1 | /* $Id: TMAllVirtual.cpp 98103 2023-01-17 14:15:46Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * TM - Timeout Manager, Virtual Time, All Contexts.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2023 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.virtualbox.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 |
|
---|
29 | /*********************************************************************************************************************************
|
---|
30 | * Header Files *
|
---|
31 | *********************************************************************************************************************************/
|
---|
32 | #define LOG_GROUP LOG_GROUP_TM
|
---|
33 | #include <VBox/vmm/tm.h>
|
---|
34 | #include <VBox/vmm/dbgftrace.h>
|
---|
35 | #ifdef IN_RING3
|
---|
36 | # include <iprt/thread.h>
|
---|
37 | #endif
|
---|
38 | #include "TMInternal.h"
|
---|
39 | #include <VBox/vmm/vmcc.h>
|
---|
40 | #include <VBox/vmm/vmm.h>
|
---|
41 | #include <VBox/err.h>
|
---|
42 | #include <VBox/log.h>
|
---|
43 | #include <VBox/sup.h>
|
---|
44 |
|
---|
45 | #include <iprt/time.h>
|
---|
46 | #include <iprt/assert.h>
|
---|
47 | #include <iprt/asm.h>
|
---|
48 | #include <iprt/asm-math.h>
|
---|
49 |
|
---|
50 |
|
---|
51 |
|
---|
52 | /**
|
---|
53 | * @interface_method_impl{RTTIMENANOTSDATA,pfnBad}
|
---|
54 | */
|
---|
55 | DECLCALLBACK(DECLEXPORT(void)) tmVirtualNanoTSBad(PRTTIMENANOTSDATA pData, uint64_t u64NanoTS, uint64_t u64DeltaPrev,
|
---|
56 | uint64_t u64PrevNanoTS)
|
---|
57 | {
|
---|
58 | PVMCC pVM = RT_FROM_CPP_MEMBER(pData, VMCC, VMCC_CTX(tm).s.VirtualGetRawData);
|
---|
59 | pData->cBadPrev++;
|
---|
60 | if ((int64_t)u64DeltaPrev < 0)
|
---|
61 | LogRel(("TM: u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64 pVM=%p\n",
|
---|
62 | u64DeltaPrev, u64PrevNanoTS, u64NanoTS, pVM));
|
---|
63 | else
|
---|
64 | Log(("TM: u64DeltaPrev=%RI64 u64PrevNanoTS=0x%016RX64 u64NanoTS=0x%016RX64 pVM=%p (debugging?)\n",
|
---|
65 | u64DeltaPrev, u64PrevNanoTS, u64NanoTS, pVM));
|
---|
66 | }
|
---|
67 |
|
---|
68 |
|
---|
69 | #ifdef IN_RING3
|
---|
70 | /**
|
---|
71 | * @callback_method_impl{FNTIMENANOTSINTERNAL, For driverless mode.}
|
---|
72 | */
|
---|
73 | static DECLCALLBACK(uint64_t) tmR3VirtualNanoTSDriverless(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra)
|
---|
74 | {
|
---|
75 | RT_NOREF(pData);
|
---|
76 | if (pExtra)
|
---|
77 | pExtra->uTSCValue = ASMReadTSC();
|
---|
78 | return RTTimeSystemNanoTS();
|
---|
79 | }
|
---|
80 | #endif
|
---|
81 |
|
---|
82 |
|
---|
83 | /**
|
---|
84 | * @interface_method_impl{RTTIMENANOTSDATA,pfnRediscover}
|
---|
85 | *
|
---|
86 | * This is the initial worker, so the first call in each context ends up here.
|
---|
87 | * It is also used should the delta rating of the host CPUs change or if the
|
---|
88 | * fGetGipCpu feature the current worker relies upon becomes unavailable. The
|
---|
89 | * last two events may occur as CPUs are taken online.
|
---|
90 | */
|
---|
91 | DECLCALLBACK(DECLEXPORT(uint64_t)) tmVirtualNanoTSRediscover(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra)
|
---|
92 | {
|
---|
93 | PVMCC pVM = RT_FROM_CPP_MEMBER(pData, VMCC, VMCC_CTX(tm).s.VirtualGetRawData);
|
---|
94 | PFNTIMENANOTSINTERNAL pfnWorker;
|
---|
95 |
|
---|
96 | /*
|
---|
97 | * We require a valid GIP for the selection below.
|
---|
98 | * Invalid GIP is fatal, though we have to allow no GIP in driverless mode (ring-3 only).
|
---|
99 | */
|
---|
100 | PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
|
---|
101 | #ifdef IN_RING3
|
---|
102 | if (pGip)
|
---|
103 | #endif
|
---|
104 | {
|
---|
105 | AssertFatalMsg(RT_VALID_PTR(pGip), ("pVM=%p pGip=%p\n", pVM, pGip));
|
---|
106 | AssertFatalMsg(pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC, ("pVM=%p pGip=%p u32Magic=%#x\n", pVM, pGip, pGip->u32Magic));
|
---|
107 | AssertFatalMsg(pGip->u32Mode > SUPGIPMODE_INVALID && pGip->u32Mode < SUPGIPMODE_END,
|
---|
108 | ("pVM=%p pGip=%p u32Mode=%#x\n", pVM, pGip, pGip->u32Mode));
|
---|
109 |
|
---|
110 | /*
|
---|
111 | * Determine the new worker.
|
---|
112 | */
|
---|
113 | #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
|
---|
114 | bool const fLFence = RT_BOOL(ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SSE2);
|
---|
115 | #endif
|
---|
116 | switch (pGip->u32Mode)
|
---|
117 | {
|
---|
118 | #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
|
---|
119 | case SUPGIPMODE_SYNC_TSC:
|
---|
120 | case SUPGIPMODE_INVARIANT_TSC:
|
---|
121 | # ifdef IN_RING0
|
---|
122 | if (pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ROUGHLY_ZERO)
|
---|
123 | pfnWorker = fLFence ? RTTimeNanoTSLFenceSyncInvarNoDelta : RTTimeNanoTSLegacySyncInvarNoDelta;
|
---|
124 | else
|
---|
125 | pfnWorker = fLFence ? RTTimeNanoTSLFenceSyncInvarWithDelta : RTTimeNanoTSLegacySyncInvarWithDelta;
|
---|
126 | # else
|
---|
127 | if (pGip->fGetGipCpu & SUPGIPGETCPU_IDTR_LIMIT_MASK_MAX_SET_CPUS)
|
---|
128 | pfnWorker = pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_PRACTICALLY_ZERO
|
---|
129 | ? fLFence ? RTTimeNanoTSLFenceSyncInvarNoDelta : RTTimeNanoTSLegacySyncInvarNoDelta
|
---|
130 | : fLFence ? RTTimeNanoTSLFenceSyncInvarWithDeltaUseIdtrLim : RTTimeNanoTSLegacySyncInvarWithDeltaUseIdtrLim;
|
---|
131 | else if (pGip->fGetGipCpu & SUPGIPGETCPU_RDTSCP_MASK_MAX_SET_CPUS)
|
---|
132 | pfnWorker = pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_PRACTICALLY_ZERO
|
---|
133 | ? fLFence ? RTTimeNanoTSLFenceSyncInvarNoDelta : RTTimeNanoTSLegacySyncInvarNoDelta
|
---|
134 | : fLFence ? RTTimeNanoTSLFenceSyncInvarWithDeltaUseRdtscp : RTTimeNanoTSLegacySyncInvarWithDeltaUseRdtscp;
|
---|
135 | else if (pGip->fGetGipCpu & SUPGIPGETCPU_APIC_ID_EXT_0B)
|
---|
136 | pfnWorker = pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ROUGHLY_ZERO
