIT(X86_XCPT_PF)
|
---|
2159 | | RT_BIT(X86_XCPT_MF)
|
---|
2160 | ;
|
---|
2161 | #elif defined(HMVMX_ALWAYS_TRAP_PF)
|
---|
2162 | uXcptBitmap |= RT_BIT(X86_XCPT_PF);
|
---|
2163 | #endif
|
---|
2164 | if (VCPU_2_VMXSTATE(pVCpu).fTrapXcptGpForLovelyMesaDrv)
|
---|
2165 | uXcptBitmap |= RT_BIT(X86_XCPT_GP);
|
---|
2166 | Assert(VM_IS_VMX_NESTED_PAGING(pVM) || (uXcptBitmap & RT_BIT(X86_XCPT_PF)));
|
---|
2167 |
|
---|
2168 | /* Apply the hardware specified CR0 fixed bits and enable caching. */
|
---|
2169 | u64GuestCr0 |= fSetCr0;
|
---|
2170 | u64GuestCr0 &= fZapCr0;
|
---|
2171 | u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
|
---|
2172 |
|
---|
2173 | /* Commit the CR0 and related fields to the guest VMCS. */
|
---|
2174 | int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR0, u64GuestCr0); AssertRC(rc);
|
---|
2175 | rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0); AssertRC(rc);
|
---|
2176 | if (uProcCtls != pVmcsInfo->u32ProcCtls)
|
---|
2177 | {
|
---|
2178 | rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, uProcCtls);
|
---|
2179 | AssertRC(rc);
|
---|
2180 | }
|
---|
2181 | if (uXcptBitmap != pVmcsInfo->u32XcptBitmap)
|
---|
2182 | {
|
---|
2183 | rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
|
---|
2184 | AssertRC(rc);
|
---|
2185 | }
|
---|
2186 |
|
---|
2187 | /* Update our caches. */
|
---|
2188 | pVmcsInfo->u32ProcCtls = uProcCtls;
|
---|
2189 | pVmcsInfo->u32XcptBitmap = uXcptBitmap;
|
---|
2190 |
|
---|
2191 | Log4Func(("cr0=%#RX64 shadow=%#RX64 set=%#RX64 zap=%#RX64\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
|
---|
2192 | }
|
---|
2193 | else
|
---|
2194 | {
|
---|
2195 | /*
|
---|
2196 | * With nested-guests, we may have extended the guest/host mask here since we
|
---|
2197 | * merged in the outer guest's mask. Thus, the merged mask can include more bits
|
---|
2198 | * (to read from the nested-guest CR0 read-shadow) than the nested hypervisor
|
---|
2199 | * originally supplied. We must copy those bits from the nested-guest CR0 into
|
---|
2200 | * the nested-guest CR0 read-shadow.
|
---|
2201 | */
|
---|
2202 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
2203 | uint64_t u64GuestCr0 = pVCpu->cpum.GstCtx.cr0;
|
---|
2204 | uint64_t const u64ShadowCr0 = CPUMGetGuestVmxMaskedCr0(&pVCpu->cpum.GstCtx, pVmcsInfo->u64Cr0Mask);
|
---|
2205 | Assert(!RT_HI_U32(u64GuestCr0));
|
---|
2206 | Assert(u64GuestCr0 & X86_CR0_NE);
|
---|
2207 |
|
---|
2208 | /* Apply the hardware specified CR0 fixed bits and enable caching. */
|
---|
2209 | u64GuestCr0 |= fSetCr0;
|
---|
2210 | u64GuestCr0 &= fZapCr0;
|
---|
2211 | u64GuestCr0 &= ~(uint64_t)(X86_CR0_CD | X86_CR0_NW);
|
---|
2212 |
|
---|
2213 | /* Commit the CR0 and CR0 read-shadow to the nested-guest VMCS. */
|
---|
2214 | int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR0, u64GuestCr0); AssertRC(rc);
|
---|
2215 | rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, u64ShadowCr0); AssertRC(rc);
|
---|
2216 |
|
---|
2217 | Log4Func(("cr0=%#RX64 shadow=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr0, u64ShadowCr0, fSetCr0, fZapCr0));
|
---|
2218 | }
|
---|
2219 |
|
---|
2220 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_CR0);
|
---|
2221 | }
|
---|
2222 |
|
---|
2223 | return VINF_SUCCESS;
|
---|
2224 | }
|
---|
2225 |
|
---|
2226 |
|
---|
2227 | /**
|
---|
2228 | * Exports the guest control registers (CR3, CR4) into the guest-state area
|
---|
2229 | * in the VMCS.
|
---|
2230 | *
|
---|
2231 | * @returns VBox strict status code.
|
---|
2232 | * @retval VINF_EM_RESCHEDULE_REM if we try to emulate non-paged guest code
|
---|
2233 | * without unrestricted guest access and the VMMDev is not presently
|
---|
2234 | * mapped (e.g. EFI32).
|
---|
2235 | *
|
---|
2236 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2237 | * @param pVmxTransient The VMX-transient structure.
|
---|
2238 | *
|
---|
2239 | * @remarks No-long-jump zone!!!
|
---|
2240 | */
|
---|
2241 | static VBOXSTRICTRC vmxHCExportGuestCR3AndCR4(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
|
---|
2242 | {
|
---|
2243 | int rc = VINF_SUCCESS;
|
---|
2244 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2245 |
|
---|
2246 | /*
|
---|
2247 | * Guest CR2.
|
---|
2248 | * It's always loaded in the assembler code. Nothing to do here.
|
---|
2249 | */
|
---|
2250 |
|
---|
2251 | /*
|
---|
2252 | * Guest CR3.
|
---|
2253 | */
|
---|
2254 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_CR3)
|
---|
2255 | {
|
---|
2256 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
|
---|
2257 |
|
---|
2258 | if (VM_IS_VMX_NESTED_PAGING(pVM))
|
---|
2259 | {
|
---|
2260 | #ifndef IN_NEM_DARWIN
|
---|
2261 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
2262 | pVmcsInfo->HCPhysEPTP = PGMGetHyperCR3(pVCpu);
|
---|
2263 |
|
---|
2264 | /* Validate. See Intel spec. 28.2.2 "EPT Translation Mechanism" and 24.6.11 "Extended-Page-Table Pointer (EPTP)" */
|
---|
2265 | Assert(pVmcsInfo->HCPhysEPTP != NIL_RTHCPHYS);
|
---|
2266 | Assert(!(pVmcsInfo->HCPhysEPTP & UINT64_C(0xfff0000000000000)));
|
---|
2267 | Assert(!(pVmcsInfo->HCPhysEPTP & 0xfff));
|
---|
2268 |
|
---|
2269 | /* VMX_EPT_MEMTYPE_WB support is already checked in vmxHCSetupTaggedTlb(). */
|
---|
2270 | pVmcsInfo->HCPhysEPTP |= RT_BF_MAKE(VMX_BF_EPTP_MEMTYPE, VMX_EPTP_MEMTYPE_WB)
|
---|
2271 | | RT_BF_MAKE(VMX_BF_EPTP_PAGE_WALK_LENGTH, VMX_EPTP_PAGE_WALK_LENGTH_4);
|
---|
2272 |
|
---|
2273 | /* Validate. See Intel spec. 26.2.1 "Checks on VMX Controls" */
|
---|
2274 | AssertMsg( ((pVmcsInfo->HCPhysEPTP >> 3) & 0x07) == 3 /* Bits 3:5 (EPT page walk length - 1) must be 3. */
|
---|
2275 | && ((pVmcsInfo->HCPhysEPTP >> 7) & 0x1f) == 0, /* Bits 7:11 MBZ. */
|
---|
2276 | ("EPTP %#RX64\n", pVmcsInfo->HCPhysEPTP));
|
---|
2277 | AssertMsg( !((pVmcsInfo->HCPhysEPTP >> 6) & 0x01) /* Bit 6 (EPT accessed & dirty bit). */
|
---|
2278 | || (g_HmMsrs.u.vmx.u64EptVpidCaps & MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY),
|
---|
2279 | ("EPTP accessed/dirty bit not supported by CPU but set %#RX64\n", pVmcsInfo->HCPhysEPTP));
|
---|
2280 |
|
---|
2281 | rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_CTRL_EPTP_FULL, pVmcsInfo->HCPhysEPTP);
|
---|
2282 | AssertRC(rc);
|
---|
2283 | #endif
|
---|
2284 |
|
---|
2285 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
2286 | uint64_t u64GuestCr3 = pCtx->cr3;
|
---|
2287 | if ( VM_IS_VMX_UNRESTRICTED_GUEST(pVM)
|
---|
2288 | || CPUMIsGuestPagingEnabledEx(pCtx))
|
---|
2289 | {
|
---|
2290 | /* If the guest is in PAE mode, pass the PDPEs to VT-x using the VMCS fields. */
|
---|
2291 | if (CPUMIsGuestInPAEModeEx(pCtx))
|
---|
2292 | {
|
---|
2293 | rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_PDPTE0_FULL, pCtx->aPaePdpes[0].u); AssertRC(rc);
|
---|
2294 | rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_PDPTE1_FULL, pCtx->aPaePdpes[1].u); AssertRC(rc);
|
---|
2295 | rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_PDPTE2_FULL, pCtx->aPaePdpes[2].u); AssertRC(rc);
|
---|
2296 | rc = VMX_VMCS_WRITE_64(pVCpu, VMX_VMCS64_GUEST_PDPTE3_FULL, pCtx->aPaePdpes[3].u); AssertRC(rc);
|
---|
2297 | }
|
---|
2298 |
|
---|
2299 | /*
|
---|
2300 | * The guest's view of its CR3 is unblemished with nested paging when the
|
---|
2301 | * guest is using paging or we have unrestricted guest execution to handle
|
---|
2302 | * the guest when it's not using paging.
|
---|
2303 | */
|
---|
2304 | }
|
---|
2305 | #ifndef IN_NEM_DARWIN
|
---|
2306 | else
|
---|
2307 | {
|
---|
2308 | /*
|
---|
2309 | * The guest is not using paging, but the CPU (VT-x) has to. While the guest
|
---|
2310 | * thinks it accesses physical memory directly, we use our identity-mapped
|
---|
2311 | * page table to map guest-linear to guest-physical addresses. EPT takes care
|
---|
2312 | * of translating it to host-physical addresses.
|
---|
2313 | */
|
---|
2314 | RTGCPHYS GCPhys;
|
---|
2315 | Assert(pVM->hm.s.vmx.pNonPagingModeEPTPageTable);
|
---|
2316 |
|
---|
2317 | /* We obtain it here every time as the guest could have relocated this PCI region. */
|
---|
2318 | rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pNonPagingModeEPTPageTable, &GCPhys);
|
---|
2319 | if (RT_SUCCESS(rc))
|
---|
2320 | { /* likely */ }
|
---|
2321 | else if (rc == VERR_PDM_DEV_HEAP_R3_TO_GCPHYS)
|
---|
2322 | {
|
---|
2323 | Log4Func(("VERR_PDM_DEV_HEAP_R3_TO_GCPHYS -> VINF_EM_RESCHEDULE_REM\n"));
|
---|
2324 | return VINF_EM_RESCHEDULE_REM; /* We cannot execute now, switch to REM/IEM till the guest maps in VMMDev. */
|
---|
2325 | }
|
---|
2326 | else
|
---|
2327 | AssertMsgFailedReturn(("%Rrc\n", rc), rc);
|
---|
2328 |
|
---|
2329 | u64GuestCr3 = GCPhys;
|
---|
2330 | }
|
---|
2331 | #endif
|
---|
2332 |
|
---|
2333 | Log4Func(("guest_cr3=%#RX64 (GstN)\n", u64GuestCr3));
|
---|
2334 | rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR3, u64GuestCr3);
|
---|
2335 | AssertRC(rc);
|
---|
2336 | }
|
---|
2337 | else
|
---|
2338 | {
|
---|
2339 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
2340 | /* Non-nested paging case, just use the hypervisor's CR3. */
|
---|
2341 | RTHCPHYS const HCPhysGuestCr3 = PGMGetHyperCR3(pVCpu);
|
---|
2342 |
|
---|
2343 | Log4Func(("guest_cr3=%#RX64 (HstN)\n", HCPhysGuestCr3));
|
---|
2344 | rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR3, HCPhysGuestCr3);
|
---|
2345 | AssertRC(rc);
|
---|
2346 | }
|
---|
2347 |
|
---|
2348 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_CR3);
|
---|
2349 | }
|
---|
2350 |
|
---|
2351 | /*
|
---|
2352 | * Guest CR4.
|
---|
2353 | * ASSUMES this is done everytime we get in from ring-3! (XCR0)
|
---|
2354 | */
|
---|
2355 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_CR4)
|
---|
2356 | {
|
---|
2357 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
2358 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
2359 |
|
---|
2360 | uint64_t const fSetCr4 = g_HmMsrs.u.vmx.u64Cr4Fixed0;
|
---|
2361 | uint64_t const fZapCr4 = g_HmMsrs.u.vmx.u64Cr4Fixed1;
|
---|
2362 |
|
---|
2363 | /*
|
---|
2364 | * With nested-guests, we may have extended the guest/host mask here (since we
|
---|
2365 | * merged in the outer guest's mask, see vmxHCMergeVmcsNested). This means, the
|
---|
2366 | * mask can include more bits (to read from the nested-guest CR4 read-shadow) than
|
---|
2367 | * the nested hypervisor originally supplied. Thus, we should, in essence, copy
|
---|
2368 | * those bits from the nested-guest CR4 into the nested-guest CR4 read-shadow.
|
---|
2369 | */
|
---|
2370 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
|
---|
2371 | uint64_t u64GuestCr4 = pCtx->cr4;
|
---|
2372 | uint64_t const u64ShadowCr4 = !pVmxTransient->fIsNestedGuest
|
---|
2373 | ? pCtx->cr4
|
---|
2374 | : CPUMGetGuestVmxMaskedCr4(pCtx, pVmcsInfo->u64Cr4Mask);
|
---|
2375 | Assert(!RT_HI_U32(u64GuestCr4));
|
---|
2376 |
|
---|
2377 | #ifndef IN_NEM_DARWIN
|
---|
2378 | /*
|
---|
2379 | * Setup VT-x's view of the guest CR4.
|
---|
2380 | *
|
---|
2381 | * If we're emulating real-mode using virtual-8086 mode, we want to redirect software
|
---|
2382 | * interrupts to the 8086 program interrupt handler. Clear the VME bit (the interrupt
|
---|
2383 | * redirection bitmap is already all 0, see hmR3InitFinalizeR0())
|
---|
2384 | *
|
---|
2385 | * See Intel spec. 20.2 "Software Interrupt Handling Methods While in Virtual-8086 Mode".
|
---|
2386 | */
|
---|
2387 | if (pVmcsInfo->pShared->RealMode.fRealOnV86Active)
|
---|
2388 | {
|
---|
2389 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
2390 | Assert(PDMVmmDevHeapIsEnabled(pVM));
|
---|
2391 | u64GuestCr4 &= ~(uint64_t)X86_CR4_VME;
|
---|
2392 | }
|
---|
2393 | #endif
|
---|
2394 |
|
---|
2395 | if (VM_IS_VMX_NESTED_PAGING(pVM))
|
---|
2396 | {
|
---|
2397 | if ( !CPUMIsGuestPagingEnabledEx(pCtx)
|
---|
2398 | && !VM_IS_VMX_UNRESTRICTED_GUEST(pVM))
|
---|
2399 | {
|
---|
2400 | /* We use 4 MB pages in our identity mapping page table when the guest doesn't have paging. */
|
---|
2401 | u64GuestCr4 |= X86_CR4_PSE;
|
---|
2402 | /* Our identity mapping is a 32-bit page directory. */
|
---|
2403 | u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
|
---|
2404 | }
|
---|
2405 | /* else use guest CR4.*/
|
---|
2406 | }
|
---|
2407 | else
|
---|
2408 | {
|
---|
2409 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
2410 |
|
---|
2411 | /*
|
---|
2412 | * The shadow paging modes and guest paging modes are different, the shadow is in accordance with the host
|
---|
2413 | * paging mode and thus we need to adjust VT-x's view of CR4 depending on our shadow page tables.
|
---|
2414 | */
|
---|
2415 | switch (VCPU_2_VMXSTATE(pVCpu).enmShadowMode)
|
---|
2416 | {
|
---|
2417 | case PGMMODE_REAL: /* Real-mode. */
|
---|
2418 | case PGMMODE_PROTECTED: /* Protected mode without paging. */
|
---|
2419 | case PGMMODE_32_BIT: /* 32-bit paging. */
|
---|
2420 | {
|
---|
2421 | u64GuestCr4 &= ~(uint64_t)X86_CR4_PAE;
|
---|
2422 | break;
|
---|
2423 | }
|
---|
2424 |
|
---|
2425 | case PGMMODE_PAE: /* PAE paging. */
|
---|
2426 | case PGMMODE_PAE_NX: /* PAE paging with NX. */
|
---|
2427 | {
|
---|
2428 | u64GuestCr4 |= X86_CR4_PAE;
|
---|
2429 | break;
|
---|
2430 | }
|
---|
2431 |
|
---|
2432 | case PGMMODE_AMD64: /* 64-bit AMD paging (long mode). */
|
---|
2433 | case PGMMODE_AMD64_NX: /* 64-bit AMD paging (long mode) with NX enabled. */
|
---|
2434 | {
|
---|
2435 | #ifdef VBOX_WITH_64_BITS_GUESTS
|
---|
2436 | /* For our assumption in vmxHCShouldSwapEferMsr. */
|
---|
2437 | Assert(u64GuestCr4 & X86_CR4_PAE);
|
---|
2438 | break;
|
---|
2439 | #endif
|
---|
2440 | }
|
---|
2441 | default:
|
---|
2442 | AssertFailed();
|
---|
2443 | return VERR_PGM_UNSUPPORTED_SHADOW_PAGING_MODE;
|
---|
2444 | }
|
---|
2445 | }
|
---|
2446 |
|
---|
2447 | /* Apply the hardware specified CR4 fixed bits (mainly CR4.VMXE). */
|
---|
2448 | u64GuestCr4 |= fSetCr4;
|
---|
2449 | u64GuestCr4 &= fZapCr4;
|
---|
2450 |
|
---|
2451 | /* Commit the CR4 and CR4 read-shadow to the guest VMCS. */
|
---|
2452 | rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_CR4, u64GuestCr4); AssertRC(rc);
|
---|
2453 | rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_CTRL_CR4_READ_SHADOW, u64ShadowCr4); AssertRC(rc);
|
---|
2454 |
|
---|
2455 | #ifndef IN_NEM_DARWIN
|
---|
2456 | /* Whether to save/load/restore XCR0 during world switch depends on CR4.OSXSAVE and host+guest XCR0. */
|
---|
2457 | bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
|
---|
2458 | if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
|
---|
2459 | {
|
---|
2460 | pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
|
---|
2461 | hmR0VmxUpdateStartVmFunction(pVCpu);
|
---|
2462 | }
|
---|
2463 | #endif
|
---|
2464 |
|
---|
2465 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_CR4);
|
---|
2466 |
|
---|
2467 | Log4Func(("cr4=%#RX64 shadow=%#RX64 (set=%#RX64 zap=%#RX64)\n", u64GuestCr4, u64ShadowCr4, fSetCr4, fZapCr4));
|
---|
2468 | }
|
---|
2469 | return rc;
|
---|
2470 | }
|
---|
2471 |
|
---|
2472 |
|
---|
2473 | #ifdef VBOX_STRICT
|
---|
2474 | /**
|
---|
2475 | * Strict function to validate segment registers.
|
---|
2476 | *
|
---|
2477 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2478 | * @param pVmcsInfo The VMCS info. object.
|
---|
2479 | *
|
---|
2480 | * @remarks Will import guest CR0 on strict builds during validation of
|
---|
2481 | * segments.
|
---|
2482 | */
|
---|
2483 | static void vmxHCValidateSegmentRegs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
2484 | {
|
---|
2485 | /*
|
---|
2486 | * Validate segment registers. See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
|
---|
2487 | *
|
---|
2488 | * The reason we check for attribute value 0 in this function and not just the unusable bit is
|
---|
2489 | * because vmxHCExportGuestSegReg() only updates the VMCS' copy of the value with the
|
---|
2490 | * unusable bit and doesn't change the guest-context value.
|
---|
2491 | */
|
---|
2492 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2493 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
2494 | vmxHCImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR0);
|
---|
2495 | if ( !VM_IS_VMX_UNRESTRICTED_GUEST(pVM)
|
---|
2496 | && ( !CPUMIsGuestInRealModeEx(pCtx)
|
---|
2497 | && !CPUMIsGuestInV86ModeEx(pCtx)))
|
---|
2498 | {
|
---|
2499 | /* Protected mode checks */
|
---|
2500 | /* CS */
|
---|
2501 | Assert(pCtx->cs.Attr.n.u1Present);
|
---|
2502 | Assert(!(pCtx->cs.Attr.u & 0xf00));
|
---|
2503 | Assert(!(pCtx->cs.Attr.u & 0xfffe0000));
|
---|
2504 | Assert( (pCtx->cs.u32Limit & 0xfff) == 0xfff
|
---|
2505 | || !(pCtx->cs.Attr.n.u1Granularity));
|
---|
2506 | Assert( !(pCtx->cs.u32Limit & 0xfff00000)
|
---|
2507 | || (pCtx->cs.Attr.n.u1Granularity));
|
---|
2508 | /* CS cannot be loaded with NULL in protected mode. */
|
---|
2509 | Assert(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE)); /** @todo is this really true even for 64-bit CS? */
|
---|
2510 | if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
|
---|
2511 | Assert(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl);
|
---|
2512 | else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
|
---|
2513 | Assert(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl);
|
---|
2514 | else
|
---|
2515 | AssertMsgFailed(("Invalid CS Type %#x\n", pCtx->cs.Attr.n.u2Dpl));
|
---|
2516 | /* SS */
|
---|
2517 | Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
|
---|
2518 | Assert(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL));
|
---|
2519 | if ( !(pCtx->cr0 & X86_CR0_PE)
|
---|
2520 | || pCtx->cs.Attr.n.u4Type == 3)
|
---|
2521 | {
|
---|
2522 | Assert(!pCtx->ss.Attr.n.u2Dpl);
|
---|
2523 | }
|
---|
2524 | if (pCtx->ss.Attr.u && !(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
2525 | {
|
---|
2526 | Assert((pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL));
|
---|
2527 | Assert(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7);
|
---|
2528 | Assert(pCtx->ss.Attr.n.u1Present);
|
---|
2529 | Assert(!(pCtx->ss.Attr.u & 0xf00));
|
---|
2530 | Assert(!(pCtx->ss.Attr.u & 0xfffe0000));
|
---|
2531 | Assert( (pCtx->ss.u32Limit & 0xfff) == 0xfff
|
---|
2532 | || !(pCtx->ss.Attr.n.u1Granularity));
|
---|
2533 | Assert( !(pCtx->ss.u32Limit & 0xfff00000)
|
---|
2534 | || (pCtx->ss.Attr.n.u1Granularity));
|
---|
2535 | }
|
---|
2536 | /* DS, ES, FS, GS - only check for usable selectors, see vmxHCExportGuestSegReg(). */
|
---|
2537 | if (pCtx->ds.Attr.u && !(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
2538 | {
|
---|
2539 | Assert(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
2540 | Assert(pCtx->ds.Attr.n.u1Present);
|
---|
2541 | Assert(pCtx->ds.Attr.n.u4Type > 11 || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL));
|
---|
2542 | Assert(!(pCtx->ds.Attr.u & 0xf00));
|
---|
2543 | Assert(!(pCtx->ds.Attr.u & 0xfffe0000));
|
---|
2544 | Assert( (pCtx->ds.u32Limit & 0xfff) == 0xfff
|
---|
2545 | || !(pCtx->ds.Attr.n.u1Granularity));
|
---|
2546 | Assert( !(pCtx->ds.u32Limit & 0xfff00000)
|
---|
2547 | || (pCtx->ds.Attr.n.u1Granularity));
|
---|
2548 | Assert( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
2549 | || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
2550 | }
|
---|
2551 | if (pCtx->es.Attr.u && !(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
2552 | {
|
---|
2553 | Assert(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
2554 | Assert(pCtx->es.Attr.n.u1Present);
|
---|
2555 | Assert(pCtx->es.Attr.n.u4Type > 11 || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL));
|
---|
2556 | Assert(!(pCtx->es.Attr.u & 0xf00));
|
---|
2557 | Assert(!(pCtx->es.Attr.u & 0xfffe0000));
|
---|
2558 | Assert( (pCtx->es.u32Limit & 0xfff) == 0xfff
|
---|
2559 | || !(pCtx->es.Attr.n.u1Granularity));
|
---|
2560 | Assert( !(pCtx->es.u32Limit & 0xfff00000)
|
---|
2561 | || (pCtx->es.Attr.n.u1Granularity));
|
---|
2562 | Assert( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
2563 | || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
2564 | }
|
---|
2565 | if (pCtx->fs.Attr.u && !(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
2566 | {
|
---|
2567 | Assert(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
2568 | Assert(pCtx->fs.Attr.n.u1Present);
|
---|
2569 | Assert(pCtx->fs.Attr.n.u4Type > 11 || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL));
|
---|
2570 | Assert(!(pCtx->fs.Attr.u & 0xf00));
|
---|
2571 | Assert(!(pCtx->fs.Attr.u & 0xfffe0000));
|
---|
2572 | Assert( (pCtx->fs.u32Limit & 0xfff) == 0xfff
|
---|
2573 | || !(pCtx->fs.Attr.n.u1Granularity));
|
---|
2574 | Assert( !(pCtx->fs.u32Limit & 0xfff00000)
|
---|
2575 | || (pCtx->fs.Attr.n.u1Granularity));
|
---|
2576 | Assert( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
2577 | || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
2578 | }
|
---|
2579 | if (pCtx->gs.Attr.u && !(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
2580 | {
|
---|
2581 | Assert(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED);
|
---|
2582 | Assert(pCtx->gs.Attr.n.u1Present);
|
---|
2583 | Assert(pCtx->gs.Attr.n.u4Type > 11 || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL));
|
---|
2584 | Assert(!(pCtx->gs.Attr.u & 0xf00));
|
---|
2585 | Assert(!(pCtx->gs.Attr.u & 0xfffe0000));
|
---|
2586 | Assert( (pCtx->gs.u32Limit & 0xfff) == 0xfff
|
---|
2587 | || !(pCtx->gs.Attr.n.u1Granularity));
|
---|
2588 | Assert( !(pCtx->gs.u32Limit & 0xfff00000)
|
---|
2589 | || (pCtx->gs.Attr.n.u1Granularity));
|
---|
2590 | Assert( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
2591 | || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ));
|
---|
2592 | }
|
---|
2593 | /* 64-bit capable CPUs. */
|
---|
2594 | Assert(!RT_HI_U32(pCtx->cs.u64Base));
|
---|
2595 | Assert(!pCtx->ss.Attr.u || !RT_HI_U32(pCtx->ss.u64Base));
|
---|
2596 | Assert(!pCtx->ds.Attr.u || !RT_HI_U32(pCtx->ds.u64Base));
|
---|
2597 | Assert(!pCtx->es.Attr.u || !RT_HI_U32(pCtx->es.u64Base));
|
---|
2598 | }
|
---|
2599 | else if ( CPUMIsGuestInV86ModeEx(pCtx)
|
---|
2600 | || ( CPUMIsGuestInRealModeEx(pCtx)
|
---|
2601 | && !VM_IS_VMX_UNRESTRICTED_GUEST(pVM)))
|
---|
2602 | {
|
---|
2603 | /* Real and v86 mode checks. */
|
---|
2604 | /* vmxHCExportGuestSegReg() writes the modified in VMCS. We want what we're feeding to VT-x. */
|
---|
2605 | uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
|
---|
2606 | #ifndef IN_NEM_DARWIN
|
---|
2607 | if (pVmcsInfo->pShared->RealMode.fRealOnV86Active)
|
---|
2608 | {
|
---|
2609 | u32CSAttr = 0xf3; u32SSAttr = 0xf3; u32DSAttr = 0xf3;
|
---|
2610 | u32ESAttr = 0xf3; u32FSAttr = 0xf3; u32GSAttr = 0xf3;
|
---|
2611 | }
|
---|
2612 | else
|
---|
2613 | #endif
|
---|
2614 | {
|
---|
2615 | u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u; u32DSAttr = pCtx->ds.Attr.u;
|
---|
2616 | u32ESAttr = pCtx->es.Attr.u; u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
|
---|
2617 | }
|
---|
2618 |
|
---|
2619 | /* CS */
|
---|
2620 | AssertMsg((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), ("CS base %#x %#x\n", pCtx->cs.u64Base, pCtx->cs.Sel));
|
---|
2621 | Assert(pCtx->cs.u32Limit == 0xffff);
|
---|
2622 | Assert(u32CSAttr == 0xf3);
|
---|
2623 | /* SS */
|
---|
2624 | Assert(pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4);
|
---|
2625 | Assert(pCtx->ss.u32Limit == 0xffff);
|
---|
2626 | Assert(u32SSAttr == 0xf3);
|
---|
2627 | /* DS */
|
---|
2628 | Assert(pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4);
|
---|
2629 | Assert(pCtx->ds.u32Limit == 0xffff);
|
---|
2630 | Assert(u32DSAttr == 0xf3);
|
---|
2631 | /* ES */
|
---|
2632 | Assert(pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4);
|
---|
2633 | Assert(pCtx->es.u32Limit == 0xffff);
|
---|
2634 | Assert(u32ESAttr == 0xf3);
|
---|
2635 | /* FS */
|
---|
2636 | Assert(pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4);
|
---|
2637 | Assert(pCtx->fs.u32Limit == 0xffff);
|
---|
2638 | Assert(u32FSAttr == 0xf3);
|
---|
2639 | /* GS */
|
---|
2640 | Assert(pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4);
|
---|
2641 | Assert(pCtx->gs.u32Limit == 0xffff);
|
---|
2642 | Assert(u32GSAttr == 0xf3);
|
---|
2643 | /* 64-bit capable CPUs. */
|
---|
2644 | Assert(!RT_HI_U32(pCtx->cs.u64Base));
|
---|
2645 | Assert(!u32SSAttr || !RT_HI_U32(pCtx->ss.u64Base));
|
---|
2646 | Assert(!u32DSAttr || !RT_HI_U32(pCtx->ds.u64Base));
|
---|
2647 | Assert(!u32ESAttr || !RT_HI_U32(pCtx->es.u64Base));
|
---|
2648 | }
|
---|
2649 | }
|
---|
2650 | #endif /* VBOX_STRICT */
|
---|
2651 |
|
---|
2652 |
|
---|
2653 | /**
|
---|
2654 | * Exports a guest segment register into the guest-state area in the VMCS.
|
---|
2655 | *
|
---|
2656 | * @returns VBox status code.
|
---|
2657 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2658 | * @param pVmcsInfo The VMCS info. object.
|
---|
2659 | * @param iSegReg The segment register number (X86_SREG_XXX).
|
---|
2660 | * @param pSelReg Pointer to the segment selector.
|
---|
2661 | *
|
---|
2662 | * @remarks No-long-jump zone!!!
|
---|
2663 | */
|
---|
2664 | static int vmxHCExportGuestSegReg(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo, uint32_t iSegReg, PCCPUMSELREG pSelReg)
|
---|
2665 | {
|
---|
2666 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
2667 |
|
---|
2668 | uint32_t u32Access = pSelReg->Attr.u;
|
---|
2669 | #ifndef IN_NEM_DARWIN
|
---|
2670 | if (!pVmcsInfo->pShared->RealMode.fRealOnV86Active)
|
---|
2671 | #endif
|
---|
2672 | {
|
---|
2673 | /*
|
---|
2674 | * The way to differentiate between whether this is really a null selector or was just
|
---|
2675 | * a selector loaded with 0 in real-mode is using the segment attributes. A selector
|
---|
2676 | * loaded in real-mode with the value 0 is valid and usable in protected-mode and we
|
---|
2677 | * should -not- mark it as an unusable segment. Both the recompiler & VT-x ensures
|
---|
2678 | * NULL selectors loaded in protected-mode have their attribute as 0.
|
---|
2679 | */
|
---|
2680 | if (u32Access)
|
---|
2681 | { }
|
---|
2682 | else
|
---|
2683 | u32Access = X86DESCATTR_UNUSABLE;
|
---|
2684 | }
|
---|
2685 | #ifndef IN_NEM_DARWIN
|
---|
2686 | else
|
---|
2687 | {
|
---|
2688 | /* VT-x requires our real-using-v86 mode hack to override the segment access-right bits. */
|
---|
2689 | u32Access = 0xf3;
|
---|
2690 | Assert(pVCpu->CTX_SUFF(pVM)->hm.s.vmx.pRealModeTSS);
|
---|
2691 | Assert(PDMVmmDevHeapIsEnabled(pVCpu->CTX_SUFF(pVM)));
|
---|
2692 | RT_NOREF_PV(pVCpu);
|
---|
2693 | }
|
---|
2694 | #else
|
---|
2695 | RT_NOREF(pVmcsInfo);
|
---|
2696 | #endif
|
---|
2697 |
|
---|
2698 | /* Validate segment access rights. Refer to Intel spec. "26.3.1.2 Checks on Guest Segment Registers". */
|
---|
2699 | AssertMsg((u32Access & X86DESCATTR_UNUSABLE) || (u32Access & X86_SEL_TYPE_ACCESSED),
|
---|
2700 | ("Access bit not set for usable segment. %.2s sel=%#x attr %#x\n", "ESCSSSDSFSGS" + iSegReg * 2, pSelReg, pSelReg->Attr.u));
|
---|
2701 |
|
---|
2702 | /*
|
---|
2703 | * Commit it to the VMCS.
|
---|
2704 | */
|
---|
2705 | Assert((uint32_t)VMX_VMCS16_GUEST_SEG_SEL(iSegReg) == g_aVmcsSegSel[iSegReg]);
|
---|
2706 | Assert((uint32_t)VMX_VMCS32_GUEST_SEG_LIMIT(iSegReg) == g_aVmcsSegLimit[iSegReg]);
|
---|
2707 | Assert((uint32_t)VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(iSegReg) == g_aVmcsSegAttr[iSegReg]);
|
---|
2708 | Assert((uint32_t)VMX_VMCS_GUEST_SEG_BASE(iSegReg) == g_aVmcsSegBase[iSegReg]);
|
---|
2709 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS16_GUEST_SEG_SEL(iSegReg), pSelReg->Sel); AssertRC(rc);
|
---|
2710 | rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_SEG_LIMIT(iSegReg), pSelReg->u32Limit); AssertRC(rc);
|
---|
2711 | rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_SEG_BASE(iSegReg), pSelReg->u64Base); AssertRC(rc);
|
---|
2712 | rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(iSegReg), u32Access); AssertRC(rc);
|
---|
2713 | return VINF_SUCCESS;
|
---|
2714 | }
|
---|
2715 |
|
---|
2716 |
|
---|
2717 | /**
|
---|
2718 | * Exports the guest segment registers, GDTR, IDTR, LDTR, TR into the guest-state
|
---|
2719 | * area in the VMCS.
|
---|
2720 | *
|
---|
2721 | * @returns VBox status code.
|
---|
2722 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2723 | * @param pVmxTransient The VMX-transient structure.
|
---|
2724 | *
|
---|
2725 | * @remarks Will import guest CR0 on strict builds during validation of
|
---|
2726 | * segments.
|
---|
2727 | * @remarks No-long-jump zone!!!
|
---|
2728 | */
|
---|
2729 | static int vmxHCExportGuestSegRegsXdtr(PVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
|
---|
2730 | {
|
---|
2731 | int rc = VERR_INTERNAL_ERROR_5;
|
---|
2732 | #ifndef IN_NEM_DARWIN
|
---|
2733 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2734 | #endif
|
---|
2735 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
2736 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
2737 | #ifndef IN_NEM_DARWIN
|
---|
2738 | PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
|
---|
2739 | #endif
|
---|
2740 |
|
---|
2741 | /*
|
---|
2742 | * Guest Segment registers: CS, SS, DS, ES, FS, GS.
|
---|
2743 | */
|
---|
2744 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_SREG_MASK)
|
---|
2745 | {
|
---|
2746 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_CS)
|
---|
2747 | {
|
---|
2748 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CS);
|
---|
2749 | #ifndef IN_NEM_DARWIN
|
---|
2750 | if (pVmcsInfoShared->RealMode.fRealOnV86Active)
|
---|
2751 | pVmcsInfoShared->RealMode.AttrCS.u = pCtx->cs.Attr.u;
|
---|
2752 | #endif
|
---|
2753 | rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_CS, &pCtx->cs);
|
---|
2754 | AssertRC(rc);
|
---|
2755 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_CS);
|
---|
2756 | }
|
---|
2757 |
|
---|
2758 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_SS)
|
---|
2759 | {
|
---|
2760 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_SS);
|
---|
2761 | #ifndef IN_NEM_DARWIN
|
---|
2762 | if (pVmcsInfoShared->RealMode.fRealOnV86Active)
|
---|
2763 | pVmcsInfoShared->RealMode.AttrSS.u = pCtx->ss.Attr.u;
|
---|
2764 | #endif
|
---|
2765 | rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_SS, &pCtx->ss);
|
---|
2766 | AssertRC(rc);
|
---|
2767 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_SS);
|
---|
2768 | }
|
---|
2769 |
|
---|
2770 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_DS)
|
---|
2771 | {
|
---|
2772 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_DS);
|
---|
2773 | #ifndef IN_NEM_DARWIN
|
---|
2774 | if (pVmcsInfoShared->RealMode.fRealOnV86Active)
|
---|
2775 | pVmcsInfoShared->RealMode.AttrDS.u = pCtx->ds.Attr.u;
|
---|
2776 | #endif
|
---|
2777 | rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_DS, &pCtx->ds);
|
---|
2778 | AssertRC(rc);
|
---|
2779 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_DS);
|
---|
2780 | }
|
---|
2781 |
|
---|
2782 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_ES)
|
---|
2783 | {
|
---|
2784 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_ES);
|
---|
2785 | #ifndef IN_NEM_DARWIN
|
---|
2786 | if (pVmcsInfoShared->RealMode.fRealOnV86Active)
|
---|
2787 | pVmcsInfoShared->RealMode.AttrES.u = pCtx->es.Attr.u;
|
---|
2788 | #endif
|
---|
2789 | rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_ES, &pCtx->es);
|
---|
2790 | AssertRC(rc);
|
---|
2791 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_ES);
|
---|
2792 | }
|
---|
2793 |
|
---|
2794 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_FS)
|
---|
2795 | {
|
---|
2796 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_FS);
|
---|
2797 | #ifndef IN_NEM_DARWIN
|
---|
2798 | if (pVmcsInfoShared->RealMode.fRealOnV86Active)
|
---|
2799 | pVmcsInfoShared->RealMode.AttrFS.u = pCtx->fs.Attr.u;
|
---|
2800 | #endif
|
---|
2801 | rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_FS, &pCtx->fs);
|
---|
2802 | AssertRC(rc);
|
---|
2803 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_FS);
|
---|
2804 | }
|
---|
2805 |
|
---|
2806 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_GS)
|
---|
2807 | {
|
---|
2808 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GS);
|
---|
2809 | #ifndef IN_NEM_DARWIN
|
---|
2810 | if (pVmcsInfoShared->RealMode.fRealOnV86Active)
|
---|
2811 | pVmcsInfoShared->RealMode.AttrGS.u = pCtx->gs.Attr.u;
|
---|
2812 | #endif
|
---|
2813 | rc = vmxHCExportGuestSegReg(pVCpu, pVmcsInfo, X86_SREG_GS, &pCtx->gs);
|
---|
2814 | AssertRC(rc);
|
---|
2815 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_GS);
|
---|
2816 | }
|
---|
2817 |
|
---|
2818 | #ifdef VBOX_STRICT
|
---|
2819 | vmxHCValidateSegmentRegs(pVCpu, pVmcsInfo);
|
---|
2820 | #endif
|
---|
2821 | Log4Func(("cs={%#04x base=%#RX64 limit=%#RX32 attr=%#RX32}\n", pCtx->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit,
|
---|
2822 | pCtx->cs.Attr.u));
|
---|
2823 | }
|
---|
2824 |
|
---|
2825 | /*
|
---|
2826 | * Guest TR.
|
---|
2827 | */
|
---|
2828 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_TR)
|
---|
2829 | {
|
---|
2830 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_TR);
|
---|
2831 |
|
---|
2832 | /*
|
---|
2833 | * Real-mode emulation using virtual-8086 mode with CR4.VME. Interrupt redirection is
|
---|
2834 | * achieved using the interrupt redirection bitmap (all bits cleared to let the guest
|
---|
2835 | * handle INT-n's) in the TSS. See hmR3InitFinalizeR0() to see how pRealModeTSS is setup.
|
---|
2836 | */
|
---|
2837 | uint16_t u16Sel;
|
---|
2838 | uint32_t u32Limit;
|
---|
2839 | uint64_t u64Base;
|
---|
2840 | uint32_t u32AccessRights;
|
---|
2841 | #ifndef IN_NEM_DARWIN
|
---|
2842 | if (!pVmcsInfoShared->RealMode.fRealOnV86Active)
|
---|
2843 | #endif
|
---|
2844 | {
|
---|
2845 | u16Sel = pCtx->tr.Sel;
|
---|
2846 | u32Limit = pCtx->tr.u32Limit;
|
---|
2847 | u64Base = pCtx->tr.u64Base;
|
---|
2848 | u32AccessRights = pCtx->tr.Attr.u;
|
---|
2849 | }
|
---|
2850 | #ifndef IN_NEM_DARWIN
|
---|
2851 | else
|
---|
2852 | {
|
---|
2853 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
2854 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
2855 | Assert(PDMVmmDevHeapIsEnabled(pVM)); /* Guaranteed by HMCanExecuteGuest() -XXX- what about inner loop changes? */
|
---|
2856 |
|
---|
2857 | /* We obtain it here every time as PCI regions could be reconfigured in the guest, changing the VMMDev base. */
|
---|
2858 | RTGCPHYS GCPhys;
|
---|
2859 | rc = PDMVmmDevHeapR3ToGCPhys(pVM, pVM->hm.s.vmx.pRealModeTSS, &GCPhys);
|
---|
2860 | AssertRCReturn(rc, rc);
|
---|
2861 |
|
---|
2862 | X86DESCATTR DescAttr;
|
---|
2863 | DescAttr.u = 0;
|
---|
2864 | DescAttr.n.u1Present = 1;
|
---|
2865 | DescAttr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
|
---|
2866 |
|
---|
2867 | u16Sel = 0;
|
---|
2868 | u32Limit = HM_VTX_TSS_SIZE;
|
---|
2869 | u64Base = GCPhys;
|
---|
2870 | u32AccessRights = DescAttr.u;
|
---|
2871 | }
|
---|
2872 | #endif
|
---|
2873 |
|
---|
2874 | /* Validate. */
|
---|
2875 | Assert(!(u16Sel & RT_BIT(2)));
|
---|
2876 | AssertMsg( (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_386_TSS_BUSY
|
---|
2877 | || (u32AccessRights & 0xf) == X86_SEL_TYPE_SYS_286_TSS_BUSY, ("TSS is not busy!? %#x\n", u32AccessRights));
|
---|
2878 | AssertMsg(!(u32AccessRights & X86DESCATTR_UNUSABLE), ("TR unusable bit is not clear!? %#x\n", u32AccessRights));
|
---|
2879 | Assert(!(u32AccessRights & RT_BIT(4))); /* System MBZ.*/
|
---|
2880 | Assert(u32AccessRights & RT_BIT(7)); /* Present MB1.*/
|
---|
2881 | Assert(!(u32AccessRights & 0xf00)); /* 11:8 MBZ. */
|
---|
2882 | Assert(!(u32AccessRights & 0xfffe0000)); /* 31:17 MBZ. */
|
---|
2883 | Assert( (u32Limit & 0xfff) == 0xfff
|
---|
2884 | || !(u32AccessRights & RT_BIT(15))); /* Granularity MBZ. */
|
---|
2885 | Assert( !(pCtx->tr.u32Limit & 0xfff00000)
|
---|
2886 | || (u32AccessRights & RT_BIT(15))); /* Granularity MB1. */
|
---|
2887 |
|
---|
2888 | rc = VMX_VMCS_WRITE_16(pVCpu, VMX_VMCS16_GUEST_TR_SEL, u16Sel); AssertRC(rc);
|
---|
2889 | rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_TR_LIMIT, u32Limit); AssertRC(rc);
|
---|
2890 | rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, u32AccessRights); AssertRC(rc);
|
---|
2891 | rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_TR_BASE, u64Base); AssertRC(rc);
|
---|
2892 |
|
---|
2893 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_TR);
|
---|
2894 | Log4Func(("tr base=%#RX64 limit=%#RX32\n", pCtx->tr.u64Base, pCtx->tr.u32Limit));
|
---|
2895 | }
|
---|
2896 |
|
---|
2897 | /*
|
---|
2898 | * Guest GDTR.
|
---|
2899 | */
|
---|
2900 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_GDTR)
|
---|
2901 | {
|
---|
2902 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_GDTR);
|
---|
2903 |
|
---|
2904 | rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_GDTR_LIMIT, pCtx->gdtr.cbGdt); AssertRC(rc);
|
---|
2905 | rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_GDTR_BASE, pCtx->gdtr.pGdt); AssertRC(rc);
|
---|
2906 |
|
---|
2907 | /* Validate. */
|
---|
2908 | Assert(!(pCtx->gdtr.cbGdt & 0xffff0000)); /* Bits 31:16 MBZ. */
|
---|
2909 |
|
---|
2910 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_GDTR);
|
---|
2911 | Log4Func(("gdtr base=%#RX64 limit=%#RX32\n", pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt));
|
---|
2912 | }
|
---|
2913 |
|
---|
2914 | /*
|
---|
2915 | * Guest LDTR.
|
---|
2916 | */
|
---|
2917 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_LDTR)
|
---|
2918 | {
|
---|
2919 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_LDTR);
|
---|
2920 |
|
---|
2921 | /* The unusable bit is specific to VT-x, if it's a null selector mark it as an unusable segment. */
|
---|
2922 | uint32_t u32Access;
|
---|
2923 | if ( !pVmxTransient->fIsNestedGuest
|
---|
2924 | && !pCtx->ldtr.Attr.u)
|
---|
2925 | u32Access = X86DESCATTR_UNUSABLE;
|
---|
2926 | else
|
---|
2927 | u32Access = pCtx->ldtr.Attr.u;
|
---|
2928 |
|
---|
2929 | rc = VMX_VMCS_WRITE_16(pVCpu, VMX_VMCS16_GUEST_LDTR_SEL, pCtx->ldtr.Sel); AssertRC(rc);
|
---|
2930 | rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_LDTR_LIMIT, pCtx->ldtr.u32Limit); AssertRC(rc);
|
---|
2931 | rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, u32Access); AssertRC(rc);
|
---|
2932 | rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_LDTR_BASE, pCtx->ldtr.u64Base); AssertRC(rc);
|
---|
2933 |
|
---|
2934 | /* Validate. */
|
---|
2935 | if (!(u32Access & X86DESCATTR_UNUSABLE))
|
---|
2936 | {
|
---|
2937 | Assert(!(pCtx->ldtr.Sel & RT_BIT(2))); /* TI MBZ. */
|
---|
2938 | Assert(pCtx->ldtr.Attr.n.u4Type == 2); /* Type MB2 (LDT). */
|
---|
2939 | Assert(!pCtx->ldtr.Attr.n.u1DescType); /* System MBZ. */
|
---|
2940 | Assert(pCtx->ldtr.Attr.n.u1Present == 1); /* Present MB1. */
|
---|
2941 | Assert(!pCtx->ldtr.Attr.n.u4LimitHigh); /* 11:8 MBZ. */
|
---|
2942 | Assert(!(pCtx->ldtr.Attr.u & 0xfffe0000)); /* 31:17 MBZ. */
|
---|
2943 | Assert( (pCtx->ldtr.u32Limit & 0xfff) == 0xfff
|
---|
2944 | || !pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MBZ. */
|
---|
2945 | Assert( !(pCtx->ldtr.u32Limit & 0xfff00000)
|
---|
2946 | || pCtx->ldtr.Attr.n.u1Granularity); /* Granularity MB1. */
|
---|
2947 | }
|
---|
2948 |
|
---|
2949 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_LDTR);
|
---|
2950 | Log4Func(("ldtr base=%#RX64 limit=%#RX32\n", pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit));
|
---|
2951 | }
|
---|
2952 |
|
---|
2953 | /*
|
---|
2954 | * Guest IDTR.
|
---|
2955 | */
|
---|
2956 | if (ASMAtomicUoReadU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged) & HM_CHANGED_GUEST_IDTR)
|
---|
2957 | {
|
---|
2958 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_IDTR);
|
---|
2959 |
|
---|
2960 | rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_IDTR_LIMIT, pCtx->idtr.cbIdt); AssertRC(rc);
|
---|
2961 | rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_IDTR_BASE, pCtx->idtr.pIdt); AssertRC(rc);
|
---|
2962 |
|
---|
2963 | /* Validate. */
|
---|
2964 | Assert(!(pCtx->idtr.cbIdt & 0xffff0000)); /* Bits 31:16 MBZ. */
|
---|
2965 |
|
---|
2966 | ASMAtomicUoAndU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, ~HM_CHANGED_GUEST_IDTR);
|
---|
2967 | Log4Func(("idtr base=%#RX64 limit=%#RX32\n", pCtx->idtr.pIdt, pCtx->idtr.cbIdt));
|
---|
2968 | }
|
---|
2969 |
|
---|
2970 | return VINF_SUCCESS;
|
---|
2971 | }
|
---|
2972 |
|
---|
2973 |
|
---|
2974 | /**
|
---|
2975 | * Gets the IEM exception flags for the specified vector and IDT vectoring /
|
---|
2976 | * VM-exit interruption info type.
|
---|
2977 | *
|
---|
2978 | * @returns The IEM exception flags.
|
---|
2979 | * @param uVector The event vector.
|
---|
2980 | * @param uVmxEventType The VMX event type.
|
---|
2981 | *
|
---|
2982 | * @remarks This function currently only constructs flags required for
|
---|
2983 | * IEMEvaluateRecursiveXcpt and not the complete flags (e.g, error-code
|
---|
2984 | * and CR2 aspects of an exception are not included).
|
---|
2985 | */
|
---|
2986 | static uint32_t vmxHCGetIemXcptFlags(uint8_t uVector, uint32_t uVmxEventType)
|
---|
2987 | {
|
---|
2988 | uint32_t fIemXcptFlags;
|
---|
2989 | switch (uVmxEventType)
|
---|
2990 | {
|
---|
2991 | case VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT:
|
---|
2992 | case VMX_IDT_VECTORING_INFO_TYPE_NMI:
|
---|
2993 | fIemXcptFlags = IEM_XCPT_FLAGS_T_CPU_XCPT;
|
---|
2994 | break;
|
---|
2995 |
|
---|
2996 | case VMX_IDT_VECTORING_INFO_TYPE_EXT_INT:
|
---|
2997 | fIemXcptFlags = IEM_XCPT_FLAGS_T_EXT_INT;
|
---|
2998 | break;
|
---|
2999 |
|
---|
3000 | case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
|
---|
3001 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT | IEM_XCPT_FLAGS_ICEBP_INSTR;
|
---|
3002 | break;
|
---|
3003 |
|
---|
3004 | case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
|
---|
3005 | {
|
---|
3006 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
|
---|
3007 | if (uVector == X86_XCPT_BP)
|
---|
3008 | fIemXcptFlags |= IEM_XCPT_FLAGS_BP_INSTR;
|
---|
3009 | else if (uVector == X86_XCPT_OF)
|
---|
3010 | fIemXcptFlags |= IEM_XCPT_FLAGS_OF_INSTR;
|
---|
3011 | else
|
---|
3012 | {
|
---|
3013 | fIemXcptFlags = 0;
|
---|
3014 | AssertMsgFailed(("Unexpected vector for software exception. uVector=%#x", uVector));
|
---|
3015 | }
|
---|
3016 | break;
|
---|
3017 | }
|
---|
3018 |
|
---|
3019 | case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
|
---|
3020 | fIemXcptFlags = IEM_XCPT_FLAGS_T_SOFT_INT;
|
---|
3021 | break;
|
---|
3022 |
|
---|
3023 | default:
|
---|
3024 | fIemXcptFlags = 0;
|
---|
3025 | AssertMsgFailed(("Unexpected vector type! uVmxEventType=%#x uVector=%#x", uVmxEventType, uVector));
|
---|
3026 | break;
|
---|
3027 | }
|
---|
3028 | return fIemXcptFlags;
|
---|
3029 | }
|
---|
3030 |
|
---|
3031 |
|
---|
3032 | /**
|
---|
3033 | * Sets an event as a pending event to be injected into the guest.
|
---|
3034 | *
|
---|
3035 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3036 | * @param u32IntInfo The VM-entry interruption-information field.
|
---|
3037 | * @param cbInstr The VM-entry instruction length in bytes (for
|
---|
3038 | * software interrupts, exceptions and privileged
|
---|
3039 | * software exceptions).
|
---|
3040 | * @param u32ErrCode The VM-entry exception error code.
|
---|
3041 | * @param GCPtrFaultAddress The fault-address (CR2) in case it's a
|
---|
3042 | * page-fault.
|
---|
3043 | */
|
---|
3044 | DECLINLINE(void) vmxHCSetPendingEvent(PVMCPUCC pVCpu, uint32_t u32IntInfo, uint32_t cbInstr, uint32_t u32ErrCode,
|
---|
3045 | RTGCUINTPTR GCPtrFaultAddress)
|
---|
3046 | {
|
---|
3047 | Assert(!VCPU_2_VMXSTATE(pVCpu).Event.fPending);
|
---|
3048 | VCPU_2_VMXSTATE(pVCpu).Event.fPending = true;
|
---|
3049 | VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo = u32IntInfo;
|
---|
3050 | VCPU_2_VMXSTATE(pVCpu).Event.u32ErrCode = u32ErrCode;
|
---|
3051 | VCPU_2_VMXSTATE(pVCpu).Event.cbInstr = cbInstr;
|
---|
3052 | VCPU_2_VMXSTATE(pVCpu).Event.GCPtrFaultAddress = GCPtrFaultAddress;
|
---|
3053 | }
|
---|
3054 |
|
---|
3055 |
|
---|
3056 | /**
|
---|
3057 | * Sets an external interrupt as pending-for-injection into the VM.
|
---|
3058 | *
|
---|
3059 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3060 | * @param u8Interrupt The external interrupt vector.
|
---|
3061 | */
|
---|
3062 | DECLINLINE(void) vmxHCSetPendingExtInt(PVMCPUCC pVCpu, uint8_t u8Interrupt)
|
---|
3063 | {
|
---|
3064 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, u8Interrupt)
|
---|
3065 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
|
---|
3066 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
|
---|
3067 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
3068 | vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
3069 | }
|
---|
3070 |
|
---|
3071 |
|
---|
3072 | /**
|
---|
3073 | * Sets an NMI (\#NMI) exception as pending-for-injection into the VM.
|
---|
3074 | *
|
---|
3075 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3076 | */
|
---|
3077 | DECLINLINE(void) vmxHCSetPendingXcptNmi(PVMCPUCC pVCpu)
|
---|
3078 | {
|
---|
3079 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_NMI)
|
---|
3080 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_NMI)
|
---|
3081 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
|
---|
3082 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
3083 | vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
3084 | }
|
---|
3085 |
|
---|
3086 |
|
---|
3087 | /**
|
---|
3088 | * Sets a double-fault (\#DF) exception as pending-for-injection into the VM.
|
---|
3089 | *
|
---|
3090 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3091 | */
|
---|
3092 | DECLINLINE(void) vmxHCSetPendingXcptDF(PVMCPUCC pVCpu)
|
---|
3093 | {
|
---|
3094 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
|
---|
3095 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
|
---|
3096 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
|
---|
3097 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
3098 | vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
3099 | }
|
---|
3100 |
|
---|
3101 |
|
---|
3102 | /**
|
---|
3103 | * Sets an invalid-opcode (\#UD) exception as pending-for-injection into the VM.
|
---|
3104 | *
|
---|
3105 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3106 | */
|
---|
3107 | DECLINLINE(void) vmxHCSetPendingXcptUD(PVMCPUCC pVCpu)
|
---|
3108 | {
|
---|
3109 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_UD)
|
---|
3110 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
|
---|
3111 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
|
---|
3112 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
3113 | vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
3114 | }
|
---|
3115 |
|
---|
3116 |
|
---|
3117 | /**
|
---|
3118 | * Sets a debug (\#DB) exception as pending-for-injection into the VM.
|
---|
3119 | *
|
---|
3120 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3121 | */
|
---|
3122 | DECLINLINE(void) vmxHCSetPendingXcptDB(PVMCPUCC pVCpu)
|
---|
3123 | {
|
---|
3124 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
|
---|
3125 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
|
---|
3126 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
|
---|
3127 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
3128 | vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, 0 /* u32ErrCode */, 0 /* GCPtrFaultAddress */);
|
---|
3129 | }
|
---|
3130 |
|
---|
3131 |
|
---|
3132 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3133 | /**
|
---|
3134 | * Sets a general-protection (\#GP) exception as pending-for-injection into the VM.
|
---|
3135 | *
|
---|
3136 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3137 | * @param u32ErrCode The error code for the general-protection exception.
|
---|
3138 | */
|
---|
3139 | DECLINLINE(void) vmxHCSetPendingXcptGP(PVMCPUCC pVCpu, uint32_t u32ErrCode)
|
---|
3140 | {
|
---|
3141 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
|
---|
3142 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
|
---|
3143 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
|
---|
3144 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
3145 | vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
|
---|
3146 | }
|
---|
3147 |
|
---|
3148 |
|
---|
3149 | /**
|
---|
3150 | * Sets a stack (\#SS) exception as pending-for-injection into the VM.
|
---|
3151 | *
|
---|
3152 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3153 | * @param u32ErrCode The error code for the stack exception.
|
---|
3154 | */
|
---|
3155 | DECLINLINE(void) vmxHCSetPendingXcptSS(PVMCPUCC pVCpu, uint32_t u32ErrCode)
|
---|
3156 | {
|
---|
3157 | uint32_t const u32IntInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_SS)
|
---|
3158 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
|
---|
3159 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 1)
|
---|
3160 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
3161 | vmxHCSetPendingEvent(pVCpu, u32IntInfo, 0 /* cbInstr */, u32ErrCode, 0 /* GCPtrFaultAddress */);
|
---|
3162 | }
|
---|
3163 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
3164 |
|
---|
3165 |
|
---|
3166 | /**
|
---|
3167 | * Fixes up attributes for the specified segment register.
|
---|
3168 | *
|
---|
3169 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3170 | * @param pSelReg The segment register that needs fixing.
|
---|
3171 | * @param pszRegName The register name (for logging and assertions).
|
---|
3172 | */
|
---|
3173 | static void vmxHCFixUnusableSegRegAttr(PVMCPUCC pVCpu, PCPUMSELREG pSelReg, const char *pszRegName)
|
---|
3174 | {
|
---|
3175 | Assert(pSelReg->Attr.u & X86DESCATTR_UNUSABLE);
|
---|
3176 |
|
---|
3177 | /*
|
---|
3178 | * If VT-x marks the segment as unusable, most other bits remain undefined:
|
---|
3179 | * - For CS the L, D and G bits have meaning.
|
---|
3180 | * - For SS the DPL has meaning (it -is- the CPL for Intel and VBox).
|
---|
3181 | * - For the remaining data segments no bits are defined.
|
---|
3182 | *
|
---|
3183 | * The present bit and the unusable bit has been observed to be set at the
|
---|
3184 | * same time (the selector was supposed to be invalid as we started executing
|
---|
3185 | * a V8086 interrupt in ring-0).
|
---|
3186 | *
|
---|
3187 | * What should be important for the rest of the VBox code, is that the P bit is
|
---|
3188 | * cleared. Some of the other VBox code recognizes the unusable bit, but
|
---|
3189 | * AMD-V certainly don't, and REM doesn't really either. So, to be on the
|
---|
3190 | * safe side here, we'll strip off P and other bits we don't care about. If
|
---|
3191 | * any code breaks because Attr.u != 0 when Sel < 4, it should be fixed.
|
---|
3192 | *
|
---|
3193 | * See Intel spec. 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
|
---|
3194 | */
|
---|
3195 | #ifdef VBOX_STRICT
|
---|
3196 | uint32_t const uAttr = pSelReg->Attr.u;
|
---|
3197 | #endif
|
---|
3198 |
|
---|
3199 | /* Masking off: X86DESCATTR_P, X86DESCATTR_LIMIT_HIGH, and X86DESCATTR_AVL. The latter two are really irrelevant. */
|
---|
3200 | pSelReg->Attr.u &= X86DESCATTR_UNUSABLE | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
|
---|
3201 | | X86DESCATTR_DPL | X86DESCATTR_TYPE | X86DESCATTR_DT;
|
---|
3202 |
|
---|
3203 | #ifdef VBOX_STRICT
|
---|
3204 | # ifndef IN_NEM_DARWIN
|
---|
3205 | VMMRZCallRing3Disable(pVCpu);
|
---|
3206 | # endif
|
---|
3207 | Log4Func(("Unusable %s: sel=%#x attr=%#x -> %#x\n", pszRegName, pSelReg->Sel, uAttr, pSelReg->Attr.u));
|
---|
3208 | # ifdef DEBUG_bird
|
---|
3209 | AssertMsg((uAttr & ~X86DESCATTR_P) == pSelReg->Attr.u,
|
---|
3210 | ("%s: %#x != %#x (sel=%#x base=%#llx limit=%#x)\n",
|
---|
3211 | pszRegName, uAttr, pSelReg->Attr.u, pSelReg->Sel, pSelReg->u64Base, pSelReg->u32Limit));
|
---|
3212 | # endif
|
---|
3213 | # ifndef IN_NEM_DARWIN
|
---|
3214 | VMMRZCallRing3Enable(pVCpu);
|
---|
3215 | # endif
|
---|
3216 | NOREF(uAttr);
|
---|
3217 | #endif
|
---|
3218 | RT_NOREF2(pVCpu, pszRegName);
|
---|
3219 | }
|
---|
3220 |
|
---|
3221 |
|
---|
3222 | /**
|
---|
3223 | * Imports a guest segment register from the current VMCS into the guest-CPU
|
---|
3224 | * context.
|
---|
3225 | *
|
---|
3226 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3227 | * @param iSegReg The segment register number (X86_SREG_XXX).
|
---|
3228 | *
|
---|
3229 | * @remarks Called with interrupts and/or preemption disabled.
|
---|
3230 | */
|
---|
3231 | static void vmxHCImportGuestSegReg(PVMCPUCC pVCpu, uint32_t iSegReg)
|
---|
3232 | {
|
---|
3233 | Assert(iSegReg < X86_SREG_COUNT);
|
---|
3234 | Assert((uint32_t)VMX_VMCS16_GUEST_SEG_SEL(iSegReg) == g_aVmcsSegSel[iSegReg]);
|
---|
3235 | Assert((uint32_t)VMX_VMCS32_GUEST_SEG_LIMIT(iSegReg) == g_aVmcsSegLimit[iSegReg]);
|
---|
3236 | Assert((uint32_t)VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(iSegReg) == g_aVmcsSegAttr[iSegReg]);
|
---|
3237 | Assert((uint32_t)VMX_VMCS_GUEST_SEG_BASE(iSegReg) == g_aVmcsSegBase[iSegReg]);
|
---|
3238 |
|
---|
3239 | PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
|
---|
3240 |
|
---|
3241 | uint16_t u16Sel;
|
---|
3242 | int rc = VMX_VMCS_READ_16(pVCpu, VMX_VMCS16_GUEST_SEG_SEL(iSegReg), &u16Sel); AssertRC(rc);
|
---|
3243 | pSelReg->Sel = u16Sel;
|
---|
3244 | pSelReg->ValidSel = u16Sel;
|
---|
3245 |
|
---|
3246 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_SEG_LIMIT(iSegReg), &pSelReg->u32Limit); AssertRC(rc);
|
---|
3247 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_SEG_BASE(iSegReg), &pSelReg->u64Base); AssertRC(rc);
|
---|
3248 |
|
---|
3249 | uint32_t u32Attr;
|
---|
3250 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_SEG_ACCESS_RIGHTS(iSegReg), &u32Attr); AssertRC(rc);
|
---|
3251 | pSelReg->Attr.u = u32Attr;
|
---|
3252 | if (u32Attr & X86DESCATTR_UNUSABLE)
|
---|
3253 | vmxHCFixUnusableSegRegAttr(pVCpu, pSelReg, "ES\0CS\0SS\0DS\0FS\0GS" + iSegReg * 3);
|
---|
3254 |
|
---|
3255 | pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3256 | }
|
---|
3257 |
|
---|
3258 |
|
---|
3259 | /**
|
---|
3260 | * Imports the guest LDTR from the current VMCS into the guest-CPU context.
|
---|
3261 | *
|
---|
3262 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3263 | *
|
---|
3264 | * @remarks Called with interrupts and/or preemption disabled.
|
---|
3265 | */
|
---|
3266 | static void vmxHCImportGuestLdtr(PVMCPUCC pVCpu)
|
---|
3267 | {
|
---|
3268 | uint16_t u16Sel;
|
---|
3269 | uint64_t u64Base;
|
---|
3270 | uint32_t u32Limit, u32Attr;
|
---|
3271 | int rc = VMX_VMCS_READ_16(pVCpu, VMX_VMCS16_GUEST_LDTR_SEL, &u16Sel); AssertRC(rc);
|
---|
3272 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_LDTR_LIMIT, &u32Limit); AssertRC(rc);
|
---|
3273 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS, &u32Attr); AssertRC(rc);
|
---|
3274 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_LDTR_BASE, &u64Base); AssertRC(rc);
|
---|
3275 |
|
---|
3276 | pVCpu->cpum.GstCtx.ldtr.Sel = u16Sel;
|
---|
3277 | pVCpu->cpum.GstCtx.ldtr.ValidSel = u16Sel;
|
---|
3278 | pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3279 | pVCpu->cpum.GstCtx.ldtr.u32Limit = u32Limit;
|
---|
3280 | pVCpu->cpum.GstCtx.ldtr.u64Base = u64Base;
|
---|
3281 | pVCpu->cpum.GstCtx.ldtr.Attr.u = u32Attr;
|
---|
3282 | if (u32Attr & X86DESCATTR_UNUSABLE)
|
---|
3283 | vmxHCFixUnusableSegRegAttr(pVCpu, &pVCpu->cpum.GstCtx.ldtr, "LDTR");
|
---|
3284 | }
|
---|
3285 |
|
---|
3286 |
|
---|
3287 | /**
|
---|
3288 | * Imports the guest TR from the current VMCS into the guest-CPU context.
|
---|
3289 | *
|
---|
3290 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3291 | *
|
---|
3292 | * @remarks Called with interrupts and/or preemption disabled.
|
---|
3293 | */
|
---|
3294 | static void vmxHCImportGuestTr(PVMCPUCC pVCpu)
|
---|
3295 | {
|
---|
3296 | uint16_t u16Sel;
|
---|
3297 | uint64_t u64Base;
|
---|
3298 | uint32_t u32Limit, u32Attr;
|
---|
3299 | int rc = VMX_VMCS_READ_16(pVCpu, VMX_VMCS16_GUEST_TR_SEL, &u16Sel); AssertRC(rc);
|
---|
3300 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_TR_LIMIT, &u32Limit); AssertRC(rc);
|
---|
3301 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS, &u32Attr); AssertRC(rc);
|
---|
3302 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_TR_BASE, &u64Base); AssertRC(rc);
|
---|
3303 |
|
---|
3304 | pVCpu->cpum.GstCtx.tr.Sel = u16Sel;
|
---|
3305 | pVCpu->cpum.GstCtx.tr.ValidSel = u16Sel;
|
---|
3306 | pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
3307 | pVCpu->cpum.GstCtx.tr.u32Limit = u32Limit;
|
---|
3308 | pVCpu->cpum.GstCtx.tr.u64Base = u64Base;
|
---|
3309 | pVCpu->cpum.GstCtx.tr.Attr.u = u32Attr;
|
---|
3310 | /* TR is the only selector that can never be unusable. */
|
---|
3311 | Assert(!(u32Attr & X86DESCATTR_UNUSABLE));
|
---|
3312 | }
|
---|
3313 |
|
---|
3314 |
|
---|
3315 | /**
|
---|
3316 | * Imports the guest RIP from the VMCS back into the guest-CPU context.
|
---|
3317 | *
|
---|
3318 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3319 | *
|
---|
3320 | * @remarks Called with interrupts and/or preemption disabled, should not assert!
|
---|
3321 | * @remarks Do -not- call this function directly, use vmxHCImportGuestState()
|
---|
3322 | * instead!!!
|
---|
3323 | */
|
---|
3324 | static void vmxHCImportGuestRip(PVMCPUCC pVCpu)
|
---|
3325 | {
|
---|
3326 | uint64_t u64Val;
|
---|
3327 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
3328 | if (pCtx->fExtrn & CPUMCTX_EXTRN_RIP)
|
---|
3329 | {
|
---|
3330 | int rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RIP, &u64Val);
|
---|
3331 | AssertRC(rc);
|
---|
3332 |
|
---|
3333 | pCtx->rip = u64Val;
|
---|
3334 | EMHistoryUpdatePC(pVCpu, pCtx->rip, false);
|
---|
3335 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_RIP;
|
---|
3336 | }
|
---|
3337 | }
|
---|
3338 |
|
---|
3339 |
|
---|
3340 | /**
|
---|
3341 | * Imports the guest RFLAGS from the VMCS back into the guest-CPU context.
|
---|
3342 | *
|
---|
3343 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3344 | * @param pVmcsInfo The VMCS info. object.
|
---|
3345 | *
|
---|
3346 | * @remarks Called with interrupts and/or preemption disabled, should not assert!
|
---|
3347 | * @remarks Do -not- call this function directly, use vmxHCImportGuestState()
|
---|
3348 | * instead!!!
|
---|
3349 | */
|
---|
3350 | static void vmxHCImportGuestRFlags(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
3351 | {
|
---|
3352 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
3353 | if (pCtx->fExtrn & CPUMCTX_EXTRN_RFLAGS)
|
---|
3354 | {
|
---|
3355 | uint64_t u64Val;
|
---|
3356 | int rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RFLAGS, &u64Val);
|
---|
3357 | AssertRC(rc);
|
---|
3358 |
|
---|
3359 | pCtx->rflags.u64 = u64Val;
|
---|
3360 | #ifndef IN_NEM_DARWIN
|
---|
3361 | PCVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
|
---|
3362 | if (pVmcsInfoShared->RealMode.fRealOnV86Active)
|
---|
3363 | {
|
---|
3364 | pCtx->eflags.Bits.u1VM = 0;
|
---|
3365 | pCtx->eflags.Bits.u2IOPL = pVmcsInfoShared->RealMode.Eflags.Bits.u2IOPL;
|
---|
3366 | }
|
---|
3367 | #else
|
---|
3368 | RT_NOREF(pVmcsInfo);
|
---|
3369 | #endif
|
---|
3370 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
|
---|
3371 | }
|
---|
3372 | }
|
---|
3373 |
|
---|
3374 |
|
---|
3375 | /**
|
---|
3376 | * Imports the guest interruptibility-state from the VMCS back into the guest-CPU
|
---|
3377 | * context.
|
---|
3378 | *
|
---|
3379 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3380 | * @param pVmcsInfo The VMCS info. object.
|
---|
3381 | *
|
---|
3382 | * @remarks Called with interrupts and/or preemption disabled, try not to assert and
|
---|
3383 | * do not log!
|
---|
3384 | * @remarks Do -not- call this function directly, use vmxHCImportGuestState()
|
---|
3385 | * instead!!!
|
---|
3386 | */
|
---|
3387 | static void vmxHCImportGuestIntrState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
3388 | {
|
---|
3389 | uint32_t u32Val;
|
---|
3390 | int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &u32Val); AssertRC(rc);
|
---|
3391 | if (!u32Val)
|
---|
3392 | {
|
---|
3393 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
3394 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
3395 | CPUMSetGuestNmiBlocking(pVCpu, false);
|
---|
3396 | }
|
---|
3397 | else
|
---|
3398 | {
|
---|
3399 | /*
|
---|
3400 | * We must import RIP here to set our EM interrupt-inhibited state.
|
---|
3401 | * We also import RFLAGS as our code that evaluates pending interrupts
|
---|
3402 | * before VM-entry requires it.
|
---|
3403 | */
|
---|
3404 | vmxHCImportGuestRip(pVCpu);
|
---|
3405 | vmxHCImportGuestRFlags(pVCpu, pVmcsInfo);
|
---|
3406 |
|
---|
3407 | if (u32Val & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
|
---|
3408 | EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
|
---|
3409 | else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
3410 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
3411 |
|
---|
3412 | bool const fNmiBlocking = RT_BOOL(u32Val & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI);
|
---|
3413 | CPUMSetGuestNmiBlocking(pVCpu, fNmiBlocking);
|
---|
3414 | }
|
---|
3415 | }
|
---|
3416 |
|
---|
3417 |
|
---|
3418 | /**
|
---|
3419 | * Worker for VMXR0ImportStateOnDemand.
|
---|
3420 | *
|
---|
3421 | * @returns VBox status code.
|
---|
3422 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3423 | * @param pVmcsInfo The VMCS info. object.
|
---|
3424 | * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
|
---|
3425 | */
|
---|
3426 | static int vmxHCImportGuestState(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint64_t fWhat)
|
---|
3427 | {
|
---|
3428 | int rc = VINF_SUCCESS;
|
---|
3429 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3430 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
3431 | uint32_t u32Val;
|
---|
3432 |
|
---|
3433 | /*
|
---|
3434 | * Note! This is hack to workaround a mysterious BSOD observed with release builds
|
---|
3435 | * on Windows 10 64-bit hosts. Profile and debug builds are not affected and
|
---|
3436 | * neither are other host platforms.
|
---|
3437 | *
|
---|
3438 | * Committing this temporarily as it prevents BSOD.
|
---|
3439 | *
|
---|
3440 | * Update: This is very likely a compiler optimization bug, see @bugref{9180}.
|
---|
3441 | */
|
---|
3442 | # ifdef RT_OS_WINDOWS
|
---|
3443 | if (pVM == 0 || pVM == (void *)(uintptr_t)-1)
|
---|
3444 | return VERR_HM_IPE_1;
|
---|
3445 | # endif
|
---|
3446 |
|
---|
3447 | STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatImportGuestState, x);
|
---|
3448 |
|
---|
3449 | #ifndef IN_NEM_DARWIN
|
---|
3450 | /*
|
---|
3451 | * We disable interrupts to make the updating of the state and in particular
|
---|
3452 | * the fExtrn modification atomic wrt to preemption hooks.
|
---|
3453 | */
|
---|
3454 | RTCCUINTREG const fEFlags = ASMIntDisableFlags();
|
---|
3455 | #endif
|
---|
3456 |
|
---|
3457 | fWhat &= pCtx->fExtrn;
|
---|
3458 | if (fWhat)
|
---|
3459 | {
|
---|
3460 | do
|
---|
3461 | {
|
---|
3462 | if (fWhat & CPUMCTX_EXTRN_RIP)
|
---|
3463 | vmxHCImportGuestRip(pVCpu);
|
---|
3464 |
|
---|
3465 | if (fWhat & CPUMCTX_EXTRN_RFLAGS)
|
---|
3466 | vmxHCImportGuestRFlags(pVCpu, pVmcsInfo);
|
---|
3467 |
|
---|
3468 | if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
|
---|
3469 | vmxHCImportGuestIntrState(pVCpu, pVmcsInfo);
|
---|
3470 |
|
---|
3471 | if (fWhat & CPUMCTX_EXTRN_RSP)
|
---|
3472 | {
|
---|
3473 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RSP, &pCtx->rsp);
|
---|
3474 | AssertRC(rc);
|
---|
3475 | }
|
---|
3476 |
|
---|
3477 | if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
|
---|
3478 | {
|
---|
3479 | PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
|
---|
3480 | #ifndef IN_NEM_DARWIN
|
---|
3481 | bool const fRealOnV86Active = pVmcsInfoShared->RealMode.fRealOnV86Active;
|
---|
3482 | #else
|
---|
3483 | bool const fRealOnV86Active = false; /* HV supports only unrestricted guest execution. */
|
---|
3484 | #endif
|
---|
3485 | if (fWhat & CPUMCTX_EXTRN_CS)
|
---|
3486 | {
|
---|
3487 | vmxHCImportGuestSegReg(pVCpu, X86_SREG_CS);
|
---|
3488 | vmxHCImportGuestRip(pVCpu);
|
---|
3489 | if (fRealOnV86Active)
|
---|
3490 | pCtx->cs.Attr.u = pVmcsInfoShared->RealMode.AttrCS.u;
|
---|
3491 | EMHistoryUpdatePC(pVCpu, pCtx->cs.u64Base + pCtx->rip, true /* fFlattened */);
|
---|
3492 | }
|
---|
3493 | if (fWhat & CPUMCTX_EXTRN_SS)
|
---|
3494 | {
|
---|
3495 | vmxHCImportGuestSegReg(pVCpu, X86_SREG_SS);
|
---|
3496 | if (fRealOnV86Active)
|
---|
3497 | pCtx->ss.Attr.u = pVmcsInfoShared->RealMode.AttrSS.u;
|
---|
3498 | }
|
---|
3499 | if (fWhat & CPUMCTX_EXTRN_DS)
|
---|
3500 | {
|
---|
3501 | vmxHCImportGuestSegReg(pVCpu, X86_SREG_DS);
|
---|
3502 | if (fRealOnV86Active)
|
---|
3503 | pCtx->ds.Attr.u = pVmcsInfoShared->RealMode.AttrDS.u;
|
---|
3504 | }
|
---|
3505 | if (fWhat & CPUMCTX_EXTRN_ES)
|
---|
3506 | {
|
---|
3507 | vmxHCImportGuestSegReg(pVCpu, X86_SREG_ES);
|
---|
3508 | if (fRealOnV86Active)
|
---|
3509 | pCtx->es.Attr.u = pVmcsInfoShared->RealMode.AttrES.u;
|
---|
3510 | }
|
---|
3511 | if (fWhat & CPUMCTX_EXTRN_FS)
|
---|
3512 | {
|
---|
3513 | vmxHCImportGuestSegReg(pVCpu, X86_SREG_FS);
|
---|
3514 | if (fRealOnV86Active)
|
---|
3515 | pCtx->fs.Attr.u = pVmcsInfoShared->RealMode.AttrFS.u;
|
---|
3516 | }
|
---|
3517 | if (fWhat & CPUMCTX_EXTRN_GS)
|
---|
3518 | {
|
---|
3519 | vmxHCImportGuestSegReg(pVCpu, X86_SREG_GS);
|
---|
3520 | if (fRealOnV86Active)
|
---|
3521 | pCtx->gs.Attr.u = pVmcsInfoShared->RealMode.AttrGS.u;
|
---|
3522 | }
|
---|
3523 | }
|
---|
3524 |
|
---|
3525 | if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
|
---|
3526 | {
|
---|
3527 | if (fWhat & CPUMCTX_EXTRN_LDTR)
|
---|
3528 | vmxHCImportGuestLdtr(pVCpu);
|
---|
3529 |
|
---|
3530 | if (fWhat & CPUMCTX_EXTRN_GDTR)
|
---|
3531 | {
|
---|
3532 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_GDTR_BASE, &pCtx->gdtr.pGdt); AssertRC(rc);
|
---|
3533 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val); AssertRC(rc);
|
---|
3534 | pCtx->gdtr.cbGdt = u32Val;
|
---|
3535 | }
|
---|
3536 |
|
---|
3537 | /* Guest IDTR. */
|
---|
3538 | if (fWhat & CPUMCTX_EXTRN_IDTR)
|
---|
3539 | {
|
---|
3540 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_IDTR_BASE, &pCtx->idtr.pIdt); AssertRC(rc);
|
---|
3541 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val); AssertRC(rc);
|
---|
3542 | pCtx->idtr.cbIdt = u32Val;
|
---|
3543 | }
|
---|
3544 |
|
---|
3545 | /* Guest TR. */
|
---|
3546 | if (fWhat & CPUMCTX_EXTRN_TR)
|
---|
3547 | {
|
---|
3548 | #ifndef IN_NEM_DARWIN
|
---|
3549 | /* Real-mode emulation using virtual-8086 mode has the fake TSS (pRealModeTSS) in TR,
|
---|
3550 | don't need to import that one. */
|
---|
3551 | if (!pVmcsInfo->pShared->RealMode.fRealOnV86Active)
|
---|
3552 | #endif
|
---|
3553 | vmxHCImportGuestTr(pVCpu);
|
---|
3554 | }
|
---|
3555 | }
|
---|
3556 |
|
---|
3557 | if (fWhat & CPUMCTX_EXTRN_DR7)
|
---|
3558 | {
|
---|
3559 | #ifndef IN_NEM_DARWIN
|
---|
3560 | if (!pVCpu->hmr0.s.fUsingHyperDR7)
|
---|
3561 | #endif
|
---|
3562 | {
|
---|
3563 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_DR7, &pCtx->dr[7]);
|
---|
3564 | AssertRC(rc);
|
---|
3565 | }
|
---|
3566 | }
|
---|
3567 |
|
---|
3568 | if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
|
---|
3569 | {
|
---|
3570 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_SYSENTER_EIP, &pCtx->SysEnter.eip); AssertRC(rc);
|
---|
3571 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_SYSENTER_ESP, &pCtx->SysEnter.esp); AssertRC(rc);
|
---|
3572 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_SYSENTER_CS, &u32Val); AssertRC(rc);
|
---|
3573 | pCtx->SysEnter.cs = u32Val;
|
---|
3574 | }
|
---|
3575 |
|
---|
3576 | #ifndef IN_NEM_DARWIN
|
---|
3577 | if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
|
---|
3578 | {
|
---|
3579 | if ( pVM->hmr0.s.fAllow64BitGuests
|
---|
3580 | && (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
|
---|
3581 | pCtx->msrKERNELGSBASE = ASMRdMsr(MSR_K8_KERNEL_GS_BASE);
|
---|
3582 | }
|
---|
3583 |
|
---|
3584 | if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
|
---|
3585 | {
|
---|
3586 | if ( pVM->hmr0.s.fAllow64BitGuests
|
---|
3587 | && (pVCpu->hmr0.s.vmx.fLazyMsrs & VMX_LAZY_MSRS_LOADED_GUEST))
|
---|
3588 | {
|
---|
3589 | pCtx->msrLSTAR = ASMRdMsr(MSR_K8_LSTAR);
|
---|
3590 | pCtx->msrSTAR = ASMRdMsr(MSR_K6_STAR);
|
---|
3591 | pCtx->msrSFMASK = ASMRdMsr(MSR_K8_SF_MASK);
|
---|
3592 | }
|
---|
3593 | }
|
---|
3594 |
|
---|
3595 | if (fWhat & (CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
|
---|
3596 | {
|
---|
3597 | PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
|
---|
3598 | PCVMXAUTOMSR pMsrs = (PCVMXAUTOMSR)pVmcsInfo->pvGuestMsrStore;
|
---|
3599 | uint32_t const cMsrs = pVmcsInfo->cExitMsrStore;
|
---|
3600 | Assert(pMsrs);
|
---|
3601 | Assert(cMsrs <= VMX_MISC_MAX_MSRS(g_HmMsrs.u.vmx.u64Misc));
|
---|
3602 | Assert(sizeof(*pMsrs) * cMsrs <= X86_PAGE_4K_SIZE);
|
---|
3603 | for (uint32_t i = 0; i < cMsrs; i++)
|
---|
3604 | {
|
---|
3605 | uint32_t const idMsr = pMsrs[i].u32Msr;
|
---|
3606 | switch (idMsr)
|
---|
3607 | {
|
---|
3608 | case MSR_K8_TSC_AUX: CPUMSetGuestTscAux(pVCpu, pMsrs[i].u64Value); break;
|
---|
3609 | case MSR_IA32_SPEC_CTRL: CPUMSetGuestSpecCtrl(pVCpu, pMsrs[i].u64Value); break;
|
---|
3610 | case MSR_K6_EFER: /* Can't be changed without causing a VM-exit */ break;
|
---|
3611 | default:
|
---|
3612 | {
|
---|
3613 | uint32_t idxLbrMsr;
|
---|
3614 | if (VM_IS_VMX_LBR(pVM))
|
---|
3615 | {
|
---|
3616 | if (hmR0VmxIsLbrBranchFromMsr(pVM, idMsr, &idxLbrMsr))
|
---|
3617 | {
|
---|
3618 | Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr));
|
---|
3619 | pVmcsInfoShared->au64LbrFromIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
|
---|
3620 | break;
|
---|
3621 | }
|
---|
3622 | if (hmR0VmxIsLbrBranchToMsr(pVM, idMsr, &idxLbrMsr))
|
---|
3623 | {
|
---|
3624 | Assert(idxLbrMsr < RT_ELEMENTS(pVmcsInfoShared->au64LbrFromIpMsr));
|
---|
3625 | pVmcsInfoShared->au64LbrToIpMsr[idxLbrMsr] = pMsrs[i].u64Value;
|
---|
3626 | break;
|
---|
3627 | }
|
---|
3628 | if (idMsr == pVM->hmr0.s.vmx.idLbrTosMsr)
|
---|
3629 | {
|
---|
3630 | pVmcsInfoShared->u64LbrTosMsr = pMsrs[i].u64Value;
|
---|
3631 | break;
|
---|
3632 | }
|
---|
3633 | /* Fallthru (no break) */
|
---|
3634 | }
|
---|
3635 | pCtx->fExtrn = 0;
|
---|
3636 | VCPU_2_VMXSTATE(pVCpu).u32HMError = pMsrs->u32Msr;
|
---|
3637 | ASMSetFlags(fEFlags);
|
---|
3638 | AssertMsgFailed(("Unexpected MSR in auto-load/store area. idMsr=%#RX32 cMsrs=%u\n", idMsr, cMsrs));
|
---|
3639 | return VERR_HM_UNEXPECTED_LD_ST_MSR;
|
---|
3640 | }
|
---|
3641 | }
|
---|
3642 | }
|
---|
3643 | }
|
---|
3644 | #endif
|
---|
3645 |
|
---|
3646 | if (fWhat & CPUMCTX_EXTRN_CR_MASK)
|
---|
3647 | {
|
---|
3648 | if (fWhat & CPUMCTX_EXTRN_CR0)
|
---|
3649 | {
|
---|
3650 | uint64_t u64Cr0;
|
---|
3651 | uint64_t u64Shadow;
|
---|
3652 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR0, &u64Cr0); AssertRC(rc);
|
---|
3653 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Shadow); AssertRC(rc);
|
---|
3654 | #ifndef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3655 | u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
|
---|
3656 | | (u64Shadow & pVmcsInfo->u64Cr0Mask);
|
---|
3657 | #else
|
---|
3658 | if (!CPUMIsGuestInVmxNonRootMode(pCtx))
|
---|
3659 | {
|
---|
3660 | u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
|
---|
3661 | | (u64Shadow & pVmcsInfo->u64Cr0Mask);
|
---|
3662 | }
|
---|
3663 | else
|
---|
3664 | {
|
---|
3665 | /*
|
---|
3666 | * We've merged the guest and nested-guest's CR0 guest/host mask while executing
|
---|
3667 | * the nested-guest using hardware-assisted VMX. Accordingly we need to
|
---|
3668 | * re-construct CR0. See @bugref{9180#c95} for details.
|
---|
3669 | */
|
---|
3670 | PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo;
|
---|
3671 | PVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
3672 | u64Cr0 = (u64Cr0 & ~pVmcsInfo->u64Cr0Mask)
|
---|
3673 | | (pVmcsNstGst->u64GuestCr0.u & pVmcsNstGst->u64Cr0Mask.u)
|
---|
3674 | | (u64Shadow & (pVmcsInfoGst->u64Cr0Mask & ~pVmcsNstGst->u64Cr0Mask.u));
|
---|
3675 | }
|
---|
3676 | #endif
|
---|
3677 | #ifndef IN_NEM_DARWIN
|
---|
3678 | VMMRZCallRing3Disable(pVCpu); /* May call into PGM which has Log statements. */
|
---|
3679 | #endif
|
---|
3680 | CPUMSetGuestCR0(pVCpu, u64Cr0);
|
---|
3681 | #ifndef IN_NEM_DARWIN
|
---|
3682 | VMMRZCallRing3Enable(pVCpu);
|
---|
3683 | #endif
|
---|
3684 | }
|
---|
3685 |
|
---|
3686 | if (fWhat & CPUMCTX_EXTRN_CR4)
|
---|
3687 | {
|
---|
3688 | uint64_t u64Cr4;
|
---|
3689 | uint64_t u64Shadow;
|
---|
3690 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR4, &u64Cr4); AssertRC(rc);
|
---|
3691 | rc |= VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Shadow); AssertRC(rc);
|
---|
3692 | #ifndef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3693 | u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
|
---|
3694 | | (u64Shadow & pVmcsInfo->u64Cr4Mask);
|
---|
3695 | #else
|
---|
3696 | if (!CPUMIsGuestInVmxNonRootMode(pCtx))
|
---|
3697 | {
|
---|
3698 | u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
|
---|
3699 | | (u64Shadow & pVmcsInfo->u64Cr4Mask);
|
---|
3700 | }
|
---|
3701 | else
|
---|
3702 | {
|
---|
3703 | /*
|
---|
3704 | * We've merged the guest and nested-guest's CR4 guest/host mask while executing
|
---|
3705 | * the nested-guest using hardware-assisted VMX. Accordingly we need to
|
---|
3706 | * re-construct CR4. See @bugref{9180#c95} for details.
|
---|
3707 | */
|
---|
3708 | PCVMXVMCSINFO const pVmcsInfoGst = &pVCpu->hmr0.s.vmx.VmcsInfo;
|
---|
3709 | PVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
3710 | u64Cr4 = (u64Cr4 & ~pVmcsInfo->u64Cr4Mask)
|
---|
3711 | | (pVmcsNstGst->u64GuestCr4.u & pVmcsNstGst->u64Cr4Mask.u)
|
---|
3712 | | (u64Shadow & (pVmcsInfoGst->u64Cr4Mask & ~pVmcsNstGst->u64Cr4Mask.u));
|
---|
3713 | }
|
---|
3714 | #endif
|
---|
3715 | pCtx->cr4 = u64Cr4;
|
---|
3716 | }
|
---|
3717 |
|
---|
3718 | if (fWhat & CPUMCTX_EXTRN_CR3)
|
---|
3719 | {
|
---|
3720 | /* CR0.PG bit changes are always intercepted, so it's up to date. */
|
---|
3721 | if ( VM_IS_VMX_UNRESTRICTED_GUEST(pVM)
|
---|
3722 | || ( VM_IS_VMX_NESTED_PAGING(pVM)
|
---|
3723 | && CPUMIsGuestPagingEnabledEx(pCtx)))
|
---|
3724 | {
|
---|
3725 | uint64_t u64Cr3;
|
---|
3726 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR3, &u64Cr3); AssertRC(rc);
|
---|
3727 | if (pCtx->cr3 != u64Cr3)
|
---|
3728 | {
|
---|
3729 | pCtx->cr3 = u64Cr3;
|
---|
3730 | VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
|
---|
3731 | }
|
---|
3732 |
|
---|
3733 | /*
|
---|
3734 | * If the guest is in PAE mode, sync back the PDPE's into the guest state.
|
---|
3735 | * CR4.PAE, CR0.PG, EFER MSR changes are always intercepted, so they're up to date.
|
---|
3736 | */
|
---|
3737 | if (CPUMIsGuestInPAEModeEx(pCtx))
|
---|
3738 | {
|
---|
3739 | X86PDPE aPaePdpes[4];
|
---|
3740 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE0_FULL, &aPaePdpes[0].u); AssertRC(rc);
|
---|
3741 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE1_FULL, &aPaePdpes[1].u); AssertRC(rc);
|
---|
3742 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE2_FULL, &aPaePdpes[2].u); AssertRC(rc);
|
---|
3743 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE3_FULL, &aPaePdpes[3].u); AssertRC(rc);
|
---|
3744 | if (memcmp(&aPaePdpes[0], &pCtx->aPaePdpes[0], sizeof(aPaePdpes)))
|
---|
3745 | {
|
---|
3746 | memcpy(&pCtx->aPaePdpes[0], &aPaePdpes[0], sizeof(aPaePdpes));
|
---|
3747 | /* PGM now updates PAE PDPTEs while updating CR3. */
|
---|
3748 | VMCPU_FF_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3);
|
---|
3749 | }
|
---|
3750 | }
|
---|
3751 | }
|
---|
3752 | }
|
---|
3753 | }
|
---|
3754 |
|
---|
3755 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3756 | if (fWhat & CPUMCTX_EXTRN_HWVIRT)
|
---|
3757 | {
|
---|
3758 | if ( (pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
|
---|
3759 | && !CPUMIsGuestInVmxNonRootMode(pCtx))
|
---|
3760 | {
|
---|
3761 | Assert(CPUMIsGuestInVmxRootMode(pCtx));
|
---|
3762 | rc = vmxHCCopyShadowToNstGstVmcs(pVCpu, pVmcsInfo);
|
---|
3763 | if (RT_SUCCESS(rc))
|
---|
3764 | { /* likely */ }
|
---|
3765 | else
|
---|
3766 | break;
|
---|
3767 | }
|
---|
3768 | }
|
---|
3769 | #endif
|
---|
3770 | } while (0);
|
---|
3771 |
|
---|
3772 | if (RT_SUCCESS(rc))
|
---|
3773 | {
|
---|
3774 | /* Update fExtrn. */
|
---|
3775 | pCtx->fExtrn &= ~fWhat;
|
---|
3776 |
|
---|
3777 | /* If everything has been imported, clear the HM keeper bit. */
|
---|
3778 | if (!(pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL))
|
---|
3779 | {
|
---|
3780 | #ifndef IN_NEM_DARWIN
|
---|
3781 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_HM;
|
---|
3782 | #else
|
---|
3783 | pCtx->fExtrn &= ~CPUMCTX_EXTRN_KEEPER_NEM;
|
---|
3784 | #endif
|
---|
3785 | Assert(!pCtx->fExtrn);
|
---|
3786 | }
|
---|
3787 | }
|
---|
3788 | }
|
---|
3789 | #ifndef IN_NEM_DARWIN
|
---|
3790 | else
|
---|
3791 | AssertMsg(!pCtx->fExtrn || (pCtx->fExtrn & HMVMX_CPUMCTX_EXTRN_ALL), ("%#RX64\n", pCtx->fExtrn));
|
---|
3792 |
|
---|
3793 | /*
|
---|
3794 | * Restore interrupts.
|
---|
3795 | */
|
---|
3796 | ASMSetFlags(fEFlags);
|
---|
3797 | #endif
|
---|
3798 |
|
---|
3799 | STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatImportGuestState, x);
|
---|
3800 |
|
---|
3801 | if (RT_SUCCESS(rc))
|
---|
3802 | { /* likely */ }
|
---|
3803 | else
|
---|
3804 | return rc;
|
---|
3805 |
|
---|
3806 | /*
|
---|
3807 | * Honor any pending CR3 updates.
|
---|
3808 | *
|
---|
3809 | * Consider this scenario: VM-exit -> VMMRZCallRing3Enable() -> do stuff that causes a longjmp -> VMXR0CallRing3Callback()
|
---|
3810 | * -> VMMRZCallRing3Disable() -> vmxHCImportGuestState() -> Sets VMCPU_FF_HM_UPDATE_CR3 pending -> return from the longjmp
|
---|
3811 | * -> continue with VM-exit handling -> vmxHCImportGuestState() and here we are.
|
---|
3812 | *
|
---|
3813 | * The reason for such complicated handling is because VM-exits that call into PGM expect CR3 to be up-to-date and thus
|
---|
3814 | * if any CR3-saves -before- the VM-exit (longjmp) postponed the CR3 update via the force-flag, any VM-exit handler that
|
---|
3815 | * calls into PGM when it re-saves CR3 will end up here and we call PGMUpdateCR3(). This is why the code below should
|
---|
3816 | * -NOT- check if CPUMCTX_EXTRN_CR3 is set!
|
---|
3817 | *
|
---|
3818 | * The longjmp exit path can't check these CR3 force-flags and call code that takes a lock again. We cover for it here.
|
---|
3819 | *
|
---|
3820 | * The force-flag is checked first as it's cheaper for potential superfluous calls to this function.
|
---|
3821 | */
|
---|
3822 | if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3)
|
---|
3823 | #ifndef IN_NEM_DARWIN
|
---|
3824 | && VMMRZCallRing3IsEnabled(pVCpu)
|
---|
3825 | #endif
|
---|
3826 | )
|
---|
3827 | {
|
---|
3828 | Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & CPUMCTX_EXTRN_CR3));
|
---|
3829 | PGMUpdateCR3(pVCpu, CPUMGetGuestCR3(pVCpu));
|
---|
3830 | Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_HM_UPDATE_CR3));
|
---|
3831 | }
|
---|
3832 |
|
---|
3833 | return VINF_SUCCESS;
|
---|
3834 | }
|
---|
3835 |
|
---|
3836 |
|
---|
3837 | /**
|
---|
3838 | * Check per-VM and per-VCPU force flag actions that require us to go back to
|
---|
3839 | * ring-3 for one reason or another.
|
---|
3840 | *
|
---|
3841 | * @returns Strict VBox status code (i.e. informational status codes too)
|
---|
3842 | * @retval VINF_SUCCESS if we don't have any actions that require going back to
|
---|
3843 | * ring-3.
|
---|
3844 | * @retval VINF_PGM_SYNC_CR3 if we have pending PGM CR3 sync.
|
---|
3845 | * @retval VINF_EM_PENDING_REQUEST if we have pending requests (like hardware
|
---|
3846 | * interrupts)
|
---|
3847 | * @retval VINF_PGM_POOL_FLUSH_PENDING if PGM is doing a pool flush and requires
|
---|
3848 | * all EMTs to be in ring-3.
|
---|
3849 | * @retval VINF_EM_RAW_TO_R3 if there is pending DMA requests.
|
---|
3850 | * @retval VINF_EM_NO_MEMORY PGM is out of memory, we need to return
|
---|
3851 | * to the EM loop.
|
---|
3852 | *
|
---|
3853 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3854 | * @param fIsNestedGuest Flag whether this is for a for a pending nested guest event.
|
---|
3855 | * @param fStepping Whether we are single-stepping the guest using the
|
---|
3856 | * hypervisor debugger.
|
---|
3857 | *
|
---|
3858 | * @remarks This might cause nested-guest VM-exits, caller must check if the guest
|
---|
3859 | * is no longer in VMX non-root mode.
|
---|
3860 | */
|
---|
3861 | static VBOXSTRICTRC vmxHCCheckForceFlags(PVMCPUCC pVCpu, bool fIsNestedGuest, bool fStepping)
|
---|
3862 | {
|
---|
3863 | #ifndef IN_NEM_DARWIN
|
---|
3864 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
3865 | #endif
|
---|
3866 |
|
---|
3867 | /*
|
---|
3868 | * Update pending interrupts into the APIC's IRR.
|
---|
3869 | */
|
---|
3870 | if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
|
---|
3871 | APICUpdatePendingInterrupts(pVCpu);
|
---|
3872 |
|
---|
3873 | /*
|
---|
3874 | * Anything pending? Should be more likely than not if we're doing a good job.
|
---|
3875 | */
|
---|
3876 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
3877 | if ( !fStepping
|
---|
3878 | ? !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_MASK)
|
---|
3879 | && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_MASK)
|
---|
3880 | : !VM_FF_IS_ANY_SET(pVM, VM_FF_HP_R0_PRE_HM_STEP_MASK)
|
---|
3881 | && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
|
---|
3882 | return VINF_SUCCESS;
|
---|
3883 |
|
---|
3884 | /* Pending PGM C3 sync. */
|
---|
3885 | if (VMCPU_FF_IS_ANY_SET(pVCpu,VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL))
|
---|
3886 | {
|
---|
3887 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
3888 | Assert(!(ASMAtomicUoReadU64(&pCtx->fExtrn) & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_CR4)));
|
---|
3889 | VBOXSTRICTRC rcStrict = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4,
|
---|
3890 | VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
|
---|
3891 | if (rcStrict != VINF_SUCCESS)
|
---|
3892 | {
|
---|
3893 | AssertRC(VBOXSTRICTRC_VAL(rcStrict));
|
---|
3894 | Log4Func(("PGMSyncCR3 forcing us back to ring-3. rc2=%d\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
3895 | return rcStrict;
|
---|
3896 | }
|
---|
3897 | }
|
---|
3898 |
|
---|
3899 | /* Pending HM-to-R3 operations (critsects, timers, EMT rendezvous etc.) */
|
---|
3900 | if ( VM_FF_IS_ANY_SET(pVM, VM_FF_HM_TO_R3_MASK)
|
---|
3901 | || VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
3902 | {
|
---|
3903 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchHmToR3FF);
|
---|
3904 | int rc = RT_LIKELY(!VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) ? VINF_EM_RAW_TO_R3 : VINF_EM_NO_MEMORY;
|
---|
3905 | Log4Func(("HM_TO_R3 forcing us back to ring-3. rc=%d\n", rc));
|
---|
3906 | return rc;
|
---|
3907 | }
|
---|
3908 |
|
---|
3909 | /* Pending VM request packets, such as hardware interrupts. */
|
---|
3910 | if ( VM_FF_IS_SET(pVM, VM_FF_REQUEST)
|
---|
3911 | || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_REQUEST))
|
---|
3912 | {
|
---|
3913 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchVmReq);
|
---|
3914 | Log4Func(("Pending VM request forcing us back to ring-3\n"));
|
---|
3915 | return VINF_EM_PENDING_REQUEST;
|
---|
3916 | }
|
---|
3917 |
|
---|
3918 | /* Pending PGM pool flushes. */
|
---|
3919 | if (VM_FF_IS_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING))
|
---|
3920 | {
|
---|
3921 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchPgmPoolFlush);
|
---|
3922 | Log4Func(("PGM pool flush pending forcing us back to ring-3\n"));
|
---|
3923 | return VINF_PGM_POOL_FLUSH_PENDING;
|
---|
3924 | }
|
---|
3925 |
|
---|
3926 | /* Pending DMA requests. */
|
---|
3927 | if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
|
---|
3928 | {
|
---|
3929 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchDma);
|
---|
3930 | Log4Func(("Pending DMA request forcing us back to ring-3\n"));
|
---|
3931 | return VINF_EM_RAW_TO_R3;
|
---|
3932 | }
|
---|
3933 |
|
---|
3934 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
3935 | /*
|
---|
3936 | * Pending nested-guest events.
|
---|
3937 | *
|
---|
3938 | * Please note the priority of these events are specified and important.
|
---|
3939 | * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
|
---|
3940 | * See Intel spec. 6.9 "Priority Among Simultaneous Exceptions And Interrupts".
|
---|
3941 | */
|
---|
3942 | if (fIsNestedGuest)
|
---|
3943 | {
|
---|
3944 | /* Pending nested-guest APIC-write. */
|
---|
3945 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
|
---|
3946 | {
|
---|
3947 | Log4Func(("Pending nested-guest APIC-write\n"));
|
---|
3948 | VBOXSTRICTRC rcStrict = IEMExecVmxVmexitApicWrite(pVCpu);
|
---|
3949 | Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
|
---|
3950 | return rcStrict;
|
---|
3951 | }
|
---|
3952 |
|
---|
3953 | /* Pending nested-guest monitor-trap flag (MTF). */
|
---|
3954 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF))
|
---|
3955 | {
|
---|
3956 | Log4Func(("Pending nested-guest MTF\n"));
|
---|
3957 | VBOXSTRICTRC rcStrict = IEMExecVmxVmexit(pVCpu, VMX_EXIT_MTF, 0 /* uExitQual */);
|
---|
3958 | Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
|
---|
3959 | return rcStrict;
|
---|
3960 | }
|
---|
3961 |
|
---|
3962 | /* Pending nested-guest VMX-preemption timer expired. */
|
---|
3963 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER))
|
---|
3964 | {
|
---|
3965 | Log4Func(("Pending nested-guest preempt timer\n"));
|
---|
3966 | VBOXSTRICTRC rcStrict = IEMExecVmxVmexitPreemptTimer(pVCpu);
|
---|
3967 | Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
|
---|
3968 | return rcStrict;
|
---|
3969 | }
|
---|
3970 | }
|
---|
3971 | #else
|
---|
3972 | NOREF(fIsNestedGuest);
|
---|
3973 | #endif
|
---|
3974 |
|
---|
3975 | return VINF_SUCCESS;
|
---|
3976 | }
|
---|
3977 |
|
---|
3978 |
|
---|
3979 | /**
|
---|
3980 | * Converts any TRPM trap into a pending HM event. This is typically used when
|
---|
3981 | * entering from ring-3 (not longjmp returns).
|
---|
3982 | *
|
---|
3983 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3984 | */
|
---|
3985 | static void vmxHCTrpmTrapToPendingEvent(PVMCPUCC pVCpu)
|
---|
3986 | {
|
---|
3987 | Assert(TRPMHasTrap(pVCpu));
|
---|
3988 | Assert(!VCPU_2_VMXSTATE(pVCpu).Event.fPending);
|
---|
3989 |
|
---|
3990 | uint8_t uVector;
|
---|
3991 | TRPMEVENT enmTrpmEvent;
|
---|
3992 | uint32_t uErrCode;
|
---|
3993 | RTGCUINTPTR GCPtrFaultAddress;
|
---|
3994 | uint8_t cbInstr;
|
---|
3995 | bool fIcebp;
|
---|
3996 |
|
---|
3997 | int rc = TRPMQueryTrapAll(pVCpu, &uVector, &enmTrpmEvent, &uErrCode, &GCPtrFaultAddress, &cbInstr, &fIcebp);
|
---|
3998 | AssertRC(rc);
|
---|
3999 |
|
---|
4000 | uint32_t u32IntInfo;
|
---|
4001 | u32IntInfo = uVector | VMX_IDT_VECTORING_INFO_VALID;
|
---|
4002 | u32IntInfo |= HMTrpmEventTypeToVmxEventType(uVector, enmTrpmEvent, fIcebp);
|
---|
4003 |
|
---|
4004 | rc = TRPMResetTrap(pVCpu);
|
---|
4005 | AssertRC(rc);
|
---|
4006 | Log4(("TRPM->HM event: u32IntInfo=%#RX32 enmTrpmEvent=%d cbInstr=%u uErrCode=%#RX32 GCPtrFaultAddress=%#RGv\n",
|
---|
4007 | u32IntInfo, enmTrpmEvent, cbInstr, uErrCode, GCPtrFaultAddress));
|
---|
4008 |
|
---|
4009 | vmxHCSetPendingEvent(pVCpu, u32IntInfo, cbInstr, uErrCode, GCPtrFaultAddress);
|
---|
4010 | }
|
---|
4011 |
|
---|
4012 |
|
---|
4013 | /**
|
---|
4014 | * Converts the pending HM event into a TRPM trap.
|
---|
4015 | *
|
---|
4016 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4017 | */
|
---|
4018 | static void vmxHCPendingEventToTrpmTrap(PVMCPUCC pVCpu)
|
---|
4019 | {
|
---|
4020 | Assert(VCPU_2_VMXSTATE(pVCpu).Event.fPending);
|
---|
4021 |
|
---|
4022 | /* If a trap was already pending, we did something wrong! */
|
---|
4023 | Assert(TRPMQueryTrap(pVCpu, NULL /* pu8TrapNo */, NULL /* pEnmType */) == VERR_TRPM_NO_ACTIVE_TRAP);
|
---|
4024 |
|
---|
4025 | uint32_t const u32IntInfo = VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo;
|
---|
4026 | uint32_t const uVector = VMX_IDT_VECTORING_INFO_VECTOR(u32IntInfo);
|
---|
4027 | TRPMEVENT const enmTrapType = HMVmxEventTypeToTrpmEventType(u32IntInfo);
|
---|
4028 |
|
---|
4029 | Log4(("HM event->TRPM: uVector=%#x enmTrapType=%d\n", uVector, enmTrapType));
|
---|
4030 |
|
---|
4031 | int rc = TRPMAssertTrap(pVCpu, uVector, enmTrapType);
|
---|
4032 | AssertRC(rc);
|
---|
4033 |
|
---|
4034 | if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
|
---|
4035 | TRPMSetErrorCode(pVCpu, VCPU_2_VMXSTATE(pVCpu).Event.u32ErrCode);
|
---|
4036 |
|
---|
4037 | if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(u32IntInfo))
|
---|
4038 | TRPMSetFaultAddress(pVCpu, VCPU_2_VMXSTATE(pVCpu).Event.GCPtrFaultAddress);
|
---|
4039 | else
|
---|
4040 | {
|
---|
4041 | uint8_t const uVectorType = VMX_IDT_VECTORING_INFO_TYPE(u32IntInfo);
|
---|
4042 | switch (uVectorType)
|
---|
4043 | {
|
---|
4044 | case VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT:
|
---|
4045 | TRPMSetTrapDueToIcebp(pVCpu);
|
---|
4046 | RT_FALL_THRU();
|
---|
4047 | case VMX_IDT_VECTORING_INFO_TYPE_SW_INT:
|
---|
4048 | case VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT:
|
---|
4049 | {
|
---|
4050 | AssertMsg( uVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
|
---|
4051 | || ( uVector == X86_XCPT_BP /* INT3 */
|
---|
4052 | || uVector == X86_XCPT_OF /* INTO */
|
---|
4053 | || uVector == X86_XCPT_DB /* INT1 (ICEBP) */),
|
---|
4054 | ("Invalid vector: uVector=%#x uVectorType=%#x\n", uVector, uVectorType));
|
---|
4055 | TRPMSetInstrLength(pVCpu, VCPU_2_VMXSTATE(pVCpu).Event.cbInstr);
|
---|
4056 | break;
|
---|
4057 | }
|
---|
4058 | }
|
---|
4059 | }
|
---|
4060 |
|
---|
4061 | /* We're now done converting the pending event. */
|
---|
4062 | VCPU_2_VMXSTATE(pVCpu).Event.fPending = false;
|
---|
4063 | }
|
---|
4064 |
|
---|
4065 |
|
---|
4066 | /**
|
---|
4067 | * Sets the interrupt-window exiting control in the VMCS which instructs VT-x to
|
---|
4068 | * cause a VM-exit as soon as the guest is in a state to receive interrupts.
|
---|
4069 | *
|
---|
4070 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4071 | * @param pVmcsInfo The VMCS info. object.
|
---|
4072 | */
|
---|
4073 | static void vmxHCSetIntWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
4074 | {
|
---|
4075 | if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_INT_WINDOW_EXIT)
|
---|
4076 | {
|
---|
4077 | if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
|
---|
4078 | {
|
---|
4079 | pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_INT_WINDOW_EXIT;
|
---|
4080 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
4081 | AssertRC(rc);
|
---|
4082 | }
|
---|
4083 | } /* else we will deliver interrupts whenever the guest Vm-exits next and is in a state to receive the interrupt. */
|
---|
4084 | }
|
---|
4085 |
|
---|
4086 |
|
---|
4087 | /**
|
---|
4088 | * Clears the interrupt-window exiting control in the VMCS.
|
---|
4089 | *
|
---|
4090 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4091 | * @param pVmcsInfo The VMCS info. object.
|
---|
4092 | */
|
---|
4093 | DECLINLINE(void) vmxHCClearIntWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
4094 | {
|
---|
4095 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
|
---|
4096 | {
|
---|
4097 | pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_INT_WINDOW_EXIT;
|
---|
4098 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
4099 | AssertRC(rc);
|
---|
4100 | }
|
---|
4101 | }
|
---|
4102 |
|
---|
4103 |
|
---|
4104 | /**
|
---|
4105 | * Sets the NMI-window exiting control in the VMCS which instructs VT-x to
|
---|
4106 | * cause a VM-exit as soon as the guest is in a state to receive NMIs.
|
---|
4107 | *
|
---|
4108 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4109 | * @param pVmcsInfo The VMCS info. object.
|
---|
4110 | */
|
---|
4111 | static void vmxHCSetNmiWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
4112 | {
|
---|
4113 | if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
|
---|
4114 | {
|
---|
4115 | if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
|
---|
4116 | {
|
---|
4117 | pVmcsInfo->u32ProcCtls |= VMX_PROC_CTLS_NMI_WINDOW_EXIT;
|
---|
4118 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
4119 | AssertRC(rc);
|
---|
4120 | Log4Func(("Setup NMI-window exiting\n"));
|
---|
4121 | }
|
---|
4122 | } /* else we will deliver NMIs whenever we VM-exit next, even possibly nesting NMIs. Can't be helped on ancient CPUs. */
|
---|
4123 | }
|
---|
4124 |
|
---|
4125 |
|
---|
4126 | /**
|
---|
4127 | * Clears the NMI-window exiting control in the VMCS.
|
---|
4128 | *
|
---|
4129 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4130 | * @param pVmcsInfo The VMCS info. object.