|
---|
137 | ? fLFence ? RTTimeNanoTSLFenceSyncInvarNoDelta : RTTimeNanoTSLegacySyncInvarNoDelta
|
---|
138 | : fLFence ? RTTimeNanoTSLFenceSyncInvarWithDeltaUseApicIdExt0B : RTTimeNanoTSLegacySyncInvarWithDeltaUseApicIdExt0B;
|
---|
139 | else if (pGip->fGetGipCpu & SUPGIPGETCPU_APIC_ID_EXT_8000001E)
|
---|
140 | pfnWorker = pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ROUGHLY_ZERO
|
---|
141 | ? fLFence ? RTTimeNanoTSLFenceSyncInvarNoDelta : RTTimeNanoTSLegacySyncInvarNoDelta
|
---|
142 | : fLFence ? RTTimeNanoTSLFenceSyncInvarWithDeltaUseApicIdExt8000001E : RTTimeNanoTSLegacySyncInvarWithDeltaUseApicIdExt8000001E;
|
---|
143 | else
|
---|
144 | pfnWorker = pGip->enmUseTscDelta <= SUPGIPUSETSCDELTA_ROUGHLY_ZERO
|
---|
145 | ? fLFence ? RTTimeNanoTSLFenceSyncInvarNoDelta : RTTimeNanoTSLegacySyncInvarNoDelta
|
---|
146 | : fLFence ? RTTimeNanoTSLFenceSyncInvarWithDeltaUseApicId : RTTimeNanoTSLegacySyncInvarWithDeltaUseApicId;
|
---|
147 | # endif
|
---|
148 | break;
|
---|
149 |
|
---|
150 | case SUPGIPMODE_ASYNC_TSC:
|
---|
151 | # ifdef IN_RING0
|
---|
152 | pfnWorker = fLFence ? RTTimeNanoTSLFenceAsync : RTTimeNanoTSLegacyAsync;
|
---|
153 | # else
|
---|
154 | if (pGip->fGetGipCpu & SUPGIPGETCPU_IDTR_LIMIT_MASK_MAX_SET_CPUS)
|
---|
155 | pfnWorker = fLFence ? RTTimeNanoTSLFenceAsyncUseIdtrLim : RTTimeNanoTSLegacyAsyncUseIdtrLim;
|
---|
156 | else if (pGip->fGetGipCpu & SUPGIPGETCPU_RDTSCP_MASK_MAX_SET_CPUS)
|
---|
157 | pfnWorker = fLFence ? RTTimeNanoTSLFenceAsyncUseRdtscp : RTTimeNanoTSLegacyAsyncUseRdtscp;
|
---|
158 | else if (pGip->fGetGipCpu & SUPGIPGETCPU_RDTSCP_GROUP_IN_CH_NUMBER_IN_CL)
|
---|
159 | pfnWorker = fLFence ? RTTimeNanoTSLFenceAsyncUseRdtscpGroupChNumCl : RTTimeNanoTSLegacyAsyncUseRdtscpGroupChNumCl;
|
---|
160 | else if (pGip->fGetGipCpu & SUPGIPGETCPU_APIC_ID_EXT_0B)
|
---|
161 | pfnWorker = fLFence ? RTTimeNanoTSLFenceAsyncUseApicIdExt0B : RTTimeNanoTSLegacyAsyncUseApicIdExt0B;
|
---|
162 | else if (pGip->fGetGipCpu & SUPGIPGETCPU_APIC_ID_EXT_8000001E)
|
---|
163 | pfnWorker = fLFence ? RTTimeNanoTSLFenceAsyncUseApicIdExt8000001E : RTTimeNanoTSLegacyAsyncUseApicIdExt8000001E;
|
---|
164 | else
|
---|
165 | pfnWorker = fLFence ? RTTimeNanoTSLFenceAsyncUseApicId : RTTimeNanoTSLegacyAsyncUseApicId;
|
---|
166 | # endif
|
---|
167 | break;
|
---|
168 | #endif
|
---|
169 | default:
|
---|
170 | AssertFatalMsgFailed(("pVM=%p pGip=%p u32Mode=%#x\n", pVM, pGip, pGip->u32Mode));
|
---|
171 | }
|
---|
172 | }
|
---|
173 | #ifdef IN_RING3
|
---|
174 | else
|
---|
175 | pfnWorker = tmR3VirtualNanoTSDriverless;
|
---|
176 | #endif
|
---|
177 |
|
---|
178 | /*
|
---|
179 | * Update the pfnVirtualGetRaw pointer and call the worker we selected.
|
---|
180 | */
|
---|
181 | ASMAtomicWritePtr((void * volatile *)&pVM->VMCC_CTX(tm).s.pfnVirtualGetRaw, (void *)(uintptr_t)pfnWorker);
|
---|
182 | return pfnWorker(pData, pExtra);
|
---|
183 | }
|
---|
184 |
|
---|
185 |
|
---|
186 | /**
|
---|
187 | * @interface_method_impl{RTTIMENANOTSDATA,pfnBadCpuIndex}
|
---|
188 | */
|
---|
189 | DECLCALLBACK(DECLEXPORT(uint64_t)) tmVirtualNanoTSBadCpuIndex(PRTTIMENANOTSDATA pData, PRTITMENANOTSEXTRA pExtra,
|
---|
190 | uint16_t idApic, uint16_t iCpuSet, uint16_t iGipCpu)
|
---|
191 | {
|
---|
192 | PVMCC pVM = RT_FROM_CPP_MEMBER(pData, VMCC, VMCC_CTX(tm).s.VirtualGetRawData);
|
---|
193 | AssertFatalMsgFailed(("pVM=%p idApic=%#x iCpuSet=%#x iGipCpu=%#x pExtra=%p\n", pVM, idApic, iCpuSet, iGipCpu, pExtra));
|
---|
194 | #ifndef _MSC_VER
|
---|
195 | return UINT64_MAX;
|
---|
196 | #endif
|
---|
197 | }
|
---|
198 |
|
---|
199 |
|
---|
200 | /**
|
---|
201 | * Wrapper around the IPRT GIP time methods.
|
---|
202 | */
|
---|
203 | DECLINLINE(uint64_t) tmVirtualGetRawNanoTS(PVMCC pVM)
|
---|
204 | {
|
---|
205 | #ifdef IN_RING3
|
---|
206 | uint64_t u64 = pVM->tm.s.pfnVirtualGetRaw(&pVM->tm.s.VirtualGetRawData, NULL /*pExtra*/);
|
---|
207 | #elif defined(IN_RING0)
|
---|
208 | uint32_t cPrevSteps = pVM->tmr0.s.VirtualGetRawData.c1nsSteps;
|
---|
209 | uint64_t u64 = pVM->tmr0.s.pfnVirtualGetRaw(&pVM->tmr0.s.VirtualGetRawData, NULL /*pExtra*/);
|
---|
210 | if (cPrevSteps != pVM->tmr0.s.VirtualGetRawData.c1nsSteps)
|
---|
211 | VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3);
|
---|
212 | #else
|
---|
213 | # error "unsupported context"
|
---|
214 | #endif
|
---|
215 | /*DBGFTRACE_POS_U64(pVM, u64);*/
|
---|
216 | return u64;
|
---|
217 | }
|
---|
218 |
|
---|
219 |
|
---|
220 | /**
|
---|
221 | * Wrapper around the IPRT GIP time methods, extended version.
|
---|
222 | */
|
---|
223 | DECLINLINE(uint64_t) tmVirtualGetRawNanoTSEx(PVMCC pVM, uint64_t *puTscNow)
|
---|
224 | {
|
---|
225 | RTITMENANOTSEXTRA Extra;
|
---|
226 | #ifdef IN_RING3
|
---|
227 | uint64_t u64 = pVM->tm.s.pfnVirtualGetRaw(&pVM->tm.s.VirtualGetRawData, &Extra);
|
---|
228 | #elif defined(IN_RING0)
|
---|
229 | uint32_t cPrevSteps = pVM->tmr0.s.VirtualGetRawData.c1nsSteps;
|
---|
230 | uint64_t u64 = pVM->tmr0.s.pfnVirtualGetRaw(&pVM->tmr0.s.VirtualGetRawData, &Extra);
|
---|
231 | if (cPrevSteps != pVM->tmr0.s.VirtualGetRawData.c1nsSteps)
|
---|
232 | VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_TO_R3);
|
---|
233 | #else
|
---|
234 | # error "unsupported context"
|
---|
235 | #endif
|
---|
236 | if (puTscNow)
|
---|
237 | *puTscNow = Extra.uTSCValue;
|
---|
238 | /*DBGFTRACE_POS_U64(pVM, u64);*/
|
---|
239 | return u64;
|
---|
240 | }
|
---|
241 |
|
---|
242 |
|
---|
243 | /**
|
---|
244 | * Get the time when we're not running at 100%
|
---|
245 | *
|
---|
246 | * @returns The timestamp.
|
---|
247 | * @param pVM The cross context VM structure.
|
---|
248 | * @param puTscNow Where to return the TSC corresponding to the returned
|
---|
249 | * timestamp (delta adjusted). Optional.