|
---|
4131 | */
|
---|
4132 | DECLINLINE(void) vmxHCClearNmiWindowExitVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
|
---|
4133 | {
|
---|
4134 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
|
---|
4135 | {
|
---|
4136 | pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_NMI_WINDOW_EXIT;
|
---|
4137 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
4138 | AssertRC(rc);
|
---|
4139 | }
|
---|
4140 | }
|
---|
4141 |
|
---|
4142 |
|
---|
4143 | /**
|
---|
4144 | * Injects an event into the guest upon VM-entry by updating the relevant fields
|
---|
4145 | * in the VM-entry area in the VMCS.
|
---|
4146 | *
|
---|
4147 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
4148 | * @retval VINF_SUCCESS if the event is successfully injected into the VMCS.
|
---|
4149 | * @retval VINF_EM_RESET if event injection resulted in a triple-fault.
|
---|
4150 | *
|
---|
4151 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4152 | * @param pVmxTransient The VMX-transient structure.
|
---|
4153 | * @param pEvent The event being injected.
|
---|
4154 | * @param pfIntrState Pointer to the VT-x guest-interruptibility-state. This
|
---|
4155 | * will be updated if necessary. This cannot not be NULL.
|
---|
4156 | * @param fStepping Whether we're single-stepping guest execution and should
|
---|
4157 | * return VINF_EM_DBG_STEPPED if the event is injected
|
---|
4158 | * directly (registers modified by us, not by hardware on
|
---|
4159 | * VM-entry).
|
---|
4160 | */
|
---|
4161 | static VBOXSTRICTRC vmxHCInjectEventVmcs(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNestedGuest, PCHMEVENT pEvent, bool fStepping,
|
---|
4162 | uint32_t *pfIntrState)
|
---|
4163 | {
|
---|
4164 | /* Intel spec. 24.8.3 "VM-Entry Controls for Event Injection" specifies the interruption-information field to be 32-bits. */
|
---|
4165 | AssertMsg(!RT_HI_U32(pEvent->u64IntInfo), ("%#RX64\n", pEvent->u64IntInfo));
|
---|
4166 | Assert(pfIntrState);
|
---|
4167 |
|
---|
4168 | #ifdef IN_NEM_DARWIN
|
---|
4169 | RT_NOREF(fIsNestedGuest, fStepping, pfIntrState);
|
---|
4170 | #endif
|
---|
4171 |
|
---|
4172 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
4173 | uint32_t u32IntInfo = pEvent->u64IntInfo;
|
---|
4174 | uint32_t const u32ErrCode = pEvent->u32ErrCode;
|
---|
4175 | uint32_t const cbInstr = pEvent->cbInstr;
|
---|
4176 | RTGCUINTPTR const GCPtrFault = pEvent->GCPtrFaultAddress;
|
---|
4177 | uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(u32IntInfo);
|
---|
4178 | uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(u32IntInfo);
|
---|
4179 |
|
---|
4180 | #ifdef VBOX_STRICT
|
---|
4181 | /*
|
---|
4182 | * Validate the error-code-valid bit for hardware exceptions.
|
---|
4183 | * No error codes for exceptions in real-mode.
|
---|
4184 | *
|
---|
4185 | * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
|
---|
4186 | */
|
---|
4187 | if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
|
---|
4188 | && !CPUMIsGuestInRealModeEx(pCtx))
|
---|
4189 | {
|
---|
4190 | switch (uVector)
|
---|
4191 | {
|
---|
4192 | case X86_XCPT_PF:
|
---|
4193 | case X86_XCPT_DF:
|
---|
4194 | case X86_XCPT_TS:
|
---|
4195 | case X86_XCPT_NP:
|
---|
4196 | case X86_XCPT_SS:
|
---|
4197 | case X86_XCPT_GP:
|
---|
4198 | case X86_XCPT_AC:
|
---|
4199 | AssertMsg(VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo),
|
---|
4200 | ("Error-code-valid bit not set for exception that has an error code uVector=%#x\n", uVector));
|
---|
4201 | RT_FALL_THRU();
|
---|
4202 | default:
|
---|
4203 | break;
|
---|
4204 | }
|
---|
4205 | }
|
---|
4206 |
|
---|
4207 | /* Cannot inject an NMI when block-by-MOV SS is in effect. */
|
---|
4208 | Assert( uIntType != VMX_EXIT_INT_INFO_TYPE_NMI
|
---|
4209 | || !(*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
|
---|
4210 | #endif
|
---|
4211 |
|
---|
4212 | RT_NOREF(uVector);
|
---|
4213 | if ( uIntType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT
|
---|
4214 | || uIntType == VMX_EXIT_INT_INFO_TYPE_NMI
|
---|
4215 | || uIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT
|
---|
4216 | || uIntType == VMX_EXIT_INT_INFO_TYPE_SW_XCPT)
|
---|
4217 | {
|
---|
4218 | Assert(uVector <= X86_XCPT_LAST);
|
---|
4219 | Assert(uIntType != VMX_EXIT_INT_INFO_TYPE_NMI || uVector == X86_XCPT_NMI);
|
---|
4220 | Assert(uIntType != VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT || uVector == X86_XCPT_DB);
|
---|
4221 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).aStatInjectedXcpts[uVector]);
|
---|
4222 | }
|
---|
4223 | else
|
---|
4224 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).aStatInjectedIrqs[uVector & MASK_INJECT_IRQ_STAT]);
|
---|
4225 |
|
---|
4226 | /*
|
---|
4227 | * Hardware interrupts & exceptions cannot be delivered through the software interrupt
|
---|
4228 | * redirection bitmap to the real mode task in virtual-8086 mode. We must jump to the
|
---|
4229 | * interrupt handler in the (real-mode) guest.
|
---|
4230 | *
|
---|
4231 | * See Intel spec. 20.3 "Interrupt and Exception handling in Virtual-8086 Mode".
|
---|
4232 | * See Intel spec. 20.1.4 "Interrupt and Exception Handling" for real-mode interrupt handling.
|
---|
4233 | */
|
---|
4234 | if (CPUMIsGuestInRealModeEx(pCtx)) /* CR0.PE bit changes are always intercepted, so it's up to date. */
|
---|
4235 | {
|
---|
4236 | #ifndef IN_NEM_DARWIN
|
---|
4237 | if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUnrestrictedGuest)
|
---|
4238 | #endif
|
---|
4239 | {
|
---|
4240 | /*
|
---|
4241 | * For CPUs with unrestricted guest execution enabled and with the guest
|
---|
4242 | * in real-mode, we must not set the deliver-error-code bit.
|
---|
4243 | *
|
---|
4244 | * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
|
---|
4245 | */
|
---|
4246 | u32IntInfo &= ~VMX_ENTRY_INT_INFO_ERROR_CODE_VALID;
|
---|
4247 | }
|
---|
4248 | #ifndef IN_NEM_DARWIN
|
---|
4249 | else
|
---|
4250 | {
|
---|
4251 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4252 | Assert(PDMVmmDevHeapIsEnabled(pVM));
|
---|
4253 | Assert(pVM->hm.s.vmx.pRealModeTSS);
|
---|
4254 | Assert(!CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx));
|
---|
4255 |
|
---|
4256 | /* We require RIP, RSP, RFLAGS, CS, IDTR, import them. */
|
---|
4257 | int rc2 = vmxHCImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK
|
---|
4258 | | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_RFLAGS);
|
---|
4259 | AssertRCReturn(rc2, rc2);
|
---|
4260 |
|
---|
4261 | /* Check if the interrupt handler is present in the IVT (real-mode IDT). IDT limit is (4N - 1). */
|
---|
4262 | size_t const cbIdtEntry = sizeof(X86IDTR16);
|
---|
4263 | if (uVector * cbIdtEntry + (cbIdtEntry - 1) > pCtx->idtr.cbIdt)
|
---|
4264 | {
|
---|
4265 | /* If we are trying to inject a #DF with no valid IDT entry, return a triple-fault. */
|
---|
4266 | if (uVector == X86_XCPT_DF)
|
---|
4267 | return VINF_EM_RESET;
|
---|
4268 |
|
---|
4269 | /* If we're injecting a #GP with no valid IDT entry, inject a double-fault.
|
---|
4270 | No error codes for exceptions in real-mode. */
|
---|
4271 | if (uVector == X86_XCPT_GP)
|
---|
4272 | {
|
---|
4273 | uint32_t const uXcptDfInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DF)
|
---|
4274 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
|
---|
4275 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
|
---|
4276 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
4277 | HMEVENT EventXcptDf;
|
---|
4278 | RT_ZERO(EventXcptDf);
|
---|
4279 | EventXcptDf.u64IntInfo = uXcptDfInfo;
|
---|
4280 | return vmxHCInjectEventVmcs(pVCpu, pVmcsInfo, fIsNestedGuest, &EventXcptDf, fStepping, pfIntrState);
|
---|
4281 | }
|
---|
4282 |
|
---|
4283 | /*
|
---|
4284 | * If we're injecting an event with no valid IDT entry, inject a #GP.
|
---|
4285 | * No error codes for exceptions in real-mode.
|
---|
4286 | *
|
---|
4287 | * See Intel spec. 20.1.4 "Interrupt and Exception Handling"
|
---|
4288 | */
|
---|
4289 | uint32_t const uXcptGpInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_GP)
|
---|
4290 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
|
---|
4291 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID, 0)
|
---|
4292 | | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
|
---|
4293 | HMEVENT EventXcptGp;
|
---|
4294 | RT_ZERO(EventXcptGp);
|
---|
4295 | EventXcptGp.u64IntInfo = uXcptGpInfo;
|
---|
4296 | return vmxHCInjectEventVmcs(pVCpu, pVmcsInfo, fIsNestedGuest, &EventXcptGp, fStepping, pfIntrState);
|
---|
4297 | }
|
---|
4298 |
|
---|
4299 | /* Software exceptions (#BP and #OF exceptions thrown as a result of INT3 or INTO) */
|
---|
4300 | uint16_t uGuestIp = pCtx->ip;
|
---|
4301 | if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT)
|
---|
4302 | {
|
---|
4303 | Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF);
|
---|
4304 | /* #BP and #OF are both benign traps, we need to resume the next instruction. */
|
---|
4305 | uGuestIp = pCtx->ip + (uint16_t)cbInstr;
|
---|
4306 | }
|
---|
4307 | else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_SW_INT)
|
---|
4308 | uGuestIp = pCtx->ip + (uint16_t)cbInstr;
|
---|
4309 |
|
---|
4310 | /* Get the code segment selector and offset from the IDT entry for the interrupt handler. */
|
---|
4311 | X86IDTR16 IdtEntry;
|
---|
4312 | RTGCPHYS const GCPhysIdtEntry = (RTGCPHYS)pCtx->idtr.pIdt + uVector * cbIdtEntry;
|
---|
4313 | rc2 = PGMPhysSimpleReadGCPhys(pVM, &IdtEntry, GCPhysIdtEntry, cbIdtEntry);
|
---|
4314 | AssertRCReturn(rc2, rc2);
|
---|
4315 |
|
---|
4316 | /* Construct the stack frame for the interrupt/exception handler. */
|
---|
4317 | VBOXSTRICTRC rcStrict;
|
---|
4318 | rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->eflags.u32);
|
---|
4319 | if (rcStrict == VINF_SUCCESS)
|
---|
4320 | {
|
---|
4321 | rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, pCtx->cs.Sel);
|
---|
4322 | if (rcStrict == VINF_SUCCESS)
|
---|
4323 | rcStrict = hmR0VmxRealModeGuestStackPush(pVCpu, uGuestIp);
|
---|
4324 | }
|
---|
4325 |
|
---|
4326 | /* Clear the required eflag bits and jump to the interrupt/exception handler. */
|
---|
4327 | if (rcStrict == VINF_SUCCESS)
|
---|
4328 | {
|
---|
4329 | pCtx->eflags.u32 &= ~(X86_EFL_IF | X86_EFL_TF | X86_EFL_RF | X86_EFL_AC);
|
---|
4330 | pCtx->rip = IdtEntry.offSel;
|
---|
4331 | pCtx->cs.Sel = IdtEntry.uSel;
|
---|
4332 | pCtx->cs.ValidSel = IdtEntry.uSel;
|
---|
4333 | pCtx->cs.u64Base = IdtEntry.uSel << cbIdtEntry;
|
---|
4334 | if ( uIntType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
|
---|
4335 | && uVector == X86_XCPT_PF)
|
---|
4336 | pCtx->cr2 = GCPtrFault;
|
---|
4337 |
|
---|
4338 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_CS | HM_CHANGED_GUEST_CR2
|
---|
4339 | | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
|
---|
4340 | | HM_CHANGED_GUEST_RSP);
|
---|
4341 |
|
---|
4342 | /*
|
---|
4343 | * If we delivered a hardware exception (other than an NMI) and if there was
|
---|
4344 | * block-by-STI in effect, we should clear it.
|
---|
4345 | */
|
---|
4346 | if (*pfIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
|
---|
4347 | {
|
---|
4348 | Assert( uIntType != VMX_ENTRY_INT_INFO_TYPE_NMI
|
---|
4349 | && uIntType != VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
|
---|
4350 | Log4Func(("Clearing inhibition due to STI\n"));
|
---|
4351 | *pfIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
|
---|
4352 | }
|
---|
4353 |
|
---|
4354 | Log4(("Injected real-mode: u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x Eflags=%#x CS:EIP=%04x:%04x\n",
|
---|
4355 | u32IntInfo, u32ErrCode, cbInstr, pCtx->eflags.u, pCtx->cs.Sel, pCtx->eip));
|
---|
4356 |
|
---|
4357 | /*
|
---|
4358 | * The event has been truly dispatched to the guest. Mark it as no longer pending so
|
---|
4359 | * we don't attempt to undo it if we are returning to ring-3 before executing guest code.
|
---|
4360 | */
|
---|
4361 | VCPU_2_VMXSTATE(pVCpu).Event.fPending = false;
|
---|
4362 |
|
---|
4363 | /*
|
---|
4364 | * If we eventually support nested-guest execution without unrestricted guest execution,
|
---|
4365 | * we should set fInterceptEvents here.
|
---|
4366 | */
|
---|
4367 | Assert(!fIsNestedGuest);
|
---|
4368 |
|
---|
4369 | /* If we're stepping and we've changed cs:rip above, bail out of the VMX R0 execution loop. */
|
---|
4370 | if (fStepping)
|
---|
4371 | rcStrict = VINF_EM_DBG_STEPPED;
|
---|
4372 | }
|
---|
4373 | AssertMsg(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping),
|
---|
4374 | ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
4375 | return rcStrict;
|
---|
4376 | }
|
---|
4377 | #else
|
---|
4378 | RT_NOREF(pVmcsInfo);
|
---|
4379 | #endif
|
---|
4380 | }
|
---|
4381 |
|
---|
4382 | /*
|
---|
4383 | * Validate.
|
---|
4384 | */
|
---|
4385 | Assert(VMX_ENTRY_INT_INFO_IS_VALID(u32IntInfo)); /* Bit 31 (Valid bit) must be set by caller. */
|
---|
4386 | Assert(!(u32IntInfo & VMX_BF_ENTRY_INT_INFO_RSVD_12_30_MASK)); /* Bits 30:12 MBZ. */
|
---|
4387 |
|
---|
4388 | /*
|
---|
4389 | * Inject the event into the VMCS.
|
---|
4390 | */
|
---|
4391 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, u32IntInfo);
|
---|
4392 | if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(u32IntInfo))
|
---|
4393 | rc |= VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE, u32ErrCode);
|
---|
4394 | rc |= VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH, cbInstr);
|
---|
4395 | AssertRC(rc);
|
---|
4396 |
|
---|
4397 | /*
|
---|
4398 | * Update guest CR2 if this is a page-fault.
|
---|
4399 | */
|
---|
4400 | if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(u32IntInfo))
|
---|
4401 | pCtx->cr2 = GCPtrFault;
|
---|
4402 |
|
---|
4403 | Log4(("Injecting u32IntInfo=%#x u32ErrCode=%#x cbInstr=%#x CR2=%#RX64\n", u32IntInfo, u32ErrCode, cbInstr, pCtx->cr2));
|
---|
4404 | return VINF_SUCCESS;
|
---|
4405 | }
|
---|
4406 |
|
---|
4407 |
|
---|
4408 | /**
|
---|
4409 | * Evaluates the event to be delivered to the guest and sets it as the pending
|
---|
4410 | * event.
|
---|
4411 | *
|
---|
4412 | * Toggling of interrupt force-flags here is safe since we update TRPM on premature
|
---|
4413 | * exits to ring-3 before executing guest code, see vmxHCExitToRing3(). We must
|
---|
4414 | * NOT restore these force-flags.
|
---|
4415 | *
|
---|
4416 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
4417 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4418 | * @param pVmcsInfo The VMCS information structure.
|
---|
4419 | * @param fIsNestedGuest Flag whether the evaluation happens for a nestd guest.
|
---|
4420 | * @param pfIntrState Where to store the VT-x guest-interruptibility state.
|
---|
4421 | */
|
---|
4422 | static VBOXSTRICTRC vmxHCEvaluatePendingEvent(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNestedGuest, uint32_t *pfIntrState)
|
---|
4423 | {
|
---|
4424 | Assert(pfIntrState);
|
---|
4425 | Assert(!TRPMHasTrap(pVCpu));
|
---|
4426 |
|
---|
4427 | /*
|
---|
4428 | * Compute/update guest-interruptibility state related FFs.
|
---|
4429 | * The FFs will be used below while evaluating events to be injected.
|
---|
4430 | */
|
---|
4431 | *pfIntrState = vmxHCGetGuestIntrStateAndUpdateFFs(pVCpu);
|
---|
4432 |
|
---|
4433 | /*
|
---|
4434 | * Evaluate if a new event needs to be injected.
|
---|
4435 | * An event that's already pending has already performed all necessary checks.
|
---|
4436 | */
|
---|
4437 | if ( !VCPU_2_VMXSTATE(pVCpu).Event.fPending
|
---|
4438 | && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
4439 | {
|
---|
4440 | /** @todo SMI. SMIs take priority over NMIs. */
|
---|
4441 |
|
---|
4442 | /*
|
---|
4443 | * NMIs.
|
---|
4444 | * NMIs take priority over external interrupts.
|
---|
4445 | */
|
---|
4446 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4447 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
4448 | #endif
|
---|
4449 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
|
---|
4450 | {
|
---|
4451 | /*
|
---|
4452 | * For a guest, the FF always indicates the guest's ability to receive an NMI.
|
---|
4453 | *
|
---|
4454 | * For a nested-guest, the FF always indicates the outer guest's ability to
|
---|
4455 | * receive an NMI while the guest-interruptibility state bit depends on whether
|
---|
4456 | * the nested-hypervisor is using virtual-NMIs.
|
---|
4457 | */
|
---|
4458 | if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
4459 | {
|
---|
4460 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4461 | if ( fIsNestedGuest
|
---|
4462 | && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_NMI_EXIT))
|
---|
4463 | return IEMExecVmxVmexitXcptNmi(pVCpu);
|
---|
4464 | #endif
|
---|
4465 | vmxHCSetPendingXcptNmi(pVCpu);
|
---|
4466 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
|
---|
4467 | Log4Func(("NMI pending injection\n"));
|
---|
4468 |
|
---|
4469 | /* We've injected the NMI, bail. */
|
---|
4470 | return VINF_SUCCESS;
|
---|
4471 | }
|
---|
4472 | else if (!fIsNestedGuest)
|
---|
4473 | vmxHCSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
|
---|
4474 | }
|
---|
4475 |
|
---|
4476 | /*
|
---|
4477 | * External interrupts (PIC/APIC).
|
---|
4478 | * Once PDMGetInterrupt() returns a valid interrupt we -must- deliver it.
|
---|
4479 | * We cannot re-request the interrupt from the controller again.
|
---|
4480 | */
|
---|
4481 | if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
|
---|
4482 | && !VCPU_2_VMXSTATE(pVCpu).fSingleInstruction)
|
---|
4483 | {
|
---|
4484 | Assert(!DBGFIsStepping(pVCpu));
|
---|
4485 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RFLAGS);
|
---|
4486 | AssertRC(rc);
|
---|
4487 |
|
---|
4488 | /*
|
---|
4489 | * We must not check EFLAGS directly when executing a nested-guest, use
|
---|
4490 | * CPUMIsGuestPhysIntrEnabled() instead as EFLAGS.IF does not control the blocking of
|
---|
4491 | * external interrupts when "External interrupt exiting" is set. This fixes a nasty
|
---|
4492 | * SMP hang while executing nested-guest VCPUs on spinlocks which aren't rescued by
|
---|
4493 | * other VM-exits (like a preemption timer), see @bugref{9562#c18}.
|
---|
4494 | *
|
---|
4495 | * See Intel spec. 25.4.1 "Event Blocking".
|
---|
4496 | */
|
---|
4497 | if (CPUMIsGuestPhysIntrEnabled(pVCpu))
|
---|
4498 | {
|
---|
4499 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4500 | if ( fIsNestedGuest
|
---|
4501 | && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT))
|
---|
4502 | {
|
---|
4503 | VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, 0 /* uVector */, true /* fIntPending */);
|
---|
4504 | if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
|
---|
4505 | return rcStrict;
|
---|
4506 | }
|
---|
4507 | #endif
|
---|
4508 | uint8_t u8Interrupt;
|
---|
4509 | rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
|
---|
4510 | if (RT_SUCCESS(rc))
|
---|
4511 | {
|
---|
4512 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
4513 | if ( fIsNestedGuest
|
---|
4514 | && CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_EXT_INT_EXIT))
|
---|
4515 | {
|
---|
4516 | VBOXSTRICTRC rcStrict = IEMExecVmxVmexitExtInt(pVCpu, u8Interrupt, false /* fIntPending */);
|
---|
4517 | Assert(rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE);
|
---|
4518 | return rcStrict;
|
---|
4519 | }
|
---|
4520 | #endif
|
---|
4521 | vmxHCSetPendingExtInt(pVCpu, u8Interrupt);
|
---|
4522 | Log4Func(("External interrupt (%#x) pending injection\n", u8Interrupt));
|
---|
4523 | }
|
---|
4524 | else if (rc == VERR_APIC_INTR_MASKED_BY_TPR)
|
---|
4525 | {
|
---|
4526 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchTprMaskedIrq);
|
---|
4527 |
|
---|
4528 | if ( !fIsNestedGuest
|
---|
4529 | && (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
|
---|
4530 | vmxHCApicSetTprThreshold(pVCpu, pVmcsInfo, u8Interrupt >> 4);
|
---|
4531 | /* else: for nested-guests, TPR threshold is picked up while merging VMCS controls. */
|
---|
4532 |
|
---|
4533 | /*
|
---|
4534 | * If the CPU doesn't have TPR shadowing, we will always get a VM-exit on TPR changes and
|
---|
4535 | * APICSetTpr() will end up setting the VMCPU_FF_INTERRUPT_APIC if required, so there is no
|
---|
4536 | * need to re-set this force-flag here.
|
---|
4537 | */
|
---|
4538 | }
|
---|
4539 | else
|
---|
4540 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchGuestIrq);
|
---|
4541 |
|
---|
4542 | /* We've injected the interrupt or taken necessary action, bail. */
|
---|
4543 | return VINF_SUCCESS;
|
---|
4544 | }
|
---|
4545 | if (!fIsNestedGuest)
|
---|
4546 | vmxHCSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
|
---|
4547 | }
|
---|
4548 | }
|
---|
4549 | else if (!fIsNestedGuest)
|
---|
4550 | {
|
---|
4551 | /*
|
---|
4552 | * An event is being injected or we are in an interrupt shadow. Check if another event is
|
---|
4553 | * pending. If so, instruct VT-x to cause a VM-exit as soon as the guest is ready to accept
|
---|
4554 | * the pending event.
|
---|
4555 | */
|
---|
4556 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
|
---|
4557 | vmxHCSetNmiWindowExitVmcs(pVCpu, pVmcsInfo);
|
---|
4558 | else if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
|
---|
4559 | && !VCPU_2_VMXSTATE(pVCpu).fSingleInstruction)
|
---|
4560 | vmxHCSetIntWindowExitVmcs(pVCpu, pVmcsInfo);
|
---|
4561 | }
|
---|
4562 | /* else: for nested-guests, NMI/interrupt-window exiting will be picked up when merging VMCS controls. */
|
---|
4563 |
|
---|
4564 | return VINF_SUCCESS;
|
---|
4565 | }
|
---|
4566 |
|
---|
4567 |
|
---|
4568 | /**
|
---|
4569 | * Injects any pending events into the guest if the guest is in a state to
|
---|
4570 | * receive them.
|
---|
4571 | *
|
---|
4572 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
4573 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4574 | * @param fIsNestedGuest Flag whether the event injection happens for a nested guest.
|
---|
4575 | * @param fIntrState The VT-x guest-interruptibility state.
|
---|
4576 | * @param fStepping Whether we are single-stepping the guest using the
|
---|
4577 | * hypervisor debugger and should return
|
---|
4578 | * VINF_EM_DBG_STEPPED if the event was dispatched
|
---|
4579 | * directly.
|
---|
4580 | */
|
---|
4581 | static VBOXSTRICTRC vmxHCInjectPendingEvent(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, bool fIsNestedGuest, uint32_t fIntrState, bool fStepping)
|
---|
4582 | {
|
---|
4583 | HMVMX_ASSERT_PREEMPT_SAFE(pVCpu);
|
---|
4584 | #ifndef IN_NEM_DARWIN
|
---|
4585 | Assert(VMMRZCallRing3IsEnabled(pVCpu));
|
---|
4586 | #endif
|
---|
4587 |
|
---|
4588 | #ifdef VBOX_STRICT
|
---|
4589 | /*
|
---|
4590 | * Verify guest-interruptibility state.
|
---|
4591 | *
|
---|
4592 | * We put this in a scoped block so we do not accidentally use fBlockSti or fBlockMovSS,
|
---|
4593 | * since injecting an event may modify the interruptibility state and we must thus always
|
---|
4594 | * use fIntrState.
|
---|
4595 | */
|
---|
4596 | {
|
---|
4597 | bool const fBlockMovSS = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS);
|
---|
4598 | bool const fBlockSti = RT_BOOL(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI);
|
---|
4599 | Assert(!fBlockSti || !(ASMAtomicUoReadU64(&pVCpu->cpum.GstCtx.fExtrn) & CPUMCTX_EXTRN_RFLAGS));
|
---|
4600 | Assert(!fBlockSti || pVCpu->cpum.GstCtx.eflags.Bits.u1IF); /* Cannot set block-by-STI when interrupts are disabled. */
|
---|
4601 | Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI)); /* We don't support block-by-SMI yet.*/
|
---|
4602 | Assert(!TRPMHasTrap(pVCpu));
|
---|
4603 | NOREF(fBlockMovSS); NOREF(fBlockSti);
|
---|
4604 | }
|
---|
4605 | #endif
|
---|
4606 |
|
---|
4607 | VBOXSTRICTRC rcStrict = VINF_SUCCESS;
|
---|
4608 | if (VCPU_2_VMXSTATE(pVCpu).Event.fPending)
|
---|
4609 | {
|
---|
4610 | /*
|
---|
4611 | * Do -not- clear any interrupt-window exiting control here. We might have an interrupt
|
---|
4612 | * pending even while injecting an event and in this case, we want a VM-exit as soon as
|
---|
4613 | * the guest is ready for the next interrupt, see @bugref{6208#c45}.
|
---|
4614 | *
|
---|
4615 | * See Intel spec. 26.6.5 "Interrupt-Window Exiting and Virtual-Interrupt Delivery".
|
---|
4616 | */
|
---|
4617 | uint32_t const uIntType = VMX_ENTRY_INT_INFO_TYPE(VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo);
|
---|
4618 | #ifdef VBOX_STRICT
|
---|
4619 | if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
|
---|
4620 | {
|
---|
4621 | Assert(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_IF);
|
---|
4622 | Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI));
|
---|
4623 | Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
|
---|
4624 | }
|
---|
4625 | else if (uIntType == VMX_ENTRY_INT_INFO_TYPE_NMI)
|
---|
4626 | {
|
---|
4627 | Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI));
|
---|
4628 | Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI));
|
---|
4629 | Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
|
---|
4630 | }
|
---|
4631 | #endif
|
---|
4632 | Log4(("Injecting pending event vcpu[%RU32] u64IntInfo=%#RX64 Type=%#RX32\n", pVCpu->idCpu, VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo,
|
---|
4633 | uIntType));
|
---|
4634 |
|
---|
4635 | /*
|
---|
4636 | * Inject the event and get any changes to the guest-interruptibility state.
|
---|
4637 | *
|
---|
4638 | * The guest-interruptibility state may need to be updated if we inject the event
|
---|
4639 | * into the guest IDT ourselves (for real-on-v86 guest injecting software interrupts).
|
---|
4640 | */
|
---|
4641 | rcStrict = vmxHCInjectEventVmcs(pVCpu, pVmcsInfo, fIsNestedGuest, &VCPU_2_VMXSTATE(pVCpu).Event, fStepping, &fIntrState);
|
---|
4642 | AssertRCReturn(VBOXSTRICTRC_VAL(rcStrict), rcStrict);
|
---|
4643 |
|
---|
4644 | if (uIntType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
|
---|
4645 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectInterrupt);
|
---|
4646 | else
|
---|
4647 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectXcpt);
|
---|
4648 | }
|
---|
4649 |
|
---|
4650 | /*
|
---|
4651 | * Deliver any pending debug exceptions if the guest is single-stepping using EFLAGS.TF and
|
---|
4652 | * is an interrupt shadow (block-by-STI or block-by-MOV SS).
|
---|
4653 | */
|
---|
4654 | if ( (fIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
|
---|
4655 | && !fIsNestedGuest)
|
---|
4656 | {
|
---|
4657 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS);
|
---|
4658 |
|
---|
4659 | if (!VCPU_2_VMXSTATE(pVCpu).fSingleInstruction)
|
---|
4660 | {
|
---|
4661 | /*
|
---|
4662 | * Set or clear the BS bit depending on whether the trap flag is active or not. We need
|
---|
4663 | * to do both since we clear the BS bit from the VMCS while exiting to ring-3.
|
---|
4664 | */
|
---|
4665 | Assert(!DBGFIsStepping(pVCpu));
|
---|
4666 | uint8_t const fTrapFlag = !!(pVCpu->cpum.GstCtx.eflags.u32 & X86_EFL_TF);
|
---|
4667 | int rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, fTrapFlag << VMX_BF_VMCS_PENDING_DBG_XCPT_BS_SHIFT);
|
---|
4668 | AssertRC(rc);
|
---|
4669 | }
|
---|
4670 | else
|
---|
4671 | {
|
---|
4672 | /*
|
---|
4673 | * We must not deliver a debug exception when single-stepping over STI/Mov-SS in the
|
---|
4674 | * hypervisor debugger using EFLAGS.TF but rather clear interrupt inhibition. However,
|
---|
4675 | * we take care of this case in vmxHCExportSharedDebugState and also the case if
|
---|
4676 | * we use MTF, so just make sure it's called before executing guest-code.
|
---|
4677 | */
|
---|
4678 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_DR_MASK);
|
---|
4679 | }
|
---|
4680 | }
|
---|
4681 | /* else: for nested-guest currently handling while merging controls. */
|
---|
4682 |
|
---|
4683 | /*
|
---|
4684 | * Finally, update the guest-interruptibility state.
|
---|
4685 | *
|
---|
4686 | * This is required for the real-on-v86 software interrupt injection, for
|
---|
4687 | * pending debug exceptions as well as updates to the guest state from ring-3 (IEM).
|
---|
4688 | */
|
---|
4689 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, fIntrState);
|
---|
4690 | AssertRC(rc);
|
---|
4691 |
|
---|
4692 | /*
|
---|
4693 | * There's no need to clear the VM-entry interruption-information field here if we're not
|
---|
4694 | * injecting anything. VT-x clears the valid bit on every VM-exit.
|
---|
4695 | *
|
---|
4696 | * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
|
---|
4697 | */
|
---|
4698 |
|
---|
4699 | Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fStepping));
|
---|
4700 | return rcStrict;
|
---|
4701 | }
|
---|
4702 |
|
---|
4703 |
|
---|
4704 | /**
|
---|
4705 | * Tries to determine what part of the guest-state VT-x has deemed as invalid
|
---|
4706 | * and update error record fields accordingly.
|
---|
4707 | *
|
---|
4708 | * @returns VMX_IGS_* error codes.
|
---|
4709 | * @retval VMX_IGS_REASON_NOT_FOUND if this function could not find anything
|
---|
4710 | * wrong with the guest state.
|
---|
4711 | *
|
---|
4712 | * @param pVCpu The cross context virtual CPU structure.
|
---|
4713 | * @param pVmcsInfo The VMCS info. object.
|
---|
4714 | *
|
---|
4715 | * @remarks This function assumes our cache of the VMCS controls
|
---|
4716 | * are valid, i.e. vmxHCCheckCachedVmcsCtls() succeeded.
|
---|
4717 | */
|
---|
4718 | static uint32_t vmxHCCheckGuestState(PVMCPUCC pVCpu, PCVMXVMCSINFO pVmcsInfo)
|
---|
4719 | {
|
---|
4720 | #define HMVMX_ERROR_BREAK(err) { uError = (err); break; }
|
---|
4721 | #define HMVMX_CHECK_BREAK(expr, err) do { \
|
---|
4722 | if (!(expr)) { uError = (err); break; } \
|
---|
4723 | } while (0)
|
---|
4724 |
|
---|
4725 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
4726 | uint32_t uError = VMX_IGS_ERROR;
|
---|
4727 | uint32_t u32IntrState = 0;
|
---|
4728 | #ifndef IN_NEM_DARWIN
|
---|
4729 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
4730 | bool const fUnrestrictedGuest = VM_IS_VMX_UNRESTRICTED_GUEST(pVM);
|
---|
4731 | #else
|
---|
4732 | bool const fUnrestrictedGuest = true;
|
---|
4733 | #endif
|
---|
4734 | do
|
---|
4735 | {
|
---|
4736 | int rc;
|
---|
4737 |
|
---|
4738 | /*
|
---|
4739 | * Guest-interruptibility state.
|
---|
4740 | *
|
---|
4741 | * Read this first so that any check that fails prior to those that actually
|
---|
4742 | * require the guest-interruptibility state would still reflect the correct
|
---|
4743 | * VMCS value and avoids causing further confusion.
|
---|
4744 | */
|
---|
4745 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &u32IntrState);
|
---|
4746 | AssertRC(rc);
|
---|
4747 |
|
---|
4748 | uint32_t u32Val;
|
---|
4749 | uint64_t u64Val;
|
---|
4750 |
|
---|
4751 | /*
|
---|
4752 | * CR0.
|
---|
4753 | */
|
---|
4754 | /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */
|
---|
4755 | uint64_t fSetCr0 = (g_HmMsrs.u.vmx.u64Cr0Fixed0 & g_HmMsrs.u.vmx.u64Cr0Fixed1);
|
---|
4756 | uint64_t const fZapCr0 = (g_HmMsrs.u.vmx.u64Cr0Fixed0 | g_HmMsrs.u.vmx.u64Cr0Fixed1);
|
---|
4757 | /* Exceptions for unrestricted guest execution for CR0 fixed bits (PE, PG).
|
---|
4758 | See Intel spec. 26.3.1 "Checks on Guest Control Registers, Debug Registers and MSRs." */
|
---|
4759 | if (fUnrestrictedGuest)
|
---|
4760 | fSetCr0 &= ~(uint64_t)(X86_CR0_PE | X86_CR0_PG);
|
---|
4761 |
|
---|
4762 | uint64_t u64GuestCr0;
|
---|
4763 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR0, &u64GuestCr0);
|
---|
4764 | AssertRC(rc);
|
---|
4765 | HMVMX_CHECK_BREAK((u64GuestCr0 & fSetCr0) == fSetCr0, VMX_IGS_CR0_FIXED1);
|
---|
4766 | HMVMX_CHECK_BREAK(!(u64GuestCr0 & ~fZapCr0), VMX_IGS_CR0_FIXED0);
|
---|
4767 | if ( !fUnrestrictedGuest
|
---|
4768 | && (u64GuestCr0 & X86_CR0_PG)
|
---|
4769 | && !(u64GuestCr0 & X86_CR0_PE))
|
---|
4770 | HMVMX_ERROR_BREAK(VMX_IGS_CR0_PG_PE_COMBO);
|
---|
4771 |
|
---|
4772 | /*
|
---|
4773 | * CR4.
|
---|
4774 | */
|
---|
4775 | /** @todo Why do we need to OR and AND the fixed-0 and fixed-1 bits below? */
|
---|
4776 | uint64_t const fSetCr4 = (g_HmMsrs.u.vmx.u64Cr4Fixed0 & g_HmMsrs.u.vmx.u64Cr4Fixed1);
|
---|
4777 | uint64_t const fZapCr4 = (g_HmMsrs.u.vmx.u64Cr4Fixed0 | g_HmMsrs.u.vmx.u64Cr4Fixed1);
|
---|
4778 |
|
---|
4779 | uint64_t u64GuestCr4;
|
---|
4780 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR4, &u64GuestCr4);
|
---|
4781 | AssertRC(rc);
|
---|
4782 | HMVMX_CHECK_BREAK((u64GuestCr4 & fSetCr4) == fSetCr4, VMX_IGS_CR4_FIXED1);
|
---|
4783 | HMVMX_CHECK_BREAK(!(u64GuestCr4 & ~fZapCr4), VMX_IGS_CR4_FIXED0);
|
---|
4784 |
|
---|
4785 | /*
|
---|
4786 | * IA32_DEBUGCTL MSR.
|
---|
4787 | */
|
---|
4788 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_DEBUGCTL_FULL, &u64Val);
|
---|
4789 | AssertRC(rc);
|
---|
4790 | if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
|
---|
4791 | && (u64Val & 0xfffffe3c)) /* Bits 31:9, bits 5:2 MBZ. */
|
---|
4792 | {
|
---|
4793 | HMVMX_ERROR_BREAK(VMX_IGS_DEBUGCTL_MSR_RESERVED);
|
---|
4794 | }
|
---|
4795 | uint64_t u64DebugCtlMsr = u64Val;
|
---|
4796 |
|
---|
4797 | #ifdef VBOX_STRICT
|
---|
4798 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &u32Val);
|
---|
4799 | AssertRC(rc);
|
---|
4800 | Assert(u32Val == pVmcsInfo->u32EntryCtls);
|
---|
4801 | #endif
|
---|
4802 | bool const fLongModeGuest = RT_BOOL(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
|
---|
4803 |
|
---|
4804 | /*
|
---|
4805 | * RIP and RFLAGS.
|
---|
4806 | */
|
---|
4807 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RIP, &u64Val);
|
---|
4808 | AssertRC(rc);
|
---|
4809 | /* pCtx->rip can be different than the one in the VMCS (e.g. run guest code and VM-exits that don't update it). */
|
---|
4810 | if ( !fLongModeGuest
|
---|
4811 | || !pCtx->cs.Attr.n.u1Long)
|
---|
4812 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffff00000000)), VMX_IGS_LONGMODE_RIP_INVALID);
|
---|
4813 | /** @todo If the processor supports N < 64 linear-address bits, bits 63:N
|
---|
4814 | * must be identical if the "IA-32e mode guest" VM-entry
|
---|
4815 | * control is 1 and CS.L is 1. No check applies if the
|
---|
4816 | * CPU supports 64 linear-address bits. */
|
---|
4817 |
|
---|
4818 | /* Flags in pCtx can be different (real-on-v86 for instance). We are only concerned about the VMCS contents here. */
|
---|
4819 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_RFLAGS, &u64Val);
|
---|
4820 | AssertRC(rc);
|
---|
4821 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffc08028)), /* Bit 63:22, Bit 15, 5, 3 MBZ. */
|
---|
4822 | VMX_IGS_RFLAGS_RESERVED);
|
---|
4823 | HMVMX_CHECK_BREAK((u64Val & X86_EFL_RA1_MASK), VMX_IGS_RFLAGS_RESERVED1); /* Bit 1 MB1. */
|
---|
4824 | uint32_t const u32Eflags = u64Val;
|
---|
4825 |
|
---|
4826 | if ( fLongModeGuest
|
---|
4827 | || ( fUnrestrictedGuest
|
---|
4828 | && !(u64GuestCr0 & X86_CR0_PE)))
|
---|
4829 | {
|
---|
4830 | HMVMX_CHECK_BREAK(!(u32Eflags & X86_EFL_VM), VMX_IGS_RFLAGS_VM_INVALID);
|
---|
4831 | }
|
---|
4832 |
|
---|
4833 | uint32_t u32EntryInfo;
|
---|
4834 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, &u32EntryInfo);
|
---|
4835 | AssertRC(rc);
|
---|
4836 | if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo))
|
---|
4837 | HMVMX_CHECK_BREAK(u32Eflags & X86_EFL_IF, VMX_IGS_RFLAGS_IF_INVALID);
|
---|
4838 |
|
---|
4839 | /*
|
---|
4840 | * 64-bit checks.
|
---|
4841 | */
|
---|
4842 | if (fLongModeGuest)
|
---|
4843 | {
|
---|
4844 | HMVMX_CHECK_BREAK(u64GuestCr0 & X86_CR0_PG, VMX_IGS_CR0_PG_LONGMODE);
|
---|
4845 | HMVMX_CHECK_BREAK(u64GuestCr4 & X86_CR4_PAE, VMX_IGS_CR4_PAE_LONGMODE);
|
---|
4846 | }
|
---|
4847 |
|
---|
4848 | if ( !fLongModeGuest
|
---|
4849 | && (u64GuestCr4 & X86_CR4_PCIDE))
|
---|
4850 | HMVMX_ERROR_BREAK(VMX_IGS_CR4_PCIDE);
|
---|
4851 |
|
---|
4852 | /** @todo CR3 field must be such that bits 63:52 and bits in the range
|
---|
4853 | * 51:32 beyond the processor's physical-address width are 0. */
|
---|
4854 |
|
---|
4855 | if ( (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
|
---|
4856 | && (pCtx->dr[7] & X86_DR7_MBZ_MASK))
|
---|
4857 | HMVMX_ERROR_BREAK(VMX_IGS_DR7_RESERVED);
|
---|
4858 |
|
---|
4859 | #ifndef IN_NEM_DARWIN
|
---|
4860 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_HOST_SYSENTER_ESP, &u64Val);
|
---|
4861 | AssertRC(rc);
|
---|
4862 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_ESP_NOT_CANONICAL);
|
---|
4863 |
|
---|
4864 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_HOST_SYSENTER_EIP, &u64Val);
|
---|
4865 | AssertRC(rc);
|
---|
4866 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_SYSENTER_EIP_NOT_CANONICAL);
|
---|
4867 | #endif
|
---|
4868 |
|
---|
4869 | /*
|
---|
4870 | * PERF_GLOBAL MSR.
|
---|
4871 | */
|
---|
4872 | if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR)
|
---|
4873 | {
|
---|
4874 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PERF_GLOBAL_CTRL_FULL, &u64Val);
|
---|
4875 | AssertRC(rc);
|
---|
4876 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffff8fffffffc)),
|
---|
4877 | VMX_IGS_PERF_GLOBAL_MSR_RESERVED); /* Bits 63:35, bits 31:2 MBZ. */
|
---|
4878 | }
|
---|
4879 |
|
---|
4880 | /*
|
---|
4881 | * PAT MSR.
|
---|
4882 | */
|
---|
4883 | if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
|
---|
4884 | {
|
---|
4885 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PAT_FULL, &u64Val);
|
---|
4886 | AssertRC(rc);
|
---|
4887 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0x707070707070707)), VMX_IGS_PAT_MSR_RESERVED);
|
---|
4888 | for (unsigned i = 0; i < 8; i++)
|
---|
4889 | {
|
---|
4890 | uint8_t u8Val = (u64Val & 0xff);
|
---|
4891 | if ( u8Val != 0 /* UC */
|
---|
4892 | && u8Val != 1 /* WC */
|
---|
4893 | && u8Val != 4 /* WT */
|
---|
4894 | && u8Val != 5 /* WP */
|
---|
4895 | && u8Val != 6 /* WB */
|
---|
4896 | && u8Val != 7 /* UC- */)
|
---|
4897 | HMVMX_ERROR_BREAK(VMX_IGS_PAT_MSR_INVALID);
|
---|
4898 | u64Val >>= 8;
|
---|
4899 | }
|
---|
4900 | }
|
---|
4901 |
|
---|
4902 | /*
|
---|
4903 | * EFER MSR.
|
---|
4904 | */
|
---|
4905 | if (pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
|
---|
4906 | {
|
---|
4907 | Assert(g_fHmVmxSupportsVmcsEfer);
|
---|
4908 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_EFER_FULL, &u64Val);
|
---|
4909 | AssertRC(rc);
|
---|
4910 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xfffffffffffff2fe)),
|
---|
4911 | VMX_IGS_EFER_MSR_RESERVED); /* Bits 63:12, bit 9, bits 7:1 MBZ. */
|
---|
4912 | HMVMX_CHECK_BREAK(RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL( pVmcsInfo->u32EntryCtls
|
---|
4913 | & VMX_ENTRY_CTLS_IA32E_MODE_GUEST),
|
---|
4914 | VMX_IGS_EFER_LMA_GUEST_MODE_MISMATCH);
|
---|
4915 | /** @todo r=ramshankar: Unrestricted check here is probably wrong, see
|
---|
4916 | * iemVmxVmentryCheckGuestState(). */
|
---|
4917 | HMVMX_CHECK_BREAK( fUnrestrictedGuest
|
---|
4918 | || !(u64GuestCr0 & X86_CR0_PG)
|
---|
4919 | || RT_BOOL(u64Val & MSR_K6_EFER_LMA) == RT_BOOL(u64Val & MSR_K6_EFER_LME),
|
---|
4920 | VMX_IGS_EFER_LMA_LME_MISMATCH);
|
---|
4921 | }
|
---|
4922 |
|
---|
4923 | /*
|
---|
4924 | * Segment registers.
|
---|
4925 | */
|
---|
4926 | HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
|
---|
4927 | || !(pCtx->ldtr.Sel & X86_SEL_LDT), VMX_IGS_LDTR_TI_INVALID);
|
---|
4928 | if (!(u32Eflags & X86_EFL_VM))
|
---|
4929 | {
|
---|
4930 | /* CS */
|
---|
4931 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1Present, VMX_IGS_CS_ATTR_P_INVALID);
|
---|
4932 | HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xf00), VMX_IGS_CS_ATTR_RESERVED);
|
---|
4933 | HMVMX_CHECK_BREAK(!(pCtx->cs.Attr.u & 0xfffe0000), VMX_IGS_CS_ATTR_RESERVED);
|
---|
4934 | HMVMX_CHECK_BREAK( (pCtx->cs.u32Limit & 0xfff) == 0xfff
|
---|
4935 | || !(pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
|
---|
4936 | HMVMX_CHECK_BREAK( !(pCtx->cs.u32Limit & 0xfff00000)
|
---|
4937 | || (pCtx->cs.Attr.n.u1Granularity), VMX_IGS_CS_ATTR_G_INVALID);
|
---|
4938 | /* CS cannot be loaded with NULL in protected mode. */
|
---|
4939 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.u && !(pCtx->cs.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_CS_ATTR_UNUSABLE);
|
---|
4940 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u1DescType, VMX_IGS_CS_ATTR_S_INVALID);
|
---|
4941 | if (pCtx->cs.Attr.n.u4Type == 9 || pCtx->cs.Attr.n.u4Type == 11)
|
---|
4942 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_UNEQUAL);
|
---|
4943 | else if (pCtx->cs.Attr.n.u4Type == 13 || pCtx->cs.Attr.n.u4Type == 15)
|
---|
4944 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl <= pCtx->ss.Attr.n.u2Dpl, VMX_IGS_CS_SS_ATTR_DPL_MISMATCH);
|
---|
4945 | else if (fUnrestrictedGuest && pCtx->cs.Attr.n.u4Type == 3)
|
---|
4946 | HMVMX_CHECK_BREAK(pCtx->cs.Attr.n.u2Dpl == 0, VMX_IGS_CS_ATTR_DPL_INVALID);
|
---|
4947 | else
|
---|
4948 | HMVMX_ERROR_BREAK(VMX_IGS_CS_ATTR_TYPE_INVALID);
|
---|
4949 |
|
---|
4950 | /* SS */
|
---|
4951 | HMVMX_CHECK_BREAK( fUnrestrictedGuest
|
---|
4952 | || (pCtx->ss.Sel & X86_SEL_RPL) == (pCtx->cs.Sel & X86_SEL_RPL), VMX_IGS_SS_CS_RPL_UNEQUAL);
|
---|
4953 | HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u2Dpl == (pCtx->ss.Sel & X86_SEL_RPL), VMX_IGS_SS_ATTR_DPL_RPL_UNEQUAL);
|
---|
4954 | if ( !(pCtx->cr0 & X86_CR0_PE)
|
---|
4955 | || pCtx->cs.Attr.n.u4Type == 3)
|
---|
4956 | HMVMX_CHECK_BREAK(!pCtx->ss.Attr.n.u2Dpl, VMX_IGS_SS_ATTR_DPL_INVALID);
|
---|
4957 |
|
---|
4958 | if (!(pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
4959 | {
|
---|
4960 | HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u4Type == 3 || pCtx->ss.Attr.n.u4Type == 7, VMX_IGS_SS_ATTR_TYPE_INVALID);
|
---|
4961 | HMVMX_CHECK_BREAK(pCtx->ss.Attr.n.u1Present, VMX_IGS_SS_ATTR_P_INVALID);
|
---|
4962 | HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xf00), VMX_IGS_SS_ATTR_RESERVED);
|
---|
4963 | HMVMX_CHECK_BREAK(!(pCtx->ss.Attr.u & 0xfffe0000), VMX_IGS_SS_ATTR_RESERVED);
|
---|
4964 | HMVMX_CHECK_BREAK( (pCtx->ss.u32Limit & 0xfff) == 0xfff
|
---|
4965 | || !(pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
|
---|
4966 | HMVMX_CHECK_BREAK( !(pCtx->ss.u32Limit & 0xfff00000)
|
---|
4967 | || (pCtx->ss.Attr.n.u1Granularity), VMX_IGS_SS_ATTR_G_INVALID);
|
---|
4968 | }
|
---|
4969 |
|
---|
4970 | /* DS, ES, FS, GS - only check for usable selectors, see vmxHCExportGuestSReg(). */
|
---|
4971 | if (!(pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
4972 | {
|
---|
4973 | HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_DS_ATTR_A_INVALID);
|
---|
4974 | HMVMX_CHECK_BREAK(pCtx->ds.Attr.n.u1Present, VMX_IGS_DS_ATTR_P_INVALID);
|
---|
4975 | HMVMX_CHECK_BREAK( fUnrestrictedGuest
|
---|
4976 | || pCtx->ds.Attr.n.u4Type > 11
|
---|
4977 | || pCtx->ds.Attr.n.u2Dpl >= (pCtx->ds.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
|
---|
4978 | HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xf00), VMX_IGS_DS_ATTR_RESERVED);
|
---|
4979 | HMVMX_CHECK_BREAK(!(pCtx->ds.Attr.u & 0xfffe0000), VMX_IGS_DS_ATTR_RESERVED);
|
---|
4980 | HMVMX_CHECK_BREAK( (pCtx->ds.u32Limit & 0xfff) == 0xfff
|
---|
4981 | || !(pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
|
---|
4982 | HMVMX_CHECK_BREAK( !(pCtx->ds.u32Limit & 0xfff00000)
|
---|
4983 | || (pCtx->ds.Attr.n.u1Granularity), VMX_IGS_DS_ATTR_G_INVALID);
|
---|
4984 | HMVMX_CHECK_BREAK( !(pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
4985 | || (pCtx->ds.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_DS_ATTR_TYPE_INVALID);
|
---|
4986 | }
|
---|
4987 | if (!(pCtx->es.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
4988 | {
|
---|
4989 | HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_ES_ATTR_A_INVALID);
|
---|
4990 | HMVMX_CHECK_BREAK(pCtx->es.Attr.n.u1Present, VMX_IGS_ES_ATTR_P_INVALID);
|
---|
4991 | HMVMX_CHECK_BREAK( fUnrestrictedGuest
|
---|
4992 | || pCtx->es.Attr.n.u4Type > 11
|
---|
4993 | || pCtx->es.Attr.n.u2Dpl >= (pCtx->es.Sel & X86_SEL_RPL), VMX_IGS_DS_ATTR_DPL_RPL_UNEQUAL);
|
---|
4994 | HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xf00), VMX_IGS_ES_ATTR_RESERVED);
|
---|
4995 | HMVMX_CHECK_BREAK(!(pCtx->es.Attr.u & 0xfffe0000), VMX_IGS_ES_ATTR_RESERVED);
|
---|
4996 | HMVMX_CHECK_BREAK( (pCtx->es.u32Limit & 0xfff) == 0xfff
|
---|
4997 | || !(pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
|
---|
4998 | HMVMX_CHECK_BREAK( !(pCtx->es.u32Limit & 0xfff00000)
|
---|
4999 | || (pCtx->es.Attr.n.u1Granularity), VMX_IGS_ES_ATTR_G_INVALID);
|
---|
5000 | HMVMX_CHECK_BREAK( !(pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
5001 | || (pCtx->es.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_ES_ATTR_TYPE_INVALID);
|
---|
5002 | }
|
---|
5003 | if (!(pCtx->fs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
5004 | {
|
---|
5005 | HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_FS_ATTR_A_INVALID);
|
---|
5006 | HMVMX_CHECK_BREAK(pCtx->fs.Attr.n.u1Present, VMX_IGS_FS_ATTR_P_INVALID);
|
---|
5007 | HMVMX_CHECK_BREAK( fUnrestrictedGuest
|
---|
5008 | || pCtx->fs.Attr.n.u4Type > 11
|
---|
5009 | || pCtx->fs.Attr.n.u2Dpl >= (pCtx->fs.Sel & X86_SEL_RPL), VMX_IGS_FS_ATTR_DPL_RPL_UNEQUAL);
|
---|
5010 | HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xf00), VMX_IGS_FS_ATTR_RESERVED);
|
---|
5011 | HMVMX_CHECK_BREAK(!(pCtx->fs.Attr.u & 0xfffe0000), VMX_IGS_FS_ATTR_RESERVED);
|
---|
5012 | HMVMX_CHECK_BREAK( (pCtx->fs.u32Limit & 0xfff) == 0xfff
|
---|
5013 | || !(pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
|
---|
5014 | HMVMX_CHECK_BREAK( !(pCtx->fs.u32Limit & 0xfff00000)
|
---|
5015 | || (pCtx->fs.Attr.n.u1Granularity), VMX_IGS_FS_ATTR_G_INVALID);
|
---|
5016 | HMVMX_CHECK_BREAK( !(pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
5017 | || (pCtx->fs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_FS_ATTR_TYPE_INVALID);
|
---|
5018 | }
|
---|
5019 | if (!(pCtx->gs.Attr.u & X86DESCATTR_UNUSABLE))
|
---|
5020 | {
|
---|
5021 | HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_ACCESSED, VMX_IGS_GS_ATTR_A_INVALID);
|
---|
5022 | HMVMX_CHECK_BREAK(pCtx->gs.Attr.n.u1Present, VMX_IGS_GS_ATTR_P_INVALID);
|
---|
5023 | HMVMX_CHECK_BREAK( fUnrestrictedGuest
|
---|
5024 | || pCtx->gs.Attr.n.u4Type > 11
|
---|
5025 | || pCtx->gs.Attr.n.u2Dpl >= (pCtx->gs.Sel & X86_SEL_RPL), VMX_IGS_GS_ATTR_DPL_RPL_UNEQUAL);
|
---|
5026 | HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xf00), VMX_IGS_GS_ATTR_RESERVED);
|
---|
5027 | HMVMX_CHECK_BREAK(!(pCtx->gs.Attr.u & 0xfffe0000), VMX_IGS_GS_ATTR_RESERVED);
|
---|
5028 | HMVMX_CHECK_BREAK( (pCtx->gs.u32Limit & 0xfff) == 0xfff
|
---|
5029 | || !(pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
|
---|
5030 | HMVMX_CHECK_BREAK( !(pCtx->gs.u32Limit & 0xfff00000)
|
---|
5031 | || (pCtx->gs.Attr.n.u1Granularity), VMX_IGS_GS_ATTR_G_INVALID);
|
---|
5032 | HMVMX_CHECK_BREAK( !(pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_CODE)
|
---|
5033 | || (pCtx->gs.Attr.n.u4Type & X86_SEL_TYPE_READ), VMX_IGS_GS_ATTR_TYPE_INVALID);
|
---|
5034 | }
|
---|
5035 | /* 64-bit capable CPUs. */
|
---|
5036 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
|
---|
5037 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
|
---|
5038 | HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
|
---|
5039 | || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
|
---|
5040 | HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
|
---|
5041 | HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
|
---|
5042 | VMX_IGS_LONGMODE_SS_BASE_INVALID);
|
---|
5043 | HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
|
---|
5044 | VMX_IGS_LONGMODE_DS_BASE_INVALID);
|
---|
5045 | HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
|
---|
5046 | VMX_IGS_LONGMODE_ES_BASE_INVALID);
|
---|
5047 | }
|
---|
5048 | else
|
---|
5049 | {
|
---|
5050 | /* V86 mode checks. */
|
---|
5051 | uint32_t u32CSAttr, u32SSAttr, u32DSAttr, u32ESAttr, u32FSAttr, u32GSAttr;
|
---|
5052 | if (pVmcsInfo->pShared->RealMode.fRealOnV86Active)
|
---|
5053 | {
|
---|
5054 | u32CSAttr = 0xf3; u32SSAttr = 0xf3;
|
---|
5055 | u32DSAttr = 0xf3; u32ESAttr = 0xf3;
|
---|
5056 | u32FSAttr = 0xf3; u32GSAttr = 0xf3;
|
---|
5057 | }
|
---|
5058 | else
|
---|
5059 | {
|
---|
5060 | u32CSAttr = pCtx->cs.Attr.u; u32SSAttr = pCtx->ss.Attr.u;
|
---|
5061 | u32DSAttr = pCtx->ds.Attr.u; u32ESAttr = pCtx->es.Attr.u;
|
---|
5062 | u32FSAttr = pCtx->fs.Attr.u; u32GSAttr = pCtx->gs.Attr.u;
|
---|
5063 | }
|
---|
5064 |
|
---|
5065 | /* CS */
|
---|
5066 | HMVMX_CHECK_BREAK((pCtx->cs.u64Base == (uint64_t)pCtx->cs.Sel << 4), VMX_IGS_V86_CS_BASE_INVALID);
|
---|
5067 | HMVMX_CHECK_BREAK(pCtx->cs.u32Limit == 0xffff, VMX_IGS_V86_CS_LIMIT_INVALID);
|
---|
5068 | HMVMX_CHECK_BREAK(u32CSAttr == 0xf3, VMX_IGS_V86_CS_ATTR_INVALID);
|
---|
5069 | /* SS */
|
---|
5070 | HMVMX_CHECK_BREAK((pCtx->ss.u64Base == (uint64_t)pCtx->ss.Sel << 4), VMX_IGS_V86_SS_BASE_INVALID);
|
---|
5071 | HMVMX_CHECK_BREAK(pCtx->ss.u32Limit == 0xffff, VMX_IGS_V86_SS_LIMIT_INVALID);
|
---|
5072 | HMVMX_CHECK_BREAK(u32SSAttr == 0xf3, VMX_IGS_V86_SS_ATTR_INVALID);
|
---|
5073 | /* DS */
|
---|
5074 | HMVMX_CHECK_BREAK((pCtx->ds.u64Base == (uint64_t)pCtx->ds.Sel << 4), VMX_IGS_V86_DS_BASE_INVALID);
|
---|
5075 | HMVMX_CHECK_BREAK(pCtx->ds.u32Limit == 0xffff, VMX_IGS_V86_DS_LIMIT_INVALID);
|
---|
5076 | HMVMX_CHECK_BREAK(u32DSAttr == 0xf3, VMX_IGS_V86_DS_ATTR_INVALID);
|
---|
5077 | /* ES */
|
---|
5078 | HMVMX_CHECK_BREAK((pCtx->es.u64Base == (uint64_t)pCtx->es.Sel << 4), VMX_IGS_V86_ES_BASE_INVALID);
|
---|
5079 | HMVMX_CHECK_BREAK(pCtx->es.u32Limit == 0xffff, VMX_IGS_V86_ES_LIMIT_INVALID);
|
---|
5080 | HMVMX_CHECK_BREAK(u32ESAttr == 0xf3, VMX_IGS_V86_ES_ATTR_INVALID);
|
---|
5081 | /* FS */
|
---|
5082 | HMVMX_CHECK_BREAK((pCtx->fs.u64Base == (uint64_t)pCtx->fs.Sel << 4), VMX_IGS_V86_FS_BASE_INVALID);
|
---|
5083 | HMVMX_CHECK_BREAK(pCtx->fs.u32Limit == 0xffff, VMX_IGS_V86_FS_LIMIT_INVALID);
|
---|
5084 | HMVMX_CHECK_BREAK(u32FSAttr == 0xf3, VMX_IGS_V86_FS_ATTR_INVALID);
|
---|
5085 | /* GS */
|
---|
5086 | HMVMX_CHECK_BREAK((pCtx->gs.u64Base == (uint64_t)pCtx->gs.Sel << 4), VMX_IGS_V86_GS_BASE_INVALID);
|
---|
5087 | HMVMX_CHECK_BREAK(pCtx->gs.u32Limit == 0xffff, VMX_IGS_V86_GS_LIMIT_INVALID);
|
---|
5088 | HMVMX_CHECK_BREAK(u32GSAttr == 0xf3, VMX_IGS_V86_GS_ATTR_INVALID);
|
---|
5089 | /* 64-bit capable CPUs. */
|
---|
5090 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->fs.u64Base), VMX_IGS_FS_BASE_NOT_CANONICAL);
|
---|
5091 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->gs.u64Base), VMX_IGS_GS_BASE_NOT_CANONICAL);
|
---|
5092 | HMVMX_CHECK_BREAK( (pCtx->ldtr.Attr.u & X86DESCATTR_UNUSABLE)
|
---|
5093 | || X86_IS_CANONICAL(pCtx->ldtr.u64Base), VMX_IGS_LDTR_BASE_NOT_CANONICAL);
|
---|
5094 | HMVMX_CHECK_BREAK(!RT_HI_U32(pCtx->cs.u64Base), VMX_IGS_LONGMODE_CS_BASE_INVALID);
|
---|
5095 | HMVMX_CHECK_BREAK((pCtx->ss.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ss.u64Base),
|
---|
5096 | VMX_IGS_LONGMODE_SS_BASE_INVALID);
|
---|
5097 | HMVMX_CHECK_BREAK((pCtx->ds.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->ds.u64Base),
|
---|
5098 | VMX_IGS_LONGMODE_DS_BASE_INVALID);
|
---|
5099 | HMVMX_CHECK_BREAK((pCtx->es.Attr.u & X86DESCATTR_UNUSABLE) || !RT_HI_U32(pCtx->es.u64Base),
|
---|
5100 | VMX_IGS_LONGMODE_ES_BASE_INVALID);
|
---|
5101 | }
|
---|
5102 |
|
---|
5103 | /*
|
---|
5104 | * TR.
|
---|
5105 | */
|
---|
5106 | HMVMX_CHECK_BREAK(!(pCtx->tr.Sel & X86_SEL_LDT), VMX_IGS_TR_TI_INVALID);
|
---|
5107 | /* 64-bit capable CPUs. */
|
---|
5108 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(pCtx->tr.u64Base), VMX_IGS_TR_BASE_NOT_CANONICAL);
|
---|
5109 | if (fLongModeGuest)
|
---|
5110 | HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u4Type == 11, /* 64-bit busy TSS. */
|
---|
5111 | VMX_IGS_LONGMODE_TR_ATTR_TYPE_INVALID);
|
---|
5112 | else
|
---|
5113 | HMVMX_CHECK_BREAK( pCtx->tr.Attr.n.u4Type == 3 /* 16-bit busy TSS. */
|
---|
5114 | || pCtx->tr.Attr.n.u4Type == 11, /* 32-bit busy TSS.*/
|
---|
5115 | VMX_IGS_TR_ATTR_TYPE_INVALID);
|
---|
5116 | HMVMX_CHECK_BREAK(!pCtx->tr.Attr.n.u1DescType, VMX_IGS_TR_ATTR_S_INVALID);
|
---|
5117 | HMVMX_CHECK_BREAK(pCtx->tr.Attr.n.u1Present, VMX_IGS_TR_ATTR_P_INVALID);
|
---|
5118 | HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & 0xf00), VMX_IGS_TR_ATTR_RESERVED); /* Bits 11:8 MBZ. */
|
---|
5119 | HMVMX_CHECK_BREAK( (pCtx->tr.u32Limit & 0xfff) == 0xfff
|
---|
5120 | || !(pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
|
---|
5121 | HMVMX_CHECK_BREAK( !(pCtx->tr.u32Limit & 0xfff00000)
|
---|
5122 | || (pCtx->tr.Attr.n.u1Granularity), VMX_IGS_TR_ATTR_G_INVALID);
|
---|
5123 | HMVMX_CHECK_BREAK(!(pCtx->tr.Attr.u & X86DESCATTR_UNUSABLE), VMX_IGS_TR_ATTR_UNUSABLE);
|
---|
5124 |
|
---|
5125 | /*
|
---|
5126 | * GDTR and IDTR (64-bit capable checks).
|
---|
5127 | */
|
---|
5128 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_GDTR_BASE, &u64Val);
|
---|
5129 | AssertRC(rc);
|
---|
5130 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_GDTR_BASE_NOT_CANONICAL);
|
---|
5131 |
|
---|
5132 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_IDTR_BASE, &u64Val);
|
---|
5133 | AssertRC(rc);
|
---|
5134 | HMVMX_CHECK_BREAK(X86_IS_CANONICAL(u64Val), VMX_IGS_IDTR_BASE_NOT_CANONICAL);
|
---|
5135 |
|
---|
5136 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_GDTR_LIMIT, &u32Val);
|
---|
5137 | AssertRC(rc);
|
---|
5138 | HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_GDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
|
---|
5139 |
|
---|
5140 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_IDTR_LIMIT, &u32Val);
|
---|
5141 | AssertRC(rc);
|
---|
5142 | HMVMX_CHECK_BREAK(!(u32Val & 0xffff0000), VMX_IGS_IDTR_LIMIT_INVALID); /* Bits 31:16 MBZ. */
|
---|
5143 |
|
---|
5144 | /*
|
---|
5145 | * Guest Non-Register State.
|
---|
5146 | */
|
---|
5147 | /* Activity State. */
|
---|
5148 | uint32_t u32ActivityState;
|
---|
5149 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_ACTIVITY_STATE, &u32ActivityState);
|
---|
5150 | AssertRC(rc);
|
---|
5151 | HMVMX_CHECK_BREAK( !u32ActivityState
|
---|
5152 | || (u32ActivityState & RT_BF_GET(g_HmMsrs.u.vmx.u64Misc, VMX_BF_MISC_ACTIVITY_STATES)),
|
---|
5153 | VMX_IGS_ACTIVITY_STATE_INVALID);
|
---|
5154 | HMVMX_CHECK_BREAK( !(pCtx->ss.Attr.n.u2Dpl)
|
---|
5155 | || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT, VMX_IGS_ACTIVITY_STATE_HLT_INVALID);
|
---|
5156 |
|
---|
5157 | if ( u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS
|
---|
5158 | || u32IntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
|
---|
5159 | HMVMX_CHECK_BREAK(u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE, VMX_IGS_ACTIVITY_STATE_ACTIVE_INVALID);
|
---|
5160 |
|
---|
5161 | /** @todo Activity state and injecting interrupts. Left as a todo since we
|
---|
5162 | * currently don't use activity states but ACTIVE. */
|
---|
5163 |
|
---|
5164 | HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
|
---|
5165 | || u32ActivityState != VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT, VMX_IGS_ACTIVITY_STATE_SIPI_WAIT_INVALID);
|
---|
5166 |
|
---|
5167 | /* Guest interruptibility-state. */
|
---|
5168 | HMVMX_CHECK_BREAK(!(u32IntrState & 0xffffffe0), VMX_IGS_INTERRUPTIBILITY_STATE_RESERVED);
|
---|
5169 | HMVMX_CHECK_BREAK((u32IntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
|
---|
5170 | != (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
|
---|
5171 | VMX_IGS_INTERRUPTIBILITY_STATE_STI_MOVSS_INVALID);
|
---|
5172 | HMVMX_CHECK_BREAK( (u32Eflags & X86_EFL_IF)
|
---|
5173 | || !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
|
---|
5174 | VMX_IGS_INTERRUPTIBILITY_STATE_STI_EFL_INVALID);
|
---|
5175 | if (VMX_ENTRY_INT_INFO_IS_EXT_INT(u32EntryInfo))
|
---|
5176 | {
|
---|
5177 | HMVMX_CHECK_BREAK( !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
|
---|
5178 | && !(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
|
---|
5179 | VMX_IGS_INTERRUPTIBILITY_STATE_EXT_INT_INVALID);
|
---|
5180 | }
|
---|
5181 | else if (VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo))
|
---|
5182 | {
|
---|
5183 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS),
|
---|
5184 | VMX_IGS_INTERRUPTIBILITY_STATE_MOVSS_INVALID);
|
---|
5185 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI),
|
---|
5186 | VMX_IGS_INTERRUPTIBILITY_STATE_STI_INVALID);
|
---|
5187 | }
|
---|
5188 | /** @todo Assumes the processor is not in SMM. */
|
---|
5189 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
|
---|
5190 | VMX_IGS_INTERRUPTIBILITY_STATE_SMI_INVALID);
|
---|
5191 | HMVMX_CHECK_BREAK( !(pVmcsInfo->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)
|
---|
5192 | || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI),
|
---|
5193 | VMX_IGS_INTERRUPTIBILITY_STATE_SMI_SMM_INVALID);
|
---|
5194 | if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
|
---|
5195 | && VMX_ENTRY_INT_INFO_IS_XCPT_NMI(u32EntryInfo))
|
---|
5196 | HMVMX_CHECK_BREAK(!(u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI), VMX_IGS_INTERRUPTIBILITY_STATE_NMI_INVALID);
|
---|
5197 |
|
---|
5198 | /* Pending debug exceptions. */
|
---|
5199 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, &u64Val);
|
---|
5200 | AssertRC(rc);
|
---|
5201 | /* Bits 63:15, Bit 13, Bits 11:4 MBZ. */
|
---|
5202 | HMVMX_CHECK_BREAK(!(u64Val & UINT64_C(0xffffffffffffaff0)), VMX_IGS_LONGMODE_PENDING_DEBUG_RESERVED);
|
---|
5203 | u32Val = u64Val; /* For pending debug exceptions checks below. */
|
---|
5204 |
|
---|
5205 | if ( (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
|
---|
5206 | || (u32IntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
|
---|
5207 | || u32ActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
|
---|
5208 | {
|
---|
5209 | if ( (u32Eflags & X86_EFL_TF)
|
---|
5210 | && !(u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
|
---|
5211 | {
|
---|
5212 | /* Bit 14 is PendingDebug.BS. */
|
---|
5213 | HMVMX_CHECK_BREAK(u32Val & RT_BIT(14), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_SET);
|
---|
5214 | }
|
---|
5215 | if ( !(u32Eflags & X86_EFL_TF)
|
---|
5216 | || (u64DebugCtlMsr & RT_BIT_64(1))) /* Bit 1 is IA32_DEBUGCTL.BTF. */
|
---|
5217 | {
|
---|
5218 | /* Bit 14 is PendingDebug.BS. */
|
---|
5219 | HMVMX_CHECK_BREAK(!(u32Val & RT_BIT(14)), VMX_IGS_PENDING_DEBUG_XCPT_BS_NOT_CLEAR);
|
---|
5220 | }
|
---|
5221 | }
|
---|
5222 |
|
---|
5223 | #ifndef IN_NEM_DARWIN
|
---|
5224 | /* VMCS link pointer. */
|
---|
5225 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL, &u64Val);
|
---|
5226 | AssertRC(rc);
|
---|
5227 | if (u64Val != UINT64_C(0xffffffffffffffff))
|
---|
5228 | {
|
---|
5229 | HMVMX_CHECK_BREAK(!(u64Val & 0xfff), VMX_IGS_VMCS_LINK_PTR_RESERVED);
|
---|
5230 | /** @todo Bits beyond the processor's physical-address width MBZ. */
|
---|
5231 | /** @todo SMM checks. */
|
---|
5232 | Assert(pVmcsInfo->HCPhysShadowVmcs == u64Val);
|
---|
5233 | Assert(pVmcsInfo->pvShadowVmcs);
|
---|
5234 | VMXVMCSREVID VmcsRevId;
|
---|
5235 | VmcsRevId.u = *(uint32_t *)pVmcsInfo->pvShadowVmcs;
|
---|
5236 | HMVMX_CHECK_BREAK(VmcsRevId.n.u31RevisionId == RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_ID),
|
---|
5237 | VMX_IGS_VMCS_LINK_PTR_SHADOW_VMCS_ID_INVALID);
|
---|
5238 | HMVMX_CHECK_BREAK(VmcsRevId.n.fIsShadowVmcs == (uint32_t)!!(pVmcsInfo->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING),
|
---|
5239 | VMX_IGS_VMCS_LINK_PTR_NOT_SHADOW);
|
---|
5240 | }
|
---|
5241 |
|
---|
5242 | /** @todo Checks on Guest Page-Directory-Pointer-Table Entries when guest is
|
---|
5243 | * not using nested paging? */
|
---|
5244 | if ( VM_IS_VMX_NESTED_PAGING(pVM)
|
---|
5245 | && !fLongModeGuest
|
---|
5246 | && CPUMIsGuestInPAEModeEx(pCtx))
|
---|
5247 | {
|
---|
5248 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE0_FULL, &u64Val);
|
---|
5249 | AssertRC(rc);
|
---|
5250 | HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
|
---|
5251 |
|
---|
5252 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE1_FULL, &u64Val);
|
---|
5253 | AssertRC(rc);
|
---|
5254 | HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
|
---|
5255 |
|
---|
5256 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE2_FULL, &u64Val);
|
---|
5257 | AssertRC(rc);
|
---|
5258 | HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
|
---|
5259 |
|
---|
5260 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_GUEST_PDPTE3_FULL, &u64Val);
|
---|
5261 | AssertRC(rc);
|
---|
5262 | HMVMX_CHECK_BREAK(!(u64Val & X86_PDPE_PAE_MBZ_MASK), VMX_IGS_PAE_PDPTE_RESERVED);
|
---|
5263 | }
|
---|
5264 | #endif
|
---|
5265 |
|
---|
5266 | /* Shouldn't happen but distinguish it from AssertRCBreak() errors. */
|
---|
5267 | if (uError == VMX_IGS_ERROR)
|
---|
5268 | uError = VMX_IGS_REASON_NOT_FOUND;
|
---|
5269 | } while (0);
|
---|
5270 |
|
---|
5271 | VCPU_2_VMXSTATE(pVCpu).u32HMError = uError;
|
---|
5272 | VCPU_2_VMXSTATE(pVCpu).vmx.LastError.u32GuestIntrState = u32IntrState;
|
---|
5273 | return uError;
|
---|
5274 |
|
---|
5275 | #undef HMVMX_ERROR_BREAK
|
---|
5276 | #undef HMVMX_CHECK_BREAK
|
---|
5277 | }
|
---|
5278 | /** @} */
|
---|
5279 |
|
---|
5280 |
|
---|
5281 | #ifndef HMVMX_USE_FUNCTION_TABLE
|
---|
5282 | /**
|
---|
5283 | * Handles a guest VM-exit from hardware-assisted VMX execution.
|
---|
5284 | *
|
---|
5285 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
5286 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5287 | * @param pVmxTransient The VMX-transient structure.
|
---|
5288 | */
|
---|
5289 | DECLINLINE(VBOXSTRICTRC) vmxHCHandleExit(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
5290 | {
|
---|
5291 | #ifdef DEBUG_ramshankar
|
---|
5292 | # define VMEXIT_CALL_RET(a_fSave, a_CallExpr) \
|
---|
5293 | do { \
|
---|
5294 | if (a_fSave != 0) \
|
---|
5295 | vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL); \
|
---|
5296 | VBOXSTRICTRC rcStrict = a_CallExpr; \
|
---|
5297 | if (a_fSave != 0) \
|
---|
5298 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST); \
|
---|
5299 | return rcStrict; \
|
---|
5300 | } while (0)
|
---|
5301 | #else
|
---|
5302 | # define VMEXIT_CALL_RET(a_fSave, a_CallExpr) return a_CallExpr
|
---|
5303 | #endif
|
---|
5304 | uint32_t const uExitReason = pVmxTransient->uExitReason;
|
---|
5305 | switch (uExitReason)
|
---|
5306 | {
|
---|
5307 | case VMX_EXIT_EPT_MISCONFIG: VMEXIT_CALL_RET(0, vmxHCExitEptMisconfig(pVCpu, pVmxTransient));
|
---|
5308 | case VMX_EXIT_EPT_VIOLATION: VMEXIT_CALL_RET(0, vmxHCExitEptViolation(pVCpu, pVmxTransient));
|
---|
5309 | case VMX_EXIT_IO_INSTR: VMEXIT_CALL_RET(0, vmxHCExitIoInstr(pVCpu, pVmxTransient));
|
---|
5310 | case VMX_EXIT_CPUID: VMEXIT_CALL_RET(0, vmxHCExitCpuid(pVCpu, pVmxTransient));
|
---|
5311 | case VMX_EXIT_RDTSC: VMEXIT_CALL_RET(0, vmxHCExitRdtsc(pVCpu, pVmxTransient));
|
---|
5312 | case VMX_EXIT_RDTSCP: VMEXIT_CALL_RET(0, vmxHCExitRdtscp(pVCpu, pVmxTransient));
|
---|
5313 | case VMX_EXIT_APIC_ACCESS: VMEXIT_CALL_RET(0, vmxHCExitApicAccess(pVCpu, pVmxTransient));
|
---|
5314 | case VMX_EXIT_XCPT_OR_NMI: VMEXIT_CALL_RET(0, vmxHCExitXcptOrNmi(pVCpu, pVmxTransient));
|
---|
5315 | case VMX_EXIT_MOV_CRX: VMEXIT_CALL_RET(0, vmxHCExitMovCRx(pVCpu, pVmxTransient));
|
---|
5316 | case VMX_EXIT_EXT_INT: VMEXIT_CALL_RET(0, vmxHCExitExtInt(pVCpu, pVmxTransient));
|
---|
5317 | case VMX_EXIT_INT_WINDOW: VMEXIT_CALL_RET(0, vmxHCExitIntWindow(pVCpu, pVmxTransient));
|
---|
5318 | case VMX_EXIT_TPR_BELOW_THRESHOLD: VMEXIT_CALL_RET(0, vmxHCExitTprBelowThreshold(pVCpu, pVmxTransient));
|
---|
5319 | case VMX_EXIT_MWAIT: VMEXIT_CALL_RET(0, vmxHCExitMwait(pVCpu, pVmxTransient));
|
---|
5320 | case VMX_EXIT_MONITOR: VMEXIT_CALL_RET(0, vmxHCExitMonitor(pVCpu, pVmxTransient));
|
---|
5321 | case VMX_EXIT_TASK_SWITCH: VMEXIT_CALL_RET(0, vmxHCExitTaskSwitch(pVCpu, pVmxTransient));
|
---|
5322 | case VMX_EXIT_PREEMPT_TIMER: VMEXIT_CALL_RET(0, vmxHCExitPreemptTimer(pVCpu, pVmxTransient));
|
---|
5323 | case VMX_EXIT_RDMSR: VMEXIT_CALL_RET(0, vmxHCExitRdmsr(pVCpu, pVmxTransient));
|
---|
5324 | case VMX_EXIT_WRMSR: VMEXIT_CALL_RET(0, vmxHCExitWrmsr(pVCpu, pVmxTransient));
|
---|
5325 | case VMX_EXIT_VMCALL: VMEXIT_CALL_RET(0, vmxHCExitVmcall(pVCpu, pVmxTransient));
|
---|
5326 | case VMX_EXIT_MOV_DRX: VMEXIT_CALL_RET(0, vmxHCExitMovDRx(pVCpu, pVmxTransient));
|
---|
5327 | case VMX_EXIT_HLT: VMEXIT_CALL_RET(0, vmxHCExitHlt(pVCpu, pVmxTransient));
|
---|
5328 | case VMX_EXIT_INVD: VMEXIT_CALL_RET(0, vmxHCExitInvd(pVCpu, pVmxTransient));
|
---|
5329 | case VMX_EXIT_INVLPG: VMEXIT_CALL_RET(0, vmxHCExitInvlpg(pVCpu, pVmxTransient));
|
---|
5330 | case VMX_EXIT_MTF: VMEXIT_CALL_RET(0, vmxHCExitMtf(pVCpu, pVmxTransient));
|
---|
5331 | case VMX_EXIT_PAUSE: VMEXIT_CALL_RET(0, vmxHCExitPause(pVCpu, pVmxTransient));
|
---|
5332 | case VMX_EXIT_WBINVD: VMEXIT_CALL_RET(0, vmxHCExitWbinvd(pVCpu, pVmxTransient));
|
---|
5333 | case VMX_EXIT_XSETBV: VMEXIT_CALL_RET(0, vmxHCExitXsetbv(pVCpu, pVmxTransient));
|
---|
5334 | case VMX_EXIT_INVPCID: VMEXIT_CALL_RET(0, vmxHCExitInvpcid(pVCpu, pVmxTransient));
|
---|
5335 | case VMX_EXIT_GETSEC: VMEXIT_CALL_RET(0, vmxHCExitGetsec(pVCpu, pVmxTransient));
|
---|
5336 | case VMX_EXIT_RDPMC: VMEXIT_CALL_RET(0, vmxHCExitRdpmc(pVCpu, pVmxTransient));
|
---|
5337 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
5338 | case VMX_EXIT_VMCLEAR: VMEXIT_CALL_RET(0, vmxHCExitVmclear(pVCpu, pVmxTransient));
|
---|
5339 | case VMX_EXIT_VMLAUNCH: VMEXIT_CALL_RET(0, vmxHCExitVmlaunch(pVCpu, pVmxTransient));
|
---|
5340 | case VMX_EXIT_VMPTRLD: VMEXIT_CALL_RET(0, vmxHCExitVmptrld(pVCpu, pVmxTransient));
|
---|
5341 | case VMX_EXIT_VMPTRST: VMEXIT_CALL_RET(0, vmxHCExitVmptrst(pVCpu, pVmxTransient));
|
---|
5342 | case VMX_EXIT_VMREAD: VMEXIT_CALL_RET(0, vmxHCExitVmread(pVCpu, pVmxTransient));
|
---|
5343 | case VMX_EXIT_VMRESUME: VMEXIT_CALL_RET(0, vmxHCExitVmwrite(pVCpu, pVmxTransient));
|
---|
5344 | case VMX_EXIT_VMWRITE: VMEXIT_CALL_RET(0, vmxHCExitVmresume(pVCpu, pVmxTransient));
|
---|
5345 | case VMX_EXIT_VMXOFF: VMEXIT_CALL_RET(0, vmxHCExitVmxoff(pVCpu, pVmxTransient));
|
---|
5346 | case VMX_EXIT_VMXON: VMEXIT_CALL_RET(0, vmxHCExitVmxon(pVCpu, pVmxTransient));
|
---|
5347 | case VMX_EXIT_INVVPID: VMEXIT_CALL_RET(0, vmxHCExitInvvpid(pVCpu, pVmxTransient));
|
---|
5348 | #else
|
---|
5349 | case VMX_EXIT_VMCLEAR:
|
---|
5350 | case VMX_EXIT_VMLAUNCH:
|
---|
5351 | case VMX_EXIT_VMPTRLD:
|
---|
5352 | case VMX_EXIT_VMPTRST:
|
---|
5353 | case VMX_EXIT_VMREAD:
|
---|
5354 | case VMX_EXIT_VMRESUME:
|
---|
5355 | case VMX_EXIT_VMWRITE:
|
---|
5356 | case VMX_EXIT_VMXOFF:
|
---|
5357 | case VMX_EXIT_VMXON:
|
---|
5358 | case VMX_EXIT_INVVPID:
|
---|
5359 | return vmxHCExitSetPendingXcptUD(pVCpu, pVmxTransient);
|
---|
5360 | #endif
|
---|
5361 | #if defined(VBOX_WITH_NESTED_HWVIRT_VMX) && defined(VBOX_WITH_NESTED_HWVIRT_VMX_EPT)
|
---|
5362 | case VMX_EXIT_INVEPT: VMEXIT_CALL_RET(0, vmxHCExitInvept(pVCpu, pVmxTransient));
|
---|
5363 | #else
|
---|
5364 | case VMX_EXIT_INVEPT: return vmxHCExitSetPendingXcptUD(pVCpu, pVmxTransient);
|
---|
5365 | #endif
|
---|
5366 |
|
---|
5367 | case VMX_EXIT_TRIPLE_FAULT: return vmxHCExitTripleFault(pVCpu, pVmxTransient);
|
---|
5368 | case VMX_EXIT_NMI_WINDOW: return vmxHCExitNmiWindow(pVCpu, pVmxTransient);
|
---|
5369 | case VMX_EXIT_ERR_INVALID_GUEST_STATE: return vmxHCExitErrInvalidGuestState(pVCpu, pVmxTransient);
|
---|
5370 |
|
---|
5371 | case VMX_EXIT_INIT_SIGNAL:
|
---|
5372 | case VMX_EXIT_SIPI:
|
---|
5373 | case VMX_EXIT_IO_SMI:
|
---|
5374 | case VMX_EXIT_SMI:
|
---|
5375 | case VMX_EXIT_ERR_MSR_LOAD:
|
---|
5376 | case VMX_EXIT_ERR_MACHINE_CHECK:
|
---|
5377 | case VMX_EXIT_PML_FULL:
|
---|
5378 | case VMX_EXIT_VIRTUALIZED_EOI:
|
---|
5379 | case VMX_EXIT_GDTR_IDTR_ACCESS:
|
---|
5380 | case VMX_EXIT_LDTR_TR_ACCESS:
|
---|
5381 | case VMX_EXIT_APIC_WRITE:
|
---|
5382 | case VMX_EXIT_RDRAND:
|
---|
5383 | case VMX_EXIT_RSM:
|
---|
5384 | case VMX_EXIT_VMFUNC:
|
---|
5385 | case VMX_EXIT_ENCLS:
|
---|
5386 | case VMX_EXIT_RDSEED:
|
---|
5387 | case VMX_EXIT_XSAVES:
|
---|
5388 | case VMX_EXIT_XRSTORS:
|
---|
5389 | case VMX_EXIT_UMWAIT:
|
---|
5390 | case VMX_EXIT_TPAUSE:
|
---|
5391 | case VMX_EXIT_LOADIWKEY:
|
---|
5392 | default:
|
---|
5393 | return vmxHCExitErrUnexpected(pVCpu, pVmxTransient);
|
---|
5394 | }
|
---|
5395 | #undef VMEXIT_CALL_RET
|
---|
5396 | }
|
---|
5397 | #endif /* !HMVMX_USE_FUNCTION_TABLE */
|
---|
5398 |
|
---|
5399 |
|
---|
5400 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
5401 | /**
|
---|
5402 | * Handles a nested-guest VM-exit from hardware-assisted VMX execution.
|
---|
5403 | *
|
---|
5404 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
5405 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5406 | * @param pVmxTransient The VMX-transient structure.
|
---|
5407 | */
|
---|
5408 | DECLINLINE(VBOXSTRICTRC) vmxHCHandleExitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
5409 | {
|
---|
5410 | uint32_t const uExitReason = pVmxTransient->uExitReason;
|
---|
5411 | switch (uExitReason)
|
---|
5412 | {
|
---|
5413 | case VMX_EXIT_EPT_MISCONFIG: return vmxHCExitEptMisconfig(pVCpu, pVmxTransient);
|
---|
5414 | case VMX_EXIT_EPT_VIOLATION: return vmxHCExitEptViolation(pVCpu, pVmxTransient);
|
---|
5415 | case VMX_EXIT_XCPT_OR_NMI: return vmxHCExitXcptOrNmiNested(pVCpu, pVmxTransient);
|
---|
5416 | case VMX_EXIT_IO_INSTR: return vmxHCExitIoInstrNested(pVCpu, pVmxTransient);
|
---|
5417 | case VMX_EXIT_HLT: return vmxHCExitHltNested(pVCpu, pVmxTransient);
|
---|
5418 |
|
---|
5419 | /*
|
---|
5420 | * We shouldn't direct host physical interrupts to the nested-guest.
|
---|
5421 | */
|
---|
5422 | case VMX_EXIT_EXT_INT:
|
---|
5423 | return vmxHCExitExtInt(pVCpu, pVmxTransient);
|
---|
5424 |
|
---|
5425 | /*
|
---|
5426 | * Instructions that cause VM-exits unconditionally or the condition is
|
---|
5427 | * always is taken solely from the nested hypervisor (meaning if the VM-exit
|
---|
5428 | * happens, it's guaranteed to be a nested-guest VM-exit).
|
---|
5429 | *
|
---|
5430 | * - Provides VM-exit instruction length ONLY.
|
---|
5431 | */
|
---|
5432 | case VMX_EXIT_CPUID: /* Unconditional. */
|
---|
5433 | case VMX_EXIT_VMCALL:
|
---|
5434 | case VMX_EXIT_GETSEC:
|
---|
5435 | case VMX_EXIT_INVD:
|
---|
5436 | case VMX_EXIT_XSETBV:
|
---|
5437 | case VMX_EXIT_VMLAUNCH:
|
---|
5438 | case VMX_EXIT_VMRESUME:
|
---|
5439 | case VMX_EXIT_VMXOFF:
|
---|
5440 | case VMX_EXIT_ENCLS: /* Condition specified solely by nested hypervisor. */
|
---|
5441 | case VMX_EXIT_VMFUNC:
|
---|
5442 | return vmxHCExitInstrNested(pVCpu, pVmxTransient);
|
---|
5443 |
|
---|
5444 | /*
|
---|
5445 | * Instructions that cause VM-exits unconditionally or the condition is
|
---|
5446 | * always is taken solely from the nested hypervisor (meaning if the VM-exit
|
---|
5447 | * happens, it's guaranteed to be a nested-guest VM-exit).
|
---|
5448 | *
|
---|
5449 | * - Provides VM-exit instruction length.
|
---|
5450 | * - Provides VM-exit information.
|
---|
5451 | * - Optionally provides Exit qualification.
|
---|
5452 | *
|
---|
5453 | * Since Exit qualification is 0 for all VM-exits where it is not
|
---|
5454 | * applicable, reading and passing it to the guest should produce
|
---|
5455 | * defined behavior.
|
---|
5456 | *
|
---|
5457 | * See Intel spec. 27.2.1 "Basic VM-Exit Information".
|
---|
5458 | */
|
---|
5459 | case VMX_EXIT_INVEPT: /* Unconditional. */
|
---|
5460 | case VMX_EXIT_INVVPID:
|
---|
5461 | case VMX_EXIT_VMCLEAR:
|
---|
5462 | case VMX_EXIT_VMPTRLD:
|
---|
5463 | case VMX_EXIT_VMPTRST:
|
---|
5464 | case VMX_EXIT_VMXON:
|
---|
5465 | case VMX_EXIT_GDTR_IDTR_ACCESS: /* Condition specified solely by nested hypervisor. */
|
---|
5466 | case VMX_EXIT_LDTR_TR_ACCESS:
|
---|
5467 | case VMX_EXIT_RDRAND:
|
---|
5468 | case VMX_EXIT_RDSEED:
|
---|
5469 | case VMX_EXIT_XSAVES:
|
---|
5470 | case VMX_EXIT_XRSTORS:
|
---|
5471 | case VMX_EXIT_UMWAIT:
|
---|
5472 | case VMX_EXIT_TPAUSE:
|
---|
5473 | return vmxHCExitInstrWithInfoNested(pVCpu, pVmxTransient);
|
---|
5474 |
|
---|
5475 | case VMX_EXIT_RDTSC: return vmxHCExitRdtscNested(pVCpu, pVmxTransient);
|
---|
5476 | case VMX_EXIT_RDTSCP: return vmxHCExitRdtscpNested(pVCpu, pVmxTransient);
|
---|
5477 | case VMX_EXIT_RDMSR: return vmxHCExitRdmsrNested(pVCpu, pVmxTransient);
|
---|
5478 | case VMX_EXIT_WRMSR: return vmxHCExitWrmsrNested(pVCpu, pVmxTransient);
|
---|
5479 | case VMX_EXIT_INVLPG: return vmxHCExitInvlpgNested(pVCpu, pVmxTransient);
|
---|
5480 | case VMX_EXIT_INVPCID: return vmxHCExitInvpcidNested(pVCpu, pVmxTransient);
|
---|
5481 | case VMX_EXIT_TASK_SWITCH: return vmxHCExitTaskSwitchNested(pVCpu, pVmxTransient);
|
---|
5482 | case VMX_EXIT_WBINVD: return vmxHCExitWbinvdNested(pVCpu, pVmxTransient);
|
---|
5483 | case VMX_EXIT_MTF: return vmxHCExitMtfNested(pVCpu, pVmxTransient);
|
---|
5484 | case VMX_EXIT_APIC_ACCESS: return vmxHCExitApicAccessNested(pVCpu, pVmxTransient);
|
---|
5485 | case VMX_EXIT_APIC_WRITE: return vmxHCExitApicWriteNested(pVCpu, pVmxTransient);
|
---|
5486 | case VMX_EXIT_VIRTUALIZED_EOI: return vmxHCExitVirtEoiNested(pVCpu, pVmxTransient);
|
---|
5487 | case VMX_EXIT_MOV_CRX: return vmxHCExitMovCRxNested(pVCpu, pVmxTransient);
|
---|
5488 | case VMX_EXIT_INT_WINDOW: return vmxHCExitIntWindowNested(pVCpu, pVmxTransient);
|
---|
5489 | case VMX_EXIT_NMI_WINDOW: return vmxHCExitNmiWindowNested(pVCpu, pVmxTransient);
|
---|
5490 | case VMX_EXIT_TPR_BELOW_THRESHOLD: return vmxHCExitTprBelowThresholdNested(pVCpu, pVmxTransient);
|
---|
5491 | case VMX_EXIT_MWAIT: return vmxHCExitMwaitNested(pVCpu, pVmxTransient);
|
---|
5492 | case VMX_EXIT_MONITOR: return vmxHCExitMonitorNested(pVCpu, pVmxTransient);
|
---|
5493 | case VMX_EXIT_PAUSE: return vmxHCExitPauseNested(pVCpu, pVmxTransient);
|
---|
5494 |
|
---|
5495 | case VMX_EXIT_PREEMPT_TIMER:
|
---|
5496 | {
|
---|
5497 | /** @todo NSTVMX: Preempt timer. */
|
---|
5498 | return vmxHCExitPreemptTimer(pVCpu, pVmxTransient);
|
---|
5499 | }
|
---|
5500 |
|
---|
5501 | case VMX_EXIT_MOV_DRX: return vmxHCExitMovDRxNested(pVCpu, pVmxTransient);
|
---|
5502 | case VMX_EXIT_RDPMC: return vmxHCExitRdpmcNested(pVCpu, pVmxTransient);
|
---|
5503 |
|
---|
5504 | case VMX_EXIT_VMREAD:
|
---|
5505 | case VMX_EXIT_VMWRITE: return vmxHCExitVmreadVmwriteNested(pVCpu, pVmxTransient);
|
---|
5506 |
|
---|
5507 | case VMX_EXIT_TRIPLE_FAULT: return vmxHCExitTripleFaultNested(pVCpu, pVmxTransient);
|
---|
5508 | case VMX_EXIT_ERR_INVALID_GUEST_STATE: return vmxHCExitErrInvalidGuestStateNested(pVCpu, pVmxTransient);
|
---|
5509 |
|
---|
5510 | case VMX_EXIT_INIT_SIGNAL:
|
---|
5511 | case VMX_EXIT_SIPI:
|
---|
5512 | case VMX_EXIT_IO_SMI:
|
---|
5513 | case VMX_EXIT_SMI:
|
---|
5514 | case VMX_EXIT_ERR_MSR_LOAD:
|
---|
5515 | case VMX_EXIT_ERR_MACHINE_CHECK:
|
---|
5516 | case VMX_EXIT_PML_FULL:
|
---|
5517 | case VMX_EXIT_RSM:
|
---|
5518 | default:
|
---|
5519 | return vmxHCExitErrUnexpected(pVCpu, pVmxTransient);
|
---|
5520 | }
|
---|
5521 | }
|
---|
5522 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
5523 |
|
---|
5524 |
|
---|
5525 | /** @name VM-exit helpers.
|
---|
5526 | * @{
|
---|
5527 | */
|
---|
5528 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
5529 | /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= VM-exit helpers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
|
---|
5530 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
5531 |
|
---|
5532 | /** Macro for VM-exits called unexpectedly. */
|
---|
5533 | #define HMVMX_UNEXPECTED_EXIT_RET(a_pVCpu, a_HmError) \
|
---|
5534 | do { \
|
---|
5535 | VCPU_2_VMXSTATE((a_pVCpu)).u32HMError = (a_HmError); \
|
---|
5536 | return VERR_VMX_UNEXPECTED_EXIT; \
|
---|
5537 | } while (0)
|
---|
5538 |
|
---|
5539 | #ifdef VBOX_STRICT
|
---|
5540 | # ifndef IN_NEM_DARWIN
|
---|
5541 | /* Is there some generic IPRT define for this that are not in Runtime/internal/\* ?? */
|
---|
5542 | # define HMVMX_ASSERT_PREEMPT_CPUID_VAR() \
|
---|
5543 | RTCPUID const idAssertCpu = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId()
|
---|
5544 |
|
---|
5545 | # define HMVMX_ASSERT_PREEMPT_CPUID() \
|
---|
5546 | do { \
|
---|
5547 | RTCPUID const idAssertCpuNow = RTThreadPreemptIsEnabled(NIL_RTTHREAD) ? NIL_RTCPUID : RTMpCpuId(); \
|
---|
5548 | AssertMsg(idAssertCpu == idAssertCpuNow, ("VMX %#x, %#x\n", idAssertCpu, idAssertCpuNow)); \
|
---|
5549 | } while (0)
|
---|
5550 |
|
---|
5551 | # define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
|
---|
5552 | do { \
|
---|
5553 | AssertPtr((a_pVCpu)); \
|
---|
5554 | AssertPtr((a_pVmxTransient)); \
|
---|
5555 | Assert((a_pVmxTransient)->fVMEntryFailed == false); \
|
---|
5556 | Assert((a_pVmxTransient)->pVmcsInfo); \
|
---|
5557 | Assert(ASMIntAreEnabled()); \
|
---|
5558 | HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
|
---|
5559 | HMVMX_ASSERT_PREEMPT_CPUID_VAR(); \
|
---|
5560 | Log4Func(("vcpu[%RU32]\n", (a_pVCpu)->idCpu)); \
|
---|
5561 | HMVMX_ASSERT_PREEMPT_SAFE(a_pVCpu); \
|
---|
5562 | if (!VMMRZCallRing3IsEnabled((a_pVCpu))) \
|
---|
5563 | HMVMX_ASSERT_PREEMPT_CPUID(); \
|
---|
5564 | HMVMX_STOP_EXIT_DISPATCH_PROF(); \
|
---|
5565 | } while (0)
|
---|
5566 | # else
|
---|
5567 | # define HMVMX_ASSERT_PREEMPT_CPUID_VAR() do { } while(0)
|
---|
5568 | # define HMVMX_ASSERT_PREEMPT_CPUID() do { } while(0)
|
---|
5569 | # define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
|
---|
5570 | do { \
|
---|
5571 | AssertPtr((a_pVCpu)); \
|
---|
5572 | AssertPtr((a_pVmxTransient)); \
|
---|
5573 | Assert((a_pVmxTransient)->fVMEntryFailed == false); \
|
---|
5574 | Assert((a_pVmxTransient)->pVmcsInfo); \
|
---|
5575 | Log4Func(("vcpu[%RU32]\n", (a_pVCpu)->idCpu)); \
|
---|
5576 | HMVMX_STOP_EXIT_DISPATCH_PROF(); \
|
---|
5577 | } while (0)
|
---|
5578 | # endif
|
---|
5579 |
|
---|
5580 | # define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
|
---|
5581 | do { \
|
---|
5582 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); \
|
---|
5583 | Assert((a_pVmxTransient)->fIsNestedGuest); \
|
---|
5584 | } while (0)
|
---|
5585 |
|
---|
5586 | # define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
|
---|
5587 | do { \
|
---|
5588 | Log4Func(("\n")); \
|
---|
5589 | } while (0)
|
---|
5590 | #else
|
---|
5591 | # define HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
|
---|
5592 | do { \
|
---|
5593 | HMVMX_STOP_EXIT_DISPATCH_PROF(); \
|
---|
5594 | NOREF((a_pVCpu)); NOREF((a_pVmxTransient)); \
|
---|
5595 | } while (0)
|
---|
5596 |
|
---|
5597 | # define HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) \
|
---|
5598 | do { HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient); } while (0)
|
---|
5599 |
|
---|
5600 | # define HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(a_pVCpu, a_pVmxTransient) do { } while (0)
|
---|
5601 | #endif
|
---|
5602 |
|
---|
5603 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
5604 | /** Macro that does the necessary privilege checks and intercepted VM-exits for
|
---|
5605 | * guests that attempted to execute a VMX instruction. */
|
---|
5606 | # define HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(a_pVCpu, a_uExitReason) \
|
---|
5607 | do \
|
---|
5608 | { \
|
---|
5609 | VBOXSTRICTRC rcStrictTmp = vmxHCCheckExitDueToVmxInstr((a_pVCpu), (a_uExitReason)); \
|
---|
5610 | if (rcStrictTmp == VINF_SUCCESS) \
|
---|
5611 | { /* likely */ } \
|
---|
5612 | else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
|
---|
5613 | { \
|
---|
5614 | Assert((a_pVCpu)->hm.s.Event.fPending); \
|
---|
5615 | Log4Func(("Privilege checks failed -> %#x\n", VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo))); \
|
---|
5616 | return VINF_SUCCESS; \
|
---|
5617 | } \
|
---|
5618 | else \
|
---|
5619 | { \
|
---|
5620 | int rcTmp = VBOXSTRICTRC_VAL(rcStrictTmp); \
|
---|
5621 | AssertMsgFailedReturn(("Unexpected failure. rc=%Rrc", rcTmp), rcTmp); \
|
---|
5622 | } \
|
---|
5623 | } while (0)
|
---|
5624 |
|
---|
5625 | /** Macro that decodes a memory operand for an VM-exit caused by an instruction. */
|
---|
5626 | # define HMVMX_DECODE_MEM_OPERAND(a_pVCpu, a_uExitInstrInfo, a_uExitQual, a_enmMemAccess, a_pGCPtrEffAddr) \
|
---|
5627 | do \
|
---|
5628 | { \
|
---|
5629 | VBOXSTRICTRC rcStrictTmp = vmxHCDecodeMemOperand((a_pVCpu), (a_uExitInstrInfo), (a_uExitQual), (a_enmMemAccess), \
|
---|
5630 | (a_pGCPtrEffAddr)); \
|
---|
5631 | if (rcStrictTmp == VINF_SUCCESS) \
|
---|
5632 | { /* likely */ } \
|
---|
5633 | else if (rcStrictTmp == VINF_HM_PENDING_XCPT) \
|
---|
5634 | { \
|
---|
5635 | uint8_t const uXcptTmp = VMX_ENTRY_INT_INFO_VECTOR((a_pVCpu)->hm.s.Event.u64IntInfo); \
|
---|
5636 | Log4Func(("Memory operand decoding failed, raising xcpt %#x\n", uXcptTmp)); \
|
---|
5637 | NOREF(uXcptTmp); \
|
---|
5638 | return VINF_SUCCESS; \
|
---|
5639 | } \
|
---|
5640 | else \
|
---|
5641 | { \
|
---|
5642 | Log4Func(("vmxHCDecodeMemOperand failed. rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrictTmp))); \
|
---|
5643 | return rcStrictTmp; \
|
---|
5644 | } \
|
---|
5645 | } while (0)
|
---|
5646 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
5647 |
|
---|
5648 |
|
---|
5649 | /**
|
---|
5650 | * Advances the guest RIP by the specified number of bytes.
|
---|
5651 | *
|
---|
5652 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5653 | * @param cbInstr Number of bytes to advance the RIP by.
|
---|
5654 | *
|
---|
5655 | * @remarks No-long-jump zone!!!
|
---|
5656 | */
|
---|
5657 | DECLINLINE(void) vmxHCAdvanceGuestRipBy(PVMCPUCC pVCpu, uint32_t cbInstr)
|
---|
5658 | {
|
---|
5659 | /* Advance the RIP. */
|
---|
5660 | pVCpu->cpum.GstCtx.rip += cbInstr;
|
---|
5661 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP);
|
---|
5662 |
|
---|
5663 | /* Update interrupt inhibition. */
|
---|
5664 | if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)
|
---|
5665 | && pVCpu->cpum.GstCtx.rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
5666 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
5667 | }
|
---|
5668 |
|
---|
5669 |
|
---|
5670 | /**
|
---|
5671 | * Advances the guest RIP after reading it from the VMCS.
|
---|
5672 | *
|
---|
5673 | * @returns VBox status code, no informational status codes.
|
---|
5674 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5675 | * @param pVmxTransient The VMX-transient structure.
|
---|
5676 | *
|
---|
5677 | * @remarks No-long-jump zone!!!
|
---|
5678 | */
|
---|
5679 | static int vmxHCAdvanceGuestRip(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
5680 | {
|
---|
5681 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
5682 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS);
|
---|
5683 | AssertRCReturn(rc, rc);
|
---|
5684 |
|
---|
5685 | vmxHCAdvanceGuestRipBy(pVCpu, pVmxTransient->cbExitInstr);
|
---|
5686 | return VINF_SUCCESS;
|
---|
5687 | }
|
---|
5688 |
|
---|
5689 |
|
---|
5690 | /**
|
---|
5691 | * Handle a condition that occurred while delivering an event through the guest or
|
---|
5692 | * nested-guest IDT.
|
---|
5693 | *
|
---|
5694 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
5695 | * @retval VINF_SUCCESS if we should continue handling the VM-exit.
|
---|
5696 | * @retval VINF_HM_DOUBLE_FAULT if a \#DF condition was detected and we ought
|
---|
5697 | * to continue execution of the guest which will delivery the \#DF.
|
---|
5698 | * @retval VINF_EM_RESET if we detected a triple-fault condition.
|
---|
5699 | * @retval VERR_EM_GUEST_CPU_HANG if we detected a guest CPU hang.
|
---|
5700 | *
|
---|
5701 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5702 | * @param pVmxTransient The VMX-transient structure.
|
---|
5703 | *
|
---|
5704 | * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
|
---|
5705 | * Additionally, HMVMX_READ_EXIT_QUALIFICATION is required if the VM-exit
|
---|
5706 | * is due to an EPT violation, PML full or SPP-related event.
|
---|
5707 | *
|
---|
5708 | * @remarks No-long-jump zone!!!
|
---|
5709 | */
|
---|
5710 | static VBOXSTRICTRC vmxHCCheckExitDueToEventDelivery(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
5711 | {
|
---|
5712 | Assert(!VCPU_2_VMXSTATE(pVCpu).Event.fPending);
|
---|
5713 | HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO);
|
---|
5714 | if ( pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION
|
---|
5715 | || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL
|
---|
5716 | || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT)
|
---|
5717 | HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_EXIT_QUALIFICATION);
|
---|
5718 |
|
---|
5719 | VBOXSTRICTRC rcStrict = VINF_SUCCESS;
|
---|
5720 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
5721 | uint32_t const uIdtVectorInfo = pVmxTransient->uIdtVectoringInfo;
|
---|
5722 | uint32_t const uExitIntInfo = pVmxTransient->uExitIntInfo;
|
---|
5723 | if (VMX_IDT_VECTORING_INFO_IS_VALID(uIdtVectorInfo))
|
---|
5724 | {
|
---|
5725 | uint32_t const uIdtVector = VMX_IDT_VECTORING_INFO_VECTOR(uIdtVectorInfo);
|
---|
5726 | uint32_t const uIdtVectorType = VMX_IDT_VECTORING_INFO_TYPE(uIdtVectorInfo);
|
---|
5727 |
|
---|
5728 | /*
|
---|
5729 | * If the event was a software interrupt (generated with INT n) or a software exception
|
---|
5730 | * (generated by INT3/INTO) or a privileged software exception (generated by INT1), we
|
---|
5731 | * can handle the VM-exit and continue guest execution which will re-execute the
|
---|
5732 | * instruction rather than re-injecting the exception, as that can cause premature
|
---|
5733 | * trips to ring-3 before injection and involve TRPM which currently has no way of
|
---|
5734 | * storing that these exceptions were caused by these instructions (ICEBP's #DB poses
|
---|
5735 | * the problem).
|
---|
5736 | */
|
---|
5737 | IEMXCPTRAISE enmRaise;
|
---|
5738 | IEMXCPTRAISEINFO fRaiseInfo;
|
---|
5739 | if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_INT
|
---|
5740 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT
|
---|
5741 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT)
|
---|
5742 | {
|
---|
5743 | enmRaise = IEMXCPTRAISE_REEXEC_INSTR;
|
---|
5744 | fRaiseInfo = IEMXCPTRAISEINFO_NONE;
|
---|
5745 | }
|
---|
5746 | else if (VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo))
|
---|
5747 | {
|
---|
5748 | uint32_t const uExitVectorType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo);
|
---|
5749 | uint8_t const uExitVector = VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo);
|
---|
5750 | Assert(uExitVectorType == VMX_EXIT_INT_INFO_TYPE_HW_XCPT);
|
---|
5751 |
|
---|
5752 | uint32_t const fIdtVectorFlags = vmxHCGetIemXcptFlags(uIdtVector, uIdtVectorType);
|
---|
5753 | uint32_t const fExitVectorFlags = vmxHCGetIemXcptFlags(uExitVector, uExitVectorType);
|
---|
5754 |
|
---|
5755 | enmRaise = IEMEvaluateRecursiveXcpt(pVCpu, fIdtVectorFlags, uIdtVector, fExitVectorFlags, uExitVector, &fRaiseInfo);
|
---|
5756 |
|
---|
5757 | /* Determine a vectoring #PF condition, see comment in vmxHCExitXcptPF(). */
|
---|
5758 | if (fRaiseInfo & (IEMXCPTRAISEINFO_EXT_INT_PF | IEMXCPTRAISEINFO_NMI_PF))
|
---|
5759 | {
|
---|
5760 | pVmxTransient->fVectoringPF = true;
|
---|
5761 | enmRaise = IEMXCPTRAISE_PREV_EVENT;
|
---|
5762 | }
|
---|
5763 | }
|
---|
5764 | else
|
---|
5765 | {
|
---|
5766 | /*
|
---|
5767 | * If an exception or hardware interrupt delivery caused an EPT violation/misconfig or APIC access
|
---|
5768 | * VM-exit, then the VM-exit interruption-information will not be valid and we end up here.
|
---|
5769 | * It is sufficient to reflect the original event to the guest after handling the VM-exit.
|
---|
5770 | */
|
---|
5771 | Assert( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT
|
---|
5772 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
|
---|
5773 | || uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
|
---|
5774 | enmRaise = IEMXCPTRAISE_PREV_EVENT;
|
---|
5775 | fRaiseInfo = IEMXCPTRAISEINFO_NONE;
|
---|
5776 | }
|
---|
5777 |
|
---|
5778 | /*
|
---|
5779 | * On CPUs that support Virtual NMIs, if this VM-exit (be it an exception or EPT violation/misconfig
|
---|
5780 | * etc.) occurred while delivering the NMI, we need to clear the block-by-NMI field in the guest
|
---|
5781 | * interruptibility-state before re-delivering the NMI after handling the VM-exit. Otherwise the
|
---|
5782 | * subsequent VM-entry would fail, see @bugref{7445}.
|
---|
5783 | *
|
---|
5784 | * See Intel spec. 30.7.1.2 "Resuming Guest Software after Handling an Exception".