|
---|
250 | */
|
---|
251 | static uint64_t tmVirtualGetRawNonNormal(PVMCC pVM, uint64_t *puTscNow)
|
---|
252 | {
|
---|
253 | /*
|
---|
254 | * Recalculate the RTTimeNanoTS() value for the period where
|
---|
255 | * warp drive has been enabled.
|
---|
256 | */
|
---|
257 | uint64_t u64 = tmVirtualGetRawNanoTSEx(pVM, puTscNow);
|
---|
258 | u64 -= pVM->tm.s.u64VirtualWarpDriveStart;
|
---|
259 | u64 *= pVM->tm.s.u32VirtualWarpDrivePercentage;
|
---|
260 | u64 /= 100;
|
---|
261 | u64 += pVM->tm.s.u64VirtualWarpDriveStart;
|
---|
262 |
|
---|
263 | /*
|
---|
264 | * Now we apply the virtual time offset.
|
---|
265 | * (Which is the negated tmVirtualGetRawNanoTS() value for when the virtual
|
---|
266 | * machine started if it had been running continuously without any suspends.)
|
---|
267 | */
|
---|
268 | u64 -= pVM->tm.s.u64VirtualOffset;
|
---|
269 | return u64;
|
---|
270 | }
|
---|
271 |
|
---|
272 |
|
---|
273 | /**
|
---|
274 | * Get the raw virtual time.
|
---|
275 | *
|
---|
276 | * @returns The current time stamp.
|
---|
277 | * @param pVM The cross context VM structure.
|
---|
278 | */
|
---|
279 | DECLINLINE(uint64_t) tmVirtualGetRaw(PVMCC pVM)
|
---|
280 | {
|
---|
281 | if (RT_LIKELY(!pVM->tm.s.fVirtualWarpDrive))
|
---|
282 | return tmVirtualGetRawNanoTS(pVM) - pVM->tm.s.u64VirtualOffset;
|
---|
283 | return tmVirtualGetRawNonNormal(pVM, NULL /*puTscNow*/);
|
---|
284 | }
|
---|
285 |
|
---|
286 |
|
---|
287 | /**
|
---|
288 | * Get the raw virtual time, extended version.
|
---|
289 | *
|
---|
290 | * @returns The current time stamp.
|
---|
291 | * @param pVM The cross context VM structure.
|
---|
292 | * @param puTscNow Where to return the TSC corresponding to the returned
|
---|
293 | * timestamp (delta adjusted). Optional.
|
---|
294 | */
|
---|
295 | DECLINLINE(uint64_t) tmVirtualGetRawEx(PVMCC pVM, uint64_t *puTscNow)
|
---|
296 | {
|
---|
297 | if (RT_LIKELY(!pVM->tm.s.fVirtualWarpDrive))
|
---|
298 | return tmVirtualGetRawNanoTSEx(pVM, puTscNow) - pVM->tm.s.u64VirtualOffset;
|
---|
299 | return tmVirtualGetRawNonNormal(pVM, puTscNow);
|
---|
300 | }
|
---|
301 |
|
---|
302 |
|
---|
303 | /**
|
---|
304 | * Inlined version of tmVirtualGetEx.
|
---|
305 | */
|
---|
306 | DECLINLINE(uint64_t) tmVirtualGet(PVMCC pVM, bool fCheckTimers)
|
---|
307 | {
|
---|
308 | uint64_t u64;
|
---|
309 | if (RT_LIKELY(pVM->tm.s.cVirtualTicking))
|
---|
310 | {
|
---|
311 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualGet);
|
---|
312 | u64 = tmVirtualGetRaw(pVM);
|
---|
313 |
|
---|
314 | /*
|
---|
315 | * Use the chance to check for expired timers.
|
---|
316 | */
|
---|
317 | if (fCheckTimers)
|
---|
318 | {
|
---|
319 | PVMCPUCC pVCpuDst = VMCC_GET_CPU(pVM, pVM->tm.s.idTimerCpu);
|
---|
320 | if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
|
---|
321 | && !pVM->tm.s.fRunningQueues
|
---|
322 | && ( pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].u64Expire <= u64
|
---|
323 | || ( pVM->tm.s.fVirtualSyncTicking
|
---|
324 | && pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64 - pVM->tm.s.offVirtualSync
|
---|
325 | )
|
---|
326 | )
|
---|
327 | && !pVM->tm.s.fRunningQueues
|
---|
328 | )
|
---|
329 | {
|
---|
330 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualGetSetFF);
|
---|
331 | Log5(("TMAllVirtual(%u): FF: %d -> 1\n", __LINE__, VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)));
|
---|
332 | VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
|
---|
333 | #ifdef IN_RING3
|
---|
334 | VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM);
|
---|
335 | #endif
|
---|
336 | }
|
---|
337 | }
|
---|
338 | }
|
---|
339 | else
|
---|
340 | u64 = pVM->tm.s.u64Virtual;
|
---|
341 | return u64;
|
---|
342 | }
|
---|
343 |
|
---|
344 |
|
---|
345 | /**
|
---|
346 | * Gets the current TMCLOCK_VIRTUAL time
|
---|
347 | *
|
---|
348 | * @returns The timestamp.
|
---|
349 | * @param pVM The cross context VM structure.
|
---|
350 | *
|
---|
351 | * @remark While the flow of time will never go backwards, the speed of the
|
---|
352 | * progress varies due to inaccurate RTTimeNanoTS and TSC. The latter can be
|
---|
353 | * influenced by power saving (SpeedStep, PowerNow!), while the former
|
---|
354 | * makes use of TSC and kernel timers.
|
---|
355 | */
|
---|
356 | VMM_INT_DECL(uint64_t) TMVirtualGet(PVMCC pVM)
|
---|
357 | {
|
---|
358 | return tmVirtualGet(pVM, true /*fCheckTimers*/);
|
---|
359 | }
|
---|
360 |
|
---|
361 |
|
---|
362 | /**
|
---|
363 | * Gets the current TMCLOCK_VIRTUAL time without checking
|
---|
364 | * timers or anything.
|
---|
365 | *
|
---|
366 | * Meaning, this has no side effect on FFs like TMVirtualGet may have.
|
---|
367 | *
|
---|
368 | * @returns The timestamp.
|
---|
369 | * @param pVM The cross context VM structure.
|
---|
370 | *
|
---|
371 | * @remarks See TMVirtualGet.
|
---|
372 | */
|
---|
373 | VMM_INT_DECL(uint64_t) TMVirtualGetNoCheck(PVMCC pVM)
|
---|
374 | {
|
---|
375 | return tmVirtualGet(pVM, false /*fCheckTimers*/);
|
---|
376 | }
|
---|
377 |
|
---|
378 |
|
---|
379 | /**
|
---|
380 | * Converts the dead line interval from TMCLOCK_VIRTUAL to host nano seconds.
|
---|
381 | *
|
---|
382 | * @returns Host nano second count.
|
---|
383 | * @param pVM The cross context VM structure.
|
---|
384 | * @param cVirtTicksToDeadline The TMCLOCK_VIRTUAL interval.
|
---|
385 | */
|
---|
386 | DECLINLINE(uint64_t) tmVirtualVirtToNsDeadline(PVM pVM, uint64_t cVirtTicksToDeadline)
|
---|
387 | {
|
---|
388 | if (RT_UNLIKELY(pVM->tm.s.fVirtualWarpDrive))
|
---|
389 | return ASMMultU64ByU32DivByU32(cVirtTicksToDeadline, 100, pVM->tm.s.u32VirtualWarpDrivePercentage);
|
---|
390 | return cVirtTicksToDeadline;
|
---|
391 | }
|
---|
392 |
|
---|
393 |
|
---|
394 | /**
|
---|
395 | * tmVirtualSyncGetLocked worker for handling catch-up when owning the lock.
|
---|
396 | *
|
---|
397 | * @returns The timestamp.
|
---|
398 | * @param pVM The cross context VM structure.
|
---|
399 | * @param u64 raw virtual time.
|
---|
400 | * @param off offVirtualSync.
|
---|
401 | * @param pcNsToDeadline Where to return the number of nano seconds to
|
---|
402 | * the next virtual sync timer deadline. Can be
|
---|
403 | * NULL.
|
---|
404 | * @param pnsAbsDeadline Where to return the absolute deadline.
|
---|
405 | * Optional.