|
---|
5785 | */
|
---|
5786 | if ( uIdtVectorType == VMX_IDT_VECTORING_INFO_TYPE_NMI
|
---|
5787 | && enmRaise == IEMXCPTRAISE_PREV_EVENT
|
---|
5788 | && (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
|
---|
5789 | && CPUMIsGuestNmiBlocking(pVCpu))
|
---|
5790 | {
|
---|
5791 | CPUMSetGuestNmiBlocking(pVCpu, false);
|
---|
5792 | }
|
---|
5793 |
|
---|
5794 | switch (enmRaise)
|
---|
5795 | {
|
---|
5796 | case IEMXCPTRAISE_CURRENT_XCPT:
|
---|
5797 | {
|
---|
5798 | Log4Func(("IDT: Pending secondary Xcpt: idtinfo=%#RX64 exitinfo=%#RX64\n", uIdtVectorInfo, uExitIntInfo));
|
---|
5799 | Assert(rcStrict == VINF_SUCCESS);
|
---|
5800 | break;
|
---|
5801 | }
|
---|
5802 |
|
---|
5803 | case IEMXCPTRAISE_PREV_EVENT:
|
---|
5804 | {
|
---|
5805 | uint32_t u32ErrCode;
|
---|
5806 | if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(uIdtVectorInfo))
|
---|
5807 | u32ErrCode = pVmxTransient->uIdtVectoringErrorCode;
|
---|
5808 | else
|
---|
5809 | u32ErrCode = 0;
|
---|
5810 |
|
---|
5811 | /* If uExitVector is #PF, CR2 value will be updated from the VMCS if it's a guest #PF, see vmxHCExitXcptPF(). */
|
---|
5812 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectReflect);
|
---|
5813 | vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(uIdtVectorInfo), 0 /* cbInstr */,
|
---|
5814 | u32ErrCode, pVCpu->cpum.GstCtx.cr2);
|
---|
5815 |
|
---|
5816 | Log4Func(("IDT: Pending vectoring event %#RX64 Err=%#RX32\n", VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo,
|
---|
5817 | VCPU_2_VMXSTATE(pVCpu).Event.u32ErrCode));
|
---|
5818 | Assert(rcStrict == VINF_SUCCESS);
|
---|
5819 | break;
|
---|
5820 | }
|
---|
5821 |
|
---|
5822 | case IEMXCPTRAISE_REEXEC_INSTR:
|
---|
5823 | Assert(rcStrict == VINF_SUCCESS);
|
---|
5824 | break;
|
---|
5825 |
|
---|
5826 | case IEMXCPTRAISE_DOUBLE_FAULT:
|
---|
5827 | {
|
---|
5828 | /*
|
---|
5829 | * Determing a vectoring double #PF condition. Used later, when PGM evaluates the
|
---|
5830 | * second #PF as a guest #PF (and not a shadow #PF) and needs to be converted into a #DF.
|
---|
5831 | */
|
---|
5832 | if (fRaiseInfo & IEMXCPTRAISEINFO_PF_PF)
|
---|
5833 | {
|
---|
5834 | pVmxTransient->fVectoringDoublePF = true;
|
---|
5835 | Log4Func(("IDT: Vectoring double #PF %#RX64 cr2=%#RX64\n", VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo,
|
---|
5836 | pVCpu->cpum.GstCtx.cr2));
|
---|
5837 | rcStrict = VINF_SUCCESS;
|
---|
5838 | }
|
---|
5839 | else
|
---|
5840 | {
|
---|
5841 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectConvertDF);
|
---|
5842 | vmxHCSetPendingXcptDF(pVCpu);
|
---|
5843 | Log4Func(("IDT: Pending vectoring #DF %#RX64 uIdtVector=%#x uExitVector=%#x\n", VCPU_2_VMXSTATE(pVCpu).Event.u64IntInfo,
|
---|
5844 | uIdtVector, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo)));
|
---|
5845 | rcStrict = VINF_HM_DOUBLE_FAULT;
|
---|
5846 | }
|
---|
5847 | break;
|
---|
5848 | }
|
---|
5849 |
|
---|
5850 | case IEMXCPTRAISE_TRIPLE_FAULT:
|
---|
5851 | {
|
---|
5852 | Log4Func(("IDT: Pending vectoring triple-fault uIdt=%#x uExit=%#x\n", uIdtVector,
|
---|
5853 | VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo)));
|
---|
5854 | rcStrict = VINF_EM_RESET;
|
---|
5855 | break;
|
---|
5856 | }
|
---|
5857 |
|
---|
5858 | case IEMXCPTRAISE_CPU_HANG:
|
---|
5859 | {
|
---|
5860 | Log4Func(("IDT: Bad guest! Entering CPU hang. fRaiseInfo=%#x\n", fRaiseInfo));
|
---|
5861 | rcStrict = VERR_EM_GUEST_CPU_HANG;
|
---|
5862 | break;
|
---|
5863 | }
|
---|
5864 |
|
---|
5865 | default:
|
---|
5866 | {
|
---|
5867 | AssertMsgFailed(("IDT: vcpu[%RU32] Unexpected/invalid value! enmRaise=%#x\n", pVCpu->idCpu, enmRaise));
|
---|
5868 | rcStrict = VERR_VMX_IPE_2;
|
---|
5869 | break;
|
---|
5870 | }
|
---|
5871 | }
|
---|
5872 | }
|
---|
5873 | else if ( (pVmcsInfo->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
|
---|
5874 | && !CPUMIsGuestNmiBlocking(pVCpu))
|
---|
5875 | {
|
---|
5876 | if ( VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo)
|
---|
5877 | && VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo) != X86_XCPT_DF
|
---|
5878 | && VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(uExitIntInfo))
|
---|
5879 | {
|
---|
5880 | /*
|
---|
5881 | * Execution of IRET caused a fault when NMI blocking was in effect (i.e we're in
|
---|
5882 | * the guest or nested-guest NMI handler). We need to set the block-by-NMI field so
|
---|
5883 | * that virtual NMIs remain blocked until the IRET execution is completed.
|
---|
5884 | *
|
---|
5885 | * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception".
|
---|
5886 | */
|
---|
5887 | CPUMSetGuestNmiBlocking(pVCpu, true);
|
---|
5888 | Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason));
|
---|
5889 | }
|
---|
5890 | else if ( pVmxTransient->uExitReason == VMX_EXIT_EPT_VIOLATION
|
---|
5891 | || pVmxTransient->uExitReason == VMX_EXIT_PML_FULL
|
---|
5892 | || pVmxTransient->uExitReason == VMX_EXIT_SPP_EVENT)
|
---|
5893 | {
|
---|
5894 | /*
|
---|
5895 | * Execution of IRET caused an EPT violation, page-modification log-full event or
|
---|
5896 | * SPP-related event VM-exit when NMI blocking was in effect (i.e. we're in the
|
---|
5897 | * guest or nested-guest NMI handler). We need to set the block-by-NMI field so
|
---|
5898 | * that virtual NMIs remain blocked until the IRET execution is completed.
|
---|
5899 | *
|
---|
5900 | * See Intel spec. 27.2.3 "Information about NMI unblocking due to IRET"
|
---|
5901 | */
|
---|
5902 | if (VMX_EXIT_QUAL_EPT_IS_NMI_UNBLOCK_IRET(pVmxTransient->uExitQual))
|
---|
5903 | {
|
---|
5904 | CPUMSetGuestNmiBlocking(pVCpu, true);
|
---|
5905 | Log4Func(("Set NMI blocking. uExitReason=%u\n", pVmxTransient->uExitReason));
|
---|
5906 | }
|
---|
5907 | }
|
---|
5908 | }
|
---|
5909 |
|
---|
5910 | Assert( rcStrict == VINF_SUCCESS || rcStrict == VINF_HM_DOUBLE_FAULT
|
---|
5911 | || rcStrict == VINF_EM_RESET || rcStrict == VERR_EM_GUEST_CPU_HANG);
|
---|
5912 | return rcStrict;
|
---|
5913 | }
|
---|
5914 |
|
---|
5915 |
|
---|
5916 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
5917 | /**
|
---|
5918 | * Perform the relevant VMX instruction checks for VM-exits that occurred due to the
|
---|
5919 | * guest attempting to execute a VMX instruction.
|
---|
5920 | *
|
---|
5921 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
5922 | * @retval VINF_SUCCESS if we should continue handling the VM-exit.
|
---|
5923 | * @retval VINF_HM_PENDING_XCPT if an exception was raised.
|
---|
5924 | *
|
---|
5925 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5926 | * @param uExitReason The VM-exit reason.
|
---|
5927 | *
|
---|
5928 | * @todo NSTVMX: Document other error codes when VM-exit is implemented.
|
---|
5929 | * @remarks No-long-jump zone!!!
|
---|
5930 | */
|
---|
5931 | static VBOXSTRICTRC vmxHCCheckExitDueToVmxInstr(PVMCPUCC pVCpu, uint32_t uExitReason)
|
---|
5932 | {
|
---|
5933 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS
|
---|
5934 | | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
|
---|
5935 |
|
---|
5936 | /*
|
---|
5937 | * The physical CPU would have already checked the CPU mode/code segment.
|
---|
5938 | * We shall just assert here for paranoia.
|
---|
5939 | * See Intel spec. 25.1.1 "Relative Priority of Faults and VM Exits".
|
---|
5940 | */
|
---|
5941 | Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
|
---|
5942 | Assert( !CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx)
|
---|
5943 | || CPUMIsGuestIn64BitCodeEx(&pVCpu->cpum.GstCtx));
|
---|
5944 |
|
---|
5945 | if (uExitReason == VMX_EXIT_VMXON)
|
---|
5946 | {
|
---|
5947 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
|
---|
5948 |
|
---|
5949 | /*
|
---|
5950 | * We check CR4.VMXE because it is required to be always set while in VMX operation
|
---|
5951 | * by physical CPUs and our CR4 read-shadow is only consulted when executing specific
|
---|
5952 | * instructions (CLTS, LMSW, MOV CR, and SMSW) and thus doesn't affect CPU operation
|
---|
5953 | * otherwise (i.e. physical CPU won't automatically #UD if Cr4Shadow.VMXE is 0).
|
---|
5954 | */
|
---|
5955 | if (!CPUMIsGuestVmxEnabled(&pVCpu->cpum.GstCtx))
|
---|
5956 | {
|
---|
5957 | Log4Func(("CR4.VMXE is not set -> #UD\n"));
|
---|
5958 | vmxHCSetPendingXcptUD(pVCpu);
|
---|
5959 | return VINF_HM_PENDING_XCPT;
|
---|
5960 | }
|
---|
5961 | }
|
---|
5962 | else if (!CPUMIsGuestInVmxRootMode(&pVCpu->cpum.GstCtx))
|
---|
5963 | {
|
---|
5964 | /*
|
---|
5965 | * The guest has not entered VMX operation but attempted to execute a VMX instruction
|
---|
5966 | * (other than VMXON), we need to raise a #UD.
|
---|
5967 | */
|
---|
5968 | Log4Func(("Not in VMX root mode -> #UD\n"));
|
---|
5969 | vmxHCSetPendingXcptUD(pVCpu);
|
---|
5970 | return VINF_HM_PENDING_XCPT;
|
---|
5971 | }
|
---|
5972 |
|
---|
5973 | /* All other checks (including VM-exit intercepts) are handled by IEM instruction emulation. */
|
---|
5974 | return VINF_SUCCESS;
|
---|
5975 | }
|
---|
5976 |
|
---|
5977 |
|
---|
5978 | /**
|
---|
5979 | * Decodes the memory operand of an instruction that caused a VM-exit.
|
---|
5980 | *
|
---|
5981 | * The Exit qualification field provides the displacement field for memory
|
---|
5982 | * operand instructions, if any.
|
---|
5983 | *
|
---|
5984 | * @returns Strict VBox status code (i.e. informational status codes too).
|
---|
5985 | * @retval VINF_SUCCESS if the operand was successfully decoded.
|
---|
5986 | * @retval VINF_HM_PENDING_XCPT if an exception was raised while decoding the
|
---|
5987 | * operand.
|
---|
5988 | * @param pVCpu The cross context virtual CPU structure.
|
---|
5989 | * @param uExitInstrInfo The VM-exit instruction information field.
|
---|
5990 | * @param enmMemAccess The memory operand's access type (read or write).
|
---|
5991 | * @param GCPtrDisp The instruction displacement field, if any. For
|
---|
5992 | * RIP-relative addressing pass RIP + displacement here.
|
---|
5993 | * @param pGCPtrMem Where to store the effective destination memory address.
|
---|
5994 | *
|
---|
5995 | * @remarks Warning! This function ASSUMES the instruction cannot be used in real or
|
---|
5996 | * virtual-8086 mode hence skips those checks while verifying if the
|
---|
5997 | * segment is valid.
|
---|
5998 | */
|
---|
5999 | static VBOXSTRICTRC vmxHCDecodeMemOperand(PVMCPUCC pVCpu, uint32_t uExitInstrInfo, RTGCPTR GCPtrDisp, VMXMEMACCESS enmMemAccess,
|
---|
6000 | PRTGCPTR pGCPtrMem)
|
---|
6001 | {
|
---|
6002 | Assert(pGCPtrMem);
|
---|
6003 | Assert(!CPUMIsGuestInRealOrV86Mode(pVCpu));
|
---|
6004 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_EFER
|
---|
6005 | | CPUMCTX_EXTRN_CR0);
|
---|
6006 |
|
---|
6007 | static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
|
---|
6008 | static uint64_t const s_auAccessSizeMasks[] = { sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t) };
|
---|
6009 | AssertCompile(RT_ELEMENTS(s_auAccessSizeMasks) == RT_ELEMENTS(s_auAddrSizeMasks));
|
---|
6010 |
|
---|
6011 | VMXEXITINSTRINFO ExitInstrInfo;
|
---|
6012 | ExitInstrInfo.u = uExitInstrInfo;
|
---|
6013 | uint8_t const uAddrSize = ExitInstrInfo.All.u3AddrSize;
|
---|
6014 | uint8_t const iSegReg = ExitInstrInfo.All.iSegReg;
|
---|
6015 | bool const fIdxRegValid = !ExitInstrInfo.All.fIdxRegInvalid;
|
---|
6016 | uint8_t const iIdxReg = ExitInstrInfo.All.iIdxReg;
|
---|
6017 | uint8_t const uScale = ExitInstrInfo.All.u2Scaling;
|
---|
6018 | bool const fBaseRegValid = !ExitInstrInfo.All.fBaseRegInvalid;
|
---|
6019 | uint8_t const iBaseReg = ExitInstrInfo.All.iBaseReg;
|
---|
6020 | bool const fIsMemOperand = !ExitInstrInfo.All.fIsRegOperand;
|
---|
6021 | bool const fIsLongMode = CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx);
|
---|
6022 |
|
---|
6023 | /*
|
---|
6024 | * Validate instruction information.
|
---|
6025 | * This shouldn't happen on real hardware but useful while testing our nested hardware-virtualization code.
|
---|
6026 | */
|
---|
6027 | AssertLogRelMsgReturn(uAddrSize < RT_ELEMENTS(s_auAddrSizeMasks),
|
---|
6028 | ("Invalid address size. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_1);
|
---|
6029 | AssertLogRelMsgReturn(iSegReg < X86_SREG_COUNT,
|
---|
6030 | ("Invalid segment register. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_2);
|
---|
6031 | AssertLogRelMsgReturn(fIsMemOperand,
|
---|
6032 | ("Expected memory operand. ExitInstrInfo=%#RX32\n", ExitInstrInfo.u), VERR_VMX_IPE_3);
|
---|
6033 |
|
---|
6034 | /*
|
---|
6035 | * Compute the complete effective address.
|
---|
6036 | *
|
---|
6037 | * See AMD instruction spec. 1.4.2 "SIB Byte Format"
|
---|
6038 | * See AMD spec. 4.5.2 "Segment Registers".
|
---|
6039 | */
|
---|
6040 | RTGCPTR GCPtrMem = GCPtrDisp;
|
---|
6041 | if (fBaseRegValid)
|
---|
6042 | GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iBaseReg].u64;
|
---|
6043 | if (fIdxRegValid)
|
---|
6044 | GCPtrMem += pVCpu->cpum.GstCtx.aGRegs[iIdxReg].u64 << uScale;
|
---|
6045 |
|
---|
6046 | RTGCPTR const GCPtrOff = GCPtrMem;
|
---|
6047 | if ( !fIsLongMode
|
---|
6048 | || iSegReg >= X86_SREG_FS)
|
---|
6049 | GCPtrMem += pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base;
|
---|
6050 | GCPtrMem &= s_auAddrSizeMasks[uAddrSize];
|
---|
6051 |
|
---|
6052 | /*
|
---|
6053 | * Validate effective address.
|
---|
6054 | * See AMD spec. 4.5.3 "Segment Registers in 64-Bit Mode".
|
---|
6055 | */
|
---|
6056 | uint8_t const cbAccess = s_auAccessSizeMasks[uAddrSize];
|
---|
6057 | Assert(cbAccess > 0);
|
---|
6058 | if (fIsLongMode)
|
---|
6059 | {
|
---|
6060 | if (X86_IS_CANONICAL(GCPtrMem))
|
---|
6061 | {
|
---|
6062 | *pGCPtrMem = GCPtrMem;
|
---|
6063 | return VINF_SUCCESS;
|
---|
6064 | }
|
---|
6065 |
|
---|
6066 | /** @todo r=ramshankar: We should probably raise \#SS or \#GP. See AMD spec. 4.12.2
|
---|
6067 | * "Data Limit Checks in 64-bit Mode". */
|
---|
6068 | Log4Func(("Long mode effective address is not canonical GCPtrMem=%#RX64\n", GCPtrMem));
|
---|
6069 | vmxHCSetPendingXcptGP(pVCpu, 0);
|
---|
6070 | return VINF_HM_PENDING_XCPT;
|
---|
6071 | }
|
---|
6072 |
|
---|
6073 | /*
|
---|
6074 | * This is a watered down version of iemMemApplySegment().
|
---|
6075 | * Parts that are not applicable for VMX instructions like real-or-v8086 mode
|
---|
6076 | * and segment CPL/DPL checks are skipped.
|
---|
6077 | */
|
---|
6078 | RTGCPTR32 const GCPtrFirst32 = (RTGCPTR32)GCPtrOff;
|
---|
6079 | RTGCPTR32 const GCPtrLast32 = GCPtrFirst32 + cbAccess - 1;
|
---|
6080 | PCCPUMSELREG pSel = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
|
---|
6081 |
|
---|
6082 | /* Check if the segment is present and usable. */
|
---|
6083 | if ( pSel->Attr.n.u1Present
|
---|
6084 | && !pSel->Attr.n.u1Unusable)
|
---|
6085 | {
|
---|
6086 | Assert(pSel->Attr.n.u1DescType);
|
---|
6087 | if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_CODE))
|
---|
6088 | {
|
---|
6089 | /* Check permissions for the data segment. */
|
---|
6090 | if ( enmMemAccess == VMXMEMACCESS_WRITE
|
---|
6091 | && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_WRITE))
|
---|
6092 | {
|
---|
6093 | Log4Func(("Data segment access invalid. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
|
---|
6094 | vmxHCSetPendingXcptGP(pVCpu, iSegReg);
|
---|
6095 | return VINF_HM_PENDING_XCPT;
|
---|
6096 | }
|
---|
6097 |
|
---|
6098 | /* Check limits if it's a normal data segment. */
|
---|
6099 | if (!(pSel->Attr.n.u4Type & X86_SEL_TYPE_DOWN))
|
---|
6100 | {
|
---|
6101 | if ( GCPtrFirst32 > pSel->u32Limit
|
---|
6102 | || GCPtrLast32 > pSel->u32Limit)
|
---|
6103 | {
|
---|
6104 | Log4Func(("Data segment limit exceeded. "
|
---|
6105 | "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
|
---|
6106 | GCPtrLast32, pSel->u32Limit));
|
---|
6107 | if (iSegReg == X86_SREG_SS)
|
---|
6108 | vmxHCSetPendingXcptSS(pVCpu, 0);
|
---|
6109 | else
|
---|
6110 | vmxHCSetPendingXcptGP(pVCpu, 0);
|
---|
6111 | return VINF_HM_PENDING_XCPT;
|
---|
6112 | }
|
---|
6113 | }
|
---|
6114 | else
|
---|
6115 | {
|
---|
6116 | /* Check limits if it's an expand-down data segment.
|
---|
6117 | Note! The upper boundary is defined by the B bit, not the G bit! */
|
---|
6118 | if ( GCPtrFirst32 < pSel->u32Limit + UINT32_C(1)
|
---|
6119 | || GCPtrLast32 > (pSel->Attr.n.u1DefBig ? UINT32_MAX : UINT32_C(0xffff)))
|
---|
6120 | {
|
---|
6121 | Log4Func(("Expand-down data segment limit exceeded. "
|
---|
6122 | "iSegReg=%#x GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n", iSegReg, GCPtrFirst32,
|
---|
6123 | GCPtrLast32, pSel->u32Limit));
|
---|
6124 | if (iSegReg == X86_SREG_SS)
|
---|
6125 | vmxHCSetPendingXcptSS(pVCpu, 0);
|
---|
6126 | else
|
---|
6127 | vmxHCSetPendingXcptGP(pVCpu, 0);
|
---|
6128 | return VINF_HM_PENDING_XCPT;
|
---|
6129 | }
|
---|
6130 | }
|
---|
6131 | }
|
---|
6132 | else
|
---|
6133 | {
|
---|
6134 | /* Check permissions for the code segment. */
|
---|
6135 | if ( enmMemAccess == VMXMEMACCESS_WRITE
|
---|
6136 | || ( enmMemAccess == VMXMEMACCESS_READ
|
---|
6137 | && !(pSel->Attr.n.u4Type & X86_SEL_TYPE_READ)))
|
---|
6138 | {
|
---|
6139 | Log4Func(("Code segment access invalid. Attr=%#RX32\n", pSel->Attr.u));
|
---|
6140 | Assert(!CPUMIsGuestInRealOrV86ModeEx(&pVCpu->cpum.GstCtx));
|
---|
6141 | vmxHCSetPendingXcptGP(pVCpu, 0);
|
---|
6142 | return VINF_HM_PENDING_XCPT;
|
---|
6143 | }
|
---|
6144 |
|
---|
6145 | /* Check limits for the code segment (normal/expand-down not applicable for code segments). */
|
---|
6146 | if ( GCPtrFirst32 > pSel->u32Limit
|
---|
6147 | || GCPtrLast32 > pSel->u32Limit)
|
---|
6148 | {
|
---|
6149 | Log4Func(("Code segment limit exceeded. GCPtrFirst32=%#RX32 GCPtrLast32=%#RX32 u32Limit=%#RX32\n",
|
---|
6150 | GCPtrFirst32, GCPtrLast32, pSel->u32Limit));
|
---|
6151 | if (iSegReg == X86_SREG_SS)
|
---|
6152 | vmxHCSetPendingXcptSS(pVCpu, 0);
|
---|
6153 | else
|
---|
6154 | vmxHCSetPendingXcptGP(pVCpu, 0);
|
---|
6155 | return VINF_HM_PENDING_XCPT;
|
---|
6156 | }
|
---|
6157 | }
|
---|
6158 | }
|
---|
6159 | else
|
---|
6160 | {
|
---|
6161 | Log4Func(("Not present or unusable segment. iSegReg=%#x Attr=%#RX32\n", iSegReg, pSel->Attr.u));
|
---|
6162 | vmxHCSetPendingXcptGP(pVCpu, 0);
|
---|
6163 | return VINF_HM_PENDING_XCPT;
|
---|
6164 | }
|
---|
6165 |
|
---|
6166 | *pGCPtrMem = GCPtrMem;
|
---|
6167 | return VINF_SUCCESS;
|
---|
6168 | }
|
---|
6169 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
6170 |
|
---|
6171 |
|
---|
6172 | /**
|
---|
6173 | * VM-exit helper for LMSW.
|
---|
6174 | */
|
---|
6175 | static VBOXSTRICTRC vmxHCExitLmsw(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint16_t uMsw, RTGCPTR GCPtrEffDst)
|
---|
6176 | {
|
---|
6177 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
6178 | AssertRCReturn(rc, rc);
|
---|
6179 |
|
---|
6180 | VBOXSTRICTRC rcStrict = IEMExecDecodedLmsw(pVCpu, cbInstr, uMsw, GCPtrEffDst);
|
---|
6181 | AssertMsg( rcStrict == VINF_SUCCESS
|
---|
6182 | || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6183 |
|
---|
6184 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
|
---|
6185 | if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
6186 | {
|
---|
6187 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
6188 | rcStrict = VINF_SUCCESS;
|
---|
6189 | }
|
---|
6190 |
|
---|
6191 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitLmsw);
|
---|
6192 | Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6193 | return rcStrict;
|
---|
6194 | }
|
---|
6195 |
|
---|
6196 |
|
---|
6197 | /**
|
---|
6198 | * VM-exit helper for CLTS.
|
---|
6199 | */
|
---|
6200 | static VBOXSTRICTRC vmxHCExitClts(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr)
|
---|
6201 | {
|
---|
6202 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
6203 | AssertRCReturn(rc, rc);
|
---|
6204 |
|
---|
6205 | VBOXSTRICTRC rcStrict = IEMExecDecodedClts(pVCpu, cbInstr);
|
---|
6206 | AssertMsg( rcStrict == VINF_SUCCESS
|
---|
6207 | || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6208 |
|
---|
6209 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0);
|
---|
6210 | if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
6211 | {
|
---|
6212 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
6213 | rcStrict = VINF_SUCCESS;
|
---|
6214 | }
|
---|
6215 |
|
---|
6216 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitClts);
|
---|
6217 | Log4Func(("rcStrict=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6218 | return rcStrict;
|
---|
6219 | }
|
---|
6220 |
|
---|
6221 |
|
---|
6222 | /**
|
---|
6223 | * VM-exit helper for MOV from CRx (CRx read).
|
---|
6224 | */
|
---|
6225 | static VBOXSTRICTRC vmxHCExitMovFromCrX(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
|
---|
6226 | {
|
---|
6227 | Assert(iCrReg < 16);
|
---|
6228 | Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
|
---|
6229 |
|
---|
6230 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
6231 | AssertRCReturn(rc, rc);
|
---|
6232 |
|
---|
6233 | VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxRead(pVCpu, cbInstr, iGReg, iCrReg);
|
---|
6234 | AssertMsg( rcStrict == VINF_SUCCESS
|
---|
6235 | || rcStrict == VINF_IEM_RAISED_XCPT, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6236 |
|
---|
6237 | if (iGReg == X86_GREG_xSP)
|
---|
6238 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_RSP);
|
---|
6239 | else
|
---|
6240 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
6241 | #ifdef VBOX_WITH_STATISTICS
|
---|
6242 | switch (iCrReg)
|
---|
6243 | {
|
---|
6244 | case 0: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR0Read); break;
|
---|
6245 | case 2: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR2Read); break;
|
---|
6246 | case 3: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR3Read); break;
|
---|
6247 | case 4: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR4Read); break;
|
---|
6248 | case 8: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR8Read); break;
|
---|
6249 | }
|
---|
6250 | #endif
|
---|
6251 | Log4Func(("CR%d Read access rcStrict=%Rrc\n", iCrReg, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6252 | return rcStrict;
|
---|
6253 | }
|
---|
6254 |
|
---|
6255 |
|
---|
6256 | /**
|
---|
6257 | * VM-exit helper for MOV to CRx (CRx write).
|
---|
6258 | */
|
---|
6259 | static VBOXSTRICTRC vmxHCExitMovToCrX(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iGReg, uint8_t iCrReg)
|
---|
6260 | {
|
---|
6261 | HMVMX_CPUMCTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
6262 |
|
---|
6263 | VBOXSTRICTRC rcStrict = IEMExecDecodedMovCRxWrite(pVCpu, cbInstr, iCrReg, iGReg);
|
---|
6264 | AssertMsg( rcStrict == VINF_SUCCESS
|
---|
6265 | || rcStrict == VINF_IEM_RAISED_XCPT
|
---|
6266 | || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
6267 |
|
---|
6268 | switch (iCrReg)
|
---|
6269 | {
|
---|
6270 | case 0:
|
---|
6271 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR0
|
---|
6272 | | HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
|
---|
6273 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR0Write);
|
---|
6274 | Log4Func(("CR0 write. rcStrict=%Rrc CR0=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr0));
|
---|
6275 | break;
|
---|
6276 |
|
---|
6277 | case 2:
|
---|
6278 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR2Write);
|
---|
6279 | /* Nothing to do here, CR2 it's not part of the VMCS. */
|
---|
6280 | break;
|
---|
6281 |
|
---|
6282 | case 3:
|
---|
6283 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR3);
|
---|
6284 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR3Write);
|
---|
6285 | Log4Func(("CR3 write. rcStrict=%Rrc CR3=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr3));
|
---|
6286 | break;
|
---|
6287 |
|
---|
6288 | case 4:
|
---|
6289 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_CR4);
|
---|
6290 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR4Write);
|
---|
6291 | #ifndef IN_NEM_DARWIN
|
---|
6292 | Log4Func(("CR4 write. rc=%Rrc CR4=%#RX64 fLoadSaveGuestXcr0=%u\n", VBOXSTRICTRC_VAL(rcStrict),
|
---|
6293 | pVCpu->cpum.GstCtx.cr4, pVCpu->hmr0.s.fLoadSaveGuestXcr0));
|
---|
6294 | #else
|
---|
6295 | Log4Func(("CR4 write. rc=%Rrc CR4=%#RX64\n", VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cr4));
|
---|
6296 | #endif
|
---|
6297 | break;
|
---|
6298 |
|
---|
6299 | case 8:
|
---|
6300 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged,
|
---|
6301 | HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_APIC_TPR);
|
---|
6302 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitCR8Write);
|
---|
6303 | break;
|
---|
6304 |
|
---|
6305 | default:
|
---|
6306 | AssertMsgFailed(("Invalid CRx register %#x\n", iCrReg));
|
---|
6307 | break;
|
---|
6308 | }
|
---|
6309 |
|
---|
6310 | if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
6311 | {
|
---|
6312 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
6313 | rcStrict = VINF_SUCCESS;
|
---|
6314 | }
|
---|
6315 | return rcStrict;
|
---|
6316 | }
|
---|
6317 |
|
---|
6318 |
|
---|
6319 | /**
|
---|
6320 | * VM-exit exception handler for \#PF (Page-fault exception).
|
---|
6321 | *
|
---|
6322 | * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
|
---|
6323 | */
|
---|
6324 | static VBOXSTRICTRC vmxHCExitXcptPF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
6325 | {
|
---|
6326 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
6327 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
6328 |
|
---|
6329 | #ifndef IN_NEM_DARWIN
|
---|
6330 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6331 | if (!VM_IS_VMX_NESTED_PAGING(pVM))
|
---|
6332 | { /* likely */ }
|
---|
6333 | else
|
---|
6334 | #endif
|
---|
6335 | {
|
---|
6336 | #if !defined(HMVMX_ALWAYS_TRAP_ALL_XCPTS) && !defined(HMVMX_ALWAYS_TRAP_PF) && !defined(IN_NEM_DARWIN)
|
---|
6337 | Assert(pVmxTransient->fIsNestedGuest || pVCpu->hmr0.s.fUsingDebugLoop);
|
---|
6338 | #endif
|
---|
6339 | VCPU_2_VMXSTATE(pVCpu).Event.fPending = false; /* In case it's a contributory or vectoring #PF. */
|
---|
6340 | if (!pVmxTransient->fVectoringDoublePF)
|
---|
6341 | {
|
---|
6342 | vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
|
---|
6343 | pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual);
|
---|
6344 | }
|
---|
6345 | else
|
---|
6346 | {
|
---|
6347 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
6348 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
6349 | vmxHCSetPendingXcptDF(pVCpu);
|
---|
6350 | Log4Func(("Pending #DF due to vectoring #PF w/ NestedPaging\n"));
|
---|
6351 | }
|
---|
6352 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestPF);
|
---|
6353 | return VINF_SUCCESS;
|
---|
6354 | }
|
---|
6355 |
|
---|
6356 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
6357 |
|
---|
6358 | /* If it's a vectoring #PF, emulate injecting the original event injection as PGMTrap0eHandler() is incapable
|
---|
6359 | of differentiating between instruction emulation and event injection that caused a #PF. See @bugref{6607}. */
|
---|
6360 | if (pVmxTransient->fVectoringPF)
|
---|
6361 | {
|
---|
6362 | Assert(VCPU_2_VMXSTATE(pVCpu).Event.fPending);
|
---|
6363 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
6364 | }
|
---|
6365 |
|
---|
6366 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
6367 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
6368 | AssertRCReturn(rc, rc);
|
---|
6369 |
|
---|
6370 | Log4Func(("#PF: cs:rip=%#04x:%#RX64 err_code=%#RX32 exit_qual=%#RX64 cr3=%#RX64\n", pCtx->cs.Sel, pCtx->rip,
|
---|
6371 | pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual, pCtx->cr3));
|
---|
6372 |
|
---|
6373 | TRPMAssertXcptPF(pVCpu, pVmxTransient->uExitQual, (RTGCUINT)pVmxTransient->uExitIntErrorCode);
|
---|
6374 | rc = PGMTrap0eHandler(pVCpu, pVmxTransient->uExitIntErrorCode, CPUMCTX2CORE(pCtx), (RTGCPTR)pVmxTransient->uExitQual);
|
---|
6375 |
|
---|
6376 | Log4Func(("#PF: rc=%Rrc\n", rc));
|
---|
6377 | if (rc == VINF_SUCCESS)
|
---|
6378 | {
|
---|
6379 | /*
|
---|
6380 | * This is typically a shadow page table sync or a MMIO instruction. But we may have
|
---|
6381 | * emulated something like LTR or a far jump. Any part of the CPU context may have changed.
|
---|
6382 | */
|
---|
6383 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
6384 | TRPMResetTrap(pVCpu);
|
---|
6385 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitShadowPF);
|
---|
6386 | return rc;
|
---|
6387 | }
|
---|
6388 |
|
---|
6389 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
6390 | {
|
---|
6391 | if (!pVmxTransient->fVectoringDoublePF)
|
---|
6392 | {
|
---|
6393 | /* It's a guest page fault and needs to be reflected to the guest. */
|
---|
6394 | uint32_t const uGstErrorCode = TRPMGetErrorCode(pVCpu);
|
---|
6395 | TRPMResetTrap(pVCpu);
|
---|
6396 | VCPU_2_VMXSTATE(pVCpu).Event.fPending = false; /* In case it's a contributory #PF. */
|
---|
6397 | vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), 0 /* cbInstr */,
|
---|
6398 | uGstErrorCode, pVmxTransient->uExitQual);
|
---|
6399 | }
|
---|
6400 | else
|
---|
6401 | {
|
---|
6402 | /* A guest page-fault occurred during delivery of a page-fault. Inject #DF. */
|
---|
6403 | TRPMResetTrap(pVCpu);
|
---|
6404 | VCPU_2_VMXSTATE(pVCpu).Event.fPending = false; /* Clear pending #PF to replace it with #DF. */
|
---|
6405 | vmxHCSetPendingXcptDF(pVCpu);
|
---|
6406 | Log4Func(("#PF: Pending #DF due to vectoring #PF\n"));
|
---|
6407 | }
|
---|
6408 |
|
---|
6409 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestPF);
|
---|
6410 | return VINF_SUCCESS;
|
---|
6411 | }
|
---|
6412 |
|
---|
6413 | TRPMResetTrap(pVCpu);
|
---|
6414 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitShadowPFEM);
|
---|
6415 | return rc;
|
---|
6416 | }
|
---|
6417 |
|
---|
6418 |
|
---|
6419 | /**
|
---|
6420 | * VM-exit exception handler for \#MF (Math Fault: floating point exception).
|
---|
6421 | *
|
---|
6422 | * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
|
---|
6423 | */
|
---|
6424 | static VBOXSTRICTRC vmxHCExitXcptMF(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
6425 | {
|
---|
6426 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
6427 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestMF);
|
---|
6428 |
|
---|
6429 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR0);
|
---|
6430 | AssertRCReturn(rc, rc);
|
---|
6431 |
|
---|
6432 | if (!(pVCpu->cpum.GstCtx.cr0 & X86_CR0_NE))
|
---|
6433 | {
|
---|
6434 | /* Convert a #MF into a FERR -> IRQ 13. See @bugref{6117}. */
|
---|
6435 | rc = PDMIsaSetIrq(pVCpu->CTX_SUFF(pVM), 13, 1, 0 /* uTagSrc */);
|
---|
6436 |
|
---|
6437 | /** @todo r=ramshankar: The Intel spec. does -not- specify that this VM-exit
|
---|
6438 | * provides VM-exit instruction length. If this causes problem later,
|
---|
6439 | * disassemble the instruction like it's done on AMD-V. */
|
---|
6440 | int rc2 = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
6441 | AssertRCReturn(rc2, rc2);
|
---|
6442 | return rc;
|
---|
6443 | }
|
---|
6444 |
|
---|
6445 | vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo), pVmxTransient->cbExitInstr,
|
---|
6446 | pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
6447 | return VINF_SUCCESS;
|
---|
6448 | }
|
---|
6449 |
|
---|
6450 |
|
---|
6451 | /**
|
---|
6452 | * VM-exit exception handler for \#BP (Breakpoint exception).
|
---|
6453 | *
|
---|
6454 | * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
|
---|
6455 | */
|
---|
6456 | static VBOXSTRICTRC vmxHCExitXcptBP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
6457 | {
|
---|
6458 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
6459 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestBP);
|
---|
6460 |
|
---|
6461 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
6462 | AssertRCReturn(rc, rc);
|
---|
6463 |
|
---|
6464 | VBOXSTRICTRC rcStrict;
|
---|
6465 | if (!pVmxTransient->fIsNestedGuest)
|
---|
6466 | rcStrict = DBGFTrap03Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(&pVCpu->cpum.GstCtx));
|
---|
6467 | else
|
---|
6468 | rcStrict = VINF_EM_RAW_GUEST_TRAP;
|
---|
6469 |
|
---|
6470 | if (rcStrict == VINF_EM_RAW_GUEST_TRAP)
|
---|
6471 | {
|
---|
6472 | vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
6473 | pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
6474 | rcStrict = VINF_SUCCESS;
|
---|
6475 | }
|
---|
6476 |
|
---|
6477 | Assert(rcStrict == VINF_SUCCESS || rcStrict == VINF_EM_DBG_BREAKPOINT);
|
---|
6478 | return rcStrict;
|
---|
6479 | }
|
---|
6480 |
|
---|
6481 |
|
---|
6482 | /**
|
---|
6483 | * VM-exit exception handler for \#AC (Alignment-check exception).
|
---|
6484 | *
|
---|
6485 | * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
|
---|
6486 | */
|
---|
6487 | static VBOXSTRICTRC vmxHCExitXcptAC(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
6488 | {
|
---|
6489 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
6490 |
|
---|
6491 | /*
|
---|
6492 | * Detect #ACs caused by host having enabled split-lock detection.
|
---|
6493 | * Emulate such instructions.
|
---|
6494 | */
|
---|
6495 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo,
|
---|
6496 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS);
|
---|
6497 | AssertRCReturn(rc, rc);
|
---|
6498 | /** @todo detect split lock in cpu feature? */
|
---|
6499 | if ( /* 1. If 486-style alignment checks aren't enabled, then this must be a split-lock exception */
|
---|
6500 | !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_AM)
|
---|
6501 | /* 2. #AC cannot happen in rings 0-2 except for split-lock detection. */
|
---|
6502 | || CPUMGetGuestCPL(pVCpu) != 3
|
---|
6503 | /* 3. When the EFLAGS.AC != 0 this can only be a split-lock case. */
|
---|
6504 | || !(pVCpu->cpum.GstCtx.eflags.u & X86_EFL_AC) )
|
---|
6505 | {
|
---|
6506 | /*
|
---|
6507 | * Check for debug/trace events and import state accordingly.
|
---|
6508 | */
|
---|
6509 | STAM_REL_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestACSplitLock);
|
---|
6510 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
6511 | if ( !DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_VMX_SPLIT_LOCK)
|
---|
6512 | #ifndef IN_NEM_DARWIN
|
---|
6513 | && !VBOXVMM_VMX_SPLIT_LOCK_ENABLED()
|
---|
6514 | #endif
|
---|
6515 | )
|
---|
6516 | {
|
---|
6517 | if (pVM->cCpus == 1)
|
---|
6518 | {
|
---|
6519 | #if 0 /** @todo r=bird: This is potentially wrong. Might have to just do a whole state sync above and mark everything changed to be safe... */
|
---|
6520 | rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
6521 | #else
|
---|
6522 | rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
6523 | #endif
|
---|
6524 | AssertRCReturn(rc, rc);
|
---|
6525 | }
|
---|
6526 | }
|
---|
6527 | else
|
---|
6528 | {
|
---|
6529 | rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
6530 | AssertRCReturn(rc, rc);
|
---|
6531 |
|
---|
6532 | VBOXVMM_XCPT_DF(pVCpu, &pVCpu->cpum.GstCtx);
|
---|
6533 |
|
---|
6534 | if (DBGF_IS_EVENT_ENABLED(pVM, DBGFEVENT_VMX_SPLIT_LOCK))
|
---|
6535 | {
|
---|
6536 | VBOXSTRICTRC rcStrict = DBGFEventGenericWithArgs(pVM, pVCpu, DBGFEVENT_VMX_SPLIT_LOCK, DBGFEVENTCTX_HM, 0);
|
---|
6537 | if (rcStrict != VINF_SUCCESS)
|
---|
6538 | return rcStrict;
|
---|
6539 | }
|
---|
6540 | }
|
---|
6541 |
|
---|
6542 | /*
|
---|
6543 | * Emulate the instruction.
|
---|
6544 | *
|
---|
6545 | * We have to ignore the LOCK prefix here as we must not retrigger the
|
---|
6546 | * detection on the host. This isn't all that satisfactory, though...
|
---|
6547 | */
|
---|
6548 | if (pVM->cCpus == 1)
|
---|
6549 | {
|
---|
6550 | Log8Func(("cs:rip=%#04x:%#RX64 rflags=%#RX64 cr0=%#RX64 split-lock #AC\n", pVCpu->cpum.GstCtx.cs.Sel,
|
---|
6551 | pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, pVCpu->cpum.GstCtx.cr0));
|
---|
6552 |
|
---|
6553 | /** @todo For SMP configs we should do a rendezvous here. */
|
---|
6554 | VBOXSTRICTRC rcStrict = IEMExecOneIgnoreLock(pVCpu);
|
---|
6555 | if (rcStrict == VINF_SUCCESS)
|
---|
6556 | #if 0 /** @todo r=bird: This is potentially wrong. Might have to just do a whole state sync above and mark everything changed to be safe... */
|
---|
6557 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged,
|
---|
6558 | HM_CHANGED_GUEST_RIP
|
---|
6559 | | HM_CHANGED_GUEST_RFLAGS
|
---|
6560 | | HM_CHANGED_GUEST_GPRS_MASK
|
---|
6561 | | HM_CHANGED_GUEST_CS
|
---|
6562 | | HM_CHANGED_GUEST_SS);
|
---|
6563 | #else
|
---|
6564 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
6565 | #endif
|
---|
6566 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
6567 | {
|
---|
6568 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
6569 | rcStrict = VINF_SUCCESS;
|
---|
6570 | }
|
---|
6571 | return rcStrict;
|
---|
6572 | }
|
---|
6573 | Log8Func(("cs:rip=%#04x:%#RX64 rflags=%#RX64 cr0=%#RX64 split-lock #AC -> VINF_EM_EMULATE_SPLIT_LOCK\n",
|
---|
6574 | pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, pVCpu->cpum.GstCtx.cr0));
|
---|
6575 | return VINF_EM_EMULATE_SPLIT_LOCK;
|
---|
6576 | }
|
---|
6577 |
|
---|
6578 | STAM_REL_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestAC);
|
---|
6579 | Log8Func(("cs:rip=%#04x:%#RX64 rflags=%#RX64 cr0=%#RX64 cpl=%d -> #AC\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
6580 | pVCpu->cpum.GstCtx.rflags, pVCpu->cpum.GstCtx.cr0, CPUMGetGuestCPL(pVCpu) ));
|
---|
6581 |
|
---|
6582 | /* Re-inject it. We'll detect any nesting before getting here. */
|
---|
6583 | vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
6584 | pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
6585 | return VINF_SUCCESS;
|
---|
6586 | }
|
---|
6587 |
|
---|
6588 |
|
---|
6589 | /**
|
---|
6590 | * VM-exit exception handler for \#DB (Debug exception).
|
---|
6591 | *
|
---|
6592 | * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
|
---|
6593 | */
|
---|
6594 | static VBOXSTRICTRC vmxHCExitXcptDB(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
6595 | {
|
---|
6596 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
6597 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDB);
|
---|
6598 |
|
---|
6599 | /*
|
---|
6600 | * Get the DR6-like values from the Exit qualification and pass it to DBGF for processing.
|
---|
6601 | */
|
---|
6602 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
6603 |
|
---|
6604 | /* Refer Intel spec. Table 27-1. "Exit Qualifications for debug exceptions" for the format. */
|
---|
6605 | uint64_t const uDR6 = X86_DR6_INIT_VAL
|
---|
6606 | | (pVmxTransient->uExitQual & ( X86_DR6_B0 | X86_DR6_B1 | X86_DR6_B2 | X86_DR6_B3
|
---|
6607 | | X86_DR6_BD | X86_DR6_BS));
|
---|
6608 |
|
---|
6609 | int rc;
|
---|
6610 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
6611 | if (!pVmxTransient->fIsNestedGuest)
|
---|
6612 | {
|
---|
6613 | rc = DBGFTrap01Handler(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx), uDR6, VCPU_2_VMXSTATE(pVCpu).fSingleInstruction);
|
---|
6614 |
|
---|
6615 | /*
|
---|
6616 | * Prevents stepping twice over the same instruction when the guest is stepping using
|
---|
6617 | * EFLAGS.TF and the hypervisor debugger is stepping using MTF.
|
---|
6618 | * Testcase: DOSQEMM, break (using "ba x 1") at cs:rip 0x70:0x774 and step (using "t").
|
---|
6619 | */
|
---|
6620 | if ( rc == VINF_EM_DBG_STEPPED
|
---|
6621 | && (pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG))
|
---|
6622 | {
|
---|
6623 | Assert(VCPU_2_VMXSTATE(pVCpu).fSingleInstruction);
|
---|
6624 | rc = VINF_EM_RAW_GUEST_TRAP;
|
---|
6625 | }
|
---|
6626 | }
|
---|
6627 | else
|
---|
6628 | rc = VINF_EM_RAW_GUEST_TRAP;
|
---|
6629 | Log6Func(("rc=%Rrc\n", rc));
|
---|
6630 | if (rc == VINF_EM_RAW_GUEST_TRAP)
|
---|
6631 | {
|
---|
6632 | /*
|
---|
6633 | * The exception was for the guest. Update DR6, DR7.GD and
|
---|
6634 | * IA32_DEBUGCTL.LBR before forwarding it.
|
---|
6635 | * See Intel spec. 27.1 "Architectural State before a VM-Exit".
|
---|
6636 | */
|
---|
6637 | #ifndef IN_NEM_DARWIN
|
---|
6638 | VMMRZCallRing3Disable(pVCpu);
|
---|
6639 | HM_DISABLE_PREEMPT(pVCpu);
|
---|
6640 |
|
---|
6641 | pCtx->dr[6] &= ~X86_DR6_B_MASK;
|
---|
6642 | pCtx->dr[6] |= uDR6;
|
---|
6643 | if (CPUMIsGuestDebugStateActive(pVCpu))
|
---|
6644 | ASMSetDR6(pCtx->dr[6]);
|
---|
6645 |
|
---|
6646 | HM_RESTORE_PREEMPT();
|
---|
6647 | VMMRZCallRing3Enable(pVCpu);
|
---|
6648 | #else
|
---|
6649 | /** @todo */
|
---|
6650 | #endif
|
---|
6651 |
|
---|
6652 | rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_DR7);
|
---|
6653 | AssertRCReturn(rc, rc);
|
---|
6654 |
|
---|
6655 | /* X86_DR7_GD will be cleared if DRx accesses should be trapped inside the guest. */
|
---|
6656 | pCtx->dr[7] &= ~(uint64_t)X86_DR7_GD;
|
---|
6657 |
|
---|
6658 | /* Paranoia. */
|
---|
6659 | pCtx->dr[7] &= ~(uint64_t)X86_DR7_RAZ_MASK;
|
---|
6660 | pCtx->dr[7] |= X86_DR7_RA1_MASK;
|
---|
6661 |
|
---|
6662 | rc = VMX_VMCS_WRITE_NW(pVCpu, VMX_VMCS_GUEST_DR7, pCtx->dr[7]);
|
---|
6663 | AssertRC(rc);
|
---|
6664 |
|
---|
6665 | /*
|
---|
6666 | * Raise #DB in the guest.
|
---|
6667 | *
|
---|
6668 | * It is important to reflect exactly what the VM-exit gave us (preserving the
|
---|
6669 | * interruption-type) rather than use vmxHCSetPendingXcptDB() as the #DB could've
|
---|
6670 | * been raised while executing ICEBP (INT1) and not the regular #DB. Thus it may
|
---|
6671 | * trigger different handling in the CPU (like skipping DPL checks), see @bugref{6398}.
|
---|
6672 | *
|
---|
6673 | * Intel re-documented ICEBP/INT1 on May 2018 previously documented as part of
|
---|
6674 | * Intel 386, see Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
|
---|
6675 | */
|
---|
6676 | vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
6677 | pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
6678 | return VINF_SUCCESS;
|
---|
6679 | }
|
---|
6680 |
|
---|
6681 | /*
|
---|
6682 | * Not a guest trap, must be a hypervisor related debug event then.
|
---|
6683 | * Update DR6 in case someone is interested in it.
|
---|
6684 | */
|
---|
6685 | AssertMsg(rc == VINF_EM_DBG_STEPPED || rc == VINF_EM_DBG_BREAKPOINT, ("%Rrc\n", rc));
|
---|
6686 | AssertReturn(pVmxTransient->fWasHyperDebugStateActive, VERR_HM_IPE_5);
|
---|
6687 | CPUMSetHyperDR6(pVCpu, uDR6);
|
---|
6688 |
|
---|
6689 | return rc;
|
---|
6690 | }
|
---|
6691 |
|
---|
6692 |
|
---|
6693 | /**
|
---|
6694 | * Hacks its way around the lovely mesa driver's backdoor accesses.
|
---|
6695 | *
|
---|
6696 | * @sa hmR0SvmHandleMesaDrvGp.
|
---|
6697 | */
|
---|
6698 | static int vmxHCHandleMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
|
---|
6699 | {
|
---|
6700 | LogFunc(("cs:rip=%#04x:%#RX64 rcx=%#RX64 rbx=%#RX64\n", pCtx->cs.Sel, pCtx->rip, pCtx->rcx, pCtx->rbx));
|
---|
6701 | RT_NOREF(pCtx);
|
---|
6702 |
|
---|
6703 | /* For now we'll just skip the instruction. */
|
---|
6704 | return vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
6705 | }
|
---|
6706 |
|
---|
6707 |
|
---|
6708 | /**
|
---|
6709 | * Checks if the \#GP'ing instruction is the mesa driver doing it's lovely
|
---|
6710 | * backdoor logging w/o checking what it is running inside.
|
---|
6711 | *
|
---|
6712 | * This recognizes an "IN EAX,DX" instruction executed in flat ring-3, with the
|
---|
6713 | * backdoor port and magic numbers loaded in registers.
|
---|
6714 | *
|
---|
6715 | * @returns true if it is, false if it isn't.
|
---|
6716 | * @sa hmR0SvmIsMesaDrvGp.
|
---|
6717 | */
|
---|
6718 | DECLINLINE(bool) vmxHCIsMesaDrvGp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient, PCPUMCTX pCtx)
|
---|
6719 | {
|
---|
6720 | /* 0xed: IN eAX,dx */
|
---|
6721 | uint8_t abInstr[1];
|
---|
6722 | if (pVmxTransient->cbExitInstr != sizeof(abInstr))
|
---|
6723 | return false;
|
---|
6724 |
|
---|
6725 | /* Check that it is #GP(0). */
|
---|
6726 | if (pVmxTransient->uExitIntErrorCode != 0)
|
---|
6727 | return false;
|
---|
6728 |
|
---|
6729 | /* Check magic and port. */
|
---|
6730 | Assert(!(pCtx->fExtrn & (CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RDX | CPUMCTX_EXTRN_RCX)));
|
---|
6731 | /*Log(("vmxHCIsMesaDrvGp: rax=%RX64 rdx=%RX64\n", pCtx->rax, pCtx->rdx));*/
|
---|
6732 | if (pCtx->rax != UINT32_C(0x564d5868))
|
---|
6733 | return false;
|
---|
6734 | if (pCtx->dx != UINT32_C(0x5658))
|
---|
6735 | return false;
|
---|
6736 |
|
---|
6737 | /* Flat ring-3 CS. */
|
---|
6738 | AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_CS);
|
---|
6739 | Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_CS));
|
---|
6740 | /*Log(("vmxHCIsMesaDrvGp: cs.Attr.n.u2Dpl=%d base=%Rx64\n", pCtx->cs.Attr.n.u2Dpl, pCtx->cs.u64Base));*/
|
---|
6741 | if (pCtx->cs.Attr.n.u2Dpl != 3)
|
---|
6742 | return false;
|
---|
6743 | if (pCtx->cs.u64Base != 0)
|
---|
6744 | return false;
|
---|
6745 |
|
---|
6746 | /* Check opcode. */
|
---|
6747 | AssertCompile(HMVMX_CPUMCTX_EXTRN_ALL & CPUMCTX_EXTRN_RIP);
|
---|
6748 | Assert(!(pCtx->fExtrn & CPUMCTX_EXTRN_RIP));
|
---|
6749 | int rc = PGMPhysSimpleReadGCPtr(pVCpu, abInstr, pCtx->rip, sizeof(abInstr));
|
---|
6750 | /*Log(("vmxHCIsMesaDrvGp: PGMPhysSimpleReadGCPtr -> %Rrc %#x\n", rc, abInstr[0]));*/
|
---|
6751 | if (RT_FAILURE(rc))
|
---|
6752 | return false;
|
---|
6753 | if (abInstr[0] != 0xed)
|
---|
6754 | return false;
|
---|
6755 |
|
---|
6756 | return true;
|
---|
6757 | }
|
---|
6758 |
|
---|
6759 |
|
---|
6760 | /**
|
---|
6761 | * VM-exit exception handler for \#GP (General-protection exception).
|
---|
6762 | *
|
---|
6763 | * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
|
---|
6764 | */
|
---|
6765 | static VBOXSTRICTRC vmxHCExitXcptGP(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
6766 | {
|
---|
6767 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
6768 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestGP);
|
---|
6769 |
|
---|
6770 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
6771 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
6772 | #ifndef IN_NEM_DARWIN
|
---|
6773 | PVMXVMCSINFOSHARED pVmcsInfoShared = pVmcsInfo->pShared;
|
---|
6774 | if (pVmcsInfoShared->RealMode.fRealOnV86Active)
|
---|
6775 | { /* likely */ }
|
---|
6776 | else
|
---|
6777 | #endif
|
---|
6778 | {
|
---|
6779 | #ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
6780 | # ifndef IN_NEM_DARWIN
|
---|
6781 | Assert(pVCpu->hmr0.s.fUsingDebugLoop || VCPU_2_VMXSTATE(pVCpu).fTrapXcptGpForLovelyMesaDrv || pVmxTransient->fIsNestedGuest);
|
---|
6782 | # else
|
---|
6783 | Assert(/*pVCpu->hmr0.s.fUsingDebugLoop ||*/ VCPU_2_VMXSTATE(pVCpu).fTrapXcptGpForLovelyMesaDrv || pVmxTransient->fIsNestedGuest);
|
---|
6784 | # endif
|
---|
6785 | #endif
|
---|
6786 | /*
|
---|
6787 | * If the guest is not in real-mode or we have unrestricted guest execution support, or if we are
|
---|
6788 | * executing a nested-guest, reflect #GP to the guest or nested-guest.
|
---|
6789 | */
|
---|
6790 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
6791 | AssertRCReturn(rc, rc);
|
---|
6792 | Log4Func(("Gst: cs:rip=%#04x:%#RX64 ErrorCode=%#x cr0=%#RX64 cpl=%u tr=%#04x\n", pCtx->cs.Sel, pCtx->rip,
|
---|
6793 | pVmxTransient->uExitIntErrorCode, pCtx->cr0, CPUMGetGuestCPL(pVCpu), pCtx->tr.Sel));
|
---|
6794 |
|
---|
6795 | if ( pVmxTransient->fIsNestedGuest
|
---|
6796 | || !VCPU_2_VMXSTATE(pVCpu).fTrapXcptGpForLovelyMesaDrv
|
---|
6797 | || !vmxHCIsMesaDrvGp(pVCpu, pVmxTransient, pCtx))
|
---|
6798 | vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
6799 | pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
6800 | else
|
---|
6801 | rc = vmxHCHandleMesaDrvGp(pVCpu, pVmxTransient, pCtx);
|
---|
6802 | return rc;
|
---|
6803 | }
|
---|
6804 |
|
---|
6805 | #ifndef IN_NEM_DARWIN
|
---|
6806 | Assert(CPUMIsGuestInRealModeEx(pCtx));
|
---|
6807 | Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fUnrestrictedGuest);
|
---|
6808 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
6809 |
|
---|
6810 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
6811 | AssertRCReturn(rc, rc);
|
---|
6812 |
|
---|
6813 | VBOXSTRICTRC rcStrict = IEMExecOne(pVCpu);
|
---|
6814 | if (rcStrict == VINF_SUCCESS)
|
---|
6815 | {
|
---|
6816 | if (!CPUMIsGuestInRealModeEx(pCtx))
|
---|
6817 | {
|
---|
6818 | /*
|
---|
6819 | * The guest is no longer in real-mode, check if we can continue executing the
|
---|
6820 | * guest using hardware-assisted VMX. Otherwise, fall back to emulation.
|
---|
6821 | */
|
---|
6822 | pVmcsInfoShared->RealMode.fRealOnV86Active = false;
|
---|
6823 | if (HMCanExecuteVmxGuest(pVCpu->CTX_SUFF(pVM), pVCpu, pCtx))
|
---|
6824 | {
|
---|
6825 | Log4Func(("Mode changed but guest still suitable for executing using hardware-assisted VMX\n"));
|
---|
6826 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
6827 | }
|
---|
6828 | else
|
---|
6829 | {
|
---|
6830 | Log4Func(("Mode changed -> VINF_EM_RESCHEDULE\n"));
|
---|
6831 | rcStrict = VINF_EM_RESCHEDULE;
|
---|
6832 | }
|
---|
6833 | }
|
---|
6834 | else
|
---|
6835 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
6836 | }
|
---|
6837 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
6838 | {
|
---|
6839 | rcStrict = VINF_SUCCESS;
|
---|
6840 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
6841 | }
|
---|
6842 | return VBOXSTRICTRC_VAL(rcStrict);
|
---|
6843 | #endif
|
---|
6844 | }
|
---|
6845 |
|
---|
6846 |
|
---|
6847 | /**
|
---|
6848 | * VM-exit exception handler wrapper for all other exceptions that are not handled
|
---|
6849 | * by a specific handler.
|
---|
6850 | *
|
---|
6851 | * This simply re-injects the exception back into the VM without any special
|
---|
6852 | * processing.
|
---|
6853 | *
|
---|
6854 | * @remarks Requires all fields in HMVMX_READ_XCPT_INFO to be read from the VMCS.
|
---|
6855 | */
|
---|
6856 | static VBOXSTRICTRC vmxHCExitXcptOthers(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
6857 | {
|
---|
6858 | HMVMX_VALIDATE_EXIT_XCPT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
6859 |
|
---|
6860 | #ifndef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
6861 | # ifndef IN_NEM_DARWIN
|
---|
6862 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
6863 | AssertMsg(pVCpu->hmr0.s.fUsingDebugLoop || pVmcsInfo->pShared->RealMode.fRealOnV86Active || pVmxTransient->fIsNestedGuest,
|
---|
6864 | ("uVector=%#x u32XcptBitmap=%#X32\n",
|
---|
6865 | VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo), pVmcsInfo->u32XcptBitmap));
|
---|
6866 | NOREF(pVmcsInfo);
|
---|
6867 | # endif
|
---|
6868 | #endif
|
---|
6869 |
|
---|
6870 | /*
|
---|
6871 | * Re-inject the exception into the guest. This cannot be a double-fault condition which
|
---|
6872 | * would have been handled while checking exits due to event delivery.
|
---|
6873 | */
|
---|
6874 | uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
|
---|
6875 |
|
---|
6876 | #ifdef HMVMX_ALWAYS_TRAP_ALL_XCPTS
|
---|
6877 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RIP);
|
---|
6878 | AssertRCReturn(rc, rc);
|
---|
6879 | Log4Func(("Reinjecting Xcpt. uVector=%#x cs:rip=%#04x:%#RX64\n", uVector, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
6880 | #endif
|
---|
6881 |
|
---|
6882 | #ifdef VBOX_WITH_STATISTICS
|
---|
6883 | switch (uVector)
|
---|
6884 | {
|
---|
6885 | case X86_XCPT_DE: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDE); break;
|
---|
6886 | case X86_XCPT_DB: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDB); break;
|
---|
6887 | case X86_XCPT_BP: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestBP); break;
|
---|
6888 | case X86_XCPT_OF: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestOF); break;
|
---|
6889 | case X86_XCPT_BR: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestBR); break;
|
---|
6890 | case X86_XCPT_UD: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestUD); break;
|
---|
6891 | case X86_XCPT_NM: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestOF); break;
|
---|
6892 | case X86_XCPT_DF: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestDF); break;
|
---|
6893 | case X86_XCPT_TS: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestTS); break;
|
---|
6894 | case X86_XCPT_NP: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestNP); break;
|
---|
6895 | case X86_XCPT_SS: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestSS); break;
|
---|
6896 | case X86_XCPT_GP: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestGP); break;
|
---|
6897 | case X86_XCPT_PF: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestPF); break;
|
---|
6898 | case X86_XCPT_MF: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestMF); break;
|
---|
6899 | case X86_XCPT_AC: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestAC); break;
|
---|
6900 | case X86_XCPT_XF: STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestXF); break;
|
---|
6901 | default:
|
---|
6902 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitGuestXcpUnk);
|
---|
6903 | break;
|
---|
6904 | }
|
---|
6905 | #endif
|
---|
6906 |
|
---|
6907 | /* We should never call this function for a page-fault, we'd need to pass on the fault address below otherwise. */
|
---|
6908 | Assert(!VMX_EXIT_INT_INFO_IS_XCPT_PF(pVmxTransient->uExitIntInfo));
|
---|
6909 | NOREF(uVector);
|
---|
6910 |
|
---|
6911 | /* Re-inject the original exception into the guest. */
|
---|
6912 | vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_INT_INFO(pVmxTransient->uExitIntInfo),
|
---|
6913 | pVmxTransient->cbExitInstr, pVmxTransient->uExitIntErrorCode, 0 /* GCPtrFaultAddress */);
|
---|
6914 | return VINF_SUCCESS;
|
---|
6915 | }
|
---|
6916 |
|
---|
6917 |
|
---|
6918 | /**
|
---|
6919 | * VM-exit exception handler for all exceptions (except NMIs!).
|
---|
6920 | *
|
---|
6921 | * @remarks This may be called for both guests and nested-guests. Take care to not
|
---|
6922 | * make assumptions and avoid doing anything that is not relevant when
|
---|
6923 | * executing a nested-guest (e.g., Mesa driver hacks).
|
---|
6924 | */
|
---|
6925 | static VBOXSTRICTRC vmxHCExitXcpt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
6926 | {
|
---|
6927 | HMVMX_ASSERT_READ(pVmxTransient, HMVMX_READ_XCPT_INFO);
|
---|
6928 |
|
---|
6929 | /*
|
---|
6930 | * If this VM-exit occurred while delivering an event through the guest IDT, take
|
---|
6931 | * action based on the return code and additional hints (e.g. for page-faults)
|
---|
6932 | * that will be updated in the VMX transient structure.
|
---|
6933 | */
|
---|
6934 | VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
|
---|
6935 | if (rcStrict == VINF_SUCCESS)
|
---|
6936 | {
|
---|
6937 | /*
|
---|
6938 | * If an exception caused a VM-exit due to delivery of an event, the original
|
---|
6939 | * event may have to be re-injected into the guest. We shall reinject it and
|
---|
6940 | * continue guest execution. However, page-fault is a complicated case and
|
---|
6941 | * needs additional processing done in vmxHCExitXcptPF().
|
---|
6942 | */
|
---|
6943 | Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
|
---|
6944 | uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
|
---|
6945 | if ( !VCPU_2_VMXSTATE(pVCpu).Event.fPending
|
---|
6946 | || uVector == X86_XCPT_PF)
|
---|
6947 | {
|
---|
6948 | switch (uVector)
|
---|
6949 | {
|
---|
6950 | case X86_XCPT_PF: return vmxHCExitXcptPF(pVCpu, pVmxTransient);
|
---|
6951 | case X86_XCPT_GP: return vmxHCExitXcptGP(pVCpu, pVmxTransient);
|
---|
6952 | case X86_XCPT_MF: return vmxHCExitXcptMF(pVCpu, pVmxTransient);
|
---|
6953 | case X86_XCPT_DB: return vmxHCExitXcptDB(pVCpu, pVmxTransient);
|
---|
6954 | case X86_XCPT_BP: return vmxHCExitXcptBP(pVCpu, pVmxTransient);
|
---|
6955 | case X86_XCPT_AC: return vmxHCExitXcptAC(pVCpu, pVmxTransient);
|
---|
6956 | default:
|
---|
6957 | return vmxHCExitXcptOthers(pVCpu, pVmxTransient);
|
---|
6958 | }
|
---|
6959 | }
|
---|
6960 | /* else: inject pending event before resuming guest execution. */
|
---|
6961 | }
|
---|
6962 | else if (rcStrict == VINF_HM_DOUBLE_FAULT)
|
---|
6963 | {
|
---|
6964 | Assert(VCPU_2_VMXSTATE(pVCpu).Event.fPending);
|
---|
6965 | rcStrict = VINF_SUCCESS;
|
---|
6966 | }
|
---|
6967 |
|
---|
6968 | return rcStrict;
|
---|
6969 | }
|
---|
6970 | /** @} */
|
---|
6971 |
|
---|
6972 |
|
---|
6973 | /** @name VM-exit handlers.
|
---|
6974 | * @{
|
---|
6975 | */
|
---|
6976 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
6977 | /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- */
|
---|
6978 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
6979 |
|
---|
6980 | /**
|
---|
6981 | * VM-exit handler for external interrupts (VMX_EXIT_EXT_INT).
|
---|
6982 | */
|
---|
6983 | HMVMX_EXIT_DECL vmxHCExitExtInt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
6984 | {
|
---|
6985 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
6986 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitExtInt);
|
---|
6987 |
|
---|
6988 | #ifndef IN_NEM_DARWIN
|
---|
6989 | /* Windows hosts (32-bit and 64-bit) have DPC latency issues. See @bugref{6853}. */
|
---|
6990 | if (VMMR0ThreadCtxHookIsEnabled(pVCpu))
|
---|
6991 | return VINF_SUCCESS;
|
---|
6992 | return VINF_EM_RAW_INTERRUPT;
|
---|
6993 | #else
|
---|
6994 | return VINF_SUCCESS;
|
---|
6995 | #endif
|
---|
6996 | }
|
---|
6997 |
|
---|
6998 |
|
---|
6999 | /**
|
---|
7000 | * VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI). Conditional
|
---|
7001 | * VM-exit.
|
---|
7002 | */
|
---|
7003 | HMVMX_EXIT_DECL vmxHCExitXcptOrNmi(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7004 | {
|
---|
7005 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7006 | STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitXcptNmi, y3);
|
---|
7007 |
|
---|
7008 | vmxHCReadExitIntInfoVmcs(pVCpu, pVmxTransient);
|
---|
7009 |
|
---|
7010 | uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(pVmxTransient->uExitIntInfo);
|
---|
7011 | uint8_t const uVector = VMX_EXIT_INT_INFO_VECTOR(pVmxTransient->uExitIntInfo);
|
---|
7012 | Assert(VMX_EXIT_INT_INFO_IS_VALID(pVmxTransient->uExitIntInfo));
|
---|
7013 |
|
---|
7014 | PCVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7015 | Assert( !(pVmcsInfo->u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
|
---|
7016 | && uExitIntType != VMX_EXIT_INT_INFO_TYPE_EXT_INT);
|
---|
7017 | NOREF(pVmcsInfo);
|
---|
7018 |
|
---|
7019 | VBOXSTRICTRC rcStrict;
|
---|
7020 | switch (uExitIntType)
|
---|
7021 | {
|
---|
7022 | #ifndef IN_NEM_DARWIN /* NMIs should never reach R3. */
|
---|
7023 | /*
|
---|
7024 | * Host physical NMIs:
|
---|
7025 | * This cannot be a guest NMI as the only way for the guest to receive an NMI is if we
|
---|
7026 | * injected it ourselves and anything we inject is not going to cause a VM-exit directly
|
---|
7027 | * for the event being injected[1]. Go ahead and dispatch the NMI to the host[2].
|
---|
7028 | *
|
---|
7029 | * See Intel spec. 27.2.3 "Information for VM Exits During Event Delivery".
|
---|
7030 | * See Intel spec. 27.5.5 "Updating Non-Register State".
|
---|
7031 | */
|
---|
7032 | case VMX_EXIT_INT_INFO_TYPE_NMI:
|
---|
7033 | {
|
---|
7034 | rcStrict = hmR0VmxExitHostNmi(pVCpu, pVmcsInfo);
|
---|
7035 | break;
|
---|
7036 | }
|
---|
7037 | #endif
|
---|
7038 |
|
---|
7039 | /*
|
---|
7040 | * Privileged software exceptions (#DB from ICEBP),
|
---|
7041 | * Software exceptions (#BP and #OF),
|
---|
7042 | * Hardware exceptions:
|
---|
7043 | * Process the required exceptions and resume guest execution if possible.
|
---|
7044 | */
|
---|
7045 | case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
|
---|
7046 | Assert(uVector == X86_XCPT_DB);
|
---|
7047 | RT_FALL_THRU();
|
---|
7048 | case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
|
---|
7049 | Assert(uVector == X86_XCPT_BP || uVector == X86_XCPT_OF || uExitIntType == VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT);
|
---|
7050 | RT_FALL_THRU();
|
---|
7051 | case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
|
---|
7052 | {
|
---|
7053 | NOREF(uVector);
|
---|
7054 | vmxHCReadExitIntErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
7055 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7056 | vmxHCReadIdtVectoringInfoVmcs(pVCpu, pVmxTransient);
|
---|
7057 | vmxHCReadIdtVectoringErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
7058 |
|
---|
7059 | rcStrict = vmxHCExitXcpt(pVCpu, pVmxTransient);
|
---|
7060 | break;
|
---|
7061 | }
|
---|
7062 |
|
---|
7063 | default:
|
---|
7064 | {
|
---|
7065 | VCPU_2_VMXSTATE(pVCpu).u32HMError = pVmxTransient->uExitIntInfo;
|
---|
7066 | rcStrict = VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
|
---|
7067 | AssertMsgFailed(("Invalid/unexpected VM-exit interruption info %#x\n", pVmxTransient->uExitIntInfo));
|
---|
7068 | break;
|
---|
7069 | }
|
---|
7070 | }
|
---|
7071 |
|
---|
7072 | STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitXcptNmi, y3);
|
---|
7073 | return rcStrict;
|
---|
7074 | }
|
---|
7075 |
|
---|
7076 |
|
---|
7077 | /**
|
---|
7078 | * VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
|
---|
7079 | */
|
---|
7080 | HMVMX_EXIT_NSRC_DECL vmxHCExitIntWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7081 | {
|
---|
7082 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7083 |
|
---|
7084 | /* Indicate that we no longer need to VM-exit when the guest is ready to receive interrupts, it is now ready. */
|
---|
7085 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7086 | vmxHCClearIntWindowExitVmcs(pVCpu, pVmcsInfo);
|
---|
7087 |
|
---|
7088 | /* Evaluate and deliver pending events and resume guest execution. */
|
---|
7089 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitIntWindow);
|
---|
7090 | return VINF_SUCCESS;
|
---|
7091 | }
|
---|
7092 |
|
---|
7093 |
|
---|
7094 | /**
|
---|
7095 | * VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
|
---|
7096 | */
|
---|
7097 | HMVMX_EXIT_NSRC_DECL vmxHCExitNmiWindow(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7098 | {
|
---|
7099 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7100 |
|
---|
7101 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7102 | if (RT_UNLIKELY(!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))) /** @todo NSTVMX: Turn this into an assertion. */
|
---|
7103 | {
|
---|
7104 | AssertMsgFailed(("Unexpected NMI-window exit.\n"));
|
---|
7105 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
|
---|
7106 | }
|
---|
7107 |
|
---|
7108 | Assert(!CPUMIsGuestNmiBlocking(pVCpu));
|
---|
7109 |
|
---|
7110 | /*
|
---|
7111 | * If block-by-STI is set when we get this VM-exit, it means the CPU doesn't block NMIs following STI.
|
---|
7112 | * It is therefore safe to unblock STI and deliver the NMI ourselves. See @bugref{7445}.
|
---|
7113 | */
|
---|
7114 | uint32_t fIntrState;
|
---|
7115 | int rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &fIntrState);
|
---|
7116 | AssertRC(rc);
|
---|
7117 | Assert(!(fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS));
|
---|
7118 | if (fIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)
|
---|
7119 | {
|
---|
7120 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
7121 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
7122 |
|
---|
7123 | fIntrState &= ~VMX_VMCS_GUEST_INT_STATE_BLOCK_STI;
|
---|
7124 | rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, fIntrState);
|
---|
7125 | AssertRC(rc);
|
---|
7126 | }
|
---|
7127 |
|
---|
7128 | /* Indicate that we no longer need to VM-exit when the guest is ready to receive NMIs, it is now ready */
|
---|
7129 | vmxHCClearNmiWindowExitVmcs(pVCpu, pVmcsInfo);
|
---|
7130 |
|
---|
7131 | /* Evaluate and deliver pending events and resume guest execution. */
|
---|
7132 | return VINF_SUCCESS;
|
---|
7133 | }
|
---|
7134 |
|
---|
7135 |
|
---|
7136 | /**
|
---|
7137 | * VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
|
---|
7138 | */
|
---|
7139 | HMVMX_EXIT_NSRC_DECL vmxHCExitWbinvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7140 | {
|
---|
7141 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7142 | return vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
7143 | }
|
---|
7144 |
|
---|
7145 |
|
---|
7146 | /**
|
---|
7147 | * VM-exit handler for INVD (VMX_EXIT_INVD). Unconditional VM-exit.
|
---|
7148 | */
|
---|
7149 | HMVMX_EXIT_NSRC_DECL vmxHCExitInvd(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7150 | {
|
---|
7151 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7152 | return vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
7153 | }
|
---|
7154 |
|
---|
7155 |
|
---|
7156 | /**
|
---|
7157 | * VM-exit handler for CPUID (VMX_EXIT_CPUID). Unconditional VM-exit.
|
---|
7158 | */
|
---|
7159 | HMVMX_EXIT_DECL vmxHCExitCpuid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7160 | {
|
---|
7161 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7162 |
|
---|
7163 | /*
|
---|
7164 | * Get the state we need and update the exit history entry.
|
---|
7165 | */
|
---|
7166 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7167 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7168 |
|
---|
7169 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
|
---|
7170 | AssertRCReturn(rc, rc);
|
---|
7171 |
|
---|
7172 | VBOXSTRICTRC rcStrict;
|
---|
7173 | PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
|
---|
7174 | EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_CPUID),
|
---|
7175 | pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
|
---|
7176 | if (!pExitRec)
|
---|
7177 | {
|
---|
7178 | /*
|
---|
7179 | * Regular CPUID instruction execution.
|
---|
7180 | */
|
---|
7181 | rcStrict = IEMExecDecodedCpuid(pVCpu, pVmxTransient->cbExitInstr);
|
---|
7182 | if (rcStrict == VINF_SUCCESS)
|
---|
7183 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
7184 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
7185 | {
|
---|
7186 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
7187 | rcStrict = VINF_SUCCESS;
|
---|
7188 | }
|
---|
7189 | }
|
---|
7190 | else
|
---|
7191 | {
|
---|
7192 | /*
|
---|
7193 | * Frequent exit or something needing probing. Get state and call EMHistoryExec.
|
---|
7194 | */
|
---|
7195 | int rc2 = vmxHCImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
7196 | AssertRCReturn(rc2, rc2);
|
---|
7197 |
|
---|
7198 | Log4(("CpuIdExit/%u: %04x:%08RX64: %#x/%#x -> EMHistoryExec\n",
|
---|
7199 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eax, pVCpu->cpum.GstCtx.ecx));
|
---|
7200 |
|
---|
7201 | rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
7202 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
7203 |
|
---|
7204 | Log4(("CpuIdExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
7205 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
7206 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
7207 | }
|
---|
7208 | return rcStrict;
|
---|
7209 | }
|
---|
7210 |
|
---|
7211 |
|
---|
7212 | /**
|
---|
7213 | * VM-exit handler for GETSEC (VMX_EXIT_GETSEC). Unconditional VM-exit.
|
---|
7214 | */
|
---|
7215 | HMVMX_EXIT_DECL vmxHCExitGetsec(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7216 | {
|
---|
7217 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7218 |
|
---|
7219 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7220 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4);
|
---|
7221 | AssertRCReturn(rc, rc);
|
---|
7222 |
|
---|
7223 | if (pVCpu->cpum.GstCtx.cr4 & X86_CR4_SMXE)
|
---|
7224 | return VINF_EM_RAW_EMULATE_INSTR;
|
---|
7225 |
|
---|
7226 | AssertMsgFailed(("vmxHCExitGetsec: Unexpected VM-exit when CR4.SMXE is 0.\n"));
|
---|
7227 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
|
---|
7228 | }
|
---|
7229 |
|
---|
7230 |
|
---|
7231 | /**
|
---|
7232 | * VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
|
---|
7233 | */
|
---|
7234 | HMVMX_EXIT_DECL vmxHCExitRdtsc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7235 | {
|
---|
7236 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7237 |
|
---|
7238 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7239 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7240 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
7241 | AssertRCReturn(rc, rc);
|
---|
7242 |
|
---|
7243 | VBOXSTRICTRC rcStrict = IEMExecDecodedRdtsc(pVCpu, pVmxTransient->cbExitInstr);
|
---|
7244 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
7245 | {
|
---|
7246 | /* If we get a spurious VM-exit when TSC offsetting is enabled,
|
---|
7247 | we must reset offsetting on VM-entry. See @bugref{6634}. */
|
---|
7248 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
|
---|
7249 | pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
|
---|
7250 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
7251 | }
|
---|
7252 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
7253 | {
|
---|
7254 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
7255 | rcStrict = VINF_SUCCESS;
|
---|
7256 | }
|
---|
7257 | return rcStrict;
|
---|
7258 | }
|
---|
7259 |
|
---|
7260 |
|
---|
7261 | /**
|
---|
7262 | * VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
|
---|
7263 | */
|
---|
7264 | HMVMX_EXIT_DECL vmxHCExitRdtscp(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7265 | {
|
---|
7266 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7267 |
|
---|
7268 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7269 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7270 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_TSC_AUX);
|
---|
7271 | AssertRCReturn(rc, rc);
|
---|
7272 |
|
---|
7273 | VBOXSTRICTRC rcStrict = IEMExecDecodedRdtscp(pVCpu, pVmxTransient->cbExitInstr);
|
---|
7274 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
7275 | {
|
---|
7276 | /* If we get a spurious VM-exit when TSC offsetting is enabled,
|
---|
7277 | we must reset offsetting on VM-reentry. See @bugref{6634}. */
|
---|
7278 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
|
---|
7279 | pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
|
---|
7280 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
7281 | }
|
---|
7282 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
7283 | {
|
---|
7284 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
7285 | rcStrict = VINF_SUCCESS;
|
---|
7286 | }
|
---|
7287 | return rcStrict;
|
---|
7288 | }
|
---|
7289 |
|
---|
7290 |
|
---|
7291 | /**
|
---|
7292 | * VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
|
---|
7293 | */
|
---|
7294 | HMVMX_EXIT_DECL vmxHCExitRdpmc(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7295 | {
|
---|
7296 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7297 |
|
---|
7298 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7299 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0
|
---|
7300 | | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
|
---|
7301 | AssertRCReturn(rc, rc);
|
---|
7302 |
|
---|
7303 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
7304 | rc = EMInterpretRdpmc(pVCpu->CTX_SUFF(pVM), pVCpu, CPUMCTX2CORE(pCtx));
|
---|
7305 | if (RT_LIKELY(rc == VINF_SUCCESS))
|
---|
7306 | {
|
---|
7307 | rc = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
7308 | Assert(pVmxTransient->cbExitInstr == 2);
|
---|
7309 | }
|
---|
7310 | else
|
---|
7311 | {
|
---|
7312 | AssertMsgFailed(("vmxHCExitRdpmc: EMInterpretRdpmc failed with %Rrc\n", rc));
|
---|
7313 | rc = VERR_EM_INTERPRETER;
|
---|
7314 | }
|
---|
7315 | return rc;
|
---|
7316 | }
|
---|
7317 |
|
---|
7318 |
|
---|
7319 | /**
|
---|
7320 | * VM-exit handler for VMCALL (VMX_EXIT_VMCALL). Unconditional VM-exit.
|
---|
7321 | */
|
---|
7322 | HMVMX_EXIT_DECL vmxHCExitVmcall(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7323 | {
|
---|
7324 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7325 |
|
---|
7326 | VBOXSTRICTRC rcStrict = VERR_VMX_IPE_3;
|
---|
7327 | if (EMAreHypercallInstructionsEnabled(pVCpu))
|
---|
7328 | {
|
---|
7329 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7330 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CR0
|
---|
7331 | | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
|
---|
7332 | AssertRCReturn(rc, rc);
|
---|
7333 |
|
---|
7334 | /* Perform the hypercall. */
|
---|
7335 | rcStrict = GIMHypercall(pVCpu, &pVCpu->cpum.GstCtx);
|
---|
7336 | if (rcStrict == VINF_SUCCESS)
|
---|
7337 | {
|
---|
7338 | rc = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
7339 | AssertRCReturn(rc, rc);
|
---|
7340 | }
|
---|
7341 | else
|
---|
7342 | Assert( rcStrict == VINF_GIM_R3_HYPERCALL
|
---|
7343 | || rcStrict == VINF_GIM_HYPERCALL_CONTINUING
|
---|
7344 | || RT_FAILURE(rcStrict));
|
---|
7345 |
|
---|
7346 | /* If the hypercall changes anything other than guest's general-purpose registers,
|
---|
7347 | we would need to reload the guest changed bits here before VM-entry. */
|
---|
7348 | }
|
---|
7349 | else
|
---|
7350 | Log4Func(("Hypercalls not enabled\n"));
|
---|
7351 |
|
---|
7352 | /* If hypercalls are disabled or the hypercall failed for some reason, raise #UD and continue. */
|
---|
7353 | if (RT_FAILURE(rcStrict))
|
---|
7354 | {
|
---|
7355 | vmxHCSetPendingXcptUD(pVCpu);
|
---|
7356 | rcStrict = VINF_SUCCESS;
|
---|
7357 | }
|
---|
7358 |
|
---|
7359 | return rcStrict;
|
---|
7360 | }
|
---|
7361 |
|
---|
7362 |
|
---|
7363 | /**
|
---|
7364 | * VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
|
---|
7365 | */
|
---|
7366 | HMVMX_EXIT_DECL vmxHCExitInvlpg(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7367 | {
|
---|
7368 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7369 | #ifndef IN_NEM_DARWIN
|
---|
7370 | Assert(!pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging || pVCpu->hmr0.s.fUsingDebugLoop);
|
---|
7371 | #endif
|
---|
7372 |
|
---|
7373 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7374 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
7375 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7376 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
7377 | AssertRCReturn(rc, rc);
|
---|
7378 |
|
---|
7379 | VBOXSTRICTRC rcStrict = IEMExecDecodedInvlpg(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->uExitQual);
|
---|
7380 |
|
---|
7381 | if (rcStrict == VINF_SUCCESS || rcStrict == VINF_PGM_SYNC_CR3)
|
---|
7382 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
7383 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
7384 | {
|
---|
7385 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
7386 | rcStrict = VINF_SUCCESS;
|
---|
7387 | }
|
---|
7388 | else
|
---|
7389 | AssertMsgFailed(("Unexpected IEMExecDecodedInvlpg(%#RX64) status: %Rrc\n", pVmxTransient->uExitQual,
|
---|
7390 | VBOXSTRICTRC_VAL(rcStrict)));
|
---|
7391 | return rcStrict;
|
---|
7392 | }
|
---|
7393 |
|
---|
7394 |
|
---|
7395 | /**
|
---|
7396 | * VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
|
---|
7397 | */
|
---|
7398 | HMVMX_EXIT_DECL vmxHCExitMonitor(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7399 | {
|
---|
7400 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7401 |
|
---|
7402 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7403 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7404 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_DS);
|
---|
7405 | AssertRCReturn(rc, rc);
|
---|
7406 |
|
---|
7407 | VBOXSTRICTRC rcStrict = IEMExecDecodedMonitor(pVCpu, pVmxTransient->cbExitInstr);
|
---|
7408 | if (rcStrict == VINF_SUCCESS)
|
---|
7409 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
7410 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
7411 | {
|
---|
7412 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
7413 | rcStrict = VINF_SUCCESS;
|
---|
7414 | }
|
---|
7415 |
|
---|
7416 | return rcStrict;
|
---|
7417 | }
|
---|
7418 |
|
---|
7419 |
|
---|
7420 | /**
|
---|
7421 | * VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
|
---|
7422 | */
|
---|
7423 | HMVMX_EXIT_DECL vmxHCExitMwait(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7424 | {
|
---|
7425 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7426 |
|
---|
7427 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7428 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7429 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
|
---|
7430 | AssertRCReturn(rc, rc);
|
---|
7431 |
|
---|
7432 | VBOXSTRICTRC rcStrict = IEMExecDecodedMwait(pVCpu, pVmxTransient->cbExitInstr);
|
---|
7433 | if (RT_SUCCESS(rcStrict))
|
---|
7434 | {
|
---|
7435 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
7436 | if (EMMonitorWaitShouldContinue(pVCpu, &pVCpu->cpum.GstCtx))
|
---|
7437 | rcStrict = VINF_SUCCESS;
|
---|
7438 | }
|
---|
7439 |
|
---|
7440 | return rcStrict;
|
---|
7441 | }
|
---|
7442 |
|
---|
7443 |
|
---|
7444 | /**
|
---|
7445 | * VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT). Unconditional
|
---|
7446 | * VM-exit.
|
---|
7447 | */
|
---|
7448 | HMVMX_EXIT_DECL vmxHCExitTripleFault(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7449 | {
|
---|
7450 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7451 | return VINF_EM_RESET;
|
---|
7452 | }
|
---|
7453 |
|
---|
7454 |
|
---|
7455 | /**
|
---|
7456 | * VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
|
---|
7457 | */
|
---|
7458 | HMVMX_EXIT_DECL vmxHCExitHlt(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7459 | {
|
---|
7460 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7461 |
|
---|
7462 | int rc = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
7463 | AssertRCReturn(rc, rc);
|
---|
7464 |
|
---|
7465 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_RFLAGS); /* Advancing the RIP above should've imported eflags. */
|
---|
7466 | if (EMShouldContinueAfterHalt(pVCpu, &pVCpu->cpum.GstCtx)) /* Requires eflags. */
|
---|
7467 | rc = VINF_SUCCESS;
|
---|
7468 | else
|
---|
7469 | rc = VINF_EM_HALT;
|
---|
7470 |
|
---|
7471 | if (rc != VINF_SUCCESS)
|
---|
7472 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchHltToR3);
|
---|
7473 | return rc;
|
---|
7474 | }
|
---|
7475 |
|
---|
7476 |
|
---|
7477 | /**
|
---|
7478 | * VM-exit handler for instructions that result in a \#UD exception delivered to
|
---|
7479 | * the guest.
|
---|
7480 | */
|
---|
7481 | HMVMX_EXIT_NSRC_DECL vmxHCExitSetPendingXcptUD(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7482 | {
|
---|
7483 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7484 | vmxHCSetPendingXcptUD(pVCpu);
|
---|
7485 | return VINF_SUCCESS;
|
---|
7486 | }
|
---|
7487 |
|
---|
7488 |
|
---|
7489 | /**
|
---|
7490 | * VM-exit handler for expiry of the VMX-preemption timer.
|
---|
7491 | */
|
---|
7492 | HMVMX_EXIT_DECL vmxHCExitPreemptTimer(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7493 | {
|
---|
7494 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7495 |
|
---|
7496 | /* If the VMX-preemption timer has expired, reinitialize the preemption timer on next VM-entry. */
|
---|
7497 | pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
|
---|
7498 | Log12(("vmxHCExitPreemptTimer:\n"));
|
---|
7499 |
|
---|
7500 | /* If there are any timer events pending, fall back to ring-3, otherwise resume guest execution. */
|
---|
7501 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
7502 | bool fTimersPending = TMTimerPollBool(pVM, pVCpu);
|
---|
7503 | STAM_REL_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitPreemptTimer);
|
---|
7504 | return fTimersPending ? VINF_EM_RAW_TIMER_PENDING : VINF_SUCCESS;
|
---|
7505 | }
|
---|
7506 |
|
---|
7507 |
|
---|
7508 | /**
|
---|
7509 | * VM-exit handler for XSETBV (VMX_EXIT_XSETBV). Unconditional VM-exit.
|
---|
7510 | */
|
---|
7511 | HMVMX_EXIT_DECL vmxHCExitXsetbv(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7512 | {
|
---|
7513 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7514 |
|
---|
7515 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7516 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7517 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_CR4);
|
---|
7518 | AssertRCReturn(rc, rc);
|
---|
7519 |
|
---|
7520 | VBOXSTRICTRC rcStrict = IEMExecDecodedXsetbv(pVCpu, pVmxTransient->cbExitInstr);
|
---|
7521 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, rcStrict != VINF_IEM_RAISED_XCPT ? HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS
|
---|
7522 | : HM_CHANGED_RAISED_XCPT_MASK);
|
---|
7523 |
|
---|
7524 | #ifndef IN_NEM_DARWIN
|
---|
7525 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
7526 | bool const fLoadSaveGuestXcr0 = (pCtx->cr4 & X86_CR4_OSXSAVE) && pCtx->aXcr[0] != ASMGetXcr0();
|
---|
7527 | if (fLoadSaveGuestXcr0 != pVCpu->hmr0.s.fLoadSaveGuestXcr0)
|
---|
7528 | {
|
---|
7529 | pVCpu->hmr0.s.fLoadSaveGuestXcr0 = fLoadSaveGuestXcr0;
|
---|
7530 | hmR0VmxUpdateStartVmFunction(pVCpu);
|
---|
7531 | }
|
---|
7532 | #endif
|
---|
7533 |
|
---|
7534 | return rcStrict;
|
---|
7535 | }
|
---|
7536 |
|
---|
7537 |
|
---|
7538 | /**
|
---|
7539 | * VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
|
---|
7540 | */
|
---|
7541 | HMVMX_EXIT_DECL vmxHCExitInvpcid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7542 | {
|
---|
7543 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7544 |
|
---|
7545 | /** @todo Enable the new code after finding a reliably guest test-case. */
|
---|
7546 | #if 1
|
---|
7547 | return VERR_EM_INTERPRETER;
|
---|
7548 | #else
|
---|
7549 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7550 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
7551 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
7552 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
7553 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
7554 | AssertRCReturn(rc, rc);
|
---|
7555 |
|
---|
7556 | /* Paranoia. Ensure this has a memory operand. */
|
---|
7557 | Assert(!pVmxTransient->ExitInstrInfo.Inv.u1Cleared0);
|
---|
7558 |
|
---|
7559 | uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2;
|
---|
7560 | Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
|
---|
7561 | uint64_t const uType = CPUMIsGuestIn64BitCode(pVCpu) ? pVCpu->cpum.GstCtx.aGRegs[iGReg].u64
|
---|
7562 | : pVCpu->cpum.GstCtx.aGRegs[iGReg].u32;
|
---|
7563 |
|
---|
7564 | RTGCPTR GCPtrDesc;
|
---|
7565 | HMVMX_DECODE_MEM_OPERAND(pVCpu, pVmxTransient->ExitInstrInfo.u, pVmxTransient->uExitQual, VMXMEMACCESS_READ, &GCPtrDesc);
|
---|
7566 |
|
---|
7567 | VBOXSTRICTRC rcStrict = IEMExecDecodedInvpcid(pVCpu, pVmxTransient->cbExitInstr, pVmxTransient->ExitInstrInfo.Inv.iSegReg,
|
---|
7568 | GCPtrDesc, uType);
|
---|
7569 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
7570 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
7571 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
7572 | {
|
---|
7573 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
7574 | rcStrict = VINF_SUCCESS;
|
---|
7575 | }
|
---|
7576 | return rcStrict;
|
---|
7577 | #endif
|
---|
7578 | }
|
---|
7579 |
|
---|
7580 |
|
---|
7581 | /**
|
---|
7582 | * VM-exit handler for invalid-guest-state (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error
|
---|
7583 | * VM-exit.
|
---|
7584 | */
|
---|
7585 | HMVMX_EXIT_NSRC_DECL vmxHCExitErrInvalidGuestState(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7586 | {
|
---|
7587 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7588 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
7589 | AssertRCReturn(rc, rc);
|
---|
7590 |
|
---|
7591 | rc = vmxHCCheckCachedVmcsCtls(pVCpu, pVmcsInfo, pVmxTransient->fIsNestedGuest);
|
---|
7592 | if (RT_FAILURE(rc))
|
---|
7593 | return rc;
|
---|
7594 |
|
---|
7595 | uint32_t const uInvalidReason = vmxHCCheckGuestState(pVCpu, pVmcsInfo);
|
---|
7596 | NOREF(uInvalidReason);
|
---|
7597 |
|
---|
7598 | #ifdef VBOX_STRICT
|
---|
7599 | uint32_t fIntrState;
|
---|
7600 | uint64_t u64Val;
|
---|
7601 | vmxHCReadEntryIntInfoVmcs(pVCpu, pVmxTransient);
|
---|
7602 | vmxHCReadEntryXcptErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
7603 | vmxHCReadEntryInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7604 |
|
---|
7605 | Log4(("uInvalidReason %u\n", uInvalidReason));
|
---|
7606 | Log4(("VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO %#RX32\n", pVmxTransient->uEntryIntInfo));
|
---|
7607 | Log4(("VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE %#RX32\n", pVmxTransient->uEntryXcptErrorCode));
|
---|
7608 | Log4(("VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH %#RX32\n", pVmxTransient->cbEntryInstr));
|
---|
7609 |
|
---|
7610 | rc = VMX_VMCS_READ_32(pVCpu, VMX_VMCS32_GUEST_INT_STATE, &fIntrState); AssertRC(rc);
|
---|
7611 | Log4(("VMX_VMCS32_GUEST_INT_STATE %#RX32\n", fIntrState));
|
---|
7612 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_GUEST_CR0, &u64Val); AssertRC(rc);
|
---|
7613 | Log4(("VMX_VMCS_GUEST_CR0 %#RX64\n", u64Val));
|
---|
7614 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR0_MASK, &u64Val); AssertRC(rc);
|
---|
7615 | Log4(("VMX_VMCS_CTRL_CR0_MASK %#RX64\n", u64Val));
|
---|
7616 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR0_READ_SHADOW, &u64Val); AssertRC(rc);
|
---|
7617 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RX64\n", u64Val));
|
---|
7618 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR4_MASK, &u64Val); AssertRC(rc);
|
---|
7619 | Log4(("VMX_VMCS_CTRL_CR4_MASK %#RX64\n", u64Val));
|
---|
7620 | rc = VMX_VMCS_READ_NW(pVCpu, VMX_VMCS_CTRL_CR4_READ_SHADOW, &u64Val); AssertRC(rc);
|
---|
7621 | Log4(("VMX_VMCS_CTRL_CR4_READ_SHADOW %#RX64\n", u64Val));
|
---|
7622 | # ifndef IN_NEM_DARWIN
|
---|
7623 | if (pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging)
|
---|
7624 | {
|
---|
7625 | rc = VMX_VMCS_READ_64(pVCpu, VMX_VMCS64_CTRL_EPTP_FULL, &u64Val); AssertRC(rc);
|
---|
7626 | Log4(("VMX_VMCS64_CTRL_EPTP_FULL %#RX64\n", u64Val));
|
---|
7627 | }
|
---|
7628 |
|
---|
7629 | hmR0DumpRegs(pVCpu, HM_DUMP_REG_FLAGS_ALL);
|
---|
7630 | # endif
|
---|
7631 | #endif
|
---|
7632 |
|
---|
7633 | return VERR_VMX_INVALID_GUEST_STATE;
|
---|
7634 | }
|
---|
7635 |
|
---|
7636 | /**
|
---|
7637 | * VM-exit handler for all undefined/unexpected reasons. Should never happen.
|
---|
7638 | */
|
---|
7639 | HMVMX_EXIT_NSRC_DECL vmxHCExitErrUnexpected(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7640 | {
|
---|
7641 | /*
|
---|
7642 | * Cumulative notes of all recognized but unexpected VM-exits.
|
---|
7643 | *
|
---|
7644 | * 1. This does -not- cover scenarios like a page-fault VM-exit occurring when
|
---|
7645 | * nested-paging is used.
|
---|
7646 | *
|
---|
7647 | * 2. Any instruction that causes a VM-exit unconditionally (for e.g. VMXON) must be
|
---|
7648 | * emulated or a #UD must be raised in the guest. Therefore, we should -not- be using
|
---|
7649 | * this function (and thereby stop VM execution) for handling such instructions.
|
---|
7650 | *
|
---|
7651 | *
|
---|
7652 | * VMX_EXIT_INIT_SIGNAL:
|
---|
7653 | * INIT signals are blocked in VMX root operation by VMXON and by SMI in SMM.
|
---|
7654 | * It is -NOT- blocked in VMX non-root operation so we can, in theory, still get these
|
---|
7655 | * VM-exits. However, we should not receive INIT signals VM-exit while executing a VM.
|
---|
7656 | *
|
---|
7657 | * See Intel spec. 33.14.1 Default Treatment of SMI Delivery"
|
---|
7658 | * See Intel spec. 29.3 "VMX Instructions" for "VMXON".
|
---|
7659 | * See Intel spec. "23.8 Restrictions on VMX operation".
|
---|
7660 | *
|
---|
7661 | * VMX_EXIT_SIPI:
|
---|
7662 | * SIPI exits can only occur in VMX non-root operation when the "wait-for-SIPI" guest
|
---|
7663 | * activity state is used. We don't make use of it as our guests don't have direct
|
---|
7664 | * access to the host local APIC.
|
---|
7665 | *
|
---|
7666 | * See Intel spec. 25.3 "Other Causes of VM-exits".
|
---|
7667 | *
|
---|
7668 | * VMX_EXIT_IO_SMI:
|
---|
7669 | * VMX_EXIT_SMI:
|
---|
7670 | * This can only happen if we support dual-monitor treatment of SMI, which can be
|
---|
7671 | * activated by executing VMCALL in VMX root operation. Only an STM (SMM transfer
|
---|
7672 | * monitor) would get this VM-exit when we (the executive monitor) execute a VMCALL in
|
---|
7673 | * VMX root mode or receive an SMI. If we get here, something funny is going on.
|
---|
7674 | *
|
---|
7675 | * See Intel spec. 33.15.6 "Activating the Dual-Monitor Treatment"
|
---|
7676 | * See Intel spec. 25.3 "Other Causes of VM-Exits"
|
---|
7677 | *
|
---|
7678 | * VMX_EXIT_ERR_MSR_LOAD:
|
---|
7679 | * Failures while loading MSRs are part of the VM-entry MSR-load area are unexpected
|
---|
7680 | * and typically indicates a bug in the hypervisor code. We thus cannot not resume
|
---|
7681 | * execution.
|
---|
7682 | *
|
---|
7683 | * See Intel spec. 26.7 "VM-Entry Failures During Or After Loading Guest State".
|
---|
7684 | *
|
---|
7685 | * VMX_EXIT_ERR_MACHINE_CHECK:
|
---|
7686 | * Machine check exceptions indicates a fatal/unrecoverable hardware condition
|
---|
7687 | * including but not limited to system bus, ECC, parity, cache and TLB errors. A
|
---|
7688 | * #MC exception abort class exception is raised. We thus cannot assume a
|
---|
7689 | * reasonable chance of continuing any sort of execution and we bail.
|
---|
7690 | *
|
---|
7691 | * See Intel spec. 15.1 "Machine-check Architecture".
|
---|
7692 | * See Intel spec. 27.1 "Architectural State Before A VM Exit".
|
---|
7693 | *
|
---|
7694 | * VMX_EXIT_PML_FULL:
|
---|
7695 | * VMX_EXIT_VIRTUALIZED_EOI:
|
---|
7696 | * VMX_EXIT_APIC_WRITE:
|
---|
7697 | * We do not currently support any of these features and thus they are all unexpected
|
---|
7698 | * VM-exits.
|
---|
7699 | *
|
---|
7700 | * VMX_EXIT_GDTR_IDTR_ACCESS:
|
---|
7701 | * VMX_EXIT_LDTR_TR_ACCESS:
|
---|
7702 | * VMX_EXIT_RDRAND:
|
---|
7703 | * VMX_EXIT_RSM:
|
---|
7704 | * VMX_EXIT_VMFUNC:
|
---|
7705 | * VMX_EXIT_ENCLS:
|
---|
7706 | * VMX_EXIT_RDSEED:
|
---|
7707 | * VMX_EXIT_XSAVES:
|
---|
7708 | * VMX_EXIT_XRSTORS:
|
---|
7709 | * VMX_EXIT_UMWAIT:
|
---|
7710 | * VMX_EXIT_TPAUSE:
|
---|
7711 | * VMX_EXIT_LOADIWKEY:
|
---|
7712 | * These VM-exits are -not- caused unconditionally by execution of the corresponding
|
---|
7713 | * instruction. Any VM-exit for these instructions indicate a hardware problem,
|
---|
7714 | * unsupported CPU modes (like SMM) or potentially corrupt VMCS controls.
|
---|
7715 | *
|
---|
7716 | * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
|
---|
7717 | */
|
---|
7718 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7719 | AssertMsgFailed(("Unexpected VM-exit %u\n", pVmxTransient->uExitReason));
|
---|
7720 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
|
---|
7721 | }
|
---|
7722 |
|
---|
7723 |
|
---|
7724 | /**
|
---|
7725 | * VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
|
---|
7726 | */
|
---|
7727 | HMVMX_EXIT_DECL vmxHCExitRdmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7728 | {
|
---|
7729 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7730 |
|
---|
7731 | /** @todo Optimize this: We currently drag in the whole MSR state
|
---|
7732 | * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
|
---|
7733 | * MSRs required. That would require changes to IEM and possibly CPUM too.
|
---|
7734 | * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
|
---|
7735 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7736 | uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
|
---|
7737 | uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
|
---|
7738 | switch (idMsr)
|
---|
7739 | {
|
---|
7740 | case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
|
---|
7741 | case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
|
---|
7742 | }
|
---|
7743 |
|
---|
7744 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7745 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, fImport);
|
---|
7746 | AssertRCReturn(rc, rc);
|
---|
7747 |
|
---|
7748 | Log4Func(("ecx=%#RX32\n", idMsr));
|
---|
7749 |
|
---|
7750 | #if defined(VBOX_STRICT) && !defined(IN_NEM_DARWIN)
|
---|
7751 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
7752 | if (pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
|
---|
7753 | {
|
---|
7754 | if ( hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr)
|
---|
7755 | && idMsr != MSR_K6_EFER)
|
---|
7756 | {
|
---|
7757 | AssertMsgFailed(("Unexpected RDMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n", idMsr));
|
---|
7758 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
|
---|
7759 | }
|
---|
7760 | if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
|
---|
7761 | {
|
---|
7762 | Assert(pVmcsInfo->pvMsrBitmap);
|
---|
7763 | uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
|
---|
7764 | if (fMsrpm & VMXMSRPM_ALLOW_RD)
|
---|
7765 | {
|
---|
7766 | AssertMsgFailed(("Unexpected RDMSR for a passthru lazy-restore MSR. ecx=%#RX32\n", idMsr));
|
---|
7767 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
|
---|
7768 | }
|
---|
7769 | }
|
---|
7770 | }
|
---|
7771 | #endif
|
---|
7772 |
|
---|
7773 | VBOXSTRICTRC rcStrict = IEMExecDecodedRdmsr(pVCpu, pVmxTransient->cbExitInstr);
|
---|
7774 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitRdmsr);
|
---|
7775 | if (rcStrict == VINF_SUCCESS)
|
---|
7776 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
7777 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
7778 | {
|
---|
7779 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
7780 | rcStrict = VINF_SUCCESS;
|
---|
7781 | }
|
---|
7782 | else
|
---|
7783 | AssertMsg(rcStrict == VINF_CPUM_R3_MSR_READ || rcStrict == VINF_EM_TRIPLE_FAULT,
|
---|
7784 | ("Unexpected IEMExecDecodedRdmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
7785 |
|
---|
7786 | return rcStrict;
|
---|
7787 | }
|
---|
7788 |
|
---|
7789 |
|
---|
7790 | /**
|
---|
7791 | * VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
|
---|
7792 | */
|
---|
7793 | HMVMX_EXIT_DECL vmxHCExitWrmsr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7794 | {
|
---|
7795 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7796 |
|
---|
7797 | /** @todo Optimize this: We currently drag in the whole MSR state
|
---|
7798 | * (CPUMCTX_EXTRN_ALL_MSRS) here. We should optimize this to only get
|
---|
7799 | * MSRs required. That would require changes to IEM and possibly CPUM too.
|
---|
7800 | * (Should probably do it lazy fashion from CPUMAllMsrs.cpp). */
|
---|
7801 | uint32_t const idMsr = pVCpu->cpum.GstCtx.ecx;
|
---|
7802 | uint64_t fImport = IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_ALL_MSRS;
|
---|
7803 |
|
---|
7804 | /*
|
---|
7805 | * The FS and GS base MSRs are not part of the above all-MSRs mask.
|
---|
7806 | * Although we don't need to fetch the base as it will be overwritten shortly, while
|
---|
7807 | * loading guest-state we would also load the entire segment register including limit
|
---|
7808 | * and attributes and thus we need to load them here.
|
---|
7809 | */
|
---|
7810 | switch (idMsr)
|
---|
7811 | {
|
---|
7812 | case MSR_K8_FS_BASE: fImport |= CPUMCTX_EXTRN_FS; break;
|
---|
7813 | case MSR_K8_GS_BASE: fImport |= CPUMCTX_EXTRN_GS; break;
|
---|
7814 | }
|
---|
7815 |
|
---|
7816 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7817 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7818 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, fImport);
|
---|
7819 | AssertRCReturn(rc, rc);
|
---|
7820 |
|
---|
7821 | Log4Func(("ecx=%#RX32 edx:eax=%#RX32:%#RX32\n", idMsr, pVCpu->cpum.GstCtx.edx, pVCpu->cpum.GstCtx.eax));
|
---|
7822 |
|
---|
7823 | VBOXSTRICTRC rcStrict = IEMExecDecodedWrmsr(pVCpu, pVmxTransient->cbExitInstr);
|
---|
7824 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitWrmsr);
|
---|
7825 |
|
---|
7826 | if (rcStrict == VINF_SUCCESS)
|
---|
7827 | {
|
---|
7828 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
7829 |
|
---|
7830 | /* If this is an X2APIC WRMSR access, update the APIC state as well. */
|
---|
7831 | if ( idMsr == MSR_IA32_APICBASE
|
---|
7832 | || ( idMsr >= MSR_IA32_X2APIC_START
|
---|
7833 | && idMsr <= MSR_IA32_X2APIC_END))
|
---|
7834 | {
|
---|
7835 | /*
|
---|
7836 | * We've already saved the APIC related guest-state (TPR) in post-run phase.
|
---|
7837 | * When full APIC register virtualization is implemented we'll have to make
|
---|
7838 | * sure APIC state is saved from the VMCS before IEM changes it.
|
---|
7839 | */
|
---|
7840 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
|
---|
7841 | }
|
---|
7842 | else if (idMsr == MSR_IA32_TSC) /* Windows 7 does this during bootup. See @bugref{6398}. */
|
---|
7843 | pVmxTransient->fUpdatedTscOffsettingAndPreemptTimer = false;
|
---|
7844 | else if (idMsr == MSR_K6_EFER)
|
---|
7845 | {
|
---|
7846 | /*
|
---|
7847 | * If the guest touches the EFER MSR we need to update the VM-Entry and VM-Exit controls
|
---|
7848 | * as well, even if it is -not- touching bits that cause paging mode changes (LMA/LME).
|
---|
7849 | * We care about the other bits as well, SCE and NXE. See @bugref{7368}.
|
---|
7850 | */
|
---|
7851 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_EFER_MSR | HM_CHANGED_VMX_ENTRY_EXIT_CTLS);
|
---|
7852 | }
|
---|
7853 |
|
---|
7854 | /* Update MSRs that are part of the VMCS and auto-load/store area when MSR-bitmaps are not used. */
|
---|
7855 | if (!(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS))
|
---|
7856 | {
|
---|
7857 | switch (idMsr)
|
---|
7858 | {
|
---|
7859 | case MSR_IA32_SYSENTER_CS: ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_SYSENTER_CS_MSR); break;
|
---|
7860 | case MSR_IA32_SYSENTER_EIP: ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_SYSENTER_EIP_MSR); break;
|
---|
7861 | case MSR_IA32_SYSENTER_ESP: ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_SYSENTER_ESP_MSR); break;
|
---|
7862 | case MSR_K8_FS_BASE: ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_FS); break;
|
---|
7863 | case MSR_K8_GS_BASE: ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_GS); break;
|
---|
7864 | case MSR_K6_EFER: /* Nothing to do, already handled above. */ break;
|
---|
7865 | default:
|
---|
7866 | {
|
---|
7867 | #ifndef IN_NEM_DARWIN
|
---|
7868 | if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
|
---|
7869 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_VMX_GUEST_LAZY_MSRS);
|
---|
7870 | else if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
|
---|
7871 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_VMX_GUEST_AUTO_MSRS);
|
---|
7872 | #else
|
---|
7873 | AssertMsgFailed(("TODO\n"));
|
---|
7874 | #endif
|
---|
7875 | break;
|
---|
7876 | }
|
---|
7877 | }
|
---|
7878 | }
|
---|
7879 | #if defined(VBOX_STRICT) && !defined(IN_NEM_DARWIN)
|
---|
7880 | else
|
---|
7881 | {
|
---|
7882 | /* Paranoia. Validate that MSRs in the MSR-bitmaps with write-passthru are not intercepted. */
|
---|
7883 | switch (idMsr)
|
---|
7884 | {
|
---|
7885 | case MSR_IA32_SYSENTER_CS:
|
---|
7886 | case MSR_IA32_SYSENTER_EIP:
|
---|
7887 | case MSR_IA32_SYSENTER_ESP:
|
---|
7888 | case MSR_K8_FS_BASE:
|
---|
7889 | case MSR_K8_GS_BASE:
|
---|
7890 | {
|
---|
7891 | AssertMsgFailed(("Unexpected WRMSR for an MSR in the VMCS. ecx=%#RX32\n", idMsr));
|
---|
7892 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
|
---|
7893 | }
|
---|
7894 |
|
---|
7895 | /* Writes to MSRs in auto-load/store area/swapped MSRs, shouldn't cause VM-exits with MSR-bitmaps. */
|
---|
7896 | default:
|
---|
7897 | {
|
---|
7898 | if (hmR0VmxIsAutoLoadGuestMsr(pVmcsInfo, idMsr))
|
---|
7899 | {
|
---|
7900 | /* EFER MSR writes are always intercepted. */
|
---|
7901 | if (idMsr != MSR_K6_EFER)
|
---|
7902 | {
|
---|
7903 | AssertMsgFailed(("Unexpected WRMSR for an MSR in the auto-load/store area in the VMCS. ecx=%#RX32\n",
|
---|
7904 | idMsr));
|
---|
7905 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
|
---|
7906 | }
|
---|
7907 | }
|
---|
7908 |
|
---|
7909 | if (hmR0VmxIsLazyGuestMsr(pVCpu, idMsr))
|
---|
7910 | {
|
---|
7911 | Assert(pVmcsInfo->pvMsrBitmap);
|
---|
7912 | uint32_t fMsrpm = CPUMGetVmxMsrPermission(pVmcsInfo->pvMsrBitmap, idMsr);
|
---|
7913 | if (fMsrpm & VMXMSRPM_ALLOW_WR)
|
---|
7914 | {
|
---|
7915 | AssertMsgFailed(("Unexpected WRMSR for passthru, lazy-restore MSR. ecx=%#RX32\n", idMsr));
|
---|
7916 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, idMsr);
|
---|
7917 | }
|
---|
7918 | }
|
---|
7919 | break;
|
---|
7920 | }
|
---|
7921 | }
|
---|
7922 | }
|
---|
7923 | #endif /* VBOX_STRICT */
|
---|
7924 | }
|
---|
7925 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
7926 | {
|
---|
7927 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
7928 | rcStrict = VINF_SUCCESS;
|
---|
7929 | }
|
---|
7930 | else
|
---|
7931 | AssertMsg(rcStrict == VINF_CPUM_R3_MSR_WRITE || rcStrict == VINF_EM_TRIPLE_FAULT,
|
---|
7932 | ("Unexpected IEMExecDecodedWrmsr rc (%Rrc)\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
7933 |
|
---|
7934 | return rcStrict;
|
---|
7935 | }
|
---|
7936 |
|
---|
7937 |
|
---|
7938 | /**
|
---|
7939 | * VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
|
---|
7940 | */
|
---|
7941 | HMVMX_EXIT_DECL vmxHCExitPause(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7942 | {
|
---|
7943 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7944 |
|
---|
7945 | /** @todo The guest has likely hit a contended spinlock. We might want to
|
---|
7946 | * poke a schedule different guest VCPU. */
|
---|
7947 | int rc = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
7948 | if (RT_SUCCESS(rc))
|
---|
7949 | return VINF_EM_RAW_INTERRUPT;
|
---|
7950 |
|
---|
7951 | AssertMsgFailed(("vmxHCExitPause: Failed to increment RIP. rc=%Rrc\n", rc));
|
---|
7952 | return rc;
|
---|
7953 | }
|
---|
7954 |
|
---|
7955 |
|
---|
7956 | /**
|
---|
7957 | * VM-exit handler for when the TPR value is lowered below the specified
|
---|
7958 | * threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
|
---|
7959 | */
|
---|
7960 | HMVMX_EXIT_NSRC_DECL vmxHCExitTprBelowThreshold(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7961 | {
|
---|
7962 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7963 | Assert(pVmxTransient->pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
|
---|
7964 |
|
---|
7965 | /*
|
---|
7966 | * The TPR shadow would've been synced with the APIC TPR in the post-run phase.