|
---|
406 | */
|
---|
407 | DECLINLINE(uint64_t) tmVirtualSyncGetHandleCatchUpLocked(PVMCC pVM, uint64_t u64, uint64_t off,
|
---|
408 | uint64_t *pcNsToDeadline, uint64_t *pnsAbsDeadline)
|
---|
409 | {
|
---|
410 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked);
|
---|
411 |
|
---|
412 | /*
|
---|
413 | * Don't make updates until we've check the timer queue.
|
---|
414 | */
|
---|
415 | bool fUpdatePrev = true;
|
---|
416 | bool fUpdateOff = true;
|
---|
417 | bool fStop = false;
|
---|
418 | const uint64_t u64Prev = pVM->tm.s.u64VirtualSyncCatchUpPrev;
|
---|
419 | uint64_t u64Delta = u64 - u64Prev;
|
---|
420 | if (RT_LIKELY(!(u64Delta >> 32)))
|
---|
421 | {
|
---|
422 | uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
|
---|
423 | if (off > u64Sub + pVM->tm.s.offVirtualSyncGivenUp)
|
---|
424 | {
|
---|
425 | off -= u64Sub;
|
---|
426 | Log4(("TM: %'RU64/-%'8RU64: sub %RU32 [vsghcul]\n", u64 - off, off - pVM->tm.s.offVirtualSyncGivenUp, u64Sub));
|
---|
427 | }
|
---|
428 | else
|
---|
429 | {
|
---|
430 | /* we've completely caught up. */
|
---|
431 | STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
|
---|
432 | off = pVM->tm.s.offVirtualSyncGivenUp;
|
---|
433 | fStop = true;
|
---|
434 | Log4(("TM: %'RU64/0: caught up [vsghcul]\n", u64));
|
---|
435 | }
|
---|
436 | }
|
---|
437 | else
|
---|
438 | {
|
---|
439 | /* More than 4 seconds since last time (or negative), ignore it. */
|
---|
440 | fUpdateOff = false;
|
---|
441 | fUpdatePrev = !(u64Delta & RT_BIT_64(63));
|
---|
442 | Log(("TMVirtualGetSync: u64Delta=%RX64\n", u64Delta));
|
---|
443 | }
|
---|
444 |
|
---|
445 | /*
|
---|
446 | * Complete the calculation of the current TMCLOCK_VIRTUAL_SYNC time. The current
|
---|
447 | * approach is to never pass the head timer. So, when we do stop the clock and
|
---|
448 | * set the timer pending flag.
|
---|
449 | */
|
---|
450 | u64 -= off;
|
---|
451 |
|
---|
452 | uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
|
---|
453 | if (u64Last > u64)
|
---|
454 | {
|
---|
455 | u64 = u64Last + 1;
|
---|
456 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
|
---|
457 | }
|
---|
458 |
|
---|
459 | uint64_t u64Expire = ASMAtomicReadU64(&pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire);
|
---|
460 | if (pnsAbsDeadline)
|
---|
461 | *pnsAbsDeadline = u64Expire; /* Always return the unadjusted absolute deadline, or HM will waste time going
|
---|
462 | thru this code over an over again even if there aren't any timer changes. */
|
---|
463 | if (u64 < u64Expire)
|
---|
464 | {
|
---|
465 | ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64);
|
---|
466 | if (fUpdateOff)
|
---|
467 | ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
|
---|
468 | if (fStop)
|
---|
469 | ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
|
---|
470 | if (fUpdatePrev)
|
---|
471 | ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64);
|
---|
472 | if (pcNsToDeadline)
|
---|
473 | {
|
---|
474 | uint64_t cNsToDeadline = u64Expire - u64;
|
---|
475 | if (pVM->tm.s.fVirtualSyncCatchUp)
|
---|
476 | cNsToDeadline = ASMMultU64ByU32DivByU32(cNsToDeadline, 100,
|
---|
477 | pVM->tm.s.u32VirtualSyncCatchUpPercentage + 100);
|
---|
478 | *pcNsToDeadline = tmVirtualVirtToNsDeadline(pVM, cNsToDeadline);
|
---|
479 | }
|
---|
480 | PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
|
---|
481 | }
|
---|
482 | else
|
---|
483 | {
|
---|
484 | u64 = u64Expire;
|
---|
485 | ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64);
|
---|
486 | ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
|
---|
487 |
|
---|
488 | VM_FF_SET(pVM, VM_FF_TM_VIRTUAL_SYNC);
|
---|
489 | PVMCPUCC pVCpuDst = VMCC_GET_CPU(pVM, pVM->tm.s.idTimerCpu);
|
---|
490 | VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
|
---|
491 | Log5(("TMAllVirtual(%u): FF: %d -> 1\n", __LINE__, VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)));
|
---|
492 | Log4(("TM: %'RU64/-%'8RU64: exp tmr=>ff [vsghcul]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp));
|
---|
493 | PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
|
---|
494 |
|
---|
495 | if (pcNsToDeadline)
|
---|
496 | *pcNsToDeadline = 0;
|
---|
497 | #ifdef IN_RING3
|
---|
498 | VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM);
|
---|
499 | #endif
|
---|
500 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF);
|
---|
501 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetExpired);
|
---|
502 | }
|
---|
503 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked);
|
---|
504 |
|
---|
505 | Log6(("tmVirtualSyncGetHandleCatchUpLocked -> %'RU64\n", u64));
|
---|
506 | DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetHandleCatchUpLocked");
|
---|
507 | return u64;
|
---|
508 | }
|
---|
509 |
|
---|
510 |
|
---|
511 | /**
|
---|
512 | * tmVirtualSyncGetEx worker for when we get the lock.
|
---|
513 | *
|
---|
514 | * @returns timesamp.
|
---|
515 | * @param pVM The cross context VM structure.
|
---|
516 | * @param u64 The virtual clock timestamp.
|
---|
517 | * @param pcNsToDeadline Where to return the number of nano seconds to
|
---|
518 | * the next virtual sync timer deadline. Can be
|
---|
519 | * NULL.
|
---|
520 | * @param pnsAbsDeadline Where to return the absolute deadline.
|
---|
521 | * Optional.
|
---|
522 | */
|
---|
523 | DECLINLINE(uint64_t) tmVirtualSyncGetLocked(PVMCC pVM, uint64_t u64, uint64_t *pcNsToDeadline, uint64_t *pnsAbsDeadline)
|
---|
524 | {
|
---|
525 | /*
|
---|
526 | * Not ticking?
|
---|
527 | */
|
---|
528 | if (!pVM->tm.s.fVirtualSyncTicking)
|
---|
529 | {
|
---|
530 | u64 = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
|
---|
531 | PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
|
---|
532 | if (pcNsToDeadline)
|
---|
533 | *pcNsToDeadline = 0;
|
---|
534 | if (pnsAbsDeadline)
|
---|
535 | *pnsAbsDeadline = u64;
|
---|
536 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked);
|
---|
537 | Log6(("tmVirtualSyncGetLocked -> %'RU64 [stopped]\n", u64));
|
---|
538 | DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetLocked-stopped");
|
---|
539 | return u64;
|
---|
540 | }
|
---|
541 |
|
---|
542 | /*
|
---|
543 | * Handle catch up in a separate function.
|
---|
544 | */
|
---|
545 | uint64_t off = ASMAtomicUoReadU64(&pVM->tm.s.offVirtualSync);
|
---|
546 | if (ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
547 | return tmVirtualSyncGetHandleCatchUpLocked(pVM, u64, off, pcNsToDeadline, pnsAbsDeadline);
|
---|
548 |
|
---|
549 | /*
|
---|
550 | * Complete the calculation of the current TMCLOCK_VIRTUAL_SYNC time. The current
|
---|
551 | * approach is to never pass the head timer. So, when we do stop the clock and
|
---|
552 | * set the timer pending flag.
|
---|
553 | */
|
---|
554 | u64 -= off;
|
---|
555 |
|
---|
556 | uint64_t u64Last = ASMAtomicUoReadU64(&pVM->tm.s.u64VirtualSync);
|
---|
557 | if (u64Last > u64)
|
---|
558 | {
|
---|
559 | u64 = u64Last + 1;
|
---|
560 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetAdjLast);
|
---|
561 | }
|
---|
562 |
|
---|
563 | uint64_t u64Expire = ASMAtomicReadU64(&pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire);
|
---|
564 | if (pnsAbsDeadline)
|
---|
565 | *pnsAbsDeadline = u64Expire;
|
---|
566 | if (u64 < u64Expire)
|
---|
567 | {
|
---|
568 | ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64);
|
---|
569 | PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
|
---|
570 | if (pcNsToDeadline)
|
---|
571 | *pcNsToDeadline = tmVirtualVirtToNsDeadline(pVM, u64Expire - u64);
|
---|
572 | }
|
---|
573 | else
|
---|
574 | {
|
---|
575 | u64 = u64Expire;
|
---|
576 | ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64);
|
---|
577 | ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
|
---|
578 |
|
---|
579 | VM_FF_SET(pVM, VM_FF_TM_VIRTUAL_SYNC);
|
---|
580 | PVMCPUCC pVCpuDst = VMCC_GET_CPU(pVM, pVM->tm.s.idTimerCpu);
|
---|
581 | VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
|
---|
582 | Log5(("TMAllVirtual(%u): FF: %d -> 1\n", __LINE__, VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)));
|
---|
583 | Log4(("TM: %'RU64/-%'8RU64: exp tmr=>ff [vsgl]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp));
|
---|
584 | PDMCritSectLeave(pVM, &pVM->tm.s.VirtualSyncLock);
|
---|
585 |
|
---|
586 | #ifdef IN_RING3
|
---|
587 | VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM);
|
---|
588 | #endif
|
---|
589 | if (pcNsToDeadline)
|
---|
590 | *pcNsToDeadline = 0;
|
---|
591 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF);
|
---|
592 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetExpired);
|
---|
593 | }
|
---|
594 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLocked);
|
---|
595 | Log6(("tmVirtualSyncGetLocked -> %'RU64\n", u64));
|
---|
596 | DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetLocked");
|
---|
597 | return u64;
|
---|
598 | }
|
---|
599 |
|
---|
600 |
|
---|
601 | /**
|
---|
602 | * Gets the current TMCLOCK_VIRTUAL_SYNC time.
|
---|
603 | *
|
---|
604 | * @returns The timestamp.
|
---|
605 | * @param pVM The cross context VM structure.
|
---|
606 | * @param fCheckTimers Check timers or not
|
---|
607 | * @param pcNsToDeadline Where to return the number of nano seconds to
|
---|
608 | * the next virtual sync timer deadline. Can be
|
---|
609 | * NULL.
|
---|
610 | * @param pnsAbsDeadline Where to return the absolute deadline.
|
---|
611 | * Optional.
|
---|
612 | * @param puTscNow Where to return the TSC corresponding to the
|
---|
613 | * returned timestamp (delta adjusted). Optional.
|
---|
614 | * @thread EMT.
|
---|
615 | */
|
---|
616 | DECLINLINE(uint64_t) tmVirtualSyncGetEx(PVMCC pVM, bool fCheckTimers, uint64_t *pcNsToDeadline,
|
---|
617 | uint64_t *pnsAbsDeadline, uint64_t *puTscNow)
|
---|
618 | {
|
---|
619 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGet);
|
---|
620 |
|
---|
621 | uint64_t u64;
|
---|
622 | if (!pVM->tm.s.fVirtualSyncTicking)
|
---|
623 | {
|
---|
624 | if (pcNsToDeadline)
|
---|
625 | *pcNsToDeadline = 0;
|
---|
626 | u64 = pVM->tm.s.u64VirtualSync;
|
---|
627 | DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetEx-stopped1");
|
---|
628 | return u64;
|
---|
629 | }
|
---|
630 |
|
---|
631 | /*
|
---|
632 | * Query the virtual clock and do the usual expired timer check.
|
---|
633 | */
|
---|
634 | Assert(pVM->tm.s.cVirtualTicking);
|
---|
635 | u64 = tmVirtualGetRawEx(pVM, puTscNow);
|
---|
636 | if (fCheckTimers)
|
---|
637 | {
|
---|
638 | PVMCPUCC pVCpuDst = VMCC_GET_CPU(pVM, pVM->tm.s.idTimerCpu);
|
---|
639 | if ( !VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)
|
---|
640 | && pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL].u64Expire <= u64)
|
---|
641 | {
|
---|
642 | Log5(("TMAllVirtual(%u): FF: 0 -> 1\n", __LINE__));
|
---|
643 | VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
|
---|
644 | #ifdef IN_RING3
|
---|
645 | VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM /** @todo |VMNOTIFYFF_FLAGS_POKE*/);
|
---|
646 | #endif
|
---|
647 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF);
|
---|
648 | }
|
---|
649 | }
|
---|
650 |
|
---|
651 | /*
|
---|
652 | * If we can get the lock, get it. The result is much more reliable.
|
---|
653 | *
|
---|
654 | * Note! This is where all clock source devices branch off because they
|
---|
655 | * will be owning the lock already. The 'else' is taken by code
|
---|
656 | * which is less picky or hasn't been adjusted yet
|
---|
657 | */
|
---|
658 | /** @todo switch this around, have the tmVirtualSyncGetLocked code inlined
|
---|
659 | * here and the remainder of this function in a static worker. */
|
---|
660 | if (PDMCritSectTryEnter(pVM, &pVM->tm.s.VirtualSyncLock) == VINF_SUCCESS)
|
---|
661 | return tmVirtualSyncGetLocked(pVM, u64, pcNsToDeadline, pnsAbsDeadline);
|
---|
662 |
|
---|
663 | /*
|
---|
664 | * When the clock is ticking, not doing catch ups and not running into an
|
---|
665 | * expired time, we can get away without locking. Try this first.
|
---|
666 | */
|
---|
667 | uint64_t off;
|
---|
668 | if (ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncTicking))
|
---|
669 | {
|
---|
670 | if (!ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
671 | {
|
---|
672 | off = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
|
---|
673 | if (RT_LIKELY( ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncTicking)
|
---|
674 | && !ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncCatchUp)
|
---|
675 | && off == ASMAtomicReadU64(&pVM->tm.s.offVirtualSync)))
|
---|
676 | {
|
---|
677 | off = u64 - off;
|
---|
678 | uint64_t const u64Expire = ASMAtomicReadU64(&pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire);
|
---|
679 | if (off < u64Expire)
|
---|
680 | {
|
---|
681 | if (pnsAbsDeadline)
|
---|
682 | *pnsAbsDeadline = u64Expire;
|
---|
683 | if (pcNsToDeadline)
|
---|
684 | *pcNsToDeadline = tmVirtualVirtToNsDeadline(pVM, u64Expire - off);
|
---|
685 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLockless);
|
---|
686 | Log6(("tmVirtualSyncGetEx -> %'RU64 [lockless]\n", off));
|
---|
687 | DBGFTRACE_U64_TAG(pVM, off, "tmVirtualSyncGetEx-lockless");
|
---|
688 | return off;
|
---|
689 | }
|
---|
690 | }
|
---|
691 | }
|
---|
692 | }
|
---|
693 | else
|
---|
694 | {
|
---|
695 | off = ASMAtomicReadU64(&pVM->tm.s.u64VirtualSync);
|
---|
696 | if (RT_LIKELY(!ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncTicking)))
|
---|
697 | {
|
---|
698 | if (pcNsToDeadline)
|
---|
699 | *pcNsToDeadline = 0;
|
---|
700 | if (pnsAbsDeadline)
|
---|
701 | *pnsAbsDeadline = off;
|
---|
702 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetLockless);
|
---|
703 | Log6(("tmVirtualSyncGetEx -> %'RU64 [lockless/stopped]\n", off));
|
---|
704 | DBGFTRACE_U64_TAG(pVM, off, "tmVirtualSyncGetEx-stopped2");
|
---|
705 | return off;
|
---|
706 | }
|
---|
707 | }
|
---|
708 |
|
---|
709 | /*
|
---|
710 | * Read the offset and adjust if we're playing catch-up.
|
---|
711 | *
|
---|
712 | * The catch-up adjusting work by us decrementing the offset by a percentage of
|
---|
713 | * the time elapsed since the previous TMVirtualGetSync call.
|
---|
714 | *
|
---|
715 | * It's possible to get a very long or even negative interval between two read
|
---|
716 | * for the following reasons:
|
---|
717 | * - Someone might have suspended the process execution, frequently the case when
|
---|
718 | * debugging the process.
|
---|
719 | * - We might be on a different CPU which TSC isn't quite in sync with the
|
---|
720 | * other CPUs in the system.