|
---|
7967 | * We'll re-evaluate pending interrupts and inject them before the next VM
|
---|
7968 | * entry so we can just continue execution here.
|
---|
7969 | */
|
---|
7970 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitTprBelowThreshold);
|
---|
7971 | return VINF_SUCCESS;
|
---|
7972 | }
|
---|
7973 |
|
---|
7974 |
|
---|
7975 | /**
|
---|
7976 | * VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX). Conditional
|
---|
7977 | * VM-exit.
|
---|
7978 | *
|
---|
7979 | * @retval VINF_SUCCESS when guest execution can continue.
|
---|
7980 | * @retval VINF_PGM_SYNC_CR3 CR3 sync is required, back to ring-3.
|
---|
7981 | * @retval VERR_EM_RESCHEDULE_REM when we need to return to ring-3 due to
|
---|
7982 | * incompatible guest state for VMX execution (real-on-v86 case).
|
---|
7983 | */
|
---|
7984 | HMVMX_EXIT_DECL vmxHCExitMovCRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
7985 | {
|
---|
7986 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
7987 | STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitMovCRx, y2);
|
---|
7988 |
|
---|
7989 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
7990 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
7991 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
7992 |
|
---|
7993 | VBOXSTRICTRC rcStrict;
|
---|
7994 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
7995 | uint64_t const uExitQual = pVmxTransient->uExitQual;
|
---|
7996 | uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(uExitQual);
|
---|
7997 | switch (uAccessType)
|
---|
7998 | {
|
---|
7999 | /*
|
---|
8000 | * MOV to CRx.
|
---|
8001 | */
|
---|
8002 | case VMX_EXIT_QUAL_CRX_ACCESS_WRITE:
|
---|
8003 | {
|
---|
8004 | /*
|
---|
8005 | * When PAE paging is used, the CPU will reload PAE PDPTEs from CR3 when the guest
|
---|
8006 | * changes certain bits even in CR0, CR4 (and not just CR3). We are currently fine
|
---|
8007 | * since IEM_CPUMCTX_EXTRN_MUST_MASK (used below) includes CR3 which will import
|
---|
8008 | * PAE PDPTEs as well.
|
---|
8009 | */
|
---|
8010 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
8011 | AssertRCReturn(rc, rc);
|
---|
8012 |
|
---|
8013 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
8014 | #ifndef IN_NEM_DARWIN
|
---|
8015 | uint32_t const uOldCr0 = pVCpu->cpum.GstCtx.cr0;
|
---|
8016 | #endif
|
---|
8017 | uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(uExitQual);
|
---|
8018 | uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual);
|
---|
8019 |
|
---|
8020 | /*
|
---|
8021 | * MOV to CR3 only cause a VM-exit when one or more of the following are true:
|
---|
8022 | * - When nested paging isn't used.
|
---|
8023 | * - If the guest doesn't have paging enabled (intercept CR3 to update shadow page tables).
|
---|
8024 | * - We are executing in the VM debug loop.
|
---|
8025 | */
|
---|
8026 | #ifndef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
|
---|
8027 | # ifndef IN_NEM_DARWIN
|
---|
8028 | Assert( iCrReg != 3
|
---|
8029 | || !VM_IS_VMX_NESTED_PAGING(pVM)
|
---|
8030 | || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
|
---|
8031 | || pVCpu->hmr0.s.fUsingDebugLoop);
|
---|
8032 | # else
|
---|
8033 | Assert( iCrReg != 3
|
---|
8034 | || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx));
|
---|
8035 | # endif
|
---|
8036 | #endif
|
---|
8037 |
|
---|
8038 | /* MOV to CR8 writes only cause VM-exits when TPR shadow is not used. */
|
---|
8039 | Assert( iCrReg != 8
|
---|
8040 | || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
|
---|
8041 |
|
---|
8042 | rcStrict = vmxHCExitMovToCrX(pVCpu, pVmxTransient->cbExitInstr, iGReg, iCrReg);
|
---|
8043 | AssertMsg( rcStrict == VINF_SUCCESS
|
---|
8044 | || rcStrict == VINF_PGM_SYNC_CR3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
8045 |
|
---|
8046 | #ifndef IN_NEM_DARWIN
|
---|
8047 | /*
|
---|
8048 | * This is a kludge for handling switches back to real mode when we try to use
|
---|
8049 | * V86 mode to run real mode code directly. Problem is that V86 mode cannot
|
---|
8050 | * deal with special selector values, so we have to return to ring-3 and run
|
---|
8051 | * there till the selector values are V86 mode compatible.
|
---|
8052 | *
|
---|
8053 | * Note! Using VINF_EM_RESCHEDULE_REM here rather than VINF_EM_RESCHEDULE since the
|
---|
8054 | * latter is an alias for VINF_IEM_RAISED_XCPT which is asserted at the end of
|
---|
8055 | * this function.
|
---|
8056 | */
|
---|
8057 | if ( iCrReg == 0
|
---|
8058 | && rcStrict == VINF_SUCCESS
|
---|
8059 | && !VM_IS_VMX_UNRESTRICTED_GUEST(pVM)
|
---|
8060 | && CPUMIsGuestInRealModeEx(&pVCpu->cpum.GstCtx)
|
---|
8061 | && (uOldCr0 & X86_CR0_PE)
|
---|
8062 | && !(pVCpu->cpum.GstCtx.cr0 & X86_CR0_PE))
|
---|
8063 | {
|
---|
8064 | /** @todo Check selectors rather than returning all the time. */
|
---|
8065 | Assert(!pVmxTransient->fIsNestedGuest);
|
---|
8066 | Log4Func(("CR0 write, back to real mode -> VINF_EM_RESCHEDULE_REM\n"));
|
---|
8067 | rcStrict = VINF_EM_RESCHEDULE_REM;
|
---|
8068 | }
|
---|
8069 | #endif
|
---|
8070 |
|
---|
8071 | break;
|
---|
8072 | }
|
---|
8073 |
|
---|
8074 | /*
|
---|
8075 | * MOV from CRx.
|
---|
8076 | */
|
---|
8077 | case VMX_EXIT_QUAL_CRX_ACCESS_READ:
|
---|
8078 | {
|
---|
8079 | uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(uExitQual);
|
---|
8080 | uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(uExitQual);
|
---|
8081 |
|
---|
8082 | /*
|
---|
8083 | * MOV from CR3 only cause a VM-exit when one or more of the following are true:
|
---|
8084 | * - When nested paging isn't used.
|
---|
8085 | * - If the guest doesn't have paging enabled (pass guest's CR3 rather than our identity mapped CR3).
|
---|
8086 | * - We are executing in the VM debug loop.
|
---|
8087 | */
|
---|
8088 | #ifndef HMVMX_ALWAYS_INTERCEPT_CR3_ACCESS
|
---|
8089 | # ifndef IN_NEM_DARWIN
|
---|
8090 | Assert( iCrReg != 3
|
---|
8091 | || !VM_IS_VMX_NESTED_PAGING(pVM)
|
---|
8092 | || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx)
|
---|
8093 | || pVCpu->hmr0.s.fLeaveDone);
|
---|
8094 | # else
|
---|
8095 | Assert( iCrReg != 3
|
---|
8096 | || !CPUMIsGuestPagingEnabledEx(&pVCpu->cpum.GstCtx));
|
---|
8097 | # endif
|
---|
8098 | #endif
|
---|
8099 |
|
---|
8100 | /* MOV from CR8 reads only cause a VM-exit when the TPR shadow feature isn't enabled. */
|
---|
8101 | Assert( iCrReg != 8
|
---|
8102 | || !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW));
|
---|
8103 |
|
---|
8104 | rcStrict = vmxHCExitMovFromCrX(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
|
---|
8105 | break;
|
---|
8106 | }
|
---|
8107 |
|
---|
8108 | /*
|
---|
8109 | * CLTS (Clear Task-Switch Flag in CR0).
|
---|
8110 | */
|
---|
8111 | case VMX_EXIT_QUAL_CRX_ACCESS_CLTS:
|
---|
8112 | {
|
---|
8113 | rcStrict = vmxHCExitClts(pVCpu, pVmcsInfo, pVmxTransient->cbExitInstr);
|
---|
8114 | break;
|
---|
8115 | }
|
---|
8116 |
|
---|
8117 | /*
|
---|
8118 | * LMSW (Load Machine-Status Word into CR0).
|
---|
8119 | * LMSW cannot clear CR0.PE, so no fRealOnV86Active kludge needed here.
|
---|
8120 | */
|
---|
8121 | case VMX_EXIT_QUAL_CRX_ACCESS_LMSW:
|
---|
8122 | {
|
---|
8123 | RTGCPTR GCPtrEffDst;
|
---|
8124 | uint8_t const cbInstr = pVmxTransient->cbExitInstr;
|
---|
8125 | uint16_t const uMsw = VMX_EXIT_QUAL_CRX_LMSW_DATA(uExitQual);
|
---|
8126 | bool const fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(uExitQual);
|
---|
8127 | if (fMemOperand)
|
---|
8128 | {
|
---|
8129 | vmxHCReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
|
---|
8130 | GCPtrEffDst = pVmxTransient->uGuestLinearAddr;
|
---|
8131 | }
|
---|
8132 | else
|
---|
8133 | GCPtrEffDst = NIL_RTGCPTR;
|
---|
8134 | rcStrict = vmxHCExitLmsw(pVCpu, pVmcsInfo, cbInstr, uMsw, GCPtrEffDst);
|
---|
8135 | break;
|
---|
8136 | }
|
---|
8137 |
|
---|
8138 | default:
|
---|
8139 | {
|
---|
8140 | AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType));
|
---|
8141 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType);
|
---|
8142 | }
|
---|
8143 | }
|
---|
8144 |
|
---|
8145 | Assert((VCPU_2_VMXSTATE(pVCpu).fCtxChanged & (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS))
|
---|
8146 | == (HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS));
|
---|
8147 | Assert(rcStrict != VINF_IEM_RAISED_XCPT);
|
---|
8148 |
|
---|
8149 | STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitMovCRx, y2);
|
---|
8150 | NOREF(pVM);
|
---|
8151 | return rcStrict;
|
---|
8152 | }
|
---|
8153 |
|
---|
8154 |
|
---|
8155 | /**
|
---|
8156 | * VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR). Conditional
|
---|
8157 | * VM-exit.
|
---|
8158 | */
|
---|
8159 | HMVMX_EXIT_DECL vmxHCExitIoInstr(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
8160 | {
|
---|
8161 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
8162 | STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitIO, y1);
|
---|
8163 |
|
---|
8164 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
8165 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
8166 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
8167 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
8168 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_SREG_MASK
|
---|
8169 | | CPUMCTX_EXTRN_EFER);
|
---|
8170 | /* EFER MSR also required for longmode checks in EMInterpretDisasCurrent(), but it's always up-to-date. */
|
---|
8171 | AssertRCReturn(rc, rc);
|
---|
8172 |
|
---|
8173 | /* Refer Intel spec. 27-5. "Exit Qualifications for I/O Instructions" for the format. */
|
---|
8174 | uint32_t const uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
|
---|
8175 | uint8_t const uIOSize = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual);
|
---|
8176 | bool const fIOWrite = (VMX_EXIT_QUAL_IO_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_IO_DIRECTION_OUT);
|
---|
8177 | bool const fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
|
---|
8178 | bool const fGstStepping = RT_BOOL(pCtx->eflags.Bits.u1TF);
|
---|
8179 | bool const fDbgStepping = VCPU_2_VMXSTATE(pVCpu).fSingleInstruction;
|
---|
8180 | AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1);
|
---|
8181 |
|
---|
8182 | /*
|
---|
8183 | * Update exit history to see if this exit can be optimized.
|
---|
8184 | */
|
---|
8185 | VBOXSTRICTRC rcStrict;
|
---|
8186 | PCEMEXITREC pExitRec = NULL;
|
---|
8187 | if ( !fGstStepping
|
---|
8188 | && !fDbgStepping)
|
---|
8189 | pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
|
---|
8190 | !fIOString
|
---|
8191 | ? !fIOWrite
|
---|
8192 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_READ)
|
---|
8193 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_WRITE)
|
---|
8194 | : !fIOWrite
|
---|
8195 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_READ)
|
---|
8196 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_IO_PORT_STR_WRITE),
|
---|
8197 | pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
|
---|
8198 | if (!pExitRec)
|
---|
8199 | {
|
---|
8200 | static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses in bytes. */
|
---|
8201 | static uint32_t const s_aIOOpAnd[4] = { 0xff, 0xffff, 0, 0xffffffff }; /* AND masks for saving result in AL/AX/EAX. */
|
---|
8202 |
|
---|
8203 | uint32_t const cbValue = s_aIOSizes[uIOSize];
|
---|
8204 | uint32_t const cbInstr = pVmxTransient->cbExitInstr;
|
---|
8205 | bool fUpdateRipAlready = false; /* ugly hack, should be temporary. */
|
---|
8206 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8207 | if (fIOString)
|
---|
8208 | {
|
---|
8209 | /*
|
---|
8210 | * INS/OUTS - I/O String instruction.
|
---|
8211 | *
|
---|
8212 | * Use instruction-information if available, otherwise fall back on
|
---|
8213 | * interpreting the instruction.
|
---|
8214 | */
|
---|
8215 | Log4Func(("cs:rip=%#04x:%#RX64 %#06x/%u %c str\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
|
---|
8216 | AssertReturn(pCtx->dx == uIOPort, VERR_VMX_IPE_2);
|
---|
8217 | bool const fInsOutsInfo = RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS);
|
---|
8218 | if (fInsOutsInfo)
|
---|
8219 | {
|
---|
8220 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
8221 | AssertReturn(pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize <= 2, VERR_VMX_IPE_3);
|
---|
8222 | AssertCompile(IEMMODE_16BIT == 0 && IEMMODE_32BIT == 1 && IEMMODE_64BIT == 2);
|
---|
8223 | IEMMODE const enmAddrMode = (IEMMODE)pVmxTransient->ExitInstrInfo.StrIo.u3AddrSize;
|
---|
8224 | bool const fRep = VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual);
|
---|
8225 | if (fIOWrite)
|
---|
8226 | rcStrict = IEMExecStringIoWrite(pVCpu, cbValue, enmAddrMode, fRep, cbInstr,
|
---|
8227 | pVmxTransient->ExitInstrInfo.StrIo.iSegReg, true /*fIoChecked*/);
|
---|
8228 | else
|
---|
8229 | {
|
---|
8230 | /*
|
---|
8231 | * The segment prefix for INS cannot be overridden and is always ES. We can safely assume X86_SREG_ES.
|
---|
8232 | * Hence "iSegReg" field is undefined in the instruction-information field in VT-x for INS.
|
---|
8233 | * See Intel Instruction spec. for "INS".
|
---|
8234 | * See Intel spec. Table 27-8 "Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS".
|
---|
8235 | */
|
---|
8236 | rcStrict = IEMExecStringIoRead(pVCpu, cbValue, enmAddrMode, fRep, cbInstr, true /*fIoChecked*/);
|
---|
8237 | }
|
---|
8238 | }
|
---|
8239 | else
|
---|
8240 | rcStrict = IEMExecOne(pVCpu);
|
---|
8241 |
|
---|
8242 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP);
|
---|
8243 | fUpdateRipAlready = true;
|
---|
8244 | }
|
---|
8245 | else
|
---|
8246 | {
|
---|
8247 | /*
|
---|
8248 | * IN/OUT - I/O instruction.
|
---|
8249 | */
|
---|
8250 | Log4Func(("cs:rip=%04x:%08RX64 %#06x/%u %c\n", pCtx->cs.Sel, pCtx->rip, uIOPort, cbValue, fIOWrite ? 'w' : 'r'));
|
---|
8251 | uint32_t const uAndVal = s_aIOOpAnd[uIOSize];
|
---|
8252 | Assert(!VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual));
|
---|
8253 | if (fIOWrite)
|
---|
8254 | {
|
---|
8255 | rcStrict = IOMIOPortWrite(pVM, pVCpu, uIOPort, pCtx->eax & uAndVal, cbValue);
|
---|
8256 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitIOWrite);
|
---|
8257 | #ifndef IN_NEM_DARWIN
|
---|
8258 | if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
|
---|
8259 | && !pCtx->eflags.Bits.u1TF)
|
---|
8260 | rcStrict = EMRZSetPendingIoPortWrite(pVCpu, uIOPort, cbInstr, cbValue, pCtx->eax & uAndVal);
|
---|
8261 | #endif
|
---|
8262 | }
|
---|
8263 | else
|
---|
8264 | {
|
---|
8265 | uint32_t u32Result = 0;
|
---|
8266 | rcStrict = IOMIOPortRead(pVM, pVCpu, uIOPort, &u32Result, cbValue);
|
---|
8267 | if (IOM_SUCCESS(rcStrict))
|
---|
8268 | {
|
---|
8269 | /* Save result of I/O IN instr. in AL/AX/EAX. */
|
---|
8270 | pCtx->eax = (pCtx->eax & ~uAndVal) | (u32Result & uAndVal);
|
---|
8271 | }
|
---|
8272 | #ifndef IN_NEM_DARWIN
|
---|
8273 | if ( rcStrict == VINF_IOM_R3_IOPORT_READ
|
---|
8274 | && !pCtx->eflags.Bits.u1TF)
|
---|
8275 | rcStrict = EMRZSetPendingIoPortRead(pVCpu, uIOPort, cbInstr, cbValue);
|
---|
8276 | #endif
|
---|
8277 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitIORead);
|
---|
8278 | }
|
---|
8279 | }
|
---|
8280 |
|
---|
8281 | if (IOM_SUCCESS(rcStrict))
|
---|
8282 | {
|
---|
8283 | if (!fUpdateRipAlready)
|
---|
8284 | {
|
---|
8285 | vmxHCAdvanceGuestRipBy(pVCpu, cbInstr);
|
---|
8286 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP);
|
---|
8287 | }
|
---|
8288 |
|
---|
8289 | /*
|
---|
8290 | * INS/OUTS with REP prefix updates RFLAGS, can be observed with triple-fault guru
|
---|
8291 | * while booting Fedora 17 64-bit guest.
|
---|
8292 | *
|
---|
8293 | * See Intel Instruction reference for REP/REPE/REPZ/REPNE/REPNZ.
|
---|
8294 | */
|
---|
8295 | if (fIOString)
|
---|
8296 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RFLAGS);
|
---|
8297 |
|
---|
8298 | /*
|
---|
8299 | * If any I/O breakpoints are armed, we need to check if one triggered
|
---|
8300 | * and take appropriate action.
|
---|
8301 | * Note that the I/O breakpoint type is undefined if CR4.DE is 0.
|
---|
8302 | */
|
---|
8303 | rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_DR7);
|
---|
8304 | AssertRCReturn(rc, rc);
|
---|
8305 |
|
---|
8306 | /** @todo Optimize away the DBGFBpIsHwIoArmed call by having DBGF tell the
|
---|
8307 | * execution engines about whether hyper BPs and such are pending. */
|
---|
8308 | uint32_t const uDr7 = pCtx->dr[7];
|
---|
8309 | if (RT_UNLIKELY( ( (uDr7 & X86_DR7_ENABLED_MASK)
|
---|
8310 | && X86_DR7_ANY_RW_IO(uDr7)
|
---|
8311 | && (pCtx->cr4 & X86_CR4_DE))
|
---|
8312 | || DBGFBpIsHwIoArmed(pVM)))
|
---|
8313 | {
|
---|
8314 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatDRxIoCheck);
|
---|
8315 |
|
---|
8316 | #ifndef IN_NEM_DARWIN
|
---|
8317 | /* We're playing with the host CPU state here, make sure we don't preempt or longjmp. */
|
---|
8318 | VMMRZCallRing3Disable(pVCpu);
|
---|
8319 | HM_DISABLE_PREEMPT(pVCpu);
|
---|
8320 |
|
---|
8321 | bool fIsGuestDbgActive = CPUMR0DebugStateMaybeSaveGuest(pVCpu, true /* fDr6 */);
|
---|
8322 |
|
---|
8323 | VBOXSTRICTRC rcStrict2 = DBGFBpCheckIo(pVM, pVCpu, pCtx, uIOPort, cbValue);
|
---|
8324 | if (rcStrict2 == VINF_EM_RAW_GUEST_TRAP)
|
---|
8325 | {
|
---|
8326 | /* Raise #DB. */
|
---|
8327 | if (fIsGuestDbgActive)
|
---|
8328 | ASMSetDR6(pCtx->dr[6]);
|
---|
8329 | if (pCtx->dr[7] != uDr7)
|
---|
8330 | VCPU_2_VMXSTATE(pVCpu).fCtxChanged |= HM_CHANGED_GUEST_DR7;
|
---|
8331 |
|
---|
8332 | vmxHCSetPendingXcptDB(pVCpu);
|
---|
8333 | }
|
---|
8334 | /* rcStrict is VINF_SUCCESS, VINF_IOM_R3_IOPORT_COMMIT_WRITE, or in [VINF_EM_FIRST..VINF_EM_LAST],
|
---|
8335 | however we can ditch VINF_IOM_R3_IOPORT_COMMIT_WRITE as it has VMCPU_FF_IOM as backup. */
|
---|
8336 | else if ( rcStrict2 != VINF_SUCCESS
|
---|
8337 | && (rcStrict == VINF_SUCCESS || rcStrict2 < rcStrict))
|
---|
8338 | rcStrict = rcStrict2;
|
---|
8339 | AssertCompile(VINF_EM_LAST < VINF_IOM_R3_IOPORT_COMMIT_WRITE);
|
---|
8340 |
|
---|
8341 | HM_RESTORE_PREEMPT();
|
---|
8342 | VMMRZCallRing3Enable(pVCpu);
|
---|
8343 | #else
|
---|
8344 | /** @todo */
|
---|
8345 | #endif
|
---|
8346 | }
|
---|
8347 | }
|
---|
8348 |
|
---|
8349 | #ifdef VBOX_STRICT
|
---|
8350 | if ( rcStrict == VINF_IOM_R3_IOPORT_READ
|
---|
8351 | || rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
|
---|
8352 | Assert(!fIOWrite);
|
---|
8353 | else if ( rcStrict == VINF_IOM_R3_IOPORT_WRITE
|
---|
8354 | || rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
|
---|
8355 | || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
|
---|
8356 | Assert(fIOWrite);
|
---|
8357 | else
|
---|
8358 | {
|
---|
8359 | # if 0 /** @todo r=bird: This is missing a bunch of VINF_EM_FIRST..VINF_EM_LAST
|
---|
8360 | * statuses, that the VMM device and some others may return. See
|
---|
8361 | * IOM_SUCCESS() for guidance. */
|
---|
8362 | AssertMsg( RT_FAILURE(rcStrict)
|
---|
8363 | || rcStrict == VINF_SUCCESS
|
---|
8364 | || rcStrict == VINF_EM_RAW_EMULATE_INSTR
|
---|
8365 | || rcStrict == VINF_EM_DBG_BREAKPOINT
|
---|
8366 | || rcStrict == VINF_EM_RAW_GUEST_TRAP
|
---|
8367 | || rcStrict == VINF_EM_RAW_TO_R3, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
8368 | # endif
|
---|
8369 | }
|
---|
8370 | #endif
|
---|
8371 | STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitIO, y1);
|
---|
8372 | }
|
---|
8373 | else
|
---|
8374 | {
|
---|
8375 | /*
|
---|
8376 | * Frequent exit or something needing probing. Get state and call EMHistoryExec.
|
---|
8377 | */
|
---|
8378 | int rc2 = vmxHCImportGuestState(pVCpu, pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
8379 | AssertRCReturn(rc2, rc2);
|
---|
8380 | STAM_COUNTER_INC(!fIOString ? fIOWrite ? &VCPU_2_VMXSTATS(pVCpu).StatExitIOWrite : &VCPU_2_VMXSTATS(pVCpu).StatExitIORead
|
---|
8381 | : fIOWrite ? &VCPU_2_VMXSTATS(pVCpu).StatExitIOStringWrite : &VCPU_2_VMXSTATS(pVCpu).StatExitIOStringRead);
|
---|
8382 | Log4(("IOExit/%u: %04x:%08RX64: %s%s%s %#x LB %u -> EMHistoryExec\n",
|
---|
8383 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
8384 | VMX_EXIT_QUAL_IO_IS_REP(pVmxTransient->uExitQual) ? "REP " : "",
|
---|
8385 | fIOWrite ? "OUT" : "IN", fIOString ? "S" : "", uIOPort, uIOSize));
|
---|
8386 |
|
---|
8387 | rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
8388 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
8389 |
|
---|
8390 | Log4(("IOExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
8391 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
8392 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
8393 | }
|
---|
8394 | return rcStrict;
|
---|
8395 | }
|
---|
8396 |
|
---|
8397 |
|
---|
8398 | /**
|
---|
8399 | * VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH). Unconditional
|
---|
8400 | * VM-exit.
|
---|
8401 | */
|
---|
8402 | HMVMX_EXIT_DECL vmxHCExitTaskSwitch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
8403 | {
|
---|
8404 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
8405 |
|
---|
8406 | /* Check if this task-switch occurred while delivery an event through the guest IDT. */
|
---|
8407 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
8408 | if (VMX_EXIT_QUAL_TASK_SWITCH_TYPE(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT)
|
---|
8409 | {
|
---|
8410 | vmxHCReadIdtVectoringInfoVmcs(pVCpu, pVmxTransient);
|
---|
8411 | if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
|
---|
8412 | {
|
---|
8413 | uint32_t uErrCode;
|
---|
8414 | if (VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(pVmxTransient->uIdtVectoringInfo))
|
---|
8415 | {
|
---|
8416 | vmxHCReadIdtVectoringErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
8417 | uErrCode = pVmxTransient->uIdtVectoringErrorCode;
|
---|
8418 | }
|
---|
8419 | else
|
---|
8420 | uErrCode = 0;
|
---|
8421 |
|
---|
8422 | RTGCUINTPTR GCPtrFaultAddress;
|
---|
8423 | if (VMX_IDT_VECTORING_INFO_IS_XCPT_PF(pVmxTransient->uIdtVectoringInfo))
|
---|
8424 | GCPtrFaultAddress = pVCpu->cpum.GstCtx.cr2;
|
---|
8425 | else
|
---|
8426 | GCPtrFaultAddress = 0;
|
---|
8427 |
|
---|
8428 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
8429 |
|
---|
8430 | vmxHCSetPendingEvent(pVCpu, VMX_ENTRY_INT_INFO_FROM_EXIT_IDT_INFO(pVmxTransient->uIdtVectoringInfo),
|
---|
8431 | pVmxTransient->cbExitInstr, uErrCode, GCPtrFaultAddress);
|
---|
8432 |
|
---|
8433 | Log4Func(("Pending event. uIntType=%#x uVector=%#x\n", VMX_IDT_VECTORING_INFO_TYPE(pVmxTransient->uIdtVectoringInfo),
|
---|
8434 | VMX_IDT_VECTORING_INFO_VECTOR(pVmxTransient->uIdtVectoringInfo)));
|
---|
8435 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitTaskSwitch);
|
---|
8436 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
8437 | }
|
---|
8438 | }
|
---|
8439 |
|
---|
8440 | /* Fall back to the interpreter to emulate the task-switch. */
|
---|
8441 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitTaskSwitch);
|
---|
8442 | return VERR_EM_INTERPRETER;
|
---|
8443 | }
|
---|
8444 |
|
---|
8445 |
|
---|
8446 | /**
|
---|
8447 | * VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional VM-exit.
|
---|
8448 | */
|
---|
8449 | HMVMX_EXIT_DECL vmxHCExitMtf(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
8450 | {
|
---|
8451 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
8452 |
|
---|
8453 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
8454 | pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MONITOR_TRAP_FLAG;
|
---|
8455 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
8456 | AssertRC(rc);
|
---|
8457 | return VINF_EM_DBG_STEPPED;
|
---|
8458 | }
|
---|
8459 |
|
---|
8460 |
|
---|
8461 | /**
|
---|
8462 | * VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional VM-exit.
|
---|
8463 | */
|
---|
8464 | HMVMX_EXIT_DECL vmxHCExitApicAccess(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
8465 | {
|
---|
8466 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
8467 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitApicAccess);
|
---|
8468 |
|
---|
8469 | vmxHCReadExitIntInfoVmcs(pVCpu, pVmxTransient);
|
---|
8470 | vmxHCReadExitIntErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
8471 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
8472 | vmxHCReadIdtVectoringInfoVmcs(pVCpu, pVmxTransient);
|
---|
8473 | vmxHCReadIdtVectoringErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
8474 |
|
---|
8475 | /*
|
---|
8476 | * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
|
---|
8477 | */
|
---|
8478 | VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
|
---|
8479 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
8480 | {
|
---|
8481 | /* For some crazy guest, if an event delivery causes an APIC-access VM-exit, go to instruction emulation. */
|
---|
8482 | if (RT_UNLIKELY(VCPU_2_VMXSTATE(pVCpu).Event.fPending))
|
---|
8483 | {
|
---|
8484 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectInterpret);
|
---|
8485 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
8486 | }
|
---|
8487 | }
|
---|
8488 | else
|
---|
8489 | {
|
---|
8490 | Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
|
---|
8491 | return rcStrict;
|
---|
8492 | }
|
---|
8493 |
|
---|
8494 | /* IOMMIOPhysHandler() below may call into IEM, save the necessary state. */
|
---|
8495 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
8496 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
8497 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
8498 | AssertRCReturn(rc, rc);
|
---|
8499 |
|
---|
8500 | /* See Intel spec. 27-6 "Exit Qualifications for APIC-access VM-exits from Linear Accesses & Guest-Phyiscal Addresses" */
|
---|
8501 | uint32_t const uAccessType = VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual);
|
---|
8502 | switch (uAccessType)
|
---|
8503 | {
|
---|
8504 | #ifndef IN_NEM_DARWIN
|
---|
8505 | case VMX_APIC_ACCESS_TYPE_LINEAR_WRITE:
|
---|
8506 | case VMX_APIC_ACCESS_TYPE_LINEAR_READ:
|
---|
8507 | {
|
---|
8508 | AssertMsg( !(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
|
---|
8509 | || VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual) != XAPIC_OFF_TPR,
|
---|
8510 | ("vmxHCExitApicAccess: can't access TPR offset while using TPR shadowing.\n"));
|
---|
8511 |
|
---|
8512 | RTGCPHYS GCPhys = VCPU_2_VMXSTATE(pVCpu).vmx.u64GstMsrApicBase; /* Always up-to-date, as it is not part of the VMCS. */
|
---|
8513 | GCPhys &= PAGE_BASE_GC_MASK;
|
---|
8514 | GCPhys += VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual);
|
---|
8515 | Log4Func(("Linear access uAccessType=%#x GCPhys=%#RGp Off=%#x\n", uAccessType, GCPhys,
|
---|
8516 | VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual)));
|
---|
8517 |
|
---|
8518 | rcStrict = IOMR0MmioPhysHandler(pVCpu->CTX_SUFF(pVM), pVCpu,
|
---|
8519 | uAccessType == VMX_APIC_ACCESS_TYPE_LINEAR_READ ? 0 : X86_TRAP_PF_RW, GCPhys);
|
---|
8520 | Log4Func(("IOMMMIOPhysHandler returned %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
8521 | if ( rcStrict == VINF_SUCCESS
|
---|
8522 | || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
8523 | || rcStrict == VERR_PAGE_NOT_PRESENT)
|
---|
8524 | {
|
---|
8525 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
|
---|
8526 | | HM_CHANGED_GUEST_APIC_TPR);
|
---|
8527 | rcStrict = VINF_SUCCESS;
|
---|
8528 | }
|
---|
8529 | break;
|
---|
8530 | }
|
---|
8531 | #else
|
---|
8532 | /** @todo */
|
---|
8533 | #endif
|
---|
8534 |
|
---|
8535 | default:
|
---|
8536 | {
|
---|
8537 | Log4Func(("uAccessType=%#x\n", uAccessType));
|
---|
8538 | rcStrict = VINF_EM_RAW_EMULATE_INSTR;
|
---|
8539 | break;
|
---|
8540 | }
|
---|
8541 | }
|
---|
8542 |
|
---|
8543 | if (rcStrict != VINF_SUCCESS)
|
---|
8544 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatSwitchApicAccessToR3);
|
---|
8545 | return rcStrict;
|
---|
8546 | }
|
---|
8547 |
|
---|
8548 |
|
---|
8549 | /**
|
---|
8550 | * VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX). Conditional
|
---|
8551 | * VM-exit.
|
---|
8552 | */
|
---|
8553 | HMVMX_EXIT_DECL vmxHCExitMovDRx(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
8554 | {
|
---|
8555 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
8556 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
8557 |
|
---|
8558 | /*
|
---|
8559 | * We might also get this VM-exit if the nested-guest isn't intercepting MOV DRx accesses.
|
---|
8560 | * In such a case, rather than disabling MOV DRx intercepts and resuming execution, we
|
---|
8561 | * must emulate the MOV DRx access.
|
---|
8562 | */
|
---|
8563 | if (!pVmxTransient->fIsNestedGuest)
|
---|
8564 | {
|
---|
8565 | /* We should -not- get this VM-exit if the guest's debug registers were active. */
|
---|
8566 | if (pVmxTransient->fWasGuestDebugStateActive)
|
---|
8567 | {
|
---|
8568 | AssertMsgFailed(("Unexpected MOV DRx exit\n"));
|
---|
8569 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, pVmxTransient->uExitReason);
|
---|
8570 | }
|
---|
8571 |
|
---|
8572 | if ( !VCPU_2_VMXSTATE(pVCpu).fSingleInstruction
|
---|
8573 | && !pVmxTransient->fWasHyperDebugStateActive)
|
---|
8574 | {
|
---|
8575 | Assert(!DBGFIsStepping(pVCpu));
|
---|
8576 | Assert(pVmcsInfo->u32XcptBitmap & RT_BIT(X86_XCPT_DB));
|
---|
8577 |
|
---|
8578 | /* Don't intercept MOV DRx any more. */
|
---|
8579 | pVmcsInfo->u32ProcCtls &= ~VMX_PROC_CTLS_MOV_DR_EXIT;
|
---|
8580 | int rc = VMX_VMCS_WRITE_32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, pVmcsInfo->u32ProcCtls);
|
---|
8581 | AssertRC(rc);
|
---|
8582 |
|
---|
8583 | #ifndef IN_NEM_DARWIN
|
---|
8584 | /* We're playing with the host CPU state here, make sure we can't preempt or longjmp. */
|
---|
8585 | VMMRZCallRing3Disable(pVCpu);
|
---|
8586 | HM_DISABLE_PREEMPT(pVCpu);
|
---|
8587 |
|
---|
8588 | /* Save the host & load the guest debug state, restart execution of the MOV DRx instruction. */
|
---|
8589 | CPUMR0LoadGuestDebugState(pVCpu, true /* include DR6 */);
|
---|
8590 | Assert(CPUMIsGuestDebugStateActive(pVCpu));
|
---|
8591 |
|
---|
8592 | HM_RESTORE_PREEMPT();
|
---|
8593 | VMMRZCallRing3Enable(pVCpu);
|
---|
8594 | #else
|
---|
8595 | /** @todo */
|
---|
8596 | #endif
|
---|
8597 |
|
---|
8598 | #ifdef VBOX_WITH_STATISTICS
|
---|
8599 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
8600 | if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
|
---|
8601 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitDRxWrite);
|
---|
8602 | else
|
---|
8603 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitDRxRead);
|
---|
8604 | #endif
|
---|
8605 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatDRxContextSwitch);
|
---|
8606 | return VINF_SUCCESS;
|
---|
8607 | }
|
---|
8608 | }
|
---|
8609 |
|
---|
8610 | /*
|
---|
8611 | * EMInterpretDRx[Write|Read]() calls CPUMIsGuestIn64BitCode() which requires EFER MSR, CS.
|
---|
8612 | * The EFER MSR is always up-to-date.
|
---|
8613 | * Update the segment registers and DR7 from the CPU.
|
---|
8614 | */
|
---|
8615 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
8616 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
8617 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_DR7);
|
---|
8618 | AssertRCReturn(rc, rc);
|
---|
8619 | Log4Func(("cs:rip=%#04x:%#RX64\n", pCtx->cs.Sel, pCtx->rip));
|
---|
8620 |
|
---|
8621 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8622 | if (VMX_EXIT_QUAL_DRX_DIRECTION(pVmxTransient->uExitQual) == VMX_EXIT_QUAL_DRX_DIRECTION_WRITE)
|
---|
8623 | {
|
---|
8624 | rc = EMInterpretDRxWrite(pVM, pVCpu, CPUMCTX2CORE(pCtx),
|
---|
8625 | VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual),
|
---|
8626 | VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual));
|
---|
8627 | if (RT_SUCCESS(rc))
|
---|
8628 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_DR7);
|
---|
8629 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitDRxWrite);
|
---|
8630 | }
|
---|
8631 | else
|
---|
8632 | {
|
---|
8633 | rc = EMInterpretDRxRead(pVM, pVCpu, CPUMCTX2CORE(pCtx),
|
---|
8634 | VMX_EXIT_QUAL_DRX_GENREG(pVmxTransient->uExitQual),
|
---|
8635 | VMX_EXIT_QUAL_DRX_REGISTER(pVmxTransient->uExitQual));
|
---|
8636 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitDRxRead);
|
---|
8637 | }
|
---|
8638 |
|
---|
8639 | Assert(rc == VINF_SUCCESS || rc == VERR_EM_INTERPRETER);
|
---|
8640 | if (RT_SUCCESS(rc))
|
---|
8641 | {
|
---|
8642 | int rc2 = vmxHCAdvanceGuestRip(pVCpu, pVmxTransient);
|
---|
8643 | AssertRCReturn(rc2, rc2);
|
---|
8644 | return VINF_SUCCESS;
|
---|
8645 | }
|
---|
8646 | return rc;
|
---|
8647 | }
|
---|
8648 |
|
---|
8649 |
|
---|
8650 | /**
|
---|
8651 | * VM-exit handler for EPT misconfiguration (VMX_EXIT_EPT_MISCONFIG).
|
---|
8652 | * Conditional VM-exit.
|
---|
8653 | */
|
---|
8654 | HMVMX_EXIT_DECL vmxHCExitEptMisconfig(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
8655 | {
|
---|
8656 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
8657 |
|
---|
8658 | #ifndef IN_NEM_DARWIN
|
---|
8659 | Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
|
---|
8660 |
|
---|
8661 | vmxHCReadExitIntInfoVmcs(pVCpu, pVmxTransient);
|
---|
8662 | vmxHCReadExitIntErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
8663 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
8664 | vmxHCReadIdtVectoringInfoVmcs(pVCpu, pVmxTransient);
|
---|
8665 | vmxHCReadIdtVectoringErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
8666 |
|
---|
8667 | /*
|
---|
8668 | * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
|
---|
8669 | */
|
---|
8670 | VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
|
---|
8671 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
8672 | {
|
---|
8673 | /*
|
---|
8674 | * In the unlikely case where delivering an event causes an EPT misconfig (MMIO), go back to
|
---|
8675 | * instruction emulation to inject the original event. Otherwise, injecting the original event
|
---|
8676 | * using hardware-assisted VMX would trigger the same EPT misconfig VM-exit again.
|
---|
8677 | */
|
---|
8678 | if (!VCPU_2_VMXSTATE(pVCpu).Event.fPending)
|
---|
8679 | { /* likely */ }
|
---|
8680 | else
|
---|
8681 | {
|
---|
8682 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectInterpret);
|
---|
8683 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
8684 | /** @todo NSTVMX: Think about how this should be handled. */
|
---|
8685 | if (pVmxTransient->fIsNestedGuest)
|
---|
8686 | return VERR_VMX_IPE_3;
|
---|
8687 | #endif
|
---|
8688 | return VINF_EM_RAW_INJECT_TRPM_EVENT;
|
---|
8689 | }
|
---|
8690 | }
|
---|
8691 | else
|
---|
8692 | {
|
---|
8693 | Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
|
---|
8694 | return rcStrict;
|
---|
8695 | }
|
---|
8696 |
|
---|
8697 | /*
|
---|
8698 | * Get sufficient state and update the exit history entry.
|
---|
8699 | */
|
---|
8700 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
8701 | vmxHCReadGuestPhysicalAddrVmcs(pVCpu, pVmxTransient);
|
---|
8702 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
8703 | AssertRCReturn(rc, rc);
|
---|
8704 |
|
---|
8705 | RTGCPHYS const GCPhys = pVmxTransient->uGuestPhysicalAddr;
|
---|
8706 | PCEMEXITREC pExitRec = EMHistoryUpdateFlagsAndTypeAndPC(pVCpu,
|
---|
8707 | EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM | EMEXIT_F_HM, EMEXITTYPE_MMIO),
|
---|
8708 | pVCpu->cpum.GstCtx.rip + pVCpu->cpum.GstCtx.cs.u64Base);
|
---|
8709 | if (!pExitRec)
|
---|
8710 | {
|
---|
8711 | /*
|
---|
8712 | * If we succeed, resume guest execution.
|
---|
8713 | * If we fail in interpreting the instruction because we couldn't get the guest physical address
|
---|
8714 | * of the page containing the instruction via the guest's page tables (we would invalidate the guest page
|
---|
8715 | * in the host TLB), resume execution which would cause a guest page fault to let the guest handle this
|
---|
8716 | * weird case. See @bugref{6043}.
|
---|
8717 | */
|
---|
8718 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8719 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
8720 | /** @todo bird: We can probably just go straight to IOM here and assume that
|
---|
8721 | * it's MMIO, then fall back on PGM if that hunch didn't work out so
|
---|
8722 | * well. However, we need to address that aliasing workarounds that
|
---|
8723 | * PGMR0Trap0eHandlerNPMisconfig implements. So, some care is needed.
|
---|
8724 | *
|
---|
8725 | * Might also be interesting to see if we can get this done more or
|
---|
8726 | * less locklessly inside IOM. Need to consider the lookup table
|
---|
8727 | * updating and use a bit more carefully first (or do all updates via
|
---|
8728 | * rendezvous) */
|
---|
8729 | rcStrict = PGMR0Trap0eHandlerNPMisconfig(pVM, pVCpu, PGMMODE_EPT, CPUMCTX2CORE(pCtx), GCPhys, UINT32_MAX);
|
---|
8730 | Log4Func(("At %#RGp RIP=%#RX64 rc=%Rrc\n", GCPhys, pCtx->rip, VBOXSTRICTRC_VAL(rcStrict)));
|
---|
8731 | if ( rcStrict == VINF_SUCCESS
|
---|
8732 | || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
8733 | || rcStrict == VERR_PAGE_NOT_PRESENT)
|
---|
8734 | {
|
---|
8735 | /* Successfully handled MMIO operation. */
|
---|
8736 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS
|
---|
8737 | | HM_CHANGED_GUEST_APIC_TPR);
|
---|
8738 | rcStrict = VINF_SUCCESS;
|
---|
8739 | }
|
---|
8740 | }
|
---|
8741 | else
|
---|
8742 | {
|
---|
8743 | /*
|
---|
8744 | * Frequent exit or something needing probing. Call EMHistoryExec.
|
---|
8745 | */
|
---|
8746 | Log4(("EptMisscfgExit/%u: %04x:%08RX64: %RGp -> EMHistoryExec\n",
|
---|
8747 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, GCPhys));
|
---|
8748 |
|
---|
8749 | rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
8750 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
8751 |
|
---|
8752 | Log4(("EptMisscfgExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
8753 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
8754 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
8755 | }
|
---|
8756 | return rcStrict;
|
---|
8757 | #else
|
---|
8758 | AssertFailed();
|
---|
8759 | return VERR_VMX_IPE_3; /* Should never happen with Apple HV in R3. */
|
---|
8760 | #endif
|
---|
8761 | }
|
---|
8762 |
|
---|
8763 |
|
---|
8764 | /**
|
---|
8765 | * VM-exit handler for EPT violation (VMX_EXIT_EPT_VIOLATION). Conditional
|
---|
8766 | * VM-exit.
|
---|
8767 | */
|
---|
8768 | HMVMX_EXIT_DECL vmxHCExitEptViolation(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
8769 | {
|
---|
8770 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
8771 | #ifndef IN_NEM_DARWIN
|
---|
8772 | Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
|
---|
8773 |
|
---|
8774 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
8775 | vmxHCReadExitIntInfoVmcs(pVCpu, pVmxTransient);
|
---|
8776 | vmxHCReadExitIntErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
8777 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
8778 | vmxHCReadIdtVectoringInfoVmcs(pVCpu, pVmxTransient);
|
---|
8779 | vmxHCReadIdtVectoringErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
8780 |
|
---|
8781 | /*
|
---|
8782 | * If this VM-exit occurred while delivering an event through the guest IDT, handle it accordingly.
|
---|
8783 | */
|
---|
8784 | VBOXSTRICTRC rcStrict = vmxHCCheckExitDueToEventDelivery(pVCpu, pVmxTransient);
|
---|
8785 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
8786 | {
|
---|
8787 | /*
|
---|
8788 | * If delivery of an event causes an EPT violation (true nested #PF and not MMIO),
|
---|
8789 | * we shall resolve the nested #PF and re-inject the original event.
|
---|
8790 | */
|
---|
8791 | if (VCPU_2_VMXSTATE(pVCpu).Event.fPending)
|
---|
8792 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatInjectReflectNPF);
|
---|
8793 | }
|
---|
8794 | else
|
---|
8795 | {
|
---|
8796 | Assert(rcStrict != VINF_HM_DOUBLE_FAULT);
|
---|
8797 | return rcStrict;
|
---|
8798 | }
|
---|
8799 |
|
---|
8800 | PVMXVMCSINFO pVmcsInfo = pVmxTransient->pVmcsInfo;
|
---|
8801 | vmxHCReadGuestPhysicalAddrVmcs(pVCpu, pVmxTransient);
|
---|
8802 | int rc = vmxHCImportGuestState(pVCpu, pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
8803 | AssertRCReturn(rc, rc);
|
---|
8804 |
|
---|
8805 | RTGCPHYS const GCPhys = pVmxTransient->uGuestPhysicalAddr;
|
---|
8806 | uint64_t const uExitQual = pVmxTransient->uExitQual;
|
---|
8807 | AssertMsg(((pVmxTransient->uExitQual >> 7) & 3) != 2, ("%#RX64", uExitQual));
|
---|
8808 |
|
---|
8809 | RTGCUINT uErrorCode = 0;
|
---|
8810 | if (uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_INSTR_FETCH)
|
---|
8811 | uErrorCode |= X86_TRAP_PF_ID;
|
---|
8812 | if (uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE)
|
---|
8813 | uErrorCode |= X86_TRAP_PF_RW;
|
---|
8814 | if (uExitQual & (VMX_EXIT_QUAL_EPT_ENTRY_READ | VMX_EXIT_QUAL_EPT_ENTRY_WRITE | VMX_EXIT_QUAL_EPT_ENTRY_EXECUTE))
|
---|
8815 | uErrorCode |= X86_TRAP_PF_P;
|
---|
8816 |
|
---|
8817 | PCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
8818 | Log4Func(("at %#RX64 (%#RX64 errcode=%#x) cs:rip=%#04x:%#RX64\n", GCPhys, uExitQual, uErrorCode, pCtx->cs.Sel, pCtx->rip));
|
---|
8819 |
|
---|
8820 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8821 |
|
---|
8822 | /*
|
---|
8823 | * Handle the pagefault trap for the nested shadow table.
|
---|
8824 | */
|
---|
8825 | TRPMAssertXcptPF(pVCpu, GCPhys, uErrorCode);
|
---|
8826 | rcStrict = PGMR0Trap0eHandlerNestedPaging(pVM, pVCpu, PGMMODE_EPT, uErrorCode, CPUMCTX2CORE(pCtx), GCPhys);
|
---|
8827 | TRPMResetTrap(pVCpu);
|
---|
8828 |
|
---|
8829 | /* Same case as PGMR0Trap0eHandlerNPMisconfig(). See comment above, @bugref{6043}. */
|
---|
8830 | if ( rcStrict == VINF_SUCCESS
|
---|
8831 | || rcStrict == VERR_PAGE_TABLE_NOT_PRESENT
|
---|
8832 | || rcStrict == VERR_PAGE_NOT_PRESENT)
|
---|
8833 | {
|
---|
8834 | /* Successfully synced our nested page tables. */
|
---|
8835 | STAM_COUNTER_INC(&VCPU_2_VMXSTATS(pVCpu).StatExitReasonNpf);
|
---|
8836 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RSP | HM_CHANGED_GUEST_RFLAGS);
|
---|
8837 | return VINF_SUCCESS;
|
---|
8838 | }
|
---|
8839 | #else
|
---|
8840 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
8841 | uint64_t const uHostTsc = ASMReadTSC(); RT_NOREF(uHostTsc);
|
---|
8842 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
8843 | vmxHCReadGuestPhysicalAddrVmcs(pVCpu, pVmxTransient);
|
---|
8844 | vmxHCImportGuestRip(pVCpu);
|
---|
8845 | vmxHCImportGuestSegReg(pVCpu, X86_SREG_CS);
|
---|
8846 |
|
---|
8847 | /*
|
---|
8848 | * Ask PGM for information about the given GCPhys. We need to check if we're
|
---|
8849 | * out of sync first.
|
---|
8850 | */
|
---|
8851 | NEMHCDARWINHMACPCCSTATE State = { RT_BOOL(pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE), false, false };
|
---|
8852 | PGMPHYSNEMPAGEINFO Info;
|
---|
8853 | int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, pVmxTransient->uGuestPhysicalAddr, State.fWriteAccess, &Info,
|
---|
8854 | nemR3DarwinHandleMemoryAccessPageCheckerCallback, &State);
|
---|
8855 | if (RT_SUCCESS(rc))
|
---|
8856 | {
|
---|
8857 | if (Info.fNemProt & ( RT_BOOL(pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE)
|
---|
8858 | ? NEM_PAGE_PROT_WRITE : NEM_PAGE_PROT_READ))
|
---|
8859 | {
|
---|
8860 | if (State.fCanResume)
|
---|
8861 | {
|
---|
8862 | Log4(("MemExit/%u: %04x:%08RX64: %RGp (=>%RHp) %s fProt=%u%s%s%s; restarting\n",
|
---|
8863 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
8864 | pVmxTransient->uGuestPhysicalAddr, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
|
---|
8865 | Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
|
---|
8866 | State.fDidSomething ? "" : " no-change"));
|
---|
8867 | EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, NEMEXITTYPE_MEMORY_ACCESS),
|
---|
8868 | pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc);
|
---|
8869 | return VINF_SUCCESS;
|
---|
8870 | }
|
---|
8871 | }
|
---|
8872 |
|
---|
8873 | Log4(("MemExit/%u: %04x:%08RX64: %RGp (=>%RHp) %s fProt=%u%s%s%s; emulating\n",
|
---|
8874 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
8875 | pVmxTransient->uGuestPhysicalAddr, Info.HCPhys, g_apszPageStates[Info.u2NemState], Info.fNemProt,
|
---|
8876 | Info.fHasHandlers ? " handlers" : "", Info.fZeroPage ? " zero-pg" : "",
|
---|
8877 | State.fDidSomething ? "" : " no-change"));
|
---|
8878 | }
|
---|
8879 | else
|
---|
8880 | Log4(("MemExit/%u: %04x:%08RX64: %RGp rc=%Rrc%s; emulating\n",
|
---|
8881 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
8882 | pVmxTransient->uGuestPhysicalAddr, rc, State.fDidSomething ? " modified-backing" : ""));
|
---|
8883 |
|
---|
8884 | /*
|
---|
8885 | * Emulate the memory access, either access handler or special memory.
|
---|
8886 | */
|
---|
8887 | PCEMEXITREC pExitRec = EMHistoryAddExit(pVCpu,
|
---|
8888 | RT_BOOL(pVmxTransient->uExitQual & VMX_EXIT_QUAL_EPT_ACCESS_WRITE)
|
---|
8889 | ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
|
---|
8890 | : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
|
---|
8891 | pVCpu->cpum.GstCtx.cs.u64Base + pVCpu->cpum.GstCtx.rip, uHostTsc);
|
---|
8892 |
|
---|
8893 | rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
8894 | AssertRCReturn(rc, rc);
|
---|
8895 |
|
---|
8896 | VBOXSTRICTRC rcStrict;
|
---|
8897 | if (!pExitRec)
|
---|
8898 | rcStrict = IEMExecOne(pVCpu);
|
---|
8899 | else
|
---|
8900 | {
|
---|
8901 | /* Frequent access or probing. */
|
---|
8902 | rcStrict = EMHistoryExec(pVCpu, pExitRec, 0);
|
---|
8903 | Log4(("MemExit/%u: %04x:%08RX64: EMHistoryExec -> %Rrc + %04x:%08RX64\n",
|
---|
8904 | pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
|
---|
8905 | VBOXSTRICTRC_VAL(rcStrict), pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip));
|
---|
8906 | }
|
---|
8907 |
|
---|
8908 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
8909 | #endif
|
---|
8910 |
|
---|
8911 | Log4Func(("EPT return to ring-3 rcStrict2=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
8912 | return rcStrict;
|
---|
8913 | }
|
---|
8914 |
|
---|
8915 |
|
---|
8916 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
8917 | /**
|
---|
8918 | * VM-exit handler for VMCLEAR (VMX_EXIT_VMCLEAR). Unconditional VM-exit.
|
---|
8919 | */
|
---|
8920 | HMVMX_EXIT_DECL vmxHCExitVmclear(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
8921 | {
|
---|
8922 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
8923 |
|
---|
8924 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
8925 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
8926 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
8927 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
8928 | | CPUMCTX_EXTRN_HWVIRT
|
---|
8929 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
8930 | AssertRCReturn(rc, rc);
|
---|
8931 |
|
---|
8932 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
8933 |
|
---|
8934 | VMXVEXITINFO ExitInfo;
|
---|
8935 | RT_ZERO(ExitInfo);
|
---|
8936 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
8937 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
8938 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
8939 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
8940 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
|
---|
8941 |
|
---|
8942 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmclear(pVCpu, &ExitInfo);
|
---|
8943 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
8944 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
|
---|
8945 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
8946 | {
|
---|
8947 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
8948 | rcStrict = VINF_SUCCESS;
|
---|
8949 | }
|
---|
8950 | return rcStrict;
|
---|
8951 | }
|
---|
8952 |
|
---|
8953 |
|
---|
8954 | /**
|
---|
8955 | * VM-exit handler for VMLAUNCH (VMX_EXIT_VMLAUNCH). Unconditional VM-exit.
|
---|
8956 | */
|
---|
8957 | HMVMX_EXIT_DECL vmxHCExitVmlaunch(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
8958 | {
|
---|
8959 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
8960 |
|
---|
8961 | /* Import the entire VMCS state for now as we would be switching VMCS on successful VMLAUNCH,
|
---|
8962 | otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
|
---|
8963 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
8964 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
8965 | AssertRCReturn(rc, rc);
|
---|
8966 |
|
---|
8967 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
8968 |
|
---|
8969 | STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitVmentry, z);
|
---|
8970 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMLAUNCH);
|
---|
8971 | STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitVmentry, z);
|
---|
8972 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
8973 | {
|
---|
8974 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
8975 | if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
|
---|
8976 | rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
|
---|
8977 | }
|
---|
8978 | Assert(rcStrict != VINF_IEM_RAISED_XCPT);
|
---|
8979 | return rcStrict;
|
---|
8980 | }
|
---|
8981 |
|
---|
8982 |
|
---|
8983 | /**
|
---|
8984 | * VM-exit handler for VMPTRLD (VMX_EXIT_VMPTRLD). Unconditional VM-exit.