|
---|
721 | * - Another thread is racing us and we might have been preempted while inside
|
---|
722 | * this function.
|
---|
723 | *
|
---|
724 | * Assuming nano second virtual time, we can simply ignore any intervals which has
|
---|
725 | * any of the upper 32 bits set.
|
---|
726 | */
|
---|
727 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
728 | int cOuterTries = 42;
|
---|
729 | for (;; cOuterTries--)
|
---|
730 | {
|
---|
731 | /* Try grab the lock, things get simpler when owning the lock. */
|
---|
732 | int rcLock = PDMCritSectTryEnter(pVM, &pVM->tm.s.VirtualSyncLock);
|
---|
733 | if (RT_SUCCESS_NP(rcLock))
|
---|
734 | return tmVirtualSyncGetLocked(pVM, u64, pcNsToDeadline, pnsAbsDeadline);
|
---|
735 |
|
---|
736 | /* Re-check the ticking flag. */
|
---|
737 | if (!ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncTicking))
|
---|
738 | {
|
---|
739 | off = ASMAtomicReadU64(&pVM->tm.s.u64VirtualSync);
|
---|
740 | if ( ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncTicking)
|
---|
741 | && cOuterTries > 0)
|
---|
742 | continue;
|
---|
743 | if (pcNsToDeadline)
|
---|
744 | *pcNsToDeadline = 0;
|
---|
745 | if (pnsAbsDeadline)
|
---|
746 | *pnsAbsDeadline = off;
|
---|
747 | Log6(("tmVirtualSyncGetEx -> %'RU64 [stopped]\n", off));
|
---|
748 | DBGFTRACE_U64_TAG(pVM, off, "tmVirtualSyncGetEx-stopped3");
|
---|
749 | return off;
|
---|
750 | }
|
---|
751 |
|
---|
752 | off = ASMAtomicReadU64(&pVM->tm.s.offVirtualSync);
|
---|
753 | if (ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
754 | {
|
---|
755 | /* No changes allowed, try get a consistent set of parameters. */
|
---|
756 | uint64_t const u64Prev = ASMAtomicReadU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev);
|
---|
757 | uint64_t const offGivenUp = ASMAtomicReadU64(&pVM->tm.s.offVirtualSyncGivenUp);
|
---|
758 | uint32_t const u32Pct = ASMAtomicReadU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage);
|
---|
759 | if ( ( u64Prev == ASMAtomicReadU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev)
|
---|
760 | && offGivenUp == ASMAtomicReadU64(&pVM->tm.s.offVirtualSyncGivenUp)
|
---|
761 | && u32Pct == ASMAtomicReadU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage)
|
---|
762 | && ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
763 | || cOuterTries <= 0)
|
---|
764 | {
|
---|
765 | uint64_t u64Delta = u64 - u64Prev;
|
---|
766 | if (RT_LIKELY(!(u64Delta >> 32)))
|
---|
767 | {
|
---|
768 | uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, u32Pct, 100);
|
---|
769 | if (off > u64Sub + offGivenUp)
|
---|
770 | {
|
---|
771 | off -= u64Sub;
|
---|
772 | Log4(("TM: %'RU64/-%'8RU64: sub %RU32 [NoLock]\n", u64 - off, pVM->tm.s.offVirtualSync - offGivenUp, u64Sub));
|
---|
773 | }
|
---|
774 | else
|
---|
775 | {
|
---|
776 | /* we've completely caught up. */
|
---|
777 | STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
|
---|
778 | off = offGivenUp;
|
---|
779 | Log4(("TM: %'RU64/0: caught up [NoLock]\n", u64));
|
---|
780 | }
|
---|
781 | }
|
---|
782 | else
|
---|
783 | /* More than 4 seconds since last time (or negative), ignore it. */
|
---|
784 | Log(("TMVirtualGetSync: u64Delta=%RX64 (NoLock)\n", u64Delta));
|
---|
785 |
|
---|
786 | /* Check that we're still running and in catch up. */
|
---|
787 | if ( ASMAtomicUoReadBool(&pVM->tm.s.fVirtualSyncTicking)
|
---|
788 | && ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
789 | break;
|
---|
790 | if (cOuterTries <= 0)
|
---|
791 | break; /* enough */
|
---|
792 | }
|
---|
793 | }
|
---|
794 | else if ( off == ASMAtomicReadU64(&pVM->tm.s.offVirtualSync)
|
---|
795 | && !ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
796 | break; /* Got an consistent offset */
|
---|
797 | else if (cOuterTries <= 0)
|
---|
798 | break; /* enough */
|
---|
799 | }
|
---|
800 | if (cOuterTries <= 0)
|
---|
801 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetELoop);
|
---|
802 |
|
---|
803 | /*
|
---|
804 | * Complete the calculation of the current TMCLOCK_VIRTUAL_SYNC time. The current
|
---|
805 | * approach is to never pass the head timer. So, when we do stop the clock and
|
---|
806 | * set the timer pending flag.
|
---|
807 | */
|
---|
808 | u64 -= off;
|
---|
809 | /** @todo u64VirtualSyncLast */
|
---|
810 | uint64_t u64Expire = ASMAtomicReadU64(&pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire);
|
---|
811 | if (pnsAbsDeadline)
|
---|
812 | *pnsAbsDeadline = u64Expire;
|
---|
813 | if (u64 >= u64Expire)
|
---|
814 | {
|
---|
815 | PVMCPUCC pVCpuDst = VMCC_GET_CPU(pVM, pVM->tm.s.idTimerCpu);
|
---|
816 | if (!VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER))
|
---|
817 | {
|
---|
818 | Log5(("TMAllVirtual(%u): FF: %d -> 1 (NoLock)\n", __LINE__, VMCPU_FF_IS_SET(pVCpuDst, VMCPU_FF_TIMER)));
|
---|
819 | VM_FF_SET(pVM, VM_FF_TM_VIRTUAL_SYNC); /* Hmm? */
|
---|
820 | VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
|
---|
821 | #ifdef IN_RING3
|
---|
822 | VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM);
|
---|
823 | #endif
|
---|
824 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetSetFF);
|
---|
825 | Log4(("TM: %'RU64/-%'8RU64: exp tmr=>ff [NoLock]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp));
|
---|
826 | }
|
---|
827 | else
|
---|
828 | Log4(("TM: %'RU64/-%'8RU64: exp tmr [NoLock]\n", u64, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp));
|
---|
829 | if (pcNsToDeadline)
|
---|
830 | *pcNsToDeadline = 0;
|
---|
831 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGetExpired);
|
---|
832 | }
|
---|
833 | else if (pcNsToDeadline)
|
---|
834 | {
|
---|
835 | uint64_t cNsToDeadline = u64Expire - u64;
|
---|
836 | if (ASMAtomicReadBool(&pVM->tm.s.fVirtualSyncCatchUp))
|
---|
837 | cNsToDeadline = ASMMultU64ByU32DivByU32(cNsToDeadline, 100,
|
---|
838 | ASMAtomicReadU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage) + 100);
|
---|
839 | *pcNsToDeadline = tmVirtualVirtToNsDeadline(pVM, cNsToDeadline);
|
---|
840 | }
|
---|
841 |
|
---|
842 | Log6(("tmVirtualSyncGetEx -> %'RU64\n", u64));
|
---|
843 | DBGFTRACE_U64_TAG(pVM, u64, "tmVirtualSyncGetEx-nolock");
|
---|
844 | return u64;
|
---|
845 | }
|
---|
846 |
|
---|
847 |
|
---|
848 | /**
|
---|
849 | * Gets the current TMCLOCK_VIRTUAL_SYNC time.
|
---|
850 | *
|
---|
851 | * @returns The timestamp.
|
---|
852 | * @param pVM The cross context VM structure.
|
---|
853 | * @thread EMT.
|
---|
854 | * @remarks May set the timer and virtual sync FFs.
|
---|
855 | */
|
---|
856 | VMM_INT_DECL(uint64_t) TMVirtualSyncGet(PVMCC pVM)
|
---|
857 | {
|
---|
858 | return tmVirtualSyncGetEx(pVM, true /*fCheckTimers*/, NULL /*pcNsToDeadline*/, NULL /*pnsAbsDeadline*/, NULL /*puTscNow*/);
|
---|
859 | }
|
---|
860 |
|
---|
861 |
|
---|
862 | /**
|
---|
863 | * Gets the current TMCLOCK_VIRTUAL_SYNC time without checking timers running on
|
---|
864 | * TMCLOCK_VIRTUAL.
|
---|
865 | *
|
---|
866 | * @returns The timestamp.
|
---|
867 | * @param pVM The cross context VM structure.
|
---|
868 | * @thread EMT.
|
---|
869 | * @remarks May set the timer and virtual sync FFs.
|
---|
870 | */
|
---|
871 | VMM_INT_DECL(uint64_t) TMVirtualSyncGetNoCheck(PVMCC pVM)
|
---|
872 | {
|
---|
873 | return tmVirtualSyncGetEx(pVM, false /*fCheckTimers*/, NULL /*pcNsToDeadline*/, NULL /*pnsAbsDeadline*/, NULL /*puTscNow*/);
|
---|
874 | }
|
---|
875 |
|
---|
876 |
|
---|
877 | /**
|
---|
878 | * Gets the current TMCLOCK_VIRTUAL_SYNC time without checking timers running on
|
---|
879 | * TMCLOCK_VIRTUAL, also returning corresponding TSC value.
|
---|
880 | *
|
---|
881 | * @returns The timestamp.
|
---|
882 | * @param pVM The cross context VM structure.
|
---|
883 | * @param puTscNow Where to return the TSC value that the return
|
---|
884 | * value is relative to. This is delta adjusted.
|
---|
885 | * @thread EMT.
|
---|
886 | * @remarks May set the timer and virtual sync FFs.
|
---|
887 | */
|
---|
888 | VMM_INT_DECL(uint64_t) TMVirtualSyncGetNoCheckWithTsc(PVMCC pVM, uint64_t *puTscNow)
|
---|
889 | {
|
---|
890 | return tmVirtualSyncGetEx(pVM, false /*fCheckTimers*/, NULL /*pcNsToDeadline*/, NULL /*pnsAbsDeadline*/, puTscNow);
|
---|
891 | }
|
---|
892 |
|
---|
893 |
|
---|
894 | /**
|
---|
895 | * Gets the current TMCLOCK_VIRTUAL_SYNC time.
|
---|
896 | *
|
---|
897 | * @returns The timestamp.
|
---|
898 | * @param pVM The cross context VM structure.
|
---|
899 | * @param fCheckTimers Check timers on the virtual clock or not.
|
---|
900 | * @thread EMT.
|
---|
901 | * @remarks May set the timer and virtual sync FFs.
|
---|
902 | */
|
---|
903 | VMM_INT_DECL(uint64_t) TMVirtualSyncGetEx(PVMCC pVM, bool fCheckTimers)
|
---|
904 | {
|
---|
905 | return tmVirtualSyncGetEx(pVM, fCheckTimers, NULL /*pcNsToDeadline*/, NULL /*pnsAbsDeadline*/, NULL /*puTscNow*/);
|
---|
906 | }
|
---|
907 |
|
---|
908 |
|
---|
909 | /**
|
---|
910 | * Gets the current TMCLOCK_VIRTUAL_SYNC time and ticks to the next deadline
|
---|
911 | * without checking timers running on TMCLOCK_VIRTUAL.
|
---|
912 | *
|
---|
913 | * @returns The timestamp.
|
---|
914 | * @param pVM The cross context VM structure.
|
---|
915 | * @param pcNsToDeadline Where to return the number of nano seconds to
|
---|
916 | * the next virtual sync timer deadline.
|
---|
917 | * @param puTscNow Where to return the TSC value that the return
|
---|
918 | * value is relative to. This is delta adjusted.
|
---|
919 | * @param puDeadlineVersion Where to return the deadline "version" number.
|
---|
920 | * Use with TMVirtualSyncIsCurrentDeadlineVersion()
|
---|
921 | * to check if the absolute deadline is still up to
|
---|
922 | * date and the caller can skip calling this
|
---|
923 | * function.
|
---|
924 | * @thread EMT.
|
---|
925 | * @remarks May set the timer and virtual sync FFs.
|
---|
926 | */
|
---|
927 | VMM_INT_DECL(uint64_t) TMVirtualSyncGetWithDeadlineNoCheck(PVMCC pVM, uint64_t *pcNsToDeadline,
|
---|
928 | uint64_t *puDeadlineVersion, uint64_t *puTscNow)
|
---|
929 | {
|
---|
930 | uint64_t cNsToDeadlineTmp; /* try convince the compiler to skip the if tests. */
|
---|
931 | uint64_t u64Now = tmVirtualSyncGetEx(pVM, false /*fCheckTimers*/, &cNsToDeadlineTmp, puDeadlineVersion, puTscNow);
|
---|
932 | *pcNsToDeadline = cNsToDeadlineTmp;
|
---|
933 | return u64Now;
|
---|
934 | }
|
---|
935 |
|
---|
936 |
|
---|
937 | /**
|
---|
938 | * Gets the number of nano seconds to the next virtual sync deadline.
|
---|
939 | *
|
---|
940 | * @returns The number of TMCLOCK_VIRTUAL ticks.
|
---|
941 | * @param pVM The cross context VM structure.
|
---|
942 | * @param puTscNow Where to return the TSC value that the return
|
---|
943 | * value is relative to. This is delta adjusted.
|
---|
944 | * @param puDeadlineVersion Where to return the deadline "version" number.
|
---|
945 | * Use with TMVirtualSyncIsCurrentDeadlineVersion()
|
---|
946 | * to check if the absolute deadline is still up to
|
---|
947 | * date and the caller can skip calling this
|
---|
948 | * function.
|
---|
949 | * @thread EMT.
|
---|
950 | * @remarks May set the timer and virtual sync FFs.
|
---|
951 | */
|
---|
952 | VMMDECL(uint64_t) TMVirtualSyncGetNsToDeadline(PVMCC pVM, uint64_t *puDeadlineVersion, uint64_t *puTscNow)
|
---|
953 | {
|
---|
954 | uint64_t cNsToDeadline;
|
---|
955 | tmVirtualSyncGetEx(pVM, false /*fCheckTimers*/, &cNsToDeadline, puDeadlineVersion, puTscNow);
|
---|
956 | return cNsToDeadline;
|
---|
957 | }
|
---|
958 |
|
---|
959 |
|
---|
960 | /**
|
---|
961 | * Checks if the given deadline is still current.
|
---|
962 | *
|
---|
963 | * @retval true if the deadline is still current.
|
---|
964 | * @retval false if the deadline is outdated.
|
---|
965 | * @param pVM The cross context VM structure.
|
---|
966 | * @param uDeadlineVersion The deadline version to check.
|
---|
967 | */
|
---|
968 | VMM_INT_DECL(bool) TMVirtualSyncIsCurrentDeadlineVersion(PVMCC pVM, uint64_t uDeadlineVersion)
|
---|
969 | {
|
---|
970 | /** @todo Try use ASMAtomicUoReadU64 instead. */
|
---|
971 | uint64_t u64Expire = ASMAtomicReadU64(&pVM->tm.s.aTimerQueues[TMCLOCK_VIRTUAL_SYNC].u64Expire);
|
---|
972 | return u64Expire == uDeadlineVersion;
|
---|
973 | }
|
---|
974 |
|
---|
975 |
|
---|
976 | /**
|
---|
977 | * Gets the current lag of the synchronous virtual clock (relative to the virtual clock).
|
---|
978 | *
|
---|
979 | * @return The current lag.
|
---|
980 | * @param pVM The cross context VM structure.
|
---|
981 | */
|
---|
982 | VMM_INT_DECL(uint64_t) TMVirtualSyncGetLag(PVMCC pVM)
|
---|
983 | {
|
---|
984 | return pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp;
|
---|
985 | }
|
---|
986 |
|
---|
987 |
|
---|
988 | /**
|
---|
989 | * Get the current catch-up percent.
|
---|
990 | *
|
---|
991 | * @return The current catch0up percent. 0 means running at the same speed as the virtual clock.
|
---|
992 | * @param pVM The cross context VM structure.
|
---|
993 | */
|
---|
994 | VMM_INT_DECL(uint32_t) TMVirtualSyncGetCatchUpPct(PVMCC pVM)
|
---|
995 | {
|
---|
996 | if (pVM->tm.s.fVirtualSyncCatchUp)
|
---|
997 | return pVM->tm.s.u32VirtualSyncCatchUpPercentage;
|
---|
998 | return 0;
|
---|
999 | }
|
---|
1000 |
|
---|
1001 |
|
---|
1002 | /**
|
---|
1003 | * Gets the current TMCLOCK_VIRTUAL frequency.