|
---|
8985 | */
|
---|
8986 | HMVMX_EXIT_DECL vmxHCExitVmptrld(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
8987 | {
|
---|
8988 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
8989 |
|
---|
8990 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
8991 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
8992 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
8993 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
8994 | | CPUMCTX_EXTRN_HWVIRT
|
---|
8995 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
8996 | AssertRCReturn(rc, rc);
|
---|
8997 |
|
---|
8998 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
8999 |
|
---|
9000 | VMXVEXITINFO ExitInfo;
|
---|
9001 | RT_ZERO(ExitInfo);
|
---|
9002 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9003 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9004 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
9005 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9006 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
|
---|
9007 |
|
---|
9008 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrld(pVCpu, &ExitInfo);
|
---|
9009 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9010 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
|
---|
9011 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
9012 | {
|
---|
9013 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
9014 | rcStrict = VINF_SUCCESS;
|
---|
9015 | }
|
---|
9016 | return rcStrict;
|
---|
9017 | }
|
---|
9018 |
|
---|
9019 |
|
---|
9020 | /**
|
---|
9021 | * VM-exit handler for VMPTRST (VMX_EXIT_VMPTRST). Unconditional VM-exit.
|
---|
9022 | */
|
---|
9023 | HMVMX_EXIT_DECL vmxHCExitVmptrst(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9024 | {
|
---|
9025 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9026 |
|
---|
9027 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9028 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
9029 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9030 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
9031 | | CPUMCTX_EXTRN_HWVIRT
|
---|
9032 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
9033 | AssertRCReturn(rc, rc);
|
---|
9034 |
|
---|
9035 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
9036 |
|
---|
9037 | VMXVEXITINFO ExitInfo;
|
---|
9038 | RT_ZERO(ExitInfo);
|
---|
9039 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9040 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9041 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
9042 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9043 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
|
---|
9044 |
|
---|
9045 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmptrst(pVCpu, &ExitInfo);
|
---|
9046 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9047 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
9048 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
9049 | {
|
---|
9050 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
9051 | rcStrict = VINF_SUCCESS;
|
---|
9052 | }
|
---|
9053 | return rcStrict;
|
---|
9054 | }
|
---|
9055 |
|
---|
9056 |
|
---|
9057 | /**
|
---|
9058 | * VM-exit handler for VMREAD (VMX_EXIT_VMREAD). Conditional VM-exit.
|
---|
9059 | */
|
---|
9060 | HMVMX_EXIT_DECL vmxHCExitVmread(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9061 | {
|
---|
9062 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9063 |
|
---|
9064 | /*
|
---|
9065 | * Strictly speaking we should not get VMREAD VM-exits for shadow VMCS fields and
|
---|
9066 | * thus might not need to import the shadow VMCS state, it's safer just in case
|
---|
9067 | * code elsewhere dares look at unsynced VMCS fields.
|
---|
9068 | */
|
---|
9069 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9070 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
9071 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9072 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
9073 | | CPUMCTX_EXTRN_HWVIRT
|
---|
9074 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
9075 | AssertRCReturn(rc, rc);
|
---|
9076 |
|
---|
9077 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
9078 |
|
---|
9079 | VMXVEXITINFO ExitInfo;
|
---|
9080 | RT_ZERO(ExitInfo);
|
---|
9081 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9082 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9083 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
9084 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9085 | if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
|
---|
9086 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_WRITE, &ExitInfo.GCPtrEffAddr);
|
---|
9087 |
|
---|
9088 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmread(pVCpu, &ExitInfo);
|
---|
9089 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9090 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
9091 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
9092 | {
|
---|
9093 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
9094 | rcStrict = VINF_SUCCESS;
|
---|
9095 | }
|
---|
9096 | return rcStrict;
|
---|
9097 | }
|
---|
9098 |
|
---|
9099 |
|
---|
9100 | /**
|
---|
9101 | * VM-exit handler for VMRESUME (VMX_EXIT_VMRESUME). Unconditional VM-exit.
|
---|
9102 | */
|
---|
9103 | HMVMX_EXIT_DECL vmxHCExitVmresume(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9104 | {
|
---|
9105 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9106 |
|
---|
9107 | /* Import the entire VMCS state for now as we would be switching VMCS on successful VMRESUME,
|
---|
9108 | otherwise we could import just IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK. */
|
---|
9109 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9110 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
9111 | AssertRCReturn(rc, rc);
|
---|
9112 |
|
---|
9113 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
9114 |
|
---|
9115 | STAM_PROFILE_ADV_START(&VCPU_2_VMXSTATS(pVCpu).StatExitVmentry, z);
|
---|
9116 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmlaunchVmresume(pVCpu, pVmxTransient->cbExitInstr, VMXINSTRID_VMRESUME);
|
---|
9117 | STAM_PROFILE_ADV_STOP(&VCPU_2_VMXSTATS(pVCpu).StatExitVmentry, z);
|
---|
9118 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9119 | {
|
---|
9120 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_ALL_GUEST);
|
---|
9121 | if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.GstCtx))
|
---|
9122 | rcStrict = VINF_VMX_VMLAUNCH_VMRESUME;
|
---|
9123 | }
|
---|
9124 | Assert(rcStrict != VINF_IEM_RAISED_XCPT);
|
---|
9125 | return rcStrict;
|
---|
9126 | }
|
---|
9127 |
|
---|
9128 |
|
---|
9129 | /**
|
---|
9130 | * VM-exit handler for VMWRITE (VMX_EXIT_VMWRITE). Conditional VM-exit.
|
---|
9131 | */
|
---|
9132 | HMVMX_EXIT_DECL vmxHCExitVmwrite(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9133 | {
|
---|
9134 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9135 |
|
---|
9136 | /*
|
---|
9137 | * Although we should not get VMWRITE VM-exits for shadow VMCS fields, since our HM hook
|
---|
9138 | * gets invoked when IEM's VMWRITE instruction emulation modifies the current VMCS and it
|
---|
9139 | * flags re-loading the entire shadow VMCS, we should save the entire shadow VMCS here.
|
---|
9140 | */
|
---|
9141 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9142 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
9143 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9144 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
9145 | | CPUMCTX_EXTRN_HWVIRT
|
---|
9146 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
9147 | AssertRCReturn(rc, rc);
|
---|
9148 |
|
---|
9149 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
9150 |
|
---|
9151 | VMXVEXITINFO ExitInfo;
|
---|
9152 | RT_ZERO(ExitInfo);
|
---|
9153 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9154 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9155 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
9156 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9157 | if (!ExitInfo.InstrInfo.VmreadVmwrite.fIsRegOperand)
|
---|
9158 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
|
---|
9159 |
|
---|
9160 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmwrite(pVCpu, &ExitInfo);
|
---|
9161 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9162 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
|
---|
9163 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
9164 | {
|
---|
9165 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
9166 | rcStrict = VINF_SUCCESS;
|
---|
9167 | }
|
---|
9168 | return rcStrict;
|
---|
9169 | }
|
---|
9170 |
|
---|
9171 |
|
---|
9172 | /**
|
---|
9173 | * VM-exit handler for VMXOFF (VMX_EXIT_VMXOFF). Unconditional VM-exit.
|
---|
9174 | */
|
---|
9175 | HMVMX_EXIT_DECL vmxHCExitVmxoff(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9176 | {
|
---|
9177 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9178 |
|
---|
9179 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9180 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_CR4
|
---|
9181 | | CPUMCTX_EXTRN_HWVIRT
|
---|
9182 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK);
|
---|
9183 | AssertRCReturn(rc, rc);
|
---|
9184 |
|
---|
9185 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
9186 |
|
---|
9187 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmxoff(pVCpu, pVmxTransient->cbExitInstr);
|
---|
9188 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9189 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_HWVIRT);
|
---|
9190 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
9191 | {
|
---|
9192 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
9193 | rcStrict = VINF_SUCCESS;
|
---|
9194 | }
|
---|
9195 | return rcStrict;
|
---|
9196 | }
|
---|
9197 |
|
---|
9198 |
|
---|
9199 | /**
|
---|
9200 | * VM-exit handler for VMXON (VMX_EXIT_VMXON). Unconditional VM-exit.
|
---|
9201 | */
|
---|
9202 | HMVMX_EXIT_DECL vmxHCExitVmxon(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9203 | {
|
---|
9204 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9205 |
|
---|
9206 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9207 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
9208 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9209 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
9210 | | CPUMCTX_EXTRN_HWVIRT
|
---|
9211 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
9212 | AssertRCReturn(rc, rc);
|
---|
9213 |
|
---|
9214 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
9215 |
|
---|
9216 | VMXVEXITINFO ExitInfo;
|
---|
9217 | RT_ZERO(ExitInfo);
|
---|
9218 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9219 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9220 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
9221 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9222 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
|
---|
9223 |
|
---|
9224 | VBOXSTRICTRC rcStrict = IEMExecDecodedVmxon(pVCpu, &ExitInfo);
|
---|
9225 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9226 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS | HM_CHANGED_GUEST_HWVIRT);
|
---|
9227 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
9228 | {
|
---|
9229 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
9230 | rcStrict = VINF_SUCCESS;
|
---|
9231 | }
|
---|
9232 | return rcStrict;
|
---|
9233 | }
|
---|
9234 |
|
---|
9235 |
|
---|
9236 | /**
|
---|
9237 | * VM-exit handler for INVVPID (VMX_EXIT_INVVPID). Unconditional VM-exit.
|
---|
9238 | */
|
---|
9239 | HMVMX_EXIT_DECL vmxHCExitInvvpid(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9240 | {
|
---|
9241 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9242 |
|
---|
9243 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9244 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
9245 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9246 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
9247 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
9248 | AssertRCReturn(rc, rc);
|
---|
9249 |
|
---|
9250 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
9251 |
|
---|
9252 | VMXVEXITINFO ExitInfo;
|
---|
9253 | RT_ZERO(ExitInfo);
|
---|
9254 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9255 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9256 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
9257 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9258 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
|
---|
9259 |
|
---|
9260 | VBOXSTRICTRC rcStrict = IEMExecDecodedInvvpid(pVCpu, &ExitInfo);
|
---|
9261 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9262 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
9263 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
9264 | {
|
---|
9265 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
9266 | rcStrict = VINF_SUCCESS;
|
---|
9267 | }
|
---|
9268 | return rcStrict;
|
---|
9269 | }
|
---|
9270 |
|
---|
9271 |
|
---|
9272 | # ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
|
---|
9273 | /**
|
---|
9274 | * VM-exit handler for INVEPT (VMX_EXIT_INVEPT). Unconditional VM-exit.
|
---|
9275 | */
|
---|
9276 | HMVMX_EXIT_DECL vmxHCExitInvept(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9277 | {
|
---|
9278 | HMVMX_VALIDATE_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9279 |
|
---|
9280 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9281 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
9282 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9283 | int rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SREG_MASK
|
---|
9284 | | IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK);
|
---|
9285 | AssertRCReturn(rc, rc);
|
---|
9286 |
|
---|
9287 | HMVMX_CHECK_EXIT_DUE_TO_VMX_INSTR(pVCpu, pVmxTransient->uExitReason);
|
---|
9288 |
|
---|
9289 | VMXVEXITINFO ExitInfo;
|
---|
9290 | RT_ZERO(ExitInfo);
|
---|
9291 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9292 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9293 | ExitInfo.InstrInfo.u = pVmxTransient->ExitInstrInfo.u;
|
---|
9294 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9295 | HMVMX_DECODE_MEM_OPERAND(pVCpu, ExitInfo.InstrInfo.u, ExitInfo.u64Qual, VMXMEMACCESS_READ, &ExitInfo.GCPtrEffAddr);
|
---|
9296 |
|
---|
9297 | VBOXSTRICTRC rcStrict = IEMExecDecodedInvept(pVCpu, &ExitInfo);
|
---|
9298 | if (RT_LIKELY(rcStrict == VINF_SUCCESS))
|
---|
9299 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_GUEST_RIP | HM_CHANGED_GUEST_RFLAGS);
|
---|
9300 | else if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
9301 | {
|
---|
9302 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
9303 | rcStrict = VINF_SUCCESS;
|
---|
9304 | }
|
---|
9305 | return rcStrict;
|
---|
9306 | }
|
---|
9307 | # endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
|
---|
9308 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
9309 | /** @} */
|
---|
9310 |
|
---|
9311 |
|
---|
9312 | #ifdef VBOX_WITH_NESTED_HWVIRT_VMX
|
---|
9313 | /** @name Nested-guest VM-exit handlers.
|
---|
9314 | * @{
|
---|
9315 | */
|
---|
9316 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
9317 | /* -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- Nested-guest VM-exit handlers -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
9318 | /* -=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= */
|
---|
9319 |
|
---|
9320 | /**
|
---|
9321 | * Nested-guest VM-exit handler for exceptions or NMIs (VMX_EXIT_XCPT_OR_NMI).
|
---|
9322 | * Conditional VM-exit.
|
---|
9323 | */
|
---|
9324 | HMVMX_EXIT_DECL vmxHCExitXcptOrNmiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9325 | {
|
---|
9326 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9327 |
|
---|
9328 | vmxHCReadExitIntInfoVmcs(pVCpu, pVmxTransient);
|
---|
9329 |
|
---|
9330 | uint64_t const uExitIntInfo = pVmxTransient->uExitIntInfo;
|
---|
9331 | uint32_t const uExitIntType = VMX_EXIT_INT_INFO_TYPE(uExitIntInfo);
|
---|
9332 | Assert(VMX_EXIT_INT_INFO_IS_VALID(uExitIntInfo));
|
---|
9333 |
|
---|
9334 | switch (uExitIntType)
|
---|
9335 | {
|
---|
9336 | #ifndef IN_NEM_DARWIN
|
---|
9337 | /*
|
---|
9338 | * Physical NMIs:
|
---|
9339 | * We shouldn't direct host physical NMIs to the nested-guest. Dispatch it to the host.
|
---|
9340 | */
|
---|
9341 | case VMX_EXIT_INT_INFO_TYPE_NMI:
|
---|
9342 | return hmR0VmxExitHostNmi(pVCpu, pVmxTransient->pVmcsInfo);
|
---|
9343 | #endif
|
---|
9344 |
|
---|
9345 | /*
|
---|
9346 | * Hardware exceptions,
|
---|
9347 | * Software exceptions,
|
---|
9348 | * Privileged software exceptions:
|
---|
9349 | * Figure out if the exception must be delivered to the guest or the nested-guest.
|
---|
9350 | */
|
---|
9351 | case VMX_EXIT_INT_INFO_TYPE_SW_XCPT:
|
---|
9352 | case VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT:
|
---|
9353 | case VMX_EXIT_INT_INFO_TYPE_HW_XCPT:
|
---|
9354 | {
|
---|
9355 | vmxHCReadExitIntErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
9356 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9357 | vmxHCReadIdtVectoringInfoVmcs(pVCpu, pVmxTransient);
|
---|
9358 | vmxHCReadIdtVectoringErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
9359 |
|
---|
9360 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
9361 | bool const fIntercept = CPUMIsGuestVmxXcptInterceptSet(pCtx, VMX_EXIT_INT_INFO_VECTOR(uExitIntInfo),
|
---|
9362 | pVmxTransient->uExitIntErrorCode);
|
---|
9363 | if (fIntercept)
|
---|
9364 | {
|
---|
9365 | /* Exit qualification is required for debug and page-fault exceptions. */
|
---|
9366 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9367 |
|
---|
9368 | /*
|
---|
9369 | * For VM-exits due to software exceptions (those generated by INT3 or INTO) and privileged
|
---|
9370 | * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
|
---|
9371 | * length. However, if delivery of a software interrupt, software exception or privileged
|
---|
9372 | * software exception causes a VM-exit, that too provides the VM-exit instruction length.
|
---|
9373 | */
|
---|
9374 | VMXVEXITINFO ExitInfo;
|
---|
9375 | RT_ZERO(ExitInfo);
|
---|
9376 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9377 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9378 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9379 |
|
---|
9380 | VMXVEXITEVENTINFO ExitEventInfo;
|
---|
9381 | RT_ZERO(ExitEventInfo);
|
---|
9382 | ExitEventInfo.uExitIntInfo = pVmxTransient->uExitIntInfo;
|
---|
9383 | ExitEventInfo.uExitIntErrCode = pVmxTransient->uExitIntErrorCode;
|
---|
9384 | ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
|
---|
9385 | ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
|
---|
9386 |
|
---|
9387 | #ifdef DEBUG_ramshankar
|
---|
9388 | vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, HMVMX_CPUMCTX_EXTRN_ALL);
|
---|
9389 | Log4Func(("exit_int_info=%#RX32 err_code=%#RX32 exit_qual=%#RX64\n", pVmxTransient->uExitIntInfo,
|
---|
9390 | pVmxTransient->uExitIntErrorCode, pVmxTransient->uExitQual));
|
---|
9391 | if (VMX_IDT_VECTORING_INFO_IS_VALID(pVmxTransient->uIdtVectoringInfo))
|
---|
9392 | {
|
---|
9393 | Log4Func(("idt_info=%#RX32 idt_errcode=%#RX32 cr2=%#RX64\n", pVmxTransient->uIdtVectoringInfo,
|
---|
9394 | pVmxTransient->uIdtVectoringErrorCode, pCtx->cr2));
|
---|
9395 | }
|
---|
9396 | #endif
|
---|
9397 | return IEMExecVmxVmexitXcpt(pVCpu, &ExitInfo, &ExitEventInfo);
|
---|
9398 | }
|
---|
9399 |
|
---|
9400 | /* Nested paging is currently a requirement, otherwise we would need to handle shadow #PFs in vmxHCExitXcptPF. */
|
---|
9401 | Assert(pVCpu->CTX_SUFF(pVM)->hmr0.s.fNestedPaging);
|
---|
9402 | return vmxHCExitXcpt(pVCpu, pVmxTransient);
|
---|
9403 | }
|
---|
9404 |
|
---|
9405 | /*
|
---|
9406 | * Software interrupts:
|
---|
9407 | * VM-exits cannot be caused by software interrupts.
|
---|
9408 | *
|
---|
9409 | * External interrupts:
|
---|
9410 | * This should only happen when "acknowledge external interrupts on VM-exit"
|
---|
9411 | * control is set. However, we never set this when executing a guest or
|
---|
9412 | * nested-guest. For nested-guests it is emulated while injecting interrupts into
|
---|
9413 | * the guest.
|
---|
9414 | */
|
---|
9415 | case VMX_EXIT_INT_INFO_TYPE_SW_INT:
|
---|
9416 | case VMX_EXIT_INT_INFO_TYPE_EXT_INT:
|
---|
9417 | default:
|
---|
9418 | {
|
---|
9419 | VCPU_2_VMXSTATE(pVCpu).u32HMError = pVmxTransient->uExitIntInfo;
|
---|
9420 | return VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE;
|
---|
9421 | }
|
---|
9422 | }
|
---|
9423 | }
|
---|
9424 |
|
---|
9425 |
|
---|
9426 | /**
|
---|
9427 | * Nested-guest VM-exit handler for triple faults (VMX_EXIT_TRIPLE_FAULT).
|
---|
9428 | * Unconditional VM-exit.
|
---|
9429 | */
|
---|
9430 | HMVMX_EXIT_DECL vmxHCExitTripleFaultNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9431 | {
|
---|
9432 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9433 | return IEMExecVmxVmexitTripleFault(pVCpu);
|
---|
9434 | }
|
---|
9435 |
|
---|
9436 |
|
---|
9437 | /**
|
---|
9438 | * Nested-guest VM-exit handler for interrupt-window exiting (VMX_EXIT_INT_WINDOW).
|
---|
9439 | */
|
---|
9440 | HMVMX_EXIT_NSRC_DECL vmxHCExitIntWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9441 | {
|
---|
9442 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9443 |
|
---|
9444 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INT_WINDOW_EXIT))
|
---|
9445 | return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */);
|
---|
9446 | return vmxHCExitIntWindow(pVCpu, pVmxTransient);
|
---|
9447 | }
|
---|
9448 |
|
---|
9449 |
|
---|
9450 | /**
|
---|
9451 | * Nested-guest VM-exit handler for NMI-window exiting (VMX_EXIT_NMI_WINDOW).
|
---|
9452 | */
|
---|
9453 | HMVMX_EXIT_NSRC_DECL vmxHCExitNmiWindowNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9454 | {
|
---|
9455 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9456 |
|
---|
9457 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_NMI_WINDOW_EXIT))
|
---|
9458 | return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, 0 /* uExitQual */);
|
---|
9459 | return vmxHCExitIntWindow(pVCpu, pVmxTransient);
|
---|
9460 | }
|
---|
9461 |
|
---|
9462 |
|
---|
9463 | /**
|
---|
9464 | * Nested-guest VM-exit handler for task switches (VMX_EXIT_TASK_SWITCH).
|
---|
9465 | * Unconditional VM-exit.
|
---|
9466 | */
|
---|
9467 | HMVMX_EXIT_DECL vmxHCExitTaskSwitchNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9468 | {
|
---|
9469 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9470 |
|
---|
9471 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9472 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9473 | vmxHCReadIdtVectoringInfoVmcs(pVCpu, pVmxTransient);
|
---|
9474 | vmxHCReadIdtVectoringErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
9475 |
|
---|
9476 | VMXVEXITINFO ExitInfo;
|
---|
9477 | RT_ZERO(ExitInfo);
|
---|
9478 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9479 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9480 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9481 |
|
---|
9482 | VMXVEXITEVENTINFO ExitEventInfo;
|
---|
9483 | RT_ZERO(ExitEventInfo);
|
---|
9484 | ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
|
---|
9485 | ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
|
---|
9486 | return IEMExecVmxVmexitTaskSwitch(pVCpu, &ExitInfo, &ExitEventInfo);
|
---|
9487 | }
|
---|
9488 |
|
---|
9489 |
|
---|
9490 | /**
|
---|
9491 | * Nested-guest VM-exit handler for HLT (VMX_EXIT_HLT). Conditional VM-exit.
|
---|
9492 | */
|
---|
9493 | HMVMX_EXIT_DECL vmxHCExitHltNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9494 | {
|
---|
9495 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9496 |
|
---|
9497 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_HLT_EXIT))
|
---|
9498 | {
|
---|
9499 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9500 | return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
|
---|
9501 | }
|
---|
9502 | return vmxHCExitHlt(pVCpu, pVmxTransient);
|
---|
9503 | }
|
---|
9504 |
|
---|
9505 |
|
---|
9506 | /**
|
---|
9507 | * Nested-guest VM-exit handler for INVLPG (VMX_EXIT_INVLPG). Conditional VM-exit.
|
---|
9508 | */
|
---|
9509 | HMVMX_EXIT_DECL vmxHCExitInvlpgNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9510 | {
|
---|
9511 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9512 |
|
---|
9513 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT))
|
---|
9514 | {
|
---|
9515 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9516 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9517 |
|
---|
9518 | VMXVEXITINFO ExitInfo;
|
---|
9519 | RT_ZERO(ExitInfo);
|
---|
9520 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9521 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9522 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9523 | return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
9524 | }
|
---|
9525 | return vmxHCExitInvlpg(pVCpu, pVmxTransient);
|
---|
9526 | }
|
---|
9527 |
|
---|
9528 |
|
---|
9529 | /**
|
---|
9530 | * Nested-guest VM-exit handler for RDPMC (VMX_EXIT_RDPMC). Conditional VM-exit.
|
---|
9531 | */
|
---|
9532 | HMVMX_EXIT_DECL vmxHCExitRdpmcNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9533 | {
|
---|
9534 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9535 |
|
---|
9536 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDPMC_EXIT))
|
---|
9537 | {
|
---|
9538 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9539 | return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
|
---|
9540 | }
|
---|
9541 | return vmxHCExitRdpmc(pVCpu, pVmxTransient);
|
---|
9542 | }
|
---|
9543 |
|
---|
9544 |
|
---|
9545 | /**
|
---|
9546 | * Nested-guest VM-exit handler for VMREAD (VMX_EXIT_VMREAD) and VMWRITE
|
---|
9547 | * (VMX_EXIT_VMWRITE). Conditional VM-exit.
|
---|
9548 | */
|
---|
9549 | HMVMX_EXIT_DECL vmxHCExitVmreadVmwriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9550 | {
|
---|
9551 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9552 |
|
---|
9553 | Assert( pVmxTransient->uExitReason == VMX_EXIT_VMREAD
|
---|
9554 | || pVmxTransient->uExitReason == VMX_EXIT_VMWRITE);
|
---|
9555 |
|
---|
9556 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
9557 |
|
---|
9558 | uint8_t const iGReg = pVmxTransient->ExitInstrInfo.VmreadVmwrite.iReg2;
|
---|
9559 | Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
|
---|
9560 | uint64_t u64VmcsField = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64;
|
---|
9561 |
|
---|
9562 | HMVMX_CPUMCTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
|
---|
9563 | if (!CPUMIsGuestInLongModeEx(&pVCpu->cpum.GstCtx))
|
---|
9564 | u64VmcsField &= UINT64_C(0xffffffff);
|
---|
9565 |
|
---|
9566 | if (CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, pVmxTransient->uExitReason, u64VmcsField))
|
---|
9567 | {
|
---|
9568 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9569 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9570 |
|
---|
9571 | VMXVEXITINFO ExitInfo;
|
---|
9572 | RT_ZERO(ExitInfo);
|
---|
9573 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9574 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9575 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9576 | ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
|
---|
9577 | return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
9578 | }
|
---|
9579 |
|
---|
9580 | if (pVmxTransient->uExitReason == VMX_EXIT_VMREAD)
|
---|
9581 | return vmxHCExitVmread(pVCpu, pVmxTransient);
|
---|
9582 | return vmxHCExitVmwrite(pVCpu, pVmxTransient);
|
---|
9583 | }
|
---|
9584 |
|
---|
9585 |
|
---|
9586 | /**
|
---|
9587 | * Nested-guest VM-exit handler for RDTSC (VMX_EXIT_RDTSC). Conditional VM-exit.
|
---|
9588 | */
|
---|
9589 | HMVMX_EXIT_DECL vmxHCExitRdtscNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9590 | {
|
---|
9591 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9592 |
|
---|
9593 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT))
|
---|
9594 | {
|
---|
9595 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9596 | return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
|
---|
9597 | }
|
---|
9598 |
|
---|
9599 | return vmxHCExitRdtsc(pVCpu, pVmxTransient);
|
---|
9600 | }
|
---|
9601 |
|
---|
9602 |
|
---|
9603 | /**
|
---|
9604 | * Nested-guest VM-exit handler for control-register accesses (VMX_EXIT_MOV_CRX).
|
---|
9605 | * Conditional VM-exit.
|
---|
9606 | */
|
---|
9607 | HMVMX_EXIT_DECL vmxHCExitMovCRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9608 | {
|
---|
9609 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9610 |
|
---|
9611 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9612 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9613 |
|
---|
9614 | VBOXSTRICTRC rcStrict;
|
---|
9615 | uint32_t const uAccessType = VMX_EXIT_QUAL_CRX_ACCESS(pVmxTransient->uExitQual);
|
---|
9616 | switch (uAccessType)
|
---|
9617 | {
|
---|
9618 | case VMX_EXIT_QUAL_CRX_ACCESS_WRITE:
|
---|
9619 | {
|
---|
9620 | uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
|
---|
9621 | uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual);
|
---|
9622 | Assert(iGReg < RT_ELEMENTS(pVCpu->cpum.GstCtx.aGRegs));
|
---|
9623 | uint64_t const uNewCrX = pVCpu->cpum.GstCtx.aGRegs[iGReg].u64;
|
---|
9624 |
|
---|
9625 | bool fIntercept;
|
---|
9626 | switch (iCrReg)
|
---|
9627 | {
|
---|
9628 | case 0:
|
---|
9629 | case 4:
|
---|
9630 | fIntercept = CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX);
|
---|
9631 | break;
|
---|
9632 |
|
---|
9633 | case 3:
|
---|
9634 | fIntercept = CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCrX);
|
---|
9635 | break;
|
---|
9636 |
|
---|
9637 | case 8:
|
---|
9638 | fIntercept = CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_CR8_LOAD_EXIT);
|
---|
9639 | break;
|
---|
9640 |
|
---|
9641 | default:
|
---|
9642 | fIntercept = false;
|
---|
9643 | break;
|
---|
9644 | }
|
---|
9645 | if (fIntercept)
|
---|
9646 | {
|
---|
9647 | VMXVEXITINFO ExitInfo;
|
---|
9648 | RT_ZERO(ExitInfo);
|
---|
9649 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9650 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9651 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9652 | rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
9653 | }
|
---|
9654 | else
|
---|
9655 | {
|
---|
9656 | int const rc = vmxHCImportGuestState(pVCpu, pVmxTransient->pVmcsInfo, IEM_CPUMCTX_EXTRN_MUST_MASK);
|
---|
9657 | AssertRCReturn(rc, rc);
|
---|
9658 | rcStrict = vmxHCExitMovToCrX(pVCpu, pVmxTransient->cbExitInstr, iGReg, iCrReg);
|
---|
9659 | }
|
---|
9660 | break;
|
---|
9661 | }
|
---|
9662 |
|
---|
9663 | case VMX_EXIT_QUAL_CRX_ACCESS_READ:
|
---|
9664 | {
|
---|
9665 | /*
|
---|
9666 | * CR0/CR4 reads do not cause VM-exits, the read-shadow is used (subject to masking).
|
---|
9667 | * CR2 reads do not cause a VM-exit.
|
---|
9668 | * CR3 reads cause a VM-exit depending on the "CR3 store exiting" control.
|
---|
9669 | * CR8 reads cause a VM-exit depending on the "CR8 store exiting" control.
|
---|
9670 | */
|
---|
9671 | uint8_t const iCrReg = VMX_EXIT_QUAL_CRX_REGISTER(pVmxTransient->uExitQual);
|
---|
9672 | if ( iCrReg == 3
|
---|
9673 | || iCrReg == 8)
|
---|
9674 | {
|
---|
9675 | static const uint32_t s_auCrXReadIntercepts[] = { 0, 0, 0, VMX_PROC_CTLS_CR3_STORE_EXIT, 0,
|
---|
9676 | 0, 0, 0, VMX_PROC_CTLS_CR8_STORE_EXIT };
|
---|
9677 | uint32_t const uIntercept = s_auCrXReadIntercepts[iCrReg];
|
---|
9678 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, uIntercept))
|
---|
9679 | {
|
---|
9680 | VMXVEXITINFO ExitInfo;
|
---|
9681 | RT_ZERO(ExitInfo);
|
---|
9682 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9683 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9684 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9685 | rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
9686 | }
|
---|
9687 | else
|
---|
9688 | {
|
---|
9689 | uint8_t const iGReg = VMX_EXIT_QUAL_CRX_GENREG(pVmxTransient->uExitQual);
|
---|
9690 | rcStrict = vmxHCExitMovFromCrX(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, iGReg, iCrReg);
|
---|
9691 | }
|
---|
9692 | }
|
---|
9693 | else
|
---|
9694 | {
|
---|
9695 | AssertMsgFailed(("MOV from CR%d VM-exit must not happen\n", iCrReg));
|
---|
9696 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, iCrReg);
|
---|
9697 | }
|
---|
9698 | break;
|
---|
9699 | }
|
---|
9700 |
|
---|
9701 | case VMX_EXIT_QUAL_CRX_ACCESS_CLTS:
|
---|
9702 | {
|
---|
9703 | PCVMXVVMCS const pVmcsNstGst = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
|
---|
9704 | uint64_t const uGstHostMask = pVmcsNstGst->u64Cr0Mask.u;
|
---|
9705 | uint64_t const uReadShadow = pVmcsNstGst->u64Cr0ReadShadow.u;
|
---|
9706 | if ( (uGstHostMask & X86_CR0_TS)
|
---|
9707 | && (uReadShadow & X86_CR0_TS))
|
---|
9708 | {
|
---|
9709 | VMXVEXITINFO ExitInfo;
|
---|
9710 | RT_ZERO(ExitInfo);
|
---|
9711 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9712 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9713 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9714 | rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
9715 | }
|
---|
9716 | else
|
---|
9717 | rcStrict = vmxHCExitClts(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr);
|
---|
9718 | break;
|
---|
9719 | }
|
---|
9720 |
|
---|
9721 | case VMX_EXIT_QUAL_CRX_ACCESS_LMSW: /* LMSW (Load Machine-Status Word into CR0) */
|
---|
9722 | {
|
---|
9723 | RTGCPTR GCPtrEffDst;
|
---|
9724 | uint16_t const uNewMsw = VMX_EXIT_QUAL_CRX_LMSW_DATA(pVmxTransient->uExitQual);
|
---|
9725 | bool const fMemOperand = VMX_EXIT_QUAL_CRX_LMSW_OP_MEM(pVmxTransient->uExitQual);
|
---|
9726 | if (fMemOperand)
|
---|
9727 | {
|
---|
9728 | vmxHCReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
|
---|
9729 | GCPtrEffDst = pVmxTransient->uGuestLinearAddr;
|
---|
9730 | }
|
---|
9731 | else
|
---|
9732 | GCPtrEffDst = NIL_RTGCPTR;
|
---|
9733 |
|
---|
9734 | if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw))
|
---|
9735 | {
|
---|
9736 | VMXVEXITINFO ExitInfo;
|
---|
9737 | RT_ZERO(ExitInfo);
|
---|
9738 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9739 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9740 | ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
|
---|
9741 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9742 | rcStrict = IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
9743 | }
|
---|
9744 | else
|
---|
9745 | rcStrict = vmxHCExitLmsw(pVCpu, pVmxTransient->pVmcsInfo, pVmxTransient->cbExitInstr, uNewMsw, GCPtrEffDst);
|
---|
9746 | break;
|
---|
9747 | }
|
---|
9748 |
|
---|
9749 | default:
|
---|
9750 | {
|
---|
9751 | AssertMsgFailed(("Unrecognized Mov CRX access type %#x\n", uAccessType));
|
---|
9752 | HMVMX_UNEXPECTED_EXIT_RET(pVCpu, uAccessType);
|
---|
9753 | }
|
---|
9754 | }
|
---|
9755 |
|
---|
9756 | if (rcStrict == VINF_IEM_RAISED_XCPT)
|
---|
9757 | {
|
---|
9758 | ASMAtomicUoOrU64(&VCPU_2_VMXSTATE(pVCpu).fCtxChanged, HM_CHANGED_RAISED_XCPT_MASK);
|
---|
9759 | rcStrict = VINF_SUCCESS;
|
---|
9760 | }
|
---|
9761 | return rcStrict;
|
---|
9762 | }
|
---|
9763 |
|
---|
9764 |
|
---|
9765 | /**
|
---|
9766 | * Nested-guest VM-exit handler for debug-register accesses (VMX_EXIT_MOV_DRX).
|
---|
9767 | * Conditional VM-exit.
|
---|
9768 | */
|
---|
9769 | HMVMX_EXIT_DECL vmxHCExitMovDRxNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9770 | {
|
---|
9771 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9772 |
|
---|
9773 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MOV_DR_EXIT))
|
---|
9774 | {
|
---|
9775 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9776 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9777 |
|
---|
9778 | VMXVEXITINFO ExitInfo;
|
---|
9779 | RT_ZERO(ExitInfo);
|
---|
9780 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9781 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9782 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9783 | return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
9784 | }
|
---|
9785 | return vmxHCExitMovDRx(pVCpu, pVmxTransient);
|
---|
9786 | }
|
---|
9787 |
|
---|
9788 |
|
---|
9789 | /**
|
---|
9790 | * Nested-guest VM-exit handler for I/O instructions (VMX_EXIT_IO_INSTR).
|
---|
9791 | * Conditional VM-exit.
|
---|
9792 | */
|
---|
9793 | HMVMX_EXIT_DECL vmxHCExitIoInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9794 | {
|
---|
9795 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9796 |
|
---|
9797 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9798 |
|
---|
9799 | uint32_t const uIOPort = VMX_EXIT_QUAL_IO_PORT(pVmxTransient->uExitQual);
|
---|
9800 | uint8_t const uIOSize = VMX_EXIT_QUAL_IO_SIZE(pVmxTransient->uExitQual);
|
---|
9801 | AssertReturn(uIOSize <= 3 && uIOSize != 2, VERR_VMX_IPE_1);
|
---|
9802 |
|
---|
9803 | static uint32_t const s_aIOSizes[4] = { 1, 2, 0, 4 }; /* Size of the I/O accesses in bytes. */
|
---|
9804 | uint8_t const cbAccess = s_aIOSizes[uIOSize];
|
---|
9805 | if (CPUMIsGuestVmxIoInterceptSet(pVCpu, uIOPort, cbAccess))
|
---|
9806 | {
|
---|
9807 | /*
|
---|
9808 | * IN/OUT instruction:
|
---|
9809 | * - Provides VM-exit instruction length.
|
---|
9810 | *
|
---|
9811 | * INS/OUTS instruction:
|
---|
9812 | * - Provides VM-exit instruction length.
|
---|
9813 | * - Provides Guest-linear address.
|
---|
9814 | * - Optionally provides VM-exit instruction info (depends on CPU feature).
|
---|
9815 | */
|
---|
9816 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
9817 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9818 |
|
---|
9819 | /* Make sure we don't use stale/uninitialized VMX-transient info. below. */
|
---|
9820 | pVmxTransient->ExitInstrInfo.u = 0;
|
---|
9821 | pVmxTransient->uGuestLinearAddr = 0;
|
---|
9822 |
|
---|
9823 | bool const fVmxInsOutsInfo = pVM->cpum.ro.GuestFeatures.fVmxInsOutInfo;
|
---|
9824 | bool const fIOString = VMX_EXIT_QUAL_IO_IS_STRING(pVmxTransient->uExitQual);
|
---|
9825 | if (fIOString)
|
---|
9826 | {
|
---|
9827 | vmxHCReadGuestLinearAddrVmcs(pVCpu, pVmxTransient);
|
---|
9828 | if (fVmxInsOutsInfo)
|
---|
9829 | {
|
---|
9830 | Assert(RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_VMCS_INS_OUTS)); /* Paranoia. */
|
---|
9831 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
9832 | }
|
---|
9833 | }
|
---|
9834 |
|
---|
9835 | VMXVEXITINFO ExitInfo;
|
---|
9836 | RT_ZERO(ExitInfo);
|
---|
9837 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9838 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
9839 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
9840 | ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
|
---|
9841 | ExitInfo.u64GuestLinearAddr = pVmxTransient->uGuestLinearAddr;
|
---|
9842 | return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
9843 | }
|
---|
9844 | return vmxHCExitIoInstr(pVCpu, pVmxTransient);
|
---|
9845 | }
|
---|
9846 |
|
---|
9847 |
|
---|
9848 | /**
|
---|
9849 | * Nested-guest VM-exit handler for RDMSR (VMX_EXIT_RDMSR).
|
---|
9850 | */
|
---|
9851 | HMVMX_EXIT_DECL vmxHCExitRdmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9852 | {
|
---|
9853 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9854 |
|
---|
9855 | uint32_t fMsrpm;
|
---|
9856 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS))
|
---|
9857 | fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, pVCpu->cpum.GstCtx.ecx);
|
---|
9858 | else
|
---|
9859 | fMsrpm = VMXMSRPM_EXIT_RD;
|
---|
9860 |
|
---|
9861 | if (fMsrpm & VMXMSRPM_EXIT_RD)
|
---|
9862 | {
|
---|
9863 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9864 | return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
|
---|
9865 | }
|
---|
9866 | return vmxHCExitRdmsr(pVCpu, pVmxTransient);
|
---|
9867 | }
|
---|
9868 |
|
---|
9869 |
|
---|
9870 | /**
|
---|
9871 | * Nested-guest VM-exit handler for WRMSR (VMX_EXIT_WRMSR).
|
---|
9872 | */
|
---|
9873 | HMVMX_EXIT_DECL vmxHCExitWrmsrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9874 | {
|
---|
9875 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9876 |
|
---|
9877 | uint32_t fMsrpm;
|
---|
9878 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_MSR_BITMAPS))
|
---|
9879 | fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, pVCpu->cpum.GstCtx.ecx);
|
---|
9880 | else
|
---|
9881 | fMsrpm = VMXMSRPM_EXIT_WR;
|
---|
9882 |
|
---|
9883 | if (fMsrpm & VMXMSRPM_EXIT_WR)
|
---|
9884 | {
|
---|
9885 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9886 | return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
|
---|
9887 | }
|
---|
9888 | return vmxHCExitWrmsr(pVCpu, pVmxTransient);
|
---|
9889 | }
|
---|
9890 |
|
---|
9891 |
|
---|
9892 | /**
|
---|
9893 | * Nested-guest VM-exit handler for MWAIT (VMX_EXIT_MWAIT). Conditional VM-exit.
|
---|
9894 | */
|
---|
9895 | HMVMX_EXIT_DECL vmxHCExitMwaitNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9896 | {
|
---|
9897 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9898 |
|
---|
9899 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MWAIT_EXIT))
|
---|
9900 | {
|
---|
9901 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9902 | return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
|
---|
9903 | }
|
---|
9904 | return vmxHCExitMwait(pVCpu, pVmxTransient);
|
---|
9905 | }
|
---|
9906 |
|
---|
9907 |
|
---|
9908 | /**
|
---|
9909 | * Nested-guest VM-exit handler for monitor-trap-flag (VMX_EXIT_MTF). Conditional
|
---|
9910 | * VM-exit.
|
---|
9911 | */
|
---|
9912 | HMVMX_EXIT_DECL vmxHCExitMtfNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9913 | {
|
---|
9914 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9915 |
|
---|
9916 | /** @todo NSTVMX: Should consider debugging nested-guests using VM debugger. */
|
---|
9917 | vmxHCReadGuestPendingDbgXctps(pVCpu, pVmxTransient);
|
---|
9918 | VMXVEXITINFO ExitInfo;
|
---|
9919 | RT_ZERO(ExitInfo);
|
---|
9920 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9921 | ExitInfo.u64GuestPendingDbgXcpts = pVmxTransient->uGuestPendingDbgXcpts;
|
---|
9922 | return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo);
|
---|
9923 | }
|
---|
9924 |
|
---|
9925 |
|
---|
9926 | /**
|
---|
9927 | * Nested-guest VM-exit handler for MONITOR (VMX_EXIT_MONITOR). Conditional VM-exit.
|
---|
9928 | */
|
---|
9929 | HMVMX_EXIT_DECL vmxHCExitMonitorNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9930 | {
|
---|
9931 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9932 |
|
---|
9933 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_MONITOR_EXIT))
|
---|
9934 | {
|
---|
9935 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9936 | return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
|
---|
9937 | }
|
---|
9938 | return vmxHCExitMonitor(pVCpu, pVmxTransient);
|
---|
9939 | }
|
---|
9940 |
|
---|
9941 |
|
---|
9942 | /**
|
---|
9943 | * Nested-guest VM-exit handler for PAUSE (VMX_EXIT_PAUSE). Conditional VM-exit.
|
---|
9944 | */
|
---|
9945 | HMVMX_EXIT_DECL vmxHCExitPauseNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9946 | {
|
---|
9947 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9948 |
|
---|
9949 | /** @todo NSTVMX: Think about this more. Does the outer guest need to intercept
|
---|
9950 | * PAUSE when executing a nested-guest? If it does not, we would not need
|
---|
9951 | * to check for the intercepts here. Just call VM-exit... */
|
---|
9952 |
|
---|
9953 | /* The CPU would have already performed the necessary CPL checks for PAUSE-loop exiting. */
|
---|
9954 | if ( CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_PAUSE_EXIT)
|
---|
9955 | || CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_PAUSE_LOOP_EXIT))
|
---|
9956 | {
|
---|
9957 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9958 | return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
|
---|
9959 | }
|
---|
9960 | return vmxHCExitPause(pVCpu, pVmxTransient);
|
---|
9961 | }
|
---|
9962 |
|
---|
9963 |
|
---|
9964 | /**
|
---|
9965 | * Nested-guest VM-exit handler for when the TPR value is lowered below the
|
---|
9966 | * specified threshold (VMX_EXIT_TPR_BELOW_THRESHOLD). Conditional VM-exit.
|
---|
9967 | */
|
---|
9968 | HMVMX_EXIT_NSRC_DECL vmxHCExitTprBelowThresholdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9969 | {
|
---|
9970 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9971 |
|
---|
9972 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_USE_TPR_SHADOW))
|
---|
9973 | {
|
---|
9974 | vmxHCReadGuestPendingDbgXctps(pVCpu, pVmxTransient);
|
---|
9975 | VMXVEXITINFO ExitInfo;
|
---|
9976 | RT_ZERO(ExitInfo);
|
---|
9977 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
9978 | ExitInfo.u64GuestPendingDbgXcpts = pVmxTransient->uGuestPendingDbgXcpts;
|
---|
9979 | return IEMExecVmxVmexitTrapLike(pVCpu, &ExitInfo);
|
---|
9980 | }
|
---|
9981 | return vmxHCExitTprBelowThreshold(pVCpu, pVmxTransient);
|
---|
9982 | }
|
---|
9983 |
|
---|
9984 |
|
---|
9985 | /**
|
---|
9986 | * Nested-guest VM-exit handler for APIC access (VMX_EXIT_APIC_ACCESS). Conditional
|
---|
9987 | * VM-exit.
|
---|
9988 | */
|
---|
9989 | HMVMX_EXIT_DECL vmxHCExitApicAccessNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
9990 | {
|
---|
9991 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
9992 |
|
---|
9993 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
9994 | vmxHCReadIdtVectoringInfoVmcs(pVCpu, pVmxTransient);
|
---|
9995 | vmxHCReadIdtVectoringErrorCodeVmcs(pVCpu, pVmxTransient);
|
---|
9996 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
9997 |
|
---|
9998 | Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_APIC_ACCESS));
|
---|
9999 |
|
---|
10000 | Log4Func(("at offset %#x type=%u\n", VMX_EXIT_QUAL_APIC_ACCESS_OFFSET(pVmxTransient->uExitQual),
|
---|
10001 | VMX_EXIT_QUAL_APIC_ACCESS_TYPE(pVmxTransient->uExitQual)));
|
---|
10002 |
|
---|
10003 | VMXVEXITINFO ExitInfo;
|
---|
10004 | RT_ZERO(ExitInfo);
|
---|
10005 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
10006 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
10007 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
10008 |
|
---|
10009 | VMXVEXITEVENTINFO ExitEventInfo;
|
---|
10010 | RT_ZERO(ExitEventInfo);
|
---|
10011 | ExitEventInfo.uIdtVectoringInfo = pVmxTransient->uIdtVectoringInfo;
|
---|
10012 | ExitEventInfo.uIdtVectoringErrCode = pVmxTransient->uIdtVectoringErrorCode;
|
---|
10013 | return IEMExecVmxVmexitApicAccess(pVCpu, &ExitInfo, &ExitEventInfo);
|
---|
10014 | }
|
---|
10015 |
|
---|
10016 |
|
---|
10017 | /**
|
---|
10018 | * Nested-guest VM-exit handler for APIC write emulation (VMX_EXIT_APIC_WRITE).
|
---|
10019 | * Conditional VM-exit.
|
---|
10020 | */
|
---|
10021 | HMVMX_EXIT_DECL vmxHCExitApicWriteNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
10022 | {
|
---|
10023 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
10024 |
|
---|
10025 | Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_APIC_REG_VIRT));
|
---|
10026 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
10027 | return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
|
---|
10028 | }
|
---|
10029 |
|
---|
10030 |
|
---|
10031 | /**
|
---|
10032 | * Nested-guest VM-exit handler for virtualized EOI (VMX_EXIT_VIRTUALIZED_EOI).
|
---|
10033 | * Conditional VM-exit.
|
---|
10034 | */
|
---|
10035 | HMVMX_EXIT_DECL vmxHCExitVirtEoiNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
10036 | {
|
---|
10037 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
10038 |
|
---|
10039 | Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_VIRT_INT_DELIVERY));
|
---|
10040 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
10041 | return IEMExecVmxVmexit(pVCpu, pVmxTransient->uExitReason, pVmxTransient->uExitQual);
|
---|
10042 | }
|
---|
10043 |
|
---|
10044 |
|
---|
10045 | /**
|
---|
10046 | * Nested-guest VM-exit handler for RDTSCP (VMX_EXIT_RDTSCP). Conditional VM-exit.
|
---|
10047 | */
|
---|
10048 | HMVMX_EXIT_DECL vmxHCExitRdtscpNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
10049 | {
|
---|
10050 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
10051 |
|
---|
10052 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_RDTSC_EXIT))
|
---|
10053 | {
|
---|
10054 | Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_RDTSCP));
|
---|
10055 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
10056 | return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
|
---|
10057 | }
|
---|
10058 | return vmxHCExitRdtscp(pVCpu, pVmxTransient);
|
---|
10059 | }
|
---|
10060 |
|
---|
10061 |
|
---|
10062 | /**
|
---|
10063 | * Nested-guest VM-exit handler for WBINVD (VMX_EXIT_WBINVD). Conditional VM-exit.
|
---|
10064 | */
|
---|
10065 | HMVMX_EXIT_NSRC_DECL vmxHCExitWbinvdNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
10066 | {
|
---|
10067 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
10068 |
|
---|
10069 | if (CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_WBINVD_EXIT))
|
---|
10070 | {
|
---|
10071 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
10072 | return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
|
---|
10073 | }
|
---|
10074 | return vmxHCExitWbinvd(pVCpu, pVmxTransient);
|
---|
10075 | }
|
---|
10076 |
|
---|
10077 |
|
---|
10078 | /**
|
---|
10079 | * Nested-guest VM-exit handler for INVPCID (VMX_EXIT_INVPCID). Conditional VM-exit.
|
---|
10080 | */
|
---|
10081 | HMVMX_EXIT_DECL vmxHCExitInvpcidNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
10082 | {
|
---|
10083 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
10084 |
|
---|
10085 | if (CPUMIsGuestVmxProcCtlsSet(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS_INVLPG_EXIT))
|
---|
10086 | {
|
---|
10087 | Assert(CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.GstCtx, VMX_PROC_CTLS2_INVPCID));
|
---|
10088 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
10089 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
10090 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
10091 |
|
---|
10092 | VMXVEXITINFO ExitInfo;
|
---|
10093 | RT_ZERO(ExitInfo);
|
---|
10094 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
10095 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
10096 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
10097 | ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
|
---|
10098 | return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
10099 | }
|
---|
10100 | return vmxHCExitInvpcid(pVCpu, pVmxTransient);
|
---|
10101 | }
|
---|
10102 |
|
---|
10103 |
|
---|
10104 | /**
|
---|
10105 | * Nested-guest VM-exit handler for invalid-guest state
|
---|
10106 | * (VMX_EXIT_ERR_INVALID_GUEST_STATE). Error VM-exit.
|
---|
10107 | */
|
---|
10108 | HMVMX_EXIT_DECL vmxHCExitErrInvalidGuestStateNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
10109 | {
|
---|
10110 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
10111 |
|
---|
10112 | /*
|
---|
10113 | * Currently this should never happen because we fully emulate VMLAUNCH/VMRESUME in IEM.
|
---|
10114 | * So if it does happen, it indicates a bug possibly in the hardware-assisted VMX code.
|
---|
10115 | * Handle it like it's in an invalid guest state of the outer guest.
|
---|
10116 | *
|
---|
10117 | * When the fast path is implemented, this should be changed to cause the corresponding
|
---|
10118 | * nested-guest VM-exit.
|
---|
10119 | */
|
---|
10120 | return vmxHCExitErrInvalidGuestState(pVCpu, pVmxTransient);
|
---|
10121 | }
|
---|
10122 |
|
---|
10123 |
|
---|
10124 | /**
|
---|
10125 | * Nested-guest VM-exit handler for instructions that cause VM-exits uncondtionally
|
---|
10126 | * and only provide the instruction length.
|
---|
10127 | *
|
---|
10128 | * Unconditional VM-exit.
|
---|
10129 | */
|
---|
10130 | HMVMX_EXIT_DECL vmxHCExitInstrNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
10131 | {
|
---|
10132 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
10133 |
|
---|
10134 | #ifdef VBOX_STRICT
|
---|
10135 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
10136 | switch (pVmxTransient->uExitReason)
|
---|
10137 | {
|
---|
10138 | case VMX_EXIT_ENCLS:
|
---|
10139 | Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_ENCLS_EXIT));
|
---|
10140 | break;
|
---|
10141 |
|
---|
10142 | case VMX_EXIT_VMFUNC:
|
---|
10143 | Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_VMFUNC));
|
---|
10144 | break;
|
---|
10145 | }
|
---|
10146 | #endif
|
---|
10147 |
|
---|
10148 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
10149 | return IEMExecVmxVmexitInstr(pVCpu, pVmxTransient->uExitReason, pVmxTransient->cbExitInstr);
|
---|
10150 | }
|
---|
10151 |
|
---|
10152 |
|
---|
10153 | /**
|
---|
10154 | * Nested-guest VM-exit handler for instructions that provide instruction length as
|
---|
10155 | * well as more information.
|
---|
10156 | *
|
---|
10157 | * Unconditional VM-exit.
|
---|
10158 | */
|
---|
10159 | HMVMX_EXIT_DECL vmxHCExitInstrWithInfoNested(PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
|
---|
10160 | {
|
---|
10161 | HMVMX_VALIDATE_NESTED_EXIT_HANDLER_PARAMS(pVCpu, pVmxTransient);
|
---|
10162 |
|
---|
10163 | #ifdef VBOX_STRICT
|
---|
10164 | PCCPUMCTX pCtx = &pVCpu->cpum.GstCtx;
|
---|
10165 | switch (pVmxTransient->uExitReason)
|
---|
10166 | {
|
---|
10167 | case VMX_EXIT_GDTR_IDTR_ACCESS:
|
---|
10168 | case VMX_EXIT_LDTR_TR_ACCESS:
|
---|
10169 | Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_DESC_TABLE_EXIT));
|
---|
10170 | break;
|
---|
10171 |
|
---|
10172 | case VMX_EXIT_RDRAND:
|
---|
10173 | Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDRAND_EXIT));
|
---|
10174 | break;
|
---|
10175 |
|
---|
10176 | case VMX_EXIT_RDSEED:
|
---|
10177 | Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_RDSEED_EXIT));
|
---|
10178 | break;
|
---|
10179 |
|
---|
10180 | case VMX_EXIT_XSAVES:
|
---|
10181 | case VMX_EXIT_XRSTORS:
|
---|
10182 | /** @todo NSTVMX: Verify XSS-bitmap. */
|
---|
10183 | Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_XSAVES_XRSTORS));
|
---|
10184 | break;
|
---|
10185 |
|
---|
10186 | case VMX_EXIT_UMWAIT:
|
---|
10187 | case VMX_EXIT_TPAUSE:
|
---|
10188 | Assert(CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_RDTSC_EXIT));
|
---|
10189 | Assert(CPUMIsGuestVmxProcCtls2Set(pCtx, VMX_PROC_CTLS2_USER_WAIT_PAUSE));
|
---|
10190 | break;
|
---|
10191 |
|
---|
10192 | case VMX_EXIT_LOADIWKEY:
|
---|
10193 | Assert(CPUMIsGuestVmxProcCtls3Set(pCtx, VMX_PROC_CTLS3_LOADIWKEY_EXIT));
|
---|
10194 | break;
|
---|
10195 | }
|
---|
10196 | #endif
|
---|
10197 |
|
---|
10198 | vmxHCReadExitInstrLenVmcs(pVCpu, pVmxTransient);
|
---|
10199 | vmxHCReadExitQualVmcs(pVCpu, pVmxTransient);
|
---|
10200 | vmxHCReadExitInstrInfoVmcs(pVCpu, pVmxTransient);
|
---|
10201 |
|
---|
10202 | VMXVEXITINFO ExitInfo;
|
---|
10203 | RT_ZERO(ExitInfo);
|
---|
10204 | ExitInfo.uReason = pVmxTransient->uExitReason;
|
---|
10205 | ExitInfo.cbInstr = pVmxTransient->cbExitInstr;
|
---|
10206 | ExitInfo.u64Qual = pVmxTransient->uExitQual;
|
---|
10207 | ExitInfo.InstrInfo = pVmxTransient->ExitInstrInfo;
|
---|
10208 | return IEMExecVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
|
---|
10209 | }
|
---|
10210 |
|
---|
10211 | /** @} */
|
---|
10212 | #endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
|
---|
10213 |
|
---|