|
---|
1004 | *
|
---|
1005 | * @returns The frequency.
|
---|
1006 | * @param pVM The cross context VM structure.
|
---|
1007 | */
|
---|
1008 | VMM_INT_DECL(uint64_t) TMVirtualGetFreq(PVM pVM)
|
---|
1009 | {
|
---|
1010 | NOREF(pVM);
|
---|
1011 | return TMCLOCK_FREQ_VIRTUAL;
|
---|
1012 | }
|
---|
1013 |
|
---|
1014 |
|
---|
1015 | /**
|
---|
1016 | * Worker for TMR3PauseClocks.
|
---|
1017 | *
|
---|
1018 | * @returns VINF_SUCCESS or VERR_TM_VIRTUAL_TICKING_IPE (asserted).
|
---|
1019 | * @param pVM The cross context VM structure.
|
---|
1020 | */
|
---|
1021 | int tmVirtualPauseLocked(PVMCC pVM)
|
---|
1022 | {
|
---|
1023 | uint32_t c = ASMAtomicDecU32(&pVM->tm.s.cVirtualTicking);
|
---|
1024 | AssertMsgReturn(c < pVM->cCpus, ("%u vs %u\n", c, pVM->cCpus), VERR_TM_VIRTUAL_TICKING_IPE);
|
---|
1025 | if (c == 0)
|
---|
1026 | {
|
---|
1027 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualPause);
|
---|
1028 | pVM->tm.s.u64Virtual = tmVirtualGetRaw(pVM);
|
---|
1029 | ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
|
---|
1030 | }
|
---|
1031 | return VINF_SUCCESS;
|
---|
1032 | }
|
---|
1033 |
|
---|
1034 |
|
---|
1035 | /**
|
---|
1036 | * Worker for TMR3ResumeClocks.
|
---|
1037 | *
|
---|
1038 | * @returns VINF_SUCCESS or VERR_TM_VIRTUAL_TICKING_IPE (asserted).
|
---|
1039 | * @param pVM The cross context VM structure.
|
---|
1040 | */
|
---|
1041 | int tmVirtualResumeLocked(PVMCC pVM)
|
---|
1042 | {
|
---|
1043 | uint32_t c = ASMAtomicIncU32(&pVM->tm.s.cVirtualTicking);
|
---|
1044 | AssertMsgReturn(c <= pVM->cCpus, ("%u vs %u\n", c, pVM->cCpus), VERR_TM_VIRTUAL_TICKING_IPE);
|
---|
1045 | if (c == 1)
|
---|
1046 | {
|
---|
1047 | STAM_COUNTER_INC(&pVM->tm.s.StatVirtualResume);
|
---|
1048 | pVM->tm.s.u64VirtualRawPrev = 0;
|
---|
1049 | pVM->tm.s.u64VirtualWarpDriveStart = tmVirtualGetRawNanoTS(pVM);
|
---|
1050 | pVM->tm.s.u64VirtualOffset = pVM->tm.s.u64VirtualWarpDriveStart - pVM->tm.s.u64Virtual;
|
---|
1051 | ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
|
---|
1052 | }
|
---|
1053 | return VINF_SUCCESS;
|
---|
1054 | }
|
---|
1055 |
|
---|
1056 |
|
---|
1057 | /**
|
---|
1058 | * Converts from virtual ticks to nanoseconds.
|
---|
1059 | *
|
---|
1060 | * @returns nanoseconds.
|
---|
1061 | * @param pVM The cross context VM structure.
|
---|
1062 | * @param u64VirtualTicks The virtual ticks to convert.
|
---|
1063 | * @remark There could be rounding errors here. We just do a simple integer divide
|
---|
1064 | * without any adjustments.
|
---|
1065 | */
|
---|
1066 | VMM_INT_DECL(uint64_t) TMVirtualToNano(PVM pVM, uint64_t u64VirtualTicks)
|
---|
1067 | {
|
---|
1068 | NOREF(pVM);
|
---|
1069 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
1070 | return u64VirtualTicks;
|
---|
1071 | }
|
---|
1072 |
|
---|
1073 |
|
---|
1074 | /**
|
---|
1075 | * Converts from virtual ticks to microseconds.
|
---|
1076 | *
|
---|
1077 | * @returns microseconds.
|
---|
1078 | * @param pVM The cross context VM structure.
|
---|
1079 | * @param u64VirtualTicks The virtual ticks to convert.
|
---|
1080 | * @remark There could be rounding errors here. We just do a simple integer divide
|
---|
1081 | * without any adjustments.
|
---|
1082 | */
|
---|
1083 | VMM_INT_DECL(uint64_t) TMVirtualToMicro(PVM pVM, uint64_t u64VirtualTicks)
|
---|
1084 | {
|
---|
1085 | NOREF(pVM);
|
---|
1086 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
1087 | return u64VirtualTicks / 1000;
|
---|
1088 | }
|
---|
1089 |
|
---|
1090 |
|
---|
1091 | /**
|
---|
1092 | * Converts from virtual ticks to milliseconds.
|
---|
1093 | *
|
---|
1094 | * @returns milliseconds.
|
---|
1095 | * @param pVM The cross context VM structure.
|
---|
1096 | * @param u64VirtualTicks The virtual ticks to convert.
|
---|
1097 | * @remark There could be rounding errors here. We just do a simple integer divide
|
---|
1098 | * without any adjustments.
|
---|
1099 | */
|
---|
1100 | VMM_INT_DECL(uint64_t) TMVirtualToMilli(PVM pVM, uint64_t u64VirtualTicks)
|
---|
1101 | {
|
---|
1102 | NOREF(pVM);
|
---|
1103 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
1104 | return u64VirtualTicks / 1000000;
|
---|
1105 | }
|
---|
1106 |
|
---|
1107 |
|
---|
1108 | /**
|
---|
1109 | * Converts from nanoseconds to virtual ticks.
|
---|
1110 | *
|
---|
1111 | * @returns virtual ticks.
|
---|
1112 | * @param pVM The cross context VM structure.
|
---|
1113 | * @param u64NanoTS The nanosecond value ticks to convert.
|
---|
1114 | * @remark There could be rounding and overflow errors here.
|
---|
1115 | */
|
---|
1116 | VMM_INT_DECL(uint64_t) TMVirtualFromNano(PVM pVM, uint64_t u64NanoTS)
|
---|
1117 | {
|
---|
1118 | NOREF(pVM);
|
---|
1119 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
1120 | return u64NanoTS;
|
---|
1121 | }
|
---|
1122 |
|
---|
1123 |
|
---|
1124 | /**
|
---|
1125 | * Converts from microseconds to virtual ticks.
|
---|
1126 | *
|
---|
1127 | * @returns virtual ticks.
|
---|
1128 | * @param pVM The cross context VM structure.
|
---|
1129 | * @param u64MicroTS The microsecond value ticks to convert.
|
---|
1130 | * @remark There could be rounding and overflow errors here.
|
---|
1131 | */
|
---|
1132 | VMM_INT_DECL(uint64_t) TMVirtualFromMicro(PVM pVM, uint64_t u64MicroTS)
|
---|
1133 | {
|
---|
1134 | NOREF(pVM);
|
---|
1135 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
1136 | return u64MicroTS * 1000;
|
---|
1137 | }
|
---|
1138 |
|
---|
1139 |
|
---|
1140 | /**
|
---|
1141 | * Converts from milliseconds to virtual ticks.
|
---|
1142 | *
|
---|
1143 | * @returns virtual ticks.
|
---|
1144 | * @param pVM The cross context VM structure.
|
---|
1145 | * @param u64MilliTS The millisecond value ticks to convert.
|
---|
1146 | * @remark There could be rounding and overflow errors here.
|
---|
1147 | */
|
---|
1148 | VMM_INT_DECL(uint64_t) TMVirtualFromMilli(PVM pVM, uint64_t u64MilliTS)
|
---|
1149 | {
|
---|
1150 | NOREF(pVM);
|
---|
1151 | AssertCompile(TMCLOCK_FREQ_VIRTUAL == 1000000000);
|
---|
1152 | return u64MilliTS * 1000000;
|
---|
1153 | }
|
---|
1154 |
|
---|